Science.gov

Sample records for yeast mating-type switching

  1. Fission yeast switches mating type by a replication-recombination coupled process.

    PubMed

    Arcangioli, B; de Lahondès, R

    2000-03-15

    Fission yeast exhibits a homothallic life cycle, in which the mating type of the cell mitotically alternates in a highly regulated fashion. Pedigree analysis of dividing cells has shown that only one of the two sister cells switches mating type. It was shown recently that a site- and strand-specific DNA modification at the mat1 locus precedes mating-type switching. By tracking the fate of mat1 DNA throughout the cell cycle with a PCR assay, we identified a novel DNA intermediate of mating-type switching in S-phase. The time and rate of appearance and disappearance of this DNA intermediate are consistent with a model in which mating-type switching occurs through a replication-recombination coupled pathway. Such a process provides experimental evidence in support of a copy choice recombination model in Schizosaccharomyces pombe mating-type switching and is reminiscent of the sister chromatid recombination used to complete replication in the presence of certain types of DNA damage. PMID:10716938

  2. Switching of a Mating-Type a Mutant Allele in Budding Yeast SACCHAROMYCES CEREVISIAE

    PubMed Central

    Klar, Amar J. S.; Fogel, Seymour; Radin, David N.

    1979-01-01

    Aimed at investigating the recovery of a specific mutant allele of the mating type locus (MAT) by switching a defective MAT allele, these experiments provide information bearing on several models proposed for MAT interconversion in bakers yeast, Saccharomyces cerevisiae. Hybrids between heterothallic (ho) cells carrying a mutant MATa allele, designated mata-2, and MATα ho strains show a high capacity for mating with MATa strains. The MATα/mata-2 diploids do not sporulate. However, zygotic clones obtained by mating MATα homothallic (HO) cells with mata-2 ho cells are unable to mate and can sporulate. Tetrad analysis of such clones revealed two diploid (MATα/MATa):two haploid segregants. Therefore, MAT switches occur in MATα/mata-2 HO/ho cells to produce MATα/MATa cells capable of sporulation. In heterothallic strains, the mata-2 allele can be switched to a functional MATα and subsequently to a functional MATa. Among 32 MATα to MATa switches tested, where the MATα was previously derived from the mata-2 mutant, only one mata-2 like isolate was observed. However, the recovered allele, unlike the parental allele, conplements the matα ste1–5 mutant, suggesting that these alleles are not identical and that the recovered allele presumably arose as a mutation of the MATα locus. No mata-2 was recovered by HO-mediated switching of MATα (previously obtained from mata-2 by HO) in 217 switches analyzed. We conclude that in homothallic and heterothallic strains, the mata-2 allele can be readily switched to a functional MATα and subsequently to a functional MATa locus. Overall, the results are in accord with the cassette model (Hicks, Strathern and Herskowitz 1977b) proposed to explain MAT interconversions. PMID:395020

  3. The evolution of mating type switching.

    PubMed

    Hadjivasiliou, Zena; Pomiankowski, Andrew; Kuijper, Bram

    2016-07-01

    Predictions about the evolution of sex determination mechanisms have mainly focused on animals and plants, whereas unicellular eukaryotes such as fungi and ciliates have received little attention. Many taxa within the latter groups can stochastically switch their mating type identity during vegetative growth. Here, we investigate the hypothesis that mating type switching overcomes distortions in the distribution of mating types due to drift during asexual growth. Using a computational model, we show that smaller population size, longer vegetative periods and more mating types lead to greater distortions in the distribution of mating types. However, the impact of these parameters on optimal switching rates is not straightforward. We find that longer vegetative periods cause reductions and considerable fluctuations in the switching rate over time. Smaller population size increases the strength of selection for switching but has little impact on the switching rate itself. The number of mating types decreases switching rates when gametes can freely sample each other, but increases switching rates when there is selection for speedy mating. We discuss our results in light of empirical work and propose new experiments that could further our understanding of sexuality in isogamous eukaryotes. PMID:27271362

  4. Inversion of the Chromosomal Region between Two Mating Type Loci Switches the Mating Type in Hansenula polymorpha

    PubMed Central

    Maekawa, Hiromi; Kaneko, Yoshinobu

    2014-01-01

    Yeast mating type is determined by the genotype at the mating type locus (MAT). In homothallic (self-fertile) Saccharomycotina such as Saccharomyces cerevisiae and Kluveromyces lactis, high-efficiency switching between a and α mating types enables mating. Two silent mating type cassettes, in addition to an active MAT locus, are essential components of the mating type switching mechanism. In this study, we investigated the structure and functions of mating type genes in H. polymorpha (also designated as Ogataea polymorpha). The H. polymorpha genome was found to harbor two MAT loci, MAT1 and MAT2, that are ∼18 kb apart on the same chromosome. MAT1-encoded α1 specifies α cell identity, whereas none of the mating type genes were required for a identity and mating. MAT1-encoded α2 and MAT2-encoded a1 were, however, essential for meiosis. When present in the location next to SLA2 and SUI1 genes, MAT1 or MAT2 was transcriptionally active, while the other was repressed. An inversion of the MAT intervening region was induced by nutrient limitation, resulting in the swapping of the chromosomal locations of two MAT loci, and hence switching of mating type identity. Inversion-deficient mutants exhibited severe defects only in mating with each other, suggesting that this inversion is the mechanism of mating type switching and homothallism. This chromosomal inversion-based mechanism represents a novel form of mating type switching that requires only two MAT loci. PMID:25412462

  5. SCFCdc4 Enables Mating Type Switching in Yeast by Cyclin-Dependent Kinase-Mediated Elimination of the Ash1 Transcriptional Repressor▿ †

    PubMed Central

    Liu, Qingquan; Larsen, Brett; Ricicova, Marketa; Orlicky, Stephen; Tekotte, Hille; Tang, Xiaojing; Craig, Karen; Quiring, Adam; Le Bihan, Thierry; Hansen, Carl; Sicheri, Frank; Tyers, Mike

    2011-01-01

    In the budding yeast Saccharomyces cerevisiae, mother cells switch mating types between a and α forms, whereas daughter cells do not. This developmental asymmetry arises because the expression of the HO endonuclease, which initiates the interconversion of a and α mating type cassettes, is extinguished by the daughter-specific Ash1 transcriptional repressor. When daughters become mothers in the subsequent cell cycle, Ash1 must be eliminated to enable a new developmental state. Here, we report that the ubiquitin ligase SCFCdc4 mediates the phosphorylation-dependent elimination of Ash1. The inactivation of SCFCdc4 stabilizes Ash1 in vivo, and consistently, Ash1 binds to and is ubiquitinated by SCFCdc4 in a phosphorylation-dependent manner in vitro. The mutation of a critical in vivo cyclin-dependent kinase (CDK) phosphorylation site (Thr290) on Ash1 reduces its ubiquitination and rate of degradation in vivo and decreases the frequency of mating type switching. Ash1 associates with active Cdc28 kinase in vivo and is targeted to SCFCdc4 in a Cdc28-dependent fashion in vivo and in vitro. Ash1 recognition by Cdc4 appears to be mediated by at least three phosphorylation sites that form two redundant diphosphorylated degrons. The phosphorylation-dependent elimination of Ash1 by the ubiquitin-proteasome system thus underpins developmental asymmetry in budding yeast. PMID:21098119

  6. Mating-type switching by chromosomal inversion in methylotrophic yeasts suggests an origin for the three-locus Saccharomyces cerevisiae system.

    PubMed

    Hanson, Sara J; Byrne, Kevin P; Wolfe, Kenneth H

    2014-11-11

    Saccharomyces cerevisiae has a complex system for switching the mating type of haploid cells, requiring the genome to have three mating-type (MAT)-like loci and a mechanism for silencing two of them. How this system originated is unknown, because the three-locus system is present throughout the family Saccharomycetaceae, whereas species in the sister Candida clade have only one locus and do not switch. Here we show that yeasts in a third clade, the methylotrophs, have a simpler two-locus switching system based on reversible inversion of a section of chromosome with MATa genes at one end and MATalpha genes at the other end. In Hansenula polymorpha the 19-kb invertible region lies beside a centromere so that, depending on the orientation, either MATa or MATalpha is silenced by centromeric chromatin. In Pichia pastoris, the orientation of a 138-kb invertible region puts either MATa or MATalpha beside a telomere and represses transcription of MATa2 or MATalpha2. Both species are homothallic, and inversion of their MAT regions can be induced by crossing two strains of the same mating type. The three-locus system of S. cerevisiae, which uses a nonconservative mechanism to replace DNA at MAT, likely evolved from a conservative two-locus system that swapped genes between expression and nonexpression sites by inversion. The increasing complexity of the switching apparatus, with three loci, donor bias, and cell lineage tracking, can be explained by continuous selection to increase sporulation ability in young colonies. Our results provide an evolutionary context for the diversity of switching and silencing mechanisms. PMID:25349420

  7. Mating-type switching by chromosomal inversion in methylotrophic yeasts suggests an origin for the three-locus Saccharomyces cerevisiae system

    PubMed Central

    Hanson, Sara J.; Byrne, Kevin P.; Wolfe, Kenneth H.

    2014-01-01

    Saccharomyces cerevisiae has a complex system for switching the mating type of haploid cells, requiring the genome to have three mating-type (MAT)–like loci and a mechanism for silencing two of them. How this system originated is unknown, because the three-locus system is present throughout the family Saccharomycetaceae, whereas species in the sister Candida clade have only one locus and do not switch. Here we show that yeasts in a third clade, the methylotrophs, have a simpler two-locus switching system based on reversible inversion of a section of chromosome with MATa genes at one end and MATalpha genes at the other end. In Hansenula polymorpha the 19-kb invertible region lies beside a centromere so that, depending on the orientation, either MATa or MATalpha is silenced by centromeric chromatin. In Pichia pastoris, the orientation of a 138-kb invertible region puts either MATa or MATalpha beside a telomere and represses transcription of MATa2 or MATalpha2. Both species are homothallic, and inversion of their MAT regions can be induced by crossing two strains of the same mating type. The three-locus system of S. cerevisiae, which uses a nonconservative mechanism to replace DNA at MAT, likely evolved from a conservative two-locus system that swapped genes between expression and nonexpression sites by inversion. The increasing complexity of the switching apparatus, with three loci, donor bias, and cell lineage tracking, can be explained by continuous selection to increase sporulation ability in young colonies. Our results provide an evolutionary context for the diversity of switching and silencing mechanisms. PMID:25349420

  8. A Recombinationally Repressed Region between Mat2 and Mat3 Loci Shares Homology to Centromeric Repeats and Regulates Directionality of Mating-Type Switching in Fission Yeast

    PubMed Central

    Grewal, SIS.; Klar, AJS.

    1997-01-01

    Cells of the fission yeast Schizosaccharomyces pombe switch mating type by replacing genetic information at the transcriptionally active mat1 locus with sequences copied from one of two closely linked silent loci, mat2-P or mat3-M. By a process referred to as directionality of switching, cells predominantly switch to the opposite mat1 allele; the mat1-P allele preferentially recombines with mat3, while mat1-M selects the mat2. In contrast to efficient recombination at mat1, recombination within the adjoining mat2-mat3 interval is undetectable. We defined the role of sequences between mat2 and mat3, designated the K-region, in directionality as well as recombinational suppression. Cloning and sequencing analysis revealed that a part of the K-region is homologous to repeat sequences present at centromeres, which also display transcriptional and recombinational suppression. Replacement of 7.5 kb of the K-region with the ura4(+) gene affected directionality in a variegated manner. Analysis of the swi6-mod locus, which was previously shown to affect directionality, in KΔ::ura4(+) strains suggested the existence of at least two overlapping directionality mechanisms. Our work furthers the model that directionality is regulated by cell-type-specific organization of the heterochromatin-like structure in the mating-type region and provides evidence that the K-region contributes to silencing of the mat2-mat3 interval. PMID:9258669

  9. Swi6, a Gene Required for Mating-Type Switching, Prohibits Meiotic Recombination in the Mat2-Mat3 ``cold Spot'' of Fission Yeast

    PubMed Central

    Klar, AJS.; Bonaduce, M. J.

    1991-01-01

    Mitotic interconversion of the mating-type locus (mat1) of the fission yeast Schizosaccharomyces pombe is initiated by a double-strand break at mat1. The mat2 and mat3 loci act as nonrandom donors of genetic information for mat1 switching such that switches occur primarily (or only) to the opposite mat1 allele. Location of the mat1 ``hot spot'' for transposition should be contrasted with the ``cold spot'' of meiotic recombination located within the adjoining mat2-mat3 interval. That is, meiotic interchromosomal recombination in mat2, mat3 and the intervening 15-kilobase region does not occur at all. swi2 and swi6 switching-deficient mutants possess the normal level of double-strand break at mat1, yet they fail to switch efficiently. By testing for meiotic recombination in the cold spot, we found the usual lack of recombination in a swi2 mutant but a significant level of recombination in a swi6 mutant. Therefore, the swi6 gene function is required to keep the donor loci inert for interchromosomal recombination. This finding, combined with the additional result that switching primarily occurs intrachromosomally, suggests that the donor loci are made accessible for switching by folding them onto mat1, thus causing the cold spot of recombination. PMID:1783290

  10. Mating-Type Genes and MAT Switching in Saccharomyces cerevisiae

    PubMed Central

    Haber, James E.

    2012-01-01

    Mating type in Saccharomyces cerevisiae is determined by two nonhomologous alleles, MATa and MATα. These sequences encode regulators of the two different haploid mating types and of the diploids formed by their conjugation. Analysis of the MATa1, MATα1, and MATα2 alleles provided one of the earliest models of cell-type specification by transcriptional activators and repressors. Remarkably, homothallic yeast cells can switch their mating type as often as every generation by a highly choreographed, site-specific homologous recombination event that replaces one MAT allele with different DNA sequences encoding the opposite MAT allele. This replacement process involves the participation of two intact but unexpressed copies of mating-type information at the heterochromatic loci, HMLα and HMRa, which are located at opposite ends of the same chromosome-encoding MAT. The study of MAT switching has yielded important insights into the control of cell lineage, the silencing of gene expression, the formation of heterochromatin, and the regulation of accessibility of the donor sequences. Real-time analysis of MAT switching has provided the most detailed description of the molecular events that occur during the homologous recombinational repair of a programmed double-strand chromosome break. PMID:22555442

  11. Regulation of Budding Yeast Mating-Type Switching Donor Preference by the FHA Domain of Fkh1

    PubMed Central

    Lee, Kihoon; Lee, Cheng-Sheng; Kim, Jung-Ae; Wu, Qiuqin; Haber, James E.

    2012-01-01

    During Saccharomyces cerevisiae mating-type switching, an HO endonuclease-induced double-strand break (DSB) at MAT is repaired by recombining with one of two donors, HMLα or HMRa, located at opposite ends of chromosome III. MATa cells preferentially recombine with HMLα; this decision depends on the Recombination Enhancer (RE), located about 17 kb to the right of HML. In MATα cells, HML is rarely used and RE is bound by the MATα2-Mcm1 corepressor, which prevents the binding of other proteins to RE. In contrast, in MATa cells, RE is bound by multiple copies of Fkh1 and a single copy of Swi4/Swi6. We report here that, when RE is replaced with four LexA operators in MATa cells, 95% of cells use HMR for repair, but expression of a LexA-Fkh1 fusion protein strongly increases HML usage. A LexA-Fkh1 truncation, containing only Fkh1's phosphothreonine-binding FHA domain, restores HML usage to 90%. A LexA-FHA-R80A mutant lacking phosphothreonine binding fails to increase HML usage. The LexA-FHA fusion protein associates with chromatin in a 10-kb interval surrounding the HO cleavage site at MAT, but only after DSB induction. This association occurs even in a donorless strain lacking HML. We propose that the FHA domain of Fkh1 regulates donor preference by physically interacting with phosphorylated threonine residues created on proteins bound near the DSB, thus positioning HML close to the DSB at MAT. Donor preference is independent of Mec1/ATR and Tel1/ATM checkpoint protein kinases but partially depends on casein kinase II. RE stimulates the strand invasion step of interchromosomal recombination even for non-MAT sequences. We also find that when RE binds to the region near the DSB at MATa then Mec1 and Tel1 checkpoint kinases are not only able to phosphorylate histone H2A (γ-H2AX) around the DSB but can also promote γ-H2AX spreading around the RE region. PMID:22496671

  12. Mating-type Gene Switching in Saccharomyces cerevisiae.

    PubMed

    Lee, Cheng-Sheng; Haber, James E

    2015-04-01

    The budding yeast Saccharomyces cerevisiae has two alternative mating types designated MATa and MATα. These are distinguished by about 700 bp of unique sequences, Ya or Yα, including divergent promoter sequences and part of the open reading frames of genes that regulate mating phenotype. Homothallic budding yeast, carrying an active HO endonuclease gene, HO, can switch mating type through a recombination process known as gene conversion, in which a site-specific double-strand break (DSB) created immediately adjacent to the Y region results in replacement of the Y sequences with a copy of the opposite mating type information, which is harbored in one of two heterochromatic donor loci, HMLα or HMRa. HO gene expression is tightly regulated to ensure that only half of the cells in a lineage switch to the opposite MAT allele, thus promoting conjugation and diploid formation. Study of the silencing of these loci has provided a great deal of information about the role of the Sir2 histone deacetylase and its associated Sir3 and Sir4 proteins in creating heterochromatic regions. MAT switching has been examined in great detail to learn about the steps in homologous recombination. MAT switching is remarkably directional, with MATa recombining preferentially with HMLα and MATα using HMRa. Donor preference is controlled by a cis-acting recombination enhancer located near HML. RE is turned off in MATα cells but in MATa binds multiple copies of the Fkh1 transcription factor whose forkhead-associated phosphothreonine binding domain localizes at the DSB, bringing HML into conjunction with MATa. PMID:26104712

  13. Binding of the Fkh1 Forkhead Associated Domain to a Phosphopeptide within the Mph1 DNA Helicase Regulates Mating-Type Switching in Budding Yeast

    PubMed Central

    Su, Zhangli; Cherney, Rachel; Choi, Koyi; Denu, John; Zhao, Xiaolan; Fox, Catherine A.

    2016-01-01

    The Saccharomyces cerevisiae Fkh1 protein has roles in cell-cycle regulated transcription as well as a transcription-independent role in recombination donor preference during mating-type switching. The conserved FHA domain of Fkh1 regulates donor preference by juxtaposing two distant regions on chromosome III to promote their recombination. A model posits that this Fkh1-mediated long-range chromosomal juxtaposition requires an interaction between the FHA domain and a partner protein(s), but to date no relevant partner has been described. In this study, we used structural modeling, 2-hybrid assays, and mutational analyses to show that the predicted phosphothreonine-binding FHA domain of Fkh1 interacted with multiple partner proteins. The Fkh1 FHA domain was important for its role in cell-cycle regulation, but no single interaction partner could account for this role. In contrast, Fkh1’s interaction with the Mph1 DNA repair helicase regulated donor preference during mating-type switching. Using 2-hybrid assays, co-immunoprecipitation, and fluorescence anisotropy, we mapped a discrete peptide within the regulatory Mph1 C-terminus required for this interaction and identified two threonines that were particularly important. In vitro binding experiments indicated that at least one of these threonines had to be phosphorylated for efficient Fkh1 binding. Substitution of these two threonines with alanines (mph1-2TA) specifically abolished the Fkh1-Mph1 interaction in vivo and altered donor preference during mating-type switching to the same degree as mph1Δ. Notably, the mph1-2TA allele maintained other functions of Mph1 in genome stability. Deletion of a second Fkh1-interacting protein encoded by YMR144W also resulted in a change in Fkh1-FHA-dependent donor preference. We have named this gene FDO1 for Forkhead one interacting protein involved in donor preference. We conclude that a phosphothreonine-mediated protein-protein interface between Fkh1-FHA and Mph1 contributes

  14. The conformation of yeast chromosome III is mating type-dependent and controlled by the recombination enhancer

    PubMed Central

    Belton, Jon-Matthew; Lajoie, Bryan R.; Audibert, Sylvain; Cantaloube, Sylvain; Lassadi, Imen; Goiffon, Isabelle; Baù, Davide; Marti-Renom, Marc A.; Bystricky, Kerstin; Dekker, Job

    2015-01-01

    Summary Mating type switching in yeast occurs through gene conversion between the MAT locus and one of two silent loci (HML or HMR) on opposite ends of the chromosome. MATa cells choose HML as template, while MATα cells use HMR. The Recombination Enhancer (RE), located on the left arm regulates this process. One long-standing hypothesis is that switching is guided by mating type-specific, and possibly RE-dependent chromosome folding. Here we use Hi-C, 5C, and live cell imaging to characterize the conformation of chromosome III in both mating types. We discovered a mating type-specific conformational difference in the left arm. Deletion of a 1 kb subregion within the RE, which is not necessary during switching, abolished mating type-dependent chromosome folding. The RE is therefore a composite element with one subregion essential for donor selection during switching, and a separate region involved in modulating chromosome conformation. PMID:26655901

  15. Remarkably high rate of DNA amplification promoted by the mating-type switching mechanism in Schizosaccharomyces pombe.

    PubMed

    Yu, Chuanhe; Bonaduce, Michael J; Klar, Amar J S

    2012-05-01

    A novel mating-type switching-defective mutant showed a highly unstable rearrangement at the mating-type locus (mat1) in fission yeast. The mutation resulted from local amplification of a 134-bp DNA fragment by the mat1-switching phenomenon. We speculate that the rolling-circle-like replication and homologous recombination might be the general mechanisms for local genome region expansion. PMID:22377633

  16. Efficient Mating-Type Switching in Candida glabrata Induces Cell Death

    PubMed Central

    Boisnard, Stéphanie; Zhou Li, Youfang; Arnaise, Sylvie; Sequeira, Gregory; Raffoux, Xavier; Enache-Angoulvant, Adela; Bolotin-Fukuhara, Monique; Fairhead, Cécile

    2015-01-01

    Candida glabrata is an apparently asexual haploid yeast that is phylogenetically closer to Saccharomyces cerevisiae than to Candida albicans. Its genome contains three MAT-like cassettes, MAT, which encodes either MATa or MATalpha information in different strains, and the additional loci, HML and HMR. The genome also contains an HO gene homolog, but this yeast has never been shown to switch mating-types spontaneously, as S. cerevisiae does. We have recently sequenced the genomes of the five species that, together with C. glabrata, make up the Nakaseomyces clade. All contain MAT-like cassettes and an HO gene homolog. In this work, we express the HO gene of all Nakaseomyces and of S. cerevisiae in C. glabrata. All can induce mating-type switching, but, despite the larger phylogenetic distance, the most efficient endonuclease is the one from S. cerevisiae. Efficient mating-type switching in C. glabrata is accompanied by a high cell mortality, and sometimes results in conversion of the additional cassette HML. Mortality probably results from the cutting of the HO recognition sites that are present, in HML and possibly HMR, contrary to what happens naturally in S. cerevisiae. This has implications in the life-cycle of C. glabrata, as we show that efficient MAT switching is lethal for most cells, induces chromosomal rearrangements in survivors, and that the endogenous HO is probably rarely active indeed. PMID:26491872

  17. The Clr1 Locus Regulates the Expression of the Cryptic Mating-Type Loci of Fission Yeast

    PubMed Central

    Thon, G.; Klar, AJS.

    1992-01-01

    The mat2-P and mat3-M loci of fission yeast contain respectively the plus (P) and minus (M) mating-type information in a transcriptionally silent state. That information is transposed from the mat2 or mat3 donor locus via recombination into the expressed mating-type locus (mat1) resulting in switching of the cellular mating type. We have identified a gene, named clr1 (for cryptic loci regulator), whose mutations allow expression of the mat2 and mat3 loci. clr1 mutants undergo aberrant haploid meiosis, indicative of transcription of the silent genes. Production of mRNA from mat3 is detectable in clr1 mutants. Furthermore, the ura4 gene inserted near mat3, weakly expressed in wild-type cells, is derepressed in clr1 mutants. The clr1 mutations also permit meiotic recombination in the 15-kb mat2-mat3 interval, where recombination is normally inhibited. The clr1 locus is in the right arm of chromosome II. We suggest that clr1 regulates silencing of the mat2 and mat3 loci, and participates in establishing the ``cold spot'' for recombination by organizing the chromatin structure of the mating-type region. PMID:1644273

  18. Regulation of Mating and Meiosis in Yeast by the Mating-Type Region

    PubMed Central

    Kassir, Yona; Simchen, Giora

    1976-01-01

    A supposed sporulation-deficient mutation of Saccharomyces cerevisiae is found to affect mating in haploids and in diploids, and to be inseparable from the mating-type locus by recombination. The mutation is regarded as a defective a allele and is designated a*. This is confirmed by its dominance relations in diploids, triploids, and tetraploids. Tetrad analysis of tetraploids and of their sporulating diploid progeny suggests the existence of an additional locus, RME, which regulates sporulation in yeast strains that can mate. Thus the recessive homozygous constitution rme/rme enables the diploids a*/α, a/a*, and α/α to go through meiosis. Haploids carrying rme show apparent premeiotic DNA replication in sporulation conditions. This new regulatory locus is linked to the centromere of the mating-type chromosome, and its two alleles, rme and RME, are found among standard laboratory strains. PMID:770230

  19. Directionality of Fission Yeast Mating-Type Interconversion Is Controlled by the Location of the Donor Loci

    PubMed Central

    Thon, G.; Klar, AJS.

    1993-01-01

    Cells of homothallic strains of Schizosaccharomyces pombe efficiently switch between two mating types called P and M. The phenotypic switches are due to conversion of the expressed mating-type locus (mat1) by two closely linked silent loci, mat2-P and mat3-M, that contain unexpressed information for the P and M mating types, respectively. In this process, switching-competent cells switch to the opposite mating type in 72-90% of the cell divisions. Hence, mat2-P is a preferred donor of information to mat1 in M cells, whereas mat3-M is a preferred donor in P cells. We investigated the reason for the donor preference by constructing a strain in which the genetic contents of the donor loci were swapped. We found that switching to the opposite mating type was very inefficient in that strain. This shows that the location of the silent cassettes in the chromosome, rather than their content, is the deciding factor for recognition of the donor for each cell type. We propose a model in which switching is achieved by regulating accessibility of the donor loci, perhaps by changing the chromatin structure in the mating-type region, thus promoting an intrachromosomal folding of mat2 or mat3 onto mat1 in a cell type-specific fashion. We also present evidence for the involvement of the Swi6 and Swi6-mod trans-acting factors in the donor-choice mechanism. We suggest that these factors participate in forming the proposed folded structure. PMID:8375648

  20. Direct repeat-mediated DNA deletion of the mating type MAT1-2 genes results in unidirectional mating type switching in Sclerotinia trifoliorum

    PubMed Central

    Xu, Liangsheng; Jardini, Teresa M.; Chen, Weidong

    2016-01-01

    The necrotrophic fungal pathogen Sclerotinia trifoliorum exhibits ascospore dimorphism and unidirectional mating type switching - self-fertile strains derived from large ascospores produce both self-fertile (large-spores) and self-sterile (small-spores) offsprings in a 4:4 ratio. The present study, comparing DNA sequences at MAT locus of both self-fertile and self-sterile strains, found four mating type genes (MAT1-1-1, MAT1-1-5, MAT1-2-1 and MAT1-2-4) in the self-fertile strain. However, a 2891-bp region including the entire MAT1-2-1 and MAT1-2-4 genes had been completely deleted from the MAT locus in the self-sterile strain. Meanwhile, two copies of a 146-bp direct repeat motif flanking the deleted region were found in the self-fertile strain, but only one copy of this 146-bp motif (a part of the MAT1-1-1 gene) was present in the self-sterile strain. The two direct repeats were believed to be responsible for the deletion through homologous intra-molecular recombination in meiosis. Tetrad analyses showed that all small ascospore-derived strains lacked the missing DNA between the two direct repeats that was found in all large ascospore-derived strains. In addition, heterokaryons at the MAT locus were observed in field isolates as well as in laboratory derived isolates. PMID:27255676

  1. Direct repeat-mediated DNA deletion of the mating type MAT1-2 genes results in unidirectional mating type switching in Sclerotinia trifoliorum.

    PubMed

    Xu, Liangsheng; Jardini, Teresa M; Chen, Weidong

    2016-01-01

    The necrotrophic fungal pathogen Sclerotinia trifoliorum exhibits ascospore dimorphism and unidirectional mating type switching - self-fertile strains derived from large ascospores produce both self-fertile (large-spores) and self-sterile (small-spores) offsprings in a 4:4 ratio. The present study, comparing DNA sequences at MAT locus of both self-fertile and self-sterile strains, found four mating type genes (MAT1-1-1, MAT1-1-5, MAT1-2-1 and MAT1-2-4) in the self-fertile strain. However, a 2891-bp region including the entire MAT1-2-1 and MAT1-2-4 genes had been completely deleted from the MAT locus in the self-sterile strain. Meanwhile, two copies of a 146-bp direct repeat motif flanking the deleted region were found in the self-fertile strain, but only one copy of this 146-bp motif (a part of the MAT1-1-1 gene) was present in the self-sterile strain. The two direct repeats were believed to be responsible for the deletion through homologous intra-molecular recombination in meiosis. Tetrad analyses showed that all small ascospore-derived strains lacked the missing DNA between the two direct repeats that was found in all large ascospore-derived strains. In addition, heterokaryons at the MAT locus were observed in field isolates as well as in laboratory derived isolates. PMID:27255676

  2. The Saccharomyces cerevisiae recombination enhancer biases recombination during interchromosomal mating-type switching but not in interchromosomal homologous recombination.

    PubMed Central

    Houston, Peter; Simon, Peter J; Broach, James R

    2004-01-01

    Haploid Saccharomyces can change mating type through HO-endonuclease cleavage of an expressor locus, MAT, followed by gene conversion using one of two repository loci, HML or HMR, as donor. The mating type of a cell dictates which repository locus is used as donor, with a cells using HML and alpha cells using HMR. This preference is established in part by RE, a locus on the left arm of chromosome III that activates the surrounding region, including HML, for recombination in a cells, an activity suppressed by alpha 2 protein in alpha cells. We have examined the ability of RE to stimulate different forms of interchromosomal recombination. We found that RE exerted an effect on interchromosomal mating-type switching and on intrachromosomal homologous recombination but not on interchromosomal homologous recombination. Also, even in the absence of RE, MAT alpha still influenced donor preference in interchromosomal mating-type switching, supporting a role of alpha 2 in donor preference independent of RE. These results suggest a model in which RE affects competition between productive and nonproductive recombination outcomes. In interchromosome gene conversion, RE enhances both productive and nonproductive pathways, whereas in intrachromosomal gene conversion and mating-type switching, RE enhances only the productive pathway. PMID:15082540

  3. Regulation of Nuclear Positioning and Dynamics of the Silent Mating Type Loci by the Yeast Ku70/Ku80 Complex▿

    PubMed Central

    Bystricky, Kerstin; Van Attikum, Haico; Montiel, Maria-Dolores; Dion, Vincent; Gehlen, Lutz; Gasser, Susan M.

    2009-01-01

    We have examined the hypothesis that the highly selective recombination of an active mating type locus (MAT) with either HMLα or HMRa is facilitated by the spatial positioning of relevant sequences within the budding yeast (Saccharomyces cerevisiae) nucleus. However, both position relative to the nuclear envelope (NE) and the subnuclear mobility of fluorescently tagged MAT, HML, or HMR loci are largely identical in haploid a and α cells. Irrespective of mating type, the expressed MAT locus is highly mobile within the nuclear lumen, while silent loci move less and are found preferentially near the NE. The perinuclear positions of HMR and HML are strongly compromised in strains lacking the Silent information regulator, Sir4. However, HMLα, unlike HMRa and most telomeres, shows increased NE association in a strain lacking yeast Ku70 (yKu70). Intriguingly, we find that the yKu complex is associated with HML and HMR sequences in a mating-type-specific manner. Its abundance decreases at the HMLα donor locus and increases transiently at MATa following DSB induction. Our data suggest that mating-type-specific binding of yKu to HMLα creates a local chromatin structure competent for recombination, which cooperates with the recombination enhancer to direct donor choice for gene conversion of the MATa locus. PMID:19047366

  4. Saccharomyces cerevisiae Donor Preference During Mating-Type Switching Is Dependent on Chromosome Architecture and Organization

    PubMed Central

    Coïc, Eric; Richard, Guy-Franck; Haber, James E.

    2006-01-01

    Saccharomyces mating-type (MAT) switching occurs by gene conversion using one of two donors, HMLα and HMRa, located near the ends of the same chromosome. MATa cells preferentially choose HMLα, a decision that depends on the recombination enhancer (RE) that controls recombination along the left arm of chromosome III (III-L). When RE is inactive, the two chromosome arms constitute separate domains inaccessible to each other; thus HMRa, located on the same arm as MAT, becomes the default donor. Activation of RE increases HMLα usage, even when RE is moved 50 kb closer to the centromere. If MAT is inserted into the same domain as HML, RE plays little or no role in activating HML, thus ruling out any role for RE in remodeling the silent chromatin of HML in regulating donor preference. When the donors MAT and RE are moved to chromosome V, RE increases HML usage, but the inaccessibility of HML without RE apparently depends on other chromosome III-specific sequences. Similar conclusions were reached when RE was placed adjacent to leu2 or arg4 sequences engaged in spontaneous recombination. We propose that RE's targets are anchor sites that tether chromosome III-L in MATα cells thus reducing its mobility in the nucleus. PMID:16624909

  5. Heteroduplex formation and mismatch repair of the "stuck" mutation during mating-type switching in Saccharomyces cerevisiae.

    PubMed Central

    Ray, B L; White, C I; Haber, J E

    1991-01-01

    We sequenced two alleles of the MATa locus of Saccharomyces cerevisiae that reduce homothallic switching and confer viability to HO rad52 strains. Both the MATa-stk (J. E. Haber, W. T. Savage, S. M. Raposa, B. Weiffenbach, and L. B. Rowe, Proc. Natl. Acad. Sci. USA 77:2824-2828, 1980) and MATa-survivor (R. E. Malone and D. Hyman, Curr. Genet. 7:439-447, 1983) alleles result from a T----A base change at position Z11 of the MAT locus. These strains also contain identical base substitutions at HMRa, so that the mutation is reintroduced when MAT alpha switches to MATa. Mating-type switching in a MATa-stk strain relative to a MATa Z11T strain is reduced at least 50-fold but can be increased by expression of HO from a galactose-inducible promoter. We confirmed by Southern analysis that the Z11A mutation reduced the efficiency of double-strand break formation compared with the Z11T variant; the reduction was more severe in MAT alpha than in MATa. In MAT alpha, the Z11A mutation also creates a mat alpha 1 (sterile) mutation that distinguishes switches of MATa-stk to either MAT alpha or mat alpha 1-stk. Pedigree analysis of cells induced to switch in G1 showed that MATa-stk switched frequently (23% of the time) to produce one mat alpha 1-stk and one MAT alpha progeny. This postswitching segregation suggests that Z11 was often present in heteroduplex DNA that was not mismatch repaired. When mismatch repair was prevented by deletion of the PMS1 gene, there was an increase in the proportion of mat alpha 1-stk/MAT alpha sectors (59%) and in pairs of switched cells that both retained the stk mutation (27%). We conclude that at least one strand of DNA only 4 bp from the HO cut site is not degraded in most of the gene conversion events that accompany MAT switching. Images PMID:1922052

  6. Saccharomyces forkhead protein Fkh1 regulates donor preference during mating-type switching through the recombination enhancer

    PubMed Central

    Sun, Kaiming; Coïc, Eric; Zhou, Zhiqi; Durrens, Pascal; Haber, James E.

    2002-01-01

    Saccharomyces mating-type switching results from replacement by gene conversion of the MAT locus with sequences copied from one of two unexpressed donor loci, HML or HMR. MATa cells recombine with HMLα ∼90% of the time, whereas MATα cells choose HMRa 80%–90% of the time. HML preference in MATa is controlled by the cis-acting recombination enhancer (RE) that regulates recombination along the entire left arm of chromosome III. Comparison of RE sequences between S. cerevisiae, S. carlsbergensis, and S. bayanus defines four highly conserved regions (A, B, C, and D) within a 270-bp minimum RE. An adjacent E region enhances RE activity. Multimers of region A, D, or E are sufficient to promote selective use of HML. Regions A, D, and E each bind in vivo the transcription activator forkhead proteins Fkh1p and Fkh2p and their associated Ndd1p, although there are no adjacent open reading frames (ORFs). Deletion of FKH1 significantly reduces MATa's use of HML, as does mutation of the Fkh1/Fkh2-binding sites in a multimer of region A. We conclude that Fkh1p regulates MATa donor preference through direct interaction with RE. PMID:12183363

  7. Saccharomyces forkhead protein Fkh1 regulates donor preference during mating-type switching through the recombination enhancer.

    PubMed

    Sun, Kaiming; Coïc, Eric; Zhou, Zhiqi; Durrens, Pascal; Haber, James E

    2002-08-15

    Saccharomyces mating-type switching results from replacement by gene conversion of the MAT locus with sequences copied from one of two unexpressed donor loci, HML or HMR. MATa cells recombine with HMLalpha approximately 90% of the time, whereas MATalpha cells choose HMRa 80%-90% of the time. HML preference in MATa is controlled by the cis-acting recombination enhancer (RE) that regulates recombination along the entire left arm of chromosome III. Comparison of RE sequences between S. cerevisiae, S. carlsbergensis, and S. bayanus defines four highly conserved regions (A, B, C, and D) within a 270-bp minimum RE. An adjacent E region enhances RE activity. Multimers of region A, D, or E are sufficient to promote selective use of HML. Regions A, D, and E each bind in vivo the transcription activator forkhead proteins Fkh1p and Fkh2p and their associated Ndd1p, although there are no adjacent open reading frames (ORFs). Deletion of FKH1 significantly reduces MATa's use of HML, as does mutation of the Fkh1/Fkh2-binding sites in a multimer of region A. We conclude that Fkh1p regulates MATa donor preference through direct interaction with RE. PMID:12183363

  8. Epigenetic Inheritance of Transcriptional Silencing and Switching Competence in Fission Yeast

    PubMed Central

    Thon, G.; Friis, T.

    1997-01-01

    Epigenetic events allow the inheritance of phenotypic changes that are not caused by an alteration in DNA sequence. Here we characterize an epigenetic phenomenon occuring in the mating-type region of fission yeast. Cells of fission yeast switch between the P and M mating-type by interconverting their expressed mating-type cassette between two allelic forms, mat1-P and mat1-M. The switch results from gene conversions of mat1 by two silent cassettes, mat2-P and mat3-M, which are linked to each other and to mat1. GREWAL and KLAR observed that the ability to both switch mat1 and repress transcription near mat2-P and mat3-M was maintained epigenetically in a strain with an 8-kb deletion between mat2 and mat3. Using a strain very similar to theirs, we determined that interconversions between the switching-and silencing-proficient state and the switching and silencing-deficient state occurred less frequently than once per 1000 cell divisions. Although transcriptional silencing was alleviated by the 8-kb deletion, it was not abolished. We performed a mutant search and obtained a class of trans-acting mutations that displayed a strong cumulative effect with the 8-kb deletion. These mutations allow to assess the extent to which silencing is affected by the deletion and provide new insights on the redundancy of the silencing mechanism. PMID:9055078

  9. Mutations in Rik1, Clr2, Clr3 and Clr4 Genes Asymmetrically Derepress the Silent Mating-Type Loci in Fission Yeast

    PubMed Central

    Ekwall, K.; Ruusala, T.

    1994-01-01

    In Schizosaccharomyces pombe the mating-type information is stored at two transcriptionally silent loci (mat2 and mat3). The region between these sites (K region) is inert for meiotic crossing over. The mating-type genes (M or P) are expressed only when present at a third, active locus (mat1). We have earlier shown that the positional regulation of P genes is based on repression at the silent site, caused by elements in the flanking DNA sequences. In this study we have mutagenized a sterile mat1 deleted strain and selected for cells that are able to conjugate. Recessive mutations of this type should define genes encoding trans-acting factors involved in repression of the silent mating-type loci. Before this work mutations in two genes, clr1 and swi6, had been shown to allow both expression of the silent loci and recombination in the K region. The sensitivity of the present selection is demonstrated by the isolation of new mutations that derepress one or both of the silent loci (M-mating or bi-mating). The frequency of M-mating mutants was almost two orders of magnitude higher than that of bi-mating mutants and in all mutants analyzed mat3-M expression was significantly higher than mat2-P expression. The mutations define three new genes, clr2, clr3 and clr4. In addition we show that the rik1 mutant previously known to allow recombination in the K region also derepresses the silent loci. PMID:8138176

  10. Diversity of mating-type chromosome structures in the yeast Zygosaccharomyces rouxii caused by ectopic exchanges between MAT-like loci.

    PubMed

    Watanabe, Jun; Uehara, Kenji; Mogi, Yoshinobu

    2013-01-01

    We investigated sex chromosome diversity in Zygosaccharomyces rouxii (Z. rouxii). In the current study, we show that the organization of the mating-type (MAT) locus is highly variable in the Z. rouxii population, indicating the MAT, HML, and HMR loci are translocation hotspots. Although NBRC1130 and CBS732 were originally two stocks of the type strain of the species, only NBRC1130 retains the original karyotype. A reciprocal translocation between the MAT and HMR loci appears to have occurred during the early passage culture of CBS732, which was used for genome sequencing. In NBRC1733, NBRC0686, NBRC0740 and NBRC1053, the terminal region of the chromosome containing the HMR locus was replaced with the chromosomal region to the left of the MAT or HML loci. The translocation events found in NBRC1733, NBRC0686, NBRC0740, and NBRC1053 were reconstructed under our experimental conditions using the DA2 background, and the reconstruction suggests that the frequency of this type of translocation is approximately 10(-7). These results suggest that the MAT and MAT-like loci were the susceptible regions in the genome, and the diversity of mating-type chromosome structures in Z. rouxii was caused by ectopic exchanges between MAT-like loci. PMID:23614024

  11. Mating types and sexual development in filamentous ascomycetes.

    PubMed Central

    Coppin, E; Debuchy, R; Arnaise, S; Picard, M

    1997-01-01

    The progress made in the molecular characterization of the mating types in several filamentous ascomycetes has allowed us to better understand their role in sexual development and has brought to light interesting biological problems. The mating types of Neurospora crassa, Podospora anserina, and Cochliobolus heterostrophus consist of unrelated and unique sequences containing one or several genes with multiple functions, related to sexuality or not, such as vegetative incompatibility in N. crassa. The presence of putative DNA binding domains in the proteins encoded by the mating-type (mat) genes suggests that they may be transcriptional factors. The mat genes play a role in cell-cell recognition at fertilization, probably by activating the genes responsible for the hormonal signal whose occurrence was previously demonstrated by physiological experiments. They also control recognition between nuclei at a later stage, when reproductive nuclei of each mating type which have divided in the common cytoplasm pair within the ascogenous hyphae. How self is distinguished from nonself at the nuclear level is not known. The finding that homothallic species, able to mate in the absence of a partner, contain both mating types in the same haploid genome has raised more issues than it has resolved. The instability of the mating type, in particular in Sclerotinia trifolorium and Botrytinia fuckeliana, is also unexplained. This diversity of mating systems, still more apparent if the yeasts and the basidiomycetes are taken into account, clearly shows that no single species can serve as a universal mating-type model. PMID:9409146

  12. Localization of the Mating Type Gene in Agaricus bisporus

    PubMed Central

    Xu, Jianping; Kerrigan, Richard W.; Horgen, Paul A.; Anderson, James B.

    1993-01-01

    The cultivated mushroom Agaricus bisporus is secondarily homothallic. Most basidia produce two basidiospores, each of which receives two of the four postmeiotic nuclei. Usually, the two packaged nuclei carry compatible mating types. Previous studies suggested that there may be only a single mating type locus in A. bisporus. In this study, we determined whether the mating type segregated as a single Mendelian determinant in a cross marked with 64 segregating molecular markers. To score mating types, each of the 52 homokaryotic offspring from this cross was paired with each of the two progenitor homokaryons. Compatible matings were identified by the formation of genetically stable heterokaryons which were verified by assay of restriction fragment length polymorphisms (RFLPs). Data for screening mycelial interactions on petri plates as well as fruit body formation were compared with the RFLP results. Mating types of 43 of the 52 homokaryotic offspring were determined on the basis of RFLP analysis. Our results indicate (i) there is a segregating mating type gene in A. bisporus, (ii) this mating type gene is on the largest linkage group (chromosome I), (iii) mycelial interactions on petri plates were associated with heterokaryon formation under selected conditions, (iv) fruit body formation was dependent upon the mating type gene, and (v) compatible mating types may not always be sufficient for fruiting. PMID:16349046

  13. Donor Locus Selection during Saccharomyces Cerevisiae Mating Type Interconversion Responds to Distant Regulatory Signals

    PubMed Central

    Weiler, K. S.; Broach, J. R.

    1992-01-01

    Mating type interconversion in homothallic strains of the yeast Saccharomyces cerevisiae results from directed transposition of a mating type allele from one of the two silent donor loci, HML and HMR, to the expressing locus, MAT. Cell type regulates the selection of the particular donor locus to be utilized during mating type interconversion: MATa cells preferentially select HMLα and MATα cells preferentially select HMRa. Such preferential selection indicates that the cell is able to distinguish between HML and HMR during mating type interconversion. Accordingly, we designed experiments to identify those features perceived by the cell to discriminate HML and HMR. We demonstrate that discrimination does not derive from the different structures of the HML and HMR loci, from the unique sequences flanking each donor locus nor from any of the DNA distal to the HM loci on chromosome III. Moreover, we find that the sequences flanking the MAT locus do not function in the preferential selection of one donor locus over the other. We propose that the positions of the donor loci on the left and right arms of chromosome III is the characteristic utilized by the cell to distinguish HML and HMR. This positional information is not generated by either CEN3 or the MAT locus, but probably derives from differences in the chromatin structure, chromosome folding or intranuclear localization of the two ends of chromosome III. PMID:1459444

  14. Spatial organization and dynamics of interphase yeast chromosomes

    NASA Astrophysics Data System (ADS)

    Avsaroglu, Baris; Gordon-Messer, Susannah; Fritsche, Miriam; Ham, Jungoh; Heermann, Dieter W.; Haber, James E.; Kondev, Jane

    2012-02-01

    Understanding how the genome is spatially organized is an important problem in cell biology, due to its key roles in gene expression and DNA recombination. Here we report on a combined experimental and theoretical study of the organization and dynamics of yeast chromosome III which has a functional role in the yeast life cycle, in particular, it is responsible for mating type switching. By imaging two fluorescent markers, one at the spindle pole body (SPB) and the other proximal to the HML locus that is involved in DNA recombination during mating type switching, we measured the cell to cell distribution of distances and the mean square displacement between the markers as a function of time. We compared our experimental results with a random-walk polymer model that takes into account tethering and confinement of chromosomes in the nucleus, and found that the model recapitulates the observed spatial and temporal organization of chromosome III in yeast in quantitative detail. The polymer model makes specific predictions for mating-type switching in yeast, and suggests new experiments to test them.

  15. The mating type-like loci of Candida glabrata.

    PubMed

    Yáñez-Carrillo, Patricia; Robledo-Márquez, Karina A; Ramírez-Zavaleta, Candy Y; De Las Peñas, Alejandro; Castaño, Irene

    2014-01-01

    Candida glabrata, a haploid and opportunistic fungal pathogen that has not known sexual cycle, has conserved the majority of the genes required for mating and cell type identity. The C. glabrata genome contains three mating-type-like loci called MTL1, MTL2 and MTL3. The three loci encode putative transcription factors, a1, α1 and α2 that regulate cell type identity and sexual reproduction in other fungi like the closely related Saccharomyces cerevisiae. MTL1 can contain either a or α information. MTL2, which contains a information and MTL3 with α information, are relatively close to two telomeres. MTL1 and MTL2 are transcriptionally active, while MTL3 is subject to an incomplete silencing nucleated at the telomere that depends on the silencing proteins Sir2, Sir3, Sir4, yKu70/80, Rif1, Rap1 and Sum1. C. glabrata does not seem to maintain cell type identity, as cell type-specific genes are expressed regardless of the type (or even absence) of mating information. These data highlight important differences in the control of mating and cell type identity between the non-pathogenic yeast S. cerevisiae and C. glabrata, which might explain the absence of a sexual cycle in C. glabrata. The fact that C. glabrata has conserved the vast majority of the genes involved in mating might suggest that some of these genes perhaps have been rewired to control other processes important for the survival inside the host as a commensal or as a human pathogen. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). PMID:24252826

  16. Isolates of Cryptococcus neoformans from infected animals reveal genetic exchange in unisexual, alpha mating type populations.

    PubMed

    Bui, Tien; Lin, Xiaorong; Malik, Richard; Heitman, Joseph; Carter, Dee

    2008-10-01

    Sexual reproduction and genetic exchange are important for the evolution of fungal pathogens and for producing potentially infective spores. Studies to determine whether sex occurs in the pathogenic yeast Cryptococcus neoformans var. grubii have produced enigmatic results, however: basidiospores are the most likely infective propagules, and clinical isolates are fertile and genetically diverse, consistent with a sexual species, but almost all populations examined consist of a single mating type and have little evidence for genetic recombination. The choice of population is critical when looking for recombination, particularly when significant asexual propagation is likely and when latency may complicate assessing the origin of an isolate. We therefore selected isolates from infected animals living in the region of Sydney, Australia, with the assumption that the relatively short life spans and limited travels of the animal hosts would provide a very defined population. All isolates were mating type alpha and were of molecular genotype VNI or VNII. A lack of linkage disequilibrium among loci suggested that genetic exchange occurred within both genotype groups. Four diploid VNII isolates that produced filaments and basidium-like structures when cultured in proximity to an a mating type strain were found. Recent studies suggest that compatible alpha-alpha unions can occur in C. neoformans var. neoformans populations and in populations of the sibling species Cryptococcus gattii. As a mating type strains of C. neoformans var. grubii have never been found in Australia, or in the VNII molecular type globally, the potential for alpha-alpha unions is evidence that alpha-alpha unisexual mating maintains sexual recombination and diversity in this pathogen and may produce infectious propagules. PMID:18552280

  17. Identification and structure of the mating-type locus and development of PCR-based markers for mating type in powdery mildew fungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In fungi, mating compatibility is regulated by mating-type loci. The objectives of this study were to identify and sequence mating-type genes at the MAT1 locus in the grape powdery mildew fungus, Erysiphe necator, to develop a PCR-based marker for determining mating type in E. necator, and to devel...

  18. The Hos2 Histone Deacetylase Controls Ustilago maydis Virulence through Direct Regulation of Mating-Type Genes

    PubMed Central

    Elías-Villalobos, Alberto; Fernández-Álvarez, Alfonso; Moreno-Sánchez, Ismael; Helmlinger, Dominique; Ibeas, José I.

    2015-01-01

    Morphological changes are critical for host colonisation in plant pathogenic fungi. These changes occur at specific stages of their pathogenic cycle in response to environmental signals and are mediated by transcription factors, which act as master regulators. Histone deacetylases (HDACs) play crucial roles in regulating gene expression, for example by locally modulating the accessibility of chromatin to transcriptional regulators. It has been reported that HDACs play important roles in the virulence of plant fungi. However, the specific environment-sensing pathways that control fungal virulence via HDACs remain poorly characterised. Here we address this question using the maize pathogen Ustilago maydis. We find that the HDAC Hos2 is required for the dimorphic switch and pathogenic development in U. maydis. The deletion of hos2 abolishes the cAMP-dependent expression of mating type genes. Moreover, ChIP experiments detect Hos2 binding to the gene bodies of mating-type genes, which increases in proportion to their expression level following cAMP addition. These observations suggest that Hos2 acts as a downstream component of the cAMP-PKA pathway to control the expression of mating-type genes. Interestingly, we found that Clr3, another HDAC present in U. maydis, also contributes to the cAMP-dependent regulation of mating-type gene expression, demonstrating that Hos2 is not the only HDAC involved in this control system. Overall, our results provide new insights into the role of HDACs in fungal phytopathogenesis. PMID:26317403

  19. Gamete signalling underlies the evolution of mating types and their number.

    PubMed

    Hadjivasiliou, Zena; Pomiankowski, Andrew

    2016-10-19

    The gametes of unicellular eukaryotes are morphologically identical, but are nonetheless divided into distinct mating types. The number of mating types varies enormously and can reach several thousand, yet most species have only two. Why do morphologically identical gametes need to be differentiated into self-incompatible mating types, and why is two the most common number of mating types? In this work, we explore a neglected hypothesis that there is a need for asymmetric signalling interactions between mating partners. Our review shows that isogamous gametes always interact asymmetrically throughout sex and argue that this asymmetry is favoured because it enhances the efficiency of the mating process. We further develop a simple mathematical model that allows us to study the evolution of the number of mating types based on the strength of signalling interactions between gametes. Novel mating types have an advantage as they are compatible with all others and rarely meet their own type. But if existing mating types coevolve to have strong mutual interactions, this restricts the spread of novel types. Similarly, coevolution is likely to drive out less attractive mating types. These countervailing forces specify the number of mating types that are evolutionarily stable.This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'. PMID:27619695

  20. Maintaining Two Mating Types: Structure of the Mating Type Locus and Its Role in Heterokaryosis in Podospora anserina

    PubMed Central

    Grognet, Pierre; Bidard, Frédérique; Kuchly, Claire; Tong, Laetitia Chan Ho; Coppin, Evelyne; Benkhali, Jinane Ait; Couloux, Arnaud; Wincker, Patrick; Debuchy, Robert; Silar, Philippe

    2014-01-01

    Pseudo-homothallism is a reproductive strategy elected by some fungi producing heterokaryotic sexual spores containing genetically different but sexually compatible nuclei. This lifestyle appears as a compromise between true homothallism (self-fertility with predominant inbreeding) and complete heterothallism (with exclusive outcrossing). However, pseudohomothallic species face the problem of maintaining heterokaryotic mycelia to fully benefit from this lifestyle, as homokaryons are self-sterile. Here, we report on the structure of chromosome 1 in mat+ and mat− isolates of strain S of the pseudohomothallic fungus Podospora anserina. Chromosome 1 contains either one of the mat+ and mat− mating types of P. anserina, which is mostly found in nature as a mat+/mat− heterokaryotic mycelium harboring sexually compatible nuclei. We identified a “mat” region ∼0.8 Mb long, devoid of meiotic recombination and containing the mating-type idiomorphs, which is a candidate to be involved in the maintenance of the heterokaryotic state, since the S mat+ and S mat− strains have different physiology that may enable hybrid-vigor-like phenomena in the heterokaryons. The mat region contains 229 coding sequences. A total of 687 polymorphisms were detected between the S mat+ and S mat− chromosomes. Importantly, the mat region is colinear between both chromosomes, which calls for an original mechanism of recombination inhibition. Microarray analyses revealed that 10% of the P. anserina genes have different transcriptional profiles in S mat+ and S mat−, in line with their different phenotypes. Finally, we show that the heterokaryotic state is faithfully maintained during mycelium growth of P. anserina, yet mat+/mat+ and mat−/mat− heterokaryons are as stable as mat+/mat− ones, evidencing a maintenance of heterokaryosis that does not rely on fitness-enhancing complementation between the S mat+ and S mat− strains. PMID:24558260

  1. Genetic Mapping and Non-Mendelian Segregation of Mating Type Loci in the Oomycete, Phytophthora Infestans

    PubMed Central

    Judelson, H. S.; Spielman, L. J.; Shattock, R. C.

    1995-01-01

    DNA markers linked to the determinants of mating type in the oomycete, Phytophthora infestans, were identified and used to address the genetic basis of heterothallism in this normally diploid fungus. Thirteen loci linked to the A1 and A2 mating types were initially identified by bulked segregant analysis using random amplified polymorphic DNA markers (RAPDs) and subsequently scored in three crosses as RAPD markers, restriction fragment length polymorphisms (RFLPs), single-strand conformational polymorphisms (SSCP), cleaved amplified polymorphisms (CAPS), or allele-specific polymerase chain reaction markers (AS-PCR). All DNA markers mapped to a single region, consistent with a single locus determining both mating types. Long-range restriction mapping also demonstrated the linkage of the markers to one region and delimited the mating type locus to a 100-kb region. The interval containing the mating type locus displayed non-Mendelian segregation as only two of the four expected genotypes were detected in progeny. This is consistent with a system of balanced lethal loci near the mating type locus. A model for mating type determination is presented in which the balanced lethals exclude from progeny those with potentially conflicting combinations of mating type alleles, such as those simultaneously expressing A1 and A2 functions. PMID:8647388

  2. Mutational Analysis of Mating Type Inheritance in Syngen 4 of PARAMECIUM AURELIA

    PubMed Central

    Byrne, Bruce C.

    1973-01-01

    Six genic mutations restricting clones to mating type VII (O) were isolated in syngen 4, Paramecium aurelia. The only three extensively tested were neither allelic nor closely linked. A second type of mutation, allelic to one of the O restricted mutants, was also found. Clones homozygous for this mutant gene were selfers, producing both O and E (VIII) mating types, but only when they were progeny of mating type E parental clones. While all seven mutant genes behaved as recessives in monohybrid crosses, clones heterozygous at two different loci often demonstrated an unanticipated phenotype: selfing. The significance of the findings is discussed in relation to mating type determination and the evolution of mating type systems. PMID:17248611

  3. Mutational Analysis of Mating Type Inheritance in Syngen 4 of PARAMECIUM AURELIA.

    PubMed

    Byrne, B C

    1973-05-01

    Six genic mutations restricting clones to mating type VII (O) were isolated in syngen 4, Paramecium aurelia. The only three extensively tested were neither allelic nor closely linked. A second type of mutation, allelic to one of the O restricted mutants, was also found. Clones homozygous for this mutant gene were selfers, producing both O and E (VIII) mating types, but only when they were progeny of mating type E parental clones. While all seven mutant genes behaved as recessives in monohybrid crosses, clones heterozygous at two different loci often demonstrated an unanticipated phenotype: selfing. The significance of the findings is discussed in relation to mating type determination and the evolution of mating type systems. PMID:17248611

  4. The scaffold protein Ste5 directly controls a switch-like mating decision in yeast.

    PubMed

    Malleshaiah, Mohan K; Shahrezaei, Vahid; Swain, Peter S; Michnick, Stephen W

    2010-05-01

    Evolution has resulted in numerous innovations that allow organisms to increase their fitness by choosing particular mating partners, including secondary sexual characteristics, behavioural patterns, chemical attractants and corresponding sensory mechanisms. The haploid yeast Saccharomyces cerevisiae selects mating partners by interpreting the concentration gradient of pheromone secreted by potential mates through a network of mitogen-activated protein kinase (MAPK) signalling proteins. The mating decision in yeast is an all-or-none, or switch-like, response that allows cells to filter weak pheromone signals, thus avoiding inappropriate commitment to mating by responding only at or above critical concentrations when a mate is sufficiently close. The molecular mechanisms that govern the switch-like mating decision are poorly understood. Here we show that the switching mechanism arises from competition between the MAPK Fus3 and a phosphatase Ptc1 for control of the phosphorylation state of four sites on the scaffold protein Ste5. This competition results in a switch-like dissociation of Fus3 from Ste5 that is necessary to generate the switch-like mating response. Thus, the decision to mate is made at an early stage in the pheromone pathway and occurs rapidly, perhaps to prevent the loss of the potential mate to competitors. We argue that the architecture of the Fus3-Ste5-Ptc1 circuit generates a novel ultrasensitivity mechanism, which is robust to variations in the concentrations of these proteins. This robustness helps assure that mating can occur despite stochastic or genetic variation between individuals. The role of Ste5 as a direct modulator of a cell-fate decision expands the functional repertoire of scaffold proteins beyond providing specificity and efficiency of information processing. Similar mechanisms may govern cellular decisions in higher organisms and be disrupted in cancer. PMID:20400943

  5. Tuber melanosporum: mating type distribution in a natural plantation and dynamics of strains of different mating types on the roots of nursery-inoculated host plants.

    PubMed

    Rubini, Andrea; Belfiori, Beatrice; Riccioni, Claudia; Arcioni, Sergio; Martin, Francis; Paolocci, Francesco

    2011-02-01

    • In light of the recent finding that Tuber melanosporum, the ectomycorrhizal ascomycete that produces the most highly prized black truffles, is a heterothallic species, we monitored the spatial distribution of strains with opposite mating types (MAT) in a natural truffle ground and followed strain dynamics in artificially inoculated host plants grown under controlled conditions. • In a natural truffle ground, ectomycorrhizas (ECMs), soil samples and fruit bodies were sampled and genotyped to determine mating types. Simple sequence repeat (SSR) markers were also used to fingerprint ECMs and fruit bodies. The ECMs from nursery-inoculated host plants were analysed for mating type at 6 months and 19 months post-inoculation. • In open-field conditions, all ECMs from the same sampling site showed an identical mating type and an identical haploid genotype, based on SSR analysis. Interestingly, the gleba of fruit bodies always demonstrated the same genotype as the surrounding ECMs. Although root tips from nursery-grown plants initially developed ECMs of both mating types, a dominance of ECMs of the same MAT were found after several months. • The present study deepens our understanding of the vegetative and sexual propagation modes of T. melanosporum. These results are highly relevant for truffle cultivation. PMID:20964691

  6. Biological characteristics and mating type distribution of Phytophthora capsici from China.

    PubMed

    Du, Y; Gong, Z-H; Liu, G-Z; Chai, G-X; Li, C

    2014-01-01

    Phytophthora capsici from seven provinces of China were investigated for their mating type, hyphal growth, zoospore production, and virulence. All of the morphological characteristics and the results of polymerase chain reaction confirmed that these isolates were indeed Phytophthora capsici. The test of mating type showed that the mating types of 19 representative isolates from China varied. The hyphal growth and the amount of zoospores produced from these isolates differed and there was no evident relationship between them, which indicated the existence of genetic diversity among the isolates in China. Also, the isolates that were more virulent on the pepper cultivars that we checked produced more zoospores than other isolates. PMID:24535866

  7. Pseudohomothallism and evolution of the mating-type chromosome in Neurospora tetrasperma

    SciTech Connect

    Merino, S.T.; Nelson, M.A.; Natvig, D.O.

    1996-06-01

    Ascospores of Neurospora tetrasperma normally contain nuclei of both mating-type idiomorphs (a and A), resulting in self-fertile heterokaryons (a type of sexual reproduction termed pseudohomothallism). Occasional homokaryotic self-sterile strains (either a or A) behave as heterothallics and, in principal, provide N. tetrasperma to assess levels of intrastrain heterokaryosis (heterozygosity). The unexpected result was the mating-type chromosome and autosomes exhibited very different patterns of evolution, apparently because of suppressed recombination between mating-type chromosomes. Analysis of sequences on the mating-type chromosomes of wild-collected self-fertile strains revealed high levels of genetic variability between sibling A and a nuclei. In contrast, sequences on autosomes of sibling A and a nuclei exhibited nearly complete homogeneity. Conservation of distinct haplotype combinations on A and a mating-type chromosomes in strains from diverse locations further suggested an absence of recombination over substantial periods of evolutionary time. The suppression of recombination of the N. tetrasperma mating-type chromosome, expected to ensure a high frequency of self fertility, presents an interesting parallel with, and possible model for studying aspects of, the evolution of mammalian sex chromosomes. 39 refs., 5 figs., 1 tab.

  8. Pseudohomothallism and Evolution of the Mating-Type Chromosome in Neurospora Tetrasperma

    PubMed Central

    Merino, S. T.; Nelson, M. A.; Jacobson, D. J.; Natvig, D. O.

    1996-01-01

    Ascospores of Neurospora tetrasperma normally contain nuclei of both mating-type idiomorphs (a and A), resulting in self-fertile heterokaryons (a type of sexual reproduction termed pseudohomothallism). Occasional homokaryotic self-sterile strains (either a or A) behave as heterothallics and, in principle, provide N. tetrasperma with a means for facultative outcrossing. This study was conceived as an investigation of the population biology of N. tetrasperma to assess levels of intrastrain heterokaryosis (heterozygosity). The unexpected result was that the mating-type chromosome and autosomes exhibited very different patterns of evolution, apparently because of suppressed recombination between mating-type chromosomes. Analysis of sequences on the mating-type chromosomes of wild-collected self-fertile strains revealed high levels of genetic variability between sibling A and a nuclei. In contrast, sequences on autosomes of sibling A and a nuclei exhibited nearly complete homogeneity. Conservation of distinct haplotype combinations on A and a mating-type chromosomes in strains from diverse locations further suggested an absence of recombination over substantial periods of evolutionary time. The suppression of recombination on the N. tetrasperma mating-type chromosome, expected to ensure a high frequency of self fertility, presents an interesting parallel with, and possible model for studying aspects of, the evolution of mammalian sex chromosomes. PMID:8725227

  9. Impact of Mating Type, Serotype, and Ploidy on the Virulence of Cryptococcus neoformans▿ †

    PubMed Central

    Lin, Xiaorong; Nielsen, Kirsten; Patel, Sweta; Heitman, Joseph

    2008-01-01

    Hybridization with polyploidization is a significant biological force driving evolution. The effect of combining two distinct genomes in one organism on the virulence potential of pathogenic fungi is not clear. Cryptococcus neoformans, the most common cause of fungal infection of the central nervous system, has a bipolar mating system with a and α mating types and occurs as A (haploid), D (haploid), and AD hybrid (mostly diploid) serotypes. Diploid AD hybrids are derived either from a-α mating or from unisexual mating between haploid cells. The precise contributions of increased ploidy, the effect of hybridization between serotypes A and D, and the combination of mating types to the virulence potential of AD hybrids have remained elusive. By using in vitro and in vivo characterization of laboratory-constructed isogenic diploids and AD hybrids with all possible mating type combinations in defined genetic backgrounds, we found that higher ploidy has a minor negative effect on virulence in a murine inhalation model of cryptococcosis. The presence of both mating types a and α in AD hybrids did not affect the virulence potential, irrespective of the serotype origin. Interestingly, AD hybrids with only one mating type behaved differently, with the virulence of αADα strains similar to that of other hybrids, while aADa hybrids displayed significantly lower virulence due to negative epistatic interactions between the Aa and Da alleles of the mating type locus. This study provides insights into the impact of ploidy, mating type, and serotype on virulence and the impact of hybridization on the fitness and virulence of a eukaryotic microbial pathogen. PMID:18426889

  10. Effects of Ploidy and Mating Type on Virulence of Candida albicans

    PubMed Central

    Ibrahim, Ashraf S.; Magee, B. B.; Sheppard, D. C.; Yang, Molly; Kauffman, Sarah; Becker, Jeff; Edwards, John E.; Magee, P. T.

    2005-01-01

    Candida albicans is the most common fungal pathogen of humans. The recent discovery of sexuality in this organism has led to the demonstration of a mating type locus which is usually heterozygous, although some isolates are homozygous. Tetraploids can be formed between homozygotes of the opposite mating type. However, the role of the mating process and tetraploid formation in virulence has not been investigated. We describe here experiments using a murine model of disseminated candidiasis which demonstrate that in three strains, including CAI-4, the most commonly used strain background, tetraploids are less virulent than diploids and can undergo changes in ploidy during infection. In contrast to reports with other strains, we find that MTL homozygotes are almost as virulent as the heterozygotes. These results show that the level of ploidy in Candida albicans can affect virulence, but the mating type configuration does not necessarily do so. PMID:16239535

  11. Evolution of sexes from an ancestral mating-type specification pathway.

    PubMed

    Geng, Sa; De Hoff, Peter; Umen, James G

    2014-07-01

    Male and female sexes have evolved repeatedly in eukaryotes but the origins of dimorphic sexes and their relationship to mating types in unicellular species are not understood. Volvocine algae include isogamous species such as Chlamydomonas reinhardtii, with two equal-sized mating types, and oogamous multicellular species such as Volvox carteri with sperm-producing males and egg-producing females. Theoretical work predicts genetic linkage of a gamete cell-size regulatory gene(s) to an ancestral mating-type locus as a possible step in the evolution of dimorphic gametes, but this idea has not been tested. Here we show that, contrary to predictions, a single conserved mating locus (MT) gene in volvocine algae-MID, which encodes a RWP-RK domain transcription factor-evolved from its ancestral role in C. reinhardtii as a mating-type specifier, to become a determinant of sperm and egg development in V. carteri. Transgenic female V. carteri expressing male MID produced functional sperm packets during sexual development. Transgenic male V. carteri with RNA interference (RNAi)-mediated knockdowns of VcMID produced functional eggs, or self-fertile hermaphrodites. Post-transcriptional controls were found to regulate cell-type-limited expression and nuclear localization of VcMid protein that restricted its activity to nuclei of developing male germ cells and sperm. Crosses with sex-reversed strains uncoupled sex determination from sex chromosome identity and revealed gender-specific roles for male and female mating locus genes in sexual development, gamete fitness and reproductive success. Our data show genetic continuity between the mating-type specification and sex determination pathways of volvocine algae, and reveal evidence for gender-specific adaptations in the male and female mating locus haplotypes of Volvox. These findings will enable a deeper understanding of how a master regulator of mating-type determination in an ancestral unicellular species was reprogrammed to

  12. Evolution of Sexes from an Ancestral Mating-Type Specification Pathway

    PubMed Central

    Geng, Sa; De Hoff, Peter; Umen, James G.

    2014-01-01

    Male and female sexes have evolved repeatedly in eukaryotes but the origins of dimorphic sexes and their relationship to mating types in unicellular species are not understood. Volvocine algae include isogamous species such as Chlamydomonas reinhardtii, with two equal-sized mating types, and oogamous multicellular species such as Volvox carteri with sperm-producing males and egg-producing females. Theoretical work predicts genetic linkage of a gamete cell-size regulatory gene(s) to an ancestral mating-type locus as a possible step in the evolution of dimorphic gametes, but this idea has not been tested. Here we show that, contrary to predictions, a single conserved mating locus (MT) gene in volvocine algae—MID, which encodes a RWP-RK domain transcription factor—evolved from its ancestral role in C. reinhardtii as a mating-type specifier, to become a determinant of sperm and egg development in V. carteri. Transgenic female V. carteri expressing male MID produced functional sperm packets during sexual development. Transgenic male V. carteri with RNA interference (RNAi)-mediated knockdowns of VcMID produced functional eggs, or self-fertile hermaphrodites. Post-transcriptional controls were found to regulate cell-type–limited expression and nuclear localization of VcMid protein that restricted its activity to nuclei of developing male germ cells and sperm. Crosses with sex-reversed strains uncoupled sex determination from sex chromosome identity and revealed gender-specific roles for male and female mating locus genes in sexual development, gamete fitness and reproductive success. Our data show genetic continuity between the mating-type specification and sex determination pathways of volvocine algae, and reveal evidence for gender-specific adaptations in the male and female mating locus haplotypes of Volvox. These findings will enable a deeper understanding of how a master regulator of mating-type determination in an ancestral unicellular species was reprogrammed

  13. Identification of the Mating-Type (MAT) Locus That Controls Sexual Reproduction of Blastomyces dermatitidis

    PubMed Central

    Li, Wenjun; Sullivan, Thomas D.; Walton, Eric; Averette, Anna Floyd; Sakthikumar, Sharadha; Cuomo, Christina A.; Klein, Bruce S.

    2013-01-01

    Blastomyces dermatitidis is a dimorphic fungal pathogen that primarily causes blastomycosis in the midwestern and northern United States and Canada. While the genes controlling sexual development have been known for a long time, the genes controlling sexual reproduction of B. dermatitidis (teleomorph, Ajellomyces dermatitidis) are unknown. We identified the mating-type (MAT) locus in the B. dermatitidis genome by comparative genomic approaches. The B. dermatitidis MAT locus resembles those of other dimorphic fungi, containing either an alpha-box (MAT1-1) or an HMG domain (MAT1-2) gene linked to the APN2, SLA2, and COX13 genes. However, in some strains of B. dermatitidis, the MAT locus harbors transposable elements (TEs) that make it unusually large compared to the MAT locus of other dimorphic fungi. Based on the MAT locus sequences of B. dermatitidis, we designed specific primers for PCR determination of the mating type. Two B. dermatitidis isolates of opposite mating types were cocultured on mating medium. Immature sexual structures were observed starting at 3 weeks of coculture, with coiled-hyphae-containing cleistothecia developing over the next 3 to 6 weeks. Genetic recombination was detected in potential progeny by mating-type determination, PCR-restriction fragment length polymorphism (PCR-RFLP), and random amplification of polymorphic DNA (RAPD) analyses, suggesting that a meiotic sexual cycle might have been completed. The F1 progeny were sexually fertile when tested with strains of the opposite mating type. Our studies provide a model for the evolution of the MAT locus in the dimorphic and closely related fungi and open the door to classic genetic analysis and studies on the possible roles of mating and mating type in infection and virulence. PMID:23143684

  14. Sex-determination system in the diploid yeast Zygosaccharomyces sapae.

    PubMed

    Solieri, Lisa; Dakal, Tikam Chand; Giudici, Paolo; Cassanelli, Stefano

    2014-06-01

    Sexual reproduction and breeding systems are driving forces for genetic diversity. The mating-type (MAT) locus represents a mutation and chromosome rearrangement hotspot in yeasts. Zygosaccharomyces rouxii complex yeasts are naturally faced with hostile low water activity (aw) environments and are characterized by gene copy number variation, genome instability, and aneuploidy/allodiploidy. Here, we investigated sex-determination system in Zygosaccharomyces sapae diploid strain ABT301(T), a member of the Z. rouxii complex. We cloned three divergent mating type-like (MTL) α-idiomorph sequences and designated them as ZsMTLα copies 1, 2, and 3. They encode homologs of Z. rouxii CBS 732(T) MATα2 (amino acid sequence identities spanning from 67.0 to 99.5%) and MATα1 (identity range 81.5-99.5%). ABT301(T) possesses two divergent HO genes encoding distinct endonucleases 100% and 92.3% identical to Z. rouxii HO. Cloning of MATA: -idiomorph resulted in a single ZsMTLA: locus encoding two Z. rouxii-like proteins MATA: 1 and MATA: 2. To assign the cloned ZsMTLα and ZsMTLA: idiomorphs as MAT, HML, and HMR cassettes, we analyzed their flanking regions. Three ZsMTLα loci exhibited the DIC1-MAT-SLA2 gene order canonical for MAT expression loci. Furthermore, four putative HML cassettes were identified, two containing the ZsMTLα copy 1 and the remaining harboring ZsMTLα copies 2 and 3. Finally, the ZsMTLA: locus was 3'-flanked by SLA2, suggesting the status of MAT expression locus. In conclusion, Z. sapae ABT301(T) displays an aααα genotype missing of the HMR silent cassette. Our results demonstrated that mating-type switching is a hypermutagenic process in Z. rouxii complex that generates genetic diversity de novo. This error-prone mechanism could be suitable to generate progenies more rapidly adaptable to hostile environments. PMID:24939186

  15. Cell-cell signalling in sexual chemotaxis: a basis for gametic differentiation, mating types and sexes.

    PubMed

    Hadjivasiliou, Zena; Iwasa, Yoh; Pomiankowski, Andrew

    2015-08-01

    While sex requires two parents, there is no obvious need for them to be differentiated into distinct mating types or sexes. Yet this is the predominate state of nature. Here, we argue that mating types could play a decisive role because they prevent the apparent inevitability of self-stimulation during sexual signalling. We rigorously assess this hypothesis by developing a model for signaller-detector dynamics based on chemical diffusion, chemotaxis and cell movement. Our model examines the conditions under which chemotaxis improves partner finding. Varying parameter values within ranges typical of protists and their environments, we show that simultaneous secretion and detection of a single chemoattractant can cause a multifold movement impediment and severely hinder mate finding. Mutually exclusive roles result in faster pair formation, even when cells conferring the same roles cannot pair up. This arrangement also allows the separate mating types to optimize their signalling or detecting roles, which is effectively impossible for cells that are both secretors and detectors. Our findings suggest that asymmetric roles in sexual chemotaxis (and possibly other forms of sexual signalling) are crucial, even without morphological differences, and may underlie the evolution of gametic differentiation among both mating types and sexes. PMID:26156301

  16. Cell–cell signalling in sexual chemotaxis: a basis for gametic differentiation, mating types and sexes

    PubMed Central

    Hadjivasiliou, Zena; Iwasa, Yoh; Pomiankowski, Andrew

    2015-01-01

    While sex requires two parents, there is no obvious need for them to be differentiated into distinct mating types or sexes. Yet this is the predominate state of nature. Here, we argue that mating types could play a decisive role because they prevent the apparent inevitability of self-stimulation during sexual signalling. We rigorously assess this hypothesis by developing a model for signaller–detector dynamics based on chemical diffusion, chemotaxis and cell movement. Our model examines the conditions under which chemotaxis improves partner finding. Varying parameter values within ranges typical of protists and their environments, we show that simultaneous secretion and detection of a single chemoattractant can cause a multifold movement impediment and severely hinder mate finding. Mutually exclusive roles result in faster pair formation, even when cells conferring the same roles cannot pair up. This arrangement also allows the separate mating types to optimize their signalling or detecting roles, which is effectively impossible for cells that are both secretors and detectors. Our findings suggest that asymmetric roles in sexual chemotaxis (and possibly other forms of sexual signalling) are crucial, even without morphological differences, and may underlie the evolution of gametic differentiation among both mating types and sexes. PMID:26156301

  17. Ascospore dimorphism-associated mating types of Sclerotinia trifoliorum equally capable of infecting chickpea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sclerotinia trifoliorum causes stem and crown rot of chickpea and other forage and grain legumes, and is one of the three important species of the genus Sclerotinia. S. trifoliorum is unique from the other two species in that it is heterothallic and has two opposite mating types required for comple...

  18. Mating type markers reveal high levels of heterothallism in Leptographium sensu lato.

    PubMed

    Duong, Tuan A; de Beer, Z Wilhelm; Wingfield, Brenda D; Wingfield, Michael J

    2016-04-01

    Species of Leptographium sensu lato are sap-stain fungi vectored by bark beetles and some species cause or are associated with tree diseases. Sexual states have been reported for more than 30 species in this group and these have been treated in the sexual genus Grosmannia. No sexual state is known for at least 59 additional species and these reside in the genus Leptographium. The discovery of sexual states for species of Leptographium relies mainly on the presence of fruiting bodies on host tissue at the time of isolation and/or intensive laboratory mating studies, which commonly have low levels of success. We developed mating-type markers to study sexual compatibility of species in Leptographium sensu lato. Using these markers, it was possible to identify mating types for 42 species and to determine thallism in many species for the first time. Surprisingly, the results showed that heterothallic and putatively heterothallic species are abundant (39 out of 42 species) in Leptographium sensu lato, and only three species were confirmed to be homothallic. The mating type markers developed in this study will be useful for future studies concerning mating type and sexual compatibility of species in this genus. PMID:27020155

  19. Population structure and mating type distribution of the chickpea blight pathogen Ascochyta rabiei from Pakistan and United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ascochyta blight caused by the fungus Ascochyta rabiei (AR) depresses chickpea production in Pakistan and worldwide. Thirty two AR isolates representing six geographical regions of Pakistan was compared with a US AR population for frequency of mating types and genetic variation. Mating type results ...

  20. High frequency of sex and equal frequencies of mating types in natural populations of the ciliate Tetrahymena thermophila.

    PubMed Central

    Doerder, F P; Gates, M A; Eberhardt, F P; Arslanyolu, M

    1995-01-01

    In ciliate protists, sex involves the temporary joining of two cells of compatible mating type, followed by meiosis and exchange of gametic nuclei between conjugants. Reproduction is by asexual binary fission following conjugation. For the many ciliates with fixed multiple mating types, frequency-dependent sex-ratio theory predicts equal frequencies of mating types, if sex is common in nature. Here, we report that in natural populations of Tetrahymena thermophila sexually immature cells, indicative of recent conjugation, are found from spring through fall. In addition, the seven mating types occur in approximately equal frequencies, and these frequencies appear to be maintained by interaction between complex, multiple mat alleles and environmental conditions during conjugation. Such genotype-environment interaction determining mating type frequency is rare among ciliates. PMID:7568003

  1. Draft Genome Sequences of Rhodosporidium toruloides Strains ATCC 10788 and ATCC 10657 with Compatible Mating Types

    PubMed Central

    Hu, Jie

    2016-01-01

    Rhodosporidium toruloides ATCC 10788 (haploid, A1 mating type) and ATCC 10657 (haploid, A2 mating type) were derived from the same diploid parent strain Rhodotorula glutinis ATCC 90781 and are important strains for metabolic engineering. Draft genome sequences of both strains are reported here. The current assembly of strain ATCC 10788 comprises 61 scaffolds with a total size of 20.75 Mbp and a GC content of 62.01%, while that of strain ATCC 10657 comprises 137 scaffolds with a total size of 21.49 Mbp and a GC content of 61.81%. Genome annotation predicts 7,730 and 7,800 protein encoding genes for strain ATCC 10788 and strain ATCC 10657, respectively. PMID:26966203

  2. Draft Genome Sequences of Rhodosporidium toruloides Strains ATCC 10788 and ATCC 10657 with Compatible Mating Types.

    PubMed

    Hu, Jie; Ji, Lianghui

    2016-01-01

    Rhodosporidium toruloides ATCC 10788 (haploid, A1 mating type) and ATCC 10657 (haploid, A2 mating type) were derived from the same diploid parent strain Rhodotorula glutinis ATCC 90781 and are important strains for metabolic engineering. Draft genome sequences of both strains are reported here. The current assembly of strain ATCC 10788 comprises 61 scaffolds with a total size of 20.75 Mbp and a GC content of 62.01%, while that of strain ATCC 10657 comprises 137 scaffolds with a total size of 21.49 Mbp and a GC content of 61.81%. Genome annotation predicts 7,730 and 7,800 protein encoding genes for strain ATCC 10788 and strain ATCC 10657, respectively. PMID:26966203

  3. Mating type and ploidy effect on the β-glucosidase activity and ethanol-producing performance of Saccharomyces cerevisiae with multiple δ-integrated bgl1 gene.

    PubMed

    Wang, Jianjun; Ma, Yuanyuan; Zhang, Kun; Yang, Huajun; Liu, Cheng; Zou, Shaolan; Hong, Jiefang; Zhang, Minhua

    2016-08-10

    In order to investigate the effect of mating type and ploidy on enzymatic activity and fermentation performance in yeast with multiple δ-integrated foreign genes, eight ploidy series strains were constructed. The initial haploid strain BGL-a was shown to contain about 19 copies of the bgl1 gene. In rich media containing 2% (w/v) sugar the specific activities of BGL-aα were lower than those of BGL-aa or BGL-αα, which indicates the existence of mating type effects. While the maximum OD660 decreased with rising ploidy, the biomass yield showed no significant difference between the eight strains and the specific activities (expressed as U/mL or U/mg DCW) showed little to no variation. When cellobiose was used as the carbon source and β-glucosidase substrate, β-glucosidase was expressed more quickly and at higher levels than in glucose-containing media. The maximum specific activitiy values obtained were 19.07U/mL and 19.39U/mL for BGL-αα and BGL-aa, repsectively. The anaerobic biomass and ethanol-producing performance in rich media containing 10% cellobiose showed no significant difference among the eight strains. Their maximal ethanol concentrations and corresponding yields ranged from 40.27 to 43.46g/L and 77.56 to 83.71%, respectively. When the acid- and alkali-pretreated corncob (10% solids content) was used, the diploid BGL-aα fermented the best. When urea was used as the only supplemented nutrient, the ethanol titer and yield were 35.65g/L and 83.69%, respectively, while a control experiment using industrial Angel yeast with exogenous β-glucosidase addition gave values of 37.93g/L and 89.04%. The combined effects of δ-integration of bgl1, ploidy and mating type result in BGL-aa or BGL-αα being the optimal choice for enzyme production and BGL-aα being more suitable for cellulosic ethanol fermentation. These results provide valuable information for future yeast breeding and utilization efforts. PMID:27234882

  4. Mating type genes and cryptic sexuality as tools for genetically manipulating industrial molds.

    PubMed

    Kück, Ulrich; Böhm, Julia

    2013-11-01

    A large number of molds serve as producer strains for the industrial production of pharmaceuticals, foods, or organic chemicals. To optimize strains for production processes, conventional strain development programs use random mutagenesis and, more recently, recombinant technologies to generate microbial strains with novel and advantageous properties. The recent detection of mating type genes in fungal production strains and the discovery of cryptic sexuality in presumably asexual fungi open up novel strategies for generating progeny with new, as yet unobserved properties. Mating type genes, which can be considered as "sex genes," not only direct sexual development but also regulate a broad range of fungal secondary metabolites. In addition, they control hyphal morphology, which has a direct impact on production processes that are often conducted in huge fermenter tanks. Here, we survey the occurrence and function of mating type genes that have been discovered in a wide range of industrial fungal producer strains. The possibility to obtain progeny from industrial producers by sexual mating provides an exciting alternative to conventional strain improvement programs aiming to generate optimized recombinant production strains. PMID:24085397

  5. Comparative genomics of biotechnologically important yeasts.

    PubMed

    Riley, Robert; Haridas, Sajeet; Wolfe, Kenneth H; Lopes, Mariana R; Hittinger, Chris Todd; Göker, Markus; Salamov, Asaf A; Wisecaver, Jennifer H; Long, Tanya M; Calvey, Christopher H; Aerts, Andrea L; Barry, Kerrie W; Choi, Cindy; Clum, Alicia; Coughlan, Aisling Y; Deshpande, Shweta; Douglass, Alexander P; Hanson, Sara J; Klenk, Hans-Peter; LaButti, Kurt M; Lapidus, Alla; Lindquist, Erika A; Lipzen, Anna M; Meier-Kolthoff, Jan P; Ohm, Robin A; Otillar, Robert P; Pangilinan, Jasmyn L; Peng, Yi; Rokas, Antonis; Rosa, Carlos A; Scheuner, Carmen; Sibirny, Andriy A; Slot, Jason C; Stielow, J Benjamin; Sun, Hui; Kurtzman, Cletus P; Blackwell, Meredith; Grigoriev, Igor V; Jeffries, Thomas W

    2016-08-30

    Ascomycete yeasts are metabolically diverse, with great potential for biotechnology. Here, we report the comparative genome analysis of 29 taxonomically and biotechnologically important yeasts, including 16 newly sequenced. We identify a genetic code change, CUG-Ala, in Pachysolen tannophilus in the clade sister to the known CUG-Ser clade. Our well-resolved yeast phylogeny shows that some traits, such as methylotrophy, are restricted to single clades, whereas others, such as l-rhamnose utilization, have patchy phylogenetic distributions. Gene clusters, with variable organization and distribution, encode many pathways of interest. Genomics can predict some biochemical traits precisely, but the genomic basis of others, such as xylose utilization, remains unresolved. Our data also provide insight into early evolution of ascomycetes. We document the loss of H3K9me2/3 heterochromatin, the origin of ascomycete mating-type switching, and panascomycete synteny at the MAT locus. These data and analyses will facilitate the engineering of efficient biosynthetic and degradative pathways and gateways for genomic manipulation. PMID:27535936

  6. Scanning electron microscopy as a tool for the analysis of colony architecture produced by phenotypic switching of a human pathogenic yeast Candida tropicalis

    NASA Astrophysics Data System (ADS)

    Furlaneto, M. C.; Andrade, C. G. T. J.; Aragão, P. H. A.; França, E. J. G.; Moralez, A. T. P.; Ferreira, L. C. S.

    2012-07-01

    Candida tropicalis has been identified as one of the most prevalent pathogenic yeast species of the Candida-non-albicans group. Phenotypic switching is a biological phenomenon related to the occurrence of spontaneous emergence of colonies with different morphologies that provides variability within colonizing populations in order to adapt to different environments. Currently, studies of the microstructure of switching variant colonies are not subject of extensive research. SEM analysis was used to verify the architecture of whole Candida colonies. The strain 49/07 exhibited a hemispherical shape character, while the strain 335/07 showed a volcano shape with mycelated-edge colony. The ring switch variant is characterized by a highly wrinkled centre and an irregular periphery. The rough phenotype exhibited a three-dimensional architecture and was characterized by the presence of deep central and peripheral depressions areas. The ultrastructural analysis also allowed the observation of the arrangement of individual cells within the colonies. The whole smooth colony consisted entirely of yeast cells. Differently, aerial filaments were found all around the colony periphery of the volcano shape colony. For this colony type the mycelated-edge consisted mainly of hyphae, although yeast cells are also seen. The ring and rough colonies phenotypes comprised mainly yeast cells with the presence of extracellular material connecting neighbouring cells. This study has shown that SEM can be used effectively to examine the microarchitecture of colonies morphotypes of the yeast C. tropicalis and further our understanding of switching event in this pathogen.

  7. Presence and Functionality of Mating Type Genes in the Supposedly Asexual Filamentous Fungus Aspergillus oryzae

    PubMed Central

    Wada, Ryuta; Maruyama, Jun-ichi; Yamaguchi, Haruka; Yamamoto, Nanase; Wagu, Yutaka; Paoletti, Mathieu; Archer, David B.; Dyer, Paul S.

    2012-01-01

    The potential for sexual reproduction in Aspergillus oryzae was assessed by investigating the presence and functionality of MAT genes. Previous genome studies had identified a MAT1-1 gene in the reference strain RIB40. We now report the existence of a complementary MAT1-2 gene and the sequencing of an idiomorphic region from A. oryzae strain AO6. This allowed the development of a PCR diagnostic assay, which detected isolates of the MAT1-1 and MAT1-2 genotypes among 180 strains assayed, including industrial tane-koji isolates. Strains used for sake and miso production showed a near-1:1 ratio of the MAT1-1 and MAT1-2 mating types, whereas strains used for soy sauce production showed a significant bias toward the MAT1-2 mating type. MAT1-1 and MAT1-2 isogenic strains were then created by genetic manipulation of the resident idiomorph, and gene expression was compared by DNA microarray and quantitative real-time PCR (qRT-PCR) methodologies under conditions in which MAT genes were expressed. Thirty-three genes were found to be upregulated more than 10-fold in either the MAT1-1 host strain or the MAT1-2 gene replacement strain relative to each other, showing that both the MAT1-1 and MAT1-2 genes functionally regulate gene expression in A. oryzae in a mating type-dependent manner, the first such report for a supposedly asexual fungus. MAT1-1 expression specifically upregulated an α-pheromone precursor gene, but the functions of most of the genes affected were unknown. The results are consistent with a heterothallic breeding system in A. oryzae, and prospects for the discovery of a sexual cycle are discussed. PMID:22327593

  8. Characterization of Phytophthora infestans populations in Colombia: first report of the A2 mating type.

    PubMed

    Vargas, Angela M; Quesada Ocampo, Lina M; Céspedes, Maria Catalina; Carreño, Natalia; González, Adriana; Rojas, Alejandro; Zuluaga, A Paola; Myers, Kevin; Fry, William E; Jiménez, Pedro; Bernal, Adriana J; Restrepo, Silvia

    2009-01-01

    Phytophthora infestans, the causal agent of late blight in crops of the Solanaceae family, is one of the most important plant pathogens in Colombia. Not only are Solanum lycopersicum, and S. tuberosum at risk, but also several other solanaceous hosts (Physalis peruviana, S. betaceum, S. phureja, and S. quitoense) that have recently gained importance as new crops in Colombia may be at risk. Because little is known about the population structure of Phytophthora infestans in Colombia, we report here the phenotypic and molecular characterization of 97 isolates collected from these six different solanaceous plants in Colombia. All the isolates were analyzed for mating type, mitochondrial haplotypes, genotype for several microsatellites, and sequence of the internal transcribed spacer (ITS) region. This characterization identified a single individual of A2 mating type (from Physalis peruviana) for the first time in Colombia. All isolates had an ITS sequence that was at least 97% identical to the consensus sequence. Of the 97 isolates, 96 were mitochondrial haplotype IIa, with the single A2 isolate being Ia. All isolates were invariant for the microsatellites. Additionally, isolates collected from S. tuberosum and P. peruviana (64 isolates) were tested for: aggressiveness on both hosts, genotype for the isozymes (glucose-6-phosphate isomerase and peptidase), and restriction fragment length polymorphism fingerprint pattern as detected by RG57. Isolates from S. tuberosum were preferentially pathogenic on S. tuberosum, and isolates from P. peruviana were preferentially pathogenic on P. peruviana. The population from these two hosts was dominated by a single clonal lineage (59 of 64 individuals assayed), previously identified from Ecuador and Peru as EC-1. This lineage was mating type A1, IIa for mitochondrial DNA, invariant for two microsatellites, and invariant for both isozymes. The remaining four A1 isolates were in lineages very closely related to EC-1 (named EC-1.1, CO

  9. A yeast-endonuclease-generated DNA break induces antigenic switching in Trypanosoma brucei.

    PubMed

    Boothroyd, Catharine E; Dreesen, Oliver; Leonova, Tatyana; Ly, K Ina; Figueiredo, Luisa M; Cross, George A M; Papavasiliou, F Nina

    2009-05-14

    Trypanosoma brucei is the causative agent of African sleeping sickness in humans and one of the causes of nagana in cattle. This protozoan parasite evades the host immune system by antigenic variation, a periodic switching of its variant surface glycoprotein (VSG) coat. VSG switching is spontaneous and occurs at a rate of about 10(-2)-10(-3) per population doubling in recent isolates from nature, but at a markedly reduced rate (10(-5)-10(-6)) in laboratory-adapted strains. VSG switching is thought to occur predominantly through gene conversion, a form of homologous recombination initiated by a DNA lesion that is used by other pathogens (for example, Candida albicans, Borrelia sp. and Neisseria gonorrhoeae) to generate surface protein diversity, and by B lymphocytes of the vertebrate immune system to generate antibody diversity. Very little is known about the molecular mechanism of VSG switching in T. brucei. Here we demonstrate that the introduction of a DNA double-stranded break (DSB) adjacent to the approximately 70-base-pair (bp) repeats upstream of the transcribed VSG gene increases switching in vitro approximately 250-fold, producing switched clones with a frequency and features similar to those generated early in an infection. We were also able to detect spontaneous DSBs within the 70-bp repeats upstream of the actively transcribed VSG gene, indicating that a DSB is a natural intermediate of VSG gene conversion and that VSG switching is the result of the resolution of this DSB by break-induced replication. PMID:19369939

  10. Genetic Variability and Distribution of Mating Type Alleles in Field Populations of Leptosphaeria maculans from France

    PubMed Central

    Gout, Lilian; Eckert, Maria; Rouxel, Thierry; Balesdent, Marie-Hélène

    2006-01-01

    Leptosphaeria maculans is the most ubiquitous fungal pathogen of Brassica crops and causes the devastating stem canker disease of oilseed rape worldwide. We used minisatellite markers to determine the genetic structure of L. maculans in four field populations from France. Isolates were collected at three different spatial scales (leaf, 2-m2 field plot, and field) enabling the evaluation of spatial distribution of the mating type alleles and of genetic variability within and among field populations. Within each field population, no gametic disequilibrium between the minisatellite loci was detected and the mating type alleles were present at equal frequencies. Both sexual and asexual reproduction occur in the field, but the genetic structure of these populations is consistent with annual cycles of randomly mating sexual reproduction. All L. maculans field populations had a high level of gene diversity (H = 0.68 to 0.75) and genotypic diversity. Within each field population, the number of genotypes often was very close to the number of isolates. Analysis of molecular variance indicated that >99.5% of the total genetic variability was distributed at a small spatial scale, i.e., within 2-m2 field plots. Population differentiation among the four field populations was low (GST < 0.02), suggesting a high degree of gene exchange between these populations. The high gene flow evidenced here in French populations of L. maculans suggests a rapid countrywide diffusion of novel virulence alleles whenever novel resistance sources are used. PMID:16391041

  11. Characterization of MATE-Type Multidrug Efflux Pumps from Klebsiella pneumoniae MGH78578

    PubMed Central

    Ogawa, Wakano; Minato, Yusuke; Dodan, Hayata; Onishi, Motoyasu; Tsuchiya, Tomofusa; Kuroda, Teruo

    2015-01-01

    We previously described the cloning of genes related to drug resistance from Klebsiella pneumoniae MGH78578. Of these, we identified a putative gene encoding a MATE-type multidrug efflux pump, and named it ketM. Escherichia coli KAM32 possessing ketM on a plasmid showed increased minimum inhibitory concentrations for norfloxacin, ciprofloxacin, cefotaxime, acriflavine, Hoechst 33342, and 4',6-diamidino-2-phenyl indole (DAPI). The active efflux of DAPI was observed in E. coli KAM32 possessing ketM on a plasmid. The expression of mRNA for ketM was observed in K. pneumoniae cells, and we subsequently disrupted ketM in K. pneumoniae ATCC10031. However, no significant changes were observed in drug resistance levels between the parental strain ATCC10031 and ketM disruptant, SKYM. Therefore, we concluded that KetM was a multidrug efflux pump, that did not significantly contribute to intrinsic resistance to antimicrobial chemicals in K. pneumoniae. MATE-type transporters are considered to be secondary transporters; therefore, we investigated the coupling cations of KetM. DAPI efflux by KetM was observed when lactate was added to produce a proton motive force, indicating that KetM effluxed substrates using a proton motive force. However, the weak efflux of DAPI by KetM was also noted when NaCl was added to the assay mixture without lactate. This result suggests that KetM may utilize proton and sodium motive forces. PMID:25807080

  12. Genetic variability and distribution of mating type alleles in field populations of Leptosphaeria maculans from France.

    PubMed

    Gout, Lilian; Eckert, Maria; Rouxel, Thierry; Balesdent, Marie-Hélène

    2006-01-01

    Leptosphaeria maculans is the most ubiquitous fungal pathogen of Brassica crops and causes the devastating stem canker disease of oilseed rape worldwide. We used minisatellite markers to determine the genetic structure of L. maculans in four field populations from France. Isolates were collected at three different spatial scales (leaf, 2-m2 field plot, and field) enabling the evaluation of spatial distribution of the mating type alleles and of genetic variability within and among field populations. Within each field population, no gametic disequilibrium between the minisatellite loci was detected and the mating type alleles were present at equal frequencies. Both sexual and asexual reproduction occur in the field, but the genetic structure of these populations is consistent with annual cycles of randomly mating sexual reproduction. All L. maculans field populations had a high level of gene diversity (H = 0.68 to 0.75) and genotypic diversity. Within each field population, the number of genotypes often was very close to the number of isolates. Analysis of molecular variance indicated that >99.5% of the total genetic variability was distributed at a small spatial scale, i.e., within 2-m2 field plots. Population differentiation among the four field populations was low (GST < 0.02), suggesting a high degree of gene exchange between these populations. The high gene flow evidenced here in French populations of L. maculans suggests a rapid countrywide diffusion of novel virulence alleles whenever novel resistance sources are used. PMID:16391041

  13. The mating-type chromosome in the filamentous ascomycete Neurospora tetrasperma represents a model for early evolution of sex chromosomes.

    PubMed

    Menkis, Audrius; Jacobson, David J; Gustafsson, Tim; Johannesson, Hanna

    2008-03-01

    We combined gene divergence data, classical genetics, and phylogenetics to study the evolution of the mating-type chromosome in the filamentous ascomycete Neurospora tetrasperma. In this species, a large non-recombining region of the mating-type chromosome is associated with a unique fungal life cycle where self-fertility is enforced by maintenance of a constant state of heterokaryosis. Sequence divergence between alleles of 35 genes from the two single mating-type component strains (i.e. the homokaryotic mat A or mat a-strains), derived from one N. tetrasperma heterokaryon (mat A+mat a), was analyzed. By this approach we were able to identify the boundaries and size of the non-recombining region, and reveal insight into the history of recombination cessation. The non-recombining region covers almost 7 Mbp, over 75% of the chromosome, and we hypothesize that the evolution of the mating-type chromosome in this lineage involved two successive events. The first event was contemporaneous with the split of N. tetrasperma from a common ancestor with its outcrossing relative N. crassa and suppressed recombination over at least 6.6 Mbp, and the second was confined to a smaller region in which recombination ceased more recently. In spite of the early origin of the first "evolutionary stratum", genealogies of five genes from strains belonging to an additional N. tetrasperma lineage indicate independent initiations of suppressed recombination in different phylogenetic lineages. This study highlights the shared features between the sex chromosomes found in the animal and plant kingdoms and the fungal mating-type chromosome, despite fungi having no separate sexes. As is often found in sex chromosomes of plants and animals, recombination suppression of the mating-type chromosome of N. tetrasperma involved more than one evolutionary event, covers the majority of the mating-type chromosome and is flanked by distal regions with obligate crossovers. PMID:18369449

  14. Structure of a Ca2+-Myristoyl Switch Protein That Controls Activation of a Phosphatidylinositol 4-Kinase in Fission Yeast*

    PubMed Central

    Lim, Sunghyuk; Strahl, Thomas; Thorner, Jeremy; Ames, James B.

    2011-01-01

    Neuronal calcium sensor (NCS) proteins transduce Ca2+ signals and are highly conserved from yeast to humans. We determined NMR structures of the NCS-1 homolog from fission yeast (Ncs1), which activates a phosphatidylinositol 4-kinase. Ncs1 contains an α-NH2-linked myristoyl group on a long N-terminal arm and four EF-hand motifs, three of which bind Ca2+, assembled into a compact structure. In Ca2+-free Ncs1, the N-terminal arm positions the fatty acyl chain inside a cavity near the C terminus. The C14 end of the myristate is surrounded by residues in the protein core, whereas its amide-linked (C1) end is flanked by residues at the protein surface. In Ca2+-bound Ncs1, the myristoyl group is extruded (Ca2+-myristoyl switch), exposing a prominent patch of hydrophobic residues that specifically contact phosphatidylinositol 4-kinase. The location of the buried myristate and structure of Ca2+-free Ncs1 are quite different from those in other NCS proteins. Thus, a unique remodeling of each NCS protein by its myristoyl group, and Ca2+-dependent unmasking of different residues, may explain how each family member recognizes distinct target proteins. PMID:21288895

  15. Altered Mating-Type Identity in the Fungus Podospora Anserina Leads to Selfish Nuclei, Uniparental Progeny, and Haploid Meiosis

    PubMed Central

    Zickler, D.; Arnaise, S.; Coppin, E.; Debuchy, R.; Picard, M.

    1995-01-01

    In wild-type crosses of the filamentous ascomycete Podospora anserina, after fertilization, only nuclei of opposite mating type can form dikaryons that undergo karyogamy and meiosis, producing biparental progeny. To determine the role played by the mating type in these steps, the four mat genes were mutagenized in vitro and introduced into a strain deleted for its mat locus. Genetic and cytological analyses of these mutant strains, crossed to each other and to wild type, showed that mating-type information is required for recognition of nuclear identity during the early steps of sexual reproduction. In crosses with strains carrying a mating-type mutation, two unusual developmental patterns were observed: monokaryotic cells, resulting in haploid meiosis, and uniparental dikaryotic cells providing, after karyogamy and meiosis, a uniparental progeny. Altered mating-type identity leads to selfish behavior of the mutant nucleus: it migrates alone or paired, ignoring its wild-type partner in all mutant X wild-type crosses. This behavior is nucleus-autonomous because, in the same cytoplasm, the wild-type nuclei form only biparental dikaryons. In P. anserina, mat genes are thus required to ensure a biparental dikaryotic state but appear dispensable for later stages, such as meiosis and sporulation. PMID:7498731

  16. EVIDENCE FOR TUBULAR MATING STRUCTURES INDUCED IN EACH MATING TYPE OF HETEROTHALLIC GONIUM PECTORALE (VOLVOCALES, CHLOROPHYTA)(1).

    PubMed

    Mogi, Yuko; Hamaji, Takashi; Suzuki, Masahiro; Ferris, Patrick; Mori, Toshiyuki; Kabeya, Yukihiro; Miyagishima, Shin-Ya; Nozaki, Hisayoshi

    2012-06-01

    Gametes were induced separately in cultures of each mating type of the heterothallic, isogamous colonial volvocalean Gonium pectorale O. F. Müll. to examine the tubular mating structure (TMS) of both mating types plus and minus (plus and minus), referred to as "bilateral mating papillae." Addition of dibutyryl cyclic adenosine monophosphate (DcAMP or db-cAMP) and 3-isobutyl-1-methylxanthine (IBMX) to approximately 3-week-old cultures of each mating type induced immediate release of naked gametes from the cell walls. Both plus and minus gametes formed a TMS in the anterior region of the protoplasts. Accumulation of actin was visualized by antibody staining in the TMS of both mating types as occurs in the TMS (fertilization tubule) of the plus gametes of the unicellular volvocalean Chlamydomonas reinhardtii P. A. Dang. Induction of naked gametes with a TMS in each mating type will be useful for future cell biological and evolutionary studies of the isogametes of colonial volvocalean algae. PMID:27011083

  17. IDENTIFICATION OF THE MINUS MATING-TYPE SPECIFIC GENE MTD1 FROM GONIUM PECTORALE (VOLVOCALES, CHLOROPHYTA)(1).

    PubMed

    Hamaji, Takashi; Ferris, Patrick J; Nishii, Ichiro; Nozaki, Hisayoshi

    2009-12-01

    Gonium pectorale O. F. Müll. (Volvocales, Chlorophyta), a colonial 8- or 16-cellular alga, is phylogenetically important as an intermediate form between isogametic unicellular Chlamydomonas and oogamous Volvox. We identified the mating-type specific gene GpMTD1, from G. pectorale, the first homologue of Chlamydomonas reinhardtii MTD1 (CrMTD1). The GpMTD1 gene was found to be present only in the minus mating-type locus and was expressed specifically in the gametic phase as is the case for CrMTD1, suggested to participate in development of the minus gametes. This gene is useful as a probe in analyzing the bacterial artificial chromosome (BAC) library for resolving genomic structures of the mating-type loci in isogamous and oogamous colonial volvocaleans. PMID:27032588

  18. Identification and In Situ Distribution of a Fungal Gene Marker: The Mating Type Genes of the Black Truffle.

    PubMed

    De la Varga, Herminia; Murat, Claude

    2016-01-01

    Truffles are ectomycorrhizal fungi harvested mainly in human managed agroforestry ecosystems. Truffle production in truffle orchards faces two important bottlenecks or challenges: the initiation of the sexual reproduction and the growth of the ascocarps during several months. The black Périgord truffle, Tuber melanosporum, is a heterothallic species and the mating type genes (MAT1-1 and M1T1-2) have been characterized. In this context, the unraveling of the T. melanosporum mating type strains distribution in truffle orchards is a critical starting point to provide new insights into its sexual reproduction. The aim of this chapter is to present the protocol used to characterize the T. melanosporum mating type present in a truffle orchard from ascocarps, hazel mycorrhizal root tips, and/or soil samples, by polymerase chain reactions using specific primers for those genes, but it can be adapted for other fungal species. PMID:26791501

  19. Functional convergence and divergence of mating-type genes fulfilling in Cordyceps militaris.

    PubMed

    Lu, Yuzhen; Xia, Yongliang; Luo, Feifei; Dong, Caihong; Wang, Chengshu

    2016-03-01

    Fungal sexual lives are considerably diversified in terms of the types of mating systems and mating-control gene functions. Sexual fruiting bodies of the ascomycete fungus Cordyceps militaris have been widely consumed as edible and medicinal mushrooms, whereas the regulation of fruiting-body development and sex in this fungus remain elusive. Herein, we performed the comprehensive functional analyses of mating-type (MAT) genes in C. militaris. Interspecies functional convergence was evident that MAT1-1 and MAT1-2-1 null mutants were sterile and lost the ability to produce stromata in outcrosses with the opposite mating-type partner. In contrast to other fungal species, functional divergence of MAT1-1-1 and MAT1-1-2 was also observed that ΔMAT1-1-1 produced barren stromata in outcrosses, whereas ΔMAT1-1-2 generated fruiting bodies morphologically similar to that of the parental strain but with sterile perithecia. The homothallic-like transformants MAT1-2::MAT1-1-1 (haploidic MAT1-2 isolate transformed with the MAT1-1-1 gene) produced sterile stromata, whereas the MAT1-1::MAT1-2-1 (haploidic MAT1-1 isolate transformed with the MAT1-2-1 gene) mutant was determined to be completely fruitless. The findings relating to the fully fertile gene-complementation mutants suggest that the genomic location is not essential for the MAT genes to fulfill their functions in C. militaris. Comparison of the production of bioactive constituents cordycepin and adenosine provides experimental support that the fungal sexual cycle is an energy consuming process. The results of the present study enrich our knowledge of both convergent and divergent controls of fungal sex. PMID:26812121

  20. Chaos of Rearrangements in the Mating-Type Chromosomes of the Anther-Smut Fungus Microbotryum lychnidis-dioicae

    PubMed Central

    Badouin, Hélène; Hood, Michael E.; Gouzy, Jérôme; Aguileta, Gabriela; Siguenza, Sophie; Perlin, Michael H.; Cuomo, Christina A.; Fairhead, Cécile; Branca, Antoine; Giraud, Tatiana

    2015-01-01

    Sex chromosomes in plants and animals and fungal mating-type chromosomes often show exceptional genome features, with extensive suppression of homologous recombination and cytological differentiation between members of the diploid chromosome pair. Despite strong interest in the genetics of these chromosomes, their large regions of suppressed recombination often are enriched in transposable elements and therefore can be challenging to assemble. Here we show that the latest improvements of the PacBio sequencing yield assembly of the whole genome of the anther-smut fungus, Microbotryum lychnidis-dioicae (the pathogenic fungus causing anther-smut disease of Silene latifolia), into finished chromosomes or chromosome arms, even for the repeat-rich mating-type chromosomes and centromeres. Suppressed recombination of the mating-type chromosomes is revealed to span nearly 90% of their lengths, with extreme levels of rearrangements, transposable element accumulation, and differentiation between the two mating types. We observed no correlation between allelic divergence and physical position in the nonrecombining regions of the mating-type chromosomes. This may result from gene conversion or from rearrangements of ancient evolutionary strata, i.e., successive steps of suppressed recombination. Centromeres were found to be composed mainly of copia-like transposable elements and to possess specific minisatellite repeats identical between the different chromosomes. We also identified subtelomeric motifs. In addition, extensive signs of degeneration were detected in the nonrecombining regions in the form of transposable element accumulation and of hundreds of gene losses on each mating-type chromosome. Furthermore, our study highlights the potential of the latest breakthrough PacBio chemistry to resolve complex genome architectures. PMID:26044594

  1. Characterization of Ascochyta rabiei for population structure, mating type and pathogenic variability from Pakistan and United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chickpea production is greatly hampered by blight causing fungal pathogen Ascochyta rabiei (AR) in chickpea growing regions of the world. Genetic variability and mating type frequency of thirty-two AR isolates from six geographical regions of Pakistan were compared with a US-AR population. Pakistani...

  2. A multiplex PCR assay for determination of mating type in isolates of the honey bee fungal pathogen, Ascosphaera apis.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study we developed a multiplex PCR for identification of mating type idiomorphs in the filamentous fungus, Ascosphaera apis, the causative agent of chalkbrood disease in the honey bee (Apis melliffera). A combination of gene-specific primers was designed to amplify Mat1-1 and Mat1-2 gene fra...

  3. Sex-Determination System in the Diploid Yeast Zygosaccharomyces sapae

    PubMed Central

    Solieri, Lisa; Dakal, Tikam Chand; Giudici, Paolo; Cassanelli, Stefano

    2014-01-01

    Sexual reproduction and breeding systems are driving forces for genetic diversity. The mating-type (MAT) locus represents a mutation and chromosome rearrangement hotspot in yeasts. Zygosaccharomyces rouxii complex yeasts are naturally faced with hostile low water activity (aw) environments and are characterized by gene copy number variation, genome instability, and aneuploidy/allodiploidy. Here, we investigated sex-determination system in Zygosaccharomyces sapae diploid strain ABT301T, a member of the Z. rouxii complex. We cloned three divergent mating type-like (MTL) α-idiomorph sequences and designated them as ZsMTLα copies 1, 2, and 3. They encode homologs of Z. rouxii CBS 732T MATα2 (amino acid sequence identities spanning from 67.0 to 99.5%) and MATα1 (identity range 81.5–99.5%). ABT301T possesses two divergent HO genes encoding distinct endonucleases 100% and 92.3% identical to Z. rouxii HO. Cloning of MATa-idiomorph resulted in a single ZsMTLa locus encoding two Z. rouxii-like proteins MATa1 and MATa2. To assign the cloned ZsMTLα and ZsMTLa idiomorphs as MAT, HML, and HMR cassettes, we analyzed their flanking regions. Three ZsMTLα loci exhibited the DIC1-MAT-SLA2 gene order canonical for MAT expression loci. Furthermore, four putative HML cassettes were identified, two containing the ZsMTLα copy 1 and the remaining harboring ZsMTLα copies 2 and 3. Finally, the ZsMTLa locus was 3′-flanked by SLA2, suggesting the status of MAT expression locus. In conclusion, Z. sapae ABT301T displays an aααα genotype missing of the HMR silent cassette. Our results demonstrated that mating-type switching is a hypermutagenic process in Z. rouxii complex that generates genetic diversity de novo. This error-prone mechanism could be suitable to generate progenies more rapidly adaptable to hostile environments. PMID:24939186

  4. DNA polymorphism in recombining and non-recombing mating-type-specific loci of the smut fungus Microbotryum

    PubMed Central

    Votintseva, A A; Filatov, D A

    2011-01-01

    The population-genetic processes leading to the genetic degeneration of non-recombining regions have mainly been studied in animal and plant sex chromosomes. Here, we report population genetic analysis of the processes in the non-recombining mating-type-specific regions of the smut fungus Microbotryum violaceum. M. violaceum has A1 and A2 mating types, determined by mating-type-specific ‘sex chromosomes' that contain 1–2 Mb long non-recombining regions. If genetic degeneration were occurring, then one would expect reduced DNA polymorphism in the non-recombining regions of this fungus. The analysis of DNA diversity among 19 M. violaceum strains, collected across Europe from Silene latifolia flowers, revealed that (i) DNA polymorphism is relatively low in all 20 studied loci (π∼0.15%), (ii) it is not significantly different between the two mating-type-specific chromosomes nor between the non-recombining and recombining regions, (iii) there is substantial population structure in M. violaceum populations, which resembles that of its host species, S. latifolia, and (iv) there is significant linkage disequilibrium, suggesting that widespread selfing in this species results in a reduction of the effective recombination rate across the genome. We hypothesise that selfing-related reduction of recombination across the M. violaceum genome negates the difference in the level of DNA polymorphism between the recombining and non-recombining regions, and may possibly lead to similar levels of genetic degeneration in the mating-type-specific regions of the non-recombining ‘sex chromosomes' and elsewhere in the genome. PMID:21081967

  5. A generic approach to engineer antibody pH-switches using combinatorial histidine scanning libraries and yeast display

    PubMed Central

    Schröter, Christian; Günther, Ralf; Rhiel, Laura; Becker, Stefan; Toleikis, Lars; Doerner, Achim; Becker, Janine; Schönemann, Andreas; Nasu, Daichi; Neuteboom, Berend; Kolmar, Harald; Hock, Björn

    2015-01-01

    There is growing interest in the fast and robust engineering of protein pH-sensitivity that aims to reduce binding at acidic pH, compared to neutral pH. Here, we describe a novel strategy for the incorporation of pH-sensitive antigen binding functions into antibody variable domains using combinatorial histidine scanning libraries and yeast surface display. The strategy allows simultaneous screening for both, high affinity binding at pH 7.4 and pH-sensitivity, and excludes conventional negative selection steps. As proof of concept, we applied this strategy to incorporate pH-dependent antigen binding into the complementary-determining regions of adalimumab. After 3 consecutive rounds of separate heavy and light chain library screening, pH-sensitive variants could be isolated. Heavy and light chain mutations were combined, resulting in 3 full-length antibody variants that revealed sharp, reversible pH-dependent binding profiles. Dissociation rate constants at pH 6.0 increased 230- to 780-fold, while high affinity binding at pH 7.4 in the sub-nanomolar range was retained. Furthermore, binding to huFcRn and thermal stability were not affected by histidine substitutions. Overall, this study emphasizes a generalizable strategy for engineering pH-switch functions potentially applicable to a variety of antibodies and further proteins-based therapeutics. PMID:25523975

  6. Centromeres of the Yeast Komagataella phaffii (Pichia pastoris) Have a Simple Inverted-Repeat Structure.

    PubMed

    Coughlan, Aisling Y; Hanson, Sara J; Byrne, Kevin P; Wolfe, Kenneth H

    2016-01-01

    Centromere organization has evolved dramatically in one clade of fungi, the Saccharomycotina. These yeasts have lost the ability to make normal eukaryotic heterochromatin with histone H3K9 methylation, which is a major component of pericentromeric regions in other eukaryotes. Following this loss, several different types of centromere emerged, including two types of sequence-defined ("point") centromeres, and the epigenetically defined "small regional" centromeres of Candida albicans Here we report that centromeres of the methylotrophic yeast Komagataella phaffii (formerly called Pichia pastoris) are structurally defined. Each of its four centromeres consists of a 2-kb inverted repeat (IR) flanking a 1-kb central core (mid) region. The four centromeres are unrelated in sequence. CenH3 (Cse4) binds strongly to the cores, with a decreasing gradient along the IRs. This mode of organization resembles Schizosaccharomyces pombe centromeres but is much more compact and lacks the extensive flanking heterochromatic otr repeats. Different isolates of K. phaffii show polymorphism for the orientation of the mid regions, due to recombination in the IRs. CEN4 is located within a 138-kb region that changes orientation during mating-type switching, but switching does not induce recombination of centromeric IRs. Our results demonstrate that evolutionary transitions in centromere organization have occurred in multiple yeast clades. PMID:27497317

  7. Centromeres of the Yeast Komagataella phaffii (Pichia pastoris) Have a Simple Inverted-Repeat Structure

    PubMed Central

    Coughlan, Aisling Y.; Hanson, Sara J.; Byrne, Kevin P.; Wolfe, Kenneth H.

    2016-01-01

    Centromere organization has evolved dramatically in one clade of fungi, the Saccharomycotina. These yeasts have lost the ability to make normal eukaryotic heterochromatin with histone H3K9 methylation, which is a major component of pericentromeric regions in other eukaryotes. Following this loss, several different types of centromere emerged, including two types of sequence-defined (“point”) centromeres, and the epigenetically defined “small regional” centromeres of Candida albicans. Here we report that centromeres of the methylotrophic yeast Komagataella phaffii (formerly called Pichia pastoris) are structurally defined. Each of its four centromeres consists of a 2-kb inverted repeat (IR) flanking a 1-kb central core (mid) region. The four centromeres are unrelated in sequence. CenH3 (Cse4) binds strongly to the cores, with a decreasing gradient along the IRs. This mode of organization resembles Schizosaccharomyces pombe centromeres but is much more compact and lacks the extensive flanking heterochromatic otr repeats. Different isolates of K. phaffii show polymorphism for the orientation of the mid regions, due to recombination in the IRs. CEN4 is located within a 138-kb region that changes orientation during mating-type switching, but switching does not induce recombination of centromeric IRs. Our results demonstrate that evolutionary transitions in centromere organization have occurred in multiple yeast clades. PMID:27497317

  8. Relationship between Monokaryotic Growth Rate and Mating Type in the Edible Basidiomycete Pleurotus ostreatus

    PubMed Central

    Larraya, Luis M.; Pérez, Gúmer; Iribarren, Iñaki; Blanco, Juan A.; Alfonso, Mikel; Pisabarro, Antonio G.; Ramírez, Lucía

    2001-01-01

    The edible fungus Pleurotus ostreatus (oyster mushroom) is an industrially produced heterothallic homobasidiomycete whose mating is controlled by a bifactorial tetrapolar genetic system. Two mating loci (matA and matB) control different steps of hyphal fusion, nuclear migration, and nuclear sorting during the onset and progress of the dikaryotic growth. Previous studies have shown that the segregation of the alleles present at the matB locus differs from that expected for a single locus because (i) new nonparental B alleles appeared in the progeny and (ii) there was a distortion in the segregation of the genomic regions close to this mating locus. In this study, we pursued these observations by using a genetic approach based on the identification of molecular markers linked to the matB locus that allowed us to dissect it into two genetically linked subunits (matBα and matBβ) and to correlate the presence of specific matBα and matA alleles with differences in monokaryotic growth rate. The availability of these molecular markers and the mating type dependence of growth rate in monokaryons can be helpful for marker-assisted selection of fast-growing monokaryons to be used in the construction of dikaryons able to colonize the substrate faster than the competitors responsible for reductions in the industrial yield of this fungus. PMID:11472908

  9. Mating Type Gene (MAT) and Itraconazole Susceptibility of Trichophyton tonsurans Strains Isolated in Japan.

    PubMed

    Hiruma, Junichiro; Okubo, Miki; Kano, Rui; Kumagawa, Mai; Hiruma, Masataro; Hasegawa, Atsuhiko; Kamata, Hiroshi; Tsuboi, Ryoji

    2016-06-01

    Infection by Trichophyton tonsurans is an emerging fungal epidemic in Japan. Itraconazole (ITZ) and terbinafine have been used for the treatment of this infection for 15 years. However, patients with T. tonsurans infections have been shown to remain uncured or to become reinfected, suggesting that subclinical infection or polyphyletic strains and/or antifungal drug-resistant strains might be occurring in Japan. In this study, PCR analysis was performed to confirm the presence of the mating type locus MAT in genomic DNA from 60 Japanese clinical isolates of T. tonsurans, and to assess the previously postulated clonal origin of clinical isolates of this species. Antifungal susceptibility testing on isolates also was performed to confirm the absence of strains resistant to ITZ. PCR analysis proved that all 60 strains contained the MAT1-1 allele, while none contained the MAT1-2 allele. As determined by E-test, the mean MIC of ITZ in the 60 strains was 0.023 mg/L (range 0.002-0.125 mg/L). All strains of T. tonsurans isolated in Japan were clonal and were not resistant to ITZ. Therefore, dermatophytosis due to T. tonsurans is expected to respond to ITZ, since clinical isolates of T. tonsurans tested to date have been susceptible to this antifungal. This infection is proliferating as a subclinical infection in Japan. PMID:26762628

  10. Connections between RNA splicing and DNA intron mobility in yeast mitochondria: RNA maturase and DNA endonuclease switching experiments.

    PubMed Central

    Goguel, V; Delahodde, A; Jacq, C

    1992-01-01

    The intron-encoded proteins bI4 RNA maturase and aI4 DNA endonuclease can be faithfully expressed in yeast cytoplasm from engineered forms of their mitochondrial coding sequences. In this work we studied the relationships between these two activities associated with two homologous intron-encoded proteins: the bI4 RNA maturase encoded in the fourth intron of the cytochrome b gene and the aI4 DNA endonuclease (I-SceII) encoded in the fourth intron of the gene coding for the subunit I of cytochrome oxidase. Taking advantage of both the high recombinogenic properties of yeast and the similarities between the two genes, we constructed in vivo a family of hybrid genes carrying parts of both RNA maturase and DNA endonuclease coding sequences. The presence of a sequence coding for a mitochondrial targeting peptide upstream from these hybrid genes allowed us to study the properties of their translation products within the mitochondria in vivo. We thus could analyze the ability of the recombinant proteins to complement RNA maturase deficiencies in different strains. Many combinations of the two parental intronic sequences were found in the recombinants. Their structural and functional analysis revealed the following features. (i) The N-terminal half of the bI4 RNA maturase could be replaced in total by its equivalent from the aI4 DNA endonuclease without affecting the RNA maturase activity. In contrast, replacing the C-terminal half of the bI4 RNA maturase with its equivalent from the aI4 DNA endonuclease led to a very weak RNA maturase activity, indicating that this region is more differentiated and linked to the maturase activity. (ii) None of the hybrid proteins carrying an RNA maturase activity kept the DNA endonuclease activity, suggesting that the latter requires the integrity of the aI4 protein. These observations are interesting because the aI4 DNA endonuclease is known to promote the propagation, at the DNA level, of the aI4 intron, whereas the bI4 RNA maturase

  11. Deciphering evolutionary strata on plant sex chromosomes and fungal mating-type chromosomes through compositional segmentation.

    PubMed

    Pandey, Ravi S; Azad, Rajeev K

    2016-03-01

    Sex chromosomes have evolved from a pair of homologous autosomes which differentiated into sex determination systems, such as XY or ZW system, as a consequence of successive recombination suppression between the gametologous chromosomes. Identifying the regions of recombination suppression, namely, the "evolutionary strata", is central to understanding the history and dynamics of sex chromosome evolution. Evolution of sex chromosomes as a consequence of serial recombination suppressions is well-studied for mammals and birds, but not for plants, although 48 dioecious plants have already been reported. Only two plants Silene latifolia and papaya have been studied until now for the presence of evolutionary strata on their X chromosomes, made possible by the sequencing of sex-linked genes on both the X and Y chromosomes, which is a requirement of all current methods that determine stratum structure based on the comparison of gametologous sex chromosomes. To circumvent this limitation and detect strata even if only the sequence of sex chromosome in the homogametic sex (i.e. X or Z chromosome) is available, we have developed an integrated segmentation and clustering method. In application to gene sequences on the papaya X chromosome and protein-coding sequences on the S. latifolia X chromosome, our method could decipher all known evolutionary strata, as reported by previous studies. Our method, after validating on known strata on the papaya and S. latifolia X chromosome, was applied to the chromosome 19 of Populus trichocarpa, an incipient sex chromosome, deciphering two, yet unknown, evolutionary strata. In addition, we applied this approach to the recently sequenced sex chromosome V of the brown alga Ectocarpus sp. that has a haploid sex determination system (UV system) recovering the sex determining and pseudoautosomal regions, and then to the mating-type chromosomes of an anther-smut fungus Microbotryum lychnidis-dioicae predicting five strata in the non

  12. Identification of the minus-dominance gene ortholog in the mating-type locus of Gonium pectorale.

    PubMed

    Hamaji, Takashi; Ferris, Patrick J; Coleman, Annette W; Waffenschmidt, Sabine; Takahashi, Fumio; Nishii, Ichiro; Nozaki, Hisayoshi

    2008-01-01

    The evolution of anisogamy/oogamy in the colonial Volvocales might have occurred in an ancestral isogamous colonial organism like Gonium pectorale. The unicellular, close relative Chlamydomonas reinhardtii has a mating-type (MT) locus harboring several mating-type-specific genes, including one involved in mating-type determination and another involved in the function of the tubular mating structure in only one of the two isogametes. In this study, as the first step in identifying the G. pectorale MT locus, we isolated from G. pectorale the ortholog of the C. reinhardtii mating-type-determining minus-dominance (CrMID) gene, which is localized only in the MT- locus. 3'- and 5'-RACE RT-PCR using degenerate primers identified a CrMID-orthologous 164-amino-acid coding gene (GpMID) containing a leucine-zipper RWP-RK domain near the C-terminal, as is the case with CrMID. Genomic Southern blot analysis showed that GpMID was coded only in the minus strain of G. pectorale. RT-PCR revealed that GpMID expression increased during nitrogen starvation. Analysis of F1 progeny suggested that GpMID and isopropylmalate dehydratase LEU1S are tightly linked, suggesting that they are harbored in a chromosomal region under recombinational suppression that is comparable to the C. reinhardtii MT locus. However, two other genes present in the C. reinhardtii MT locus are not linked to the G. pectorale LEU1S/MID, suggesting that the gene content of the volvocalean MT loci is not static over time. Inheritance of chloroplast and mitochondria genomes in G. pectorale is uniparental from the plus and minus parents, respectively, as is also the case in C. reinhardtii. PMID:18202374

  13. Analysis of the mating-type loci of co-occurring and phylogenetically related species of Ascochyta and Phoma.

    PubMed

    Woudenberg, Joyce H C; De Gruyter, Johannes; Crous, Pedro W; Zwiers, Lute-Harm

    2012-05-01

    Ascochyta and Phoma are fungal genera containing several important plant pathogenic species. These genera are morphologically similar, and recent molecular studies performed to unravel their phylogeny have resulted in the establishment of several new genera within the newly erected Didymellaceae family. An analysis of the structure of fungal mating-type genes can contribute to a better understanding of the taxonomic relationships of these plant pathogens, and may shed some light on their evolution and on differences in sexual strategy and pathogenicity. We analysed the mating-type loci of phylogenetically closely related Ascochyta and Phoma species (Phoma clematidina, Didymella vitalbina, Didymella clematidis, Peyronellaea pinodes and Peyronellaea pinodella) that co-occur on the same hosts, either on Clematis or Pisum. The results confirm that the mating-type genes provide the information to distinguish between the homothallic Pey. pinodes (formerly Ascochyta pinodes) and the heterothallic Pey. pinodella (formerly Phoma pinodella), and indicate the close phylogenetic relationship between these two species that are part of the disease complex responsible for Ascochyta blight on pea. Furthermore, our analysis of the mating-type genes of the fungal species responsible for causing wilt of Clematis sp. revealed that the heterothallic D. vitalbina (Phoma anamorph) is more closely related to the homothallic D. clematidis (Ascochyta anamorph) than to the heterothallic P. clematidina. Finally, our results indicate that homothallism in D. clematidis resulted from a single crossover between MAT1-1 and MAT1-2 sequences of heterothallic ancestors, whereas a single crossover event followed by an inversion of a fused MAT1/2 locus resulted in homothallism in Pey. pinodes. PMID:22014305

  14. The Sclerotinia sclerotiorum Mating Type Locus (MAT) Contains a 3.6-kb Region That Is Inverted in Every Meiotic Generation

    PubMed Central

    Maruthachalam, Karunakaran; Wu, Bo-Ming; Subbarao, Krishna V.

    2013-01-01

    Sclerotinia sclerotiorum is a fungal plant pathogen and the causal agent of lettuce drop, an economically important disease of California lettuce. The structure of the S. sclerotiorum mating type locus MAT has previously been reported and consists of two idiomorphs that are fused end-to-end as in other homothallics. We investigated the diversity of S. sclerotiorum MAT using a total of 283 isolates from multiple hosts and locations, and identified a novel MAT allele that differed by a 3.6-kb inversion and was designated Inv+, as opposed to the previously known S. sclerotiorum MAT that lacked the inversion and was Inv-. The inversion affected three of the four MAT genes: MAT1-2-1 and MAT1-2-4 were inverted and MAT1-1-1 was truncated at the 3’-end. Expression of MAT genes differed between Inv+ and Inv- isolates. In Inv+ isolates, only one of the three MAT1-2-1 transcript variants of Inv- isolates was detected, and the alpha1 domain of Inv+ MAT1-1-1 transcripts was truncated. Both Inv- and Inv+ isolates were self-fertile, and the inversion segregated in a 1∶1 ratio regardless of whether the parent was Inv- or Inv+. This suggested the involvement of a highly regulated process in maintaining equal proportions of Inv- and Inv+, likely associated with the sexual state. The MAT inversion region, defined as the 3.6-kb MAT inversion in Inv+ isolates and the homologous region of Inv- isolates, was flanked by a 250-bp inverted repeat on either side. The 250-bp inverted repeat was a partial MAT1-1-1 that through mediation of loop formation and crossing over, may be involved in the inversion process. Inv+ isolates were widespread, and in California and Nebraska constituted half of the isolates examined. We speculate that a similar inversion region may be involved in mating type switching in the filamentous ascomycetes Chromocrea spinulosa, Sclerotinia trifoliorum and in certain Ceratocystis species. PMID:23457637

  15. Genetic Basis of Self-Incompatibility in the Lichen-Forming Fungus Lobaria pulmonaria and Skewed Frequency Distribution of Mating-Type Idiomorphs: Implications for Conservation

    PubMed Central

    Singh, Garima; Dal Grande, Francesco; Cornejo, Carolina; Schmitt, Imke; Scheidegger, Christoph

    2012-01-01

    Fungal populations that reproduce sexually are likely to be genetically more diverse and have a higher adaptive potential than asexually reproducing populations. Mating systems of fungal species can be self-incompatible, requiring the presence of isolates of different mating-type genes for sexual reproduction to occur, or self-compatible, requiring only one. Understanding the distribution of mating-type genes in populations can help to assess the potential of self-incompatible species to reproduce sexually. In the locally threatened epiphytic lichen-forming fungus Lobaria pulmonaria (L.) Hoffm., low frequency of sexual reproduction is likely to limit the potential of populations to adapt to changing environmental conditions. Our study provides direct evidence of self-incompatibility (heterothallism) in L. pulmonaria. It can thus be hypothesized that sexual reproduction in small populations might be limited by an unbalanced distribution of mating-type genes. We therefore assessed neutral genetic diversity (using microsatellites) and mating-type ratio in 27 lichen populations (933 individuals). We found significant differences in the frequency of the two mating types in 13 populations, indicating a lower likelihood of sexual reproduction in these populations. This suggests that conservation translocation activities aiming at maximizing genetic heterogeneity in threatened and declining populations should take into account not only presence of fruiting bodies in transplanted individuals, but also the identity and balanced representation of mating-type genes. PMID:23236495

  16. ADP-ribosylation factor arf6p may function as a molecular switch of new end take off in fission yeast

    SciTech Connect

    Fujita, Atsushi

    2008-02-01

    Small GTPases act as molecular switches in a wide variety of cellular processes. In fission yeast Schizosaccharomyces pombe, the directions of cell growth change from a monopolar manner to a bipolar manner, which is known as 'New End Take Off' (NETO). Here I report the identification of a gene, arf6{sup +}, encoding an ADP-ribosylation factor small GTPase, that may be essential for NETO. arf6{delta} cells completely fail to undergo NETO. arf6p localizes at both cell ends and presumptive septa in a cell-cycle dependent manner. And its polarized localization is not dependent on microtubules, actin cytoskeletons and some NETO factors (bud6p, for3p, tea1p, tea3p, and tea4p). Notably, overexpression of a fast GDP/GTP-cycling mutant of arf6p can advance the timing of NETO. These findings suggest that arf6p functions as a molecular switch for the activation of NETO in fission yeast.

  17. White-Opaque Switching of Candida albicans Allows Immune Evasion in an Environment-Dependent Fashion

    PubMed Central

    Sasse, Christoph; Hasenberg, Mike; Weyler, Michael; Gunzer, Matthias

    2013-01-01

    Candida albicans strains that are homozygous at the mating type locus can spontaneously and reversibly switch from the normal yeast morphology (white) to an elongated cell type (opaque), which is the mating-competent form of the fungus. White-opaque switching also influences the ability of C. albicans to colonize and proliferate in specific host niches and its susceptibility to host defense mechanisms. We used live imaging to observe the interaction of white and opaque cells with host phagocytic cells. For this purpose, we generated derivatives of the switching-competent strain WO-1 that express green fluorescent protein from a white-specific promoter and red fluorescent protein from an opaque-specific promoter or vice versa. When mixed populations of these differentially labeled white and opaque cells were incubated with human polymorphonuclear neutrophils (PMNs) on a glass slide, the neutrophils selectively phagocytosed and killed white cells, despite frequent physical interaction with opaque cells. White cells were attacked only after they started to form a germ tube, indicating that the suppression of filamentation in opaque cells saved them from recognition by the PMNs. In contrast to neutrophils, dendritic cells internalized white as well as opaque cells. However, when embedded in a collagen matrix, the PMNs also phagocytosed both white and opaque cells with similar efficiency. These results suggest that, depending on the environment, white-opaque switching enables C. albicans to escape from specific host defense mechanisms. PMID:23125350

  18. Introgression maintains the genetic integrity of the mating-type determining chromosome of the fungus Neurospora tetrasperma

    PubMed Central

    Corcoran, Pádraic; Anderson, Jennifer L.; Jacobson, David J.; Sun, Yu; Ni, Peixiang; Lascoux, Martin; Johannesson, Hanna

    2016-01-01

    Genome evolution is driven by a complex interplay of factors, including selection, recombination, and introgression. The regions determining sexual identity are particularly dynamic parts of eukaryotic genomes that are prone to molecular degeneration associated with suppressed recombination. In the fungus Neurospora tetrasperma, it has been proposed that this molecular degeneration is counteracted by the introgression of nondegenerated DNA from closely related species. In this study, we used comparative and population genomic analyses of 92 genomes from eight phylogenetically and reproductively isolated lineages of N. tetrasperma, and its three closest relatives, to investigate the factors shaping the evolutionary history of the genomes. We found that suppressed recombination extends across at least 6 Mbp (∼63%) of the mating-type (mat) chromosome in N. tetrasperma and is associated with decreased genetic diversity, which is likely the result primarily of selection at linked sites. Furthermore, analyses of molecular evolution revealed an increased mutational load in this region, relative to recombining regions. However, comparative genomic and phylogenetic analyses indicate that the mat chromosomes are temporarily regenerated via introgression from sister species; six of eight lineages show introgression into one of their mat chromosomes, with multiple Neurospora species acting as donors. The introgressed tracts have been fixed within lineages, suggesting that they confer an adaptive advantage in natural populations, and our analyses support the presence of selective sweeps in at least one lineage. Thus, these data strongly support the previously hypothesized role of introgression as a mechanism for the maintenance of mating-type determining chromosomal regions. PMID:26893460

  19. Organization and Evolutionary Trajectory of the Mating Type (MAT) Locus in Dermatophyte and Dimorphic Fungal Pathogens▿ †

    PubMed Central

    Li, Wenjun; Metin, Banu; White, Theodore C.; Heitman, Joseph

    2010-01-01

    Sexual reproduction in fungi is governed by a specialized genomic region, the mating type (MAT) locus, whose gene identity, organization, and complexity are diverse. We identified the MAT locus of five dermatophyte fungal pathogens (Microsporum gypseum, Microsporum canis, Trichophyton equinum, Trichophyton rubrum, and Trichophyton tonsurans) and a dimorphic fungus, Paracoccidioides brasiliensis, and performed phylogenetic analyses. The identified MAT locus idiomorphs of M. gypseum control cell type identity in mating assays, and recombinant progeny were produced. Virulence tests in Galleria mellonella larvae suggest the two mating types of M. gypseum may have equivalent virulence. Synteny analysis revealed common features of the MAT locus shared among these five dermatophytes: namely, a small size (∼3 kb) and a novel gene arrangement. The SLA2, COX13, and APN2 genes, which flank the MAT locus in other Ascomycota are instead linked on one side of the dermatophyte MAT locus. In addition, the transcriptional orientations of the APN2 and COX13 genes are reversed compared to the dimorphic fungi Histoplasma capsulatum, Coccidioides immitis, and Coccidioides posadasii. A putative transposable element, pogo, was found to have inserted in the MAT1-2 idiomorph of one P. brasiliensis strain but not others. In conclusion, the evolution of the MAT locus of the dermatophytes and dimorphic fungi from the last common ancestor has been punctuated by both gene acquisition and expansion, and asymmetric gene loss. These studies further support a foundation to develop molecular and genetic tools for dermatophyte and dimorphic human fungal pathogens. PMID:19880755

  20. Characterization of mating type genes supports the hypothesis that Stagonosporopsis chrysanthemi is homothallic and provides evidence that Stagonosporopsis tanaceti is heterothallic.

    PubMed

    Chilvers, Martin I; Jones, Suzanne; Meleca, Joseph; Peever, Tobin L; Pethybridge, Sarah J; Hay, Frank S

    2014-11-01

    To understand the organization of the mating type locus of Stagonosporopsis tanaceti and Stagonosporopsis chrysanthemi, and its potential role in the epidemiology of ray blight of pyrethrum and chrysanthemum, respectively, the mating type (MAT) locus of these species was cloned and characterized using PCR-based techniques. The complete MAT locus of each species was cloned and annotated including complete and/or partial hypothetical genes flanking the idiomorphs. Analysis of the MAT locus organization indicated that S. chrysanthemi is likely homothallic with both MAT1-2-1 and MAT1-1-1 co-located within the idiomorph, and this was supported by production of the teleomorph in cultures of single-conidial-derived isolates. Sequencing of the MAT locus and flanking genes of S. tanaceti demonstrated that only a single MAT gene, MAT1-1-1, was located within this idiomorph and suggesting that S. tanaceti is heterothallic. MAT-specific PCR primers were developed and used to determine mating type of isolates sampled from diseased pyrethrum fields in Australia. These results indicated that only one mating type of S. tanaceti was present in Tasmania, Australia. The absence of a second mating type suggests that this species does not reproduce sexually in Tasmania, Australia and that ascospores are unlikely to be a source of inoculum for ray blight of pyrethrum. The MAT-specific PCR assay will be a valuable tool to distinguish mating types present among isolates of S. tanaceti, to monitor populations of S. tanaceti for the introduction of a second mating type and to differentiate S. tanaceti from S. chrysanthemi. PMID:24974310

  1. Mating Type Locus of Chinese Black Truffles Reveals Heterothallism and the Presence of Cryptic Species within the T. indicum Species Complex

    PubMed Central

    Belfiori, Beatrice; Riccioni, Claudia; Paolocci, Francesco; Rubini, Andrea

    2013-01-01

    Tuber spp. are filamentous ascomycetes which establish symbiosis with the roots of trees and shrub species. By virtue of this symbiosis they produce hypogeous ascocarps, known as truffles. Filamentous ascomycetes can reproduce by homothallism or heterothallism depending on the structure and organization of their mating type locus. The first mating type locus in a truffle species has been recently characterized in Tuber melanosporum and it has been shown that this fungus, endemic in Europe, is heterothallic. The availability of sequence information for T. melanosporum mating type genes is seminal to cloning their orthologs from other Tuber species and assessing their reproductive mode. Here we report on the organization of the mating type region in T. indicum, the black truffle species present in Asia, which is the closest relative to T. melanosporum and is characterized by an high level of morphological and genetic variability. The present study shows that T. indicum is also heterothallic. Examination of Asiatic black truffles belonging to different genetic classes, sorted according to the sequence polymorphism of the internal transcribed spacer rDNA region, has revealed sequence variations and rearrangements in both coding and non-coding regions of the mating type locus, to suggest the existence of cryptic species within the T. indicum complex. The presence of transposable elements within or linked to the mating type region suggests a role of these elements in generating the genotypic diversity present among T. indicum strains. Overall, comparative analyses of the mating type locus have thus allowed us to tackle taxonomical and phylogenetic issues within black truffles and make inferences about the evolution of T. melanosporum-T. indicum lineage. Our results are not only of fundamental but also of applied relevance as T. indicum produces edible fruit bodies that are imported also into Europe and thus may represent a biological threat for T. melanosporum. PMID

  2. A sex recognition glycoprotein is encoded by the plus mating-type gene fus1 of Chlamydomonas reinhardtii.

    PubMed Central

    Ferris, P J; Woessner, J P; Goodenough, U W

    1996-01-01

    Sexual fusion between plus and minus gametes of the unicellular green alga Chlamydomonas reinhardtii entails adhesion between plus-specific and minus-specific "fringe" proteins displayed on the plasma membrane of gametic mating structures. We report the identification of the gene (fus1) encoding the plus fringe glycoprotein, which resides in a unique domain of the mating-type plus (mt+) locus, and which was identified by transposon insertions in three fusion-defective mutant strains. Transformation with fus1+ restores fringe and fusion competence to these mutants and to the pseudo-plus mutant imp11 mt-, defective in minus differentiation. The fus1 gene is remarkable in lacking the codon bias found in all other nuclear genes of C. reinhardtii. Images PMID:8856667

  3. Cloning of mating-type gene MAT1-1 from the caterpillar medicinal mushroom, Cordyceps militaris (Ascomycetes) using TAIL-PCR technology.

    PubMed

    Cong, Wei-Ran; Gong, Zhen-Hua; Shi, Dan-Dan; Guo, Hui; Zhou, Xuanwei

    2014-01-01

    Cordyceps militaris and Ophiocordyceps sinensis (syn. Cordyceps sinensis), 2 well-known traditional Chinese medicines, contain the same bioactive components and share a similar developmental process. In this study, one C. militaris strain preserved in our laboratory was proven to be a MAT1 mating-type strain using a polymerase chain reaction-based mating-type assay. A 5000-bp nucleotide sequence of the mating-type MAT1-1 from C. militaris was amplified by thermal asymmetric interlaced polymerase chain reaction, but genes within the mating-type MAT1-2 remain undetectable. Sequence analysis shows that the mating-type gene MAT1-1 idiomorph contains 2 genes, MAT1-1-1 and MAT1-1-2. The MAT1-1-1 gene consists of 1480-bp nucleotides that encode 456 amino acids and contain the conserved a-box domain interrupted by 2 introns; the MAT1-1-2 gene consists of 1066 nucleotides that encode 377 amino acids interrupted by one intron. The intervening distance between MAT1-1-1 and MAT1-1-2 is 778 bp. The C. militaris MAT1-1 idiomorph organization is the same as that of Cordyceps takaomontana. The MAT1-1 mating-type idiomorph of both Cordyceps species lacks the MAT1-1-3 gene, which is typically present in Pyrenomycetes. These studies provide some insights for further study of the morphological development of C. militaris and will eventually benefit the domestication of O. sinensis. PMID:25271980

  4. Genetic variation of single nucleotide polymorphisms identified at the mating type locus correlates with form-specific disease phenotype in the barley net blotch fungus Pyrenophora teres

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mating-type (MAT) locus-specific single nucleotide polymorphisms (SNPs) have been shown to be sufficient for conventional PCR-based differentiation of Pyrenophora teres f. teres (Ptt) and P. teres f. maculata (Ptm), the cause of the net and spot form, respectively, of barley net blotch (Lu et al. 20...

  5. Tracing the Origin of the fungal Sex a1 domain places its ancestor in the HMG-box superfamily: implication for fungal mating-type evolution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungal mating types in self-incompatible Pezizomycotina are specified by one of two alternate sequences occupying the same locus on corresponding chromosomes. One sequence is characterized by a gene encoding an HMG protein, while the hallmark of the other is a gene encoding a protein with an a1 doma...

  6. SHARED ITS DNA SUBSTITUTIONS IN ISOLATES OF OPPOSITE MATING TYPE REVEAL A RECOMBIING HISTORY FOR THREE PRESUMED ASEXUAL SPECIES IN THE FILAMENTOUS ASCOMYCETE GENUS ALTERNARIA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    About 15,000 species of ascomycete fungi lack a known sexual state. For fungi with asexual states in the form genera Embellisia, Ulocladium and Alternaria, six species have known sexual states but more than 50 species do not. In sexual filamentous ascomycetes, opposite mating type information at t...

  7. Mating Type (MAT) Locus -Specific PCR Markers for Differentiation of Pyrenophora teres f. teres and P. teres f. maculata, the Causal Agents of Barley Net Blotch

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fourteen single nucleotide polymorphisms (SNPs) were identified at the mating-type (MAT) loci of Pyrenophora teres f. teres (Ptt), which causes net form (NF) net blotch, and P. teres f. maculata (Ptm), which causes spot form (SF) net blotch of barley. MAT-specific SNP primers were developed for poly...

  8. Unequal Recombination and Evolution of the Mating-Type (MAT) Loci in the Pathogenic Fungus Grosmannia clavigera and Relatives

    PubMed Central

    Tsui, Clement K.-M.; DiGuistini, Scott; Wang, Ye; Feau, Nicolas; Dhillon, Braham; Bohlmann, Jörg; Hamelin, Richard C.

    2013-01-01

    Sexual reproduction in fungi is regulated by the mating-type (MAT) locus where recombination is suppressed. We investigated the evolution of MAT loci in eight fungal species belonging to Grosmannia and Ophiostoma (Sordariomycetes, Ascomycota) that include conifer pathogens and beetle symbionts. The MAT1-2 idiomorph/allele was identified from the assembled and annotated Grosmannia clavigera genome, and the MAT locus is flanked by genes coding for cytoskeleton protein (SLA) and DNA lyase. The synteny of these genes is conserved and consistent with other members in Ascomycota. Using sequences from SLA and flanking regions, we characterized the MAT1-1 idiomorph from other isolates of G. clavigera and performed dotplot analysis between the two idiomorphs. Unexpectedly, the MAT1-2 idiomorph contains a truncated MAT1-1-1 gene upstream of the MAT1-2-1 gene that bears the high-mobility-group domain. The nucleotide and amino acid sequence of the truncated MAT1-1-1 gene is similar to its homologous copy in the MAT1-1 idiomorph in the opposite mating-type isolate, except that positive selection is acting on the truncated gene and the alpha(α)-box that encodes the transcription factor has been deleted. The MAT idiomorphs sharing identical gene organization were present in seven additional species in the Ophiostomatales, suggesting that the presence of truncated MAT1-1-1 gene is a general pattern in this order. We propose that an ancient unequal recombination event resulted in the ancestral MAT1-1-1 gene integrated into the MAT1-2 idiomorph and surviving as the truncated MAT1-1-1 genes. The α-box domain of MAT1-1-1 gene, located at the same MAT locus adjacent to the MAT1-2-1 gene, could have been removed by deletion after recombination due to mating signal interference. Our data confirmed a 1:1 MAT/sex ratio in two pathogen populations, and showed that all members of the Ophiostomatales studied here including those that were previously deemed asexual have the potential to

  9. Co-expression of the mating-type genes involved in internuclear recognition is lethal in Podospora anserina.

    PubMed Central

    Coppin, E; Debuchy, R

    2000-01-01

    In the heterothallic filamentous fungus Podospora anserina, four mating-type genes encoding transcriptional factors have been characterized: FPR1 in the mat+ sequence and FMR1, SMR1, and SMR2 in the alternative mat- sequence. Fertilization is controlled by FPR1 and FMR1. After fertilization, male and female nuclei, which have divided in the same cell, form mat+/mat- pairs during migration into the ascogenous hyphae. Previous data indicate that the formation of mat+/mat- pairs is controlled by FPR1, FMR1, and SMR2. SMR1 was postulated to be necessary for initial development of ascogenous hyphae. In this study, we investigated the transcriptional control of the mat genes by seeking mat transcripts during the vegetative and sexual phase and fusing their promoter to a reporter gene. The data indicate that FMR1 and FPR1 are expressed in both mycelia and perithecia, whereas SMR1 and SMR2 are transcribed in perithecia. Increased or induced vegetative expression of the four mat genes has no effect when the recombined gene is solely in the wild-type strain. However, the combination of resident FPR1 with deregulated SMR2 and overexpressed FMR1 in the same nucleus is lethal. This lethality is suppressed by the expression of SMR1, confirming that SMR1 operates downstream of the other mat genes. PMID:10835389

  10. Diversity of the lactic acid bacterium and yeast microbiota in the switch from firm- to liquid-sourdough fermentation.

    PubMed

    Di Cagno, Raffaella; Pontonio, Erica; Buchin, Solange; De Angelis, Maria; Lattanzi, Anna; Valerio, Francesca; Gobbetti, Marco; Calasso, Maria

    2014-05-01

    Four traditional type I sourdoughs were comparatively propagated (28 days) under firm (dough yield, 160) and liquid (dough yield, 280) conditions to mimic the alternative technology options frequently used for making baked goods. After 28 days of propagation, liquid sourdoughs had the lowest pH and total titratable acidity (TTA), the lowest concentrations of lactic and acetic acids and free amino acids, and the most stable density of presumptive lactic acid bacteria. The cell density of yeasts was the highest in liquid sourdoughs. Liquid sourdoughs showed simplified microbial diversity and harbored a low number of strains, which were persistent. Lactobacillus plantarum dominated firm sourdoughs over time. Leuconostoc lactis and Lactobacillus brevis dominated only some firm sourdoughs, and Lactobacillus sanfranciscensis persisted for some time only in some firm sourdoughs. Leuconostoc citreum persisted in all firm and liquid sourdoughs, and it was the only species detected in liquid sourdoughs at all times; it was flanked by Leuconostoc mesenteroides in some sourdoughs. Saccharomyces cerevisiae, Candida humilis, Saccharomyces servazzii, Saccharomyces bayanus-Kazachstania sp., and Torulaspora delbrueckii were variously identified in firm and liquid sourdoughs. A total of 197 volatile components were identified through purge and trap-/solid-phase microextraction-gas chromatography-mass spectrometry (PT-/SPME-GC-MS). Aldehydes, several alcohols, and some esters were at the highest levels in liquid sourdoughs. Firm sourdoughs mainly contained ethyl acetate, acetic acid, some sulfur compounds, and terpenes. The use of liquid fermentation would change the main microbial and biochemical features of traditional baked goods, which have been manufactured under firm conditions for a long time. PMID:24632249

  11. Diversity of the Lactic Acid Bacterium and Yeast Microbiota in the Switch from Firm- to Liquid-Sourdough Fermentation

    PubMed Central

    Di Cagno, Raffaella; Pontonio, Erica; Buchin, Solange; De Angelis, Maria; Lattanzi, Anna; Valerio, Francesca; Calasso, Maria

    2014-01-01

    Four traditional type I sourdoughs were comparatively propagated (28 days) under firm (dough yield, 160) and liquid (dough yield, 280) conditions to mimic the alternative technology options frequently used for making baked goods. After 28 days of propagation, liquid sourdoughs had the lowest pH and total titratable acidity (TTA), the lowest concentrations of lactic and acetic acids and free amino acids, and the most stable density of presumptive lactic acid bacteria. The cell density of yeasts was the highest in liquid sourdoughs. Liquid sourdoughs showed simplified microbial diversity and harbored a low number of strains, which were persistent. Lactobacillus plantarum dominated firm sourdoughs over time. Leuconostoc lactis and Lactobacillus brevis dominated only some firm sourdoughs, and Lactobacillus sanfranciscensis persisted for some time only in some firm sourdoughs. Leuconostoc citreum persisted in all firm and liquid sourdoughs, and it was the only species detected in liquid sourdoughs at all times; it was flanked by Leuconostoc mesenteroides in some sourdoughs. Saccharomyces cerevisiae, Candida humilis, Saccharomyces servazzii, Saccharomyces bayanus-Kazachstania sp., and Torulaspora delbrueckii were variously identified in firm and liquid sourdoughs. A total of 197 volatile components were identified through purge and trap–/solid-phase microextraction–gas chromatography-mass spectrometry (PT–/SPME–GC-MS). Aldehydes, several alcohols, and some esters were at the highest levels in liquid sourdoughs. Firm sourdoughs mainly contained ethyl acetate, acetic acid, some sulfur compounds, and terpenes. The use of liquid fermentation would change the main microbial and biochemical features of traditional baked goods, which have been manufactured under firm conditions for a long time. PMID:24632249

  12. The RAD7 and RAD16 genes, which are essential for pyrimidine dimer removal from the silent mating type loci, are also required for repair of the nontranscribed strand of an active gene in Saccharomyces cerevisiae.

    PubMed Central

    Verhage, R; Zeeman, A M; de Groot, N; Gleig, F; Bang, D D; van de Putte, P; Brouwer, J

    1994-01-01

    The rad16 mutant of Saccharomyces cerevisiae was previously shown to be impaired in removal of UV-induced pyrimidine dimers from the silent mating-type loci (D. D. Bang, R. A. Verhage, N. Goosen, J. Brouwer, and P. van de Putte, Nucleic Acids Res. 20:3925-3931, 1992). Here we show that rad7 as well as rad7 rad16 double mutants have the same repair phenotype, indicating that the RAD7 and RAD16 gene products might operate in the same nucleotide excision repair subpathway. Dimer removal from the genome overall is essentially incomplete in these mutants, leaving about 20 to 30% of the DNA unrepaired. Repair analysis of the transcribed RPB2 gene shows that the nontranscribed strand is not repaired at all in rad7 and rad16 mutants, whereas the transcribed strand is repaired in these mutants at a fast rate similar to that in RAD+ cells. When the results obtained with the RPB2 gene can be generalized, the RAD7 and RAD16 proteins not only are essential for repair of silenced regions but also function in repair of nontranscribed strands of active genes in S. cerevisiae. The phenotype of rad7 and rad16 mutants closely resembles that of human xeroderma pigmentosum complementation group C (XP-C) cells, suggesting that RAD7 and RAD16 in S. cerevisiae function in the same pathway as the XPC gene in human cells. RAD4, which on the basis of sequence homology has been proposed to be the yeast XPC counterpart, seems to be involved in repair of both inactive and active yeast DNA, challenging the hypothesis that RAD4 and XPC are functional homologs. Images PMID:8065346

  13. Fine-scale spatial genetic structure of the black truffle (Tuber melanosporum) investigated with neutral microsatellites and functional mating type genes.

    PubMed

    Murat, Claude; Rubini, Andrea; Riccioni, Claudia; De la Varga, Herminia; Akroume, Emila; Belfiori, Beatrice; Guaragno, Marco; Le Tacon, François; Robin, Christophe; Halkett, Fabien; Martin, Francis; Paolocci, Francesco

    2013-07-01

    The genetic structure of ectomycorrhizal (ECM) fungal populations results from both vegetative and sexual propagation. In this study, we have analysed the spatial genetic structure of Tuber melanosporum populations, a heterothallic ascomycete that produces edible fruit bodies. Ectomycorrhizas from oaks and hazels from two orchards were mapped and genotyped using simple sequence repeat markers and the mating type locus. The distribution of the two T. melanosporum mating types was also monitored in the soil. In one orchard, the genetic profiles of the ascocarps were compared with those of the underlying mycorrhizas. A pronounced spatial genetic structure was found. The maximum genet sizes were 2.35 and 4.70 m in the two orchards, with most manifesting a size < 1 m. Few genets persisted throughout two seasons. A nonrandom distribution pattern of the T. melanosporum was observed, resulting in field patches colonized by genets that shared the same mating types. Our findings suggest that competition occurs between genets and provide basic information on T. melanosporum propagation patterns that are relevant for the management of productive truffle orchards. PMID:23574460

  14. Impact of the competition between mating types on the cultivation of Tuber melanosporum: Romeo and Juliet and the matter of space and time.

    PubMed

    Rubini, Andrea; Riccioni, Claudia; Belfiori, Beatrice; Paolocci, Francesco

    2014-04-01

    Major breakthroughs in our understanding of the life cycles of the symbiotic ascomycetes belonging to the genus Tuber have occurred over the last several years. A number of Tuber species produce edible fruiting bodies, known as truffles, that are marketed worldwide. A better understanding of the basic biological characteristics of Tuber spp. is likely to have tremendous practical relevance for their cultivation. Tuber melanosporum produces the most valuable black truffles and its genome has been recently sequenced. This species is now serving as a model for studying the biology of truffles. Here, we review recent progress in the understanding of sexual reproduction modalities in T. melanosporum. The practical relevance of these findings is outlined. In particular, the discoveries that T. melanosporum is heterothallic and that strains of different mating types compete to persist on the roots of host plants suggest that the spatial and temporal distributional patterns of strains of different mating types are key determinants of truffle fructification. The spatial segregation of the two mating types in areas where T. melanosporum occurs likely limits truffle production. Thus, host plant inoculation techniques and agronomic practices that might be pursued to manage T. melanosporum orchards with a balanced presence of the two mating partners are described. PMID:24384788

  15. Model of Exploratory Search for Mating Partners by Fission Yeast

    NASA Astrophysics Data System (ADS)

    Hurwitz, Daniel; Bendezu, Felipe; Martin, Sophie; Vavylonis, Dimitrios

    2014-03-01

    During conditions of nitrogen starvation, the model eukaryote S. pombe (fission yeast) undergoes sexual sporulation. Because fission yeast are non-motile, contact between opposite mating types during spore formation is accomplished by polarizing growth, via the Rho GTP-ase Cdc42, in each mating type towards the selected mate, a process known as shmooing. Recent findings showed that cells pick one of their neighboring compatible mates by randomizing the position of the Cdc42 complex about the cell membrane, such that the complex is stabilized near areas of high concentration of the opposite mating type pheromone. We developed Monte Carlo simulations to model partner finding in populations of mating cells and in small cell clusters. We assume that pheromones are secreted at the site of Cdc42 accumulation and that the Cdc42 dwell time increases in response to increasing pheromone concentration. We measured the number of cells that succeed in successful reciprocal pairing, the number of cells that were unable to find a partner, and the number of cells that picked a partner already engaged with another cell. For optimal cell pairing, we find the pheromone concentration decay length is around 1 micron, of order the cell size. We show that non-linear response of Cdc42 dwell time to pheromone concentration improves the number of successful pairs for a given spatial cell distribution. We discuss how these results compare to non-exploratory pairing mechanisms.

  16. Signal Transduction: Turning a Switch into a Rheostat

    PubMed Central

    Bardwell, Lee

    2010-01-01

    MAP kinase cascades are inherently switch-like, but, during yeast mating, MAPK signaling is graded. A new study suggests that the Ste5 scaffold protein is responsible for making this switch less switch-like. PMID:18957235

  17. Fission Yeast Pxd1 Promotes Proper DNA Repair by Activating Rad16XPF and Inhibiting Dna2

    PubMed Central

    Zhang, Jia-Min; Liu, Xiao-Man; Ding, Yue-He; Xiong, Liang-Yao; Ren, Jing-Yi; Zhou, Zhi-Xiong; Wang, Hai-Tao; Zhang, Mei-Jun; Yu, Yang; Dong, Meng-Qiu; Du, Li-Lin

    2014-01-01

    Structure-specific nucleases play crucial roles in many DNA repair pathways. They must be precisely controlled to ensure optimal repair outcomes; however, mechanisms of their regulation are not fully understood. Here, we report a fission yeast protein, Pxd1, that binds to and regulates two structure-specific nucleases: Rad16XPF-Swi10ERCC1 and Dna2-Cdc24. Strikingly, Pxd1 influences the activities of these two nucleases in opposite ways: It activates the 3′ endonuclease activity of Rad16-Swi10 but inhibits the RPA-mediated activation of the 5′ endonuclease activity of Dna2. Pxd1 is required for Rad16-Swi10 to function in single-strand annealing, mating-type switching, and the removal of Top1-DNA adducts. Meanwhile, Pxd1 attenuates DNA end resection mediated by the Rqh1-Dna2 pathway. Disabling the Dna2-inhibitory activity of Pxd1 results in enhanced use of a break-distal repeat sequence in single-strand annealing and a greater loss of genetic information. We propose that Pxd1 promotes proper DNA repair by differentially regulating two structure-specific nucleases. PMID:25203555

  18. DNA Replication Forks Pause at Silent Origins near the HML Locus in Budding Yeast

    PubMed Central

    Wang, Yangzhou; Vujcic, Marija; Kowalski, David

    2001-01-01

    Chromosomal replicators in budding yeast contain an autonomously replicating sequence (ARS) that functions in a plasmid, but certain ARSs are silent as replication origins in their natural chromosomal context. In chromosome III, the HML ARS cluster (ARS302-ARS303-ARS320) and ARS301 flank the transcriptionally silent mating-type locus HML, and all of these ARSs are silent as replication origins. ARS301 and ARS302 function in transcriptional silencing mediated by the origin recognition complex (ORC) and a heterochromatin structure, while the functions of ARS303 and ARS320 are not known. In this work, we discovered replication fork pause sites at the HML ARS cluster and ARS301 by analyzing DNA replication intermediates from the chromosome via two-dimensional gel electrophoresis. The replication fork pause at the HML ARS cluster was independent of cis- and trans-acting mutations that abrogate transcriptional silencing at HML. Deletion of the HML ARS cluster led to loss of the pause site. Insertion of a single, heterologous ARS (ARS305) in place of the HML ARS cluster reconstituted the pause site, as did multiple copies of DNA elements (A and B1) that bind ORC. The orc2-1 mutation, known to alter replication timing at origins, did not detectably affect the pause but activated the silent origin at the HML ARS cluster in a minority of cells. Delaying the time of fork arrival at HML led to the elimination of the pause sites at the HML ARS cluster and at the copy of ARS305 inserted in place of the cluster. Loss of the pause sites was accompanied by activation of the silent origins in the majority of cells. Thus, replication fork movement near HML pauses at a silent origin which is competent for replication initiation but kept silent through Orc2p, a component of the replication initiator. Possible functions for replication fork pause sites in checkpoints, S-phase regulation, mating-type switching, and transcriptionally silent heterochromatin are discussed. PMID:11438651

  19. Grapevine MATE-Type Proteins Act as Vacuolar H+-Dependent Acylated Anthocyanin Transporters1[W][OA

    PubMed Central

    Gomez, Camila; Terrier, Nancy; Torregrosa, Laurent; Vialet, Sandrine; Fournier-Level, Alexandre; Verriès, Clotilde; Souquet, Jean-Marc; Mazauric, Jean-Paul; Klein, Markus; Cheynier, Véronique; Ageorges, Agnès

    2009-01-01

    In grapevine (Vitis vinifera), anthocyanins are responsible for most of the red, blue, and purple pigmentation found in the skin of berries. In cells, anthocyanins are synthesized in the cytoplasm and accumulated into the vacuole. However, little is known about the transport of these compounds through the tonoplast. Recently, the sequencing of the grapevine genome allowed us to identify genes encoding proteins with high sequence similarity to the Multidrug And Toxic Extrusion (MATE) family. Among them, we selected two genes as anthocyanin transporter candidates and named them anthoMATE1 (AM1) and AM3. The expression of both genes was mainly fruit specific and concomitant with the accumulation of anthocyanin pigment. Subcellular localization assays in grapevine hairy roots stably transformed with AM1∷ or AM3∷green fluorescent protein fusion protein revealed that AM1 and AM3 are primarily localized to the tonoplast. Yeast vesicles expressing anthoMATEs transported acylated anthocyanins in the presence of MgATP. Inhibitor studies demonstrated that AM1 and AM3 proteins act in vitro as vacuolar H+-dependent acylated anthocyanin transporters. By contrast, under our experimental conditions, anthoMATEs could not transport malvidin 3-O-glucoside or cyanidin 3-O-glucoside, suggesting that the acyl conjugation was essential for the uptake. Taken together, these results provide evidence that in vitro the two grapevine AM1 and AM3 proteins mediate specifically acylated anthocyanin transport. PMID:19297587

  20. Sensory input attenuation allows predictive sexual response in yeast.

    PubMed

    Banderas, Alvaro; Koltai, Mihaly; Anders, Alexander; Sourjik, Victor

    2016-01-01

    Animals are known to adjust their sexual behaviour depending on mate competition. Here we report similar regulation for mating behaviour in a sexual unicellular eukaryote, the budding yeast Saccharomyces cerevisiae. We demonstrate that pheromone-based communication between the two mating types, coupled to input attenuation by recipient cells, enables yeast to robustly monitor relative mate abundance (sex ratio) within a mixed population and to adjust their commitment to sexual reproduction in proportion to their estimated chances of successful mating. The mechanism of sex-ratio sensing relies on the diffusible peptidase Bar1, which is known to degrade the pheromone signal produced by mating partners. We further show that such a response to sexual competition within a population can optimize the fitness trade-off between the costs and benefits of mating response induction. Our study thus provides an adaptive explanation for the known molecular mechanism of pheromone degradation in yeast. PMID:27557894

  1. Sensory input attenuation allows predictive sexual response in yeast

    PubMed Central

    Banderas, Alvaro; Koltai, Mihaly; Anders, Alexander; Sourjik, Victor

    2016-01-01

    Animals are known to adjust their sexual behaviour depending on mate competition. Here we report similar regulation for mating behaviour in a sexual unicellular eukaryote, the budding yeast Saccharomyces cerevisiae. We demonstrate that pheromone-based communication between the two mating types, coupled to input attenuation by recipient cells, enables yeast to robustly monitor relative mate abundance (sex ratio) within a mixed population and to adjust their commitment to sexual reproduction in proportion to their estimated chances of successful mating. The mechanism of sex-ratio sensing relies on the diffusible peptidase Bar1, which is known to degrade the pheromone signal produced by mating partners. We further show that such a response to sexual competition within a population can optimize the fitness trade-off between the costs and benefits of mating response induction. Our study thus provides an adaptive explanation for the known molecular mechanism of pheromone degradation in yeast. PMID:27557894

  2. Recurrent polymorphic mating type variation in Madagascan Bulbophyllum species (Orchidaceae) exemplifies a high incidence of auto-pollination in tropical orchids

    PubMed Central

    Gamisch, Alexander; Fischer, Gunter A; Comes, Hans Peter

    2014-01-01

    The transition from outcrossing to self-fertilization is one of the most common evolutionary changes in angiosperms. The orchid family exemplifies this evolutionary trend but, because of a general lack of large-scale surveys on auto-pollination in orchid taxa, the incidence and modes of auto-pollination among (sub)tropical orchids remain poorly known. In the present study, we assessed the frequency and mode of auto-pollination within and among species of a largely monophyletic group of Madagascan Bulbophyllum. The capacity for autonomous fruit set was investigated by bagging experiments in the greenhouse and the field, complemented with detailed floral micromorphological studies of the gynostemium. Our survey comprises 393 accessions, representing at least 78 species, and thus approximately 37% of the species diversity of the genus in the Madagascan region. Our studies revealed that mating type is directly related to gynostemium structure, most often involving the presence or absence of a physical barrier termed ‘rostellum’. As a novel and unexpected finding, we identified eight species of a single lineage of Madagascan Bulbophyllum (termed ‘clade C’), in which auto-pollinating morphs (selfers), either lacking a rostellum or (rarely) possessing a stigmatic rostellum, co-exist with their pollinator-dependent conspecifics (outcrossers). We hypothesize that auto-pollination via rostellum abortion has a simple genetic basis, and probably evolved rapidly and recurrently by subtle changes in the timing of rostellum development (heterochrony). Thus, species of clade C may have an intrinsic genetic and developmental lability toward auto-pollination, allowing rapid evolutionary response under environmental, perhaps human-disturbed conditions favouring reproductive assurance. Overall, these findings should stimulate further research on the incidence, evolution, and maintenance of mating type variation in tropical orchids, as well as how they adapt(ed) to changing

  3. A homologue of the yeast SHE4 gene is essential for the transition between the syncytial and cellular stages during sexual reproduction of the fungus Podospora anserina.

    PubMed Central

    Berteaux-Lecellier, V; Zickler, D; Debuchy, R; Panvier-Adoutte, A; Thompson-Coffe, C; Picard, M

    1998-01-01

    The Podospora anserina cro1 gene was identified as a gene required for sexual sporulation. Crosses homozygous for the cro1-1 mutation yield fruiting bodies which produce few asci due to the formation of giant plurinucleate cells instead of dikaryotic cells after fertilization. This defect does not impair karyogamy, but meioses of the resultant polyploid nuclei are most often abortive. Cytological studies suggest that the primary defect of the mutant is its inability to form septa between the daughter nuclei after each mitosis, a step specific for normal dikaryotic cell divisions. The cro1-1 mutant would thus be unable to leave the syncytial vegetative state while abiding by the meiotic programme. cro1-1 also shows defects in ascospore germination and growth rate. GFP-tagging of the CRO1 protein reveals that it is a cytosolic protein mainly expressed at the beginning of the dikaryotic stage and at the time of ascospore maturation. The CRO1 protein exhibits significant similarity to the SHE4 protein, which is required for asymmetric mating-type switching in budding yeast cells. Thus, a gene involved in asymmetric cell divisions in a unicellular organism plays a key role at the transition between the syncytial (vegetative) state and the cellular (sexual) state in a filamentous fungus. PMID:9482722

  4. Yeast Infections

    MedlinePlus

    ... antibiotics, it can multiply and cause an infection. Yeast infections affect different parts of the body in different ways: Thrush is a yeast infection that causes white patches in your mouth Candida ...

  5. The fission yeast heterochromatin protein Rik1 is required for telomere clustering during meiosis

    PubMed Central

    Tuzon, Creighton T.; Borgstrom, Britta; Weilguny, Dietmar; Egel, Richard; Cooper, Julia Promisel; Nielsen, Olaf

    2004-01-01

    Telomeres share the ability to silence nearby transcription with heterochromatin, but the requirement of heterochromatin proteins for most telomere functions is unknown. The fission yeast Rik1 protein is required for heterochromatin formation at centromeres and the mating-type locus, as it recruits the Clr4 histone methyltransferase, whose modification of histone H3 triggers binding by Swi6, a conserved protein involved in spreading of heterochromatin. Here, we demonstrate that Rik1 and Clr4, but not Swi6, are required along with the telomere protein Taz1 for crucial chromosome movements during meiosis. However, Rik1 is dispensable for the protective roles of telomeres in preventing chromosome end-fusion. Thus, a Swi6-independent heterochromatin function distinct from that at centromeres and the mating-type locus operates at telomeres during sexual differentiation. PMID:15197176

  6. Isolation of the MAT1-1 mating type idiomorph and evidence for selfing in the Chinese medicinal fungus Ophiocordyceps sinensis.

    PubMed

    Bushley, Kathryn E; Li, Yi; Wang, Wen-Jing; Wang, Xiao-Liang; Jiao, Lei; Spatafora, Joseph W; Yao, Yi-Jian

    2013-09-01

    Ophiocordyceps sinensis is one of the most valued medicinal fungi in China. Research on the mating system and sexual development is vitally important to this endangered species. Previous efforts devoted to investigate the mating type (MAT) locus of O. sinensis, however, resulted in an incomplete understanding. In this study, the MAT1-1 locus of O. sinensis was investigated. The conserved α-box and HMG-box regions of the MAT1-1-1 and MAT1-1-3 genes, respectively, and a conserved region of the DNA lyase gene were successfully amplified using degenerate PCR. A combination of TAIL-PCR and long-range PCR were used to connect these genes and obtain the sequence of the MAT1-1 locus. Screening of 22 single spore isolates by PCR demonstrated that both the MAT1-1-1 and MAT1-2-1 genes cooccurred within the same isolate. Additionally, both MAT1-1-1 and MAT1-2-1 are expressed in vegetative mycelia, providing evidence that O. sinensis is likely capable of selfing. DAPI (4,6-diamidino-2-phenylindole) staining of ascospores and hyphae showed that a majority of hyphal compartments are binucleate, suggesting that O. sinensis may be pseudohomothallic. Analyses of sequence diversity showed lower levels of genetic diversity in MAT1-1-1 compared to MAT1-2-1, indicating the possibility that different selective pressures act on the two MAT idiomorphs. The MAT1-1-1 sequences of O. sinensis and Tolypocladium inflatum cluster as a monophyletic group consistent with phylogenetic classification of Ophiocordycipitaceae. Comparison of the structure of the MAT1-1 locus across hypocrealean taxa showed that O. sinensis contains all three mating type genes (MAT1-1-1, MAT1-1-2, and MAT1-1-3) and supported previous observations that of the four families in Hypocreales, MAT1-1-3 has undergone a lineage specific loss only in some members of the Cordycipitaceae. PMID:24012300

  7. Chimeric Sex-Determining Chromosomal Regions and Dysregulation of Cell-Type Identity in a Sterile Zygosaccharomyces Allodiploid Yeast.

    PubMed

    Bizzarri, Melissa; Giudici, Paolo; Cassanelli, Stefano; Solieri, Lisa

    2016-01-01

    Allodiploidization is a fundamental yet evolutionarily poorly characterized event, which impacts genome evolution and heredity, controlling organismal development and polyploid cell-types. In this study, we investigated the sex determination system in the allodiploid and sterile ATCC 42981 yeast, a member of the Zygosaccharomyces rouxii species complex, and used it to study how a chimeric mating-type gene repertoire contributes to hybrid reproductive isolation. We found that ATCC 42981 has 7 MAT-like (MTL) loci, 3 of which encode α-idiomorph and 4 encode a-idiomorph. Two phylogenetically divergent MAT expression loci were identified on different chromosomes, accounting for a hybrid a/α genotype. Furthermore, extra a-idimorph-encoding loci (termed MTLa copies 1 to 3) were recognized, which shared the same MATa1 ORFs but diverged for MATa2 genes. Each MAT expression locus was linked to a HML silent cassette, while the corresponding HMR loci were located on another chromosome. Two putative parental sex chromosome pairs contributed to this unusual genomic architecture: one came from an as-yet-undescribed taxon, which has the NCYC 3042 strain as a unique representative, while the other did not match any MAT-HML and HMR organizations previously described in Z. rouxii species. This chimeric rearrangement produces two copies of the HO gene, which encode for putatively functional endonucleases essential for mating-type switching. Although both a and α coding sequences, which are required to obtain a functional cell-type a1-α2 regulator, were present in the allodiploid ATCC 42981 genome, the transcriptional circuit, which regulates entry into meiosis in response to meiosis-inducing salt stress, appeared to be turned off. Furthermore, haploid and α-specific genes, such as MATα1 and HO, were observed to be actively transcribed and up-regulated under hypersaline stress. Overall, these evidences demonstrate that ATCC 42981 is unable to repress haploid α-specific genes and

  8. Chimeric Sex-Determining Chromosomal Regions and Dysregulation of Cell-Type Identity in a Sterile Zygosaccharomyces Allodiploid Yeast

    PubMed Central

    Bizzarri, Melissa; Giudici, Paolo; Cassanelli, Stefano; Solieri, Lisa

    2016-01-01

    Allodiploidization is a fundamental yet evolutionarily poorly characterized event, which impacts genome evolution and heredity, controlling organismal development and polyploid cell-types. In this study, we investigated the sex determination system in the allodiploid and sterile ATCC 42981 yeast, a member of the Zygosaccharomyces rouxii species complex, and used it to study how a chimeric mating-type gene repertoire contributes to hybrid reproductive isolation. We found that ATCC 42981 has 7 MAT-like (MTL) loci, 3 of which encode α-idiomorph and 4 encode a-idiomorph. Two phylogenetically divergent MAT expression loci were identified on different chromosomes, accounting for a hybrid a/α genotype. Furthermore, extra a-idimorph-encoding loci (termed MTLa copies 1 to 3) were recognized, which shared the same MATa1 ORFs but diverged for MATa2 genes. Each MAT expression locus was linked to a HML silent cassette, while the corresponding HMR loci were located on another chromosome. Two putative parental sex chromosome pairs contributed to this unusual genomic architecture: one came from an as-yet-undescribed taxon, which has the NCYC 3042 strain as a unique representative, while the other did not match any MAT-HML and HMR organizations previously described in Z. rouxii species. This chimeric rearrangement produces two copies of the HO gene, which encode for putatively functional endonucleases essential for mating-type switching. Although both a and α coding sequences, which are required to obtain a functional cell-type a1-α2 regulator, were present in the allodiploid ATCC 42981 genome, the transcriptional circuit, which regulates entry into meiosis in response to meiosis-inducing salt stress, appeared to be turned off. Furthermore, haploid and α-specific genes, such as MATα1 and HO, were observed to be actively transcribed and up-regulated under hypersaline stress. Overall, these evidences demonstrate that ATCC 42981 is unable to repress haploid α-specific genes and

  9. Mating Type Gene Homologues and Putative Sex Pheromone-Sensing Pathway in Arbuscular Mycorrhizal Fungi, a Presumably Asexual Plant Root Symbiont

    PubMed Central

    Halary, Sébastien; Daubois, Laurence; Terrat, Yves; Ellenberger, Sabrina; Wöstemeyer, Johannes; Hijri, Mohamed

    2013-01-01

    The fungal kingdom displays a fascinating diversity of sex-determination systems. Recent advances in genomics provide insights into the molecular mechanisms of sex, mating type determination, and evolution of sexual reproduction in many fungal species in both ancient and modern phylogenetic lineages. All major fungal groups have evolved sexual differentiation and recombination pathways. However, sexuality is unknown in arbuscular mycorrhizal fungi (AMF) of the phylum Glomeromycota, an ecologically vital group of obligate plant root symbionts. AMF are commonly considered an ancient asexual lineage dating back to the Ordovician, approximately 460 M years ago. In this study, we used genomic and transcriptomic surveys of several AMF species to demonstrate the presence of conserved putative sex pheromone-sensing mitogen-activated protein (MAP) kinases, comparable to those described in Ascomycota and Basidiomycota. We also find genes for high mobility group (HMG) transcription factors, homologous to SexM and SexP genes in the Mucorales. The SexM genes show a remarkable sequence diversity among multiple copies in the genome, while only a single SexP sequence was detected in some isolates of Rhizophagus irregularis. In the Mucorales and Microsporidia, the sexM gene is flanked by genes for a triosephosphate transporter (TPT) and a RNA helicase, but we find no evidence for synteny in the vicinity of the Sex locus in AMF. Nonetheless, our results, together with previous observations on meiotic machinery, suggest that AMF could undergo a complete sexual reproduction cycle. PMID:24260466

  10. The Yeast Deletion Collection: A Decade of Functional Genomics

    PubMed Central

    Giaever, Guri; Nislow, Corey

    2014-01-01

    The yeast deletion collections comprise >21,000 mutant strains that carry precise start-to-stop deletions of ∼6000 open reading frames. This collection includes heterozygous and homozygous diploids, and haploids of both MATa and MATα mating types. The yeast deletion collection, or yeast knockout (YKO) set, represents the first and only complete, systematically constructed deletion collection available for any organism. Conceived during the Saccharomyces cerevisiae sequencing project, work on the project began in 1998 and was completed in 2002. The YKO strains have been used in numerous laboratories in >1000 genome-wide screens. This landmark genome project has inspired development of numerous genome-wide technologies in organisms from yeast to man. Notable spinoff technologies include synthetic genetic array and HIPHOP chemogenomics. In this retrospective, we briefly describe the yeast deletion project and some of its most noteworthy biological contributions and the impact that these collections have had on the yeast research community and on genomics in general. PMID:24939991

  11. The yeast deletion collection: a decade of functional genomics.

    PubMed

    Giaever, Guri; Nislow, Corey

    2014-06-01

    The yeast deletion collections comprise >21,000 mutant strains that carry precise start-to-stop deletions of ∼6000 open reading frames. This collection includes heterozygous and homozygous diploids, and haploids of both MAT A: and MATα mating types. The yeast deletion collection, or yeast knockout (YKO) set, represents the first and only complete, systematically constructed deletion collection available for any organism. Conceived during the Saccharomyces cerevisiae sequencing project, work on the project began in 1998 and was completed in 2002. The YKO strains have been used in numerous laboratories in >1000 genome-wide screens. This landmark genome project has inspired development of numerous genome-wide technologies in organisms from yeast to man. Notable spinoff technologies include synthetic genetic array and HIPHOP chemogenomics. In this retrospective, we briefly describe the yeast deletion project and some of its most noteworthy biological contributions and the impact that these collections have had on the yeast research community and on genomics in general. PMID:24939991

  12. In vitro Detection of Yeast-Like and Mycelial Colonies of Ustilago scitaminea in Tissue-Cultured Plantlets of Sugarcane Using Polymerase Chain Reaction

    NASA Astrophysics Data System (ADS)

    Moosawi-Jorf, S. Ali; Izadi, Mahin B.

    Plantlets of sugarcane cultivars NCO-310 (susceptible) and CP73-21 (resistant) were generated using in vitro apical meristem tissue culture method of leaf and culturing of the callous. Yeast-like and dikaryotic mycelial colonies were isolated and purified. The plantlets were inoculated with two types of yeast-like and dikaryotic mycelial colonies. Results of the PCR assay in plantlets inoculated with the two types of colonies indicated the detection of bE mating-type gene of sugarcane smut in all treated plantlets at all different times after inoculation. Whereas, the disease symptoms were seen in cuttings inoculated only with dikaryotic mycelia or mixed mating types of sporidia, 6 month after transplanting in pots.

  13. Multiple Sex Pheromones and Receptors of a Mushroom-producing Fungus Elicit Mating in Yeast

    PubMed Central

    Fowler, Thomas J.; DeSimone, Susan M.; Mitton, Michael F.; Kurjan, Janet; Raper, Carlene A.

    1999-01-01

    The mushroom-producing fungus Schizophyllum commune has thousands of mating types defined, in part, by numerous lipopeptide pheromones and their G protein-linked receptors. Compatible combinations of pheromones and receptors encoded by different mating types regulate a pathway of sexual development leading to mushroom formation and meiosis. A complex set of pheromone–receptor interactions maximizes the likelihood of outbreeding; for example, a single pheromone can activate more than one receptor and a single receptor can be activated by more than one pheromone. The current study demonstrates that the sex pheromones and receptors of Schizophyllum, when expressed in Saccharomyces cerevisiae, can substitute for endogenous pheromone and receptor and induce the yeast pheromone response pathway through the yeast G protein. Secretion of active Schizophyllum pheromone requires some, but not all, of the biosynthetic machinery used by the yeast lipopeptide pheromone a-factor. The specificity of interaction among pheromone–receptor pairs in Schizophyllum was reproduced in yeast, thus providing a powerful system for exploring molecular aspects of pheromone–receptor interactions for a class of seven-transmembrane-domain receptors common to a wide range of organisms. PMID:10436012

  14. Genomics and Transcriptomics Analyses of the Oil-Accumulating Basidiomycete Yeast Trichosporon oleaginosus: Insights into Substrate Utilization and Alternative Evolutionary Trajectories of Fungal Mating Systems

    PubMed Central

    Bracharz, Felix; Lorenzen, Jan; Kracht, Octavia N.; Chovatia, Mansi; Daum, Chris; Deshpande, Shweta; Lipzen, Anna; Nolan, Matt; Ohm, Robin A.; Grigoriev, Igor V.; Sun, Sheng; Heitman, Joseph

    2015-01-01

    ABSTRACT Microbial fermentation of agro-industrial waste holds great potential for reducing the environmental impact associated with the production of lipids for industrial purposes from plant biomass. However, the chemical complexity of many residues currently prevents efficient conversion into lipids, creating a high demand for strains with the ability to utilize all energy-rich components of agricultural residues. Here, we present results of genome and transcriptome analyses of Trichosporon oleaginosus. This oil-accumulating yeast is able to grow on a wide variety of substrates, including pentoses and N-acetylglucosamine, making it an interesting candidate for biotechnological applications. Transcriptomics shows specific changes in gene expression patterns under lipid-accumulating conditions. Furthermore, gene content and expression analyses indicate that T. oleaginosus is well-adapted for the utilization of chitin-rich biomass. We also focused on the T. oleaginosus mating type, because this species is a member of the Tremellomycetes, a group that has been intensively analyzed as a model for the evolution of sexual development, the best-studied member being Cryptococcus neoformans. The structure of the T. oleaginosus mating-type regions differs significantly from that of other Tremellomycetes and reveals a new evolutionary trajectory paradigm. Comparative analysis shows that recruitment of developmental genes to the ancestral tetrapolar mating-type loci occurred independently in the Trichosporon and Cryptococcus lineages, supporting the hypothesis of a trend toward larger mating-type regions in fungi. PMID:26199329

  15. Genetic architecture and evolution of the mating type locus in fusaria that cause soybean sudden death syndrome and bean root rot.

    PubMed

    Hughes, Teresa J; O'Donnell, Kerry; Sink, Stacy; Rooney, Alejandro P; Scandiani, María Mercedes; Luque, Alicia; Bhattacharyya, Madan K; Huang, Xiaoqiu

    2014-01-01

    Fusarium tucumaniae is the only known sexually reproducing species among the seven closely related fusaria that cause soybean sudden death syndrome (SDS) or bean root rot (BRR). In a previous study, laboratory mating of F. tucumaniae yielded recombinant ascospore progeny but required two mating-compatible strains, indicating that it is heterothallic. To assess the reproductive mode of the other SDS and BRR fusaria, and their potential for mating, whole-genome sequences of two SDS and one BRR pathogen were analyzed to characterize their mating type (MAT) loci. This bioinformatic approach identified a MAT1-1 idiomorph in F. virguliforme NRRL 22292 and MAT1-2 idiomorphs in F. tucumaniae NRRL 34546 and F. azukicola NRRL 54364. Alignments of the MAT loci were used to design PCR primers within the conserved regions of the flanking genes APN1 and SLA2, which enabled primer walking to obtain nearly complete sequences of the MAT region for six MAT1-1 and five MAT1-2 SDS/BRR fusaria. As expected, sequences of the highly divergent 4.7 kb MAT1-1 and 3.7 kb MAT1-2 idiomorphs were unalignable. However, sequences of the respective idiomorphs and those that flank MAT1-1 and MAT1-2 were highly conserved. In addition to three genes at MAT1-1 (MAT1-1-1, MAT1-1-2, MAT1-1-3) and two at MAT1-2 (MAT1-2-1, MAT1-2-3), the MAT loci of the SDS/BRR fusaria also include a putative gene predicted to encode for a 252 amino acid protein of unknown function. Alignments of the MAT1-1-3 and MAT1-2-1 sequences were used to design a multiplex PCR assay for the MAT loci. This assay was used to screen DNA from 439 SDS/BRR isolates, which revealed that each isolate possessed MAT1-1 or MAT1-2, consistent with heterothallism. Both idiomorphs were represented among isolates of F. azukicola, F. brasiliense, F. phaseoli and F. tucumaniae, whereas isolates of F. virguliforme and F. cuneirostrum were only MAT1-1 and F. crassistipitatum were only MAT1-2. Finally, nucleotide sequence data from the RPB1 and RPB2

  16. Counting Yeast.

    ERIC Educational Resources Information Center

    Bealer, Jonathan; Welton, Briana

    1998-01-01

    Describes changes to a traditional study of population in yeast colonies. Changes to the procedures include: (1) only one culture per student team; (2) cultures are inoculated only once; and (3) the same tube is sampled daily. (DDR)

  17. Energy-Based Pharmacophore and Three-Dimensional Quantitative Structure--Activity Relationship (3D-QSAR) Modeling Combined with Virtual Screening To Identify Novel Small-Molecule Inhibitors of Silent Mating-Type Information Regulation 2 Homologue 1 (SIRT1).

    PubMed

    Pulla, Venkat Koushik; Sriram, Dinavahi Saketh; Viswanadha, Srikant; Sriram, Dharmarajan; Yogeeswari, Perumal

    2016-01-25

    Silent mating-type information regulation 2 homologue 1 (SIRT1), being the homologous enzyme of silent information regulator-2 gene in yeast, has multifaceted functions. It deacetylates a wide range of histone and nonhistone proteins; hence, it has good therapeutic importance. SIRT1 was believed to be overexpressed in many cancers (prostate, colon) and inflammatory disorders (rheumatoid arthritis). Hence, designing inhibitors against SIRT1 could be considered valuable. Both structure-based and ligand-based drug design strategies were employed to design novel inhibitors utilizing high-throughput virtual screening of chemical databases. An energy-based pharmacophore was generated using the crystal structure of SIRT1 bound with a small molecule inhibitor and compared with a ligand-based pharmacophore model that showed four similar features. A three-dimensional quantitative structure-activity relationship (3D-QSAR) model was developed and validated to be employed in the virtual screening protocol. Among the designed compounds, Lead 17 emerged as a promising SIRT1 inhibitor with IC50 of 4.34 μM and, at nanomolar concentration (360 nM), attenuated the proliferation of prostate cancer cells (LnCAP). In addition, Lead 17 significantly reduced production of reactive oxygen species, thereby reducing pro inflammatory cytokines such as IL6 and TNF-α. Furthermore, the anti-inflammatory potential of the compound was ascertained using an animal paw inflammation model induced by carrageenan. Thus, the identified SIRT1 inhibitors could be considered as potent leads to treat both cancer and inflammation. PMID:26636371

  18. Yeast Droplets

    NASA Astrophysics Data System (ADS)

    Nguyen, Baochi; Upadhyaya, Arpita; van Oudenaarden, Alexander; Brenner, Michael

    2002-11-01

    It is well known that the Young's law and surface tension govern the shape of liquid droplets on solid surfaces. Here we address through experiments and theory the shape of growing aggregates of yeast on agar substrates, and assess whether these ideas still hold. Experiments are carried out on Baker's yeast, with different levels of expressions of an adhesive protein governing cell-cell and cell-substrate adhesion. Changing either the agar concentration or the expression of this protein modifies the local contact angle of a yeast droplet. When the colony is small, the shape is a spherical cap with the contact angle obeying Young's law. However, above a critical volume this structure is unstable, and the droplet becomes nonspherical. We present a theoretical model where this instability is caused by bulk elastic effects. The model predicts that the transition depends on both volume and contact angle, in a manner quantitatively consistent with our experiments.

  19. A MAT1–2 wild-type strain from Penicillium chrysogenum: functional mating-type locus characterization, genome sequencing and mating with an industrial penicillin-producing strain

    PubMed Central

    Böhm, Julia; Dahlmann, Tim A; Gümüşer, Hendrik; Kück, Ulrich

    2015-01-01

    In heterothallic ascomycetes, mating is controlled by two nonallelic idiomorphs that determine the ‘sex’ of the corresponding strains. We recently discovered mating-type loci and a sexual life cycle in the penicillin-producing fungus, Penicillium chrysogenum. All industrial penicillin production strains worldwide are derived from a MAT1-1 isolate. No MAT1-2 strain has been investigated in detail until now. Here, we provide the first functional analysis of a MAT1-2 locus from a wild-type strain. Similar to MAT1-1, the MAT1-2 locus has functions beyond sexual development. Unlike MAT1-1, the MAT1-2 locus affects germination and surface properties of conidiospores and controls light-dependent asexual sporulation. Mating of the MAT1-2 wild type with a MAT1-1 high penicillin producer generated sexual spores. We determined the genomic sequences of parental and progeny strains using next-generation sequencing and found evidence for genome-wide recombination. SNP calling showed that derived industrial strains had an uneven distribution of point mutations compared with the wild type. We found evidence for meiotic recombination in all chromosomes. Our results point to a strategy combining the use of mating-type genes, genetics, and next-generation sequencing to optimize conventional strain improvement methods. PMID:25521009

  20. A MAT1-2 wild-type strain from Penicillium chrysogenum: functional mating-type locus characterization, genome sequencing and mating with an industrial penicillin-producing strain.

    PubMed

    Böhm, Julia; Dahlmann, Tim A; Gümüşer, Hendrik; Kück, Ulrich

    2015-03-01

    In heterothallic ascomycetes, mating is controlled by two nonallelic idiomorphs that determine the 'sex' of the corresponding strains. We recently discovered mating-type loci and a sexual life cycle in the penicillin-producing fungus, Penicillium chrysogenum. All industrial penicillin production strains worldwide are derived from a MAT1-1 isolate. No MAT1-2 strain has been investigated in detail until now. Here, we provide the first functional analysis of a MAT1-2 locus from a wild-type strain. Similar to MAT1-1, the MAT1-2 locus has functions beyond sexual development. Unlike MAT1-1, the MAT1-2 locus affects germination and surface properties of conidiospores and controls light-dependent asexual sporulation. Mating of the MAT1-2 wild type with a MAT1-1 high penicillin producer generated sexual spores. We determined the genomic sequences of parental and progeny strains using next-generation sequencing and found evidence for genome-wide recombination. SNP calling showed that derived industrial strains had an uneven distribution of point mutations compared with the wild type. We found evidence for meiotic recombination in all chromosomes. Our results point to a strategy combining the use of mating-type genes, genetics, and next-generation sequencing to optimize conventional strain improvement methods. PMID:25521009

  1. Breeding of lager yeast with Saccharomyces cerevisiae improves stress resistance and fermentation performance.

    PubMed

    Garcia Sanchez, Rosa; Solodovnikova, Natalia; Wendland, Jürgen

    2012-08-01

    Lager beer brewing relies on strains collectively known as Saccharomyces carlsbergensis, which are hybrids between S. cerevisiae and S. eubayanus-like strains. Lager yeasts are particularly adapted to low-temperature fermentations. Selection of new yeast strains for improved traits or fermentation performance is laborious, due to the allotetraploid nature of lager yeasts. Initially, we have generated new F1 hybrids by classical genetics, using spore clones of lager yeast and S. cerevisiae and complementation of auxotrophies of the single strains upon mating. These hybrids were improved on several parameters, including growth at elevated temperature and resistance against high osmolarity or high ethanol concentrations. Due to the uncertainty of chromosomal make-up of lager yeast spore clones, we introduced molecular markers to analyse mating-type composition by PCR. Based on these results, new hybrids between a lager and an ale yeast strain were isolated by micromanipulation. These hybrids were not subject to genetic modification. We generated and verified 13 hybrid strains. All of these hybrid strains showed improved stress resistance as seen in the ale parent, including improved survival at the end of fermentation. Importantly, some of the strains showed improved fermentation rates using 18° Plato at 18-25°C. Uniparental mitochondrial DNA inheritance was observed mostly from the S. cerevisiae parent. PMID:22887121

  2. A Predictive Model for Yeast Cell Polarization in Pheromone Gradients

    PubMed Central

    Calvez, Vincent; Voituriez, Raphaël; Gonçalves-Sá, Joana; Guo, Chin-Lin; Jiang, Xingyu; Murray, Andrew; Meunier, Nicolas

    2016-01-01

    Budding yeast cells exist in two mating types, a and α, which use peptide pheromones to communicate with each other during mating. Mating depends on the ability of cells to polarize up pheromone gradients, but cells also respond to spatially uniform fields of pheromone by polarizing along a single axis. We used quantitative measurements of the response of a cells to α-factor to produce a predictive model of yeast polarization towards a pheromone gradient. We found that cells make a sharp transition between budding cycles and mating induced polarization and that they detect pheromone gradients accurately only over a narrow range of pheromone concentrations corresponding to this transition. We fit all the parameters of the mathematical model by using quantitative data on spontaneous polarization in uniform pheromone concentration. Once these parameters have been computed, and without any further fit, our model quantitatively predicts the yeast cell response to pheromone gradient providing an important step toward understanding how cells communicate with each other. PMID:27077831

  3. A Predictive Model for Yeast Cell Polarization in Pheromone Gradients.

    PubMed

    Muller, Nicolas; Piel, Matthieu; Calvez, Vincent; Voituriez, Raphaël; Gonçalves-Sá, Joana; Guo, Chin-Lin; Jiang, Xingyu; Murray, Andrew; Meunier, Nicolas

    2016-04-01

    Budding yeast cells exist in two mating types, a and α, which use peptide pheromones to communicate with each other during mating. Mating depends on the ability of cells to polarize up pheromone gradients, but cells also respond to spatially uniform fields of pheromone by polarizing along a single axis. We used quantitative measurements of the response of a cells to α-factor to produce a predictive model of yeast polarization towards a pheromone gradient. We found that cells make a sharp transition between budding cycles and mating induced polarization and that they detect pheromone gradients accurately only over a narrow range of pheromone concentrations corresponding to this transition. We fit all the parameters of the mathematical model by using quantitative data on spontaneous polarization in uniform pheromone concentration. Once these parameters have been computed, and without any further fit, our model quantitatively predicts the yeast cell response to pheromone gradient providing an important step toward understanding how cells communicate with each other. PMID:27077831

  4. Switch wear leveling

    SciTech Connect

    Wu, Hunter; Sealy, Kylee; Gilchrist, Aaron

    2015-09-01

    An apparatus for switch wear leveling includes a switching module that controls switching for two or more pairs of switches in a switching power converter. The switching module controls switches based on a duty cycle control technique and closes and opens each switch in a switching sequence. The pairs of switches connect to a positive and negative terminal of a DC voltage source. For a first switching sequence a first switch of a pair of switches has a higher switching power loss than a second switch of the pair of switches. The apparatus includes a switch rotation module that changes the switching sequence of the two or more pairs of switches from the first switching sequence to a second switching sequence. The second switch of a pair of switches has a higher switching power loss than the first switch of the pair of switches during the second switching sequence.

  5. Effect of fungicides on epiphytic yeasts associated with strawberry

    PubMed Central

    Debode, Jane; Van Hemelrijck, Wendy; Creemers, Piet; Maes, Martine

    2013-01-01

    We studied the effect of two commonly used fungicides on the epiphytic yeast community of strawberry. Greenhouse and field experiments were conducted applying Switch (cyprodinil plus fludioxonil) or Signum (boscalid plus pyraclostrobin) to strawberry plants. Yeasts on leaves and fruits were assessed on treated and untreated plants at several time points via plating and denaturing gradient gel electrophoresis (DGGE) analysis. The yeast counts on plates of the treated plants were similar to the control plants. Unripe fruits had 10 times larger yeast concentrations than ripe fruits or leaves. Some dominant yeast types were isolated and in vitro tests showed that they were at least 10 times less sensitive to Switch and Signum as compared with two important fungal strawberry pathogens Botrytis cinerea and Colletotrichum acutatum, which are the targets for the fungicide control. DGGE analysis showed that the applied fungicides had no effect on the composition of the yeast communities, while the growing system, strawberry tissue, and sampling time did affect the yeast communities. The yeast species most commonly identified were Cryptococcus, Rhodotorula, and Sporobolomyces. These results point toward the potential applicability of natural occurring yeast antagonists into an integrated disease control strategy for strawberry diseases.

  6. Biochemical Characterization of Kat1: a Domesticated hAT-Transposase that Induces DNA Hairpin Formation and MAT-Switching

    PubMed Central

    Chiruvella, Kishore K.; Rajaei, Naghmeh; Jonna, Venkateswara Rao; Hofer, Anders; Åström, Stefan U.

    2016-01-01

    Kluyveromyces lactis hAT-transposase 1 (Kat1) generates hairpin-capped DNA double strand breaks leading to MAT-switching (MATa to MATα). Using purified Kat1, we demonstrate the importance of terminal inverted repeats and subterminal repeats for its endonuclease activity. Kat1 promoted joining of the transposon end into a target DNA molecule in vitro, a biochemical feature that ties Kat1 to transposases. Gas-phase Electrophoretic Mobility Macromolecule analysis revealed that Kat1 can form hexamers when complexed with DNA. Kat1 point mutants were generated in conserved positions to explore structure-function relationships. Mutants of predicted catalytic residues abolished both DNA cleavage and strand-transfer. Interestingly, W576A predicted to be impaired for hairpin formation, was active for DNA cleavage and supported wild type levels of mating-type switching. In contrast, the conserved CXXH motif was critical for hairpin formation because Kat1 C402A/H405A completely blocked hairpinning and switching, but still generated nicks in the DNA. Mutations in the BED zinc-finger domain (C130A/C133A) resulted in an unspecific nuclease activity, presumably due to nonspecific DNA interaction. Kat1 mutants that were defective for cleavage in vitro were also defective for mating-type switching. Collectively, this study reveals Kat1 sharing extensive biochemical similarities with cut and paste transposons despite being domesticated and evolutionary diverged from active transposons. PMID:26902909

  7. Yeast cell differentiation: Lessons from pathogenic and non-pathogenic yeasts.

    PubMed

    Palková, Zdena; Váchová, Libuše

    2016-09-01

    Yeasts, historically considered to be single-cell organisms, are able to activate different differentiation processes. Individual yeast cells can change their life-styles by processes of phenotypic switching such as the switch from yeast-shaped cells to filamentous cells (pseudohyphae or true hyphae) and the transition among opaque, white and gray cell-types. Yeasts can also create organized multicellular structures such as colonies and biofilms, and the latter are often observed as contaminants on surfaces in industry and medical care and are formed during infections of the human body. Multicellular structures are formed mostly of stationary-phase or slow-growing cells that diversify into specific cell subpopulations that have unique metabolic properties and can fulfill specific tasks. In addition to the development of multiple protective mechanisms, processes of metabolic reprogramming that reflect a changed environment help differentiated individual cells and/or community cell constituents to survive harmful environmental attacks and/or to escape the host immune system. This review aims to provide an overview of differentiation processes so far identified in individual yeast cells as well as in multicellular communities of yeast pathogens of the Candida and Cryptococcus spp. and the Candida albicans close relative, Saccharomyces cerevisiae. Molecular mechanisms and extracellular signals potentially involved in differentiation processes are also briefly mentioned. PMID:27084693

  8. A role for DNA polymerase alpha in epigenetic control of transcriptional silencing in fission yeast.

    PubMed

    Nakayama Ji; Allshire, R C; Klar, A J; Grewal, S I

    2001-06-01

    In the fission yeast Schizosaccharomyces pombe, transcriptional silencing at the mating-type region, centromeres and telomeres is epigenetically controlled, and results from the assembly of higher order chromatin structures. Chromatin proteins associated with these silenced loci are believed to serve as molecular bookmarks that help promote inheritance of the silenced state during cell division. Specifically, a chromodomain protein Swi6 is believed to be an important determinant of the epigenetic imprint. Here, we show that a mutation in DNA polymerase alpha (pol(alpha)) affects Swi6 localization at the mating-type region and causes a 45-fold increase in spontaneous transition from the silenced epigenetic state to the expressed state. We also demonstrate that pol(alpha) mutant cells are defective in Swi6 localization at centromeres and telomeres. Genetic analysis suggests that Polalpha and Swi6 are part of the same silencing pathway. Interestingly, we found that Swi6 directly binds to Pol(alpha) in vitro. Moreover, silencing-defective mutant Pol(alpha) displays reduced binding to Swi6 protein. This work indicates involvement of a DNA replication protein, Pol(alpha), in heterochromatin assembly and inheritance of epigenetic chromatin structures. PMID:11387218

  9. Optical switches and switching methods

    DOEpatents

    Doty, Michael

    2008-03-04

    A device and method for collecting subject responses, particularly during magnetic imaging experiments and testing using a method such as functional MRI. The device comprises a non-metallic input device which is coupled via fiber optic cables to a computer or other data collection device. One or more optical switches transmit the subject's responses. The input device keeps the subject's fingers comfortably aligned with the switches by partially immobilizing the forearm, wrist, and/or hand of the subject. Also a robust nonmetallic switch, particularly for use with the input device and methods for optical switching.

  10. Two HAP2-GCS1 homologs responsible for gamete interactions in the cellular slime mold with multiple mating types: Implication for common mechanisms of sexual reproduction shared by plants and protozoa and for male-female differentiation.

    PubMed

    Okamoto, Marina; Yamada, Lixy; Fujisaki, Yukie; Bloomfield, Gareth; Yoshida, Kentaro; Kuwayama, Hidekazu; Sawada, Hitoshi; Mori, Toshiyuki; Urushihara, Hideko

    2016-07-01

    Fertilization is a central event in sexual reproduction, and understanding its molecular mechanisms has both basic and applicative biological importance. Recent studies have uncovered the molecules that mediate this process in a variety of organisms, making it intriguing to consider conservation and evolution of the mechanisms of sexual reproduction across phyla. The social amoeba Dictyostelium discoideum undergoes sexual maturation and forms gametes under dark and humid conditions. It exhibits three mating types, type-I, -II, and -III, for the heterothallic mating system. Based on proteome analyses of the gamete membranes, we detected expression of two homologs of the plant fertilization protein HAP2-GCS1. When their coding genes were disrupted in type-I and type-II strains, sexual potency was completely lost, whereas disruption in the type-III strain did not affect mating behavior, suggesting that the latter acts as female in complex organisms. Our results demonstrate the highly conserved function of HAP2-GCS1 in gamete interactions and suggest the presence of additional allo-recognition mechanisms in D. discoideum gametes. PMID:27189178

  11. Vaginal Yeast Infections (For Parents)

    MedlinePlus

    ... Can I Help a Friend Who Cuts? Vaginal Yeast Infections KidsHealth > For Teens > Vaginal Yeast Infections Print ... side effect of taking antibiotics. What Is a Yeast Infection? A yeast infection is a common infection ...

  12. ION SWITCH

    DOEpatents

    Cook, B.

    1959-02-10

    An ion switch capable of transferring large magnitudes of power is described. An ion switch constructed in accordance with the invention includes a pair of spaced control electrodes disposed in a highly evacuated region for connection in a conventional circuit to control the passing of power therethrough. A controllable ionic conduction path is provided directiy between the control electrodes by a source unit to close the ion switch. Conventional power supply means are provided to trigger the source unit and control the magnitude, durations and pulse repetition rate of the aforementioned ionic conduction path.

  13. Vaginal Yeast Infection

    MedlinePlus

    ... t diagnose this condition by a person’s medical history and physical examination. They usually diagnose yeast infection by examining vaginal secretions under a microscope for evidence of yeast. Treatment Various antifungal vaginal ...

  14. Vaginal yeast infection

    MedlinePlus

    Yeast infection - vagina; Vaginal candidiasis; Monilial vaginitis ... Most women have a vaginal yeast infection at some time. Candida albicans is a common type of fungus. It is often found in small amounts in the vagina , ...

  15. Vaginal yeast infection

    MedlinePlus

    Yeast infection - vagina; Vaginal candidiasis; Monilial vaginitis ... Most women have a vaginal yeast infection at some time. Candida albicans is a common type of fungus. It is often found in small amounts in the ...

  16. Neurospora crassa mat A-2 and mat A-3 proteins weakly interact in the yeast two-hybrid system and affect yeast growth

    PubMed Central

    2009-01-01

    Mating-type genes control the entry into the sexual cycle, mating identity and sexual development in fungi. The mat A-2 and mat A-3 genes, present in the mat A idiomorph of the filamentous fungus Neurospora crassa, are required for post-fertilization functions but are not essential for mating identity. Their putative roles as transcription factors are based on the similarity of mat A-2 with the Podospora anserina SMR1 gene and an HMG motif present in the mat A-3 gene. In this work the yeast two-hybrid system was used to identify transcriptional activity and protein-protein interaction of N. crassamat A-2 and mat A-3 genes. We observed that the mat A-3 protein alone is capable of weakly activating transcription of yeast reporter genes; it also binds with low specificity to the GAL1 promoter sequence, possibly due to its HMG domain. Our results also indicate that mat A-3 is capable to form homodimers, and interact with mat A-2. Interference on yeast growth was observed on some transformants suggesting a toxic action of the mat A-2 protein. Our data on pattern of interactions of mat proteins contributes towards understanding the control of vegetative and sexual cycles in filamentous fungi. PMID:21637691

  17. Acceleration switch

    DOEpatents

    Abbin, J.P. Jr.; Devaney, H.F.; Hake, L.W.

    1979-08-29

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  18. Acceleration switch

    DOEpatents

    Abbin, Jr., Joseph P.; Devaney, Howard F.; Hake, Lewis W.

    1982-08-17

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  19. Evidence for maintenance of sex determinants but not of sexual stages in red yeasts, a group of early diverged basidiomycetes

    PubMed Central

    2011-01-01

    Background The red yeasts are an early diverged group of basidiomycetes comprising sexual and asexual species. Sexuality is based on two compatible mating types and sexual identity is determined by MAT loci that encode homeodomain transcription factors, peptide pheromones and their receptors. The objective of the present study was to investigate the presence and integrity of MAT genes throughout the phylogenetic diversity of red yeasts belonging to the order Sporidiobolales. Results We surveyed 18 sexual heterothallic and self-fertile species and 16 asexual species. Functional pheromone receptor homologues (STE3.A1 and STE3.A2) were found in multiple isolates of most of the sexual and asexual species. For each of the two mating types, sequence comparisons with whole-genome data indicated that synteny tended to be conserved along the pheromone receptor region. For the homeodomain transcription factor, likelihood methods suggested that diversifying selection acting on the self/non-self recognition region promotes diversity in sexual species, while rapid evolution seems to be due to relaxed selection in asexual strains. Conclusions The majority of both sexual and asexual species of red yeasts have functional pheromone receptors and homeodomain homologues. This and the frequent existence of asexual strains within sexual species, makes the separation between sexual and asexual species imprecise. Events of loss of sexuality seem to be recent and frequent, but not uniformly distributed within the Sporidiobolales. Loss of sex could promote speciation by fostering the emergence of asexual lineages from an ancestral sexual stock, but does not seem to contribute to the generation of exclusively asexual lineages that persist for a long time. PMID:21880139

  20. A role for DNA polymerase α in epigenetic control of transcriptional silencing in fission yeast

    PubMed Central

    Nakayama, Jun-ichi; Allshire, Robin C.; Klar, Amar J.S.; Grewal, Shiv I.S.

    2001-01-01

    In the fission yeast Schizosaccharomyces pombe, transcriptional silencing at the mating-type region, centromeres and telomeres is epigenetically controlled, and results from the assembly of higher order chromatin structures. Chromatin proteins associated with these silenced loci are believed to serve as molecular bookmarks that help promote inheritance of the silenced state during cell division. Specifically, a chromodomain protein Swi6 is believed to be an important determinant of the epigenetic imprint. Here, we show that a mutation in DNA polymerase α (polα) affects Swi6 localization at the mating-type region and causes a 45-fold increase in spontaneous transition from the silenced epigenetic state to the expressed state. We also demonstrate that polα mutant cells are defective in Swi6 localization at centromeres and telomeres. Genetic analysis suggests that Polα and Swi6 are part of the same silencing pathway. Interestingly, we found that Swi6 directly binds to Polα in vitro. Moreover, silencing-defective mutant Polα displays reduced binding to Swi6 protein. This work indicates involvement of a DNA replication protein, Polα, in heterochromatin assembly and inheritance of epigenetic chromatin structures. PMID:11387218

  1. Dissection of quantitative traits by bulk segregant mapping in a protoploid yeast species.

    PubMed

    Sigwalt, Anastasie; Caradec, Claudia; Brion, Christian; Hou, Jing; de Montigny, Jacky; Jung, Paul; Fischer, Gilles; Llorente, Bertrand; Friedrich, Anne; Schacherer, Joseph

    2016-08-01

    Since more than a decade ago, Saccharomyces cerevisiae has been used as a model to dissect complex traits, revealing the genetic basis of a large number of traits in fine detail. However, to have a more global view of the genetic architecture of traits across species, the examination of the molecular basis of phenotypes within non-conventional species would undoubtedly be valuable. In this respect, the Saccharomycotina yeasts represent ideal and potential non-model organisms. Here we sought to assess the feasibility of genetic mapping by bulk segregant analysis in the protoploid Lachancea kluyveri (formerly S. kluyveri) yeast species, a distantly related species to S. cerevisiae For this purpose, we designed a fluorescent mating-type marker, compatible with any mating-competent strains representative of this species, to rapidly create a large population of haploid segregants (>10(5) cells). Quantitative trait loci can be mapped by selecting and sequencing an enriched pool of progeny with extreme phenotypic values. As a test bed, we applied this strategy and mapped the causal loci underlying halotolerance phenotypes in L. kluyveri Overall, this study demonstrates that bulk segregant mapping is a powerful way for investigating the genetic basis of natural variations in non-model yeast organisms and more precisely in L. kluyveri. PMID:27371856

  2. Optical switch

    DOEpatents

    Reedy, Robert P.

    1987-01-01

    An optical switching device (10) is provided whereby light from a first glass fiber (16) or a second glass fiber (14) may be selectively transmitted into a third glass fiber (18). Each glass fiber is provided with a focusing and collimating lens system (26, 28, 30). In one mode of operation, light from the first glass fiber (16) is reflected by a planar mirror (36) into the third glass fiber (18). In another mode of operation, light from the second glass fiber (14) passes directly into the third glass fiber (18). The planar mirror (36) is attached to a rotatable table (32) which is rotated to provide the optical switching.

  3. Ssn6 Defines a New Level of Regulation of White-Opaque Switching in Candida albicans and Is Required For the Stochasticity of the Switch

    PubMed Central

    Lohse, Matthew B.; Nobile, Clarissa J.; Noiman, Liron; Laksana, Clement N.

    2016-01-01

    ABSTRACT The human commensal and opportunistic pathogen Candida albicans can switch between two distinct, heritable cell types, named “white” and “opaque,” which differ in morphology, mating abilities, and metabolic preferences and in their interactions with the host immune system. Previous studies revealed a highly interconnected group of transcriptional regulators that control switching between the two cell types. Here, we identify Ssn6, the C. albicans functional homolog of the Saccharomyces cerevisiae transcriptional corepressor Cyc8, as a new regulator of white-opaque switching. In a or α mating type strains, deletion of SSN6 results in mass switching from the white to the opaque cell type. Transcriptional profiling of ssn6 deletion mutant strains reveals that Ssn6 represses part of the opaque cell transcriptional program in white cells and the majority of the white cell transcriptional program in opaque cells. Genome-wide chromatin immunoprecipitation experiments demonstrate that Ssn6 is tightly integrated into the opaque cell regulatory circuit and that the positions to which it is bound across the genome strongly overlap those bound by Wor1 and Wor2, previously identified regulators of white-opaque switching. This work reveals the next layer in the white-opaque transcriptional circuitry by integrating a transcriptional regulator that does not bind DNA directly but instead associates with specific combinations of DNA-bound transcriptional regulators. PMID:26814177

  4. Cohabitation of insulators and silencing elements in yeast subtelomeric regions.

    PubMed Central

    Fourel, G; Revardel, E; Koering, C E; Gilson, E

    1999-01-01

    In budding yeast, the telomeric DNA is flanked by a combination of two subtelomeric repetitive sequences, the X and Y' elements. We have investigated the influence of these sequences on telomeric silencing. The telomere-proximal portion of either X or Y' dampened silencing when located between the telomere and the reporter gene. These elements were named STARs, for subtelomeric anti-silencing regions. STARs can also counteract silencer-driven repression at the mating-type HML locus. When two STARs bracket a reporter gene, its expression is no longer influenced by surrounding silencing elements, although these are still active on a second reporter gene. In addition, an intervening STAR uncouples the silencing of neighboring genes. STARs thus display the hallmarks of insulators. Protection from silencing is recapitulated by multimerized oligonucleotides representing Tbf1p- and Reb1p-binding sites, as found in STARs. In contrast, sequences located more centromere proximal in X and Y' elements reinforce silencing. They can promote silencing downstream of an insulated expressed domain. Overall, our results suggest that the silencing emanating from telomeres can be propagated in a discontinuous manner via a series of subtelomeric relay elements. PMID:10228166

  5. Switching Transistor

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Westinghouse Electric Corporation's D60T transistors are used primarily as switching devices for controlling high power in electrical circuits. It enables reduction in the number and size of circuit components and promotes more efficient use of energy. Wide range of application from a popcorn popper to a radio frequency generator for solar cell production.

  6. A Large-Scale Functional Analysis of Putative Target Genes of Mating-Type Loci Provides Insight into the Regulation of Sexual Development of the Cereal Pathogen Fusarium graminearum

    PubMed Central

    Kim, Hee-Kyoung; Jo, Seong-Mi; Kim, Gi-Yong; Kim, Da-Woon; Kim, Yeon-Ki; Yun, Sung-Hwan

    2015-01-01

    Fusarium graminearum, the causal agent of Fusarium head blight in cereal crops, produces sexual progeny (ascospore) as an important overwintering and dissemination strategy for completing the disease cycle. This homothallic ascomycetous species does not require a partner for sexual mating; instead, it carries two opposite mating-type (MAT) loci in a single nucleus to control sexual development. To gain a comprehensive understanding of the regulation of sexual development in F. graminearum, we used in-depth and high-throughput analyses to examine the target genes controlled transcriptionally by two-linked MAT loci (MAT1-1, MAT1-2). We hybridized a genome-wide microarray with total RNAs from F. graminearum mutants that lacked each MAT locus individually or together, and overexpressed MAT1-2-1, as well as their wild-type progenitor, at an early stage of sexual development. A comparison of the gene expression levels revealed a total of 1,245 differentially expressed genes (DEGs) among all of the mutants examined. Among these, genes involved in metabolism, cell wall organization, cellular response to stimuli, cell adhesion, fertilization, development, chromatin silencing, and signal transduction, were significantly enriched. Protein binding microarray analysis revealed the presence of putative core DNA binding sequences (ATTAAT or ATTGTT) for the HMG (high mobility group)-box motif in the MAT1-2-1 protein. Targeted deletion of 106 DEGs revealed 25 genes that were specifically required for sexual development, most of which were regulated transcriptionally by both the MAT1-1 and MAT1-2 loci. Taken together with the expression patterns of key target genes, we propose a regulatory pathway for MAT-mediated sexual development, in which both MAT loci may be activated by several environmental cues via chromatin remodeling and/or signaling pathways, and then control the expression of at least 1,245 target genes during sexual development via regulatory cascades and/or networks

  7. Pexophagy in yeasts.

    PubMed

    Oku, Masahide; Sakai, Yasuyoshi

    2016-05-01

    Pexophagy, selective degradation of peroxisomes via autophagy, is the main system for reducing organelle abundance. Elucidation of the molecular machinery of pexophagy has been pioneered in studies of the budding yeast Saccharomyces cerevisiae and the methylotrophic yeasts Pichia pastoris and Hansenula polymorpha. Recent analyses using these yeasts have elucidated the molecular machineries of pexophagy, especially in terms of the interactions and modifications of the so-called adaptor proteins required for guiding autophagic membrane biogenesis on the organelle surface. Based on the recent findings, functional relevance of pexophagy and another autophagic pathway, mitophagy (selective autophagy of mitochondria), is discussed. We also discuss the physiological importance of pexophagy in these yeast systems. PMID:26409485

  8. Swi1Timeless Prevents Repeat Instability at Fission Yeast Telomeres.

    PubMed

    Gadaleta, Mariana C; Das, Mukund M; Tanizawa, Hideki; Chang, Ya-Ting; Noma, Ken-ichi; Nakamura, Toru M; Noguchi, Eishi

    2016-03-01

    Genomic instability associated with DNA replication stress is linked to cancer and genetic pathologies in humans. If not properly regulated, replication stress, such as fork stalling and collapse, can be induced at natural replication impediments present throughout the genome. The fork protection complex (FPC) is thought to play a critical role in stabilizing stalled replication forks at several known replication barriers including eukaryotic rDNA genes and the fission yeast mating-type locus. However, little is known about the role of the FPC at other natural impediments including telomeres. Telomeres are considered to be difficult to replicate due to the presence of repetitive GT-rich sequences and telomere-binding proteins. However, the regulatory mechanism that ensures telomere replication is not fully understood. Here, we report the role of the fission yeast Swi1(Timeless), a subunit of the FPC, in telomere replication. Loss of Swi1 causes telomere shortening in a telomerase-independent manner. Our epistasis analyses suggest that heterochromatin and telomere-binding proteins are not major impediments for telomere replication in the absence of Swi1. Instead, repetitive DNA sequences impair telomere integrity in swi1Δ mutant cells, leading to the loss of repeat DNA. In the absence of Swi1, telomere shortening is accompanied with an increased recruitment of Rad52 recombinase and more frequent amplification of telomere/subtelomeres, reminiscent of tumor cells that utilize the alternative lengthening of telomeres pathway (ALT) to maintain telomeres. These results suggest that Swi1 ensures telomere replication by suppressing recombination and repeat instability at telomeres. Our studies may also be relevant in understanding the potential role of Swi1(Timeless) in regulation of telomere stability in cancer cells. PMID:26990647

  9. Swi1Timeless Prevents Repeat Instability at Fission Yeast Telomeres

    PubMed Central

    Gadaleta, Mariana C.; Das, Mukund M.; Tanizawa, Hideki; Chang, Ya-Ting; Noma, Ken-ichi; Nakamura, Toru M.; Noguchi, Eishi

    2016-01-01

    Genomic instability associated with DNA replication stress is linked to cancer and genetic pathologies in humans. If not properly regulated, replication stress, such as fork stalling and collapse, can be induced at natural replication impediments present throughout the genome. The fork protection complex (FPC) is thought to play a critical role in stabilizing stalled replication forks at several known replication barriers including eukaryotic rDNA genes and the fission yeast mating-type locus. However, little is known about the role of the FPC at other natural impediments including telomeres. Telomeres are considered to be difficult to replicate due to the presence of repetitive GT-rich sequences and telomere-binding proteins. However, the regulatory mechanism that ensures telomere replication is not fully understood. Here, we report the role of the fission yeast Swi1Timeless, a subunit of the FPC, in telomere replication. Loss of Swi1 causes telomere shortening in a telomerase-independent manner. Our epistasis analyses suggest that heterochromatin and telomere-binding proteins are not major impediments for telomere replication in the absence of Swi1. Instead, repetitive DNA sequences impair telomere integrity in swi1Δ mutant cells, leading to the loss of repeat DNA. In the absence of Swi1, telomere shortening is accompanied with an increased recruitment of Rad52 recombinase and more frequent amplification of telomere/subtelomeres, reminiscent of tumor cells that utilize the alternative lengthening of telomeres pathway (ALT) to maintain telomeres. These results suggest that Swi1 ensures telomere replication by suppressing recombination and repeat instability at telomeres. Our studies may also be relevant in understanding the potential role of Swi1Timeless in regulation of telomere stability in cancer cells. PMID:26990647

  10. N-Acetylglucosamine Induces White to Opaque Switching, a Mating Prerequisite in Candida albicans

    PubMed Central

    Huang, Guanghua; Yi, Song; Sahni, Nidhi; Daniels, Karla J.; Srikantha, Thyagarajan; Soll, David R.

    2010-01-01

    To mate, the fungal pathogen Candida albicans must undergo homozygosis at the mating-type locus and then switch from the white to opaque phenotype. Paradoxically, opaque cells were found to be unstable at physiological temperature, suggesting that mating had little chance of occurring in the host, the main niche of C. albicans. Recently, however, it was demonstrated that high levels of CO2, equivalent to those found in the host gastrointestinal tract and select tissues, induced the white to opaque switch at physiological temperature, providing a possible resolution to the paradox. Here, we demonstrate that a second signal, N-acetylglucosamine (GlcNAc), a monosaccharide produced primarily by gastrointestinal tract bacteria, also serves as a potent inducer of white to opaque switching and functions primarily through the Ras1/cAMP pathway and phosphorylated Wor1, the gene product of the master switch locus. Our results therefore suggest that signals produced by bacterial co-members of the gastrointestinal tract microbiota regulate switching and therefore mating of C. albicans. PMID:20300604

  11. Population genetics of the wild yeast Saccharomyces paradoxus.

    PubMed Central

    Johnson, Louise J; Koufopanou, Vassiliki; Goddard, Matthew R; Hetherington, Richard; Schäfer, Stefanie M; Burt, Austin

    2004-01-01

    Saccharomyces paradoxus is the closest known relative of the well-known S. cerevisiae and an attractive model organism for population genetic and genomic studies. Here we characterize a set of 28 wild isolates from a 10-km(2) sampling area in southern England. All 28 isolates are homothallic (capable of mating-type switching) and wild type with respect to nutrient requirements. Nine wild isolates and two lab strains of S. paradoxus were surveyed for sequence variation at six loci totaling 7 kb, and all 28 wild isolates were then genotyped at seven polymorphic loci. These data were used to calculate nucleotide diversity and number of segregating sites in S. paradoxus and to investigate geographic differentiation, population structure, and linkage disequilibrium. Synonymous site diversity is approximately 0.3%. Extensive incompatibilities between gene genealogies indicate frequent recombination between unlinked loci, but there is no evidence of recombination within genes. Some localized clonal growth is apparent. The frequency of outcrossing relative to inbreeding is estimated at 1.1% on the basis of heterozygosity. Thus, all three modes of reproduction known in the lab (clonal replication, inbreeding, and outcrossing) have been important in molding genetic variation in this species. PMID:15020405

  12. Nanoelectromechanical contact switches

    NASA Astrophysics Data System (ADS)

    Loh, Owen Y.; Espinosa, Horacio D.

    2012-05-01

    Nanoelectromechanical (NEM) switches are similar to conventional semiconductor switches in that they can be used as relays, transistors, logic devices and sensors. However, the operating principles of NEM switches and semiconductor switches are fundamentally different. These differences give NEM switches an advantage over semiconductor switches in some applications -- for example, NEM switches perform much better in extreme environments -- but semiconductor switches benefit from a much superior manufacturing infrastructure. Here we review the potential of NEM-switch technologies to complement or selectively replace conventional complementary metal-oxide semiconductor technology, and identify the challenges involved in the large-scale manufacture of a representative set of NEM-based devices.

  13. Molecular and Genetic Analysis of the Toxic Effect of Rap1 Overexpression in Yeast

    PubMed Central

    Freeman, K.; Gwadz, M.; Shore, D.

    1995-01-01

    Rap1p is a context-dependent regulatory protein in yeast that functions as a transcriptional activator of many essential genes, including those encoding ribosomal proteins and glycolytic enzymes. Rap1p also participates in transcriptional silencing at HM mating-type loci and telomeres. Overexpression of RAP1 strongly inhibits cell growth, perhaps by interfering with essential transcriptional activation functions within the cell. Here we report a molecular and genetic analysis of the toxic effect of RAP1 overexpression. We show that toxicity does not require the previously defined Rap1p activation and silencing domains, but instead is dependent upon the DNA-binding domain and an adjacent region of unknown function. Point mutations were identified in the DNA-binding domain that relieve the toxic effect of overexpression. Two of these mutations can complement a RAP1 deletion yet cause growth defects and altered DNA-binding properties in vitro. However, a small deletion of the adjacent (down-stream) region that abolishes overexpression toxicity has, by itself, no apparent effect on growth or DNA binding. SKO1/ACR1, which encodes a CREB-like repressor protein in yeast, was isolated as a high copy suppressor of the toxicity caused by RAP1 overexpression. Models related to the regulation of Rap1p activity are discussed. PMID:8601471

  14. Cdc42 explores the cell periphery for mate selection in fission yeast.

    PubMed

    Bendezú, Felipe O; Martin, Sophie G

    2013-01-01

    How cells polarize in response to external cues is a fundamental biological problem. For mating, yeast cells orient growth toward the source of a pheromone gradient produced by cells of the opposite mating type. Polarized growth depends on the small GTPase Cdc42, a central eukaryotic polarity regulator that controls signaling, cytoskeleton polarization, and vesicle trafficking. However, the mechanisms of polarity establishment and mate selection in complex cellular environments are poorly understood. Here we show that, in fission yeast, low-level pheromone signaling promotes a novel polarization state, where active Cdc42, its GEF Scd1, and scaffold Scd2 form colocalizing dynamic zones that sample the periphery of the cell. Two direct Cdc42 effectors--actin cables marked by myosin V Myo52 and the exocyst complex labeled by Sec6 and Sec8--also dynamically colocalize with active Cdc42. However, these cells do not grow due to a block in the exocytosis of cell wall synthases Bgs1 and Bgs4. High-level pheromone stabilizes active Cdc42 zones and promotes cell wall synthase exocytosis and polarized growth. However, in the absence of prior low-level pheromone signaling, exploration fails, and cells polarize growth at cell poles by default. Consequently, these cells show altered partner choice, mating preferentially with sister rather than nonsister cells. Thus, Cdc42 exploration serves to orient growth for partner selection. This process may also promote genetic diversification. PMID:23200991

  15. Cyberlindnera xylosilytica sp. nov., a xylitol-producing yeast species isolated from lignocellulosic materials.

    PubMed

    Cadete, Raquel M; Cheab, Monaliza A M; Santos, Renata O; Safar, Silvana V B; Zilli, Jerri E; Vital, Marcos J S; Basso, Luiz C; Lee, Ching-Fu; Kurtzman, Cletus P; Lachance, Marc-André; Rosa, Carlos A

    2015-09-01

    Independent surveys of yeasts associated with lignocellulosic-related materials led to the discovery of a novel yeast species belonging to the Cyberlindnera clade (Saccharomycotina, Ascomycota). Analysis of the sequences of the internal transcribed spacer (ITS) region and the D1/D2 domains of the large subunit rRNA gene showed that this species is related to C. japonica, C. maesa and C. easanensis. Six isolates were obtained from different sources, including rotting wood, tree bark and sugar cane filter cake in Brazil, frass from white oak in the USA and decayed leaf in Taiwan. A novel species is suggested to accommodate these isolates, for which the name C. xylosilytica sp. nov. is proposed. The type strain of C. xylosilytica sp. nov. is NRRL YB-2097(T) ( = CBS 13984(T) = UFMG-CM-Y347(T)) and the allotype is UFMG-CM-Y409 ( = CBS 14083). The novel species is heterothallic and complementary mating types are represented by the type and allotype strains. The MycoBank number is MB 811428. PMID:26025941

  16. THYRATRON SWITCH

    DOEpatents

    Creveling, R.; Bourgeois, N.A. Jr.

    1959-04-21

    An arrangement for utilizing a thyratron as a noise free switch is described. It has been discovered that the voltage between plate and cathode of a thyratron will oscillate, producing voltage spikes, if the tube carries only a fraction of its maximum rated current. These voltage spikes can produce detrimental effects where the thyratron is used in critical timing circuits. To alleviate this problem the disclosed circuit provides a charged capacitor and a resistor in parallel with the tube and of such value that the maximum current will flow from the capacitor through the thyratron when it is triggered. During this time the signal current is conducted through the tube, before the thyratron voltage starts to oscillate, and the signal current output is free of noise spikes.

  17. Nitrile Metabolizing Yeasts

    NASA Astrophysics Data System (ADS)

    Bhalla, Tek Chand; Sharma, Monica; Sharma, Nitya Nand

    Nitriles and amides are widely distributed in the biotic and abiotic components of our ecosystem. Nitrile form an important group of organic compounds which find their applications in the synthesis of a large number of compounds used as/in pharmaceutical, cosmetics, plastics, dyes, etc>. Nitriles are mainly hydro-lyzed to corresponding amide/acid in organic chemistry. Industrial and agricultural activities have also lead to release of nitriles and amides into the environment and some of them pose threat to human health. Biocatalysis and biotransformations are increasingly replacing chemical routes of synthesis in organic chemistry as a part of ‘green chemistry’. Nitrile metabolizing organisms or enzymes thus has assumed greater significance in all these years to convert nitriles to amides/ acids. The nitrile metabolizing enzymes are widely present in bacteria, fungi and yeasts. Yeasts metabolize nitriles through nitrilase and/or nitrile hydratase and amidase enzymes. Only few yeasts have been reported to possess aldoxime dehydratase. More than sixty nitrile metabolizing yeast strains have been hither to isolated from cyanide treatment bioreactor, fermented foods and soil. Most of the yeasts contain nitrile hydratase-amidase system for metabolizing nitriles. Transformations of nitriles to amides/acids have been carried out with free and immobilized yeast cells. The nitrilases of Torulopsis candida>and Exophiala oligosperma>R1 are enantioselec-tive and regiospecific respectively. Geotrichum>sp. JR1 grows in the presence of 2M acetonitrile and may have potential for application in bioremediation of nitrile contaminated soil/water. The nitrilase of E. oligosperma>R1 being active at low pH (3-6) has shown promise for the hydroxy acids. Immobilized yeast cells hydrolyze some additional nitriles in comparison to free cells. It is expected that more focus in future will be on purification, characterization, cloning, expression and immobilization of nitrile metabolizing

  18. Forces in yeast flocculation

    PubMed Central

    El-Kirat-Chatel, Sofiane; Beaussart, Audrey; Vincent, Stéphane P.; Flos, Marta Abellán; Hols, Pascal; Lipke, Peter N.; Dufrêne, Yves F.

    2014-01-01

    In the baker's yeast Saccharomyces cerevisiae, cell-cell adhesion (“flocculation”) is conferred by a family of lectin-like proteins known as the flocculin (Flo) proteins. Knowledge of the adhesive and mechanical properties of flocculins is important for understanding the mechanisms of yeast adhesion, and may help controlling yeast behaviour in biotechnology. We use single-molecule and single-cell atomic force microscopy (AFM) to explore the nanoscale forces engaged in yeast flocculation, focusing on the role of Flo1 as a prototype of flocculins. Using AFM tips labelled with mannose, we detect single flocculins on Flo1-expressing cells, showing they are widely exposed on the cell surface. When subjected to force, individual Flo1 proteins display two distinct force responses, i.e. weak lectin binding forces and strong unfolding forces reflecting the force-induced extension of hydrophobic tandem repeats. We demonstrate that cell-cell adhesion bonds also involve multiple weak lectin interactions together with strong unfolding forces, both associated with Flo1 molecules. Single-molecule and single-cell data correlate with microscale cell adhesion behaviour, suggesting strongly that Flo1 mechanics is critical for yeast flocculation. These results favour a model in which not only weak lectin-sugar interactions are involved in yeast flocculation but also strong hydrophobic interactions resulting from protein unfolding. PMID:25515338

  19. Forces in yeast flocculation

    NASA Astrophysics Data System (ADS)

    El-Kirat-Chatel, Sofiane; Beaussart, Audrey; Vincent, Stéphane P.; Abellán Flos, Marta; Hols, Pascal; Lipke, Peter N.; Dufrêne, Yves F.

    2015-01-01

    In the baker's yeast Saccharomyces cerevisiae, cell-cell adhesion (``flocculation'') is conferred by a family of lectin-like proteins known as the flocculin (Flo) proteins. Knowledge of the adhesive and mechanical properties of flocculins is important for understanding the mechanisms of yeast adhesion, and may help controlling yeast behaviour in biotechnology. We use single-molecule and single-cell atomic force microscopy (AFM) to explore the nanoscale forces engaged in yeast flocculation, focusing on the role of Flo1 as a prototype of flocculins. Using AFM tips labelled with mannose, we detect single flocculins on Flo1-expressing cells, showing they are widely exposed on the cell surface. When subjected to force, individual Flo1 proteins display two distinct force responses, i.e. weak lectin binding forces and strong unfolding forces reflecting the force-induced extension of hydrophobic tandem repeats. We demonstrate that cell-cell adhesion bonds also involve multiple weak lectin interactions together with strong unfolding forces, both associated with Flo1 molecules. Single-molecule and single-cell data correlate with microscale cell adhesion behaviour, suggesting strongly that Flo1 mechanics is critical for yeast flocculation. These results favour a model in which not only weak lectin-sugar interactions are involved in yeast flocculation but also strong hydrophobic interactions resulting from protein unfolding.

  20. Switch Transcripts in Immunoglobulin Class Switching

    NASA Astrophysics Data System (ADS)

    Lorenz, Matthias; Jung, Steffen; Radbruch, Andreas

    1995-03-01

    B cells can exchange gene segments for the constant region of the immunoglobulin heavy chain, altering the class and effector function of the antibodies that they produce. Class switching is directed to distinct classes by cytokines, which induce transcription of the targeted DNA sequences. These transcripts are processed, resulting in spliced "switch" transcripts. Switch recombination can be directed to immunoglobulin G1 (IgG1) by the heterologous human metallothionein II_A promoter in mutant mice. Induction of the structurally conserved, spliced switch transcripts is sufficient to target switch recombination to IgG1, whereas transcription alone is not.

  1. Mapping Yeast Transcriptional Networks

    PubMed Central

    Hughes, Timothy R.; de Boer, Carl G.

    2013-01-01

    The term “transcriptional network” refers to the mechanism(s) that underlies coordinated expression of genes, typically involving transcription factors (TFs) binding to the promoters of multiple genes, and individual genes controlled by multiple TFs. A multitude of studies in the last two decades have aimed to map and characterize transcriptional networks in the yeast Saccharomyces cerevisiae. We review the methodologies and accomplishments of these studies, as well as challenges we now face. For most yeast TFs, data have been collected on their sequence preferences, in vivo promoter occupancy, and gene expression profiles in deletion mutants. These systematic studies have led to the identification of new regulators of numerous cellular functions and shed light on the overall organization of yeast gene regulation. However, many yeast TFs appear to be inactive under standard laboratory growth conditions, and many of the available data were collected using techniques that have since been improved. Perhaps as a consequence, comprehensive and accurate mapping among TF sequence preferences, promoter binding, and gene expression remains an open challenge. We propose that the time is ripe for renewed systematic efforts toward a complete mapping of yeast transcriptional regulatory mechanisms. PMID:24018767

  2. Yeasts in spa establishments.

    PubMed

    Svorcová, L

    1982-05-01

    It was investigated occurrence of yeasts on bathsurfaces, in sauna rooms, in swimming and therapeutic pool water. The number of yeasts decreased depending on patients age, if the rooms were furnished with bath. The lowest contamination was found after bath of 40-60 years-old women. In the saunas were yeasts not found on the upper benches with temperature above 55 degrees C. Much higher counts on lower benches and wood mats with temperature 35-40 degrees C, on basin walls and bottom-up to 10(4)-10(6)/100 cm2. It was isolated 172 yeast strains. The occurrence of some selected strains is given in Table 7, with the toxic effect of disinfectants. The most strains were resistant to Peracetic acid and Chloramin B. Since most of the isolated and determinated strains were found in contaminated environment or during various diseases, the yeasts of the genus Cryptococcus, Candida, Rhodotorula, Torulopsis and Metschnikowia should not occur in bath establishment, and should be classified among indicators of contamination of environment including water. PMID:7124167

  3. Oxygen requirements of yeasts.

    PubMed Central

    Visser, W; Scheffers, W A; Batenburg-van der Vegte, W H; van Dijken, J P

    1990-01-01

    Type species of 75 yeast genera were examined for their ability to grow anaerobically in complex and mineral media. To define anaerobic conditions, we added a redox indicator, resazurin, to the media to determine low redox potentials. All strains tested were capable of fermenting glucose to ethanol in oxygen-limited shake-flask cultures, even those of species generally regarded as nonfermentative. However, only 23% of the yeast species tested grew under anaerobic conditions. A comparative study with a number of selected strains revealed that Saccharomyces cerevisiae stands out as a yeast capable of rapid growth at low redox potentials. Other yeasts, such as Torulaspora delbrueckii and Candida tropicalis, grew poorly mu max, 0.03 and 0.05 h-1, respectively) under anaerobic conditions in mineral medium supplemented with Tween 80 and ergosterol. The latter organisms grew rapidly under oxygen limitation and then displayed a high rate of alcoholic fermentation. It can be concluded that these yeasts have hitherto-unidentified oxygen requirements for growth. Images PMID:2082825

  4. Ancient evolutionary trade-offs between yeast ploidy states.

    PubMed

    Zörgö, Enikö; Chwialkowska, Karolina; Gjuvsland, Arne B; Garré, Elena; Sunnerhagen, Per; Liti, Gianni; Blomberg, Anders; Omholt, Stig W; Warringer, Jonas

    2013-03-01

    The number of chromosome sets contained within the nucleus of eukaryotic organisms is a fundamental yet evolutionarily poorly characterized genetic variable of life. Here, we mapped the impact of ploidy on the mitotic fitness of baker's yeast and its never domesticated relative Saccharomyces paradoxus across wide swaths of their natural genotypic and phenotypic space. Surprisingly, environment-specific influences of ploidy on reproduction were found to be the rule rather than the exception. These ploidy-environment interactions were well conserved across the 2 billion generations separating the two species, suggesting that they are the products of strong selection. Previous hypotheses of generalizable advantages of haploidy or diploidy in ecological contexts imposing nutrient restriction, toxin exposure, and elevated mutational loads were rejected in favor of more fine-grained models of the interplay between ecology and ploidy. On a molecular level, cell size and mating type locus composition had equal, but limited, explanatory power, each explaining 12.5%-17% of ploidy-environment interactions. The mechanism of the cell size-based superior reproductive efficiency of haploids during Li(+) exposure was traced to the Li(+) exporter ENA. Removal of the Ena transporters, forcing dependence on the Nha1 extrusion system, completely altered the effects of ploidy on Li(+) tolerance and evoked a strong diploid superiority, demonstrating how genetic variation at a single locus can completely reverse the relative merits of haploidy and diploidy. Taken together, our findings unmasked a dynamic interplay between ploidy and ecology that was of unpredicted evolutionary importance and had multiple molecular roots. PMID:23555297

  5. Miniature intermittent contact switch

    NASA Technical Reports Server (NTRS)

    Sword, A.

    1972-01-01

    Design of electric switch for providing intermittent contact is presented. Switch consists of flexible conductor surrounding, but separated from, fixed conductor. Flexing of outside conductor to contact fixed conductor completes circuit. Advantage is small size of switch compared to standard switches.

  6. Latching relay switch assembly

    DOEpatents

    Duimstra, Frederick A.

    1991-01-01

    A latching relay switch assembly which includes a coil section and a switch or contact section. The coil section includes at least one permanent magnet and at least one electromagnet. The respective sections are, generally, arranged in separate locations or cavities in the assembly. The switch is latched by a permanent magnet assembly and selectively switched by an overriding electromagnetic assembly.

  7. Yeast killer systems.

    PubMed Central

    Magliani, W; Conti, S; Gerloni, M; Bertolotti, D; Polonelli, L

    1997-01-01

    The killer phenomenon in yeasts has been revealed to be a multicentric model for molecular biologists, virologists, phytopathologists, epidemiologists, industrial and medical microbiologists, mycologists, and pharmacologists. The surprisingly widespread occurrence of the killer phenomenon among taxonomically unrelated microorganisms, including prokaryotic and eukaryotic pathogens, has engendered a new interest in its biological significance as well as its theoretical and practical applications. The search for therapeutic opportunities by using yeast killer systems has conceptually opened new avenues for the prevention and control of life-threatening fungal diseases through the idiotypic network that is apparently exploited by the immune system in the course of natural infections. In this review, the biology, ecology, epidemiology, therapeutics, serology, and idiotypy of yeast killer systems are discussed. PMID:9227858

  8. [Fructose transporter in yeasts].

    PubMed

    Lazar, Zbigniew; Dobrowolski, Adam; Robak, Małgorzata

    2014-01-01

    Study of hexoses transporter started with discovery of galactose permease in Saccharomyces cerevisiae. Glucose, fructose and mannose assimilation is assumed by numerous proteins encoded by different genes. To date over 20 hexoses transporters, belonging to Sugar Porter family and to Major Facilitator Superfamily, were known. Genome sequence analysis of Candida glabrata, Kluyveromyces lactis, Yarrowia lipolytica, S. cerevisaie and Debaryomyces hansenii reveled potential presence of 17-48 sugar porter proteins. Glucose transporters in S. cerevisiae have been already characterized. In this paper, hexoses transporters, responsible for assimilation of fructose by cells, are presented and compared. Fructose specific transporter are described for yeasts: Zygosaccharomyces rouxii, Zygosaccharomyces bailli, K. lactis, Saccharomyces pastorianus, S. cerevisiae winemaking strain and for fungus Botritys cinerea and human (Glut5p). Among six yeasts transporters, five are fructose specific, acting by facilitated diffusion or proton symport. Yeasts monosaccharides transporter studies allow understanding of sugars uptake and metabolism important aspects, even in higher eukaryotes cells. PMID:25033548

  9. A microfluidic system for dynamic yeast cell imaging.

    PubMed

    Lee, Philip J; Helman, Noah C; Lim, Wendell A; Hung, Paul J

    2008-01-01

    The investigation of cellular processes and gene regulatory networks within living cells requires the development of improved technology for dynamic, single cell imaging. Here, we demonstrate a microfluidic system capable of mechanical trapping of yeast cells with continuous flow and flow switching capability during time-lapse high magnification fluorescence imaging. The novel functionality of the system was validated by observing the response of pheromone-induced expression of GFP in Saccharomyces cerevisiae. PMID:18254385

  10. Evolutionary history of Ascomyceteous Yeasts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Yeasts are important for many industrial and biotechnological processes and show remarkable diversity despite morphological similarities. We have sequenced the genomes of 20 ascomyceteous yeasts of taxonomic and industrial importance including members of Saccharomycotina and Taphrinomycotina. A comp...

  11. Genetics of Yeasts

    NASA Astrophysics Data System (ADS)

    Querol, Amparo; Fernández-Espinar, M. Teresa; Belloch, Carmela

    The use of yeasts in biotechnology processes dates back to ancient days. Before 7000 BC, beer was produced in Sumeria. Wine was made in Assyria in 3500 BC, and ancient Rome had over 250 bakeries, which were making leavened bread by 100 BC. And milk has been made into Kefyr and Koumiss in Asia for many centuries (Demain, Phaff, & Kurtzman, 1999). However, the importance of yeast in the food and beverage industries was only realized about 1860, when their role in food manufacturing became evident.

  12. Radiation hard vacuum switch

    DOEpatents

    Boettcher, Gordon E.

    1990-03-06

    A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction.

  13. Radiation hard vacuum switch

    DOEpatents

    Boettcher, Gordon E.

    1990-01-01

    A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction.

  14. L-arabinose fermenting yeast

    DOEpatents

    Zhang, Min; Singh, Arjun; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric; Suominen, Pirkko

    2010-12-07

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. Methods of producing ethanol include utilizing these modified yeast strains. ##STR00001##

  15. Conversion of pentoses by yeasts

    SciTech Connect

    Gong, C.S.; Claypool, T.A.; Maun, C.M.; Mccracken, L.D.; Tsao, G.T.; Ueng, P.P.

    1983-01-01

    The utilization and conversion of D-xylose, D-xyulose, L-arabinose, and xylitol by yeast strains have been investigated with the following results: 1) The majority of yeasts tested utilize D-xylose and produce polyols, ethanol, and organic acids. The type and amount of products formed varies with the yeast strains used. The most commonly detected product is xylitol. 2) The majority of yeasts tested utilize D-xylulose aerobically and fermentatively to produce ethanol, xylitol D-arabitol, and organic acids. The type and amount of products varies depending upon the yeast strains used. 3) Xylitol is a poor carbon and energy source for most yeasts tested. Some yeast strains produce small amounts of ethanol from xylitol. 4) Most yeast strains utilize L-arabinose, and L-arabitol is the common product. Small amounts of ethanol are also produced by some yeast strains. 5) Of the four substrates examined, D-xylulose was the preferred substrate, followed by D-xylose, L-arabinose, and xylitol. 6) Mutant yeast strains that exhibit different metabolic product patterns can be induced and isolated from Candida sp. Saccharomyces cerevisiae, and other yeasts. These mutant strains can be used for ethanol production from D-xylose as well as for the study of metabolic regulation of pentose utilization in yeasts.

  16. Expression and function of a human initiator tRNA gene in the yeast Saccharomyces cerevisiae.

    PubMed Central

    Francis, M A; Rajbhandary, U L

    1990-01-01

    We showed previously that the human initiator tRNA gene, in the context of its own 5'- and 3'-flanking sequences, was not expressed in Saccharomyces cerevisiae. Here we show that switching its 5'-flanking sequence with that of a yeast arginine tRNA gene allows its functional expression in yeast cells. The human initiator tRNA coding sequence was either cloned downstream of the yeast arginine tRNA gene, with various lengths of intergenic spacer separating them, or linked directly to the 5'-flanking sequence of the yeast arginine tRNA coding sequence. The human initiator tRNA made in yeast cells can be aminoacylated with methionine, and it was clearly separated from the yeast initiator and elongator methionine tRNAs by RPC-5 column chromatography. It was also functional in yeast cells. Expression of the human initiator tRNA in transformants of a slow-growing mutant yeast strain, in which three of the four endogenous initiator tRNA genes had been inactivated by gene disruption, resulted in enhancement of the growth rate. The degree of growth rate enhancement correlated with the steady-state levels of human tRNA in the transformants. Besides providing a possible assay for in vivo function of mutant human initiator tRNAs, this work represents the only example of the functional expression of a vertebrate RNA polymerase III-transcribed gene in yeast cells. Images PMID:2201892

  17. Opportunistic Pathogenic Yeasts

    NASA Astrophysics Data System (ADS)

    Banerjee, Uma

    Advances in medical research, made during the last few decades, have improved the prophylactic, diagnostic and therapeutic capabilities for variety of infections/diseases. However, many of the prophylactic and therapeutic procedures have been seen in many instances to exact a price of host-vulnerability to an expanding group of opportunistic pathogens and yeasts are one of the important members in it. Fortunately amongst the vast majority of yeasts present in nature only few are considered to have the capability to cause infections when certain opportunities predisposes and these are termed as ‘opportunistic pathogenic yeasts.’ However, the term ‘pathogenic’ is quite tricky, as it depends of various factors of the host, the ‘bug’ and the environment to manifest the clinical infection. The borderline is expanding. In the present century with unprecedented increase in number of immune-compromised host in various disciplines of health care settings, where any yeast, which has the capability to grow at 37 ° C (normal body temperature of human), can be pathogenic and cause infection in particular situation

  18. L-arabinose fermenting yeast

    SciTech Connect

    Zhang, Min; Singh, Arjun; Suominen, Pirkko; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric

    2014-09-23

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. A yeast strain engineered to metabolize arabinose through a novel pathway is also disclosed. Methods of producing ethanol include utilizing these modified yeast strains.

  19. L-arabinose fermenting yeast

    SciTech Connect

    Zhang, Min; Singh, Arjun; Suominen, Pirkko; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric

    2013-02-12

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. A yeast strain engineered to metabolize arabinose through a novel pathway is also disclosed. Methods of producing ethanol include utilizing these modified yeast strains.

  20. Latching micro optical switch

    DOEpatents

    Garcia, Ernest J; Polosky, Marc A

    2013-05-21

    An optical switch reliably maintains its on or off state even when subjected to environments where the switch is bumped or otherwise moved. In addition, the optical switch maintains its on or off state indefinitely without requiring external power. External power is used only to transition the switch from one state to the other. The optical switch is configured with a fixed optical fiber and a movable optical fiber. The movable optical fiber is guided by various actuators in conjunction with a latching mechanism that configure the switch in one position that corresponds to the on state and in another position that corresponds to the off state.

  1. Genetic structure of Kurtzmaniella cleridarum, a cactus flower beetle yeast of the Sonoran and Mojave Deserts: speciation by distance?

    PubMed

    Lachance, Marc-André; Perri, Ami M; Farahbakhsh, Amy S; Starmer, William T

    2013-11-01

    We studied 95 isolates of the yeast species Kurtzmaniella cleridarum recovered from nitidulid beetles collected in flowers of cacti of the Sonoran Desert of southern Arizona and the Mojave Desert of California. They were characterized on the basis of mating type and ten polymorphic DNA markers in relation to their geographic distribution. Although all loci appeared to be free of strong linkage, the recovered haplotypes represented but a small fraction of possible combinations, indicating that abundant asexual reproduction of local genotypes accounts for much of population growth, even though the yeast is capable of sexual recombination in nature. Much of the genetic differentiation took place at the local level, indicating that gene flow across the various localities is limited. However, a relationship exists between overall genetic differentiation and geography over long distances. We estimated that populations separated by c. 1300 km would share no alleles in common and that such a separation might be enough to favor the onset of speciation. PMID:23865628

  2. Comparison of Switching and Biofilm Formation between MTL-Homozygous Strains of Candida albicans and Candida dubliniensis

    PubMed Central

    Pujol, Claude; Daniels, Karla J.

    2015-01-01

    Candida albicans and Candida dubliniensis are highly related species that share the same main developmental programs. In C. albicans, it has been demonstrated that the biofilms formed by strains heterozygous and homozygous at the mating type locus (MTL) differ functionally, but studies rarely identify the MTL configuration. This becomes a particular problem in studies of C. dubliniensis, given that one-third of natural strains are MTL homozygous. For that reason, we have analyzed MTL-homozygous strains of C. dubliniensis for their capacity to switch from white to opaque, the stability of the opaque phenotype, CO2 induction of switching, pheromone induction of adhesion, the effects of minority opaque cells on biofilm thickness and dry weight, and biofilm architecture in comparison with C. albicans. Our results reveal that C. dubliniensis strains switch to opaque at lower average frequencies, exhibit a far lower level of opaque phase stability, are not stimulated to switch by high CO2, exhibit more variability in biofilm architecture, and most notably, form mature biofilms composed predominately of pseudohyphae rather than true hyphae. Therefore, while several traits of MTL-homozygous strains of C. dubliniensis appear to be degenerating or have been lost, others, most notably several related to biofilm formation, have been conserved. Within this context, the possibility is considered that C. dubliniensis is transitioning from a hypha-dominated to a pseudohypha-dominated biofilm and that aspects of C. dubliniensis colonization may provide insights into the selective pressures that are involved. PMID:26432632

  3. Heat Switches for ADRs

    NASA Technical Reports Server (NTRS)

    DiPirro, M. J.; Shirron, P. J.

    2014-01-01

    Heat switches are key elements in the cyclic operation of Adiabatic Demagnetization Refrigerators (ADRs). Several of the types of heat switches that have been used for ADRs are described in this paper. Key elements in selection and design of these switches include not only ON/OFF switching ratio, but also method of actuation, size, weight, and structural soundness. Some of the trade-off are detailed in this paper.

  4. Heat switches for ADRs

    NASA Astrophysics Data System (ADS)

    DiPirro, M. J.; Shirron, P. J.

    2014-07-01

    Heat switches are key elements in the cyclic operation of Adiabatic Demagnetization Refrigerators (ADRs). Several of the types of heat switches that have been used for ADRs are described in this paper. Key elements in selection and design of these switches include not only ON/OFF switching ratio, but also method of actuation, size, weight, and structural soundness. Some of the trade-off are detailed in this paper.

  5. Extracellular Polysaccharides Produced by Yeasts and Yeast-Like Fungi

    NASA Astrophysics Data System (ADS)

    van Bogaert, Inge N. A.; de Maeseneire, Sofie L.; Vandamme, Erick J.

    Several yeasts and yeast-like fungi are known to produce extracellular polysaccharides. Most of these contain D-mannose, either alone or in combination with other sugars or phosphate. A large chemical and structural variability is found between yeast species and even among different strains. The types of polymers that are synthesized can be chemically characterized as mannans, glucans, phosphoman-nans, galactomannans, glucomannans and glucuronoxylomannans. Despite these differences, almost all of the yeast exopolysaccharides display some sort of biological activity. Some of them have already applications in chemistry, pharmacy, cosmetics or as probiotic. Furthermore, some yeast exopolysaccharides, such as pullulan, exhibit specific physico-chemical and rheological properties, making them useful in a wide range of technical applications. A survey is given here of the production, the characteristics and the application potential of currently well studied yeast extracellular polysaccharides.

  6. Iron toxicity in yeast.

    PubMed

    Wiśnicka, R; Krzepiłko, A; Wawryn, J; Biliński, T

    1997-01-01

    It has been found that yeast cells are sensitive to iron overload only when grown on glucose as a carbon source. Effective concentration of ferrous iron is much higher than that found in natural environments. Effects of ferrous iron are strictly oxygen dependent, what suggest that the formation of hydroxyl radicals in the Fenton reaction is a cause of the toxicity. Respiratory deficiency and pretreatment of cells with antimycin A prevent toxic effects in the late exponential phase of growth, whereas uncouplers and 2mM magnesium salts completely protect even the most vulnerable exponential cells. Generally, toxic effects correlate with the ability of cells to take up this metal. The results presented suggest that during ferrous iron overload iron is transported through the unspecific divalent cation uptake system which is known in fungi. The data suggest that recently described high and low affinity systems of iron uptake in yeast are the only source of iron in natural environments. PMID:9516981

  7. Water Transport in Yeasts.

    PubMed

    Sabir, Farzana; Prista, Catarina; Madeira, Ana; Moura, Teresa; Loureiro-Dias, Maria C; Soveral, Graça

    2016-01-01

    Water moves across membranes through the lipid bilayer and through aquaporins, in this case in a regulated manner. Aquaporins belong to the MIP superfamily and two subfamilies are represented in yeasts: orthodox aquaporins considered to be specific water channels and aquaglyceroporins (heterodox aquaporins). In Saccharomyces cerevisiae genome, four aquaporin isoforms were identified, two of which are genetically close to orthodox aquaporins (ScAqy1 and ScAqy2) and the other two are more closely related to the aquaglyceroporins (ScFps1 and ScAqy3). Advances in the establishment of water channels structure are reviewed in this chapter in relation with the mechanisms of selectivity, conductance and gating. Aquaporins are important for key aspects of yeast physiology. They have been shown to be involved in sporulation, rapid freeze-thaw tolerance, osmo-sensitivity, and modulation of cell surface properties and colony morphology, although the underlying exact mechanisms are still unknown. PMID:26721272

  8. Apollo Ring Optical Switch

    SciTech Connect

    Maestas, J.H.

    1987-03-01

    An optical switch was designed, built, and installed at Sandia National Laboratories in Albuquerque, New Mexico, to facilitate the integration of two Apollo computer networks into a single network. This report presents an overview of the optical switch as well as its layout, switch testing procedure and test data, and installation.

  9. Triggered plasma opening switch

    SciTech Connect

    Mendel, C W

    1988-02-23

    A triggerable opening switch for a very high voltage and current pulse includes a transmission line extending from a source to a load and having an intermediate switch section including a plasma for conducting electrons between transmission line conductors and a magnetic field for breaking the plasma conduction path and magnetically insulating the electrons when it is desired to open the switch.

  10. Triggered plasma opening switch

    DOEpatents

    Mendel, Clifford W.

    1988-01-01

    A triggerable opening switch for a very high voltage and current pulse includes a transmission line extending from a source to a load and having an intermediate switch section including a plasma for conducting electrons between transmission line conductors and a magnetic field for breaking the plasma conduction path and magnetically insulating the electrons when it is desired to open the switch.

  11. MEI4, a meiosis-specific yeast gene required for chromosome synapsis.

    PubMed Central

    Menees, T M; Ross-MacDonald, P B; Roeder, G S

    1992-01-01

    The MEI4 gene product is required for meiotic induction of recombination and viable spore production in the yeast Saccharomyces cerevisiae. DNA sequence analysis shows that the MEI4 gene encodes a 450-amino-acid protein bearing no homology to any previously identified protein. The MEI4 coding region is interrupted by a small intron located near the 5' end of the gene. Efficient splicing of the MEI4 transcript is not dependent on the MER1 protein, which is required for splicing the transcript of another meiotic gene, MER2. Expression of a mei4::lacZ fusion gene is meiosis-specific and depends on both heterozygosity at the mating-type locus and nutrient limitation. Northern (RNA) blot hybridization analysis suggests that MEI4 gene expression is regulated at the level of transcription. A functional MEI4 gene is not required for meiotic induction of transcription of the MER1, MER2, MEK1, RED1, SPO11, or RAD50 gene. Cytological analysis of mei4 mutant strains during meiotic prophase demonstrates that the chromosomes form long axial elements that fail to undergo synapsis. The meiosis II division is delayed in mei4 strains. Images PMID:1545815

  12. Mitophagy and deubiquitination in yeast – the power of synthetic quantitative array technology

    PubMed Central

    Behrendt, Christina; Reichert, Andreas S.

    2016-01-01

    ABSTRACT Use of synthetic quantitative array technology led to the identification of positive and negative modulators of rapamycin-induced mitophagy in yeast. The Ubp3-Bre5 deubiquitination complex was shown to inhibit mitophagy but promote other types of autophagy, including ribophagy. We propose an ubiquitin-dependent regulatory switch between different types of autophagy. PMID:27308583

  13. Teaching Microbial Physiology Using Glucose Repression Phenomenon in Baker's Yeast as an Example

    ERIC Educational Resources Information Center

    Raghevendran, Vijayendran; Nielsen, Jens; Olsson, Lisbeth

    2005-01-01

    The yeast "Saccharomyces cerevisiae" has been used by human beings since ancient times for its ability to convert sugar to alcohol. Continual exposure to glucose in the natural environment for innumerable generations has probably enabled "S. cerevisiae" to grow in fermentative mode on sugars by switching off the genes responsible for respiration…

  14. Aneuploidy underlies a multicellular phenotypic switch

    PubMed Central

    Tan, Zhihao; Hays, Michelle; Cromie, Gareth A.; Jeffery, Eric W.; Scott, Adrian C.; Ahyong, Vida; Sirr, Amy; Skupin, Alexander; Dudley, Aimée M.

    2013-01-01

    Although microorganisms are traditionally used to investigate unicellular processes, the yeast Saccharomyces cerevisiae has the ability to form colonies with highly complex, multicellular structures. Colonies with the “fluffy” morphology have properties reminiscent of bacterial biofilms and are easily distinguished from the “smooth” colonies typically formed by laboratory strains. We have identified strains that are able to reversibly toggle between the fluffy and smooth colony-forming states. Using a combination of flow cytometry and high-throughput restriction-site associated DNA tag sequencing, we show that this switch is correlated with a change in chromosomal copy number. Furthermore, the gain of a single chromosome is sufficient to switch a strain from the fluffy to the smooth state, and its subsequent loss to revert the strain back to the fluffy state. Because copy number imbalance of six of the 16 S. cerevisiae chromosomes and even a single gene can modulate the switch, our results support the hypothesis that the state switch is produced by dosage-sensitive genes, rather than a general response to altered DNA content. These findings add a complex, multicellular phenotype to the list of molecular and cellular traits known to be altered by aneuploidy and suggest that chromosome missegregation can provide a quick, heritable, and reversible mechanism by which organisms can toggle between phenotypes. PMID:23812752

  15. Aneuploidy underlies a multicellular phenotypic switch.

    PubMed

    Tan, Zhihao; Hays, Michelle; Cromie, Gareth A; Jeffery, Eric W; Scott, Adrian C; Ahyong, Vida; Sirr, Amy; Skupin, Alexander; Dudley, Aimée M

    2013-07-23

    Although microorganisms are traditionally used to investigate unicellular processes, the yeast Saccharomyces cerevisiae has the ability to form colonies with highly complex, multicellular structures. Colonies with the "fluffy" morphology have properties reminiscent of bacterial biofilms and are easily distinguished from the "smooth" colonies typically formed by laboratory strains. We have identified strains that are able to reversibly toggle between the fluffy and smooth colony-forming states. Using a combination of flow cytometry and high-throughput restriction-site associated DNA tag sequencing, we show that this switch is correlated with a change in chromosomal copy number. Furthermore, the gain of a single chromosome is sufficient to switch a strain from the fluffy to the smooth state, and its subsequent loss to revert the strain back to the fluffy state. Because copy number imbalance of six of the 16 S. cerevisiae chromosomes and even a single gene can modulate the switch, our results support the hypothesis that the state switch is produced by dosage-sensitive genes, rather than a general response to altered DNA content. These findings add a complex, multicellular phenotype to the list of molecular and cellular traits known to be altered by aneuploidy and suggest that chromosome missegregation can provide a quick, heritable, and reversible mechanism by which organisms can toggle between phenotypes. PMID:23812752

  16. REMOTE CONTROLLED SWITCHING DEVICE

    DOEpatents

    Hobbs, J.C.

    1959-02-01

    An electrical switching device which can be remotely controlled and in which one or more switches may be accurately operated at predetermined times or with predetermined intervening time intervals is described. The switching device consists essentially of a deck, a post projecting from the deck at right angles thereto, cam means mounted for rotation around said posts and a switch connected to said deck and actuated by said cam means. Means is provided for rotating the cam means at a constant speed and the switching apparatus is enclosed in a sealed container with external adjusting means and electrical connection elements.

  17. Genomics and the making of yeast biodiversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Yeasts are unicellular fungi that do not form fruiting bodies. Although the yeast lifestyle has evolved multiple times, most known species belong to the subphylum Saccharomycotina (syn. Hemiascomycota, hereafter yeasts). This diverse group includes the premier eukaryotic model system, Saccharomyces ...

  18. Parasite epigenetics and immune evasion: lessons from budding yeast

    PubMed Central

    2013-01-01

    The remarkable ability of many parasites to evade host immunity is the key to their success and pervasiveness. The immune evasion is directly linked to the silencing of the members of extended families of genes that encode for major parasite antigens. At any time only one of these genes is active. Infrequent switches to other members of the gene family help the parasites elude the immune system and cause prolonged maladies. For most pathogens, the detailed mechanisms of gene silencing and switching are poorly understood. On the other hand, studies in the budding yeast Saccharomyces cerevisiae have revealed similar mechanisms of gene repression and switching and have provided significant insights into the molecular basis of these phenomena. This information is becoming increasingly relevant to the genetics of the parasites. Here we summarize recent advances in parasite epigenetics and emphasize the similarities between S. cerevisiae and pathogens such as Plasmodium, Trypanosoma, Candida, and Pneumocystis. We also outline current challenges in the control and the treatment of the diseases caused by these parasites and link them to epigenetics and the wealth of knowledge acquired from budding yeast. PMID:24252437

  19. New and emerging yeast pathogens.

    PubMed Central

    Hazen, K C

    1995-01-01

    The most common yeast species that act as agents of human disease are Candida albicans, Candida tropicalis, Candida glabrata, Candida parapsilosis, and Cryptococcus neoformans. The incidence of infections by other yeasts has increased during the past decade. The most evident emerging pathogens are Malassezia furfur, Trichosporon beigelii, Rhodotorula species, Hansenula anomala, Candida lusitaniae, and Candida krusei. Organisms once considered environmental contaminants or only industrially important, such as Candida utilis and Candida lipolytica, have now been implicated as agents of fungemia, onychomycosis, and systemic disease. The unusual yeasts primarily infect immunocompromised patients, newborns, and the elderly. The role of central venous catheter removal and antifungal therapy in patient management is controversial. The antibiograms of the unusual yeasts range from resistant to the most recent azoles and amphotericin B to highly susceptible to all antifungal agents. Current routine methods for yeast identification may be insufficient to identify the unusual yeasts within 2 days after isolation. The recognition of unusual yeasts as agents of sometimes life-threatening infection and their unpredictable antifungal susceptibilities increase the burden on the clinical mycology laboratory to pursue complete species identification and MIC determinations. Given the current and evolving medical practices for management of seriously ill patients, further evaluations of the clinically important data about these yeasts are needed. PMID:8665465

  20. Effective switching frequency multiplier inverter

    SciTech Connect

    Su, Gui-Jia; Peng, Fang Z.

    2007-08-07

    A switching frequency multiplier inverter for low inductance machines that uses parallel connection of switches and each switch is independently controlled according to a pulse width modulation scheme. The effective switching frequency is multiplied by the number of switches connected in parallel while each individual switch operates within its limit of switching frequency. This technique can also be used for other power converters such as DC/DC, AC/DC converters.

  1. Transcriptional activators in yeast

    PubMed Central

    2006-01-01

    Eukaryotic transcription activation domains (ADs) are not well defined on the proteome scale. We systematicallly tested ∼6000 yeast proteins for transcriptional activity using a yeast one-hybrid system and identified 451 transcriptional activators. We then determined their transcription activation strength using fusions to the Gal4 DNA-binding domain and a His3 reporter gene which contained a promoter with a Gal4-binding site. Among the 132 strongest activators 32 are known transcription factors while another 35 have no known function. Although zinc fingers, helix–loop–helix domains and several other domains are highly overrepresented among the activators, only few contain characterized ADs. We also found some striking correlations: the stronger the activation activity, the more acidic, glutamine-rich, proline-rich or asparagine-rich the activators were. About 29% of the activators have been found previously to specifically interact with the transcription machinery, while 10% are known to be components of transcription regulatory complexes. Based on their transcriptional activity, localization and interaction patterns, at least six previously uncharacterized proteins are suggested to be bona fide transcriptional regulators (namely YFL049W, YJR070C, YDR520C, YGL066W/Sgf73, YKR064W and YCR082W/Ahc2). PMID:16464826

  2. Phage and Yeast Display.

    PubMed

    Sheehan, Jared; Marasco, Wayne A

    2015-02-01

    Despite the availability of antimicrobial drugs, the continued development of microbial resistance--established through escape mutations and the emergence of resistant strains--limits their clinical utility. The discovery of novel, therapeutic, monoclonal antibodies (mAbs) offers viable clinical alternatives in the treatment and prophylaxis of infectious diseases. Human mAb-based therapies are typically nontoxic in patients and demonstrate high specificity for the intended microbial target. This specificity prevents negative impacts on the patient microbiome and avoids driving the resistance of nontarget species. The in vitro selection of human antibody fragment libraries displayed on phage or yeast surfaces represents a group of well-established technologies capable of generating human mAbs. The advantage of these forms of microbial display is the large repertoire of human antibody fragments present during a single selection campaign. Furthermore, the in vitro selection environments of microbial surface display allow for the rapid isolation of antibodies--and their encoding genes--against infectious pathogens and their toxins that are impractical within in vivo systems, such as murine hybridomas. This article focuses on the technologies of phage display and yeast display, as these strategies relate to the discovery of human mAbs for the treatment and vaccine development of infectious diseases. PMID:26104550

  3. The Green Monster Process for the Generation of Yeast Strains Carrying Multiple Gene Deletions

    PubMed Central

    Suzuki, Yo; Stam, Jason; Novotny, Mark; Yachie, Nozomu; Lasken, Roger S.; Roth, Frederick P.

    2012-01-01

    can1Δ locus (Figure 3). Using strains from the yeast deletion collection12, GFP-marked deletions can be conveniently generated by replacing the common KanMX4 cassette existing in these strains with a universal GFP-URA3 fragment. Each GMToolkit contains: either the a- or α-mating-type-specific haploid selection marker1 and exactly one of the two markers that, when both GMToolkits are present, collectively allow for selection of diploids. The second step is to carry out the sexual cycling through which deletion loci can be combined within a single cell by the random assortment and/or meiotic recombination that accompanies each cycle of mating and sporulation. PMID:23271437

  4. The green monster process for the generation of yeast strains carrying multiple gene deletions.

    PubMed

    Suzuki, Yo; Stam, Jason; Novotny, Mark; Yachie, Nozomu; Lasken, Roger S; Roth, Frederick P

    2012-01-01

    -α at the can1Δ locus (Figure 3). Using strains from the yeast deletion collection(12), GFP-marked deletions can be conveniently generated by replacing the common KanMX4 cassette existing in these strains with a universal GFP-URA3 fragment. Each GMToolkit contains: either the a- or α-mating-type-specific haploid selection marker(1) and exactly one of the two markers that, when both GMToolkits are present, collectively allow for selection of diploids. The second step is to carry out the sexual cycling through which deletion loci can be combined within a single cell by the random assortment and/or meiotic recombination that accompanies each cycle of mating and sporulation. PMID:23271437

  5. Eighteen new oleaginous yeast species.

    PubMed

    Garay, Luis A; Sitepu, Irnayuli R; Cajka, Tomas; Chandra, Idelia; Shi, Sandy; Lin, Ting; German, J Bruce; Fiehn, Oliver; Boundy-Mills, Kyria L

    2016-07-01

    Of 1600 known species of yeasts, about 70 are known to be oleaginous, defined as being able to accumulate over 20 % intracellular lipids. These yeasts have value for fundamental and applied research. A survey of yeasts from the Phaff Yeast Culture Collection, University of California Davis was performed to identify additional oleaginous species within the Basidiomycota phylum. Fifty-nine strains belonging to 34 species were grown in lipid inducing media, and total cell mass, lipid yield and triacylglycerol profiles were determined. Thirty-two species accumulated at least 20 % lipid and 25 species accumulated over 40 % lipid by dry weight. Eighteen of these species were not previously reported to be oleaginous. Triacylglycerol profiles were suitable for biodiesel production. These results greatly expand the number of known oleaginous yeast species, and reveal the wealth of natural diversity of triacylglycerol profiles within wild-type oleaginous Basidiomycetes. PMID:27072563

  6. Thermally actuated thermionic switch

    DOEpatents

    Barrus, D.M.; Shires, C.D.

    1982-09-30

    A thermally actuated thermionic switch which responds to an increase of temperature by changing from a high impedance to a low impedance at a predictable temperature set point. The switch has a bistable operation mode switching only on temperature increases. The thermionic material may be a metal which is liquid at the desired operation temperature and held in matrix in a graphite block reservoir, and which changes state (ionizes, for example) so as to be electrically conductive at a desired temperature.

  7. Thermally actuated thermionic switch

    DOEpatents

    Barrus, Donald M.; Shires, Charles D.

    1988-01-01

    A thermally actuated thermionic switch which responds to an increase of temperature by changing from a high impedance to a low impedance at a predictable temperature set point. The switch has a bistable operation mode switching only on temperature increases. The thermionic material may be a metal which is liquid at the desired operation temperature and held in matrix in a graphite block reservoir, and which changes state (ionizes, for example) so as to be electrically conductive at a desired temperature.

  8. AC magnetohydrodynamic microfluidic switch

    SciTech Connect

    Lemoff, A V; Lee, A P

    2000-03-02

    A microfluidic switch has been demonstrated using an AC Magnetohydrodynamic (MHD) pumping mechanism in which the Lorentz force is used to pump an electrolytic solution. By integrating two AC MHD pumps into different arms of a Y-shaped fluidic circuit, flow can be switched between the two arms. This type of switch can be used to produce complex fluidic routing, which may have multiple applications in {micro}TAS.

  9. Solid state switch

    DOEpatents

    Merritt, Bernard T.; Dreifuerst, Gary R.

    1994-01-01

    A solid state switch, with reverse conducting thyristors, is designed to operate at 20 kV hold-off voltage, 1500 A peak, 1.0 .mu.s pulsewidth, and 4500 pps, to replace thyratrons. The solid state switch is more reliable, more economical, and more easily repaired. The switch includes a stack of circuit card assemblies, a magnetic assist and a trigger chassis. Each circuit card assembly contains a reverse conducting thyristor, a resistor capacitor network, and triggering circuitry.

  10. Reusable fast opening switch

    DOEpatents

    Van Devender, J.P.; Emin, D.

    1983-12-21

    A reusable fast opening switch for transferring energy, in the form of a high power pulse, from an electromagnetic storage device such as an inductor into a load. The switch is efficient, compact, fast and reusable. The switch comprises a ferromagnetic semiconductor which undergoes a fast transition between conductive and metallic states at a critical temperature and which undergoes the transition without a phase change in its crystal structure. A semiconductor such as europium rich europhous oxide, which undergoes a conductor to insulator transition when it is joule heated from its conductor state, can be used to form the switch.

  11. Alarm toe switch

    DOEpatents

    Ganyard, Floyd P.

    1982-01-01

    An alarm toe switch inserted within a shoe for energizing an alarm circuit n a covert manner includes an insole mounting pad into which a miniature reed switch is fixedly molded. An elongated slot perpendicular to the reed switch is formed in the bottom surface of the mounting pad. A permanent cylindrical magnet positioned in the forward portion of the slot with a diameter greater than the pad thickness causes a bump above the pad. A foam rubber block is also positioned in the slot rearwardly of the magnet and holds the magnet in normal inoperative relation. A non-magnetic support plate covers the slot and holds the magnet and foam rubber in the slot. The plate minimizes bending and frictional forces to improve movement of the magnet for reliable switch activation. The bump occupies the knuckle space beneath the big toe. When the big toe is scrunched rearwardly the magnet is moved within the slot relative to the reed switch, thus magnetically activating the switch. When toe pressure is released the foam rubber block forces the magnet back into normal inoperative position to deactivate the reed switch. The reed switch is hermetically sealed with the magnet acting through the wall so the switch assembly S is capable of reliable operation even in wet and corrosive environments.

  12. [Study of animal viruses in yeast].

    PubMed

    Morikawa, Yuko

    2006-06-01

    Yeast is often considered to be a model eukaryotic organism, in a manner analogous to E. coli as a model prokaryotic organism. Yeast has been extensively characterized and the genomes completely sequenced. Despite the small genome size, yeast displays most of features of higher eukaryotes. The facts that most of cellular machinery is conserved among different eukaryotes and that the powerful technologies of genetics and molecular biology are available have made yeast model eukaryotic cells in biological and biomedical sciences including virology. Cumulative data indicate that yeast can be a host for animal viruses. I briefly describe yeast gene expression and review viral replication in yeast. Great discovery include complete replication of animal viruses and production of virus-like particle vaccines in yeast. Current studies on yeast focus on identification of host factors and machinery used for viral replication. The studies are based on traditional yeast genetics and genome-wide identification using a complete set of yeast deletion strains. PMID:17038807

  13. Asymmetrical Switch Costs in Children

    ERIC Educational Resources Information Center

    Ellefson, Michelle R.; Shapiron, Laura R.; Chater, Nick

    2006-01-01

    Switching between tasks produces decreases in performance as compared to repeating the same task. Asymmetrical switch costs occur when switching between two tasks of unequal difficulty. This asymmetry occurs because the cost is greater when switching to the less difficult task than when switching to the more difficult task. Various theories about…

  14. Mating reaction in yeast protoplasts.

    PubMed

    Svoboda, A

    1976-11-01

    Protoplasts prepared from complementary haploid strains of Saccharomyces cervisiae were studied with regard to their ability of conjugating. Neither fresh protoplasts nor the growing protoplasts possessing fibrillar walls exhibited sex specific agglutination or fusion. However, they were capable of inducing sexual activation in normal cells of opposite mating type. After completing the regeneration of cell walls the protoplasts could conjugate either with each other or with cells of opposite sex. The frequency of conjugations was low, about 1%, and was largely dependent on the degree of completition of the wall during regeneration. From the results the following conclusions may be drawn: 1. The initiation of mating is dependent on the integrity of the cell wall. 2. The sex specific morphogenetic changes do not occur in wall-less protoplasts but may happen after the protoplasts have regenerated their cell walls. 3. The lysis of cell walls does not occur until the walls come into close contact. 4. The fusion of plasma membranes in sex-activated protoplasts cannot be induced by arteficial agglutination. PMID:797332

  15. Interaction Between Yeasts and Zinc

    NASA Astrophysics Data System (ADS)

    Nicola, Raffaele De; Walker, Graeme

    Zinc is an essential trace element in biological systems. For example, it acts as a cellular membrane stabiliser, plays a critical role in gene expression and genome modification and activates nearly 300 enzymes, including alcohol dehydrogenase. The present chapter will be focused on the influence of zinc on cell physiology of industrial yeast strains of Saccharomyces cerevisiae, with special regard to the uptake and subsequent utilisation of this metal. Zinc uptake by yeast is metabolism-dependent, with most of the available zinc translocated very quickly into the vacuole. At cell division, zinc is distributed from mother to daughter cells and this effectively lowers the individual cellular zinc concentration, which may become zinc depleted at the onset of the fermentation. Zinc influences yeast fermentative performance and examples will be provided relating to brewing and wine fermentations. Industrial yeasts are subjected to several stresses that may impair fermentation performance. Such stresses may also impact on yeast cell zinc homeostasis. This chapter will discuss the practical implications for the correct management of zinc bioavailability for yeast-based biotechnologies aimed at improving yeast growth, viability, fermentation performance and resistance to environmental stresses

  16. Lager Yeast Comes of Age

    PubMed Central

    2014-01-01

    Alcoholic fermentations have accompanied human civilizations throughout our history. Lager yeasts have a several-century-long tradition of providing fresh beer with clean taste. The yeast strains used for lager beer fermentation have long been recognized as hybrids between two Saccharomyces species. We summarize the initial findings on this hybrid nature, the genomics/transcriptomics of lager yeasts, and established targets of strain improvements. Next-generation sequencing has provided fast access to yeast genomes. Its use in population genomics has uncovered many more hybridization events within Saccharomyces species, so that lager yeast hybrids are no longer the exception from the rule. These findings have led us to propose network evolution within Saccharomyces species. This “web of life” recognizes the ability of closely related species to exchange DNA and thus drain from a combined gene pool rather than be limited to a gene pool restricted by speciation. Within the domesticated lager yeasts, two groups, the Saaz and Frohberg groups, can be distinguished based on fermentation characteristics. Recent evidence suggests that these groups share an evolutionary history. We thus propose to refer to the Saaz group as Saccharomyces carlsbergensis and to the Frohberg group as Saccharomyces pastorianus based on their distinct genomes. New insight into the hybrid nature of lager yeast will provide novel directions for future strain improvement. PMID:25084862

  17. Yeasts: From genetics to biotechnology

    SciTech Connect

    Russo, S.; Poli, G.; Siman-Tov, R.B.

    1995-12-31

    Yeasts have been known and used in food and alcoholic fermentations ever since the Neolithic Age. In more recent times, on the basis of their peculiar features and history, yeasts have become very important experimental models in both microbiological and genetic research, as well as the main characters in many fermentative production processes. In the last 40 years, advances in molecular biology and genetic engineering have made possible not only the genetic selection of organisms, but also the genetic modification of some of them, especially the simplest of them, such as bacteria and yeasts. These discoveries have led to the availability of new yeast strains fit to fulfill requests of industrial production and fermentation. Moreover, genetically modified and transformed yeasts have been constructed that are able to produce large amounts of biologically active proteins and enzymes. Thus, recombinant yeasts make it easier to produce drugs, biologically active products, diagnostics, and vaccines, by inexpensive and relatively simple techniques. Yeasts are going to become more and more important in the {open_quotes}biotechnological revolution{close_quotes} by virtue of both their features and their very long and safe use in human nutrition and industry. 175 refs., 4 figs., 6 tabs.

  18. Fission yeast septation

    PubMed Central

    Cortés, Juan C. G.; Ramos, Mariona; Osumi, Masako; Pérez, Pilar; Ribas, Juan Carlos

    2016-01-01

    ABSTRACT In animal cells cytokinesis relies on the contraction of an actomyosin ring that pulls the plasma membrane to create a cleavage furrow, whose ingression finally divides the mother cell into two daughter cells. Fungal cells are surrounded by a tough and flexible structure called cell wall, which is considered to be the functional equivalent of the extracellular matrix in animal cells. Therefore, in addition to cleavage furrow ingression, fungal cytokinesis also requires the centripetal formation of a septum wall structure that develops between the dividing cells, whose genesis must be strictly coordinated with both the actomyosin ring closure and plasma membrane ingression. Here we briefly review what is known about the septum structure and composition in the fission yeast Schizosaccharomyces pombe, the recent progress about the relationship between septum biosynthesis and actomyosin ring constriction, and the importance of the septum and ring in the steady progression of the cleavage furrow. PMID:27574536

  19. Fission yeast septation.

    PubMed

    Cortés, Juan C G; Ramos, Mariona; Osumi, Masako; Pérez, Pilar; Ribas, Juan Carlos

    2016-01-01

    In animal cells cytokinesis relies on the contraction of an actomyosin ring that pulls the plasma membrane to create a cleavage furrow, whose ingression finally divides the mother cell into two daughter cells. Fungal cells are surrounded by a tough and flexible structure called cell wall, which is considered to be the functional equivalent of the extracellular matrix in animal cells. Therefore, in addition to cleavage furrow ingression, fungal cytokinesis also requires the centripetal formation of a septum wall structure that develops between the dividing cells, whose genesis must be strictly coordinated with both the actomyosin ring closure and plasma membrane ingression. Here we briefly review what is known about the septum structure and composition in the fission yeast Schizosaccharomyces pombe, the recent progress about the relationship between septum biosynthesis and actomyosin ring constriction, and the importance of the septum and ring in the steady progression of the cleavage furrow. PMID:27574536

  20. Manually operated coded switch

    DOEpatents

    Barnette, Jon H.

    1978-01-01

    The disclosure relates to a manually operated recodable coded switch in which a code may be inserted, tried and used to actuate a lever controlling an external device. After attempting a code, the switch's code wheels must be returned to their zero positions before another try is made.

  1. Multidimensional set switching.

    PubMed

    Hahn, Sowon; Andersen, George J; Kramer, Arthur F

    2003-06-01

    The present study examined the organization of preparatory processes that underlie set switching and, more specifically, switch costs. On each trial, subjects performed one of two perceptual judgment tasks, color or shape discrimination. Subjects also responded with one of two different response sets. The task set and/or the response set switched from one to the other after 2-6 repeated trials. Response set, task set, and double set switches were performed in both blocked and randomized conditions. Subjects performed with short (100-msec) and long (800-msec) preparatory intervals. Task and response set switches had an additive effect on reaction times (RTs) in the blocked condition. Such a pattern of results suggests a serial organization of preparatory processes when the nature of switches is predictable. However, task and response set switches had an underadditive effect on RTs in the random condition when subjects performed with a brief cue-to-target interval. This pattern of results suggests overlapping task and response set preparation. These findings are discussed in terms of strategic control of preparatory processes in set switching. PMID:12921431

  2. Reflective HTS switch

    DOEpatents

    Martens, Jon S.; Hietala, Vincent M.; Hohenwarter, Gert K. G.

    1994-01-01

    A HTS switch includes a HTS conductor for providing a superconducting path for an electrical signal and an serpentine wire actuator for controllably heating a portion of the conductor sufficiently to cause that portion to have normal, and not superconducting, resistivity. Mass of the portion is reduced to decrease switching time.

  3. Reflective HTS switch

    DOEpatents

    Martens, J.S.; Hietala, V.M.; Hohenwarter, G.K.G.

    1994-09-27

    A HTS (High Temperature Superconductor) switch includes a HTS conductor for providing a superconducting path for an electrical signal and an serpentine wire actuator for controllably heating a portion of the conductor sufficiently to cause that portion to have normal, and not superconducting, resistivity. Mass of the portion is reduced to decrease switching time. 6 figs.

  4. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Dried yeasts. 172.896 Section 172.896 Food and... Multipurpose Additives § 172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis) and dried torula yeast (Candida utilis) may be safely used in food provided the total folic...

  5. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Dried yeasts. 172.896 Section 172.896 Food and... Multipurpose Additives § 172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis) and dried torula yeast (Candida utilis) may be safely used in food provided the total folic...

  6. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Dried yeasts. 172.896 Section 172.896 Food and... Multipurpose Additives § 172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis) and dried torula yeast (Candida utilis) may be safely used in food provided the total folic...

  7. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Dried yeasts. 172.896 Section 172.896 Food and... PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis) and dried torula yeast (Candida...

  8. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Dried yeasts. 172.896 Section 172.896 Food and... Multipurpose Additives § 172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis) and dried torula yeast (Candida utilis) may be safely used in food provided the total folic...

  9. A Novel Molecular Switch

    PubMed Central

    Daber, Robert; Lewis, Mitchell

    2009-01-01

    Transcriptional regulation is a fundamental process for regulating the flux of all metabolic pathways. For the last several decades, the lac operon has served as a valuable model for studying transcription. More recently, the switch that controls the operon has also been successfully adapted to function in mammalian cells. Here we describe how, using directed evolution, we have created a novel switch that recognizes an asymmetric operator sequence. The new switch has a repressor with altered headpiece domains for operator recognition, and a redesigned dimer interface to create a heterodimeric repressor. Quite unexpectedly, the heterodimeric switch functions better than the natural system. It can repress more tightly than the naturally occurring switch of the lac operon; it is less leaky and can be induced more efficiently. Ultimately these novel repressors could be evolved to recognize eukaryotic promoters and used to regulate gene expression in mammalian systems. PMID:19540845

  10. Nanoscale memristive radiofrequency switches

    NASA Astrophysics Data System (ADS)

    Pi, Shuang; Ghadiri-Sadrabadi, Mohammad; Bardin, Joseph C.; Xia, Qiangfei

    2015-06-01

    Radiofrequency switches are critical components in wireless communication systems and consumer electronics. Emerging devices include switches based on microelectromechanical systems and phase-change materials. However, these devices suffer from disadvantages such as large physical dimensions and high actuation voltages. Here we propose and demonstrate a nanoscale radiofrequency switch based on a memristive device. The device can be programmed with a voltage as low as 0.4 V and has an ON/OFF conductance ratio up to 1012 with long state retention. We measure the radiofrequency performance of the switch up to 110 GHz and demonstrate low insertion loss (0.3 dB at 40 GHz), high isolation (30 dB at 40 GHz), an average cutoff frequency of 35 THz and competitive linearity and power-handling capability. Our results suggest that, in addition to their application in memory and computing, memristive devices are also a leading contender for radiofrequency switch applications.

  11. Erected mirror optical switch

    DOEpatents

    Allen, James J.

    2005-06-07

    A microelectromechanical (MEM) optical switching apparatus is disclosed that is based on an erectable mirror which is formed on a rotatable stage using surface micromachining. An electrostatic actuator is also formed on the substrate to rotate the stage and mirror with a high angular precision. The mirror can be erected manually after fabrication of the device and used to redirect an incident light beam at an arbitrary angel and to maintain this state in the absence of any applied electrical power. A 1.times.N optical switch can be formed using a single rotatable mirror. In some embodiments of the present invention, a plurality of rotatable mirrors can be configured so that the stages and mirrors rotate in unison when driven by a single micromotor thereby forming a 2.times.2 optical switch which can be used to switch a pair of incident light beams, or as a building block to form a higher-order optical switch.

  12. Switch on, switch off: stiction in nanoelectromechanical switches

    NASA Astrophysics Data System (ADS)

    Wagner, Till J. W.; Vella, Dominic

    2013-07-01

    We present a theoretical investigation of stiction in nanoscale electromechanical contact switches. We develop a mathematical model to describe the deflection of a cantilever beam in response to both electrostatic and van der Waals forces. Particular focus is given to the question of whether adhesive van der Waals forces cause the cantilever to remain in the ‘ON’ state even when the electrostatic forces are removed. In contrast to previous studies, our theory accounts for deflections with large slopes (i.e. geometrically nonlinear). We solve the resulting equations numerically to study how a cantilever beam adheres to a rigid electrode: transitions between ‘free’, ‘pinned’ and ‘clamped’ states are shown to be discontinuous and to exhibit significant hysteresis. Our findings are compared to previous results from linearized models and the implications for nanoelectromechanical cantilever switch design are discussed.

  13. Switch on, switch off: stiction in nanoelectromechanical switches.

    PubMed

    Wagner, Till J W; Vella, Dominic

    2013-07-12

    We present a theoretical investigation of stiction in nanoscale electromechanical contact switches. We develop a mathematical model to describe the deflection of a cantilever beam in response to both electrostatic and van der Waals forces. Particular focus is given to the question of whether adhesive van der Waals forces cause the cantilever to remain in the 'ON' state even when the electrostatic forces are removed. In contrast to previous studies, our theory accounts for deflections with large slopes (i.e. geometrically nonlinear). We solve the resulting equations numerically to study how a cantilever beam adheres to a rigid electrode: transitions between 'free', 'pinned' and 'clamped' states are shown to be discontinuous and to exhibit significant hysteresis. Our findings are compared to previous results from linearized models and the implications for nanoelectromechanical cantilever switch design are discussed. PMID:23759938

  14. Towards single molecule switches.

    PubMed

    Zhang, Jia Lin; Zhong, Jian Qiang; Lin, Jia Dan; Hu, Wen Ping; Wu, Kai; Xu, Guo Qin; Wee, Andrew T S; Chen, Wei

    2015-05-21

    The concept of using single molecules as key building blocks for logic gates, diodes and transistors to perform basic functions of digital electronic devices at the molecular scale has been explored over the past decades. However, in addition to mimicking the basic functions of current silicon devices, molecules often possess unique properties that have no parallel in conventional materials and promise new hybrid devices with novel functions that cannot be achieved with equivalent solid-state devices. The most appealing example is the molecular switch. Over the past decade, molecular switches on surfaces have been intensely investigated. A variety of external stimuli such as light, electric field, temperature, tunneling electrons and even chemical stimulus have been used to activate these molecular switches between bistable or even multiple states by manipulating molecular conformations, dipole orientations, spin states, charge states and even chemical bond formation. The switching event can occur either on surfaces or in break junctions. The aim of this review is to highlight recent advances in molecular switches triggered by various external stimuli, as investigated by low-temperature scanning tunneling microscopy (LT-STM) and the break junction technique. We begin by presenting the molecular switches triggered by various external stimuli that do not provide single molecule selectivity, referred to as non-selective switching. Special focus is then given to selective single molecule switching realized using the LT-STM tip on surfaces. Single molecule switches operated by different mechanisms are reviewed and discussed. Finally, molecular switches embedded in self-assembled monolayers (SAMs) and single molecule junctions are addressed. PMID:25757483

  15. Marine yeast isolation and industrial application

    PubMed Central

    Zaky, Abdelrahman Saleh; Tucker, Gregory A; Daw, Zakaria Yehia; Du, Chenyu

    2014-01-01

    Over the last century, terrestrial yeasts have been widely used in various industries, such as baking, brewing, wine, bioethanol and pharmaceutical protein production. However, only little attention has been given to marine yeasts. Recent research showed that marine yeasts have several unique and promising features over the terrestrial yeasts, for example higher osmosis tolerance, higher special chemical productivity and production of industrial enzymes. These indicate that marine yeasts have great potential to be applied in various industries. This review gathers the most recent techniques used for marine yeast isolation as well as the latest applications of marine yeast in bioethanol, pharmaceutical and enzyme production fields. PMID:24738708

  16. Transcription mediated insulation and interference direct gene cluster expression switches

    PubMed Central

    Nguyen, Tania; Brown, David; Murray, Struan C; Haenni, Simon; Halstead, James M; O'Connor, Leigh; Shipkovenska, Gergana; Steinmetz, Lars M; Mellor, Jane

    2014-01-01

    In yeast, many tandemly arranged genes show peak expression in different phases of the metabolic cycle (YMC) or in different carbon sources, indicative of regulation by a bi-modal switch, but it is not clear how these switches are controlled. Using native elongating transcript analysis (NET-seq), we show that transcription itself is a component of bi-modal switches, facilitating reciprocal expression in gene clusters. HMS2, encoding a growth-regulated transcription factor, switches between sense- or antisense-dominant states that also coordinate up- and down-regulation of transcription at neighbouring genes. Engineering HMS2 reveals alternative mono-, di- or tri-cistronic and antisense transcription units (TUs), using different promoter and terminator combinations, that underlie state-switching. Promoters or terminators are excluded from functional TUs by read-through transcriptional interference, while antisense TUs insulate downstream genes from interference. We propose that the balance of transcriptional insulation and interference at gene clusters facilitates gene expression switches during intracellular and extracellular environmental change. DOI: http://dx.doi.org/10.7554/eLife.03635.001 PMID:25407679

  17. The Yeast Sphingolipid Signaling Landscape

    PubMed Central

    Montefusco, David J.; Matmati, Nabil

    2014-01-01

    Sphingolipids are recognized as signaling mediators in a growing number of pathways, and represent potential targets to address many diseases. The study of sphingolipid signaling in yeast has created a number of breakthroughs in the field, and has the potential to lead future advances. The aim of this article is to provide an inclusive view of two major frontiers in yeast sphingolipid signaling. In the first section, several key studies in the field of sphingolipidomics are consolidated to create a yeast sphingolipidome that ranks nearly all known sphingolipid species by their level in a resting yeast cell. The second section presents an overview of most known phenotypes identified for sphingolipid gene mutants, presented with the intention of illuminating not yet discovered connections outside and inside of the field. PMID:24220500

  18. Growth and manipulation of yeast.

    PubMed

    Treco, D A; Reynolds, A; Lundblad, V

    2001-05-01

    This unit describes preparation of selected media for growing yeast and also discusses strain storage and revival. Protocols are provided for the assay of beta-galactosidase in liquid culture and for transformation using lithium acetate. PMID:18429086

  19. Optical Circuit Switched Protocol

    NASA Technical Reports Server (NTRS)

    Monacos, Steve P. (Inventor)

    2000-01-01

    The present invention is a system and method embodied in an optical circuit switched protocol for the transmission of data through a network. The optical circuit switched protocol is an all-optical circuit switched network and includes novel optical switching nodes for transmitting optical data packets within a network. Each optical switching node comprises a detector for receiving the header, header detection logic for translating the header into routing information and eliminating the header, and a controller for receiving the routing information and configuring an all optical path within the node. The all optical path located within the node is solely an optical path without having electronic storage of the data and without having optical delay of the data. Since electronic storage of the header is not necessary and the initial header is eliminated by the first detector of the first switching node. multiple identical headers are sent throughout the network so that subsequent switching nodes can receive and read the header for setting up an optical data path.

  20. Optical packet switching

    NASA Astrophysics Data System (ADS)

    Shekel, Eyal; Ruschin, Shlomo; Majer, Daniel; Levy, Jeff; Matmon, Guy; Koenigsberg, Lisa; Vecht, Jacob; Geron, Amir; Harlavan, Rotem; Shfaram, Harel; Arbel, Arnon; McDermott, Tom; Brewer, Tony

    2005-02-01

    We report here a scalable, multichassis, 6.3 terabit core router, which utilizes our proprietary optical switch. The router is commercially available and deployed in several customer sites. Our solution combines optical switching with electronic routing. An internal optical packet switching network interconnects the router"s electronic line cards, where routing and buffering functions take place electronically. The system architecture and performance will be described. The optical switch is based on Optical Phased Array (OPA) technology. It is a 64 x 64, fully non-blocking, optical crossbar switch, capable of switching in a fraction of a nanosecond. The basic principles of operation will be explained. Loss and crosstalk results will be presented, as well as the results of BER measurements of a 160 Gbps transmission through one channel. Basic principles of operation and measured results will be presented for the burst-mode-receivers, arbitration algorithm and synchronization. Finally, we will present some of our current research work on a next-generation optical switch. The technological issues we have solved in our internal optical packet network can have broad applicability to any global optical packet network.

  1. Biotechnological Applications of Dimorphic Yeasts

    NASA Astrophysics Data System (ADS)

    Doiphode, N.; Joshi, C.; Ghormade, V.; Deshpande, M. V.

    The dimorphic yeasts have the equilibrium between spherical growth (budding) and polarized (hyphal or pseudohyphal tip elongation) which can be triggered by change in the environmental conditions. The reversible growth phenomenon has made dimorphic yeasts as an useful model to understand fungal evolution and fungal differentiation, in general. In nature dimorphism is clearly evident in plant and animal fungal pathogens, which survive and most importantly proliferate in the respective hosts. However, number of organisms with no known pathogenic behaviour also show such a transition, which can be exploited for the technological applications due to their different biochemical make up under different morphologies. For instance, chitin and chitosan production using dimorphic Saccharomyces, Mucor, Rhizopus and Benjaminiella, oil degradation and biotransformation with yeast-form of Yarrowia species, bioremediation of organic pollutants, exopolysac-charide production by yeast-phase of Aureobasidium pullulans, to name a few. Myrothecium verrucaria can be used for seed dressing in its yeast form and it produces a mycolytic enzyme complex in its hyphal-form for the biocontrol of fungal pathogens, while Beauveria bassiana and other entomopathogens kill the insect pest by producing yeast- like cells in the insect body. The form-specific expression of protease, chitinase, lipase, ornithine decarboxylase, glutamate dehydrogenases, etc. make Benjaminiella poitrasii, Basidiobolus sp., and Mucor rouxii strains important in bioremediation, nanobiotechnology, fungal evolution and other areas.

  2. Solid state switch

    DOEpatents

    Merritt, B.T.; Dreifuerst, G.R.

    1994-07-19

    A solid state switch, with reverse conducting thyristors, is designed to operate at 20 kV hold-off voltage, 1,500 A peak, 1.0 [mu]s pulsewidth, and 4,500 pps, to replace thyratrons. The solid state switch is more reliable, more economical, and more easily repaired. The switch includes a stack of circuit card assemblies, a magnetic assist and a trigger chassis. Each circuit card assembly contains a reverse conducting thyristor, a resistor capacitor network, and triggering circuitry. 6 figs.

  3. SPARK GAP SWITCH

    DOEpatents

    Neal, R.B.

    1957-12-17

    An improved triggered spark gap switch is described, capable of precisely controllable firing time while switching very large amounts of power. The invention in general comprises three electrodes adjustably spaced and adapted to have a large potential impressed between the outer electrodes. The central electrode includes two separate elements electrically connected togetaer and spaced apart to define a pair of spark gaps between the end electrodes. Means are provided to cause the gas flow in the switch to pass towards the central electrode, through a passage in each separate element, and out an exit disposed between the two separate central electrode elements in order to withdraw ions from the spark gap.

  4. Photoconductive switch package

    DOEpatents

    Ca[rasp, George J

    2013-10-22

    A photoconductive switch is formed of a substrate that has a central portion of SiC or other photoconductive material and an outer portion of cvd-diamond or other suitable material surrounding the central portion. Conducting electrodes are formed on opposed sides of the substrate, with the electrodes extending beyond the central portion and the edges of the electrodes lying over the outer portion. Thus any high electric fields produced at the edges of the electrodes lie outside of and do not affect the central portion, which is the active switching element. Light is transmitted through the outer portion to the central portion to actuate the switch.

  5. Photoconductive switch package

    SciTech Connect

    Caporaso, George J.

    2015-10-27

    A photoconductive switch is formed of a substrate that has a central portion of SiC or other photoconductive material and an outer portion of cvd-diamond or other suitable material surrounding the central portion. Conducting electrodes are formed on opposed sides of the substrate, with the electrodes extending beyond the central portion and the edges of the electrodes lying over the outer portion. Thus any high electric fields produced at the edges of the electrodes lie outside of and do not affect the central portion, which is the active switching element. Light is transmitted through the outer portion to the central portion to actuate the switch.

  6. Electromechanical magnetization switching

    SciTech Connect

    Chudnovsky, Eugene M.; Jaafar, Reem

    2015-03-14

    We show that the magnetization of a torsional oscillator that, in addition to the magnetic moment also possesses an electrical polarization, can be switched by the electric field that ignites mechanical oscillations at the frequency comparable to the frequency of the ferromagnetic resonance. The 180° switching arises from the spin-rotation coupling and is not prohibited by the different symmetry of the magnetic moment and the electric field as in the case of a stationary magnet. Analytical equations describing the system have been derived and investigated numerically. Phase diagrams showing the range of parameters required for the switching have been obtained.

  7. Mating-type heterokaryosis in Aspergillus flavus in North Carolina

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus flavus is a well-known pathogen of many important agricultural commodities and is a major producer of aflatoxins (AFs), which are carcinogenic polyketides that pose a serious health risk to humans and animals. Recently, heterokaryosis and the presence of cryptic alleles were shown to ex...

  8. Population shifts and mating-type heterokaryosis in Aspergillus flavus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus flavus is a fungal pathogen of many agronomically important crops worldwide. We sampled A. flavus strains from a cornfield in Rocky Mount, NC. This field was planted in 2010 and plots were inoculated at tasselling with either AF36 or NRRL 21882 (=Afla-Guard) biocontrol strains, both of...

  9. Mating-type heterokaryosis and population shifts in Aspergillus flavus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus flavus is a fungal pathogen of many agronomically important crops worldwide. We sampled A. flavus strains from a cornfield in Rocky Mount, NC. This field was planted in 2010 and plots were inoculated at tasselling with either AF36 or NRRL 21882 (=Afla-Guard) biocontrol strains, both of...

  10. Functional dissection of the global repressor Tup1 in yeast: dominant role of the C-terminal repression domain.

    PubMed Central

    Zhang, Zhizhou; Varanasi, Ushasri; Trumbly, Robert J

    2002-01-01

    In the yeast Saccharomyces cerevisiae, Tup1, in association with Cyc8 (Ssn6), functions as a general repressor of transcription. Tup1 and Cyc8 are required for repression of diverse families of genes coordinately controlled by glucose repression, mating type, and other mechanisms. This repression is mediated by recruitment of the Cyc8-Tup1 complex to target promoters by sequence-specific DNA-binding proteins. We created a library of XhoI linker insertions and internal in-frame deletion mutations within the TUP1 coding region. Insertion mutations outside of the WD domains were wild type, while insertions within the WD domains induced mutant phenotypes with differential effects on the target genes SUC2, MFA2, RNR2, and HEM13. Deletion mutations confirmed previous findings of two separate repression domains in the N and C termini. The cumulative data suggest that the C-terminal repression domain, located near the first WD repeat, plays the dominant role in repression. Although the N-terminal repression domain is sufficient for partial repression, deletion of this region does not compromise repression. Surprisingly, deletion of the majority of the histone-binding domain of Tup1 also does not significantly reduce repression. The N-terminal region containing potential alpha-helical coiled coils is required for Tup1 oligomerization and association with Cyc8. Association with Cyc8 is required for repression of SUC2, HEM13, and RNR2 but not MFA2 and STE2. PMID:12136003

  11. Pheromone-encoding mRNA is transported to the yeast mating projection by specific RNP granules

    PubMed Central

    Dover-Biterman, Saray; Suss-Toby, Edith; Shmoish, Michael; Duek, Lea; Choder, Mordechai

    2015-01-01

    Association of messenger RNAs with large complexes such as processing bodies (PBs) plays a pivotal role in regulating their translation and decay. Little is known about other possible functions of these assemblies. Exposure of haploid yeast cells, carrying mating type “a,” to “α pheromone” stimulates polarized growth resulting in a “shmoo” projection; it also induces synthesis of “a pheromone,” encoded by MFA2. In this paper, we show that, in response to α pheromone, MFA2 mRNA is assembled with two types of granules; both contain some canonical PB proteins, yet they differ in size, localization, motility, and sensitivity to cycloheximide. Remarkably, one type is involved in mRNA transport to the tip of the shmoo, whereas the other—in local translation in the shmoo. Normal assembly of these granules is critical for their movement, localization, and for mating. Thus, MFA2 mRNAs are transported to the shmoo tip, in complex with PB-like particles, where they are locally translated. PMID:26101218

  12. Riboneogenesis in yeast

    PubMed Central

    Clasquin, Michelle F.; Melamud, Eugene; Singer, Alexander; Gooding, Jessica R.; Xu, Xiaohui; Dong, Aiping; Cui, Hong; Campagna, Shawn R.; Savchenko, Alexei; Yakunin, Alexander F.; Rabinowitz, Joshua D.; Caudy, Amy A.

    2011-01-01

    Summary Gluconeogenesis converts three carbon units into glucose. Here we identify an analogous pathway in Saccharomyces cerevisiae for converting three carbon units into ribose, a component of nucleic acids and nucleotides. This riboneogenic pathway involves the enzyme sedoheptulose-1,7-bisphosphatase (SHB17), whose activity was identified based on accumulation of sedoheptulose-1,7-bisphosphate in the corresponding knockout strain. We determined the crystal structure of Shb17 in complex with sedoheptulose-1,7-bisphosphate, and found that the sugar is bound in the closed furan form in the active site. Like fructose-1,6-bisphosphate, sedoheptulose-1,7-bisphosphate is produced by aldolase, in this case from erythrose 4-phosphate and dihydroxyacetone phosphate. Hydrolysis of sedoheptulose-1,7-bisphosphate by SHB17 provides an energetically favorable input to the non-oxidative pentose phosphate pathway to drive ribose production. Flux through SHB17 is enhanced under conditions when ribose demand is high relative to demand for NADPH, including during ribosome biogenesis in metabolically synchronized yeast cells. Thus, riboneogenesis provides a thermodynamically-driven route of ribose production uncoupled from formation of NADPH. PMID:21663798

  13. Yeast Mitochondrial Transcriptomics

    PubMed Central

    Garcia, Mathilde; Darzacq, Xavier; Devaux, Frederic; Singer, Robert H.; Jacq, Claude

    2016-01-01

    Although 30 years ago it was strongly suggested that some cytoplasmic ribosomes are bound to the surface of yeast mitochondria, the mechanisms and the raison d’ětre of this process are not understood. For instance, it is not perfectly known which of the several hundred nuclearly encoded genes have to be translated to the mitochondrial vicinity to guide the import of the corresponding proteins. One can take advantage of several modern methods to address a number of aspects of the site-specific translation process of messenger ribonucleic acid (mRNA) coding for proteins imported into mitochondria. Three complementary approaches are presented to analyze the spatial distribution of mRNAs coding for proteins imported into mitochondria. Starting from biochemical purifications of mitochondria-bound polysomes, we describe a genomewide approach to classify all the cellular mRNAs according to their physical proximity with mitochondria; we also present real-time quantitative reverse transcription polymerase chain reaction monitoring of mRNA distribution to provide a quantified description of this localization. Finally, a fluorescence microscopy approach on a single living cell is described to visualize the in vivo localization of mRNAs involved in mitochondria biogenesis. PMID:18314748

  14. Synthetic Yeast Cooperation

    NASA Astrophysics Data System (ADS)

    Shou, Wenying; Burton, Justin

    2010-03-01

    Cooperation is wide-spread and has been postulated to drive major transitions in evolution. However, Darwinian selection favors ``cheaters'' that consume benefits without paying a fair cost. How did cooperation evolve against the threat of cheaters? To investigate the evolutionary trajectories of cooperation, we created a genetically tractable system that can be observed as it evolves from inception. The system consists of two engineered yeast strains -- a red-fluorescent strain that requires adenine and releases lysine and a yellow-fluorescent strain that requires lysine and releases adenine. Cells that consume but not supply metabolites would be cheaters. From the properties of two cooperating strains, we calculated and experimentally verified the minimal initial cell densities required for the viability of the cooperative system in the absence of exogenously added adenine and lysine. Strikingly, evolved cooperative systems were viable at 100-fold lower initial cell densities than their ancestors. We are investigating the nature and diversity of pro-cooperation changes, the dynamics of cooperator-cheater cocultures, and the effects of spatial environment on cooperation and cheating.

  15. Metabolic regulation of yeast

    NASA Astrophysics Data System (ADS)

    Fiechter, A.

    1982-12-01

    Metabolic regulation which is based on endogeneous and exogeneous process variables which may act constantly or time dependently on the living cell is discussed. The observed phenomena of the regulation are the result of physical, chemical, and biological parameters. These parameters are identified. Ethanol is accumulated as an intermediate product and the synthesis of biomass is reduced. This regulatory effect of glucose is used for the aerobic production of ethanol. Very high production rates are thereby obtained. Understanding of the regulation mechanism of the glucose effect has improved. In addition to catabolite repression, several other mechanisms of enzyme regulation have been described, that are mostly governed by exogeneous factors. Glucose also affects the control of respiration in a third class of yeasts which are unable to make use of ethanol as a substrate for growth. This is due to the lack of any anaplerotic activity. As a consequence, diauxic growth behavior is reduced to a one-stage growth with a drastically reduced cell yield. The pulse chemostat technique, a systematic approach for medium design is developed and medium supplements that are essential for metabolic control are identified.

  16. Miniature Intermittent Contact Switch

    NASA Technical Reports Server (NTRS)

    Sword, Antony

    1972-01-01

    This tech brief concerns work to provide a shock-resistant switch capable of being actuated by forces of varying magnitude and direction, primarily for use as a sensor on remote control (tele-operator) and prosthetic devices.

  17. Plasmonic enhanced ultrafast switch.

    SciTech Connect

    Subramania,Ganapathi Subramanian; Reno, John Louis; Passmore, Brandon Scott; Harris, Tom.; Shaner, Eric Arthur; Barrick, Todd A.

    2009-09-01

    Ultrafast electronic switches fabricated from defective material have been used for several decades in order to produce picosecond electrical transients and TeraHertz radiation. Due to the ultrashort recombination time in the photoconductor materials used, these switches are inefficient and are ultimately limited by the amount of optical power that can be applied to the switch before self-destruction. The goal of this work is to create ultrafast (sub-picosecond response) photoconductive switches on GaAs that are enhanced through plasmonic coupling structures. Here, the plasmonic coupler primarily plays the role of being a radiation condenser which will cause carriers to be generated adjacent to metallic electrodes where they can more efficiently be collected.

  18. An optical switch

    DOEpatents

    Christophorou, L.G.; Hunter, S.R.

    1987-04-30

    The invention is a gas mixture for a diffuse discharge switch having an electron attaching gas wherein electron attachment is brought about by indirect excitation of molecules to long live states by exposure to laser light. 3 figs.

  19. Switching and stopping antidepressants

    PubMed Central

    Keks, Nicholas; Hope, Judy; Keogh, Simone

    2016-01-01

    SUMMARY Switching from one antidepressant to another is frequently indicated due to an inadequate treatment response or unacceptable adverse effects. All antidepressant switches must be carried out cautiously and under close observation. Conservative switching strategies involve gradually tapering the first antidepressant followed by an adequate washout period before the new antidepressant is started. This can take a long time and include periods of no treatment with the risk of potentially life-threatening exacerbations of illness. Clinical expertise is needed for more rapid or cross-taper switching as drug toxicity, including serotonin syndrome, may result from inappropriate co-administration of antidepressants. Some antidepressants must not be combined. Antidepressants can cause withdrawal syndromes if discontinued abruptly after prolonged use. Relapse and exacerbation of depression can also occur. Gradual dose reduction over days to weeks reduces the risk and severity of complications. PMID:27346915

  20. Switching power supply filter

    NASA Technical Reports Server (NTRS)

    Kumar, Prithvi R. (Inventor); Abare, Wayne (Inventor)

    1989-01-01

    A filter for a switching power supply. The filter includes a common mode inductor with coil configurations allowing differential mode current from a dc source to pass through but attenuating common mode noise from the power supply so that the noise does not reach the dc source. The invention also includes the use of feed through capacitors at the switching power supply input terminals to provide further high-frequency noise attenuation.

  1. Cygnus Water Switch Jitter

    SciTech Connect

    Charles V. Mitton, George D. Corrow, Mark D. Hansen, David J. Henderson, et al.

    2008-03-01

    The Cygnus Dual Beam Radiographic Facility consists of two identical radiographic sources - Cygnus 1 and Cygnus 2. Each source has the following x-ray output: 1-mm diameter spot size, 4 rad at 1 m, 50-ns Full Width Half Max. The diode pulse has the following electrical specifications: 2.25 MV, 60 kA, 60 ns. This Radiographic Facility is located in an underground tunnel test area at the Nevada Test Site (NTS). The sources were developed to produce high-resolution images on subcritical tests which are performed at NTS. Subcritical tests are single-shot, high-value events. For this application, it is desirable to maintain a high level of reproducibility in source output. The major components of the Cygnus machines are: Marx generator, water-filled pulse–forming line (PFL), water-filled coaxial transmission line, three-cell inductive voltage adder, and rod-pinch diode. A primary source of fluctuation in Cygnus shot-to-shot performance is jitter in breakdown of the main PFL switch, which is a “self-break” switch. The PFL switch breakdown time determines the peak PFL charging voltage, which ultimately affects the diode pulse. Therefore, PFL switch jitter contributes to shot-to-shot variation in source endpoint energy and dose. In this paper we will present PFL switch jitter analysis for both Cygnus machines and give the correlation with diode performance. For this analysis the PFL switch on each machine was maintained at a single gap setting which has been used for the majority of shots at NTS. In addition to this analysis, PFL switch performance for different switch gap settings taken recently will be examined. Lastly, implications of source jitter for radiographic diagnosis of subcritical shots will be discussed.

  2. Irreversible magnetic switch

    SciTech Connect

    Karnowsky, M.M.; Yost, F.G.

    1991-12-31

    This invention is comprised of an irreversible magnetic switch containing a ferromagnetic amorphous metal having a predetermined crystallization temperature in its inductor magnetic path. With the incorporation of such material, the magnetic properties after cooling from a high temperature excursion above its crystallization temperature are only a fraction of the original value. The difference is used to provide a safety feature in the magnetic switch.

  3. Cygnus PFL Switch Jitter

    SciTech Connect

    C. Mitton, G. Corrow, M. Hansen, D. Henderson, et al.

    2007-07-21

    The Cygnus Dual Beam Radiographic Facility consists of two identical radiographic sources: Cygnus 1 and Cygnus 2. Each source has the following X-ray output: 1-mm diameter spot size, 4 rads at 1 m, 50-ns full-widthhalf-maximum. The diode pulse has the following electrical specifications: 2.25 MV, 60 kA, 60 ns. This Radiographic Facility is located in an underground tunnel test area at the Nevada Test Site (NTS). The sources were developed to produce high-resolution images on subcritical tests performed at NTS. Subcritical tests are single-shot, high-value events. For this application, it is desirable to maintain a high level of reproducibility in source output. The major components of the Cygnus machines are Marx generator, water-filled pulse forming line (PFL), water-filled coaxial transmission line, threecell inductive voltage adder, and rod-pinch diode. A primary source of fluctuation in Cygnus shot-to-shot performance may be jitter in breakdown of the main PFL switch, which is a “self-break” switch. The PFL switch breakdown time determines the peak PFL charging voltage, which ultimately affects the source X-ray spectrum and dose. Therefore, PFL switch jitter may contribute to shot-to-shot variation in these parameters, which are crucial to radiographic quality. In this paper we will present PFL switch jitter analysis for both Cygnus machines and present the correlation with dose. For this analysis, the PFL switch on each machine was maintained at a single gap setting, which has been used for the majority of shots at NTS. In addition the PFL switch performance for one larger switch gap setting will be examined.

  4. uv preilluminated gas switches

    SciTech Connect

    Bradley, L.P.; Orham, E.L.; Stowers, I.F.; Braucht, J.R.

    1980-06-03

    We have designed, built, and characterized uv preilluminated gas switches for a trigger circuit and a low inductance discharge circuit. These switches have been incorporated into a 54 x 76 x 150 cm pulser module to produce a 1 Ma output current rising at 5 x 10/sup 12/ amps/sec with 1 ns jitter. Twenty such modules will be used on the Nova Inertial Confinement Fusion Laser System for plasma retropulse shutters.

  5. Bidirectional motility of the fission yeast kinesin-5, Cut7

    SciTech Connect

    Edamatsu, Masaki

    2014-03-28

    Highlights: • Motile properties of Cut7 (fission yeast kinesin-5) were studied for the first time. • Half-length Cut7 moved toward plus-end direction of microtubule. • Full-length Cut7 moved toward minus-end direction of microtubule. • N- and C-terminal microtubule binding sites did not switch the motile direction. - Abstract: Kinesin-5 is a homotetrameric motor with its motor domain at the N-terminus. Kinesin-5 crosslinks microtubules and functions in separating spindle poles during mitosis. In this study, the motile properties of Cut7, fission yeast kinesin-5, were examined for the first time. In in vitro motility assays, full-length Cut7 moved toward minus-end of microtubules, but the N-terminal half of Cut7 moved toward the opposite direction. Furthermore, additional truncated constructs lacking the N-terminal or C-terminal regions, but still contained the motor domain, did not switch the motile direction. These indicated that Cut7 was a bidirectional motor, and microtubule binding regions at the N-terminus and C-terminus were not involved in its directionality.

  6. Finding a stabilising switching law for switching nonlinear models

    NASA Astrophysics Data System (ADS)

    Lendek, Zs.; Raica, P.; Lauber, J.; Guerra, T. M.

    2016-09-01

    This paper considers the stabilisation of switching nonlinear models by switching between the subsystems. We assume that arbitrary switching between two subsystems is possible once a subsystem has been active for a predefined number of samples. We use a Takagi-Sugeno representation of the models and a switching Lyapunov function is employed to develop sufficient stability conditions. If the conditions are satisfied, we construct a switching law that stabilises the system. The application of the conditions is illustrated in several examples.

  7. Yeast studies reveal moonlighting functions of the ancient actin cytoskeleton.

    PubMed

    Sattlegger, Evelyn; Chernova, Tatiana A; Gogoi, Neeku M; Pillai, Indu V; Chernoff, Yury O; Munn, Alan L

    2014-08-01

    Classic functions of the actin cytoskeleton include control of cell size and shape and the internal organization of cells. These functions are manifest in cellular processes of fundamental importance throughout biology such as the generation of cell polarity, cell migration, cell adhesion, and cell division. However, studies in the unicellular model eukaryote Saccharomyces cerevisiae (Baker's yeast) are giving insights into other functions in which the actin cytoskeleton plays a critical role. These include endocytosis, control of protein translation, and determination of protein 3-dimensional shape (especially conversion of normal cellular proteins into prions). Here, we present a concise overview of these new "moonlighting" roles for the actin cytoskeleton and how some of these roles might lie at the heart of important molecular switches. This is an exciting time for researchers interested in the actin cytoskeleton. We show here how studies of actin are leading us into many new and exciting realms at the interface of genetics, biochemistry, and cell biology. While many of the pioneering studies have been conducted using yeast, the conservation of the actin cytoskeleton and its component proteins throughout eukaryotes suggests that these new roles for the actin cytoskeleton may not be restricted to yeast cells but rather may reflect new roles for the actin cytoskeleton of all eukaryotes. PMID:25138357

  8. Yeast studies reveal moonlighting functions of the ancient actin cytoskeleton

    PubMed Central

    Sattlegger, Evelyn; Chernova, Tatiana A.; Gogoi, Neeku M.; Pillai, Indu V.; Chernoff, Yury O.; Munn, Alan L.

    2014-01-01

    Classic functions of the actin cytoskeleton include control of cell size and shape and the internal organisation of cells. These functions are manifest in cellular processes of fundamental importance throughout biology such as the generation of cell polarity, cell migration, cell adhesion and cell division. However, studies in the unicellular model eukaryote Saccharomyces cerevisiae (Baker's yeast) are giving insights into other functions in which the actin cytoskeleton plays a critical role. These include endocytosis, control of protein translation and determination of protein 3-dimensional shape (especially conversion of normal cellular proteins into prions). Here we present a concise overview of these new "moonlighting" roles for the actin cytoskeleton and how some of these roles might lie at the heart of important molecular switches. This is an exciting time for researchers interested in the actin cytoskeleton. We show here how studies of actin are leading us into many new and exciting realms at the interface of genetics, biochemistry and cell biology. While many of the pioneering studies have been conducted using yeast, the conservation of the actin cytoskeleton and its component proteins throughout eukaryotes suggests that these new roles for the actin cytoskeleton may not be restricted to yeast cells but rather may reflect new roles for the actin cytoskeleton of all eukaryotes. PMID:25138357

  9. Low inductance gas switching.

    SciTech Connect

    Chavez, Ray; Harjes, Henry Charles III; Wallace, Zachariah; Elizondo, Juan E.

    2007-10-01

    The laser trigger switch (LTS) is a key component in ZR-type pulsed power systems. In ZR, the pulse rise time through the LTS is > 200 ns and additional stages of pulse compression are required to achieve the desired <100 ns rise time. The inductance of the LTS ({approx}500nH) in large part determines the energy transfer time through the switch and there is much to be gained in improving system performance and reducing system costs by reducing this inductance. The current path through the cascade section of the ZR LTS is at a diameter of {approx} 6-inches which is certainly not optimal from an inductance point of view. The LTS connects components of much greater diameter (typically 4-5 feet). In this LDRD the viability of switch concepts in which the diameter of cascade section is greatly increased have been investigated. The key technical question to be answered was, will the desired multi-channel behavior be maintained in a cascade section of larger diameter. This LDRD proceeded in 2 distinct phases. The original plan for the LDRD was to develop a promising switch concept and then design, build, and test a moderate scale switch which would demonstrate the key features of the concept. In phase I, a switch concept which meet all electrical design criteria and had a calculated inductance of 150 nH was developed. A 1.5 MV test switch was designed and fabrication was initiated. The LDRD was then redirected due to budgetary concerns. The fabrication of the switch was halted and the focus of the LDRD was shifted to small scale experiments designed to answer the key technical question concerning multi-channel behavior. In phase II, the Multi-channel switch test bed (MCST) was designed and constructed. The purpose of MCST was to provide a versatile, fast turn around facility for the study the multi-channel electrical breakdown behavior of a ZR type cascade switch gap in a parameter space near that of a ZR LTS. Parameter scans on source impedance, gap tilt, gap spacing and

  10. A radiation hard vacuum switch

    DOEpatents

    Boettcher, G.E.

    1988-07-19

    A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction. 3 figs.

  11. Yeast Genetics and Biotechnological Applications

    NASA Astrophysics Data System (ADS)

    Mishra, Saroj; Baranwal, Richa

    Yeast can be recognized as one of the very important groups of microorganisms on account of its extensive use in the fermentation industry and as a basic eukaryotic model cellular system. The yeast Saccharomyces cerevisiae has been extensively used to elucidate the genetics and regulation of several key functions in the cell such as cell mating, electron transport chain, protein trafficking, cell cycle events and others. Even before the genome sequence of the yeast was out, the structural organization and function of several of its genes was known. With the availability of the origin of replication from the 2 μm plasmid and the development of transformation system, it became the host of choice for expression of a number of important proteins. A large number of episomal and integrative shuttle vectors are available for expression of mammalian proteins. The latest developments in genomics and micro-array technology have allowed investigations of individual gene function by site-specific deletion method. The application of metabolic profiling has also assisted in understanding the cellular network operating in this yeast. This chapter is aimed at reviewing the use of this system as an experimental tool for conducting classical genetics. Various vector systems available, foreign genes expressed and the limitations as a host will be discussed. Finally, the use of various yeast enzymes in biotechnology sector will be reviewed.

  12. Energy losses in switches

    SciTech Connect

    Martin, T.H.; Seamen, J.F.; Jobe, D.O.

    1993-07-01

    The authors experiments show energy losses between 2 and 10 times that of the resistive time predictions. The experiments used hydrogen, helium, air, nitrogen, SF{sub 6} polyethylene, and water for the switching dielectric. Previously underestimated switch losses have caused over predicting the accelerator outputs. Accurate estimation of these losses is now necessary for new high-efficiency pulsed power devices where the switching losses constitute the major portion of the total energy loss. They found that the switch energy losses scale as (V{sub peak}I{sub peak}){sup 1.1846}. When using this scaling, the energy losses in any of the tested dielectrics are almost the same. This relationship is valid for several orders of magnitude and suggested a theoretical basis for these results. Currents up to .65 MA, with voltages to 3 MV were applied to various gaps during these experiments. The authors data and the developed theory indicates that the switch power loss continues for a much longer time than the resistive time, with peak power loss generally occurring at peak current in a ranging discharge instead of the early current time. All of the experiments were circuit code modeled after developing a new switch loss version based on the theory. The circuit code predicts switch energy loss and peak currents as a function of time. During analysis of the data they noticed slight constant offsets between the theory and data that depended on the dielectric. They modified the plasma conductivity for each tested dielectric to lessen this offset.

  13. Selective Advantages of a Parasexual Cycle for the Yeast Candida albicans.

    PubMed

    Zhang, Ningxin; Magee, Beatrice B; Magee, Paul T; Holland, Barbara R; Rodrigues, Ely; Holmes, Ann R; Cannon, Richard D; Schmid, Jan

    2015-08-01

    The yeast Candida albicans can mate. However, in the natural environment mating may generate progeny (fusants) fitter than clonal lineages too rarely to render mating biologically significant: C. albicans has never been observed to mate in its natural environment, the human host, and the population structure of the species is largely clonal. It seems incapable of meiosis, and most isolates are diploid and carry both mating-type-like (MTL) locus alleles, preventing mating. Only chromosome loss or localized loss of heterozygosity can generate mating-competent cells, and recombination of parental alleles is limited. To determine if mating is a biologically significant process, we investigated if mating is under selection. The ratio of nonsynonymous to synonymous mutations in mating genes and the frequency of mutations abolishing mating indicated that mating is under selection. The MTL locus is located on chromosome 5, and when we induced chromosome 5 loss in 10 clinical isolates, most of the resulting MTL-homozygotes could mate with each other, producing fusants. In laboratory culture, a novel environment favoring novel genotypes, some fusants grew faster than their parents, in which loss of heterozygosity had reduced growth rates, and also faster than their MTL-heterozygous ancestors-albeit often only after serial propagation. In a small number of experiments in which co-inoculation of an oral colonization model with MTL-homozygotes yielded small numbers of fusants, their numbers declined over time relative to those of the parents. Overall, our results indicate that mating generates genotypes superior to existing MTL-heterozygotes often enough to be under selection. PMID:26063661

  14. Switching Power Universality in Unipolar Resistive Switching Memories

    PubMed Central

    Kim, Jongmin; Jung, Kyooho; Kim, Yongmin; Jo, Yongcheol; Cho, Sangeun; Woo, Hyeonseok; Lee, Seongwoo; Inamdar, A. I.; Hong, Jinpyo; Lee, Jeon-Kook; Kim, Hyungsang; Im, Hyunsik

    2016-01-01

    We investigate the resistive switching power from unipolar resistive switching current-voltage characteristics in various binary metal oxide films sandwiched by different metal electrodes, and find a universal feature (the so-called universality) in the switching power among these devices. To experimentally derive the switching power universality, systematic measurements of the switching voltage and current are performed, and neither of these correlate with one another. As the switching resistance (R) increases, the switching power (P) decreases following a power law P ∝ R−β, regardless of the device configurations. The observed switching power universality is indicative of the existence of a commonly applicable switching mechanism. The origin of the power universality is discussed based on a metallic filament model and thermo-chemical reaction. PMID:27033695

  15. Switching Power Universality in Unipolar Resistive Switching Memories

    NASA Astrophysics Data System (ADS)

    Kim, Jongmin; Jung, Kyooho; Kim, Yongmin; Jo, Yongcheol; Cho, Sangeun; Woo, Hyeonseok; Lee, Seongwoo; Inamdar, A. I.; Hong, Jinpyo; Lee, Jeon-Kook; Kim, Hyungsang; Im, Hyunsik

    2016-04-01

    We investigate the resistive switching power from unipolar resistive switching current-voltage characteristics in various binary metal oxide films sandwiched by different metal electrodes, and find a universal feature (the so-called universality) in the switching power among these devices. To experimentally derive the switching power universality, systematic measurements of the switching voltage and current are performed, and neither of these correlate with one another. As the switching resistance (R) increases, the switching power (P) decreases following a power law P ∝ R‑β, regardless of the device configurations. The observed switching power universality is indicative of the existence of a commonly applicable switching mechanism. The origin of the power universality is discussed based on a metallic filament model and thermo-chemical reaction.

  16. Switching Power Universality in Unipolar Resistive Switching Memories.

    PubMed

    Kim, Jongmin; Jung, Kyooho; Kim, Yongmin; Jo, Yongcheol; Cho, Sangeun; Woo, Hyeonseok; Lee, Seongwoo; Inamdar, A I; Hong, Jinpyo; Lee, Jeon-Kook; Kim, Hyungsang; Im, Hyunsik

    2016-01-01

    We investigate the resistive switching power from unipolar resistive switching current-voltage characteristics in various binary metal oxide films sandwiched by different metal electrodes, and find a universal feature (the so-called universality) in the switching power among these devices. To experimentally derive the switching power universality, systematic measurements of the switching voltage and current are performed, and neither of these correlate with one another. As the switching resistance (R) increases, the switching power (P) decreases following a power law P ∝ R(-β), regardless of the device configurations. The observed switching power universality is indicative of the existence of a commonly applicable switching mechanism. The origin of the power universality is discussed based on a metallic filament model and thermo-chemical reaction. PMID:27033695

  17. The glyoxylate shunt is essential for desiccation tolerance in C. elegans and budding yeast.

    PubMed

    Erkut, Cihan; Gade, Vamshidhar R; Laxman, Sunil; Kurzchalia, Teymuras V

    2016-01-01

    Many organisms, including species from all kingdoms of life, can survive desiccation by entering a state with no detectable metabolism. To survive, C. elegans dauer larvae and stationary phase S. cerevisiae require elevated amounts of the disaccharide trehalose. We found that dauer larvae and stationary phase yeast switched into a gluconeogenic mode in which metabolism was reoriented toward production of sugars from non-carbohydrate sources. This mode depended on full activity of the glyoxylate shunt (GS), which enables synthesis of trehalose from acetate. The GS was especially critical during preparation of worms for harsh desiccation (preconditioning) and during the entry of yeast into stationary phase. Loss of the GS dramatically decreased desiccation tolerance in both organisms. Our results reveal a novel physiological role for the GS and elucidate a conserved metabolic rewiring that confers desiccation tolerance on organisms as diverse as worm and yeast. PMID:27090086

  18. The glyoxylate shunt is essential for desiccation tolerance in C. elegans and budding yeast

    PubMed Central

    Erkut, Cihan; Gade, Vamshidhar R; Laxman, Sunil; Kurzchalia, Teymuras V

    2016-01-01

    Many organisms, including species from all kingdoms of life, can survive desiccation by entering a state with no detectable metabolism. To survive, C. elegans dauer larvae and stationary phase S. cerevisiae require elevated amounts of the disaccharide trehalose. We found that dauer larvae and stationary phase yeast switched into a gluconeogenic mode in which metabolism was reoriented toward production of sugars from non-carbohydrate sources. This mode depended on full activity of the glyoxylate shunt (GS), which enables synthesis of trehalose from acetate. The GS was especially critical during preparation of worms for harsh desiccation (preconditioning) and during the entry of yeast into stationary phase. Loss of the GS dramatically decreased desiccation tolerance in both organisms. Our results reveal a novel physiological role for the GS and elucidate a conserved metabolic rewiring that confers desiccation tolerance on organisms as diverse as worm and yeast. DOI: http://dx.doi.org/10.7554/eLife.13614.001 PMID:27090086

  19. Thiol-Based Redox Switches and Gene Regulation

    PubMed Central

    2011-01-01

    Abstract Cysteine is notable among the universal, proteinogenic amino acids for its facile redox chemistry. Cysteine thiolates are readily modified by reactive oxygen species (ROS), reactive electrophilic species (RES), and reactive nitrogen species (RNS). Although thiol switches are commonly triggered by disulfide bond formation, they can also be controlled by S-thiolation, S-alkylation, or modification by RNS. Thiol-based switches are common in both prokaryotic and eukaryotic organisms and activate functions that detoxify reactive species and restore thiol homeostasis while repressing functions that would be deleterious if expressed under oxidizing conditions. Here, we provide an overview of the best-understood examples of thiol-based redox switches that affect gene expression. Intra- or intermolecular disulfide bond formation serves as a direct regulatory switch for several bacterial transcription factors (OxyR, OhrR/2-Cys, Spx, YodB, CrtJ, and CprK) and indirectly regulates others (the RsrA anti-σ factor and RegB sensory histidine kinase). In eukaryotes, thiol-based switches control the yeast Yap1p transcription factor, the Nrf2/Keap1 electrophile and oxidative stress response, and the Chlamydomonas NAB1 translational repressor. Collectively, these regulators reveal a remarkable range of chemical modifications exploited by Cys residues to effect changes in gene expression. Antioxid. Redox Signal. 14, 1049—1063. PMID:20626317

  20. Reprogramming eukaryotic translation with ligand-responsive synthetic RNA switches.

    PubMed

    Anzalone, Andrew V; Lin, Annie J; Zairis, Sakellarios; Rabadan, Raul; Cornish, Virginia W

    2016-05-01

    Protein synthesis in eukaryotes is regulated by diverse reprogramming mechanisms that expand the coding capacity of individual genes. Here, we exploit one such mechanism, termed -1 programmed ribosomal frameshifting (-1 PRF), to engineer ligand-responsive RNA switches that regulate protein expression. First, efficient -1 PRF stimulatory RNA elements were discovered by in vitro selection; then, ligand-responsive switches were constructed by coupling -1 PRF stimulatory elements to RNA aptamers using rational design and directed evolution in Saccharomyces cerevisiae. We demonstrate that -1 PRF switches tightly control the relative stoichiometry of two distinct protein outputs from a single mRNA, exhibiting consistent ligand response across whole populations of cells. Furthermore, -1 PRF switches were applied to build single-mRNA logic gates and an apoptosis module in yeast. Together, these results showcase the potential for harnessing translation-reprogramming mechanisms for synthetic biology, and they establish -1 PRF switches as powerful RNA tools for controlling protein synthesis in eukaryotes. PMID:26999002

  1. Atomic Scale Plasmonic Switch.

    PubMed

    Emboras, Alexandros; Niegemann, Jens; Ma, Ping; Haffner, Christian; Pedersen, Andreas; Luisier, Mathieu; Hafner, Christian; Schimmel, Thomas; Leuthold, Juerg

    2016-01-13

    The atom sets an ultimate scaling limit to Moore's law in the electronics industry. While electronics research already explores atomic scales devices, photonics research still deals with devices at the micrometer scale. Here we demonstrate that photonic scaling, similar to electronics, is only limited by the atom. More precisely, we introduce an electrically controlled plasmonic switch operating at the atomic scale. The switch allows for fast and reproducible switching by means of the relocation of an individual or, at most, a few atoms in a plasmonic cavity. Depending on the location of the atom either of two distinct plasmonic cavity resonance states are supported. Experimental results show reversible digital optical switching with an extinction ratio of 9.2 dB and operation at room temperature up to MHz with femtojoule (fJ) power consumption for a single switch operation. This demonstration of an integrated quantum device allowing to control photons at the atomic level opens intriguing perspectives for a fully integrated and highly scalable chip platform, a platform where optics, electronics, and memory may be controlled at the single-atom level. PMID:26670551

  2. Thermionic gas switch

    DOEpatents

    Hatch, G.L.; Brummond, W.A.; Barrus, D.M.

    1984-04-05

    The present invention is directed to an improved temperature responsive thermionic gas switch utilizing a hollow cathode and a folded emitter surface area. The folded emitter surface area of the thermionic switch substantially increases the on/off ratio by changing the conduction surface area involved in the two modes thereof. The improved switch of this invention provides an on/off ratio of 450:1 compared to the 10:1 ratio of the prior known thermionic switch, while providing for adjusting the on current. In the improved switch of this invention the conduction area is made small in the off mode, while in the on mode the conduction area is made large. This is achieved by utilizing a folded hollow cathode configuration and utilizing a folded emitter surface area, and by making the dimensions of the folds small enough so that a space charge will develop in the convolutions of the folds and suppress unignited current, thus limiting the current carrying surface in the off mode.

  3. Switching power pulse system

    DOEpatents

    Aaland, K.

    1983-08-09

    A switching system for delivering pulses of power from a source to a load using a storage capacitor charged through a rectifier, and maintained charged to a reference voltage level by a transistor switch and voltage comparator. A thyristor is triggered to discharge the storage capacitor through a saturable reactor and fractional turn saturable transformer having a secondary to primary turn ratio N of n:l/n = n[sup 2]. The saturable reactor functions as a soaker'' while the thyristor reaches saturation, and then switches to a low impedance state. The saturable transformer functions as a switching transformer with high impedance while a load coupling capacitor charges, and then switches to a low impedance state to dump the charge of the storage capacitor into the load through the coupling capacitor. The transformer is comprised of a multilayer core having two secondary windings tightly wound and connected in parallel to add their output voltage and reduce output inductance, and a number of single turn windings connected in parallel at nodes for the primary winding, each single turn winding linking a different one of the layers of the multilayer core. The load may be comprised of a resistive beampipe for a linear particle accelerator and capacitance of a pulse forming network. To hold off discharge of the capacitance until it is fully charged, a saturable core is provided around the resistive beampipe to isolate the beampipe from the capacitance until it is fully charged. 5 figs.

  4. Nanoscale memristive radiofrequency switches.

    PubMed

    Pi, Shuang; Ghadiri-Sadrabadi, Mohammad; Bardin, Joseph C; Xia, Qiangfei

    2015-01-01

    Radiofrequency switches are critical components in wireless communication systems and consumer electronics. Emerging devices include switches based on microelectromechanical systems and phase-change materials. However, these devices suffer from disadvantages such as large physical dimensions and high actuation voltages. Here we propose and demonstrate a nanoscale radiofrequency switch based on a memristive device. The device can be programmed with a voltage as low as 0.4 V and has an ON/OFF conductance ratio up to 10(12) with long state retention. We measure the radiofrequency performance of the switch up to 110 GHz and demonstrate low insertion loss (0.3 dB at 40 GHz), high isolation (30 dB at 40 GHz), an average cutoff frequency of 35 THz and competitive linearity and power-handling capability. Our results suggest that, in addition to their application in memory and computing, memristive devices are also a leading contender for radiofrequency switch applications. PMID:26108890

  5. Multiple switch actuator

    DOEpatents

    Beyer, Edward T.

    1976-01-06

    The present invention relates to switches and switch actuating devices to be operated for purposes of arming a bomb or other missile as it is dropped or released from an aircraft. The particular bomb or missile in which this invention is applied is one in which there is a plurality of circuits which are to be armed by the closing of switches upon dropping or releasing of the bomb. The operation of the switches to closed position is normally accomplished by means of a pull-out wire; that is, a wire which is withdrawn from the bomb or missile at the time of release of the bomb, one end of the wire being attached to the aircraft. The conditions to be met are that the arming switches must be positively and surely maintained in open position until the bomb is released and the arming action is effected. The action of the pull-out wire in achieving the arming action must be sure and positive with minimum danger of malfunctioning, jamming or binding.

  6. Genomic evolution of the ascomycetous yeasts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Yeasts are important for industrial and biotechnological processes and show remarkable metabolic and phylogenetic diversity despite morphological similarities. We have sequenced the genomes of 16 ascomycete yeasts of taxonomic and industrial importance including members of Saccharomycotina and Taphr...

  7. PHYLOGENETICS OF SACCHAROMYCETALES, THE ASCOMYCETE YEASTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ascomycete yeasts (Phylum Ascomycota: Subphylum Saccharomycotina: Class Saccharomycetes: Order Saccharomycetales) comprise a monophyletic lineage with a single order of about 1000 known species. These yeasts live as saprobes, often in association with plants, animals, and their interfaces. A few s...

  8. Yeast Can Affect Behavior and Learning.

    ERIC Educational Resources Information Center

    Crook, William G.

    1984-01-01

    A pediatrician recounts his experiences in diagnosing and treating allergies to common yeast germs that may result in behavior and learning problems. He lists characteristics that may predispose children to yeast-connected health problems. (CL)

  9. Systematic Definition of Protein Constituents along the Major Polarization Axis Reveals an Adaptive Reuse of the Polarization Machinery in Pheromone-Treated Budding Yeast

    PubMed Central

    2008-01-01

    Polarizing cells extensively restructure cellular components in a spatially and temporally coupled manner along the major axis of cellular extension. Budding yeast are a useful model of polarized growth, helping to define many molecular components of this conserved process. Besides budding, yeast cells also differentiate upon treatment with pheromone from the opposite mating type, forming a mating projection (the ‘shmoo’) by directional restructuring of the cytoskeleton, localized vesicular transport and overall reorganization of the cytosol. To characterize the proteomic localization changes accompanying polarized growth, we developed and implemented a novel cell microarray-based imaging assay for measuring the spatial redistribution of a large fraction of the yeast proteome, and applied this assay to identify proteins localized along the mating projection following pheromone treatment. We further trained a machine learning algorithm to refine the cell imaging screen, identifying additional shmoo-localized proteins. In all, we identified 74 proteins that specifically localize to the mating projection, including previously uncharacterized proteins (Ycr043c, Ydr348c, Yer071c, Ymr295c, and Yor304c-a) and known polarization complexes such as the exocyst. Functional analysis of these proteins, coupled with quantitative analysis of individual organelle movements during shmoo formation, suggests a model in which the basic machinery for cell polarization is generally conserved between processes forming the bud and the shmoo, with a distinct subset of proteins used only for shmoo formation. The net effect is a defined ordering of major organelles along the polarization axis, with specific proteins implicated at the proximal growth tip. PMID:19053807

  10. Switching power supply

    DOEpatents

    Mihalka, A.M.

    1984-06-05

    The invention is a repratable capacitor charging, switching power supply. A ferrite transformer steps up a dc input. The transformer primary is in a full bridge configuration utilizing power MOSFETs as the bridge switches. The transformer secondary is fed into a high voltage, full wave rectifier whose output is connected directly to the energy storage capacitor. The transformer is designed to provide adequate leakage inductance to limit capacitor current. The MOSFETs are switched to the variable frequency from 20 to 50 kHz to charge a capacitor from 0.6 kV. The peak current in a transformer primary and secondary is controlled by increasing the pulse width as the capacitor charges. A digital ripple counter counts pulses and after a preselected desired number is reached an up-counter is clocked.

  11. SWITCH user's manual

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The planning program, SWITCH, and its surrounding changed-goal-replanning program, Runaround, are described. The evolution of SWITCH and Runaround from an earlier planner, DEVISER, is recounted. SWITCH's plan representation, and its process of building a plan by backward chaining with strict chronological backtracking, are described. A guide for writing knowledge base files is provided, as are narrative guides for installing the program, running it, and interacting with it while it is running. Some utility functions are documented. For the sake of completeness, a narrative guide to the experimental discrepancy-replanning feature is provided. Appendices contain knowledge base files for a blocksworld domain, and a DRIBBLE file illustrating the output from, and user interaction with, the program in that domain.

  12. FAST ACTING CURRENT SWITCH

    DOEpatents

    Batzer, T.H.; Cummings, D.B.; Ryan, J.F.

    1962-05-22

    A high-current, fast-acting switch is designed for utilization as a crowbar switch in a high-current circuit such as used to generate the magnetic confinement field of a plasma-confining and heat device, e.g., Pyrotron. The device particularly comprises a cylindrical housing containing two stationary, cylindrical contacts between which a movable contact is bridged to close the switch. The movable contact is actuated by a differential-pressure, airdriven piston assembly also within the housing. To absorb the acceleration (and the shock imparted to the device by the rapidly driven, movable contact), an adjustable air buffer assembly is provided, integrally connected to the movable contact and piston assembly. Various safety locks and circuit-synchronizing means are also provided to permit proper cooperation of the invention and the high-current circuit in which it is installed. (AEC)

  13. Microfabricated triggered vacuum switch

    DOEpatents

    Roesler, Alexander W.; Schare, Joshua M.; Bunch, Kyle

    2010-05-11

    A microfabricated vacuum switch is disclosed which includes a substrate upon which an anode, cathode and trigger electrode are located. A cover is sealed over the substrate under vacuum to complete the vacuum switch. In some embodiments of the present invention, a metal cover can be used in place of the trigger electrode on the substrate. Materials used for the vacuum switch are compatible with high vacuum, relatively high temperature processing. These materials include molybdenum, niobium, copper, tungsten, aluminum and alloys thereof for the anode and cathode. Carbon in the form of graphitic carbon, a diamond-like material, or carbon nanotubes can be used in the trigger electrode. Channels can be optionally formed in the substrate to mitigate against surface breakdown.

  14. Optical computer switching network

    NASA Technical Reports Server (NTRS)

    Clymer, B.; Collins, S. A., Jr.

    1985-01-01

    The design for an optical switching system for minicomputers that uses an optical spatial light modulator such as a Hughes liquid crystal light valve is presented. The switching system is designed to connect 80 minicomputers coupled to the switching system by optical fibers. The system has two major parts: the connection system that connects the data lines by which the computers communicate via a two-dimensional optical matrix array and the control system that controls which computers are connected. The basic system, the matrix-based connecting system, and some of the optical components to be used are described. Finally, the details of the control system are given and illustrated with a discussion of timing.

  15. Yeast: A Research Organism for Teaching Genetics.

    ERIC Educational Resources Information Center

    Manney, Thomas R.; Manney, Monta L.

    1992-01-01

    Explains why laboratory strains of bakers yeast, Saccharomyces cerevisiae, are particularly suited for classroom science activities. Describes the sexual life cycle of yeast and the genetic system with visible mutations. Presents an overview of activities that can be done with yeast and gives a source for teachers to obtain more information. (PR)

  16. 21 CFR 73.355 - Phaffia yeast.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Phaffia yeast. 73.355 Section 73.355 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.355 Phaffia yeast. (a) Identity. (1) The color additive phaffia yeast consists of the killed, dried cells of a nonpathogenic and nontoxicogenic strain of...

  17. 21 CFR 73.355 - Phaffia yeast.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Phaffia yeast. 73.355 Section 73.355 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.355 Phaffia yeast. (a) Identity. (1) The color additive phaffia yeast consists of the killed, dried cells of a nonpathogenic and nontoxicogenic strain of...

  18. 21 CFR 73.355 - Phaffia yeast.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Phaffia yeast. 73.355 Section 73.355 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.355 Phaffia yeast. (a) Identity. (1) The color additive phaffia yeast consists of the killed, dried cells of a nonpathogenic and nontoxicogenic strain of...

  19. 21 CFR 73.355 - Phaffia yeast.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Phaffia yeast. 73.355 Section 73.355 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.355 Phaffia yeast. (a) Identity. (1) The color additive phaffia yeast consists of the killed, dried cells of a nonpathogenic and nontoxicogenic strain of...

  20. 21 CFR 73.355 - Phaffia yeast.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Phaffia yeast. 73.355 Section 73.355 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.355 Phaffia yeast. (a) Identity. (1) The color additive phaffia yeast consists of the killed, dried cells of a nonpathogenic and nontoxicogenic strain of...

  1. Bearingless switched reluctance motor

    NASA Technical Reports Server (NTRS)

    Morrison, Carlos R. (Inventor)

    2004-01-01

    A switched reluctance motor has a stator with a first set of poles directed toward levitating a rotor horizontally within the stator. A disc shaped portion of a hybrid rotor is affected by the change in flux relative to the current provided at these levitation poles. A processor senses the position of the rotor and changes the flux to move the rotor toward center of the stator. A second set of poles of the stator are utilized to impart torque upon a second portion of the rotor. These second set of poles are driven in a traditional switched reluctance manner by the processor.

  2. SHOCKPROOF MAGNETIC REED SWITCH

    DOEpatents

    Medal, E.

    1962-03-13

    A shockproof magnetic reed switch is described which comprises essentially a plurality of pairs of reed contacts of magnetic, electrical conducting material which are arranged generally in circumferential spaced relationship. At least two of the pairs are disposed to operate at a predetermined angle with respect to each other, and the contacts are wired in the circuit, so that the continuity, or discontinuity, of the circuit is not affected by a shock imposed on the switch. The contacts are hermetically sealed within an outer tubular jacket. (AEC)

  3. Comparative Evaluation of the BD Phoenix Yeast ID Panel and Remel RapID Yeast Plus System for Yeast Identification

    PubMed Central

    Grant, Michelle L.; Parajuli, Shobha; Deleon-Gonsalves, Raquel; Potula, Raghava; Truant, Allan L.

    2016-01-01

    Becton Dickinson Phoenix Yeast ID Panel was compared to the Remel RapID Yeast Plus System using 150 recent clinical yeast isolates and the API 20C AUX system to resolve discrepant results. The concordance rate between the Yeast ID Panel and the RapID Yeast Plus System (without arbitration) was 93.3% with 97.3% (146/150) and 95.3% (143/150) of the isolates correctly identified by the Becton Dickinson Phoenix and the Remel RapID, respectively, with arbitration. PMID:27366167

  4. Comparative Evaluation of the BD Phoenix Yeast ID Panel and Remel RapID Yeast Plus System for Yeast Identification.

    PubMed

    Grant, Michelle L; Parajuli, Shobha; Deleon-Gonsalves, Raquel; Potula, Raghava; Truant, Allan L

    2016-01-01

    Becton Dickinson Phoenix Yeast ID Panel was compared to the Remel RapID Yeast Plus System using 150 recent clinical yeast isolates and the API 20C AUX system to resolve discrepant results. The concordance rate between the Yeast ID Panel and the RapID Yeast Plus System (without arbitration) was 93.3% with 97.3% (146/150) and 95.3% (143/150) of the isolates correctly identified by the Becton Dickinson Phoenix and the Remel RapID, respectively, with arbitration. PMID:27366167

  5. 35. END VIEW, INTERIOR, SHOWING SWITCHING LEVERS, BERK SWITCH TOWER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. END VIEW, INTERIOR, SHOWING SWITCHING LEVERS, BERK SWITCH TOWER, SOUTH NORWALK - New York, New Haven & Hartford Railroad, Automatic Signalization System, Long Island Sound shoreline between Stamford & New Haven, Stamford, Fairfield County, CT

  6. 36. INTERIOR VIEW, BERK SWITCH TOWER, SOUTH NORWALK, SHOWING SWITCHING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. INTERIOR VIEW, BERK SWITCH TOWER, SOUTH NORWALK, SHOWING SWITCHING LEVERS FROM OPERATOR'S POSITION - New York, New Haven & Hartford Railroad, Automatic Signalization System, Long Island Sound shoreline between Stamford & New Haven, Stamford, Fairfield County, CT

  7. 43. OBLIQUE VIEW, GREEN SWITCH TOWER, COS COB, SHOWING SWITCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. OBLIQUE VIEW, GREEN SWITCH TOWER, COS COB, SHOWING SWITCH LEVER ASSEMBLAGE AND DISPLAY BOARD - New York, New Haven & Hartford Railroad, Automatic Signalization System, Long Island Sound shoreline between Stamford & New Haven, Stamford, Fairfield County, CT

  8. 41. INTERIOR VIEW, GREEN SWITCH TOWER, COS COB, SHOWING SWITCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. INTERIOR VIEW, GREEN SWITCH TOWER, COS COB, SHOWING SWITCH LEVER ASSEMBLAGE AND DISPLAY BOARD - New York, New Haven & Hartford Railroad, Automatic Signalization System, Long Island Sound shoreline between Stamford & New Haven, Stamford, Fairfield County, CT

  9. Main electrical switch banks, plant switch house, looking to the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Main electrical switch banks, plant switch house, looking to the North - Bureau of Mines Metallurgical Research Laboratory, Original Building, Date Street north of U.S. Highway 93, Boulder City, Clark County, NV

  10. High-speed switching characteristics of integrated optoelectronic crossbar switch

    NASA Astrophysics Data System (ADS)

    Gouin, Francois L.; Almeida, Carlos; Callender, Claire L.; Robitaille, Lucie; Noad, Julian P.

    1999-04-01

    Optoelectronic (OE) switching is a promising approach for routing signals in fiber optic networks. Recently, the integration of a 4 X 4 MSM array with optical surface waveguides has been reported. This technique greatly simplifies the packaging of an OE switch. The on-chip polyimide optical waveguides perform the optical signal distribution to a matrix of MSMs which are responsible for the switching operation itself. Photoresponse bandwidths exceeding 4 GHz have been demonstrated. Another important characteristic of a switch is the switching speed since it determines the reconfiguration time. Mechanical and thermal optical waveguide switches offer switching speeds of the order of milliseconds which is sufficient for network traffic management but too slow for packet switching. We report measurements on the switching characteristics of a 4 X 4 optoelectronic switch performed in both the frequency and time domain. In the time domain, the individual crosspoints exhibit a rise time of 3 ns. However, a sizeable overshoot and ringing settles only after 35 ns. This constitutes the reconfiguration time at present. This is confirmed by measurements in the frequency domain of the electrical transmission from control line to output line. The 3-dB switching bandwidth is a few hundred megahertz. The 35 ns reconfiguration time indicates that it is already suitable for packet switching in a 10 Mb/s network. Switching speed measurements on individual MSMs suggests that modifications to the switch circuit could improve the switching time. The switch could also find application as a component in the wavelength conversion circuit of a WDM fiber optic network.

  11. TDP-43 toxicity in yeast

    PubMed Central

    Armakola, Maria; Hart, Michael P.; Gitler, Aaron D.

    2010-01-01

    The budding yeast Saccharomyces cerevisiae is an emerging tool for investigating the molecular pathways that underpin several human neurodegenerative disorders associated with protein misfolding. Amyotrophic lateral sclerosis (ALS) is a devastating adult onset neurodegenerative disease primarily affecting motor neurons. The protein TDP-43 has recently been demonstrated to play an important role in the disease, however the mechanisms by which TDP-43 contributes to pathogenesis are unclear. To explore the mechanistic details that result in aberrant accumulation of TDP-43 and to discover potential strategies for therapeutic intervention, we employed a yeast TDP-43 proteinopathy model system. These studies allowed us to determine the regions of TDP-43 required for aggregation and toxicity and to define the effects of ALS-linked mutant forms of TDP-43. We have also been able to harness the power of yeast genetics to identify potent modifiers of TDP-43 toxicity using high-throughput yeast genetic screens. Here, we describe the methods and approaches that we have used in order to gain insight into TDP-43 biology and its role in disease. These approaches are readily adaptable to other neurodegenerative disease proteins. PMID:21115123

  12. Yeast as factory and factotum.

    PubMed

    Dixon, B

    2000-02-01

    After centuries of vigorous activity in making fine wines, beers and breads, Saccharomyces cerevisiae is now acquiring a rich new portfolio of skills, bestowed by genetic manipulation. As shown in a recent shop-window of research supported by the European Commission, yeasts will soon be benefiting industries as diverse as fish farming, pharmaceuticals and laundering. PMID:11190211

  13. Kiowa Creek Switching Station

    SciTech Connect

    Not Available

    1990-03-01

    The Western Area Power Administration (Western) proposes to construct, operate, and maintain a new Kiowa Creek Switching Station near Orchard in Morgan County, Colorado. Kiowa Creek Switching Station would consist of a fenced area of approximately 300 by 300 feet and contain various electrical equipment typical for a switching station. As part of this new construction, approximately one mile of an existing 115-kilovolt (kV) transmission line will be removed and replaced with a double circuit overhead line. The project will also include a short (one-third mile) realignment of an existing line to permit connection with the new switching station. In accordance with the Council on Environmental Quality (CEQ) regulations for implementing the procedural provisions of the National Environmental Policy Act of 1969 (NEPA), 40 CFR Parts 1500--1508, the Department of Energy (DOE) has determined that an environmental impact statement (EIS) is not required for the proposed project. This determination is based on the information contained in this environmental assessment (EA) prepared by Western. The EA identifies and evaluates the environmental and socioeconomic effects of the proposed action, and concludes that the advance impacts on the human environment resulting from the proposed project would not be significant. 8 refs., 3 figs., 1 tab.

  14. Multipath star switch controller

    NASA Technical Reports Server (NTRS)

    Anderson, T. O.

    1980-01-01

    Device concept permits parallel computers to scan several commonnetwork-connected data stations at maximum rate. Sequencers leap-frog to bypass ports already being serviced by another computer. Two-path system for 16-port star switch controller is cost effective if added bandwidth or increased reliability is desired. Triple-path system would be cost effective for 32-port controller.

  15. Oscillating Thermal Switch

    NASA Technical Reports Server (NTRS)

    Petrick, S. Walter

    1991-01-01

    Proposed heat switch transfers heat from source to sink in regular cycles. Self-sustaining; actuated by transferred heat, contains no moving parts, and needs no external heaters or electronic circuitry to synchronize heat-transfer periods or control heat-transfer rates. Intended for use in gas-sorption refrigerator.

  16. Waveguide switch protector

    NASA Technical Reports Server (NTRS)

    Kolbly, R. B.

    1972-01-01

    Device for detecting excessive operation of electric motors used to drive waveguide switches is described. Purpose of device is to prevent burnout of electric motor in event of waveguide stoppage at some point other than extreme limits of travel. Operation of equipment, components used to sense motor performance, and schematic diagram are included.

  17. Photonic MEMS switch applications

    NASA Astrophysics Data System (ADS)

    Husain, Anis

    2001-07-01

    As carriers and service providers continue their quest for profitable network solutions, they have shifted their focus from raw bandwidth to rapid provisioning, delivery and management of revenue generating services. Inherently transparent to data rate the transmission wavelength and data format, MEMS add scalability, reliability, low power and compact size providing flexible solutions to the management and/or fiber channels in long haul, metro, and access networks. MEMS based photonic switches have gone from the lab to commercial availability and are now currently in carrier trials and volume production. 2D MEMS switches offer low up-front deployment costs while remaining scalable to large arrays. They allow for transparent, native protocol transmission. 2D switches enable rapid service turn-up and management for many existing and emerging revenue rich services such as storage connectivity, optical Ethernet, wavelength leasing and optical VPN. As the network services evolve, the larger 3D MEMS switches, which provide greater scalability and flexibility, will become economically viable to serve the ever-increasing needs.

  18. Molecular Rotors as Switches

    PubMed Central

    Xue, Mei; Wang, Kang L.

    2012-01-01

    The use of a functional molecular unit acting as a state variable provides an attractive alternative for the next generations of nanoscale electronics. It may help overcome the limits of conventional MOSFETd due to their potential scalability, low-cost, low variability, and highly integratable characteristics as well as the capability to exploit bottom-up self-assembly processes. This bottom-up construction and the operation of nanoscale machines/devices, in which the molecular motion can be controlled to perform functions, have been studied for their functionalities. Being triggered by external stimuli such as light, electricity or chemical reagents, these devices have shown various functions including those of diodes, rectifiers, memories, resonant tunnel junctions and single settable molecular switches that can be electronically configured for logic gates. Molecule-specific electronic switching has also been reported for several of these device structures, including nanopores containing oligo(phenylene ethynylene) monolayers, and planar junctions incorporating rotaxane and catenane monolayers for the construction and operation of complex molecular machines. A specific electrically driven surface mounted molecular rotor is described in detail in this review. The rotor is comprised of a monolayer of redox-active ligated copper compounds sandwiched between a gold electrode and a highly-doped P+ Si. This electrically driven sandwich-type monolayer molecular rotor device showed an on/off ratio of approximately 104, a read window of about 2.5 V, and a retention time of greater than 104 s. The rotation speed of this type of molecular rotor has been reported to be in the picosecond timescale, which provides a potential of high switching speed applications. Current-voltage spectroscopy (I-V) revealed a temperature-dependent negative differential resistance (NDR) associated with the device. The analysis of the device I–V characteristics suggests the source of the

  19. Heat-transfer thermal switch

    NASA Technical Reports Server (NTRS)

    Friedell, M. V.; Anderson, A. J.

    1974-01-01

    Thermal switch maintains temperature of planetary lander, within definite range, by transferring heat. Switch produces relatively large stroke and force, uses minimum electrical power, is lightweight, is vapor pressure actuated, and withstands sterilization temperatures without damage.

  20. Automatic thermal switch. [spacecraft applications

    NASA Technical Reports Server (NTRS)

    Cunningham, J. W.; Wing, L. D. (Inventor)

    1983-01-01

    An automatic thermal switch to control heat flow includes two thermally conductive plates and a thermally conductive switch saddle pivotally mounted to the first plate. A flexible heat carrier is connected between the switch saddle and the second plate. A phase-change power unit, including a piston coupled to the switch saddle, is in thermal contact with the first thermally conductive plate. A biasing element biases the switch saddle in a predetermined position with respect to the first plate. When the phase-change power unit is actuated by an increase in heat transmitted through the first place, the piston extends and causes the switch saddle to pivot, thereby varying the thermal conduction between the two plates through the switch saddle and flexible heat carrier. The biasing element, switch saddle, and piston can be arranged to provide either a normally closed or normally opened thermally conductive path between the two plates.

  1. Switching power pulse system

    DOEpatents

    Aaland, Kristian

    1983-01-01

    A switching system for delivering pulses of power from a source (10) to a load (20) using a storage capacitor (C3) charged through a rectifier (D1, D2), and maintained charged to a reference voltage level by a transistor switch (Q1) and voltage comparator (12). A thyristor (22) is triggered to discharge the storage capacitor through a saturable reactor (18) and fractional turn saturable transformer (16) having a secondary to primary turn ratio N of n:l/n=n.sup.2. The saturable reactor (18) functions as a "soaker" while the thyristor reaches saturation, and then switches to a low impedance state. The saturable transformer functions as a switching transformer with high impedance while a load coupling capacitor (C4) charges, and then switches to a low impedance state to dump the charge of the storage capacitor (C3) into the load through the coupling capacitor (C4). The transformer is comprised of a multilayer core (26) having two secondary windings (28, 30) tightly wound and connected in parallel to add their output voltage and reduce output inductance, and a number of single turn windings connected in parallel at nodes (32, 34) for the primary winding, each single turn winding linking a different one of the layers of the multilayer core. The load may be comprised of a resistive beampipe (40) for a linear particle accelerator and capacitance of a pulse forming network (42). To hold off discharge of the capacitance until it is fully charged, a saturable core (44) is provided around the resistive beampipe (40) to isolate the beampipe from the capacitance (42) until it is fully charged.

  2. Boric acid-dependent decrease in regulatory histone H3 acetylation is not mutagenic in yeast.

    PubMed

    Pointer, Benjamin R; Schmidt, Martin

    2016-07-01

    Candida albicans is a dimorphic yeast commonly found on human mucosal membranes that switches from yeast to hyphal morphology in response to environmental factors. The change to hyphal growth requires histone H3 modifications by the yeast-specific histone acetyltransferase Rtt109. In addition to its role in morphogenesis, Rtt109-dependent acetylation of histone H3 lysine residues 9 and 56 has regulatory functions during DNA replication and repair. Boric acid (BA) is a broad-spectrum agent that specifically inhibits C. albicans hyphal growth, locking the fungus in its harmless commensal yeast state. The present study characterizes the effect of BA on C. albicans histone acetylation in respect to specificity, time-course and significance. We demonstrate that sublethal concentrations of BA reduce H3K9/H3K56 acetylation, both on a basal level and in response to genotoxic stress. Acetylation at other selected histone sites were not affected by BA. qRT-PCR expression analysis of the DNA repair gene Rad51 indicated no elevated level of genotoxic stress during BA exposure. A forward-mutation analysis demonstrated the BA does not increase spontaneous or induced mutations. The findings suggest that DNA repair remains effective even when histone H3 acetylation decreases and dispels the notion that BA treatment impairs genome integrity in yeast. PMID:27190149

  3. Two-dimensional protein map of an "ale"-brewing yeast strain: proteome dynamics during fermentation.

    PubMed

    Kobi, Dominique; Zugmeyer, Sandra; Potier, Serge; Jaquet-Gutfreund, Laurence

    2004-12-01

    The first protein map of an ale-fermenting yeast is presented in this paper: 205 spots corresponding to 133 different proteins were identified. Comparison of the proteome of this ale strain with a lager brewing yeast and the Saccharomyces cerevisiae strain S288c confirmed that this ale strain is much closer to S288c than the lager strain at the proteome level. The dynamics of the ale-brewing yeast proteome during production-scale fermentation was analysed at the beginning and end of the first and the third usage of the yeast (called generation in the brewing industry). During the first generation, most changes were related to the switch from aerobic propagation to anaerobic fermentation. Fewer changes were observed during the third generation but certain stress-response proteins such as Hsp26p, Ssa4p and Pnc1p exhibited constitutive expression in subsequent generations. The ale brewing yeast strain appears to be quite well adapted to fermentation conditions and stresses. PMID:15556083

  4. An AIF orthologue regulates apoptosis in yeast

    PubMed Central

    Wissing, Silke; Ludovico, Paula; Herker, Eva; Büttner, Sabrina; Engelhardt, Silvia M.; Decker, Thorsten; Link, Alexander; Proksch, Astrid; Rodrigues, Fernando; Corte-Real, Manuela; Fröhlich, Kai-Uwe; Manns, Joachim; Candé, Céline; Sigrist, Stephan J.; Kroemer, Guido; Madeo, Frank

    2004-01-01

    Apoptosis-inducing factor (AIF), a key regulator of cell death, is essential for normal mammalian development and participates in pathological apoptosis. The proapoptotic nature of AIF and its mode of action are controversial. Here, we show that the yeast AIF homologue Ynr074cp controls yeast apoptosis. Similar to mammalian AIF, Ynr074cp is located in mitochondria and translocates to the nucleus of yeast cells in response to apoptotic stimuli. Purified Ynr074cp degrades yeast nuclei and plasmid DNA. YNR074C disruption rescues yeast cells from oxygen stress and delays age-induced apoptosis. Conversely, overexpression of Ynr074cp strongly stimulates apoptotic cell death induced by hydrogen peroxide and this effect is attenuated by disruption of cyclophilin A or the yeast caspase YCA1. We conclude that Ynr074cp is a cell death effector in yeast and rename it AIF-1 (Aif1p, gene AIF1). PMID:15381687

  5. Easily-wired toggle switch

    NASA Technical Reports Server (NTRS)

    Dean, W. T.; Stringer, E. J.

    1979-01-01

    Crimp-type connectors reduce assembly and disassembly time. With design, no switch preparation is necessary and socket contracts are crimped to wires inserted in module attached to back of toggle switch engaging pins inside module to make electrical connections. Wires are easily removed with standard detachment tool. Design can accommodate wires of any gage and as many terminals can be placed on switch as wire gage and switch dimensions will allow.

  6. Transparent electrode for optical switch

    DOEpatents

    Goldhar, J.; Henesian, M.A.

    1984-10-19

    The invention relates generally to optical switches and techniques for applying a voltage to an electro-optical crystal, and more particularly, to transparent electodes for an optical switch. System architectures for very large inertial confinement fusion (ICF) lasers require active optical elements with apertures on the order of one meter. Large aperture optical switches are needed for isolation of stages, switch-out from regenerative amplifier cavities and protection from target retroreflections.

  7. Radiation sensitive solid state switch

    NASA Technical Reports Server (NTRS)

    Hutto, R. J. (Inventor)

    1973-01-01

    A mechanically operable solid state switch suited for use in achieving a variable circuit-switching function is described. This switch is characterized by an annular array of photoresponsive switching devices, disposed in communication with an included source of radiation, and a plurality of interchangeable, mechanically operable interrupter disks. Each disk has a predetermined pattern of transparent and opaque portions. Operative displacement of each disk serves to make and break selected electrical circuits through the photo responsive devices of said array.

  8. High speed switching in gases

    SciTech Connect

    Cassell, R.E.; Villa, F.

    1989-02-01

    A fast, efficient and reliable switch is the basic ingredient of a pulse power accelerator. Two switches have been proposed so far: the solid state switch, and the vacuum photodiode switch. The solid state version has been tested to some extent, albeit at low (few kilovolts) level, with risetime around 10 ps in the radial line transformer configuration. The vacuum photodiode is being investigated by Fisher and Rao at Brookhaven National Laboratory. Common to both switches is the need of a short laser pulse; near infrared for the solid state switch, and ultraviolet for the vacuum photodiode switch. Another common feature is the poor energy gain of these switches: the gain being the ratio between the electrical energy switched and the laser energy needed to drive the switch. For the solid state switch, calculations and experimental data show that the energy gain cannot exceed a value between 5 and 10. For the vacuum photodiode, the situation is somewhat similar, unless very high quantum efficiency, rugged photocathodes can be found. A closing switch also can be used to produce short pulses of rf at frequencies related to its closing time, using a well-known device called the frozen wave generator. For a risetime of the order of 30 ps, one could produce several Gigawatts of rf at Xband at very low cost. 12 refs., 12 figs.

  9. Illuminated push-button switch

    NASA Technical Reports Server (NTRS)

    Iwagiri, T.

    1983-01-01

    An illuminated push-button switch is described. It is characterized by the fact that is consists of a switch group, an operator button opening and closing the switch group, and a light-emitting element which illuminates the face of the operator button.

  10. Organic Materials For Optical Switching

    NASA Technical Reports Server (NTRS)

    Cardelino, Beatriz H.

    1993-01-01

    Equations predict properties of candidate materials. Report presents results of theoretical study of nonlinear optical properties of organic materials. Such materials used in optical switching devices for computers and telecommunications, replacing electronic switches. Optical switching potentially offers extremely high information throughout in compact hardware.

  11. Semiconductor ac static power switch

    NASA Technical Reports Server (NTRS)

    Vrancik, J.

    1968-01-01

    Semiconductor ac static power switch has long life and high reliability, contains no moving parts, and operates satisfactorily in severe environments, including high vibration and shock conditions. Due to their resistance to shock and vibration, static switches are used where accidental switching caused by mechanical vibration or shock cannot be tolerated.

  12. Language Switching and Language Competition

    ERIC Educational Resources Information Center

    Macizo, Pedro; Bajo, Teresa; Paolieri, Daniela

    2012-01-01

    This study examined the asymmetrical language switching cost in a word reading task (Experiment 1) and in a categorization task (Experiment 2 and 3). In Experiment 1, Spanish-English bilinguals named words in first language (L1) and second language (L2) in a switching paradigm. They were slower to switch from their weaker L2 to their more dominant…

  13. Abacus switch: a new scalable multicast ATM switch

    NASA Astrophysics Data System (ADS)

    Chao, H. Jonathan; Park, Jin-Soo; Choe, Byeong-Seog

    1995-10-01

    This paper describes a new architecture for a scalable multicast ATM switch from a few tens to thousands of input ports. The switch, called Abacus switch, has a nonblocking memoryless switch fabric followed by small switch modules at the output ports; the switch has input and output buffers. Cell replication, cell routing, output contention resolution, and cell addressing are all performed distributedly in the Abacus switch so that it can be scaled up to thousnads input and output ports. A novel algorithm has been proposed to resolve output port contention while achieving input and output ports. A novel algorithm has been proposed to reolve output port contention while achieving input buffers sharing, fairness among the input ports, and multicast call splitting. The channel grouping concept is also adopted in the switch to reduce the hardware complexity and improve the switch's throughput. The Abacus switch has a regular structure and thus has the advantages of: 1) easy expansion, 2) relaxed synchronization for data and clock signals, and 3) building the switch fabric using existing CMOS technology.

  14. Biochemical switching device: how to turn on (off) the switch.

    PubMed

    Okamoto, M; Sakai, T; Hayashi, K

    1989-01-01

    We previously showed with computer simulations that cyclic enzyme systems have the reliability of ON-OFF types of operation (McCulloch-Pitts' neuronic equation) and the applicability for a switching circuit in a biocomputer. The switching time was inevitably determined in accordance with the difference in amount between two inputs of the system. This characteristic is, however, a disadvantage for practical use of a switching device; we need to improve the system in order for the switching time to optionally be changed. We shall present here how to turn on (off) the switch independently of the modes of two inputs. By introducing pulse perturbation, we could optionally set up the switching time of a cyclic enzyme system (biochemical switching device). PMID:2720139

  15. High gain GaAs photoconductive semiconductor switches: Switch longevity

    SciTech Connect

    Loubriel, G.M.; Zutavern, F.J.; Mar, A.

    1998-07-01

    Optically activated, high gain GaAs switches are being tested for many different pulsed power applications that require long lifetime (longevity). The switches have p and n contact metallization (with intentional or unintentional dopants) configured in such a way as to produce p-i-n or n-i-n switches. The longevity of the switches is determined by circuit parameters and by the ability of the contacts to resist erosion. This paper will describe how the switches performed in test-beds designed to measure switch longevity. The best longevity was achieved with switches made with diffused contacts, achieving over 50 million pulses at 10 A and over 2 million pulses at 80 A.

  16. Mycotoxins - prevention and decontamination by yeasts.

    PubMed

    Pfliegler, Walter P; Pusztahelyi, Tünde; Pócsi, István

    2015-07-01

    The application of yeasts has great potential in reducing the economic damage caused by toxigenic fungi in the agriculture. Some yeasts may act as biocontrol agents inhibiting the growth of filamentous fungi. These species may also gain importance in the preservation of agricultural products and in the reduction of their mycotoxin contamination, yet the extent of mycotoxin production in the presence of biocontrol agents is relatively less understood. The application of yeasts in various technological processes may have a direct inhibitory effect on the toxin production of certain molds, which is independent of their growth suppressing effect. Furthermore, several yeast species are capable of accumulating mycotoxins from agricultural products, thereby effectively decontaminating them. Probiotic yeasts or products containing yeast cell wall are also applied to counteract mycotoxicosis in livestock. Several yeast strains are also able to degrade toxins to less-toxic or even non-toxic substances. This intensively researched field would greatly benefit from a deeper knowledge on the genetic and molecular basis of toxin degradation. Moreover, yeasts and their biotechnologically important enzymes may exhibit sensitivity to certain mycotoxins, thereby mounting a considerable problem for the biotechnological industry. It is noted that yeasts are generally regarded as safe; however, there are reports of toxin degrading species that may cause human fungal infections. The aspects of yeast-mycotoxin relations with a brief consideration of strain improvement strategies and genetic modification for improved detoxifying properties and/or mycotoxin resistance are reviewed here. PMID:25682759

  17. Optical fiber switch

    DOEpatents

    Early, James W.; Lester, Charles S.

    2002-01-01

    Optical fiber switches operated by electrical activation of at least one laser light modulator through which laser light is directed into at least one polarizer are used for the sequential transport of laser light from a single laser into a plurality of optical fibers. In one embodiment of the invention, laser light from a single excitation laser is sequentially transported to a plurality of optical fibers which in turn transport the laser light to separate individual remotely located laser fuel ignitors. The invention can be operated electro-optically with no need for any mechanical or moving parts, or, alternatively, can be operated electro-mechanically. The invention can be used to switch either pulsed or continuous wave laser light.

  18. Neurotransmitter Switching? No Surprise

    PubMed Central

    Spitzer, Nicholas C.

    2015-01-01

    Among the many forms of brain plasticity, changes in synaptic strength and changes in synapse number are particularly prominent. However, evidence for neurotransmitter respecification or switching has been accumulating steadily, both in the developing nervous system and in the adult brain, with observations of transmitter addition, loss, or replacement of one transmitter with another. Natural stimuli can drive these changes in transmitter identity, with matching changes in postsynaptic transmitter receptors. Strikingly, they often convert the synapse from excitatory to inhibitory or vice versa, providing a basis for changes in behavior in those cases in which it has been examined. Progress has been made in identifying the factors that induce transmitter switching and in understanding the molecular mechanisms by which it is achieved. There are many intriguing questions to be addressed. PMID:26050033

  19. A plasmonic Fano switch.

    PubMed

    Chang, Wei-Shun; Lassiter, J Britt; Swanglap, Pattanawit; Sobhani, Heidar; Khatua, Saumyakanti; Nordlander, Peter; Halas, Naomi J; Link, Stephan

    2012-09-12

    Plasmonic clusters can support Fano resonances, where the line shape characteristics are controlled by cluster geometry. Here we show that clusters with a hemicircular central disk surrounded by a circular ring of closely spaced, coupled nanodisks yield Fano-like and non-Fano-like spectra for orthogonal incident polarization orientations. When this structure is incorporated into an uniquely broadband, liquid crystal device geometry, the entire Fano resonance spectrum can be switched on and off in a voltage-dependent manner. A reversible transition between the Fano-like and non-Fano-like spectra is induced by relatively low (∼6 V) applied voltages, resulting in a complete on/off switching of the transparency window. PMID:22924610

  20. Plasma opening switch

    DOEpatents

    Savage, Mark E.; Mendel, Jr., Clifford W.

    2001-01-01

    A command triggered plasma opening switch assembly using an amplification stage. The assembly surrounds a coaxial transmission line and has a main plasma opening switch (POS) close to the load and a trigger POS upstream from the main POS. The trigger POS establishes two different current pathways through the assembly depended on whether it has received a trigger current pulse. The initial pathway has both POS's with plasma between their anodes and cathodes to form a short across the transmission line and isolating the load. The final current pathway is formed when the trigger POS receives a trigger current pulse which energizes its fast coil to push the conductive plasma out from between its anode and cathode, allowing the main transmission line current to pass to the fast coil of the main POS, thus pushing its plasma out the way so as to establish a direct current pathway to the load.

  1. The quantum cryptographic switch

    NASA Astrophysics Data System (ADS)

    Srinatha, N.; Omkar, S.; Srikanth, R.; Banerjee, Subhashish; Pathak, Anirban

    2014-01-01

    We illustrate the principle of a cryptographic switch for a quantum scenario, in which a third party (Charlie) can control to a continuously varying degree the amount of information the receiver (Bob) receives, after the sender (Alice) has sent her information through a quantum channel. Suppose Charlie transmits a Bell state to Alice and Bob. Alice uses dense coding to transmit two bits to Bob. Only if the 2-bit information corresponding to the choice of the Bell state is made available by Charlie to Bob can the latter recover Alice's information. By varying the amount of information Charlie gives, he can continuously alter the information recovered by Bob. The performance of the protocol as subjected to the squeezed generalized amplitude damping channel is considered. We also present a number of practical situations where a cryptographic switch would be of use.

  2. MULTIPLE SPARK GAP SWITCH

    DOEpatents

    Schofield, A.E.

    1958-07-22

    A multiple spark gap switch of unique construction is described which will permit controlled, simultaneous discharge of several capacitors into a load. The switch construction includes a disc electrode with a plurality of protuberances of generally convex shape on one surface. A firing electrode is insulatingly supponted In each of the electrode protuberances and extends substantially to the apex thereof. Individual electrodes are disposed on an insulating plate parallel with the disc electrode to form a number of spark gaps with the protuberances. These electrodes are each connected to a separate charged capacitor and when a voltage ls applied simultaneously between the trigger electrodes and the dlsc electrode, each spark gap fires to connect its capacitor to the disc electrode and a subsequent load.

  3. Cryogenic switched MOSFET characterization

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Both p channel and n channel enhancement mode MOSFETs can be readily switched on and off at temperatures as low as 2.8 K so that switch sampled readout of a VLWIR Ge:Ga focal plane is electronically possible. Noise levels as low as 100 rms electrons per sample (independent of sample rate) can be achieved using existing p channel MOSFETs, at overall rates up to 30,000 samples/second per multiplexed channel (e.g., 32 detectors at a rate of almost 1,000 frames/second). Run of the mill devices, including very low power dissipation n channel FETs would still permit noise levels of the order of 500 electrons/sample.

  4. Evolution of genetic switch complexity

    PubMed Central

    Broussard, Gregory W.; Hatfull, Graham F.

    2013-01-01

    The circuitry of the phage λ genetic switch determining the outcome of lytic or lysogenic growth is well-integrated and complex, raising the question as to how it evolved. It is plausible that it arose from a simpler ancestral switch with fewer components that underwent various additions and refinements, as it adapted to vast numbers of different hosts and conditions. We have recently identified a new class of genetic switches found in mycobacteriophages and other prophages, in which immunity is dependent on integration. These switches contain only three genes (integrase, repressor and cro) and represent a major departure from the λ-like circuitry, lacking many features such as xis, cII and cIII. These small self-contained switches represent an unrealized, elegant circuitry for controlling infection outcome. In this addendum, we propose a model of possible events in the evolution of a complex λ-like switch from a simpler integration-dependent switch. PMID:23819104

  5. CREE: Making the Switch

    SciTech Connect

    Grider, David; Palmer, John

    2014-03-06

    CREE, with the help of ARPA-E funding, has developed a Silicon Carbide (SIC) transistor which can be used to create solid state transformers capable of meeting the unique needs of the emerging smart grid. SIC transistors are different from common silicon computer chips in that they handle grid scale voltages with ease and their high frequency switching is well suited to the intermittent nature of renewable energy generation.

  6. CREE: Making the Switch

    ScienceCinema

    Grider, David; Palmer, John

    2014-04-09

    CREE, with the help of ARPA-E funding, has developed a Silicon Carbide (SIC) transistor which can be used to create solid state transformers capable of meeting the unique needs of the emerging smart grid. SIC transistors are different from common silicon computer chips in that they handle grid scale voltages with ease and their high frequency switching is well suited to the intermittent nature of renewable energy generation.

  7. Composite Material Switches

    NASA Technical Reports Server (NTRS)

    Javadi, Hamid (Inventor)

    2001-01-01

    A device to protect electronic circuitry from high voltage transients is constructed from a relatively thin piece of conductive composite sandwiched between two conductors so that conduction is through the thickness of the composite piece. The device is based on the discovery that conduction through conductive composite materials in this configuration switches to a high resistance mode when exposed to voltages above a threshold voltage.

  8. Automatic switching matrix

    DOEpatents

    Schlecht, Martin F.; Kassakian, John G.; Caloggero, Anthony J.; Rhodes, Bruce; Otten, David; Rasmussen, Neil

    1982-01-01

    An automatic switching matrix that includes an apertured matrix board containing a matrix of wires that can be interconnected at each aperture. Each aperture has associated therewith a conductive pin which, when fully inserted into the associated aperture, effects electrical connection between the wires within that particular aperture. Means is provided for automatically inserting the pins in a determined pattern and for removing all the pins to permit other interconnecting patterns.

  9. MCT/MOSFET Switch

    NASA Technical Reports Server (NTRS)

    Rippel, Wally E.

    1990-01-01

    Metal-oxide/semiconductor-controlled thyristor (MCT) and metal-oxide/semiconductor field-effect transistor (MOSFET) connected in switching circuit to obtain better performance. Offers high utilization of silicon, low forward voltage drop during "on" period of operating cycle, fast turnon and turnoff, and large turnoff safe operating area. Includes ability to operate at high temperatures, high static blocking voltage, and ease of drive.

  10. Opportunistic yeast pathogens: reservoirs, virulence mechanisms, and therapeutic strategies.

    PubMed

    Polvi, Elizabeth J; Li, Xinliu; O'Meara, Teresa R; Leach, Michelle D; Cowen, Leah E

    2015-06-01

    Life-threatening invasive fungal infections are becoming increasingly common, at least in part due to the prevalence of medical interventions resulting in immunosuppression. Opportunistic fungal pathogens of humans exploit hosts that are immunocompromised, whether by immunosuppression or genetic predisposition, with infections originating from either commensal or environmental sources. Fungal pathogens are armed with an arsenal of traits that promote pathogenesis, including the ability to survive host physiological conditions and to switch between different morphological states. Despite the profound impact of fungal pathogens on human health worldwide, diagnostic strategies remain crude and treatment options are limited, with resistance to antifungal drugs on the rise. This review will focus on the global burden of fungal infections, the reservoirs of these pathogens, the traits of opportunistic yeast that lead to pathogenesis, host genetic susceptibilities, and the challenges that must be overcome to combat antifungal drug resistance and improve clinical outcome. PMID:25700837

  11. Extended lifetime railgap switch

    SciTech Connect

    Cohn, D.B.; Mendoza, P.J.

    1988-02-02

    In a railgap switch of the type having an elongate blade electrode made of conductive material, an elongate housing made of insulating material for supporting the blade electrode and plate electrode in opposed relation extending in the same direction with the blade centered over the plate and separated therefrom by a gap, and a gas filling the housing and the gap, the gas being selected to breakdown and switch from a highly insulative state to a highly conductive state upon application of a high voltage across the blade and plate electrodes, the improvement is described comprising: forming the blade with laterally extending transverse wing portions at the edge of the blade and adjacent the gap so as to extend in spaced parallel relation to the surface of the plate, the blade generally following the contour thereof to form an inverted T-shape structure with the wing portions extending transversely of the elongate dimension of the blade. The wing portions terminating in a pair of spaced parallel edges extending along the elongate direction of the blade to thereby create two spaced elongate edges along which arcs form serving to divide the erosion effects of discharge between them, the current through each edge being one-half of that in single-edge devices with ablation wear reduced accordingly to give significantly larger switch lifetime. The blade and wing portions limiting ablation erosion of the edges in a direction generally align with the plate contour so that the edge-to-plate separation remains substantially constant.

  12. Ferroelectric switching of elastin

    PubMed Central

    Liu, Yuanming; Cai, Hong-Ling; Zelisko, Matthew; Wang, Yunjie; Sun, Jinglan; Yan, Fei; Ma, Feiyue; Wang, Peiqi; Chen, Qian Nataly; Zheng, Hairong; Meng, Xiangjian; Sharma, Pradeep; Zhang, Yanhang; Li, Jiangyu

    2014-01-01

    Ferroelectricity has long been speculated to have important biological functions, although its very existence in biology has never been firmly established. Here, we present compelling evidence that elastin, the key ECM protein found in connective tissues, is ferroelectric, and we elucidate the molecular mechanism of its switching. Nanoscale piezoresponse force microscopy and macroscopic pyroelectric measurements both show that elastin retains ferroelectricity at 473 K, with polarization on the order of 1 μC/cm2, whereas coarse-grained molecular dynamics simulations predict similar polarization with a Curie temperature of 580 K, which is higher than most synthetic molecular ferroelectrics. The polarization of elastin is found to be intrinsic in tropoelastin at the monomer level, analogous to the unit cell level polarization in classical perovskite ferroelectrics, and it switches via thermally activated cooperative rotation of dipoles. Our study sheds light onto a long-standing question on ferroelectric switching in biology and establishes ferroelectricity as an important biophysical property of proteins. This is a critical first step toward resolving its physiological significance and pathological implications. PMID:24958890

  13. Ultrafast gas switching experiments

    SciTech Connect

    Frost, C.A.; Martin, T.H.; Patterson, P.E.; Rinehart, L.F.; Rohwein, G.J.; Roose, L.D.; Aurand, J.F.; Buttram, M.T.

    1996-11-01

    We describe recent experiments which studied the physics of ultrafast gas breakdown under the extreme overvoltages which occur when a high pressure gas switch is pulse charged to hundreds of kV in 1 ns or less. The highly overvolted peaking gaps produce powerful electromagnetic pulses with risetimes < 100 ps which can be used for ultrawideband radar systems, particle accelerators, laser drivers, bioelectromagnetic studies, electromagnetic effects testing, and for basic studies of gas breakdown physics. We have produced and accurately measured pulses with 50 to 100 ps risetimes to peak levels of 75 to 160 kV at pulse repetition frequencies (PRF) to I kHz. A unique gas switch was developed to hold off hundreds of kV with parasitic inductance less than I nH. An advanced diagnostic system using Fourier compensation was developed to measure single-shot risetimes below 35 ps. The complete apparatus is described and wave forms are presented. The measured data are compared with a theoretical model which predicts key features including dependence on gas species and pressure. We have applied this technology to practical systems driving ultrawideband radiating antennas and bounded wave simulators. For example, we have developed a thyristor/pulse transformer based system using a highly overvolted cable switch. This pulser driving a Sandia- designed TEM cell, provides an ultra wideband impulse with < 200 ps risetime to the test object at a PRF > 1 kHz at > 100 kV/m E field.

  14. Ultrafast gas switching experiments

    SciTech Connect

    Frost, C.A.; Martin, T.H.; Patterson, P.E.; Rinehart, L.F.; Rohwein, G.J.; Roose, L.D.; Aurand, J.F.; Buttram, M.T.

    1993-08-01

    We describe recent experiments which studied the physics of ultrafast gas breakdown under the extreme overvoltages which occur when a high pressure gas switch is pulse charged to hundreds of kV in 1 ns or less. The highly overvolted peaking gaps produce powerful electromagnetic pulses with risetimes < 100 ps which can be used for ultrawideband radar systems, particle accelerators, laser drivers, bioelectromagnetic studies, electromagnetic effects testing, and for basic studies of gas breakdown physics. We have produced and accurately measured pulses with 50 to 100 ps risetimes to peak levels of 75 to 160 kV at pulse repetition frequencies (PRF) to 1 kHz. A unique gas switch was developed to hold off hundreds of kV with parasitic inductance less than 1 nH. An advanced diagnostic system using Fourier compensation was developed to measure single-shot risetimes below 35 ps. The complete apparatus is described and waveforms are presented. The measured data are compared with a theoretical model which predicts key features including dependence on gas species and technology to practical systems antennas and bounded wave developed a thyristor/pulse transformer based system using a highly overvolted cable switch. This pulser driving a Sandia-designed TEM cell, provides an ultra wideband impulse with < 200 ps risetime to the test object at a PRF > Khz at > 100 kV/m E field.

  15. "Platform switching": serendipity.

    PubMed

    Kalavathy, N; Sridevi, J; Gehlot, Roshni; Kumar, Santosh

    2014-01-01

    Implant dentistry is the latest developing field in terms of clinical techniques, research, material science and oral rehabilitation. Extensive work is being done to improve the designing of implants in order to achieve better esthetics and function. The main drawback with respect to implant restoration is achieving good osseointegration along with satisfactory stress distribution, which in turn will improve the prognosis of implant prosthesis by reducing the crestal bone loss. Many concepts have been developed with reference to surface coating of implants, surgical techniques for implant placement, immediate and delayed loading, platform switching concept, etc. This article has made an attempt to review the concept of platform switching was in fact revealed accidentally due to the nonavailability of the abutment appropriate to the size of the implant placed. A few aspect of platform switching, an upcoming idea to reduce crestal bone loss have been covered. The various methods used for locating and preparing the data were done through textbooks, Google search and related articles. PMID:24992863

  16. Cygnus Diverter Switch Analysis

    SciTech Connect

    G. Corrow, M. Hansen, D. Henderson, C. Mitton et al.

    2008-02-01

    The Cygnus Dual Beam Radiographic Facility consists of two 2.25-MV, 60-kA, 50-ns x-ray sources fielded in an underground laboratory at the Nevada Test Site. The tests performed in this laboratory involve study of the dynamic properties of plutonium and are called subcritical experiments. From end-to-end, the Cygnus machines utilize the following components: Marx generator, water-filled pulse-forming line (PFL), waterfilled coaxial transmission line (WTL), 3-cell inductive voltage adder (IVA), and rod-pinch diode. The upstream WTL interface to the PFL is via a radial insulator with coaxial geometry. The downstream WTL terminates in a manifold where the center conductor splits into three lines which individually connect to each of the IVA cell inputs. There is an impedance mismatch at this juncture. It is a concern that a reflected pulse due to anomalous behavior in the IVA or diode might initiate breakdown upon arrival at the upstream PFL/WTL insulator. Therefore near the beginning of the WTL a radial diverter switch is installed to protect the insulator from over voltage and breakdown. The diverter has adjustable gap spacing, and an in-line aqueous-solution (sodium thiosulfate) resistor array for energy dissipation. There are capacitive voltage probes at both ends of the WTL and on the diverter switch. These voltage signals will be analyzed to determine diverter performance. Using this analysis the usefulness of the diverter switch will be evaluated.

  17. Organic optical bistable switch

    NASA Astrophysics Data System (ADS)

    Xue, Jiangeng; Forrest, Stephen R.

    2003-01-01

    We demonstrate an organic optical bistable switch by integrating an efficient organic photodetector on top of a transparent electrophosphorescent organic light-emitting diode (TOLED). The bistability is achieved with an external field-effect transistor providing positive feedback. In the "LOW" state, the TOLED is off and the current in the photodetector is solely its dark current. In the "HIGH" state, the TOLED emits light that is directly coupled into the integrated photodetector through the transparent cathode. The photocurrent then is fed back to the TOLED, maintaining it in the HIGH state. The green electrophosphorescent material, fac tris(2-phenylpyridine) iridium [Ir(ppy)3] doped into a 4,4'-N,N'-dicarbazole-biphenyl host was used as the luminescent material in the TOLED, while alternating thin layers of copper phthalocyanine and 3,4,9,10-perylenetetracarboxylic bis-benzimidazole were used as the active region of the organic photodetector. The circuit has a 3 dB bandwidth of 25 kHz, and can be switched between HIGH and LOW using pulses as narrow as 60 ns. The bistable switch can be both electrically and optically reset, making it a candidate for image-retaining displays (e.g., electronic paper) and other photonic logic applications. The integrated organic device also has broad use as a linear circuit element in applications such as automatic brightness control.

  18. Yeast diversity in hypersaline habitats.

    PubMed

    Butinar, L; Santos, S; Spencer-Martins, I; Oren, A; Gunde-Cimerman, N

    2005-03-15

    Thus far it has been considered that hypersaline natural brines which are subjected to extreme solar heating, do not contain non-melanized yeast populations. Nevertheless we have isolated yeasts in eight different salterns worldwide, as well as from the Dead Sea, Enriquillo Lake (Dominican Republic) and the Great Salt Lake (Utah). Among the isolates obtained from hypersaline waters, Pichia guilliermondii, Debaryomyces hansenii, Yarrowia lipolytica and Candida parapsilosis are known contaminants of low water activity food, whereas Rhodosporidium sphaerocarpum, R. babjevae, Rhodotorula laryngis, Trichosporon mucoides, and a new species resembling C. glabrata were not known for their halotolerance and were identified for the first time in hypersaline habitats. Moreover, the ascomycetous yeast Metschnikowia bicuspidata, known to be a parasite of the brine shrimp, was isolated as a free-living form from the Great Salt Lake brine. In water rich in magnesium chloride (bitterns) from the La Trinitat salterns (Spain), two new species provisionally named C. atmosphaerica - like and P. philogaea - like were discovered. PMID:15766773

  19. Set3 contributes to heterochromatin integrity by promoting transcription of subunits of Clr4-Rik1-Cul4 histone methyltransferase complex in fission yeast

    PubMed Central

    Yu, Yao; Zhou, Huan; Deng, Xiaolong; Wang, Wenchao; Lu, Hong

    2016-01-01

    Heterochromatin formation in fission yeast depends on RNAi machinery and histone-modifying enzymes. One of the key histone-modifying complexes is Clr4-Rik1-Cul4 methyltransferase complex (CLRC), which mediates histone H3K9 methylation, a hallmark for heterochromatin. CLRC is composed of the Clr4 histone methyltransferase, Rik1, Raf1, Raf2 and Pcu4. However, transcriptional regulation of the CLRC subunits is not well understood. In this study, we identified Set3, a core subunit of the Set3/Hos2 histone deacetylase complex (Set3C), as a contributor to the integrity and silencing of heterochromatin at centromeres, telomeres and silent mating-type locus. This novel role of Set3 relies on its PHD finger, but is independent of deacetylase activity or structural integrity of Set3C. Set3 is not located to the centromeric region. Instead, Set3 is targeted to the promoters of clr4+ and rik1+, probably through its PHD finger. Set3 promotes transcription of clr4+ and rik1+. Consistently, the protein levels of Clr4 and Rik1 were reduced in the set3Δ mutant. The heterochromatin silencing defect in the set3Δ mutant could be rescued by overexpressing of clr4+ or rik1+. Our study suggests transcriptional activation of essential heterochromatin factors underlies the tight regulation of heterochromatin integrity. PMID:27538348

  20. Set3 contributes to heterochromatin integrity by promoting transcription of subunits of Clr4-Rik1-Cul4 histone methyltransferase complex in fission yeast.

    PubMed

    Yu, Yao; Zhou, Huan; Deng, Xiaolong; Wang, Wenchao; Lu, Hong

    2016-01-01

    Heterochromatin formation in fission yeast depends on RNAi machinery and histone-modifying enzymes. One of the key histone-modifying complexes is Clr4-Rik1-Cul4 methyltransferase complex (CLRC), which mediates histone H3K9 methylation, a hallmark for heterochromatin. CLRC is composed of the Clr4 histone methyltransferase, Rik1, Raf1, Raf2 and Pcu4. However, transcriptional regulation of the CLRC subunits is not well understood. In this study, we identified Set3, a core subunit of the Set3/Hos2 histone deacetylase complex (Set3C), as a contributor to the integrity and silencing of heterochromatin at centromeres, telomeres and silent mating-type locus. This novel role of Set3 relies on its PHD finger, but is independent of deacetylase activity or structural integrity of Set3C. Set3 is not located to the centromeric region. Instead, Set3 is targeted to the promoters of clr4(+) and rik1(+), probably through its PHD finger. Set3 promotes transcription of clr4(+) and rik1(+). Consistently, the protein levels of Clr4 and Rik1 were reduced in the set3Δ mutant. The heterochromatin silencing defect in the set3Δ mutant could be rescued by overexpressing of clr4(+) or rik1(+). Our study suggests transcriptional activation of essential heterochromatin factors underlies the tight regulation of heterochromatin integrity. PMID:27538348

  1. Yeasts Diversity in Fermented Foods and Beverages

    NASA Astrophysics Data System (ADS)

    Tamang, Jyoti Prakash; Fleet, Graham H.

    People across the world have learnt to culture and use the essential microorganisms for production of fermented foods and alcoholic beverages. A fermented food is produced either spontaneously or by adding mixed/pure starter culture(s). Yeasts are among the essential functional microorganisms encountered in many fermented foods, and are commercially used in production of baker's yeast, breads, wine, beer, cheese, etc. In Asia, moulds are predominant followed by amylolytic and alcohol-producing yeasts in the fermentation processes, whereas in Africa, Europe, Australia and America, fermented products are prepared exclusively using bacteria or bacteria-yeasts mixed cultures. This chapter would focus on the varieties of fermented foods and alcoholic beverages produced by yeasts, their microbiology and role in food fermentation, widely used commercial starters (pilot production, molecular aspects), production technology of some common commercial fermented foods and alcoholic beverages, toxicity and food safety using yeasts cultures and socio-economy

  2. Yeasts and circumcision in the male.

    PubMed

    Davidson, F

    1977-04-01

    Sixty-six circumcised men and 69 uncircumcised men, both heterosexual and homosexual, had specimens taken from the coronal sulcus and meatus of the penis. Yeasts were isolated at similar rates in both the circumcised (14%) and uncircumcised (17%) men. The circumcised men had significantly fewer symptoms (P = 0-0058). Therefore the female partners of both circumcised and uncircumcised men are exposed to similar rates of yeast infection despite the absence of symptoms in circumcised men. Eighty per cent of the female contacts of yeast-positive men had yeast infection while 32% of the contacts of yeast-negative men were affected. This difference was statistically significant (0-05 greater than P greater than 0-025). Men with non-specific genital infection seemed more likely to carry yeasts than men with gonorrhoea or normal men. PMID:322822

  3. Protein expression patterns of the yeast mating response.

    PubMed

    Yuan, Haiyu; Zhang, Rongfei; Shao, Bin; Wang, Xuan; Ouyang, Qi; Hao, Nan; Luo, Chunxiong

    2016-06-13

    Microfluidics, in combination with time-lapse microscopy, is a transformative technology that significantly enhances our ability to monitor and probe biological processes in living cells. However, high-throughput microfluidic devices mostly require sophisticated preparatory and setup work and are thus hard to adopt by non-experts. In this work, we designed an easy-to-use microfluidic chip, which enables tracking of 48 GFP-tagged yeast strains, with each strain under two different stimulus conditions, in a single experiment. We used this technology to investigate the dynamic pattern of protein expression during the yeast mating differentiation response. High doses of pheromone induce cell cycle arrest and the shmoo morphology, whereas low doses of pheromone lead to elongation and chemotrophic growth. By systematically analyzing the protein dynamics of 156 pheromone-regulated genes, we identified groups of genes that are preferentially induced in response to low-dose pheromone (elongation during growth) or high-dose pheromone (shmoo formation and cell cycle arrest). The protein dynamics of these genes may provide insights into the mechanisms underlying the differentiation switch induced by different doses of pheromone. PMID:27177258

  4. Symmetric cell division in pseudohyphae of the yeast Saccharomyces cerevisiae.

    PubMed Central

    Kron, S J; Styles, C A; Fink, G R

    1994-01-01

    Laboratory strains of Saccharomyces cerevisiae are dimorphic; in response to nitrogen starvation they switch from a yeast form (YF) to a filamentous pseudohyphal (PH) form. Time-lapse video microscopy of dividing cells reveals that YF and PH cells differ in their cell cycles and budding polarity. The YF cell cycle is controlled at the G1/S transition by the cell-size checkpoint Start. YF cells divide asymmetrically, producing small daughters from full-sized mothers. As a result, mothers and daughters bud asynchronously. Mothers bud immediately but daughters grow in G1 until they achieve a critical cell size. By contrast, PH cells divide symmetrically, restricting mitosis until the bud grows to the size of the mother. Thus, mother and daughter bud synchronously in the next cycle, without a G1 delay before Start. YF and PH cells also exhibit distinct bud-site selection patterns. YF cells are bipolar, producing their second and subsequent buds at either pole. PH cells are unipolar, producing their second and subsequent buds only from the end opposite the junction with their mother. We propose that in PH cells a G2 cell-size checkpoint delays mitosis until bud size reaches that of the mother cell. We conclude that yeast and PH forms are distinct cell types each with a unique cell cycle, budding pattern, and cell shape. Images PMID:7841518

  5. Replication-Associated Recombinational Repair: Lessons from Budding Yeast

    PubMed Central

    Bonner, Jaclyn N.; Zhao, Xiaolan

    2016-01-01

    Recombinational repair processes multiple types of DNA lesions. Though best understood in the repair of DNA breaks, recombinational repair is intimately linked to other situations encountered during replication. As DNA strands are decorated with many types of blocks that impede the replication machinery, a great number of genomic regions cannot be duplicated without the help of recombinational repair. This replication-associated recombinational repair employs both the core recombination proteins used for DNA break repair and the specialized factors that couple replication with repair. Studies from multiple organisms have provided insights into the roles of these specialized factors, with the findings in budding yeast being advanced through use of powerful genetics and methods for detecting DNA replication and repair intermediates. In this review, we summarize recent progress made in this organism, ranging from our understanding of the classical template switch mechanisms to gap filling and replication fork regression pathways. As many of the protein factors and biological principles uncovered in budding yeast are conserved in higher eukaryotes, these findings are crucial for stimulating studies in more complex organisms. PMID:27548223

  6. Yeast makes whey into edible oil

    SciTech Connect

    Not Available

    1980-05-19

    Researchers from Iowa State University have found that after the ultrafiltration of whey, the remaining liquid can make an excellent growth medium for yeast. The yeast can efficiently convert nutrients in the whey into an edible oil. As much as 65% of the dry weight of the yeast cells is edible oil. The fermentation is also reported to reduce the organic material in the whey liquid about 90% thereby alleviating a pollution problem.

  7. Yeasts in floral nectar: a quantitative survey

    PubMed Central

    Herrera, Carlos M.; de Vega, Clara; Canto, Azucena; Pozo, María I.

    2009-01-01

    Background and Aims One peculiarity of floral nectar that remains relatively unexplored from an ecological perspective is its role as a natural habitat for micro-organisms. This study assesses the frequency of occurrence and abundance of yeast cells in floral nectar of insect-pollinated plants from three contrasting plant communities on two continents. Possible correlations between interspecific differences in yeast incidence and pollinator composition are also explored. Methods The study was conducted at three widely separated areas, two in the Iberian Peninsula (Spain) and one in the Yucatán Peninsula (Mexico). Floral nectar samples from 130 species (37–63 species per region) in 44 families were examined microscopically for the presence of yeast cells. For one of the Spanish sites, the relationship across species between incidence of yeasts in nectar and the proportion of flowers visited by each of five major pollinator categories was also investigated. Key Results Yeasts occurred regularly in the floral nectar of many species, where they sometimes reached extraordinary densities (up to 4 × 105 cells mm−3). Depending on the region, between 32 and 44 % of all nectar samples contained yeasts. Yeast cell densities in the order of 104 cells mm−3 were commonplace, and densities >105 cells mm−3 were not rare. About one-fifth of species at each site had mean yeast cell densities >104 cells mm−3. Across species, yeast frequency and abundance were directly correlated with the proportion of floral visits by bumble-bees, and inversely with the proportion of visits by solitary bees. Conclusions Incorporating nectar yeasts into the scenario of plant–pollinator interactions opens up a number of intriguing avenues for research. In addition, with yeasts being as ubiquitous and abundant in floral nectars as revealed by this study, and given their astounding metabolic versatility, studies focusing on nectar chemical features should carefully control for the presence

  8. Photoconductive semiconductor switches: Laser Q-switch trigger and switch-trigger laser integration

    SciTech Connect

    Loubriel, G.M.; Mar, A.; Hamil, R.A.; Zutavern, F.J.; Helgeson, W.D.

    1997-12-01

    This report provides a summary of the Pulser In a Chip 9000-Discretionary LDRD. The program began in January of 1997 and concluded in September of 1997. The over-arching goal of this LDRD is to study whether laser diode triggered photoconductive semiconductor switches (PCSS) can be used to activate electro-optic devices such as Q-switches and Pockels cells and to study possible laser diode/switch integration. The PCSS switches we used were high gain GaAs switches because they can be triggered with small amounts of laser light. The specific goals of the LDRD were to demonstrate: (1) that small laser diode arrays that are potential candidates for laser-switch integration will indeed trigger the PCSS switch, and (2) that high gain GaAs switches can be used to trigger optical Q-switches in lasers such as the lasers to be used in the X-1 Advanced Radiation Source and the laser used for direct optical initiation (DOI) of explosives. The technology developed with this LDRD is now the prime candidate for triggering the Q switch in the multiple lasers in the laser trigger system of the X-1 Advanced Radiation Source and may be utilized in other accelerators. As part of the LDRD we developed a commercial supplier. To study laser/switch integration we tested triggering the high gain GaAs switches with: edge emitting laser diodes, vertical cavity surface emitting lasers (VCSELs), and transverse junction stripe (TJS) lasers. The first two types of lasers (edge emitting and VCSELs) did activate the PCSS but are harder to integrate with the PCSS for a compact package. The US lasers, while easier to integrate with the switch, did not trigger the PCSS at the US laser power levels we used. The PCSS was used to activate the Q-switch of the compact laser to be used in the X-1 Advanced Radiation Source.

  9. Did Gause Have a Yeast Infection?

    PubMed

    Pritchard, Jonathon O; Porter, Alice H M; Montagnes, David J S

    2016-09-01

    We planned to develop predator-prey models using Paramecium and yeast, but they have not been empirically examined since work by Gause in the 1930s. Therefore, we evaluated if Paramecium aurelia ingests and grows on eight yeasts. Recognising that it ingested yeasts but could not grow, we assessed if it might grow on other yeasts, by empirically parameterising a predator-prey model that relies on ingestion, not growth. Simulations were compared to P. aurelia-yeast time-series data, from Gause. We hypothesised that if the model simulated predator-prey dynamics that mimicked the original data, then possibly P. aurelia could grow on yeast; simulations did not mimic the original data. Reviewing works by Gause exposed two issues: experiments were undoubtedly contaminated with bacteria, allowing growth on bacteria, not yeast; and the population cycle data cannot be considered a self-sustaining time series, as they were manipulated by adding yeast and ciliates. We conclude that past and future work should not rely on this system, for either empirical or theoretical evaluations. Finally, although we show that P. aurelia, P. caudatum, Euplotes patella, and Blepharisma sp. cannot grow on yeast, Tetrahymena pyriformis and Colpidium striatum can; these may provide models to explore predator-prey dynamics. PMID:27593699

  10. Role of glucose signaling in yeast metabolism

    SciTech Connect

    Dam, K. van

    1996-10-05

    The conversion of glucose to ethanol and carbon dioxide by yeast was the first biochemical pathway to be studied in detail. The initial observation that this process is catalyzed by an extract of yeast led to the discovery of enzymes and coenzymes and laid the foundation for modern biochemistry. In this article, knowledge concerning the relation between uptake of and signaling by glucose in the yeast Saccharomyces cerevisiae is reviewed and compared to the analogous process in prokaryotes. It is concluded that (much) more fundamental knowledge concerning these processes is required before rational redesign of metabolic fluxes from glucose in yeast can be achieved.

  11. Evaluation of Automated Yeast Identification System

    NASA Technical Reports Server (NTRS)

    McGinnis, M. R.

    1996-01-01

    One hundred and nine teleomorphic and anamorphic yeast isolates representing approximately 30 taxa were used to evaluate the accuracy of the Biolog yeast identification system. Isolates derived from nomenclatural types, environmental, and clinica isolates of known identity were tested in the Biolog system. Of the isolates tested, 81 were in the Biolog database. The system correctly identified 40, incorrectly identified 29, and was unable to identify 12. Of the 28 isolates not in the database, 18 were given names, whereas 10 were not. The Biolog yeast identification system is inadequate for the identification of yeasts originating from the environment during space program activities.

  12. Breaking an Epigenetic Chromatin Switch: Curious Features of Hysteresis in Saccharomyces cerevisiae Telomeric Silencing

    PubMed Central

    Nagaraj, Vijayalakshmi H.; Mukhopadhyay, Swagatam; Dayarian, Adel; Sengupta, Anirvan M.

    2014-01-01

    In addition to gene network switches, local epigenetic modifications to DNA and histones play an important role in all-or-none cellular decision-making. Here, we study the dynamical design of a well-characterized epigenetic chromatin switch: the yeast SIR system, in order to understand the origin of the stability of epigenetic states. We study hysteresis in this system by perturbing it with a histone deacetylase inhibitor. We find that SIR silencing has many characteristics of a non-linear bistable system, as observed in conventional genetic switches, which are based on activities of a few promoters affecting each other through the abundance of their gene products. Quite remarkably, our experiments in yeast telomeric silencing show a very distinctive pattern when it comes to the transition from bistability to monostability. In particular, the loss of the stable silenced state, upon increasing the inhibitor concentration, does not seem to show the expected saddle node behavior, instead looking like a supercritical pitchfork bifurcation. In other words, the ‘off’ state merges with the ‘on’ state at a threshold concentration leading to a single state, as opposed to the two states remaining distinct up to the threshold and exhibiting a discontinuous jump from the ‘off’ to the ‘on’ state. We argue that this is an inevitable consequence of silenced and active regions coexisting with dynamic domain boundaries. The experimental observations in our study therefore have broad implications for the understanding of chromatin silencing in yeast and beyond. PMID:25536038

  13. Power transistor switching characterization

    NASA Technical Reports Server (NTRS)

    Blackburn, D. L.

    1981-01-01

    The switching properties of power transistors are investigated. The devices studied were housed in IO-3 cases and were of an n(+)-p-n(-)-n(+) vertical dopant structure. The effects of the magnitude of the reverse-base current and temperature on the reverse-bias second breakdown characteristics are discussed. Brief discussions of device degradation due to second breakdown and of a constant voltage turn-off circuit are included. A description of a vacuum tube voltage clamp circuit which reduces clamped collector voltage overshoot is given.

  14. Biological switches and clocks

    PubMed Central

    Tyson, John J.; Albert, Reka; Goldbeter, Albert; Ruoff, Peter; Sible, Jill

    2008-01-01

    To introduce this special issue on biological switches and clocks, we review the historical development of mathematical models of bistability and oscillations in chemical reaction networks. In the 1960s and 1970s, these models were limited to well-studied biochemical examples, such as glycolytic oscillations and cyclic AMP signalling. After the molecular genetics revolution of the 1980s, the field of molecular cell biology was thrown wide open to mathematical modellers. We review recent advances in modelling the gene–protein interaction networks that control circadian rhythms, cell cycle progression, signal processing and the design of synthetic gene networks. PMID:18522926

  15. Composite Thermal Switch

    NASA Technical Reports Server (NTRS)

    McDonald, Robert; Brawn, Shelly; Harrison, Katherine; O'Toole, Shannon; Moeller, Michael

    2011-01-01

    Lithium primary and lithium ion secondary batteries provide high specific energy and energy density. The use of these batteries also helps to reduce launch weight. Both primary and secondary cells can be packaged as high-rate cells, which can present a threat to crew and equipment in the event of external or internal short circuits. Overheating of the cell interior from high current flows induced by short circuits can result in exothermic reactions in lithium primary cells and fully charged lithium ion secondary cells. Venting of the cell case, ejection of cell components, and fire have been reported in both types of cells, resulting from abuse, cell imperfections, or faulty electronic control design. A switch has been developed that consists of a thin layer of composite material made from nanoscale particles of nickel and Teflon that conducts electrons at room temperature and switches to an insulator at an elevated temperature, thus interrupting current flow to prevent thermal runaway caused by internal short circuits. The material is placed within the cell, as a thin layer incorporated within the anode and/or the cathode, to control excess currents from metal-to-metal or metal-to-carbon shorts that might result from cell crush or a manufacturing defect. The safety of high-rate cells is thus improved, preventing serious injury to personnel and sensitive equipment located near the battery. The use of recently available nanoscale particles of nickel and Teflon permits an improved, homogeneous material with the potential to be fine-tuned to a unique switch temperature, sufficiently below the onset of a catastrophic chemical reaction. The smaller particles also permit the formation of a thinner control film layer (<50 m), which can be incorporated into commercial high-rate lithium primary and secondary cells. The innovation permits incorporation in current lithium and lithium-ion cell designs with a minimal impact on cell weight and volume. The composite thermal

  16. Compound semiconductor optical waveguide switch

    DOEpatents

    Spahn, Olga B.; Sullivan, Charles T.; Garcia, Ernest J.

    2003-06-10

    An optical waveguide switch is disclosed which is formed from III-V compound semiconductors and which has a moveable optical waveguide with a cantilevered portion that can be bent laterally by an integral electrostatic actuator to route an optical signal (i.e. light) between the moveable optical waveguide and one of a plurality of fixed optical waveguides. A plurality of optical waveguide switches can be formed on a common substrate and interconnected to form an optical switching network.

  17. Drosophila Regulate Yeast Density and Increase Yeast Community Similarity in a Natural Substrate

    PubMed Central

    Stamps, Judy A.; Yang, Louie H.; Morales, Vanessa M.; Boundy-Mills, Kyria L.

    2012-01-01

    Drosophila melanogaster adults and larvae, but especially larvae, had profound effects on the densities and community structure of yeasts that developed in banana fruits. Pieces of fruit exposed to adult female flies previously fed fly-conditioned bananas developed higher yeast densities than pieces of the same fruits that were not exposed to flies, supporting previous suggestions that adult Drosophila vector yeasts to new substrates. However, larvae alone had dramatic effects on yeast density and species composition. When yeast densities were compared in pieces of the same fruits assigned to different treatments, fruits that developed low yeast densities in the absence of flies developed significantly higher yeast densities when exposed to larvae. Across all of the fruits, larvae regulated yeast densities within narrow limits, as compared to a much wider range of yeast densities that developed in pieces of the same fruits not exposed to flies. Larvae also affected yeast species composition, dramatically reducing species diversity across fruits, reducing variation in yeast communities from one fruit to the next (beta diversity), and encouraging the consistent development of a yeast community composed of three species of yeast (Candida californica, C. zemplinina, and Pichia kluvyeri), all of which were palatable to larvae. Larvae excreted viable cells of these three yeast species in their fecal pools, and discouraged the growth of filamentous fungi, processes which may have contributed to their effects on the yeast communities in banana fruits. These and other findings suggest that D. melanogaster adults and their larval offspring together engage in ‘niche construction’, facilitating a predictable microbial environment in the fruit substrates in which the larvae live and develop. PMID:22860093

  18. YMDB: the Yeast Metabolome Database.

    PubMed

    Jewison, Timothy; Knox, Craig; Neveu, Vanessa; Djoumbou, Yannick; Guo, An Chi; Lee, Jacqueline; Liu, Philip; Mandal, Rupasri; Krishnamurthy, Ram; Sinelnikov, Igor; Wilson, Michael; Wishart, David S

    2012-01-01

    The Yeast Metabolome Database (YMDB, http://www.ymdb.ca) is a richly annotated 'metabolomic' database containing detailed information about the metabolome of Saccharomyces cerevisiae. Modeled closely after the Human Metabolome Database, the YMDB contains >2000 metabolites with links to 995 different genes/proteins, including enzymes and transporters. The information in YMDB has been gathered from hundreds of books, journal articles and electronic databases. In addition to its comprehensive literature-derived data, the YMDB also contains an extensive collection of experimental intracellular and extracellular metabolite concentration data compiled from detailed Mass Spectrometry (MS) and Nuclear Magnetic Resonance (NMR) metabolomic analyses performed in our lab. This is further supplemented with thousands of NMR and MS spectra collected on pure, reference yeast metabolites. Each metabolite entry in the YMDB contains an average of 80 separate data fields including comprehensive compound description, names and synonyms, structural information, physico-chemical data, reference NMR and MS spectra, intracellular/extracellular concentrations, growth conditions and substrates, pathway information, enzyme data, gene/protein sequence data, as well as numerous hyperlinks to images, references and other public databases. Extensive searching, relational querying and data browsing tools are also provided that support text, chemical structure, spectral, molecular weight and gene/protein sequence queries. Because of S. cervesiae's importance as a model organism for biologists and as a biofactory for industry, we believe this kind of database could have considerable appeal not only to metabolomics researchers, but also to yeast biologists, systems biologists, the industrial fermentation industry, as well as the beer, wine and spirit industry. PMID:22064855

  19. Functional interaction of yeast elongation factor 3 with yeast ribosomes.

    PubMed

    Chakraburtty, K

    1999-01-01

    Elongation factor 3 (EF-3) is a unique and essential requirement of the fungal translational apparatus. EF-3 is a monomeric protein with a molecular mass of 116,000. EF-3 is required by yeast ribosomes for in vitro translation and for in vivo growth. The protein stimulates the binding of EF-1 alpha :GTP:aa-tRNA ternary complex to the ribosomal A-site by facilitating release of deacylated-tRNA from the E-site. The reaction requires ATP hydrolysis. EF-3 contains two ATP-binding sequence motifs (NBS). NBSI is sufficient for the intrinsic ATPase function. NBSII is essential for ribosome-stimulated activity. By limited proteolysis, EF-3 was divided into two distinct functional domains. The N-terminal domain lacking the highly charged lysine blocks failed to bind ribosomes and was inactive in the ribosome-stimulated ATPase activity. The C-terminally derived lysine-rich fragment showed strong binding to yeast ribosomes. The purported S5 homology region of EF-3 at the N-terminal end has been reported to interact with 18S ribosomal RNA. We postulate that EF-3 contacts rRNA and/or protein(s) through the C-terminal end. Removal of these residues severely weakens its interaction mediated possibly through the N-terminal domain of the protein. PMID:10216951

  20. Experimental evolution in budding yeast

    NASA Astrophysics Data System (ADS)

    Murray, Andrew

    2012-02-01

    I will discuss our progress in analyzing evolution in the budding yeast, Saccharomyces cerevisiae. We take two basic approaches. The first is to try and examine quantitative aspects of evolution, for example by determining how the rate of evolution depends on the mutation rate and the population size or asking whether the rate of mutation is uniform throughout the genome. The second is to try to evolve qualitatively novel, cell biologically interesting phenotypes and track the mutations that are responsible for the phenotype. Our efforts include trying to alter cell morphology, evolve multicellularity, and produce a biological oscillator.

  1. Cell size control in yeast

    PubMed Central

    Turner, Jonathan J.; Ewald, Jennifer C.; Skotheim, Jan M.

    2012-01-01

    Cell size is an important adaptive trait that influences nearly all aspects of cellular physiology. Despite extensive characterization of the cell cycle regulatory network, the molecular mechanismscoupling growth to division, and thereby controlling cell size, have remained elusive. Recent workin yeast has reinvigorated the size control field and suggested provocative mechanisms forthe distinct functions of setting and sensing cell size. Further examination of size sensing models based on spatial gradients and molecular titration, coupled with elucidation of the pathways responsible for nutrient-modulated target size, may reveal the fundamental principles of eukaryotic cell size control. PMID:22575477

  2. Heat pipe thermal switch

    NASA Technical Reports Server (NTRS)

    Wolf, D. A. (Inventor)

    1983-01-01

    A thermal switch for controlling the dissipation of heat between a body is described. The thermal switch is comprised of a flexible bellows defining an expansible vapor chamber for a working fluid located between an evaporation and condensation chamber. Inside the bellows is located a coiled retaining spring and four axial metal mesh wicks, two of which have their central portions located inside of the spring while the other two have their central portions located between the spring and the side wall of the bellows. The wicks are terminated and are attached to the inner surfaces of the outer end walls of evaporation and condensation chambers respectively located adjacent to the heat source and heat sink. The inner surfaces of the end walls furthermore include grooves to provide flow channels of the working fluid to and from the wick ends. The evaporation and condensation chambers are connected by turnbuckles and tension springs to provide a set point adjustment for setting the gap between an interface plate on the condensation chamber and the heat sink.

  3. Neuromorphic Atomic Switch Networks

    PubMed Central

    Martin-Olmos, Cristina; Shieh, Hsien Hang; Aono, Masakazu; Stieg, Adam Z.; Gimzewski, James K.

    2012-01-01

    Efforts to emulate the formidable information processing capabilities of the brain through neuromorphic engineering have been bolstered by recent progress in the fabrication of nonlinear, nanoscale circuit elements that exhibit synapse-like operational characteristics. However, conventional fabrication techniques are unable to efficiently generate structures with the highly complex interconnectivity found in biological neuronal networks. Here we demonstrate the physical realization of a self-assembled neuromorphic device which implements basic concepts of systems neuroscience through a hardware-based platform comprised of over a billion interconnected atomic-switch inorganic synapses embedded in a complex network of silver nanowires. Observations of network activation and passive harmonic generation demonstrate a collective response to input stimulus in agreement with recent theoretical predictions. Further, emergent behaviors unique to the complex network of atomic switches and akin to brain function are observed, namely spatially distributed memory, recurrent dynamics and the activation of feedforward subnetworks. These devices display the functional characteristics required for implementing unconventional, biologically and neurally inspired computational methodologies in a synthetic experimental system. PMID:22880101

  4. Data center coolant switch

    SciTech Connect

    Iyengar, Madhusudan K.; Parida, Pritish R.; Schultz, Mark D.

    2015-10-06

    A data center cooling system is operated in a first mode; it has an indoor portion wherein heat is absorbed from components in the data center, and an outdoor heat exchanger portion wherein outside air is used to cool a first heat transfer fluid (e.g., water) present in at least the outdoor heat exchanger portion of the cooling system during the first mode. The first heat transfer fluid is a relatively high performance heat transfer fluid (as compared to the second fluid), and has a first heat transfer fluid freezing point. A determination is made that an appropriate time has been reached to switch from the first mode to a second mode. Based on this determination, the outdoor heat exchanger portion of the data cooling system is switched to a second heat transfer fluid, which is a relatively low performance heat transfer fluid, as compared to the first heat transfer fluid. It has a second heat transfer fluid freezing point lower than the first heat transfer fluid freezing point, and the second heat transfer fluid freezing point is sufficiently low to operate without freezing when the outdoor air temperature drops below a first predetermined relationship with the first heat transfer fluid freezing point.

  5. Prevention of Yeast Spoilage in Feed and Food by the Yeast Mycocin HMK

    PubMed Central

    Lowes, K. F.; Shearman, C. A.; Payne, J.; MacKenzie, D.; Archer, D. B.; Merry, R. J.; Gasson, M. J.

    2000-01-01

    The yeast Williopsis mrakii produces a mycocin or yeast killer toxin designated HMK; this toxin exhibits high thermal stability, high pH stability, and a broad spectrum of activity against other yeasts. We describe construction of a synthetic gene for mycocin HMK and heterologous expression of this toxin in Aspergillus niger. Mycocin HMK was fused to a glucoamylase protein carrier, which resulted in secretion of biologically active mycocin into the culture media. A partial purification protocol was developed, and a comparison with native W. mrakii mycocin showed that the heterologously expressed mycocin had similar physiological properties and an almost identical spectrum of biological activity against a number of yeasts isolated from silage and yoghurt. Two food and feed production systems prone to yeast spoilage were used as models to assess the ability of mycocin HMK to act as a biocontrol agent. The onset of aerobic spoilage in mature maize silage was delayed by application of A. niger mycocin HMK on opening because the toxin inhibited growth of the indigenous spoilage yeasts. This helped maintain both higher lactic acid levels and a lower pH. In yoghurt spiked with dairy spoilage yeasts, A. niger mycocin HMK was active at all of the storage temperatures tested at which yeast growth occurred, and there was no resurgence of resistant yeasts. The higher the yeast growth rate, the more effective the killing action of the mycocin. Thus, mycocin HMK has potential applications in controlling both silage spoilage and yoghurt spoilage caused by yeasts. PMID:10698773

  6. Hybrid switch for resonant power converters

    DOEpatents

    Lai, Jih-Sheng; Yu, Wensong

    2014-09-09

    A hybrid switch comprising two semiconductor switches connected in parallel but having different voltage drop characteristics as a function of current facilitates attainment of zero voltage switching and reduces conduction losses to complement reduction of switching losses achieved through zero voltage switching in power converters such as high-current inverters.

  7. Comparative genomics of biotechnologically important yeasts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Saccharomyces cerevisiae, is used in the vast majority of the world’s bioprocesses, and its economic significance is unchallenged. It, however, represents only a small slice of yeast physiological diversity. Many other yeasts, are used in lesser known, but commercially important processes that take ...

  8. Fermentation studies using Saccharomyces diastaticus yeast strains

    SciTech Connect

    Erratt, J.A.; Stewart, G.G.

    1981-01-01

    The yeast species, Saccharomyces diastaticus, has the ability to ferment starch and dextrin, because of the extracellular enzyme, glucoamylase, which hydrolyzes the starch/dextrin to glucose. A number of nonallelic genes--DEX 1, DEX 2, and dextrinase B which is allelic to STA 3--have been isolated, which impart to the yeast the ability to ferment dextrin. Various diploid yeast strains were constructed, each being either heterozygous or homozygous for the individual dextrinase genes. Using 12 (sup 0) plato hopped wort (30% corn adjunct) under agitated conditions, the fermentation rates of the various diploid yeast strains were monitored. A gene-dosage effect was exhibited by yeast strains containing DEX 1 or DEX 2, however, not with yeast strains containing dextrinase B (STA 3). The fermentation and growth rates and extents were determined under static conditions at 14.4 C and 21 C. With all yeast strains containing the dextrinase genes, both fermentation and growth were increased at the higher incubation temperature. Using 30-liter fermentors, beer was produced with the various yeast strains containing the dextrinase genes and the physical and organoleptic characteristics of the products were determined. The concentration of glucose in the beer was found to increase during a 3-mo storage period at 21 C, indicating that the glucoamylase from Saccharomyces diastaticus is not inactivated by pasteurization. (Refs. 36).

  9. Definition, classification and nomenclature of the yeasts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This submission includes sections for the Preface, Use of this Book, Table of Contents and a chapter entitled Definition, classification and nomenclature of the yeasts, which are to be published in The Yeasts, A Taxonomic Study, 5th edition. This book has been prepared by a team of international ex...

  10. The wine and beer yeast Dekkera bruxellensis

    PubMed Central

    Schifferdecker, Anna Judith; Dashko, Sofia; Ishchuk, Olena P; Piškur, Jure

    2014-01-01

    Recently, the non-conventional yeast Dekkera bruxellensis has been gaining more and more attention in the food industry and academic research. This yeast species is a distant relative of Saccharomyces cerevisiae and is especially known for two important characteristics: on the one hand, it is considered to be one of the main spoilage organisms in the wine and bioethanol industry; on the other hand, it is 'indispensable' as a contributor to the flavour profile of Belgium lambic and gueuze beers. Additionally, it adds to the characteristic aromatic properties of some red wines. Recently this yeast has also become a model for the study of yeast evolution. In this review we focus on the recently developed molecular and genetic tools, such as complete genome sequencing and transformation, to study and manipulate this yeast. We also focus on the areas that are particularly well explored in this yeast, such as the synthesis of off-flavours, yeast detection methods, carbon metabolism and evolutionary history. © 2014 The Authors. Yeast published by John Wiley & Sons, Ltd. PMID:24932634

  11. Yeast: An Experimental Organism for Modern Biology.

    ERIC Educational Resources Information Center

    Botstein, David; Fink, Gerald R.

    1988-01-01

    Discusses the applicability and advantages of using yeasts as popular and ideal model systems for studying and understanding eukaryotic biology at the cellular and molecular levels. Cites experimental tractability and the cooperative tradition of the research community of yeast biologists as reasons for this success. (RT)

  12. A high capacity satellite switched TDMA microwave switch matrix

    NASA Technical Reports Server (NTRS)

    Cory, B. J.; Berkowitz, M.

    1981-01-01

    A description is given of the conceptual design of a high-capacity satellite switched-time division multiple access (SS-TDMA) microwave switch matrix fabricated with GaAs monolithic microwave integrated circuits (MMICs), including integration of both microwave and control logic circuits into the monolithic design. The technology required for a 30/20 GHz communications system includes an on-board SS-TDMA switch matrix. A conceptual design study that has been completed for a wideband, high-capacity (typically 100 x 100) channel switch matrix using technology anticipated for 1987 is described, noting that the study resulted in a switch matrix design concept using a coupled crossbar architecture implemented with MMIC. The design involves basic building block MMIC, permitting flexible growth and efficient wraparound redundancy to increase reliability.

  13. YCRD: Yeast Combinatorial Regulation Database

    PubMed Central

    Wu, Wei-Sheng; Hsieh, Yen-Chen; Lai, Fu-Jou

    2016-01-01

    In eukaryotes, the precise transcriptional control of gene expression is typically achieved through combinatorial regulation using cooperative transcription factors (TFs). Therefore, a database which provides regulatory associations between cooperative TFs and their target genes is helpful for biologists to study the molecular mechanisms of transcriptional regulation of gene expression. Because there is no such kind of databases in the public domain, this prompts us to construct a database, called Yeast Combinatorial Regulation Database (YCRD), which deposits 434,197 regulatory associations between 2535 cooperative TF pairs and 6243 genes. The comprehensive collection of more than 2500 cooperative TF pairs was retrieved from 17 existing algorithms in the literature. The target genes of a cooperative TF pair (e.g. TF1-TF2) are defined as the common target genes of TF1 and TF2, where a TF’s experimentally validated target genes were downloaded from YEASTRACT database. In YCRD, users can (i) search the target genes of a cooperative TF pair of interest, (ii) search the cooperative TF pairs which regulate a gene of interest and (iii) identify important cooperative TF pairs which regulate a given set of genes. We believe that YCRD will be a valuable resource for yeast biologists to study combinatorial regulation of gene expression. YCRD is available at http://cosbi.ee.ncku.edu.tw/YCRD/ or http://cosbi2.ee.ncku.edu.tw/YCRD/. PMID:27392072

  14. Growing Yeast into Cylindrical Colonies

    PubMed Central

    Vulin, Clément; Di Meglio, Jean-Marc; Lindner, Ariel B.; Daerr, Adrian; Murray, Andrew; Hersen, Pascal

    2014-01-01

    Microorganisms often form complex multicellular assemblies such as biofilms and colonies. Understanding the interplay between assembly expansion, metabolic yield, and nutrient diffusion within a freely growing colony remains a challenge. Most available data on microorganisms are from planktonic cultures, due to the lack of experimental tools to control the growth of multicellular assemblies. Here, we propose a method to constrain the growth of yeast colonies into simple geometric shapes such as cylinders. To this end, we designed a simple, versatile culture system to control the location of nutrient delivery below a growing colony. Under such culture conditions, yeast colonies grow vertically and only at the locations where nutrients are delivered. Colonies increase in height at a steady growth rate that is inversely proportional to the cylinder radius. We show that the vertical growth rate of cylindrical colonies is not defined by the single-cell division rate, but rather by the colony metabolic yield. This contrasts with cells in liquid culture, in which the single-cell division rate is the only parameter that defines the population growth rate. This method also provides a direct, simple method to estimate the metabolic yield of a colony. Our study further demonstrates the importance of the shape of colonies on setting their expansion. We anticipate that our approach will be a starting point for elaborate studies of the population dynamics, evolution, and ecology of microbial colonies in complex landscapes. PMID:24853750

  15. Yeast community survey in the Tagus estuary.

    PubMed

    de Almeida, João M G C F

    2005-07-01

    The yeast community in the waters of the Tagus estuary, Portugal, was followed for over a year in order to assess its dynamics. Yeast occurrence and incidence were measured and this information was related to relevant environmental data. Yeast occurrence did not seem to depend upon tides, but river discharge had a dramatic impact both on the density and diversity of the community. The occurrence of some yeasts was partially correlated with faecal pollution indicators. Yeast isolates were characterized by microsatellite primed PCR (MSP-PCR) fingerprinting and rRNA gene sequencing. The principal species found were Candida catenulata, C. intermedia, C. parapsilosis, Clavispora lusitaniae, Debaryomyces hansenii, Pichia guilliermondii, Rhodotorula mucilaginosa and Rhodosporidium diobovatum. The incidence of these species was evaluated against the environmental context of the samples and the current knowledge about the substrates from which they are usually isolated. PMID:16329949

  16. Yeasts that utilize lactose in sweet whey

    SciTech Connect

    Gholson, J.H.; Gough, R.H.

    1980-01-01

    Since processing costs are usually higher for whey than for other available food or feed nutrients, only about one-third of whey produced in the US is used by food and feed industries. As a result whey disposal costs are a problem. Further; when whey is disposed of through municipal sewerage systems, the lactose present is changed by bacteria to lactic acid which tends to act as a preservative and retards further oxidation of whey constituents. This article describes a method of utilizing lactose-fermenting yeasts to produce large quantities of yeast cells, single-cell protein. Kluveromyces fragilis was found to be the most effective yeast species and the yeast cells produced could be used as a natural food or feed additive. Results of this study determined that certain methods and yeast strains could reduce whey-related pollution and thus help reduce costs of whey disposal.

  17. Convertible resistive switching characteristics between memory switching and threshold switching in a single ferritin-based memristor.

    PubMed

    Zhang, Chaochao; Shang, Jie; Xue, Wuhong; Tan, Hongwei; Pan, Liang; Yang, Xi; Guo, Shanshan; Hao, Jian; Liu, Gang; Li, Run-Wei

    2016-04-01

    A bio-memristor fabricated with ferritin exhibits novel resistive switching characteristics wherein memory switching and threshold switching are made steadily coexistent and inter-convertible through controlling the magnitude of compliance current presets. PMID:26967024

  18. Study of optoelectronic switch for satellite-switched time-division multiple access

    NASA Technical Reports Server (NTRS)

    Su, Shing-Fong; Jou, Liz; Lenart, Joe

    1987-01-01

    The use of optoelectronic switching for satellite switched time division multiple access will improve the isolation and reduce the crosstalk of an IF switch matrix. The results are presented of a study on optoelectronic switching. Tasks include literature search, system requirements study, candidate switching architecture analysis, and switch model optimization. The results show that the power divided and crossbar switching architectures are good candidates for an IF switch matrix.

  19. Phenotypic switching in bacteria

    NASA Astrophysics Data System (ADS)

    Merrin, Jack

    Living matter is a non-equilibrium system in which many components work in parallel to perpetuate themselves through a fluctuating environment. Physiological states or functionalities revealed by a particular environment are called phenotypes. Transitions between phenotypes may occur either spontaneously or via interaction with the environment. Even in the same environment, genetically identical bacteria can exhibit different phenotypes of a continuous or discrete nature. In this thesis, we pursued three lines of investigation into discrete phenotypic heterogeneity in bacterial populations: the quantitative characterization of the so-called bacterial persistence, a theoretical model of phenotypic switching based on those measurements, and the design of artificial genetic networks which implement this model. Persistence is the phenotype of a subpopulation of bacteria with a reduced sensitivity to antibiotics. We developed a microfluidic apparatus, which allowed us to monitor the growth rates of individual cells while applying repeated cycles of antibiotic treatments. We were able to identify distinct phenotypes (normal and persistent) and characterize the stochastic transitions between them. We also found that phenotypic heterogeneity was present prior to any environmental cue such as antibiotic exposure. Motivated by the experiments with persisters, we formulated a theoretical model describing the dynamic behavior of several discrete phenotypes in a periodically varying environment. This theoretical framework allowed us to quantitatively predict the fitness of dynamic populations and to compare survival strategies according to environmental time-symmetries. These calculations suggested that persistence is a strategy used by bacterial populations to adapt to fluctuating environments. Knowledge of the phenotypic transition rates for persistence may provide statistical information about the typical environments of bacteria. We also describe a design of artificial

  20. Structural basis of high-fidelity DNA synthesis by yeast DNA polymerase [delta

    SciTech Connect

    Swan, Michael K.; Johnson, Robert E.; Prakash, Louise; Prakash, Satya; Aggarwal, Aneel K.

    2009-09-25

    DNA polymerase {delta} (Pol {delta}) is a high-fidelity polymerase that has a central role in replication from yeast to humans. We present the crystal structure of the catalytic subunit of yeast Pol {delta} in ternary complex with a template primer and an incoming nucleotide. The structure, determined at 2.0-{angstrom} resolution, catches the enzyme in the act of replication, revealing how the polymerase and exonuclease domains are juxtaposed relative to each other and how a correct nucleotide is selected and incorporated. The structure also reveals the 'sensing' interactions near the primer terminus, which signal a switch from the polymerizing to the editing mode. Taken together, the structure provides a chemical basis for the bulk of DNA synthesis in eukaryotic cells and a framework for understanding the effects of cancer-causing mutations in Pol {delta}.

  1. The TOR signaling pathway regulates starvation-induced pseudouridylation of yeast U2 snRNA.

    PubMed

    Wu, Guowei; Radwan, Mohamed K; Xiao, Mu; Adachi, Hironori; Fan, Jason; Yu, Yi-Tao

    2016-08-01

    Pseudouridine (Ψ) has been identified in various types of RNAs, including mRNA, rRNA, tRNA, snRNA, and many other noncoding RNAs. We have previously shown that RNA pseudouridylation, like DNA and protein modifications, can be induced by stress. For instance, growing yeast cells to saturation induces the formation of Ψ93 in U2 snRNA. Here, we further investigate this inducible RNA modification. We show that switching yeast cells from nutrient-rich medium to different nutrient-deprived media (including water) results in the formation of Ψ93 in U2 snRNA. Using gene deletion/conditional depletion as well as rapamycin treatment, we further show that the TOR signaling pathway, which controls cell entry into stationary phase, regulates Ψ93 formation. The RAS/cAMP signaling pathway, which parallels the TOR pathway, plays no role in this inducible modification. PMID:27268497

  2. EDITORIAL: Molecular switches at surfaces Molecular switches at surfaces

    NASA Astrophysics Data System (ADS)

    Weinelt, Martin; von Oppen, Felix

    2012-10-01

    In nature, molecules exploit interaction with their environment to realize complex functionalities on the nanometer length scale. Physical, chemical and/or biological specificity is frequently achieved by the switching of molecules between microscopically different states. Paradigmatic examples are the energy production in proton pumps of bacteria or the signal conversion in human vision, which rely on switching molecules between different configurations or conformations by external stimuli. The remarkable reproducibility and unparalleled fatigue resistance of these natural processes makes it highly desirable to emulate nature and develop artificial systems with molecular functionalities. A promising avenue towards this goal is to anchor the molecular switches at surfaces, offering new pathways to control their functional properties, to apply electrical contacts, or to integrate switches into larger systems. Anchoring at surfaces allows one to access the full range from individual molecular switches to self-assembled monolayers of well-defined geometry and to customize the coupling between molecules and substrate or between adsorbed molecules. Progress in this field requires both synthesis and preparation of appropriate molecular systems and control over suitable external stimuli, such as light, heat, or electrical currents. To optimize switching and generate function, it is essential to unravel the geometric structure, the electronic properties and the dynamic interactions of the molecular switches on surfaces. This special section, Molecular Switches at Surfaces, collects 17 contributions describing different aspects of this research field. They analyze elementary processes, both in single molecules and in ensembles of molecules, which involve molecular switching and concomitant changes of optical, electronic, or magnetic properties. Two topical reviews summarize the current status, including both challenges and achievements in the field of molecular switches on

  3. Task Switching: A PDP Model

    ERIC Educational Resources Information Center

    Gilbert, Sam J.; Shallice, Tim

    2002-01-01

    When subjects switch between a pair of stimulus-response tasks, reaction time is slower on trial N if a different task was performed on trial N--1. We present a parallel distributed processing (PDP) model that simulates this effect when subjects switch between word reading and color naming in response to Stroop stimuli. Reaction time on "switch…

  4. Battery switch for downhole tools

    DOEpatents

    Boling, Brian E.

    2010-02-23

    An electrical circuit for a downhole tool may include a battery, a load electrically connected to the battery, and at least one switch electrically connected in series with the battery and to the load. The at least one switch may be configured to close when a tool temperature exceeds a selected temperature.

  5. Component Processes in Task Switching.

    ERIC Educational Resources Information Center

    Meiran, Nachshon; Chorev, Ziv; Sapir, Ayelet

    2000-01-01

    Studied task switching in 4 experiments involving 111 Israeli undergraduates. Results show the preparation for a task switch is not a by-product of general preparation by phasic alertness or predicting target onset and establish reconfiguration as a separate preparatory process. Suggests that there are at least three components of task switching…

  6. 49 CFR 236.6 - Hand-operated switch equipped with switch circuit controller.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Hand-operated switch equipped with switch circuit..., AND APPLIANCES Rules and Instructions: All Systems General § 236.6 Hand-operated switch equipped with switch circuit controller. Hand-operated switch equipped with switch circuit controller connected to...

  7. 49 CFR 236.6 - Hand-operated switch equipped with switch circuit controller.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Hand-operated switch equipped with switch circuit..., AND APPLIANCES Rules and Instructions: All Systems General § 236.6 Hand-operated switch equipped with switch circuit controller. Hand-operated switch equipped with switch circuit controller connected to...

  8. 49 CFR 236.6 - Hand-operated switch equipped with switch circuit controller.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Hand-operated switch equipped with switch circuit..., AND APPLIANCES Rules and Instructions: All Systems General § 236.6 Hand-operated switch equipped with switch circuit controller. Hand-operated switch equipped with switch circuit controller connected to...

  9. 49 CFR 236.6 - Hand-operated switch equipped with switch circuit controller.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Hand-operated switch equipped with switch circuit..., AND APPLIANCES Rules and Instructions: All Systems General § 236.6 Hand-operated switch equipped with switch circuit controller. Hand-operated switch equipped with switch circuit controller connected to...

  10. 49 CFR 236.6 - Hand-operated switch equipped with switch circuit controller.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Hand-operated switch equipped with switch circuit..., AND APPLIANCES Rules and Instructions: All Systems General § 236.6 Hand-operated switch equipped with switch circuit controller. Hand-operated switch equipped with switch circuit controller connected to...

  11. FAST OPENING SWITCH

    DOEpatents

    Bender, M.; Bennett, F.K.; Kuckes, A.F.

    1963-09-17

    A fast-acting electric switch is described for rapidly opening a circuit carrying large amounts of electrical power. A thin, conducting foil bridges a gap in this circuit and means are provided for producing a magnetic field and eddy currents in the foil, whereby the foil is rapidly broken to open the circuit across the gap. Advantageously the foil has a hole forming two narrow portions in the foil and the means producing the magnetic field and eddy currents comprises an annular coil having its annulus coaxial with the hole in the foil and turns adjacent the narrow portions of the foil. An electrical current flows through the coil to produce the magnetic field and eddy currents in the foil. (AEC)

  12. Optimized scalable network switch

    DOEpatents

    Blumrich, Matthias A.; Chen, Dong; Coteus, Paul W.

    2010-02-23

    In a massively parallel computing system having a plurality of nodes configured in m multi-dimensions, each node including a computing device, a method for routing packets towards their destination nodes is provided which includes generating at least one of a 2m plurality of compact bit vectors containing information derived from downstream nodes. A multilevel arbitration process in which downstream information stored in the compact vectors, such as link status information and fullness of downstream buffers, is used to determine a preferred direction and virtual channel for packet transmission. Preferred direction ranges are encoded and virtual channels are selected by examining the plurality of compact bit vectors. This dynamic routing method eliminates the necessity of routing tables, thus enhancing scalability of the switch.

  13. ''Smart'' watchdog safety switch

    DOEpatents

    Kronberg, J.W.

    1991-10-01

    A method and apparatus for monitoring a process having a periodic output so that the process equipment is not damaged in the event of a controller failure, comprising a low-pass and peak clipping filter, an event detector that generates an event pulse for each valid change in magnitude of the filtered periodic output, a timing pulse generator, a counter that increments upon receipt of any timing pulse and resets to zero on receipt of any event pulse, an alarm that alerts when the count reaches some preselected total count, and a set of relays that opens to stop power to process equipment. An interface module can be added to allow the switch to accept a variety of periodic output signals. 21 figures.

  14. "Smart" watchdog safety switch

    DOEpatents

    Kronberg, James W.

    1991-01-01

    A method and apparatus for monitoring a process having a periodic output so that the process equipment is not damaged in the event of a controller failure, comprising a low-pass and peak clipping filter, an event detector that generates an event pulse for each valid change in magnitude of the filtered periodic output, a timing pulse generator, a counter that increments upon receipt of any timing pulse and resets to zero on receipt of any event pulse, an alarm that alerts when the count reaches some preselected total count, and a set of relays that opens to stop power to process equipment. An interface module can be added to allow the switch to accept a variety of periodic output signals.

  15. Smart watchdog safety switch

    SciTech Connect

    Kronberg, J.W.

    1989-05-12

    A method and apparatus for monitoring a process having a periodic output so that the process equipment is not damaged in the event of a controller failure, comprising a low-pass and peak clipping filter, an event detector that generates an event pulse for each valid change in magnitude of the filtered periodic output, a timing pulse generator, a counter that increments upon receipt of any timing pulse and resets to zero on receipt of any event pulse, an alarm that alerts when the count reaches some preselected total count, and a set of relays that open to stop power to process equipment. An interface module can be added to allow the switch to accept a variety of periodic output signals. 6 figs.

  16. Automatic thermal switch

    NASA Technical Reports Server (NTRS)

    Wing, L. D.; Cunningham, J. W. (Inventor)

    1981-01-01

    An automatic thermal switch to control heat flow includes a first thermally conductive plate, a second thermally conductive plate and a thermal transfer plate pivotally mounted between the first and second plates. A phase change power unit, including a plunger connected to the transfer plate, is in thermal contact with the first thermally conductive plate. A biasing element, connected to the transfer plate, biases the transfer plate in a predetermined position with respect to the first and second plates. When the phase change power unit is actuated by an increase in heat transmitted through the first plate, the plunger extends and pivots the transfer plate to vary the thermal conduction between the first and second plates through the transfer plate. The biasing element, transfer plate and piston can be arranged to provide either a normally closed or normally open thermally conductive path between the first and second plates.

  17. Optimized scalable network switch

    DOEpatents

    Blumrich, Matthias A.; Chen, Dong; Coteus, Paul W.; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Steinmacher-Burow, Burkhard D.; Takken, Todd E.; Vranas, Pavlos M.

    2007-12-04

    In a massively parallel computing system having a plurality of nodes configured in m multi-dimensions, each node including a computing device, a method for routing packets towards their destination nodes is provided which includes generating at least one of a 2m plurality of compact bit vectors containing information derived from downstream nodes. A multilevel arbitration process in which downstream information stored in the compact vectors, such as link status information and fullness of downstream buffers, is used to determine a preferred direction and virtual channel for packet transmission. Preferred direction ranges are encoded and virtual channels are selected by examining the plurality of compact bit vectors. This dynamic routing method eliminates the necessity of routing tables, thus enhancing scalability of the switch.

  18. The Rewiring of Ubiquitination Targets in a Pathogenic Yeast Promotes Metabolic Flexibility, Host Colonization and Virulence

    PubMed Central

    Childers, Delma S.; Raziunaite, Ingrida; Mol Avelar, Gabriela; Mackie, Joanna; Budge, Susan; Stead, David; Gow, Neil A. R.; Lenardon, Megan D.; Ballou, Elizabeth R.; MacCallum, Donna M.; Brown, Alistair J. P.

    2016-01-01

    Efficient carbon assimilation is critical for microbial growth and pathogenesis. The environmental yeast Saccharomyces cerevisiae is “Crabtree positive”, displaying a rapid metabolic switch from the assimilation of alternative carbon sources to sugars. Following exposure to sugars, this switch is mediated by the transcriptional repression of genes (carbon catabolite repression) and the turnover (catabolite inactivation) of enzymes involved in the assimilation of alternative carbon sources. The pathogenic yeast Candida albicans is Crabtree negative. It has retained carbon catabolite repression mechanisms, but has undergone posttranscriptional rewiring such that gluconeogenic and glyoxylate cycle enzymes are not subject to ubiquitin-mediated catabolite inactivation. Consequently, when glucose becomes available, C. albicans can continue to assimilate alternative carbon sources alongside the glucose. We show that this metabolic flexibility promotes host colonization and virulence. The glyoxylate cycle enzyme isocitrate lyase (CaIcl1) was rendered sensitive to ubiquitin-mediated catabolite inactivation in C. albicans by addition of a ubiquitination site. This mutation, which inhibits lactate assimilation in the presence of glucose, reduces the ability of C. albicans cells to withstand macrophage killing, colonize the gastrointestinal tract and cause systemic infections in mice. Interestingly, most S. cerevisiae clinical isolates we examined (67%) have acquired the ability to assimilate lactate in the presence of glucose (i.e. they have become Crabtree negative). These S. cerevisiae strains are more resistant to macrophage killing than Crabtree positive clinical isolates. Moreover, Crabtree negative S. cerevisiae mutants that lack Gid8, a key component of the Glucose-Induced Degradation complex, are more resistant to macrophage killing and display increased virulence in immunocompromised mice. Thus, while Crabtree positivity might impart a fitness advantage for

  19. The Rewiring of Ubiquitination Targets in a Pathogenic Yeast Promotes Metabolic Flexibility, Host Colonization and Virulence.

    PubMed

    Childers, Delma S; Raziunaite, Ingrida; Mol Avelar, Gabriela; Mackie, Joanna; Budge, Susan; Stead, David; Gow, Neil A R; Lenardon, Megan D; Ballou, Elizabeth R; MacCallum, Donna M; Brown, Alistair J P

    2016-04-01

    Efficient carbon assimilation is critical for microbial growth and pathogenesis. The environmental yeast Saccharomyces cerevisiae is "Crabtree positive", displaying a rapid metabolic switch from the assimilation of alternative carbon sources to sugars. Following exposure to sugars, this switch is mediated by the transcriptional repression of genes (carbon catabolite repression) and the turnover (catabolite inactivation) of enzymes involved in the assimilation of alternative carbon sources. The pathogenic yeast Candida albicans is Crabtree negative. It has retained carbon catabolite repression mechanisms, but has undergone posttranscriptional rewiring such that gluconeogenic and glyoxylate cycle enzymes are not subject to ubiquitin-mediated catabolite inactivation. Consequently, when glucose becomes available, C. albicans can continue to assimilate alternative carbon sources alongside the glucose. We show that this metabolic flexibility promotes host colonization and virulence. The glyoxylate cycle enzyme isocitrate lyase (CaIcl1) was rendered sensitive to ubiquitin-mediated catabolite inactivation in C. albicans by addition of a ubiquitination site. This mutation, which inhibits lactate assimilation in the presence of glucose, reduces the ability of C. albicans cells to withstand macrophage killing, colonize the gastrointestinal tract and cause systemic infections in mice. Interestingly, most S. cerevisiae clinical isolates we examined (67%) have acquired the ability to assimilate lactate in the presence of glucose (i.e. they have become Crabtree negative). These S. cerevisiae strains are more resistant to macrophage killing than Crabtree positive clinical isolates. Moreover, Crabtree negative S. cerevisiae mutants that lack Gid8, a key component of the Glucose-Induced Degradation complex, are more resistant to macrophage killing and display increased virulence in immunocompromised mice. Thus, while Crabtree positivity might impart a fitness advantage for yeasts in

  20. Switched power workshop: Introduction and summary

    NASA Astrophysics Data System (ADS)

    Palmer, R. B.

    This paper discusses the design of a switched power electron gun. Particular topics discussed are: vacuum photodiode switch; laser switched solid state diodes; gun performance; charging supply; and laser requirements.

  1. Switching Phenomena in a System with No Switches

    NASA Astrophysics Data System (ADS)

    Preis, Tobias; Stanley, H. Eugene

    2010-02-01

    It is widely believed that switching phenomena require switches, but this is actually not true. For an intriguing variety of switching phenomena in nature, the underlying complex system abruptly changes from one state to another in a highly discontinuous fashion. For example, financial market fluctuations are characterized by many abrupt switchings creating increasing trends ("bubble formation") and decreasing trends ("financial collapse"). Such switching occurs on time scales ranging from macroscopic bubbles persisting for hundreds of days to microscopic bubbles persisting only for a few seconds. We analyze a database containing 13,991,275 German DAX Future transactions recorded with a time resolution of 10 msec. For comparison, a database providing 2,592,531 of all S&P500 daily closing prices is used. We ask whether these ubiquitous switching phenomena have quantifiable features independent of the time horizon studied. We find striking scale-free behavior of the volatility after each switching occurs. We interpret our findings as being consistent with time-dependent collective behavior of financial market participants. We test the possible universality of our result by performing a parallel analysis of fluctuations in transaction volume and time intervals between trades. We show that these financial market switching processes have properties similar to those of phase transitions. We suggest that the well-known catastrophic bubbles that occur on large time scales—such as the most recent financial crisis—are no outliers but single dramatic representatives caused by the switching between upward and downward trends on time scales varying over nine orders of magnitude from very large (≈102 days) down to very small (≈10 ms).

  2. Channelized coplanar waveguide pin-diode switches

    NASA Technical Reports Server (NTRS)

    Ponchak, G. E.; Simons, R. N.

    1989-01-01

    Three different types of p-i-n diode, reflective CPW switches are presented. The first two switches are the series and the shunt mounted diode switches. Each has achieved greater than 15 dB of isolation over a broad bandwidth. The third switch is a narrow band, high isolation switched filter which has achieved 19 dB of isolation. Equivalent circuits and measured performance for each switch is presented.

  3. Liquid metal switches for electromagnetic railgun systems

    SciTech Connect

    Mitcham, A.J.; Prothero, D.H.; Brooks, J.C. )

    1991-01-01

    The need for a reliable and effective commutating switch is essential to the operation of an HPG-driven railgun system. This switch must offer the lowest possible resistance during the current build up time and then must commutate the current quickly and efficiently into the railgun barrel. This paper considers the essential requirements for such a switch and, after briefly reviewing the available switch technologies, describes a new type of switch based on a liquid metal switching medium.

  4. Accelerating Yeast Prion Biology using Droplet Microfluidics

    NASA Astrophysics Data System (ADS)

    Ung, Lloyd; Rotem, Assaf; Jarosz, Daniel; Datta, Manoshi; Lindquist, Susan; Weitz, David

    2012-02-01

    Prions are infectious proteins in a misfolded form, that can induce normal proteins to take the misfolded state. Yeast prions are relevant, as a model of human prion diseases, and interesting from an evolutionary standpoint. Prions may also be a form of epigenetic inheritance, which allow yeast to adapt to stressful conditions at rates exceeding those of random mutations and propagate that adaptation to their offspring. Encapsulation of yeast in droplet microfluidic devices enables high-throughput measurements with single cell resolution, which would not be feasible using bulk methods. Millions of populations of yeast can be screened to obtain reliable measurements of prion induction and loss rates. The population dynamics of clonal yeast, when a fraction of the cells are prion expressing, can be elucidated. Furthermore, the mechanism by which certain strains of bacteria induce yeast to express prions in the wild can be deduced. Integrating the disparate fields of prion biology and droplet microfluidics reveals a more complete picture of how prions may be more than just diseases and play a functional role in yeast.

  5. The wine and beer yeast Dekkera bruxellensis.

    PubMed

    Schifferdecker, Anna Judith; Dashko, Sofia; Ishchuk, Olena P; Piškur, Jure

    2014-09-01

    Recently, the non-conventional yeast Dekkera bruxellensis has been gaining more and more attention in the food industry and academic research. This yeast species is a distant relative of Saccharomyces cerevisiae and is especially known for two important characteristics: on the one hand, it is considered to be one of the main spoilage organisms in the wine and bioethanol industry; on the other hand, it is 'indispensable' as a contributor to the flavour profile of Belgium lambic and gueuze beers. Additionally, it adds to the characteristic aromatic properties of some red wines. Recently this yeast has also become a model for the study of yeast evolution. In this review we focus on the recently developed molecular and genetic tools, such as complete genome sequencing and transformation, to study and manipulate this yeast. We also focus on the areas that are particularly well explored in this yeast, such as the synthesis of off-flavours, yeast detection methods, carbon metabolism and evolutionary history. PMID:24932634

  6. Genomics and the making of yeast biodiversity.

    PubMed

    Hittinger, Chris Todd; Rokas, Antonis; Bai, Feng-Yan; Boekhout, Teun; Gonçalves, Paula; Jeffries, Thomas W; Kominek, Jacek; Lachance, Marc-André; Libkind, Diego; Rosa, Carlos A; Sampaio, José Paulo; Kurtzman, Cletus P

    2015-12-01

    Yeasts are unicellular fungi that do not form fruiting bodies. Although the yeast lifestyle has evolved multiple times, most known species belong to the subphylum Saccharomycotina (syn. Hemiascomycota, hereafter yeasts). This diverse group includes the premier eukaryotic model system, Saccharomyces cerevisiae; the common human commensal and opportunistic pathogen, Candida albicans; and over 1000 other known species (with more continuing to be discovered). Yeasts are found in every biome and continent and are more genetically diverse than angiosperms or chordates. Ease of culture, simple life cycles, and small genomes (∼10-20Mbp) have made yeasts exceptional models for molecular genetics, biotechnology, and evolutionary genomics. Here we discuss recent developments in understanding the genomic underpinnings of the making of yeast biodiversity, comparing and contrasting natural and human-associated evolutionary processes. Only a tiny fraction of yeast biodiversity and metabolic capabilities has been tapped by industry and science. Expanding the taxonomic breadth of deep genomic investigations will further illuminate how genome function evolves to encode their diverse metabolisms and ecologies. PMID:26649756

  7. Overview of fission yeast septation.

    PubMed

    Pérez, Pilar; Cortés, Juan C G; Martín-García, Rebeca; Ribas, Juan C

    2016-09-01

    Cytokinesis is the final process of the vegetative cycle, which divides a cell into two independent daughter cells once mitosis is completed. In fungi, as in animal cells, cytokinesis requires the formation of a cleavage furrow originated by constriction of an actomyosin ring which is connected to the plasma membrane and causes its invagination. Additionally, because fungal cells have a polysaccharide cell wall outside the plasma membrane, cytokinesis requires the formation of a septum coincident with the membrane ingression. Fission yeast Schizosaccharomyces pombe is a unicellular, rod-shaped fungus that has become a popular model organism for the study of actomyosin ring formation and constriction during cell division. Here we review the current knowledge of the septation and separation processes in this fungus, as well as recent advances in understanding the functional interaction between the transmembrane enzymes that build the septum and the actomyosin ring proteins. PMID:27155541

  8. Rheologically interesting polysaccharides from yeasts

    NASA Technical Reports Server (NTRS)

    Petersen, G. R.; Nelson, G. A.; Cathey, C. A.; Fuller, G. G.

    1989-01-01

    We have examined the relationships between primary, secondary, and tertiary structures of polysaccharides exhibiting the rheological property of friction (drag) reduction in turbulent flows. We found an example of an exopolysaccharide from the yeast Cryptococcus laurentii that possessed high molecular weight but exhibited lower than expected drag reducing activity. Earlier correlations by Hoyt showing that beta 1 --> 3, beta 2 --> 4, and alpha 1 --> 3 linkages in polysaccharides favored drag reduction were expanded to include correlations to secondary structure. The effect of sidechains in a series of gellan gums was shown to be related to sidechain length and position. Disruption of secondary structure in drag reducing polysaccharides reduced drag reducing activity for some but not all exopolysaccharides. The polymer from C. laurentii was shown to be more stable than xanthan gum and other exopolysaccharides under the most vigorous of denaturing conditions. We also showed a direct relationship between extensional viscosity measurements and the drag reducing coefficient for four exopolysaccharides.

  9. MAP kinase dynamics in yeast.

    PubMed

    van Drogen, F; Peter, M

    2001-09-01

    MAP kinase pathways play key roles in cellular responses towards extracellular signals. In several cases, the three core kinases interact with a scaffold molecule, but the function of these scaffolds is poorly understood. They have been proposed to contribute to signal specificity, signal amplification, or subcellular localization of MAP kinases. Several MAP kinases translocate to the nucleus in response to their activation, suggesting that nuclear transport may provide a regulatory mechanism. Here we describe new applications for Fluorescence Recovery After Photobleaching (FRAP) and Fluorescence Loss In Photobleaching (FLIP), to study dynamic translocations of MAPKs between different subcellular compartments. We have used these methods to measure the nuclear/cytoplasmic dynamics of several yeast MAP kinases, and in particular to address the role of scaffold proteins for MAP-kinase signaling. PMID:11730324

  10. Engineering alcohol tolerance in yeast

    PubMed Central

    Lam, Felix H.; Ghaderi, Adel; Fink, Gerald R.; Stephanopoulos, Gregory

    2015-01-01

    Ethanol toxicity in yeast Saccharomyces cerevisiae limits titer and productivity in the industrial production of transportation bioethanol. We show that strengthening the opposing potassium and proton electrochemical membrane gradients is a mechanism that enhances general resistance to multiple alcohols. Elevation of extracellular potassium and pH physically bolster these gradients, increasing tolerance to higher alcohols and ethanol fermentation in commercial and laboratory strains (including a xylose-fermenting strain) under industrial-like conditions. Production per cell remains largely unchanged with improvements deriving from heightened population viability. Likewise, up-regulation of the potassium and proton pumps in the laboratory strain enhances performance to levels exceeding industrial strains. Although genetically complex, alcohol tolerance can thus be dominated by a single cellular process, one controlled by a major physicochemical component but amenable to biological augmentation. PMID:25278607

  11. Studying Protein Ubiquitylation in Yeast.

    PubMed

    Hovsepian, Junie; Becuwe, Michel; Kleifeld, Oded; Glickman, Michael H; Léon, Sébastien

    2016-01-01

    Ubiquitylation is a reversible posttranslational modification that is critical for most, if not all, cellular processes and essential for viability. Ubiquitin conjugates to substrate proteins either as a single moiety (monoubiquitylation) or as polymers composed of ubiquitin molecules linked to each other with various topologies and structures (polyubiquitylation). This contributes to an elaborate ubiquitin code that is decrypted by specific ubiquitin-binding proteins. Indeed, these different types of ubiquitylation have different functional outcomes, notably affecting the stability of the substrate, its interactions, its activity, or its subcellular localization. In this chapter, we describe protocols to determine whether a protein is ubiquitylated, to identify the site that is ubiquitylated, and provide direction to study the topology of the ubiquitin modification, in the yeast Saccharomyces cerevisiae. PMID:27613031

  12. Modeling competition between yeast strains

    NASA Astrophysics Data System (ADS)

    de Gee, Maarten; van Mourik, Hilda; de Visser, Arjan; Molenaar, Jaap

    2016-04-01

    We investigate toxin interference competition between S. cerevisiae colonies grown on a solid medium. In vivo experiments show that the outcome of this competition depends strongly on nutrient availability and cell densities. Here we present a new model for S. cerevisiae colonies, calculating the local height and composition of the colonies. The model simulates yeast colonies that show a good fit to experimental data. Simulations of colonies that start out with a homogeneous mixture of toxin producing and toxin sensitive cells can display remarkable pattern formation, depending on the initial ratio of the strains. Simulations in which the toxin producing and toxin sensitive species start at nearby positions clearly show that toxin production is advantageous.

  13. Alarm toe switch. [Patent application

    DOEpatents

    Ganyard, F.P.

    1980-11-18

    An alarm toe switch inserted within a shoe for energizing an alarm circuit in a covert manner includes an insole mounting pad into which a miniature reed switch is fixedly molded. An elongated slot perpendicular to the reed switch is formed in the bottom surface of the mounting pad. A permanent cylindrical magnet positioned in the forward portion of the slot with a diameter greater than the pad thickness causes a bump above the pad. A foam rubber block is also positioned in the slot rearwardly of the magnet and holds the magnet in normal inoperative relation. A non-magnetic support plate covers the slot and holds the magnet and foam rubber in the slot. The plate minimizes bending and frictional forces to improve movement of the magnet for reliable switch activation. The bump occupies the knuckle space beneath the big toe. When the big toe is scrunched rearwardly the magnet is moved within the slot relative to the reed switch, thus magnetically activating the switch. When toe pressure is released the foam rubber block forces the magnet back into normal inoperative position to deactivate the reed switch.

  14. Yeast cell-surface expression of chitosanase from Paenibacillus fukuinensis.

    PubMed

    Fukuda, Takeshi; Isogawa, Danya; Takagi, Madoka; Kato-Murai, Michiko; Kimoto, Hisashi; Kusaoke, Hideo; Ueda, Mitsuyoshi; Suye, Shin-Ichiro

    2007-11-01

    To produce chitoorigosaccharides using chitosan, we attempted to construct Paenibacillus fukuinensis chitosanase-displaying yeast cells as a whole-cell biocatalyst through yeast cell-surface engineering. The localization of the chitosanase on the yeast cell surface was confirmed by immunofluorescence labeling of cells. The chitosanase activity of the constructed yeast was investigated by halo assay and the dinitrosalicylic acid method. PMID:17986777

  15. 21 CFR 184.1983 - Bakers yeast extract.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Bakers yeast extract. 184.1983 Section 184.1983... Listing of Specific Substances Affirmed as GRAS § 184.1983 Bakers yeast extract. (a) Bakers yeast extract... a selected strain of yeast, Saccharomyces cerevisiae. It may be concentrated or dried. (b)...

  16. 21 CFR 172.325 - Bakers yeast protein.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Bakers yeast protein. 172.325 Section 172.325 Food... Special Dietary and Nutritional Additives § 172.325 Bakers yeast protein. Bakers yeast protein may be safely used in food in accordance with the following conditions: (a) Bakers yeast protein is...

  17. 21 CFR 172.590 - Yeast-malt sprout extract.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Yeast-malt sprout extract. 172.590 Section 172.590... CONSUMPTION Flavoring Agents and Related Substances § 172.590 Yeast-malt sprout extract. Yeast-malt sprout... prescribed conditions: (a) The additive is produced by partial hydrolysis of yeast extract (derived...

  18. 21 CFR 172.325 - Bakers yeast protein.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Bakers yeast protein. 172.325 Section 172.325 Food... Special Dietary and Nutritional Additives § 172.325 Bakers yeast protein. Bakers yeast protein may be safely used in food in accordance with the following conditions: (a) Bakers yeast protein is...

  19. 21 CFR 172.325 - Bakers yeast protein.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Bakers yeast protein. 172.325 Section 172.325 Food... Special Dietary and Nutritional Additives § 172.325 Bakers yeast protein. Bakers yeast protein may be safely used in food in accordance with the following conditions: (a) Bakers yeast protein is...

  20. 21 CFR 184.1983 - Bakers yeast extract.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Bakers yeast extract. 184.1983 Section 184.1983... Listing of Specific Substances Affirmed as GRAS § 184.1983 Bakers yeast extract. (a) Bakers yeast extract... a selected strain of yeast, Saccharomyces cerevisiae. It may be concentrated or dried. (b)...

  1. 21 CFR 172.590 - Yeast-malt sprout extract.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Yeast-malt sprout extract. 172.590 Section 172.590... CONSUMPTION Flavoring Agents and Related Substances § 172.590 Yeast-malt sprout extract. Yeast-malt sprout... prescribed conditions: (a) The additive is produced by partial hydrolysis of yeast extract (derived...

  2. 21 CFR 184.1983 - Bakers yeast extract.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Bakers yeast extract. 184.1983 Section 184.1983... Listing of Specific Substances Affirmed as GRAS § 184.1983 Bakers yeast extract. (a) Bakers yeast extract... a selected strain of yeast, Saccharomyces cerevisiae. It may be concentrated or dried. (b)...

  3. 21 CFR 172.590 - Yeast-malt sprout extract.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Yeast-malt sprout extract. 172.590 Section 172.590... CONSUMPTION Flavoring Agents and Related Substances § 172.590 Yeast-malt sprout extract. Yeast-malt sprout... prescribed conditions: (a) The additive is produced by partial hydrolysis of yeast extract (derived...

  4. 21 CFR 172.590 - Yeast-malt sprout extract.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Yeast-malt sprout extract. 172.590 Section 172.590... CONSUMPTION Flavoring Agents and Related Substances § 172.590 Yeast-malt sprout extract. Yeast-malt sprout... prescribed conditions: (a) The additive is produced by partial hydrolysis of yeast extract (derived...

  5. 21 CFR 172.325 - Bakers yeast protein.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Bakers yeast protein. 172.325 Section 172.325 Food... Additives § 172.325 Bakers yeast protein. Bakers yeast protein may be safely used in food in accordance with the following conditions: (a) Bakers yeast protein is the insoluble proteinaceous material...

  6. 21 CFR 172.325 - Bakers yeast protein.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Bakers yeast protein. 172.325 Section 172.325 Food... Special Dietary and Nutritional Additives § 172.325 Bakers yeast protein. Bakers yeast protein may be safely used in food in accordance with the following conditions: (a) Bakers yeast protein is...

  7. 21 CFR 184.1983 - Bakers yeast extract.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Bakers yeast extract. 184.1983 Section 184.1983... GRAS § 184.1983 Bakers yeast extract. (a) Bakers yeast extract is the food ingredient resulting from concentration of the solubles of mechanically ruptured cells of a selected strain of yeast,...

  8. 21 CFR 184.1983 - Bakers yeast extract.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Bakers yeast extract. 184.1983 Section 184.1983... Listing of Specific Substances Affirmed as GRAS § 184.1983 Bakers yeast extract. (a) Bakers yeast extract... a selected strain of yeast, Saccharomyces cerevisiae. It may be concentrated or dried. (b)...

  9. 21 CFR 172.590 - Yeast-malt sprout extract.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Yeast-malt sprout extract. 172.590 Section 172.590... Substances § 172.590 Yeast-malt sprout extract. Yeast-malt sprout extract, as described in this section, may... produced by partial hydrolysis of yeast extract (derived from Saccharomyces cereviseae,...

  10. Efforts to make and apply humanized yeast

    PubMed Central

    Laurent, Jon M.; Young, Jonathan H.; Kachroo, Aashiq H.

    2016-01-01

    Despite a billion years of divergent evolution, the baker’s yeast Saccharomyces cerevisiae has long proven to be an invaluable model organism for studying human biology. Given its tractability and ease of genetic manipulation, along with extensive genetic conservation with humans, it is perhaps no surprise that researchers have been able to expand its utility by expressing human proteins in yeast, or by humanizing specific yeast amino acids, proteins or even entire pathways. These methods are increasingly being scaled in throughput, further enabling the detailed investigation of human biology and disease-specific variations of human genes in a simplified model organism. PMID:26462863

  11. Efforts to make and apply humanized yeast.

    PubMed

    Laurent, Jon M; Young, Jonathan H; Kachroo, Aashiq H; Marcotte, Edward M

    2016-03-01

    Despite a billion years of divergent evolution, the baker's yeast Saccharomyces cerevisiae has long proven to be an invaluable model organism for studying human biology. Given its tractability and ease of genetic manipulation, along with extensive genetic conservation with humans, it is perhaps no surprise that researchers have been able to expand its utility by expressing human proteins in yeast, or by humanizing specific yeast amino acids, proteins or even entire pathways. These methods are increasingly being scaled in throughput, further enabling the detailed investigation of human biology and disease-specific variations of human genes in a simplified model organism. PMID:26462863

  12. Corning and Kroger turn whey to yeast

    SciTech Connect

    Not Available

    1981-11-16

    It is reported that Corning and Kroger intend to build a 35,000 sq. ft. plant in Winchester, Ky., that will turn whey into bakers' yeast. The plant will convert whey from Kroger's dairies into bakers' yeast, supplying about 60% of the yeast needed for nine Kroger bakeries. It will also produce syrups and whey protein concentrate for use in other food processing activities. In addition to making useful products, the project will convert the whey to glucose and galactose. The protein component of the whey will be concentrated and used in various foods and feeds.

  13. Production of Protein Complexes in Non-methylotrophic and Methylotrophic Yeasts : Nonmethylotrophic and Methylotrophic Yeasts.

    PubMed

    Fernández, Francisco J; López-Estepa, Miguel; Querol-García, Javier; Vega, M Cristina

    2016-01-01

    Protein complexes can be produced in multimilligram quantities using nonmethylotrophic and methylotrophic yeasts such as Saccharomyces cerevisiae and Komagataella (Pichia) pastoris. Yeasts have distinct advantages as hosts for recombinant protein production owing to their cost efficiency, ease of cultivation and genetic manipulation, fast growth rates, capacity to introduce post-translational modifications, and high protein productivity (yield) of correctly folded protein products. Despite those advantages, yeasts have surprisingly lagged behind other eukaryotic hosts in their use for the production of multisubunit complexes. As our knowledge of the metabolic and genomic bottlenecks that yeast microorganisms face when overexpressing foreign proteins expands, new possibilities emerge for successfully engineering yeasts as superb expression hosts. In this chapter, we describe the current state of the art and discuss future possibilities for the development of yeast-based systems for the production of protein complexes. PMID:27165323

  14. Yeast vectors and assays for expression of cloned genes.

    PubMed

    Reynolds, A; Lundblad, V; Dorris, D; Keaveney, M

    2001-05-01

    This unit describes some of the most commonly used yeast vectors, as well as the cloned yeast genes that form the basis for these plasmids. Yeast vectors can be grouped into five general classes, based on their mode of replication in yeast: YIp, YRp, YCp, YEp, and YLp plasmids. With the exception of the YLp plasmids (yeast linear plasmids), all of these plasmids can be maintained in E. coli as well as in S. cerevisiae and thus are referred to as shuttle vectors. The nomenclature of different classes of yeast vectors, as well as details about their mode of replication in yeast are discussed. PMID:18265101

  15. Characteristics of switching plasma in an inverse-pinch switch

    NASA Technical Reports Server (NTRS)

    Lee, Ja H.; Choi, Sang H.; Venable, Demetrius D.; Han, Kwang S.; Nam, Sang H.

    1993-01-01

    Characteristics of the plasma that switches on tens of giga volt-ampere in an inverse-pinch plasma switch (INPIStron) have been made. Through optical and spectroscopic diagnostics of the current carrying plasma, the current density, the motion of current paths, dominant ionic species have been determined in order to access their effects on circuit parameters and material erosion. Also the optimum operational condition of the plasma-puff triggering method required for azimuthally uniform conduction in the INPIStron has been determined.

  16. Evaluation of the Uni-Yeast-Tek kit for the identification of medically important yeasts.

    PubMed Central

    Bowman, P I; Ahearn, D G

    1975-01-01

    The Uni-Yeast-Tek system, a commercially prepared kit and scheme for the rapid identification of medically important yeasts (Corning Medical), was evaluated in comparison with a conventional procedure in the identification of 623 yeasts. The system permitted the presumptive identification of 99.8% of 436 isolates representing 16 common species commonly isolated in the clinical laboratory. Correct biochemical and morphological analyses were obtained with 48 other species, but their specific identification required additional data. Images PMID:1102563

  17. Quality assessment of lager brewery yeast samples and strains using barley malt extracts with anti-yeast activity.

    PubMed

    van Nierop, Sandra N E; Axcell, Barry C; Cantrell, Ian C; Rautenbach, Marina

    2009-04-01

    Membrane active anti-yeast compounds, such as antimicrobial peptides and proteins, cause yeast membrane damage which is likely to affect yeast vitality and fermentation performance, parameters which are notoriously difficult to analyse. In this work the sensitivity of lager brewery yeast strains towards barley malt extracts with anti-yeast activity was assessed with an optimised assay. It was found that yeast, obtained directly from a brewery, was much more sensitive towards the malt extracts than the same yeast strain propagated in the laboratory. Sensitivity to the malt extracts increased during the course of a laboratory scale fermentation when inoculated with brewery yeast. As the assay was able to differentiate yeast samples with different histories, it shows promise as a yeast quality assay measuring the yeast's ability to withstand stress which can be equated to vitality. The assay was also able to differentiate between different lager yeast strains of Saccharomyces cerevisiae propagated in the laboratory when challenged with a number of malt extracts of varying anti-yeast activity. The assessment of yeast strains in the presence of malt extracts will lead to the identification of yeast strains with improved quality/vitality that can withstand malt-associated anti-yeast activity during brewery fermentations. PMID:19171262

  18. Switching kinetics in nanoferroelectrics

    NASA Astrophysics Data System (ADS)

    Jung, D. J.; Kim, Kinam; Scott, J. F.

    2005-08-01

    We have measured the switching in ferroelectric capacitors of lead zirconate titanate (PZT) over three orders of magnitude in lateral area, from A = 166 to 0.19 µm2 (the latter being the size of the smallest ferroelectric random access memory (FRAM) cells in production), and over three orders of magnitude in ramp rate of applied voltage (d E(t)/d t = 107-1010 V cm-1 s-1). In accord with the model of Scott (1998 Ferroelectr. Rev. 1 1), the submicron cells follow a different dependence to the larger cells: for A\\gg 1~\\micmu {\\mathrm {m}}^{2} , the data fit a theory due to Landauer et al (the LYD model), which neglects nucleation; whereas the nanoscale devices satisfy the functional dependence predicted by Pulvari and Kuebler (the PK model), albeit with a modified coefficient. This crossover behaviour has implications for Gbit FRAM device performance at high speed. Fringing field effects measured agree with a simple model from Feynman.

  19. Low impedance switch

    DOEpatents

    Hornig, Donald F.

    1976-01-01

    1. A low inductance switch comprising a pair of spaced apart, annularly shaped, plate members of conducting material supported in substantially parallel, insulated relationship, said plate members being provided with a plurality of radially extending, spoke-like extensions whereby said members may be connected into a plurality of electrical circuits, and an electrical discharge means connected across said spaced plate members for effecting the simultaneous closing of the electrical circuits connected thereto, said electrical discharge means including an elongated, sealed envelope which contains an ionizable gas and which is supported on one of said plate members with the major axis of said envelope extending generally perpendicular to the plane of said plate members, a pair of elongated, spaced apart, insulated electrodes supported within said envelope and extending axially thereof, one of said electrodes being connected to each of said plate members, and a third, firing or trigger electrode supported within said envelope intermediate said main electrodes and being insulated from said main electrodes.

  20. Regenerative switching CMOS system

    DOEpatents

    Welch, J.D.

    1998-06-02

    Complementary Metal Oxide Semiconductor (CMOS) Schottky barrier Field Effect Transistor systems, which are a series combination of N and P-Channel MOSFETS, in which Source Schottky barrier junctions of the N and P-Channel Schottky barrier MOSFETS are electrically interconnected, (rather than the Drains as in conventional diffused junction CMOS), which Schottky barrier MOSFET system demonstrates Regenerative Inverting Switching Characteristics in use are disclosed. Both the N and P-Channel Schottky barrier MOSFET devices are unique in that they provide operational Drain Current vs. Drain to Source voltage as a function of Gate voltage only where the polarities of the Drain voltage and Gate voltage are opposite, referenced to the Source as a common terminal, and where the polarity of the voltage applied to the Gate is appropriate to cause Channel inversion. Experimentally derived results which demonstrate and verify the operation of N and P-Channel Schottky barrier MOSFETS actually fabricated on P and N-type Silicon respectively, by a common procedure using vacuum deposited Chromium as a Schottky barrier forming metal, are also provided. 14 figs.

  1. Regenerative switching CMOS system

    DOEpatents

    Welch, James D.

    1998-01-01

    Complementary Metal Oxide Semiconductor (CMOS) Schottky barrier Field Effect Transistor systems, which are a seriesed combination of N and P-Channel MOSFETS, in which Source Schottky barrier junctions of the N and P-Channel Schottky barrier MOSFETS are electically interconnected, (rather than the Drains as in conventional diffused junction CMOS), which Schottky barrier MOSFET system demonstrates Regenerative Inverting Switching Characteristics in use are disclosed. Both the N and P-Channel Schottky barrier MOSFET devices are unique in that they provide operational Drain Current vs. Drain to Source voltage as a function of Gate voltage only where the polarities of the Drain voltage and Gate voltage are opposite, referenced to the Source as a common terminal, and where the polarity of the voltage applied to the Gate is appropriate to cause Channel inversion. Experimentally derived results which demonstrate and verify the operation of N and P-Channel Schottky barrier MOSFETS actually fabricated on P and N-type Silicon respectively, by a common procedure using vacuum deposited Chromium as a Schottky barrier forming metal, are also provided.

  2. The magnetoelectrochemical switch

    PubMed Central

    Lunca Popa, Petru; Kemp, Neil T.; Majjad, Hicham; Dalmas, Guillaume; Faramarzi, Vina; Andreas, Christian; Hertel, Riccardo; Doudin, Bernard

    2014-01-01

    In the field of spintronics, the archetype solid-state two-terminal device is the spin valve, where the resistance is controlled by the magnetization configuration. We show here how this concept of spin-dependent switch can be extended to magnetic electrodes in solution, by magnetic control of their chemical environment. Appropriate nanoscale design allows a huge enhancement of the magnetic force field experienced by paramagnetic molecular species in solutions, which changes between repulsive and attractive on changing the electrodes’ magnetic orientations. Specifically, the field gradient force created within a sub-100-nm-sized nanogap separating two magnetic electrodes can be reversed by changing the orientation of the electrodes’ magnetization relative to the current flowing between the electrodes. This can result in a breaking or making of an electric nanocontact, with a change of resistance by a factor of up to 103. The results reveal how an external field can impact chemical equilibrium in the vicinity of nanoscale magnetic circuits. PMID:25009179

  3. Electrically switched ion exchange

    SciTech Connect

    Lilga, M.A.; Schwartz, D.T.; Genders, D.

    1997-10-01

    A variety of waste types containing radioactive {sup 137}Cs are found throughout the DOE complex. These waste types include water in reactor cooling basins, radioactive high-level waste (HLW) in underground storage tanks, and groundwater. Safety and regulatory requirements and economics require the removal of radiocesium before these wastes can be permanently disposed of. Electrically Switched Ion Exchange (ESIX) is an approach for radioactive cesium separation that combines IX and electrochemistry to provide a selective, reversible, and economic separation method that also produces little or no secondary waste. In the ESIX process, an electroactive IX film is deposited electrochemically onto a high-surface area electrode, and ion uptake and elution are controlled directly by modulating the potential of the film. For cesium, the electroactive films under investigation are ferrocyanides, which are well known to have high selectivities for cesium in concentrated sodium solutions. When a cathode potential is applied to the film, Fe{sup +3} is reduced to the Fe{sup +2} state, and a cation must be intercalated into the film to maintain charge neutrality (i.e., Cs{sup +} is loaded). Conversely, if an anodic potential is applied, a cation must be released from the film (i.e., Cs{sup +} is unloaded). Therefore, to load the film with cesium, the film is simply reduced; to unload cesium, the film is oxidized.

  4. The magnetoelectrochemical switch.

    PubMed

    Popa, Petru Lunca; Kemp, Neil T; Majjad, Hicham; Dalmas, Guillaume; Faramarzi, Vina; Andreas, Christian; Hertel, Riccardo; Doudin, Bernard

    2014-07-22

    In the field of spintronics, the archetype solid-state two-terminal device is the spin valve, where the resistance is controlled by the magnetization configuration. We show here how this concept of spin-dependent switch can be extended to magnetic electrodes in solution, by magnetic control of their chemical environment. Appropriate nanoscale design allows a huge enhancement of the magnetic force field experienced by paramagnetic molecular species in solutions, which changes between repulsive and attractive on changing the electrodes' magnetic orientations. Specifically, the field gradient force created within a sub-100-nm-sized nanogap separating two magnetic electrodes can be reversed by changing the orientation of the electrodes' magnetization relative to the current flowing between the electrodes. This can result in a breaking or making of an electric nanocontact, with a change of resistance by a factor of up to 10(3). The results reveal how an external field can impact chemical equilibrium in the vicinity of nanoscale magnetic circuits. PMID:25009179

  5. Task Switching versus Cue Switching: Using Transition Cuing to Disentangle Sequential Effects in Task-Switching Performance

    ERIC Educational Resources Information Center

    Schneider, Darryl W.; Logan, Gordon D.

    2007-01-01

    Recent methodological advances have allowed researchers to address confounds in the measurement of task-switch costs in task-switching performance by dissociating cue switching from task switching. For example, in the transition-cuing procedure, which involves presenting cues for task transitions rather than for tasks, cue transitions (cue…

  6. 21 CFR 172.381 - Vitamin D2 bakers yeast.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Vitamin D2 bakers yeast. 172.381 Section 172.381... Additives § 172.381 Vitamin D2 bakers yeast. Vitamin D2 bakers yeast may be used safely in foods as a source...) Vitamin D2 bakers yeast is the substance produced by exposing bakers yeast (Saccharomyces cerevisiae)...

  7. [Yeast Communities of Formica aquilonia Colonies].

    PubMed

    Maksimova, A; Glushakova, A M; Kachalkin, A V; Chernov, I Yu; Panteleeva, S N; Reznikova, Zh I

    2016-01-01

    Yeast abundance and species diversity in the colonies of Formica aquilonia ants in birch-pine forbs forest, Novosibirsk oblast, Russia, was studied. The average yeast number in the anthill material was 10³-10⁴CFU/g, reaching 10⁵ CFU/g in the hatching chambers. Typical litter species (Trichosporon monilfiforme and Cystofilobasidium capitatum) were predominant in soil and litter around the anthills. Apart from these species, ascomycete species of the family Debaryomycetaceae, Debaryomyces hansenii and Schwanniomyces vanrijiae, were predominant in the anthill material. Yeast population of the ants consisted exclusively of the members of these two species. Thus, highly specific yeast communities formed in the colonies of Formica aquilonia ants differ from the communities of surrounding soil. These differences are an instance of environment-forming activity of the ants. PMID:27301134

  8. Adenosine triphosphate inhibition of yeast trehalase.

    PubMed

    Panek, A D

    1969-09-01

    Yeast trehalase has been found to be inhibited non-competitively by adenosine triphosphate. Such a biological control could explain the accumulation of trehalose during the stationary phase of the growth curve. PMID:5370287

  9. Genomic Evolution of the Ascomycete Yeasts

    SciTech Connect

    Riley, Robert; Haridas, Sajeet; Salamov, Asaf; Boundy-Mills, Kyria; Goker, Markus; Hittinger, Chris; Klenk, Hans-Peter; Lopes, Mariana; Meir-Kolthoff, Jan P.; Rokas, Antonis; Rosa, Carlos; Scheuner, Carmen; Soares, Marco; Stielow, Benjamin; Wisecaver, Jennifer H.; Wolfe, Ken; Blackwell, Meredith; Kurtzman, Cletus; Grigoriev, Igor; Jeffries, Thomas

    2015-03-16

    Yeasts are important for industrial and biotechnological processes and show remarkable metabolic and phylogenetic diversity despite morphological similarities. We have sequenced the genomes of 16 ascomycete yeasts of taxonomic and industrial importance including members of Saccharomycotina and Taphrinomycotina. Phylogenetic analysis of these and previously published yeast genomes helped resolve the placement of species including Saitoella complicata, Babjeviella inositovora, Hyphopichia burtonii, and Metschnikowia bicuspidata. Moreover, we find that alternative nuclear codon usage, where CUG encodes serine instead of leucine, are monophyletic within the Saccharomycotina. Most of the yeasts have compact genomes with a large fraction of single exon genes, and a tendency towards more introns in early-diverging species. Analysis of enzyme phylogeny gives insights into the evolution of metabolic capabilities such as methanol utilization and assimilation of alternative carbon sources.

  10. Monitoring Air Quality with Leaf Yeasts.

    ERIC Educational Resources Information Center

    Richardson, D. H. S.; And Others

    1985-01-01

    Proposes that leaf yeast serve as quick, inexpensive, and effective techniques for monitoring air quality. Outlines procedures and provides suggestions for data analysis. Includes results from sample school groups who employed this technique. (ML)

  11. Vanadium Dioxide Phase Change Switches

    NASA Astrophysics Data System (ADS)

    Field, Mark; Hillman, Christopher; Stupar, Philip; Hacker, Jonathan; Griffith, Zachary; Lee, Kang-Jin

    2015-03-01

    We have built RF switches using vanadium dioxide thin films fabricated within a section of inverted transmission line with integrated on chip heaters to provide local thermal control. On heating the films above the metal insulator transition we obtain record low switch insertion loss of -0.13 dB at 50 GHz and -0.5 dB at 110 GHz. We investigate the device physics of these switches including the effect of a deposited insulator on the VO2 switching characteristics, the self-latching of the devices under high RF powers and the effect of resistance change with temperature on the device linearity. Finally we show how these devices can be integrated with silicon germanium RF circuits to produce a field programmable device where the RF signal routing can be selected under external control. Supported under the DARPA RF-FPGA Program, Contract HR0011-12-C-0092.

  12. Hobetron current regulating switch tube

    SciTech Connect

    True, R.B.; Hansen, R.J.; Deb, D.N.; Good, G.R.; Reass, W.A.

    1999-07-01

    This paper describes a novel high power electron tube that can hold off voltages up to hundreds of kilovolts, and switch hundreds of amps of current. They call the divide the Hobertron since it utilizes a hollow electron beam. Unlike magnetron injection gun (MIG) switch tubes, it does not require a magnet. Further, it uses nonintercepting control laments, and a dispenser cathode for long life and reliability. Finally, it features a double walled Faraday cage collector for high power dissipation capability. Current is very tightly controlled against changes in voltage across the switch (it is an almost perfect pentode), thus this tube is ideally suited for direct series switching applications. In the paper, various Hobertron designs, and the computer codes and methods used to create them, will be described.

  13. Wide Bandgap Extrinsic Photoconductive Switches

    SciTech Connect

    Sullivan, James S.

    2012-01-20

    Photoconductive semiconductor switches (PCSS) have been investigated since the late 1970s. Some devices have been developed that withstand tens of kilovolts and others that switch hundreds of amperes. However, no single device has been developed that can reliably withstand both high voltage and switch high current. Yet, photoconductive switches still hold the promise of reliable high voltage and high current operation with subnanosecond risetimes. Particularly since good quality, bulk, single crystal, wide bandgap semiconductor materials have recently become available. In this chapter we will review the basic operation of PCSS devices, status of PCSS devices and properties of the wide bandgap semiconductors 4H-SiC, 6H-SiC and 2H-GaN.

  14. Selective media for detecting and enumerating foodborne yeasts.

    PubMed

    Beuchat, L R

    1993-06-25

    No one medium is satisfactory for detecting, isolating and enumerating all yeasts in all foods. Antibiotic-supplemented media such as dichloran rose Bengal chloramphenicol agar, tryptone glucose yeast extract chloramphenicol agar, oxytetracycline glucose yeast extract agar and rose Bengal chloramphenicol agar are superior to acidified potato dextrose agar and other acidified media for enumeration of the vast majority of spoilage yeasts. Dichloran glycerol (18%) agar performs well for enumerating moderately xerotolerant yeasts. Malt extract yeast extract glucose (up to 60%) can be used for detecting and enumerating moderate and extreme xerophiles. These media also support the growth of moulds. Lysine agar, Schwarz differential agar and Lin's wild yeast differential agar are used by the brewing industry to differentiate wild yeasts from brewer's strains. Lysine agar is selective for apiculate yeasts and ethanol sulfite yeast extract agar is selective for Saccharomyces. Both have application in wineries. Modified molybdate agar can be used to selectively isolate yeasts from tropical fruits. Preservative-resistant yeasts can be detected on malt acetic agar. The recommended incubation temperature is 25 degrees C, but incubation time between plating and counting colonies ranges from 5 days for determination of general populations of yeasts to 10 days for more for xerotolerant yeasts. There is need for new and improved media for selectively isolating various groups, genera, species and strains of yeasts capable of growing only under specific environmental conditions in specific types of foods and beverages. PMID:8357752

  15. Size and Structure of Yeast Chromosomal DNA

    PubMed Central

    Petes, Thomas D.; Byers, Breck; Fangman, Walton L.

    1973-01-01

    Electron microscopic analysis indicates that yeast nuclear DNA can be isolated as linear molecules ranging in size from 50 μm (1.2 × 108 daltons) to 355 μm (8.4 × 108 daltons). Analysis indicates the data is consistent with the hypothesis that each yeast chromosome contains a single, linear DNA duplex. Mitochondrial DNA molecules have a contour length of 21 ± 2 μm and are mostly linear. Images PMID:4594033

  16. High PRF high current switch

    DOEpatents

    Moran, Stuart L.; Hutcherson, R. Kenneth

    1990-03-27

    A triggerable, high voltage, high current, spark gap switch for use in pu power systems. The device comprises a pair of electrodes in a high pressure hydrogen environment that is triggered by introducing an arc between one electrode and a trigger pin. Unusually high repetition rates may be obtained by undervolting the switch, i.e., operating the trigger at voltages much below the self-breakdown voltage of the device.

  17. A Piezoelectric Cryogenic Heat Switch

    NASA Technical Reports Server (NTRS)

    Jahromi, Amir E.; Sullivan, Dan F.

    2014-01-01

    We have measured the thermal conductance of a mechanical heat switch actuated by a piezoelectric positioner, the PZHS (PieZo electric Heat Switch), at cryogenic temperatures. The thermal conductance of the PZHS was measured between 4 K and 10 K, and on/off conductance ratios greater than 100 were achieved when the positioner applied its maximum force of 8 N. We discuss the advantages of using this system in cryogenic applications, and estimate the ultimate performance of an optimized PZHS.

  18. K-Band Latching Switches

    NASA Technical Reports Server (NTRS)

    Piotrowski, W. S.; Raue, J. E.

    1984-01-01

    Design, development, and tests are described for two single-pole-double-throw latching waveguide ferrite switches: a K-band switch in WR-42 waveguide and a Ka-band switch in WR-28 waveguide. Both switches have structurally simple junctions, mechanically interlocked without the use of bonding materials; they are impervious to the effects of thermal, shock, and vibration stresses. Ferrite material for the Ka-band switch with a proper combination of magnetic and dielectric properties was available and resulted in excellent low loss, wideband performance. The high power handling requirement of the K-band switch limited the choice of ferrite to nickel-zinc compositions with adequate magnetic properties, but with too low relative dielectric constant. The relative dielectric constant determines the junction dimensions for given frequency responses. In this case the too low value unavoidably leads to a larger than optimum junction volume, increasing the insertion loss and restricting the operating bandwidth. Efforts to overcome the materials-related difficulties through the design of a composite junction with increased effective dielectric properties efforts to modify the relative dielectric constant of nickel-zinc ferrite are examined.

  19. Sealed reed relay limit switches

    NASA Astrophysics Data System (ADS)

    Ivanov, I. P.; Svintsov, G. P.; Yefimova, M. A.; Lebedev, A. V.; Samsonov, Y. P.

    1986-01-01

    Sealed reed relay limit switches are described which overcome the inherent deficiencies traditionally present in these devices: high material, labor consumption, and difficult operation. Series VSG limit switches developed at the All-Union Scientific Research and Technological Planning Institute for Relay Engineering (Cheboksary) for use in buildings are described. The VSG1 has a single switching contact, the VSG2 a single normally open contact, and the VSG3 a single normally closed contact. The VSG1 employs type MKS-27103 sealed reed relays, while the VSG2 and VSG3 employ KEM-1 reed relays. The magnet system, which consists of magnets and a plate, and the sealed reed relay are contained in a nonmagnetic casing with a slit in it. The mathematical expression defining the geometric dimensions of the magnet system is given. The basic parameteres of all three types of switches are tabulated. The VSG series switches can be used to replace VBK and BVK switches, thus saving electricity, labor, and materials, including silver.

  20. Flor Yeast: New Perspectives Beyond Wine Aging

    PubMed Central

    Legras, Jean-Luc; Moreno-Garcia, Jaime; Zara, Severino; Zara, Giacomo; Garcia-Martinez, Teresa; Mauricio, Juan C.; Mannazzu, Ilaria; Coi, Anna L.; Bou Zeidan, Marc; Dequin, Sylvie; Moreno, Juan; Budroni, Marilena

    2016-01-01

    The most important dogma in white-wine production is the preservation of the wine aroma and the limitation of the oxidative action of oxygen. In contrast, the aging of Sherry and Sherry-like wines is an aerobic process that depends on the oxidative activity of flor strains of Saccharomyces cerevisiae. Under depletion of nitrogen and fermentable carbon sources, these yeast produce aggregates of floating cells and form an air–liquid biofilm on the wine surface, which is also known as velum or flor. This behavior is due to genetic and metabolic peculiarities that differentiate flor yeast from other wine yeast. This review will focus first on the most updated data obtained through the analysis of flor yeast with -omic tools. Comparative genomics, proteomics, and metabolomics of flor and wine yeast strains are shedding new light on several features of these special yeast, and in particular, they have revealed the extent of proteome remodeling imposed by the biofilm life-style. Finally, new insights in terms of promotion and inhibition of biofilm formation through small molecules, amino acids, and di/tri-peptides, and novel possibilities for the exploitation of biofilm immobilization within a fungal hyphae framework, will be discussed. PMID:27148192