Science.gov

Sample records for yeast phaffia rhodozyma

  1. Production of astaxanthin from cellulosic biomass sugars by mutants of the yeast Phaffia rhodozyma

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Astaxanthin is a carotenoid of high value to the aquaculture, nutraceutical, and pharmaceutical industries. Three mutant strains of the astaxanthin-producing yeast Phaffia rhodozyma, which were derived from the parent strain ATCC 24202 (UCD 67-210) and designated JTM166, JTM185, and SSM19, were test...

  2. Molecular cloning and characterization of the ATP citrate lyase from carotenogenic yeast Phaffia rhodozyma.

    PubMed

    Chávez-Cabrera, Cipriano; Marsch, Rodolfo; Bartolo-Aguilar, Yaneth; Flores-Bustamante, Zoila Rosa; Hidalgo-Lara, María Eugenia; Martínez-Cárdenas, Anahí; Cancino-Díaz, Juan Carlos; Sánchez, Sergio; Flores-Cotera, Luis Bernardo

    2015-09-01

    ATP citrate lyase (ACL), is a key cytosolic source of acetyl-CoA for fatty acid and sterol biosynthesis and appear to be involved in carotenoid biosynthesis in yeasts. Three homologous DNA sequences encoding ACLs in Phaffia rhodozyma were isolated i.e two genes and one cDNA. The two genes were multi-intronic, with 3450-bp-coding sequences and both genes, as the cDNA, encoded identical 120.1-kDa polypeptides. Full-length amino acid sequences of these ACLs showed the two multidomains, PLN02235 and PLN02522, which are necessary for activity. The ACLs showed 82-87% similarity to putative ACLs from other basidiomycetes and 71% similarity to human ACL. The acl cDNA was used to express the heterologous ACL 6XHis-tagged which was identified using MALDI-TOF-MS. The sequenced peptides with 42.2% coverage showed 100% identity to the amino acid sequence generated in silico. The recombinant ACL purified to homogeneity showed an activity of 2 U. This is the first study to characterize a recombinant ACL from a carotenogenic yeast. The present study provides a key foundation for future studies to assess (a) the possible occurrence of alternative splicing, (b) identify the promoter(s) sequence(s) and (c) the involvement of ACL in the differential regulation of fatty acid and carotenoid biosynthesis in yeasts. PMID:26122278

  3. Astaxanthinogenesis in the yeast Phaffia rhodozyma - optimization of low-cost culture media and yeast cell-wall lysis

    SciTech Connect

    Fontana, J.D.; Baron, M.; Guimaraes, M.F.

    1997-12-31

    Astaxanthin is a diketo-dihydroxy-carotenoid produced by Phaffia rhodozyma, a basidiomicetous yeast. A low-cost fermentation medium consisting of raw sugarcane juice and urea was developed to exploit the active sucrolytic/urelolytic enzyme apparatus inherent to the yeast. As compared to the beneficial effect of 0.1 g% urea, a ready nitrogen source, mild phosphoric pre inversion of juice sucrose to glucose and fructose, promptly fermentable carbon sources, resulted in smaller benefits. Corn steep liquor (CSL) was found to be a valuable supplement for both yeast biomass yield (9.2 g dry cells/L) and astaxanthin production (1.3 mg/g cells). Distillery effluent (vinace), despite only a slightly positive effect on yeast growth, allowed for the highest pigment productivity (1.9 mg/g cells). Trace amounts of Ni{sup 2} (1 mg/L, as a cofactor for urease) resulted in controversial effects, namely, biomass decrease and astaxanthin increase, with no effect on the release (and uptake) of ammonium ion from urea. 13 refs., 6 figs.

  4. Complementation analysis with new genetic markers in Phaffia rhodozyma.

    PubMed

    Retamales, P; León, R; Martínez, C; Hermosilla, G; Pincheira, G; Cifuentes, V

    1998-04-01

    Isolation and characterization of auxotrophic mutants from wild-type and astaxanthin mutant strains of Phaffia rhodozyma is described. Differences in survival were observed when u.v. irradiation of P. rhodozyma wild-type and astaxanthin mutant strains were incubated in the dark or exposed to photoreactivating light. Ultra-violet mutagenesis was not effective to produce auxotrophic mutants in this yeast. Auxotrophic mutants were obtained with high efficiency through a nystatin enrichment procedure after a N-methyl-N'-nitro-N-nitrosoguanidine (NGT) mutagenic treatment with a 0.12% survivor level. Stringent mutagenetic conditions were needed to obtain P. rhodozyma auxotrophs. The most frequent mutants were ade- and met- in a rather narrow auxotroph spectrum. These results may be associated with a possible diploid condition of this yeast. The high number of adenine auxotrophs obtained in relation to other auxotrophic mutants suggests the possibility of some degree of heterozygosity in the wild-type strain UCD 67-385. PMID:9801767

  5. Metabolic Engineering of the Carotenoid Biosynthetic Pathway in the Yeast Xanthophyllomyces dendrorhous (Phaffia rhodozyma)

    PubMed Central

    Verdoes, Jan C.; Sandmann, Gerhard; Visser, Hans; Diaz, Maria; van Mossel, Minca; van Ooyen, Albert J. J.

    2003-01-01

    The crtYB locus was used as an integrative platform for the construction of specific carotenoid biosynthetic mutants in the astaxanthin-producing yeast Xanthophyllomyces dendrorhous. The crtYB gene of X. dendrorhous, encoding a chimeric carotenoid biosynthetic enzyme, could be inactivated by both single and double crossover events, resulting in non-carotenoid-producing transformants. In addition, the crtYB gene, linked to either its homologous or a glyceraldehyde-3-phosphate dehydrogenase promoter, was overexpressed in the wild type and a ?-carotene-accumulating mutant of X. dendrorhous. In several transformants containing multiple copies of the crtYB gene, the total carotenoid content was higher than in the control strain. This increase was mainly due to an increase of the ?-carotene and echinone content, whereas the total content of astaxanthin was unaffected or even lower. Overexpression of the phytoene synthase-encoding gene (crtI) had a large impact on the ratio between mono- and bicyclic carotenoids. Furthermore, we showed that in metabolic engineered X. dendrorhous strains, the competition between the enzymes phytoene desaturase and lycopene cyclase for lycopene governs the metabolic flux either via ?-carotene to astaxanthin or via 3,4-didehydrolycopene to 3-hydroxy-3?-4?-didehydro-?-?-caroten-4-one (HDCO). The monocylic carotenoid torulene and HDCO, normally produced as minority carotenoids, were the main carotenoids produced in these strains. PMID:12839738

  6. Astaxanthin hyperproduction by Phaffia rhodozyma (now Xanthophyllomyces dendrorhous) with raw coconut milk as sole source of energy.

    PubMed

    Domíguez-Bocanegra, A R; Torres-Muñoz, J A

    2004-12-01

    Natural carbon sources, such as those present in cane sugar molasses and grape juice, promote the synthesis of astaxanthin in different Phaffia rhodozyma yeasts. One of these, coconut milk, has a very rich nutrient composition. The aim of this work was to investigate the utility of coconut milk as sole source of energy for astaxanthin pigment production by P. rhodozyma strains. Currently, coconut pulp is widely used in industrial processes in Mexico for the production of shampoos, candies, food, etc. However, coconut milk is a waste product. We show that coconut milk enhances astaxanthin production. The fermentation yielded 850 microg/g yeast with the NRRL-10921 wild-type strain and 1850 microg/g yeast with the mutated R1 strain. Production was better than reported results employing other natural carbon sources. PMID:15290135

  7. 21 CFR 73.355 - Phaffia yeast.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Phaffia yeast. 73.355 Section 73.355 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.355 Phaffia yeast. (a) Identity. (1) The color additive phaffia yeast consists of the killed, dried...

  8. Reduction of fatty acid flux results in enhancement of astaxanthin synthesis in a mutant strain of Phaffia rhodozyma.

    PubMed

    Miao, Lili; Wang, Yongxing; Chi, Shuang; Yan, Jiacong; Guan, Guohua; Hui, Bodi; Li, Ying

    2010-06-01

    A moderate-temperature mutant strain of the yeast Phaffia rhodozyma, termed MK19, was selected by 1-methyl-3-nitro-1-nitrosoguanidine (NTG) and Co60 mutagenesis. MK19 displayed fast cell growth and elevated astaxanthin content at 25 degrees C, whereas optimal temperature for growth and astaxanthin synthesis of wild-type P. rhodozyma was 17-21 degrees C. Optimized astaxanthin yield for MK19 after 4 days culture in shaking flask at 25 degrees C, determined by response surface methodology, was 25.8 mg/l, which was 17-fold higher than that of the wild-type. MK19 was tolerant of high initial concentration of glucose (>100 g/l) in optimized medium. Total fatty acid content of MK19 was much lower than that of the wild-type. Acetyl-CoA is a common precursor of fatty acid and terpenoid biosynthesis, and it is possible that decreased fatty acid synthesis results in transfer of acetyl-CoA to the carotenoid biosynthetic pathway. Our results indicate that astaxanthin content is negatively correlated with fatty acid content in P. rhodozyma. Nutrient analysis showed that MK19 cells are enriched in lysine, vitamin E, and other rare nutrients, and have potential application as fish food without nutritional supplementation. This moderate-temperature mutant strain is a promising candidate for economical industrial-scale production. PMID:20229332

  9. 21 CFR 73.355 - Phaffia yeast.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... stabilized color additive mixture. Color additive mixtures for fish feed use made with phaffia yeast may... § 501.4 of this chapter. (3) The presence of the color additive in salmonid fish that have been fed... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.355 Phaffia yeast. (a) Identity. (1) The color...

  10. 21 CFR 73.355 - Phaffia yeast.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... stabilized color additive mixture. Color additive mixtures for fish feed use made with phaffia yeast may... § 501.4 of this chapter. (3) The presence of the color additive in salmonid fish that have been fed... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.355 Phaffia yeast. (a) Identity. (1) The color...

  11. 21 CFR 73.355 - Phaffia yeast.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... stabilized color additive mixture. Color additive mixtures for fish feed use made with phaffia yeast may... § 501.4 of this chapter. (3) The presence of the color additive in salmonid fish that have been fed... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.355 Phaffia yeast. (a) Identity. (1) The color...

  12. 21 CFR 73.355 - Phaffia yeast.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... stabilized color additive mixture. Color additive mixtures for fish feed use made with phaffia yeast may... § 501.4 of this chapter. (3) The presence of the color additive in salmonid fish that have been fed... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.355 Phaffia yeast. (a) Identity. (1) The color...

  13. Effect of astaxanthin produced by Phaffia rhodozyma on growth performance, meat quality, and fecal noxious gas emission in broilers.

    PubMed

    Jeong, Jin Suk; Kim, In Ho

    2014-12-01

    A prospective alternative to antibiotics currently being evaluated is yeast and its derivative products. Phaffia rhodozyma is a species of yeast that produces the carotenoid pigment, astaxanthin (AST), which exhibits a wide variety of biological activities, including antioxidation in animals. A total of 432 one-day-old male broilers (Arbor Acres) were used in a 4-wk feeding experiment and each dietary treatment consisted of 9 replicate cages, with 16 broilers per replicate. Birds were randomly allotted to 1 of 3 corn-soybean meal-based diets supplemented with 0 mg (CON, basal diet), 1,000 mg (CON + AST production 0.1%), or 2,000 mg (CON + AST production 0.2%) of P. rhodozyma yeast per kg of feed, giving an intake of approximately 0, 2.3, and 4.6 mg of AST/kg of feed, respectively. The inclusion of AST linearly improved weight gain in the finisher period (linear, P = 0.0264) and during the overall experimental period (linear, P = 0.0194) and linearly decreased feed conversion ratio in the finisher period (linear, P = 0.0422) and tended to decrease during the overall experimental period (linear, P = 0.0568). No significant effects were observed with red blood cell, white blood cell, and lymphocyte numbers in response to 2.3 or 4.6 mg of AST/kg of feed (P > 0.05). The ammonia emission from samples treated with 2.3 and 4.6 mg of AST/kg was significantly lower than that of CON (linear, P = 0.0110). Taken together, these results indicate that supplementation with AST could improve BW gain and decrease feed conversion ratio and fecal noxious gas emission of ammonia in broilers. PMID:25260529

  14. Influence of high-pressure homogenization, ultrasonication, and supercritical fluid on free astaxanthin extraction from β-glucanase-treated Phaffia rhodozyma cells.

    PubMed

    Hasan, Mojeer; Azhar, Mohd; Nangia, Hina; Bhatt, Prakash Chandra; Panda, Bibhu Prasad

    2016-02-17

    In this study astaxanthin production by Phaffia rhodozyma was enhanced by chemical mutation using ethyl methane sulfonate. The mutant produces a higher amount of astaxanthin than the wild yeast strain. In comparison to supercritical fluid technique, high-pressure homogenization is better for extracting astaxanthin from yeast cells. Ultrasonication of dimethyl sulfoxide, hexane, and acetone-treated cells yielded less astaxanthin than β-glucanase enzyme-treated cells. The combination of ultrasonication with β-glucanase enzyme is found to be the most efficient method of extraction among all the tested physical and chemical extraction methods. It gives a maximum yield of 435.71 ± 6.55 µg free astaxanthin per gram of yeast cell mass. PMID:25569162

  15. Astaxanthin biosynthesis is enhanced by high carotenogenic gene expression and decrease of fatty acids and ergosterol in a Phaffia rhodozyma mutant strain.

    PubMed

    Miao, Lili; Chi, Shuang; Tang, Yichen; Su, Zhongyu; Yin, Tie; Guan, Guohua; Li, Ying

    2011-03-01

    An astaxanthin-overproducing (?1000 ?g g(-1)) strain of Phaffia rhodozyma, termed MK19, was established through 1-methyl-3-nitro-1-nitrosoguanidine and Co60 mutagenesis from wild-type JCM9042 (merely 35-67 ?g g(-1)). The total fatty acid content of MK19 was much lower than that of the wild type. Possible causes of the astaxanthin increase were studied at the gene expression level. The expression of the carotenogenic genes crtE, crtI, pbs, and ast, which are responsible for astaxanthin biosynthesis from geranylgeranyl pyrophosphate, was highly induced at the mRNA level, leading to excessive astaxanthin accumulation. In contrast, transcription levels of the genes (hmgs, hmgr, idi, mvk, mpd, fps), responsible for the initial steps in the terpenoid pathway, were essentially the same in wild type and MK19. Although fatty acid and total ergosterol content were reduced by 40-70 mg g(-1) and 760.3 ?g g(-1) , respectively, in MK19 as compared with the wild type, but the transcription levels of rate-limiting genes in fatty acid and ergosterol pathways such as acc and sqs were similar. Because fatty acids and ergosterol are two branch pathways of astaxanthin biosynthesis in P. rhodozyma, our findings indicate that enhancement of astaxanthin in MK19 results from decreased fatty acid and ergosterol biosynthesis, leading to precursor accumulation, and transfer to the astaxanthin pathway. Strengthening of the mevalonate pathway is suggested as a promising metabolic engineering approach for further astaxanthin enhancement in MK19. PMID:21155970

  16. Integrating an algal ?-carotene hydroxylase gene into a designed carotenoid-biosynthesis pathway increases carotenoid production in yeast.

    PubMed

    Chang, Jui-Jen; Thia, Caroline; Lin, Hao-Yeh; Liu, Hsien-Lin; Ho, Feng-Ju; Wu, Jiunn-Tzong; Shih, Ming-Che; Li, Wen-Hsiung; Huang, Chieh-Chen

    2015-05-01

    The algal ?-carotene hydroxylase gene Crchyb from Chlamydomonas reinhardtii, Czchyb from Chlorella zofingiensis, or Hpchyb from Haematococcus pluvialis and six other carotenoid-synthesis pathway genes were co-integrated into the genome of a yeast host. Each of these three algal genes showed a higher efficiency to convert ?-carotene to downstream carotenoids than the fungal genes from Phaffia rhodozyma. Furthermore, the strain with Hpchyb displayed a higher carotenoid productivity than the strains integrated with Crchyb or Czchyb, indicating that Hpchyb is more efficient than Crchyb and Czchyb. These results suggest that ?-carotene hydroxylase plays a crucial role in the biosynthesis of carotenoids. PMID:25537137

  17. Red yeasts and carotenoid production: outlining a future for non-conventional yeasts of biotechnological interest.

    PubMed

    Mannazzu, Ilaria; Landolfo, Sara; Lopes da Silva, Teresa; Buzzini, Pietro

    2015-11-01

    Carotenoids are one of the most common classes of pigments that occur in nature. Due to their biological properties, they are widely used in phytomedicine and in the chemical, pharmaceutical, cosmetic, food and feed industries. Accordingly, their global market is continuously growing, and it is expected to reach about US$1.4 billion in 2018. Carotenoids can be easily produced by chemical synthesis, although their biotechnological production is rapidly becoming an appealing alternative to the chemical route, partly due to consumer concerns against synthetic pigments. Among the yeasts, and apart from the pigmented species Phaffia rhodozyma (and its teleomorph Xanthophyllomyces dendrorhous), a handful of species of the genera Rhodosporidium, Rhodotorula, Sporobolomyces and Sporidiobolus are well known carotenoid producers. These are known as 'red yeasts', and their ability to synthesize mixtures of carotenoids from low-cost carbon sources has been broadly studied recently. Here, in agreement with the renewed interest in microbial carotenoids, the recent literature is reviewed regarding the taxonomy of the genera Rhodosporidium, Rhodotorula, Sporobolomyces and Sporidiobolus, the stress factors that influence their carotenogenesis, and the most advanced analytical tools for evaluation of carotenoid production. Moreover, a synopsis of the molecular and "-omic" tools available for elucidation of the metabolic pathways of the microbial carotenoids is reported. PMID:26335057

  18. Production of astaxanthin from corn fiber as a value-added co-product of fuel ethanol fermentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Five strains of the yeast Phaffia rhodozyma, NRRL Y-17268, NRRL Y-17270, ATCC 96594 (CBS 6938), ATCC 24202 (UCD 67-210), and ATCC 74219 (UBV-AX2) were tested for astaxanthin production using the major sugars derived from corn fiber, a byproduct from the wet milling of corn kernels that contains prim...

  19. Yeast Infections

    MedlinePLUS

    ... taking antibiotics, it can multiply and cause an infection. Yeast infections affect different parts of the body in different ways: Thrush is a yeast infection that causes white patches in your mouth Candida ...

  20. Yeast Infection

    MedlinePLUS

    ... majority of vaginal yeast infections are caused by Candida Albicans ? There are some less common yeast organisms such as Torulopsis Glabrata that may cause infections that do not clear up with the ...

  1. Production, extraction, and quantification of astaxanthin by Xanthophyllomyces dendrorhous or Haematococcus pluvialis: standardized techniques.

    PubMed

    Domínguez-Bocanegra, Alma Rosa

    2012-01-01

    For many years, benefits and disadvantages of pigments production either by microalgae or yeasts have been under analysis. In this contribution we shall deal with Xanthophyllomyces dendrorhous (formerly Phaffia rhodozyma) and Haematococcus pluvialis, which are known as major prominent microorganisms able to synthesize astaxanthin pigment. Then, the usual trend is to look for optimal conditions to conduct astaxanthin synthesis. From one side, pigment production by H. pluvialis is promoted under cellular stress conditions like nutrient deprivation, exposition to high light intensity, aeration. On the other side, X. dendrorhous is able to show significant increase in astaxanthin synthesis when grown in natural carbon sources like coconut milk, grape juice. The main aim of this chapter is to describe optimal environmental conditions for astaxanthin production by X. dendrorhous or H. pluvialis. PMID:22711125

  2. Multiple improvement of astaxanthin biosynthesis in Xanthophyllomyces dendrorhous by a combination of conventional mutagenesis and metabolic pathway engineering.

    PubMed

    Gassel, Sören; Schewe, Hendrik; Schmidt, Isabell; Schrader, Jens; Sandmann, Gerhard

    2013-04-01

    Xanthophyllomyces dendrorhous (Phaffia rhodozyma) is the only yeast or fungus that synthesizes the commercially attractive carotenoid astaxanthin. For a suitable bioprocess, the wild type has to be modified for increasing biomass content. To achieve this, a two step strategy has been followed. At first, random mutagenesis was applied leading to colonies with substantially higher astaxanthin content. Then, the resulting strain was genetically engineered by targeting limiting reactions for further enhancement of astaxanthin biosynthesis. This combinatorial approach together with selection of an appropriate growth medium resulted in highest astaxanthin biomass contents reported to date for X. dendrorhous. In a fermenter culture, its maximum content was 9.7 mg/g dry weight. PMID:23187756

  3. Red yeast

    MedlinePLUS

    ... cholesterol levels and triglycerides. However, this specific product contains large amounts of a chemical similar to "statin" ... this product and other red yeast products that contain statins to be illegal unapproved drugs. However, outside ...

  4. Counting Yeast.

    ERIC Educational Resources Information Center

    Bealer, Jonathan; Welton, Briana

    1998-01-01

    Describes changes to a traditional study of population in yeast colonies. Changes to the procedures include: (1) only one culture per student team; (2) cultures are inoculated only once; and (3) the same tube is sampled daily. (DDR)

  5. Vaginal Yeast Infections (For Parents)

    MedlinePLUS

    ... I Help a Friend Who Cuts? Vaginal Yeast Infections KidsHealth > For Teens > Vaginal Yeast Infections Print A ... effect of taking antibiotics. What Is a Yeast Infection? A yeast infection is a common infection caused ...

  6. Increased carotenoid production in Xanthophyllomyces dendrorhous G276 using plant extracts.

    PubMed

    Kim, Soo-Ki; Lee, Jun-Hyeong; Lee, Chi-Ho; Yoon, Yoh-Chang

    2007-04-01

    The red yeast Xanthophyllomyces dendrorhous (previously named Phaffia rhodozyma) produces astaxanthin pigment among many carotenoids. The mutant X. dendrorhous G276 was isolated by chemical mutagenesis. The mutant produced about 2.0 mg of carotenoid per g of yeast cell dry weight and 8.0 mg/L of carotenoid after 5 days batch culture with YM media; in comparison, the parent strain produced 0.66 mg/g of yeast cell dry weight and a carotenoid concentration of 4.5 mg/L. We characterized the utilization of carbon sources by the mutant strain and screened various edible plant extracts to enhance the carotenoid production. The addition of Perilla frutescens (final concentration, 5%) or Allium fistulosum extracts (final concentration, 1%) enhanced the pigment production to about 32 mg/L. In a batch fermentor, addition of Perilla frutescens extract reduced the cultivation time by two days compared to control (no extract), which usually required five-day incubation to fully produce astaxanthin. The results suggest that plant extracts such as Perilla frutescens can effectively enhance astaxanthin production. PMID:17483797

  7. Yeast Based Sensors

    NASA Astrophysics Data System (ADS)

    Shimomura-Shimizu, Mifumi; Karube, Isao

    Since the first microbial cell sensor was studied by Karube et al. in 1977, many types of yeast based sensors have been developed as analytical tools. Yeasts are known as facultative anaerobes. Facultative anaerobes can survive in both aerobic and anaerobic conditions. The yeast based sensor consisted of a DO electrode and an immobilized omnivorous yeast. In yeast based sensor development, many kinds of yeast have been employed by applying their characteristics to adapt to the analyte. For example, Trichosporon cutaneum was used to estimate organic pollution in industrial wastewater. Yeast based sensors are suitable for online control of biochemical processes and for environmental monitoring. In this review, principles and applications of yeast based sensors are summarized.

  8. Vaginal Yeast Infection

    MedlinePLUS

    ... Skip Content Marketing Share this: Main Content Area Vaginal Yeast Infection Vaginal yeast infection, or vulvovaginal candidiasis, is a common cause of vaginal irritation. Nearly 75 percent of all adult women ...

  9. Vaginal yeast infection

    MedlinePLUS

    Yeast infection - vagina; Vaginal candidiasis; Monilial vaginitis ... Most women have a vaginal yeast infection at some time. Candida albicans is a common type of fungus. It is often found in small amounts in the vagina , mouth, ...

  10. Prions in Yeast

    PubMed Central

    Liebman, Susan W.; Chernoff, Yury O.

    2012-01-01

    The concept of a prion as an infectious self-propagating protein isoform was initially proposed to explain certain mammalian diseases. It is now clear that yeast also has heritable elements transmitted via protein. Indeed, the “protein only” model of prion transmission was first proven using a yeast prion. Typically, known prions are ordered cross-? aggregates (amyloids). Recently, there has been an explosion in the number of recognized prions in yeast. Yeast continues to lead the way in understanding cellular control of prion propagation, prion structure, mechanisms of de novo prion formation, specificity of prion transmission, and the biological roles of prions. This review summarizes what has been learned from yeast prions. PMID:22879407

  11. Apoptosis in yeast.

    PubMed

    Madeo, Frank; Herker, Eva; Wissing, Silke; Jungwirth, Helmut; Eisenberg, Tobias; Fröhlich, Kai-Uwe

    2004-12-01

    Apoptosis is a highly regulated cellular suicide program crucial for metazoan development. However, dysfunction of apoptosis also leads to several diseases. Yeast undergoes apoptosis after application of acetic acid, sugar- or salt-stress, plant antifungal peptides, or hydrogen peroxide. Oxygen radicals seem to be key elements of apoptotic execution, conserved during evolution. Furthermore, several yeast orthologues of central metazoan apoptotic regulators have been identified, such as a caspase and a caspase-regulating serine protease. In addition, physiological occurrence of cell death has been detected during aging and mating in yeast. The finding of apoptosis in yeast, other fungi and parasites is not only of great medical relevance but will also help to understand some of the still unknown molecular mechanisms at the core of apoptotic execution. PMID:15556039

  12. Anaerobic yeast killer systems.

    PubMed

    Polonelli, L; Menozzi, M G; Campani, L; Gerloni, M; Conti, S; Morace, G; Chezzi, C

    1992-05-01

    The influence of anaerobic conditions on the expression of the killer phenomenon of several yeast isolates belonging to recognized killer systems coded by different genetic determinants (Pichia spp., Kluyveromyces lactis, Saccharomyces cerevisiae) was studied. Anaerobiosis influenced the activity of killer toxins from some individual isolates of the genera Pichia and Saccharomyces on sensitive strains of P. anomala, K. lactis and Candida albicans. However, no influence was detectable on a S. cerevisiae sensitive isolate. Thus, anaerobic conditions seem to interfere more with the metabolic process of sensitive strains than with toxin production by killer yeasts. The selection of a panel of killer yeasts, able to display their activity against reference sensitive yeast isolates under anaerobic conditions in a medium that favored the growth of anaerobes, allowed the use of the killer system to type Bacteroides fragilis isolates for epidemiological purposes. PMID:1397211

  13. Yeast infections (image)

    MedlinePLUS

    Yeast infections may follow a course of antibiotics that were prescribed for another purpose. The antibiotics change the normal "balance" between organisms in the vagina by suppressing the growth of protective bacteria that normally have an antifungal effect.

  14. Pexophagy in yeasts.

    PubMed

    Oku, Masahide; Sakai, Yasuyoshi

    2016-05-01

    Pexophagy, selective degradation of peroxisomes via autophagy, is the main system for reducing organelle abundance. Elucidation of the molecular machinery of pexophagy has been pioneered in studies of the budding yeast Saccharomyces cerevisiae and the methylotrophic yeasts Pichia pastoris and Hansenula polymorpha. Recent analyses using these yeasts have elucidated the molecular machineries of pexophagy, especially in terms of the interactions and modifications of the so-called adaptor proteins required for guiding autophagic membrane biogenesis on the organelle surface. Based on the recent findings, functional relevance of pexophagy and another autophagic pathway, mitophagy (selective autophagy of mitochondria), is discussed. We also discuss the physiological importance of pexophagy in these yeast systems. This article is part of a Special Issue entitled: Peroxisomes edited by Ralf Erdmann. PMID:26409485

  15. Yeast Infection (Candidiasis)

    MedlinePLUS

    ... pain behind the breastbone. Self-Care Guidelines Most yeast infections can be prevented by keeping body-fold areas clean and dry. Diabetics should keep their blood sugar under good control. Treat skin infection with a ...

  16. Production of astaxanthin from corn fiber as a value-added co-product of fuel ethanol fermentation.

    PubMed

    Nghiem, Nhuan P; Montanti, Justin; Johnston, David

    2009-05-01

    Five strains of the yeast Phaffia rhodozyma, NRRL Y-17268, NRRL Y-17270, ATCC 96594 (CBS 6938), ATCC 24202 (UCD 67-210), and ATCC 74219 (UBV-AX2) were tested for astaxanthin production using the major sugars derived from corn fiber. The sugars tested included glucose, xylose, and arabinose. All five strains were able to utilize the three sugars for astaxanthin production. Among them, ATCC 74219 was the best astaxanthin producer. Kinetics of sugar utilization of this strain was studied, both with the individual sugars and with their mixtures. Arabinose was found to give the highest astaxanthin yield. It also was observed that glucose at high concentrations suppressed utilization of the other two sugars. Corn fiber hydrolysate obtained by dilute sulfuric acid pretreatment and subsequent enzyme hydrolysis was tested for astaxanthin production by strain ATCC 74219. Dilution of the hydrolysate was necessary to allow growth and astaxanthin production. All the sugars in the hydrolysate diluted with two volumes of water were completely consumed. Astaxanthin yield of 0.82 mg/g total sugars consumed was observed. PMID:18958409

  17. Nitrile Metabolizing Yeasts

    NASA Astrophysics Data System (ADS)

    Bhalla, Tek Chand; Sharma, Monica; Sharma, Nitya Nand

    Nitriles and amides are widely distributed in the biotic and abiotic components of our ecosystem. Nitrile form an important group of organic compounds which find their applications in the synthesis of a large number of compounds used as/in pharmaceutical, cosmetics, plastics, dyes, etc>. Nitriles are mainly hydro-lyzed to corresponding amide/acid in organic chemistry. Industrial and agricultural activities have also lead to release of nitriles and amides into the environment and some of them pose threat to human health. Biocatalysis and biotransformations are increasingly replacing chemical routes of synthesis in organic chemistry as a part of ‘green chemistry’. Nitrile metabolizing organisms or enzymes thus has assumed greater significance in all these years to convert nitriles to amides/ acids. The nitrile metabolizing enzymes are widely present in bacteria, fungi and yeasts. Yeasts metabolize nitriles through nitrilase and/or nitrile hydratase and amidase enzymes. Only few yeasts have been reported to possess aldoxime dehydratase. More than sixty nitrile metabolizing yeast strains have been hither to isolated from cyanide treatment bioreactor, fermented foods and soil. Most of the yeasts contain nitrile hydratase-amidase system for metabolizing nitriles. Transformations of nitriles to amides/acids have been carried out with free and immobilized yeast cells. The nitrilases of Torulopsis candida>and Exophiala oligosperma>R1 are enantioselec-tive and regiospecific respectively. Geotrichum>sp. JR1 grows in the presence of 2M acetonitrile and may have potential for application in bioremediation of nitrile contaminated soil/water. The nitrilase of E. oligosperma>R1 being active at low pH (3-6) has shown promise for the hydroxy acids. Immobilized yeast cells hydrolyze some additional nitriles in comparison to free cells. It is expected that more focus in future will be on purification, characterization, cloning, expression and immobilization of nitrile metabolizing enzymes of yeasts.

  18. Modeling brewers' yeast flocculation

    PubMed

    van Hamersveld EH; van der Lans RG; Caulet; Luyben

    1998-02-01

    Flocculation of yeast cells occurs during the fermentation of beer. Partway through the fermentation the cells become flocculent and start to form flocs. If the environmental conditions, such as medium composition and fluid velocities in the tank, are optimal, the flocs will grow in size large enough to settle. After settling of the main part of the yeast the green beer is left, containing only a small amount of yeast necessary for rest conversions during the next process step, the lagering. The physical process of flocculation is a dynamic equilibrium of floc formation and floc breakup resulting in a bimodal size distribution containing single cells and flocs. The floc size distribution and the single cell amount were measured under the different conditions that occur during full scale fermentation. Influences on flocculation such as floc strength, specific power input, and total number of yeast cells in suspension were studied. A flocculation model was developed, and the measured data used for validation. Yeast floc formation can be described with the collision theory assuming a constant collision efficiency. The breakup of flocs appears to occur mainly via two mechanisms, the splitting of flocs and the erosion of yeast cells from the floc surface. The splitting rate determines the average floc size and the erosion rate determines the number of single cells. Regarding the size of the flocs with respect to the scale of turbulence, only the viscous subrange needs to be considered. With the model, the floc size distribution and the number of single cells can be predicted at a certain point during the fermentation. For this, the bond strength between the cells, the fractal dimension of the yeast, the specific power input in the tank and the number of yeast cells that are in suspension in the tank have to be known. Copyright 1998 John Wiley & Sons, Inc. PMID:10099210

  19. Forces in yeast flocculation

    NASA Astrophysics Data System (ADS)

    El-Kirat-Chatel, Sofiane; Beaussart, Audrey; Vincent, Stéphane P.; Abellán Flos, Marta; Hols, Pascal; Lipke, Peter N.; Dufrêne, Yves F.

    2015-01-01

    In the baker's yeast Saccharomyces cerevisiae, cell-cell adhesion (``flocculation'') is conferred by a family of lectin-like proteins known as the flocculin (Flo) proteins. Knowledge of the adhesive and mechanical properties of flocculins is important for understanding the mechanisms of yeast adhesion, and may help controlling yeast behaviour in biotechnology. We use single-molecule and single-cell atomic force microscopy (AFM) to explore the nanoscale forces engaged in yeast flocculation, focusing on the role of Flo1 as a prototype of flocculins. Using AFM tips labelled with mannose, we detect single flocculins on Flo1-expressing cells, showing they are widely exposed on the cell surface. When subjected to force, individual Flo1 proteins display two distinct force responses, i.e. weak lectin binding forces and strong unfolding forces reflecting the force-induced extension of hydrophobic tandem repeats. We demonstrate that cell-cell adhesion bonds also involve multiple weak lectin interactions together with strong unfolding forces, both associated with Flo1 molecules. Single-molecule and single-cell data correlate with microscale cell adhesion behaviour, suggesting strongly that Flo1 mechanics is critical for yeast flocculation. These results favour a model in which not only weak lectin-sugar interactions are involved in yeast flocculation but also strong hydrophobic interactions resulting from protein unfolding.

  20. Mapping Yeast Transcriptional Networks

    PubMed Central

    Hughes, Timothy R.; de Boer, Carl G.

    2013-01-01

    The term “transcriptional network” refers to the mechanism(s) that underlies coordinated expression of genes, typically involving transcription factors (TFs) binding to the promoters of multiple genes, and individual genes controlled by multiple TFs. A multitude of studies in the last two decades have aimed to map and characterize transcriptional networks in the yeast Saccharomyces cerevisiae. We review the methodologies and accomplishments of these studies, as well as challenges we now face. For most yeast TFs, data have been collected on their sequence preferences, in vivo promoter occupancy, and gene expression profiles in deletion mutants. These systematic studies have led to the identification of new regulators of numerous cellular functions and shed light on the overall organization of yeast gene regulation. However, many yeast TFs appear to be inactive under standard laboratory growth conditions, and many of the available data were collected using techniques that have since been improved. Perhaps as a consequence, comprehensive and accurate mapping among TF sequence preferences, promoter binding, and gene expression remains an open challenge. We propose that the time is ripe for renewed systematic efforts toward a complete mapping of yeast transcriptional regulatory mechanisms. PMID:24018767

  1. Oxygen requirements of yeasts.

    PubMed Central

    Visser, W; Scheffers, W A; Batenburg-van der Vegte, W H; van Dijken, J P

    1990-01-01

    Type species of 75 yeast genera were examined for their ability to grow anaerobically in complex and mineral media. To define anaerobic conditions, we added a redox indicator, resazurin, to the media to determine low redox potentials. All strains tested were capable of fermenting glucose to ethanol in oxygen-limited shake-flask cultures, even those of species generally regarded as nonfermentative. However, only 23% of the yeast species tested grew under anaerobic conditions. A comparative study with a number of selected strains revealed that Saccharomyces cerevisiae stands out as a yeast capable of rapid growth at low redox potentials. Other yeasts, such as Torulaspora delbrueckii and Candida tropicalis, grew poorly mu max, 0.03 and 0.05 h-1, respectively) under anaerobic conditions in mineral medium supplemented with Tween 80 and ergosterol. The latter organisms grew rapidly under oxygen limitation and then displayed a high rate of alcoholic fermentation. It can be concluded that these yeasts have hitherto-unidentified oxygen requirements for growth. Images PMID:2082825

  2. Yeast killer systems.

    PubMed Central

    Magliani, W; Conti, S; Gerloni, M; Bertolotti, D; Polonelli, L

    1997-01-01

    The killer phenomenon in yeasts has been revealed to be a multicentric model for molecular biologists, virologists, phytopathologists, epidemiologists, industrial and medical microbiologists, mycologists, and pharmacologists. The surprisingly widespread occurrence of the killer phenomenon among taxonomically unrelated microorganisms, including prokaryotic and eukaryotic pathogens, has engendered a new interest in its biological significance as well as its theoretical and practical applications. The search for therapeutic opportunities by using yeast killer systems has conceptually opened new avenues for the prevention and control of life-threatening fungal diseases through the idiotypic network that is apparently exploited by the immune system in the course of natural infections. In this review, the biology, ecology, epidemiology, therapeutics, serology, and idiotypy of yeast killer systems are discussed. PMID:9227858

  3. Strong nucleosomes of yeasts.

    PubMed

    Trifonov, Edward N; Tripathi, Vijay

    2016-02-01

    Yeast genome lacks visibly periodic sequences characteristic of strong nucleosomes (SNs) originally discovered in A. thaliana, C. elegans, and H. sapiens. Yet, the sequences with good match to the (RRRRRYYYYY)n consensus of the SNs do show preference to centromere regions of Schizosaccharomyces pombe, Saccharomyces cerevisiae, and Cryptococcus neoformans - property characteristic of SNs of higher eukaryotes. Candida albicans is the first exception detected so far, where their SNs do not have any affinity to the centromeres, nor pericentromeric regions. Three of the four yeast genomes analyzed possess unique repeating centromere-specific SN sequences (C. albicans, again, is an exception). The results firmly indicate that centromeres of plants, animals, and yeasts in general have special chromatin structure, favoring SNs. PMID:25893982

  4. Evolutionary history of Ascomyceteous Yeasts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Yeasts are important for many industrial and biotechnological processes and show remarkable diversity despite morphological similarities. We have sequenced the genomes of 20 ascomyceteous yeasts of taxonomic and industrial importance including members of Saccharomycotina and Taphrinomycotina. A comp...

  5. Genetics of Yeasts

    NASA Astrophysics Data System (ADS)

    Querol, Amparo; Fernández-Espinar, M. Teresa; Belloch, Carmela

    The use of yeasts in biotechnology processes dates back to ancient days. Before 7000 BC, beer was produced in Sumeria. Wine was made in Assyria in 3500 BC, and ancient Rome had over 250 bakeries, which were making leavened bread by 100 BC. And milk has been made into Kefyr and Koumiss in Asia for many centuries (Demain, Phaff, & Kurtzman, 1999). However, the importance of yeast in the food and beverage industries was only realized about 1860, when their role in food manufacturing became evident.

  6. L-arabinose fermenting yeast

    SciTech Connect

    Zhang, Min; Singh, Arjun; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric; Suominen, Pirkko

    2010-12-07

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. Methods of producing ethanol include utilizing these modified yeast strains. ##STR00001##

  7. Opportunistic Pathogenic Yeasts

    NASA Astrophysics Data System (ADS)

    Banerjee, Uma

    Advances in medical research, made during the last few decades, have improved the prophylactic, diagnostic and therapeutic capabilities for variety of infections/diseases. However, many of the prophylactic and therapeutic procedures have been seen in many instances to exact a price of host-vulnerability to an expanding group of opportunistic pathogens and yeasts are one of the important members in it. Fortunately amongst the vast majority of yeasts present in nature only few are considered to have the capability to cause infections when certain opportunities predisposes and these are termed as ‘opportunistic pathogenic yeasts.’ However, the term ‘pathogenic’ is quite tricky, as it depends of various factors of the host, the ‘bug’ and the environment to manifest the clinical infection. The borderline is expanding. In the present century with unprecedented increase in number of immune-compromised host in various disciplines of health care settings, where any yeast, which has the capability to grow at 37 ° C (normal body temperature of human), can be pathogenic and cause infection in particular situation

  8. L-arabinose fermenting yeast

    DOEpatents

    Zhang, Min; Singh, Arjun; Suominen, Pirkko; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric

    2013-02-12

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. A yeast strain engineered to metabolize arabinose through a novel pathway is also disclosed. Methods of producing ethanol include utilizing these modified yeast strains.

  9. L-arabinose fermenting yeast

    DOEpatents

    Zhang, Min; Singh, Arjun; Suominen, Pirkko; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric

    2014-09-23

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. A yeast strain engineered to metabolize arabinose through a novel pathway is also disclosed. Methods of producing ethanol include utilizing these modified yeast strains.

  10. Determination of astaxanthin stereoisomers and colour attributes in flesh of rainbow trout (Oncorhynchus mykiss) as a tool to distinguish the dietary pigmentation source.

    PubMed

    Moretti, V M; Mentasti, T; Bellagamba, F; Luzzana, U; Caprino, F; Turchini, G M; Giani, I; Valfrè, F

    2006-11-01

    The presence of carotenoids in animal tissue reflects their sources along the food chain. Astaxanthin, the main carotenoid used for salmonid pigmentation, is usually included in the feed as a synthetic product. However, other dietary sources of astaxanthin such as shrimp or krill wastes, algae meal or yeasts are also available on the market. Astaxanthin possesses two identical asymmetric atoms at C-3 and C-3' making possible three optical isomers with all-trans configuration of the chain: 3S,3'S, 3R,3'S, and 3R,3'R. The distribution of the isomers in natural astaxanthin differs from that of the synthetic product. This latter is a racemic mixture, with a typical ratio of 1:2:1 (3S,3'S:3R,3'S:3R,3'R), while astaxanthin from natural sources has a variable distribution of the isomers deriving from the different biological organism that synthesized it. The high-performance liquid chromatographic (HPLC) analysis of all-trans isomers of astaxanthin was performed in different pigment sources, such as red yeast Phaffia rhodozyma, alga meal Haematococcus pluvialis, krill meal and oil, and shrimp meal. With the aim to investigate astaxanthin isomer ratios in flesh of fish fed different carotenoid sources, three groups of rainbow trout were fed for 60 days diets containing astaxanthin from synthetic source, H. pluvialis algae meal and P. rhodozyma red yeast. Moreover, the distribution of optical isomers of astaxanthin in trout purchased on the Italian market was investigated. A characteristic distribution of astaxanthin stereoisomers was detected for each pigment sources and such distribution was reproduced in the flesh of trout fed with that source. Colour values measured in different sites of fillet of rainbow trout fed with different pigment sources showed no significant differences. Similarly, different sources of pigment (natural or synthetic) produced colour values of fresh fillet with no relevant or significant differences. The coefficient of distance computed amongst the feed ingredient and the trout fillet astaxanthin stereoisomers was a useful tool to identify the origin of the pigment used on farm. PMID:17071507

  11. Extracellular Polysaccharides Produced by Yeasts and Yeast-Like Fungi

    NASA Astrophysics Data System (ADS)

    van Bogaert, Inge N. A.; de Maeseneire, Sofie L.; Vandamme, Erick J.

    Several yeasts and yeast-like fungi are known to produce extracellular polysaccharides. Most of these contain D-mannose, either alone or in combination with other sugars or phosphate. A large chemical and structural variability is found between yeast species and even among different strains. The types of polymers that are synthesized can be chemically characterized as mannans, glucans, phosphoman-nans, galactomannans, glucomannans and glucuronoxylomannans. Despite these differences, almost all of the yeast exopolysaccharides display some sort of biological activity. Some of them have already applications in chemistry, pharmacy, cosmetics or as probiotic. Furthermore, some yeast exopolysaccharides, such as pullulan, exhibit specific physico-chemical and rheological properties, making them useful in a wide range of technical applications. A survey is given here of the production, the characteristics and the application potential of currently well studied yeast extracellular polysaccharides.

  12. Water Transport in Yeasts.

    PubMed

    Sabir, Farzana; Prista, Catarina; Madeira, Ana; Moura, Teresa; Loureiro-Dias, Maria C; Soveral, Graça

    2016-01-01

    Water moves across membranes through the lipid bilayer and through aquaporins, in this case in a regulated manner. Aquaporins belong to the MIP superfamily and two subfamilies are represented in yeasts: orthodox aquaporins considered to be specific water channels and aquaglyceroporins (heterodox aquaporins). In Saccharomyces cerevisiae genome, four aquaporin isoforms were identified, two of which are genetically close to orthodox aquaporins (ScAqy1 and ScAqy2) and the other two are more closely related to the aquaglyceroporins (ScFps1 and ScAqy3). Advances in the establishment of water channels structure are reviewed in this chapter in relation with the mechanisms of selectivity, conductance and gating. Aquaporins are important for key aspects of yeast physiology. They have been shown to be involved in sporulation, rapid freeze-thaw tolerance, osmo-sensitivity, and modulation of cell surface properties and colony morphology, although the underlying exact mechanisms are still unknown. PMID:26721272

  13. Tapping into yeast diversity.

    PubMed

    Fay, Justin C

    2012-11-01

    Domesticated organisms demonstrate our capacity to influence wild species but also provide us with the opportunity to understand rapid evolution in the context of substantially altered environments and novel selective pressures. Recent advances in genetics and genomics have brought unprecedented insights into the domestication of many organisms and have opened new avenues for further improvements to be made. Yet, our ability to engineer biological systems is not without limits; genetic manipulation is often quite difficult. The budding yeast, Saccharomyces cerevisiae, is not only one of the most powerful model organisms, but is also the premier producer of fermented foods and beverages around the globe. As a model system, it entertains a hefty workforce dedicated to deciphering its genome and the function it encodes at a rich mechanistic level. As a producer, it is used to make leavened bread, and dozens of different alcoholic beverages, such as beer and wine. Yet, applying the awesome power of yeast genetics to understanding its origins and evolution requires some knowledge of its wild ancestors and the environments from which they were derived. A number of surprisingly diverse lineages of S. cerevisiae from both primeval and secondary forests in China have been discovered by Wang and his colleagues. These lineages substantially expand our knowledge of wild yeast diversity and will be a boon to elucidating the ecology, evolution and domestication of this academic and industrial workhorse. PMID:23281494

  14. Glutathione Production in Yeast

    NASA Astrophysics Data System (ADS)

    Bachhawat, Anand K.; Ganguli, Dwaipayan; Kaur, Jaspreet; Kasturia, Neha; Thakur, Anil; Kaur, Hardeep; Kumar, Akhilesh; Yadav, Amit

    Glutathione, ? -glutamyl-cysteinyl-glycine, is the most abundant non-protein thiol found in almost all eukaryotic cells (and in some prokaryotes). The tripeptide, which is synthesized non-ribosomally by the consecutive action of two soluble enzymes, is needed for carrying out numerous functions in the cell, most important of which is the maintenance of the redox buffer. The cycle of glutathione biosynthesis and degradation forms part of the ? -glutamyl cycle in most organisms although the latter half of the pathway has not been demonstrated in yeasts. Our current understanding of how glutathione levels are controlled at different levels in the cell is described. Several different routes and processes have been attempted to increase commercial production of glutathione using both yeast and bacteria. In this article we discuss the history of glutathione production in yeast. The current bottlenecks for increased glutathione production are presented based on our current understanding of the regulation of glutathione homeostasis, and possible strategies for overcoming these limitations for further enhancing and improving glutathione production are discussed

  15. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) may be safely used in food provided the total folic acid content of the yeast does not exceed 0.04 milligram per gram of yeast (approximately 0.008 milligram of pteroyglutamic acid per gram of yeast)....

  16. BIOSYNTHESIS OF YEAST CAROTENOIDS

    PubMed Central

    Simpson, Kenneth L.; Nakayama, T. O. M.; Chichester, C. O.

    1964-01-01

    Simpson, Kenneth L. (University of California, Davis), T. O. M. Nakayama, and C. O. Chichester. Biosynthesis of yeast carotenoids. J. Bacteriol. 88:1688–1694. 1964.—The biosynthesis of carotenoids was followed in Rhodotorula glutinis and in a new strain, 62-506. The treatment of the growing cultures by methylheptenone, or ionone, vapors permitted observations of the intermediates in the biosynthetic pathway. On the basis of concentration changes and accumulation in blocked pathways, the sequence of carotenoid formation is postulated as phytoene, phytofluene, ?-carotene, neurosporene, ?-zeacarotene, ?-carotene, torulin, a C40 aldehyde, and torularhodin. Torulin and torularhodin were established as the main carotenoids of 62-506. PMID:14240958

  17. Ethanol tolerance in yeasts.

    PubMed

    Casey, G P; Ingledew, W M

    1986-01-01

    It is now certain that the inherent ethanol tolerance of the Saccharomyces strain used is not the prime factor regulating the level of ethanol that can be produced in a high sugar brewing, wine, sake, or distillery fermentation. In fact, in terms of the maximum concentration that these yeasts can produce under batch (16 to 17% [v/v]) or fed-batch conditions, there is clearly no difference in ethanol tolerance. This is not to say, however, that under defined conditions there is no difference in ethanol tolerance among different Saccharomyces yeasts. This property, although a genetic determinant, is clearly influenced by many factors (carbohydrate level, wort nutrition, temperature, osmotic pressure/water activity, and substrate concentration), and each yeast strain reacts to each factor differently. This will indeed lead to differences in measured tolerance. Thus, it is extremely important that each of these be taken into consideration when determining "tolerance" for a particular set of fermentation conditions. The manner in which each alcohol-related industry has evolved is now known to have played a major role in determining traditional thinking on ethanol tolerance in Saccharomyces yeasts. It is interesting to speculate on how different our thinking on ethanol tolerance would be today if sake fermentations had not evolved with successive mashing and simultaneous saccharification and fermentation of rice carbohydrate, if distillers' worts were clarified prior to fermentation but brewers' wort were not, and if grape skins with their associated unsaturated lipids had not been an integral part of red wine musts. The time is now ripe for ethanol-related industries to take advantage of these findings to improve the economies of production. In the authors' opinion, breweries could produce higher alcohol beers if oxygenation (leading to unsaturated lipids) and "usable" nitrogen source levels were increased in high gravity worts. White wine fermentations could also, if desired, match the higher ethanol levels in red wines if oxygenation (to provide the unsaturated lipids deleted in part by the removal of the grape skins) were practiced and if care were given to assimilable nitrogen concentrations. This would hold true even at 10 to 14 degrees C, and the more rapid fermentations would maximize utilization of winery tankage.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:3533426

  18. The Budding Yeast Nucleus

    PubMed Central

    Taddei, Angela; Schober, Heiko; Gasser, Susan M.

    2010-01-01

    The budding yeast nucleus, like those of other eukaryotic species, is highly organized with respect to both chromosomal sequences and enzymatic activities. At the nuclear periphery interactions of nuclear pores with chromatin, mRNA, and transport factors promote efficient gene expression, whereas centromeres, telomeres, and silent chromatin are clustered and anchored away from pores. Internal nuclear organization appears to be function-dependent, reflecting localized sites for tRNA transcription, rDNA transcription, ribosome assembly, and DNA repair. Recent advances have identified new proteins involved in the positioning of chromatin and have allowed testing of the functional role of higher-order chromatin organization. The unequal distribution of silent information regulatory factors and histone modifying enzymes, which arises in part from the juxtaposition of telomeric repeats, has been shown to influence chromatin-mediated transcriptional repression. Other localization events suppress unwanted recombination. These findings highlight the contribution budding yeast genetics and cytology have made to dissecting the functional role of nuclear structure. PMID:20554704

  19. Red yeast rice for dysipidemia.

    PubMed

    Shamim, Shariq; Al Badarin, Firas J; DiNicolantonio, James J; Lavie, Carl J; O'Keefe, James H

    2013-01-01

    Red yeast rice is an ancient Chinese food product that contains monacolins, chemical substances that are similar to statins in their mechanisms of action and lipid lowering properties. Several studies have found red yeast rice to be moderately effective at improving the lipid profile, particularly for lowering the low-density lipoprotein cholesterol levels. One large randomized controlled study from China found that red yeast rice significantly improved risk of major adverse cardiovascular events and overall survival in patients following myocardial infarction. Thus, red yeast rice is a potentially useful over-the-counter cholesterol-lowering agent. However, many red yeast rice formulations are non-standardized and unregulated food supplements, and there is a need for further research and regulation of production. PMID:24003656

  20. Brewer's yeast and sugarcane yeast as protein sources for dogs.

    PubMed

    Martins, M S; Sakomura, N K; Souza, D F; Filho, F O R; Gomes, M O S; Vasconcellos, R S; Carciofi, A C

    2014-10-01

    Brewer's yeast (BY), autolysed sugarcane yeast (ASCY) and integral sugar cane yeast (ISCY) were studied in two experiments as ingredients for dog diets. In the first experiment, 28 dogs were randomly assigned to four diets; one reference diet and three test diets containing 15% of BY, ASCY or ISCY and 85% of the reference diet (as-fed basis). The digestibilities of the yeasts were calculated by the substitution method. In the second experiment, 35 dogs were randomized to five diets with similar chemical composition but different levels of sugarcane yeast inclusion (0%, 7.5% ASCY, 15% ASCY, 7.5% ISCY and 15% ISCY). In both experiments, the coefficient of total tract apparent digestibility (CTTAD) of nutrients was determined through total collection of faeces. During experiment, two additional analyses of food palatability, nitrogen balance and urea postprandial responses were performed. The data were submitted to analysis of variance, and the means were compared by orthogonal or polynomial contrasts or Tukey's test (p < 0.05). In experiment 1, CTTAD of protein was lower for both sugarcane yeasts than for BY (p = 0.012), as was metabolizable energy content (p = 0.025). In experiment 2, a linear reduction in energy digestibility with ASCY inclusion (p = 0.05) was verified. Furthermore, faecal score and DM content were reduced with ISCY inclusion (p < 0.003). No effect of yeast inclusion on nitrogen balance or postprandial urea response was found. Also, the inclusion of 7.5% of ASCY or ISCY increased diet palatability (p < 0.01). Yeasts present adequate digestibility by dogs, but its effect on faecal formation needs to be considered. No clear advantage for the use of ASCY over ISCY was found. In conclusion, we find that sugarcane yeast is suitable for inclusion in dog food and can enhance the overall palatability of the diet. PMID:24304448

  1. Agriculturally important yeasts: Biological control of field and postharvest diseases using yeast antagonists, and yeasts as pathogens of plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two important agricultural aspects of yeasts, control of plant diseases through application of yeasts as the control agent, and yeasts that are plant pathogens are reviewed. Yeasts as biocontrol organisms are presented first, followed by a discussion of some of the more common plant pathogenic yeas...

  2. Lager yeast comes of age.

    PubMed

    Wendland, Jürgen

    2014-10-01

    Alcoholic fermentations have accompanied human civilizations throughout our history. Lager yeasts have a several-century-long tradition of providing fresh beer with clean taste. The yeast strains used for lager beer fermentation have long been recognized as hybrids between two Saccharomyces species. We summarize the initial findings on this hybrid nature, the genomics/transcriptomics of lager yeasts, and established targets of strain improvements. Next-generation sequencing has provided fast access to yeast genomes. Its use in population genomics has uncovered many more hybridization events within Saccharomyces species, so that lager yeast hybrids are no longer the exception from the rule. These findings have led us to propose network evolution within Saccharomyces species. This "web of life" recognizes the ability of closely related species to exchange DNA and thus drain from a combined gene pool rather than be limited to a gene pool restricted by speciation. Within the domesticated lager yeasts, two groups, the Saaz and Frohberg groups, can be distinguished based on fermentation characteristics. Recent evidence suggests that these groups share an evolutionary history. We thus propose to refer to the Saaz group as Saccharomyces carlsbergensis and to the Frohberg group as Saccharomyces pastorianus based on their distinct genomes. New insight into the hybrid nature of lager yeast will provide novel directions for future strain improvement. PMID:25084862

  3. Interaction Between Yeasts and Zinc

    NASA Astrophysics Data System (ADS)

    Nicola, Raffaele De; Walker, Graeme

    Zinc is an essential trace element in biological systems. For example, it acts as a cellular membrane stabiliser, plays a critical role in gene expression and genome modification and activates nearly 300 enzymes, including alcohol dehydrogenase. The present chapter will be focused on the influence of zinc on cell physiology of industrial yeast strains of Saccharomyces cerevisiae, with special regard to the uptake and subsequent utilisation of this metal. Zinc uptake by yeast is metabolism-dependent, with most of the available zinc translocated very quickly into the vacuole. At cell division, zinc is distributed from mother to daughter cells and this effectively lowers the individual cellular zinc concentration, which may become zinc depleted at the onset of the fermentation. Zinc influences yeast fermentative performance and examples will be provided relating to brewing and wine fermentations. Industrial yeasts are subjected to several stresses that may impair fermentation performance. Such stresses may also impact on yeast cell zinc homeostasis. This chapter will discuss the practical implications for the correct management of zinc bioavailability for yeast-based biotechnologies aimed at improving yeast growth, viability, fermentation performance and resistance to environmental stresses

  4. Lager Yeast Comes of Age

    PubMed Central

    2014-01-01

    Alcoholic fermentations have accompanied human civilizations throughout our history. Lager yeasts have a several-century-long tradition of providing fresh beer with clean taste. The yeast strains used for lager beer fermentation have long been recognized as hybrids between two Saccharomyces species. We summarize the initial findings on this hybrid nature, the genomics/transcriptomics of lager yeasts, and established targets of strain improvements. Next-generation sequencing has provided fast access to yeast genomes. Its use in population genomics has uncovered many more hybridization events within Saccharomyces species, so that lager yeast hybrids are no longer the exception from the rule. These findings have led us to propose network evolution within Saccharomyces species. This “web of life” recognizes the ability of closely related species to exchange DNA and thus drain from a combined gene pool rather than be limited to a gene pool restricted by speciation. Within the domesticated lager yeasts, two groups, the Saaz and Frohberg groups, can be distinguished based on fermentation characteristics. Recent evidence suggests that these groups share an evolutionary history. We thus propose to refer to the Saaz group as Saccharomyces carlsbergensis and to the Frohberg group as Saccharomyces pastorianus based on their distinct genomes. New insight into the hybrid nature of lager yeast will provide novel directions for future strain improvement. PMID:25084862

  5. Yeasts: From genetics to biotechnology

    SciTech Connect

    Russo, S.; Poli, G.; Siman-Tov, R.B.

    1995-12-31

    Yeasts have been known and used in food and alcoholic fermentations ever since the Neolithic Age. In more recent times, on the basis of their peculiar features and history, yeasts have become very important experimental models in both microbiological and genetic research, as well as the main characters in many fermentative production processes. In the last 40 years, advances in molecular biology and genetic engineering have made possible not only the genetic selection of organisms, but also the genetic modification of some of them, especially the simplest of them, such as bacteria and yeasts. These discoveries have led to the availability of new yeast strains fit to fulfill requests of industrial production and fermentation. Moreover, genetically modified and transformed yeasts have been constructed that are able to produce large amounts of biologically active proteins and enzymes. Thus, recombinant yeasts make it easier to produce drugs, biologically active products, diagnostics, and vaccines, by inexpensive and relatively simple techniques. Yeasts are going to become more and more important in the {open_quotes}biotechnological revolution{close_quotes} by virtue of both their features and their very long and safe use in human nutrition and industry. 175 refs., 4 figs., 6 tabs.

  6. Revisiting yeast trehalose metabolism.

    PubMed

    Eleutherio, Elis; Panek, Anita; De Mesquita, Joelma Freire; Trevisol, Eduardo; Magalhães, Rayne

    2015-08-01

    Establishing the function of trehalose in yeast cells has led us, over the years, through a long path-from simple energy storage carbohydrate, then a stabilizer and protector of membranes and proteins, through a safety valve against damage caused by oxygen radicals, up to regulator of the glycolytic path. In addition, trehalose biosynthesis has been proposed as a target for novel drugs against several pathogens. Since this pathway is entirely absent in mammalian cells and makes use of highly specific enzymes, trehalose metabolism might be an interesting target for the development of novel therapies. In this review, we want to address some recent points investigated about trehalose metabolism in Saccharomyces cerevisiae, focusing mainly on the mechanism by which this simple disaccharide protects against stress and on the enzymes involved in its synthesis and breakdown. We believe that these concepts are of great importance for medical and biotechnological applications. PMID:25209979

  7. BIOSYNTHESIS OF YEAST CAROTENOIDS.

    PubMed

    SIMPSON, K L; NAKAYAMA, T O; CHICHESTER, C O

    1964-12-01

    Simpson, Kenneth L. (University of California, Davis), T. O. M. Nakayama, and C. O. Chichester. Biosynthesis of yeast carotenoids. J. Bacteriol. 88:1688-1694. 1964.-The biosynthesis of carotenoids was followed in Rhodotorula glutinis and in a new strain, 62-506. The treatment of the growing cultures by methylheptenone, or ionone, vapors permitted observations of the intermediates in the biosynthetic pathway. On the basis of concentration changes and accumulation in blocked pathways, the sequence of carotenoid formation is postulated as phytoene, phytofluene, zeta-carotene, neurosporene, beta-zeacarotene, gamma-carotene, torulin, a C(40) aldehyde, and torularhodin. Torulin and torularhodin were established as the main carotenoids of 62-506. PMID:14240958

  8. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Dried yeasts. 172.896 Section 172.896 Food and... Multipurpose Additives § 172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis) and dried torula yeast (Candida utilis) may be safely used in food provided the total folic...

  9. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Dried yeasts. 172.896 Section 172.896 Food and... Multipurpose Additives § 172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis) and dried torula yeast (Candida utilis) may be safely used in food provided the total folic...

  10. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Dried yeasts. 172.896 Section 172.896 Food and... Multipurpose Additives § 172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis) and dried torula yeast (Candida utilis) may be safely used in food provided the total folic...

  11. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Dried yeasts. 172.896 Section 172.896 Food and... Multipurpose Additives § 172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis) and dried torula yeast (Candida utilis) may be safely used in food provided the total folic...

  12. Biosorption of copper by yeasts.

    PubMed

    Junghans, K; Straube, G

    1991-01-01

    The ability to accumulate copper from aqueous solutions was determined with different yeast species. Yeast cells did not show any significant differences in process kinetics. The uptake was very fast and was influenced by environmental factors. The metal-accumulating capacity differed among the tested strains. The yeast Candida tropicalis and Pichia guilliermondii were chosen for extensive research. Cells of the stationary growth phase were able to adsorb a high amount of copper. The uptake capacity decreased with increasing biomass concentration. Copper adsorption obeyed the Freundlich isotherm. Optimal pH range was between 5 and 7. The biomass could be used repeatedly for biosorption after desorption by mineral acids. PMID:1777357

  13. Molybdate induces thermotolerance in yeast.

    PubMed

    Tiligada, E; Miligkos, V; Ypsilantis, E; Papamichael, K; Delitheos, A

    1999-08-01

    Application of a mild heat pretreatment, performed by shifting cells from 27 degrees C to 37 degrees C led to the protection of yeast cells from death due to a subsequent extreme heat shock at 53 degrees C. The presence of cycloheximide inhibited this induction of thermotolerance, indicating the involvement of de novo protein. The phosphatase inhibitor sodium molybdate induced thermotolerance to the non-pretreated yeast cells. This induction of thermotolerance did not seem to depend upon de novo protein synthesis. Thus, acquisition of thermotolerance in yeast may involve a number of cellular mechanisms depending on the conditions the organism encounters at any particular time. PMID:10499293

  14. Marine yeast isolation and industrial application

    PubMed Central

    Zaky, Abdelrahman Saleh; Tucker, Gregory A; Daw, Zakaria Yehia; Du, Chenyu

    2014-01-01

    Over the last century, terrestrial yeasts have been widely used in various industries, such as baking, brewing, wine, bioethanol and pharmaceutical protein production. However, only little attention has been given to marine yeasts. Recent research showed that marine yeasts have several unique and promising features over the terrestrial yeasts, for example higher osmosis tolerance, higher special chemical productivity and production of industrial enzymes. These indicate that marine yeasts have great potential to be applied in various industries. This review gathers the most recent techniques used for marine yeast isolation as well as the latest applications of marine yeast in bioethanol, pharmaceutical and enzyme production fields. PMID:24738708

  15. Red Yeast Rice: An Introduction

    MedlinePLUS

    ... as certain cholesterol-lowering drugs, and some may contain a potentially harmful contaminant. This fact sheet provides ... information. Key Facts Some red yeast rice products contain substantial amounts of monacolin K, which is chemically ...

  16. The Yeast Sphingolipid Signaling Landscape

    PubMed Central

    Montefusco, David J.; Matmati, Nabil

    2014-01-01

    Sphingolipids are recognized as signaling mediators in a growing number of pathways, and represent potential targets to address many diseases. The study of sphingolipid signaling in yeast has created a number of breakthroughs in the field, and has the potential to lead future advances. The aim of this article is to provide an inclusive view of two major frontiers in yeast sphingolipid signaling. In the first section, several key studies in the field of sphingolipidomics are consolidated to create a yeast sphingolipidome that ranks nearly all known sphingolipid species by their level in a resting yeast cell. The second section presents an overview of most known phenotypes identified for sphingolipid gene mutants, presented with the intention of illuminating not yet discovered connections outside and inside of the field. PMID:24220500

  17. Yeasts preservation: alternatives for lyophilisation.

    PubMed

    Nyanga, Loveness K; Nout, Martinus J R; Smid, Eddy J; Boekhout, Teun; Zwietering, Marcel H

    2012-11-01

    The aim of the study was to compare the effect of two low-cost, low technology traditional methods for drying starter cultures with standard lyophilisation. Lyophilised yeast cultures and yeast cultures preserved in dry rice cakes and dry plant fibre strands were examined for viable cell counts during 6 months storage at 4 and 25 °C. None of the yeast cultures showed a significant loss in viable cell count during 6 months of storage at 4 °C upon lyophilisation and preservation in dry rice cakes. During storage at 25 °C in the dark, yeast cultures preserved in dry rice cakes, and lyophilised cultures of Saccharomyces cerevisiae and Issatchenkia orientalis showed no significant loss of viable cells up to 4 months of storage. Yeast cultures preserved in dry plant fibre strands had the greatest loss of viable count during the 6 months of storage at 25 °C. Preservation of yeasts cultures in dry rice cakes provided better survival during storage at 4 °C than lyophilisation. The current study demonstrated that traditional methods can be useful and effective for starter culture preservation in small-scale, low-tech applications. PMID:22806747

  18. Study of amyloids using yeast

    PubMed Central

    Wickner, Reed B.; Kryndushkin, Dmitry; Shewmaker, Frank; McGlinchey, Ryan; Edskes, Herman K.

    2012-01-01

    Summary Saccharomyces cerevisiae has been a useful model organism in such fields as the cell cycle, regulation of transcription, protein trafficking and cell biology, primarily because of its ease of genetic manipulation. This is no less so in the area of amyloid studies. The endogenous yeast amyloids described to date include prions, infectious proteins (Table 1), and some cell wall proteins (1). and amyloids of humans and a fungal prion have also been studied using the yeast system. Accordingly, the emphasis of this chapter will be on genetic, biochemical, cell biological and physical methods particularly useful in the study of yeast prions and other amyloids studied in yeast. We limit our description of these methods to those aspects which have been most useful in studying yeast prions, citing more detailed expositions in the literature. Volumes on yeast genetics methods (2–4), and on amyloids and prions (5, 6) are useful, and Masison has edited a volume of Methods on “Identification, analysis and characterization of fungal prions” which covers some of this territory (7). We also outline some useful physical methods, pointing the reader to more extensive and authoratative descriptions. PMID:22528100

  19. Biotechnological Applications of Dimorphic Yeasts

    NASA Astrophysics Data System (ADS)

    Doiphode, N.; Joshi, C.; Ghormade, V.; Deshpande, M. V.

    The dimorphic yeasts have the equilibrium between spherical growth (budding) and polarized (hyphal or pseudohyphal tip elongation) which can be triggered by change in the environmental conditions. The reversible growth phenomenon has made dimorphic yeasts as an useful model to understand fungal evolution and fungal differentiation, in general. In nature dimorphism is clearly evident in plant and animal fungal pathogens, which survive and most importantly proliferate in the respective hosts. However, number of organisms with no known pathogenic behaviour also show such a transition, which can be exploited for the technological applications due to their different biochemical make up under different morphologies. For instance, chitin and chitosan production using dimorphic Saccharomyces, Mucor, Rhizopus and Benjaminiella, oil degradation and biotransformation with yeast-form of Yarrowia species, bioremediation of organic pollutants, exopolysac-charide production by yeast-phase of Aureobasidium pullulans, to name a few. Myrothecium verrucaria can be used for seed dressing in its yeast form and it produces a mycolytic enzyme complex in its hyphal-form for the biocontrol of fungal pathogens, while Beauveria bassiana and other entomopathogens kill the insect pest by producing yeast- like cells in the insect body. The form-specific expression of protease, chitinase, lipase, ornithine decarboxylase, glutamate dehydrogenases, etc. make Benjaminiella poitrasii, Basidiobolus sp., and Mucor rouxii strains important in bioremediation, nanobiotechnology, fungal evolution and other areas.

  20. Metabolic regulation of yeast

    NASA Astrophysics Data System (ADS)

    Fiechter, A.

    1982-12-01

    Metabolic regulation which is based on endogeneous and exogeneous process variables which may act constantly or time dependently on the living cell is discussed. The observed phenomena of the regulation are the result of physical, chemical, and biological parameters. These parameters are identified. Ethanol is accumulated as an intermediate product and the synthesis of biomass is reduced. This regulatory effect of glucose is used for the aerobic production of ethanol. Very high production rates are thereby obtained. Understanding of the regulation mechanism of the glucose effect has improved. In addition to catabolite repression, several other mechanisms of enzyme regulation have been described, that are mostly governed by exogeneous factors. Glucose also affects the control of respiration in a third class of yeasts which are unable to make use of ethanol as a substrate for growth. This is due to the lack of any anaplerotic activity. As a consequence, diauxic growth behavior is reduced to a one-stage growth with a drastically reduced cell yield. The pulse chemostat technique, a systematic approach for medium design is developed and medium supplements that are essential for metabolic control are identified.

  1. Yeast mitochondrial transcriptomics.

    PubMed

    Garcia, Mathilde; Darzacq, Xavier; Devaux, Frederic; Singer, Robert H; Jacq, Claude

    2007-01-01

    Although 30 years ago it was strongly suggested that some cytoplasmic ribosomes are bound to the surface of yeast mitochondria, the mechanisms and the raison d'être of this process are not understood. For instance, it is not perfectly known which of the several hundred nuclearly encoded genes have to be translated to the mitochondrial vicinity to guide the import of the corresponding proteins. One can take advantage of several modern methods to address a number of aspects of the site-specific translation process of messenger ribonucleic acid (mRNA) coding for proteins imported into mitochondria. Three complementary approaches are presented to analyze the spatial distribution of mRNAs coding for proteins imported into mitochondria. Starting from biochemical purifications of mitochondria-bound polysomes, we describe a genomewide approach to classify all the cellular mRNAs according to their physical proximity with mitochondria; we also present real-time quantitative reverse transcription polymerase chain reaction monitoring of mRNA distribution to provide a quantified description of this localization. Finally, a fluorescence microscopy approach on a single living cell is described to visualize the in vivo localization of mRNAs involved in mitochondria biogenesis. PMID:18314748

  2. Coherent regulation in yeast’s cell-cycle network

    NASA Astrophysics Data System (ADS)

    Aral, Ne?e; Kabakç?o?lu, Alkan

    2015-05-01

    We define a measure of coherent activity for gene regulatory networks, a property that reflects the unity of purpose between the regulatory agents with a common target. We propose that such harmonious regulatory action is desirable under a demand for energy efficiency and may be selected for under evolutionary pressures. We consider two recent models of the cell-cycle regulatory network of the yeast, Saccharomyces cerevisiae as a case study and calculate their degree of coherence. A comparison with random networks of similar size and composition reveals that the yeast’s cell-cycle regulation is wired to yield an exceptionally high level of coherent regulatory activity. We also investigate the mean degree of coherence as a function of the network size, connectivity and the fraction of repressory/activatory interactions.

  3. Yeast Genetics and Biotechnological Applications

    NASA Astrophysics Data System (ADS)

    Mishra, Saroj; Baranwal, Richa

    Yeast can be recognized as one of the very important groups of microorganisms on account of its extensive use in the fermentation industry and as a basic eukaryotic model cellular system. The yeast Saccharomyces cerevisiae has been extensively used to elucidate the genetics and regulation of several key functions in the cell such as cell mating, electron transport chain, protein trafficking, cell cycle events and others. Even before the genome sequence of the yeast was out, the structural organization and function of several of its genes was known. With the availability of the origin of replication from the 2 ?m plasmid and the development of transformation system, it became the host of choice for expression of a number of important proteins. A large number of episomal and integrative shuttle vectors are available for expression of mammalian proteins. The latest developments in genomics and micro-array technology have allowed investigations of individual gene function by site-specific deletion method. The application of metabolic profiling has also assisted in understanding the cellular network operating in this yeast. This chapter is aimed at reviewing the use of this system as an experimental tool for conducting classical genetics. Various vector systems available, foreign genes expressed and the limitations as a host will be discussed. Finally, the use of various yeast enzymes in biotechnology sector will be reviewed.

  4. Progress in Yeast Glycosylation Engineering.

    PubMed

    Hamilton, Stephen R; Zha, Dongxing

    2015-01-01

    While yeast are lower eukaryotic organisms, they share many common features and biological processes with higher eukaryotes. As such, yeasts have been used as model organisms to facilitate our understanding of such features and processes. To this end, a large number of powerful genetic tools have been developed to investigate and manipulate these organisms. Going hand-in-hand with these genetic tools is the ability to efficiently scale up the fermentation of these organisms, thus making them attractive hosts for the production of recombinant proteins. A key feature of producing recombinant proteins in yeast is that these proteins can be readily secreted into the culture supernatant, simplifying any downstream processing. A consequence of this secretion is that the proteins typically pass through the secretory pathway, during which they may be exposed to various posttranslational modifications. The addition of glycans is one such modification. Unfortunately, while certain aspects of glycosylation are shared between lower and higher eukaryotes, significant differences exist. Over the last two decades much research has focused on engineering the glycosylation pathways of yeast to more closely resemble those of higher eukaryotes, particularly those of humans for the production of therapeutic proteins. In the current review we shall highlight some of the key achievements in yeast glyco-engineering which have led to humanization of both the N- and O-linked glycosylation pathways. PMID:26082216

  5. Toxicogenomics using yeast DNA microarrays.

    PubMed

    Yasokawa, Daisuke; Iwahashi, Hitoshi

    2010-11-01

    Development of genomics and bioinformatics enable us to analyze the global gene expression profiles of cells by DNA microarray. Changes in gene expression patterns indicate changes in its physiological conditions. Following the exposure of an organism or cell to toxic chemicals or other environmental stresses, the global genetic responses can be expeditiously and easily analyzed. Baker's yeast, Saccharomyces cerevisiae, is one of the most studied and useful model eukaryotes. The biggest advantage of yeast genomics is the available functional information for each gene and a considerable number of data are accumulating in the field of toxicity assessment using yeast DNA microarray. In this review, we discuss the toxicogenomics of metal ions, alcohols and aldehydes, and other chemicals. PMID:20624688

  6. [Alkalitolerant yeasts from natural biotopes].

    PubMed

    Lisichkina, G A; Bab'eva, I P; Sorokin, D Iu

    2003-01-01

    Using a solid nutrient medium containing alkaline buffer (pH 10) and an antibiotic, alkalitolerant yeasts were isolated from samples of soda-rich saline soils (solonchaks) of Armenia (Arazdayan) and the Transbaikal Region (the Kungur Steppe). The species diversity of the yeast populations of the tested soda-rich soils was relatively insignificant. They only contained alkalitolerant representatives of asporogenic capsulated yeasts belonging to the species Cryptococcus laurentii, C. albidus, Rhodotorula glutinis, R. mucilaginosa, and Sporobolomyces roseus. C. laurentii representatives clearly dominated the isolates obtained, their number exceeding that of the other species by 2-3 orders of magnitude. All of the isolates grew on acidic wort agar, suggesting that they did not include obligate alkaliphiles. PMID:14679910

  7. PHYLOGENETICS OF SACCHAROMYCETALES, THE ASCOMYCETE YEASTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ascomycete yeasts (Phylum Ascomycota: Subphylum Saccharomycotina: Class Saccharomycetes: Order Saccharomycetales) comprise a monophyletic lineage with a single order of about 1000 known species. These yeasts live as saprobes, often in association with plants, animals, and their interfaces. A few s...

  8. Yeast Can Affect Behavior and Learning.

    ERIC Educational Resources Information Center

    Crook, William G.

    1984-01-01

    A pediatrician recounts his experiences in diagnosing and treating allergies to common yeast germs that may result in behavior and learning problems. He lists characteristics that may predispose children to yeast-connected health problems. (CL)

  9. Chromatin and Transcription in Yeast

    PubMed Central

    Rando, Oliver J.; Winston, Fred

    2012-01-01

    Understanding the mechanisms by which chromatin structure controls eukaryotic transcription has been an intense area of investigation for the past 25 years. Many of the key discoveries that created the foundation for this field came from studies of Saccharomyces cerevisiae, including the discovery of the role of chromatin in transcriptional silencing, as well as the discovery of chromatin-remodeling factors and histone modification activities. Since that time, studies in yeast have continued to contribute in leading ways. This review article summarizes the large body of yeast studies in this field. PMID:22345607

  10. Mitochondrial inheritance in budding yeast.

    PubMed

    Boldogh, I R; Yang, H C; Pon, L A

    2001-06-01

    During the past decade significant advances were made toward understanding the mechanism of mitochondrial inheritance in the yeast Saccharomyces cerevisiae. A combination of genetics, cell-free assays and microscopy has led to the discovery of a great number of components. These fall into three major categories: cytoskeletal elements, mitochondrial membrane components and regulatory proteins. These proteins mediate activities, including movement of mitochondria from mother cells to buds, segregation of mitochondria and mitochondrial DNA, and equal distribution of the organelle between mother cells and buds during yeast cell division. PMID:11389764

  11. Yeast: A Research Organism for Teaching Genetics.

    ERIC Educational Resources Information Center

    Manney, Thomas R.; Manney, Monta L.

    1992-01-01

    Explains why laboratory strains of bakers yeast, Saccharomyces cerevisiae, are particularly suited for classroom science activities. Describes the sexual life cycle of yeast and the genetic system with visible mutations. Presents an overview of activities that can be done with yeast and gives a source for teachers to obtain more information. (PR)

  12. Yeast Proteomics and Protein Microarrays

    PubMed Central

    Chen, Rui; Snyder, Michael

    2010-01-01

    Our understanding of biological processes as well as human diseases has improved greatly thanks to studies on model organisms such as yeast. The power of scientific approaches with yeast lies in its relatively simple genome, its facile classical and molecular genetics, as well as the evolutionary conservation of many basic biological mechanisms. However, even in this simple model organism, systems biology studies, especially proteomic studies had been an intimidating task. During the past decade, powerful high-throughput technologies in proteomic research have been developed for yeast including protein microarray technology. The protein microarray technology allows the interrogation of protein-protein, protein-DNA, protein-small molecule interaction networks as well as post-translational modification networks in a large-scale, high-throughput manner. With this technology, many groundbreaking findings have been established in studies with the budding yeast Saccharomyces cerevisiae, most of which could have been unachievable with traditional approaches. Discovery of these networks has profound impact on explicating biological processes with a proteomic point of view, which may lead to a better understanding of normal biological phenomena as well as various human diseases. PMID:20728591

  13. Yeast as factory and factotum.

    PubMed

    Dixon, B

    2000-02-01

    After centuries of vigorous activity in making fine wines, beers and breads, Saccharomyces cerevisiae is now acquiring a rich new portfolio of skills, bestowed by genetic manipulation. As shown in a recent shop-window of research supported by the European Commission, yeasts will soon be benefiting industries as diverse as fish farming, pharmaceuticals and laundering. PMID:11190211

  14. The birth of yeast peroxisomes.

    PubMed

    Yuan, Wei; Veenhuis, Marten; van der Klei, Ida J

    2016-05-01

    This contribution describes the phenotypic differences of yeast peroxisome-deficient mutants (pex mutants). In some cases different phenotypes were reported for yeast mutants deleted in the same PEX gene. These differences are most likely related to the marker proteins and methods used to detect peroxisomal remnants. This is especially evident for pex3 and pex19 mutants, where the localization of receptor docking proteins (Pex13, Pex14) resulted in the identification of peroxisomal membrane remnants, which do not contain other peroxisomal membrane proteins, such as the ring proteins Pex2, Pex10 and Pex12. These structures in pex3 and pex19 cells are the template for peroxisome formation upon introduction of the missing gene. Taken together, these data suggest that in all yeast pex mutants analyzed so far peroxisomes are not formed de novo but use membrane remnant structures as a template for peroxisome formation upon reintroduction of the missing gene. The relevance of this model for peroxisomal membrane protein and lipid sorting to peroxisomes is discussed. This article is part of a Special Issue entitled: Peroxisomes edited by Ralf Erdmann. PMID:26367802

  15. Nuclear Import of Yeast Proteasomes

    PubMed Central

    Burcoglu, Julianne; Zhao, Liang; Enenkel, Cordula

    2015-01-01

    Proteasomes are highly conserved protease complexes responsible for the degradation of aberrant and short-lived proteins. In highly proliferating yeast and mammalian cells, proteasomes are predominantly nuclear. During quiescence and cell cycle arrest, proteasomes accumulate in granules in close proximity to the nuclear envelope/ER. With prolonged quiescence in yeast, these proteasome granules pinch off as membraneless organelles, and migrate as stable entities through the cytoplasm. Upon exit from quiescence, the proteasome granules clear and the proteasomes are rapidly transported into the nucleus, a process reflecting the dynamic nature of these multisubunit complexes. Due to the scarcity of studies on the nuclear transport of mammalian proteasomes, we summarised the current knowledge on the nuclear import of yeast proteasomes. This pathway uses canonical nuclear localisation signals within proteasomal subunits and Srp1/Kap95, and the canonical import receptor, named importin/karyopherin αβ. Blm10, a conserved 240 kDa protein, which is structurally related to Kap95, provides an alternative import pathway. Two models exist upon which either inactive precursor complexes or active holo-enzymes serve as the import cargo. Here, we reconcile both models and suggest that the import of inactive precursor complexes predominates in dividing cells, while the import of mature enzymes mainly occurs upon exit from quiescence. PMID:26262643

  16. Biopharmaceutical discovery and production in yeast.

    PubMed

    Meehl, Michael A; Stadheim, Terrance A

    2014-12-01

    The selection of an expression platform for recombinant biopharmaceuticals is often centered upon suitable product titers and critical quality attributes, including post-translational modifications. Although notable differences between microbial, yeast, plant, and mammalian host systems exist, recent advances have greatly mitigated any inherent liabilities of yeasts. Yeast expression platforms are important to both the supply of marketed biopharmaceuticals and the pipelines of novel therapeutics. In this review, recent advances in yeast-based expression of biopharmaceuticals will be discussed. The advantages of using glycoengineered yeast as a production host and in the discovery space will be illustrated. These advancements, in turn, are transforming yeast platforms from simple production systems to key technological assets in the discovery and selection of biopharmaceutical lead candidates. PMID:25014890

  17. Yeasts Diversity in Fermented Foods and Beverages

    NASA Astrophysics Data System (ADS)

    Tamang, Jyoti Prakash; Fleet, Graham H.

    People across the world have learnt to culture and use the essential microorganisms for production of fermented foods and alcoholic beverages. A fermented food is produced either spontaneously or by adding mixed/pure starter culture(s). Yeasts are among the essential functional microorganisms encountered in many fermented foods, and are commercially used in production of baker's yeast, breads, wine, beer, cheese, etc. In Asia, moulds are predominant followed by amylolytic and alcohol-producing yeasts in the fermentation processes, whereas in Africa, Europe, Australia and America, fermented products are prepared exclusively using bacteria or bacteria-yeasts mixed cultures. This chapter would focus on the varieties of fermented foods and alcoholic beverages produced by yeasts, their microbiology and role in food fermentation, widely used commercial starters (pilot production, molecular aspects), production technology of some common commercial fermented foods and alcoholic beverages, toxicity and food safety using yeasts cultures and socio-economy

  18. Yeasts in floral nectar: a quantitative survey

    PubMed Central

    Herrera, Carlos M.; de Vega, Clara; Canto, Azucena; Pozo, María I.

    2009-01-01

    Background and Aims One peculiarity of floral nectar that remains relatively unexplored from an ecological perspective is its role as a natural habitat for micro-organisms. This study assesses the frequency of occurrence and abundance of yeast cells in floral nectar of insect-pollinated plants from three contrasting plant communities on two continents. Possible correlations between interspecific differences in yeast incidence and pollinator composition are also explored. Methods The study was conducted at three widely separated areas, two in the Iberian Peninsula (Spain) and one in the Yucatán Peninsula (Mexico). Floral nectar samples from 130 species (37–63 species per region) in 44 families were examined microscopically for the presence of yeast cells. For one of the Spanish sites, the relationship across species between incidence of yeasts in nectar and the proportion of flowers visited by each of five major pollinator categories was also investigated. Key Results Yeasts occurred regularly in the floral nectar of many species, where they sometimes reached extraordinary densities (up to 4 × 105 cells mm−3). Depending on the region, between 32 and 44 % of all nectar samples contained yeasts. Yeast cell densities in the order of 104 cells mm−3 were commonplace, and densities >105 cells mm−3 were not rare. About one-fifth of species at each site had mean yeast cell densities >104 cells mm−3. Across species, yeast frequency and abundance were directly correlated with the proportion of floral visits by bumble-bees, and inversely with the proportion of visits by solitary bees. Conclusions Incorporating nectar yeasts into the scenario of plant–pollinator interactions opens up a number of intriguing avenues for research. In addition, with yeasts being as ubiquitous and abundant in floral nectars as revealed by this study, and given their astounding metabolic versatility, studies focusing on nectar chemical features should carefully control for the presence of yeasts in nectar samples. PMID:19208669

  19. The yeast Golgi apparatus: insights and mysteries

    PubMed Central

    Papanikou, Effrosyni; Glick, Benjamin S.

    2009-01-01

    The Golgi apparatus is known to modify and sort newly synthesized secretory proteins. However, fundamental mysteries remain about the structure, operation, and dynamics of this organelle. Important insights have emerged from studying the Golgi in yeasts. For example, yeasts have provided direct evidence for Golgi cisternal maturation, a mechanism that is likely to be broadly conserved. Here, we highlight features of the yeast Golgi as well as challenges that lie ahead. PMID:19879270

  20. Role of glucose signaling in yeast metabolism

    SciTech Connect

    Dam, K. van

    1996-10-05

    The conversion of glucose to ethanol and carbon dioxide by yeast was the first biochemical pathway to be studied in detail. The initial observation that this process is catalyzed by an extract of yeast led to the discovery of enzymes and coenzymes and laid the foundation for modern biochemistry. In this article, knowledge concerning the relation between uptake of and signaling by glucose in the yeast Saccharomyces cerevisiae is reviewed and compared to the analogous process in prokaryotes. It is concluded that (much) more fundamental knowledge concerning these processes is required before rational redesign of metabolic fluxes from glucose in yeast can be achieved.

  1. Evaluation of Automated Yeast Identification System

    NASA Technical Reports Server (NTRS)

    McGinnis, M. R.

    1996-01-01

    One hundred and nine teleomorphic and anamorphic yeast isolates representing approximately 30 taxa were used to evaluate the accuracy of the Biolog yeast identification system. Isolates derived from nomenclatural types, environmental, and clinica isolates of known identity were tested in the Biolog system. Of the isolates tested, 81 were in the Biolog database. The system correctly identified 40, incorrectly identified 29, and was unable to identify 12. Of the 28 isolates not in the database, 18 were given names, whereas 10 were not. The Biolog yeast identification system is inadequate for the identification of yeasts originating from the environment during space program activities.

  2. 21 CFR 172.381 - Vitamin D2 bakers yeast.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... conventional bakers yeast. (c) The additive may be used in yeast-leavened baked goods and baking mixes and yeast-leavened baked snack foods at levels not to exceed 400 International Units of vitamin D2 per...

  3. YMDB: the Yeast Metabolome Database

    PubMed Central

    Jewison, Timothy; Knox, Craig; Neveu, Vanessa; Djoumbou, Yannick; Guo, An Chi; Lee, Jacqueline; Liu, Philip; Mandal, Rupasri; Krishnamurthy, Ram; Sinelnikov, Igor; Wilson, Michael; Wishart, David S.

    2012-01-01

    The Yeast Metabolome Database (YMDB, http://www.ymdb.ca) is a richly annotated ‘metabolomic’ database containing detailed information about the metabolome of Saccharomyces cerevisiae. Modeled closely after the Human Metabolome Database, the YMDB contains >2000 metabolites with links to 995 different genes/proteins, including enzymes and transporters. The information in YMDB has been gathered from hundreds of books, journal articles and electronic databases. In addition to its comprehensive literature-derived data, the YMDB also contains an extensive collection of experimental intracellular and extracellular metabolite concentration data compiled from detailed Mass Spectrometry (MS) and Nuclear Magnetic Resonance (NMR) metabolomic analyses performed in our lab. This is further supplemented with thousands of NMR and MS spectra collected on pure, reference yeast metabolites. Each metabolite entry in the YMDB contains an average of 80 separate data fields including comprehensive compound description, names and synonyms, structural information, physico-chemical data, reference NMR and MS spectra, intracellular/extracellular concentrations, growth conditions and substrates, pathway information, enzyme data, gene/protein sequence data, as well as numerous hyperlinks to images, references and other public databases. Extensive searching, relational querying and data browsing tools are also provided that support text, chemical structure, spectral, molecular weight and gene/protein sequence queries. Because of S. cervesiae's importance as a model organism for biologists and as a biofactory for industry, we believe this kind of database could have considerable appeal not only to metabolomics researchers, but also to yeast biologists, systems biologists, the industrial fermentation industry, as well as the beer, wine and spirit industry. PMID:22064855

  4. [Taxonomic genetics of Zygowilliopsis yeasts].

    PubMed

    Naumov, G I; Kondrat'eva, V I; Naumova, E S

    2009-12-01

    Genetic hybridization analysis was conducted with 16 natural Zygowilliopsis strains isolated in different geographical regions and maintained in collections under species names Z. californica, Hansenula dimennae, and Pichia populi. Genetic relatedness was determined on the basis of mating, viability of hybrid progeny, and meiotic recombination of markers. Four new biological species are recognized in the former monotypic genus Zygowilliopsis. Species Z. californica and Zygowilliopsis sp. 3 probably include divergent geographical populations. It is necessary to reconsider the species composition of the genus Zygowilliopsis and generic assignment of P. populi yeasts. Genetic and molecular identifications of the Zygowilliopsis species are in perfect agreement. PMID:20198971

  5. Isolation of Peroxisomes from Yeast.

    PubMed

    Cramer, Jana; Effelsberg, Daniel; Girzalsky, Wolfgang; Erdmann, Ralf

    2015-09-01

    Peroxisomes are multifunctional, dynamic organelles present in nearly all eukaryotic cells. Determining their structural and functional characteristics often requires obtaining isolated and purified peroxisomes via subcellular fractionation. Subcellular fractionation techniques are generally based on a three-step procedure: preparation of a cell-free homogenate (postnuclear supernatant), generation of an organellar pellet by differential centrifugation, and density gradient centrifugation. Here we introduce methods for small-scale isolation of peroxisomes from yeast cells using different gradient media as well as large-scale purification using a two-step gradient centrifugation. PMID:26330630

  6. Phosphatidic acid synthesis in yeast

    PubMed Central

    Kuhn, N. J.; Lynen, F.

    1965-01-01

    1. The presence of palmitoyl-CoA–l-glycerol 1-phosphate palmitoyltransferase (EC2.3.1.15) has been demonstrated in a particulate fraction of baker's yeast. 2. The enzyme has been characterized, and its activity studied as a function of pH and concentration of substrates. 3. Inhibition by thiol poisons and protection by acyl-CoA have been used to obtain information on the active site. 4. By various methods of supplying acyl radicals, the species `palmitoyl-CoA' has been shown to be the true acyl donor to the transferase. PMID:14342236

  7. Experimental evolution in budding yeast

    NASA Astrophysics Data System (ADS)

    Murray, Andrew

    2012-02-01

    I will discuss our progress in analyzing evolution in the budding yeast, Saccharomyces cerevisiae. We take two basic approaches. The first is to try and examine quantitative aspects of evolution, for example by determining how the rate of evolution depends on the mutation rate and the population size or asking whether the rate of mutation is uniform throughout the genome. The second is to try to evolve qualitatively novel, cell biologically interesting phenotypes and track the mutations that are responsible for the phenotype. Our efforts include trying to alter cell morphology, evolve multicellularity, and produce a biological oscillator.

  8. Prevention of Yeast Spoilage in Feed and Food by the Yeast Mycocin HMK

    PubMed Central

    Lowes, K. F.; Shearman, C. A.; Payne, J.; MacKenzie, D.; Archer, D. B.; Merry, R. J.; Gasson, M. J.

    2000-01-01

    The yeast Williopsis mrakii produces a mycocin or yeast killer toxin designated HMK; this toxin exhibits high thermal stability, high pH stability, and a broad spectrum of activity against other yeasts. We describe construction of a synthetic gene for mycocin HMK and heterologous expression of this toxin in Aspergillus niger. Mycocin HMK was fused to a glucoamylase protein carrier, which resulted in secretion of biologically active mycocin into the culture media. A partial purification protocol was developed, and a comparison with native W. mrakii mycocin showed that the heterologously expressed mycocin had similar physiological properties and an almost identical spectrum of biological activity against a number of yeasts isolated from silage and yoghurt. Two food and feed production systems prone to yeast spoilage were used as models to assess the ability of mycocin HMK to act as a biocontrol agent. The onset of aerobic spoilage in mature maize silage was delayed by application of A. niger mycocin HMK on opening because the toxin inhibited growth of the indigenous spoilage yeasts. This helped maintain both higher lactic acid levels and a lower pH. In yoghurt spiked with dairy spoilage yeasts, A. niger mycocin HMK was active at all of the storage temperatures tested at which yeast growth occurred, and there was no resurgence of resistant yeasts. The higher the yeast growth rate, the more effective the killing action of the mycocin. Thus, mycocin HMK has potential applications in controlling both silage spoilage and yoghurt spoilage caused by yeasts. PMID:10698773

  9. Fermentation studies using Saccharomyces diastaticus yeast strains

    SciTech Connect

    Erratt, J.A.; Stewart, G.G.

    1981-01-01

    The yeast species, Saccharomyces diastaticus, has the ability to ferment starch and dextrin, because of the extracellular enzyme, glucoamylase, which hydrolyzes the starch/dextrin to glucose. A number of nonallelic genes--DEX 1, DEX 2, and dextrinase B which is allelic to STA 3--have been isolated, which impart to the yeast the ability to ferment dextrin. Various diploid yeast strains were constructed, each being either heterozygous or homozygous for the individual dextrinase genes. Using 12 (sup 0) plato hopped wort (30% corn adjunct) under agitated conditions, the fermentation rates of the various diploid yeast strains were monitored. A gene-dosage effect was exhibited by yeast strains containing DEX 1 or DEX 2, however, not with yeast strains containing dextrinase B (STA 3). The fermentation and growth rates and extents were determined under static conditions at 14.4 C and 21 C. With all yeast strains containing the dextrinase genes, both fermentation and growth were increased at the higher incubation temperature. Using 30-liter fermentors, beer was produced with the various yeast strains containing the dextrinase genes and the physical and organoleptic characteristics of the products were determined. The concentration of glucose in the beer was found to increase during a 3-mo storage period at 21 C, indicating that the glucoamylase from Saccharomyces diastaticus is not inactivated by pasteurization. (Refs. 36).

  10. [Glucuronate media for isolating tremelloid yeasts].

    PubMed

    Golubev, V I

    2000-01-01

    D-Glucuronate-containing agar is suggested for evaluation the population density and diversity of tremelloid yeasts in natural cenoses. This medium is superior to the commonly used wort agar on which many representatives of tremelloid yeasts cannot be revealed. PMID:11008697

  11. Yeast: An Experimental Organism for Modern Biology.

    ERIC Educational Resources Information Center

    Botstein, David; Fink, Gerald R.

    1988-01-01

    Discusses the applicability and advantages of using yeasts as popular and ideal model systems for studying and understanding eukaryotic biology at the cellular and molecular levels. Cites experimental tractability and the cooperative tradition of the research community of yeast biologists as reasons for this success. (RT)

  12. The wine and beer yeast Dekkera bruxellensis

    PubMed Central

    Schifferdecker, Anna Judith; Dashko, Sofia; Ishchuk, Olena P; Piškur, Jure

    2014-01-01

    Recently, the non-conventional yeast Dekkera bruxellensis has been gaining more and more attention in the food industry and academic research. This yeast species is a distant relative of Saccharomyces cerevisiae and is especially known for two important characteristics: on the one hand, it is considered to be one of the main spoilage organisms in the wine and bioethanol industry; on the other hand, it is 'indispensable' as a contributor to the flavour profile of Belgium lambic and gueuze beers. Additionally, it adds to the characteristic aromatic properties of some red wines. Recently this yeast has also become a model for the study of yeast evolution. In this review we focus on the recently developed molecular and genetic tools, such as complete genome sequencing and transformation, to study and manipulate this yeast. We also focus on the areas that are particularly well explored in this yeast, such as the synthesis of off-flavours, yeast detection methods, carbon metabolism and evolutionary history. © 2014 The Authors. Yeast published by John Wiley & Sons, Ltd. PMID:24932634

  13. Yeasts are essential for cocoa bean fermentation.

    PubMed

    Ho, Van Thi Thuy; Zhao, Jian; Fleet, Graham

    2014-03-17

    Cocoa beans (Theobroma cacao) are the major raw material for chocolate production and fermentation of the beans is essential for the development of chocolate flavor precursors. In this study, a novel approach was used to determine the role of yeasts in cocoa fermentation and their contribution to chocolate quality. Cocoa bean fermentations were conducted with the addition of 200ppm Natamycin to inhibit the growth of yeasts, and the resultant microbial ecology and metabolism, bean chemistry and chocolate quality were compared with those of normal (control) fermentations. The yeasts Hanseniaspora guilliermondii, Pichia kudriavzevii and Kluyveromyces marxianus, the lactic acid bacteria Lactobacillus plantarum and Lactobacillus fermentum and the acetic acid bacteria Acetobacter pasteurianus and Gluconobacter frateurii were the major species found in the control fermentation. In fermentations with the presence of Natamycin, the same bacterial species grew but yeast growth was inhibited. Physical and chemical analyses showed that beans fermented without yeasts had increased shell content, lower production of ethanol, higher alcohols and esters throughout fermentation and lesser presence of pyrazines in the roasted product. Quality tests revealed that beans fermented without yeasts were purplish-violet in color and not fully brown, and chocolate prepared from these beans tasted more acid and lacked characteristic chocolate flavor. Beans fermented with yeast growth were fully brown in color and gave chocolate with typical characters which were clearly preferred by sensory panels. Our findings demonstrate that yeast growth and activity were essential for cocoa bean fermentation and the development of chocolate characteristics. PMID:24462702

  14. Nucleotide excision repair in yeast.

    PubMed

    Prakash, S; Prakash, L

    2000-06-30

    In nucleotide excision repair (NER) in eukaryotes, DNA is incised on both sides of the lesion, resulting in the removal of a fragment approximately 25-30 nucleotides long. This is followed by repair synthesis and ligation. The proteins encoded by the various yeast NER genes have been purified, and the incision reaction reconstituted in vitro. This reaction requires the damage binding factors Rad14, RPA, and the Rad4-Rad23 complex, the transcription factor TFIIH which contains the two DNA helicases Rad3 and Rad25, essential for creating a bubble structure, and the two endonucleases, the Rad1-Rad10 complex and Rad2, which incise the damaged DNA strand on the 5'- and 3'-side of the lesion, respectively. Addition of the Rad7-Rad16 complex to this reconstituted system stimulates the incision reaction many fold. The various NER proteins exist in vivo as part of multiprotein subassemblies which have been named NEFs (nucleotide excision repair factors). Rad14 and Rad1-Rad10 form one subassembly called NEF1, the Rad4-Rad23 complex is named NEF2, Rad2 and TFIIH constitute NEF3, and the Rad7-Rad16 complex is called NEF4. Although much has been learned from yeast about the function of NER genes and proteins in eukaryotes, the underlying mechanisms by which damage is recognized, NEFs are assembled at the damage site, and the DNA is unwound and incised, remain to be elucidated. PMID:10915862

  15. Growing yeast into cylindrical colonies.

    PubMed

    Vulin, Clément; Di Meglio, Jean-Marc; Lindner, Ariel B; Daerr, Adrian; Murray, Andrew; Hersen, Pascal

    2014-05-20

    Microorganisms often form complex multicellular assemblies such as biofilms and colonies. Understanding the interplay between assembly expansion, metabolic yield, and nutrient diffusion within a freely growing colony remains a challenge. Most available data on microorganisms are from planktonic cultures, due to the lack of experimental tools to control the growth of multicellular assemblies. Here, we propose a method to constrain the growth of yeast colonies into simple geometric shapes such as cylinders. To this end, we designed a simple, versatile culture system to control the location of nutrient delivery below a growing colony. Under such culture conditions, yeast colonies grow vertically and only at the locations where nutrients are delivered. Colonies increase in height at a steady growth rate that is inversely proportional to the cylinder radius. We show that the vertical growth rate of cylindrical colonies is not defined by the single-cell division rate, but rather by the colony metabolic yield. This contrasts with cells in liquid culture, in which the single-cell division rate is the only parameter that defines the population growth rate. This method also provides a direct, simple method to estimate the metabolic yield of a colony. Our study further demonstrates the importance of the shape of colonies on setting their expansion. We anticipate that our approach will be a starting point for elaborate studies of the population dynamics, evolution, and ecology of microbial colonies in complex landscapes. PMID:24853750

  16. Growing Yeast into Cylindrical Colonies

    PubMed Central

    Vulin, Clément; Di Meglio, Jean-Marc; Lindner, Ariel B.; Daerr, Adrian; Murray, Andrew; Hersen, Pascal

    2014-01-01

    Microorganisms often form complex multicellular assemblies such as biofilms and colonies. Understanding the interplay between assembly expansion, metabolic yield, and nutrient diffusion within a freely growing colony remains a challenge. Most available data on microorganisms are from planktonic cultures, due to the lack of experimental tools to control the growth of multicellular assemblies. Here, we propose a method to constrain the growth of yeast colonies into simple geometric shapes such as cylinders. To this end, we designed a simple, versatile culture system to control the location of nutrient delivery below a growing colony. Under such culture conditions, yeast colonies grow vertically and only at the locations where nutrients are delivered. Colonies increase in height at a steady growth rate that is inversely proportional to the cylinder radius. We show that the vertical growth rate of cylindrical colonies is not defined by the single-cell division rate, but rather by the colony metabolic yield. This contrasts with cells in liquid culture, in which the single-cell division rate is the only parameter that defines the population growth rate. This method also provides a direct, simple method to estimate the metabolic yield of a colony. Our study further demonstrates the importance of the shape of colonies on setting their expansion. We anticipate that our approach will be a starting point for elaborate studies of the population dynamics, evolution, and ecology of microbial colonies in complex landscapes. PMID:24853750

  17. Production of ethanol by immobilized yeast cells

    SciTech Connect

    Williams, D.; Munnecke, D.M.

    1981-08-01

    Saccharomyces cerevisiae cells were immobilized in calcium alginate beads for use in the continuous production of ethanol. Yeasts were grown in medium supplemented with ethanol to selectively screen for a culture which showed the greatest tolerance to ethanol inhibition. Yeast beads were produced from a yeast slurry containing 1.5% alginate (w/v) which was added as drops to a 0.05M CaCl2 solution. To determine their optimum fermentation parameters, ethanol production using glucose as a substrate was monitored in batch systems at varying physiological conditions (temperature,pH, ethanol concentration), cell densities, and gel concentrations. The data obtained were compared to optimum free cell ethanol fermentation parameters. The immobilized yeast cells were examined in a packed-bed reactor system operated under optimized parameters derived from batch-immobilized yeast cell experiments. Ethanol production rates, as well as residual sugar concentrations were monitored at different feedstock flow rates. (Refs. 13).

  18. Yeasts that utilize lactose in sweet whey

    SciTech Connect

    Gholson, J.H.; Gough, R.H.

    1980-01-01

    Since processing costs are usually higher for whey than for other available food or feed nutrients, only about one-third of whey produced in the US is used by food and feed industries. As a result whey disposal costs are a problem. Further; when whey is disposed of through municipal sewerage systems, the lactose present is changed by bacteria to lactic acid which tends to act as a preservative and retards further oxidation of whey constituents. This article describes a method of utilizing lactose-fermenting yeasts to produce large quantities of yeast cells, single-cell protein. Kluveromyces fragilis was found to be the most effective yeast species and the yeast cells produced could be used as a natural food or feed additive. Results of this study determined that certain methods and yeast strains could reduce whey-related pollution and thus help reduce costs of whey disposal.

  19. Yeast community survey in the Tagus estuary.

    PubMed

    de Almeida, João M G C F

    2005-07-01

    The yeast community in the waters of the Tagus estuary, Portugal, was followed for over a year in order to assess its dynamics. Yeast occurrence and incidence were measured and this information was related to relevant environmental data. Yeast occurrence did not seem to depend upon tides, but river discharge had a dramatic impact both on the density and diversity of the community. The occurrence of some yeasts was partially correlated with faecal pollution indicators. Yeast isolates were characterized by microsatellite primed PCR (MSP-PCR) fingerprinting and rRNA gene sequencing. The principal species found were Candida catenulata, C. intermedia, C. parapsilosis, Clavispora lusitaniae, Debaryomyces hansenii, Pichia guilliermondii, Rhodotorula mucilaginosa and Rhodosporidium diobovatum. The incidence of these species was evaluated against the environmental context of the samples and the current knowledge about the substrates from which they are usually isolated. PMID:16329949

  20. Yeasts and yeast-like fungi associated with tree bark: diversity and identification of yeasts producing extracellular endoxylanases.

    PubMed

    Bhadra, Bhaskar; Rao, R Sreenivas; Singh, Pavan K; Sarkar, Partha K; Shivaji, Sisinthy

    2008-05-01

    A total of 239 yeast strains was isolated from 52 tree bark samples of the Medaram and Srisailam forest areas of Andhra Pradesh, India. Based on analysis of D1/D2 domain sequence of 26S rRNA gene, 114 strains were identified as ascomycetous; 107 strains were identified as basidiomycetous yeasts; and 18 strains were identified as yeast-like fungi. Among the ascomycetous yeasts, 51% were identified as members of the genus Pichia, and the remaining 49% included species belonging to the genera Clavispora, Debaryomyces, Kluyveromyces, Hanseniaspora, Issatchenkia, Lodderomyces, Kodamaea, Metschnikowia, and Torulaspora. The predominant genera in the basidiomycetous yeasts were Cryptococcus (48.6%), Rhodotorula (29%), and Rhodosporidium (12.1%). The yeast-like fungi were represented by Aureobasidium pullulans (6.7%) and Lecythophora hoffmanii (0.8%). Of the 239 yeast strains tested for Xylanase, only five strains of Aureobasidium sp. produced xylanase on xylan-agar medium. Matrix-assisted laser desorption ionization-time of flight analysis and N-terminal amino-acid sequence of the xylanase of isolate YS67 showed high similarity with endo-1-4-beta-xylanase (EC 3.2.1.8) of Aureobasidium pullulans var. melanigenum. PMID:18219522

  1. The wine and beer yeast Dekkera bruxellensis.

    PubMed

    Schifferdecker, Anna Judith; Dashko, Sofia; Ishchuk, Olena P; Piškur, Jure

    2014-09-01

    Recently, the non-conventional yeast Dekkera bruxellensis has been gaining more and more attention in the food industry and academic research. This yeast species is a distant relative of Saccharomyces cerevisiae and is especially known for two important characteristics: on the one hand, it is considered to be one of the main spoilage organisms in the wine and bioethanol industry; on the other hand, it is 'indispensable' as a contributor to the flavour profile of Belgium lambic and gueuze beers. Additionally, it adds to the characteristic aromatic properties of some red wines. Recently this yeast has also become a model for the study of yeast evolution. In this review we focus on the recently developed molecular and genetic tools, such as complete genome sequencing and transformation, to study and manipulate this yeast. We also focus on the areas that are particularly well explored in this yeast, such as the synthesis of off-flavours, yeast detection methods, carbon metabolism and evolutionary history. PMID:24932634

  2. Accelerating Yeast Prion Biology using Droplet Microfluidics

    NASA Astrophysics Data System (ADS)

    Ung, Lloyd; Rotem, Assaf; Jarosz, Daniel; Datta, Manoshi; Lindquist, Susan; Weitz, David

    2012-02-01

    Prions are infectious proteins in a misfolded form, that can induce normal proteins to take the misfolded state. Yeast prions are relevant, as a model of human prion diseases, and interesting from an evolutionary standpoint. Prions may also be a form of epigenetic inheritance, which allow yeast to adapt to stressful conditions at rates exceeding those of random mutations and propagate that adaptation to their offspring. Encapsulation of yeast in droplet microfluidic devices enables high-throughput measurements with single cell resolution, which would not be feasible using bulk methods. Millions of populations of yeast can be screened to obtain reliable measurements of prion induction and loss rates. The population dynamics of clonal yeast, when a fraction of the cells are prion expressing, can be elucidated. Furthermore, the mechanism by which certain strains of bacteria induce yeast to express prions in the wild can be deduced. Integrating the disparate fields of prion biology and droplet microfluidics reveals a more complete picture of how prions may be more than just diseases and play a functional role in yeast.

  3. Genomics and the making of yeast biodiversity.

    PubMed

    Hittinger, Chris Todd; Rokas, Antonis; Bai, Feng-Yan; Boekhout, Teun; Gonçalves, Paula; Jeffries, Thomas W; Kominek, Jacek; Lachance, Marc-André; Libkind, Diego; Rosa, Carlos A; Sampaio, José Paulo; Kurtzman, Cletus P

    2015-12-01

    Yeasts are unicellular fungi that do not form fruiting bodies. Although the yeast lifestyle has evolved multiple times, most known species belong to the subphylum Saccharomycotina (syn. Hemiascomycota, hereafter yeasts). This diverse group includes the premier eukaryotic model system, Saccharomyces cerevisiae; the common human commensal and opportunistic pathogen, Candida albicans; and over 1000 other known species (with more continuing to be discovered). Yeasts are found in every biome and continent and are more genetically diverse than angiosperms or chordates. Ease of culture, simple life cycles, and small genomes (∼10-20Mbp) have made yeasts exceptional models for molecular genetics, biotechnology, and evolutionary genomics. Here we discuss recent developments in understanding the genomic underpinnings of the making of yeast biodiversity, comparing and contrasting natural and human-associated evolutionary processes. Only a tiny fraction of yeast biodiversity and metabolic capabilities has been tapped by industry and science. Expanding the taxonomic breadth of deep genomic investigations will further illuminate how genome function evolves to encode their diverse metabolisms and ecologies. PMID:26649756

  4. Rheologically interesting polysaccharides from yeasts

    NASA Technical Reports Server (NTRS)

    Petersen, G. R.; Nelson, G. A.; Cathey, C. A.; Fuller, G. G.

    1989-01-01

    We have examined the relationships between primary, secondary, and tertiary structures of polysaccharides exhibiting the rheological property of friction (drag) reduction in turbulent flows. We found an example of an exopolysaccharide from the yeast Cryptococcus laurentii that possessed high molecular weight but exhibited lower than expected drag reducing activity. Earlier correlations by Hoyt showing that beta 1 --> 3, beta 2 --> 4, and alpha 1 --> 3 linkages in polysaccharides favored drag reduction were expanded to include correlations to secondary structure. The effect of sidechains in a series of gellan gums was shown to be related to sidechain length and position. Disruption of secondary structure in drag reducing polysaccharides reduced drag reducing activity for some but not all exopolysaccharides. The polymer from C. laurentii was shown to be more stable than xanthan gum and other exopolysaccharides under the most vigorous of denaturing conditions. We also showed a direct relationship between extensional viscosity measurements and the drag reducing coefficient for four exopolysaccharides.

  5. MAP kinase dynamics in yeast.

    PubMed

    van Drogen, F; Peter, M

    2001-09-01

    MAP kinase pathways play key roles in cellular responses towards extracellular signals. In several cases, the three core kinases interact with a scaffold molecule, but the function of these scaffolds is poorly understood. They have been proposed to contribute to signal specificity, signal amplification, or subcellular localization of MAP kinases. Several MAP kinases translocate to the nucleus in response to their activation, suggesting that nuclear transport may provide a regulatory mechanism. Here we describe new applications for Fluorescence Recovery After Photobleaching (FRAP) and Fluorescence Loss In Photobleaching (FLIP), to study dynamic translocations of MAPKs between different subcellular compartments. We have used these methods to measure the nuclear/cytoplasmic dynamics of several yeast MAP kinases, and in particular to address the role of scaffold proteins for MAP-kinase signaling. PMID:11730324

  6. Engineering alcohol tolerance in yeast

    PubMed Central

    Lam, Felix H.; Ghaderi, Adel; Fink, Gerald R.; Stephanopoulos, Gregory

    2015-01-01

    Ethanol toxicity in yeast Saccharomyces cerevisiae limits titer and productivity in the industrial production of transportation bioethanol. We show that strengthening the opposing potassium and proton electrochemical membrane gradients is a mechanism that enhances general resistance to multiple alcohols. Elevation of extracellular potassium and pH physically bolster these gradients, increasing tolerance to higher alcohols and ethanol fermentation in commercial and laboratory strains (including a xylose-fermenting strain) under industrial-like conditions. Production per cell remains largely unchanged with improvements deriving from heightened population viability. Likewise, up-regulation of the potassium and proton pumps in the laboratory strain enhances performance to levels exceeding industrial strains. Although genetically complex, alcohol tolerance can thus be dominated by a single cellular process, one controlled by a major physicochemical component but amenable to biological augmentation. PMID:25278607

  7. Extracellular Deoxyribonuclease Production by Yeasts

    PubMed Central

    Cazin, John; Kozel, Thomas R.; Lupan, David M.; Burt, Wayne R.

    1969-01-01

    A total of 20 genera of yeasts and yeastlike organisms were tested for their ability to produce an extracellular deoxyribonuclease. Results indicate that ability to produce the enzyme appears to be a specific characteristic of the three genera Rhodotorula, Cryptococcus, and Tremella. A single strain of Endomycopsis fibuligera was also shown to be positive for the enzyme. In comparing the ability of the organisms to excrete extracellular deoxyribonuclease with their ability to produce urease, a surprisingly close correlation was found. With the exception of Lipomyces starkeyi, all the organisms which were deoxyribonuclease-negative were also urease-negative. Of those organisms which were deoxyribonuclease-positive, only E. fibuligera was urease-negative. The ability of cryptococci to produce extracellular deoxyribonuclease is discussed in relation to the implication which this finding may have for the taxonomy and phylogeny of the genus. PMID:5354946

  8. 21 CFR 172.325 - Bakers yeast protein.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Bakers yeast protein. 172.325 Section 172.325 Food... Special Dietary and Nutritional Additives § 172.325 Bakers yeast protein. Bakers yeast protein may be safely used in food in accordance with the following conditions: (a) Bakers yeast protein is...

  9. 21 CFR 172.325 - Bakers yeast protein.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Bakers yeast protein. 172.325 Section 172.325 Food... Special Dietary and Nutritional Additives § 172.325 Bakers yeast protein. Bakers yeast protein may be safely used in food in accordance with the following conditions: (a) Bakers yeast protein is...

  10. Yeast cell-surface expression of chitosanase from Paenibacillus fukuinensis.

    PubMed

    Fukuda, Takeshi; Isogawa, Danya; Takagi, Madoka; Kato-Murai, Michiko; Kimoto, Hisashi; Kusaoke, Hideo; Ueda, Mitsuyoshi; Suye, Shin-Ichiro

    2007-11-01

    To produce chitoorigosaccharides using chitosan, we attempted to construct Paenibacillus fukuinensis chitosanase-displaying yeast cells as a whole-cell biocatalyst through yeast cell-surface engineering. The localization of the chitosanase on the yeast cell surface was confirmed by immunofluorescence labeling of cells. The chitosanase activity of the constructed yeast was investigated by halo assay and the dinitrosalicylic acid method. PMID:17986777

  11. 21 CFR 172.325 - Bakers yeast protein.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Bakers yeast protein. 172.325 Section 172.325 Food... Special Dietary and Nutritional Additives § 172.325 Bakers yeast protein. Bakers yeast protein may be safely used in food in accordance with the following conditions: (a) Bakers yeast protein is...

  12. 21 CFR 172.325 - Bakers yeast protein.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Bakers yeast protein. 172.325 Section 172.325 Food... Special Dietary and Nutritional Additives § 172.325 Bakers yeast protein. Bakers yeast protein may be safely used in food in accordance with the following conditions: (a) Bakers yeast protein is...

  13. 21 CFR 172.325 - Bakers yeast protein.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Bakers yeast protein. 172.325 Section 172.325 Food... Additives § 172.325 Bakers yeast protein. Bakers yeast protein may be safely used in food in accordance with the following conditions: (a) Bakers yeast protein is the insoluble proteinaceous material...

  14. Assembly of eukaryotic algal chromosomes in yeast

    PubMed Central

    2013-01-01

    Background Synthetic genomic approaches offer unique opportunities to use powerful yeast and Escherichia coli genetic systems to assemble and modify chromosome-sized molecules before returning the modified DNA to the target host. For example, the entire 1 Mb Mycoplasma mycoides chromosome can be stably maintained and manipulated in yeast before being transplanted back into recipient cells. We have previously demonstrated that cloning in yeast of large (> ~ 150 kb), high G + C (55%) prokaryotic DNA fragments was improved by addition of yeast replication origins every ~100 kb. Conversely, low G + C DNA is stable (up to at least 1.8 Mb) without adding supplemental yeast origins. It has not been previously tested whether addition of yeast replication origins similarly improves the yeast-based cloning of large (>150 kb) eukaryotic DNA with moderate G + C content. The model diatom Phaeodactylum tricornutum has an average G + C content of 48% and a 27.4 Mb genome sequence that has been assembled into chromosome-sized scaffolds making it an ideal test case for assembly and maintenance of eukaryotic chromosomes in yeast. Results We present a modified chromosome assembly technique in which eukaryotic chromosomes as large as ~500 kb can be assembled from cloned ~100 kb fragments. We used this technique to clone fragments spanning P. tricornutum chromosomes 25 and 26 and to assemble these fragments into single, chromosome-sized molecules. We found that addition of yeast replication origins improved the cloning, assembly, and maintenance of the large chromosomes in yeast. Furthermore, purification of the fragments to be assembled by electroelution greatly increased assembly efficiency. Conclusions Entire eukaryotic chromosomes can be successfully cloned, maintained, and manipulated in yeast. These results highlight the improvement in assembly and maintenance afforded by including yeast replication origins in eukaryotic DNA with moderate G + C content (48%). They also highlight the increased efficiency of assembly that can be achieved by purifying fragments before assembly. PMID:24325901

  15. Efforts to make and apply humanized yeast

    PubMed Central

    Laurent, Jon M.; Young, Jonathan H.; Kachroo, Aashiq H.

    2016-01-01

    Despite a billion years of divergent evolution, the baker’s yeast Saccharomyces cerevisiae has long proven to be an invaluable model organism for studying human biology. Given its tractability and ease of genetic manipulation, along with extensive genetic conservation with humans, it is perhaps no surprise that researchers have been able to expand its utility by expressing human proteins in yeast, or by humanizing specific yeast amino acids, proteins or even entire pathways. These methods are increasingly being scaled in throughput, further enabling the detailed investigation of human biology and disease-specific variations of human genes in a simplified model organism. PMID:26462863

  16. Evaluation of the Uni-Yeast-Tek kit for the identification of medically important yeasts.

    PubMed Central

    Bowman, P I; Ahearn, D G

    1975-01-01

    The Uni-Yeast-Tek system, a commercially prepared kit and scheme for the rapid identification of medically important yeasts (Corning Medical), was evaluated in comparison with a conventional procedure in the identification of 623 yeasts. The system permitted the presumptive identification of 99.8% of 436 isolates representing 16 common species commonly isolated in the clinical laboratory. Correct biochemical and morphological analyses were obtained with 48 other species, but their specific identification required additional data. Images PMID:1102563

  17. CYGD: the Comprehensive Yeast Genome Database.

    PubMed

    Güldener, U; Münsterkötter, M; Kastenmüller, G; Strack, N; van Helden, J; Lemer, C; Richelles, J; Wodak, S J; García-Martínez, J; Pérez-Ortín, J E; Michael, H; Kaps, A; Talla, E; Dujon, B; André, B; Souciet, J L; De Montigny, J; Bon, E; Gaillardin, C; Mewes, H W

    2005-01-01

    The Comprehensive Yeast Genome Database (CYGD) compiles a comprehensive data resource for information on the cellular functions of the yeast Saccharomyces cerevisiae and related species, chosen as the best understood model organism for eukaryotes. The database serves as a common resource generated by a European consortium, going beyond the provision of sequence information and functional annotations on individual genes and proteins. In addition, it provides information on the physical and functional interactions among proteins as well as other genetic elements. These cellular networks include metabolic and regulatory pathways, signal transduction and transport processes as well as co-regulated gene clusters. As more yeast genomes are published, their annotation becomes greatly facilitated using S.cerevisiae as a reference. CYGD provides a way of exploring related genomes with the aid of the S.cerevisiae genome as a backbone and SIMAP, the Similarity Matrix of Proteins. The comprehensive resource is available under http://mips.gsf.de/genre/proj/yeast/. PMID:15608217

  18. CYGD: the Comprehensive Yeast Genome Database

    PubMed Central

    Güldener, U.; Münsterkötter, M.; Kastenmüller, G.; Strack, N.; van Helden, J.; Lemer, C.; Richelles, J.; Wodak, S. J.; García-Martínez, J.; Pérez-Ortín, J. E.; Michael, H.; Kaps, A.; Talla, E.; Dujon, B.; André, B.; Souciet, J. L.; De Montigny, J.; Bon, E.; Gaillardin, C.; Mewes, H. W.

    2005-01-01

    The Comprehensive Yeast Genome Database (CYGD) compiles a comprehensive data resource for information on the cellular functions of the yeast Saccharomyces cerevisiae and related species, chosen as the best understood model organism for eukaryotes. The database serves as a common resource generated by a European consortium, going beyond the provision of sequence information and functional annotations on individual genes and proteins. In addition, it provides information on the physical and functional interactions among proteins as well as other genetic elements. These cellular networks include metabolic and regulatory pathways, signal transduction and transport processes as well as co-regulated gene clusters. As more yeast genomes are published, their annotation becomes greatly facilitated using S.cerevisiae as a reference. CYGD provides a way of exploring related genomes with the aid of the S.cerevisiae genome as a backbone and SIMAP, the Similarity Matrix of Proteins. The comprehensive resource is available under http://mips.gsf.de/genre/proj/yeast/. PMID:15608217

  19. Protection from nitrosative stress by yeast flavohemoglobin

    PubMed Central

    Liu, Limin; Zeng, Ming; Hausladen, Alfred; Heitman, Joseph; Stamler, Jonathan S.

    2000-01-01

    Yeast hemoglobin was discovered close to half a century ago, but its function has remained unknown. Herein, we report that this flavohemoglobin protects Saccharomyces cerevisiae from nitrosative stress. Deletion of the flavohemoglobin gene (YHB1) abolished the nitric oxide (NO)-consuming activity of yeast cells. Levels of protein nitrosylation were more than 10-fold higher in yhb1 mutant yeast than in isogenic wild-type cells after incubation with NO donors. Growth of mutant cells was inhibited by a nitrosative challenge that had little effect on wild-type cells, whereas the resistance of mutant cells to oxidative stress was unimpaired. Protection conferred by yeast flavohemoglobin against NO and S-nitrosothiols was seen under both anaerobic and aerobic conditions, consistent with a primary function in NO detoxification. A phylogenetic analysis indicated that protection from nitrosative stress is likely to be a conserved function among microorganismal flavohemoglobins. Flavohemoglobin is therefore a potential target for antimicrobial therapy. PMID:10758168

  20. Genomic Evolution of the Ascomycete Yeasts

    SciTech Connect

    Riley, Robert; Haridas, Sajeet; Salamov, Asaf; Boundy-Mills, Kyria; Goker, Markus; Hittinger, Chris; Klenk, Hans-Peter; Lopes, Mariana; Meir-Kolthoff, Jan P.; Rokas, Antonis; Rosa, Carlos; Scheuner, Carmen; Soares, Marco; Stielow, Benjamin; Wisecaver, Jennifer H.; Wolfe, Ken; Blackwell, Meredith; Kurtzman, Cletus; Grigoriev, Igor; Jeffries, Thomas

    2015-03-16

    Yeasts are important for industrial and biotechnological processes and show remarkable metabolic and phylogenetic diversity despite morphological similarities. We have sequenced the genomes of 16 ascomycete yeasts of taxonomic and industrial importance including members of Saccharomycotina and Taphrinomycotina. Phylogenetic analysis of these and previously published yeast genomes helped resolve the placement of species including Saitoella complicata, Babjeviella inositovora, Hyphopichia burtonii, and Metschnikowia bicuspidata. Moreover, we find that alternative nuclear codon usage, where CUG encodes serine instead of leucine, are monophyletic within the Saccharomycotina. Most of the yeasts have compact genomes with a large fraction of single exon genes, and a tendency towards more introns in early-diverging species. Analysis of enzyme phylogeny gives insights into the evolution of metabolic capabilities such as methanol utilization and assimilation of alternative carbon sources.

  1. Monitoring Air Quality with Leaf Yeasts.

    ERIC Educational Resources Information Center

    Richardson, D. H. S.; And Others

    1985-01-01

    Proposes that leaf yeast serve as quick, inexpensive, and effective techniques for monitoring air quality. Outlines procedures and provides suggestions for data analysis. Includes results from sample school groups who employed this technique. (ML)

  2. [Regulation of gene expression in methylotrophic yeasts].

    PubMed

    Grabek-Lejko, Dorota; Sibirny, Vladimir; Sibirny, Andriy

    2013-01-01

    Methylotrophic yeasts are unique eukaryotic organisms, that can metabolize toxic one-carbon substrate, methyl alcohol or methanol. About 50 species of methylotrophic yeasts is known, among them 4 species are the best studied: Pichia methanolica, Hansenula polymorpha, Pichia pastoris i Candida boidinii. These organisms, especially P. pastoris i H. polymorpha appeared to be very perspective overproducers of heterologous proteins and nowadays are used for industrial production of some of them. In this review, we provide information on the organization of the genome, mechanisms of regulation of gene expression and the use of strong promoters of these yeast species to construct the producers of heterologous proteins. In more details, we analyze genetic control of carbon and nitrogen catabolic repression in H. polymorpha and also the identification of metabolites inducing catabolite repression or peroxisome selective autophagy in the medium with ethanol in the Pichia methanolica yeast. PMID:23821948

  3. Multidrug resistant yeasts in synanthropic wild birds

    PubMed Central

    2010-01-01

    Background The aim of this study was to investigate the presence of multidrug resistant yeasts in the faeces of synanthropic wild birds from the Bangsar suburb of Kuala Lumpur. Methods Species characterisations of yeast isolates and determinations of antimycotic susceptibility profiles were undertaken using the commercial characterization kit, Integral System Yeasts Plus (Liofilchem, Italy). Results Fourteen species of yeasts were detected in the bird faecal samples.Candida albicans was present in 28.89% of bird faecal samples, Candida krusei (13.33%), Candida tropicalis (4.44%), Candida glabrata (4.44%), Candida parapsilosis (2.22%), Candida lambica (2.22%), Candida stellatoidea (2.22%), Candida rugosa (2.22%) and Candida lusitaniae (2.22%). Amongst the non-candidal yeast isolates, Cryptococcus laurentii was present in 6.67% of bird faecal samples, Cryptococcus uniguttulatus (4.44%), Saccharomyces cerevisiae (4.44%), Trichosporon pullulans (2.22%), Trichosporon pullulans/Cryptococcus albidus (8.89%) and Rhodotorula rubra/Rhodotorula glutinis (4.44%). Of the isolated yeasts, 18.1% (or 26/144) were found to be resistant to all 11 antimycotic agents they were tested against i.e. Nystatin, Amphotericin B, Flucytosine, Econazole, Ketoconazole, Clotrimazole, Miconazole, Itraconazole, Voriconazole, Fluconazole 16 and Fluconazole 64. 45.8% (or 66/144) of the bird faecal yeast isolates were resistant to four or more of the 11 antimycotic agents they were tested against. Conclusions This finding is of public health significance as these synanthropic wild birds may be reservoirs for transmission of drug resistant yeast infections to humans. PMID:20307325

  4. Metallothionein function and genetic regulation in yeast

    SciTech Connect

    Ecker, D.J.; Butt, T.R.; Crooke, S.T.

    1986-05-01

    Copper resistance in yeast is mediated by the CUP1 locus which codes for yeast metallothionein (MT). A genetic approach was taken to study yeast MT gene regulation and to test the function of MT in the detoxification of metal ions other than copper. A yeast strain was constructed (cup1/sup ..delta../) in which the MT structural and regulatory sequences were deleted. The deleted gene was then replaced with the following genetically modified forms of MT on high copy episomal plasmid (YE/sup p/ 13): 1) the intact yeast gene with normal structural and regulatory sequences; 2) a constitutively expressed yeast promoter (TDH) running the yeast MT structural gene. Metal resistance in the cup1/sup ..delta../ strain and the cup1/sup ..delta../ strain transformed with the MT plasmid constructions was compared on metal-supplemented agar plates. Both of the high copy MT plasmids conferred in excess of 500-fold greater copper resistance to the cup1/sup ..delta../ strain. Increased cadmium resistance was not observed in any of the strains that had MT under normal regulatory control. However, the strain with constitutively expressed MT was in excess of 1000-fold more resistant to cadmium. Neither of the MT constructions conferred resistance to Hg,Zn,Co,Ni,Ag,Au,Pt,La,U or Sn. MT gene induction measured by the analysis of MT mRNA on northern blots showed that the yeast MT promoter is not induced by Cd, Zn, Au, Hg, Ag, superoxide, hydrogen peroxide, steroid hormones or heat shock.

  5. Physiological and environmental control of yeast prions

    PubMed Central

    Chernova, Tatiana A.; Wilkinson, Keith D.; Chernoff, Yury O.

    2014-01-01

    Prions are self-perpetuating protein isoforms that cause fatal and incurable neurodegenerative disease in mammals. Recent evidence indicates that a majority of human proteins involved in amyloid and neural inclusion disorders possess at least some prion properties. In lower eukaryotes, such as yeast, prions act as epigenetic elements, which increase phenotypic diversity by altering a range of cellular processes. While some yeast prions are clearly pathogenic, it is also postulated that prion formation could be beneficial in variable environmental conditions. Yeast and mammalian prions have similar molecular properties. Crucial cellular factors and conditions influencing prion formation and propagation were uncovered in the yeast models. Stress-related chaperones, protein quality control deposits, degradation pathways and cytoskeletal networks control prion formation and propagation in yeast. Environmental stresses trigger prion formation and loss, supposedly acting via influencing intracellular concentrations of the prion-inducing proteins, and/or by localizing prionogenic proteins to the prion induction sites via heterologous ancillary helpers. Physiological and environmental modulation of yeast prions points to new opportunities for pharmacological intervention and/or prophylactic measures targeting general cellular systems rather than the properties of individual amyloids and prions. PMID:24236638

  6. The growth of solar radiated yeast

    SciTech Connect

    Kraft, T.

    1995-09-01

    This researcher plans to determine if solar radiation affects the growth of yeast. The irradiated yeast was obtained from a sample exposed in space during a Space Shuttle flight of September 9-20, 1994. Further, the control groups were held at: (1) Goddard Space Flight Center (GSFC) in Greenbelt, Maryland; and (2) South Dakota School of Mines and Technology. The procedure used was based on the fact that yeast is most often used in consumable baked goods. Therefore, the yeast was incorporated into a basic Betty Crocker bread recipe. Data was collected by placing measured amounts of dough into sample containers with fifteen minute growth in height measurements collected and recorded. This researcher assumed the viability of yeast to be relative to its ability to produce carbon dioxide gas and cause the dough to rise. As all ingredients and surroundings were equal, this researcher assumed the yeast will produce the only significant difference in data collected. This researcher noted the approximate use date on all sample packages to be prior to arrival and experiment date. All dates equal, it was then assumed each would act in a similar manner of response. This assumption will allow for equally correct data collection.

  7. The growth of solar radiated yeast

    NASA Technical Reports Server (NTRS)

    Kraft, Tyrone

    1995-01-01

    This researcher plans to determine if solar radiation affects the growth of yeast. The irradiated yeast was obtained from a sample exposed in space during a Space Shuttle flight of September 9-20, 1994. Further, the control groups were held at: (1) Goddard Space Flight Center (GSFC) in Greenbelt, Maryland; and (2) South Dakota School of Mines and Technology. The procedure used was based on the fact that yeast is most often used in consumable baked goods. Therefore, the yeast was incorporated into a basic Betty Crocker bread recipe. Data was collected by placing measured amounts of dough into sample containers with fifteen minute growth in height measurements collected and recorded. This researcher assumed the viability of yeast to be relative to its ability to produce carbon dioxide gas and cause the dough to rise. As all ingredients and surroundings were equal, this researcher assumed the yeast will produce the only significant difference in data collected. This researcher noted the approximate use date on all sample packages to be prior to arrival and experiment date. All dates equal, it was then assumed each would act in a similar manner of response. This assumption will allow for equally correct data collection.

  8. Yeast prions assembly and propagation

    PubMed Central

    2011-01-01

    Yeast prions are self-perpetuating protein aggregates that are at the origin of heritable and transmissible non-Mendelian phenotypic traits. Among these, [PSI+], [URE3] and [PIN+] are the most well documented prions and arise from the assembly of Sup35p, Ure2p and Rnq1p, respectively, into insoluble fibrillar assemblies. Fibril assembly depends on the presence of N- or C-terminal prion domains (PrDs) which are not homologous in sequence but share unusual amino-acid compositions, such as enrichment in polar residues (glutamines and asparagines) or the presence of oligopeptide repeats. Purified PrDs form amyloid fibrils that can convert prion-free cells to the prion state upon transformation. Nonetheless, isolated PrDs and full-length prion proteins have different aggregation, structural and infectious properties. In addition, mutations in the “non-prion” domains (non-PrDs) of Sup35p, Ure2p and Rnq1p were shown to affect their prion properties in vitro and in vivo. Despite these evidences, the implication of the functional non-PrDs in fibril assembly and prion propagation has been mostly overlooked. In this review, we discuss the contribution of non-PrDs to prion assemblies, and the structure-function relationship in prion infectivity in the light of recent findings on Sup35p and Ure2p assembly into infectious fibrils from our laboratory and others. PMID:22052349

  9. Training of yeast cell dynamics.

    PubMed

    Reijenga, Karin A; Bakker, Barbara M; van der Weijden, Coen C; Westerhoff, Hans V

    2005-04-01

    In both industrial fermenters and in their natural habitats, microorganisms often experience an inhomogeneous and fluctuating environment. In this paper we mimicked one aspect of this nonideal behaviour by imposing a low and oscillating extracellular glucose concentration on nonoscillating suspensions of yeast cells. The extracellular dynamics changed the intracellular dynamics--which was monitored through NADH fluorescence--from steady to equally dynamic; the latter followed the extracellular dynamics at the frequency of glucose pulsing. Interestingly, the amplitude of the oscillation of the NADH fluorescence increased with time. This increase in amplitude was sensitive to inhibition of protein synthesis, and was due to a change in the cells rather than in the medium; the cell population was 'trained' to respond to the extracellular dynamics. To examine the mechanism behind this 'training', we subjected the cells to a low and constant extracellular glucose concentration. Seventy-five minutes of adaptation to a low and constant glucose concentration induced the same increase of the amplitude of the forced NADH oscillations as did the train of glucose pulses. Furthermore, 75 min of adaptation to a low (oscillating or continuous) glucose concentration decreased the K(M) of the glucose transporter from 26 mm to 3.5 mm. When subsequently the apparent K(M) was increased by addition of maltose, the amplitude of the forced oscillations dropped to its original value. This demonstrated that the increased affinity of glucose transport was essential for the training of the cells' dynamics. PMID:15794749

  10. The One Hour Yeast Proteome*

    PubMed Central

    Hebert, Alexander S.; Richards, Alicia L.; Bailey, Derek J.; Ulbrich, Arne; Coughlin, Emma E.; Westphall, Michael S.; Coon, Joshua J.

    2014-01-01

    We describe the comprehensive analysis of the yeast proteome in just over one hour of optimized analysis. We achieve this expedited proteome characterization with improved sample preparation, chromatographic separations, and by using a new Orbitrap hybrid mass spectrometer equipped with a mass filter, a collision cell, a high-field Orbitrap analyzer, and, finally, a dual cell linear ion trap analyzer (Q-OT-qIT, Orbitrap Fusion). This system offers high MS2 acquisition speed of 20 Hz and detects up to 19 peptide sequences within a single second of operation. Over a 1.3 h chromatographic method, the Q-OT-qIT hybrid collected an average of 13,447 MS1 and 80,460 MS2 scans (per run) to produce 43,400 (x̄) peptide spectral matches and 34,255 (x̄) peptides with unique amino acid sequences (1% false discovery rate (FDR)). On average, each one hour analysis achieved detection of 3,977 proteins (1% FDR). We conclude that further improvements in mass spectrometer scan rate could render comprehensive analysis of the human proteome within a few hours. PMID:24143002

  11. Discussion of teleomorphic and anamorphic Ascomycetous yeasts and yeast-like taxa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The relationship of ascomycetous yeasts with other members of the ascomycete fungi (Ascomycota) has been controversial for over 100 years. Because yeasts are morphologically simple, it was proposed that they represent primitive forms of ascomycetes (e.g., Guilliermond 1912). Alternatively, the ide...

  12. Boolean Model of Yeast Apoptosis as a Tool to Study Yeast and Human Apoptotic Regulations

    PubMed Central

    Kazemzadeh, Laleh; Cvijovic, Marija; Petranovic, Dina

    2012-01-01

    Programmed cell death (PCD) is an essential cellular mechanism that is evolutionary conserved, mediated through various pathways and acts by integrating different stimuli. Many diseases such as neurodegenerative diseases and cancers are found to be caused by, or associated with, regulations in the cell death pathways. Yeast Saccharomyces cerevisiae, is a unicellular eukaryotic organism that shares with human cells components and pathways of the PCD and is therefore used as a model organism. Boolean modeling is becoming promising approach to capture qualitative behavior and describe essential properties of such complex networks. Here we present large literature-based and to our knowledge first Boolean model that combines pathways leading to apoptosis (a type of PCD) in yeast. Analysis of the yeast model confirmed experimental findings of anti-apoptotic role of Bir1p and pro-apoptotic role of Stm1p and revealed activation of the stress protein kinase Hog proposing the maximal level of activation upon heat stress. In addition we extended the yeast model and created an in silico humanized yeast in which human pro- and anti-apoptotic regulators Bcl-2 family and Valosin-contain protein (VCP) are included in the model. We showed that accumulation of Bax in silico humanized yeast shows apoptotic markers and that VCP is essential target of Akt Signaling. The presented Boolean model provides comprehensive description of yeast apoptosis network behavior. Extended model of humanized yeast gives new insights of how complex human disease like neurodegeneration can initially be tested. PMID:23233838

  13. Yeast fuel cell: Application for desalination

    NASA Astrophysics Data System (ADS)

    Mardiana, Ummy; Innocent, Christophe; Cretin, Marc; Buchari, Buchari; Gandasasmita, Suryo

    2016-02-01

    Yeasts have been implicated in microbial fuel cells as biocatalysts because they are non-pathogenic organisms, easily handled and robust with a good tolerance in different environmental conditions. Here we investigated baker's yeast Saccharomyces cerevisiae through the oxidation of glucose. Yeast was used in the anolyte, to transfer electrons to the anode in the presence of methylene blue as mediator whereas K3Fe(CN)6 was used as an electron acceptor for the reduction reaction in the catholyte. Power production with biofuel cell was coupled with a desalination process. The maximum current density produced by the cell was 88 mA.m-2. In those conditions, it was found that concentration of salt was removed 64% from initial 0.6 M after 1-month operation. This result proves that yeast fuel cells can be used to remove salt through electrically driven membrane processes and demonstrated that could be applied for energy production and desalination. Further developments are in progress to improve power output to make yeast fuel cells applicable for water treatment.

  14. Ecology of pathogenic yeasts in Amazonian soil.

    PubMed

    Mok, W Y; Luizão, R C; do Socorro Barreto da Silva, M; Teixeira, M F; Muniz, E G

    1984-02-01

    In an investigation of Amazonian soil as a natural reservoir for pathogenic fungi, 1,949 soil samples collected from diverse geographical and ecological settings of the Brazilian Amazon Basin were analyzed for the presence of non-keratinophilic fungi by the indirect mouse inoculation procedure and for the presence of keratinophilic fungi by the hair bait technique. All soil samples were acidic with low pH values. From 12% of the soil samples, 241 yeast and yeastlike isolates pertaining to six genera and 82 species were recovered, of which 63% were Torulopsis and 26% were Candida species. Nine fungi with known pathogenic potentials were encountered among 43% (104) of the isolates: T. glabrata, C. guilliermondii, C. albicans, C. pseudotropicalis, C. stellatoidea, C. tropicalis, Rhodotorula rubra, and Wangiella dermatitidis. The yeast flora was marked by species diversity, low frequency of each species, random geographical distribution, and an apparent lack of species clustering. The composition and distribution of the yeast flora in soil differed from those of the yeast flora harbored by bats, suggesting that the Amazonian external environment and internal bat organs act as independent natural habitats for yeasts. PMID:6538774

  15. Mitochondrial membrane lipidome defines yeast longevity.

    PubMed

    Beach, Adam; Richard, Vincent R; Leonov, Anna; Burstein, Michelle T; Bourque, Simon D; Koupaki, Olivia; Juneau, Mylène; Feldman, Rachel; Iouk, Tatiana; Titorenko, Vladimir I

    2013-07-01

    Our studies revealed that lithocholic acid (LCA), a bile acid, is a potent anti-aging natural compound that in yeast cultured under longevity-extending caloric restriction (CR) conditions acts in synergy with CR to enable a significant further increase in chronological lifespan. Here, we investigate a mechanism underlying this robust longevity-extending effect of LCA under CR. We found that exogenously added LCA enters yeast cells, is sorted to mitochondria, resides mainly in the inner mitochondrial membrane, and also associates with the outer mitochondrial membrane. LCA elicits an age-related remodeling of glycerophospholipid synthesis and movement within both mitochondrial membranes, thereby causing substantial changes in mitochondrial membrane lipidome and triggering major changes in mitochondrial size, number and morphology. In synergy, these changes in the membrane lipidome and morphology of mitochondria alter the age-related chronology of mitochondrial respiration, membrane potential, ATP synthesis and reactive oxygen species homeostasis. The LCA-driven alterations in the age-related dynamics of these vital mitochondrial processes extend yeast longevity. In sum, our findings suggest a mechanism underlying the ability of LCA to delay chronological aging in yeast by accumulating in both mitochondrial membranes and altering their glycerophospholipid compositions. We concluded that mitochondrial membrane lipidome plays an essential role in defining yeast longevity. PMID:23924582

  16. Modeling Diauxic Glycolytic Oscillations in Yeast

    PubMed Central

    Hald, Bjørn Olav; Sørensen, Preben G.

    2010-01-01

    Glycolytic oscillations in a stirred suspension of starved yeast cells is an excellent model system for studying the dynamics of metabolic switching in living systems. In an open-flow system the oscillations can be maintained indefinitely at a constant operating point where they can be characterized quantitatively by experimental quenching and bifurcation analysis. In this article, we use these methods to show that the dynamics of oscillations in a closed system is a simple transient version of the open-system dynamics. Thus, easy-setup closed-system experiments are also useful for investigations of central metabolism dynamics of yeast cells. We have previously proposed a model for the open system comprised of the primary fermentative reactions in yeast that quantitatively describes the oscillatory dynamics. However, this model fails to describe the transient behavior of metabolic switching in a closed-system experiment by feeding the yeast suspension with a glucose pulse—notably the initial NADH spike and final NADH rise. Another object of this study is to gain insight into the secondary low-flux metabolic pathways by feeding starved yeast cells with various metabolites. Experimental and computational results strongly suggest that regulation of acetaldehyde explains the observed behavior. We have extended the original model with regulation of pyruvate decarboxylase, a reversible alcohol dehydrogenase, and drainage of pyruvate. Using the method of time rescaling in the extended model, the description of the transient closed-system experiments is significantly improved. PMID:21081066

  17. Influence of pesticides on yeasts colonizing leaves.

    PubMed

    Vadkertiová, Renata; Sláviková, Elena

    2011-01-01

    The effect of nine different pesticides on the growth of yeasts isolated from the leaves of fruit and forest trees was investigated. Four insecticides (with the active ingredients: thiacloprid, deltamethrin, lambdacyhalothrin, and thiamethoxam) and five fungicides (with the effective substances: bitertanol, kresoxim-methyl, mancozeb, trifloxystrobin, and cupric oxychloride) were tested. The concentrations of chemicals were those recommended by the manufacturers for the spraying of trees. The yeast strains isolated from the leaves of fruit trees were not sensitive to any of the insecticides. The majority of yeast strains isolated from the leaves of forest trees were either not sensitive or only to a small extent. While Rhodotorula mucilaginosa and Pichia anomala were not affected by any insecticide, the strains of Cryptococcus laurentii and Rhodotorula glutinis showed the highest sensitivity. The effects of fungicides on the growth of isolated yeasts were more substantial. The fungicide Dithane DG (mancozeb) completely inhibited the growth of all yeasts. All strains isolated from fruit tree leaves were more resistant to the tested fungicides than those isolated from the leaves of forest trees. The most resistant strains from the leaves of fruit trees belonged to the species Metschnikowia pulcherrima, Pichia anomala, and Saccharomyces cerevisiae, whereas Cryptococcus albidus and C. laurentii, originating from the leaves of forest trees, showed the highest sensitivity to fungicides. PMID:22351984

  18. Chapter 6: The genomes of lager yeasts.

    PubMed

    Bond, Ursula

    2009-01-01

    Yeasts used in the production of lagers belong to the genus Saccharomyces pastorianus. Species within this genus arose from a natural hybridization event between two yeast species that appear to be closely related to Saccharomyces cerevisiae and Saccharomyces bayanus. The resultant hybrids contain complex allopolyploid genomes and retain genetic characteristics of both parental species. Recent genome analysis using both whole genome sequencing and competitive genomic hybridization techniques has revealed the underlying composition of lager yeasts genomes. There appear to be at least 36 unique chromosomes, many of which are lager specific, resulting from recombination events between the homeologous parental chromosomes. The recombination events are limited to a defined set of genetic loci, which are highly conserved within strains of lager yeasts. In addition to the hybrid chromosomes, several non-reciprocal chromosomal translocations and inversions are also observed. Remarkably, in response to exposure to environmental stresses such as high temperatures and high osmotic pressure, the genomes appear to be highly dynamic and undergo recombination events at defined loci and alterations in the telomeric regions. The ability of environmental stress to alter the structure and composition of the genomes of lager yeasts may point to mechanisms of adaptive evolution in these species. PMID:19729094

  19. Production of alpha-amylase by yeast

    SciTech Connect

    Thomse, K.K.

    1987-01-01

    The enzyme alpha-amylase confers to an organism the enzymatic activity for the degradation of polyglucosides with alpha-1,4 glycosidic bonds such as starch and glycogen which are among the major storage compounds in plants and animals. Most alpha-amylases are single polypeptides of molecular weights around 50,000 dalton. They are generally found in the digestive tract of animals and in germinating seeds. Among the products released upon enzymatic degradation of polyglucosides maltose, a sugar that can be utilized as carbon source by yeast, is a major constituent. A cDNA segment complementary to mouse salivary amylase messenger RNA has been inserted into the yeast expression vector pMA56 behind the promoter of the gene encoding alcohol dehydrogenase I of yeast. Yeast transformants harboring plasmids with the normal orientation of the promoter and the mouse amylase cDNA gene produce amylase and release the enzyme in free form into the culture medium. Approximately 90% of the amylase activity is found in the medium. Yeast strains carrying MAL allele and transformed with a plasmid which directed the synthesis of mouse alpha-amylase were tested on plates containing starch and in batch fermentations using different high molecular weight sugars and oligosaccharides as carbon source. The results of these experiments will be discussed. (Refs. 21).

  20. Anaerobic digestion of food waste using yeast.

    PubMed

    Suwannarat, Jutarat; Ritchie, Raymond J

    2015-08-01

    Fermentative breakdown of food waste seems a plausible alternative to feeding food waste to pigs, incineration or garbage disposal in tourist areas. We determined the optimal conditions for the fermentative breakdown of food waste using yeast (Saccharomyces cerevisiae) in incubations up to 30days. Yeast efficiently broke down food waste with food waste loadings as high as 700g FW/l. The optimum inoculation was ≈46×10(6)cells/l of culture with a 40°C optimum (25-40°C). COD and BOD were reduced by ≈30-50%. Yeast used practically all the available sugars and reduced proteins and lipids by ≈50%. Yeast was able to metabolize lipids much better than expected. Starch was mobilized after very long term incubations (>20days). Yeast was effective in breaking down the organic components of food waste but CO2 gas and ethanol production (≈1.5%) were only significant during the first 7days of incubations. PMID:25987287

  1. Cell surface engineering of yeast: construction of arming yeast with biocatalyst.

    PubMed

    Ueda, M; Tanaka, A

    2000-01-01

    A cell surface engineering system of yeast Saccharomyces cerevisiae has been established and novel yeasts armed by biocatalysts (enzymes-glucoamylase, alpha-amylase, CM-cellulase, beta-glucosidase, and lipase), termed "arming yeasts", were constructed. The gene encoding Rhizopus oryzae glucoamylase with its secretion signal peptide was fused with the gene encoding the C-terminal half of yeast alpha-agglutinin and expressed in S. cerevisiae. Glucoamylase was shown to be displayed on the cell surface in its active form and anchored covalently to the cell wall. S. cerevisiae itself is unable to utilize starch, while the surface-engineered yeast could grow on starch as the sole carbon source. For further improvement of the ability to directly ferment starchy materials by the cell surface-engineered yeast, engineered yeasts displaying two amylolytic enzymes on the cell surface were constructed. The gene encoding R. oryzae glucoamylase with its own secretion signal peptide and a truncated fragment of the alpha-amylase gene from Bacillus stearothermophilus with the prepro secretion signal sequence of the yeast alpha-factor were fused with the gene encoding the C-terminal half of the yeast alpha-agglutinin. The surface-engineered yeast co-displaying glucoamylase and alpha-amylase by the integration of their genes into the chromosomes could grow faster on starch as the sole carbon source than the engineered cells displaying only glucoamylase. The system was further applied to the construction of a novel cellulose-utilizing yeast by displaying cellulolytic enzymes in their active form on the cell surface of S. cerevisiae. Engineered yeasts co-displaying FI-carboxymethylcellulase (CM-cellulase), one of the endo-type cellulases, and beta-glucosidase from Aspergillus aculeatus on their cell surface were also constructed. The yeasts displaying these cellulases were given the ability to assimilate cellooligosaccharide, suggesting the possibility that the assimilation of cellulosic materials may be carried out by S. cerevisiae displaying heterologous cellulase proteins on the cell surface. The system has also been used for the cell surface display of R. oryzae lipase (ROL). Linker peptides (spacers) consisting of the Gly/Ser repeat sequence were inserted at the C-terminal portion of ROL to enhance the lipase activity. The insertion of an appropriate length of a linker peptide as a spacer is effective in the display of ROL, having the active region at the C-terminal portion, on the cell surface. Thus, cell surface engineering will be capable of conferring novel additional abilities upon living cells and will herald a new era in the field of biotechnology. PMID:16232831

  2. Evidence for yeast autophagy during simulation of sparkling wine aging: a reappraisal of the mechanism of yeast autolysis in wine.

    PubMed

    Cebollero, Eduardo; Carrascosa, Alfonso V; Gonzalez, Ramon

    2005-01-01

    Yeast autolysis is the source of several molecules responsible for the quality of wines aged in contact with yeast cells. However, the mechanisms of yeast autolysis during wine aging are not completely understood. All descriptions of yeast autolysis in enological conditions emphasize the disturbance of cell organization as the starting event in the internal digestion of the cell, while no reference to autophagy is found in wine-related literature. By using yeast mutants defective in the autophagic or the Cvt pathways we have demonstrated that autophagy does take place in wine production conditions. This finding has implications for the genetic improvement of yeasts for accelerated autolysis. PMID:15801807

  3. Yeasts and yeast-like organisms associated with fruits and blossoms of different fruit trees.

    PubMed

    Vadkertiová, Renáta; Molnárová, Jana; Vránová, Dana; Sláviková, Elena

    2012-12-01

    Yeasts are common inhabitants of the phyllosphere, but our knowledge of their diversity in various plant organs is still limited. This study focused on the diversity of yeasts and yeast-like organisms associated with matured fruits and fully open blossoms of apple, plum, and pear trees, during 2 consecutive years at 3 localities in southwest Slovakia. The occurrence of yeasts and yeast-like organisms in fruit samples was 2½ times higher and the yeast community more diverse than that in blossom samples. Only 2 species (Aureobasidium pullulans and Metschnikowia pulcherrima) occurred regularly in the blossom samples, whereas Galactomyces candidus, Hanseniaspora guilliermondii, Hanseniaspora uvarum, M. pulcherrima, Pichia kluyveri, Pichia kudriavzevii, and Saccharomyces cerevisiae were the most frequently isolated species from the fruit samples. The ratio of the number of samples where only individual species were present to the number of samples where 2 or more species were found (consortium) was counted. The occurrence of individual species in comparison with consortia was much higher in blossom samples than in fruit samples. In the latter, consortia predominated. Aureobasidium pullulans, M. pulcherrima, and S. cerevisiae, isolated from both the fruits and blossoms, can be considered as resident yeast species of various fruit tree species cultivated in southwest Slovakia localities. PMID:23210991

  4. Yeast Actin-Related Protein ARP6 Negatively Regulates Agrobacterium-Mediated Transformation of Yeast Cell

    PubMed Central

    Luo, Yumei; Chen, Zikai; Zhu, Detu; Tu, Haitao; Pan, Shen Quan

    2015-01-01

    The yeasts, including Saccharomyces cerevisiae and Pichia pastoris, are single-cell eukaryotic organisms that can serve as models for human genetic diseases and hosts for large scale production of recombinant proteins in current biopharmaceutical industry. Thus, efficient genetic engineering tools for yeasts are of great research and economic values. Agrobacterium tumefaciens-mediated transformation (AMT) can transfer T-DNA into yeast cells as a method for genetic engineering. However, how the T-DNA is transferred into the yeast cells is not well established yet. Here our genetic screening of yeast knockout mutants identified a yeast actin-related protein ARP6 as a negative regulator of AMT. ARP6 is a critical member of the SWR1 chromatin remodeling complex (SWR-C); knocking out some other components of the complex also increased the transformation efficiency, suggesting that ARP6 might regulate AMT via SWR-C. Moreover, knockout of ARP6 led to disruption of microtubule integrity, higher uptake and degradation of virulence proteins, and increased DNA stability inside the cells, all of which resulted in enhanced transformation efficiency. Our findings have identified molecular and cellular mechanisms regulating AMT and a potential target for enhancing the transformation efficiency in yeast cells. PMID:26425545

  5. Retrosequence formation restructures the yeast genome

    PubMed Central

    Maxwell, Patrick H.; Curcio, M. Joan

    2007-01-01

    Retrosequences generated by reverse transcription of mRNA transcripts have a substantial influence on gene expression patterns, generation of novel gene functions, and genome organization. The Ty1 retrotransposon is a major source of RT activity in the yeast, Saccharomyces cerevisiae, and Ty1 retromobility is greatly elevated in strains lacking telomerase. We report that Ty1-dependent formation of retrosequences derived from single-copy gene transcripts is progressively elevated as yeast cells senesce in the absence of telomerase. Retrosequences are frequently fused to Ty1 sequences, and occasionally to sequences from other mRNA transcripts, forming chimeric pseudogenes. Efficient retrosequence formation requires the homologous recombination gene RAD52. Selection for retrosequence formation is correlated with a high frequency of chromosome rearrangements in telomerase-negative yeast. Ty1-associated retrosequences were present at the breakpoint junctions of four chromosomes analyzed in detail. Our results support a role for reverse transcripts in promoting chromosome rearrangements. PMID:18079177

  6. Biofuels. Altered sterol composition renders yeast thermotolerant.

    PubMed

    Caspeta, Luis; Chen, Yun; Ghiaci, Payam; Feizi, Amir; Buskov, Steen; Hallström, Björn M; Petranovic, Dina; Nielsen, Jens

    2014-10-01

    Ethanol production for use as a biofuel is mainly achieved through simultaneous saccharification and fermentation by yeast. Operating at ?40°C would be beneficial in terms of increasing efficiency of the process and reducing costs, but yeast does not grow efficiently at those temperatures. We used adaptive laboratory evolution to select yeast strains with improved growth and ethanol production at ?40°C. Sequencing of the whole genome, genome-wide gene expression, and metabolic-flux analyses revealed a change in sterol composition, from ergosterol to fecosterol, caused by mutations in the C-5 sterol desaturase gene, and increased expression of genes involved in sterol biosynthesis. Additionally, large chromosome III rearrangements and mutations in genes associated with DNA damage and respiration were found, but contributed less to the thermotolerant phenotype. PMID:25278608

  7. [Urinary infection by Saccharomyces cerevisiae: Emerging yeast?].

    PubMed

    Elkhihal, B; Elhalimi, M; Ghfir, B; Mostachi, A; Lyagoubi, M; Aoufi, S

    2015-12-01

    Saccharomyces cerevisiae is a commensal yeast of the digestive, respiratory and genito-urinary tract. It is widely used as a probiotic for the treatment of post-antibiotic diarrhea. It most often occurs in immunocompromised patients frequently causing fungemia. We report the case of an adult diabetic patient who had a urinary tract infection due to S. cerevisiae. The disease started with urination associated with urinary frequency burns without fever. The diagnosis was established by the presence of yeasts on direct examination and positivity of culture on Sabouraud-chloramphenicol three times. The auxanogramme gallery (Auxacolor BioRad(®)) allowed the identification of S. cerevisiae. The patient was put on fluconazole with good outcome. This observation points out that this is an opportunistic yeast in immunocompromised patients. PMID:26522963

  8. Detection of Yeast Cells; Microfluidic Impedance Sensor

    NASA Astrophysics Data System (ADS)

    Hulea, Kelsey; Matune, Nicholas; Mabbott, Benjamin; Panta, Yogendra

    2010-11-01

    A microelectromechanical system (MEMS) based biosensor was proposed for the rapid detection of pathogenic bacteria and contaminants that pose a threat to public health. In this study, experimental tests followed by finite element computer simulations were performed to selectively detect the quantity of yeast cells in a sample solution then was compared to a solution with no yeast cells. The impedance based biosensor detects the change in impedance caused by the presence of yeast cells between the electrodes integrated into microchannel walls that contain the target cells in a suspension medium. Microfluidic devices were fabricated by using two methods: traditional micromachining and photolithography for experimental purposes. An impedance analyzer was experimentally used for the measurement of the electrical impedance signals. Computer models based in COMSOL Multiphysics consisted of a long microchannel with two electrodes placed on opposite sides of the channel. Experimental data, simulation results and published data were compared and similar trends were found.

  9. Complete biosynthesis of opioids in yeast.

    PubMed

    Galanie, Stephanie; Thodey, Kate; Trenchard, Isis J; Filsinger Interrante, Maria; Smolke, Christina D

    2015-09-01

    Opioids are the primary drugs used in Western medicine for pain management and palliative care. Farming of opium poppies remains the sole source of these essential medicines, despite diverse market demands and uncertainty in crop yields due to weather, climate change, and pests. We engineered yeast to produce the selected opioid compounds thebaine and hydrocodone starting from sugar. All work was conducted in a laboratory that is permitted and secured for work with controlled substances. We combined enzyme discovery, enzyme engineering, and pathway and strain optimization to realize full opiate biosynthesis in yeast. The resulting opioid biosynthesis strains required the expression of 21 (thebaine) and 23 (hydrocodone) enzyme activities from plants, mammals, bacteria, and yeast itself. This is a proof of principle, and major hurdles remain before optimization and scale-up could be achieved. Open discussions of options for governing this technology are also needed in order to responsibly realize alternative supplies for these medically relevant compounds. PMID:26272907

  10. Bioadsorption strategies with yeast molecular display technology.

    PubMed

    Shibasaki, Seiji; Ueda, Mitsuyoshi

    2014-01-01

    Molecular display techniques using microbial cell surfaces have been widely developed in the past twenty years, and are useful tools as whole cell catalysts for various applications such as bioconversion, bioremediation, biosensing, and the screening system of protein libraries. Furthermore, different types of microbial cells among eukaryotic and prokaryotic strains have been investigated for their use in surface display technologies. Recently, several kinds of protein-displaying yeasts have been utilized as bioadsorbents in this platform technology. In particular, these trials have successfully expanded the possibility of applications to metal binding, affinity purification, and receptor-ligand interaction by using the yeast cell surface. In this mini review, we describe the general principles of molecular display technology using yeast cells and its applications, with a particular focus on bioadsorption. PMID:25744211

  11. Membrane Transport in Yeast, An Introduction.

    PubMed

    Kschischo, Maik; Ramos, José; Sychrová, Hana

    2016-01-01

    Research on membrane transport has made continuous progress in the last decades and remains an active field of scientific investigation. In the case of yeast, most of the research has been conducted for the model organism Saccharomyces cerevisiae, but also the so-called non-conventional yeasts are being studied, especially because of their peculiarities and, in some cases, specific transport systems. This book is based on the experience of several experts summarizing the current knowledge about important substrate transport processes in yeast. Each chapter provides both a general overview of the main transport characteristics of a specific substrate or group of substrates and the unique details that only an expert working in the field is able to transmit to the reader. PMID:26721268

  12. Biochemical Comparison of Commercial Selenium Yeast Preparations.

    PubMed

    Fagan, Sheena; Owens, Rebecca; Ward, Patrick; Connolly, Cathal; Doyle, Sean; Murphy, Richard

    2015-08-01

    The trace mineral selenium (Se) is an essential element for human and animal nutrition. The addition of Se to the diet through dietary supplements or fortified food/feed is increasingly common owing to the often sub-optimal content of standard diets of many countries. Se supplements commercially available include the inorganic mineral salts such as sodium selenite or selenate, and organic forms such as Se-enriched yeast. Today, Se yeast is produced by several manufacturers and has become the most widely used source of Se for human supplementation and is also widely employed in animal nutrition where approval in all species has been granted by regulatory bodies such as the European Food Safety Authority (EFSA). Characterisation and comparison of Se-enriched yeast products has traditionally been made by quantifying total selenomethionine (SeMet) content. A disadvantage of this approach, however, is that it does not consider the effects of Se deposition on subsequent digestive availability. In this study, an assessment was made of the water-soluble extracts of commercially available Se-enriched yeast samples for free, peptide-bound and total water-soluble SeMet. Using LC-MS/MS, a total of 62 Se-containing proteins were identified across four Se yeast products, displaying quantitative/qualitative changes in abundance relative to the certified reference material, SELM-1 (P value <0.05; fold change ?2). Overall, the study indicates that significant differences exist between Se yeast products in terms of SeMet content, Se-containing protein abundance and associated metabolic pathways. PMID:25855372

  13. [The yeast biofilm in human medicine].

    PubMed

    Růzicka, Filip; Holá, Veronika; Votava, Miroslav

    2007-08-01

    In recent years, the role of Candida yeasts as causative agents of nosocomial infections has increased. One of the important virulence factors contributing to the development of such infections is biofilm production. This virulence factor enables yeast to colonize both native surfaces and artificial implants. The most common sources of infection are patients themselves, in particular the gastrointestinal tract and skin. The vectors of exogenous yeast infections are predominantly the hands of the health personnel and contaminated medical instruments. The adhesion of yeasts to the implant surfaces is determined both by implant surface and yeast characteristics. This is followed by proliferation and production of microcolonies and extracellular matrix. The final biofilm structure is also influenced by the production of hyphae and pseudohyphae. The entire process of biofilm production is controlled by numerous regulatory systems, with the key role being played by the quorum sensing system. Like the adhered bacterial cultures, candidas growing in the form of a biofilm are highly resistant to antimicrobial therapy. Resistance of yeast biofilms to antifungals is a complex process with multiple contributing factors. These are especially increased gene expression (e.g. genes encoding the so called multidrug efflux pumps), limited penetration of substances through the extracellular matrix, inhibited cell growth and altered microenvironment in deeper biofilm layers. The concentrations of antifungals able to effectively affect the biofilm cells exceed, by several orders of magnitude, the values of conventionally determined MICs. High biofilm resistance results in ineffective antifungal therapy of biofilm infections. Therefore, if possible, the colonized implant should be removed. Conservative therapy should involve antifungals with a proven effect on the biofilm (e.g. caspofungin). The most effective measure in fighting biofilm infections is prevention, especially adhering to aseptic techniques when manipulating with implants and their correct maintenance. PMID:17929219

  14. YEASTS FROM THE NORTH SEA AND AMOCO CADIZ OIL

    EPA Science Inventory

    The species and densities of yeasts isolated from North Sea waters before and after the production of oil were compared. Debaryomyces hansenii was the predominant species, but after oil production, Candida guillieromondii, a hydrocarbonoclastic yeast, was more commonly isolated a...

  15. Antifungal for Yeast Infections Tied to Miscarriage Risk

    MedlinePLUS

    ... nlm.nih.gov/medlineplus/news/fullstory_156527.html Antifungal for Yeast Infections Tied to Miscarriage Risk The ... Jan. 5, 2016 (HealthDay News) -- A well-known antifungal drug used for vaginal yeast infections may be ...

  16. Dissecting phosphorylation networks: lessons learned from yeast

    PubMed Central

    Mok, Janine; Zhu, Xiaowei; Snyder, Michael

    2012-01-01

    Protein phosphorylation continues to be regarded as one of the most important post-translational modifications found in eukaryotes and has been implicated in key roles in the development of a number of human diseases. In order to elucidate roles for the 518 human kinases, phosphorylation has routinely been studied using the budding yeast Saccharomyces cerevisiae as a model system. In recent years, a number of technologies have emerged to globally map phosphorylation in yeast. In this article, we review these technologies and discuss how these phosphorylation mapping efforts have shed light on our understanding of kinase signaling pathways and eukaryotic proteomic networks in general. PMID:22087660

  17. Expression of human. alpha. -fetoprotein in yeast

    SciTech Connect

    Yamamoto, Ritsu; Sakamoto, Takashi; Nishi, Shinzo; Sakai, Masaharu; Morinaga, Tomonori; Tamaoki, Taiki Univ. of Calgary, Alberta )

    1990-01-01

    Human {alpha}-fetoprotein (AFP) was expressed in Saccharomyces cerevisiae, with a plasmid containing the cDNA sequence for human AFP fused with the rat AFP signal peptide. The recombinant AFP was purified from the yeast lysate by DEAE-cellulose and immunoaffinity chromatography. The amino acid composition and the molecular weight of the recombinant AFP were similar to those of hepatoma AFP. N-terminal amino acids sequence analysis indicated that the signal peptide had been processed. The recombinant and hepatoma AFP reacted identically in Ouchterlony immunodiffusion and radioimmunoassay tests. These observations indicated that the yeast recombinant protein had the properties of native AFP.

  18. Fission Yeast Cell Cycle Synchronization Methods.

    PubMed

    Tormos-Pérez, Marta; Pérez-Hidalgo, Livia; Moreno, Sergio

    2016-01-01

    Fission yeast cells can be synchronized by cell cycle arrest and release or by size selection. Cell cycle arrest synchronization is based on the block and release of temperature-sensitive cell cycle mutants or treatment with drugs. The most widely used approaches are cdc10-129 for G1; hydroxyurea (HU) for early S-phase; cdc25-22 for G2, and nda3-KM311 for mitosis. Cells can also be synchronized by size selection using centrifugal elutriation or a lactose gradient. Here we describe the methods most commonly used to synchronize fission yeast cells. PMID:26519320

  19. Overwintering of Vineyard Yeasts: Survival of Interacting Yeast Communities in Grapes Mummified on Vines.

    PubMed

    Sipiczki, Matthias

    2016-01-01

    The conversion of grape must into wine involves the development and succession of yeast populations differing in species composition. The initial population is formed by vineyard strains which are washed into the must from the crushed grapes and then completed with yeasts coming from the cellar environment. As the origin and natural habitat of the vineyard yeasts are not fully understood, this study addresses the possibility, that grape yeasts can be preserved in berries left behind on vines at harvest until the spring of the next year. These berries become mummified during the winter on the vines. To investigate whether yeasts can survive in these overwintering grapes, mummified berries were collected in 16 localities in the Tokaj wine region (Hungary-Slovakia) in early March. The collected berries were rehydrated to recover viable yeasts by plating samples onto agar plates. For the detection of minority species which would not be detected by direct plating, an enrichment step repressing the propagation of alcohol-sensitive yeasts was also included in the process. The morphological, physiological, and molecular analysis identified 13 basidiomycetous and 23 ascomycetous species including fermentative yeasts of wine-making relevance among the 3879 isolates. The presence of viable strains of these species demonstrates that the grapes mummified on the vine can serve as a safe reservoir of yeasts, and may contribute to the maintenance of grape-colonizing yeast populations in the vineyard over years, parallel with other vectors and habitats. All basidiomycetous species were known phylloplane yeasts. Three Hanseniaspora species and pigmented Metschnikowia strains were the most frequent ascomycetes. Other fermentative yeasts of wine-making relevance were detected only in the enrichment cultures. Saccharomyces (S. paradoxus, S. cerevisiae, and S. uvarum) were recovered from 13% of the samples. No Candida zemplinina was found. The isolates with Aureobasidium morphology turned out to belong to Aureobasidium subglaciale, Kabatiella microsticta, or Columnosphaeria fagi. The ascomyceteous isolates grew at high concentrations of sugars with Wickerhamomyces anomalus being the most tolerant species. Complex interactions including antagonism (growth inhibition, contact inhibition, competition for nutrients) and synergism (crossfeeding) among the isolates and with Botrytis cinerea shape the composition of the overwintering communities. PMID:26973603

  20. Overwintering of Vineyard Yeasts: Survival of Interacting Yeast Communities in Grapes Mummified on Vines

    PubMed Central

    Sipiczki, Matthias

    2016-01-01

    The conversion of grape must into wine involves the development and succession of yeast populations differing in species composition. The initial population is formed by vineyard strains which are washed into the must from the crushed grapes and then completed with yeasts coming from the cellar environment. As the origin and natural habitat of the vineyard yeasts are not fully understood, this study addresses the possibility, that grape yeasts can be preserved in berries left behind on vines at harvest until the spring of the next year. These berries become mummified during the winter on the vines. To investigate whether yeasts can survive in these overwintering grapes, mummified berries were collected in 16 localities in the Tokaj wine region (Hungary-Slovakia) in early March. The collected berries were rehydrated to recover viable yeasts by plating samples onto agar plates. For the detection of minority species which would not be detected by direct plating, an enrichment step repressing the propagation of alcohol-sensitive yeasts was also included in the process. The morphological, physiological, and molecular analysis identified 13 basidiomycetous and 23 ascomycetous species including fermentative yeasts of wine-making relevance among the 3879 isolates. The presence of viable strains of these species demonstrates that the grapes mummified on the vine can serve as a safe reservoir of yeasts, and may contribute to the maintenance of grape-colonizing yeast populations in the vineyard over years, parallel with other vectors and habitats. All basidiomycetous species were known phylloplane yeasts. Three Hanseniaspora species and pigmented Metschnikowia strains were the most frequent ascomycetes. Other fermentative yeasts of wine-making relevance were detected only in the enrichment cultures. Saccharomyces (S. paradoxus, S. cerevisiae, and S. uvarum) were recovered from 13% of the samples. No Candida zemplinina was found. The isolates with Aureobasidium morphology turned out to belong to Aureobasidium subglaciale, Kabatiella microsticta, or Columnosphaeria fagi. The ascomyceteous isolates grew at high concentrations of sugars with Wickerhamomyces anomalus being the most tolerant species. Complex interactions including antagonism (growth inhibition, contact inhibition, competition for nutrients) and synergism (crossfeeding) among the isolates and with Botrytis cinerea shape the composition of the overwintering communities. PMID:26973603

  1. GENE ENGINEERING OF YEASTS FOR THE DEGRADATION OF HAZARDOUS WASTE

    EPA Science Inventory

    The research examined the structure and function of cytochrome P-450 genes in yeast as a model for gene engineering such as eukaryotic P-450 enzymes for biodegradation of hazardous waste by yeasts. Saccharomyces cerevisiae and Candida tropicalis are two yeasts known to produce ma...

  2. Triacetic acid lactone production in industrial Saccharomyces yeast strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Triacetic acid lactone (TAL) is a potential platform chemical that can be produced in yeast. To evaluate the potential for industrial yeast strains to produce TAL, the g2ps1 gene encoding 2-pyrone synthase was transformed into thirteen industrial yeast strains of varied genetic background. TAL produ...

  3. Drosophila-associated yeast species in vineyard ecosystems.

    PubMed

    Lam, Samuel S T H; Howell, Kate S

    2015-10-01

    Yeast activity during wine fermentation directly contributes to wine quality, but the source and movement of yeasts in vineyards and winery environments have not been resolved. Here, we investigate the yeast species associated with the Drosophila insect vector to help understand yeast dispersal and persistence. Drosophila are commonly found in vineyards and are known to have a mutualistic relationship with yeasts in other ecosystems. Drosophilids were collected from vineyards, grape waste (marc) piles and wineries during grape harvest. Captured flies were identified morphologically, and their associated yeasts were identified. Drosophila melanogaster/D. simulans, D. hydei and Scaptodrosophila lativittata were identified in 296 captured Drosophila flies. These flies were associated with Metschnikowia pulcherrima, Hanseniaspora uvarum, Torulaspora delbrueckii and H. valbyensis yeasts. Yeast and Drosophila species diversity differed between collection locations (vineyard and marc: R = 0.588 for Drosophila and R = 0.644 for yeasts). Surprisingly, the primary wine fermentation yeast, Saccharomyces cerevisiae, was not isolated. Drosophila flies are preferentially associated with different yeast species in the vineyard and winery environments, and this association may help the movement and dispersal of yeast species in the vineyard and winery ecosystem. PMID:26391524

  4. Dynamic changes in brewing yeast cells in culture revealed by statistical analyses of yeast morphological data.

    PubMed

    Ohnuki, Shinsuke; Enomoto, Kenichi; Yoshimoto, Hiroyuki; Ohya, Yoshikazu

    2014-03-01

    The vitality of brewing yeasts has been used to monitor their physiological state during fermentation. To investigate the fermentation process, we used the image processing software, CalMorph, which generates morphological data on yeast mother cells and bud shape, nuclear shape and location, and actin distribution. We found that 248 parameters changed significantly during fermentation. Successive use of principal component analysis (PCA) revealed several important features of yeast, providing insight into the dynamic changes in the yeast population. First, PCA indicated that much of the observed variability in the experiment was summarized in just two components: a change with a peak and a change over time. Second, PCA indicated the independent and important morphological features responsible for dynamic changes: budding ratio, nucleus position, neck position, and actin organization. Thus, the large amount of data provided by imaging analysis can be used to monitor the fermentation processes involved in beer and bioethanol production. PMID:24012106

  5. Fission yeast meets a legend in Kobe: report of the Eighth International Fission Yeast Meeting.

    PubMed

    Asakawa, Haruhiko; Yamamoto, Takaharu G; Hiraoka, Yasushi

    2015-12-01

    The Eighth International Fission Yeast Meeting, which was held at Ikuta Shrine Hall in Kobe, Japan, from 21 to 26 June 2015, was attended by 327 fission yeast researchers from 25 countries (190 overseas and 137 domestic participants). At this meeting, 124 talks were held and 145 posters were presented. In addition, newly developed database tools were introduced to the community during a workshop. Researchers shared cutting-edge knowledge across broad fields of study, ranging from molecules to evolution, derived from the superior model organism commonly used within the fission yeast community. Intensive discussions and constructive suggestions generated in this meeting will surely advance the understanding of complex biological systems in fission yeast, extending to general eukaryotes. PMID:26477989

  6. Schizosaccharomyces japonicus: the fission yeast is a fusion of yeast and hyphae.

    PubMed

    Niki, Hironori

    2014-03-01

    The clade of Schizosaccharomyces includes 4 species: S. pombe, S. octosporus, S. cryophilus, and S. japonicus. Although all 4 species exhibit unicellular growth with a binary fission mode of cell division, S. japonicus alone is dimorphic yeast, which can transit from unicellular yeast to long filamentous hyphae. Recently it was found that the hyphal cells response to light and then synchronously activate cytokinesis of hyphae. In addition to hyphal growth, S. japonicas has many properties that aren't shared with other fission yeast. Mitosis of S. japonicas is referred to as semi-open mitosis because dynamics of nuclear membrane is an intermediate mode between open mitosis and closed mitosis. Novel genetic tools and the whole genomic sequencing of S. japonicas now provide us with an opportunity for revealing unique characters of the dimorphic yeast. PMID:24375690

  7. Inhibition of Alcoholic Fermentation of Grape Must by Fatty Acids Produced by Yeasts and Their Elimination by Yeast Ghosts

    PubMed Central

    Lafon-Lafourcade, S.; Geneix, C.; Ribéreau-Gayon, P.

    1984-01-01

    In a complete nutritive medium rich in sugar, such as grape must, the inhibition of alcoholic fermentation is caused by substances produced by the yeast which, acting synergistically with ethanol, are toxic to the yeasts themselves. Among these are decanoic and octanoic acids and their corresponding ethyl esters. Their adsorption by yeast ghosts permits the prevention and treatment of fermentation stoppages. PMID:16346561

  8. Yeast and Egg Contamination of Shell Eggs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poultry and eggs are often contaminated with microorganisms such as bacteria, yeasts, and molds. Bacteria such as Salmonella cause illness in human who eat eggs contaminated with them, particularly if the eggs are pooled, improperly refrigerated, and eaten raw or undercooked. Other bacteria such a...

  9. Microfermentation Test For Identification Of Yeast

    NASA Technical Reports Server (NTRS)

    Pierson, D. L.; Mishra, S. K.; Molina, Thomas C.

    1995-01-01

    Microfermentation test developed as supplementary method for use in identifying yeasts, especially in clinical and environmental studies. In comparison with traditional fermentation tests, simpler and easier, and requiries less equipment, material, and laboratory space. Results obtained in days instead of weeks.

  10. Yeast improves resistance to environmental challenges

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alphamune™, a yeast extract antibiotic alternative, was added at either 1 lb/ton or 2 lb/ton to a turkey starter diet. Two trials were conducted to evaluate the effects of Alphamune™ on gut maturation of 7 and 21 day old poults. Sections from the mid-point of the duodenum, jejunum and ileum of each ...

  11. Compositional Determinants of Prion Formation in Yeast?

    PubMed Central

    Toombs, James A.; McCarty, Blake R.; Ross, Eric D.

    2010-01-01

    Numerous prions (infectious proteins) have been identified in yeast that result from the conversion of soluble proteins into ?-sheet-rich amyloid-like protein aggregates. Yeast prion formation is driven primarily by amino acid composition. However, yeast prion domains are generally lacking in the bulky hydrophobic residues most strongly associated with amyloid formation and are instead enriched in glutamines and asparagines. Glutamine/asparagine-rich domains are thought to be involved in both disease-related and beneficial amyloid formation. These domains are overrepresented in eukaryotic genomes, but predictive methods have not yet been developed to efficiently distinguish between prion and nonprion glutamine/asparagine-rich domains. We have developed a novel in vivo assay to quantitatively assess how composition affects prion formation. Using our results, we have defined the compositional features that promote prion formation, allowing us to accurately distinguish between glutamine/asparagine-rich domains that can form prion-like aggregates and those that cannot. Additionally, our results explain why traditional amyloid prediction algorithms fail to accurately predict amyloid formation by the glutamine/asparagine-rich yeast prion domains. PMID:19884345

  12. Glucose-Induced Acidification in Yeast Cultures

    ERIC Educational Resources Information Center

    Myers, Alan; Bourn, Julia; Pool, Brynne

    2005-01-01

    We present an investigation (for A-level biology students and equivalent) into the mechanism of glucose-induced extracellular acidification in unbuffered yeast suspensions. The investigation is designed to enhance understanding of aspects of the A-level curriculum that relate to the phenomenon (notably glucose catabolism) and to develop key skills…

  13. Glucose-Induced Acidification in Yeast Cultures

    ERIC Educational Resources Information Center

    Myers, Alan; Bourn, Julia; Pool, Brynne

    2005-01-01

    We present an investigation (for A-level biology students and equivalent) into the mechanism of glucose-induced extracellular acidification in unbuffered yeast suspensions. The investigation is designed to enhance understanding of aspects of the A-level curriculum that relate to the phenomenon (notably glucose catabolism) and to develop key skills…

  14. Antarctic Yeasts: Biodiversity and Potential Applications

    NASA Astrophysics Data System (ADS)

    Shivaji, S.; Prasad, G. S.

    This review is an attempt in cataloguing the diversity of yeasts in Antarctica, highlight their biotechnological potential and understand the basis of adaptation to low temperature. As of now several psychrophilic and psychrotolerant yeasts from Antarctic soils and marine waters have been characterized with respect to their growth characteristics, ecological distribution and taxonomic significance. Interestingly most of these species belonged to basidiomycetous yeasts which as a group are known for their ability to circumvent and survive under stress conditions. Simultaneously their possible role as work horses in the biotechnological industry was recognized due to their ability to produce novel enzymes and biomolecules such as agents for the breakdown of xenobiotics, and novel pharmaceutical chemi cals. The high activity of psychrophilic enzymes at low and moderate temperatures offers potential economic benefits. As of now lipases from Pseudozyma antarctica have been extensively studied to understand their unique thermal stability at 90°C and also because of its use in the pharmaceutical, agriculture, food, cosmetics and chemical industry. A few of the other enzymes which have been studied include extracellular alpha-amylase and glucoamylase from the yeast Pseudozyma antarctica (Candida antarctica), an extra-cellular protease from Cryptococcus humicola, an aspartyl proteinase from Cryptococcus humicola, a novel extracellular subtilase from Leucosporidium antarcticum, and a xylanase from Cryptococcus adeliensis

  15. Intercellular communication during yeast cell growth

    NASA Astrophysics Data System (ADS)

    Musumeci, F.; Scordino, A.; Triglia, A.; Blandino, G.; Milazzo, I.

    1999-09-01

    An experiment has been performed that has shown the existence of cellular communication between optically coupled cultures which are chemically separate. The experiment used for the cellular culture the temperature-sensitive mutant yeast strain Saccharomyces cerevisiae. The novelty of this experiment lies in the simplicity of the experimental protocol and in the reasonably high statistic significance of the obtained results.

  16. Copper transport in non-growing yeast

    SciTech Connect

    Turos, S.; Donahue, T.; Trent, C.; Connelly, J.L.

    1986-05-01

    The mandatory role of copper (Cu) proteins in cell metabolism and the speculation that Cu influences the production of porphyrins and hemoproteins prompted an examination of the regulatory features of, and the process by which Cu is taken up by yeast. Saccharomyces Cerevisiae was grown on glucose minimal media in the absence of added Cu at 29/sup 0/C, 200 rpm for 48-72 hrs. Cells were harvested and washed by centrifugation and resuspended at standardized mg dry weight/ml. The yeast was exposed to Cu under a variety of experimental conditions in 10 ml volume containing approximately 5 mg (dry wt.) yeast and Cu (0-10/sup -4/M). Reactions were stopped by microcentrifugation and Cu was determined, by difference, using atomic absorption spectrophotometry. The time course of Cu uptake reflected two phases; a rapid rate followed by a slow rate which varied according to conditions. Direct determination of Cu using washing (chelators) and ashing of washed yeast showed that the initial phase was indeed adsorption of Cu to cell exterior. While the relationship of adsorbed Cu to Cu uptake has not been evaluated the system nevertheless is being used for the determination of the effects of environmental factors (pH, (Cu), temperature, etc.) on the uptake process. Furthermore, this system provides a convenient method for characterizing the Cu-transport machinery in a static (non-growth) mode.

  17. Actin and Endocytosis in Budding Yeast

    PubMed Central

    Goode, Bruce L.; Eskin, Julian A.; Wendland, Beverly

    2015-01-01

    Endocytosis, the process whereby the plasma membrane invaginates to form vesicles, is essential for bringing many substances into the cell and for membrane turnover. The mechanism driving clathrin-mediated endocytosis (CME) involves > 50 different protein components assembling at a single location on the plasma membrane in a temporally ordered and hierarchal pathway. These proteins perform precisely choreographed steps that promote receptor recognition and clustering, membrane remodeling, and force-generating actin-filament assembly and turnover to drive membrane invagination and vesicle scission. Many critical aspects of the CME mechanism are conserved from yeast to mammals and were first elucidated in yeast, demonstrating that it is a powerful system for studying endocytosis. In this review, we describe our current mechanistic understanding of each step in the process of yeast CME, and the essential roles played by actin polymerization at these sites, while providing a historical perspective of how the landscape has changed since the preceding version of the YeastBook was published 17 years ago (1997). Finally, we discuss the key unresolved issues and where future studies might be headed. PMID:25657349

  18. Carbon source dependent promoters in yeasts

    PubMed Central

    2014-01-01

    Budding yeasts are important expression hosts for the production of recombinant proteins. The choice of the right promoter is a crucial point for efficient gene expression, as most regulations take place at the transcriptional level. A wide and constantly increasing range of inducible, derepressed and constitutive promoters have been applied for gene expression in yeasts in the past; their different behaviours were a reflection of the different needs of individual processes. Within this review we summarize the majority of the large available set of carbon source dependent promoters for protein expression in yeasts, either induced or derepressed by the particular carbon source provided. We examined the most common derepressed promoters for Saccharomyces cerevisiae and other yeasts, and described carbon source inducible promoters and promoters induced by non-sugar carbon sources. A special focus is given to promoters that are activated as soon as glucose is depleted, since such promoters can be very effective and offer an uncomplicated and scalable cultivation procedure. PMID:24401081

  19. Production of biopharmaceutical proteins by yeast

    PubMed Central

    Nielsen, Jens

    2013-01-01

    Production of recombinant proteins for use as pharmaceuticals, so-called biopharmaceuticals, is a multi-billion dollar industry. Many different cell factories are used for the production of biopharmaceuticals, but the yeast Saccharomyces cerevisiae is an important cell factory as it is used for production of several large volume products. Insulin and insulin analogs are by far the dominating biopharmaceuticals produced by yeast, and this will increase as the global insulin market is expected to grow from USD12B in 2011 to more than USD32B by 2018. Other important biopharmaceuticals produced by yeast are human serum albumin, hepatitis vaccines and virus like particles used for vaccination against human papillomavirus. Here is given a brief overview of biopharmaceutical production by yeast and it is discussed how the secretory pathway can be engineered to ensure more efficient protein production. The involvement of directed metabolic engineering through the integration of tools from genetic engineering, systems biology and mathematical modeling, is also discussed. PMID:23147168

  20. [Production of yeast biomasses from starch].

    PubMed

    Thi Son, N; Behrens, U

    1977-01-01

    The well known fodder yeasts do not accumulate extracellular amylolytic enzymes and are therefore unable to utilize starches for the production of microbial biomasses. Some of the Endomycopsis yeasts produce glucoamylase but their specific growth rate is so small that continuous cultivation in starch containing media results in low productivites. In the "Symba-process" this drawback is overcome by a twostage fermentation process. In the first stage only Endomycopsis fibuliger yeasts are continuously cultivated and in the second stage the main part of the starch containing medium is converted to microbial biomasses by a mixed culture consisting of fodder yeasts (p.a. Candida utilis) and Endomycopsis fibuliger transferred continously from the first stage. In this work methods for evaluating conditions of cultivation of such a process are presented and a two stage continuous fermentation of a starch containing medium is performed. In the second stage with a dilution rate of D Y 0,174 h-1 a productivity of 1,7 g dry biomasses/1-h was attained Methods for improving the productivity are discussed. PMID:558511

  1. yApoptosis: yeast apoptosis database

    PubMed Central

    Wanichthanarak, Kwanjeera; Cvijovic, Marija; Molt, Andrea; Petranovic, Dina

    2013-01-01

    In the past few years, programmed cell death (PCD) has become a popular research area due to its fundamental aspects and its links to human diseases. Yeast has been used as a model for studying PCD, since the discovery of morphological markers of apoptotic cell death in yeast in 1997. Increasing knowledge in identification of components and molecular pathways created a need for organization of information. To meet the demands from the research community, we have developed a curated yeast apoptosis database, yApoptosis. The database structurally collects an extensively curated set of apoptosis, PCD and related genes, their genomic information, supporting literature and relevant external links. A web interface including necessary functions is provided to access and download the data. In addition, we included several networks where the apoptosis genes or proteins are involved, and present them graphically and interactively to facilitate rapid visualization. We also promote continuous inputs and curation by experts. yApoptosis is a highly specific resource for sharing information online, which supports researches and studies in the field of yeast apoptosis and cell death. Database URL: http://www.ycelldeath.com/yapoptosis/ PMID:24082050

  2. Visualization and Image Analysis of Yeast Cells.

    PubMed

    Bagley, Steve

    2016-01-01

    When converting real-life data via visualization to numbers and then onto statistics the whole system needs to be considered so that conversion from the analogue to the digital is accurate and repeatable. Here we describe the points to consider when approaching yeast cell analysis visualization, processing, and analysis of a population by screening techniques. PMID:26519322

  3. The awesome power of yeast biochemical genomics.

    PubMed

    Carlson, M

    2000-02-01

    A new genomic strategy for identifying the gene encoding any biochemical activity has recently been developed, in which an array of individual yeast strains expressing a genomic set of open reading frames fused to glutathione S-transferase can be assayed for a biochemical activity of interest. Designated 'biochemical genomics', this approach represents an innovative application of genomic information. PMID:10652525

  4. ENGINEERING THE BIOSYNTHESIS OF STYRENE IN YEAST

    EPA Science Inventory

    The strategy pursued was to insert genes for phenylalanine ammonia lysase (pal) and phenolic acid decarboxylase (pad) into the yeast that would convert phenylalanine to styrene through a cinnamic acid intermediate.

    Antimycotic activity of 4-thioisosteres of flavonoids towards yeast and yeast-like microorganisms.

    PubMed

    Buzzini, Pietro; Menichetti, Stefano; Pagliuca, Chiara; Viglianisi, Caterina; Branda, Eva; Turchetti, Benedetta

    2008-07-01

    Different substituted methoxy- and hydroxy-4-thioisosteres of flavonoids were prepared and their in vitro antimycotic activity towards yeast (Candida spp., Clavispora spp., Cryptococcus spp., Filobasidiella spp., Issatchenkia spp., Pichia spp., Kluyveromyces spp., Saccharomyces spp. and Yarrowia spp.) and yeast-like (Prototheca spp.) microorganisms was tested. Further insights in the biological activities of these antioxidant, oestrogenic and antimicrobial biomimetic derivatives were obtained. PMID:18524588

  5. A method for plasmid purification directly from yeast.

    PubMed

    Singh, Madhu V; Weil, P Anthony

    2002-08-01

    A rapid technique for purifying plasmids from yeast Saccharomyces cerevisiae is described that yields high-quality DNA suitable for bacterial transformation, yeast transformation, and direct DNA sequencing. The method requires only small culture volumes and proprietary bacterial plasmid miniprep kits that allow one to simultaneously prepare a large number of samples in a very short period of time while avoiding the use of toxic organic chemicals. Both yeast single-copy CEN/ARS and high-copy 2micro shuttle plasmids can be isolated using this method. This technique is useful for plasmid purification from yeast two-hybrid experiments as well as yeast genetics and molecular biology experiments. PMID:12137773

  6. Molecular identification of yeasts associated with traditional Egyptian dairy products.

    PubMed

    El-Sharoud, W M; Belloch, C; Peris, D; Querol, A

    2009-09-01

    This study aimed to examine the diversity and ecology of yeasts associated with traditional Egyptian dairy products employing molecular techniques in yeast identification. A total of 120 samples of fresh and stored Domiati cheese, kariesh cheese, and "Matared" cream were collected from local markets and examined. Forty yeast isolates were cultured from these samples and identified using the restriction-fragment length polymorphism (RFLPs) of 5.8S-ITS rDNA region and sequencing of the domains D1 and D2 of the 26S rRNA gene. Yeasts were identified as Issatchenkia orientalis (13 isolates), Candida albicans (4 isolates), Clavispora lusitaniae (Candida lusitaniae) (9 isolates), Kodamaea ohmeri (Pichia ohmeri) (1 isolate), Kluyveromyces marxianus (6 isolates), and Candida catenulata (7 isolates). With the exception of C. lusitaniae, the D1/D2 26S rRNA gene sequences were 100% identical for the yeast isolates within the same species. Phylogenetic reconstruction of C. lusitaniae isolates grouped them into 3 distinguished clusters. Kariesh cheese was found to be the most diverse in its yeast floras and contained the highest total yeast count compared with other examined dairy products. This was linked to the acidic pH and lower salt content of this cheese, which favor the growth and survival of yeasts in foodstuffs. Stored Domiati cheese also contained diverse yeast species involving isolates of the pathogenic yeast C. albicans. This raises the possibility of dairy products being vehicles of transmission of pathogenic yeasts. PMID:19895478

  7. Characterization of yeast species using surface-enhanced Raman scattering.

    PubMed

    Sayin, Ismail; Kahraman, Mehmet; Sahin, Fikrettin; Yurdakul, Dilsad; Culha, Mustafa

    2009-11-01

    Surface-enhanced Raman scattering (SERS) is used for the characterization of six yeast species and six isolates. The sample for SERS analysis is prepared by mixing the yeast cells with a four times concentrated silver colloidal suspension. The scanning electron microscopy (SEM) images show that the strength of the interaction between silver nanoparticles and the yeast cells depends on the biochemical structure of the cell wall. The SERS spectra are used to identify the biochemical structures on the yeast cell wall. It is found that the density of -SH and -NH2 groups might be higher on certain yeast cell walls. Finally, the obtained SERS spectra from yeast is used for the classification of the yeast. PMID:19891836

  8. Immunosuppressive drug rapamycin restores sporulation competence in industrial yeasts.

    TOXLINE Toxicology Bibliographic Information

    Nakazawa N; Niijima S; Tanaka Y; Ito T

    2012-04-01

    Industrial yeasts, including a sake yeast strain Kyokai no. 7 (K7), are generally unable to sporulate. Previously, we have reported that in K7 (Saccharomyces cerevisiae) cells, deletion of the G1 cyclin gene CLN3, a key activator of the cell cycle, allows the cells to induce IME1 transcription and sporulate under sporulation conditions. Here we show that treatment with the immunosuppressive drug rapamycin also restores sporulation competence in K7 cells. Moreover, sporulation was observed after rapamycin treatment in other industrial yeasts, namely bottom fermenting yeast strains and a wine yeast strain, which are not able to sporulate under normal sporulation conditions. These findings suggest that activation of TORC1 under sporulation conditions leads to sporulation incompetence in these yeasts. Thus, rapamycin treatment will be useful to restore sporulation competence in industrial yeasts.

  9. Immunosuppressive drug rapamycin restores sporulation competence in industrial yeasts.

    PubMed

    Nakazawa, Nobushige; Niijima, Seiko; Tanaka, Yukari; Ito, Toshihiko

    2012-04-01

    Industrial yeasts, including a sake yeast strain Kyokai no. 7 (K7), are generally unable to sporulate. Previously, we have reported that in K7 (Saccharomyces cerevisiae) cells, deletion of the G1 cyclin gene CLN3, a key activator of the cell cycle, allows the cells to induce IME1 transcription and sporulate under sporulation conditions. Here we show that treatment with the immunosuppressive drug rapamycin also restores sporulation competence in K7 cells. Moreover, sporulation was observed after rapamycin treatment in other industrial yeasts, namely bottom fermenting yeast strains and a wine yeast strain, which are not able to sporulate under normal sporulation conditions. These findings suggest that activation of TORC1 under sporulation conditions leads to sporulation incompetence in these yeasts. Thus, rapamycin treatment will be useful to restore sporulation competence in industrial yeasts. PMID:22197499

  10. Strong static magnetic field effects on yeast proliferation and distribution.

    PubMed

    Iwasaka, Masakazu; Ikehata, Masateru; Miyakoshi, Junji; Ueno, Shoogo

    2004-12-01

    The present study focuses on the effects of gradient magnetic fields on the behavior of yeast, such as its proliferation and mass distribution, and evaluates the effects of magnetism on materials in the yeast culture system. Yeast, Saccharomyces cerevisiae, was incubated in a liquid medium under magnetic fields (flux density B = 14 T). When yeast in a tube was exposed to 9-14 T magnetic fields with a maximum flux density gradient of dB/dx = 94 T/m, where x is the space coordinate, the rate of yeast proliferation under the magnetic fields decreased after 16 h of incubation compared to that of the control group. The physical properties of the yeast culture system were investigated to discover the mechanism responsible for the observed deceleration in yeast proliferation under magnetic fields. Gas pressure inside the yeast culture flask was compared with and without exposure to a magnetic field. The results suggested that the gas pressure inside a flask with 6 T, 60 T/m slowly increased in comparison to the pressure inside a control tube. Due to the diamagnetism of water (medium solution) and yeast, the liquid surface distinctly inclined under gradient magnetic fields, and the hydrostatic force in suspension was strengthened by the diamagnetic forces. In addition, magnetophoresis of the yeast cells in the medium solution exhibited localization of the yeast sedimentation pattern. The roles of magnetically changed gas-transport processes, hydrostatic pressures acting on the yeast, and changes in the distribution of the yeast sedimentation, as well as the possible effects of magnetic fields on yeast respiratory systems in the observed disturbance of the proliferation are discussed. PMID:15522694

  11. Single-cell phenomics in budding yeast

    PubMed Central

    Ohya, Yoshikazu; Kimori, Yoshitaka; Okada, Hiroki; Ohnuki, Shinsuke

    2015-01-01

    The demand for phenomics, a high-dimensional and high-throughput phenotyping method, has been increasing in many fields of biology. The budding yeast Saccharomyces cerevisiae, a unicellular model organism, provides an invaluable system for dissecting complex cellular processes using high-resolution phenotyping. Moreover, the addition of spatial and temporal attributes to subcellular structures based on microscopic images has rendered this cell phenotyping system more reliable and amenable to analysis. A well-designed experiment followed by appropriate multivariate analysis can yield a wealth of biological knowledge. Here we review recent advances in cell imaging and illustrate their broad applicability to eukaryotic cells by showing how these techniques have advanced our understanding of budding yeast. PMID:26543200

  12. Synchronization of the Budding Yeast Saccharomyces cerevisiae.

    PubMed

    Foltman, Magdalena; Molist, Iago; Sanchez-Diaz, Alberto

    2016-01-01

    A number of model organisms have provided the basis for our understanding of the eukaryotic cell cycle. These model organisms are generally much easier to manipulate than mammalian cells and as such provide amenable tools for extensive genetic and biochemical analysis. One of the most common model organisms used to study the cell cycle is the budding yeast Saccharomyces cerevisiae. This model provides the ability to synchronise cells efficiently at different stages of the cell cycle, which in turn opens up the possibility for extensive and detailed study of mechanisms regulating the eukaryotic cell cycle. Here, we describe methods in which budding yeast cells are arrested at a particular phase of the cell cycle and then released from the block, permitting the study of molecular mechanisms that drive the progression through the cell cycle. PMID:26519319

  13. Aneuploidy causes proteotoxic stress in yeast

    PubMed Central

    Oromendia, Ana B.; Dodgson, Stacie E.; Amon, Angelika

    2012-01-01

    Gains or losses of entire chromosomes lead to aneuploidy, a condition tolerated poorly in all eukaryotes analyzed to date. How aneuploidy affects organismal and cellular physiology is poorly understood. We found that aneuploid budding yeast cells are under proteotoxic stress. Aneuploid strains are prone to aggregation of endogenous proteins as well as of ectopically expressed hard-to-fold proteins such as those containing polyglutamine (polyQ) stretches. Protein aggregate formation in aneuploid yeast strains is likely due to limiting protein quality-control systems, since the proteasome and at least one chaperone family, Hsp90, are compromised in many aneuploid strains. The link between aneuploidy and the formation and persistence of protein aggregates could have important implications for diseases such as cancer and neurodegeneration. PMID:23222101

  14. A bipolar personality of yeast prion proteins

    PubMed Central

    Kurahashi, Hiroshi; Oishi, Keita

    2011-01-01

    Prions are infectious, self-propagating protein conformations. [PSI+], [RNQ+] and [URE3] are well characterized prions in Saccharomyces cerevisiae and represent the aggregated states of the translation termination factor Sup35, a functionally unknown protein Rnq1 and a regulator of nitrogen metabolism Ure2, respectively. Overproduction of Sup35 induces the de novo appearance of the [PSI+] prion in [RNQ+] or [URE3] strain, but not in non-prion strain. However, [RNQ+] and [URE3] prions themselves, as well as overexpression of a mutant Rnq1 protein, Rnq1?100 and Lsm4, hamper the maintenance of [PSI+]. These findings point to a bipolar activity of [RNQ+], [URE3], Rnq1?100 and Lsm4, and probably other yeast prion proteins as well, for the fate of [PSI+] prion. Possible mechanisms underlying the apparent bipolar activity of yeast prions will be discussed. PMID:22156730

  15. A switchable yeast display/secretion system.

    PubMed

    Van Deventer, James A; Kelly, Ryan L; Rajan, Saravanan; Wittrup, K Dane; Sidhu, Sachdev S

    2015-10-01

    Display technologies such as yeast and phage display offer powerful alternatives to traditional immunization-based antibody discovery, but require conversion of displayed proteins into soluble form prior to downstream characterization. Here we utilize amber suppression to implement a yeast-based switchable display/secretion system that enables the immediate production of soluble, antibody-like reagents at the end of screening efforts. Model selections in the switchable format remain efficient, and library screening in the switchable format yields renewable sources of affinity reagents exhibiting nanomolar binding affinities. These results confirm that this system provides a seamless link between display-based screening and the production and evaluation of soluble forms of candidate binding proteins. Switchable display/secretion libraries provide a cloning-free, accessible approach to affinity reagent generation. PMID:26333274

  16. Patulin biodegradation by marine yeast Kodameae ohmeri.

    PubMed

    Dong, Xiaoyan; Jiang, Wei; Li, Chunsheng; Ma, Ning; Xu, Ying; Meng, Xianghong

    2015-01-01

    Patulin contamination of fruit- and vegetable-based products had become a major challenge for the food industry. Biological methods of patulin control can play an important role due to their safety and high efficiency. In this study, a strain of marine yeast with high patulin degradation ability was screened. The yeast was identified as Kodameae ohmeri by the BioLog identification system and partial 26S rRNA gene sequencing. The degradation products of patulin were identified as (E)- and (Z)-ascladiol through HPLC and LC-TOF/MS. High patulin tolerance at 100 μg ml(-1) and a high degradation rate at 35°C at a pH between 3 and 6 indicates the potential application of K. ohmeri for patulin detoxification of apple-derived products. PMID:25585640

  17. Uncommon opportunistic yeast bloodstream infections from Qatar.

    PubMed

    Taj-Aldeen, Saad J; AbdulWahab, Atqah; Kolecka, Anna; Deshmukh, Anand; Meis, Jacques F; Boekhout, Teun

    2014-07-01

    Eleven uncommon yeast species that are associated with high mortality rates irrespective of antifungal therapy were isolated from 17/187 (201 episodes) pediatric and elderly patients with fungemia from Qatar. The samples were taken over a 6-year period (January 2004-December 2010). Isolated species included Kluyveromyces marxianus, Lodderomyces elongisporus, Lindnera fabianii, Candida dubliniensis, Meyerozyma guilliermondii, Candida intermedia, Pichia kudriavzevii, Yarrowia lipolytica, Clavispora lusitaniae, Candida pararugosa, and Wickerhamomyces anomalus. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry provided correct identifications compared with molecular analysis testing of the same isolates. Low minimal inhibitory concentrations were found when isavuconazole and voriconazole were used for all uncommon yeast species evaluated in this study. Resistance to antifungal drugs was low and remained restricted to a few species. PMID:24934803

  18. Label-Free Quantitative Proteomics in Yeast.

    PubMed

    Léger, Thibaut; Garcia, Camille; Videlier, Mathieu; Camadro, Jean-Michel

    2016-01-01

    Label-free bottom-up shotgun MS-based proteomics is an extremely powerful and simple tool to provide high quality quantitative analyses of the yeast proteome with only microgram amounts of total protein. Although the experimental design of this approach is rather straightforward and does not require the modification of growth conditions, proteins or peptides, several factors must be taken into account to benefit fully from the power of this method. Key factors include the choice of an appropriate method for the preparation of protein extracts, careful evaluation of the instrument design and available analytical capabilities, the choice of the quantification method (intensity-based vs. spectral count), and the proper manipulation of the selected quantification algorithm. The elaboration of this robust workflow for data acquisition, processing, and analysis provides unprecedented insight into the dynamics of the yeast proteome. PMID:26483028

  19. Overexpression of yeast thioredoxin TRX2 reduces p53-mediated cell death in yeast.

    PubMed

    Kamoun, Yosra; Mabrouk, Imed; Delahodde, Agnes; Boukid, Fatma; Yacoubi-Hadj Amor, Ines; Mokdad-Gargouri, Raja; Gargouri, Ali

    2015-10-01

    We have previously shown that overexpression of the human tumor suppressor protein P53 causes cell death of the yeast Saccharomyces cerevisiae. P53 overproduction led to transcriptional downregulation of some yeast genes, such as the TRX1/2 thioredoxin system, which plays a key role in cell protection against various oxidative stresses induced by reactive oxygen species (ROS). In the present work, the impact of TRX2 overexpression on apoptosis mediated by p53 overexpression in yeast is investigated. In yeast cells expressing P53 under an inducible promoter together with TRX2 under a strong constitutive promoter, we showed that Tr2p overproduction reduced the apoptotic effect exerted by P53 and increased the viability of the P53-overproducing cells. Furthermore, measurements of ROS amounts by flow cytometry and fluorescence microscopy indicated that the TRX2 protein acted probably through its increased detoxifying activity on the P53-generated ROS. The steady-state level and activity of P53 were not affected by TRX2 overexpression, as shown by western blotting and functional analysis of separated alleles in yeast (FASAY), respectively. The growth inhibitory effect of P53 was partially reversed by the antioxidant N-acetylcysteine. Our data strengthen the idea that overexpression of a single gene (trx2) decreases the p53-mediated cell death by decreasing ROS accumulation. PMID:26264138

  1. The flavoproteome of the yeast Saccharomyces cerevisiae.

    PubMed

    Gudipati, Venugopal; Koch, Karin; Lienhart, Wolf-Dieter; Macheroux, Peter

    2014-03-01

    Genome analysis of the yeast Saccharomyces cerevisiae identified 68 genes encoding flavin-dependent proteins (1.1% of protein encoding genes) to which 47 distinct biochemical functions were assigned. The majority of flavoproteins operate in mitochondria where they participate in redox processes revolving around the transfer of electrons to the electron transport chain. In addition, we found that flavoenzymes play a central role in various aspects of iron metabolism, such as iron uptake, the biogenesis of iron-sulfur clusters and insertion of the heme cofactor into apocytochromes. Another important group of flavoenzymes is directly (Dus1-4p and Mto1p) or indirectly (Tyw1p) involved in reactions leading to tRNA-modifications. Despite the wealth of genetic information available for S. cerevisiae, we were surprised that many flavoproteins are poorly characterized biochemically. For example, the role of the yeast flavodoxins Pst2p, Rfs1p and Ycp4p with regard to their electron donor and acceptor is presently unknown. Similarly, the function of the heterodimeric Aim45p/Cir1p, which is homologous to the electron-transferring flavoproteins of higher eukaryotes, in electron transfer processes occurring in the mitochondrial matrix remains to be elucidated. This lack of information extends to the five membrane proteins involved in riboflavin or FAD transport as well as FMN and FAD homeostasis within the yeast cell. Nevertheless, several yeast flavoproteins, were identified as convenient model systems both in terms of their mechanism of action as well as structurally to improve our understanding of diseases caused by dysfunctional human flavoprotein orthologs. PMID:24373875

  2. Engineering yeasts for raw starch conversion.

    PubMed

    van Zyl, W H; Bloom, M; Viktor, M J

    2012-09-01

    Next to cellulose, starch is the most abundant hexose polymer in plants, an import food and feed source and a preferred substrate for the production of many industrial products. Efficient starch hydrolysis requires the activities of both ?-1,4 and ?-1,6-debranching hydrolases, such as endo-amylases, exo-amylases, debranching enzymes, and transferases. Although amylases are widely distributed in nature, only about 10 % of amylolytic enzymes are able to hydrolyse raw or unmodified starch, with a combination of ?-amylases and glucoamylases as minimum requirement for the complete hydrolysis of raw starch. The cost-effective conversion of raw starch for the production of biofuels and other important by-products requires the expression of starch-hydrolysing enzymes in a fermenting yeast strain to achieve liquefaction, hydrolysis, and fermentation (Consolidated Bioprocessing, CBP) by a single organism. The status of engineering amylolytic activities into Saccharomyces cerevisiae as fermentative host is highlighted and progress as well as challenges towards a true CBP organism for raw starch is discussed. Conversion of raw starch by yeast secreting or displaying ?-amylases and glucoamylases on their surface has been demonstrated, although not at high starch loading or conversion rates that will be economically viable on industrial scale. Once efficient conversion of raw starch can be demonstrated at commercial level, engineering of yeast to utilize alternative substrates and produce alternative chemicals as part of a sustainable biorefinery can be pursued to ensure the rightful place of starch converting yeasts in the envisaged bio-economy of the future. PMID:22797599

  3. The flavoproteome of the yeast Saccharomyces cerevisiae?

    PubMed Central

    Gudipati, Venugopal; Koch, Karin; Lienhart, Wolf-Dieter; Macheroux, Peter

    2014-01-01

    Genome analysis of the yeast Saccharomyces cerevisiae identified 68 genes encoding flavin-dependent proteins (1.1% of protein encoding genes) to which 47 distinct biochemical functions were assigned. The majority of flavoproteins operate in mitochondria where they participate in redox processes revolving around the transfer of electrons to the electron transport chain. In addition, we found that flavoenzymes play a central role in various aspects of iron metabolism, such as iron uptake, the biogenesis of iron–sulfur clusters and insertion of the heme cofactor into apocytochromes. Another important group of flavoenzymes is directly (Dus1-4p and Mto1p) or indirectly (Tyw1p) involved in reactions leading to tRNA-modifications. Despite the wealth of genetic information available for S. cerevisiae, we were surprised that many flavoproteins are poorly characterized biochemically. For example, the role of the yeast flavodoxins Pst2p, Rfs1p and Ycp4p with regard to their electron donor and acceptor is presently unknown. Similarly, the function of the heterodimeric Aim45p/Cir1p, which is homologous to the electron-transferring flavoproteins of higher eukaryotes, in electron transfer processes occurring in the mitochondrial matrix remains to be elucidated. This lack of information extends to the five membrane proteins involved in riboflavin or FAD transport as well as FMN and FAD homeostasis within the yeast cell. Nevertheless, several yeast flavoproteins, were identified as convenient model systems both in terms of their mechanism of action as well as structurally to improve our understanding of diseases caused by dysfunctional human flavoprotein orthologs. PMID:24373875

  4. Yeast Exocytic v-SNAREs Confer Endocytosis

    PubMed Central

    Gurunathan, Sangiliyandi; Chapman-Shimshoni, Daphne; Trajkovic, Selena; Gerst, Jeffrey E.

    2000-01-01

    In yeast, homologues of the synaptobrevin/VAMP family of v-SNAREs (Snc1 and Snc2) confer the docking and fusion of secretory vesicles at the cell surface. As no v-SNARE has been shown to confer endocytosis, we examined whether yeast lacking the SNC genes, or possessing a temperature-sensitive allele of SNC1 (SNC1ala43), are deficient in the endocytic uptake of components from the cell surface. We found that both SNC and temperature-shifted SNC1ala43 yeast are deficient in their ability to deliver the soluble dye FM4–64 to the vacuole. Under conditions in which vesicles accumulate, FM4–64 stained primarily the cytoplasm as well as fragmented vacuoles. In addition, ?-factor–stimulated endocytosis of the ?-factor receptor, Ste2, was fully blocked, as evidenced using a Ste2-green fluorescent protein fusion protein as well as metabolic labeling studies. This suggests a direct role for Snc v-SNAREs in the retrieval of membrane proteins from the cell surface. Moreover, this idea is supported by genetic and physical data that demonstrate functional interactions with t-SNAREs that confer endosomal transport (e.g., Tlg1,2). Notably, Snc1ala43 was found to be nonfunctional in cells lacking Tlg1 or Tlg2. Thus, we propose that synaptobrevin/VAMP family members are engaged in anterograde and retrograde protein sorting steps between the Golgi and the plasma membrane. PMID:11029060

  5. Ribosome Biogenesis in the Yeast Saccharomyces cerevisiae

    PubMed Central

    Woolford, John L.; Baserga, Susan J.

    2013-01-01

    Ribosomes are highly conserved ribonucleoprotein nanomachines that translate information in the genome to create the proteome in all cells. In yeast these complex particles contain four RNAs (>5400 nucleotides) and 79 different proteins. During the past 25 years, studies in yeast have led the way to understanding how these molecules are assembled into ribosomes in vivo. Assembly begins with transcription of ribosomal RNA in the nucleolus, where the RNA then undergoes complex pathways of folding, coupled with nucleotide modification, removal of spacer sequences, and binding to ribosomal proteins. More than 200 assembly factors and 76 small nucleolar RNAs transiently associate with assembling ribosomes, to enable their accurate and efficient construction. Following export of preribosomes from the nucleus to the cytoplasm, they undergo final stages of maturation before entering the pool of functioning ribosomes. Elaborate mechanisms exist to monitor the formation of correct structural and functional neighborhoods within ribosomes and to destroy preribosomes that fail to assemble properly. Studies of yeast ribosome biogenesis provide useful models for ribosomopathies, diseases in humans that result from failure to properly assemble ribosomes. PMID:24190922

  6. Interaction of hexadecyltrimethylammonium bromide with yeast cells.

    PubMed

    Divakar, S

    1990-04-01

    The interaction of hexadecyltrimethylammonium bromide (CTAB) with two yeast cells, Kluyveromyces fragilis and Saccharomyces cerevisiae, has been studied. Strong binding of CTAB to the cell was inferred from 1H and 13C NMR studies, the probable site of binding being the cell-surface. 13C and 31P NMR studies have indicated facilitation of free passage of molecules from outside to inside the cell and vice versa on treatment with CTAB. 31P NMR studies showed that intracellular pH (pHi) was affected in presence of CTAB and the rate of exchange of H+ and PO4(-3) between outside and inside of the cell was 508 s-1. CTAB treatment of yeast cells also affected pH and conductance measurements of the cell-suspension. There was a marked difference in the pH changes around the critical micellar concentration (CMC) of CTAB. The observed pH changes were dependent on (i) CTAB concentration, (ii) pH of the cell-suspension and (iii) pK values of groups from molecules released from the cell. Also, it was shown that ionisation of phosphate diester from polar head groups of membranes constituting cell surface enhanced CTAB binding. Conductance measurements have shown that observed changes were independent of the concentration of yeast cells, but probably dependent on CMC of CTAB. PMID:2354849

  7. Mesoporous zirconium phosphate from yeast biotemplate.

    PubMed

    Tian, Xiuying; He, Wen; Cui, Jingjie; Zhang, Xudong; Zhou, Weijia; Yan, Shunpu; Sun, Xianan; Han, Xiuxiu; Han, Shanshan; Yue, Yuanzheng

    2010-03-01

    Mesoporous zirconium phosphate has attracted increasing interest due to its extraordinary functionalities. In particular, great progress has been made in the synthesis of mesoporous zirconium phosphate using traditional approaches. However, synthesis of mesoporous zirconium phosphate using yeast as biotemplate has not been well studied so far. Here, we show that zirconium phosphate with a mesoporous structure has been synthesized under ambient conditions using yeast as biotemplate. The derived samples were examined by X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), thermogravimetry/differential thermal analysis (TG/DTA), fourier transform infrared spectroscopy (FTIR), and N(2) adsorption-desorption isotherms. A biotemplated mesoporous zirconium phosphate, possessing a specific surface area (Brunauer-Emmett-Teller, BET) of 217.64 m(2) g(-1), a narrow pore distribution centered at 2.7 nm, and pore volume of 0.24 cm(3) g(-1), was obtained. We discover that amide carboxyl groups of yeast play an important role in the chemical interaction between protein molecules and zirconium phosphate nanoparticles. Interestingly, an air electrode fabricated using mesoporous zirconium phosphate exhibits remarkable electrocatalytic activity for oxygen reduction reaction (ORR), compared to that of the electrolytic manganese dioxide (EMD) air electrode employed commercially, which has important applications in fuel cell technologies. PMID:20031146

  8. Metabolic Engineering of Sesquiterpene Metabolism in Yeast

    PubMed Central

    Takahashi, Shunji; Yeo, Yunsoo; Greenhagen, Bryan T.; McMullin, Tom; Song, Linsheng; Maurina-Brunker, Julie; Rosson, Reinhardt; Noel, Joseph P.; Chappell, Joe

    2010-01-01

    Terpenes are structurally diverse compounds that are of interest because of their biological activities and industrial value. These compounds consist of chirally rich hydrocarbon backbones derived from terpene synthases, which are subsequently decorated with hydroxyl substituents catalyzed by terpene hydroxylases. Availability of these compounds is, however, limited by intractable synthetic means and because they are produced in low amounts and as complex mixtures by natural sources. We engineered yeast for sesquiterpene accumulation by introducing genetic modifications that enable the yeast to accumulate high levels of the key intermediate farnesyl diphosphate (FPP). Co-expression of terpene synthase genes diverted the enlarged FPP pool to greater than 80 mg/L of sesquiterpene. Efficient coupling of terpene production with hydroxylation was also demonstrated by coordinate expression of terpene hydroxylase activity, yielding 50 mg/L each of hydrocarbon and hydroxylated products. These yeast now provide a convenient format for investigating catalytic coupling between terpene synthases and hydroxylases, as well as a platform for the industrial production of high value, single-entity and stereochemically unique terpenes. PMID:17013941

  9. How to build a yeast nucleus.

    PubMed

    Wong, Hua; Arbona, Jean-Michel; Zimmer, Christophe

    2013-01-01

    Biological functions including gene expression and DNA repair are affected by the 3D architecture of the genome, but the underlying mechanisms are still unknown. Notably, it remains unclear to what extent nuclear architecture is driven by generic physical properties of polymers or by specific factors such as proteins binding particular DNA sequences. The budding yeast nucleus has been intensely studied by imaging and biochemical techniques, resulting in a large quantitative data set on locus positions and DNA contact frequencies. We recently described a quantitative model of the interphase yeast nucleus in which chromosomes are represented as passively moving polymer chains. This model ignores the DNA sequence information except for specific constraints at the centromeres, telomeres, and the ribosomal DNA (rDNA). Despite its simplicity, the model accounts for a large majority of experimental data, including absolute and relative locus positions and contact frequency patterns at chromosomal and subchromosomal scales. Here, we also illustrate the model's ability to reproduce observed features of chromatin movements. Our results strongly suggest that the dynamic large-scale architecture of the yeast nucleus is dominated by statistical properties of randomly moving polymers with a few sequence-specific constraints, rather than by a large number of DNA-specific factors or epigenetic modifications. In addition, we show that our model accounts for recently measured variations in homologous recombination efficiency, illustrating its potential for quantitatively understanding functional consequences of nuclear architecture. PMID:23974728

  10. How to build a yeast nucleus

    PubMed Central

    Wong, Hua; Arbona, Jean-Michel; Zimmer, Christophe

    2013-01-01

    Biological functions including gene expression and DNA repair are affected by the 3D architecture of the genome, but the underlying mechanisms are still unknown. Notably, it remains unclear to what extent nuclear architecture is driven by generic physical properties of polymers or by specific factors such as proteins binding particular DNA sequences. The budding yeast nucleus has been intensely studied by imaging and biochemical techniques, resulting in a large quantitative data set on locus positions and DNA contact frequencies. We recently described a quantitative model of the interphase yeast nucleus in which chromosomes are represented as passively moving polymer chains. This model ignores the DNA sequence information except for specific constraints at the centromeres, telomeres, and the ribosomal DNA (rDNA). Despite its simplicity, the model accounts for a large majority of experimental data, including absolute and relative locus positions and contact frequency patterns at chromosomal and subchromosomal scales. Here, we also illustrate the model's ability to reproduce observed features of chromatin movements. Our results strongly suggest that the dynamic large-scale architecture of the yeast nucleus is dominated by statistical properties of randomly moving polymers with a few sequence-specific constraints, rather than by a large number of DNA-specific factors or epigenetic modifications. In addition, we show that our model accounts for recently measured variations in homologous recombination efficiency, illustrating its potential for quantitatively understanding functional consequences of nuclear architecture. PMID:23974728

  11. Engineered yeast for enhanced CO2 mineralization†

    PubMed Central

    Barbero, Roberto; Carnelli, Lino; Simon, Anna; Kao, Albert; Monforte, Alessandra d’Arminio; Riccò, Moreno; Bianchi, Daniele; Belcher, Angela

    2014-01-01

    In this work, a biologically catalyzed CO2 mineralization process for the capture of CO2 from point sources was designed, constructed at a laboratory scale, and, using standard chemical process scale-up protocols, was modeled and evaluated at an industrial scale. A yeast display system in Saccharomyces cerevisae was used to screen several carbonic anhydrase isoforms and mineralization peptides for their impact on CO2 hydration, CaCO3 mineralization, and particle settling rate. Enhanced rates for each of these steps in the CaCO3 mineralization process were confirmed using quantitative techniques in lab-scale measurements. The effect of these enhanced rates on the CO2 capture cost in an industrial scale CO2 mineralization process using coal fly ash as the CaO source was evaluated. The model predicts a process using bCA2- yeast and fly ash is ~10% more cost effective per ton of CO2 captured than a process with no biological molecules, a savings not realized by wild-type yeast and high-temperature stable recombinant CA2 alone or in combination. The levelized cost of electricity for a power plant using this process was calculated and scenarios in which this process compares favorably to CO2 capture by MEA absorption process are presented. PMID:25289021

  12. Sugarcane bagasse hydrolysis using yeast cellulolytic enzymes.

    PubMed

    Souza, Angelica Cristina de; Carvalho, Fernanda Paula; Silva e Batista, Cristina Ferreira; Schwan, Rosane Freitas; Dias, Disney Ribeiro

    2013-10-28

    Ethanol fuel production from lignocellulosic biomass is emerging as one of the most important technologies for sustainable development. To use this biomass, it is necessary to circumvent the physical and chemical barriers presented by the cohesive combination of the main biomass components, which hinders the hydrolysis of cellulose and hemicellulose into fermentable sugars. This study evaluated the hydrolytic capacity of enzymes produced by yeasts, isolated from the soils of the Brazilian Cerrado biome (savannah) and the Amazon region, on sugarcane bagasse pre-treated with H2SO4. Among the 103 and 214 yeast isolates from the Minas Gerais Cerrado and the Amazon regions, 18 (17.47%) and 11 (5.14%) isolates, respectively, were cellulase-producing. Cryptococcus laurentii was prevalent and produced significant ?- glucosidase levels, which were higher than the endo- and exoglucanase activities. In natura sugarcane bagasse was pre-treated with 2% H2SO4 for 30 min at 150oC. Subsequently, the obtained fibrous residue was subjected to hydrolysis using the Cryptococcus laurentii yeast enzyme extract for 72 h. This enzyme extract promoted the conversion of approximately 32% of the cellulose, of which 2.4% was glucose, after the enzymatic hydrolysis reaction, suggesting that C. laurentii is a good ?-glucosidase producer. The results presented in this study highlight the importance of isolating microbial strains that produce enzymes of biotechnological interest, given their extensive application in biofuel production. PMID:23851270

  13. Wood impregnation of yeast lees for winemaking.

    PubMed

    Palomero, Felipe; Bertani, Paolo; Fernández de Simón, Brígida; Cadahía, Estrella; Benito, Santiago; Morata, Antonio; Suárez-Lepe, José A

    2015-03-15

    This study develops a new method to produce more complex wines by means of an indirect diffusion of wood aromas from yeast cell-walls. An exogenous lyophilized biomass was macerated with an ethanol wood extract solution and subsequently dried. Different times were used for the adsorption of polyphenols and volatile compounds to the yeast cell-walls. The analysis of polyphenols and volatile compounds (by HPLC/DAD and GC-MS, respectively) demonstrate that the adsorption/diffusion of these compounds from the wood to the yeast takes place. Red wines were also aged with Saccharomyces cerevisiae lees that had been impregnated with wood aromas and subsequently dried. Four different types of wood were used: chestnut, cherry, acacia and oak. Large differences were observed between the woods studied with regards to their volatile and polyphenolic profiles. Sensory evaluations confirmed large differences even with short-term contact between the wines and the lees, showing that the method could be of interest for red wine making. In addition, the results demonstrate the potential of using woods other than oak in cooperage. PMID:25308662

  14. Lipids and cell death in yeast

    PubMed Central

    Eisenberg, Tobias; Büttner, Sabrina

    2014-01-01

    Understanding lipid-induced malfunction represents a major challenge of today's biomedical research. The connection of lipids to cellular and organ dysfunction, cell death, and disease (often referred to as lipotoxicity) is more complex than the sole lipotoxic effects of excess free fatty acids and requires genetically tractable model systems for mechanistic investigation. We herein summarize recent advances in the field of lipid-induced toxicity that employ the established model system for cell death and aging research of budding yeast Saccharomyces cerevisiae. Studies in yeast have shed light on various aspects of lipotoxicity, including free fatty acid toxicity, sphingolipid-modulated cell death as well as the involvement of cardiolipin and lipid peroxidation in the mitochondrial pathways of apoptosis. Regimens used range from exogenously applied lipids, genetic modulation of lipolysis and triacylglyceride synthesis, variations in sphingolipid/ceramide metabolism as well as changes in peroxisome function by either genetic or pharmacological means. In future, the yeast model of programmed cell death will further contribute to the clarification of crucial questions of lipid-associated malfunction. PMID:24119111

  15. In situ rheology of yeast biofilms.

    PubMed

    Brugnoni, Lorena I; Tarifa, María C; Lozano, Jorge E; Genovese, Diego

    2014-01-01

    The aim of the present work was to investigate the in situ rheological behavior of yeast biofilms growing on stainless steel under static and turbulent flow. The species used (Rhodototula mucilaginosa, Candida krusei, Candida kefyr and Candida tropicalis) were isolated from a clarified apple juice industry. The flow conditions impacted biofilm composition over time, with a predominance of C. krusei under static and turbulent flow. Likewise, structural variations occurred, with a tighter appearance under dynamic flow. Under turbulent flow there was an increase of 112 μm in biofilm thickness at 11 weeks (p < 0.001) and cell morphology was governed by hyphal structures and rounded cells. Using the in situ growth method introduced here, yeast biofilms were determined to be viscoelastic materials with a predominantly solid-like behavior, and neither this nor the G'0 values were significantly affected by the flow conditions or the growth time, and at large deformations their weak structure collapsed beyond a critical strain of about 1.5-5%. The present work could represent a starting point for developing in situ measurements of yeast rheology and contribute to a thin body of knowledge about fungal biofilm formation. PMID:25428768

  16. Taming wild yeast: potential of conventional and nonconventional yeasts in industrial fermentations.

    PubMed

    Steensels, Jan; Verstrepen, Kevin J

    2014-01-01

    Yeasts are the main driving force behind several industrial food fermentation processes, including the production of beer, wine, sake, bread, and chocolate. Historically, these processes developed from uncontrolled, spontaneous fermentation reactions that rely on a complex mixture of microbes present in the environment. Because such spontaneous processes are generally inconsistent and inefficient and often lead to the formation of off-flavors, most of today's industrial production utilizes defined starter cultures, often consisting of a specific domesticated strain of Saccharomyces cerevisiae, S. bayanus, or S. pastorianus. Although this practice greatly improved process consistency, efficiency, and overall quality, it also limited the sensorial complexity of the end product. In this review, we discuss how Saccharomyces yeasts were domesticated to become the main workhorse of food fermentations, and we investigate the potential and selection of nonconventional yeasts that are often found in spontaneous fermentations, such as Brettanomyces, Hanseniaspora, and Pichia spp. PMID:24773331

  17. Building terpene production platforms in yeast.

    PubMed

    Zhuang, Xun; Chappell, Joe

    2015-09-01

    Plants and microbes commonly make terpenes and terpenoids in small amounts and as complex mixtures, and their chemical synthesis is often costly and inefficient. Hence, there are many efforts to create robust and efficient biological production platforms for this interesting class of molecules. In this study, our effort was directed towards building a yeast production platform using an unbiased genetic selection approach. Yeast strain BY4741 was subjected to EMS mutagenesis, followed by selection for growth in the presence of nystatin, squalestatin, and exogenous cholesterol. This unbiased screen selected for mutant yeast lines having a dispensable mevalonate pathway and containing uncharacterized SUE (sterol uptake enhancement) mutations supporting aerobic uptake of exogenous sterol. These mutants were next screened for high level accumulation of farnesol (FOH), an indicator for high level accumulation of the key intermediate FPP, farnesyl diphosphate. To further improve the FPP pool in these mutants, insertional mutations into the ERG9 gene (coding for squalene synthase) were introduced into those lines capable of accumulating ?50?mg farnesol/L. This generated another series of lines that accumulated farnesol levels over 70?mg/L in small-scale shake cultures. To evaluate the utility of these lines as a general production platform for specific terpenes, select SUE/erg9 lines were transformed with a vector harboring the Hyoscyamus muticus premnaspirodiene synthase (HPS) gene encoding for a sesquiterpene synthase. The new yeast line ZX178-08 accumulated the highest level of premnaspirodiene, up to 116?mg/L, with FOH levels of 23.6?mg/L. In comparison, the parental line BY4741 accumulated 10 times less premnaspirodiene, 10.94?mg/L, with no farnesol detectable. Co-expression of the HPS gene with an amino-terminal truncated, catalytic form of the hamster HMGR gene, tHMGR, increased premnaspirodiene accumulation to 170.23?±?30.44?mg/L, almost a 50% increase. Further utility of this yeast line was demonstrated for triterpene production. When engineered for the production of a non-native triterpene, Zx178-08 accumulated upwards of 60?mg/L of botryococcene. To engineer more native triterpene accumulation, additional insertion mutants into the ERG1 gene (coding for squalene epoxidase) were evaluated. Insertion of a simple selection marker followed by over-expression of a heterologous squalene synthase gene resulted in greater than 85?mg/L of squalene. However, when the ERG1 insertional mutant included chromosomal insertion of a truncated, heterologous HMGR gene, squalene production was more than tripled to 270?mg/L. These results are discussed in comparison to other recently developed terpene production platforms. PMID:25788404

  18. Influence of yeast strain on Shiraz wine quality indicators.

    PubMed

    Holt, Helen; Cozzolino, Daniel; McCarthy, Jane; Abrahamse, Caroline; Holt, Sylvester; Solomon, Mark; Smith, Paul; Chambers, Paul J; Curtin, Chris

    2013-08-01

    Wine styles are defined by complex and highly diverse chemical compositions. Evidence suggests that some of this complexity is determined by the choice of yeast strain used in fermentation. There are hundreds of different commercially available wine yeast strains that, potentially, provide a means by which winemakers can tailor their wines for different consumer market segments. In this study we evaluated the impacts of fermenting Shiraz must with different yeast strains, with a focus on chemical composition and tannin content of the finished wines. Principal Component Analysis (PCA) of the wines indicated that choice of yeast strain had a strong influence on a number of wine compositional parameters, including tannin. In three fermentation experiments, across two vintages and using different winemaking protocols, a compelling case for yeast strain 'signature' was evident. The results demonstrate that there is an opportunity to use commercial wine yeast diversity to modulate red wine composition and, by implication, the style of finished wines. PMID:23803572

  19. Non-conventional yeasts as hosts for heterologous protein production.

    PubMed

    Domínguez, A; Fermiñán, E; Sánchez, M; González, F J; Pérez-Campo, F M; García, S; Herrero, A B; San Vicente, A; Cabello, J; Prado, M; Iglesias, F J; Choupina, A; Burguillo, F J; Fernández-Lago, L; López, M C

    1998-06-01

    Yeasts are an attractive group of lower eukaryotic microorganisms, some of which are used in several industrial processes that include brewing, baking and the production of a variety of biochemical compounds. More recently, yeasts have been developed as host organisms for the production of foreign (heterologous) proteins. Saccharomyces cerevisiae has usually been the yeast of choice, but an increasing number of alternative non-Saccharomyces yeasts has now become accessible for modern molecular genetics techniques. Some of them exhibit certain favourable traits such as high-level secretion or very strong and tightly regulated promoters, offering significant advantages over traditional bakers' yeast. In the present work, the current status of Kluyveromyces lactis, Yarrowia lipolytica, Hansenula polymorpha and Pichia pastoris (the best-known alternative yeast systems) is reviewed. The advantages and limitations of these systems are discussed in relation to S. cerevisiae. PMID:10943351

  20. Yeast Genomics for Bread, Beer, Biology, Bucks and Breath

    NASA Astrophysics Data System (ADS)

    Sakharkar, Kishore R.; Sakharkar, Meena K.

    The rapid advances and scale up of projects in DNA sequencing dur ing the past two decades have produced complete genome sequences of several eukaryotic species. The versatile genetic malleability of the yeast, and the high degree of conservation between its cellular processes and those of human cells have made it a model of choice for pioneering research in molecular and cell biology. The complete sequence of yeast genome has proven to be extremely useful as a reference towards the sequences of human and for providing systems to explore key gene functions. Yeast has been a ‘legendary model’ for new technologies and gaining new biological insights into basic biological sciences and biotechnology. This chapter describes the awesome power of yeast genetics, genomics and proteomics in understanding of biological function. The applications of yeast as a screening tool to the field of drug discovery and development are highlighted and the traditional importance of yeast for bakers and brewers is discussed.

  1. 21 CFR 172.381 - Vitamin D2 bakers yeast.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Vitamin D2 bakers yeast. 172.381 Section 172.381... CONSUMPTION Special Dietary and Nutritional Additives § 172.381 Vitamin D2 bakers yeast. Vitamin D2 bakers yeast may be used safely in foods as a source of vitamin D2 and as a leavening agent in accordance...

  2. Detection and identification of wild yeast in Koumiss.

    PubMed

    Mu, Zhishen; Yang, XuJin; Yuan, Hongli

    2012-09-01

    Koumiss is a slightly alcoholic fermented mare's milk beverage, originally obtained by using a natural mixed starter of lactic acid bacteria and yeasts. Yeast is an important component of Koumiss processing which can affect the aroma, texture, as well as the nutrients beneficial to human health, but few reports have examined the yeast ecology of local ecosystems. The purpose of this study was to isolate and identify the yeast present in Koumiss from three representative regions of China using a polyphasic method. A total of 655 yeast isolates were obtained from 96 Koumiss samples collected from three regions in China. Koumiss harbored yeast populations at 5-7 log CFU/ml. Twelve different yeast species belonging to nine genera were detected in the Koumiss samples tested, including Candida pararugosa, Dekkera anomala, Geotrichum sp., Issatchenkia orientalis, Kazachstania unispora, Kluyveromyces marxianus, Pichia deserticola, Pichia fermentans, Pichia manshurica, Pichia membranaefaciens, Saccharomyces cerevisiae and Torulaspora delbrueckii. Kluyveromyces marxianus, Kazachstania unispora and Saccharomyces cerevisiae were the dominant species present in this traditional fermented dairy product. This study is the first to identify the yeast communities associated with Koumiss in China. The results enrich our knowledge of yeast in Koumiss, give us a more complete picture of the microbial diversity in Koumiss and can be used to promote the development of the local dairy industry. PMID:22608237

  3. Effect of fungicides on epiphytic yeasts associated with strawberry

    PubMed Central

    Debode, Jane; Van Hemelrijck, Wendy; Creemers, Piet; Maes, Martine

    2013-01-01

    We studied the effect of two commonly used fungicides on the epiphytic yeast community of strawberry. Greenhouse and field experiments were conducted applying Switch (cyprodinil plus fludioxonil) or Signum (boscalid plus pyraclostrobin) to strawberry plants. Yeasts on leaves and fruits were assessed on treated and untreated plants at several time points via plating and denaturing gradient gel electrophoresis (DGGE) analysis. The yeast counts on plates of the treated plants were similar to the control plants. Unripe fruits had 10 times larger yeast concentrations than ripe fruits or leaves. Some dominant yeast types were isolated and in vitro tests showed that they were at least 10 times less sensitive to Switch and Signum as compared with two important fungal strawberry pathogens Botrytis cinerea and Colletotrichum acutatum, which are the targets for the fungicide control. DGGE analysis showed that the applied fungicides had no effect on the composition of the yeast communities, while the growing system, strawberry tissue, and sampling time did affect the yeast communities. The yeast species most commonly identified were Cryptococcus, Rhodotorula, and Sporobolomyces. These results point toward the potential applicability of natural occurring yeast antagonists into an integrated disease control strategy for strawberry diseases.

  4. A Photometer for Measuring Population Growth in Yeast.

    ERIC Educational Resources Information Center

    Tatina, Robert; Hartley, Tamela; Thomas, Danita

    1999-01-01

    Describes the construction and use of an inexpensive, portable photometer designed specifically for estimating population sizes in yeast cultures. Suggests activities for use with the photometer. (WRM)

  5. Applications of yeast surface display for protein engineering

    PubMed Central

    Cherf, Gerald M.; Cochran, Jennifer R.

    2015-01-01

    The method of displaying recombinant proteins on the surface of Saccharomyces cerevisiae via genetic fusion to an abundant cell wall protein, a technology known as yeast surface display, or simply, yeast display, has become a valuable protein engineering tool for a broad spectrum of biotechnology and biomedical applications. This review focuses on the use of yeast display for engineering protein affinity, stability, and enzymatic activity. Strategies and examples for each protein engineering goal are discussed. Additional applications of yeast display are also briefly presented, including protein epitope mapping, identification of protein-protein interactions, and uses of displayed proteins in industry and medicine. PMID:26060074

  6. Ethanol production from xylose by enzymic isomerization and yeast fermentation

    SciTech Connect

    Chiang, L.C.; Hsiao, H.Y.; Ueng, P.P.; Chen, L.F.; Tsao, G.T.

    1981-01-01

    Repetitive enzymic isomerization of xylose followed by yeast fermentation of xylulose, and simultaneous enzymic isomerization and yeast fermentation were proven to be methods capable of converting xylose to ethanol. The fermentation product, ethanol, xylitol, or glycerol, has little inhibitory or deactivation effect on the activity of isomerase. In a comparison of the ability of yeasts to ferment xylulose to ethanol, Schizosaccharomyces pombe was found to be superior to industrial bakers' yeast. Under optimal conditions (pH 6, temperature 30/sup 0/C), a final ethanol concentration of 6.3 wt.% was obtained from simulated hemicellulose hydrolysate using a simultaneous fermentation process. The ethanol yield was over 80% of the theoretical value.

  7. Variation in yeast mitochondrial activity associated with asci.

    PubMed

    Swart, Chantel W; van Wyk, Pieter W J; Pohl, Carolina H; Kock, Johan L F

    2008-07-01

    An increase in mitochondrial membrane potential (DeltaPsim) and mitochondrially produced 3-hydroxy (3-OH) oxylipins was experienced in asci of the nonfermentative yeasts Galactomyces reessii and Lipomyces starkeyi and the fermentative yeasts Pichia farinosa and Schizosaccharomyces octosporus. Strikingly, asci of Zygosaccharomyces bailii showed no increase in mitochondrial activity (DeltaPsim and oxylipin production). As expected, oxygen deprivation only inhibited ascus formation in those yeasts with increased ascus mitochondrial activity. We conclude that ascus formation in yeasts is not always dependent on mitochondrial activity. In this case, fermentation may provide enough energy for ascus formation in Z. bailii. PMID:18641699

  8. Dimorphism in Itersonilia perplexans: yeast and hyphal phases differ in their sensitivity to mycocins produced by tremellaceous yeasts.

    PubMed

    Golubev, W; Boekhout, T

    1992-11-01

    The monokaryotic yeast phase of the heterobasidiomycete Itersonilia perplexans, unlike the hyphal phase, was found to be sensitive to mycocins produced by killer strains of Cryptococcus humicola, Cr. laurentii, Cystofilobasidium bisporidii and Rhodotorula fujisanense. Both the yeast and hyphal phases wer resistant to mycocins of Cr. podzolicus, Filobasidium capsuligenum, Rhodotorula glutinis, Rh. mucilaginosa, Rh. pallida, Sporidiobolus johnsonii, Sb. pararoseus and Sporobolomyces alborubescens. The different sensitivity patterns of yeast and hyphal phases are probably caused by biochemical differences in the cell walls. PMID:1459407

  9. Dimorphism in Itersonilia perplexans: yeast and hyphal phases differ in their sensitivity to mycocins produced by tremellaceous yeasts.

    TOXLINE Toxicology Bibliographic Information

    Golubev W; Boekhout T

    1992-11-01

    The monokaryotic yeast phase of the heterobasidiomycete Itersonilia perplexans, unlike the hyphal phase, was found to be sensitive to mycocins produced by killer strains of Cryptococcus humicola, Cr. laurentii, Cystofilobasidium bisporidii and Rhodotorula fujisanense. Both the yeast and hyphal phases wer resistant to mycocins of Cr. podzolicus, Filobasidium capsuligenum, Rhodotorula glutinis, Rh. mucilaginosa, Rh. pallida, Sporidiobolus johnsonii, Sb. pararoseus and Sporobolomyces alborubescens. The different sensitivity patterns of yeast and hyphal phases are probably caused by biochemical differences in the cell walls.

  10. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    SciTech Connect

    Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura

    2014-01-07

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  11. Genetically modified yeast species and fermentation processes using genetically modified yeast

    SciTech Connect

    Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura

    2011-05-17

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications', include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  12. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura

    2013-05-14

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  13. Crystal structure of yeast Sco1.

    PubMed

    Abajian, Carnie; Rosenzweig, Amy C

    2006-06-01

    The Sco family of proteins are involved in the assembly of the dinuclear CuA site in cytochrome c oxidase (COX), the terminal enzyme in aerobic respiration. These proteins, which are found in both eukaryotes and prokaryotes, are characterized by a conserved CXXXC sequence motif that binds copper ions and that has also been proposed to perform a thiol:disulfide oxidoreductase function. The crystal structures of Saccharomyces cerevisiae apo Sco1 (apo-ySco1) and Sco1 in the presence of copper ions (Cu-ySco1) were determined to 1.8- and 2.3-A resolutions, respectively. Yeast Sco1 exhibits a thioredoxin-like fold, similar to that observed for human Sco1 and a homolog from Bacillus subtilis. The Cu-ySco1 structure, obtained by soaking apo-ySco1 crystals in copper ions, reveals an unexpected copper-binding site involving Cys181 and Cys216, cysteine residues present in ySco1 but not in other homologs. The conserved CXXXC cysteines, Cys148 and Cys152, can undergo redox chemistry in the crystal. An essential histidine residue, His239, is located on a highly flexible loop, denoted the Sco loop, and can adopt positions proximal to both pairs of cysteines. Interactions between ySco1 and its partner proteins yeast Cox17 and yeast COX2 are likely to occur via complementary electrostatic surfaces. This high-resolution model of a eukaryotic Sco protein provides new insight into Sco copper binding and function. PMID:16570183

  14. Studying Functions of All Yeast Genes Simultaneously

    NASA Technical Reports Server (NTRS)

    Stolc, Viktor; Eason, Robert G.; Poumand, Nader; Herman, Zelek S.; Davis, Ronald W.; Anthony Kevin; Jejelowo, Olufisayo

    2006-01-01

    A method of studying the functions of all the genes of a given species of microorganism simultaneously has been developed in experiments on Saccharomyces cerevisiae (commonly known as baker's or brewer's yeast). It is already known that many yeast genes perform functions similar to those of corresponding human genes; therefore, by facilitating understanding of yeast genes, the method may ultimately also contribute to the knowledge needed to treat some diseases in humans. Because of the complexity of the method and the highly specialized nature of the underlying knowledge, it is possible to give only a brief and sketchy summary here. The method involves the use of unique synthetic deoxyribonucleic acid (DNA) sequences that are denoted as DNA bar codes because of their utility as molecular labels. The method also involves the disruption of gene functions through deletion of genes. Saccharomyces cerevisiae is a particularly powerful experimental system in that multiple deletion strains easily can be pooled for parallel growth assays. Individual deletion strains recently have been created for 5,918 open reading frames, representing nearly all of the estimated 6,000 genetic loci of Saccharomyces cerevisiae. Tagging of each deletion strain with one or two unique 20-nucleotide sequences enables identification of genes affected by specific growth conditions, without prior knowledge of gene functions. Hybridization of bar-code DNA to oligonucleotide arrays can be used to measure the growth rate of each strain over several cell-division generations. The growth rate thus measured serves as an index of the fitness of the strain.

  15. Crystal structure of yeast Sco1

    SciTech Connect

    Abajian, Carnie; Rosenzweig, Amy C.

    2010-03-05

    The Sco family of proteins are involved in the assembly of the dinuclear CuA site in cytochrome c oxidase (COX), the terminal enzyme in aerobic respiration. These proteins, which are found in both eukaryotes and prokaryotes, are characterized by a conserved CXXXC sequence motif that binds copper ions and that has also been proposed to perform a thiol:disulfide oxidoreductase function. The crystal structures of Saccharomyces cerevisiae apo Sco1 (apo-ySco1) and Sco1 in the presence of copper ions (Cu-ySco1) were determined to 1.8- and 2.3-{angstrom} resolutions, respectively. Yeast Sco1 exhibits a thioredoxin-like fold, similar to that observed for human Sco1 and a homolog from Bacillus subtilis. The Cu-ySco1 structure, obtained by soaking apo-ySco1 crystals in copper ions, reveals an unexpected copper-binding site involving Cys181 and Cys216, cysteine residues present in ySco1 but not in other homologs. The conserved CXXXC cysteines, Cys148 and Cys152, can undergo redox chemistry in the crystal. An essential histidine residue, His239, is located on a highly flexible loop, denoted the Sco loop, and can adopt positions proximal to both pairs of cysteines. Interactions between ySco1 and its partner proteins yeast Cox17 and yeast COX2 are likely to occur via complementary electrostatic surfaces. This high-resolution model of a eukaryotic Sco protein provides new insight into Sco copper binding and function.

  16. Visualization of yeast cells by electron microscopy.

    PubMed

    Osumi, Masako

    2012-01-01

    In the 1970s, hydrocarbon or methanol utilizable yeasts were considered as a material for foods and ethanol production. During the course of studies into the physiology of yeasts, we found that these systems provide a suitable model for the biogenesis and ultrastructure research of microbodies (peroxisomes). Microbodies of hydrocarbon utilizing Candida tropicalis multiply profusely from the preexisting microbody. ? oxidation enzymes in the microbody were determined by means of immunoelectron microscopy. We examined the ultrastructure of Candida boidinii microbodies grown on methanol, and found a composite crystalloid of two enzymes, alcohol oxidase and catalase, by analyzing using the optical diffraction and filtering technique and computer simulation. We established methods for preparing the protoplasts of Schizosaccharomyces pombe and conditions for the complete regeneration of the cell wall. The dynamic process of cell wall formation was clarified through our study of the protoplasts, using an improved ultra high resolution (UHR) FESEM S-900 and an S-900LV. It was found that ?-1,3-glucan, ?-1,6-glucan and ?-1,3-glucan, as well as ?-galactomannan, are ingredients of the cell wall. The process of septum formation during cell division was examined after cryo-fixation by high pressure freezing (HPF). It was also found that ?-1,3- and ?-1,3-glucans were located in the invaginating nascent septum, and later, highly branched ?-1,6-glucan also appeared on the second septum. The micro-sampling method, using a focused ion beam (FIB), has been applied to our yeast cell wall research. A combination of FIB and scanning transmission electron microscopy is useful in constructing 3D images and analyzing the molecular architecture of cells, as well as for electron tomography of thick sections of biological specimens. PMID:23231852

  17. Specificity of Transmembrane Protein Palmitoylation in Yeast

    PubMed Central

    González Montoro, Ayelén; Chumpen Ramirez, Sabrina; Quiroga, Rodrigo; Valdez Taubas, Javier

    2011-01-01

    Many proteins are modified after their synthesis, by the addition of a lipid molecule to one or more cysteine residues, through a thioester bond. This modification is called S-acylation, and more commonly palmitoylation. This reaction is carried out by a family of enzymes, called palmitoyltransferases (PATs), characterized by the presence of a conserved 50- aminoacids domain called “Asp-His-His-Cys- Cysteine Rich Domain” (DHHC-CRD). There are 7 members of this family in the yeast Saccharomyces cerevisiae, and each of these proteins is thought to be responsible for the palmitoylation of a subset of substrates. Substrate specificity of PATs, however, is not yet fully understood. Several yeast PATs seem to have overlapping specificity, and it has been proposed that the machinery responsible for palmitoylating peripheral membrane proteins in mammalian cells, lacks specificity altogether. Here we investigate the specificity of transmembrane protein palmitoylation in S. cerevisiae, which is carried out predominantly by two PATs, Swf1 and Pfa4. We show that palmitoylation of transmembrane substrates requires dedicated PATs, since other yeast PATs are mostly unable to perform Swf1 or Pfa4 functions, even when overexpressed. Furthermore, we find that Swf1 is highly specific for its substrates, as it is unable to substitute for other PATs. To identify where Swf1 specificity lies, we carried out a bioinformatics survey to identify amino acids responsible for the determination of specificity or Specificity Determination Positions (SDPs) and showed experimentally, that mutation of the two best SDP candidates, A145 and K148, results in complete and partial loss of function, respectively. These residues are located within the conserved catalytic DHHC domain suggesting that it could also be involved in the determination of specificity. Finally, we show that modifying the position of the cysteines in Tlg1, a Swf1 substrate, results in lack of palmitoylation, as expected for a highly specific enzymatic reaction. PMID:21383992

  18. Genetic Influences on Translation in Yeast

    PubMed Central

    Albert, Frank W.; Muzzey, Dale; Weissman, Jonathan S.; Kruglyak, Leonid

    2014-01-01

    Heritable differences in gene expression between individuals are an important source of phenotypic variation. The question of how closely the effects of genetic variation on protein levels mirror those on mRNA levels remains open. Here, we addressed this question by using ribosome profiling to examine how genetic differences between two strains of the yeast S. cerevisiae affect translation. Strain differences in translation were observed for hundreds of genes. Allele specific measurements in the diploid hybrid between the two strains revealed roughly half as many cis-acting effects on translation as were observed for mRNA levels. In both the parents and the hybrid, most effects on translation were of small magnitude, such that the direction of an mRNA difference was typically reflected in a concordant footprint difference. The relative importance of cis and trans acting variation on footprint levels was similar to that for mRNA levels. There was a tendency for translation to cause larger footprint differences than expected given the respective mRNA differences. This is in contrast to translational differences between yeast species that have been reported to more often oppose than reinforce mRNA differences. Finally, we catalogued instances of premature translation termination in the two yeast strains and also found several instances where erroneous reference gene annotations lead to apparent nonsense mutations that in fact reside outside of the translated gene body. Overall, genetic influences on translation subtly modulate gene expression differences, and translation does not create strong discrepancies between genetic influences on mRNA and protein levels. PMID:25340754

  19. Osmotic Stress Signaling and Osmoadaptation in Yeasts

    PubMed Central

    Hohmann, Stefan

    2002-01-01

    The ability to adapt to altered availability of free water is a fundamental property of living cells. The principles underlying osmoadaptation are well conserved. The yeast Saccharomyces cerevisiae is an excellent model system with which to study the molecular biology and physiology of osmoadaptation. Upon a shift to high osmolarity, yeast cells rapidly stimulate a mitogen-activated protein (MAP) kinase cascade, the high-osmolarity glycerol (HOG) pathway, which orchestrates part of the transcriptional response. The dynamic operation of the HOG pathway has been well studied, and similar osmosensing pathways exist in other eukaryotes. Protein kinase A, which seems to mediate a response to diverse stress conditions, is also involved in the transcriptional response program. Expression changes after a shift to high osmolarity aim at adjusting metabolism and the production of cellular protectants. Accumulation of the osmolyte glycerol, which is also controlled by altering transmembrane glycerol transport, is of central importance. Upon a shift from high to low osmolarity, yeast cells stimulate a different MAP kinase cascade, the cell integrity pathway. The transcriptional program upon hypo-osmotic shock seems to aim at adjusting cell surface properties. Rapid export of glycerol is an important event in adaptation to low osmolarity. Osmoadaptation, adjustment of cell surface properties, and the control of cell morphogenesis, growth, and proliferation are highly coordinated processes. The Skn7p response regulator may be involved in coordinating these events. An integrated understanding of osmoadaptation requires not only knowledge of the function of many uncharacterized genes but also further insight into the time line of events, their interdependence, their dynamics, and their spatial organization as well as the importance of subtle effects. PMID:12040128

  20. Automated tracking of yeast cell lineages

    NASA Astrophysics Data System (ADS)

    Kim, Kyungnam; Rowat, Amy C.; Carpenter, Anne E.

    2010-08-01

    We propose a cell progeny tracking method that sequentially employs image alignment, chamber cropping, cell segmentation, per-cell feature measurement, and progeny (lineage) tracking modules. It enables biologists to keep track of phenotypic patterns not only over time but also over multiple generations. Yeast cells encapsulated in chambers of a polydimethylsiloxane (PDMS) microfluidic device were imaged over time to monitor changes in fluorescence levels. We implemented our method in an automated cell image analysis tool, CellProfiler, and performed initial testing. Once refined and validated, the approach could be adapted/used in other cell segmentation and progeny tracking experiments.

  1. Regulation of phospholipid synthesis in yeast

    PubMed Central

    Carman, George M.; Han, Gil-Soo

    2009-01-01

    Phospholipid synthesis in the yeast Saccharomyces cerevisiae is a complex process that involves regulation by both genetic and biochemical mechanisms. The activity levels of phospholipid synthesis enzymes are controlled by gene expression (e.g., transcription) and by factors (lipids, water-soluble phospholipid precursors and products, and covalent modification of phosphorylation) that modulate catalysis. Phosphatidic acid, whose levels are controlled by the biochemical regulation of key phospholipid synthesis enzymes, plays a central role in the regulation of phospholipid synthesis gene expression. PMID:18955729

  2. New yeast study finds strength in numbers

    SciTech Connect

    Kaiser, J.

    1996-06-07

    This article reports on the debate about whether the modern industrial society is producing hormonelike pollutants that can interfere with human reproductions, including pesticides, the plastic ingredient bisphenol-A and some polychlorinated biphenyls. A recent article has added fuel to the debate by presenting results that indicate a mixture of two weakly estrogenic chemicals can be far more potent than individual compounds, using a screening system based on genetically engineered yeast cells. The debate may need to be taken into account by a USEPA advisory panel now being formed to come up with in vitro tests to screen for environmental estrogens.

  3. Cell Polarization and Cytokinesis in Budding Yeast

    PubMed Central

    Bi, Erfei; Park, Hay-Oak

    2012-01-01

    Asymmetric cell division, which includes cell polarization and cytokinesis, is essential for generating cell diversity during development. The budding yeast Saccharomyces cerevisiae reproduces by asymmetric cell division, and has thus served as an attractive model for unraveling the general principles of eukaryotic cell polarization and cytokinesis. Polarity development requires G-protein signaling, cytoskeletal polarization, and exocytosis, whereas cytokinesis requires concerted actions of a contractile actomyosin ring and targeted membrane deposition. In this chapter, we discuss the mechanics and spatial control of polarity development and cytokinesis, emphasizing the key concepts, mechanisms, and emerging questions in the field. PMID:22701052

  4. Inheritance of the fittest mitochondria in yeast.

    PubMed

    Vevea, Jason D; Swayne, Theresa C; Boldogh, Istvan R; Pon, Liza A

    2014-01-01

    Eukaryotic cells compartmentalize their biochemical processes within organelles, which have specific functions that must be maintained for overall cellular health. As the site of aerobic energy mobilization and essential biosynthetic activities, mitochondria are critical for cell survival and proliferation. Here, we describe mechanisms to control the quality and quantity of mitochondria within cells with an emphasis on findings from the budding yeast Saccharomyces cerevisiae. We also describe how mitochondrial quality and quantity control systems that operate during cell division affect lifespan and cell cycle progression. PMID:23932848

  5. Fanconi-like crosslink repair in yeast

    PubMed Central

    2012-01-01

    Interstrand crosslinks covalently link complementary DNA strands, block replication and transcription, and can trigger cell death. In eukaryotic systems several pathways, including the Fanconi Anemia pathway, are involved in repairing interstrand crosslinks, but their precise mechanisms remain enigmatic. The lack of functional homologs in simpler model organisms has significantly hampered progress in this field. Two recent studies have finally identified a Fanconi-like interstrand crosslink repair pathway in yeast. Future studies in this simplistic model organism promise to greatly improve our basic understanding of complex interstrand crosslink repair pathways like the Fanconi pathway. PMID:23062727

  6. Mechanics and morphogenesis of fission yeast cells.

    PubMed

    Davì, Valeria; Minc, Nicolas

    2015-12-01

    The integration of biochemical and biomechanical elements is at the heart of morphogenesis. While animal cells are relatively soft objects which shape and mechanics is mostly regulated by cytoskeletal networks, walled cells including those of plants, fungi and bacteria are encased in a rigid cell wall which resist high internal turgor pressure. How these particular mechanical properties may influence basic cellular processes, such as growth, shape and division remains poorly understood. Recent work using the model fungal cell fission yeast, Schizosaccharomyces pombe, highlights important contribution of cell mechanics to various morphogenesis processes. We envision this genetically tractable system to serve as a novel standard for the mechanobiology of walled cell. PMID:26291501

  7. De Novo Biosynthesis of Vanillin in Fission Yeast (Schizosaccharomyces pombe) and Baker's Yeast (Saccharomyces cerevisiae) ?

    PubMed Central

    Hansen, Esben H.; Møller, Birger Lindberg; Kock, Gertrud R.; Bünner, Camilla M.; Kristensen, Charlotte; Jensen, Ole R.; Okkels, Finn T.; Olsen, Carl E.; Motawia, Mohammed S.; Hansen, Jørgen

    2009-01-01

    Vanillin is one of the world's most important flavor compounds, with a global market of 180 million dollars. Natural vanillin is derived from the cured seed pods of the vanilla orchid (Vanilla planifolia), but most of the world's vanillin is synthesized from petrochemicals or wood pulp lignins. We have established a true de novo biosynthetic pathway for vanillin production from glucose in Schizosaccharomyces pombe, also known as fission yeast or African beer yeast, as well as in baker's yeast, Saccharomyces cerevisiae. Productivities were 65 and 45 mg/liter, after introduction of three and four heterologous genes, respectively. The engineered pathways involve incorporation of 3-dehydroshikimate dehydratase from the dung mold Podospora pauciseta, an aromatic carboxylic acid reductase (ACAR) from a bacterium of the Nocardia genus, and an O-methyltransferase from Homo sapiens. In S. cerevisiae, the ACAR enzyme required activation by phosphopantetheinylation, and this was achieved by coexpression of a Corynebacterium glutamicum phosphopantetheinyl transferase. Prevention of reduction of vanillin to vanillyl alcohol was achieved by knockout of the host alcohol dehydrogenase ADH6. In S. pombe, the biosynthesis was further improved by introduction of an Arabidopsis thaliana family 1 UDP-glycosyltransferase, converting vanillin into vanillin ?-d-glucoside, which is not toxic to the yeast cells and thus may be accumulated in larger amounts. These de novo pathways represent the first examples of one-cell microbial generation of these valuable compounds from glucose. S. pombe yeast has not previously been metabolically engineered to produce any valuable, industrially scalable, white biotech commodity. PMID:19286778

  8. Repeat-Associated Fission Yeast-Like Regional Centromeres in the Ascomycetous Budding Yeast Candida tropicalis.

    PubMed

    Chatterjee, Gautam; Sankaranarayanan, Sundar Ram; Guin, Krishnendu; Thattikota, Yogitha; Padmanabhan, Sreedevi; Siddharthan, Rahul; Sanyal, Kaustuv

    2016-02-01

    The centromere, on which kinetochore proteins assemble, ensures precise chromosome segregation. Centromeres are largely specified by the histone H3 variant CENP-A (also known as Cse4 in yeasts). Structurally, centromere DNA sequences are highly diverse in nature. However, the evolutionary consequence of these structural diversities on de novo CENP-A chromatin formation remains elusive. Here, we report the identification of centromeres, as the binding sites of four evolutionarily conserved kinetochore proteins, in the human pathogenic budding yeast Candida tropicalis. Each of the seven centromeres comprises a 2 to 5 kb non-repetitive mid core flanked by 2 to 5 kb inverted repeats. The repeat-associated centromeres of C. tropicalis all share a high degree of sequence conservation with each other and are strikingly diverged from the unique and mostly non-repetitive centromeres of related Candida species-Candida albicans, Candida dubliniensis, and Candida lusitaniae. Using a plasmid-based assay, we further demonstrate that pericentric inverted repeats and the underlying DNA sequence provide a structural determinant in CENP-A recruitment in C. tropicalis, as opposed to epigenetically regulated CENP-A loading at centromeres in C. albicans. Thus, the centromere structure and its influence on de novo CENP-A recruitment has been significantly rewired in closely related Candida species. Strikingly, the centromere structural properties along with role of pericentric repeats in de novo CENP-A loading in C. tropicalis are more reminiscent to those of the distantly related fission yeast Schizosaccharomyces pombe. Taken together, we demonstrate, for the first time, fission yeast-like repeat-associated centromeres in an ascomycetous budding yeast. PMID:26845548

  9. Repeat-Associated Fission Yeast-Like Regional Centromeres in the Ascomycetous Budding Yeast Candida tropicalis

    PubMed Central

    Chatterjee, Gautam; Sankaranarayanan, Sundar Ram; Guin, Krishnendu; Thattikota, Yogitha; Padmanabhan, Sreedevi; Siddharthan, Rahul; Sanyal, Kaustuv

    2016-01-01

    The centromere, on which kinetochore proteins assemble, ensures precise chromosome segregation. Centromeres are largely specified by the histone H3 variant CENP-A (also known as Cse4 in yeasts). Structurally, centromere DNA sequences are highly diverse in nature. However, the evolutionary consequence of these structural diversities on de novo CENP-A chromatin formation remains elusive. Here, we report the identification of centromeres, as the binding sites of four evolutionarily conserved kinetochore proteins, in the human pathogenic budding yeast Candida tropicalis. Each of the seven centromeres comprises a 2 to 5 kb non-repetitive mid core flanked by 2 to 5 kb inverted repeats. The repeat-associated centromeres of C. tropicalis all share a high degree of sequence conservation with each other and are strikingly diverged from the unique and mostly non-repetitive centromeres of related Candida species—Candida albicans, Candida dubliniensis, and Candida lusitaniae. Using a plasmid-based assay, we further demonstrate that pericentric inverted repeats and the underlying DNA sequence provide a structural determinant in CENP-A recruitment in C. tropicalis, as opposed to epigenetically regulated CENP-A loading at centromeres in C. albicans. Thus, the centromere structure and its influence on de novo CENP-A recruitment has been significantly rewired in closely related Candida species. Strikingly, the centromere structural properties along with role of pericentric repeats in de novo CENP-A loading in C. tropicalis are more reminiscent to those of the distantly related fission yeast Schizosaccharomyces pombe. Taken together, we demonstrate, for the first time, fission yeast-like repeat-associated centromeres in an ascomycetous budding yeast. PMID:26845548

  10. Improving industrial yeast strains: exploiting natural and artificial diversity.

    PubMed

    Steensels, Jan; Snoek, Tim; Meersman, Esther; Picca Nicolino, Martina; Voordeckers, Karin; Verstrepen, Kevin J

    2014-09-01

    Yeasts have been used for thousands of years to make fermented foods and beverages, such as beer, wine, sake, and bread. However, the choice for a particular yeast strain or species for a specific industrial application is often based on historical, rather than scientific grounds. Moreover, new biotechnological yeast applications, such as the production of second-generation biofuels, confront yeast with environments and challenges that differ from those encountered in traditional food fermentations. Together, this implies that there are interesting opportunities to isolate or generate yeast variants that perform better than the currently used strains. Here, we discuss the different strategies of strain selection and improvement available for both conventional and nonconventional yeasts. Exploiting the existing natural diversity and using techniques such as mutagenesis, protoplast fusion, breeding, genome shuffling and directed evolution to generate artificial diversity, or the use of genetic modification strategies to alter traits in a more targeted way, have led to the selection of superior industrial yeasts. Furthermore, recent technological advances allowed the development of high-throughput techniques, such as 'global transcription machinery engineering' (gTME), to induce genetic variation, providing a new source of yeast genetic diversity. PMID:24724938

  11. Cultivable psychrotolerant yeasts associated with Antarctic marine sponges.

    PubMed

    Vaca, Inmaculada; Faúndez, Carolina; Maza, Felipe; Paillavil, Braulio; Hernández, Valentina; Acosta, Fermín; Levicán, Gloria; Martínez, Claudio; Chávez, Renato

    2013-01-01

    Unlike filamentous fungi and bacteria, very little is known about cultivable yeasts associated with marine sponges, especially those from Antarctic seas. During an expedition to King George Island, in the Antarctica, samples of 11 marine sponges were collected by scuba-diving. From these sponges, 20 psychrotolerant yeast isolates were obtained. Phylogenetic analyses of D1/D2 and ITS rRNA gene sequences revealed that the marine ascomycetous yeast Metschnikowia australis is the predominant organism associated with these invertebrates. Other species found belonged to the Basidiomycota phylum: Cystofilobasidium infirmominiatum, Rhodotorula pinicola, Leucosporidiella creatinivora and a new yeast from the Leucosporidiella genus. None of these yeasts have been previously associated with marine sponges. A screening to estimate the ability of these yeasts as producers of extracellular enzymatic activities at several pH and temperature conditions was performed. Several yeast isolates demonstrated amylolytic, proteolytic, lipolytic or cellulolytic activity, but none of them showed xylanolytic activity under the conditions assayed. To our knowledge, this work is the first description of cultivable yeasts associated with marine sponges from the Antarctic sea. PMID:22927015

  12. Alcohol production from Jerusalem artichoke using yeasts with inulinase activity

    SciTech Connect

    Guiraud, J.P.; Daurelles, J.; Galzy, P.

    1981-07-01

    The purpose of this article is to show that yeasts with inulinase activity can be used to produce ethanol from the Jerusalem artichoke (Helianthus tuberosus L.). The results show that a fermentable extract can be easily obtained from the Jerusalem artichoke even under cold conditions. Yeasts with inulinase activity can be used to produce ethanol with good profitability. 19 refs.

  13. Image-based prediction of drug target in yeast.

    PubMed

    Ohnuki, Shinsuke; Okada, Hiroki; Ohya, Yoshikazu

    2015-01-01

    Discovering the intracellular target of drugs is a fundamental challenge in biomedical research. We developed an image-based technique with which we were able to identify intracellular target of the compounds in the yeast Saccharomyces cerevisiae. Here, we describe the rationale of the technique, staining of yeast cells, image acquisition, data processing, and statistical analysis required for prediction of drug targets. PMID:25618355

  14. Improving industrial yeast strains: exploiting natural and artificial diversity

    PubMed Central

    Steensels, Jan; Snoek, Tim; Meersman, Esther; Nicolino, Martina Picca; Voordeckers, Karin; Verstrepen, Kevin J

    2014-01-01

    Yeasts have been used for thousands of years to make fermented foods and beverages, such as beer, wine, sake, and bread. However, the choice for a particular yeast strain or species for a specific industrial application is often based on historical, rather than scientific grounds. Moreover, new biotechnological yeast applications, such as the production of second-generation biofuels, confront yeast with environments and challenges that differ from those encountered in traditional food fermentations. Together, this implies that there are interesting opportunities to isolate or generate yeast variants that perform better than the currently used strains. Here, we discuss the different strategies of strain selection and improvement available for both conventional and nonconventional yeasts. Exploiting the existing natural diversity and using techniques such as mutagenesis, protoplast fusion, breeding, genome shuffling and directed evolution to generate artificial diversity, or the use of genetic modification strategies to alter traits in a more targeted way, have led to the selection of superior industrial yeasts. Furthermore, recent technological advances allowed the development of high-throughput techniques, such as ‘global transcription machinery engineering’ (gTME), to induce genetic variation, providing a new source of yeast genetic diversity. PMID:24724938

  15. 21 CFR 172.590 - Yeast-malt sprout extract.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Yeast-malt sprout extract. 172.590 Section 172.590 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Flavoring Agents and Related Substances § 172.590 Yeast-malt sprout...

  16. Exploring the Ubiquitin-Proteasome Protein Degradation Pathway in Yeast

    ERIC Educational Resources Information Center

    Will, Tamara J.; McWatters, Melissa K.; McQuade, Kristi L.

    2006-01-01

    This article describes an undergraduate biochemistry laboratory investigating the ubiquitin-proteasome pathway in yeast. In this exercise, the enzyme beta-galactosidase (beta-gal) is expressed in yeast under the control of a stress response promoter. Following exposure to heat stress to induce beta-gal expression, cycloheximide is added to halt…

  17. Functional selection for the centromere DNA from yeast chromosome VIII.

    PubMed Central

    Fleig, U; Beinhauer, J D; Hegemann, J H

    1995-01-01

    Centromeres are essential components of eucaryotic chromosomes. In budding yeast, up to now, 15 of the 16 centromere DNAs have been isolated. Here we report the functional isolation and characterization of CEN8, the last of the yeast centromeres missing. The centromere consensus sequence for the 16 chromosomes in this organism is presented. Images PMID:7731804

  18. High ethanol tolerance yeast for production of ethanol

    SciTech Connect

    Krishnan, M.S.; Tsao, G.T.; Kasthurikrishnan, N.

    1995-12-01

    The subject of ethanol tolerance in yeasts has been receiving considerable attention as result of renewed interest in ethanol as a fuel source. Fermentation of sugars to ethanol is being studied in our laboratory using a genetically engineered yeast strain 1400. Results are described.

  19. Identification of superior lipid producing Lipomyces and Myxozyma yeasts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oleaginous yeasts are of interest for production of single cell oils from sugars. Here 17 members of the Lipomyces and Myxozyma clade were screened for lipid production when cultured on glucose. The highest ranking yeasts included L. tetrasporus (21 g/l), L. kononenkoae (19.6 g/l), and L. lipofer (1...

  20. Phylogeny-guided screening of yeast strains for lipid production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oleaginous yeast accumulates greater than 20% of their biomass as triacylglycerol in response to nutritional starvation in the presence of excess carbon source. As such, these yeasts have been suggested as a biocatalyst for converting sugars derived from cellulosic feedstocks into biodiesel. Sever...

  1. Exploring the Ubiquitin-Proteasome Protein Degradation Pathway in Yeast

    ERIC Educational Resources Information Center

    Will, Tamara J.; McWatters, Melissa K.; McQuade, Kristi L.

    2006-01-01

    This article describes an undergraduate biochemistry laboratory investigating the ubiquitin-proteasome pathway in yeast. In this exercise, the enzyme beta-galactosidase (beta-gal) is expressed in yeast under the control of a stress response promoter. Following exposure to heat stress to induce beta-gal expression, cycloheximide is added to halt…

  2. Analysis of the RNA Content of the Yeast "Saccharomyces Cerevisiae"

    ERIC Educational Resources Information Center

    Deutch, Charles E.; Marshall, Pamela A.

    2008-01-01

    In this article, the authors describe an interconnected set of relatively simple laboratory experiments in which students determine the RNA content of yeast cells and use agarose gel electrophoresis to separate and analyze the major species of cellular RNA. This set of experiments focuses on RNAs from the yeast "Saccharomyces cerevisiae", a…

  3. Biotechnology of non-Saccharomyces yeasts--the ascomycetes.

    PubMed

    Johnson, Eric A

    2013-01-01

    Saccharomyces cerevisiae and several other yeast species are among the most important groups of biotechnological organisms. S. cerevisiae and closely related ascomycetous yeasts are the major producer of biotechnology products worldwide, exceeding other groups of industrial microorganisms in productivity and economic revenues. Traditional industrial attributes of the S. cerevisiae group include their primary roles in food fermentations such as beers, cider, wines, sake, distilled spirits, bakery products, cheese, sausages, and other fermented foods. Other long-standing industrial processes involving S. cerevisae yeasts are production of fuel ethanol, single-cell protein (SCP), feeds and fodder, industrial enzymes, and small molecular weight metabolites. More recently, non-Saccharomyces yeasts (non-conventional yeasts) have been utilized as industrial organisms for a variety of biotechnological roles. Non-Saccharomyces yeasts are increasingly being used as hosts for expression of proteins, biocatalysts and multi-enzyme pathways for the synthesis of fine chemicals and small molecular weight compounds of medicinal and nutritional importance. Non-Saccharomyces yeasts also have important roles in agriculture as agents of biocontrol, bioremediation, and as indicators of environmental quality. Several of these products and processes have reached commercial utility, while others are in advanced development. The objective of this mini-review is to describe processes currently used by industry and those in developmental stages and close to commercialization primarily from non-Saccharomyces yeasts with an emphasis on new opportunities. The utility of S. cerevisiae in heterologous production of selected products is also described. PMID:23184219

  4. Dual fluorochrome flow cytometric assessment of yeast viability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel staining protocol is reported for the assessment of viability in yeast, specifically the biocontrol yeast, Pichia anomala. Employing both the red fluorescent membrane potential sensitive oxonol stain DiBAC4(5) (Bis-(1,3-dibutylbarbituric acid)pentamethine oxonol), a structural analog of the ...

  5. [Yeasts in domestic animals: species identification and susceptibility to antifungals].

    PubMed

    Hamal, Petr; Koukalová, Dagmar

    2010-02-01

    Yeasts frequently colonize various kinds of domestic animals, but may also cause serious diseases. The aim of this study was to identify yeast isolates collected from dogs, cows and pigs, and to determine their in vitro antifungal susceptibility. Fifty-six yeast isolates from dogs (n = 24), cows (n = 20), and pigs (n = 12) were investigated. Appearance of colonies grown on Sabouraud agar, micromorphology on rice agar, as well as assimilation and fermentation of various carbon and nitrogen sources were evaluated. Susceptibility to six antifungals (flucytosine, amphotericin B, miconazole, ketoconazole, itraconazole and fluconazole) was determined semiquantitatively using the commercially available Fungitest kit (Bio-Rad Laboratories). Ten yeast species were identified in dogs with relatively even distribution. On the other hand, cow and pig were clearly dominated by Candida krusei (from 7 species) and Candida rugosa (from 5 species), respectively. Further, most of yeast isolates exhibited good susceptibility to the antifungals tested particularly to amphotericin B, ketoconazole and itraconazole. Based on results, it can be concluded that significant differences in the species spectrum and distribution were documented between groups of yeasts from dogs, cows and pigs. This is probably due to different environmental conditions and the endogenous origin of the yeast isolates. Mostly good susceptibility to systemic antifungals should positively influence the therapy of diseases caused by yeasts in veterinary medicine. PMID:20401831

  6. Inhibition of Listeria monocytogenes by food-borne yeasts.

    PubMed

    Goerges, Stefanie; Aigner, Ulrike; Silakowski, Barbara; Scherer, Siegfried

    2006-01-01

    Many bacteria are known to inhibit food pathogens, such as Listeria monocytogenes, by secreting a variety of bactericidal and bacteriostatic substances. In sharp contrast, it is unknown whether yeast has an inhibitory potential for the growth of pathogenic bacteria in food. A total of 404 yeasts were screened for inhibitory activity against five Listeria monocytogenes strains. Three hundred and four of these yeasts were isolated from smear-ripened cheeses. Most of the yeasts were identified by Fourier transform infrared spectroscopy. Using an agar-membrane screening assay, a fraction of approximately 4% of the 304 red smear cheese isolates clearly inhibited growth of L. monocytogenes. Furthermore, 14 out of these 304 cheese yeasts were cocultivated with L. monocytogenes WSLC 1364 on solid medium to test the antilisterial activity of yeast in direct cell contact with Listeria. All yeasts inhibited L. monocytogenes to a low degree, which is most probably due to competition for nutrients. However, one Candida intermedia strain was able to reduce the listerial cell count by 4 log units. Another four yeasts, assigned to C. intermedia (three strains) and Kluyveromyces marxianus (one strain), repressed growth of L. monocytogenes by 3 log units. Inhibition of L. monocytogenes was clearly pronounced in the cocultivation assay, which simulates the conditions and contamination rates present on smear cheese surfaces. We found no evidence that the unknown inhibitory molecule is able to diffuse through soft agar. PMID:16391059

  7. ASCOMYCETOUS MITOSIS IN BASIDIOMYCETOUS YEASTS: ITS EVOLUTIONARY IMPLICATIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In budding cells of ascomycetous yeasts, mitosis occurs in the parent, while in basidiomyceteous yeasts it occurs in the bud. However, in the basidiomycete Agaricostilbum pulcherrimum mitosis occurs in the parent and parent-bud junction. To test whether A. pulcherrimum has a novel mitotic pattern, i...

  8. Analysis of the RNA Content of the Yeast "Saccharomyces Cerevisiae"

    ERIC Educational Resources Information Center

    Deutch, Charles E.; Marshall, Pamela A.

    2008-01-01

    In this article, the authors describe an interconnected set of relatively simple laboratory experiments in which students determine the RNA content of yeast cells and use agarose gel electrophoresis to separate and analyze the major species of cellular RNA. This set of experiments focuses on RNAs from the yeast "Saccharomyces cerevisiae", a…

  9. Recognition of Yeast Species from Gene Sequence Comparisons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review discusses recognition of yeast species from gene sequence comparisons, which have been responsible for doubling the number of known yeasts over the past decade. The resolution provided by various single gene sequences is examined for both ascomycetous and basidiomycetous species, and th...

  10. Extrachromosomal circular DNA is common in yeast

    PubMed Central

    Møller, Henrik D.; Parsons, Lance; Jørgensen, Tue S.; Botstein, David; Regenberg, Birgitte

    2015-01-01

    Examples of extrachromosomal circular DNAs (eccDNAs) are found in many organisms, but their impact on genetic variation at the genome scale has not been investigated. We mapped 1,756 eccDNAs in the Saccharomyces cerevisiae genome using Circle-Seq, a highly sensitive eccDNA purification method. Yeast eccDNAs ranged from an arbitrary lower limit of 1 kb up to 38 kb and covered 23% of the genome, representing thousands of genes. EccDNA arose both from genomic regions with repetitive sequences ?15 bases long and from regions with short or no repetitive sequences. Some eccDNAs were identified in several yeast populations. These eccDNAs contained ribosomal genes, transposon remnants, and tandemly repeated genes (HXT6/7, ENA1/2/5, and CUP1-1/-2) that were generally enriched on eccDNAs. EccDNAs seemed to be replicated and 80% contained consensus sequences for autonomous replication origins that could explain their maintenance. Our data suggest that eccDNAs are common in S. cerevisiae, where they might contribute substantially to genetic variation and evolution. PMID:26038577

  11. Advances in Quantitative Trait Analysis in Yeast

    PubMed Central

    Liti, Gianni; Louis, Edward J.

    2012-01-01

    Understanding the genetic mechanisms underlying complex traits is one of the next frontiers in biology. The budding yeast Saccharomyces cerevisiae has become an important model for elucidating the mechanisms that govern natural genetic and phenotypic variation. This success is partially due to its intrinsic biological features, such as the short sexual generation time, high meiotic recombination rate, and small genome size. Precise reverse genetics technologies allow the high throughput manipulation of genetic information with exquisite precision, offering the unique opportunity to experimentally measure the phenotypic effect of genetic variants. Population genomic and phenomic studies have revealed widespread variation between diverged populations, characteristic of man-made environments, as well as geographic clusters of wild strains along with naturally occurring recombinant strains (mosaics). Here, we review these recent studies and provide a perspective on how these previously unappreciated levels of variation can help to bridge our understanding of the genotype-phenotype gap, keeping budding yeast at the forefront of genetic studies. Not only are quantitative trait loci (QTL) being mapped with high resolution down to the nucleotide, for the first time QTLs of modest effect and complex interactions between these QTLs and between QTLs and the environment are being determined experimentally at unprecedented levels using next generation techniques of deep sequencing selected pools of individuals as well as multi-generational crosses. PMID:22916041

  12. Perchlorate Reduction by Yeast for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Sharma, Alaisha

    2015-01-01

    Martian soil contains high levels (0.6 percentage by mass) of calcium perchlorate (Ca(ClO4)2), which readily dissociates into calcium and the perchlorate ion (ClO4-) in water. Even in trace amounts, perchlorates are toxic to humans and have been implicated in thyroid dysfunction. Devising methods to lessen perchlorate contamination is crucial to minimizing the health risks associated with human exploration and colonization of Mars. We designed a perchlorate reduction pathway, which sequentially reduces perchlorate to chloride (Cl-) and oxygen (O2), for implementation in the yeast Saccharomyces cerevisiae. Using genes obtained from perchlorate reducing bacteria Azospira oryzae and Dechloromonas aromatica, we plan to assemble this pathway directly within S. cerevisiae through recombinational cloning. A perchlorate reduction pathway would enable S. cerevisiae to lower perchlorate levels and produce oxygen, which may be harvested or used directly by S. cerevisiae for aerobic growth and compound synthesis. Moreover, using perchlorate as an external electron acceptor could improve the efficiency of redox-imbalanced production pathways in yeast. Although several perchlorate reducing bacteria have been identified and utilized in water treatment systems on Earth, the widespread use of S. cerevisiae as a synthetic biology platform justifies the development of a perchlorate reducing strain for implementation on Mars.

  13. Intracellular accumulation of ethanol in yeast

    SciTech Connect

    Loueiro, V.; Ferreira, H.G.

    1983-09-01

    Ethanol produced in the course of a batch fermentation by Saccharomyces cerevisiae or added from the outside, affects adversely the specific rate of growth of the yeast population, its viability, its specific rate of fermentation, and the specific rates of the uptake of sugar and amino acids. The underlying mechanisms are many and include irreversible denaturation and hyperbolic noncompetitive inhibition of glycolytic enzymes, the exponential noncompetitive inhibition of glucose, maltose, and ammonium transport, the depression of the optimum and the maximum temperature for growth, the increase of the minimum temperature for growth, and the enhancement of thermal death and petite mutation. Nagodawithana and Steinkraus reported that added ethanol was less toxic for S. cerevisiae than ethanol produced by the yeast. The death rates were lower in the presence of added ethanol than those measured at similar external ethanol concentrations endogenously produced. They proposed that, due to an unbalance between the rates of production and the net outflux of ethanol, there would be an intracellular accumulation of ethanol which in turn would explain the apparently greater inhibitory potency of endogenously produced ethanol present in the medium. This hypothesis was supported by the findings of several authors who reported that the intracellular concentration of ethanol, in the course of batch fermentation, is much higher than its concentration in the extracellular medium. The present work is an attempt to clarify this matter. (Refs. 32).

  14. Cyclophilin catalyzes protein folding in yeast mitochondria.

    PubMed Central

    Matouschek, A; Rospert, S; Schmid, K; Glick, B S; Schatz, G

    1995-01-01

    Cyclophilins are a family of ubiquitous proteins that are the intracellular target of the immunosuppressant drug cyclosporin A. Although cyclophilins catalyze peptidylprolyl cis-trans isomerization in vitro, it has remained open whether they also perform this function in vivo. Here we show that Cpr3p, a cyclophilin in the matrix of yeast mitochondria, accelerates the refolding of a fusion protein that was synthesized in a reticulocyte lysate and imported into the matrix of isolated yeast mitochondria. The fusion protein consisted of the matrix-targeting sequence of subunit 9 of F1F0-ATPase fused to mouse dihydrofolate reductase. Refolding of the dihydrofolate reductase moiety in the matrix was monitored by acquisition of resistance to proteinase K. The rate of refolding was reduced by a factor of 2-6 by 2.5 microM cyclosporin A. This reduced rate of folding was also observed with mitochondria lacking Cpr3p. In these mitochondria, protein folding was insensitive to cyclosporin A. The rate of protein import was not affected by cyclosporin A or by deletion of Cpr3p. Images Fig. 2 PMID:7603990

  15. Microscopy of Fission Yeast Sexual Lifecycle.

    PubMed

    Vjestica, Aleksandar; Merlini, Laura; Dudin, Omaya; Bendezu, Felipe O; Martin, Sophie G

    2016-01-01

    The fission yeast Schizosaccharomyces pombe has been an invaluable model system in studying the regulation of the mitotic cell cycle progression, the mechanics of cell division and cell polarity. Furthermore, classical experiments on its sexual reproduction have yielded results pivotal to current understanding of DNA recombination and meiosis. More recent analysis of fission yeast mating has raised interesting questions on extrinsic stimuli response mechanisms, polarized cell growth and cell-cell fusion. To study these topics in detail we have developed a simple protocol for microscopy of the entire sexual lifecycle. The method described here is easily adjusted to study specific mating stages. Briefly, after being grown to exponential phase in a nitrogen-rich medium, cell cultures are shifted to a nitrogen-deprived medium for periods of time suited to the stage of the sexual lifecycle that will be explored. Cells are then mounted on custom, easily built agarose pad chambers for imaging. This approach allows cells to be monitored from the onset of mating to the final formation of spores. PMID:27022830

  16. Nanomechanics of Yeast Surfaces Revealed by AFM

    NASA Astrophysics Data System (ADS)

    Dague, Etienne; Beaussart, Audrey; Alsteens, David

    Despite the large and well-documented characterization of the microbial cell wall in terms of chemical composition, the determination of the mechanical properties of surface molecules in relation to their function remains a key challenge in cell biology.The emergence of powerful tools allowing molecular manipulations has already revolutionized our understanding of the surface properties of fungal cells. At the frontier between nanophysics and molecular biology, atomic force microscopy (AFM), and more specifically single-molecule force spectroscopy (SMFS), has strongly contributed to our current knowledge of the cell wall organization and nanomechanical properties. However, due to the complexity of the technique, measurements on live cells are still at their infancy.In this chapter, we describe the cell wall composition and recapitulate the principles of AFM as well as the main current methodologies used to perform AFM measurements on live cells, including sample immobilization and tip functionalization.The current status of the progress in probing nanomechanics of the yeast surface is illustrated through three recent breakthrough studies. Determination of the cell wall nanostructure and elasticity is presented through two examples: the mechanical response of mannoproteins from brewing yeasts and elasticity measurements on lacking polysaccharide mutant strains. Additionally, an elegant study on force-induced unfolding and clustering of adhesion proteins located at the cell surface is also presented.

  17. [PSI(+) ] prion variant establishment in yeast.

    PubMed

    Sharma, Jaya; Liebman, Susan W

    2012-11-01

    Differences in the clinical pathology of mammalian prion diseases reflect distinct heritable conformations of aggregated PrP proteins, called prion strains. Here, using the yeast [PSI(+) ] prion, we examine the de novo establishment of prion strains (called variants in yeast). The [PSI(+) ] prion protein, Sup35, is efficiently induced to take on numerous prion variant conformations following transient overexpression of Sup35 in the presence of another prion, e.g. [PIN(+) ]. One hypothesis is that the first [PSI(+) ] prion seed to arise in a cell causes propagation of only that seed's variant, but that different variants could be initiated in different cells. However, we now show that even within a single cell, Sup35 retains the potential to fold into more than one variant type. When individual cells segregating different [PSI(+) ] variants were followed in pedigrees, establishment of a single variant phenotype generally occurred in daughters, granddaughters or great-granddaughters - but in 5% of the pedigrees cells continued to segregate multiple variants indefinitely. The data are consistent with the idea that many newly formed prions go through a maturation phase before they reach a single specific variant conformation. These findings may be relevant to mammalian PrP prion strain establishment and adaptation. PMID:22998111

  18. Quantitative analysis of colony morphology in yeast

    PubMed Central

    Ruusuvuori, Pekka; Lin, Jake; Scott, Adrian C.; Tan, Zhihao; Sorsa, Saija; Kallio, Aleksi; Nykter, Matti; Yli-Harja, Olli; Shmulevich, Ilya; Dudley, Aimée M.

    2014-01-01

    Microorganisms often form multicellular structures such as biofilms and structured colonies that can influence the organism’s virulence, drug resistance, and adherence to medical devices. Phenotypic classification of these structures has traditionally relied on qualitative scoring systems that limit detailed phenotypic comparisons between strains. Automated imaging and quantitative analysis have the potential to improve the speed and accuracy of experiments designed to study the genetic and molecular networks underlying different morphological traits. For this reason, we have developed a platform that uses automated image analysis and pattern recognition to quantify phenotypic signatures of yeast colonies. Our strategy enables quantitative analysis of individual colonies, measured at a single time point or over a series of time-lapse images, as well as the classification of distinct colony shapes based on image-derived features. Phenotypic changes in colony morphology can be expressed as changes in feature space trajectories over time, thereby enabling the visualization and quantitative analysis of morphological development. To facilitate data exploration, results are plotted dynamically through an interactive Yeast Image Analysis web application (YIMAA; http://yimaa.cs.tut.fi) that integrates the raw and processed images across all time points, allowing exploration of the image-based features and principal components associated with morphological development. PMID:24447135

  19. Production of glycolipid biosurfactants by basidiomycetous yeasts.

    PubMed

    Morita, Tomotake; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2009-05-01

    BSs (biosurfactants) produced by various micro-organisms show unique properties (e.g. mild production conditions, lower toxicity, higher biodegradability and environmental compatibility) compared with chemically synthesized surfactants. The numerous advantages of BSs have prompted applications not only in the food, cosmetic and pharmaceutical industries but also in environmental protection and energy-saving technology. Among BSs, glycolipid types are the most promising, owing to their high productivity from renewable resources and versatile biochemical properties. MELs (mannosylerythritol lipids), which are glycolipid BSs abundantly produced by basidiomycetous yeasts such as strains of Pseudozyma, exhibit not only excellent interfacial properties, but also remarkable differentiation-inducing activities against human leukaemia cells. MELs also show high binding affinity towards different immunoglobulins and lectins. Recently, a cationic liposome bearing MEL has been demonstrated to increase dramatically the efficiency of gene transfection into mammalian cells. These features of BSs should broaden their application in new advanced technologies. In the present review the current status of research and development on glycolipid BSs, especially their production by Pseudozyma yeasts, is described. PMID:19341364

  20. Mitochondrial ribosomal proteins (MRPs) of yeast.

    PubMed Central

    Graack, H R; Wittmann-Liebold, B

    1998-01-01

    Mitochondrial ribosomal proteins (MRPs) are the counterparts in that organelle of the cytoplasmic ribosomal proteins in the host. Although the MRPs fulfil similar functions in protein biosynthesis, they are distinct in number, features and primary structures from the latter. Most progress in the eludication of the properties of individual MRPs, and in the characterization of the corresponding genes, has been made in baker's yeast (Saccharomyces cerevisiae). To date, 50 different MRPs have been determined, although biochemical data and mutational analysis propose a total number which is substantially higher. Surprisingly, only a minority of the MRPs that have been characterized show significant sequence similarities to known ribosomal proteins from other sources, thus limiting the deduction of their functions by simple comparison of amino acid sequences. Further, individual MRPs have been characterized functionally by mutational studies, and the regulation of expression of MRP genes has been described. The interaction of the mitochondrial ribosomes with transcription factors specific for individual mitochondrial mRNAs, and the communication between mitochondria and the nucleus for the co-ordinated expression of ribosomal constituents, are other aspects of current MRP research. Although the mitochondrial translational system is still far from being described completely, the yeast MRP system serves as a model for other organisms, including that of humans. PMID:9445368

  1. Stationary phase in the yeast Saccharomyces cerevisiae.

    PubMed Central

    Werner-Washburne, M; Braun, E; Johnston, G C; Singer, R A

    1993-01-01

    Growth and proliferation of microorganisms such as the yeast Saccharomyces cerevisiae are controlled in part by the availability of nutrients. When proliferating yeast cells exhaust available nutrients, they enter a stationary phase characterized by cell cycle arrest and specific physiological, biochemical, and morphological changes. These changes include thickening of the cell wall, accumulation of reserve carbohydrates, and acquisition of thermotolerance. Recent characterization of mutant cells that are conditionally defective only for the resumption of proliferation from stationary phase provides evidence that stationary phase is a unique developmental state. Strains with mutations affecting entry into and survival during stationary phase have also been isolated, and the mutations have been shown to affect at least seven different cellular processes: (i) signal transduction, (ii) protein synthesis, (iii) protein N-terminal acetylation, (iv) protein turnover, (v) protein secretion, (vi) membrane biosynthesis, and (vii) cell polarity. The exact nature of the relationship between these processes and survival during stationary phase remains to be elucidated. We propose that cell cycle arrest coordinated with the ability to remain viable in the absence of additional nutrients provides a good operational definition of starvation-induced stationary phase. PMID:8393130

  2. Origins of multicellular evolvability in snowflake yeast

    PubMed Central

    Ratcliff, William C.; Fankhauser, Johnathon D.; Rogers, David W.; Greig, Duncan; Travisano, Michael

    2015-01-01

    Complex life has arisen through a series of ‘major transitions’ in which collectives of formerly autonomous individuals evolve into a single, integrated organism. A key step in this process is the origin of higher-level evolvability, but little is known about how higher-level entities originate and gain the capacity to evolve as an individual. Here we report a single mutation that not only creates a new level of biological organization, but also potentiates higher-level evolvability. Disrupting the transcription factor ACE2 in Saccharomyces cerevisiae prevents mother–daughter cell separation, generating multicellular ‘snowflake’ yeast. Snowflake yeast develop through deterministic rules that produce geometrically defined clusters that preclude genetic conflict and display a high broad-sense heritability for multicellular traits; as a result they are preadapted to multicellular adaptation. This work demonstrates that simple microevolutionary changes can have profound macroevolutionary consequences, and suggests that the formation of clonally developing clusters may often be the first step to multicellularity. PMID:25600558

  3. Mechanics of cell division in fission yeast

    NASA Astrophysics Data System (ADS)

    Chang, Fred

    2012-02-01

    Cytokinesis is the stage of cell division in which a cell divides into two. A paradigm of cytokinesis in animal cells is that the actomyosin contractile ring provides the primary force to squeeze the cell into two. In the fission yeast Schizosaccharomyces pombe, cytokinesis also requires a actomyosin ring, which has been generally assumed to provide the force for cleavage. However, in contrast to animal cells, yeast cells assemble a cell wall septum concomitant with ring contraction and possess large (MPa) internal turgor pressure. Here, we show that the inward force generated by the division apparatus opposes turgor pressure; a decrease in effective turgor pressure leads to an increase in cleavage rate. We show that the ring cannot be the primary force generator. Scaling arguments indicate that the contractile ring can only provide a tiny fraction of the mechanical stress required to overcome turgor. Further, we show that cleavage can occur even in the absence of the contractile ring. Instead of the contractile ring, scaling arguments and modeling suggest that the large forces for cytokinesis are produced by the assembly of cell wall polymers in the growing septum.

  4. METABOLIC REGULATION OF ADENOSINE TRIPHOSPHATE SULFURYLASE IN YEAST

    PubMed Central

    de Vito, Peter C.; Dreyfuss, Jacques

    1964-01-01

    de Vito, Peter C. (Princeton University, Princeton, N.J.), and Jacques Dreyfuss. Metabolic regulation of adenosine triphosphate sulfurylase in yeast. J. Bacteriol. 88:1341–1348. 1964.—The metabolic regulation of adenosine triphosphate sulfurylase (ATP-sulfurylase) from baker's yeast was studied. The enzyme was strongly inhibited by low concentrations of adenosine-5?-phosphosulfate, 3?-phosphoadenosine-5?-phosphosulfate, and sulfide. Sulfide ion was a competitive inhibitor of ATP-sulfurylase. Cysteine, methionine, sulfite, and thiosulfate were not inhibitors of the enzyme. ATP-sulfurylase was repressed when yeast was grown in the presence of methionine, and derepressed when yeast was grown in the presence of cysteine. In contrast to these results, the enzyme sulfite reductase was repressed in cysteine-grown cells. Thus, the sulfate-reducing pathway in yeast appears to be regulated at its first step both by feedback inhibition (by sulfide) and by repression (by methionine). Other known controls in the cysteine biosynthetic pathway are discussed. PMID:14234791

  5. New lager yeast strains generated by interspecific hybridization.

    PubMed

    Krogerus, Kristoffer; Magalhães, Frederico; Vidgren, Virve; Gibson, Brian

    2015-05-01

    The interspecific hybrid Saccharomyces pastorianus is the most commonly used yeast in brewery fermentations worldwide. Here, we generated de novo lager yeast hybrids by mating a domesticated and strongly flocculent Saccharomyces cerevisiae ale strain with the Saccharomyces eubayanus type strain. The hybrids were characterized with respect to the parent strains in a wort fermentation performed at temperatures typical for lager brewing (12 °C). The resulting beers were analysed for sugar and aroma compounds, while the yeasts were tested for their flocculation ability and ?-glucoside transport capability. These hybrids inherited beneficial properties from both parent strains (cryotolerance, maltotriose utilization and strong flocculation) and showed apparent hybrid vigour, fermenting faster and producing beer with higher alcohol content (5.6 vs 4.5 % ABV) than the parents. Results suggest that interspecific hybridization is suitable for production of novel non-GM lager yeast strains with unique properties and will help in elucidating the evolutionary history of industrial lager yeast. PMID:25682107

  6. Tolerance of budding yeast Saccharomyces cerevisiae to ultra high pressure

    NASA Astrophysics Data System (ADS)

    Shibata, M.; Torigoe, M.; Matsumoto, Y.; Yamamoto, M.; Takizawa, N.; Hada, Y.; Mori, Y.; Takarabe, K.; Ono, F.

    2014-05-01

    Our studies on the tolerance of plants and animals against very high pressure of several GPa have been extended to a smaller sized fungus, the budding yeast Saccharomyces cerevisiae. Several pieces of budding yeast (dry yeast) were sealed in a small teflon capsule with a liquid pressure medium fluorinate, and exposed to 7.5 GPa by using a cubic anvil press. The pressure was kept constant for various duration of time from 2 to 24 h. After the pressure was released, the specimens were brought out from the teflon capsule, and they were cultivated on a potato dextrose agar. It was found that the budding yeast exposed to 7.5 GPa for up to 6 h showed multiplication. However, those exposed to 7.5 GPa for longer than 12 h were found dead. The high pressure tolerance of budding yeast is a little weaker than that of tardigrades.

  7. [Yeasts of the Vineyards in Dagestan and Other Regions].

    PubMed

    Kachalkin, A V; Abdullabekova, D A; Magomedova, E S; Magomedov, G G; Chernov, I Yu

    2015-01-01

    Long-term studies of yeast species diversity in the vineyards of the Republic of Dagestan using various isolation techniques and various substrates in the vertical tier dynamics revealed 38 species. The most diverse species complex including -80% of the isolated species was formed on the berries. A list of 160 yeast species isolated from grapes, spontaneously fermented fresh juice, and other vineyard substrates was compiled using the results of the present work and the literature data on yeast occurrence. Analysis of generalized data revealed considerable similarity in the taxonomic composition of yeasts from different countries and continents and made it possible to shift from the genus to the species characterization of the grape-associated yeast community. PMID:26263696

  8. Yeast cell factories for fine chemical and API production.

    PubMed

    Pscheidt, Beate; Glieder, Anton

    2008-01-01

    This review gives an overview of different yeast strains and enzyme classes involved in yeast whole-cell biotransformations. A focus was put on the synthesis of compounds for fine chemical and API (= active pharmaceutical ingredient) production employing single or only few-step enzymatic reactions. Accounting for recent success stories in metabolic engineering, the construction and use of synthetic pathways was also highlighted. Examples from academia and industry and advances in the field of designed yeast strain construction demonstrate the broad significance of yeast whole-cell applications. In addition to Saccharomyces cerevisiae, alternative yeast whole-cell biocatalysts are discussed such as Candida sp., Cryptococcus sp., Geotrichum sp., Issatchenkia sp., Kloeckera sp., Kluyveromyces sp., Pichia sp. (including Hansenula polymorpha = P. angusta), Rhodotorula sp., Rhodosporidium sp., alternative Saccharomyces sp., Schizosaccharomyces pombe, Torulopsis sp., Trichosporon sp., Trigonopsis variabilis, Yarrowia lipolytica and Zygosaccharomyces rouxii. PMID:18684335

  9. Genetic and phenotypic characteristics of baker's yeast: relevance to baking.

    PubMed

    Randez-Gil, Francisca; Córcoles-Sáez, Isaac; Prieto, José A

    2013-01-01

    Yeasts rarely encounter ideal physiological conditions during their industrial life span; therefore, their ability to adapt to changing conditions determines their usefulness and applicability. This is especially true for baking strains of Saccharomyces cerevisiae. The success of this yeast in the ancient art of bread making is based on its capacity to rapidly transform carbohydrates into CO2 rather than its unusual resistance to environmental stresses. Moreover, baker's yeast must exhibit efficient respiratory metabolism during yeast manufacturing, which determines biomass yield. However, optimal growth conditions often have negative consequences in other commercially important aspects, such as fermentative power or stress tolerance. This article reviews the genetic and physiological characteristics of baking yeast strains, emphasizing the activation of regulatory mechanisms in response to carbon source and stress signaling and their importance in defining targets for strain selection and improvement. PMID:23464571

  10. Yeast diversity and native vigor for flavor phenotypes.

    PubMed

    Carrau, Francisco; Gaggero, Carina; Aguilar, Pablo S

    2015-03-01

    Saccharomyces cerevisiae, the yeast used widely for beer, bread, cider, and wine production, is the most resourceful eukaryotic model used for genetic engineering. A typical concern about using engineered yeasts for food production might be negative consumer perception of genetically modified organisms. However, we believe the true pitfall of using genetically modified yeasts is their limited capacity to either refine or improve the sensory properties of fermented foods under real production conditions. Alternatively, yeast diversity screening to improve the aroma and flavors could offer groundbreaking opportunities in food biotechnology. We propose a 'Yeast Flavor Diversity Screening' strategy which integrates knowledge from sensory analysis and natural whole-genome evolution with information about flavor metabolic networks and their regulation. PMID:25630239

  11. Yeast cell factories for fine chemical and API production

    PubMed Central

    Pscheidt, Beate; Glieder, Anton

    2008-01-01

    This review gives an overview of different yeast strains and enzyme classes involved in yeast whole-cell biotransformations. A focus was put on the synthesis of compounds for fine chemical and API (= active pharmaceutical ingredient) production employing single or only few-step enzymatic reactions. Accounting for recent success stories in metabolic engineering, the construction and use of synthetic pathways was also highlighted. Examples from academia and industry and advances in the field of designed yeast strain construction demonstrate the broad significance of yeast whole-cell applications. In addition to Saccharomyces cerevisiae, alternative yeast whole-cell biocatalysts are discussed such as Candida sp., Cryptococcus sp., Geotrichum sp., Issatchenkia sp., Kloeckera sp., Kluyveromyces sp., Pichia sp. (including Hansenula polymorpha = P. angusta), Rhodotorula sp., Rhodosporidium sp., alternative Saccharomyces sp., Schizosaccharomyces pombe, Torulopsis sp., Trichosporon sp., Trigonopsis variabilis, Yarrowia lipolytica and Zygosaccharomyces rouxii. PMID:18684335

  12. Yeast species associated with wine grapes in China.

    PubMed

    Li, Shuang-Shi; Cheng, Chao; Li, Zheng; Chen, Jing-Yu; Yan, Bin; Han, Bei-Zhong; Reeves, Malcolm

    2010-03-31

    Having more information on the yeast ecology of grapes is important for wine-makers to produce wine with high quality and typical attributes. China is a significant wine-consuming country and is becoming a serious wine-producer, but little has been reported about the yeast ecology of local ecosystems. This study provides the first step towards the exploitation of the yeast wealth in China's vine-growing regions. The aim of this study was to investigate the yeast population density and diversity on three grape varieties cultivated in four representative vine-growing regions of China. Yeast species diversity was evaluated by using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and sequence analysis of the 5.8S internal transcribed spacer (ITS) ribosomal DNA (rDNA) region of cultivable yeasts. The grapes harbored yeast populations at 10(2)-10(6)CFU/mL, consisting mostly of non-Saccharomyces species. Seventeen different yeast species belonging to eight genera were detected on the grape samples tested, including Hanseniaspora uvarum, Cryptococcus flavescens, Pichia fermentans, Candida zemplinina, Cryptococcus carnescens, Candida inconpicua, Zygosaccharomyces fermentati, Issatchenkia terricola, Candida quercitrusa, Hanseniaspora guilliermondii, Candida bombi, Zygosaccharomyces bailii, Sporidiobolus pararoseus, Cryptococcus magnus, Metschnikowia pulcherrima, Issatchenkia orientalis and Pichia guilliermondii. H. uvarum and C. flavescens were the dominant species present on the grapes. For the first time Sporidiobolus pararoseus was discovered as an inhabitant of the grape ecosystem. The yeast community on grape berries was influenced by the grape chemical composition, vine-variety and vine-growing region. This study is the first to identify the yeast communities associated with grapes in China using molecular methods. The results enrich our knowledge of wine-related microorganisms, and can be used to promote the development of the local wine industry. PMID:20116124

  13. Interactive effects of yeast and yeast cell wall material on feedlot performance during the receiving period of stressed beef cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this experiment was to determine the potential effects of live yeast and yeast cell wall supplements on performance and health of cattle during the receiving period. Newly-weaned crossbred steers (n = 184; 9 pens/treatment; BW = 203 +/- SEM kg) were blocked by BW and randomly assign...

  14. Introducing a new breed of wine yeast: interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast and Saccharomyces mikatae.

    PubMed

    Bellon, Jennifer R; Schmid, Frank; Capone, Dimitra L; Dunn, Barbara L; Chambers, Paul J

    2013-01-01

    Interspecific hybrids are commonplace in agriculture and horticulture; bread wheat and grapefruit are but two examples. The benefits derived from interspecific hybridisation include the potential of generating advantageous transgressive phenotypes. This paper describes the generation of a new breed of wine yeast by interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast strain and Saccharomyces mikatae, a species hitherto not associated with industrial fermentation environs. While commercially available wine yeast strains provide consistent and reliable fermentations, wines produced using single inocula are thought to lack the sensory complexity and rounded palate structure obtained from spontaneous fermentations. In contrast, interspecific yeast hybrids have the potential to deliver increased complexity to wine sensory properties and alternative wine styles through the formation of novel, and wider ranging, yeast volatile fermentation metabolite profiles, whilst maintaining the robustness of the wine yeast parent. Screening of newly generated hybrids from a cross between a S. cerevisiae wine yeast and S. mikatae (closely-related but ecologically distant members of the Saccharomyces sensu stricto clade), has identified progeny with robust fermentation properties and winemaking potential. Chemical analysis showed that, relative to the S. cerevisiae wine yeast parent, hybrids produced wines with different concentrations of volatile metabolites that are known to contribute to wine flavour and aroma, including flavour compounds associated with non-Saccharomyces species. The new S. cerevisiae x S. mikatae hybrids have the potential to produce complex wines akin to products of spontaneous fermentation while giving winemakers the safeguard of an inoculated ferment. PMID:23614011

  15. Introducing a New Breed of Wine Yeast: Interspecific Hybridisation between a Commercial Saccharomyces cerevisiae Wine Yeast and Saccharomyces mikatae

    PubMed Central

    Bellon, Jennifer R.; Schmid, Frank; Capone, Dimitra L.; Dunn, Barbara L.; Chambers, Paul J.

    2013-01-01

    Interspecific hybrids are commonplace in agriculture and horticulture; bread wheat and grapefruit are but two examples. The benefits derived from interspecific hybridisation include the potential of generating advantageous transgressive phenotypes. This paper describes the generation of a new breed of wine yeast by interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast strain and Saccharomyces mikatae, a species hitherto not associated with industrial fermentation environs. While commercially available wine yeast strains provide consistent and reliable fermentations, wines produced using single inocula are thought to lack the sensory complexity and rounded palate structure obtained from spontaneous fermentations. In contrast, interspecific yeast hybrids have the potential to deliver increased complexity to wine sensory properties and alternative wine styles through the formation of novel, and wider ranging, yeast volatile fermentation metabolite profiles, whilst maintaining the robustness of the wine yeast parent. Screening of newly generated hybrids from a cross between a S. cerevisiae wine yeast and S. mikatae (closely-related but ecologically distant members of the Saccharomyces sensu stricto clade), has identified progeny with robust fermentation properties and winemaking potential. Chemical analysis showed that, relative to the S. cerevisiae wine yeast parent, hybrids produced wines with different concentrations of volatile metabolites that are known to contribute to wine flavour and aroma, including flavour compounds associated with non-Saccharomyces species. The new S. cerevisiae x S. mikatae hybrids have the potential to produce complex wines akin to products of spontaneous fermentation while giving winemakers the safeguard of an inoculated ferment. PMID:23614011

  16. Antifungal susceptibility of emerging opportunistic yeasts and yeast-like fungi from Rhea americana.

    PubMed

    de Aguiar Cordeiro, Rossana; Pereira de Alencar, Lucas; Nogueira Brilhante, Raimunda Sâmia; de Souza Collares Maia Castelo-Branco, Débora; Cordeiro Teixeira, Carlos Eduardo; de Brito Macedo, Ramila; Teixeira Lima, Daniel; Paiva de Araújo Neto, Manoel; Jalles Monteiro, André; Dutra Alves, Nilza; Franco de Oliveira, Moacir; Costa Sidrim, José Júlio; Rocha Gadelha, Marcos Fábio

    2013-08-01

    Opportunistic yeasts and yeast-like fungi have been recognized as important pathogens in high-risk patients. This study aimed to evaluate the presence of these microorganisms in the microbiota of captive rheas and to investigate the antifungal susceptibility of the isolated strains. Isolates representing Magnusiomyces capitatus (Geotrichum capitatum, n = 11), Trichosporon mucoides (n = 11), Trichosporon asteroides (n = 5), Rhodotorula mucilaginosa (n = 4), Trichosporon asahii (n = 3), Trichosporon cutaneum (n = 3), and Trichosporon ovoides (n = 3) were obtained from the oropharynx, cloaca, and feces of 58 animals. Most of the isolates were susceptible to antifungals in vitro; however, resistance against fluconazole (n = 1) and itraconazole (n = 2) was detected among T. mucoides. This study indicates that healthy rheas can be reservoirs of opportunistic pathogens. Primary resistance to azoles in T. mucoides obtained from these animals demonstrates the potential risk to humans. PMID:23899001

  17. A Proteome-wide Fission Yeast Interactome Reveals Network Evolution Principles from Yeasts to Human.

    PubMed

    Vo, Tommy V; Das, Jishnu; Meyer, Michael J; Cordero, Nicolas A; Akturk, Nurten; Wei, Xiaomu; Fair, Benjamin J; Degatano, Andrew G; Fragoza, Robert; Liu, Lisa G; Matsuyama, Akihisa; Trickey, Michelle; Horibata, Sachi; Grimson, Andrew; Yamano, Hiroyuki; Yoshida, Minoru; Roth, Frederick P; Pleiss, Jeffrey A; Xia, Yu; Yu, Haiyuan

    2016-01-14

    Here, we present FissionNet, a proteome-wide binary protein interactome for S. pombe, comprising 2,278 high-quality interactions, of which ?50% were previously not reported in any species. FissionNet unravels previously unreported interactions implicated in processes such as gene silencing and pre-mRNA splicing. We developed a rigorous network comparison framework that accounts for assay sensitivity and specificity, revealing extensive species-specific network rewiring between fission yeast, budding yeast, and human. Surprisingly, although genes are better conserved between the yeasts, S. pombe interactions are significantly better conserved in human than in S. cerevisiae. Our framework also reveals that different modes of gene duplication influence the extent to which paralogous proteins are functionally repurposed. Finally, cross-species interactome mapping demonstrates that coevolution of interacting proteins is remarkably prevalent, a result with important implications for studying human disease in model organisms. Overall, FissionNet is a valuable resource for understanding protein functions and their evolution. PMID:26771498

  18. Biocavity laser spectroscopy of genetically altered yeast cells and isolated yeast mitochondria

    NASA Astrophysics Data System (ADS)

    Gourley, Paul L.; Hendricks, Judy K.; McDonald, Anthony E.; Copeland, R. Guild; Naviaux, Robert K.; Yaffe, Michael P.

    2006-02-01

    We report an analysis of 2 yeast cell mutants using biocavity laser spectroscopy. The two yeast strains differed only by the presence or absence of mitochondrial DNA. Strain 104 is a wild-type (? +) strain of the baker's yeast, Saccharomyces cerevisiae. Strain 110 was derived from strain 104 by removal of its mitochondrial DNA (mtDNA). Removal of mtDNA causes strain 110 to grow as a "petite" (? -), named because it forms small colonies (of fewer cells because it grows more slowly) on agar plates supplemented with a variety of different carbon sources. The absence of mitochondrial DNA results in the complete loss of all the mtDNA-encoded proteins and RNAs, and loss of the pigmented, heme-containing cytochromes a and b. These cells have mitochondria, but the mitochondria lack the normal respiratory chain complexes I, III, IV, and V. Complex II is preserved because its subunits are encoded by genes located in nuclear DNA. The frequency distributions of the peak shifts produced by wild-type and petite cells and mitochondria show striking differences in the symmetry and patterns of the distributions. Wild-type ? + cells (104) and mitochondria produced nearly symmetric, Gaussian distributions. The ? - cells (110) and mitochondria showed striking asymmetry and skew that appeared to follow a Poisson distribution.

  19. Biosynthesis of Crystalline Silver and Gold Nanoparticles by Extremophilic Yeasts

    PubMed Central

    Mourato, Ana; Gadanho, Mário; Lino, Ana R.; Tenreiro, Rogério

    2011-01-01

    The biosynthesis of Ag and Au nanoparticles (NPs) was investigated using an extremophilic yeast strain isolated from acid mine drainage in Portugal. Three distinct studies were performed, namely, the growth of yeast strain in presence of metal ions, the use of yeast biomass for the metal nanoparticles synthesis, and of the supernatant obtained after 24-hour incubation of yeast biomass in water. The extremophilic strain under study was able to grow up to an Ag ion concentration of 1.5?mM whereas an increase of Au ion concentration over 0.09?mM caused a strong inhibitory effect. A successful route for the metal NPs synthesis was obtained using the yeast biomass. When the washed yeast cells were in contact with Ag or Au solutions, AgNPs smaller than 20?nm were produced, as for the AuNPs diameter ranged from 30 to 100?nm, as determined through transmission electron microscopy and confirmed by energy-dispersive X-ray spectra. The supernatant-based strategy provided evidence that proteins were released to the medium by the yeasts, which could be responsible for the formation and stabilisation of the Ag NPs, although the involvement of the cell wall seems fundamental for AuNPs synthesis. PMID:21912532

  20. The beetle gut: a hyperdiverse source of novel yeasts

    PubMed Central

    SUH, Sung-Oui; McHUGH, Joseph V.; POLLOCK, David D.; BLACKWELL, Meredith

    2010-01-01

    We isolated over 650 yeasts over a three year period from the gut of a variety of beetles and characterized them on the basis of LSU rDNA sequences and morphological and metabolic traits. Of these, at least 200 were undescribed taxa, a number equivalent to almost 30% of all currently recognized yeast species. A Bayesian analysis of species discovery rates predicts further sampling of previously sampled habitats could easily produce another 100 species. The sampled habitat is, thereby, estimated to contain well over half as many more species as are currently known worldwide. The beetle gut yeasts occur in 45 independent lineages scattered across the yeast phylogenetic tree, often in clusters. The distribution suggests that the some of the yeasts diversified by a process of horizontal transmission in the habitats and subsequent specialization in association with insect hosts. Evidence of specialization comes from consistent associations over time and broad geographical ranges of certain yeast and beetle species. The discovery of high yeast diversity in a previously unexplored habitat is a first step toward investigating the basis of the interactions and their impact in relation to ecology and evolution. PMID:15912941

  1. Characterization of isolated yeast growth response to methionine analogs.

    PubMed

    Saengkerdsub, Suwat; Lingbeck, Jody M; Wilkinson, Heather H; O'Bryan, Corliss A; Crandall, Philip G; Muthaiyan, Arunachalam; Biswas, Debabrata; Ricke, Steven C

    2013-01-01

    Methionine is one of the first limiting amino acids in poultry nutrition. The use of methionine-rich natural feed ingredients, such as soybean meal or rapeseed meal may lead to negative environmental consequences. Amino acid supplementation leads to reduced use of protein-rich ingredients. The objectives of this study were isolation of potentially high content methionine-containing yeasts, quantification of methionine content in yeasts and their respective growth response to methionine analogs. Minimal medium was used as the selection medium and the isolation medium of methionine-producing yeasts from yeast collection and environmental samples, respectively. Two yeasts previously collected along with six additional strains isolated from Caucasian kefir grains, air-trapped, cantaloupe, and three soil samples could grow on minimal medium. Only two of the newly isolated strains, K1 and C1, grew in minimal medium supplied with either methionine analogs ethionine or norleucine at 0.5% (w/v). Based on large subunit rRNA sequences, these isolated strains were identified as Pichia udriavzevii/Issatchenkia orientalis. P. kudriavzevii/I. orentalis is a generally recognized as a safe organism. In addition, methionine produced by K1 and C1 yeast hydrolysate yielded 1.3 ± 0.01 and 1.1 ± 0.01 mg g(-1) dry cell. Yeast strain K1 may be suitable as a potential source of methionine for dietary supplements in organic poultry feed but may require growth conditions to further increase their methionine content. PMID:24007489

  2. Yeast cell-based analysis of human lactate dehydrogenase isoforms.

    PubMed

    Mohamed, Lulu Ahmed; Tachikawa, Hiroyuki; Gao, Xiao-Dong; Nakanishi, Hideki

    2015-12-01

    Human lactate dehydrogenase (LDH) has attracted attention as a potential target for cancer therapy and contraception. In this study, we reconstituted human lactic acid fermentation in Saccharomyces cerevisiae, with the goal of constructing a yeast cell-based LDH assay system. pdc null mutant yeast (mutated in the endogenous pyruvate decarboxylase genes) are unable to perform alcoholic fermentation; when grown in the presence of an electron transport chain inhibitor, pdc null strains exhibit a growth defect. We found that introduction of the human gene encoding LDHA complemented the pdc growth defect; this complementation depended on LDHA catalytic activity. Similarly, introduction of the human LDHC complemented the pdc growth defect, even though LDHC did not generate lactate at the levels seen with LDHA. In contrast, the human LDHB did not complement the yeast pdc null mutant, although LDHB did generate lactate in yeast cells. Expression of LDHB as a red fluorescent protein (RFP) fusion yielded blebs in yeast, whereas LDHA-RFP and LDHC-RFP fusion proteins exhibited cytosolic distribution. Thus, LDHB exhibits several unique features when expressed in yeast cells. Because yeast cells are amenable to genetic analysis and cell-based high-throughput screening, our pdc/LDH strains are expected to be of use for versatile analyses of human LDH. PMID:26126931

  3. A simplified procedure to analyse mitochondrial DNA from industrial yeasts.

    PubMed

    López, V; Querol, A; Ramón, D; Fernández-Espinar, M T

    2001-08-15

    A rapid method based on mtDNA restriction analysis is described for yeast strain identification. The method is an adaptation of that devised by Querol et a]. [Syst. Appl. Microbiol. 15 (1992) 439] for Saccharomyces cerevisiae wine strains, and consists of the standard miniprep isolation of yeast total DNA, and the use of restriction endonucleases that recognise a large number of sites in yeast nuclear DNA, but few sites in the mitochondrial DNA. In the adapted method, the propagation of yeast cells and restriction analysis were the steps mainly affected: cell growth was reduced to 36 h by using microfuge tubes, and the restriction analysis was carried out in just 33 min using a microwave oven for DNA digestion, and minigels for restriction fragment separation. The DNA extraction procedure was performed in the same way as in the original protocol. but slightly reducing the duration of each step and scaling down the volumes of the different solutions. enzymes and reagents used. As result, a large time reduction (52.5 h) was obtained compared to the original method. The DNA obtained can be directly digested with endonucleases displaying clear restriction patterns useful for S. cerevisiae yeast strain differentiation. In addition, strains belonging to other foodborne yeast species, including spoilage yeast species, can also be identified. PMID:11545223

  4. Accumulation and metabolism of selenium by yeast cells.

    PubMed

    Kieliszek, Marek; B?a?ejak, Stanis?aw; Gientka, Iwona; Bzducha-Wróbel, Anna

    2015-07-01

    This paper examines the process of selenium bioaccumulation and selenium metabolism in yeast cells. Yeast cells can bind elements in ionic from the environment and permanently integrate them into their cellular structure. Up to now, Saccharomyces cerevisiae, Candida utilis, and Yarrowia lipolytica yeasts have been used primarily in biotechnological studies to evaluate binding of minerals. Yeast cells are able to bind selenium in the form of both organic and inorganic compounds. The process of bioaccumulation of selenium by microorganisms occurs through two mechanisms: extracellular binding by ligands of membrane assembly and intracellular accumulation associated with the transport of ions across the cytoplasmic membrane into the cell interior. During intracellular metabolism of selenium, oxidation, reduction, methylation, and selenoprotein synthesis processes are involved, as exemplified by detoxification processes that allow yeasts to survive under culture conditions involving the elevated selenium concentrations which were observed. Selenium yeasts represent probably the best absorbed form of this element. In turn, in terms of wide application, the inclusion of yeast with accumulated selenium may aid in lessening selenium deficiency in a diet. PMID:26003453

  5. Advances in Gene Expression in Non-Conventional Yeasts

    NASA Astrophysics Data System (ADS)

    Nel, Sanet; Labuschagne, Michel; Albertyn, Jacobus

    Yeast has been a favoured lower eukaryotic system for the expression and production of recombinant proteins for both basic research and practical applications, and the demand for foreign-gene expression systems is increasing rapidly. Despite the vast amount of information on the molecular biology and physiology of Saccharomyces cerevisiae, which has consequently been the first choice as host system for recombinant protein production in the past, several limitations have been identified in this expression system. These limitations have recently been relieved by the development of expression systems in other yeast species known as ‘ non-conventional yeasts’ or ‘non-Saccharomyces ’ yeasts. With the increasing interest in the biotechnological applications of these yeasts in applied and fundamental studies and processes, the term ‘ non-conventional ’ yeast may well soon become redundant. As there is no universal expression system for heterologous protein production, it is necessary to recognize the merits and demerits of each system in order to make a right choice. This chapter will evaluate the competitive environment of non-conventional expression platforms represented by some of the best-known alternative yeasts systems including Kluyveromyces lactis, Yarrowia lipolytica, Hansenula polymorpha, Pichia pastoris and more recently, Arxula adeninivorans.

  6. Yeast Biomass Production in Brewery's Spent Grains Hemicellulosic Hydrolyzate

    NASA Astrophysics Data System (ADS)

    Duarte, Luís C.; Carvalheiro, Florbela; Lopes, Sónia; Neves, Ines; Gírio, Francisco M.

    Yeast single-cell protein and yeast extract, in particular, are two products which have many feed, food, pharmaceutical, and biotechnological applications. However, many of these applications are limited by their market price. Specifically, the yeast extract requirements for culture media are one of the major technical hurdles to be overcome for the development of low-cost fermentation routes for several top value chemicals in a biorefinery framework. A potential biotechnical solution is the production of yeast biomass from the hemicellulosic fraction stream. The growth of three pentose-assimilating yeast cell factories, Debaryomyces hansenii, Kluyveromyces marxianus, and Pichia stipitis was compared using non-detoxified brewery's spent grains hemicellulosic hydrolyzate supplemented with mineral nutrients. The yeasts exhibited different specific growth rates, biomass productivities, and yields being D. hansenii as the yeast species that presented the best performance, assimilating all sugars and noteworthy consuming most of the hydrolyzate inhibitors. Under optimized conditions, D. hansenii displayed a maximum specific growth rate, biomass yield, and productivity of 0.34 h-1, 0.61 g g-1, and 0.56 g 1-1 h-1, respectively. The nutritional profile of D. hansenii was thoroughly evaluated, and it compares favorably to others reported in literature. It contains considerable amounts of some essential amino acids and a high ratio of unsaturated over saturated fatty acids.

  7. The catalytic subunit of yeast?telomerase

    PubMed Central

    Counter, Christopher M.; Meyerson, Matthew; Eaton, Elinor Ng; Weinberg, Robert A.

    1997-01-01

    Telomerase is an RNA-directed DNA polymerase, composed of RNA and protein subunits, that replicates the telomere ends of linear eukaryotic chromosomes. Using a genetic strategy described here, we identify the product of the EST2 gene, Est2p, as a subunit of telomerase in the yeast Saccharomyces cerevisiae. Est2p is required for enzyme catalysis, as mutations in EST2 were found to result in the absence of telomerase activity. Immunochemical experiments show that Est2p is an integral subunit of the telomerase enzyme. Critical catalytic residues present in RNA-directed DNA polymerases are conserved in Est2p; mutation of one such residue abolishes telomerase activity, suggesting a direct catalytic role for Est2p. PMID:9256460

  8. Microtubules mediate mitochondrial distribution in fission yeast.

    PubMed Central

    Yaffe, M P; Harata, D; Verde, F; Eddison, M; Toda, T; Nurse, P

    1996-01-01

    The Schizosaccharomyces pombe mutant, ban5-4, displays aberrant mitochondrial distribution. Incubation of this conditional-lethal mutant at the nonpermissive temperature led to aggregated mitochondria that were distributed asymmetrically within the cell. Development of this mitochondrial asymmetry but not mitochondrial aggregation required progression through the cell division cycle. Genetic analysis revealed that ban5-4 is an allele of atb2 encoding alpha 2-tubulin. Consistent with this finding, cells with the cold-sensitive nda3 mutation in beta-tubulin displayed aggregated and asymmetrically distributed mitochondria after incubation at lowered temperatures. These results indicate that microtubules mediate mitochondrial distribution in fission yeast and provide the first genetic evidence for the role of microtubules in mitochondrial movement. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8876193

  9. Expansion of Interstitial Telomeric Sequences in Yeast.

    PubMed

    Aksenova, Anna Y; Han, Gil; Shishkin, Alexander A; Volkov, Kirill V; Mirkin, Sergei M

    2015-11-24

    Telomeric repeats located within chromosomes are called interstitial telomeric sequences (ITSs). They are polymorphic in length and are likely hotspots for initiation of chromosomal rearrangements that have been linked to human disease. Using our S. cerevisiae system to study repeat-mediated genome instability, we have previously shown that yeast telomeric (Ytel) repeats induce various gross chromosomal rearrangements (GCR) when their G-rich strands serve as the lagging strand template for replication (G orientation). Here, we show that interstitial Ytel repeats in the opposite C orientation prefer to expand rather than cause GCR. A tract of eight Ytel repeats expands at a rate of 4 × 10(-4) per replication, ranking them among the most expansion-prone DNA microsatellites. A candidate-based genetic analysis implicates both post-replication repair and homologous recombination pathways in the expansion process. We propose a model for Ytel repeat expansions and discuss its applications for genome instability and alternative telomere lengthening (ALT). PMID:26586439

  10. Selection for Early Meiotic Mutants in Yeast

    PubMed Central

    Mitchell, A. P.; Bowdish, K. S.

    1992-01-01

    In the yeast Saccharomyces cerevisiae, only a/? cells can enter meiosis; a and ? cells cannot. Because a/? cells are typically diploid and a and ? cells are typically haploid, this cell type restriction ensures that only diploid cells enter meiosis. Entry into meiosis is accompanied by an increase in expression of the IME1 gene; the IME1 product (IME1) then activates IME2 and other meiotic genes. We have found that IME1 expression is toxic to starved haploid cells, presumably because IME1 directs them into meiosis. IME1 toxicity is greater in rad52 mutants, in which meiotic recombination causes lethal damage. Suppressors of IME1 toxicity include recessive mutations in two genes, RIM11 and RIM16 (Regulator of Inducer of Meiosis), that are required for IME1 to activate IME2 expression. RIM11 maps near CIN4 on chromosome XIII. PMID:1592244

  11. Immunosuppressive decalin derivatives from red yeast rice.

    PubMed

    Zhu, Lin; Lu, Jing-Guang; Li, Ting; Zhu, Guo-Yuan; Han, Quan-Bin; Hsiao, Wen-Luan; Liu, Liang; Jiang, Zhi-Hong

    2012-04-27

    Five new decalin derivatives (1-5), together with two known compounds (6 and 7), were isolated from the ethyl acetate extract of red yeast rice. Their structures were elucidated by means of NMR and mass spectroscopic analyses. Monascusic lactone A (1) is the first reported naturally occurring decalin derivative possessing a spiro lactone at the C-1 position. The immunosuppressive effects of all these isolates (1-7) on human T cell proliferation were investigated, and all, especially monascusic acids B (2), C (3), D (4), and A (6) and heptaketide (7), suppressed human T cell proliferation in a dose-dependent manner from 10 to 100 μM. This is the first report on the immunosuppressive activity of decalin derivatives. PMID:22394155

  12. Biofuels. Engineering alcohol tolerance in yeast.

    PubMed

    Lam, Felix H; Ghaderi, Adel; Fink, Gerald R; Stephanopoulos, Gregory

    2014-10-01

    Ethanol toxicity in the yeast Saccharomyces cerevisiae limits titer and productivity in the industrial production of transportation bioethanol. We show that strengthening the opposing potassium and proton electrochemical membrane gradients is a mechanism that enhances general resistance to multiple alcohols. The elevation of extracellular potassium and pH physically bolsters these gradients, increasing tolerance to higher alcohols and ethanol fermentation in commercial and laboratory strains (including a xylose-fermenting strain) under industrial-like conditions. Production per cell remains largely unchanged, with improvements deriving from heightened population viability. Likewise, up-regulation of the potassium and proton pumps in the laboratory strain enhances performance to levels exceeding those of industrial strains. Although genetically complex, alcohol tolerance can thus be dominated by a single cellular process, one controlled by a major physicochemical component but amenable to biological augmentation. PMID:25278607

  13. Elucidation of novel budding yeast separase mutants.

    PubMed

    Shimizu, Yoshihito; Nagai, Masayoshi; Yeasmin, Akter Mst; Koike, Naoki; Talukdar, Muhammad Waliullah; Ushimaru, Takashi

    2016-03-01

    The mitotic separase cleaves Scc1 in cohesin to allow sister chromatids to separate from each other upon anaphase onset. Separase is also required for DNA damage repair. Here, we isolated and characterized 10 temperature-sensitive (ts) mutants of separase ESP1 in the budding yeast Saccharomyces cerevisiae. All mutants were defective in sister chromatid separation at the restricted temperature. Some esp1-ts mutants were hypersensitive to the microtubule poison benomyl and/or the DNA-damaging agent bleomycin. Overexpression of securin alleviated the growth defect in some esp1-ts mutants, whereas it rather exacerbated it in others. The Drosophila Pumilio homolog MPT5 was isolated as a high-dosage suppressor of esp1-ts cells. We discuss various features of separase based on these findings. PMID:26523765

  14. Calling Card Analysis in Budding Yeast.

    PubMed

    Mayhew, David; Mitra, Robi D

    2016-01-01

    Calling card analysis is a high-throughput method for identifying the genomic binding sites of multiple transcription factors in a single experiment in budding yeast. By tagging a DNA-binding protein with a targeting domain that directs the insertion of the Ty5 retrotransposon, the genomic binding sites for that transcription factor are marked. The transposition locations are then identified en masse by Illumina sequencing. The calling card protocol allows for simultaneous analysis of multiple transcription factors. By cloning barcodes into the Ty5 transposon, it is possible to pair a unique barcode with every transcription factor in the experiment. The method presented here uses expression of transcription factors from their native loci; however, it can also be altered to measure binding sites of transcription factors overexpressed from a plasmid. PMID:26832687

  15. Lipid Acyl Chain Remodeling in Yeast

    PubMed Central

    Renne, Mike F.; Bao, Xue; De Smet, Cedric H.; de Kroon, Anton I. P. M.

    2015-01-01

    Membrane lipid homeostasis is maintained by de novo synthesis, intracellular transport, remodeling, and degradation of lipid molecules. Glycerophospholipids, the most abundant structural component of eukaryotic membranes, are subject to acyl chain remodeling, which is defined as the post-synthetic process in which one or both acyl chains are exchanged. Here, we review studies addressing acyl chain remodeling of membrane glycerophospholipids in Saccharomyces cerevisiae, a model organism that has been successfully used to investigate lipid synthesis and its regulation. Experimental evidence for the occurrence of phospholipid acyl chain exchange in cardiolipin, phosphatidylcholine, phosphatidylinositol, and phosphatidylethanolamine is summarized, including methods and tools that have been used for detecting remodeling. Progress in the identification of the enzymes involved is reported, and putative functions of acyl chain remodeling in yeast are discussed. PMID:26819558

  16. Cell population modelling of yeast glycolytic oscillations.

    PubMed Central

    Henson, Michael A; Müller, Dirk; Reuss, Matthias

    2002-01-01

    We investigated a cell-population modelling technique in which the population is constructed from an ensemble of individual cell models. The average value or the number distribution of any intracellular property captured by the individual cell model can be calculated by simulation of a sufficient number of individual cells. The proposed method is applied to a simple model of yeast glycolytic oscillations where synchronization of the cell population is mediated by the action of an excreted metabolite. We show that smooth one-dimensional distributions can be obtained with ensembles comprising 1000 individual cells. Random variations in the state and/or structure of individual cells are shown to produce complex dynamic behaviours which cannot be adequately captured by small ensembles. PMID:12206713

  17. Lipid droplet dynamics in budding yeast.

    PubMed

    Wang, Chao-Wen

    2015-07-01

    Eukaryotic cells store excess fatty acids as neutral lipids, predominantly triacylglycerols and sterol esters, in organelles termed lipid droplets (LDs) that bulge out from the endoplasmic reticulum. LDs are highly dynamic and contribute to diverse cellular functions. The catabolism of the storage lipids within LDs is channeled to multiple metabolic pathways, providing molecules for energy production, membrane building blocks, and lipid signaling. LDs have been implicated in a number of protein degradation and pathogen infection processes. LDs may be linked to prevalent human metabolic diseases and have marked potential for biofuel production. The knowledge accumulated on LDs in recent years provides a foundation for diverse, and even unexpected, future research. This review focuses on recent advances in LD research, emphasizing the diverse physiological roles of LDs in the model system of budding yeast. PMID:25894691

  18. Phyllosphere yeasts rapidly break down biodegradable plastics.

    PubMed

    Kitamoto, Hiroko K; Shinozaki, Yukiko; Cao, Xiao-Hong; Morita, Tomotake; Konishi, Masaaki; Tago, Kanako; Kajiwara, Hideyuki; Koitabashi, Motoo; Yoshida, Shigenobu; Watanabe, Takashi; Sameshima-Yamashita, Yuka; Nakajima-Kambe, Toshiaki; Tsushima, Seiya

    2011-01-01

    The use of biodegradable plastics can reduce the accumulation of environmentally persistent plastic wastes. The rate of degradation of biodegradable plastics depends on environmental conditions and is highly variable. Techniques for achieving more consistent degradation are needed. However, only a few microorganisms involved in the degradation process have been isolated so far from the environment. Here, we show that Pseudozyma spp. yeasts, which are common in the phyllosphere and are easily isolated from plant surfaces, displayed strong degradation activity on films made from poly-butylene succinate or poly-butylene succinate-co-adipate. Strains of P. antarctica isolated from leaves and husks of paddy rice displayed strong degradation activity on these films at 30°C. The type strain, P. antarctica JCM 10317, and Pseudozyma spp. strains from phyllosphere secreted a biodegradable plastic-degrading enzyme with a molecular mass of about 22 kDa. Reliable source of biodegradable plastic-degrading microorganisms are now in our hands. PMID:22126328

  19. Phyllosphere yeasts rapidly break down biodegradable plastics

    PubMed Central

    2011-01-01

    The use of biodegradable plastics can reduce the accumulation of environmentally persistent plastic wastes. The rate of degradation of biodegradable plastics depends on environmental conditions and is highly variable. Techniques for achieving more consistent degradation are needed. However, only a few microorganisms involved in the degradation process have been isolated so far from the environment. Here, we show that Pseudozyma spp. yeasts, which are common in the phyllosphere and are easily isolated from plant surfaces, displayed strong degradation activity on films made from poly-butylene succinate or poly-butylene succinate-co-adipate. Strains of P. antarctica isolated from leaves and husks of paddy rice displayed strong degradation activity on these films at 30°C. The type strain, P. antarctica JCM 10317, and Pseudozyma spp. strains from phyllosphere secreted a biodegradable plastic-degrading enzyme with a molecular mass of about 22 kDa. Reliable source of biodegradable plastic-degrading microorganisms are now in our hands. PMID:22126328

  20. Fission yeast Schizosaccharomyces pombe in continuous culture

    SciTech Connect

    Vrana, D.

    1983-08-01

    The fission yeast Schizosaccharomyces pombe was cultivated in a chemostat at dilution rates of D = 0.03, 0.05, 0.10, and 0.20/h. After steady state has been reached, the amount of dry matter, number of cells, concentration of residual sugar, yield coefficient (Y), and some morphological properties of the cells were estimated. Curves reflecting the dry mass, number of cells, and cell mean volume show a changing coordination between the growth rate and the rate of cell division, with respect of D. In addition, it could be concluded that in dividing cells the cell septum is localized asymmetrically; two nonidentical cells differing both in length and volume result. The degree of asymmetry is a function of the dilution rate. (25 Refs.)

  1. MITOSIS IN THE YEAST LIPOMYCES LIPOFER

    PubMed Central

    Robinow, C. F.

    1961-01-01

    A study of mitosis in Lipomyces has been carried out because preliminary observations by Ganesan and Roberts, 1959 (9), had indicated that the nucleus of this yeast might be unusually favourable for morphological observations. This impression has proved correct. The chromosomes of Lipomyces are visible as separate, countable bodies for the greater part of mitosis. The pattern of mitosis differs from the common one in that in Lipomyces the proper distribution of sister chromosomes is accomplished without the help of a spindle apparatus. At the end of prophase sister chromosomes are found in pairs which align themselves parallel to one another to form a palisade or stack whose long axis coincides with the axis of the impending division. At anaphase-telophase the stack of paired chromosomes fuses into a seemingly homogeneous cord which divides by constriction. PMID:13742260

  2. Mitosis in the yeast Lipomyces lipofer.

    PubMed

    ROBINOW, C F

    1961-04-01

    A study of mitosis in Lipomyces has been carried out because preliminary observations by Ganesan and Roberts, 1959 (9), had indicated that the nucleus of this yeast might be unusually favourable for morphological observations. This impression has proved correct. The chromosomes of Lipomyces are visible as separate, countable bodies for the greater part of mitosis. The pattern of mitosis differs from the common one in that in Lipomyces the proper distribution of sister chromosomes is accomplished without the help of a spindle apparatus. At the end of prophase sister chromosomes are found in pairs which align themselves parallel to one another to form a palisade or stack whose long axis coincides with the axis of the impending division. At anaphase-telophase the stack of paired chromosomes fuses into a seemingly homogeneous cord which divides by constriction. PMID:13742260

  3. Membrane targeting of the yeast exocyst complex.

    PubMed

    Pleskot, Roman; Cwiklik, Lukasz; Jungwirth, Pavel; Žárský, Viktor; Potocký, Martin

    2015-07-01

    The exocytosis is a process of fusion of secretory vesicles with plasma membrane, which plays a prominent role in many crucial cellular processes, e.g. secretion of neurotransmitters, cytokinesis or yeast budding. Prior to the SNARE-mediated fusion, the initial contact of secretory vesicle with the target membrane is mediated by an evolutionary conserved vesicle tethering protein complex, the exocyst. In all eukaryotic cells, the exocyst is composed of eight subunits - Sec5, Sec6, Sec8, Sec10, Sec15, Exo84 and two membrane-targeting landmark subunits Sec3 and Exo70, which have been described to directly interact with phosphatidylinositol (4,5)-bisphosphate (PIP2) of the plasma membrane. In this work, we utilized coarse-grained molecular dynamics simulations to elucidate structural details of the interaction of yeast Sec3p and Exo70p with lipid bilayers containing PIP2. We found that PIP2 is coordinated by the positively charged pocket of N-terminal part of Sec3p, which folds into unique Pleckstrin homology domain. Conversely, Exo70p interacts with the lipid bilayer by several binding sites distributed along the structure of this exocyst subunit. Moreover, we observed that the interaction of Exo70p with the membrane causes clustering of PIP2 in the adjacent leaflet. We further revealed that PIP2 is required for the correct positioning of small GTPase Rho1p, a direct Sec3p interactor, prior to the formation of the functional Rho1p-exocyst-membrane assembly. Our results show the critical importance of the plasma membrane pool of PIP2 for the exocyst function and suggest that specific interaction with acidic phospholipids represents an ancestral mechanism for the exocyst regulation. PMID:25838123

  4. Unsuspected pyocyanin effect in yeast under anaerobiosis.

    PubMed

    Barakat, Rana; Goubet, Isabelle; Manon, Stephen; Berges, Thierry; Rosenfeld, Eric

    2014-02-01

    The blue-green phenazine, Pyocyanin (PYO), is a well-known virulence factor produced by Pseudomonas aeruginosa, notably during cystic fibrosis lung infections. It is toxic to both eukaryotic and bacterial cells and several mechanisms, including the induction of oxidative stress, have been postulated. However, the mechanism of PYO toxicity under the physiological conditions of oxygen limitation that are encountered by P. aeruginosa and by target organisms in vivo remains unclear. In this study, wild-type and mutant strains of the yeast Saccharomyces cerevisiae were used as an effective eukaryotic model to determine the toxicity of PYO (100-500 ?mol/L) under key growth conditions. Under respiro-fermentative conditions (with glucose as substrate), WT strains and certain H2 O2 -hypersensitive strains showed a low-toxic response to PYO. Under respiratory conditions (with glycerol as substrate) all the strains tested were significantly more sensitive to PYO. Four antioxidants were tested but only N-acetylcysteine was capable of partially counteracting PYO toxicity. PYO did not appear to affect short-term respiratory O2 uptake, but it did seem to interfere with cyanide-poisoned mitochondria through a complex III-dependent mechanism. Therefore, a combination of oxidative stress and respiration disturbance could partly explain aerobic PYO toxicity. Surprisingly, the toxic effects of PYO were more significant under anaerobic conditions. More pronounced effects were observed in several strains including a 'petite' strain lacking mitochondrial DNA, strains with increased or decreased levels of ABC transporters, and strains deficient in DNA damage repair. Therefore, even though PYO is toxic for actively respiring cells, O2 may indirectly protect the cells from the higher anaerobic-linked toxicity of PYO. The increased sensitivity to PYO under anaerobic conditions is not unique to S. cerevisiae and was also observed in another yeast, Candida albicans. PMID:24307284

  5. Measuring mitotic spindle dynamics in budding yeast

    NASA Astrophysics Data System (ADS)

    Plumb, Kemp

    In order to carry out its life cycle and produce viable progeny through cell division, a cell must successfully coordinate and execute a number of complex processes with high fidelity, in an environment dominated by thermal noise. One important example of such a process is the assembly and positioning of the mitotic spindle prior to chromosome segregation. The mitotic spindle is a modular structure composed of two spindle pole bodies, separated in space and spanned by filamentous proteins called microtubules, along which the genetic material of the cell is held. The spindle is responsible for alignment and subsequent segregation of chromosomes into two equal parts; proper spindle positioning and timing ensure that genetic material is appropriately divided amongst mother and daughter cells. In this thesis, I describe fluorescence confocal microscopy and automated image analysis algorithms, which I have used to observe and analyze the real space dynamics of the mitotic spindle in budding yeast. The software can locate structures in three spatial dimensions and track their movement in time. By selecting fluorescent proteins which specifically label the spindle poles and cell periphery, mitotic spindle dynamics have been measured in a coordinate system relevant to the cell division. I describe how I have characterised the accuracy and precision of the algorithms by simulating fluorescence data for both spindle poles and the budding yeast cell surface. In this thesis I also describe the construction of a microfluidic apparatus that allows for the measurement of long time-scale dynamics of individual cells and the development of a cell population. The tools developed in this thesis work will facilitate in-depth quantitative analysis of the non-equilibrium processes in living cells.

  6. Unsuspected pyocyanin effect in yeast under anaerobiosis

    PubMed Central

    Barakat, Rana; Goubet, Isabelle; Manon, Stephen; Berges, Thierry; Rosenfeld, Eric

    2014-01-01

    The blue–green phenazine, Pyocyanin (PYO), is a well-known virulence factor produced by Pseudomonas aeruginosa, notably during cystic fibrosis lung infections. It is toxic to both eukaryotic and bacterial cells and several mechanisms, including the induction of oxidative stress, have been postulated. However, the mechanism of PYO toxicity under the physiological conditions of oxygen limitation that are encountered by P. aeruginosa and by target organisms in vivo remains unclear. In this study, wild-type and mutant strains of the yeast Saccharomyces cerevisiae were used as an effective eukaryotic model to determine the toxicity of PYO (100–500 μmol/L) under key growth conditions. Under respiro-fermentative conditions (with glucose as substrate), WT strains and certain H2O2-hypersensitive strains showed a low-toxic response to PYO. Under respiratory conditions (with glycerol as substrate) all the strains tested were significantly more sensitive to PYO. Four antioxidants were tested but only N-acetylcysteine was capable of partially counteracting PYO toxicity. PYO did not appear to affect short-term respiratory O2 uptake, but it did seem to interfere with cyanide-poisoned mitochondria through a complex III-dependent mechanism. Therefore, a combination of oxidative stress and respiration disturbance could partly explain aerobic PYO toxicity. Surprisingly, the toxic effects of PYO were more significant under anaerobic conditions. More pronounced effects were observed in several strains including a ‘petite’ strain lacking mitochondrial DNA, strains with increased or decreased levels of ABC transporters, and strains deficient in DNA damage repair. Therefore, even though PYO is toxic for actively respiring cells, O2 may indirectly protect the cells from the higher anaerobic-linked toxicity of PYO. The increased sensitivity to PYO under anaerobic conditions is not unique to S. cerevisiae and was also observed in another yeast, Candida albicans. PMID:24307284

  7. Estrogen Receptor Agonists and Antagonists in the Yeast Estrogen Bioassay.

    PubMed

    Wang, Si; Bovee, Toine F H

    2016-01-01

    Cell-based bioassays can be used to predict the eventual biological activity of a substance on a living organism. In vitro reporter gene bioassays are based on recombinant vertebrate cell lines or yeast strains and especially the latter are easy-to-handle, cheap, and fast. Moreover, yeast cells do not express estrogen, androgen, progesterone or glucocorticoid receptors, and are thus powerful tools in the development of specific reporter gene systems that are devoid of crosstalk from other hormone pathways. This chapter describes our experience with an in-house developed RIKILT yeast estrogen bioassay for testing estrogen receptor agonists and antagonists, focusing on the applicability of the latter. PMID:26585147

  8. Cell Shape and Cell Division in Fission Yeast Minireview

    PubMed Central

    Piel, Matthieu; Tran, Phong T.

    2010-01-01

    The fission yeast Schizosaccharomyces pombe has served as an important model organism for investigating cellular morphogenesis. This unicellular rod-shaped fission yeast grows by tip extension and divides by medial fission. In particular, microtubules appear to define sites of polarized cell growth by delivering cell polarity factors to the cell tips. Microtubules also position the cell nucleus at the cell middle, marking sites of cell division. Here, we review the microtubule-dependent mechanisms that regulate cell shape and cell division in fission yeast. PMID:19906584

  9. [Isolation and characterization of lactose-fermenting yeasts Candida kefyr].

    PubMed

    Ianieva, O D; Voronina, H O; Pidhors'kyÄ­, V S

    2013-01-01

    The search for lactose-fermenting yeast strains has been conducted among 162 strains isolated from various plants and 28 yeast strains isolated from cheese. Four yeast strains have been shown to ferment lactose. They have been identified as Candida kefyr. Specific beta-galactosidase activity of the studied strains grown on lactose-containing medium was 1501-2113 U/g cell. The ethanol production by strains C. kefyr C24 and C30 was significantly inhibited by the increase in substrate concentration (100 g/l). PMID:24437197

  10. The roles of thiol oxidoreductases in yeast replicative aging.

    PubMed

    Hacioglu, Elise; Esmer, Isil; Fomenko, Dmitri E; Gladyshev, Vadim N; Koc, Ahmet

    2010-01-01

    Thiol-based redox reactions are involved in the regulation of a variety of biological functions, such as protection against oxidative stress, signal transduction and protein folding. Some proteins involved in redox regulation have been shown to modulate life span in organisms from yeast to mammals. To assess the role of thiol oxidoreductases in aging on a genome-wide scale, we analyzed the replicative life span of yeast cells lacking known and candidate thiol oxidoreductases. The data suggest the role of several pathways in controlling yeast replicative life span, including thioredoxin reduction, protein folding and degradation, peroxide reduction, PIP3 signaling, and ATP synthesis. PMID:20934449

  11. Regulation of yeast replicative life span by thiol oxidoreductases

    PubMed Central

    Hacioglu, Elise; Esmer, Isil; Fomenko, Dmitri E.; Gladyshev, Vadim N.; Koc, Ahmet

    2011-01-01

    Thiol-based redox reactions are involved in the regulation of a variety of biological functions, such as protection against oxidative stress, signal transduction and protein folding. Some proteins involved in redox regulation have been shown to modulate life span in organisms from yeast to mammals. To assess the role of thiol oxidoreductases in aging on a genome-wide scale, we analyzed the replicative life span of yeast cells lacking known and candidate thiol oxidoreductases. The data suggest the role of several pathways in regulation of yeast aging, including thioredoxin reduction, protein folding and degradation, peroxide reduction, PIP3 signaling, and ATP synthesis. PMID:20934449

  12. Characterization of Septin Ultrastructure in Budding Yeast Using Electron Tomography

    PubMed Central

    Bertin, Aurélie; Nogales, Eva

    2015-01-01

    Summary Septins are essential for the completion of cytokinesis. In budding yeast, Saccharomyces cerevisiae, septins are located at the bud neck during mitosis and are closely connected to the inner plasma membrane. In vitro, yeast septins have been shown to self-assemble into a variety of filamentous structures, including rods, paired filaments, bundles and rings [1–3]. Using electron tomography of freeze-substituted section and cryo-electron tomography of frozen sections, we determined the three dimensional organization of the septin cytoskeleton in dividing budding yeast with molecular resolution [4,5]. Here we describe the detailed procedures used for our characterization of the septin cellular ultrastructure. PMID:26519309

  13. Yeast surface display for protein engineering and characterization

    PubMed Central

    Gai, S Annie; Wittrup, K Dane

    2014-01-01

    Summary of recent advances Yeast surface display is being employed to engineer desirable properties into proteins for a broad variety of applications. Labeling with soluble ligands enables rapid and quantitative analysis of yeast-displayed libraries by flow cytometry, while libraries with insoluble or even as-yet-uncharacterized binding targets can be screened through cell-surface selections. In parallel, the utilization of yeast surface display for protein characterization, including in particular the mapping of functional epitopes mediating protein-protein interactions, represents a significant recent advance. PMID:17870469

  14. Yeast biotechnology: teaching the old dog new tricks

    PubMed Central

    2014-01-01

    Yeasts are regarded as the first microorganisms used by humans to process food and alcoholic beverages. The technology developed out of these ancient processes has been the basis for modern industrial biotechnology. Yeast biotechnology has gained great interest again in the last decades. Joining the potentials of genomics, metabolic engineering, systems and synthetic biology enables the production of numerous valuable products of primary and secondary metabolism, technical enzymes and biopharmaceutical proteins. An overview of emerging and established substrates and products of yeast biotechnology is provided and discussed in the light of the recent literature. PMID:24602262

  15. Gas bubble formation in the cytoplasm of a fermenting yeast

    PubMed Central

    Swart, Chantel W; Dithebe, Khumisho; Pohl, Carolina H; Swart, Hendrik C; Coetsee, Elizabeth; van Wyk, Pieter WJ; Swarts, Jannie C; Lodolo, Elizabeth J; Kock, Johan LF

    2012-01-01

    Abstract Current paradigms assume that gas bubbles cannot be formed within yeasts although these workhorses of the baking and brewing industries vigorously produce and release CO2 gas. We show that yeasts produce gas bubbles that fill a significant part of the cell. The missing link between intracellular CO2 production by glycolysis and eventual CO2 release from cells has therefore been resolved. Yeasts may serve as model to study CO2 behavior under pressurized conditions that may impact on fermentation biotechnology. PMID:23020660

  16. Differential Adsorption of Ochratoxin A and Anthocyanins by Inactivated Yeasts and Yeast Cell Walls during Simulation of Wine Aging.

    PubMed

    Petruzzi, Leonardo; Baiano, Antonietta; De Gianni, Antonio; Sinigaglia, Milena; Corbo, Maria Rosaria; Bevilacqua, Antonio

    2015-10-01

    The adsorption of ochratoxin A (OTA) by yeasts is a promising approach for the decontamination of musts and wines, but some potential competitive or interactive phenomena between mycotoxin, yeast cells, and anthocyanins might modify the intensity of the phenomenon. The aim of this study was to examine OTA adsorption by two strains of Saccharomyces cerevisiae (the wild strain W13, and the commercial isolate BM45), previously inactivated by heat, and a yeast cell wall preparation. Experiments were conducted using Nero di Troia red wine contaminated with 2 ?g/L OTA and supplemented with yeast biomass (20 g/L). The samples were analyzed periodically to assess mycotoxin concentration, chromatic characteristics, and total anthocyanins over 84 days of aging. Yeast cell walls revealed the highest OTA-adsorption in comparison to thermally-inactivated cells (50% vs. 43% toxin reduction), whilst no significant differences were found for the amount of adsorbed anthocyanins in OTA-contaminated and control wines. OTA and anthocyanins adsorption were not competitive phenomena. Unfortunately, the addition of yeast cells to wine could cause color loss; therefore, yeast selection should also focus on this trait to select the best strain. PMID:26516913

  17. Differential Adsorption of Ochratoxin A and Anthocyanins by Inactivated Yeasts and Yeast Cell Walls during Simulation of Wine Aging

    PubMed Central

    Petruzzi, Leonardo; Baiano, Antonietta; De Gianni, Antonio; Sinigaglia, Milena; Corbo, Maria Rosaria; Bevilacqua, Antonio

    2015-01-01

    The adsorption of ochratoxin A (OTA) by yeasts is a promising approach for the decontamination of musts and wines, but some potential competitive or interactive phenomena between mycotoxin, yeast cells, and anthocyanins might modify the intensity of the phenomenon. The aim of this study was to examine OTA adsorption by two strains of Saccharomyces cerevisiae (the wild strain W13, and the commercial isolate BM45), previously inactivated by heat, and a yeast cell wall preparation. Experiments were conducted using Nero di Troia red wine contaminated with 2 μg/L OTA and supplemented with yeast biomass (20 g/L). The samples were analyzed periodically to assess mycotoxin concentration, chromatic characteristics, and total anthocyanins over 84 days of aging. Yeast cell walls revealed the highest OTA-adsorption in comparison to thermally-inactivated cells (50% vs. 43% toxin reduction), whilst no significant differences were found for the amount of adsorbed anthocyanins in OTA-contaminated and control wines. OTA and anthocyanins adsorption were not competitive phenomena. Unfortunately, the addition of yeast cells to wine could cause color loss; therefore, yeast selection should also focus on this trait to select the best strain. PMID:26516913

  18. THE UPTAKE OF AROMATIC AND BRANCHED CHAIN HYDROCARBONS BY YEAST

    EPA Science Inventory

    Studies of the hydrocarbon utilizing yeasts, Candida maltosa and C. lipolytica, have shown that both were capable of reducing recoverable amounts of branched chain and aromatic hydrocarbons in a mixture of naphthalene, tetradecane, hexadecane, pristane (tetra-methylpentadecane). ...

  19. [Overexpression of FKS1 to improve yeast autolysis-stress].

    PubMed

    Li, Jia; Wang, Jinjing; Li, Qi

    2015-09-01

    With the development of high gravity brewing, yeast cells are exposed to multiple brewing-associated stresses, such as increased osmotic pressure, enhanced alcohol concentration and nutritional imbalance. These will speed up yeast autolysis, which seriously influence beer flavor and quality. To increase yeast anti-autolytic ability, FKS1 overexpression strain was constructed by 18S rDNA. The concentration of ?-1,3-glucan of overexpression strain was 62% higher than that of wild type strain. Meantime, FKS1 overexpression strain increased anti-stress ability at 8% ethanol, 0.4 mol/L NaCl and starvation stress. Under simulated autolysis, FKS1 showed good anti-autolytic ability by slower autolysis. These results confirms the potential of FKS1 overexpression to tackle yeast autolysis in high-gravity brewing. PMID:26955712

  20. Genomic adaptation of ethanologenic yeast to biomass conversion inhibitors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One major barrier to the economic conversion of biomass to ethanol is inhibitory compounds generated during biomass pretreatment using dilute acid hydrolysis. Major inhibitors such as furfural and 5-hydroxymethylfurfural (HMF) inhibit yeast growth and subsequent fermentation. The ethanologenic yea...

  1. Baker's yeast assay procedure for testing heavy metal toxicity

    SciTech Connect

    Bitton, G.; Koopman, B.; Wang, H.D.

    1984-01-01

    Baker's yeast (Saccharomyces cerevisiae) is microorganism which is commercially available and sold as packaged dry pellets in any food store at low cost. Studies have been undertaken on the effects of organic xenobiotics as well as heavy metals on yeast metabolism. This type of study has been generally useful in examining the mechanism(s) of chemical toxicity. However, a rapid and quantitative toxicity test using S. cerevisiae as the test organism has not been developed. The purpose of this study was to develop a toxicity assay for heavy metals, using commercial dry yeast as the test microorganism. This rapid and simple procedure is based on the reduction of 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyltetrazolium chloride (INT) to INT-formazan by the yeast electron transport system. The scoring of active cells following exposure to heavy metals was undertaken according to the MINT (malachite green-INT) method developed by Bitton and Koopman.

  2. Characterization of Encapsulated Berberine in Yeast Cells of Saccharomyces cerevisiae.

    PubMed

    Salari, Roshanak; Rajabi, Omid; Khashyarmanesh, Zahra; Fathi Najafi, Mohsen; Fazly Bazzaz, BiBi Sedigheh

    2015-01-01

    Berberine was loaded in yeast cells of Saccharomyces cerevisiaeas a novel pharmaceutical carrier to improve the treatment ofmany diseases. The yeast-encapsulated active materialsshowedhigh stability and bioavailability due to the enhanced solubility and sustained releasing. In this study, different characteristics of prepared berberine loaded yeast cells (loading capacity, release kinetic order, MIC and stability) were evaluatedby different analytical methods (fluorescence spectroscopy, HPLC and SEM).The loading capacity was about 78% ± 0.6%.Berberine release patterns of microcapsules happened in two different stages and followed by zero and first-order kinetic,respectively. About 99% of all active material released during 34 h. MIC was improved by berberine loaded microcapsules in comparison withberberine powder. The microcapsules were completely stable. Berberine loaded Sac. Cerevisiae could be considered as a favorite sustained release drug delivery system. The yeast would be applied as an efficient carrier to improve various properties of different active materials. PMID:26664393

  3. Yeast replicative aging: a paradigm for defining conserved longevity interventions

    PubMed Central

    Wasko, Brian M.; Kaeberlein, Matt

    2014-01-01

    The finite replicative life span of budding yeast mother cells was demonstrated as early as 1959, but the idea that budding yeast could be used to model aging of multicellular eukaryotes did not enter the scientific mainstream until relatively recently. Despite continued skepticism by some, there are now abundant data that several interventions capable of extending yeast replicative life span have a similar effect in multicellular eukaryotes including nematode worms, fruit flies, and rodents. In particular, dietary restriction, mTOR signaling, and sirtuins are among the most studied longevity interventions in the field. Here, we describe key conserved longevity pathways in yeast and discuss relationships that may help explain how such broad conservation of aging processes could have evolved. PMID:24119093

  4. Deteriorative kinetics of baker's yeast during thermal drying

    SciTech Connect

    Liu, X.D.

    1999-10-01

    An attempt was made to determine the kinetic model, which describes the degradation of activity and viability during thermal drying of baker's yeast. The pellets of baker's yeast were dried under a variety of conditions using a laboratory scale VFB dryer to generate a broad database. The data used in determining the parameters for the kinetic model, such as the average moisture content, temperature as well as the relative activity and viability of baker's yeast were measured under dynamic procedure. The extensive data from the experiments under a variety of conditions enable the model to predict the quality retention of baker's yeast in a rather wide range during thermal drying. The interpretation procedure of raw data was described in detail.

  5. Characterization of Hyaluronan-Degrading Enzymes from Yeasts.

    PubMed

    Smirnou, Dzianis; Kr?má?, Martin; Kulhánek, Jaromír; Hermannová, Martina; Bobková, Lenka; Franke, Lukáš; Pepeliaev, Stanislav; Velebný, Vladimír

    2015-10-01

    Hyaluronidases (HAases) from yeasts were characterized for the first time. The study elucidated that hyaluronate 4-glycanohydrolase and hyaluronan (HA) lyase can be produced by yeasts. Six yeasts producing HAases were found through express screening of activities. The extracellular HAases from two of the yeast isolates, Pseudozyma aphidis and Cryptococcus laurentii, were characterized among them. P. aphidis HAase hydrolyzed ?-1,4 glycosidic bonds of HA, yielding even-numbered oligosaccharides with N-acetyl-D-glucosamine at the reducing end. C. laurentii produced hyaluronan lyase, which cleaved ?-1,4 glycosidic bonds of HA in ?-elimination reaction, and the products of HA degradation were different-sized even-numbered oligosaccharides. The shortest detected HA oligomer was dimer. The enzymes' pH and temperature optima were pH 3.0 and 37-45 °C (P. aphidis) and pH 6.0 and 37 °C (C. laurentii), respectively. Both HAases showed good thermostability. PMID:26239444

  6. Characterization of Encapsulated Berberine in Yeast Cells of Saccharomyces cerevisiae

    PubMed Central

    Salari, Roshanak; Rajabi, Omid; Khashyarmanesh, Zahra; Fathi Najafi, Mohsen; Fazly Bazzaz, BiBi Sedigheh

    2015-01-01

    Berberine was loaded in yeast cells of Saccharomyces cerevisiaeas a novel pharmaceutical carrier to improve the treatment ofmany diseases. The yeast-encapsulated active materialsshowedhigh stability and bioavailability due to the enhanced solubility and sustained releasing. In this study, different characteristics of prepared berberine loaded yeast cells (loading capacity, release kinetic order, MIC and stability) were evaluatedby different analytical methods (fluorescence spectroscopy, HPLC and SEM).The loading capacity was about 78% ± 0.6%.Berberine release patterns of microcapsules happened in two different stages and followed by zero and first-order kinetic,respectively. About 99% of all active material released during 34 h. MIC was improved by berberine loaded microcapsules in comparison withberberine powder. The microcapsules were completely stable. Berberine loaded Sac. Cerevisiae could be considered as a favorite sustained release drug delivery system. The yeast would be applied as an efficient carrier to improve various properties of different active materials. PMID:26664393

  7. Culture nutrition key to inhibitor-tolerant yeast performance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inhibitory compounds generated during acid hydrolysis pretreatment of lignocellulosic biomass interfere with subsequent fermentation to ethanol. A tolerant yeast strain Saccharomyces cerevisiae Y-50049 has recently been developed by targeted evolution in the presence of 5-hydroxymethylfurfural and f...

  8. Biodiversity of brewery yeast strains and their fermentative activities.

    PubMed

    Berlowska, Joanna; Kregiel, Dorota; Rajkowska, Katarzyna

    2015-01-01

    We investigated the genetic, biochemical, fermentative and physiological characteristics of brewery yeast strains and performed a hierarchical cluster analysis to evaluate their similarity. We used five different ale and lager yeast strains, originating from different European breweries and deposited at the National Collection of Yeast Cultures (UK). Ale and lager strains exhibited different genomic properties, but their assimilation profiles and pyruvate decarboxylase activities corresponded to their species classifications. The activity of another enzyme, succinate dehydrogenase, varied between different brewing strains. Our results confirmed that ATP and glycogen content, and the activity of the key metabolic enzymes succinate dehydrogenase and pyruvate decarboxylase, may be good general indicators of cell viability. However, the genetic properties, physiology and fermentation capacity of different brewery yeasts are unique to individual strains. PMID:25267007

  9. Oxidative Stress and Programmed Cell Death in Yeast

    PubMed Central

    Farrugia, Gianluca; Balzan, Rena

    2012-01-01

    Yeasts, such as Saccharomyces cerevisiae, have long served as useful models for the study of oxidative stress, an event associated with cell death and severe human pathologies. This review will discuss oxidative stress in yeast, in terms of sources of reactive oxygen species (ROS), their molecular targets, and the metabolic responses elicited by cellular ROS accumulation. Responses of yeast to accumulated ROS include upregulation of antioxidants mediated by complex transcriptional changes, activation of pro-survival pathways such as mitophagy, and programmed cell death (PCD) which, apart from apoptosis, includes pathways such as autophagy and necrosis, a form of cell death long considered accidental and uncoordinated. The role of ROS in yeast aging will also be discussed. PMID:22737670

  10. Reprogrammed Glucose Metabolic Pathways of Inhibitor-Tolerant Yeast

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Representative inhibitory compounds such as furfural and 5-hydroxymethylfurfural generated from lignocellulosic biomass pretreatment inhibit yeast growth and interfere with the subsequent ethanol fermentation. Evolutionary engineering under laboratory settings is a powerful tool that can be used to ...

  11. Reprogrammed glucose metabolic pathways of inhibitor-tolerant yeast

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Representative inhibitory compounds such as furfural and 5-hydroxymethylfurfural generated from lignocellulosic biomass pretreatment inhibit yeast growth and interfere with the subsequent ethanol fermentation. Evolutionary engineering under laboratory settings is a powerful tool that can be used to...

  12. Pectinolytic enzymes secreted by yeasts from tropical fruits.

    PubMed

    da Silva, Evânia Geralda; de Fátima Borges, Maria; Medina, Clara; Piccoli, Roberta Hilsdorf; Schwan, Rosane Freitas

    2005-06-01

    Three hundred yeasts isolated from tropical fruits were screened in relation to secretion of pectinases. Twenty-one isolates were able to produce polygalacturonase and among them seven isolates could secrete pectin lyase. None of the isolates was able to secrete pectin methylesterase. The pectinolytic yeasts identified belonged to six different genera. Kluyveromyces wickerhamii isolated from the fruit mangaba (Hancornia speciosa) secreted the highest amount of polygalacturonase, followed by K. marxianus and Stephanoascus smithiae. The yeast Debaryomyces hansenii produced the greatest decrease in viscosity while only 3% of the glycosidic linkages were hydrolysed, indicating that the enzyme secreted was an endo-polygalacturonase. The hydrolysis of pectin by polygalacturonase secreted by S. smithiae suggested an exo-splitting mechanism. The other yeast species studied showed low polygalacturonase activity. PMID:15925314

  13. Sensitive detection of yeast using terahertz slot antennas.

    PubMed

    Park, S J; Son, B H; Choi, S J; Kim, H S; Ahn, Y H

    2014-12-15

    We demonstrated sensitive detection of individual yeast cells and yeast films by using slot antenna arrays operating in the terahertz frequency range. Microorganisms located at the slot area cause a shift in the resonant frequency of the THz transmission. The shift was investigated as a function of the surface number density for a set of devices fabricated on different substrates. In particular, sensors fabricated on a substrate with relatively low permittivity demonstrate higher sensitivity. The frequency shift decreases with increasing slot antenna width for a fixed coverage of yeast film, indicating a field enhancement effect. Furthermore, the vertical range of the effective sensing volume has been studied by varying the thickness of the yeast film. The resonant frequency shift saturates at 3.5 μm for a slot width of 2 μm. In addition, the results of finite-difference time-domain simulations are in good agreement with our experimental data. PMID:25606992

  14. INHIBITION OF YEASTS BY A MARINE BACTERIUM1

    PubMed Central

    Buck, John D.; Ahearn, Donald G.; Roth, Frank J.; Meyers, Samuel P.

    1963-01-01

    Buck, John D. (University of Miami, Miami, Fla.), Donald G. Ahearn, Frank J. Roth, Jr., and Samuel P. Meyers. Inhibition of yeasts by a marine bacterium. J. Bacteriol. 85:1132–1135. 1963.—Although investigations have shown the widespread occurrence of yeasts in the marine environment, notably members of the genus Rhodotorula, studies of a marine amphipod community revealed few, if any, pink yeasts. A gram-negative bacterium (designated AEB, a member of the genus Pseudomonas) isolated from the amphipod habitat showed marked selective ability to inhibit yeasts of both terrestrial and marine origin. Activity was demonstrated with both live cultures of the bacterium and untreated cell-free filtrates. Variously extracted and treated filtrates of the isolate have shown divergent patterns and spectra of inhibition of species of the genus Rhodotorula and of other genera. Images PMID:14044005

  15. 21 CFR 184.1983 - Bakers yeast extract.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... concentration of the solubles of mechanically ruptured cells of a selected strain of yeast, Saccharomyces cerevisiae. It may be concentrated or dried. (b) The ingredient meets the following specifications on a...

  16. Production of a yeast artificial chromosome for stable expression of a synthetic xylose isomerase-xylulokinase polyprotein in a fuel ethanol yeast strain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Commercialization of fuel ethanol production from lignocellulosic biomass has focused on engineering the glucose-fermenting industrial yeast Saccharomyces cerevisiae to utilize pentose sugars. A yeast artificial chromosome (YAC) was engineered to contain a polyprotein gene construct expressing xylos...

  17. The influence of exogenous nutrients on the abundance of yeasts on the phylloplane of turfgrass.

    PubMed

    Nix-Stohr, Shannon; Burpee, Leon L; Buck, James W

    2008-01-01

    Four experiments were conducted to assess the effect of foliar applications of various nutrient solutions on the phylloplane yeast community of tall fescue (Festuca arundinacea Schreb.). In the first three experiments, increasing concentrations of sucrose (2-16%), yeast extract (0.5-2.5%), and sucrose plus yeast extract (2.5-18.5% total) were applied and the yeast colony forming units (cfu) enumerated 14 h later by dilution plating. Significant positive linear relationships were observed between the number of yeast cfu and applications of both yeast extract and sucrose plus yeast extract. Foliar applications of sucrose alone had no significant effect on yeast community abundance, indicating that phylloplane yeasts of turfgrass are not limited by the amount or availability of carbohydrates. In the fourth experiment, five different solutions were applied to tall fescue to investigate the response of the yeast community to organic and inorganic nitrogen sources. Tryptone or yeast extract, both with considerable amino acid composition, significantly increased the yeast population, while yeast nitrogen base (with or without amino acids) and ammonium sulfate had no affect on yeast abundance. These results suggest that organic nitrogen stimulate yeast community growth and development on the phylloplane of tall fescue, while carbohydrates, inorganic nitrogen, and non-nitrogenous nutrients have little positive effect. PMID:17487523

  18. Identification of Yeasts From the Suwannee River Florida Estuary1

    PubMed Central

    Lazarus, C. R.; Koburger, J. A.

    1974-01-01

    The yeast flora of the Suwannee River estuary in Florida has been studied. The predominant genera were Candida and Rhodotorula; however, the yeast most frequently isolated was Cryptococcus laurentii. Nine ascosporogenous species were isolated, with Hansenula saturnus predominating. The salinity range of the sediments was 0.4 to 20.6%; in the estuary water, 0.07 to 0.25%; and in the open Gulf of Mexico, 18 to 20%. Images PMID:16349995

  19. Determination of Glucose Concentration in Yeast Culture Medium

    NASA Astrophysics Data System (ADS)

    Hara, Seiichi; Kishimoto, Tomokazu; Muraji, Masafumi; Tsujimoto, Hiroaki; Azuma, Masayuki; Ooshima, Hiroshi

    The present paper describes a sensor for measuring the glucose concentration of yeast culture medium. The sensor determines glucose concentration by measuring the yield of hydrogen peroxide produced by glucose oxidase, which is monitored as luminescence using photomultiplier. The present sensor is able to measure low glucose concentration in media in which yeast cells keep respiration state. We herein describe the system and the characteristics of the glucose sensor.

  20. Opportunistic yeast infections: candidiasis, cryptococcosis, trichosporonosis and geotrichosis.

    PubMed

    Vázquez-González, Denisse; Perusquía-Ortiz, Ana María; Hundeiker, Max; Bonifaz, Alexandro

    2013-05-01

    Opportunistic yeast infections are diseases caused by fungi which normally are saprophytic and do not cause disease in humans or animals. The prevalence of these diseases has been increasing due to immunosuppressive, corticosteroid, and long-term antibiotic treatment following organ transplantation or after serious metabolic, hematological, or immunological diseases. We review epidemiological, clinical, diagnostic, and therapeutic aspects of the four "big" opportunistic yeast infections: candidiasis, cryptococcosis, trichosporonosis, and geotrichosis. PMID:23621330

  1. [Treatment of drilling wastewater from oil field by using yeast].

    PubMed

    Wang, Yanming; Yang, Min; Zheng, Shaokui; Zhou, Xiangyu; Shen, Zhemin

    2002-09-01

    Two strains of yeast, namely Wickerhamiella domercqii and Candida boidinii, were acquired through screening from soil samples contaminated by drilling wastewater. A TOC removal of 40.5% was acquired when the mixture of the two yeast strains was used for drilling wastewater treatment, a little higher than that with activated sludge acclimated with wastewater (35.2%). Some organic compounds in the fraction of molecular weight above 60,000 were found to be biodegradable. PMID:12533930

  2. Magnetically responsive yeast cells: methods of preparation and applications.

    PubMed

    Safarik, Ivo; Maderova, Zdenka; Pospiskova, Kristyna; Baldikova, Eva; Horska, Katerina; Safarikova, Mirka

    2015-01-01

    Magnetically modified yeast cells represent an interesting type of biocomposite material, applicable in various areas of bioanalysis, biotechnology and environmental technology. In this review, typical examples of magnetic modifications of yeast cells of the genera Saccharomyces, Kluyveromyces, Rhodotorula and Yarrowia are presented, as well as their possible applications as biocatalysts, active part of biosensors and biosorbents for the separation of organic xenobiotics, heavy metal ions and radionuclides. PMID:25284221

  3. Occurrence and diversity of marine yeasts in Antarctica environments

    NASA Astrophysics Data System (ADS)

    Zhang, Xue; Hua, Mingxia; Song, Chunli; Chi, Zhenming

    2012-03-01

    A total of 28 yeast strains were obtained from the sea sediment of Antarctica. According to the results of routine identification and molecular characterization, the strains belonged to species of Yarrowia lipolytica, Debaryomyces hansenii, Rhodotorula slooffiae, Rhodotorula mucilaginosa, Sporidiobolus salmonicolor, Aureobasidium pullulans, Mrakia frigida and Guehomyces pullulans, respectively. The Antarctica yeasts have wide potential applications in biotechnology, for some of them can produce ?-galactosidase and killer toxins.

  4. Viricidal Effects of Lactobacillus and Yeast Fermentation

    PubMed Central

    Gilbert, Jeannine P.; Wooley, Richard E.; Shotts, Emmett B.; Dickens, J. Andra

    1983-01-01

    The survival of selected viruses in Lactobacillus- and yeast-fermented edible waste material was studied to determine the feasibility of using this material as a livestock feed ingredient. Five viruses, including Newcastle disease virus, infectious canine hepatitis virus, a porcine picornavirus, frog virus 3, and bovine virus diarrhea, were inoculated into a mixture of ground food waste (collected from a school lunch program) containing Lactobacillus acidophilus. Mixtures were incubated at 20, 30, and 40°C for 216 h. In a second trial, four viruses, including Newcastle disease virus, infectious canine hepatitis virus, frog virus 3, and a porcine picornavirus, were inoculated into similar edible waste material containing Saccharomyces cerevisiae. Mixtures were incubated at 20 and 30°C for 216 h. Samples were obtained daily for quantitative (trial 1) and qualitative (trial 2) virus isolation. Temperature, pH, and redox potential were monitored. Controlled pH and temperature studies were also done and compared with the inactivation rates in the fermentation processes. In trial 1 (Lactobacillus fermentation), infectious canine hepatitis virus survived the entire test period in the fermentation process but was inactivated below pH 4.5 in the controlled studies. Newcastle disease virus was inactivated by day 8 in the fermentation process and appeared to be primarily heat sensitive and secondarily pH sensitive in the controlled studies. The porcine picornavirus survived the fermentation process for 8 days at 20°C but was inactivated more rapidly at 30 and 40°C. The controlled studies verified these findings. Frog virus 3 was inactivated by day 3 in the fermentation process and appeared to be sensitive to low pH in the controlled studies. Bovine virus diarrhea was rapidly inactivated in the fermentation process (less than 2 h) and was pH and temperature sensitive. In trial 2 (yeast fermentation), infectious hepatitis virus survived the entire test period in the fermentation process. Newcastle disease virus was inactivated by day 7 at 20°C and day 6 at 30°C. The porcine picornavirus was inactivated by day 7 at 30°C but survived the entire test period at 20°C. Frog virus 3 was inactivated by day 3 at 20°C and day 2 at 30°C. PMID:6414372

  5. Detoxification of olive mill wastewaters by Moroccan yeast isolates.

    PubMed

    Ben Sassi, A; Ouazzani, N; Walker, G M; Ibnsouda, S; El Mzibri, M; Boussaid, A

    2008-06-01

    A total of 105 yeast strains were isolated from Moroccan olive oil production plants and evaluated for their ability to grow in olive oil mill wastewaters (OMW). The 9 isolates that grew best on OMW were selected for further study to evaluate their effect on removal of organic pollutants and OMW phytotoxicity (barley seed germination test). The results showed that at least four yeast isolates effectively lowered the toxicity of this effluent in addition to providing very useful materials in terms of both yeast biomass (6 g/l DW) and an irrigation fluid. This group of yeast isolates significantly reduced the concentration of total phenols (44% removal) and Chemical Oxygen Demand, COD (63% removal). The best germination rate of 80% for undiluted OMW was obtained for strain Candida holstii that also increased the pH from 4.76 to 6.75. Principal component analysis of the results obtained for the best yeast strains confirmed the importance of COD and total phenol reduction along with increase of organic nitrogen and final pH for the improvement of germination rates and phytotoxic reduction. This study has highlighted the potential of indigenous yeasts in detoxification of olive mill wastewaters. PMID:18034315

  6. The Fermentative and Aromatic Ability of Kloeckera and Hanseniaspora Yeasts

    NASA Astrophysics Data System (ADS)

    Díaz-Montaño, Dulce M.; de Jesús Ramírez Córdova, J.

    Spontaneous alcoholic fermentation from grape, agave and others musts into an alcoholic beverage is usually characterized by the presence of several non-Saccharomyces yeasts. These genera yeasts are dominant in the early stages of the alcoholic fermentation. However the genera Hanseniaspora and Kloeckera may survive at a significant level during fermentation and can influence the chemical composition of the beverage. Several strains belonging to the species Kloeckera api-culata and Hanseniaspora guilliermondii have been extensively studied in relation to the formation of some metabolic compounds affecting the bouquet of the final product. Indeed some apiculate yeast showed positive oenological properties and their use in the alcoholic fermentations has been suggested to enhance the aroma and flavor profiles. The non- Saccharomyces yeasts have the capability to produce and secrete enzymes in the medium, such as ? -glucosidases, which release monoterpenes derived from their glycosylated form. These compounds contribute to the higher fruit-like characteristic of final product. This chapter reviews metabolic activity of Kloeckera and Hanseniaspora yeasts in several aspects: fermentative capability, aromatic compounds production and transformation of aromatic precursor present in the must, also covers the molecular methods for identifying of the yeast

  7. Biochemical characterization and growth patterns of new yeast isolates.

    PubMed

    Djegui, Kadjogbé Y; Gachomo, Emma W; Hounhouigan, Djidjoho J; Kayodé, Adéchola P P; Kotchoni, Simeon O

    2014-08-01

    African sorghum opaque beers play a vital role in the diet of millions of consumers. In the current study we investigated the growth profiles of yeast strains isolated from kpete-kpete, a traditional starter used to produce tchoukoutou, an opaque sorghum beer in Benin. 10 yeast strains were isolated from sorghum beer starters and cultivated under both liquid and solid media for phenotypic growth characterization. All yeast isolates were able to grow both on solid and liquid media. Based on their growth profiles, the isolates were clustered into three groups: (i) the aggressive growth pattern (30%), (ii) the moderate growth pattern (50%), and (iii) the slow growth pattern (20%). Based on gene expression pattern, absorbance (A(600 nm)) and diameter of growth in both liquid and solid media respectively, yeast strains YK34, YK15 and YK48 were clustered in the first group, and referred to as the most aggressive growth strains, followed by group 2 (YK24, YK5, YK12, YK20, YK2) and group 3 (YK37, YK41). This growth pattern was confirmed by Invertase gene expression profiling of the yeasts showing group 1 with high level of Invertase gene expression followed by group 2 and group 3 respectively. Our results suggest that YK34, YK15 and YK48 and YK2 yeast strains constitute the best candidates in fermentation of sorghum beer production based on growth rate and assimilation of carbon and nitrogen sources. PMID:24802797

  8. The Yeast Deletion Collection: A Decade of Functional Genomics

    PubMed Central

    Giaever, Guri; Nislow, Corey

    2014-01-01

    The yeast deletion collections comprise >21,000 mutant strains that carry precise start-to-stop deletions of ∼6000 open reading frames. This collection includes heterozygous and homozygous diploids, and haploids of both MATa and MATα mating types. The yeast deletion collection, or yeast knockout (YKO) set, represents the first and only complete, systematically constructed deletion collection available for any organism. Conceived during the Saccharomyces cerevisiae sequencing project, work on the project began in 1998 and was completed in 2002. The YKO strains have been used in numerous laboratories in >1000 genome-wide screens. This landmark genome project has inspired development of numerous genome-wide technologies in organisms from yeast to man. Notable spinoff technologies include synthetic genetic array and HIPHOP chemogenomics. In this retrospective, we briefly describe the yeast deletion project and some of its most noteworthy biological contributions and the impact that these collections have had on the yeast research community and on genomics in general. PMID:24939991

  9. The yeast deletion collection: a decade of functional genomics.

    PubMed

    Giaever, Guri; Nislow, Corey

    2014-06-01

    The yeast deletion collections comprise >21,000 mutant strains that carry precise start-to-stop deletions of ∼6000 open reading frames. This collection includes heterozygous and homozygous diploids, and haploids of both MAT A: and MATα mating types. The yeast deletion collection, or yeast knockout (YKO) set, represents the first and only complete, systematically constructed deletion collection available for any organism. Conceived during the Saccharomyces cerevisiae sequencing project, work on the project began in 1998 and was completed in 2002. The YKO strains have been used in numerous laboratories in >1000 genome-wide screens. This landmark genome project has inspired development of numerous genome-wide technologies in organisms from yeast to man. Notable spinoff technologies include synthetic genetic array and HIPHOP chemogenomics. In this retrospective, we briefly describe the yeast deletion project and some of its most noteworthy biological contributions and the impact that these collections have had on the yeast research community and on genomics in general. PMID:24939991

  10. Ethanol production from cellulosic materials using cellulase-expressing yeast.

    PubMed

    Yanase, Shuhei; Yamada, Ryosuke; Kaneko, Shohei; Noda, Hideo; Hasunuma, Tomohisa; Tanaka, Tsutomu; Ogino, Chiaki; Fukuda, Hideki; Kondo, Akihiko

    2010-05-01

    We demonstrate direct ethanol fermentation from amorphous cellulose using cellulase-co-expressing yeast. Endoglucanases (EG) and cellobiohydrolases (CBH) from Trichoderma reesei, and beta-glucosidases (BGL) from Aspergillus aculeatus were integrated into genomes of the yeast strain Saccharomyces cerevisiae MT8-1. BGL was displayed on the yeast cell surface and both EG and CBH were secreted or displayed on the cell surface. All enzymes were successfully expressed on the cell surface or in culture supernatants in their active forms, and cellulose degradation was increased 3- to 5-fold by co-expressing EG and CBH. Direct ethanol fermentation from 10 g/L phosphoric acid swollen cellulose (PASC) was also carried out using EG-, CBH-, and BGL-co-expressing yeast. The ethanol yield was 2.1 g/L for EG-, CBH-, and BGL-displaying yeast, which was higher than that of EG- and CBH-secreting yeast (1.6 g/L ethanol). Our results show that cell surface display is more suitable for direct ethanol fermentation from cellulose. PMID:20349451

  11. Plant farnesyltransferase can restore yeast Ras signaling and mating

    SciTech Connect

    Yalovsky, S.; Callan, K.L.; Narita, J.O.

    1997-04-01

    Farnesyltransferase (FTase) is a heterodimeric enzyme that modifies a group of proteins, including Ras, in mammals and yeasts. Plant FTase {alpha} and {beta} subunits were cloned from tomato and expressed in the yeast Saccharomyces cerevisiae to assess their functional conservation in farnesylating Ras and a-factor proteins, which are important for cell growth and mating. The tomato FTase {beta} subunit (LeFTB) alone was unable to complement the growth defect of ram1{del} mutant yeast strains in which the chromosomal FTase {beta} subunit gene was deleted, but coexpression of LeFTB with the plant {alpha} subunit gene (LeFTA) restored normal growth, Ras membrane association, and mating. LeFTB contains a novel 66-amino-acid sequence domain whose deletion reduces the efficiency of tomato FTase to restore normal growth to yeast ram1{del} strains. Coexpression of LeFTA and LeFTB in either yeast or insect cells yielded a functional enzyme that correctly farnesylated CaaX-motif-containing peptides. Despite their low degree of sequence homology, yeast and plant FTases shared similar in vivo and in vitro substrate specificities, demonstrating that this enzymatic modification of proteins with intermediates from the isoprenoid biosynthesis pathway is conserved in evolutionarily divergent eukaryotes. 56 refs., 7 figs., 1 tab.

  12. Yeast diversity on grapes in two German wine growing regions.

    PubMed

    Brysch-Herzberg, Michael; Seidel, Martin

    2015-12-01

    The yeast diversity on wine grapes in Germany, one of the most northern wine growing regions of the world, was investigated by means of a culture dependent approach. All yeast isolates were identified by sequence analysis of the D1/D2 domain of the 26S rDNA and the ITS region. Besides Hanseniaspora uvarum and Metschnikowia pulcherrima, which are well known to be abundant on grapes, Metschnikowia viticola, Rhodosporidium babjevae, and Curvibasidium pallidicorallinum, as well as two potentially new species related to Sporidiobolus pararoseus and Filobasidium floriforme, turned out to be typical members of the grape yeast community. We found M. viticola in about half of the grape samples in high abundance. Our data strongly suggest that M. viticola is one of the most important fermenting yeast species on grapes in the temperate climate of Germany. The frequent occurrence of Cu. pallidicorallinum and strains related to F. floriforme is a new finding. The current investigation provides information on the distribution of recently described yeast species, some of which are known from a very few strains up to now. Interestingly yeasts known for their role in the wine making process, such as Saccharomyces cerevisiae, Saccharomyces bayanus ssp. uvarum, Torulaspora delbrueckii, and Zygosaccharomyces bailii, were not found in the grape samples. PMID:26292165

  13. Yeasts associated to Traditional Balsamic Vinegar: ecological and technological features.

    PubMed

    Solieri, L; Giudici, P

    2008-06-30

    Traditional Balsamic Vinegar (TBV) is an Italian homemade vinegar made with cooked grape must through a three-step process: conversion of sugars to ethanol by naturally occurring yeasts; oxidation of ethanol to acetic acid by acetic acid bacteria (AAB); and, finally, at least 12-years ageing. The cooked must is a selective and stressful medium for yeasts growth, due to its high sugar content and low pH values. Recent studies have shown that a large number of yeast species are involved in the fermentation, among them there are Zygosaccharomyces bailii, Zygosaccharomyces rouxii, Zygosaccharomyces pseudorouxii, Zygosaccharomyces mellis, Zygosaccharomyces bisporus, Zygosaccharomyces lentus, Hanseniaspora valbyensis, Hanseniaspora osmophila, Candida lactis-condensi, Candida stellata, Saccharomycodes ludwigii and Saccharomyces cerevisiae. Nevertheless, the TBV-associated yeast population could be even more complex and many other slow-growing or poorly cultivable species might contribute to cooked must fermentation. In this review the main TBV yeast species are described, pointing out their role in TBV production and their influence on final product quality. Finally, both future developments in TBV yeast community studies (culture-independent and metagenomic techniques) and technological advances in TBV making (use of starter culture) are discussed. PMID:17900732

  14. Automated Yeast Mating Protocol Using Open Reading Frames from Saccharomyces cerevisiae Genome to Improve Yeast Strains for Cellulosic Ethanol Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Engineering the industrial ethanologen Saccharomyces cerevisiae to utilize pentose sugars from lignocellulosic biomass is critical for commercializing cellulosic fuel ethanol production. Approaches to engineer pentose-fermenting yeasts have required expression of additional genes. We implemented a...

  15. Yeast mutants overproducing iso-cytochromes c

    SciTech Connect

    Sherman, F.; Cardillo, T.S.; Errede, B.; Friedman, L.; McKnight, G.; Stiles, J.I.

    1980-01-01

    For over 15 years, the iso-cytochrome c system in the yeast Saccharomyces cerevisiae has been used to investigate a multitude of problems in genetics and molecular biology. More recently, attention has been focused on using mutants for examining translation and transcriptional processes and for probing regulatory regions governing gene expression. In an effort to explore regulatory mechanisms and to investigate mutational alterations that lead to increased levels of gene products, we have isolated and characterized mutants that overproduce cytochrome c. In this paper we have briefly summarized background information of some essential features of the iso-cytochrome c system and we have described the types of mutants that overproduce iso-1-cytochrome c or iso-2-cytochrome c. Genetic procedures and recombinant DNA procedures were used to demonstrate that abnormally high amounts of gene products occur in mutants as result of duplications of gene copies or of extended alteration of regulatory regions. The results summarized in this paper point out the requirements of gross mutational changes or rearrangements of chromosomal segments for augmenting gene products.

  16. X-ray irradiation of yeast cells

    NASA Astrophysics Data System (ADS)

    Masini, Alessandra; Batani, Dimitri; Previdi, Fabio; Conti, Aldo; Pisani, Francesca; Botto, Cesare; Bortolotto, Fulvia; Torsiello, Flavia; Turcu, I. C. Edmond; Allott, Ric M.; Lisi, Nicola; Milani, Marziale; Costato, Michele; Pozzi, Achille; Koenig, Michel

    1997-10-01

    Saccharomyces Cerevisiae yeast cells were irradiated using the soft X-ray laser-plasma source at Rutherford Laboratory. The aim was to produce a selective damage of enzyme metabolic activity at the wall and membrane level (responsible for fermentation) without interfering with respiration (taking place in mitochondria) and with nuclear and DNA activity. The source was calibrated by PIN diodes and X-ray spectrometers. Teflon stripes were chosen as targets for the UV laser, emitting X-rays at about 0.9 keV, characterized by a very large decay exponent in biological matter. X-ray doses to the different cell compartments were calculated following a Lambert-Bouguet-Beer law. After irradiation, the selective damage to metabolic activity at the membrane level was measured by monitoring CO2 production with pressure silicon detectors. Preliminary results gave evidence of pressure reduction for irradiated samples and non-linear response to doses. Also metabolic oscillations were evidenced in cell suspensions and it was shown that X-ray irradiation changed the oscillation frequency.

  17. Cytotoxic dehydromonacolins from red yeast rice.

    PubMed

    Zhu, Lin; Yau, Lee-Fong; Lu, Jing-Guang; Zhu, Guo-Yuan; Wang, Jing-Rong; Han, Quan-Bin; Hsiao, Wen-Luan; Jiang, Zhi-Hong

    2012-02-01

    Two new dehydromonacolins (1 and 3), together with nine known monacolins (4-12), were isolated from red yeast rice. Compounds 4-6 were isolated from a natural resource for the first time. Their structures were elucidated by means of NMR and mass spectroscopic analyses. The structure of dehydromonacolin N (1) was further confirmed by its semisynthesis from monacolin K (lovastatin) (11). Dehydromonacolin J (2), an intermediate in the semisynthesis of 1, was obtained as a new dehydromonacolin. The structure of dehydromonacolin L (3) was also confirmed by an elimination reaction of monacolin L (12). Compound 1, possessing a C2 side chain, is unprecedented in the natural monacolin family and exhibited moderate cytotoxic activity against Hep G2, Caco-2, and MCF-7 cancer cell lines. Dehydromonacolin K (8) demonstrated the most potent cytotoxicity to all three of these cell lines. The structure-activity relationship of natural and synthesized monacolins was discussed. This is the first report on the cytotoxic effects of dehydromonacolins. PMID:22224625

  18. Evolution of intraspecific transcriptomic landscapes in yeasts

    PubMed Central

    Brion, Christian; Pflieger, David; Friedrich, Anne; Schacherer, Joseph

    2015-01-01

    Variations in gene expression have been widely explored in order to obtain an accurate overview of the changes in regulatory networks that underlie phenotypic diversity. Numerous studies have characterized differences in genomic expression between large numbers of individuals of model organisms such as Saccharomyces cerevisiae. To more broadly survey the evolution of the transcriptomic landscape across species, we measured whole-genome expression in a large collection of another yeast species: Lachancea kluyveri (formerly Saccharomyces kluyveri), using RNAseq. Interestingly, this species diverged from the S. cerevisiae lineage prior to its ancestral whole genome duplication. Moreover, L. kluyveri harbors a chromosome-scale compositional heterogeneity due to a 1-Mb ancestral introgressed region as well as a large set of unique unannotated genes. In this context, our comparative transcriptomic analysis clearly showed a link between gene evolutionary history and expression behavior. Indeed, genes that have been recently acquired or under function relaxation tend to be less transcribed show a higher intraspecific variation (plasticity) and are less involved in network (connectivity). Moreover, utilizing this approach in L. kluyveri also highlighted specific regulatory network signatures in aerobic respiration, amino-acid biosynthesis and glycosylation, presumably due to its different lifestyle. Our data set sheds an important light on the evolution of intraspecific transcriptomic variation across distant species. PMID:25897111

  19. DNA replication induces compositional biases in yeast.

    PubMed

    Marsolier-Kergoat, Marie-Claude; Goldar, Arach

    2012-03-01

    Asymmetries intrinsic to the process of DNA replication are expected to cause differences in the substitution patterns of the leading and the lagging strands and to induce compositional biases. These biases have been detected in the majority of eubacterial genomes but rarely in eukaryotes. Only in the human genome, the activity of a minority of replication origins seems to generate compositional biases. In this work, we provide evidence for replication-associated GC and TA skews in the genomes of two yeast species, Saccharomyces cerevisiae and Kluyveromyces lactis, whereas the data for the Schizosaccharomyces pombe genome are less conclusive. In contrast with the genomes of Homo sapiens and of the majority of eubacteria, the leading strand is enriched in cytosine and adenine in both S. cerevisiae and K. lactis. We observed significant variations across the interorigin intervals of several substitution rates in the S. cerevisiae lineage since its divergence from S. paradoxus. We also found that the S. cerevisiae genome is far from compositional equilibrium and that its present compositional biases are due to substitution rates operating before its divergence from S. paradoxus. Finally, we observed that replication and transcription tend to be cooriented in the S. cerevisiae genome, especially for genes encoding subunits of protein complexes. Taken together, our results suggest that replication-related compositional biases may be a feature of many eukaryotic genomes despite the stochastic nature of the firing of replication origins in these genomes. PMID:21948086

  20. Potassium and Sodium Transport in Yeast.

    PubMed

    Yenush, Lynne

    2016-01-01

    As the proper maintenance of intracellular potassium and sodium concentrations is vital for cell growth, all living organisms have developed a cohort of strategies to maintain proper monovalent cation homeostasis. In the model yeast Saccharomyces cerevisiae, potassium is accumulated to relatively high concentrations and is required for many aspects of cellular function, whereas high intracellular sodium/potassium ratios are detrimental to cell growth and survival. The fact that S. cerevisiae cells can grow in the presence of a broad range of concentrations of external potassium (10 ?M-2.5 M) and sodium (up to 1.5 M) indicates the existence of robust mechanisms that have evolved to maintain intracellular concentrations of these cations within appropriate limits. In this review, current knowledge regarding potassium and sodium transporters and their regulation will be summarized. The cellular responses to high sodium and potassium and potassium starvation will also be discussed, as well as applications of this knowledge to diverse fields, including antifungal treatments, bioethanol production and human disease. PMID:26721275

  1. A unified model for yeast transcript definition.

    PubMed

    de Boer, Carl G; van Bakel, Harm; Tsui, Kyle; Li, Joyce; Morris, Quaid D; Nislow, Corey; Greenblatt, Jack F; Hughes, Timothy R

    2014-01-01

    Identifying genes in the genomic context is central to a cell's ability to interpret the genome. Yet, in general, the signals used to define eukaryotic genes are poorly described. Here, we derived simple classifiers that identify where transcription will initiate and terminate using nucleic acid sequence features detectable by the yeast cell, which we integrate into a Unified Model (UM) that models transcription as a whole. The cis-elements that denote where transcription initiates function primarily through nucleosome depletion, and, using a synthetic promoter system, we show that most of these elements are sufficient to initiate transcription in vivo. Hrp1 binding sites are the major characteristic of terminators; these binding sites are often clustered in terminator regions and can terminate transcription bidirectionally. The UM predicts global transcript structure by modeling transcription of the genome using a hidden Markov model whose emissions are the outputs of the initiation and termination classifiers. We validated the novel predictions of the UM with available RNA-seq data and tested it further by directly comparing the transcript structure predicted by the model to the transcription generated by the cell for synthetic DNA segments of random design. We show that the UM identifies transcription start sites more accurately than the initiation classifier alone, indicating that the relative arrangement of promoter and terminator elements influences their function. Our model presents a concrete description of how the cell defines transcript units, explains the existence of nongenic transcripts, and provides insight into genome evolution. PMID:24170600

  2. Electrochemical Regulation of Budding Yeast Polarity

    PubMed Central

    Piel, Matthieu; Chang, Fred; Minc, Nicolas

    2014-01-01

    Cells are naturally surrounded by organized electrical signals in the form of local ion fluxes, membrane potential, and electric fields (EFs) at their surface. Although the contribution of electrochemical elements to cell polarity and migration is beginning to be appreciated, underlying mechanisms are not known. Here we show that an exogenous EF can orient cell polarization in budding yeast (Saccharomyces cerevisiae) cells, directing the growth of mating projections towards sites of hyperpolarized membrane potential, while directing bud emergence in the opposite direction, towards sites of depolarized potential. Using an optogenetic approach, we demonstrate that a local change in membrane potential triggered by light is sufficient to direct cell polarization. Screens for mutants with altered EF responses identify genes involved in transducing electrochemical signals to the polarity machinery. Membrane potential, which is regulated by the potassium transporter Trk1p, is required for polarity orientation during mating and EF response. Membrane potential may regulate membrane charges through negatively charged phosphatidylserines (PSs), which act to position the Cdc42p-based polarity machinery. These studies thus define an electrochemical pathway that directs the orientation of cell polarization. PMID:25548923

  3. Producing aglycons of ginsenosides in bakers' yeast

    PubMed Central

    Dai, Zhubo; Wang, Beibei; Liu, Yi; Shi, Mingyu; Wang, Dong; Zhang, Xianan; Liu, Tao; Huang, Luqi; Zhang, Xueli

    2014-01-01

    Ginsenosides are the primary bioactive components of ginseng, which is a popular medicinal plant that exhibits diverse pharmacological activities. Protopanaxadiol, protopanaxatriol and oleanolic acid are three basic aglycons of ginsenosides. Producing aglycons of ginsenosides in Saccharomyces cerevisiae was realized in this work and provides an alternative route compared to traditional extraction methods. Synthetic pathways of these three aglycons were constructed in S. cerevisiae by introducing ?-amyrin synthase, oleanolic acid synthase, dammarenediol-II synthase, protopanaxadiol synthase, protopanaxatriol synthase and NADPH-cytochrome P450 reductase from different plants. In addition, a truncated 3-hydroxy-3-methylglutaryl-CoA reductase, squalene synthase and 2,3-oxidosqualene synthase genes were overexpressed to increase the precursor supply for improving aglycon production. Strain GY-1 was obtained, which produced 17.2?mg/L protopanaxadiol, 15.9?mg/L protopanaxatriol and 21.4?mg/L oleanolic acid. The yeast strains engineered in this work can serve as the basis for creating an alternative way for producing ginsenosides in place of extractions from plant sources. PMID:24424342

  4. A unified model for yeast transcript definition

    PubMed Central

    de Boer, Carl G.; van Bakel, Harm; Tsui, Kyle; Li, Joyce; Morris, Quaid D.; Nislow, Corey; Greenblatt, Jack F.; Hughes, Timothy R.

    2014-01-01

    Identifying genes in the genomic context is central to a cell's ability to interpret the genome. Yet, in general, the signals used to define eukaryotic genes are poorly described. Here, we derived simple classifiers that identify where transcription will initiate and terminate using nucleic acid sequence features detectable by the yeast cell, which we integrate into a Unified Model (UM) that models transcription as a whole. The cis-elements that denote where transcription initiates function primarily through nucleosome depletion, and, using a synthetic promoter system, we show that most of these elements are sufficient to initiate transcription in vivo. Hrp1 binding sites are the major characteristic of terminators; these binding sites are often clustered in terminator regions and can terminate transcription bidirectionally. The UM predicts global transcript structure by modeling transcription of the genome using a hidden Markov model whose emissions are the outputs of the initiation and termination classifiers. We validated the novel predictions of the UM with available RNA-seq data and tested it further by directly comparing the transcript structure predicted by the model to the transcription generated by the cell for synthetic DNA segments of random design. We show that the UM identifies transcription start sites more accurately than the initiation classifier alone, indicating that the relative arrangement of promoter and terminator elements influences their function. Our model presents a concrete description of how the cell defines transcript units, explains the existence of nongenic transcripts, and provides insight into genome evolution. PMID:24170600

  5. Structure of yeast inorganic pyrophosphatase: Refinement

    SciTech Connect

    Zabel, V.; Bunick, G.J.; Vanderhoff, P.A.; Uberbacher, E.C. ); Voet, D. )

    1991-03-11

    Yeast inorganic pyrophosphatase, PPase, is a dimeric enzyme (64kD) of chemically identical subunits consisting of 285 amino acids. It catalyzes the hydrolysis of pyrophosphate to orthophosphate and is therefore essential in the energy utilization of all life forms. PPase crystallizes in the monoclinic space group P2{sub 1} with cell dimensions of a = 69.96, b = 95.27, c = 51.77 {angstrom}, {beta} = 99.5{degree} and a dimer in the asymmetric unit. Data up to 2.3{angstrom} resolution were collected at {minus}50C by rotation photography, optically scanned and processed. Coordinates of a 3{angstrom} resolution study of PPase at room temperature were taken from the Brookhaven Protein Data Bank and used to initiate refinement with a starting R-factor of 52%. The refinement proceeded smoothly using the program PROLSQ installed on a Cray-2, and from 2F{sub o}-F{sub c} maps the missing terminal amino acids were eventually fitted on a PS350 graphics system. Some corrections were made to the backbone and numerous side-chains were also readjusted. The intermediate R-factor is 28% with solvent water presently being incorporated into the structure.

  6. Development of yeasts for xylose fermentation

    SciTech Connect

    Jeffries, T.W.; Yang, V.; Marks, J.; Amartey, S.; Kenealy, W.R.; Cho, J.Y.; Dahn, K.; Davis, B.P.

    1993-12-31

    Xylose is an abundant sugar in hardwoods and agricultural residues. Its use is essential for any economical conversion of lignocellulose to ethanol. Only a few yeasts ferment xylose effectively. Our results show that the best strains are Candida shehatae ATCC 2984 and Pichia stipitis CBS 6054. Wild type strains of C. shehatae ATCC 22984 will produce 56 g/L of ethanol from xylose within 48 h in a fed batch fermentation. We have obtained improved mutants of P.stipitis by selecting for growth on L-xylose and L-arabinose. Mutant strains produce up to 55% more ethanol than the parent and exhibit higher specific fermentation rates. We have also developed an effective transformation system that enables the introduction and expression of heterologous DNA on integrating and autonomous vectors. The transformation system for P. stipitis is based on its URA3 gene as a selectable marker and an autonomous replication sequence (ARS) which we isolated from the parent. We are using integrating and ARS vectors to metabolically engineer P. stipitis by altering the regulation and expression of key enzymes. As model systems we are examining the expression of alcohol dehydrogenase (ADH) and pyruvate decarboxylase (PDC) that are present in limiting amounts or induced only under non-growth conditions.

  7. Agrobacterium tumefaciens-mediated transformation of yeast.

    PubMed Central

    Piers, K L; Heath, J D; Liang, X; Stephens, K M; Nester, E W

    1996-01-01

    Agrobacterium tumefaciens transfers a piece of its Ti plasmid DNA (transferred DNA or T-DNA) into plant cells during crown gall tumorigenesis. A. tumefaciens can transfer its T-DNA to a wide variety of hosts, including both dicotyledonous and monocotyledonous plants. We show that the host range of A. tumefaciens can be extended to include Saccharomyces cerevisiae. Additionally, we demonstrate that while T-DNA transfer into S. cerevisiae is very similar to T-DNA transfer into plants, the requirements are not entirely conserved. The Ti plasmid-encoded vir genes of A. tumefaciens that are required for T-DNA transfer into plants are also required for T-DNA transfer into S. cerevisiae, as is vir gene induction. However, mutations in the chromosomal virulence genes of A. tumefaciens involved in attachment to plant cells have no effect on the efficiency of T-DNA transfer into S. cerevisiae. We also demonstrate that transformation efficiency is improved 500-fold by the addition of yeast telomeric sequences within the T-DNA sequence. Images Fig. 1 Fig. 2 PMID:8643679

  8. New mutations affecting induced mutagenesis in yeast.

    PubMed

    Lawrence, C W; Krauss, B R; Christensen, R B

    1985-01-01

    Previously isolated mutations in baker's yeast, Saccharomyces cerevisiae, that impair induced mutagenesis were all identified with the aid of tests that either exclusively or predominantly detect base-pair substitutions. To avoid this bias, we have screened 11 366 potentially mutant clones for UV-induced reversion of the frameshift allele, his4-38, and have identified 10 mutants that give much reduced yields of revertants. Complementation and recombination tests show that 6 of these carry mutations at the previously known REV1, REV1 and REV3 loci, while the remaining 4 define 3 new genes, REV4 (2 mutations), REV5 and REV6. The rev4 mutations are readily suppressed in many genetic backgrounds and, like the rev5 mutation, impart only a limited deficiency for induced mutagenesis: it is likely, therefore that the REV4+ and REV5+ gene functions are only remotely concerned with this process. The rev6 mutants have a more general deficiency, however, as well as marked sensitivity to UV and an increased spontaneous mutation rate, properties that suggest the REV6 gene is directly involved in mutation induction. The REV5 gene is located about 1 cM proximal to CYC1 on chromosome X. PMID:3889616

  9. Genetic Basis of Metabolome Variation in Yeast

    PubMed Central

    Breunig, Jeffrey S.; Hackett, Sean R.; Rabinowitz, Joshua D.; Kruglyak, Leonid

    2014-01-01

    Metabolism, the conversion of nutrients into usable energy and biochemical building blocks, is an essential feature of all cells. The genetic factors responsible for inter-individual metabolic variability remain poorly understood. To investigate genetic causes of metabolome variation, we measured the concentrations of 74 metabolites across 100 segregants from a Saccharomyces cerevisiae cross by liquid chromatography-tandem mass spectrometry. We found 52 quantitative trait loci for 34 metabolites. These included linkages due to overt changes in metabolic genes, e.g., linking pyrimidine intermediates to the deletion of ura3. They also included linkages not directly related to metabolic enzymes, such as those for five central carbon metabolites to ira2, a Ras/PKA pathway regulator, and for the metabolites, S-adenosyl-methionine and S-adenosyl-homocysteine to slt2, a MAP kinase involved in cell wall integrity. The variant of ira2 that elevates metabolite levels also increases glucose uptake and ethanol secretion. These results highlight specific examples of genetic variability, including in genes without prior known metabolic regulatory function, that impact yeast metabolism. PMID:24603560

  10. One-hour proteome analysis in yeast.

    PubMed

    Richards, Alicia L; Hebert, Alexander S; Ulbrich, Arne; Bailey, Derek J; Coughlin, Emma E; Westphall, Michael S; Coon, Joshua J

    2015-05-01

    Recent advances in chromatography and mass spectrometry (MS) have made rapid and deep proteomic profiling possible. To maximize the performance of the recently produced Orbitrap hybrid mass spectrometer, we have developed a protocol that combines improved sample preparation (including optimized cellular lysis by extensive bead beating) and chromatographic conditions (specifically, 30-cm capillary columns packed with 1.7-μm bridged ethylene hybrid material) and the manufacture of a column heater (to accommodate flow rates of 350-375 nl/min) that increases the number of proteins identified across a single liquid chromatography-tandem MS (LC-MS/MS) separation, thereby reducing the need for extensive sample fractionation. This strategy allowed the identification of up to 4,002 proteins (at a 1% false discovery rate (FDR)) in yeast (Saccharomyces cerevisiae strain BY4741) over 70 min of LC-MS/MS analysis. Quintuplicate analysis of technical replicates reveals 83% overlap at the protein level, thus demonstrating the reproducibility of this procedure. This protocol, which includes cell lysis, overnight tryptic digestion, sample analysis and database searching, takes ∼24 h to complete. Aspects of this protocol, including chromatographic separation and instrument parameters, can be adapted for the optimal analysis of other organisms. PMID:25855955

  11. The Regulation of Filamentous Growth in Yeast

    PubMed Central

    Cullen, Paul J.; Sprague, George F.

    2012-01-01

    Filamentous growth is a nutrient-regulated growth response that occurs in many fungal species. In pathogens, filamentous growth is critical for host–cell attachment, invasion into tissues, and virulence. The budding yeast Saccharomyces cerevisiae undergoes filamentous growth, which provides a genetically tractable system to study the molecular basis of the response. Filamentous growth is regulated by evolutionarily conserved signaling pathways. One of these pathways is a mitogen activated protein kinase (MAPK) pathway. A remarkable feature of the filamentous growth MAPK pathway is that it is composed of factors that also function in other pathways. An intriguing challenge therefore has been to understand how pathways that share components establish and maintain their identity. Other canonical signaling pathways—rat sarcoma/protein kinase A (RAS/PKA), sucrose nonfermentable (SNF), and target of rapamycin (TOR)—also regulate filamentous growth, which raises the question of how signals from multiple pathways become integrated into a coordinated response. Together, these pathways regulate cell differentiation to the filamentous type, which is characterized by changes in cell adhesion, cell polarity, and cell shape. How these changes are accomplished is also discussed. High-throughput genomics approaches have recently uncovered new connections to filamentous growth regulation. These connections suggest that filamentous growth is a more complex and globally regulated behavior than is currently appreciated, which may help to pave the way for future investigations into this eukaryotic cell differentiation behavior. PMID:22219507

  12. Response of lactating cows to live yeast supplementation during summer.

    PubMed

    Salvati, G G S; Morais Júnior, N N; Melo, A C S; Vilela, R R; Cardoso, F F; Aronovich, M; Pereira, R A N; Pereira, M N

    2015-06-01

    Dairy cows experiencing heat stress have reduced intake and increased reliance on glucose, making feeding strategies capable of improving diet digestibility plausible for improving postrumen nutrient flow and performance. The effect of yeast on digestion and performance of lactating cows during the warm summer months of southeastern Brazil was evaluated. Cows were individually fed in tie stalls and temperature-humidity index was above 68 during 75.6% of the experiment. Twenty-eight Holstein cows (207±87 d in milk) received a standard diet for 14 d and then a treatment for 70 d, in a covariate-adjusted, randomized block design with repeated measures over time. Treatments were yeast (Saccharomyces cerevisiae) or control. Yeast was top dressed to the diet in the morning, equivalent to 25×10(10) cfu of live cells and 5×10(10) cfu of dead cells. The diet contained corn silage (37.7%), Tifton silage (7.1%), raw soybeans (4.1%), soybean meal (16.5%), finely ground corn (20.7%), and citrus pulp (11.9%). Yeast increased milk (26.7 vs. 25.4 kg/d) and solids yield (3.06 vs. 2.92 kg/d), especially lactose. Response in milk yield was consistent over time and started at d 5. The daily intake of digestible OM, total-tract digestibility of nutrients, urinary allantoin excretion, chewing pattern throughout the day, and dry matter intake did not respond to yeast. A trend was observed for increased plasma glucose with yeast (62.9 vs. 57.3mg/dL), lowered respiratory frequency (48 vs. 56 breaths/min), and increased plasma niacin content (1.31 vs. 1.22 µg/mL), though cows had similar rectal temperature. Ruminal lactate and butyrate as proportions of ruminal organic acids were reduced by yeast, but no effects on other organic acids, ruminal pH, or protozoa content were detected. Plasma urea N over 24h was increased by yeast. On d 72 to 74, citrus pulp was abruptly replaced with finely ground corn to induce acidosis. The increased load of starch increased dry matter intake between 0700 and 1300 h, jugular blood partial pressure of CO2, HCO3-, and base excess, and decreased blood pH for both treatments. The yeast treatment had a higher blood pH compared with the control, 7.34, and 7.31, respectively. Yeast supplementation improved lactation performance of dairy cows under heat stress. Improvement in lactation performance apparently involved the regulation of body homeothermia, rather than improved digestibility. PMID:25795491

  13. Solving ethanol production problems with genetically modified yeast strains

    PubMed Central

    Abreu-Cavalheiro, A.; Monteiro, G.

    2013-01-01

    The current world demand for bioethanol is increasing as a consequence of low fossil fuel availability and a growing number of ethanol/gasoline flex-fuel cars. In addition, countries in several parts of the world have agreed to reduce carbon dioxide emissions, and the use of ethanol as a fuel (which produces fewer pollutants than petroleum products) has been considered to be a good alternative to petroleum products. The ethanol that is produced in Brazil from the first-generation process is optimized and can be accomplished at low cost. However, because of the large volume of ethanol that is produced and traded each year, any small improvement in the process could represent a savings of billions dollars. Several Brazilian research programs are investing in sugarcane improvement, but little attention has been given to the improvement of yeast strains that participate in the first-generation process at present. The Brazilian ethanol production process uses sugarcane as a carbon source for the yeast Saccharomyces cerevisiae. Yeast is then grown at a high cellular density and high temperatures in large-capacity open tanks with cells recycle. All of these culture conditions compel the yeast to cope with several types of stress. Among the main stressors are high temperatures and high ethanol concentrations inside the fermentation tanks during alcohol production. Moreover, the competition between the desired yeast strains, which are inoculated at the beginning of the process, with contaminants such as wild type yeasts and bacteria, requires acid treatment to successfully recycle the cells. This review is focused on describing the problems and stressors within the Brazilian ethanol production system. It also highlights some genetic modifications that can help to circumvent these difficulties in yeast. PMID:24516432

  14. Solving ethanol production problems with genetically modified yeast strains.

    PubMed

    Abreu-Cavalheiro, A; Monteiro, G

    2013-01-01

    The current world demand for bioethanol is increasing as a consequence of low fossil fuel availability and a growing number of ethanol/gasoline flex-fuel cars. In addition, countries in several parts of the world have agreed to reduce carbon dioxide emissions, and the use of ethanol as a fuel (which produces fewer pollutants than petroleum products) has been considered to be a good alternative to petroleum products. The ethanol that is produced in Brazil from the first-generation process is optimized and can be accomplished at low cost. However, because of the large volume of ethanol that is produced and traded each year, any small improvement in the process could represent a savings of billions dollars. Several Brazilian research programs are investing in sugarcane improvement, but little attention has been given to the improvement of yeast strains that participate in the first-generation process at present. The Brazilian ethanol production process uses sugarcane as a carbon source for the yeast Saccharomyces cerevisiae. Yeast is then grown at a high cellular density and high temperatures in large-capacity open tanks with cells recycle. All of these culture conditions compel the yeast to cope with several types of stress. Among the main stressors are high temperatures and high ethanol concentrations inside the fermentation tanks during alcohol production. Moreover, the competition between the desired yeast strains, which are inoculated at the beginning of the process, with contaminants such as wild type yeasts and bacteria, requires acid treatment to successfully recycle the cells. This review is focused on describing the problems and stressors within the Brazilian ethanol production system. It also highlights some genetic modifications that can help to circumvent these difficulties in yeast. PMID:24516432

  15. Ochratoxin A in brewer's yeast used as food supplement.

    PubMed

    Gottschalk, Christoph; Biermaier, Barbara; Gross, Madeleine; Schwaiger, Karin; Gareis, Manfred

    2016-02-01

    Brewer's yeasts are rich in vitamins of the B-group and contain other nutritive factors; therefore, they are recommended as valuable food supplements for people with special dietary requirements like pregnant women, children, and adolescents, or for people with high physical activity. Additionally, certain strains of brewer's yeast are known to be capable of adsorbing xenobiotics such as mycotoxins. Because of that, these yeasts are regarded as having positive effects in food, beverage, and feed technology. Their potential to bind mycotoxins such as ochratoxin A (OTA), however, can subsequently lead to a contamination of such brewer's yeasts used as food supplements. In the present study, we analyzed 46 samples of brewer's yeasts for the occurrence of OTA by HPLC with fluorescence detector (HPLC-FLD) and for confirmatory measurements by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Nearly 90 % of the samples were contaminated with OTA, the levels ranging from the limit of detection (LOD, 0.01 μg/kg) to 4.2 μg/kg. The mean and median levels of contamination were 0.49 and 0.27 μg/kg, respectively. Based on these results, the additional weekly OTA exposure by regularly consuming such supplements was assessed. Depending on different subpopulations (adults, children) and levels of contamination used for calculation, the additional OTA intake via brewer's yeast products ranged from 9.3 % (mean case) to 114 % (worst case) of the published mean weekly OTA intake in Germany (adults 279.3 ng, children 195.3 ng). At present, maximum levels for OTA in nutritional supplements like brewer's yeast do not exist. Based on our results, however, it is recommended that producers of these dietary supplements should include mycotoxin analyses in ongoing and future self-monitoring programs and in product quality checks. PMID:26420604

  16. Isolating potentiated Hsp104 variants using yeast proteinopathy models.

    PubMed

    Jackrel, Meredith E; Tariq, Amber; Yee, Keolamau; Weitzman, Rachel; Shorter, James

    2014-01-01

    Many protein-misfolding disorders can be modeled in the budding yeast Saccharomyces cerevisiae. Proteins such as TDP-43 and FUS, implicated in amyotrophic lateral sclerosis, and α-synuclein, implicated in Parkinson's disease, are toxic and form cytoplasmic aggregates in yeast. These features recapitulate protein pathologies observed in patients with these disorders. Thus, yeast are an ideal platform for isolating toxicity suppressors from libraries of protein variants. We are interested in applying protein disaggregases to eliminate misfolded toxic protein conformers. Specifically, we are engineering Hsp104, a hexameric AAA+ protein from yeast that is uniquely capable of solubilizing both disordered aggregates and amyloid and returning the proteins to their native conformations. While Hsp104 is highly conserved in eukaryotes and eubacteria, it has no known metazoan homologue. Hsp104 has only limited ability to eliminate disordered aggregates and amyloid fibers implicated in human disease. Thus, we aim to engineer Hsp104 variants to reverse the protein misfolding implicated in neurodegenerative disorders. We have developed methods to screen large libraries of Hsp104 variants for suppression of proteotoxicity in yeast. As yeast are prone to spontaneous nonspecific suppression of toxicity, a two-step screening process has been developed to eliminate false positives. Using these methods, we have identified a series of potentiated Hsp104 variants that potently suppress the toxicity and aggregation of TDP-43, FUS, and α-synuclein. Here, we describe this optimized protocol, which could be adapted to screen libraries constructed using any protein backbone for suppression of toxicity of any protein that is toxic in yeast. PMID:25407485

  17. Posttranscriptional Control of Gene Expression in Yeast

    PubMed Central

    McCarthy, John E. G.

    1998-01-01

    Studies of the budding yeast Saccharomyces cerevisiae have greatly advanced our understanding of the posttranscriptional steps of eukaryotic gene expression. Given the wide range of experimental tools applicable to S. cerevisiae and the recent determination of its complete genomic sequence, many of the key challenges of the posttranscriptional control field can be tackled particularly effectively by using this organism. This article reviews the current knowledge of the cellular components and mechanisms related to translation and mRNA decay, with the emphasis on the molecular basis for rate control and gene regulation. Recent progress in characterizing translation factors and their protein-protein and RNA-protein interactions has been rapid. Against the background of a growing body of structural information, the review discusses the thermodynamic and kinetic principles that govern the translation process. As in prokaryotic systems, translational initiation is a key point of control. Modulation of the activities of translational initiation factors imposes global regulation in the cell, while structural features of particular 5′ untranslated regions, such as upstream open reading frames and effector binding sites, allow for gene-specific regulation. Recent data have revealed many new details of the molecular mechanisms involved while providing insight into the functional overlaps and molecular networking that are apparently a key feature of evolving cellular systems. An overall picture of the mechanisms governing mRNA decay has only very recently begun to develop. The latest work has revealed new information about the mRNA decay pathways, the components of the mRNA degradation machinery, and the way in which these might relate to the translation apparatus. Overall, major challenges still to be addressed include the task of relating principles of posttranscriptional control to cellular compartmentalization and polysome structure and the role of molecular channelling in these highly complex expression systems. PMID:9841679

  18. Characterizing yeast promoters used in Kluyveromyces marxianus.

    PubMed

    Yang, Chun; Hu, Shenglin; Zhu, Songli; Wang, Dongmei; Gao, Xiaolian; Hong, Jiong

    2015-10-01

    Fermentation at higher temperatures can potentially reduce the cooling cost in large-scale fermentation and reduce the contamination risk. Thus, the thermotolerant yeast, Kluyveromyces marxianus, which can grow and ferment at elevated temperatures, is a promising biotechnological tool for future applications. However, the promoters used in K. marxianus are not well characterized, especially at elevated temperatures, which is important in efficient metabolic pathway construction. In this study, six constitutive promoters (P(TDH3), P(PGK), and P(ADH1) from both Saccharomyces cerevisiae and K. marxianus) were evaluated in K. marxianus through the heterologous expression of the KlLAC4, GUSA, and SH BLE genes at various temperatures, with various carbon sources and oxygen conditions. The expression was evaluated at the transcription and protein level using real-time PCR and protein activity determination to eliminate the effect of heterologous protein stability. While the transcription of all the promoters decreased at higher temperatures, the order of their promoting strength at various temperatures with glucose as the carbon source was P(KmPGK) > P(KmTDH3) > P(ScPGK) > P(ScTDH3) > P(KmADH1) > P(ScADH1). When glycerol or xylose was supplied as the carbon source at 42 °C, the order of promoter strength was P(KmPGK) > P(ScPGK) > P(KmADH1) > P(ScADH1) > P(ScTDH3) > P(KmTDH3). The promoter activity of P TDH3 decreased significantly, while the promoter activity of both of the P(ADH1) promoters increased. Oxygen conditions had non-significant effect. The results of this study provide important information for fine-tuned pathway construction for the metabolic engineering of K. marxianus. PMID:26164057

  19. Yeast Alcohol Dehydrogenase Structure and Catalysis

    PubMed Central

    2015-01-01

    Yeast (Saccharomyces cerevisiae) alcohol dehydrogenase I (ADH1) is the constitutive enzyme that reduces acetaldehyde to ethanol during the fermentation of glucose. ADH1 is a homotetramer of subunits with 347 amino acid residues. A structure for ADH1 was determined by X-ray crystallography at 2.4 Å resolution. The asymmetric unit contains four different subunits, arranged as similar dimers named AB and CD. The unit cell contains two different tetramers made up of “back-to-back” dimers, AB:AB and CD:CD. The A and C subunits in each dimer are structurally similar, with a closed conformation, bound coenzyme, and the oxygen of 2,2,2-trifluoroethanol ligated to the catalytic zinc in the classical tetrahedral coordination with Cys-43, Cys-153, and His-66. In contrast, the B and D subunits have an open conformation with no bound coenzyme, and the catalytic zinc has an alternative, inverted coordination with Cys-43, Cys-153, His-66, and the carboxylate of Glu-67. The asymmetry in the dimeric subunits of the tetramer provides two structures that appear to be relevant for the catalytic mechanism. The alternative coordination of the zinc may represent an intermediate in the mechanism of displacement of the zinc-bound water with alcohol or aldehyde substrates. Substitution of Glu-67 with Gln-67 decreases the catalytic efficiency by 100-fold. Previous studies of structural modeling, evolutionary relationships, substrate specificity, chemical modification, and site-directed mutagenesis are interpreted more fully with the three-dimensional structure. PMID:25157460

  20. Competitive Genomic Screens of Barcoded Yeast Libraries

    PubMed Central

    Urbanus, Malene; Proctor, Michael; Heisler, Lawrence E.; Giaever, Guri; Nislow, Corey

    2011-01-01

    By virtue of advances in next generation sequencing technologies, we have access to new genome sequences almost daily. The tempo of these advances is accelerating, promising greater depth and breadth. In light of these extraordinary advances, the need for fast, parallel methods to define gene function becomes ever more important. Collections of genome-wide deletion mutants in yeasts and E. coli have served as workhorses for functional characterization of gene function, but this approach is not scalable, current gene-deletion approaches require each of the thousands of genes that comprise a genome to be deleted and verified. Only after this work is complete can we pursue high-throughput phenotyping. Over the past decade, our laboratory has refined a portfolio of competitive, miniaturized, high-throughput genome-wide assays that can be performed in parallel. This parallelization is possible because of the inclusion of DNA 'tags', or 'barcodes,' into each mutant, with the barcode serving as a proxy for the mutation and one can measure the barcode abundance to assess mutant fitness. In this study, we seek to fill the gap between DNA sequence and barcoded mutant collections. To accomplish this we introduce a combined transposon disruption-barcoding approach that opens up parallel barcode assays to newly sequenced, but poorly characterized microbes. To illustrate this approach we present a new Candida albicans barcoded disruption collection and describe how both microarray-based and next generation sequencing-based platforms can be used to collect 10,000 - 1,000,000 gene-gene and drug-gene interactions in a single experiment. PMID:21860376

  1. Occurrence of hydrogen sulfide in wine and in fermentation: influence of yeast strain and supplementation of yeast available nitrogen.

    PubMed

    Ugliano, Maurizio; Kolouchova, Radka; Henschke, Paul A

    2011-03-01

    Hydrogen sulfide (H?S) is a powerful aroma compound largely produced by yeast during fermentation. Its occurrence in wines and other fermented beverages has been associated with off-odors described as rotten egg and/or sewage. While the formation of hydrogen sulfide (H?S) during fermentation has been extensively studied, it is the final H?S content of wine that is actually linked to potential off-odors. Nevertheless, factors determining final H?S content of wine have received little attention, and it is commonly assumed that high H?S-forming fermentations will result in high final concentrations of H?S. However, a clear relationship has never been established. In this report, we investigated the contribution of yeast strain and nitrogen addition to H?S formation during fermentation and its consequent occurrence the resulting wines. Five commercial Saccharomyces cerevisiae wine yeast strains were used to ferment a Chardonnay juice containing 110 mg/l of YAN (yeast assimilable nitrogen), supplemented with di-ammonium phosphate (DAP) to increase YAN concentration to moderate (260 mg/l) and high (410 mg/l) levels. In contrast to the widely reported decrease in H?S production in response to DAP addition, a non-linear relationship was found such that moderate DAP supplementation resulted in a remarkable increase in H?S formation by each of the five wine yeasts. H?S content of the finished wine was affected by yeast strain, YAN, and fermentation vigor. However, we did not observe a correlation between concentration of H?S in the finished wines and H?S produced during fermentation, with low-forming fermentations often having relatively high final H?S and vice versa. Management of H?S in wine through nitrogen supplementation requires knowledge of initial YAN and yeast H?S characteristics. PMID:20668912

  2. Carbonation acceleration of calcium hydroxide nanoparticles: induced by yeast fermentation

    NASA Astrophysics Data System (ADS)

    Lopez-Arce, Paula; Zornoza-Indart, Ainara

    2015-09-01

    Carbonation of Ca(OH)2 nanoparticles and consolidation of limestone are accelerated by high humidity and a yeast fermentation system that supplies a saturated atmosphere on CO2, H2O vapor and ethanol during 28 days. Nanoparticles were analyzed by X-ray diffraction and differential thermal analyses with thermogravimetry. Spectrophotometry, scanning electron microscopy analyses, and hydric and mechanical tests were also performed in stones specimens. Samples exposed to the yeast environment achieve 100 % relative CaCO3 yield, whereas at high humidity but without the yeast and under laboratory environment, relative yields of 95 % CaCO3 and 15 % CaCO3 are, respectively, reached, with white crusts and glazing left on the stone surfaces when the nanoparticles are applied at a concentration of 25 g/l. The largest increase in the drilling resistance and surface hardness values with slight increase in the capillarity absorption and desorption coefficients and with lesser stone color changes are produced at a concentration of 5 g/l, in the yeast system environment. This especially happens in stone specimens initially with bimodal pore size distributions, more amounts of pores with diameters between 0.1 and 1 µm, higher open porosity values and faster capillary coefficients. An inexpensive and reliable method based on water and yeast-sugar solution is presented to speed up carbonation of Ca(OH)2 nanoparticles used as a consolidating product to improve the mechanical properties of decayed limestone from archaeological and architectural heritage.

  3. Oxygen requirements of yeasts. [Saccharomyces cerevisiae; Candida tropicalis

    SciTech Connect

    Visser, W.; Scheffers, W.A.; Batenburg-Van Der Vegte, W.H.; Van Dijken, J.P. )

    1990-12-01

    Type species of 75 yeast genera were examined for their ability to grow anaerobically in complex and mineral media. To define anaerobic conditions, we added a redox indicator, resazurin, to the media to determine low redox potentials. All strains tested were capable of fermenting glucose to ethanol in oxygen-limited shake-flask cultures, even those of species generally regarded as nonfermentative. However, only 23% of the yeast species tested grew under anaerobic conditions. A comparative study with a number of selected strains revealed that Saccharomyces cerevisiae stands out as a yeast capable of rapid growth at low redox potentials. Other yeasts, such as Torulaspora delbrueckii and Candida tropicalis, grew poorly ({mu}{sub max}, 0.03 and 0.05 h{sup {minus}1}, respectively) under anaerobic conditions in mineral medium supplemented with Tween 80 and ergosterol. The latter organisms grew rapidly under oxygen limitation and then displayed a high rate of alcoholic fermentation. It can be concluded that these yeasts have hitherto-unidentified oxygen requirements for growth.

  4. Divergence of iron metabolism in wild Malaysian yeast.

    PubMed

    Lee, Hana N; Mostovoy, Yulia; Hsu, Tiffany Y; Chang, Amanda H; Brem, Rachel B

    2013-12-01

    Comparative genomic studies have reported widespread variation in levels of gene expression within and between species. Using these data to infer organism-level trait divergence has proven to be a key challenge in the field. We have used a wild Malaysian population of S. cerevisiae as a test bed in the search to predict and validate trait differences based on observations of regulatory variation. Malaysian yeast, when cultured in standard medium, activated regulatory programs that protect cells from the toxic effects of high iron. Malaysian yeast also showed a hyperactive regulatory response during culture in the presence of excess iron and had a unique growth defect in conditions of high iron. Molecular validation experiments pinpointed the iron metabolism factors AFT1, CCC1, and YAP5 as contributors to these molecular and cellular phenotypes; in genome-scale sequence analyses, a suite of iron toxicity response genes showed evidence for rapid protein evolution in Malaysian yeast. Our findings support a model in which iron metabolism has diverged in Malaysian yeast as a consequence of a change in selective pressure, with Malaysian alleles shifting the dynamic range of iron response to low-iron concentrations and weakening resistance to extreme iron toxicity. By dissecting the iron scarcity specialist behavior of Malaysian yeast, our work highlights the power of expression divergence as a signpost for biologically and evolutionarily relevant variation at the organismal level. Interpreting the phenotypic relevance of gene expression variation is one of the primary challenges of modern genomics. PMID:24142925

  5. On the evolution of fungal and yeast cell walls

    PubMed Central

    Xie, Xianfa; Lipke, Peter N.

    2011-01-01

    Recent developments in genomics and proteomics provide evidence that yeast and other fungal cell walls share a common origin. The fibrous component of yeast cell walls usually consists of ?-glucan and/or chitin. N-glycosylated proteins form an amorphous, cross-linking matrix as well as fibres on the outer surfaces of the walls. While the enzymes responsible for cross-linking walls into covalent complexes are conserved, the wall-resident proteins have diversified rapidly. These cell wall proteins are usually members of multi-gene families, and paralogues are often subject to gene silencing through epigenetic mechanisms and environmentally induced expression regulation. Comparative studies of protein sequences reveal that there has been fast sequence divergence of the Saccharomyces sexual agglutinins, potentially serving as a driver for yeast speciation. In addition, cell wall proteins show an unusually high content of tandem and non-tandem repeats, and a high frequency of changes in the number of repeats both among paralogues and among orthologues from conspecific strains. The rapid diversification and regulated expression of yeast cell wall proteins help yeast cells to respond to different stimuli and adapt them to diverse biotic and abiotic environments. PMID:20641026

  6. Optimizing bioethanol production by regulating yeast growth energy.

    PubMed

    Moawad, Emad Y

    2012-12-01

    The goal of this work is to optimize production of bio-ethanol by fermentation through regulating yeast growth energy (YGE), and provide the mechanism of ethanol production from food-waste leachate (FWL) using yeast (S. cerevisiae) as inoculums to be predictable and controllable. The wide range of reduced sugar concentration (RSC) which is commonly administered from low (35 g per liter) to very high (100 g per liter) is responsible for costs increasing besides risks of FWL contamination and death of yeast cells. A mathematical model is presented to describe yeast growth energy (YGE) due to RSC doses along with predicting the amounts of ethanol yield by each dose to identify the optimum one. Simulations of the presented model showed that YGE, energy intake (EI), and their produced ethanol energy (PEE) are always balanced during fermentation process according to the law of conservation of energy. For a better fermentation rate in a continuous process and a large-scale production; YGE should be less than half of EI and more than its quarter (i.e. [Formula: see text]) which keeps the residual energy less than YGE to avoid risks of osmotic stresses or aging of cells allowing the survival of all yeast cells as long as possible to maximize ethanol production and decrease productivity costs. PMID:24294340

  7. Assignment of a yeast protein necessary for mitochondrial transcription initiation.

    PubMed Central

    Xu, B; Clayton, D A

    1992-01-01

    Yeast mitochondrial DNA contains multiple promoters that are responsible for expression of its genes. The basic yeast mitochondrial promoter consists of a nonanucleotide consensus sequence [5'-ATATAAGTA(+1)-3'] that must be recognized by transcription proteins, including mitochondrial RNA polymerase and any relevant trans-acting factors. Since mitochondrial RNA polymerase alone appeared unable to recognize a mitochondrial promoter, we examined the effects of providing accessory proteins to enable promoter function. After expression in Escherichia coli or purification from yeast mitochondria, two proteins were tested; they were ABF2 (a structural homologue of the human mitochondrial transcriptional activator mtTF1) and MTF1 (the gene product of a yeast locus known to exhibit a mitochondrial transcription phenotype). The results show that MTF1 specifies correct transcriptional initiation while ABF2 does not. We conclude that MTF1 is an essential key protein in yeast mitochondrial promoter function. Considering the increasing complexity of the mitochondrial transcription apparatus, we propose a nomenclature system for its components. Images PMID:1549466

  8. Yeast Prions: Structure, Biology, and Prion-Handling Systems

    PubMed Central

    Shewmaker, Frank P.; Bateman, David A.; Edskes, Herman K.; Gorkovskiy, Anton; Dayani, Yaron; Bezsonov, Evgeny E.

    2015-01-01

    SUMMARY A prion is an infectious protein horizontally transmitting a disease or trait without a required nucleic acid. Yeast and fungal prions are nonchromosomal genes composed of protein, generally an altered form of a protein that catalyzes the same alteration of the protein. Yeast prions are thus transmitted both vertically (as genes composed of protein) and horizontally (as infectious proteins, or prions). Formation of amyloids (linear ordered β-sheet-rich protein aggregates with β-strands perpendicular to the long axis of the filament) underlies most yeast and fungal prions, and a single prion protein can have any of several distinct self-propagating amyloid forms with different biological properties (prion variants). Here we review the mechanism of faithful templating of protein conformation, the biological roles of these prions, and their interactions with cellular chaperones, the Btn2 and Cur1 aggregate-handling systems, and other cellular factors governing prion generation and propagation. Human amyloidoses include the PrP-based prion conditions and many other, more common amyloid-based diseases, several of which show prion-like features. Yeast prions increasingly are serving as models for the understanding and treatment of many mammalian amyloidoses. Patients with different clinical pictures of the same amyloidosis may be the equivalent of yeasts with different prion variants. PMID:25631286

  9. The complete amino acid sequence of yeast phosphoglycerate kinase.

    PubMed Central

    Perkins, R E; Conroy, S C; Dunbar, B; Fothergill, L A; Tuite, M F; Dobson, M J; Kingsman, S M; Kingsman, A J

    1983-01-01

    The complete amino acid sequence of yeast phosphoglycerate kinase, comprising 415 residues, was determined. The sequence of residues 1-173 was deduced mainly from nucleotide sequence analysis of a series of overlapping fragments derived from the relevant portion of a 2.95-kilobase endonuclease-HindIII-digest fragment containing the yeast phosphoglycerate kinase gene. The sequence of residues 174-415 was deduced mainly from amino acid sequence analysis of three CNBr-cleavage fragments, and from peptides derived from these fragments after digestion by a number of proteolytic enzymes. Cleavage at the two tryptophan residues with o-iodosobenzoic acid was also used to isolate fragments suitable for amino acid sequence analysis. Determination of the complete sequence now allows a detailed interpretation of the existing high-resolution X-ray-crystallographic structure. The sequence -Ile-Ile-Gly-Gly-Gly- occurs twice in distant parts of the linear sequence (residues 232-236 and 367-371). Both these regions contribute to the nucleoside phosphate-binding site. A comparison of the sequence of yeast phosphoglycerate kinase reported here with the sequences of phosphoglycerate kinase from horse muscle and human erythrocytes shows that the yeast enzyme is 64% identical with the mammalian enzymes. The yeast has strikingly fewer methionine, cysteine and tryptophan residues. PMID:6347186

  10. Assessing the potential of wild yeasts for bioethanol production.

    PubMed

    Ruyters, Stefan; Mukherjee, Vaskar; Verstrepen, Kevin J; Thevelein, Johan M; Willems, Kris A; Lievens, Bart

    2015-01-01

    Bioethanol fermentations expose yeasts to a new, complex and challenging fermentation medium with specific inhibitors and sugar mixtures depending on the type of carbon source. It is, therefore, suggested that the natural diversity of yeasts should be further exploited in order to find yeasts with good ethanol yield in stressed fermentation media. In this study, we screened more than 50 yeast isolates of which we selected five isolates with promising features. The species Candida bombi, Wickerhamomyces anomalus and Torulaspora delbrueckii showed better osmo- and hydroxymethylfurfural tolerance than Saccharomyces cerevisiae. However, S. cerevisiae isolates had the highest ethanol yield in fermentation experiments mimicking high gravity fermentations (25 % glucose) and artificial lignocellulose hydrolysates (with a myriad of inhibitors). Interestingly, among two tested S. cerevisiae strains, a wild strain isolated from an oak tree performed better than Ethanol Red, a S. cerevisiae strain which is currently commonly used in industrial bioethanol fermentations. Additionally, a W. anomalus strain isolated from sugar beet thick juice was found to have a comparable ethanol yield, but needed longer fermentation time. Other non-Saccharomyces yeasts yielded lower ethanol amounts. PMID:25413210

  11. Yeasts in table olive processing: desirable or spoilage microorganisms?

    PubMed

    Arroyo-López, F N; Romero-Gil, V; Bautista-Gallego, J; Rodríguez-Gómez, F; Jiménez-Díaz, R; García-García, P; Querol, A; Garrido-Fernández, A

    2012-11-01

    Yeasts are unicellular eukaryotic microorganisms isolated from many foods, and are commonly found in table olive processing where they can play a double role. On one hand, these microorganisms can produce spoilage of fruits due to the production of bad odours and flavours, the accumulation of CO(2) leading to swollen containers, the clouding of brines, the softening of fruits and the degradation of lactic acid, which is especially harmful during table olive storage and packaging. But on the other hand, fortunately, yeasts also possess desirable biochemical activities (lipase, esterase, β-glucosidase, catalase, production of killer factors, etc.) with important technological applications in this fermented vegetable. Recently, the probiotic potential of olive yeasts has begun to be evaluated because many species are able to resist the passage through the gastrointestinal tract and show beneficial effects on the host. In this way, yeasts may improve consumers' health by decreasing cholesterol levels, inhibiting pathogens, degrading non assimilated compounds, producing antioxidants and vitamins, adhering to intestinal cells or by maintaining epithelial barrier integrity. Many yeast species, usually also found in table olive processing, such as Wicherhamomyces anomalus, Saccharomyces cerevisiae, Pichia membranifaciens and Kluyveromyces lactis, have been reported to exhibit some of these properties. Thus, the selection of the most appropriate strains to be used as starters, alone or in combination with lactic acid bacteria, is a promising research line to develop in a near future which might improve the added value of the commercialized product. PMID:23141644

  12. Phylogenetic Relationships Matter: Antifungal Susceptibility among Clinically Relevant Yeasts

    PubMed Central

    Schmalreck, A. F.; Becker, K.; Fegeler, W.; Czaika, V.; Ulmer, H.; Lass-Flörl, C.

    2014-01-01

    The objective of this study was 2-fold: to evaluate whether phylogenetically closely related yeasts share common antifungal susceptibility profiles (ASPs) and whether these ASPs can be predicted from phylogeny. To address this question, 9,627 yeast strains were collected and tested for their antifungal susceptibility. Isolates were reidentified by considering recent changes in taxonomy and nomenclature. A phylogenetic (PHYLO) code based on the results of multilocus sequence analyses (large-subunit rRNA, small-subunit rRNA, translation elongation factor 1α, RNA polymerase II subunits 1 and 2) and the classification of the cellular neutral sugar composition of coenzyme Q and 18S ribosomal DNA was created to group related yeasts into PHYLO groups. The ASPs were determined for fluconazole, itraconazole, and voriconazole in each PHYLO group. The majority (95%) of the yeast strains were Ascomycetes. After reclassification, a total of 23 genera and 54 species were identified, resulting in an increase of 64% of genera and a decrease of 5% of species compared with the initial identification. These taxa were assigned to 17 distinct PHYLO groups (Ascomycota, n = 13; Basidiomycota, n = 4). ASPs for azoles were similar among members of the same PHYLO group and different between the various PHYLO groups. Yeast phylogeny may be an additional tool to significantly enhance the assessment of MIC values and to predict antifungal susceptibility, thereby more rapidly initiating appropriate patient management. PMID:24366735

  13. Responses of Yeast Biocontrol Agents to Environmental Stress

    PubMed Central

    Sui, Yuan; Wisniewski, Michael; Droby, Samir

    2015-01-01

    Biological control of postharvest diseases, utilizing wild species and strains of antagonistic yeast species, is a research topic that has received considerable attention in the literature over the past 30 years. In principle, it represents a promising alternative to chemical fungicides for the management of postharvest decay of fruits, vegetables, and grains. A yeast-based biocontrol system is composed of a tritrophic interaction between a host (commodity), a pathogen, and a yeast species, all of which are affected by environmental factors such as temperature, pH, and UV light as well as osmotic and oxidative stresses. Additionally, during the production process, biocontrol agents encounter various severe abiotic stresses that also impact their viability. Therefore, understanding the ecological fitness of the potential yeast biocontrol agents and developing strategies to enhance their stress tolerance are essential to their efficacy and commercial application. The current review provides an overview of the responses of antagonistic yeast species to various environmental stresses, the methods that can be used to improve stress tolerance and efficacy, and the related mechanisms associated with improved stress tolerance. PMID:25710368

  14. Diversity of soil yeasts isolated from South Victoria Land, Antarctica

    USGS Publications Warehouse

    Connell, L.; Redman, R.; Craig, S.; Scorzetti, G.; Iszard, M.; Rodriguez, R.

    2008-01-01

    Unicellular fungi, commonly referred to as yeasts, were found to be components of the culturable soil fungal population in Taylor Valley, Mt. Discovery, Wright Valley, and two mountain peaks of South Victoria Land, Antarctica. Samples were taken from sites spanning a diversity of soil habitats that were not directly associated with vertebrate activity. A large proportion of yeasts isolated in this study were basidiomycetous species (89%), of which 43% may represent undescribed species, demonstrating that culturable yeasts remain incompletely described in these polar desert soils. Cryptococcus species represented the most often isolated genus (33%) followed by Leucosporidium (22%). Principle component analysis and multiple linear regression using stepwise selection was used to model the relation between abiotic variables (principle component 1 and principle component 2 scores) and yeast biodiversity (the number of species present at a given site). These analyses identified soil pH and electrical conductivity as significant predictors of yeast biodiversity. Species-specific PCR primers were designed to rapidly discriminate among the Dioszegia and Leucosporidium species collected in this study. ?? 2008 Springer Science+Business Media, LLC.

  15. Dietary glucose regulates yeast consumption in adult Drosophila males

    PubMed Central

    Lebreton, Sébastien; Witzgall, Peter; Olsson, Marie; Becher, Paul G.

    2014-01-01

    The adjustment of feeding behavior in response to hunger and satiety contributes to homeostatic regulation in animals. The fruit fly Drosophila melanogaster feeds on yeasts growing on overripe fruit, providing nutrients required for adult survival, reproduction and larval growth. Here, we present data on how the nutritional value of food affects subsequent yeast consumption in Drosophila adult males. After a period of starvation, flies showed intensive yeast consumption. In comparison, flies stopped feeding after having access to a nutritive cornmeal diet. Interestingly, dietary glucose was equally efficient as the complex cornmeal diet. In contrast, flies fed with sucralose, a non-metabolizable sweetener, behaved as if they were starved. The adipokinetic hormone and insulin-like peptides regulate metabolic processes in insects. We did not find any effect of the adipokinetic hormone pathway on this modulation. Instead, the insulin pathway was involved in these changes. Flies lacking the insulin receptor (InR) did not respond to nutrient deprivation by increasing yeast consumption. Together these results show the importance of insulin in the regulation of yeast consumption in response to starvation in adult D. melanogaster males. PMID:25566097

  16. Ceramide triggers metacaspase-independent mitochondrial cell death in yeast.

    TOXLINE Toxicology Bibliographic Information

    Carmona-Gutierrez D; Reisenbichler A; Heimbucher P; Bauer MA; Braun RJ; Ruckenstuhl C; Büttner S; Eisenberg T; Rockenfeller P; Fröhlich KU; Kroemer G; Madeo F

    2011-11-15

    The activation of ceramide-generating enzymes, the blockade of ceramide degradation, or the addition of ceramide analogues can trigger apoptosis or necrosis in human cancer cells. Moreover, endogenous ceramide plays a decisive role in the killing of neoplastic cells by conventional anticancer chemotherapeutics. Here, we explored the possibility that membrane-permeable C2-ceramide might kill budding yeast (Saccharomyces cerevisiae) cells under fermentative conditions, where they exhibit rapid proliferation and a Warburg-like metabolism that is reminiscent of cancer cells. C2-ceramide efficiently induced the generation of reactive oxygen species (ROS), as well as apoptotic and necrotic cell death, and this effect was not influenced by deletion of the sole yeast metacaspase. However, C2-ceramide largely failed to cause ROS hypergeneration and cell death upon deletion of the mitochondrial genome. Thus, mitochondrial function is strictly required for C2-ceramide-induced yeast lethality. Accordingly, mitochondria from C2-ceramide-treated yeast cells exhibited major morphological alterations including organelle fragmentation and aggregation. Altogether, our results point to a pivotal role of mitochondria in ceramide-induced yeast cell death.

  17. Structure and Function in the Budding Yeast Nucleus

    PubMed Central

    Taddei, Angela; Gasser, Susan M.

    2012-01-01

    Budding yeast, like other eukaryotes, carries its genetic information on chromosomes that are sequestered from other cellular constituents by a double membrane, which forms the nucleus. An elaborate molecular machinery forms large pores that span the double membrane and regulate the traffic of macromolecules into and out of the nucleus. In multicellular eukaryotes, an intermediate filament meshwork formed of lamin proteins bridges from pore to pore and helps the nucleus reform after mitosis. Yeast, however, lacks lamins, and the nuclear envelope is not disrupted during yeast mitosis. The mitotic spindle nucleates from the nucleoplasmic face of the spindle pole body, which is embedded in the nuclear envelope. Surprisingly, the kinetochores remain attached to short microtubules throughout interphase, influencing the position of centromeres in the interphase nucleus, and telomeres are found clustered in foci at the nuclear periphery. In addition to this chromosomal organization, the yeast nucleus is functionally compartmentalized to allow efficient gene expression, repression, RNA processing, genomic replication, and repair. The formation of functional subcompartments is achieved in the nucleus without intranuclear membranes and depends instead on sequence elements, protein–protein interactions, specific anchorage sites at the nuclear envelope or at pores, and long-range contacts between specific chromosomal loci, such as telomeres. Here we review the spatial organization of the budding yeast nucleus, the proteins involved in forming nuclear subcompartments, and evidence suggesting that the spatial organization of the nucleus is important for nuclear function. PMID:22964839

  18. Yeast vitality during cider fermentation: assessment by energy metabolism.

    PubMed

    Dinsdale, M G; Lloyd, D; McIntyre, P; Jarvis, B

    1999-03-15

    In an apple juice-based medium, an ethanol-tolerant Australian wine-yeast used for cider manufacture produced more than 10% ethanol over a 5 week period. Growth of the inoculum (10(6) organisms ml(-1)) occurred to a population of 3.1 x 10(7) ml(-1) during the first few days; at the end of the fermentation only 5 x 10(5) yeasts ml(-1) could be recovered as colony-forming units on plates. Respiratory and fermentative activities were measured by mass spectrometric measurements (O2 consumption and CO2 and ethanol production) of washed yeast suspensions taken from the cider fermentation at intervals. Both endogenous and glucose-supported energy-yielding metabolism declined, especially during the first 20 days. Levels of adenine nucleotides also showed decreases after day 1, as did adenylate energy charge, although in a prolonged (16.5 week) fermentation the lowest value calculated was 0.55. AMP was released into the medium. 31P-NMR spectra showed that by comparison with aerobically grown yeast, that from the later stages of the cider fermentation showed little polyphosphate. However, as previously concluded from studies of 'acidification power' and fluorescent oxonol dye exclusion (Dinsdale et al., 1995), repitching of yeast indicated little loss of viability despite considerable loss of vitality. PMID:10206188

  19. Tolerance of budding yeast Saccharomyces cerevisiae to ultra high pressure

    NASA Astrophysics Data System (ADS)

    Ono, Fumihisa; Shibata, Michiko; Torigoe, Motoki; Matsumoto, Yuta; Yamamoto, Shinsuke; Takizawa, Noboru; Hada, Yoshio; Mori, Yoshihisa; Takarabe, Kenichi

    2013-06-01

    In our previous studies on the tolerance of small plants and animals to the high hydrostatic pressure of 7.5 GPa, it was shown that all the living samples could be borne at this high pressure, which is more than one order of magnitude higher than the proteinic denaturation pressure. To make this inconsistency clear, we have extended these studies to a smaller sized fungus, budding yeast Saccharomyces cerevisiae. A several pieces of budding yeast (dry yeast) were sealed in a small teflon capsule with a liquid pressure medium fluorinate (PC72, Sumitomo 3M), and exposed to 7.5 GPa by using a cubic anvil press. The pressure was kept constant for various duration of time from 2 to 24 h. After the pressure was released, the specimens were brought out from the teflon capsule, and they were cultivated on a potato dextrose agar (PDA). It was found that the budding yeast exposed to 7.5 GPa for up to 6 h showed multiplication. However, those exposed to 7.5 GPa for 12 and 24 h were found dead. The high pressure tolerance of budding yeast is weaker than that of tardigrades.

  20. Evolutionary Role of Interspecies Hybridization and Genetic Exchanges in Yeasts

    PubMed Central

    Dujon, Bernard

    2012-01-01

    Summary: Forced interspecific hybridization has been used in yeasts for many years to study speciation or to construct artificial strains with novel fermentative and metabolic properties. Recent genome analyses indicate that natural hybrids are also generated spontaneously between yeasts belonging to distinct species, creating lineages with novel phenotypes, varied genetic stability, or altered virulence in the case of pathogens. Large segmental introgressions from evolutionarily distant species are also visible in some yeast genomes, suggesting that interspecific genetic exchanges occur during evolution. The origin of this phenomenon remains unclear, but it is likely based on weak prezygotic barriers, limited Dobzhansky-Muller (DM) incompatibilities, and rapid clonal expansions. Newly formed interspecies hybrids suffer rapid changes in the genetic contribution of each parent, including chromosome loss or aneuploidy, translocations, and loss of heterozygosity, that, except in a few recently studied cases, remain to be characterized more precisely at the genomic level by use of modern technologies. We review here known cases of natural or artificially formed interspecies hybrids between yeasts and discuss their potential importance in terms of genome evolution. Problems of meiotic fertility, ploidy constraint, gene and gene product compatibility, and nucleomitochondrial interactions are discussed and placed in the context of other known mechanisms of yeast genome evolution as a model for eukaryotes. PMID:23204364

  1. Ubiquitin-dependent proteolysis in yeast cells expressing neurotoxic proteins

    PubMed Central

    Braun, Ralf J.

    2015-01-01

    Critically impaired protein degradation is discussed to contribute to neurodegenerative disorders, including Parkinson's, Huntington's, Alzheimer's, and motor neuron diseases. Misfolded, aggregated, or surplus proteins are efficiently degraded via distinct protein degradation pathways, including the ubiquitin-proteasome system, autophagy, and vesicular trafficking. These pathways are regulated by covalent modification of target proteins with the small protein ubiquitin and are evolutionary highly conserved from humans to yeast. The yeast Saccharomyces cerevisiae is an established model for deciphering mechanisms of protein degradation, and for the elucidation of pathways underlying programmed cell death. The expression of human neurotoxic proteins triggers cell death in yeast, with neurotoxic protein-specific differences. Therefore, yeast cell death models are suitable for analyzing the role of protein degradation pathways in modulating cell death upon expression of disease-causing proteins. This review summarizes which protein degradation pathways are affected in these yeast models, and how they are involved in the execution of cell death. I will discuss to which extent this mimics the situation in other neurotoxic models, and how this may contribute to a better understanding of human disorders. PMID:25814926

  2. Biodiversity of Saccharomyces yeast strains from grape berries of wine-producing areas using starter commercial yeasts.

    PubMed

    Valero, Eva; Cambon, Brigitte; Schuller, Dorit; Casal, Margarida; Dequin, Sylvie

    2007-03-01

    The use of commercial wine yeast strains as starters has grown extensively over the past two decades. In this study, a large-scale sampling plan was devised over a period of 3 years in three different vineyards in the south of France, to evaluate autochthonous wine yeast biodiversity in vineyards around wineries where active dry yeasts have been used as fermentation starters for more than 5 years. Seventy-two spontaneous fermentations were completed from a total of 106 grape samples, and 2160 colonies were isolated. Among these, 608 Saccharomyces strains were identified and 104 different chromosomal patterns found. The large majority of these (91) were found as unique patterns, indicating great biodiversity. There were differences in biodiversity according to the vineyard and year, showing that the biodiversity of Saccharomyces strains is influenced by climatic conditions and specific factors associated with the vineyards, such as age and size. Strains that were terroir yeast candidates were not found. The biodiversity of S. cerevisiae strains after harvest was similar to that in the early campaign; moreover, a temporal succession of S. cerevisiae strains is shown. This fact, together with the differences in biodiversity levels verifies that other factors were more important than commercial yeast utilization in the biodiversity of the vineyard. PMID:17040482

  3. Production of fermentation aroma compounds by Saccharomyces cerevisiae wine yeasts: effects of yeast assimilable nitrogen on two model strains.

    PubMed

    Carrau, Francisco M; Medina, Karina; Farina, Laura; Boido, Eduardo; Henschke, Paul A; Dellacassa, Eduardo

    2008-11-01

    The contribution of yeast fermentation metabolites to the aromatic profile of wine is well documented; however, the biotechnological application of this knowledge, apart from strain selection, is still rather limited and often contradictory. Understanding and modeling the relationship between nutrient availability and the production of desirable aroma compounds by different strains must be one of the main objectives in the selection of industrial yeasts for the beverage and food industry. In order to overcome the variability in the composition of grape juices, we have used a chemically defined model medium for studying yeast physiological behavior and metabolite production in response to nitrogen supplementation so as to identify an appropriate yeast assimilable nitrogen level for strain differentiation. At low initial nitrogen concentrations, strain KU1 produced higher quantities of esters and fatty acids whereas M522 produced higher concentrations of isoacids, gamma-butyrolactone, higher alcohols and 3-methylthio-1-propanol. We propose that although strains KU1 and M522 have a similar nitrogen consumption profile, they represent useful models for the chemical characterization of wine strains in relation to wine quality. The differential production of aroma compounds by the two strains is discussed in relation to their capacity for nitrogen usage and their impact on winemaking. The results obtained here will help to develop targeted metabolic footprinting methods for the discrimination of industrial yeasts. PMID:18637137

  4. Genome-wide mapping of cellular traits using yeast.

    PubMed

    Parts, Leopold

    2014-06-01

    Yeast has long enjoyed superiority as a genetic model because of its short generation time and ease of generating alleles for genetic analysis. However, recent developments of guided nucleases for genome editing in higher eukaryotes, and funding pressures for translational findings, force all model organism communities to reaffirm and rearticulate the advantages of their chosen creature. Here I examine the utility of budding yeast for understanding the genetic basis of cellular traits, using natural variation as well as classical genetic perturbations, and its future prospects compared to undertaking the work in human cell lines. Will yeast remain central, or will it join the likes of phage as an early model that is no longer widely used to answer the pressing questions? PMID:24700360

  5. SILAC yeast: from labeling to comprehensive proteome quantification.

    PubMed

    de Godoy, Lyris M F

    2014-01-01

    Mass spectrometry-based quantitative proteomics can identify and quantify thousands of proteins in complex mixtures, enabling characterization and comparison of cellular functional states in a proteome-wide scale. In this context, stable isotope labeling with amino acids in cell culture (SILAC) has emerged as a simple yet powerful approach, which has been applied to address different biological questions across a variety of systems, ranging from single cells to entire multicellular organisms. In this chapter, detailed instructions for SILAC labeling yeast are provided, including a series of quality checks for evaluating labeling efficiency and procedures for determining the optimal labeling parameters for a particular yeast strain. In addition, two different complete workflows for the comprehensive mass spectrometry-based SILAC quantification of close to the entire yeast proteome are described, which can be applied to assess any biological question of interest and, therefore, can be of broad use for the researchers in the field. PMID:24791983

  6. Diversity and adaptive evolution of Saccharomyces wine yeast: a review.

    PubMed

    Marsit, Souhir; Dequin, Sylvie

    2015-11-01

    Saccharomyces cerevisiae and related species, the main workhorses of wine fermentation, have been exposed to stressful conditions for millennia, potentially resulting in adaptive differentiation. As a result, wine yeasts have recently attracted considerable interest for studying the evolutionary effects of domestication. The widespread use of whole-genome sequencing during the last decade has provided new insights into the biodiversity, population structure, phylogeography and evolutionary history of wine yeasts. Comparisons between S. cerevisiae isolates from various origins have indicated that a variety of mechanisms, including heterozygosity, nucleotide and structural variations, introgressions, horizontal gene transfer and hybridization, contribute to the genetic and phenotypic diversity of S. cerevisiae. This review will summarize the current knowledge on the diversity and evolutionary history of wine yeasts, focusing on the domestication fingerprints identified in these strains. PMID:26205244

  7. Engineering yeast for producing human glycoproteins: where are we now?

    PubMed

    Laukens, Bram; De Visscher, Charlotte; Callewaert, Nico

    2015-01-01

    Yeast has advanced as an alternative for mammalian cell culture for the production of recombinant therapeutic glycoproteins. Engineered yeast strains not only allow to mimic the human N-glycosylation pathway but also specific types of human O-glycosylation. This is of great value for therapeutic protein production and indispensable to determine the structure-function relationships of glycans on recombinant proteins. However, as the technology matures, some limitations have come up that may hamper biomedical applications and must be considered to exploit the full potential of the unprecedented glycan homogeneity obtained on relevant biopharmaceuticals. In this special report, we focus on the recent developments in N- and O-glycosylation engineering in yeasts of industrial importance, to produce recombinant therapeutics with customized glycans. PMID:25598335

  8. The development and characterization of synthetic minimal yeast promoters.

    PubMed

    Redden, Heidi; Alper, Hal S

    2015-01-01

    Synthetic promoters, especially minimally sized, are critical for advancing fungal synthetic biology. Fungal promoters often span hundreds of base pairs, nearly ten times the amount of bacterial counterparts. This size limits large-scale synthetic biology efforts in yeasts. Here we address this shortcoming by establishing a methodical workflow necessary to identify robust minimal core elements that can be linked with minimal upstream activating sequences to develop short, yet strong yeast promoters. Through a series of library-based synthesis, analysis and robustness tests, we create a set of non-homologous, purely synthetic, minimal promoters for yeast. These promoters are comprised of short core elements that are generic and interoperable and 10 bp UAS elements that impart strong, constitutive function. Through this methodology, we are able to generate the shortest fungal promoters to date, which can achieve high levels of both inducible and constitutive expression with up to an 80% reduction in size. PMID:26183606

  9. Relaxation of yeast mitochondrial functions after whole-genome duplication

    PubMed Central

    Jiang, Huifeng; Guan, Wenjun; Pinney, David; Wang, Wen; Gu, Zhenglong

    2008-01-01

    Mitochondria are essential for cellular energy production in most eukaryotic organisms. However, when glucose is abundant, yeast species that underwent whole-genome duplication (WGD) mostly conduct fermentation even under aerobic conditions, and most can survive without a functional mitochondrial genome. In this study, we show that the rate of evolution for the nuclear-encoded mitochondrial genes was greater in post-WGD species than pre-WGD species. Furthermore, codon usage bias was relaxed for these genes in post-WGD yeast species. The codon usage pattern and the distribution of a particular transcription regulatory element suggest that the change to an efficient aerobic fermentation lifestyle in this lineage might have emerged after WGD between the divergence of Kluyveromyces polysporus and Saccharomyces castellii from their common ancestor. This new energy production strategy could have led to the relaxation of mitochondrial function in the relevant yeast species. PMID:18669479

  10. Industrial yeast strain engineered to ferment ethanol from lignocellulosic biomass.

    PubMed

    Khramtsov, Nikolai; McDade, Luise; Amerik, Alexander; Yu, Esther; Divatia, Kunjan; Tikhonov, Alexander; Minto, Michael; Kabongo-Mubalamate, Georges; Markovic, Zdenek; Ruiz-Martinez, Marie; Henck, Steven

    2011-09-01

    In this study an industrial Saccharomyces cerevisiae yeast strain capable of fermenting ethanol from pretreated lignocellulosic material was engineered. Genes encoding cellulases (endoglucanase, exoglucanase and ?-glucosidase) were integrated into the chromosomal ribosomal DNA and delta regions of a derivative of the K1-V1116 wine yeast strain. The engineered cellulolytic yeast produces ethanol in one step through simultaneous saccharification and fermentation of pretreated biomass without the addition of exogenously produced enzymes. When ethanol fermentation was performed with 10% dry weight of pretreated corn stover, the recombinant strain fermented 63% of the cellulose in 96 h and the ethanol titer reached 2.6% v/v. These results demonstrate that cellulolytic S. cerevisiae strains can be used as a platform for developing an economical advanced biofuel process. PMID:21683582

  11. Aroma formation by immobilized yeast cells in fermentation processes.

    PubMed

    Nedovi?, V; Gibson, B; Mantzouridou, T F; Bugarski, B; Djordjevi?, V; Kaluševi?, A; Paraskevopoulou, A; Sandell, M; Šmogrovi?ová, D; Yilmaztekin, M

    2015-01-01

    Immobilized cell technology has shown a significant promotional effect on the fermentation of alcoholic beverages such as beer, wine and cider. However, genetic, morphological and physiological alterations occurring in immobilized yeast cells impact on aroma formation during fermentation processes. The focus of this review is exploitation of existing knowledge on the biochemistry and the biological role of flavour production in yeast for the biotechnological production of aroma compounds of industrial importance, by means of immobilized yeast. Various types of carrier materials and immobilization methods proposed for application in beer, wine, fruit wine, cider and mead production are presented. Engineering aspects with special emphasis on immobilized cell bioreactor design, operation and scale-up potential are also discussed. Ultimately, examples of products with improved quality properties within the alcoholic beverages are addressed, together with identification and description of the future perspectives and scope for cell immobilization in fermentation processes. PMID:25267117

  12. Potential of yeast secretory vesicles in biodelivery systems.

    PubMed

    Kutralam-Muniasamy, Gurusamy; Flores-Cotera, Luis B; Perez-Guevara, Fermin

    2015-06-01

    Membranous vesicular organelles (MVOs), such as secretory vesicles and exosomes, perform a variety of biological functions ranging from secretion to cellular communication in eukaryotic cells. Exosomes, particularly those of mammalian cells, have been widely studied as potential carriers in human therapeutic applications. However, no study has yet demonstrated the use of yeast secretory vesicles for such applications. Therefore, we explore here the current state of knowledge on yeast secretory vesicles and their potential use in therapeutic delivery systems. We focus on the characteristics shared by exosomes and yeast secretory vesicles to provide insights into the use of the latter as delivery vehicles. From this perspective, we speculate on the potential application of post-Golgi vesicles (PGVs) in the biomedical field. PMID:25843637

  13. Short Synthetic Terminators for Improved Heterologous Gene Expression in Yeast.

    PubMed

    Curran, Kathleen A; Morse, Nicholas J; Markham, Kelly A; Wagman, Allison M; Gupta, Akash; Alper, Hal S

    2015-07-17

    Terminators play an important role both in completing the transcription process and impacting mRNA half-life. As such, terminators are an important synthetic component considered in applications such as heterologous gene expression and metabolic engineering. Here, we describe a panel of short (35-70 bp) synthetic terminators that can be used for modulating gene expression in yeast. The best of these synthetic terminator resulted in 3.7-fold more fluorescent protein output and 4.4-fold increase in transcript level compared to that with the commonly used CYC1 terminator. These synthetic terminators offer several advantages over native sequences, including an easily synthesized short length, minimal sequence homology to native sequences, and similar or better performance characteristics than those of commonly used longer terminators. Furthermore, the synthetic terminators are highly functional in both Saccharomyces cerevisiae and an alternative yeast, Yarrowia lipolytica, demonstrating that these synthetic designs are transferrable between diverse yeast species. PMID:25686303

  14. Diversity and adaptive evolution of Saccharomyces wine yeast: a review

    PubMed Central

    Marsit, Souhir; Dequin, Sylvie

    2015-01-01

    Saccharomyces cerevisiae and related species, the main workhorses of wine fermentation, have been exposed to stressful conditions for millennia, potentially resulting in adaptive differentiation. As a result, wine yeasts have recently attracted considerable interest for studying the evolutionary effects of domestication. The widespread use of whole-genome sequencing during the last decade has provided new insights into the biodiversity, population structure, phylogeography and evolutionary history of wine yeasts. Comparisons between S. cerevisiae isolates from various origins have indicated that a variety of mechanisms, including heterozygosity, nucleotide and structural variations, introgressions, horizontal gene transfer and hybridization, contribute to the genetic and phenotypic diversity of S. cerevisiae. This review will summarize the current knowledge on the diversity and evolutionary history of wine yeasts, focusing on the domestication fingerprints identified in these strains. PMID:26205244

  15. [A new yeast strain for brewery: properties and advantages].

    PubMed

    Davydenko, S G; Iarovo?, B F; Stepanova, V P; Afonin, D V; Batashev, B E; Dedegkaev, A T

    2010-11-01

    Beer is a natural product and is a multicomponent system that has both positive and negative consumer properties. Organoleptical off-flavors of beer are difficult to eliminate. Yeasts are the main active component of the system. The relationship between beer quality and yeast usage is well known. New industrial strains for brewery are continuously developed. An industrial yeast Saccharomyces cerevisiae strain was obtained and showed high technological properties, including efficient fermentation, a reduced production of sulfur hydrate, and a high diacetyl reduction rate. The advantages made it possible to develop new brands of beer and nonalcoholic products. The commercial use of the strain was patented. The strain was deposited in the Russian Collection of Industrial Microorganisms. PMID:21261059

  16. Construction of Multifragment Plasmids by Homologous Recombination in Yeast.

    PubMed

    van Leeuwen, Jolanda; Andrews, Brenda; Boone, Charles; Tan, Guihong

    2015-09-01

    Over the past decade, the focus of cloning has shifted from constructing plasmids that express a single gene of interest to creating multigenic constructs that contain entire pathways or even whole genomes. Traditional cloning methods that rely on restriction digestion and ligation are limited by the number and size of fragments that can efficiently be combined. Here, we focus on the use of homologous-recombination-based DNA manipulation in the yeast Saccharomyces cerevisiae for the construction of plasmids from multiple DNA fragments. Owing to its simplicity and high efficiency, cloning by homologous recombination in yeast is very accessible and can be applied to high-throughput construction procedures. Its applications extend beyond yeast-centered purposes and include the cloning of large mammalian DNA sequences and entire bacterial genomes. PMID:26330631

  17. Yeast Sensors for Novel Drugs: Chloroquine and Others Revealed

    PubMed Central

    Swart, Chantel; Olivier, Andries; Dithebe, Khumisho; Pohl, Carolina; van Wyk, Pieter; Swart, Hendrik; Coetsee, Elizabeth; Kock, Lodewyk

    2012-01-01

    In this study the mitochondrion is regarded as a target to reveal compounds that may be used to combat various diseases. Consequently, the sexual structures of yeasts (with high mitochondrial activity) were identified as sensors to screen for various anti-mitochondrial drugs that may be toxic to humans and that are directed, amongst others, against fungal diseases and cancer. Strikingly, these sensors indicated that chloroquine is a potent pro-mitochondrial drug which stimulated yeast sexual reproduction. In addition, these sensors also showed that some Non-Steroidal Anti-Inflammatory drugs (NSAIDs), anti-malarial drugs, antifungal and anticancer drugs are anti-mitochondrial. These yeast sensor bio-assays may fast track studies aimed at discovering new drugs as well as their mechanisms and should now be further evaluated for selectivity towards anti-/ pro-mitochondrials, fertility drugs and contraceptives, using in vitro, in vivo, in silico and omics research. PMID:23201985

  18. Yeast proteins associated with microtubules in vitro and in vivo.

    PubMed Central

    Barnes, G; Louie, K A; Botstein, D

    1992-01-01

    Conditions were established for the self-assembly of milligram amounts of purified Saccharomyces cerevisiae tubulin. Microtubules assembled with pure yeast tubulin were not stabilized by taxol; hybrid microtubules containing substoichiometric amounts of bovine tubulin were stabilized. Yeast microtubule-associated proteins (MAPs) were identified on affinity matrices made from hybrid and all-bovine microtubules. About 25 yeast MAPs were isolated. The amino-terminal sequences of several of these were determined: three were known metabolic enzymes, two were GTP-binding proteins (including the product of the SAR1 gene), and three were novel proteins not found in sequence databases. Affinity-purified antisera were generated against synthetic peptides corresponding to two of the apparently novel proteins (38 and 50 kDa). Immunofluorescence microscopy showed that both these proteins colocalize with intra- and extranuclear microtubules in vivo. Images PMID:1348005

  19. Mediated amperometry reveals different modes of yeast responses to sugars.

    PubMed

    Garjonyte, Rasa; Melvydas, Vytautas; Malinauskas, Albertas

    2016-02-01

    Menadione-mediated amperometry at carbon paste electrodes modified with various yeasts (Saccharomyces cerevisiae, Candida pulcherrima, Pichia guilliermondii and Debaryomyces hansenii) was employed to monitor redox activity inside the yeast cells induced by glucose, fructose, sucrose, maltose or galactose. Continuous measurements revealed distinct modes (transient or gradually increasing) of the current development during the first 2 to 3 min after subjection to glucose, fructose and sucrose at electrodes containing S. cerevisiae and non-Saccharomyces strains. Different modes (increasing or decreasing) of the current development after yeast subjection to galactose at electrodes with S. cerevisiae or D. hansenii and at electrodes with C. pulcherrima and P. guilliermondii suggested different mechanisms of galactose assimilation. PMID:26523505

  20. Silent chromatin at the middle and ends: lessons from yeasts

    PubMed Central

    Bühler, Marc; Gasser, Susan M

    2009-01-01

    Eukaryotic centromeres and telomeres are specialized chromosomal regions that share one common characteristic: their underlying DNA sequences are assembled into heritably repressed chromatin. Silent chromatin in budding and fission yeast is composed of fundamentally divergent proteins tat assemble very different chromatin structures. However, the ultimate behaviour of silent chromatin and the pathways that assemble it seem strikingly similar among Saccharomyces cerevisiae (S. cerevisiae), Schizosaccharomyces pombe (S. pombe) and other eukaryotes. Thus, studies in both yeasts have been instrumental in dissecting the mechanisms that establish and maintain silent chromatin in eukaryotes, contributing substantially to our understanding of epigenetic processes. In this review, we discuss current models for the generation of heterochromatic domains at centromeres and telomeres in the two yeast species. PMID:19629038

  1. Synthetic Biology for Engineering Acetyl Coenzyme A Metabolism in Yeast

    PubMed Central

    2014-01-01

    ABSTRACT The yeast Saccharomyces cerevisiae is a widely used cell factory for the production of fuels, chemicals, and pharmaceuticals. The use of this cell factory for cost-efficient production of novel fuels and chemicals requires high yields and low by-product production. Many industrially interesting chemicals are biosynthesized from acetyl coenzyme A (acetyl-CoA), which serves as a central precursor metabolite in yeast. To ensure high yields in production of these chemicals, it is necessary to engineer the central carbon metabolism so that ethanol production is minimized (or eliminated) and acetyl-CoA can be formed from glucose in high yield. Here the perspective of generating yeast platform strains that have such properties is discussed in the context of a major breakthrough with expression of a functional pyruvate dehydrogenase complex in the cytosol. PMID:25370498

  2. In vivo genomic footprint of a yeast centromere.

    PubMed Central

    Densmore, L; Payne, W E; Fitzgerald-Hayes, M

    1991-01-01

    We have used in vivo genomic footprinting to investigate the protein-DNA interactions within the conserved DNA elements (CDEI, CDEII, and CDEIII) in the centromere from chromosome III of the yeast Saccharomyces cerevisiae. The in vivo footprint pattern obtained from wild-type cells shows that some guanines within the centromere DNA are protected from methylation by dimethyl sulfate. These results are consistent with studies demonstrating that yeast cells contain sequence-specific centromere DNA-binding proteins. Our in vivo experiments on chromosomes with mutant centromeres show that some mutations which affect chromosome segregation also alter the footprint pattern caused by proteins bound to the centromere DNA. The results of this study provide the first fine-structure map of proteins bound to centromere DNA in living yeast cells and suggest a direct correlation between these protein-DNA interactions and centromere function. Images PMID:1986217

  3. Saccharomyces cerevisiae: a sexy yeast with a prion problem.

    PubMed

    Kelly, Amy C; Wickner, Reed B

    2013-01-01

    Yeast prions are infectious proteins that spread exclusively by mating. The frequency of prions in the wild therefore largely reflects the rate of spread by mating counterbalanced by prion growth slowing effects in the host. We recently showed that the frequency of outcross mating is about 1% of mitotic doublings with 23-46% of total matings being outcrosses. These findings imply that even the mildest forms of the [PSI+], [URE3] and [PIN+] prions impart > 1% growth/survival detriment on their hosts. Our estimate of outcrossing suggests that Saccharomyces cerevisiae is far more sexual than previously thought and would therefore be more responsive to the adaptive effects of natural selection compared with a strictly asexual yeast. Further, given its large effective population size, a growth/survival detriment of > 1% for yeast prions should strongly select against prion-infected strains in wild populations of Saccharomyces cerevisiae. PMID:23764836

  4. Modeling the Control of DNA Replication in Fission Yeast

    NASA Astrophysics Data System (ADS)

    Novak, Bela; Tyson, John J.

    1997-08-01

    A central event in the eukaryotic cell cycle is the decision to commence DNA replication (S phase). Strict controls normally operate to prevent repeated rounds of DNA replication without intervening mitoses (``endoreplication'') or initiation of mitosis before DNA is fully replicated (``mitotic catastrophe''). Some of the genetic interactions involved in these controls have recently been identified in yeast. From this evidence we propose a molecular mechanism of ``Start'' control in Schizosaccharomyces pombe. Using established principles of biochemical kinetics, we compare the properties of this model in detail with the observed behavior of various mutant strains of fission yeast: wee1- (size control at Start), cdc13? and rum1OP (endoreplication), and wee1- rum1? (rapid division cycles of diminishing cell size). We discuss essential features of the mechanism that are responsible for characteristic properties of Start control in fission yeast, to expose our proposal to crucial experimental tests.

  5. The long non-coding RNA world in yeasts.

    PubMed

    Yamashita, Akira; Shichino, Yuichi; Yamamoto, Masayuki

    2016-01-01

    In recent years, it has become evident that eukaryotic genomes are pervasively transcribed and produce numerous non-coding transcripts, including long non-coding RNAs (lncRNAs). Although research of such genomic enigmas is in the early stages, a growing number of lncRNAs have been characterized and found to be principal actors in a variety of biological processes rather than merely representing transcriptional noise. Here, we review recent findings on lncRNAs in yeast systems. We especially focus on lncRNA-mediated cellular regulations to respond to environmental changes in the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe. This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy1, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa. PMID:26265144

  6. Recent Taxonomic Developments with Candida and Other Opportunistic Yeasts

    PubMed Central

    Lockhart, Shawn R.

    2015-01-01

    Increases in susceptible patient populations and advances in identification methods have resulted in the continued recognition of novel yeasts as agents of human infection. Most of these agents are members of the well-recognized genera Candida, Cryptococcus, Trichosporon, and Rhodotorula. Some of these agents are “cryptic species,” members of species complexes, and may not be detectable using classical carbohydrate assimilation-based methods of yeast identification. Such species require DNA- or MALDI-based methods for correct identification, although sporadic isolates may not routinely require delineation to the individual species level. The coming end of the fungal taxonomy rules requiring separate names for sexual and asexual forms of the same fungus will hopefully allow greater clarity, as names for medically important yeast can now be based on the needs of the medical mycology community and the common goal of better communication between laboratory and clinician. PMID:26526658

  7. Genomic exploration of the hemiascomycetous yeasts: 1. A set of yeast species for molecular evolution studies.

    PubMed

    Souciet, J; Aigle, M; Artiguenave, F; Blandin, G; Bolotin-Fukuhara, M; Bon, E; Brottier, P; Casaregola, S; de Montigny, J; Dujon, B; Durrens, P; Gaillardin, C; Lépingle, A; Llorente, B; Malpertuy, A; Neuvéglise, C; Ozier-Kalogéropoulos, O; Potier, S; Saurin, W; Tekaia, F; Toffano-Nioche, C; Wésolowski-Louvel, M; Wincker, P; Weissenbach, J

    2000-12-22

    The identification of molecular evolutionary mechanisms in eukaryotes is approached by a comparative genomics study of a homogeneous group of species classified as Hemiascomycetes. This group includes Saccharomyces cerevisiae, the first eukaryotic genome entirely sequenced, back in 1996. A random sequencing analysis has been performed on 13 different species sharing a small genome size and a low frequency of introns. Detailed information is provided in the 20 following papers. Additional tables available on websites describe the ca. 20000 newly identified genes. This wealth of data, so far unique among eukaryotes, allowed us to examine the conservation of chromosome maps, to identify the 'yeast-specific' genes, and to review the distribution of gene families into functional classes. This project conducted by a network of seven French laboratories has been designated 'Génolevures'. PMID:11152876

  8. Characterization of mammalian Gs-alpha proteins expressed in yeast.

    PubMed

    Stadel, J M; Ecker, D J; Powers, D A; Marsh, J; Hoyle, K; Gross, M; Minnich, M D; Butt, T R; Crooke, S T

    1994-12-01

    The guanine nucleotide regulatory protein, GS, mediates transmembrane signaling by coupling membrane receptors to the stimulation of adenylyl cyclase activity. The full length coding sequences for the M(r) = 42-45,000, short form (S), and M(r) = 46-52,000, long form (L), of the alpha-subunits of rat GS were placed in yeast expression vectors under the regulatory control of the copper-inducible CUP1 promoter and transformed into Saccharomyces cerevisiae. In the presence of 100 microM CuSO4, the transformed yeast expressed GS-alpha mRNAs and proteins. In reconstitution experiments, rat GS-alpha(S and L), solubilized from yeast membranes with 1% cholate, conferred NaF-, (-)isoproterenol-, and guanine nucleotide-dependent sensitivity to adenylyl cyclase catalytic units in S49 lymphoma cyc- cell membranes, which are devoid of endogenous GS-alpha. GS-alpha (S) demonstrated twice the activity of GS-alpha(L) in reconstitution assays of fluoride-stimulated adenylyl cyclase activity. Comparison of GS-alpha (S) expressed in yeast with GS purified from rabbit liver or human erythrocytes showed that the crude recombinant protein was fully competent in reconstituting NaF-stimulated adenylyl cyclase activity, but was only 2-5% as potent as purified GS. Addition of bovine brain beta gamma subunits during reconstitution enhanced all parameters of adenylyl cyclase activity for GS-alpha(S and L) obtained from yeast. In contrast, transducin beta gamma only enhanced agonist-stimulated adenylyl cyclase activity for GS-alpha (S and L) following reconstitution. These results demonstrate that the expression of functional mammalian GS-alpha subunits in yeast may be useful for their biochemical characterization. PMID:7877135

  9. Automated Segmentation and Classification of High Throughput Yeast Assay Spots

    PubMed Central

    Jafari-Khouzani, Kourosh; Soltanian-Zadeh, Hamid; Fotouhi, Farshad; Parrish, Jodi R.; Finley, Russell L.

    2009-01-01

    Several technologies for characterizing genes and proteins from humans and other organisms use yeast growth or color development as read outs. The yeast two-hybrid assay, for example, detects protein-protein interactions by measuring the growth of yeast on a specific solid medium, or the ability of the yeast to change color when grown on a medium containing a chromogenic substrate. Current systems for analyzing the results of these types of assays rely on subjective and inefficient scoring of growth or color by human experts. Here an image analysis system is described for scoring yeast growth and color development in high throughput biological assays. The goal is to locate the spots and score them in color images of two types of plates named “X-Gal” and “growth assay” plates, with uniformly placed spots (cell areas) on each plate (both plates in one image). The scoring system relies on color for the X-Gal spots, and texture properties for the growth assay spots. A maximum likelihood projection-based segmentation is developed to automatically locate spots of yeast on each plate. Then color histogram and wavelet texture features are extracted for scoring using an optimal linear transformation. Finally an artificial neural network is used to score the X-Gal and growth assay spots using the extracted features. The performance of the system is evaluated using spots of 60 images. After training the networks using training and validation sets, the system was assessed on the test set. The overall accuracies of 95.4% and 88.2% are achieved respectively for scoring the X-Gal and growth assay spots. PMID:17948730

  10. Safety assessment of dairy microorganisms: the hemiascomycetous yeasts.

    PubMed

    Jacques, Noémie; Casaregola, Serge

    2008-09-01

    Hemiascomycetous yeasts constitute a class of unicellular fungi often associated with the food and drink processing industries. A number of species including Kluveromyces lactis, Debaryomyces hansenii, Yarrowia lipolytica, play a key role in the cheese-making process by providing aroma, affecting texture and/or permitting the growth of other microorgansisms. The large majority of yeast infections are due to a few opportunistic species presently classified within the genus Candida, and occur in immunocompromised patients. Recent advances in taxonomy have provided evidence for the incorrect classification of a number of yeasts and suggest that their association with the genus Candida should be reconsidered. Indeed, none of the most common pathogenic Candida species are found in cheese. Improved techniques, combined with more advanced analytical methods have brought to light several emerging pathogens, some of which are involved in cheese-making, for example D. hansenii and Y. lipolytica. Other emerging pathogens may also be found as rare occurrences in cheese. Problems in designation of these isolates are due in part to the still limited range of specific methods of identification and are exacerbated by lack of consensus concerning yeast taxonomy. These organisms cause rare infections in immunocompromised and hospitalized patients, which are generally mild and either self-limiting or easily treated. From studies with Saccharomyces cerevisiae, it seems that it is more the exposure to high doses of yeast than the identity of the species or strain that is associated with infection. As such yeasts in cheese cannot be considered to constitute a risk for healthy individuals. PMID:17854934

  11. Yeast as a cell factory: current state and perspectives.

    PubMed

    Kavšček, Martin; Stražar, Martin; Curk, Tomaž; Natter, Klaus; Petrovič, Uroš

    2015-01-01

    The yeast Saccharomyces cerevisiae is one of the oldest and most frequently used microorganisms in biotechnology with successful applications in the production of both bulk and fine chemicals. Yet, yeast researchers are faced with the challenge to further its transition from the old workhorse to a modern cell factory, fulfilling the requirements for next generation bioprocesses. Many of the principles and tools that are applied for this development originate from the field of synthetic biology and the engineered strains will indeed be synthetic organisms. We provide an overview of the most important aspects of this transition and highlight achievements in recent years as well as trends in which yeast currently lags behind. These aspects include: the enhancement of the substrate spectrum of yeast, with the focus on the efficient utilization of renewable feedstocks, the enhancement of the product spectrum through generation of independent circuits for the maintenance of redox balances and biosynthesis of common carbon building blocks, the requirement for accurate pathway control with improved genome editing and through orthogonal promoters, and improvement of the tolerance of yeast for specific stress conditions. The causative genetic elements for the required traits of the future yeast cell factories will be assembled into genetic modules for fast transfer between strains. These developments will benefit from progress in bio-computational methods, which allow for the integration of different kinds of data sets and algorithms, and from rapid advancement in genome editing, which will enable multiplexed targeted integration of whole heterologous pathways. The overall goal will be to provide a collection of modules and circuits that work independently and can be combined at will, depending on the individual conditions, and will result in an optimal synthetic host for a given production process. PMID:26122609

  12. Phenotypic and metabolic traits of commercial Saccharomyces cerevisiae yeasts

    PubMed Central

    2014-01-01

    Currently, pursuing yeast strains that display both a high potential fitness for alcoholic fermentation and a favorable impact on quality is a major goal in the alcoholic beverage industry. This considerable industrial interest has led to many studies characterizing the phenotypic and metabolic traits of commercial yeast populations. In this study, 20 Saccharomyces cerevisiae strains from different geographical origins exhibited high phenotypic diversity when their response to nine biotechnologically relevant conditions was examined. Next, the fermentation fitness and metabolic traits of eight selected strains with a unique phenotypic profile were evaluated in a high-sugar synthetic medium under two nitrogen regimes. Although the strains exhibited significant differences in nitrogen requirements and utilization rates, a direct relationship between nitrogen consumption, specific growth rate, cell biomass, cell viability, acetic acid and glycerol formation was only observed under high-nitrogen conditions. In contrast, the strains produced more succinic acid under the low-nitrogen regime, and a direct relationship with the final cell biomass was established. Glucose and fructose utilization patterns depended on both yeast strain and nitrogen availability. For low-nitrogen fermentation, three strains did not fully degrade the fructose. This study validates phenotypic and metabolic diversity among commercial wine yeasts and contributes new findings on the relationship between nitrogen availability, yeast cell growth and sugar utilization. We suggest that measuring nitrogen during the stationary growth phase is important because yeast cells fermentative activity is not exclusively related to population size, as previously assumed, but it is also related to the quantity of nitrogen consumed during this growth phase. PMID:24949272

  13. Concentration measurement of yeast suspensions using high frequency ultrasound backscattering.

    PubMed

    Elvira, Luis; Vera, Pedro; Cañadas, Francisco Jesús; Shukla, Shiva Kant; Montero, Francisco

    2016-01-01

    This work proposes the use of an ultrasound based technique to measure the concentration of yeasts in liquid suspension. This measurement was achieved by the detection and quantification of ultrasonic echoes backscattered by the cells. More specifically, the technique was applied to the detection and quantification of Saccharomyces cerevisiae. A theoretical approach was proposed to get the average density and sound speed of the yeasts, which were found to be 1116 kg/m(3) and 1679 m/s, respectively. These parameters were needed to model the waves backscattered by each single cell. A pulse-echo arrangement working around 50 MHz, being able to detect echoes from single yeasts was used to characterize experimentally yeast solutions from 10(2) to 10(7)cells/ml. The Non-negative Matrix Factorization denoising technique was applied for data analysis. This technique required a previous learning of the spectral patterns of the echoes reflected from yeasts in solution and the base noise from the liquid medium. Comparison between pulse correlation (without denoising) and theoretical and experimental pattern learning was made to select the best signal processing. A linear relation between ultrasound output and concentration was obtained with correlation coefficient R(2)=0.996 for the experimental learning. Concentrations from 10(4) to 10(7)cells/ml were detected above the base noise. These results show the viability of using the ultrasound backscattering technique to detect yeasts and measure their concentration in liquid cultures, improving the sensitivity obtained using spectrophotometric methods by one order of magnitude. PMID:26361271

  14. Yeast identification in floral nectar of Mimulus aurantiacus (Invited)

    NASA Astrophysics Data System (ADS)

    Kyauk, C.; Belisle, M.; Fukami, T.

    2009-12-01

    Nectar is such a sugar-rich resource that serves as a natural habitat in which microbes thrive. As a result, yeasts arrive to nectar on the bodies of pollinators such as hummingbirds and bees. Yeasts use the sugar in nectar for their own needs when introduced. This research focuses on the identification of different types of yeast that are found in the nectar of Mimulus aurantiacus (commonly known as sticky monkey-flower). Unopened Mimulus aurantiacus flower buds were tagged at Jasper Ridge and bagged three days later. Floral nectar was then extracted and plated on potato dextrose agar. Colonies on the plates were isolated and DNA was extracted from each sample using QIAGEN DNeasy Plant Mini Kit. The DNA was amplified through PCR and ran through gel electrophoresis. The PCR product was used to clone the nectar samples into an E.coli vector. Finally, a phylogenetic tree was created by BLAST searching sequences in GenBank using the Internal Transcribed Space (ITS) locus. It was found that 18 of the 50 identified species were Candida magnifica, 14 was Candida rancensis, 6 were Crytococcus albidus and there were 3 or less of the following: Starmella bombicola, Candida floricola, Aureobasidium pullulans, Pichia kluyvera, Metschnikowa cibodaserisis, Rhodotorua colostri, and Malassezia globosa. The low diversity of the yeast could have been due to several factors: time of collection, demographics of Jasper Ridge, low variety of pollinators, and sugar concentration of the nectar. The results of this study serve as a necessary first step for a recently started research project on ecological interactions between plants, pollinators, and nectar-living yeast. More generally, this research studies the use of the nectar-living yeast community as a natural microcosm for addressing basic questions about the role of dispersal and competitive and facilitative interactions in ecological succession.

  15. Discovery of a nucleocytoplasmic O-mannose glycoproteome in yeast.

    PubMed

    Halim, Adnan; Larsen, Ida Signe Bohse; Neubert, Patrick; Joshi, Hiren Jitendra; Petersen, Bent Larsen; Vakhrushev, Sergey Y; Strahl, Sabine; Clausen, Henrik

    2015-12-22

    Dynamic cycling of N-Acetylglucosamine (GlcNAc) on serine and threonine residues (O-GlcNAcylation) is an essential process in all eukaryotic cells except yeast, including Saccharomyces cerevisiae and Schizosaccharomyces pombe. O-GlcNAcylation modulates signaling and cellular processes in an intricate interplay with protein phosphorylation and serves as a key sensor of nutrients by linking the hexosamine biosynthetic pathway to cellular signaling. A longstanding conundrum has been how yeast survives without O-GlcNAcylation in light of its similar phosphorylation signaling system. We previously developed a sensitive lectin enrichment and mass spectrometry workflow for identification of the human O-linked mannose (O-Man) glycoproteome and used this to identify a pleothora of O-Man glycoproteins in human cell lines including the large family of cadherins and protocadherins. Here, we applied the workflow to yeast with the aim to characterize the yeast O-Man glycoproteome, and in doing so, we discovered hitherto unknown O-Man glycosites on nuclear, cytoplasmic, and mitochondrial proteins in S. cerevisiae and S. pombe. Such O-Man glycoproteins were not found in our analysis of human cell lines. However, the type of yeast O-Man nucleocytoplasmic proteins and the localization of identified O-Man residues mirror that of the O-GlcNAc glycoproteome found in other eukaryotic cells, indicating that the two different types of O-glycosylations serve the same important biological functions. The discovery opens for exploration of the enzymatic machinery that is predicted to regulate the nucleocytoplasmic O-Man glycosylations. It is likely that manipulation of this type of O-Man glycosylation will have wide applications for yeast bioprocessing. PMID:26644575

  16. Yeast strains as potential aroma enhancers in dry fermented sausages.

    PubMed

    Flores, Mónica; Corral, Sara; Cano-García, Liliana; Salvador, Ana; Belloch, Carmela

    2015-11-01

    Actual healthy trends produce changes in the sensory characteristics of dry fermented sausages therefore, new strategies are needed to enhance their aroma. In particular, a reduction in the aroma characteristics was observed in reduced fat and salt dry sausages. In terms of aroma enhancing, generally coagulase-negative cocci were selected as the most important group from the endogenous microbiota in the production of flavour compounds. Among the volatile compounds analysed in dry sausages, ester compounds contribute to fruity aroma notes associated with high acceptance of traditional dry sausages. However, the origin of ester compounds in traditional dry sausages can be due to other microorganisms as lactic acid bacteria, yeast and moulds. Yeast contribution in dry fermented sausages was investigated with opposite results attributed to low yeast survival or low activity during processing. Generally, they affect sausage colour and flavour by their oxygen-scavenging and lipolytic activities in addition to, their ability to catabolize fermentation products such as lactate increasing the pH and contributing to less tangy and more aromatic sausages. Recently, the isolation and characterization of yeast from traditional dry fermented sausages made possible the selection of those with ability to produce aroma active compounds. Molecular methods were used for genetic typing of the isolated yeasts whereas their ability to produce aroma compounds was tested in different systems such as in culture media, in model systems and finally on dry fermented sausages. The results revealed that the appropriate selection of yeast strains with aroma potential may be used to improve the sensory characteristics of reformulated fermented sausages. PMID:25765533

  17. In vivo unnatural amino acid expression in the methylotrophic yeast Pichia pastoris

    SciTech Connect

    Young, Travis; Schultz, Peter G

    2014-02-11

    The invention provides orthogonal translation systems for the production of polypeptides comprising unnatural amino acids in methyltrophic yeast such as Pichia pastoris. Methods for producing polypeptides comprising unnatural amino acids in methyltrophic yeast such as Pichia pastoris are also provided.

  18. Associations of Yeasts with Spotted-Wing Drosophila (Drosophila suzukii; Diptera: Drosophilidae) in Cherries and Raspberries

    PubMed Central

    Hernández, Alejandro; Zalom, Frank G.

    2012-01-01

    A rich history of investigation documents various Drosophila-yeast mutualisms, suggesting that Drosophila suzukii similarly has an association with a specific yeast species or community. To discover candidate yeast species, yeasts were isolated from larval frass, adult midguts, and fruit hosts of D. suzukii. Terminal restriction fragment length polymorphism (TRFLP) technology and decimal dilution plating were used to identify and determine the relative abundance of yeast species present in fruit juice samples that were either infested with D. suzukii or not infested. Yeasts were less abundant in uninfested than infested samples. A total of 126 independent yeast isolates were cultivated from frass, midguts, and fruit hosts of D. suzukii, representing 28 species of yeasts, with Hanseniaspora uvarum predominating. This suggests an association between D. suzukii and H. uvarum that could be utilized for pest management of the highly pestiferous D. suzukii. PMID:22582060

  19. Nonlinear Dielectric Properties of Yeast Cells Cultured in Different Environmental Conditions

    NASA Astrophysics Data System (ADS)

    Kawanishi, Gomon; Fukuda, Naoki; Muraji, Masafumi

    The harmonics of the electric current through yeast suspensions, the nonlinear dielectric properties of yeast cells, have particular patterns according to the biological activity of the cells and the measurement of these patterns is a technique for determining the activity of living cells. The concentration of glucose and oxygen in yeast culture medium influences the manifestation of fermentation or respiration of yeast cells. Measurements were made with yeast cells (Saccharomyces cerevisiae) cultured aerobically and anaerobically in sufficient glucose concentration, aerobic fermentation and anaerobic fermentation, and aerobically in limited glucose concentration, respiration. The results showed that the harmonics were barely apparent for yeast cells in aerobic fermentation and respiratory; however, cells in the anaerobic fermentation displayed substantial third and fifth harmonics. We can say that environmental condition affects the yeast cells' nonlinear properties, from another viewpoint, the measurements of the nonlinear properties are available to determine the activity of yeast cells adjusted to the conditions of their cultivation.

  20. Inventions on baker's yeast storage and activation at the bakery plant.

    PubMed

    Gélinas, Pierre

    2010-01-01

    Baker's yeast is the gas-forming ingredient in bakery products. Methods have been invented to properly handle baker's yeast and optimize its activity at the bakery plant. Over the years, incentives for inventions on yeast storage and activation have greatly changed depending on trends in the baking industry. For example, retailer's devices for cutting bulk pressed yeast and techniques for activating dry yeast have now lost their importance. Review of patents for invention indicates that activation of baker's yeast activity has been a very important issue for bakers, for example, with baking ingredients called yeast foods. In the recent years and especially for highly automated bakeries, interest has moved to equipments and processes for optimized storage of liquid cream yeast to thoroughly control dough fermentation and bread quality. PMID:20653548

  1. Evaluation of yeast strains for production of fuel ethanol from biomass hydrolysates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Robust industrial yeast strains are needed for profitable production of fuel ethanol from mixed biomass waste. USDA, ARS, NCAUR, RPT has been evaluating ethanol-producing yeasts, including Saccharomyces cerevisiae, engineered GMAX Saccharomyces cerevisiae, irradiated Kluyveromyces marxianus, and Pi...

  2. Associations of yeasts with spotted-wing Drosophila (Drosophila suzukii; Diptera: Drosophilidae) in cherries and raspberries.

    PubMed

    Hamby, Kelly A; Hernández, Alejandro; Boundy-Mills, Kyria; Zalom, Frank G

    2012-07-01

    A rich history of investigation documents various Drosophila-yeast mutualisms, suggesting that Drosophila suzukii similarly has an association with a specific yeast species or community. To discover candidate yeast species, yeasts were isolated from larval frass, adult midguts, and fruit hosts of D. suzukii. Terminal restriction fragment length polymorphism (TRFLP) technology and decimal dilution plating were used to identify and determine the relative abundance of yeast species present in fruit juice samples that were either infested with D. suzukii or not infested. Yeasts were less abundant in uninfested than infested samples. A total of 126 independent yeast isolates were cultivated from frass, midguts, and fruit hosts of D. suzukii, representing 28 species of yeasts, with Hanseniaspora uvarum predominating. This suggests an association between D. suzukii and H. uvarum that could be utilized for pest management of the highly pestiferous D. suzukii. PMID:22582060

  3. [The activity of xylose reductase and xylitol dehydrogenase in yeasts].

    PubMed

    Iablochkova, E N; Bolotnikova, O I; Mikha?lova, N P; Nemova, N N; Ginak, A I

    2003-01-01

    The activity and the cofactor specificity of xylose reductase and xylitol dehydrogenase were studied in extracts of yeasts from the genera Candida, Kluyveromyces, Pachysolen, Pichia, and Torulopsis grown under microaerobic conditions. It was found that xylitol dehydrogenase in all of the yeast species studied is specific for NAD+; xylose reductase in the xylitol-producing species C. didensiae, C. intermediae, C. parapsilosis, C. silvanorum, C. tropicalis, Kl. fragilis, Kl. marxianus, P. guillermondii, and T. molishiama is specific for NADPH; and xylose reductase in the ethanol-producing species P. stipitis, C. shehatae, and Pa. tannophilus is specific for both NADPH and NADH. PMID:14526534

  4. Genomic exploration of the hemiascomycetous yeasts: 8. Zygosaccharomyces rouxii.

    PubMed

    de Montigny, J; Straub, M; Potier, S; Tekaia, F; Dujon, B; Wincker, P; Artiguenave, F; Souciet, J

    2000-12-22

    This paper reports the genomic analysis of strain CBS732 of Zygosaccharomyces rouxii, a homothallic diploid yeast. We explored the sequences of 4934 random sequencing tags of about 1 kb in size and compared them to the Saccharomyces cerevisiae gene products. Approximately 2250 nuclear genes, 57 tRNAs, the rDNA locus, the endogenous pSR1 plasmid and 15 mitochondrial genes were identified. According to 18S and 25S rRNA cladograms and to synteny analysis, Z. rouxii could be placed among the S. cerevisiae sensu lato yeasts. PMID:11152883

  5. Cryptococcus neoformans IV. The Not-So-Encapsulated Yeast

    PubMed Central

    Farhi, Fereshteh; Bulmer, G. S.; Tacker, J. R.

    1970-01-01

    Nonencapsulated cells of Cryptococcus neoformans which may have a diameter of less than 4 ?m are capable of producing experimental cryptococcosis in mice. It has been established that this relatively small, nonencapsulated yeast can exist in soil. In this form, the organism could be more readily disseminated by air currents, and it is more likely to be inhaled into the lungs than the larger encapsulated yeast. Nonencapsulated cells produce sufficient capsular material to inhibit phagocytosis by 50% when incubated for 5 to 10 hr with human lung tissue in vitro. The general assumption that the encapsulated cells are the etiological agent of naturally acquired cryptococcosis may have to be revised. PMID:16557771

  6. The phylogeny of yeasts—A cladistic analysis

    NASA Astrophysics Data System (ADS)

    Sun, Xiuqin; Wu, Baoling

    1992-12-01

    Cladistic analysis was used to clarify the phylogeny of 16 genera of yeasts whose great morphological differences and inclusion in different classification systems resulted in controversies over the taxonomy of seven genera such as Crypeococcus. etc. Some scholars suggest that they belong to Ascomycetes, but others think they belong to fungi imperfecti. After comprehensive cladistic analysis of many genetic characters, the authors consider that the above-mentioned seven genera of yeasts developed in parallel with Ascomycetes so that they should belong to one and the same developmental system.

  7. Yeast viral killer toxins: lethality and self-protection.

    PubMed

    Schmitt, Manfred J; Breinig, Frank

    2006-03-01

    Since the discovery of toxin-secreting killer yeasts more than 40 years ago, research into this phenomenon has provided insights into eukaryotic cell biology and virus-host-cell interactions. This review focuses on the most recent advances in our understanding of the basic biology of virus-carrying killer yeasts, in particular the toxin-encoding killer viruses, and the intracellular processing, maturation and toxicity of the viral protein toxins. The strategy of using eukaryotic viral toxins to effectively penetrate and eventually kill a eukaryotic target cell will be discussed, and the cellular mechanisms of self-defence and protective immunity will also be addressed. PMID:16489348

  8. Enzymes of yeast polyphosphate metabolism: structure, enzymology and biological roles.

    PubMed

    Gerasimaitė, Rūta; Mayer, Andreas

    2016-02-15

    Inorganic polyphosphate (polyP) is found in all living organisms. The known polyP functions in eukaryotes range from osmoregulation and virulence in parasitic protozoa to modulating blood coagulation, inflammation, bone mineralization and cellular signalling in mammals. However mechanisms of regulation and even the identity of involved proteins in many cases remain obscure. Most of the insights obtained so far stem from studies in the yeast Saccharomyces cerevisiae. Here, we provide a short overview of the properties and functions of known yeast polyP metabolism enzymes and discuss future directions for polyP research. PMID:26862210

  9. Fermentation of xylulose to ethanol using xylose isomerase and yeasts

    SciTech Connect

    Jeffries, T.W.

    1981-01-01

    In a survey of 35 organisms, predominantly yeasts, about 40% were capable of fermenting xylulose to ethanol. Two species, Candida tropicalis and Schizosaccharomyces pombe, did so at good rates and without an initial lag. Saccharomyces cerevisiae strains that fermented glucose rapidly fermented xylulose at a slower rate. Ten yeasts and three strains of the bacterium Zymomonas mobilis were weak or negative for xylulose, even though they fermented glucose under the conditions employed. C. tropicalis was able to form 1.0 M ethanol from 1.0 M xylose if the fermentation broth was recycled over immobilized xylose isomerase.

  10. A Review of Fluorescent Proteins for Use in Yeast.

    PubMed

    Bialecka-Fornal, Maja; Makushok, Tatyana; Rafelski, Susanne M

    2016-01-01

    The field of fluorescent proteins (FPs) is constantly developing. The use of FPs changed the field of life sciences completely, starting a new era of direct observation and quantification of cellular processes. The broad spectrum of FPs (see Fig. 1) with a wide range of characteristics allows their use in many different experiments. This review discusses the use of FPs for imaging in budding yeast (Saccharomyces cerevisiae) and fission yeast Schizosaccharomyces pombe). The information included in this review is relevant for both species unless stated otherwise. PMID:26519321

  11. Scheffersomyces cryptocercus: a new xylose-fermenting yeast associated with the gut of wood roaches and new combinations in the Sugiyamaella yeast clade.

    PubMed

    Urbina, Hector; Frank, Robert; Blackwell, Meredith

    2013-01-01

    The gut of wood-feeding insects is a microhabitat for a specialized community of microbes, including bacteria and several groups of eukaryotes such as nematodes, parabasalids and fungi. The characterization of gut yeast communities from a variety of insects has shown that certain yeasts often are associated with the insects. The gut of wood-feeding insects is rich in ascomycete yeasts and in particular xylose-fermenting (X-F) and assimilating yeasts have been consistently present in the gut of lignicolous insects. The objective of this study was the characterization of the yeast flora from the gut of the wood roach Cryptocercus sp. (Blattodea: Cryptocercidae). Five wood roaches were collected along the Appalachian Trail near the border between Tennessee and North Carolina, USA. We isolated 18 yeast strains from the wood roaches identified as Sugiyamaella paludigena and Sugiyamaella lignohabitans, xylose-assimilating yeasts, and Scheffersomyces cryptocercus (NRRL Y-48824(T) = CBS 12658) a new species of X-F yeast. The presence of X-F and certain non X-F yeasts in the gut of the subsocial wood roach Cryptocercus sp. extends the previous findings of associations between certain ascomycete yeasts and lignicolous insects. New combinations were made for 13 asexual members of the Sugiyamaella clade. PMID:23233509

  12. Yeasts Associated with Culex pipiens and Culex theileri Mosquito Larvae and the Effect of Selected Yeast Strains on the Ontogeny of Culex pipiens.

    PubMed

    Steyn, A; Roets, F; Botha, A

    2016-04-01

    The success of mosquitoes in nature has been linked to their microbiota and bacteria in particular. Yet, knowledge on their symbioses with yeasts is lacking. To explore possible associations, culturable yeasts were isolated from wild larvae of Culex pipiens and Culex theileri. These yeasts were classified using restriction fragment length polymorphism (RFLP) analyses and identified by sequencing the D1/D2 region of the 26S rRNA gene. Representative strains of Candida, Cryptococcus, Galactomyces, Hannaella, Meyerozyma, Pichia, Rhodosporidium, Rhodotorula, Trichosporon and Wickerhamomyces were isolated. Our results provide, to our knowledge, the first records of the yeast microbiota from wild mosquito larvae and show that they may harbour potential clinically relevant yeast species, including the well-known opportunistic human pathogen Candida albicans. Also, diminished numbers of yeast isolates originating from adults, compared to larvae, support the hypothesis of microbial reduction/elimination during adult emergence and extend it to include yeasts. In addition, strains of Candida albicans, Candida glabrata, Candida pseudolambica, Cryptococcus gattii, Metschnikowia bicuspidata, Saccharomyces cerevisiae and Wickerhamomyces anomalus were tested as sole feed during a 21-day feeding experiment wherein cumulative larval growth, survival and pupation of Cx. pipiens were recorded. Although most yeasts supported larval growth in a similar manner to the positive control S. cerevisiae strain, the different yeast strains impacted differently on Culex pipiens ontogeny. Notably, survival and pupation of larvae were negatively impacted by a representative strain of the primary pathogen C. gattii - signifying some yeasts to be natural antagonists of mosquitoes. PMID:26573833

  13. Increasing alcohol yield by selected yeast fermentation of sweet sorghum. I. Evaluation of yeast strains for ethanol production

    SciTech Connect

    de Mancilha, I.M.; Pearson, A.M.; Waller, J.; Hogaboam, G.J.

    1984-01-01

    A study was conducted for the purpose of evaluating and selecting yeast strains for their ability to produce ethanol using sweet sorghum juice as the substrate. Stalks of sweet sorghum were obtained by cutting off the tops and stripping away the leaves. Fermentation media were prepared by diluting or adding dextrose to the sorghum juice to give a sugar concentration of either 10% (w/v) or 20% (w/v). All yeast strains were first tested in 10% (w/v) total sugar medium. Those strains showing more than 90% sugar conversion efficiency were further tested in 20% (w/v) total sugar medium. Active cultures for inoculation were prepared by growing the yeast strains on the fermentation medium (10% (w/v) total sugar) for 24 h. Then the cultures were added to the fermentation media at a rate of 2%.

  14. Evaluation of yeast products in fruit fly adult diet and liquid larval diet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several yeasts and yeast products were tested as components of adult diet for Medfly, Ceratitis capitata, Oriental fruit fly, Bactrocera dorsalis, and Melon fly, Bactrocera cucurbitae and larval liquid diet for Oriental fruit fly, Bactrocera dorsalis in mass rearing process. Three hydrolyzed yeasts ...

  15. Effects of yeast subcomponent diet supplements on growth, stress resistance and immune response in Nile tilapia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Yeast cells contain glucan and mannan subcomponents which have been reported to boost immunity in several fish species. We prepared diets using a commercial feed supplemented with 4 different yeast or yeast subcomponents obtained from commercial sources. These were added at rates recommended by supp...

  16. Brewing Painkillers: A Yeast Cell Factory for the Production of Opioids from Sugar.

    PubMed

    Höhne, Matthias; Kabisch, Johannes

    2016-01-01

    Home brew: Biotechnological modification of the yeast Sacharomyces cerevisiae enabled the production of opioids from glucose. This challenging extension of yeast metabolism, the result of ten years of work, involves the artificial expression of 23 genes originating from yeast, plants, and rats. This breakthrough was achieved by applying the design principles of synthetic biology, systems biology, and protein engineering. PMID:26733184

  17. Interactions between Drosophila and its natural yeast symbionts—Is Saccharomyces cerevisiae a good model for studying the fly-yeast relationship?

    PubMed Central

    Hoang, Don; Kopp, Artyom

    2015-01-01

    Yeasts play an important role in the biology of the fruit fly, Drosophila melanogaster. In addition to being a valuable source of nutrition, yeasts affect D. melanogaster behavior and interact with the host immune system. Most experiments investigating the role of yeasts in D. melanogaster biology use the baker’s yeast, Saccharomyces cerevisiae. However, S. cerevisiae is rarely found with natural populations of D. melanogaster or other Drosophila species. Moreover, the strain of S. cerevisiae used most often in D. melanogaster experiments is a commercially and industrially important strain that, to the best of our knowledge, was not isolated from flies. Since disrupting natural host–microbe interactions can have profound effects on host biology, the results from D. melanogaster–S. cerevisiae laboratory experiments may not be fully representative of host–microbe interactions in nature. In this study, we explore the D. melanogaster-yeast relationship using five different strains of yeast that were isolated from wild Drosophila populations. Ingested live yeasts have variable persistence in the D. melanogaster gastrointestinal tract. For example, Hanseniaspora occidentalis persists relative to S. cerevisiae, while Brettanomyces naardenensis is removed. Despite these differences in persistence relative to S. cerevisiae, we find that all yeasts decrease in total abundance over time. Reactive oxygen species (ROS) are an important component of the D. melanogaster anti-microbial response and can inhibit S. cerevisiae growth in the intestine. To determine if sensitivity to ROS explains the differences in yeast persistence, we measured yeast growth in the presence and absence of hydrogen peroxide. We find that B. naardenesis is completely inhibited by hydrogen peroxide, while H. occidentalis is not, which is consistent with yeast sensitivity to ROS affecting persistence within the D. melanogaster gastrointestinal tract. We also compared the feeding preference of D. melanogaster when given the choice between a naturally associated yeast and S. cerevisiae. We do not find a correlation between preferred yeasts and those that persist in the intestine. Notably, in no instances is S. cerevisiae preferred over the naturally associated strains. Overall, our results show that D. melanogaster-yeast interactions are more complex than might be revealed in experiments that use only S. cerevisiae. We propose that future research utilize other yeasts, and especially those that are naturally associated with Drosophila, to more fully understand the role of yeasts in Drosophila biology. Since the genetic basis of host–microbe interactions is shared across taxa and since many of these genes are initially discovered in D. melanogaster, a more realistic fly-yeast model system will benefit our understanding of host–microbe interactions throughout the animal kingdom. PMID:26336636

  18. Human snRNP polypeptide D1 promotes pre-mRNA splicing in yeast and defines nonessential yeast Smd1p sequences.

    PubMed Central

    Rymond, B C; Rokeach, L A; Hoch, S O

    1993-01-01

    Parallel investigations of yeast and metazoan pre-mRNA splicing have documented enormous complexity in the nucleic acid and protein components of the cellular splicing apparatus, the spliceosome. The degree to which yeast and metazoan spliceosomal proteins differ in composition and structure is currently unknown. In this report we demonstrate that the human small nuclear ribonucleoprotein (snRNP) polypeptide D1 complements the cell lethality, splicing deficiency, and snRNA instability phenotypes associated with a yeast smd1 null allele. Mutational analysis of yeast SMD1, guided by a comparison of the predicted yeast and human proteins, reveals that a large, nonconserved portion of Smd1p is dispensable for biological activity. These observations firmly establish D1 as an essential component of the cellular splicing apparatus and suggest that yeast and metazoa are remarkably similar in the polypeptides guiding early snRNP assembly. Images PMID:8346029

  19. Recent advances in yeast molecular biology: recombinant DNA. [Lead abstract

    SciTech Connect

    Not Available

    1982-09-01

    Separate abstracts were prepared for the 25 papers presented at a workshop focusing on chromosomal structure, gene regulation, recombination, DNA repair, and cell type control, that have been obtained by experimental approaches incorporating the new technologies of yeast DNA transformation, molecular cloning, and DNA sequence analysis. (KRM)

  20. The Treasure of the Humble: Lessons from Baker's Yeast

    ERIC Educational Resources Information Center

    Sitaraman, Ramakrishnan

    2011-01-01

    The study of model organisms is a powerful and proven experimental strategy for understanding biological processes. This paper describes an attempt to utilize advances in yeast molecular biology to enhance student understanding by presenting a more comprehensive view of several interconnected molecular processes in the overall functioning of an…