Science.gov

Sample records for yield kinetic parameters

  1. Estimation of yield, maintenance, and product formation kinetic parameters in anaerobic fermentations.

    PubMed

    Oner, M D; Erickson, L E; Yang, S S

    1984-12-01

    In many anaerobic fermentation processes, high energy bonds in adenosine triphosphate (ATP) are produced when available electrons are converted from organic substrate into extracellular organic products such as ethanol. The true growth yield and maintenance parameters are directly related to the product formation kinetic parameters for these anaerobic processes. Methods are presented which allow all of the experimental measurements to be used simultaneously to estimate these parameters. Results are presented for several different anaerobic fermentations. PMID:18551674

  2. A robust method for the joint estimation of yield coefficients and kinetic parameters in bioprocess models.

    PubMed

    Vastemans, V; Rooman, M; Bogaerts, Ph

    2009-01-01

    Bioprocess model structures that require nonlinear parameter estimation, thus initialization values, are often subject to poor identification performances because of the uncertainty on those initialization values. Under some conditions on the model structure, it is possible to partially circumvent this problem by an appropriate decoupling of the linear part of the model from the nonlinear part of it. This article provides a procedure to be followed when these structural conditions are not satisfied. An original method for decoupling two sets of parameters, namely, kinetic parameters from maximum growth, production, decay rates, and yield coefficients, is presented. It exhibits the advantage of requiring only initialization of the first subset of parameters. In comparison with a classical nonlinear estimation procedure, in which all the parameters are freed, results show enhanced robustness of model identification with regard to parameter initialization errors. This is illustrated by means of three simulation case studies: a fed-batch Human Embryo Kidney cell cultivation process using a macroscopic reaction scheme description, a process of cyclodextrin-glucanotransferase production by Bacillus circulans, and a process of simultaneous starch saccharification and glucose fermentation to lactic acid by Lactobacillus delbrückii, both based on a Luedeking-Piret model structure. Additionally, perspectives of the presented procedure in the context of systematic bioprocess modeling are promising. PMID:19455623

  3. Prediction of Microbial Growth Rate versus Biomass Yield by a Metabolic Network with Kinetic Parameters

    PubMed Central

    Adadi, Roi; Volkmer, Benjamin; Milo, Ron; Heinemann, Matthias; Shlomi, Tomer

    2012-01-01

    Identifying the factors that determine microbial growth rate under various environmental and genetic conditions is a major challenge of systems biology. While current genome-scale metabolic modeling approaches enable us to successfully predict a variety of metabolic phenotypes, including maximal biomass yield, the prediction of actual growth rate is a long standing goal. This gap stems from strictly relying on data regarding reaction stoichiometry and directionality, without accounting for enzyme kinetic considerations. Here we present a novel metabolic network-based approach, MetabOlic Modeling with ENzyme kineTics (MOMENT), which predicts metabolic flux rate and growth rate by utilizing prior data on enzyme turnover rates and enzyme molecular weights, without requiring measurements of nutrient uptake rates. The method is based on an identified design principle of metabolism in which enzymes catalyzing high flux reactions across different media tend to be more efficient in terms of having higher turnover numbers. Extending upon previous attempts to utilize kinetic data in genome-scale metabolic modeling, our approach takes into account the requirement for specific enzyme concentrations for catalyzing predicted metabolic flux rates, considering isozymes, protein complexes, and multi-functional enzymes. MOMENT is shown to significantly improve the prediction accuracy of various metabolic phenotypes in E. coli, including intracellular flux rates and changes in gene expression levels under different growth rates. Most importantly, MOMENT is shown to predict growth rates of E. coli under a diverse set of media that are correlated with experimental measurements, markedly improving upon existing state-of-the art stoichiometric modeling approaches. These results support the view that a physiological bound on cellular enzyme concentrations is a key factor that determines microbial growth rate. PMID:22792053

  4. Kinetic parameters from thermogravimetric analysis

    NASA Technical Reports Server (NTRS)

    Kiefer, Richard L.

    1993-01-01

    High performance polymeric materials are finding increased use in aerospace applications. Proposed high speed aircraft will require materials to withstand high temperatures in an oxidative atmosphere for long periods of time. It is essential that accurate estimates be made of the performance of these materials at the given conditions of temperature and time. Temperatures of 350 F (177 C) and times of 60,000 to 100,000 hours are anticipated. In order to survey a large number of high performance polymeric materials on a reasonable time scale, some form of accelerated testing must be performed. A knowledge of the rate of a process can be used to predict the lifetime of that process. Thermogravimetric analysis (TGA) has frequently been used to determine kinetic information for degradation reactions in polymeric materials. Flynn and Wall studied a number of methods for using TGA experiments to determine kinetic information in polymer reactions. Kinetic parameters, such as the apparent activation energy and the frequency factor, can be determined in such experiments. Recently, researchers at the McDonnell Douglas Research Laboratory suggested that a graph of the logarithm of the frequency factor against the apparent activation energy can be used to predict long-term thermo-oxidative stability for polymeric materials. Such a graph has been called a kinetic map. In this study, thermogravimetric analyses were performed in air to study the thermo-oxidative degradation of several high performance polymers and to plot their kinetic parameters on a kinetic map.

  5. Spectroscopic determination of kinetic parameters for frequency sweeping Alfven eigenmodes

    SciTech Connect

    Lesur, M.; Idomura, Y.; Shinohara, K.; Garbet, X.

    2010-12-15

    A method for analyzing fundamental kinetic plasma parameters, such as linear drive and external damping rate, based on experimental observations of chirping Alfven eigenmodes, is presented. The method, which relies on new semiempirical laws for nonlinear chirping characteristics, consists of fitting procedures between the so-called Berk-Breizman model and the experiment in a quasiperiodic chirping regime. This approach is applied to the toroidicity induced Alfven eigenmode (TAE) on JT-60 Upgrade (JT-60U) [N. Oyama et al., Nucl. Fusion 49, 104007 (2009)], which yields an estimation of the kinetic parameters and suggests the existence of TAEs far from marginal stability. Two collision models are considered, and it is shown that dynamical friction and velocity-space diffusion are essential to reproduce nonlinear features observed in experiments. The results are validated by recovering measured growth and decay of perturbation amplitude and by estimating collision frequencies from experimental equilibrium data.

  6. Comments on extracting the resonance strength parameter from yield data

    NASA Astrophysics Data System (ADS)

    Croft, Stephen; Favalli, Andrea

    2015-10-01

    The F(α,n) reaction is the focus of on-going research in part because it is an important source of neutrons in the nuclear fuel cycle which can be exploited to assay nuclear materials, especially uranium in the form of UF6 [1,2]. At the present time there remains some considerable uncertainty (of the order of ±20%) in the thick target integrated over angle (α,n) yield from 19F (100% natural abundance) and its compounds as discussed in [3,4]. An important thin target cross-section measurement is that of Wrean and Kavanagh [5] who explore the region from below threshold (2.36 MeV) to approximately 3.1 MeV with fine energy resolution. Integration of their cross-section data over the slowing down history of a stopping α-particle allows the thick target yield to be calculated for incident energies up to 3.1 MeV. This trend can then be combined with data from other sources to obtain a thick target yield curve over the wider range of interest to the fuel cycle (roughly threshold to 10 MeV to include all relevant α-emitters). To estimate the thickness of the CaF2 target they used, Wrean and Kavanagh separately measured the integrated yield of the 6.129 MeV γ-rays from the resonance at 340.5 keV (laboratory α-particle kinetic energy) in the 19F(p,αγ) reaction. To interpret the data they adopted a resonance strength parameter of (22.3±0.8) eV based on a determination by Becker et al [6]. The value and its uncertainty directly affects the thickness estimate and the extracted (α,n) cross-section values. In their citation to Becker et al's work, Wrean and Kavanagh comment that they did not make use of an alternative value of (23.7±1.0) eV reported by Croft [7] because they were unable to reproduce the value from the data given in that paper. The value they calculated for the resonance strength from the thick target yield given by Croft was 21.4 eV. The purpose of this communication is to revisit the paper by Croft published in this journal and specifically to explain the origin of the reported resonance strength. Fortunately the original notes spanning the period 12 January 1988 to 16 January 1990 were available to consult. In hindsight there is certainly a case of excessive brevity to rectify. In essence the step requiring explanation is how to compute the resonance strength, ωγ, from the reported thick target resonance yield Y.

  7. Identification of Kinetic Parameters in Multidimensional Crystallization Processes

    NASA Astrophysics Data System (ADS)

    Gunawan, Rudiyanto; Ma, David L.; Fujiwara, Mitsuko; Braatz, Richard D.

    Advances in sensor technology and increased competition in the pharmaceutical industry have generated significant interest in the identification of models for the solution formation of crystals with multiple characteristic dimensions. A procedure is proposed that uses a small number of batch experiments to identify the kinetic parameters for multidimensional crystallization processes. The parameters are estimated simultaneously from the on-line measurement of infrared spectra and from cross-moments of the crystal size distribution. The identification procedure maximizes the informativeness of the data produced by each experiment, produces an estimate of the accuracy of the kinetic parameters, and allows the consideration of competing hypotheses for characterizing the crystallization kinetics. The parameter identification strategy is applied to the batch crystallization of potassium dihydrogen phosphate, which forms two-dimensional crystal from solution. To the best of the author's knowledge, this is the first time that the kinetic parameters for a multidimensional crystallization process are identified from a small number of batch experiments.

  8. Estimates of genetic parameters for fat yield in Murrah buffaloes

    PubMed Central

    Kumar, Manoj; Vohra, Vikas; Ratwan, Poonam; Valsalan, Jamuna; Patil, C. S.; Chakravarty, A. K.

    2016-01-01

    Aim: The present study was performed to investigate the effect of genetic and non-genetic factors affecting milk fat yield and to estimate genetic parameters of monthly test day fat yields (MTDFY) and lactation 305-day fat yield (L305FY) in Murrah buffaloes. Materials and Methods: The data on total of 10381 MTDFY records comprising the first four lactations of 470 Murrah buffaloes calved from 1993 to 2014 were assessed. These buffaloes were sired by 75 bulls maintained in an organized farm at ICAR-National Dairy Research Institute, Karnal. Least squares maximum likelihood program was used to estimate genetic and non-genetic parameters. Heritability estimates were obtained using paternal half-sib correlation method. Genetic and phenotypic correlations among MTDFY, and 305-day fat yield were calculated from the analysis of variance and covariance matrix among sire groups. Results: The overall least squares mean of L305FY was found to be 175.74±4.12 kg. The least squares mean of overall MTDFY ranged from 3.33±0.14 kg (TD-11) to 7.06±0.17 kg (TD-3). The h2 estimate of L305FY was found to be 0.33±0.16 in this study. The estimates of phenotypic and genetic correlations between 305-day fat yield and different MTDFY ranged from 0.32 to 0.48 and 0.51 to 0.99, respectively. Conclusions: In this study, all the genetic and non-genetic factors except age at the first calving group, significantly affected the traits under study. The estimates of phenotypic and genetic correlations of MTDFY with 305-day fat yield was generally higher in the MTDFY-5 of lactation suggesting that this TD yields could be used as the selection criteria for early evaluation and selection of Murrah buffaloes. PMID:27057114

  9. Kinetic parameters estimation in an anaerobic digestion process using successive quadratic programming.

    PubMed

    Aceves-Lara, C A; Aguilar-Garnica, E; Alcaraz-Gonzlez, V; Gonzlez-Reynoso, O; Steyer, J P; Dominguez-Beltran, J L; Gonzlez-Alvarez, V

    2005-01-01

    In this work, an optimization method is implemented in an anaerobic digestion model to estimate its kinetic parameters and yield coefficients. This method combines the use of advanced state estimation schemes and powerful nonlinear programming techniques to yield fast and accurate estimates of the aforementioned parameters. In this method, we first implement an asymptotic observer to provide estimates of the non-measured variables (such as biomass concentration) and good guesses for the initial conditions of the parameter estimation algorithm. These results are then used by the successive quadratic programming (SQP) technique to calculate the kinetic parameters and yield coefficients of the anaerobic digestion process. The model, provided with the estimated parameters, is tested with experimental data from a pilot-scale fixed bed reactor treating raw industrial wine distillery wastewater. It is shown that SQP reaches a fast and accurate estimation of the kinetic parameters despite highly noise corrupted experimental data and time varying inputs variables. A statistical analysis is also performed to validate the combined estimation method. Finally, a comparison between the proposed method and the traditional Marquardt technique shows that both yield similar results; however, the calculation time of the traditional technique is considerable higher than that of the proposed method. PMID:16180459

  10. Kinetic parameter estimation from attenuated SPECT projection measurements

    SciTech Connect

    Reutter, B.W.; Gullberg, G.T.

    1998-12-01

    Conventional analysis of dynamically acquired nuclear medicine data involves fitting kinetic models to time-activity curves generated from regions of interest defined on a temporal sequence of reconstructed images. However, images reconstructed from the inconsistent projections of a time-varying distribution of radiopharmaceutical acquired by a rotating SPECT system can contain artifacts that lead to biases in the estimated kinetic parameters. To overcome this problem the authors investigated the estimation of kinetic parameters directly from projection data by modeling the data acquisition process. To accomplish this it was necessary to parametrize the spatial and temporal distribution of the radiopharmaceutical within the SPECT field of view. In a simulated transverse slice, kinetic parameters were estimated for simple one compartment models for three myocardial regions of interest, as well as for the liver. Myocardial uptake and washout parameters estimated by conventional analysis of noiseless simulated data had biases ranging between 1--63%. Parameters estimated directly from the noiseless projection data were unbiased as expected, since the model used for fitting was faithful to the simulation. Predicted uncertainties (standard deviations) of the parameters obtained for 500,000 detected events ranged between 2--31% for the myocardial uptake parameters and 2--23% for the myocardial washout parameters.

  11. Estimation of beech pyrolysis kinetic parameters by Shuffled Complex Evolution.

    PubMed

    Ding, Yanming; Wang, Changjian; Chaos, Marcos; Chen, Ruiyu; Lu, Shouxiang

    2016-01-01

    The pyrolysis kinetics of a typical biomass energy feedstock, beech, was investigated based on thermogravimetric analysis over a wide heating rate range from 5K/min to 80K/min. A three-component (corresponding to hemicellulose, cellulose and lignin) parallel decomposition reaction scheme was applied to describe the experimental data. The resulting kinetic reaction model was coupled to an evolutionary optimization algorithm (Shuffled Complex Evolution, SCE) to obtain model parameters. To the authors' knowledge, this is the first study in which SCE has been used in the context of thermogravimetry. The kinetic parameters were simultaneously optimized against data for 10, 20 and 60K/min heating rates, providing excellent fits to experimental data. Furthermore, it was shown that the optimized parameters were applicable to heating rates (5 and 80K/min) beyond those used to generate them. Finally, the predicted results based on optimized parameters were contrasted with those based on the literature. PMID:26551654

  12. A model of crosslink kinetics in the expanding plant cell wall: yield stress and enzyme action

    PubMed Central

    Dyson, R.J.; Band, L.R.; Jensen, O.E.

    2012-01-01

    The plant primary cell wall is a composite material containing stiff cellulose microfibrils that are embedded within a pectin matrix and crosslinked through a network of hemicellulose polymers. This microstructure endows the wall with nonlinear anisotropic mechanical properties and allows enzymatic regulation of expansive cell growth. We present a mathematical model of hemicellulose crosslink dynamics in an expanding cell wall incorporating strain-enhanced breakage and enzyme-mediated crosslink kinetics. The model predicts the characteristic yielding behaviour in the relationship between stress and strain-rate seen experimentally, and suggests how the effective yield and extensibility of the wall depend on microstructural parameters and on the action of enzymes of the XTH and expansin families. The model suggests that the yielding behaviour encapsulated in the classical Lockhart equation can be explained by the strongly nonlinear dependence of crosslink breakage rate on crosslink elongation. The model also demonstrates how enzymes that target crosslink binding can be effective in softening the wall in its pre-yield state, whereas its post-yield extensibility is determined primarily by the pectin matrix. PMID:22584249

  13. Breakdown parameter for kinetic modeling of multiscale gas flows.

    PubMed

    Meng, Jianping; Dongari, Nishanth; Reese, Jason M; Zhang, Yonghao

    2014-06-01

    Multiscale methods built purely on the kinetic theory of gases provide information about the molecular velocity distribution function. It is therefore both important and feasible to establish new breakdown parameters for assessing the appropriateness of a fluid description at the continuum level by utilizing kinetic information rather than macroscopic flow quantities alone. We propose a new kinetic criterion to indirectly assess the errors introduced by a continuum-level description of the gas flow. The analysis, which includes numerical demonstrations, focuses on the validity of the Navier-Stokes-Fourier equations and corresponding kinetic models and reveals that the new criterion can consistently indicate the validity of continuum-level modeling in both low-speed and high-speed flows at different Knudsen numbers. PMID:25019910

  14. Determining Kinetic Parameters for Isothermal Crystallization of Glasses

    NASA Technical Reports Server (NTRS)

    Ray, C. S.; Zhang, T.; Reis, S. T.; Brow, R. K.

    2006-01-01

    Non-isothermal crystallization techniques are frequently used to determine the kinetic parameters for crystallization in glasses. These techniques are experimentally simple and quick compared to the isothermal techniques. However, the analytical models used for non-isothermal data analysis, originally developed for describing isothermal transformation kinetics, are fundamentally flawed. The present paper describes a technique for determining the kinetic parameters for isothermal crystallization in glasses, which eliminates most of the common problems that generally make the studies of isothermal crystallization laborious and time consuming. In this technique, the volume fraction of glass that is crystallized as a function of time during an isothermal hold was determined using differential thermal analysis (DTA). The crystallization parameters for the lithium-disilicate (Li2O.2SiO2) model glass were first determined and compared to the same parameters determined by other techniques to establish the accuracy and usefulness of the present technique. This technique was then used to describe the crystallization kinetics of a complex Ca-Sr-Zn-silicate glass developed for sealing solid oxide fuel cells.

  15. LDEF's map experiment foil perforations yield hypervelocity impact penetration parameters

    NASA Technical Reports Server (NTRS)

    Mcdonnell, J. A. M.

    1992-01-01

    The space exposure of LDEF for 5.75 years, forming a host target in low earth orbit (LEO) orbit to a wide distribution of hypervelocity particulates of varying dimensions and different impact velocities, has yielded a multiplicity of impact features. Although the projectile parameters are generally unknown and, in fact not identical for any two impacts on a target, the great number of impacts provides statistically meaningful basis for the valid comparison of the response of different targets. Given sufficient impacts for example, a comparison of impact features (even without knowledge of the project parameters) is possible between: (1) differing material types (for the same incident projectile distribution); (2) differing target configurations (e.g., thick and thin targets for the same material projectiles; and (3) different velocities (using LDEF's different faces). A comparison between different materials is presented for infinite targets of aluminum, Teflon, and brass in the same pointing direction; the maximum finite-target penetration (ballistic limit) is also compared to that of the penetration of similar materials comprising of a semi-infinite target. For comparison of impacts on similar materials at different velocities, use is made of the pointing direction relative to LDEF's orbital motion. First, however, care must be exercised to separate the effect of spatial flux anisotropies from those resulting from the spacecraft velocity through a geocentrically referenced dust distribution. Data comprising thick and thin target impacts, impacts on different materials, and in different pointing directions is presented; hypervelocity impact parameters are derived. Results are also shown for flux modeling codes developed to decode the relative fluxes of Earth orbital and unbound interplanetary components intercepting LDEF. Modeling shows the west and space pointing faces are dominated by interplanetary particles and yields a mean velocity of 23.5 km/s at LDEF, corresponding to a V(infinity) Earth approach velocity = 20.9 km/s. Normally resolved average impact velocities on LDEF's cardinal point faces are shown. As 'excess' flux on the east, north, and south faces is observed, compatible with an Earth orbital component below some 5 microns in particle diameter.

  16. LDEF's map experiment foil perforations yield hypervelocity impact penetration parameters

    NASA Astrophysics Data System (ADS)

    McDonnell, J. A. M.

    1992-06-01

    The space exposure of LDEF for 5.75 years, forming a host target in low earth orbit (LEO) orbit to a wide distribution of hypervelocity particulates of varying dimensions and different impact velocities, has yielded a multiplicity of impact features. Although the projectile parameters are generally unknown and, in fact not identical for any two impacts on a target, the great number of impacts provides statistically meaningful basis for the valid comparison of the response of different targets. Given sufficient impacts for example, a comparison of impact features (even without knowledge of the project parameters) is possible between: (1) differing material types (for the same incident projectile distribution); (2) differing target configurations (e.g., thick and thin targets for the same material projectiles; and (3) different velocities (using LDEF's different faces). A comparison between different materials is presented for infinite targets of aluminum, Teflon, and brass in the same pointing direction; the maximum finite-target penetration (ballistic limit) is also compared to that of the penetration of similar materials comprising of a semi-infinite target. For comparison of impacts on similar materials at different velocities, use is made of the pointing direction relative to LDEF's orbital motion. First, however, care must be exercised to separate the effect of spatial flux anisotropies from those resulting from the spacecraft velocity through a geocentrically referenced dust distribution. Data comprising thick and thin target impacts, impacts on different materials, and in different pointing directions is presented; hypervelocity impact parameters are derived. Results are also shown for flux modeling codes developed to decode the relative fluxes of Earth orbital and unbound interplanetary components intercepting LDEF. Modeling shows the west and space pointing faces are dominated by interplanetary particles and yields a mean velocity of 23.5 km/s at LDEF, corresponding to a V(infinity) Earth approach velocity = 20.9 km/s. Normally resolved average impact velocities on LDEF's cardinal point faces are shown. As 'excess' flux on the east, north, and south faces is observed, compatible with an Earth orbital component below some 5 microns in particle diameter.

  17. Albite [yields] jadeite + quartz transformation in rock: Mechanism and kinetics

    SciTech Connect

    Bohlen, S.R.; Kirby, S.H. ); Hacker, B.R.

    1992-01-01

    Recent work on the calcite [yields] aragonite transformation using fully dense marble revealed significant differences from earlier experiments on powders and single-crystals. The reaction rate is retarded by a factor of > 1,000 and reaction mechanisms and resultant textures are considerably more complex. Stimulated by this, the authors conducted a study of the albite [yields] jadeite + quartz/coesite transformation in a fully dense albitite. Again the results are in marked contrast with previous powder-based studies of this archetypal metamorphic reaction. Solid cores of albitite were held at temperatures of 500-1,200 C and at pressure oversteps of 500 MPa into the jadeite + quartz stability field for 1--8 days in piston-cylinder apparatus. Samples that were dried in vacuum transformed appreciably only at temperatures in excess of 1,000 C. At all grain boundaries there is subequal transformation to micron-scale intergrowths of jadeite + quartz. Samples that were vacuum-impregnated with 1 wt% water contain jadeite + quartz to temperatures as low as 600 C. In contrast to the dried samples, transformation is much less homogeneous. The jadeite + quartz intergrowths do not form rows of subparallel crystals on grain boundaries, but rather are flower-shaped clusters that radiate outward from single nucleation sites at 3-grain edges and 4-grain corners. Compared to powders, pressure oversteps a factor of 10 greater are necessary to induce equivalent reaction in albitite. The sluggishness of this reaction has important implications for the evolution of the lower continental crust and subducting oceanic crust in terms of their (1) seismic velocity profiles, (2) petrological evolution, and (3) buoyancy forces, stresses and vertical crustal movements connected with densification and dilatational reactions.

  18. Kinetics and Yields of Pesticide Biodegradation at Low Substrate Concentrations and under Conditions Restricting Assimilable Organic Carbon

    PubMed Central

    Hammes, Frederik; Egli, Thomas; Kohler, Hans-Peter E.

    2014-01-01

    The fundamentals of growth-linked biodegradation occurring at low substrate concentrations are poorly understood. Substrate utilization kinetics and microbial growth yields are two critically important process parameters that can be influenced by low substrate concentrations. Standard biodegradation tests aimed at measuring these parameters generally ignore the ubiquitous occurrence of assimilable organic carbon (AOC) in experimental systems which can be present at concentrations exceeding the concentration of the target substrate. The occurrence of AOC effectively makes biodegradation assays conducted at low substrate concentrations mixed-substrate assays, which can have profound effects on observed substrate utilization kinetics and microbial growth yields. In this work, we introduce a novel methodology for investigating biodegradation at low concentrations by restricting AOC in our experiments. We modified an existing method designed to measure trace concentrations of AOC in water samples and applied it to systems in which pure bacterial strains were growing on pesticide substrates between 0.01 and 50 mg liter−1. We simultaneously measured substrate concentrations by means of high-performance liquid chromatography with UV detection (HPLC-UV) or mass spectrometry (MS) and cell densities by means of flow cytometry. Our data demonstrate that substrate utilization kinetic parameters estimated from high-concentration experiments can be used to predict substrate utilization at low concentrations under AOC-restricted conditions. Further, restricting AOC in our experiments enabled accurate and direct measurement of microbial growth yields at environmentally relevant concentrations for the first time. These are critical measurements for evaluating the degradation potential of natural or engineered remediation systems. Our work provides novel insights into the kinetics of biodegradation processes and growth yields at low substrate concentrations. PMID:24317077

  19. Kinetics and yields of pesticide biodegradation at low substrate concentrations and under conditions restricting assimilable organic carbon.

    PubMed

    Helbling, Damian E; Hammes, Frederik; Egli, Thomas; Kohler, Hans-Peter E

    2014-02-01

    The fundamentals of growth-linked biodegradation occurring at low substrate concentrations are poorly understood. Substrate utilization kinetics and microbial growth yields are two critically important process parameters that can be influenced by low substrate concentrations. Standard biodegradation tests aimed at measuring these parameters generally ignore the ubiquitous occurrence of assimilable organic carbon (AOC) in experimental systems which can be present at concentrations exceeding the concentration of the target substrate. The occurrence of AOC effectively makes biodegradation assays conducted at low substrate concentrations mixed-substrate assays, which can have profound effects on observed substrate utilization kinetics and microbial growth yields. In this work, we introduce a novel methodology for investigating biodegradation at low concentrations by restricting AOC in our experiments. We modified an existing method designed to measure trace concentrations of AOC in water samples and applied it to systems in which pure bacterial strains were growing on pesticide substrates between 0.01 and 50 mg liter(-1). We simultaneously measured substrate concentrations by means of high-performance liquid chromatography with UV detection (HPLC-UV) or mass spectrometry (MS) and cell densities by means of flow cytometry. Our data demonstrate that substrate utilization kinetic parameters estimated from high-concentration experiments can be used to predict substrate utilization at low concentrations under AOC-restricted conditions. Further, restricting AOC in our experiments enabled accurate and direct measurement of microbial growth yields at environmentally relevant concentrations for the first time. These are critical measurements for evaluating the degradation potential of natural or engineered remediation systems. Our work provides novel insights into the kinetics of biodegradation processes and growth yields at low substrate concentrations. PMID:24317077

  20. Model reduction and a priori kinetic parameter identifiability analysis using metabolome time series for metabolic reaction networks with linlog kinetics.

    PubMed

    Nikerel, I Emrah; van Winden, Wouter A; Verheijen, Peter J T; Heijnen, Joseph J

    2009-01-01

    In this work, we present a time-scale analysis based model reduction and parameter identifiability analysis method for metabolic reaction networks. The method uses the information obtained from short term chemostat perturbation experiments. We approximate the time constant of each metabolite pool by their turn-over time and classify the pools accordingly into two groups: fast and slow pools. We performed a priori model reduction, neglecting the dynamic term of the fast pools. By making use of the linlog approximative kinetics, we obtained a general explicit solution for the fast pools in terms of the slow pools by elaborating the degenerate algebraic system resulting from model reduction. The obtained relations yielded also analytical relations between a subset of kinetic parameters. These relations also allow to realize an analytical model reduction using lumped reaction kinetics. After solving these theoretical identifiability problems and performing model reduction, we carried out a Monte Carlo approach to study the practical identifiability problems. We illustrated the methodology on model reduction and theoretical/practical identifiability analysis on an example system representing the glycolysis in Saccharomyces cerevisiae cells. PMID:18718548

  1. Model-based analysis of coupled equilibrium-kinetic processes: indirect kinetic studies of thermodynamic parameters using the dynamic data.

    PubMed

    Emami, Fereshteh; Maeder, Marcel; Abdollahi, Hamid

    2015-05-01

    Thermodynamic studies of equilibrium chemical reactions linked with kinetic procedures are mostly impossible by traditional approaches. In this work, the new concept of generalized kinetic study of thermodynamic parameters is introduced for dynamic data. The examples of equilibria intertwined with kinetic chemical mechanisms include molecular charge transfer complex formation reactions, pH-dependent degradation of chemical compounds and tautomerization kinetics in micellar solutions. Model-based global analysis with the possibility of calculating and embedding the equilibrium and kinetic parameters into the fitting algorithm has allowed the complete analysis of the complex reaction mechanisms. After the fitting process, the optimal equilibrium and kinetic parameters together with an estimate of their standard deviations have been obtained. This work opens up a promising new avenue for obtaining equilibrium constants through the kinetic data analysis for the kinetic reactions that involve equilibrium processes. PMID:25723920

  2. [Photosynthetic Parameters Inversion Algorithm Study Based on Chlorophyll Fluorescence Induction Kinetics Curve].

    PubMed

    Qiu, Xiao-han; Zhang, Yu-jun; Yin, Gao-fang; Shi, Chao-yi; Yu, Xiao-ya; Zhao, Nan-jing; Liu, Wen-qing

    2015-08-01

    The fast chlorophyll fluorescence induction curve contains rich information of photosynthesis. It can reflect various information of vegetation, such as, the survival status, the pathological condition and the physiology trends under the stress state. Through the acquisition of algae fluorescence and induced optical signal, the fast phase of chlorophyll fluorescence kinetics curve was fitted. Based on least square fitting method, we introduced adaptive minimum error approaching method for fast multivariate nonlinear regression fitting toward chlorophyll fluorescence kinetics curve. We realized Fo (fixedfluorescent), Fm (maximum fluorescence yield), σPSII (PSII functional absorption cross section) details parameters inversion and the photosynthetic parameters inversion of Chlorella pyrenoidosa. And we also studied physiological variation of Chlorella pyrenoidosa under the stress of Cu(2+). PMID:26672292

  3. Cell population kinetic parameters for acute epidermal reactions in man

    SciTech Connect

    Cohen, L.

    1986-11-01

    Cell population kinetic parameters for acute reactions in squamous epithelium were estimated using available data on skin tolerance doses. Roughly equivalent doses for kilovoltage radiation delivered in equal daily fractions, as reported by F. Ellis (Br. J. Radiol. 15, 348-350 (1942)) and by R. Paterson (The Treatment of Malignant Disease by Radium and X-Rays. Edward Arnold, London, 1948), were combined with data for nonstandard fractionation at longer intervals of 1 or 2 weeks. By analyzing the combined data set, well-determined parameters could be derived. The data show that repopulation, with a potential cell doubling time of about 7 days, must occur in irradiated human skin, though this may possibly be limited to no more than seven doublings. The parameters derived are distinctly different from those associated with late-reacting dose-limiting tissues. The main difference is the steeper initial slope of the computed survival curve, that is a larger J parameter (multitarget model) or a larger alpha component (linear-quadratic model).

  4. Parameter estimation for models of ligninolytic and cellulolytic enzyme kinetics

    SciTech Connect

    Wang, Gangsheng; Post, Wilfred M; Mayes, Melanie; Frerichs, Joshua T; Jagadamma, Sindhu

    2012-01-01

    While soil enzymes have been explicitly included in the soil organic carbon (SOC) decomposition models, there is a serious lack of suitable data for model parameterization. This study provides well-documented enzymatic parameters for application in enzyme-driven SOC decomposition models from a compilation and analysis of published measurements. In particular, we developed appropriate kinetic parameters for five typical ligninolytic and cellulolytic enzymes ( -glucosidase, cellobiohydrolase, endo-glucanase, peroxidase, and phenol oxidase). The kinetic parameters included the maximum specific enzyme activity (Vmax) and half-saturation constant (Km) in the Michaelis-Menten equation. The activation energy (Ea) and the pH optimum and sensitivity (pHopt and pHsen) were also analyzed. pHsen was estimated by fitting an exponential-quadratic function. The Vmax values, often presented in different units under various measurement conditions, were converted into the same units at a reference temperature (20 C) and pHopt. Major conclusions are: (i) Both Vmax and Km were log-normal distributed, with no significant difference in Vmax exhibited between enzymes originating from bacteria or fungi. (ii) No significant difference in Vmax was found between cellulases and ligninases; however, there was significant difference in Km between them. (iii) Ligninases had higher Ea values and lower pHopt than cellulases; average ratio of pHsen to pHopt ranged 0.3 0.4 for the five enzymes, which means that an increase or decrease of 1.1 1.7 pH units from pHopt would reduce Vmax by 50%. (iv) Our analysis indicated that the Vmax values from lab measurements with purified enzymes were 1 2 orders of magnitude higher than those for use in SOC decomposition models under field conditions.

  5. Use of fermentative metabolites for heterotrophic microalgae growth: Yields and kinetics.

    PubMed

    Turon, V; Baroukh, C; Trably, E; Latrille, E; Fouilland, E; Steyer, J-P

    2014-10-29

    The growth of two lipid-producing Chlorella species on fermentative end-products acetate, butyrate and lactate, was investigated using a kinetic modeling approach. Chlorella sorokiniana and Auxenochlorella protothecoides were grown on synthetic media with various (acetate:butyrate:lactate) ratios. Both species assimilated efficiently acetate and butyrate with yields between 0.4 and 0.5g carbon of biomass/g carbon of substrate, but did not use lactate. The highest growth rate on acetate, 2.23d(-1), was observed for C. sorokiniana, and on butyrate, 0.22d(-1), for A. protothecoides. Butyrate removal started after complete acetate exhaustion (diauxic effect). However, butyrate consumption may be favored by the increase of biomass concentration induced by the initial use of acetate. A model combining Monod and Haldane functions was then built and fitted the experimental data well for both species. Butyrate concentration and (acetate:butyrate) ratios were identified as key parameters for heterotrophic growth of microalgae on fermentative metabolites. PMID:25459841

  6. Estimation of kinetic model parameters in fluorescence optical diffusion tomography.

    PubMed

    Milstein, Adam B; Webb, Kevin J; Bouman, Charles A

    2005-07-01

    We present a technique for reconstructing the spatially dependent dynamics of a fluorescent contrast agent in turbid media. The dynamic behavior is described by linear and nonlinear parameters of a compartmental model or some other model with a deterministic functional form. The method extends our previous work in fluorescence optical diffusion tomography by parametrically reconstructing the time-dependent fluorescent yield. The reconstruction uses a Bayesian framework and parametric iterative coordinate descent optimization, which is closely related to Gauss-Seidel methods. We demonstrate the method with a simulation study. PMID:16053157

  7. Pyrolysis of Sawdust, Rice Husk and Sugarcane Bagasse: Kinetic Modeling and Estimation of Kinetic Parameters using Different Optimization Tools

    NASA Astrophysics Data System (ADS)

    Khonde, Ruta Dhanram; Chaurasia, Ashish Subhash

    2015-04-01

    The present study provides the kinetic model to describe the pyrolysis of sawdust, rice-husk and sugarcane bagasse as biomass. The kinetic scheme used for modelling of primary pyrolysis consisting of the two parallel reactions giving gaseous volatiles and solid char. Estimation of kinetic parameters for pyrolysis process has been carried out for temperature range of 773-1,173 K. As there are serious issues regarding non-convergence of some of the methods or solutions converging to local-optima, the proposed kinetic model is optimized to predict the best values of kinetic parameters for the system using three approaches—Two-dimensional surface fitting non-linear regression technique, MS-Excel Solver Tool and COMSOL software. The model predictions are in agreement with experimental data over a wide range of pyrolysis conditions. The estimated value of kinetic parameters are compared with earlier researchers and found to be matching well.

  8. Fluidized-bed pyrolysis of oil shale: oil yield, composition, and kinetics

    SciTech Connect

    Richardson, J H; Huss, E B; Ott, L L; Clarkson, J E; Bishop, M O; Taylor, J R; Gregory, L J; Morris, C J

    1982-09-01

    A quartz isothermal fluidized-bed reactor has been used to measure kinetics and oil properties relevant to surface processing of oil shale. The rate of oil formation has been described with two sequential first-order rate equations characterized by two rate constants, k/sub 1/ = 2.18 x 10/sup 10/ exp(-41.6 kcal/RT) s/sup -1/ and k/sub 2/ = 4.4 x 10/sup 6/ exp(-29.7 kcal/RT) s/sup -1/. These rate constants together with an expression for the appropriate weighting coefficients describe approximately 97/sup +/% of the total oil produced. A description is given of the results of different attempts to mathematically describe the data in a manner suitable for modeling applications. Preliminary results are also presented for species-selective kinetics of methane, ethene, ethane and hydrogen, where the latter is clearly distinguished as the product of a distinct intermediate. Oil yields from Western oil shale are approximately 100% Fischer assay. Oil composition is as expected based on previous work and the higher heating rates (temperatures) inherent in fluidized-bed pyrolysis. Neither the oil yield, composition nor the kinetics varied with particle size between 0.2 and 2.0 mm within experimental error. The qualitatively expected change in oil composition due to cracking was observed over the temperature range studied (460 to 540/sup 0/C). Eastern shale exhibited significantly faster kinetics and higher oil yields than did Western shale.

  9. Kinetic Parameters of Denitrification in a River Continuum†

    PubMed Central

    García-Ruiz, Roberto; Pattinson, Sarah N.; Whitton, Brian A.

    1998-01-01

    Kinetic parameters for nitrate reduction in intact sediment cores were investigated by using the acetylene blockage method at five sites along the Swale-Ouse river system in northeastern England, including a highly polluted tributary, R. Wiske. The denitrification rate in sediment containing added nitrate exhibited a Michaelis-Menten-type curve. The concentration of nitrate for half-maximal activity (Kmap) by denitrifying bacteria increased on passing downstream from 13.1 to 90.4 μM in the main river, but it was highest (640 μM) in the Wiske. The apparent maximal rate (Vmaxap) ranged between 35.8 and 324 μmol of N m−2 h−1 in the Swale-Ouse (increasing upstream to downstream), but it was highest in the Wiske (1,194 μmol N m−2 h−1). A study of nitrous oxide (N2O) production at the same time showed that rates ranged from below the detection limit (0.05 μmol of N2O-N m−2 h−1) at the headwater site to 27 μmol of N2O-N m−2 h−1 at the downstream site. In the Wiske the rate was up to 570 μmol of N2O-N m−2 h−1, accounting for up to 80% of total N gas production. PMID:9647826

  10. Evaluation of kinetic parameters of a sulfur-limestone autotrophic denitrification biofilm process.

    PubMed

    Zeng, Hui; Zhang, Tian C

    2005-12-01

    In this study, four kinetic parameters of autotrophic denitrifiers in fixed-bed sulfur-limestone autotrophic denitrification (SLAD) columns were evaluated. The curve-matching method was used by conducting 22 non-steady-state tests for estimation of half-velocity constant, K(s) and maximum specific substrate utilization rate, k. To estimate the bacteria yield coefficient, Y and the decay coefficient, k(d), two short term batch tests (before and after the starvation of the autotrophic denitrifiers) were conducted using a fixed-bed SLAD column where the biofilm was fully penetrated by nitrate-N. It was found that K(s) = 0.398 mg NO(3-)-N/l, k = 0.15 d(-1), k(d) = 0.09-0.12 d(-1), and Y = 0.85-1.11 g VSS/g NO(3-)-N. Our results are consistent with those obtained from SLAD biofilm processes, but different from those obtained from suspended-growth systems with thiosulfate or sulfur powders as the S source. The method developed in this study might be useful for estimation of four Monod-type kinetic parameters in other biofilm processes. However, cautions must be given when the estimated parameters are used because the measurements of the biomass and the biofilm thickness could be further improved, and the assumption of sulfur being a non-limiting substrate needs to be proved. PMID:16289671

  11. Co-pyrolysis characteristics of microalgae Isochrysis and Chlorella: Kinetics, biocrude yield and interaction.

    PubMed

    Zhao, Bingwei; Wang, Xin; Yang, Xiaoyi

    2015-12-01

    Co-pyrolysis characteristics of Isochrysis (high lipid) and Chlorella (high protein) were investigated qualitatively and quantitatively based on DTG curves, biocrude yield and composition by individual pyrolysis and co-pyrolysis. DTG curves in co-pyrolysis have been compared accurately with those in individual pyrolysis. An interaction has been detected at 475-500°C in co-pyrolysis based on biocrude yields, and co-pyrolysis reaction mechanism appear three-dimensional diffusion in comparison with random nucleation followed by growth in individual pyrolysis based on kinetic analysis. There is no obvious difference in the maximum biocrude yields for individual pyrolysis and co-pyrolysis, but carboxylic acids (IC21) decreased and N-heterocyclic compounds (IC12) increased in co-pyrolysis. Simulation results of biocrude yield by Components Biofuel Model and Kinetics Biofuel Model indicate that the processes of co-pyrolysis comply with those of individual pyrolysis in solid phase by and large. Variation of percentage content in co-pyrolysis and individual pyrolysis biocrude indicated interaction in gas phase. PMID:26407347

  12. Kinetic modeling of solid yields formation in the fast pyrolysis of mahogany wood

    NASA Astrophysics Data System (ADS)

    Wijayanti, W.; Sasongko, M. N.

    2016-03-01

    There have been many research of biomass pyrolysis not only in heat transfer point of view but also in chemical reaction point of view. In the present study, the rate of reaction (kinetic rate) formation of solid yield was calculated by varying the pyrolysis temperature that gives a chance of 250 °C, 350 °C, 450 °C, 500 °C, 600 °C, 700 °C, until 800°C with heating rate around 700 °C/hour. The heating rate used was the fast pyrolysis in which the heating rate for heating furnaces takes place quickly. Pyrolysis was accomplished by direct pyrolysis process in which each process was conducted at the certain pyrolysis temperature variation that took over 3 hours. Biomass used was mahogany wood, while the inert gas used to hold in order to avoid combustion was nitrogen gas. The decreasing of solid yields formation obtained was used to calculate the kinetic rate of the pyrolysis process. It was calculated by using the similar Arrhenius equation that considering the temperature changes during the process and the decreasing mass of solid yield formation occurred. The kinetic rate results showed the decomposition of biomass occurs tended in two stages, namely a stage of water evaporation and degradation of biomass solid yield coal followed by a stage of constant formation. The decomposition is expressed by the magnitude of the rate of reaction at 25˚C-517˚C temperature range with a reaction rate constant k1 = 2151.67 exp (-2141/Tp). While at pyrolysis temperatures above 517˚C, the reaction rate constant is expressed with k2 = 32.20 exp (-127.8 / Tp).

  13. The use of automated parameter searches to improve ion channel kinetics for neural modeling.

    PubMed

    Hendrickson, Eric B; Edgerton, Jeremy R; Jaeger, Dieter

    2011-10-01

    The voltage and time dependence of ion channels can be regulated, notably by phosphorylation, interaction with phospholipids, and binding to auxiliary subunits. Many parameter variation studies have set conductance densities free while leaving kinetic channel properties fixed as the experimental constraints on the latter are usually better than on the former. Because individual cells can tightly regulate their ion channel properties, we suggest that kinetic parameters may be profitably set free during model optimization in order to both improve matches to data and refine kinetic parameters. To this end, we analyzed the parameter optimization of reduced models of three electrophysiologically characterized and morphologically reconstructed globus pallidus neurons. We performed two automated searches with different types of free parameters. First, conductance density parameters were set free. Even the best resulting models exhibited unavoidable problems which were due to limitations in our channel kinetics. We next set channel kinetics free for the optimized density matches and obtained significantly improved model performance. Some kinetic parameters consistently shifted to similar new values in multiple runs across three models, suggesting the possibility for tailored improvements to channel models. These results suggest that optimized channel kinetics can improve model matches to experimental voltage traces, particularly for channels characterized under different experimental conditions than recorded data to be matched by a model. The resulting shifts in channel kinetics from the original template provide valuable guidance for future experimental efforts to determine the detailed kinetics of channel isoforms and possible modulated states in particular types of neurons. PMID:21243419

  14. Growth parameter and yield component response of field corn to simulated acid rain

    SciTech Connect

    Banwart, W.L.; Porter, P.M.; Ziegler, E.L.; Hassett, J.J.

    1988-01-01

    Acid rain occurs in the midwest. Studies to date have suggested minimal yield response of field corn to acid rain. However, small but significant reductions in yield have been shown for some cultivars under extreme conditions. To define further these yield changes the study examined the effect of simulated acid rain on parameters associated with corn yield. Cultivars B73 x Mo17 and Pioneer 3377 were shielded from ambient rain by two movable rain exclusion shelters. Six simulated rain treatments were applied biweekly within these shelters through the use of a nozzle distribution system. For the most part, growth and yield parameters were unaffected by simulated rain treatment. While the only significant yield reduction was a contrast of pH 3.0 and the average of all other treatments for B73 x Mo17, the reduction appears to be the result both of slightly fewer ears and slightly less successful ear fill.

  15. Kinetic and stoichiometric parameters estimation in a nitrifying bubble column through "in-situ" pulse respirometry.

    PubMed

    Ordaz, Alberto; Oliveira, Catarina S; Aguilar, Ricardo; Carrin, Manuel; Ferreira, Eugnio C; Alves, Madalena; Thalasso, Frdric

    2008-05-01

    This article proposes a simple "in-situ" pulse respirometric method for the estimation of four important kinetic and stoichiometric parameters. The method is validated in a suspended biomass nitrifying reactor for the determination of (i) maximum oxygen uptake rate (OUR(ex)max), (ii) oxidation yield (f(E)), (iii) biomass growth yield (f(S)), and (iv) affinity constant (K(S)). OUR(ex)max and f(E) were directly obtained from respirograms. In the presented case study, a minimum substrate pulse of 10 mgNH(4) (+)-N L(-1) was necessary to determine OUR(ex)max which was 61.15 +/- 4.09 mgO(2) L(-1) h(-1) (5 repetitions). A linear correlation (r(2) = 0.93) obtained between OUR(ex)max and the biomass concentration in the reactor suggests that biomass concentration can be estimated from respirometric experiments. The substrate oxidation yield, f(E), was determined along 60 days of continuous operation with an average error of 5.6%. The biomass growth yield was indirectly estimated from the substrate oxidation yield f(E). The average obtained value (0.10 +/- 0.04 mgCOD mg(-1)COD) was in accordance with the f(S) estimation by the traditional COD mass balance method under steady-state conditions (0.09 +/- 0.01). The affinity constant K(S) was indirectly estimated after fitting the ascending part of the respirogram to a theoretical model. An average value of 0.48 +/- 0.08 mgNH(4) (+)-N L(-1) was obtained, which is in the range of affinity constants reported in the literature for the nitrification process (0.16-2 mgNH(4) (+)-N L(-1)). PMID:18078297

  16. Montelukast photodegradation: elucidation of Ф-order kinetics, determination of quantum yields and application to actinometry.

    PubMed

    Maafi, Mounir; Maafi, Wassila

    2014-08-25

    A recently developed Ф-order semi-emperical integrated rate-law for photoreversible AB(2Ф) reactions has been successfully applied to investigate Montelukast sodium (Monte) photodegradation kinetics in ethanol. The model equations also served to propose a new stepwise kinetic elucidation method valid for any AB(2Ф) system and its application to the determination of Monte's forward (Ф(λ(irr))(A-->B)) and reverse (Ф(λ(irr))(B-->A)) quantum yields at various irradiation wavelengths. It has been found that Ф(λ(irr))(A-->B) undergoes a 15-fold increase with wavelength between 220 and 360 nm, with the spectral section 250-360 nm representing Monte effective photodegradation causative range. The reverse quantum yield values were generally between 12 and 54% lower than those recorded for Ф(λ(irr))(A-->B), with the trans-isomer (Monte) converting almost completely to its cis-counterpart at high irradiation wavelengths. Furthermore, the potential use of Monte as an actinometer has been investigated, and an actinometric method was proposed. This study demonstrated the usefulness of Monte for monochromatic light actinometry for the dynamic range 258-380 nm. PMID:24835854

  17. High-yield hydrogen production from biomass by in vitro metabolic engineering: Mixed sugars coutilization and kinetic modeling

    PubMed Central

    Rollin, Joseph A.; Martin del Campo, Julia; Myung, Suwan; Sun, Fangfang; You, Chun; Bakovic, Allison; Castro, Roberto; Chandrayan, Sanjeev K.; Wu, Chang-Hao; Adams, Michael W. W.; Senger, Ryan S.; Zhang, Y.-H. Percival

    2015-01-01

    The use of hydrogen (H2) as a fuel offers enhanced energy conversion efficiency and tremendous potential to decrease greenhouse gas emissions, but producing it in a distributed, carbon-neutral, low-cost manner requires new technologies. Herein we demonstrate the complete conversion of glucose and xylose from plant biomass to H2 and CO2 based on an in vitro synthetic enzymatic pathway. Glucose and xylose were simultaneously converted to H2 with a yield of two H2 per carbon, the maximum possible yield. Parameters of a nonlinear kinetic model were fitted with experimental data using a genetic algorithm, and a global sensitivity analysis was used to identify the enzymes that have the greatest impact on reaction rate and yield. After optimizing enzyme loadings using this model, volumetric H2 productivity was increased 3-fold to 32 mmol H2⋅L−1⋅h−1. The productivity was further enhanced to 54 mmol H2⋅L−1⋅h−1 by increasing reaction temperature, substrate, and enzyme concentrations—an increase of 67-fold compared with the initial studies using this method. The production of hydrogen from locally produced biomass is a promising means to achieve global green energy production. PMID:25848015

  18. High-yield hydrogen production from biomass by in vitro metabolic engineering: Mixed sugars coutilization and kinetic modeling.

    PubMed

    Rollin, Joseph A; Martin del Campo, Julia; Myung, Suwan; Sun, Fangfang; You, Chun; Bakovic, Allison; Castro, Roberto; Chandrayan, Sanjeev K; Wu, Chang-Hao; Adams, Michael W W; Senger, Ryan S; Zhang, Y-H Percival

    2015-04-21

    The use of hydrogen (H2) as a fuel offers enhanced energy conversion efficiency and tremendous potential to decrease greenhouse gas emissions, but producing it in a distributed, carbon-neutral, low-cost manner requires new technologies. Herein we demonstrate the complete conversion of glucose and xylose from plant biomass to H2 and CO2 based on an in vitro synthetic enzymatic pathway. Glucose and xylose were simultaneously converted to H2 with a yield of two H2 per carbon, the maximum possible yield. Parameters of a nonlinear kinetic model were fitted with experimental data using a genetic algorithm, and a global sensitivity analysis was used to identify the enzymes that have the greatest impact on reaction rate and yield. After optimizing enzyme loadings using this model, volumetric H2 productivity was increased 3-fold to 32 mmol H2⋅L(-1)⋅h(-1). The productivity was further enhanced to 54 mmol H2⋅L(-1)⋅h(-1) by increasing reaction temperature, substrate, and enzyme concentrations--an increase of 67-fold compared with the initial studies using this method. The production of hydrogen from locally produced biomass is a promising means to achieve global green energy production. PMID:25848015

  19. Identification of the catalytic mechanism and estimation of kinetic parameters for fumarase.

    PubMed

    Mescam, Muriel; Vinnakota, Kalyan C; Beard, Daniel A

    2011-06-17

    The enzyme fumarase catalyzes the reversible hydration of fumarate to malate. The reaction catalyzed by fumarase is critical for cellular energetics as a part of the tricarboxylic acid cycle, which produces reducing equivalents to drive oxidative ATP synthesis. A catalytic mechanism for the fumarase reaction that can account for the kinetic behavior of the enzyme observed in both isotope exchange studies and initial velocity studies has not yet been identified. In the present study, we develop an 11-state kinetic model of the enzyme based on the current consensus on its catalytic mechanism and design a series of experiments to estimate the model parameters and identify the major flux routes through the mechanism. The 11-state mechanism accounts for competitive binding of inhibitors and activation by different anions, including phosphate and fumarate. The model is identified from experimental time courses of the hydration of fumarate to malate obtained over a wide range of buffer and substrate concentrations. Further, the 11-state model is found to effectively reduce to a five-state model by lumping certain successive steps together to yield a mathematically less complex representation that is able to match the data. Analysis suggests the primary reaction route of the catalytic mechanism, with fumarate binding to the free unprotonated enzyme and a proton addition prior to malate release in the fumarate hydration reaction. In the reverse direction (malate dehydration), malate binds the protonated form of the enzyme, and a proton is generated before fumarate is released from the active site. PMID:21498518

  20. Chemical-kinetic prediction of critical parameters in gaseous detonations

    SciTech Connect

    Westbrook, C.K.; Urtiew, P.A.

    1982-01-12

    A theoretical model including a detailed chemical kinetic reaction mechanism for hydrogen and hydrocarbon oxidation is used to examine the effects of variations in initial pressure and temperature on the detonation properties of gaseous fuel-oxidizer mixtures. Fuels considered include hydrogen, methane, ethane, ethylene, and acetylene. Induction lengths are computed for initial pressures between 0.1 and 10.0 atmospheres and initial temperatures between 200K and 500K. These induction lengths are then compared with available experimental data for critical energy and critical tube diameter for initiation of spherical detonation, as well as detonation limits in linear tubes. Combined with earlier studies concerning variations in fuel-oxidizer equivalence ratio and degree of dilution with N/sub 2/, the model provides a unified treatment of fuel oxidation kinetics in detonations. 4 figures, 1 table.

  1. Dilute-sulfuric acid pretreatment of corn stover in pilot-scale reactor: investigation of yields, kinetics, and enzymatic digestibilities of solids.

    PubMed

    Schell, Daniel J; Farmer, Jody; Newman, Millie; McMillan, James D

    2003-01-01

    Corn stover is a domestic feedstock that has potential to produce significant quantities of fuel ethanol and other bioenergy and biobased products. However, comprehensive yield and carbon mass balance information and validated kinetic models for dilute-sulfuric acid (H2SO4) pretreatment of corn stover have not been available. This has hindered the estimation of process economics and also limited the ability to perform technoeconomic modeling to guide research. To better characterize pretreatment and assess its kinetics, we pretreated corn stover in a continuous 1 t/d reactor. Corn stover was pretreated at 20% (w/w) solids concentration over a range of conditions encompassing residence times of 3-12 min, temperatures of 165- 195 degrees C, and H2SO4 concentrations of 0.5-1.4% (w/w). Xylan conversion yield and carbon mass balance data were collected at each run condition. Performance results were used to estimate kinetic model parameters assuming biphasic hemicellulose hydrolysis and a hydrolysis mechanism incorporating formation of intermediate xylo-oligomers. In addition, some of the pretreated solids were tested in a simultaneous saccharification and fermentation (SSF) process to measure the reactivity of their cellulose component to enzymatic digestion by cellulase enzymes. Monomeric xylose yields of 69-71% and total xylose yields (monomers and oligomers) of 70-77% were achieved with performance level depending on pretreatment severity. Cellulose conversion yields in SSF of 80-87% were obtained for some of the most digestible pretreated solids. PMID:12721476

  2. Relationship between latex yield of Hevea brasiliensis and antecedent environmental parameters.

    PubMed

    Raj, Shammi; Das, Gitali; Pothen, Jacob; Dey, Sushil Kumar

    2005-01-01

    A study on the relationship between latex yield and antecedent environmental data was undertaken for five clones (RRII203, RRII118, RRIM600, RRII105 and GT1) of Hevea brasiliensis (rubber) in Agartala, northeast India, a region in which rubber is not traditionally cultivated. The explained variance for the regression equations based on parameters determined on the day of tapping and up to 3 days prior to it, varied from 72% to 37% during the NWT period and 94-83% during the WT period. Soil moisture storage, 1 and 3 days prior to tapping, was found to be the primary parameter affecting yield for the NWT and WT periods, respectively. It was observed that the clone RRII105, with a comparatively lower yield to that of RRIM600, was more susceptible to daily WD conditions during the non-winter season. RRIM600 and RRII105 being high-yielding clones were also found to be fairly dependent on the AT of the day prior to tapping. The mean lag period correlation of this parameter with yield was also found to be higher during the WT period than during the NWT period. As a whole, the mean lag period based on prior measurements of environmental variables showed optimum correlation with yield at 15-20 days prior to the day of tapping. The study also confirms that varied responses of yield with environmental factors in this non-traditional region of rubber cultivation depend on clonal character. PMID:15290432

  3. Relationship between latex yield of Hevea brasiliensis and antecedent environmental parameters

    NASA Astrophysics Data System (ADS)

    Raj, Shammi; Das, Gitali; Pothen, Jacob; Dey, Sushil Kumar

    2005-01-01

    A study on the relationship between latex yield and antecedent environmental data was undertaken for five clones (RRII203, RRII118, RRIM600, RRII105 and GT1) of Hevea brasiliensis (rubber) in Agartala, northeast India, a region in which rubber is not traditionally cultivated. The explained variance for the regression equations based on parameters determined on the day of tapping and up to 3 days prior to it, varied from 72% to 37% during the NWT period and 94 83% during the WT period. Soil moisture storage, 1 and 3 days prior to tapping, was found to be the primary parameter affecting yield for the NWT and WT periods, respectively. It was observed that the clone RRII105, with a comparatively lower yield to that of RRIM600, was more susceptible to daily WD conditions during the non-winter season. RRIM600 and RRII105 being high-yielding clones were also found to be fairly dependent on the AT of the day prior to tapping. The mean lag period correlation of this parameter with yield was also found to be higher during the WT period than during the NWT period. As a whole, the mean lag period based on prior measurements of environmental variables showed optimum correlation with yield at 15 20 days prior to the day of tapping. The study also confirms that varied responses of yield with environmental factors in this non-traditional region of rubber cultivation depend on clonal character.

  4. Estimation of fundamental kinetic parameters of polyhydroxybutyrate fermentation process of Azohydromonas australica using statistical approach of media optimization.

    PubMed

    Gahlawat, Geeta; Srivastava, Ashok K

    2012-11-01

    Polyhydroxybutyrate or PHB is a biodegradable and biocompatible thermoplastic with many interesting applications in medicine, food packaging, and tissue engineering materials. The present study deals with the enhanced production of PHB by Azohydromonas australica using sucrose and the estimation of fundamental kinetic parameters of PHB fermentation process. The preliminary culture growth inhibition studies were followed by statistical optimization of medium recipe using response surface methodology to increase the PHB production. Later on batch cultivation in a 7-L bioreactor was attempted using optimum concentration of medium components (process variables) obtained from statistical design to identify the batch growth and product kinetics parameters of PHB fermentation. A. australica exhibited a maximum biomass and PHB concentration of 8.71 and 6.24g/L, respectively in bioreactor with an overall PHB production rate of 0.75g/h. Bioreactor cultivation studies demonstrated that the specific biomass and PHB yield on sucrose was 0.37 and 0.29g/g, respectively. The kinetic parameters obtained in the present investigation would be used in the development of a batch kinetic mathematical model for PHB production which will serve as launching pad for further process optimization studies, e.g., design of several bioreactor cultivation strategies to further enhance the biopolymer production. PMID:22915234

  5. Statistical analysis of nonlinear parameter estimation for Monod biodegradation kinetics using bivariate data.

    PubMed

    Knightes, C D; Peters, C A

    2000-07-20

    A nonlinear regression technique for estimating the Monod parameters describing biodegradation kinetics is presented and analyzed. Two model data sets were taken from a study of aerobic biodegradation of the polycyclic aromatic hydrocarbons (PAHs), naphthalene and 2-methylnaphthalene, as the growth-limiting substrates, where substrate and biomass concentrations were measured with time. For each PAH, the parameters estimated were: q(max), the maximum substrate utilization rate per unit biomass; K(S), the half-saturation coefficient; and Y, the stoichiometric yield coefficient. Estimating parameters when measurements have been made for two variables with different error structures requires a technique more rigorous than least squares regression. An optimization function is derived from the maximumlikelihood equation assuming an unknown, nondiagonal covariance matrix for the measured variables. Because the derivation is based on an assumption of normally distributed errors in the observations, the error structures of the regression variables were examined. Through residual analysis, the errors in the substrate concentration data were found to be distributed log-normally, demonstrating a need for log transformation of this variable. The covariance between ln C and X was found to be small but significantly nonzero at the 67% confidence level for NPH and at the 94% confidence level for 2MN. The nonlinear parameter estimation yielded unique values for q(max), K(S), and Y for naphthalene. Thus, despite the low concentrations of this sparingly soluble compound, the data contained sufficient information for parameter estimation. For 2-methylnaphthalene, the values of q(max) and K(S) could not be estimated uniquely; however, q(max)/K(S) was estimated. To assess the value of including the relatively imprecise biomass concentration data, the results from the bivariate method were compared with a univariate method using only the substrate concentration data. The results demonstrated that the bivariate data yielded a better confidence in the estimates and provided additional information about the model fit and model adequacy. The combination of the value of the bivariate data set and their nonzero covariance justifies the need for maximum likelihood estimation over the simpler nonlinear least squares regression. PMID:10861395

  6. Parameter Estimates in Differential Equation Models for Chemical Kinetics

    ERIC Educational Resources Information Center

    Winkel, Brian

    2011-01-01

    We discuss the need for devoting time in differential equations courses to modelling and the completion of the modelling process with efforts to estimate the parameters in the models using data. We estimate the parameters present in several differential equation models of chemical reactions of order n, where n = 0, 1, 2, and apply more general

  7. Parameter Estimates in Differential Equation Models for Chemical Kinetics

    ERIC Educational Resources Information Center

    Winkel, Brian

    2011-01-01

    We discuss the need for devoting time in differential equations courses to modelling and the completion of the modelling process with efforts to estimate the parameters in the models using data. We estimate the parameters present in several differential equation models of chemical reactions of order n, where n = 0, 1, 2, and apply more general…

  8. Parameter Optimization for Enhancement of Ethanol Yield by Atmospheric Pressure DBD-Treated Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Dong, Xiaoyu; Yuan, Yulian; Tang, Qian; Dou, Shaohua; Di, Lanbo; Zhang, Xiuling

    2014-01-01

    In this study, Saccharomyces cerevisiae (S. cerevisiae) was exposed to dielectric barrier discharge plasma (DBD) to improve its ethanol production capacity during fermentation. Response surface methodology (RSM) was used to optimize the discharge-associated parameters of DBD for the purpose of maximizing the ethanol yield achieved by DBD-treated S. cerevisiae. According to single factor experiments, a mathematical model was established using Box-Behnken central composite experiment design, with plasma exposure time, power supply voltage, and exposed-sample volume as impact factors and ethanol yield as the response. This was followed by response surface analysis. Optimal experimental parameters for plasma discharge-induced enhancement in ethanol yield were plasma exposure time of 1 min, power voltage of 26 V, and an exposed sample volume of 9 mL. Under these conditions, the resulting yield of ethanol was 0.48 g/g, representing an increase of 33% over control.

  9. Kinetics of the reaction O + ClO yields Cl + O2

    NASA Technical Reports Server (NTRS)

    Margitan, J. J.

    1984-01-01

    The kinetics of the reaction O + ClO yields Cl + O2 (k1) were studied by using resonance fluorescence to monitor the decay of O atoms which had been generated from the laser photolysis of ClO. A discharge flow system was used to generate the ClO and its concentration was measured directly by multipass absorption spectrometry. The results are k1(298) = (4.2 + or -0.8) x 10 to the -11th cu cm/s (including systematic errors) with E/R determined to lie in the range + or - 200 K. The literature data are reviewed and a composite value of k1(T) = 6.0 x 10 to the -11th exp-(100/T) is recommended for stratospheric modeling calculations. The atmospheric implications of the revised rate constant are discussed briefly.

  10. Nanosecond flash studies of reduction of benzophenone by aliphatic amines. Quantum yields and kinetic isotope effects

    SciTech Connect

    Inbar, S.; Linschitz, H.; Cohen, S.G.

    1981-03-11

    Nanosecond flash photolysis, steady irradiation, and deuterium substitution studies have been carried out on solutions of benzophenone with added reductants. Quantum yields (phi/sub ketyl/) for reduction in benzene of benzophenone triplet to ketyl radical, based on phi = 2 for benzhydrol (I), were approx. 1 for cyclohexane (II), tert-butylamine (III), 2-aminobutane (IV), cyclohexylamine (V), di-n-propylamine (VI), and triethylamine (VII), approx. 0.7 for 1,4-diazabicyclo(2.2.2)octane (VIII), and approx. 0 for tert-butyl alcohol (IX). Thus, quenching, without radical formation by H abstraction from N and/or ..cap alpha..-C, does not occur with common aliphatic amines but does with Dabco (VIII). The latter quenching is markedly increased by small additions of acetonitrile; the flash spectrum from this compound indicates formation of a triplet amine CT complex or radical ion pair. Triplet-reductant interaction rate constants, k/sur ir/, are high for the amines (approx. 10/sup 8/-10/sup 9/ M/sup -1/ s/sup -1/) but also show significant deuterium kinetic isotope effects: 1.9 with III-N-d/sub 2/; 1.4 with IV-N-d/sub 2/; 1.2-1.3 with IV-..cap alpha..-C-d. It is proposed that k/sub ir/ measures H atom abstraction, favored in the transition state by an initial charge-transfer interaction. Overall steady irradiation quantum yields of reduction by amines, phi/sub Red/, are much lower than phi/sub ketyl/. This is attributed to disproportionationreactions of ketyl and alkylaminyl radicals for primary and secondary amines, and, possibly, aminoalkyl radicals for tertiary amines. In the case of tert-butylamine, the rate constant for disproportionation is obtained from the decay kinetics of ketyl radical and leads to phi/sub Red/ in agreement with that directly measured.

  11. Rapid estimation of kinetic parameters for thermal decomposition of penicillins by modulated thermogravimetric analysis.

    PubMed

    Miller, Jonathan M; Kale, Uma J; Lau, Siu-Man Kelvin; Greene, Landon; Wang, Henry Y

    2004-04-01

    Modulated thermogravimetic analysis (MTGA) is evaluated for the rapid estimation of thermal stability using several penicillin antibiotics as model compounds. The MTGA technique utilizes an oscillatory temperature program to obtain Arrhenius kinetic parameters through a mass loss during thermal degradation. To evaluate the reliability of this technique, activation energies (E(a)), log pre-exponential factor (logZ), and log first order rate constants (logk) obtained by MTGA for the thermal decomposition of ampicillin anhydrous, ampicillin trihydrate, ampicillin sodium salt, and penicillin G potassium salt are compared to existing literature values. The logk values estimated by MTGA agreed well with literature values when the weight loss observed by MTGA was shown to be due to the first decomposition step of the compound. The E(a) and logZ values determined by MTGA did not consistently agree with literature values as these parameters increased with decreasing heating rate (beta). The increase in E(a) and logZ values with decreasing beta seemed to offset each other to some extent to yield a relatively consistent logk estimate regardless of beta. PMID:15030881

  12. Determining the Kinetic Parameters Characteristic of Microalgal Growth.

    ERIC Educational Resources Information Center

    Martinez Sancho, Maria Eugenie; And Others

    1991-01-01

    An activity in which students obtain a growth curve for algae, identify the exponential and linear growth phases, and calculate the parameters which characterize both phases is described. The procedure, a list of required materials, experimental conditions, analytical technique, and a discussion of the interpretations of individual results are…

  13. Determining the Kinetic Parameters Characteristic of Microalgal Growth.

    ERIC Educational Resources Information Center

    Martinez Sancho, Maria Eugenie; And Others

    1991-01-01

    An activity in which students obtain a growth curve for algae, identify the exponential and linear growth phases, and calculate the parameters which characterize both phases is described. The procedure, a list of required materials, experimental conditions, analytical technique, and a discussion of the interpretations of individual results are

  14. Optimization of Process Parameters and Kinetic Model of Enzymatic Extraction of Polyphenols from Lonicerae Flos

    PubMed Central

    Kong, Fansheng; Yu, Shujuan; Bi, Yongguang; Huang, Xiaojun; Huang, Mengqian

    2016-01-01

    Objective: To optimize and verify the cellulase extraction of polyphenols from honeysuckle and provide a reference for enzymatic extracting polyphenols from honeysuckle. Materials and Methods: The uniform design was used According to Fick's first law and kinetic model, fitting analysis of the dynamic process of enzymatic extracting polyphenols was conducted. Results: The optimum enzymatic extraction parameters for polyphenols from honeysuckle are found to be 80% (v/v) of alcohol, 35:1 (mL/g) of liquid-solid ratio, 80°C of extraction temperature, 8.5 of pH, 6.0 mg of enzyme levels, and 130 min of extraction time. Under the optimal conditions, the extraction rate of polyphenols was 3.03%. The kinetic experiments indicated kinetic equation had a good linear relationship with t even under the conditions of different levels of enzyme and temperature, which means fitting curve tallies well with the experimental values. Conclusion: The results of quantification showed that the results provide a reference for enzymatic extracting polyphenols from honeysuckle. SUMMARY Lonicerae flos (Lonicera japonica Thunb.) is a material of traditional Chinese medicine and healthy drinks, of which active compounds mainly is polyphenols. At present, plant polyphenols are the hotspots centents of food, cosmetic and medicine, because it has strong bioactivity. Several traditional methods are available for the extraction of plant polyphenols including impregnation, solvent extraction, ultrasonic extraction, hot-water extraction, alkaline dilute alcohol or alkaline water extraction, microwave extraction and Supercritical CO2 extraction. But now, an increasing number of research on using cellulase to extract active ingredients from plants. Enzymatic method is widely used for enzyme have excellent properties of high reaction efficiency and specificity, moderate reaction conditions, shorter extraction time and easier to control, less damage to the active ingredient. At present, the enzymatic extraction of polyphenols from honeysuckle and dynamic had not been reported. In this study, using cellulase to extract polyphenols from honeysuckle is first applied. Moreover, uniform design was used to optimize process and kinetic model of extraction was established to analyze the characteristics of enzymatic extraction, in order to improve the yield of polyphenols from honeysuckle and make maximum use of Lonicerae flos, which provide references for industrial production. PMID:27018039

  15. Steam pressure disruption of municipal solid waste enhances anaerobic digestion kinetics and biogas yield.

    PubMed

    Liu, H W; Walter, H K; Vogt, G M; Vogt, H S; Holbein, B E

    2002-01-20

    Biomass waste, including municipal solid waste (MSW), contains lignocellulosic-containing fiber components that are not readily available as substrates for anaerobic digestion due to the physical shielding of cellulose imparted by the nondigestible lignin. Consequently, a substantial portion of the potentially available carbon is not converted to methane and the incompletely digested residues from anaerobic digestion generally require additional processing prior to their return to the environment. We investigated and developed steam pressure disruption as a treatment step to render lignocellulosic-rich biomass more digestible and as a means for increasing methane energy recovery. The rapid depressurization after steam heating (240 degrees C, 5 min.) of the nondigested residues following a 30-day primary digestion of MSW caused a visible disruption of fibers and release of soluble organic components. The disrupted material, after reinoculation, provided a rapid burst in methane production at rates double those observed in the initial digestion. This secondary digestion proceeded without a lag phase in gas production, provided approximately 40% additional methane yields, and was accompanied by a approximately 40% increase in volatile solids reduction. The secondary digestate was found to be enriched in lignin and significantly depleted in cellulose and hemi-cellulose components when compared to primary digestate. Thus, steam pressure disruption treatment rendered lignocellulosic substrates readily accessible to anaerobic digestion bacteria and improved both the kinetics of biogas production and the overall methane yield from MSW. Steam pressure disruption is central to a new anaerobic digestion process approach including sequential digestion stages and integrated energy recovery, to improve process yields, provide cogenerated energy for process needs, and to provide effective reuse and recycling of waste biomass materials. PMID:11753918

  16. Estimation of kinetic parameters related to biochemical interactions between hydrogen peroxide and signal transduction proteins

    NASA Astrophysics Data System (ADS)

    Brito, Paula; Antunes, Fernando

    2014-10-01

    The lack of kinetic data concerning the biological effects of reactive oxygen species is slowing down the development of the field of redox signaling. Herein, we deduced and applied equations to estimate kinetic parameters from typical redox signaling experiments. H2O2-sensing mediated by the oxidation of a protein target and the switch-off of this sensor, by being converted back to its reduced form, are the two processes for which kinetic parameters are determined. The experimental data required to apply the equations deduced is the fraction of the H2O2 sensor protein in the reduced or in the oxidized state measured in intact cells or living tissues after exposure to either endogenous or added H2O2. Either non-linear fittings that do not need transformation of the experimental data or linearized plots in which deviations from the equations are easily observed can be used. The equations were shown to be valid by fitting to them virtual time courses simulated with a kinetic model. The good agreement between the kinetic parameters estimated in these fittings and those used to simulate the virtual time courses supported the accuracy of the kinetic equations deduced. Finally, equations were successfully tested with real data taken from published experiments that describe redox signaling mediated by the oxidation of two protein tyrosine phosphatases, PTP1B and SHP-2, which are two of the few H2O2-sensing proteins with known kinetic parameters. Whereas for PTP1B estimated kinetic parameters fitted in general the present knowledge, for SHP-2 results obtained suggest that reactivity towards H2O2 as well as the rate of SHP-2 regeneration back to its reduced form are higher than previously thought. In conclusion, valuable quantitative kinetic data can be estimated from typical redox signaling experiments, thus improving our understanding about the complex processes that underline the interplay between oxidative stress and redox signaling responses.

  17. Mathematical and statistical analysis of the effect of boron on yield parameters of wheat

    SciTech Connect

    Rawashdeh, Hamzeh; Sala, Florin; Boldea, Marius

    2015-03-10

    The main objective of this research is to investigate the effect of foliar applications of boron at different growth stages on yield and yield parameters of wheat. The contribution of boron in achieving yield parameters is described by second degree polynomial equations, with high statistical confidence (p<0.01; F theoretical < F calculated, according to ANOVA test, for Alfa = 0.05). Regression analysis, based on R{sup 2} values obtained, made it possible to evaluate the particular contribution of boron to the realization of yield parameters. This was lower for spike length (R{sup 2} = 0.812), thousand seeds weight (R{sup 2} = 0.850) and higher in the case of the number of spikelets (R{sup 2} = 0.936) and the number of seeds on a spike (R{sup 2} = 0.960). These results confirm that boron plays an important part in achieving the number of seeds on a spike in the case of wheat, as the contribution of this element to the process of flower fertilization is well-known. In regards to productivity elements, the contribution of macroelements to yield quantity is clear, the contribution of B alone being R{sup 2} = 0.868.

  18. Radiative Corrections to Asymmetry Parameter in the {Omega}{sup -{yields}{Lambda}}+K{sup -} Decay

    SciTech Connect

    Queijeiro, A.

    2010-07-29

    We compute the radiative corrections, to first order in the fine structure constant {alpha}, to the asymmetry parameter {alpha}{sub {Omega}}of the {Omega}{sup -{yields}{Lambda}}+K{sup -} decay. We use previous results where Sirlin's procedure is used to separate the radiative corrections into two parts, one independent model contribution and a model dependent one.

  19. Measurement of kinetic parameters of human platelet DNA polymerase gamma.

    PubMed

    Taanman, Jan-Willem; Heiske, Margit; Letellier, Thierry

    2010-08-01

    Synthesis of mitochondrial DNA is performed by DNA polymerase gamma. Mutations in POLG, the gene encoding the catalytic subunit of DNA polymerase gamma, are a major cause of neurological disease. A large proportion of patients carry rare nucleotide substitutions leading to single amino acid changes. Confirming that these replacements are pathogenic can be problematic without biochemical evidence. Here, we provide a hands-on protocol for an in vitro kinetic assay of DNA polymerase gamma which allows assessment of the K(m) and V(max) for the incoming nucleotide of the polymerization reaction. To avoid measurement of contaminating nuclear DNA polymerases, platelet extracts are used since platelets do not contain a nucleus. Moreover, platelets have the advantage of being obtainable relatively non-invasively. Polymerization activity is determined by measurement of the incorporation of radioactive thymidine 5'-triphosphate (dTTP) on the homopolymeric RNA substrate poly(rA).oligo(dT)(12-18). To further minimize nuclear DNA polymerase activity, aphidicolin, an inhibitor of most nuclear DNA polymerases, is included in the reaction. In addition, reactions are carried out in the absence and presence of the competitive inhibitor of DNA polymerase gamma, 2',3'-dideoxythymidine 5'-triphosphate (ddTTP), to allow calculation of the ddTTP-sensitive incorporation. With this method, platelets from healthy control subjects extracted with 3% Triton X-100 showed a K(m) for dTTP of 1.42 microM and a V(max) of 0.83 pmol min(-1)mg(-1). PMID:20227504

  20. Bicontinuous microemulsions for high yield wet synthesis of ultrafine platinum nanoparticles: effect of precursors and kinetics.

    PubMed

    Negro, Emanuela; Latsuzbaia, Roman; Koper, Ger J M

    2014-07-22

    We demonstrate that for high yield wet synthesis of monodispersed nanoparticles high surfactant content bicontinuous microemulsions offer an advantageous template as particle size is limited by the embedding matrix whereas particle aggregation is largely prohibited by its structure. We synthesized platinum nanoparticles varying the reaction rate, metal precursor and reducing agent type and concentration, and the composition of the microemulsion in water content and oil type. High yields of up to 0.4% of metal produced per weight of template were achieved without affecting the particle size, ca. 2 nm. We showed that our method is robust in the sense that particle size is hardly dependent on synthesis conditions. This is attributed to the fact that the packing of surfactant on nanoparticle surfaces is the only parameter determining the particle size. It can only be slightly varied with ionic strength, headgroup hydration, and tail solvency through oil variation. Water content mainly affects the microemulsion stability and through that the colloidal stability of the nanoparticles. Hydrazine as a reducing agent poses a special case as it causes dimerization of the surfactant and hence modifies the surfactant parameter as well as the stability. Finally, we highlighted the differences in comparison to nanoparticle synthesis in standard water-in-oil microemulsions, and we propose a mechanism of particle formation. PMID:24979206

  1. Theory of kinetic arrest, elasticity, and yielding in dense binary mixtures of rods and spheres.

    PubMed

    Jadrich, Ryan; Schweizer, Kenneth S

    2012-12-01

    We extend the quiescent and stressed versions of naïve mode coupling theory to treat the dynamical arrest, shear modulus, and absolute yielding of particle mixtures where one or more species is a nonrotating nonspherical object. The theory is applied in detail to dense isotropic "chemically matched" mixtures of variable aspect ratio rods and spheres that interact via repulsive and short range attractive site-site pair potentials. A remarkably rich ideal kinetic arrest behavior is predicted with up to eight "dynamical phases" emerging: an ergodic fluid, partially localized states where the spheres remain fluid but the rods can be a gel, repulsive glass or attractive glass, doubly localized glasses and gels, a porous rod gel plus sphere glass, and a narrow window where a type of rod glass and gel localization coexist. Dynamical complexity increases with rod length and the introduction of attractive forces between all species which both enhance gel network formation. Multiple dynamic reentrant features and triple points are predicted, and each dynamic phase has unique particle localization characteristics and mechanical properties. Orders of magnitude variation of the linear shear modulus and absolute yield stress are found as rod length, mixture composition and the detailed nature of interparticle attractions are varied. The interplay of total (high) mixture packing fraction and composition at fixed temperature is also briefly studied. The present work provides a foundation to study more complex rod-sphere mixtures of both biological and synthetic interest that include physical features such as interaction site size asymmetry, rod-sphere specific attractions, and/or Coulomb repulsion. PMID:23367954

  2. Genetic parameters for milk, fat and protein yields in Murrah buffaloes (Bubalus bubalis Artiodactyla, Bovidae)

    PubMed Central

    2010-01-01

    The objective of the present study was to estimate genetic parameters for test-day milk, fat and protein yields and 305-day-yields in Murrah buffaloes. 4,757 complete lactations of Murrah buffaloes were analyzed. Co-variance components were estimated by the restricted maximum likelihood method. The models included additive direct genetic and permanent environmental effects as random effects, and the fixed effects of contemporary group, milking number and age of the cow at calving as linear and quadratic covariables. Contemporary groups were defined by herd-year-month of test for test-day yields and by herd-year-season of calving for 305-day yields. The heritability estimates obtained by two-trait analysis ranged from 0.15 to 0.24 for milk, 0.16 to 0.23 for protein and 0.13 to 0.22 for fat, yields. Genetic and phenotypic correlations were all positive. The observed population additive genetic variation indicated that selection might be an effective tool in changing population means in milk, fat and protein yields. PMID:21637608

  3. Inverse modeling approach for evaluation of kinetic parameters of a biofilm reactor using tabu search.

    PubMed

    Kumar, B Shiva; Venkateswarlu, Ch

    2014-08-01

    The complex nature of biological reactions in biofilm reactors often poses difficulties in analyzing such reactors experimentally. Mathematical models could be very useful for their design and analysis. However, application of biofilm reactor models to practical problems proves somewhat ineffective due to the lack of knowledge of accurate kinetic models and uncertainty in model parameters. In this work, we propose an inverse modeling approach based on tabu search (TS) to estimate the parameters of kinetic and film thickness models. TS is used to estimate these parameters as a consequence of the validation of the mathematical models of the process with the aid of measured data obtained from an experimental fixed-bed anaerobic biofilm reactor involving the treatment of pharmaceutical industry wastewater. The results evaluated for different modeling configurations of varying degrees of complexity illustrate the effectiveness of TS for accurate estimation of kinetic and film thickness model parameters of the biofilm process. The results show that the two-dimensional mathematical model with Edward kinetics (with its optimum parameters as mu(max)rho(s)/Y = 24.57, Ks = 1.352 and Ki = 102.36) and three-parameter film thickness expression (with its estimated parameters as a = 0.289 x 10(-5), b = 1.55 x 10(-4) and c = 15.2 x 10(-6)) better describes the biofilm reactor treating the industry wastewater. PMID:25306783

  4. Comparisons of selected methods for the determination of kinetic parameters from electrothermal atomic absorption data

    NASA Astrophysics Data System (ADS)

    Fonseca, Rodney W.; Pfefferkorn, Lisa L.; Holcombe, James A.

    1994-12-01

    Three of the methods available for the determination of kinetic parameters for atom formation in ETAAS were compared. In the approach of mcnally and holcombe [ Anal. Chem. 59, 1015 (1987)], Arrhenius-type plots are used to extract activation energy values while an approximation of the order of release is obtained by studying the alignment of the absorption maxima at increasing analyte concentrations. In the method of rojas and olivares [ Spectrochim. Acta47B, 387 (1992)], plots are prepared for different orders of release, with the correct order yielding a longer linear region from whose slope the activation energy is calculated. The method of yan et al. [ Spectrochim. Acta48B, 605 (1993)] uses a single absorption profile for the calculations. Activation energy and the order of release are obtained from the slope and intercept, respectively, on their graph. All three methods assume linear heating rate, constant activation energies, and furnace isothermality. The methods were tested with the same experimental data sets for Cu, Au and Ni using a spatially isothermal cuvette. Since intensive mathematical treatments commonly have deleterious effects on the uncertainty of the final result, the methods were compared using both the original data and a smoothed version of it. In general, the three methods yielded comparable results for the metals studied. However, choosing the most linear plot to determine the correct order of release when using Rojas and Olivares' method was sometimes subjective, and McNally and Holcombe's method provided only estimates for the orders of release that were neither zero nor unity.

  5. The determination of pulsed reactor kinetic behavior based upon prepulse parameter measurements

    NASA Astrophysics Data System (ADS)

    Minnema, Douglas Martin

    This dissertation develops a method to allow the determination of the SPR III fast burst reactor's kinetic behavior based on pre-pulse measurements. The purpose is to reduce the vulnerability of pulse operations to human errors, and to improve understanding of the reactor's interactions with experiments. First, the operational history of SPR III over a wide range of experimental conditions was evaluated, looking for relationships among measured parameters. Second, the physical bases for the observed relationships were determined. Finally, the theoretical models were modified to account for the observed relationships. Computer simulations were utilized to validate the resulting models. Fast Burst Reactors (FBR) are a unique class of research reactors that generate high yield, self-terminated, short duration power pulses. Electromechanical shutdown mechanisms cannot respond quickly enough to truncate a pulse once it has been initiated, but can only mitigate post-pulse heat generation. These reactors are designed to accommodate a wide range of experimental conditions. Therefore, potential exists for an unintentional over-insertion of reactivity during a pulse operation, producing a yield capable of damaging the reactor. The safe operation of an FBR depends directly upon the knowledge, experience, skill, and judgment of the operating staff to compensate for the limitations of safety systems. This dissertation enhances the safety of these operations by identifying the mechanisms by which experiments influence the reactor's behavior, and improving the operating staff's ability to determine the impact of those influences on the reactor. Using pre-pulse reactivity measurements, this dissertation allows the operating staff to predict the change in the reactivity worth of the pulse element caused by the experiment before actually measuring it. It is also demonstrated that experiments neutronically behave as loosely-coupled reflectors, and the kinetic behavior of the reflected reactor during a pulse can be adequately modeled by treating the reflected neutrons in a manner analogous to additional delayed neutron groups. Observed changes in the reactor's negative temperature feedback coefficient due to experiments are also evaluated and explained.

  6. An Etching Yield Parameters Optimization Method Based on Ordinal Optimization and Tabu Search Hybrid Algorithm

    NASA Astrophysics Data System (ADS)

    Ruan, Cong; Sun, Xiao-Min; Song, Yi-Xu

    In this paper, we propose a method to optimize etching yield parameters. By means of defining a fitness function between the actual etching profile and the simulation profile, the etching yield parameters solving problem is transformed into an optimization problem. The problem is nonlinear and high dimensional, and each simulation is computationally expensive. To solve this problem, we need to search a better solution in a multidimensional space. Ordinal optimization and tabu search hybrid algorithm is introduced to solve this complex problem. This method ensures getting good enough solution in an acceptable time. The experimental results illustrate that simulation profile obtained by this method is very similar with the actual etching profile in surface topography. It also proves that our proposed method has feasibility and validity.

  7. Fuzzy Stochastic Petri Nets for Modeling Biological Systems with Uncertain Kinetic Parameters

    PubMed Central

    Liu, Fei; Heiner, Monika; Yang, Ming

    2016-01-01

    Stochastic Petri nets (SPNs) have been widely used to model randomness which is an inherent feature of biological systems. However, for many biological systems, some kinetic parameters may be uncertain due to incomplete, vague or missing kinetic data (often called fuzzy uncertainty), or naturally vary, e.g., between different individuals, experimental conditions, etc. (often called variability), which has prevented a wider application of SPNs that require accurate parameters. Considering the strength of fuzzy sets to deal with uncertain information, we apply a specific type of stochastic Petri nets, fuzzy stochastic Petri nets (FSPNs), to model and analyze biological systems with uncertain kinetic parameters. FSPNs combine SPNs and fuzzy sets, thereby taking into account both randomness and fuzziness of biological systems. For a biological system, SPNs model the randomness, while fuzzy sets model kinetic parameters with fuzzy uncertainty or variability by associating each parameter with a fuzzy number instead of a crisp real value. We introduce a simulation-based analysis method for FSPNs to explore the uncertainties of outputs resulting from the uncertainties associated with input parameters, which works equally well for bounded and unbounded models. We illustrate our approach using a yeast polarization model having an infinite state space, which shows the appropriateness of FSPNs in combination with simulation-based analysis for modeling and analyzing biological systems with uncertain information. PMID:26910830

  8. Fuzzy Stochastic Petri Nets for Modeling Biological Systems with Uncertain Kinetic Parameters.

    PubMed

    Liu, Fei; Heiner, Monika; Yang, Ming

    2016-01-01

    Stochastic Petri nets (SPNs) have been widely used to model randomness which is an inherent feature of biological systems. However, for many biological systems, some kinetic parameters may be uncertain due to incomplete, vague or missing kinetic data (often called fuzzy uncertainty), or naturally vary, e.g., between different individuals, experimental conditions, etc. (often called variability), which has prevented a wider application of SPNs that require accurate parameters. Considering the strength of fuzzy sets to deal with uncertain information, we apply a specific type of stochastic Petri nets, fuzzy stochastic Petri nets (FSPNs), to model and analyze biological systems with uncertain kinetic parameters. FSPNs combine SPNs and fuzzy sets, thereby taking into account both randomness and fuzziness of biological systems. For a biological system, SPNs model the randomness, while fuzzy sets model kinetic parameters with fuzzy uncertainty or variability by associating each parameter with a fuzzy number instead of a crisp real value. We introduce a simulation-based analysis method for FSPNs to explore the uncertainties of outputs resulting from the uncertainties associated with input parameters, which works equally well for bounded and unbounded models. We illustrate our approach using a yeast polarization model having an infinite state space, which shows the appropriateness of FSPNs in combination with simulation-based analysis for modeling and analyzing biological systems with uncertain information. PMID:26910830

  9. Solid State Kinetic Parameters and Chemical Mechanism of the Dehydration of CoCl2.6H2O.

    ERIC Educational Resources Information Center

    Ribas, Joan; And Others

    1988-01-01

    Presents an experimental example illustrating the most common methods for the determination of kinetic parameters. Discusses the different theories and equations to be applied and the mechanism derived from the kinetic results. (CW)

  10. A comparative study of seed yield parameters in Arabidopsis thaliana mutants and transgenics.

    PubMed

    Van Daele, Inge; Gonzalez, Nathalie; Vercauteren, Ilse; de Smet, Lien; Inzé, Dirk; Roldán-Ruiz, Isabel; Vuylsteke, Marnik

    2012-05-01

    Because seed yield is the major factor determining the commercial success of grain crop cultivars, there is a large interest to obtain more understanding of the genetic factors underlying this trait. Despite many studies, mainly in the model plant Arabidopsis thaliana, have reported transgenes and mutants with effects on seed number and/or seed size, knowledge about seed yield parameters remains fragmented. This study investigated the effect of 46 genes, either in gain- and/or loss-of-function situations, with a total of 64 Arabidopsis lines being examined for seed phenotypes such as seed size, seed number per silique, number of inflorescences, number of branches on the main inflorescence and number of siliques. Sixteen of the 46 genes, examined in 14 Arabidopsis lines, were reported earlier to directly affect in seed size and/or seed number or to indirectly affect seed yield by their involvement in biomass production. Other genes involved in vegetative growth, flower or inflorescence development or cell division were hypothesized to potentially affect the final seed size and seed number. Analysis of this comprehensive data set shows that of the 14 lines previously described to be affected in seed size or seed number, only nine showed a comparable effect. Overall, this study provides the community with a useful resource for identifying genes with effects on seed yield and candidate genes underlying seed QTL. In addition, this study highlights the need for more thorough analysis of genes affecting seed yield. PMID:22332878

  11. Parameter estimations for the kinetics of de-hydriding reaction between zirconium-cobalt and hydrogen

    SciTech Connect

    Chang, M. H.; Cho, S.; Lee, E. S.; Ahn, M. Y.; Kim, D. H.; Jung, J. J.; Chung, H.; Shim, M.; Song, K. M.; Kim, D.; Yoshida, H.

    2008-07-15

    The de-hydriding reaction between ZrCo and hydrogen is the most important role of delivering hydrogen isotopes for fusion energies. Many researchers experimented in various conditions and estimated the relationship between ZrCo and hydrogen. In this study the kinetic approaches are performed using numerical simulations between ZrCo and hydrogen. Two kinds of parameter estimations are performed for the equilibrium pressure and the kinetics modeling and those are validated by the good agreement between predicted and experimental data. Based on the numerical simulation with obtained parameters, more rapid rates of de-hydriding reaction can be achieved with lower pressure and higher temperature. (authors)

  12. Estimation of genetic parameters for milk yield across lactations in mixed-breed dairy goats.

    PubMed

    Mucha, S; Mrode, R; Coffey, M; Conington, J

    2014-01-01

    Currently, breeding values for dairy goats in the United Kingdom are not estimated and selection is based only on phenotypes. Several studies from other countries have applied various methodologies to estimate breeding values for milk yield in dairy goats. However, most of the previous analyses were based on relatively small data sets, which might have affected the accuracy of the parameter estimates. The objective of this study was to estimate genetic parameters for milk yield in crossbred dairy goats in lactations 1 to 4. The research was based on data provided by 2 commercial goat farms in the United Kingdom comprising 390,482 milk yield records on 13,591 dairy goats kidding between 1987 and 2012. The population was created by crossing 3 breeds: Alpine, Saanen, and Toggenburg. In each generation, the best-performing animals were selected for breeding and, as a result, a synthetic breed was created. The pedigree file contained 28,184 individuals, of which 2,414 were founders. The data set contained test-day records of milk yield, lactation number, farm, age at kidding, and year and season of kidding. Data on milk composition was unavailable. Covariance components were estimated with the average information REML algorithm in the ASReml package (VSN International Ltd., Hemel Hempstead, UK). A random regression animal model for milk yield with fixed effects of herd test day, year-season, and age at kidding was used. Heritability was the highest at 200 and 250d in milk (DIM), reaching 0.45 in the first lactation and between 0.34 and 0.25 in subsequent lactations. After 300 DIM, the heritability started decreasing to 0.23 and 0.10 at 400 DIM in the first and subsequent lactations, respectively. Genetic correlation between milk yield in the first and subsequent lactations was between 0.16 and 0.88. This study found that milk yields in first and subsequent lactations are highly correlated, both at the genetic and phenotypic level. Estimates of heritability for milk yield were higher than most of the values reported in the literature, although they were in the range reported in this species. This should facilitate genetic improvement for the population studied as part of a broader multi-trait breeding program. PMID:24534512

  13. Innovative methods for the measurement of I* quantum yields and kinetics by diode laser gain-versus-absorption

    NASA Technical Reports Server (NTRS)

    Leone, Stephen R.

    1987-01-01

    The quantum yields of a variety of candidate molecules for solar lasant materials to produce I* were tested. The absorption spectrum was measured for each compound and the I* yield determined by the diode laser or by infrared emission, using C3F7I as a standard. The results of these measurements are summarized. A GaAsInP diode laser system was developed to probe I and I* atoms to obtain yields and kinetics. A technique of gain-versus-absorption spectroscopy was investigated to measure quantum yields with high accuracy. The errors in the yield data were reduced to +/- 2% or less. In addition, experiments were set up to measure the rates of F-sublevel changing collisions in both the I ground state and the I* excited state. Finally, experiments and modelling were carried out to explore the possibility of measuring the recombination rates of I* with C3F7 radicals.

  14. Interstitial insulin kinetic parameters for a 2-compartment insulin model with saturable clearance.

    PubMed

    Pretty, Christopher G; Le Compte, Aaron; Penning, Sophie; Fisk, Liam; Shaw, Geoffrey M; Desaive, Thomas; Chase, J Geoffrey

    2014-05-01

    Glucose-insulin system models are commonly used for identifying insulin sensitivity. With physiological, 2-compartment insulin kinetics models, accurate kinetic parameter values are required for reliable estimates of insulin sensitivity. This study uses data from 6 published microdialysis studies to determine the most appropriate parameter values for the transcapillary diffusion rate (n(I)) and cellular insulin clearance rate (n(C)). The 6 studies (12 data sets) used microdialysis techniques to simultaneously obtain interstitial and plasma insulin concentrations. The reported plasma insulin concentrations were used as input and interstitial insulin concentrations were simulated with the interstitial insulin kinetics sub-model. These simulated results were then compared to the reported interstitial measurements and the most appropriate set of parameter values was determined across the 12 data sets by combining the results. Interstitial insulin kinetic parameters values n(I)=n(C)=0.0060 min⁻¹ were shown to be the most appropriate. These parameter values are associated with an effective, interstitial insulin half-life, t(½)=58 min, within the range of 25-130 min reported by others. PMID:24548900

  15. Evaluation of Anaerobic Biofilm Reactor Kinetic Parameters Using Ant Colony Optimization.

    PubMed

    Satya, Eswari Jujjavarapu; Venkateswarlu, Chimmiri

    2013-09-01

    Fixed bed reactors with naturally attached biofilms are increasingly used for anaerobic treatment of industry wastewaters due their effective treatment performance. The complex nature of biological reactions in biofilm processes often poses difficulty in analyzing them experimentally, and mathematical models could be very useful for their design and analysis. However, effective application of biofilm reactor models to practical problems suffers due to the lack of knowledge of accurate kinetic models and uncertainty in model parameters. In this work, an inverse modeling approach based on ant colony optimization is proposed and applied to estimate the kinetic and film thickness model parameters of wastewater treatment process in an anaerobic fixed bed biofilm reactor. Experimental data of pharmaceutical industry wastewater treatment process are used to determine the model parameters as a consequence of the solution of the rigorous mathematical models of the process. Results were evaluated for different modeling configurations derived from the combination of mathematical models, kinetic expressions, and optimization algorithms. Analysis of results showed that the two-dimensional mathematical model with Haldane kinetics better represents the pharmaceutical wastewater treatment in the biofilm reactor. The mathematical and kinetic modeling of this work forms a useful basis for the design and optimization of industry wastewater treating biofilm reactors. PMID:24065871

  16. Parameters-related uncertainty in modeling sugar cane yield with an agro-Land Surface Model

    NASA Astrophysics Data System (ADS)

    Valade, A.; Ciais, P.; Vuichard, N.; Viovy, N.; Ruget, F.; Gabrielle, B.

    2012-12-01

    Agro-Land Surface Models (agro-LSM) have been developed from the coupling of specific crop models and large-scale generic vegetation models. They aim at accounting for the spatial distribution and variability of energy, water and carbon fluxes within soil-vegetation-atmosphere continuum with a particular emphasis on how crop phenology and agricultural management practice influence the turbulent fluxes exchanged with the atmosphere, and the underlying water and carbon pools. A part of the uncertainty in these models is related to the many parameters included in the models' equations. In this study, we quantify the parameter-based uncertainty in the simulation of sugar cane biomass production with the agro-LSM ORCHIDEE-STICS on a multi-regional approach with data from sites in Australia, La Reunion and Brazil. First, the main source of uncertainty for the output variables NPP, GPP, and sensible heat flux (SH) is determined through a screening of the main parameters of the model on a multi-site basis leading to the selection of a subset of most sensitive parameters causing most of the uncertainty. In a second step, a sensitivity analysis is carried out on the parameters selected from the screening analysis at a regional scale. For this, a Monte-Carlo sampling method associated with the calculation of Partial Ranked Correlation Coefficients is used. First, we quantify the sensitivity of the output variables to individual input parameters on a regional scale for two regions of intensive sugar cane cultivation in Australia and Brazil. Then, we quantify the overall uncertainty in the simulation's outputs propagated from the uncertainty in the input parameters. Seven parameters are identified by the screening procedure as driving most of the uncertainty in the agro-LSM ORCHIDEE-STICS model output at all sites. These parameters control photosynthesis (optimal temperature of photosynthesis, optimal carboxylation rate), radiation interception (extinction coefficient), root uptake of water (root profile), and transpiration and respiration (stomatal conductance, growth and maintenance respiration coefficients). We find that the optimal carboxylation rate and optimal photosynthesis temperature parameters contribute most to the uncertainty in NPP and GPP simulations whereas stomatal conductance is the most sensitive parameter controlling SH, followed by optimal photosynthesis temperature and optimal carboxylation rate. The spatial variation of the ranked correlation between input parameters and output variables is well explained by rain and temperature drivers, suggesting that climate mediated regionally different sensitivities of modeled sugarcane yield to the model parameters, for Australia and Brazil.

  17. Evaluation of kinetic parameters for water soluble crystals by thermo gravimetric analysis

    NASA Astrophysics Data System (ADS)

    Rama, S.; Surendra Dilip, C.; Perumal, Rajesh Narayana

    2015-01-01

    This work elevates the relevance of kinetic parameters of nucleation and thermal decomposition for water soluble crystals. The positive soluble Potassium Dihydrogen Phosphate (KDP) and negative soluble Lithium Sulfate Monohydrate (LSMH) materials were chosen for the kinetic evaluation. The results obtained from the classical nucleation theory are verified with the kinetic parameters which are evaluated from thermo gravimetric analysis. Nucleation parameters of a crystallization process such as interfacial energy (σ), volume free energy (ΔGv), critical energy barrier for nucleation (ΔG*), radius of the critical nucleus (r*) and nucleation rate (J) of the positive (KDP) and negative solubility (LSMH) crystals are determined from the classical nucleation theory of solubility-enthalpy relation. The kinetic parameters viz. the order of reaction, enthalpy, Gibbs free energy of activation, frequency factor, and entropy of activation are obtained from the TG based models viz. Horowitz-Metzger, Coats-Redfern and Piloyan-Novikova. The effect of varying temperature with relative variation on Gibbs free energy for both positive and negative solubility crystals is also discussed. The developed model holds good for both positive and negative solubility crystals.

  18. Kinetic Parameters for the Noncatalyzed and Enzyme-Catalyzed Mutarotation of Glucose Using a Blood Glucometer

    ERIC Educational Resources Information Center

    Hardee, John R.; Delgado, Bryan; Jones, Wray

    2011-01-01

    The kinetic parameters for the conversion of alpha-D-glucose to beta-D-glucose were measured using a blood glucometer. The reaction order, rate constant, and Arrhenius activation energy are reported for the noncatalyzed reaction and turnover number and Michaelis constant are reported for the reaction catalyzed by porcine kidney mutarotase. The…

  19. Kinetic Parameters for the Noncatalyzed and Enzyme-Catalyzed Mutarotation of Glucose Using a Blood Glucometer

    ERIC Educational Resources Information Center

    Hardee, John R.; Delgado, Bryan; Jones, Wray

    2011-01-01

    The kinetic parameters for the conversion of alpha-D-glucose to beta-D-glucose were measured using a blood glucometer. The reaction order, rate constant, and Arrhenius activation energy are reported for the noncatalyzed reaction and turnover number and Michaelis constant are reported for the reaction catalyzed by porcine kidney mutarotase. The

  20. Splitting parameter yield (SPY): A program for semiautomatic analysis of shear-wave splitting

    NASA Astrophysics Data System (ADS)

    Zaccarelli, Lucia; Bianco, Francesca; Zaccarelli, Riccardo

    2012-03-01

    SPY is a Matlab algorithm that analyzes seismic waveforms in a semiautomatic way, providing estimates of the two observables of the anisotropy: the shear-wave splitting parameters. We chose to exploit those computational processes that require less intervention by the user, gaining objectivity and reliability as a result. The algorithm joins the covariance matrix and the cross-correlation techniques, and all the computation steps are interspersed by several automatic checks intended to verify the reliability of the yields. The resulting semiautomation generates two new advantages in the field of anisotropy studies: handling a huge amount of data at the same time, and comparing different yields. From this perspective, SPY has been developed in the Matlab environment, which is widespread, versatile, and user-friendly. Our intention is to provide the scientific community with a new monitoring tool for tracking the temporal variations of the crustal stress field.

  1. Parameter estimation in stochastic chemical kinetic models using derivative free optimization and bootstrapping

    PubMed Central

    Srivastava, Rishi; Rawlings, James B.

    2014-01-01

    Recent years have seen increasing popularity of stochastic chemical kinetic models due to their ability to explain and model several critical biological phenomena. Several developments in high resolution fluorescence microscopy have enabled researchers to obtain protein and mRNA data on the single cell level. The availability of these data along with the knowledge that the system is governed by a stochastic chemical kinetic model leads to the problem of parameter estimation. This paper develops a new method of parameter estimation for stochastic chemical kinetic models. There are three components of the new method. First, we propose a new expression for likelihood of the experimental data. Second, we use sample path optimization along with UOBYQA-Fit, a variant of of Powells unconstrained optimization by quadratic approximation, for optimization. Third, we use a variant of Efrons percentile bootstrapping method to estimate the confidence regions for the parameter estimates. We apply the parameter estimation method in an RNA dynamics model of E. coli. We test the parameter estimates obtained and the confidence regions in this model. The testing of the parameter estimation method demonstrates the efficiency, reliability, and accuracy of the new method. PMID:24920866

  2. Constraints on effective field theory parameters for the {Lambda}N{yields}NN transition

    SciTech Connect

    Perez-Obiol, Axel; Parreno, Assumpta; Julia-Diaz, Bruno

    2011-08-15

    The relation between the low-energy constants appearing in the effective field theory description of the {Lambda}N{yields}NN transition potential and the parameters of the one-meson-exchange model previously developed is obtained. We extract the relative importance of the different exchange mechanisms included in the meson picture by means of a comparison to the corresponding operational structures appearing in the effective approach. The ability of this procedure to obtain the weak baryon-baryon-meson couplings for a possible scalar exchange is also discussed.

  3. Control of ozonolysis kinetics and aerosol yield by nuances in the molecular structure of volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Harvey, Rebecca M.; Petrucci, Giuseppe A.

    2015-12-01

    Secondary organic aerosol (SOA) plays integral roles in climate and human health, yet there remains a limited understanding of the mechanisms that lead to its formation and ultimate fate, as evidenced by a disparity between modeled atmospheric SOA loadings and field measurements. This disparity highlights the need for a more accurate representation of the molecular-level interactions between SOA sources and oxidative pathways. Due to the paucity of detailed chemical data for most SOA precursors of atmospheric relevance, models generally predict SOA loadings using structure activity relationships generalized to classes of SOA precursors. However, the kinetics and SOA forming potential of molecules are nuanced by seemingly minor structural differences in parent molecules that may be neglected in models. Laboratory chamber studies were used to measure SOA yields and rate constants for the ozonolysis of several linear, cyclic and oxygenated C5-C7 alkenes whose molecular structure vary in the site of unsaturation and/or the presence/position of functional groups and that represent atmospherically relevant classes of molecules. For the alkenes studied in this work, we found greater SOA yields for cyclic compounds compared to their linear analogs. For 1-alkenes, SOA yield increased with carbon number but was also dependent on the position of the double bond (internal vs terminal). Both the identity and position of oxygenated functional groups influenced SOA yield and kinetics through steric and electronic effects. Additionally, terminal alkenes generally resulted in a greater SOA yield than analogous internal alkenes, indicating that the position of the double bond in alkenes plays an important role in its atmospheric fate. Herein, we demonstrate the nuanced behavior of these ozonolysis reactions and discuss relationships between parent compound molecular structure and SOA yield and kinetics.

  4. Biosolar cells: global artificial photosynthesis needs responsive matrices with quantum coherent kinetic control for high yield

    PubMed Central

    Purchase, R. L.; de Groot, H. J. M.

    2015-01-01

    This contribution discusses why we should consider developing artificial photosynthesis with the tandem approach followed by the Dutch BioSolar Cells consortium, a current operational paradigm for a global artificial photosynthesis project. We weigh the advantages and disadvantages of a tandem converter against other approaches, including biomass. Owing to the low density of solar energy per unit area, artificial photosynthetic systems must operate at high efficiency to minimize the land (or sea) area required. In particular, tandem converters are a much better option than biomass for densely populated countries and use two photons per electron extracted from water as the raw material into chemical conversion to hydrogen, or carbon-based fuel when CO2 is also used. For the average total light sum of 40 mol m−2 d−1 for The Netherlands, the upper limits are many tons of hydrogen or carbon-based fuel per hectare per year. A principal challenge is to forge materials for quantitative conversion of photons to chemical products within the physical limitation of an internal potential of ca 2.9 V. When going from electric charge in the tandem to hydrogen and back to electricity, only the energy equivalent to 1.23 V can be stored in the fuel and regained. A critical step is then to learn from nature how to use the remaining difference of ca 1.7 V effectively by triple use of one overpotential for preventing recombination, kinetic stabilization of catalytic intermediates and finally generating targeted heat for the release of oxygen. Probably the only way to achieve this is by using bioinspired responsive matrices that have quantum–classical pathways for a coherent conversion of photons to fuels, similar to what has been achieved by natural selection in evolution. In appendix A for the expert, we derive a propagator that describes how catalytic reactions can proceed coherently by a convergence of time scales of quantum electron dynamics and classical nuclear dynamics. We propose that synergy gains by such processes form a basis for further progress towards high efficiency and yield for a global project on artificial photosynthesis. Finally, we look at artificial photosynthesis research in The Netherlands and use this as an example of how an interdisciplinary approach is beneficial to artificial photosynthesis research. We conclude with some of the potential societal consequences of a large-scale roll out of artificial photosynthesis. PMID:26052428

  5. Biosolar cells: global artificial photosynthesis needs responsive matrices with quantum coherent kinetic control for high yield.

    PubMed

    Purchase, R L; de Groot, H J M

    2015-06-01

    This contribution discusses why we should consider developing artificial photosynthesis with the tandem approach followed by the Dutch BioSolar Cells consortium, a current operational paradigm for a global artificial photosynthesis project. We weigh the advantages and disadvantages of a tandem converter against other approaches, including biomass. Owing to the low density of solar energy per unit area, artificial photosynthetic systems must operate at high efficiency to minimize the land (or sea) area required. In particular, tandem converters are a much better option than biomass for densely populated countries and use two photons per electron extracted from water as the raw material into chemical conversion to hydrogen, or carbon-based fuel when CO2 is also used. For the average total light sum of 40 mol m(-2) d(-1) for The Netherlands, the upper limits are many tons of hydrogen or carbon-based fuel per hectare per year. A principal challenge is to forge materials for quantitative conversion of photons to chemical products within the physical limitation of an internal potential of ca 2.9 V. When going from electric charge in the tandem to hydrogen and back to electricity, only the energy equivalent to 1.23 V can be stored in the fuel and regained. A critical step is then to learn from nature how to use the remaining difference of ca 1.7 V effectively by triple use of one overpotential for preventing recombination, kinetic stabilization of catalytic intermediates and finally generating targeted heat for the release of oxygen. Probably the only way to achieve this is by using bioinspired responsive matrices that have quantum-classical pathways for a coherent conversion of photons to fuels, similar to what has been achieved by natural selection in evolution. In appendix A for the expert, we derive a propagator that describes how catalytic reactions can proceed coherently by a convergence of time scales of quantum electron dynamics and classical nuclear dynamics. We propose that synergy gains by such processes form a basis for further progress towards high efficiency and yield for a global project on artificial photosynthesis. Finally, we look at artificial photosynthesis research in The Netherlands and use this as an example of how an interdisciplinary approach is beneficial to artificial photosynthesis research. We conclude with some of the potential societal consequences of a large-scale roll out of artificial photosynthesis. PMID:26052428

  6. Comparison of gasification kinetics parameters of different types of nuclear graphite

    SciTech Connect

    El-Genk, M. S.; Tournier, J. M. P.

    2012-07-01

    A chemical-reaction kinetics model of nuclear graphite gasification has recently been developed and successfully validated with gasification rate measurements for nuclear graphite grades of IG-110, IG-430, NBG-18 and NBG-25. The model employs 4 elementary chemical reactions with applicable parameters, including the values and Gaussian-like distributions of the specific activation energies, the pre-exponential coefficients for adsorption of oxygen and desorption of CO and CO{sub 2} gases, and the surface area of free active sites. These parameters are determined from the reported measurements of the total gasification and transient weight loss using a multi-parameter optimization algorithm. The determined chemical kinetics parameters for IG-100 and NB-25 are nearly the same, but slightly different from those for NBG-18 and IG-430. The initial specific area of free active sites is inversely proportional to the square root of the mass or volume of the graphite specimens used in experiments. The recommended chemical kinetics parameters in this paper for these grades of nuclear graphite should be applicable to future safety analysis of high-temperature gas cooled reactors in the unlikely event of a massive air ingress accident. (authors)

  7. Thermal kinetic and dielectric parameters of acenaphthene crystal grown by vertical Bridgman technique

    NASA Astrophysics Data System (ADS)

    Karuppusamy, S.; Dinesh Babu, K.; Nirmal Kumar, V.; Gopalakrishnan, R.

    2016-05-01

    The bulk acenaphthene crystal was grown in a single-wall ampoule by vertical Bridgman technique. X-ray diffraction analysis confirmed the orthorhombic crystal system of title compound with space group Pcm21. Thermal behavior of compound was studied using thermogravimetry—differential scanning calorimetry analysis. Thermal kinetic parameters like activation energy, frequency factor, Avrami exponent, reaction rate and degree of conversion were calculated using Kissingers and Ozawa methods under non-isothermal condition for acenaphthene crystal and reported for the first time. The calculated thermal kinetic parameters are presented. Dielectric studies were performed to calculate the dielectric parameters such as dielectric constant, dielectric loss, AC conductivity, and activation energy from Arrhenius plot.

  8. Genetic Parameters for Milk Yield and Lactation Persistency Using Random Regression Models in Girolando Cattle

    PubMed Central

    Canaza-Cayo, Ali William; Lopes, Paulo Sávio; da Silva, Marcos Vinicius Gualberto Barbosa; de Almeida Torres, Robledo; Martins, Marta Fonseca; Arbex, Wagner Antonio; Cobuci, Jaime Araujo

    2015-01-01

    A total of 32,817 test-day milk yield (TDMY) records of the first lactation of 4,056 Girolando cows daughters of 276 sires, collected from 118 herds between 2000 and 2011 were utilized to estimate the genetic parameters for TDMY via random regression models (RRM) using Legendre’s polynomial functions whose orders varied from 3 to 5. In addition, nine measures of persistency in milk yield (PSi) and the genetic trend of 305-day milk yield (305MY) were evaluated. The fit quality criteria used indicated RRM employing the Legendre’s polynomial of orders 3 and 5 for fitting the genetic additive and permanent environment effects, respectively, as the best model. The heritability and genetic correlation for TDMY throughout the lactation, obtained with the best model, varied from 0.18 to 0.23 and from −0.03 to 1.00, respectively. The heritability and genetic correlation for persistency and 305MY varied from 0.10 to 0.33 and from −0.98 to 1.00, respectively. The use of PS7 would be the most suitable option for the evaluation of Girolando cattle. The estimated breeding values for 305MY of sires and cows showed significant and positive genetic trends. Thus, the use of selection indices would be indicated in the genetic evaluation of Girolando cattle for both traits. PMID:26323397

  9. Diversity and genetic parameter estimates for yield and its components in Jatropha curcas L.

    PubMed

    Freitas, R G; Dias, L A S; Cardoso, P M R; Evaristo, A B; Silva, M F; Araújo, N M

    2016-01-01

    Jatropha curcas L. is one of the most promising oilseeds for biodiesel and biokerosene production, but few basic studies or breeding programs have been conducted for the species. We estimated genetic parameters and diversity based on 10 yield traits in 77 half-sib progenies of J. curcas after 52 months in the field, and evaluated correlations between them and the oil content of the seeds. The mean grain yield per plant was 377.9 g (ranging from 169.8 to 772.1 g) and the mean oil content was 36.2% (ranging from 30 to 39.6%). Moderate estimates of heritability at the mean progeny level were obtained for the length of the fruit (84.7%), length (69.1%) and width (68.2%) of the seed, and grain yield per plant (62.2%). Oil content was only positively and significantly correlated with 100-seed weight. Our study revealed a range of possible crosses to be investigated in J. curcas. Progeny production should be evaluated over several crop seasons for the accurate selection of the best progenies. PMID:27050981

  10. [Effects of water stress on red-edge parameters and yield in wheat cropping].

    PubMed

    He, Ke-Xun; Zaho, Shu-He; Lai, Jian-Bin; Luo, Yun-Xiao; Qin, Zhi-Hao

    2013-08-01

    The objective of the present paper is to study the influence of water stress on wheat spectrum red edge parameters by using field wheat spectrum data obtained from water stress experiment. Firstly, the authors analyzed the influence of water stress on wheat spectrum reflectance. Then the authors got the wheat red edge position and red edge peak through calculating wheat spectrum first-order differential and analyzed the influence of water stress on wheat red edge parameters. Finally the authors discussed the relationship between red peak and wheat yield. The results showed that the wheat red edge position shows "red shift" at the beginning of the wheat growth period and "blue shift" at the later period of the wheat growth period under the water stress experiment. Also, the red edge peak of the wheat showed that red edge peak increased with the water stress sharpening at the beginning of the wheat growth period, and then the red edge peak reduced with the water stress sharpening. The wheat red edge peak presented positive correlation with the wheat yield before the elongation period, and exhibited negative correlation after that period. PMID:24159864

  11. Characterisation of sugar cane straw waste as pozzolanic material for construction: Calcining temperature and kinetic parameters

    SciTech Connect

    Frias, Moises

    2007-07-01

    This paper reports on the influence of calcining temperature (800 and 1000 deg. C) on the pozzolanic activation of sugar cane straw (SCS). The reaction kinetics of SCS ash-lime mixtures were inferred from physicochemical characteristics (X-ray diffraction patterns and thermogravimetry analysis. The fitting of a kinetic-diffusive model to the experimental data (fixed lime versus time) allowed the computing of the kinetic parameters (reaction rate constant) of the pozzolanic reaction. Results obtained confirm that the sugar cane straw ash (SCSA) calcined at 800 and 1000 deg. C have properties indicative of very high pozzolanic activity. No influence of calcining temperature on the pozzolanic activity was observed. Also, no crystalline compounds during the pozzolanic reaction were identified up to 90 days of reaction. Environmental durability and strength of the consequential mortars remain to be assessed.

  12. Continuum theory of lumping approach to model hydrocracking kinetics for prediction of paraffins, naphthenes & aromatics (PNAs) yields

    SciTech Connect

    Narasimhan, C.S.L.; Verma, R.P.

    1995-12-31

    Modeling of hydrocracking kinetics capturing the chemistry of the process has been a continuous endeavor for the researchers. Very few approaches have been formulated so far, which either over simplify the problem or require large number of computation parameters for acceptable solution. The present paper proposes a novel and elegant approach based on continuum theory of lumping, which attempts to follow the process chemistry closely to model the complex hydrocracking kinetics for prediction of paraffins, naphthenes and aromatics (PNAs) in the product mixture. The model predictions match well with reported experimental results.

  13. Thermoluminescence systems with two or more glow peaks described by anomalous kinetic parameters

    SciTech Connect

    Levy, P.W.

    1983-01-01

    The usual first and second order TL kinetic expressions are based on a number of assumptions, including the usually unstated assumption that charges released from one type of trap, giving rise to one glow peak, are not retrapped on other types of traps, associated with other glow peaks. Equations have been developed describing TL systems in which charges released from one type of trap may be retrapped in other types of traps. Called interactive kinetic equations, they are quite simple but have been studied by numerical methods. In particular, glow curves computed from the interactive kinetic equations have been regarded as data and analyzed by fitting them to the usual first and second order kinetic expressions. All of the anomalous features described above are reproduced. For example, usually the computed glow peaks are well fitted by the first and second order expressions over their upper 60 to 80% but not in the wings. This explains why the usual analysis methods, especially those utilizing peak temperature, full width, etc. appear to describe such peaks. Often unrealistic kinetic parameters are often obtained. Furthermore, the computed glow curves often reproduce the observed dependence on dose.

  14. The direct linear plot. A new graphical procedure for estimating enzyme kinetic parameters

    PubMed Central

    Eisenthal, Robert; Cornish-Bowden, Athel

    1974-01-01

    A new plot is described for analysing the results of kinetic experiments in which the Michaelis–Menten equation is obeyed. Observations are plotted as lines in parameter space, instead of points in observation space. With appropriate modifications the plot is applicable to most problems of interest to the enzyme kineticist. It has the following advantages over traditional methods of plotting kinetic results: it is very simple to construct, because it is composed entirely of straight lines and requires no calculation or mathematical tables; the kinetic constants are read off the plot directly, again without calculation; it may be used during the course of an experiment to judge the success of the experiment, and to modify the experimental design; it provides clear and accurate information about the quality of the observations, and identifies aberrant observations; it provides a clear indication of the precision of the kinetic constants; constructed with care, it provides unbiased estimates of the kinetic constants, the same as those provided by a computer program; it may be used to simulate results for illustrative purposes very rapidly and simply. PMID:4854723

  15. The kinetic relationship between the C-550 absorbance change, the reduction of Q(delta A320) and the variable fluorescence yield change in chloroplasts at room temperature.

    PubMed

    Melis, A; Schreiber, U

    1979-07-10

    The light minus dark difference spectrum and the kinetics of the indicator pigment C-550 have been measured at room temperature in isolate, envelope-free chloroplasts in the presence of 3-(3' ,4'-dichlorophenyl)-1,1-dimethylurea (DCMU). The C-550 spectrum indicates a band shift with peaks at 540 and 550 nm and has an isobestic point at 545 nm. On the assumption of 400 chlorophyll molecules per electron transfer chain the differentaial extinction coefficient delta epsilon (540-550) is calculated to be approximately 5 mM-1 . CM-1. The kinetics of the C-550 absorbance change, occurring upin the onset of continuous illumination, are shown to be biphasic and strictly correlated with the kinetics of the complementary area measured from the fluorescence induction curve under identical cinditions and with those of the absorbance increase at 320 nm due to photoreduction of Q. The lighted-induced change in these three parameters can be described as a function of the variable fluorescence yield change occurring under the same conditions. Such functions are non-linear and reveal a heterogeneous dependence of the variable fluorescence yield on the fraction of closed System II reaction centers. It is concluded that for every molecule of the primary electron acceptor Q of Photosystem II that is photochemically reduced there corresponds an equivalent change in the absorbance of the indicator pigment C-550 and in the size of the complementary area. Ths, C-550 and area are two valid parameters for monitoring the primary photochemical activity of System II at the room temperature. PMID:465486

  16. Association between plasma zinc concentration and zinc kinetic parameters in premenopausal women.

    PubMed

    Yokoi, Katsuhiko; Egger, Norman G; Ramanujam, V M Sadagopa; Alcock, Nancy W; Dayal, Hari H; Penland, James G; Sandstead, Harold H

    2003-11-01

    The objective of this study was to measure relationships between plasma zinc (Zn) concentrations and Zn kinetic parameters and to measure relationships of Zn status with taste acuity, food frequency, and hair Zn in humans. The subjects were 33 premenopausal women not taking oral contraceptives and dietary supplements containing iron and Zn. Main outcomes were plasma Zn concentrations, Zn kinetic parameters based on the three-compartment mammillary model using 67Zn as a tracer, electrical taste detection thresholds, and food frequencies. Lower plasma Zn was significantly (P < 0.01) associated with smaller sizes of the central and the lesser peripheral Zn pools, faster disappearance of tracer from plasma, and higher transfer rate constants from the lesser peripheral pool to the central pool and from the central pool to the greater peripheral pool. The break points in the plasma Zn-Zn kinetics relationship were found between 9.94 and 11.5 micromol/l plasma Zn. Smaller size of the lesser peripheral pool was associated with lower frequency of beef consumption and higher frequency of bran breakfast cereal consumption. Hypozincemic women with plasma Zn <10.7 micromol/l or 700 ng/ml had decreased thresholds of electrical stimulation for gustatory nerves. Our results based on Zn kinetics support the conventional cutoff value of plasma Zn (10.7 micromol/l or 700 ng/ml) between normal and low Zn status. PMID:12865259

  17. A methodology for modeling photocatalytic reactors for indoor pollution control using previously estimated kinetic parameters.

    PubMed

    Passalía, Claudio; Alfano, Orlando M; Brandi, Rodolfo J

    2012-04-15

    A methodology for modeling photocatalytic reactors for their application in indoor air pollution control is carried out. The methodology implies, firstly, the determination of intrinsic reaction kinetics for the removal of formaldehyde. This is achieved by means of a simple geometry, continuous reactor operating under kinetic control regime and steady state. The kinetic parameters were estimated from experimental data by means of a nonlinear optimization algorithm. The second step was the application of the obtained kinetic parameters to a very different photoreactor configuration. In this case, the reactor is a corrugated wall type using nanosize TiO(2) as catalyst irradiated by UV lamps that provided a spatially uniform radiation field. The radiative transfer within the reactor was modeled through a superficial emission model for the lamps, the ray tracing method and the computation of view factors. The velocity and concentration fields were evaluated by means of a commercial CFD tool (Fluent 12) where the radiation model was introduced externally. The results of the model were compared experimentally in a corrugated wall, bench scale reactor constructed in the laboratory. The overall pollutant conversion showed good agreement between model predictions and experiments, with a root mean square error less than 4%. PMID:22030272

  18. An investigation on the catalytic capacity of dolomite in transesterification and the calculation of kinetic parameters.

    PubMed

    Niu, Sheng-Li; Huo, Meng-Jia; Lu, Chun-Mei; Liu, Meng-Qi; Li, Hui

    2014-04-01

    The catalytic capacity of dolomite in transesterification was investigated and the kinetic parameters were calculated. The activated dolomites as transesterification catalyst were characterized by X-ray diffraction, nitrogen adsorption and desorption and Hammett indicator method, where the original dolomite was analyzed by thermogravimetric and X-ray fluorescence in advance. Its potential catalytic capacity was validated from aspects of the activated temperature and the reused property, where the reliability of the experimental system was also examined. Then, influences of the catalyst added amount, the mole ratio of methanol to oil, the transesterification temperature and the transesterification time on the catalytic capacity were investigated. Finally, kinetic parameters of the transesterification catalyzed by the activated dolomite were calculated. PMID:24583217

  19. Effects of correlated parameters and uncertainty in electronic-structure-based chemical kinetic modelling.

    PubMed

    Sutton, Jonathan E; Guo, Wei; Katsoulakis, Markos A; Vlachos, Dionisios G

    2016-04-01

    Kinetic models based on first principles are becoming common place in heterogeneous catalysis because of their ability to interpret experimental data, identify the rate-controlling step, guide experiments and predict novel materials. To overcome the tremendous computational cost of estimating parameters of complex networks on metal catalysts, approximate quantum mechanical calculations are employed that render models potentially inaccurate. Here, by introducing correlative global sensitivity analysis and uncertainty quantification, we show that neglecting correlations in the energies of species and reactions can lead to an incorrect identification of influential parameters and key reaction intermediates and reactions. We rationalize why models often underpredict reaction rates and show that, despite the uncertainty being large, the method can, in conjunction with experimental data, identify influential missing reaction pathways and provide insights into the catalyst active site and the kinetic reliability of a model. The method is demonstrated in ethanol steam reforming for hydrogen production for fuel cells. PMID:27001728

  20. Effects of correlated parameters and uncertainty in electronic-structure-based chemical kinetic modelling

    NASA Astrophysics Data System (ADS)

    Sutton, Jonathan E.; Guo, Wei; Katsoulakis, Markos A.; Vlachos, Dionisios G.

    2016-04-01

    Kinetic models based on first principles are becoming common place in heterogeneous catalysis because of their ability to interpret experimental data, identify the rate-controlling step, guide experiments and predict novel materials. To overcome the tremendous computational cost of estimating parameters of complex networks on metal catalysts, approximate quantum mechanical calculations are employed that render models potentially inaccurate. Here, by introducing correlative global sensitivity analysis and uncertainty quantification, we show that neglecting correlations in the energies of species and reactions can lead to an incorrect identification of influential parameters and key reaction intermediates and reactions. We rationalize why models often underpredict reaction rates and show that, despite the uncertainty being large, the method can, in conjunction with experimental data, identify influential missing reaction pathways and provide insights into the catalyst active site and the kinetic reliability of a model. The method is demonstrated in ethanol steam reforming for hydrogen production for fuel cells.

  1. Experimental determination of kinetic parameters for crystallizing amorphous NiTi thin films

    NASA Astrophysics Data System (ADS)

    Lee, Hoo-Jeong; Ni, Hai; Wu, David T.; Ramirez, Ainissa G.

    2005-09-01

    The crystallization of amorphous NiTi thin films was studied using in situ transmission electron microscopy (TEM) methods. Samples were subjected to heating conditions within the microscope and the microstructural development was monitored and recorded. The nucleation rate and the growth rate were determined experimentally by noting the number of new grains per frame and their change in size. These parameters were compared to the conventional method of kinetic analysis using the Johnson-Mehl-Avrami-Kolmogorov (JMAK) theory. In it, the amount transformed is related to fitting parameters that describe the overall crystallization rate. The individual kinetic rates found directly with the TEM methods have considerable agreement with the overall rate determined by the conventional JMAK analysis. This quantitative analysis provides the groundwork for the control of microstructures and properties in NiTi shape memory alloy thin films.

  2. Thermal analysis of paddy husk. Part 2: Order of reaction and other kinetic parameters

    SciTech Connect

    Jain, A.K.; Sharma, S.K.; Singh, D.

    1997-12-31

    This paper presents experimental data on the thermal degradation of paddy husk and cellulose in air, argon and a mixture of nitrogen and oxygen (95:5) at different linear heating rates. The data is used for the determination of kinetic parameters using different orders of reaction and an optimum order of reaction identified. The often used assumption of unity order of reaction under all circumstances is shown to have a limited validity.

  3. Effects of J couplings and unobservable minor states on kinetics parameters extracted from CEST data

    NASA Astrophysics Data System (ADS)

    Zhou, Yang; Yang, Daiwen

    2014-12-01

    Chemical exchange saturation transfer (CEST) experiments have emerged as a powerful tool for characterizing dynamics and sparse populated conformers of protein in slow exchanging systems. We show that J couplings and 'invisible' minor states can cause systematic errors in kinetics parameters and chemical shifts extracted from CEST data. For weakly coupled spin systems, the J coupling effect can be removed using an approximation method. This method is warranted through detailed theoretical derivation, supported by results from simulations and experiments on an acyl carrier protein domain. Simulations demonstrate that the effect of 'invisible' minor states on the extracted kinetics parameters depends on the chemical shifts, populations, exchange rates of the 'invisible' states to the observed major or minor state and exchange models. Moreover, the extracted chemical shifts of the observed minor state can also be influenced by the 'invisible' minor states. The presence of an off-pathway folding intermediate in the acyl carrier protein domain explains why the exchange rates obtained with a two-state model from individual residues that displayed only two obvious CEST dips varied significantly and the extracted exchange rates for 15N and 13CO spins located in the same peptide bond could be very different. The approximation method described here simplifies CEST data analysis in many situations where the coupling effect cannot be ignored and decoupling techniques are not desirable. In addition, this study also raises alerts for 'invisible' minor states which can cause errors in not only kinetics parameters but also chemical shifts of the observed minor state.

  4. Reliability of spatiotemporal and kinetic gait parameters determined by a new instrumented treadmill system

    PubMed Central

    2013-01-01

    Background Despite the emerging use of treadmills integrated with pressure platforms as outcome tools in both clinical and research settings, published evidence regarding the measurement properties of these new systems is limited. This study evaluated the within– and between–day repeatability of spatial, temporal and vertical ground reaction force parameters measured by a treadmill system instrumented with a capacitance–based pressure platform. Methods Thirty three healthy adults (mean age, 21.5 ± 2.8 years; height, 168.4 ± 9.9 cm; and mass, 67.8 ± 18.6 kg), walked barefoot on a treadmill system (FDM–THM–S, Zebris Medical GmbH) on three separate occasions. For each testing session, participants set their preferred pace but were blinded to treadmill speed. Spatial (foot rotation, step width, stride and step length), temporal (stride and step times, duration of stance, swing and single and double support) and peak vertical ground reaction force variables were collected over a 30–second capture period, equating to an average of 52 ± 5 steps of steady–state walking. Testing was repeated one week following the initial trial and again, for a third time, 20 minutes later. Repeated measures ANOVAs within a generalized linear modelling framework were used to assess between–session differences in gait parameters. Agreement between gait parameters measured within the same day (session 2 and 3) and between days (session 1 and 2; 1 and 3) were evaluated using the 95% repeatability coefficient. Results There were statistically significant differences in the majority (14/16) of temporal, spatial and kinetic gait parameters over the three test sessions (P < .01). The minimum change that could be detected with 95% confidence ranged between 3% and 17% for temporal parameters, 14% and 33% for spatial parameters, and 4% and 20% for kinetic parameters between days. Within–day repeatability was similar to that observed between days. Temporal and kinetic gait parameters were typically more consistent than spatial parameters. The 95% repeatability coefficient for vertical force peaks ranged between ± 53 and ± 63 N. Conclusions The limits of agreement in spatial parameters and ground reaction forces for the treadmill system encompass previously reported changes with neuromuscular pathology and footwear interventions. These findings provide clinicians and researchers with an indication of the repeatability and sensitivity of the Zebris treadmill system to detect changes in common spatiotemporal gait parameters and vertical ground reaction forces. PMID:23964707

  5. Urea hydrolysis by immobilized urease in a fixed-bed reactor: analysis and kinetic parameter estimation.

    PubMed

    Moynihan, H J; Lee, C K; Clark, W; Wang, N H

    1989-10-01

    Urea hydrolysis by urease immobilized onto ion exchange resins in a fixed-bed reactor has been studied. A modified Michaelis-Menten rate expression is used to describe the pH-dependent, substrate- and product-inhibited kinetics. Ionic equilibria of product and buffer species are included to account for pH changes generated by reaction. An isothermal, heterogeneous plug-flow reactor model has been developed. An effectiveness factor is used to describe the reaction-diffusion process within the particle phase. The procedure for covalent immobilization of urease onto macroporous cation exchangers is described. Urea conversion data are used to estimate kinetic parameters by a simplex optimization method. The best-fitted parameters are then used to predict the outlet conversions and pH values for systems with various inlet pH values, inlet urea and ammonia concentrations, buffers, particle sizes, and spacetimes. Very good agreement is obtained between experimental data and model predictions. This immobilized urease system exhibits quite different kinetic behavior from soluble urease because the pH near the enzyme active sites is different from that of the pore fluid. This effect results in a shift of the optimal pH value of the V(max) (pH) curve from 6.6 (soluble urease) to ca. 7.6 in dialysate solution, and ca. pH 8.0 in 20mM phosphate buffer. The reactor model is especially useful for estimating intrinsic kinetic parameters of immobilized enzymes and for designing urea removal columns. PMID:18588187

  6. Study of the reaction of OH with HNO/sub 3/: kinetics and NO/sub 3/ yield

    SciTech Connect

    Ravishankara, A.R.; Eisele, F.L.; Wine, P.H.

    1982-05-13

    The kinetics of the reaction OH + HNO/sub 3/ ..-->.. products (k/sub 2/) were investigated at 298 and 251 K. OH was produced by 248-nm laser photolysis of HNO/sub 3/. The temporal profile of N0/sub 3/, a reaction product, was monitored by using long-path laser absorption at 662 nm. The value of k/sub 2/ obtained agrees well with our previous measurements. The yield of NO/sub 3/ in reaction 2 was directly measured to be near unity at both 298 and 251 K.

  7. Optimization of kinetic parameters for the degradation of plasmid DNA in rat plasma

    NASA Astrophysics Data System (ADS)

    Chaudhry, Q. A.

    2014-12-01

    Biotechnology is a rapidly growing area of research work in the field of pharmaceutical sciences. The study of pharmacokinetics of plasmid DNA (pDNA) is an important area of research work. It has been observed that the process of gene delivery faces many troubles on the transport of pDNA towards their target sites. The topoforms of pDNA has been termed as super coiled (S-C), open circular (O-C) and linear (L), the kinetic model of which will be presented in this paper. The kinetic model gives rise to system of ordinary differential equations (ODEs), the exact solution of which has been found. The kinetic parameters, which are responsible for the degradation of super coiled, and the formation of open circular and linear topoforms have a great significance not only in vitro but for modeling of further processes as well, therefore need to be addressed in great detail. For this purpose, global optimization techniques have been adopted, thus finding the optimal results for the said model. The results of the model, while using the optimal parameters, were compared against the measured data, which gives a nice agreement.

  8. Thermoluminescence kinetic parameters of different amount La-doped ZnB₂O₄.

    PubMed

    Kucuk, Nil; Gozel, Aziz Halit; Yüksel, Mehmet; Dogan, Tamer; Topaksu, Mustafa

    2015-10-01

    The kinetic parameters of 1%, 2%, 3% and 4% La-doped ZnB2O4 phosphors (i.e. ZnB2O4:0.01La, ZnB2O4:0.02La, ZnB2O4:0.03La and ZnB2O4:0.04La) synthesized by nitric acid method have been calculated. Thermoluminescence (TL) glow curves of ZnB2O4:La phosphors after beta-irradiation showed a very well defined main peak having the maximum temperature at around 200°C and a shoulder peak at around 315°C with a constant heating rate of 5°C/s. The kinetic parameters of ZnB2O4:La phosphors TL glow peaks (i.e. order of kinetics (b), activation energies (Ea) and frequency factors (s)) have been determined and evaluated by Computerized Glow Curve Deconvolution (CGCD), and Peak Shape (PS) methods using the glow curve data. From the results, it can conclude that the values of Ea obtained with these methods for ZnB2O4:La phosphors are consistent with each other, but the s values differ considerably. PMID:26186155

  9. Kinetics of Bacterial Phospholipase C Activity at Micellar Interfaces: Effect of Substrate Aggregate Microstructure and a Model for the Kinetic Parameters

    PubMed Central

    Singh, Jasmeet; Ranganathan, Radha; Hajdu, Joseph

    2009-01-01

    Activity at micellar interfaces of bacterial phospholipase C from Bacillus cereus on phospholipids solubilized in micelles was investigated with the goal of elucidating the role of the interface microstructure and developing further an existing kinetic model. Enzyme kinetics and physicochemical characterization of model substrate aggregates were combined; thus enabling the interpretation of kinetics in the context of the interface. Substrates were diacylphosphatidylcholine of different acyl chain lengths in the form of mixed micelles with dodecyldimethylammoniopropanesulfonate. An early kinetic model, reformulated to reflect the interfacial nature of the kinetics, was applied to the kinetic data. A better method of data treatment is proposed, use of which makes the presence of microstructure effects quite transparent. Models for enzyme-micelle binding and enzyme-lipid binding are developed and expressions incorporating the microstructural properties are derived for the enzyme-micelle dissociation constant KS and the interface Michaelis-Menten constant, KM. Use of these expressions in the interface kinetic model brings excellent agreement between the kinetic data and the model. Numerical values for the thermodynamic and kinetic parameters are determined. Enzyme-lipid binding is found to be an activated process with an acyl chain length dependent free energy of activation that decreases with micelle lipid molar fraction with a coefficient of about −15 RT and correlates with the tightness of molecular packing in the substrate aggregate. Thus the physical insight obtained includes a model for the kinetic parameters that shows that these parameters depend on the substrate concentration and acyl chain length of the lipid. Enzyme-micelle binding is indicated to be hydrophobic and solvent mediated with a dissociation constant of 1.2 mM. PMID:19367944

  10. Quantitative genetic parameters for yield, plant growth and cone chemical traits in hop (Humulus lupulus L.)

    PubMed Central

    2014-01-01

    Background Most traits targeted in the genetic improvement of hop are quantitative in nature. Improvement based on selection of these traits requires a comprehensive understanding of their inheritance. This study estimated quantitative genetic parameters for 20 traits related to three key objectives for the genetic improvement of hop: cone chemistry, cone yield and agronomic characteristics. Results Significant heritable genetic variation was identified for α-acid and β-acid, as well as their components and relative proportions. Estimates of narrow-sense heritability for these traits (h 2  = 0.15 to 0.29) were lower than those reported in previous hop studies, but were based on a broader suite of families (108 from European, North American and hybrid origins). Narrow-sense heritabilities are reported for hop growth traits for the first time (h 2  = 0.04 to 0.20), relating to important agronomic characteristics such as emergence, height and lateral morphology. Cone chemistry and growth traits were significantly genetically correlated, such that families with more vigorous vegetative growth were associated with lower α-acid and β-acid levels. This trend may reflect the underlying population structure of founder genotypes (European and North American origins) as well as past selection in the Australian environment. Although male and female hop plants are thought to be indistinguishable until flowering, sex was found to influence variation in many growth traits, with male and female plants displaying differences in vegetative morphology from emergence to cone maturity. Conclusions This study reveals important insights into the genetic control of quantitative hop traits. The information gained will provide hop breeders with a greater understanding of the additive genetic factors which affect selection of cone chemistry, yield and agronomic characteristics in hop, aiding in the future development of improved cultivars. PMID:24524684

  11. Four-Parameter Hybrid-Bishop-Hill Model Applied to OFE Copper for the Evaluation of Elastic/Yield Limit

    NASA Astrophysics Data System (ADS)

    Takahashi, Ribeka; Fullwood, David T.; Adams, Brent L.

    2014-09-01

    This study employs a novel stress-based Hybrid-Bishop-Hill yield model approach to evaluate the yield surface of oxygen-free electronic copper samples. The local yield surface is determined from three parameters of crystal orientation and one parameter of geometrically necessary dislocation (GND). All four local state variables can be rapidly determined by analysis of measured electron backscatter diffraction patterns. Estimates for the polycrystalline yield surface are obtained by standard averaging procedures. The shape of the yield surface is most influenced by the texture of the material, while the volume of the envelope scales with the average GND density. However, correlations between crystal orientation and GND content modify the yield surface shape and size. While correlations between GND density and crystal orientation are not strong for most copper samples, there are sufficient dependencies to demonstrate the benefits of the detailed four-parameter model. The four-parameter approach has potential for improving estimates of elastic-yield limit in all polycrystalline materials.

  12. Identification of the crystallization kinetic parameters of a semi-crystalline polymer by using PVTα measurement

    NASA Astrophysics Data System (ADS)

    Tardif, X.; Sobotka, V.; Boyard, N.; Delaunay, D.

    2011-05-01

    Injection molding is the most widely used process in the plastic industry. In the case of semi-crystalline polymer, crystallization kinetics impacts directly the quality of the piece, both on dimensional and mechanical aspects. The characterization of these kinetics is therefore of primary importance to model the process, in particular during the cooling phase. To be representative, this characterization must be carried out under conditions as close as possible to those encountered in the process: high pressure, high cooling rate, shearing, and potential presence of fibers. However, conventional apparatus such as the differential scanning calorimeter do not allow to reach these conditions. A PVTα apparatus, initially developed in the laboratory for the characterization of thermoset composites, was adapted to identify the crystallization kinetics. The aim of the presented study is to demonstrate the feasibility of the identification. This device allows the molding of a circular sample of 40 mm diameter and 6 mm thick by controlling the applied pressure on the sample and the temperature field on its surfaces. This mold is designed such as heat transfer is 1D within the thickness of the sample. It is equipped with two heat flux sensors to determine the average crystallization rate through the thickness and a displacement sensor for the determination of the volume change. The heat transfer problem between the polymer and the molding cavity is modeled by using a 1D conduction problem with a moving boundary, in which the control volume is a uniform temperature disk with a variable volume, and coupled to a crystallization kinetic model. An inverse method is used to identify the parameters of the crystallization kinetic model by minimizing an objective function based on the difference between the evolutions of the experimental and computed volume of the sample. The first validation of this methodology was to compare the kinetic parameters identified with this apparatus with those obtained from DSC experiments, i.e. without additional pressure and at low cooling rates. A good agreement was obtained between both methods. A second validation was to compare experimental and computed temperatures at the center of the plastic part. In this case also, a very good agreement was found. The feasibility of the methodology is now demonstrated. The device is being adapted to increase the level of applied pressure as well as the cooling rate to achieve injection conditions.

  13. Alternative Bio-Based Solvents for Extraction of Fat and Oils: Solubility Prediction, Global Yield, Extraction Kinetics, Chemical Composition and Cost of Manufacturing

    PubMed Central

    Sicaire, Anne-Gaëlle; Vian, Maryline; Fine, Frédéric; Joffre, Florent; Carré, Patrick; Tostain, Sylvain; Chemat, Farid

    2015-01-01

    The present study was designed to evaluate the performance of alternative bio-based solvents, more especially 2-methyltetrahydrofuran, obtained from crop’s byproducts for the substitution of petroleum solvents such as hexane in the extraction of fat and oils for food (edible oil) and non-food (bio fuel) applications. First a solvent selection as well as an evaluation of the performance was made with Hansen Solubility Parameters and the COnductor-like Screening MOdel for Realistic Solvation (COSMO-RS) simulations. Experiments were performed on rapeseed oil extraction at laboratory and pilot plant scale for the determination of lipid yields, extraction kinetics, diffusion modeling, and complete lipid composition in term of fatty acids and micronutrients (sterols, tocopherols and tocotrienols). Finally, economic and energetic evaluations of the process were conducted to estimate the cost of manufacturing using 2-methyltetrahydrofuran (MeTHF) as alternative solvent compared to hexane as petroleum solvent. PMID:25884332

  14. Different singularities in the functions of extended kinetic theory at the origin of the yield stress in granular flows

    SciTech Connect

    Berzi, Diego; Vescovi, Dalila

    2015-01-15

    We use previous results from discrete element simulations of simple shear flows of rigid, identical spheres in the collisional regime to show that the volume fraction-dependence of the stresses is singular at the shear rigidity. Here, we identify the shear rigidity, which is a decreasing function of the interparticle friction, as the maximum volume fraction beyond which a random collisional assembly of grains cannot be sheared without developing force chains that span the entire domain. In the framework of extended kinetic theory, i.e., kinetic theory that accounts for the decreasing in the collisional dissipation due to the breaking of molecular chaos at volume fractions larger than 0.49, we also show that the volume fraction-dependence of the correlation length (measure of the velocity correlation) is singular at random close packing, independent of the interparticle friction. The difference in the singularities ensures that the ratio of the shear stress to the pressure at shear rigidity is different from zero even in the case of frictionless spheres: we identify that with the yield stress ratio of granular materials, and we show that the theoretical predictions, once the different singularities are inserted into the functions of extended kinetic theory, are in excellent agreement with the results of numerical simulations.

  15. Kinetic Parameter Extraction of Square Wave Voltammograms from DNA-Modified Gold Electrodes

    NASA Astrophysics Data System (ADS)

    McWilliams, Marc; Wohlgamuth, Chris; Slinker, Jason

    2012-10-01

    The field of surface bound electrochemistry is important in a variety of applications specifically sensing. A fundamental understanding of the processes involved could help to improve detection limits, optimize rates of detection and direct changes in device design. Accurate extraction of electrochemical kinetic parameters such as the rate constant k and charge transfer coefficient α from cyclic voltammograms can be challenging when confronted with large background currents and relatively weak signals. The commonly used technique of Laviron analysis is both time consuming and somewhat subjective. Square wave voltammetry (SWV) is therefore an ideal alternative method given that it maximizes signal while minimizing capacitive effects. In this experiment kinetic parameters of DNA-modified gold electrodes are obtained from SWV curves through background subtraction followed by nonlinear least squares fitting using a first order quasi-reversible surface process model. The fitting is accomplished using the Nelder-Mead simplex algorithm with standard parameters and a convergence condition of less than 0.0001%. General agreement with experimental data is shown with varying levels of confidence. Difficulties specific to this experiment are discussed as well as the possible benefits of utilizing the Bayesian statistical approach of nested sampling when confronted with multiple peaks of interest and the background source is well defined.

  16. Kinetics of the effect of ara C on chromosome aberration yield in irradiated human lymphocytes.

    TOXLINE Toxicology Bibliographic Information

    Virsik-Peuckert RP; Harder D

    1986-01-01

    In unstimulated lymphocytes the enhancing effect of ara C on the yield of X-ray-induced dicentric aberrations was maximal if ara C was added immediately or up to 2 h after irradiation. When ara C was added later the enhancing effect decreased and practically vanished by 5 h. In stimulated lymphocytes the ara C effect declined faster and practically vanished by 3 h. If ara C was added for 1 h immediately after irradiation, then the aberration yield observed in G0, early G1 and late G1 cells was similar whereas it increased significantly from G0 to late G1 cells without ara C post-treatment. The results are discussed in relation to the classical model of aberration formation.

  17. Efficient estimation of dynamic cardiac SPECT kinetic parameters using singular value decomposition reconstruction

    SciTech Connect

    Gulberg, G.T.; Huesman, R.H.; Zeng, G.L. |

    1994-05-01

    Error estimates of time activity curves are necessary to obtain efficient estimates of dynamic of dynamic cardiac SPECT kinetic parameters which are determined using weighted least squares fitting that incorporates these error estimates. In cardiac SPECT, iterative algorithms are used to obtain attenuation corrected reconstructions, and the use of an iterative algorithm makes it difficult to estimate the errors of the estimated reconstruction. An alternate approach is to estimate the reconstruction by solving the system of normal equations using singular value decomposition. This method was applied to dynamic data acquired from a canine study. A canine was injected with 25 mCi of Tc-99m-teboroxime and was imaged using a three-detector SPECT system (Picker PRISM 3000). Sequential 5 sec tomographic acquisitions were acquired for 15 min, allowing both the wash-in and wash-out of teboroxime to be measured. The projection data were reconstructed into 64x64 transaxial slices for each 5 sec acquisition using singular value decomposition to calculate the reconstructed estimate, the variance of the estimate, and the covariance between tissue and blood regions-of-interest. One 4096x4096 singular value decomposition was obtained in 71 hours using a 40 mHz Supper SPARC processor. Tissue and blood time-activity curves were generated from the attenuation corrected transaxial reconstructions. The blood activity curve was generated from a region drawn inside the left ventricle. A two-compartment model was fit to the blood and tissue activity curves to give weighted least squares estimates of blood volume fraction and wash-in and wash-out rate constants specifying teboroxime kinetics for regions of the left ventricular myocardium. As expected the weighted least squares estimates of the kinetic parameters had smaller variances than the unweighted estimates, thus demonstrating more efficient parameter estimation.

  18. A BAYESIAN METHOD OF ESTIMATING KINETIC PARAMETERS FOR THE INACTIVATION OF CRYPTOSPORIDIUM PARVUM OOCYSTS WITH CHLORINE DIOXIDE AND OZONE

    EPA Science Inventory

    The main objective of this paper is to use Bayesian methods to estimate the kinetic parameters for the inactivation kinetics of Cryptosporidium parvum oocysts with chlorine dioxide or ozone which are characterized by the delayed Chick-Watson model, i.e., a lag phase or shoulder f...

  19. Calculating kinetics parameters and reactivity changes with continuous-energy Monte Carlo

    SciTech Connect

    Kiedrowski, Brian C; Brown, Forrest B; Wilson, Paul

    2009-01-01

    The iterated fission probability interpretation of the adjoint flux forms the basis for a method to perform adjoint weighting of tally scores in continuous-energy Monte Carlo k-eigenvalue calculations. Applying this approach, adjoint-weighted tallies are developed for two applications: calculating point reactor kinetics parameters and estimating changes in reactivity from perturbations. Calculations are performed in the widely-used production code, MCNP, and the results of both applications are compared with discrete ordinates calculations, experimental measurements, and other Monte Carlo calculations.

  20. Applicability of fluorescence-based sensors to the determination of kinetic parameters for O₂ in oxygenases.

    PubMed

    Di Russo, Natali V; Bruner, Steven D; Roitberg, Adrian E

    2015-04-15

    Optical methods for O2 determination based on dynamic fluorescence quenching have been applied to measure oxygen uptake rates in cell culture and to determine intracellular oxygen levels. Here we demonstrate the applicability of fluorescence-based probes in determining kinetic parameters for O2 using as an example catalysis by a cofactor-independent oxygenase (DpgC). Fluorescence-based sensors provide a direct assessment of enzyme-catalyzed O2 consumption using commercially available, low-cost instrumentation that is easily customizable and, thus, constitutes a convenient alternative to the widely used Clark-type electrode, especially in cases where chemical interference is expected to be problematic. PMID:25637681

  1. Parameter Identification and On-line Estimation of a Reduced Kinetic Model

    SciTech Connect

    Dellorco, P.C.; Flesner, R.L.; Le, L.A.; Littell, J.D.; Muske, K.R.

    1999-02-01

    In this work, we present the estimation techniques used to update the model parameters in a reduced kinetic model describing the oxidation-reduction re- actions in a hydrothermal oxidation reactor. The model is used in a nonlinear model-based controller that minimizes the total aqueous nitrogen in the reac- tor effluent. Model reduction is accomplished by com- bining similar reacting compounds into one of four component groups and considering the global reac- tion pathways for each of these groups. The reduced kinetic model developed for thk reaction system pro- vides a means to characterize the complex chemical reaction system without considering each chemicaJ species present and the reaction kinetics of every pos- sible reaction pathway. For the reaction system under study, model reduction is essential in order to reduce the computational requirement so that on-line imple- mentation of the nonlinear model-based controller is possible and also to reduce the amount of a priori information required for the model.

  2. Formation of gas-phase peptide ions and their dissociation in MALDI: insights from kinetic and ion yield studies.

    PubMed

    Moon, Jeong Hee; Yoon, Sohee; Bae, Yong Jin; Kim, Myung Soo

    2015-01-01

    Insights on mechanisms for the generation of gas-phase peptide ions and their dissociation in matrix-assisted laser desorption ionization (MALDI) gained from the kinetic and ion yield studies are presented. Even though the time-resolved photodissociation technique was initially used to determine the dissociation kinetics of peptide ions and their effective temperature, it was replaced by a simpler method utilizing dissociation yields from in-source decay (ISD) and post-source decay (PSD). The ion yields for a matrix and a peptide were measured by repeatedly irradiating a region on a sample and collecting ion signals until the sample in the region was completely depleted. Matrix- and peptide-derived gas-phase cations were found to be generated by pre-formed ion emission or by ion-pair emission followed by anion loss, but not by laser-induced ionization. The total number of ions, that is, matrix plus peptide, was found to be equal to the number of ions emitted from a pure matrix. A matrix plume was found to cool as it expanded, from around 800-1,000 K to 400-500 K. Dissociation of peptide ions along b/y channels was found to occur statistically, that is, following RRKM behavior. Small critical energy (E0  = 0.6-0.7 eV) and highly negative critical entropy (ΔS(‡)  = -30 to -25 eu) suggested that the transition structure was stabilized by multiple intramolecular interactions. PMID:24863621

  3. Nutrient Uptake by Microorganisms according to Kinetic Parameters from Theory as Related to Cytoarchitecture

    PubMed Central

    Button, D. K.

    1998-01-01

    The abilities of organisms to sequester substrate are described by the two kinetic constants specific affinity, a°, and maximal velocity Vmax. Specific affinity is derived from the frequency of substrate-molecule collisions with permease sites on the cell surface at subsaturating concentrations of substrates. Vmax is derived from the number of permeases and the effective residence time, τ, of the transported molecule on the permease. The results may be analyzed with affinity plots (v/S versus v, where v is the rate of substrate uptake), which extrapolate to the specific affinity and are usually concave up. A third derived parameter, the affinity constant KA, is similar to KM but is compared to the specific affinity rather than Vmax  and is defined as the concentration of substrate necessary to reduce the specific affinity by half. It can be determined in the absence of a maximal velocity measurement and is equal to the Michaelis constant for a system with hyperbolic kinetics. Both are taken as a measure of τ, with departure of KM from KA being affected by permease/enzyme ratios. Compilation of kinetic data indicates a 108-fold range in specific affinities and a smaller (103-fold) range in Vmax values. Data suggest that both specific affinities and maximal velocities can be underestimated by protocols which interrupt nutrient flow prior to kinetic analysis. A previously reported inverse relationship between specific affinity and saturation constants was confirmed. Comparisons of affinities with ambient concentrations of substrates indicated that only the largest a°S values are compatible with growth in natural systems. PMID:9729603

  4. Accounting for the kinetics in order parameter analysis: Lessons from theoretical models and a disordered peptide

    NASA Astrophysics Data System (ADS)

    Berezovska, Ganna; Prada-Gracia, Diego; Mostarda, Stefano; Rao, Francesco

    2012-11-01

    Molecular simulations as well as single molecule experiments have been widely analyzed in terms of order parameters, the latter representing candidate probes for the relevant degrees of freedom. Notwithstanding this approach is very intuitive, mounting evidence showed that such descriptions are inaccurate, leading to ambiguous definitions of states and wrong kinetics. To overcome these limitations a framework making use of order parameter fluctuations in conjunction with complex network analysis is investigated. Derived from recent advances in the analysis of single molecule time traces, this approach takes into account the fluctuations around each time point to distinguish between states that have similar values of the order parameter but different dynamics. Snapshots with similar fluctuations are used as nodes of a transition network, the clusterization of which into states provides accurate Markov-state-models of the system under study. Application of the methodology to theoretical models with a noisy order parameter as well as the dynamics of a disordered peptide illustrates the possibility to build accurate descriptions of molecular processes on the sole basis of order parameter time series without using any supplementary information.

  5. Sparsity Constrained Mixture Modeling for the Estimation of Kinetic Parameters in Dynamic PET

    PubMed Central

    Lin, Yanguang; Haldar, Justin P.; Li, Quanzheng; Conti, Peter S.; Leahy, Richard M.

    2013-01-01

    The estimation and analysis of kinetic parameters in dynamic PET is frequently confounded by tissue heterogeneity and partial volume effects. We propose a new constrained model of dynamic PET to address these limitations. The proposed formulation incorporates an explicit mixture model in which each image voxel is represented as a mixture of different pure tissue types with distinct temporal dynamics. We use Cramr-Rao lower bounds to demonstrate that the use of prior information is important to stabilize parameter estimation with this model. As a result, we propose a constrained formulation of the estimation problem that we solve using a two-stage algorithm. In the first stage, a sparse signal processing method is applied to estimate the rate parameters for the different tissue compartments from the noisy PET time series. In the second stage, tissue fractions and the linear parameters of different time activity curves are estimated using a combination of spatial-regularity and fractional mixture constraints. A block coordinate descent algorithm is combined with a manifold search to robustly estimate these parameters. The method is evaluated with both simulated and experimental dynamic PET data. PMID:24216681

  6. Determination of the kinetic parameters of BeO using isothermal decay method.

    PubMed

    Nieto, Juan Azorin; Vega, Claudia Azorin; Montalvo, Teodoro Rivera; Cabrera, Eugenio Torijano

    2016-02-01

    Most of the existing methods for obtaining the frequency factors make use of the trap depth (activation energy) making some assumptions about the order of the kinetics. This causes inconsistencies in the reported values of trapping parameters due that the values of the activation energy obtained by different methods differ appreciably among them. Then, it is necessary to use a method independent of the trap depth making use of the isothermal luminescence decay (ILD) method. The trapping parameters associated with the prominent glow peak of BeO (280°C) are reported using ILD method. As a check, the trap parameters are also calculated by glow curve shape (Chen's) method after isolating the prominent glow peak by thermal cleaning technique. Our results show a very good agreement between the trapping parameters calculated by the two methods. ILD method was used for determining the trapping parameters of BeO. Results obtained applying this method are in good agreement with those obtained using other methods, except in the value of the frequency factor. PMID:26656428

  7. Parameters and kinetics of olive mill wastewater dephenolization by immobilized Rhodotorula glutinis cells.

    PubMed

    Bozkoyunlu, Gaye; Takaç, Serpil

    2014-01-01

    Olive mill wastewater (OMW) with total phenol (TP) concentration range of 300-1200 mg/L was treated with alginate-immobilized Rhodotorula glutinis cells in batch system. The effects of pellet properties (diameter, alginate concentration and cell loading (CL)) and operational parameters (initial TP concentration, agitation rate and reusability of pellets) on dephenolization of OMW were studied. Up to 87% dephenolization was obtained after 120 h biodegradations. The utilization number of pellets increased with the addition of calcium ions into the biodegradation medium. The overall effectiveness factors calculated for different conditions showed that diffusional limitations arising from pellet size and pellet composition could be neglected. Mass transfer limitations appeared to be more effective at high substrate concentrations and low agitation rates. The parameters of logistic model for growth kinetics of R. glutinis in OMW were estimated at different initial phenol concentrations of OMW by curve-fitting of experimental data with the model. PMID:25244135

  8. Local field potentials in primate motor cortex encode grasp kinetic parameters.

    PubMed

    Milekovic, Tomislav; Truccolo, Wilson; Grn, Sonja; Riehle, Alexa; Brochier, Thomas

    2015-07-01

    Reach and grasp kinematics are known to be encoded in the spiking activity of neuronal ensembles and in local field potentials (LFPs) recorded from primate motor cortex during movement planning and execution. However, little is known, especially in LFPs, about the encoding of kinetic parameters, such as forces exerted on the object during the same actions. We implanted two monkeys with microelectrode arrays in the motor cortical areas MI and PMd to investigate encoding of grasp-related parameters in motor cortical LFPs during planning and execution of reach-and-grasp movements. We identified three components of the LFP that modulated during grasps corresponding to low (0.3-7Hz), intermediate (~10-~40Hz) and high (~80-250Hz) frequency bands. We show that all three components can be used to classify not only grip types but also object loads during planning and execution of a grasping movement. In addition, we demonstrate that all three components recorded during planning or execution can be used to continuously decode finger pressure forces and hand position related to the grasping movement. Low and high frequency components provide similar classification and decoding accuracies, which were substantially higher than those obtained from the intermediate frequency component. Our results demonstrate that intended reach and grasp kinetic parameters are encoded in multiple LFP bands during both movement planning and execution. These findings also suggest that the LFP is a reliable signal for the control of parameters related to object load and applied pressure forces in brain-machine interfaces. PMID:25869861

  9. A computer program for enzyme kinetics that combines model discrimination, parameter refinement and sequential experimental design.

    PubMed Central

    Franco, R; Gavald, M T; Canela, E I

    1986-01-01

    A method of model discrimination and parameter estimation in enzyme kinetics is proposed. The experimental design and analysis of the model are carried out simultaneously and the stopping rule for experimentation is deduced by the experimenter when the probabilities a posteriori indicate that one model is clearly superior to the rest. A FORTRAN77 program specifically developed for joint designs is given. The method is very powerful, as indicated by its usefulness in the discrimination between models. For example, it has been successfully applied to three cases of enzyme kinetics (a single-substrate Michaelian reaction with product inhibition, a single-substrate complex reaction and a two-substrate reaction). By using this method the most probable model and the estimates of the parameters can be obtained in one experimental session. The FORTRAN77 program is deposited as Supplementary Publication SUP 50134 (19 pages) at the British Library (Lending Division), Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1986) 233, 5. PMID:3800965

  10. A State Space Transformation Can Yield Identifiable Models for Tracer Kinetic Studies with Enrichment Data

    PubMed Central

    Ramakrishnan, Rajasekhar; Ramakrishnan, Janak D.

    2012-01-01

    Tracer studies are analyzed almost universally by multicompartmental models where the state variables are tracer amounts or activities in the different pools. The model parameters are rate constants, defined naturally by expressing fluxes as fractions of the source pools. We consider an alternative state space with tracer enrichments or specific activities as the state variables, with the rate constants redefined by expressing fluxes as fractions of the destination pools. Although the redefinition may seem unphysiological, the commonly computed fractional synthetic rate actually expresses synthetic flux as a fraction of the product mass (destination pool). We show that, for a variety of structures, provided the structure is linear and stationary, the model in the enrichment state space has fewer parameters than that in the activities state space, and is hence better both to study identifiability and to estimate parameters. The superiority of enrichment modeling is shown for structures where activity model unidentifiability is caused by multiple exit pathways; on the other hand, with a single exit pathway but with multiple untraced entry pathways, activity modeling is shown to be superior. With the present-day emphasis on mass isotopes, the tracer in human studies is often of a precursor, labeling most or all entry pathways. It is shown that for these tracer studies, models in the activities state space are always unidentifiable when there are multiple exit pathways, even if the enrichment in every pool is observed; on the other hand, the corresponding models in the enrichment state space have fewer parameters and are more often identifiable. Our results suggest that studies with labeled precursors are modeled best with enrichments. PMID:20195911

  11. Kinetics of the reaction HO2 + NO2 + M yields HO2NO2 + M

    NASA Technical Reports Server (NTRS)

    Sander, S. P.; Peterson, M. E.

    1984-01-01

    The flash photolysis/ultraviolet absorption technique was used to measure the rate constants for the reaction HO2 + NO2 + M yields HO2NO2 + M over the pressure range 50-700 torr and temperature range 229-362 K using He, O2, and N2 as diluent gases. The data were fit to the expression derived by Troe (1979) and co-workers for describing the pressure and temperature dependence of reactions in the falloff region. By combining these data with recent measurements of the rate constant for HO2NO2 thermal decomposition values of 73.8 + or - 2 eu for the standard entropy and -12.6 + or - kcal/mol for the standard enthalpy of formation of HO2NO2 were obtained. A significant enhancement in the rate constant was observed when water vapor was added to the system.

  12. Kinetics of the reaction O + ClO yields Cl + O2

    NASA Technical Reports Server (NTRS)

    Leu, M.-T.

    1984-01-01

    The bimolecular rate constant for the reaction O + ClO yields Cl + O2 has been measured over the temperature range 236-422 K in a discharge flow system using atomic oxygen resonance fluorescence at 130 nm to monitor the decay of O in an excess of ClO. The results are found to be independent of the method used to produce the ClO radical. At 296 K, the rate constant is given by (3.6 + or - 0.7) x 10 to the -11th cu cm/sec and the temperature dependence expressed in Arrhenius form by k2 = (5.0 + or - 1.0) x 10 to the -11th exp-(96 + or - 20)/T cu cm/sec. The results are compared with earlier values, and the implications for stratospheric chemistry are discussed briefly.

  13. Growth kinetics and yield study on Chlorella pyrenoidosa in chemically defined media

    SciTech Connect

    Joung, J.J.; Akin, C.

    1983-01-01

    A Chlorella culture free from heterotrophic bacteria was obtained by eliminating the bacteria with successive use of antibiotics and agar plants. The purified Chlorella was cultured in chemically defined media. Under a photon flux (16.7 mw/cmS) similar to insolation, both heterotrophic and mixotrophic cultures were luxurious but the growth rates of autotrophic cultures were reduced substantially. The Chlorella culture grew most rapidly at 30 C in the absence of heterotrophic bacteria, and the highest specific growth rates were 1.43 x 10 h and 0.46 x 10 h for mixotrophic and autotrophic cultures, respectively. The highest photosynthetic efficiency over its growth period was 2.9% for autotrophic cultures. Elimination of heterotrophic bacteria from Chlorella cultures improved the algal growth rate as well as biomass yield significantly. A parasite of 0.1- m size was identified. The motile microorganism played an important role in the growth of the Chlorella and appeared to be common to green algae. 16 references, 2 tables.

  14. Kinetics and methane gas yields of selected C1 to C5 organic acids in anaerobic digestion.

    PubMed

    Yang, Yu; Chen, Qian; Guo, Jialiang; Hu, Zhiqiang

    2015-12-15

    Volatile fatty acids (VFAs) and other short-chain organic acids such as lactic and pyruvic acids are intermediates in anaerobic organic degradation. In this study, anaerobic degradation of seven organic acids in salt form was investigated, including formate (C1), acetate (C2), propionate (C3), pyruvate (C3), lactate (C3), butyrate (C4), and valerate (C5). Microbial growth kinetics on these organic acids were determined individually at 37 °C through batch anaerobic digestion tests by varying substrate concentrations from 250 to 4000 mg COD/L. The cumulative methane generation volume was determined real-time by respirometry coupled with gas chromatographic analysis while methane yield and related kinetics were calculated. The methane gas yields (fe, mg CH4 COD/mg substrate COD) from anaerobic degradation of formate, acetate, propionate, pyruvate, lactate, butyrate, and valerate were 0.44 ± 0.27, 0.58 ± 0.05, 0.53 ± 0.18, 0.24 ± 0.05, 0.17 ± 0.05, 0.43 ± 0.15, 0.49 ± 0.11, respectively. Anaerobic degradation of formate showed self-substrate inhibition at the concentrations above 3250 mg COD/L. Acetate, propionate, pyruvate, butyrate, lactate, and valerate did not inhibit methane production at the highest concentrations tested (i.e., 4000 mg COD/L). Microbes growing on acetate had the highest overall specific growth rate (0.30 d(-1)) in methane production. For comparison, the specific microbial growth rates on formate, propionate, pyruvate, butyrate, lactate, and valerate for methane production were 0.10, 0.06, 0.08, 0.07, 0.05, 0.15 d(-1), respectively. PMID:26397453

  15. Compost mixture influence of interactive physical parameters on microbial kinetics and substrate fractionation.

    PubMed

    Mohajer, Ardavan; Tremier, Anne; Barrington, Suzelle; Teglia, Cecile

    2010-01-01

    Composting is a feasible biological treatment for the recycling of wastewater sludge as a soil amendment. The process can be optimized by selecting an initial compost recipe with physical properties that enhance microbial activity. The present study measured the microbial O(2) uptake rate (OUR) in 16 sludge and wood residue mixtures to estimate the kinetics parameters of maximum growth rate mu(m) and rate of organic matter hydrolysis K(h), as well as the initial biodegradable organic matter fractions present. The starting mixtures consisted of a wide range of moisture content (MC), waste to bulking agent (BA) ratio (W/BA ratio) and BA particle size, which were placed in a laboratory respirometry apparatus to measure their OUR over 4 weeks. A microbial model based on the activated sludge process was used to calculate the kinetic parameters and was found to adequately reproduced OUR curves over time, except for the lag phase and peak OUR, which was not represented and generally over-estimated, respectively. The maximum growth rate mu(m), was found to have a quadratic relationship with MC and a negative association with BA particle size. As a result, increasing MC up to 50% and using a smaller BA particle size of 8-12 mm was seen to maximize mu(m). The rate of hydrolysis K(h) was found to have a linear association with both MC and BA particle size. The model also estimated the initial readily biodegradable organic matter fraction, MB(0), and the slower biodegradable matter requiring hydrolysis, MH(0). The sum of MB(0) and MH(0) was associated with MC, W/BA ratio and the interaction between these two parameters, suggesting that O(2) availability was a key factor in determining the value of these two fractions. The study reinforced the idea that optimization of the physical characteristics of a compost mixture requires a holistic approach. PMID:20395122

  16. {sup 82}Rb kinetic parameter variability due to depth of anesthesia in the anesthetized canine

    SciTech Connect

    Coxson, P.G.; Brennan, K.M.; Yang, L.

    1995-05-01

    The effect of {open_quotes}depth of anesthesia{close_quotes} on {sup 82}Rb kinetic parameter estimates in the myocardium was tested in a series of replicated studies on six dogs using the Donner 600-Crystal Positron Tomograph. A single lateral slice through the myocardium was imaged following each of four successive injections of {sup 82}Rb. For three of the injections the animals were lightly anesthetized (mean blood pressure about 90 mmHg). For the second injection, the amount of anesthetic was increased until blood pressure dipped to about 70 mHg. The fourth injection was preceded by an infusion of dipyridamole to induce a stress-state. The entire sequence was repeated at least twice with each of the six animals. A two compartment model with parameters k{sub 1} (uptake rate), k{sub 2} (wash-out rate), and f{sub v} (vascular fraction) was fit to the data. There was a consistent finding of a 20% to 30% decrease in k{sub 1} during the deeply anesthetized state compared with the two lightly anesthetized rest states. Analysis of variance showed that the difference observed is significant, though small in comparison with the difference between the rest and stress states (60% to 160% increase). The difference between the two lightly anesthetized states was not significant. Kinetic PET studies using dogs are routinely carried out with the animal anesthetized. Depth of anesthesia has been suspected as as source of variability in parameter estimates, but this conjecture has not previously been systematically investigated. These studies at extremes in the depth of anesthesia show a small but predictable effect on the uptake k{sub 1} of {sup 82}Rb.

  17. The role of test parameters on the kinetics and thermodynamics of glass leaching. [None

    SciTech Connect

    Jantzen, C M

    1988-01-01

    The relative durabilities of nuclear waste, natural, and ancient glasses have been assessed by standard laboratory leach tests. Different test conditions result in different glass surface areas (SA), leachant volumes (V), and test durations (t). Leachate concentrations are known to be a parabolic function of the kinetic test parameter SAV/center dot/t. Based on durability experiments of glass monoliths at low (SAV)/center dot/ glass durability has been shown to be a logarithmic function of the thermodynamic hydration free energy, ..delta..G/sub hyd/. The thermodynamic hydration free energy, ..delta..G/sub hyd/, can be calculated from glass composition and solution pH. In the repository environment high effective glass surface areas to solution volume ratios may occur as a result of slow groundwater flow rates. The application of hydration thermodynamics to crushed glass, high (SAV)/center dot/t, durability tests has been demonstrated. The relative contributions of the kinetic test parameters, (SAV)/center dot/t, and the thermodynamic parameter, ..delta..G/sub hyd/, have been shown to define a plane in ..delta..G/sub hyd/-concentration-(SAV)/center dot/t space. At constant test conditions, e.g. constant (SAV/center dot/t, the intersection with this surface indicates that all /delta G//sub hyd/-concentration plots should have similar slopes and predict the same relative durabilities for various glasses as a function of glass composition. Using this approach, the durability of nuclear waste glasses has been interpolated to be -- 10/sup 6/ years and no less than 10/sup 3/ years. 28 refs., 24 figs.

  18. Chemical kinetics parameters and model validation for the gasification of PCEA nuclear graphite

    SciTech Connect

    El-Genk, Mohamed S; Tournier, Jean-Michel; Contescu, Cristian I

    2014-01-01

    A series of gasification experiments, using two right cylinder specimens (~ 12.7 x 25.4 mm and 25.4 x 25.4 mm) of PCEA nuclear graphite in ambient airflow, measured the total gasification flux at weight losses up to 41.5% and temperatures (893-1015 K) characteristics of those for in-pores gasification Mode (a) and in-pores diffusion-limited Mode (b). The chemical kinetics parameters for the gasification of PCEA graphite are determined using a multi-parameters optimization algorithm from the measurements of the total gasification rate and transient weight loss in experiments. These parameters are: (i) the pre-exponential rate coefficients and the Gaussian distributions and values of specific activation energies for adsorption of oxygen and desorption of CO gas; (ii) the specific activation energy and pre-exponential rate coefficient for the breakup of stable un-dissociated C(O2) oxygen radicals to form stable (CO) complexes; (iii) the specific activation energy and pre-exponential coefficient for desorption of CO2 gas and; (iv) the initial surface area of reactive free sites per unit mass. This area is consistently 13.5% higher than that for nuclear graphite grades of NBG-25 and IG-110 and decreases inversely proportional with the square root of the initial mass of the graphite specimens in the experiments. Experimental measurements successfully validate the chemical-reactions kinetics model that calculates continuous Arrhenius curves of the total gasification flux and the production rates of CO and CO2 gases. The model results at different total weight losses agree well with measurements and expand beyond the temperatures in the experiments to the diffusion-limited mode of gasification. Also calculated are the production rates of CO and CO2 gases and their relative contributions to the total gasification rate in the experiments as functions of temperature, for total weight losses of 5% and 10%.

  19. Kinetics of the reaction OH + HO2 yields H2O + O2 at 296 K

    NASA Technical Reports Server (NTRS)

    Sridharan, U. C.; Kaufman, F.; Qiu, L. X.

    1981-01-01

    The rate constant of the title reaction was measured in a discharge-flow reactor by addition of excess HO2 from a movable double injector to a gas stream containing small concentrations of OH. The concentration of OH was measured by laser-induced fluorescence, HO2 by conversion to OH, and H and O by vacuum-UV resonance fluorescence. Five sets of experiments, each with different excess concentration of HO2, gave an average rate constant of (7.5 + or - 1.2) x 10 to the -11th cu cm/s where the error limits (single sigma) include uncertainties of all experimental parameters. This result is compared with other findings and is discussed in terms of its importance in stratospheric chemistry and in rate theory.

  20. Decay kinetics of the excited S{sub 1} state of the cyanine dye Cy{sup +}I{sup -} (thiacarbocyanine iodide): The computation of quantum yields for different pathways

    SciTech Connect

    Odinokov, A. V.; Basilevsky, M. V.; Petrov, N. Kh.

    2011-10-14

    This work explains the unordinary solvent effect which was observed in the photochemical decay kinetics for the cyanine dye thiacarbocyanine iodide (Cy{sup +}I{sup -}) in binary solvent mixtures toluene/dimethylsulfoxide. The interpretation is formulated in terms of the probability density F(R) describing the distribution of interionic distances R in the ion pair Cy{sup +}I{sup -} and depending on the solvent composition. The proper normalization of this distribution is expressed via the degree of association {alpha} for the ion pair in a given solvent mixture. The {alpha} values are, in turn, extracted by means of the mass action law from the ionic association constants computed in a separate publication. The detailed kinetic scheme includes the empirical parametrization of the R-dependent kinetic constants for different decay channels. The multiparameter fitting procedure represents, with the reasonable parameter values, the dependence of the observed quantum yields on the solvent composition.

  1. Does Vibration Warm-up Enhance Kinetic and Temporal Sprint Parameters?

    PubMed

    Cochrane, D J; Cronin, M J; Fink, P W

    2015-08-01

    The aim of this study was to investigate the efficacy of vibration warm-up to enhance sprint performance. 12 males involved in representative team sports performed 4 warm-up conditions in a randomised order performed at least 24 h apart; VbX warm-up (VbX-WU); Neural activation warm-up (Neu-WU); Dynamic warm-up (Dyn-WU) and Control (No VbX). Participants completed 5 m sprint at 30 s, 2:30 min and 5 min post warm-up where sprint time, kinetics, and temporal components were recorded. There was no significant (p>0.05) main effect or interaction effect between the split sprint times of 1 m, 2.5 m, and 5 m. There was a condition effect where vertical mean force was significantly higher (p<0.05) in Dyn-WU and Control compared to Neu-WU. No other significant (p>0.05) main and interaction effects in sprint kinetic and temporal parameters existed. Overall, all 4 warm-up conditions produced comparable results for sprint performance, and there was no detrimental effect on short-duration sprint performance using VbX-WU. Therefore, VbX could be useful for adding variety to the training warm-up or be included into the main warm-up routine as a supplementary modality. PMID:25837247

  2. Determination of kinetic parameters of Phlomis bovei de Noé using thermogravimetric analysis.

    PubMed

    Yahiaoui, Meriem; Hadoun, Hocine; Toumert, Idir; Hassani, Aicha

    2015-11-01

    This paper reports the pyrolysis study of Phlomis bovei biomass by thermogravimetric experiments in order to determine the thermal degradation behavior and kinetic parameters. The weight losses were found to occur in three stages. In the DTG thermograms, an increase of the heating rate tended to delay thermal degradation processes towards higher temperatures. The average values of activation energy and pre-exponential factor calculated from Ozawa-Flynn-Wall, Kissinger-Akahira-Sunose and Kissinger methods are 134.83, 134.06, 223.31kJ/mol and 4.1610(13), 1.1810(10), 2.8110(11)/s, respectively. The three-pseudo-component method shows that the activation energy increases with increasing the heating rate for hemicellulose and cellulose while the activation energy of the lignin decreased with an increase of the heating rate. Predicted results and experimental data exhibit similar tendencies and the three pseudo-components model with n different from unity 1 is recommended as the most suitable for prediction of kinetic behavior of Phlomis bovei de Noé. PMID:26276095

  3. Mass Yields and Average Total Kinetic Energy Release in Fission for 235U, 238U, and 239Pu

    NASA Astrophysics Data System (ADS)

    Duke, Dana

    2015-10-01

    Mass yield distributions and average total kinetic energy (TKE) in neutron induced fission of 235U, 238U, and 239Pu targets were measured with a gridded ionization chamber. Despite decades of fission research, our understanding of how fragment mass yields and TKE depend on incident neutron energy is limited, especially at higher energies (above 5-10 MeV). Improved accuracy in these quantities is important for nuclear technology as it enhances our simulation capabilities and increases the confidence in diagnostic tools. The data can also guide and validate theoretical fission models where the correlation between the fragment mass and TKE is of particular value for constraining models. The Los Alamos Neutron Science Center - Weapons Neutron Research (LANSCE - WNR) provides a neutron beam with energies from thermal to hundreds of MeV, well-suited for filling in the gaps in existing data and exploring fission behavior in the fast neutron region. The results of the studies on target nuclei 235U, 238U, and 239Pu will be presented with a focus on exploring data trends as a function of neutron energy from thermal through 30 MeV. Results indicate clear evidence of structure due to multi-chance fission in the TKE . LA-UR-15-24761.

  4. Interactions of viruses in Cowpea: effects on growth and yield parameters

    PubMed Central

    Kareem, KT; Taiwo, MA

    2007-01-01

    The study was carried out to investigate the effects of inoculating three cowpea cultivars: "OLO II", "OLOYIN" and IT86D-719 with three unrelated viruses: Cowpea aphid-borne mosaic virus (CABMV), genus Potyvirus, Cowpea mottle virus (CMeV), genus Carmovirus and Southern bean mosaic virus (SBMV), genus Sobemovirus singly and in mixture on growth and yield of cultivars at 10 and 30 days after planting (DAP). Generally, the growth and yield of the buffer inoculated control plants were significantly higher than those of the virus inoculated plants. Inoculation of plants at an early age of 10 DAP resulted in more severe effect than inoculations at a later stage of 30 DAP. The average values of plant height and number of leaves produced by plants inoculated 30 DAP were higher than those produced by plants inoculated 10 DAP. Most of the plants inoculated 10 DAP died and did not produce seeds. However, " OLOYIN" cultivar was most tolerant and produced reasonable yields when infected 30 DAP. The effect of single viruses on growth and yield of cultivars showed that CABMV caused more severe effects in IT86D-719, SBMV had the greatest effect on "OLO II" while CMeV induced the greatest effect on "OLOYIN". Yield was greatly reduced in double infections involving CABMV in combination with either CMeV or SBMV in "OLOYIN" and "OLO II", however, there was complete loss in yield of IT86D-719. Triple infection led to complete yield loss in all the three cultivars. PMID:17286870

  5. Estimates of genetic parameters for Holstein cows for test-day yield traits with a random regression cubic spline model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic parameters were estimated with REML for individual test-day milk, fat, and protein yields and SCS with a random regression cubic spline model. Test-day records of Holstein cows that calved from 1994 through early 1999 were obtained from Dairy Records Management Systems in Raleigh, North Car...

  6. ESTIMATES OF GENETIC PARAMETERS FOR FIRST LACTATION TEST-DAY YIELDS OF HOLSTEIN COWS WITH A CUBIC SPLINE MODEL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective was to estimate genetic parameters for individual test-day milk, fat, and protein yields with a cubic spline model. A total of 196,687 test-day records in the first 305-d of 38,172 first lactation Holstein cows that calved between 1994 and early 1999 were obtained from Dairy Records Ma...

  7. Kinetic study of the anaerobic biodegradation of alkyl polyglucosides and the influence of their structural parameters.

    PubMed

    Ríos, Francisco; Fernández-Arteaga, Alejandro; Lechuga, Manuela; Jurado, Encarnación; Fernández-Serrano, Mercedes

    2016-05-01

    This paper reports a study of the anaerobic biodegradation of non-ionic surfactants alkyl polyglucosides applying the method by measurement of the biogas production in digested sludge. Three alkyl polyglucosides with different length alkyl chain and degree of polymerization of the glucose units were tested. The influence of their structural parameters was evaluated, and the characteristics parameters of the anaerobic biodegradation were determined. Results show that alkyl polyglucosides, at the standard initial concentration of 100 mgC L(-1), are not completely biodegradable in anaerobic conditions because they inhibit the biogas production. The alkyl polyglucoside having the shortest alkyl chain showed the fastest biodegradability and reached the higher percentage of final mineralization. The anaerobic process was well adjusted to a pseudo first-order equation using the carbon produced as gas during the test; also, kinetics parameters and a global rate constant for all the involved metabolic process were determined. This modeling is helpful to evaluate the biodegradation or the persistence of alkyl polyglucosides under anaerobic conditions in the environment and in the wastewater treatment. PMID:26820643

  8. Characterization of DuPont photopolymer: determination of kinetic parameters in a diffusion model

    NASA Astrophysics Data System (ADS)

    Moreau, Vincent; Renotte, Yvon; Lion, Yves

    2002-06-01

    We investigate the recording dynamics of Omnidex photopolymer film from DuPont. We use a reviewed version of the diffusion model proposed by Zhao and Mouroulis [J. Mod. Opt. 41, 1929 (1994)] in order to describe the recording response that combined photopolymerization and free-monomer diffusion process. Two different experiments are detailed that lead to the determination of material kinetic parameters. These values are introduced in the numerical model to provide quantitative simulations of a grating formation under various holographic exposures. Theoretical results are experimentally checked as a validation of the model. We extend its applications to several secondary investigations, such as volume-shrinkage influence on refractive-index distribution and spectral selectivity of reflection gratings. This study improves the understanding of the recording process and consequently allows to build more accurate holographic components in this material to be built.

  9. Characterization of dupont photopolymer: determination of kinetic parameters in a diffusion model.

    PubMed

    Moreau, Vincent; Renotte, Yvon; Lion, Yves

    2002-06-10

    We investigate the recording dynamics of Omnidex photopolymer film from DuPont. We use a reviewed version of the diffusion model proposed by Zhao and Mouroulis [J. Mod. Opt. 41, 1929 (1994)] in order to describe the recording response that combined photopolymerization and free-monomer diffusion process. Two different experiments are detailed that lead to the determination of material kinetic parameters. These values are introduced in the numerical model to provide quantitative simulations of a grating formation under various holographic exposures. Theoretical results are experimentally checked as a validation of the model. We extend its applications to several secondary investigations, such as volume-shrinkage influence on refractive-index distribution and spectral selectivity of reflection gratings. This study improves the understanding of the recording process and consequently allows to build more accurate holographic components in this material to be built. PMID:12074514

  10. pH dependency of kinetic parameters and reaction mechanism of beef liver catalase.

    PubMed

    Abe, K; Makino, N; Anan, F K

    1979-02-01

    The pH-dependence of the kinetic parameters in H2O2 decomposition by beef liver catalase was investigated. At pH 7.0, the ternary complex (ESS) decomposition rate was about 100 times faster than ESS formation (42 microM H2O2), and the value of the Michaelis constant was 0.025 M. From ethanol competition experiments, two different proton dissociation constants of the enzyme (pKe1 = 5.0, pKes2 = 5.9) were obtained for the binding of first and second H2O2 molecules. Another pKa value (pKes1) of 4.2 was obtained from the pH dependence of overall rate constant (ko). The reaction mechanism of catalase was discussed in relation to these ionizable groups. PMID:33977

  11. Synergistic improvement of gas sensing performance by micro-gravimetrically extracted kinetic/thermodynamic parameters.

    PubMed

    Guo, Shuanbao; Xu, Pengcheng; Yu, Haitao; Cheng, Zhenxing; Li, Xinxin

    2015-03-10

    A novel method is explored for comprehensive design/optimization of organophosphorus sensing material, which is loaded on mass-type microcantilever sensor. Conventionally, by directly observing the gas sensing response, it is difficult to build quantitative relationship with the intrinsic structure of the material. To break through this difficulty, resonant cantilever is employed as gravimetric tool to implement molecule adsorption experiment. Based on the sensing data, key kinetic/thermodynamic parameters of the material to the molecule, including adsorption heat -ΔH°, adsorption/desorption rate constants Ka and Kd, active-site number per unit mass N' and surface coverage θ, can be quantitatively extracted according to physical-chemistry theories. With gaseous DMMP (simulant of organophosphorus agents) as sensing target, the optimization route for three sensing materials is successfully demonstrated. Firstly, a hyper-branched polymer is evaluated. Though suffering low sensitivity due to insufficient N', the bis(4-hydroxyphenyl)-hexafluoropropane (BHPF) sensing-group exhibits satisfactory reproducibility due to appropriate -ΔH°. To achieve more sensing-sites, KIT-5 mesoporous-silica with higher surface-area is assessed, resulting in good sensitivity but too high -ΔH° that brings poor repeatability. After comprehensive consideration, the confirmed BHPF sensing-group is grafted on the KIT-5 carrier to form an optimized DMMP sensing nanomaterial. Experimental results indicate that, featuring appropriate kinetic/thermodynamic parameters of -ΔH°, Ka, Kd, N' and θ, the BHPF-functionalized KIT-5 mesoporous silica exhibits synergistic improvement among reproducibility, sensitivity and response/recovery speed. The optimized material shows complete signal recovery, 55% sensitivity improvement than the hyper-branched polymer and 2∼3 folds faster response/recovery speed than the KIT-5 mesoporous silica. PMID:25732312

  12. Kinetic and temporospatial parameters in male and female cats walking over a pressure sensing walkway

    PubMed Central

    2013-01-01

    Background Several factors may influence kinetic data measurements, including body conformation and body mass. In addition, gender differences in gait pattern have been observed in healthy humans. Therefore, the aim of this study was to compare the kinetic and temporospatial parameters in clinically healthy male and female cats using a pressure-sensitive walkway. Eighteen crossbreed adult cats were divided into two groups: G1 had ten male cats (nine neutered) aged from 1 to 4 years and body mass 3.1-6.8 kg; G2 had eight spayed female cats, aged from 1 to 6 years and body mass 3.3-4.75 kg. The data from the first five valid trials were collected for each cat. A trial was considered valid if the cat maintained a velocity between 0.54-0.74 m/s and acceleration from -0.20 to 0.20 m/s2. The peak vertical force (PVF), vertical impulse (VI), gait cycle time, stance time, swing time, stride length, and percentage body weight distribution among the four limbs were determined. In addition, the lengths of each forelimb and each hind limb were measured using a tape with the animal standing. Results No significant differences were observed in each group in either the forelimbs or the hind limbs or between the left and right sides for any of the variables. For both groups, the PVF (%BW), the VI, and the percentage body weight distribution were higher at the forelimbs than the hind limbs. The stride length was larger for males; however, the other kinetic and temporospatial variables did not show any statistically significant differences between the groups. The lengths of the forelimbs and hind limbs were larger in the male cats. There was a significant moderate positive correlation between the stride length and the length of the limbs. Conclusions In conclusion, the only difference observed between male and female cats was the stride length, and this was due to the greater body size of male cats. This difference did not affect other temporospatial or kinetics variables. PMID:23803220

  13. Aqueous oxidation of green leaf volatiles by hydroxyl radical as a source of SOA: Kinetics and SOA yields

    NASA Astrophysics Data System (ADS)

    Richards-Henderson, Nicole K.; Hansel, Amie K.; Valsaraj, Kalliat T.; Anastasio, Cort

    2014-10-01

    Green leaf volatiles (GLVs) are a class of oxygenated hydrocarbons released from vegetation, especially during mechanical stress or damage. The potential for GLVs to form secondary organic aerosol (SOA) via aqueous-phase reactions is not known. Fog events over vegetation will lead to the uptake of GLVs into water droplets, followed by aqueous-phase reactions with photooxidants such as the hydroxyl radical (OH). In order to determine if the aqueous oxidation of GLVs by OH can be a significant source of secondary organic aerosol, we studied the partitioning and reaction of five GLVs: cis-3-hexen-1-ol, cis-3-hexenyl acetate, methyl salicylate, methyl jasmonate, and 2-methyl-3-butene-2-ol. For each GLV we measured the kinetics of aqueous oxidation by OH, and the corresponding SOA mass yield. The second-order rate constants for GLVs with OH were all near diffusion controlled, (5.4-8.6) × 109 M-1 s-1 at 298 K, and showed a small temperature dependence, with an average activation energy of 9.3 kJ mol-1 Aqueous-phase SOA mass yields ranged from 10 to 88%, although some of the smaller values were not statistically different from zero. Methyl jasmonate was the most effective aqueous-phase SOA precursor due to its larger Henry's law constant and high SOA mass yield (68 ± 8%). While we calculate that the aqueous-phase SOA formation from the five GLVs is a minor source of aqueous-phase SOA, the availability of other GLVs, other oxidants, and interfacial reactions suggest that GLVs overall might be a significant source of SOA via aqueous reactions.

  14. Genetic Parameters And Selection Response For Yield Traits In Bread Wheat Under Irrigated And Rainfed Environments

    NASA Astrophysics Data System (ADS)

    Khalil, Iftikhar Hussain; at-ur-Rahman, Hiday; Khan, Imran

    2008-01-01

    A set of 22 F5:7 experimental wheat lines along with four check cultivars (Dera-98, Fakhr-e-Sarhad, Ghaznavi-98 and Tatara) were evaluated as independent experiments under irrigated and rainfed environments using a randomized complete block design at NWFP Agricultural University, Peshawar during 2004-05. The two environments were statistically different for days to heading and spike length only. Highly significant genetic variability existed among the wheat lines (P<0.01) in the combined analysis across environments for all traits. Genotype×environment interactions were non-significant for all traits except 1000-grain weight indicating consistent performance of wheat genotypes across the two environments. Wheat lines and check cultivars were 2 to 5 days early in heading under rainfed environment compared to the irrigated. Plant height, spike length, 1000-grain weight, biological and grain yields were generally reduced under rainfed environment. Genetic variances were of greater magnitude than environmental variances for most of the traits in both environments. The heritability estimates were of higher magnitude (0.74 to 0.96) for days to heading, plant height, spike length, biological and grain yield, while medium (0.31 to 0.51) for 1000-grain weight. Selection differentials were negative for heading (-7.3 days in irrigated vs -9.4 days in rainfed) and plant height (-9.0 cm in irrigated vs -8.7 cm in rainfed) indicating possibility of selecting wheat genotypes with early heading and short plant stature. Positive selection differentials of 1.3 vs 1.6 cm for spike length, 3.8 vs 3.4 g for 1000-grain weight, 2488.2 vs 3139.7 kg ha-1 for biological yield and 691.6 vs 565.4 kg ha-1 for grain yield at 20% selection intensity were observed under irrigated and rainfed environments, respectively. Expected selection responses were 7.98 vs 8.91 days for heading, 8.20 vs 9.52 cm for plant height, 1.01 vs 1.61 cm for spike length, 2.12 vs 1.15 g for 1000-grain weight, 1655.8 vs 2317.2 kg ha-1 for biological yield and 691.6 vs 565.4 kg ha-1 for grain yield under the two test environments, respectively. The differential heritability and selection responses for yield and related traits suggest the simultaneous evaluation and selection of wheat lines under the two environments.

  15. Mainz Organics Mechanism (MOM): description and sensitivity to some estimated kinetic parameters

    NASA Astrophysics Data System (ADS)

    Taraborrelli, Domenico; Cabrera Perez, David; Sander, Rolf; Pozzer, Andrea

    2015-04-01

    Despite decades of reasearch, global atmospheric chemistry models still have significant biases compared to the estimated distribution and evolution of tropospheric ozone and hydroxyl radical. The gas-phase oxidation of volatile organic compounds (VOC) is acknowledged to play an important role among the processes affecting tropospheric ozone, methane lifetime and aerosol evolution. Thus, chemical mechanisms of very diverse complexity have been developed for the major VOCs. However, all mechanisms present shortcomings such as neglection or lumping of intermediates and estimate of many rate constants and product distributions. Here, we present a VOC oxidation mechanism of intermediate complexity called the Mainz Organics Mechanism (MOM). With about 400 species and 1500 reactions, it represents the oxidation of about 20 primarily emitted VOCs comprising small alkanes and alkenes, isoprene, pinenes and monocyclic aromatic compounds. The development protocol significantly borrows from the Master Chemical Mechanism (MCM). However, MOM distinguishes itself for a number of features. First, the structure activity relationship for estimating the rate constants involving hydroxyl radical is site-specific and dependent on temperature. Second, the alkyl nitrate yields are considered to be dependent on temperature, pressure and molecular structure. RO2 + HO2 reaction kinetics is consistent with the recent direct studies of \\chem{OH}-reformation. Isoprene chemistry includes the latest experimental advancements with respect to OH-recycling and alkyl nitrate chemistry. Pinenes chemistry is largely the one by the MCM but with some modifications according to the work of the Leuven's group. Finally, the chemistry of the aromatics is also borrowed from the MCM but with additional photolysis of ortho-nitrophenols leading to \\chem{HONO} formation. The sensitivity of the model to the temperature and pressure dependence of estimated \\chem{OH} rate constants and alkyl nitrate yields will be investigated and its impact on tropospheric ozone distribution will be shown.

  16. Effect of duration of oocyte maturation on the kinetics of cleavage, embryo yield and sex ratio in cattle.

    PubMed

    Rizos, Dimitrios; Bermejo-Alvarez, Pablo; Gutierrez-Adan, Alfonso; Lonergan, Patrick

    2008-01-01

    The aim of the present study was to examine the effect of maturation for 16 v. 24 h on the kinetics of development and the sex ratio of bovine embryos. Oocytes were inseminated at 16 or 24 h after the beginning of maturation using frozen-thawed bull semen. Two-cell embryos at 24, 28, 32, 36, 40, 44 and 48 h post-insemination (hpi) and blastocysts at Days 6, 7 and 8 from both groups were snap-frozen individually and stored at -80 degrees C until determination of embryo sex. Insemination at 16 h resulted in a lower cleavage rate at 48 hpi than insemination at 24 h (70.6% v. 77.1%, respectively, P < 0.05). In terms of the evolution of cleavage divisions, insemination at 24 h resulted in a typical pattern of cleavage such that by 32 hpi, ~58% of presumptive zygotes had cleaved. In contrast, first cleavage following insemination at 16 h was significantly slower such that by 32 hpi, ~35% of presumptive zygotes had cleaved. Duration of IVM did not affect blastocyst yield (~37%). The overall sex ratio of 2-cell embryos at 48 hpi differed from 1 : 1 in favour of males in both groups (24 h: 55.9 v. 44.1%; 16 h: 59.1 v. 40.9%, P < 0.05). Similarly, the overall sex ratio of blastocysts differed from 1 : 1 in both groups (24 h: 59.7 v. 40.3%; 16 h: 58.5 v. 41.5%, P < 0.05). In conclusion, timing of gamete interaction and maturity of the oocyte at the time of the interaction can affect the kinetics of the early cleavage divisions but has no effect on the sex ratio of the embryos produce. PMID:18671921

  17. Kinetics, Mechanism, and Secondary Organic Aerosol Yield of Aqueous Phase Photo-oxidation of α-Pinene Oxidation Products.

    PubMed

    Aljawhary, Dana; Zhao, Ran; Lee, Alex K Y; Wang, Chen; Abbatt, Jonathan P D

    2016-03-10

    Formation of secondary organic aerosol (SOA) involves atmospheric oxidation of volatile organic compounds (VOCs), the majority of which are emitted from biogenic sources. Oxidation can occur not only in the gas-phase but also in atmospheric aqueous phases such as cloudwater and aerosol liquid water. This study explores for the first time the aqueous-phase OH oxidation chemistry of oxidation products of α-pinene, a major biogenic VOC species emitted to the atmosphere. The kinetics, reaction mechanisms, and formation of SOA compounds in the aqueous phase of two model compounds, cis-pinonic acid (PIN) and tricarballylic acid (TCA), were investigated in the laboratory; TCA was used as a surrogate for 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA), a known α-pinene oxidation product. Aerosol time-of-flight chemical ionization mass spectrometry (Aerosol-ToF-CIMS) was used to follow the kinetics and reaction mechanisms at the molecular level. Room-temperature second-order rate constants of PIN and TCA were determined to be 3.3 (±0.5) × 10(9) and 3.1 (±0.2) × 10(8) M(-1) s(-1), respectively, from which were estimated their condensed-phase atmospheric lifetimes. Aerosol-ToF-CIMS detected a large number of products leading to detailed reaction mechanisms for PIN and MBTCA. By monitoring the particle size distribution after drying, the amount of SOA material remaining in the particle phase was determined. An aqueous SOA yield of 40 to 60% was determined for PIN OH oxidation. Although recent laboratory studies have focused primarily on aqueous-phase processing of isoprene-related compounds, we demonstrate that aqueous formation of SOA materials also occurs from monoterpene oxidation products, thus representing an additional source of biogenically driven aerosol formation. PMID:26299576

  18. Functional imaging of kinetic parameters from the time dependent linear response function by dynamic scintigraphy

    SciTech Connect

    Stritzke, P.; Knop, J.; Spielmann, R.P.; Montz, R.; Schneider, C.

    1984-01-01

    A new method is proposed to determine the locally differing time dependent linear response function h(r,t) of a radioactive tracer injected into a patients blood pool B(t) by mathematical analysis of a dynamic scintigraphic study A(r,t). Transit times, uptake rates and clearance rates of different tracers are calculated from the linear response function at every matrix point by one computer program. The parameters are presented in functional images on a standard computer display. Thus the whole information from a dynamic study can be condensed within a few images. The integral equation A=h+B +c(r)*B (+ means convolution, c(r)*B(t)=nontarget activity) derived from tracer theory is deconvoluted by mathematical methods, which are unsensitive against noise contamination of the input data. The numerical technique is successfully applied in Iodide-123-Hippuran and Tc-99m-DMSA kidney studies, in Tc-99m-MDP and -DPD bone studies, in Tl-201 myocardial studies and in Iodide-123 thyroid studies. Because the regional blood pool-or nontarget activity is calculated and subtracted, the kinetic parameters are considered to be free from nontarget contributions in all dynamic scintigraphic studies. Examples are demonstrated and the usefulness for clinical application is discussed.

  19. Estimation of the growth kinetic parameters of Bacillus cereus spores as affected by pulsed light treatment.

    PubMed

    Aguirre, Juan S; de Fernando, Gonzalo Garca; Hierro, Eva; Hospital, Xavier F; Ordez, Juan A; Fernndez, Manuela

    2015-06-01

    Quantitative microbial risk assessment requires the knowledge of the effect of food preservation technologies on the growth parameters of the survivors of the treatment. This is of special interest in the case of the new non-thermal technologies that are being investigated for minimal processing of foods. This is a study on the effect of pulsed light technology (PL) on the lag phase of Bacillus cereus spores surviving the treatment and the maximum growth rate (?max) of the survivors after germination. The D value was estimated as 0.35 J/cm(2) and our findings showed that PL affected the kinetic parameters of the microorganism. A log linear relationship was observed between the lag phase and the intensity of the treatment. Increasing the lethality lengthened the mean lag phase and proportionally increased its variability. A polynomial regression was fitted between the ?max of the survivors and the inactivation achieved. The ?max decreased as intensity increased. From these data, and their comparison to published results on the effect of heat and e-beam irradiation on B. cereus spores, it was observed that the shelf-life of PL treated foods would be longer than those treated with heat and similar to irradiated ones. These findings offer information of interest for the implementation of PL for microbial decontamination in the food industry. PMID:25755081

  20. Bayesian inference of biochemical kinetic parameters using the linear noise approximation

    PubMed Central

    Komorowski, Michał; Finkenstädt, Bärbel; Harper, Claire V; Rand, David A

    2009-01-01

    Background Fluorescent and luminescent gene reporters allow us to dynamically quantify changes in molecular species concentration over time on the single cell level. The mathematical modeling of their interaction through multivariate dynamical models requires the deveopment of effective statistical methods to calibrate such models against available data. Given the prevalence of stochasticity and noise in biochemical systems inference for stochastic models is of special interest. In this paper we present a simple and computationally efficient algorithm for the estimation of biochemical kinetic parameters from gene reporter data. Results We use the linear noise approximation to model biochemical reactions through a stochastic dynamic model which essentially approximates a diffusion model by an ordinary differential equation model with an appropriately defined noise process. An explicit formula for the likelihood function can be derived allowing for computationally efficient parameter estimation. The proposed algorithm is embedded in a Bayesian framework and inference is performed using Markov chain Monte Carlo. Conclusion The major advantage of the method is that in contrast to the more established diffusion approximation based methods the computationally costly methods of data augmentation are not necessary. Our approach also allows for unobserved variables and measurement error. The application of the method to both simulated and experimental data shows that the proposed methodology provides a useful alternative to diffusion approximation based methods. PMID:19840370

  1. Crop yield estimation model for Iowa using remote sensing and surface parameters

    NASA Astrophysics Data System (ADS)

    Prasad, Anup K.; Chai, Lim; Singh, Ramesh P.; Kafatos, Menas

    2006-01-01

    Numerous efforts have been made to develop various indices using remote sensing data such as normalized difference vegetation index (NDVI), vegetation condition index (VCI) and temperature condition index (TCI) for mapping and monitoring of drought and assessment of vegetation health and productivity. NDVI, soil moisture, surface temperature and rainfall are valuable sources of information for the estimation and prediction of crop conditions. In the present paper, we have considered NDVI, soil moisture, surface temperature and rainfall data of Iowa state, US, for 19 years for crop yield assessment and prediction using piecewise linear regression method with breakpoint. Crop production environment consists of inherent sources of heterogeneity and their non-linear behavior. A non-linear Quasi-Newton multi-variate optimization method is utilized, which reasonably minimizes inconsistency and errors in yield prediction. Minimization of least square loss function has been carried out through iterative convergence using pre-defined empirical equation that provided acceptable lower residual values with predicted values very close to observed ones ( R2 = 0.78) for Corn and Soybean crop ( R2 = 0.86) for Iowa state. The crop yield prediction model discussed in the present paper will further improve in future with the use of long period dataset. Similar model can be developed for different crops of other locations.

  2. Kinetic parameters, bleaching and radiation response of thermoluminescence glow peaks separated by deconvolution on Korean calcite

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Bum; Hong, Duk-Geun

    2014-10-01

    Calcite has been of particular interest in studies of thermoluminescence (TL) because of its geological and archeological importance. Although extensive research on the TL glow curves of calcite has been conducted, most previous works have been based on the TL intensity integrated over a particular temperature range on the glow curve, without any separation of peaks. In this paper, the physical characteristics of the overlapping peaks in the TL glow curves of a calcite sample are investigated. These properties can provide useful information for determining the radiation dose absorbed to the sample in radiation dosimetry and luminescence dating research. The Tm-Tstop method is employed to identify the number of hidden glow peaks, and the kinetic parameters of each separated glow peak, including the thermal activation energy, kinetic order, and frequency factor, are evaluated using a computerized glow curve deconvolution (CGCD) method. The Tm-Tstop method indicates that the glow curve of calcite is the superposition of at least four components (P1 - P4) in the temperature range between room temperature and 450 °C. A bleaching experiment for two separated glow peaks (P3 and P4) using a solar simulator revealed that the bleaching rates of peak P3 show two exponential decays, and after bleaching, the TL intensity of peak P3 is reduced to approximately 4% of the initial value. In contrast, peak P4 is bleached exponentially to approximately 30% of the initial TL intensity and thereafter shows no detectable change in intensity. In addition, in a study of the radiation dose response of the two peaks, both peaks have a similar pattern, exhibiting a linear increment up to the maximum dose investigated, 520 Gy.

  3. Determination of design and operation parameters for upper atmospheric research instrumentation to yield optimum resolution with deconvolution

    NASA Technical Reports Server (NTRS)

    Ioup, George E.; Ioup, Juliette W.

    1991-01-01

    The final report for work on the determination of design and operation parameters for upper atmospheric research instrumentation to yield optimum resolution with deconvolution is presented. Papers and theses prepared during the research report period are included. Among all the research results reported, note should be made of the specific investigation of the determination of design and operation parameters for upper atmospheric research instrumentation to yield optimum resolution with deconvolution. A methodology was developed to determine design and operation parameters for error minimization when deconvolution is included in data analysis. An error surface is plotted versus the signal-to-noise ratio (SNR) and all parameters of interest. Instrumental characteristics will determine a curve in this space. The SNR and parameter values which give the projection from the curve to the surface, corresponding to the smallest value for the error, are the optimum values. These values are constrained by the curve and so will not necessarily correspond to an absolute minimum in the error surface.

  4. Genetic parameter estimates for buffalo milk yield, milk quality and mozzarella production and Bayesian inference analysis of their relationships.

    PubMed

    Aspilcueta-Borquis, R R; Di Palo, R; Araujo Neto, F R; Baldi, F; de Camargo, G M F; de Albuquerque, L G; Zicarelli, L; Tonhati, H

    2010-01-01

    Buffalo milk has excellent physical and chemical qualities as a consequence of the high percentage of constituents. This milk property is desirable for the dairy industry because it facilitates manufacture of mozzarella cheese. We estimated genetic parameters for milk yield, milk fat and protein and their effects on mozzarella cheese production using Bayesian inference. Using information from 4907 lactation records of buffaloes, genetic and non-genetic parameters were estimated for accumulated 305-day milk yield (MY), milk fat (%F) and protein (%P) percentages and mozzarella production per lactation (MP). The (co)variance components were obtained by Bayesian inference using a multiple trait model, which included as fixed effects contemporary group, milking number and buffalo age at calving as covariables (linear and quadratic), along with the additive genetic, permanent environmental and residual random effects. Mean a posteriori heritability distributions for MY, %F, %P, and MP were 0.25, 0.30, 0.38, and 0.23, respectively. The genetic correlation estimates between MY with %P and %F were negative and moderate. Positive genetic correlation estimates varying from 0.19 (%P/MP) to 0.95 (MY/MP) were obtained among the traits. Milk yield, milk components, and mozzarella production in Murrah buffaloes have enough genetic variation for selection purposes. We conclude that selection to increase milk yield would be effective in improving mozzarella production. PMID:20799160

  5. Genetic parameters for lactation traits of milking ewes: protein content and composition, fat, somatic cells and individual laboratory cheese yield

    PubMed Central

    Othmane, Med Houcine; Carriedo, Juan Antonio; San Primitivo, Fermin; De la Fuente, Luis Fernando

    2002-01-01

    The effects of some environmental variation factors and the genetic parameters for total milk traits (fat content, protein content, casein content, serum protein content, lactation mean of individual laboratory cheese yield (LILCY), lactation mean of somatic cell count (LSCC), and milk yield) were estimated from the records of 1 111 Churra ewes. Genetic parameters were estimated by multivariate REML. Heritability for fat content was low (0.10) as is usually found in the Churra breed. Heritabilities for protein content, casein content, serum protein content, LILCY, milk yield and somatic cell count were 0.31, 0.30, 0.22, 0.09, 0.26 and 0.11, respectively. The highest heritability estimates were for protein and casein contents. Casein content is not advisable as an alternative to protein content as a selection criterion for cheese yield improvement; it does not have any compelling advantages and its measurement is costly. Our results for LSCC indicated that efforts should focus on improving the level of management rather than selecting for somatic cells, in the actual conditions of the Churra breed. PMID:12427387

  6. Yield of Ozone, Nitrite Nitrogen and Hydrogen Peroxide Versus Discharge Parameter Using APPJ Under Water

    NASA Astrophysics Data System (ADS)

    Chen, Bingyan; Zhu, Changping; Fei, Juntao; He, Xiang; Yin, Cheng; Wang, Yuan; Gao, Ying; Jiang, Yongfeng; Wen, Wen; Chen, Longwei

    2016-03-01

    Discharge plasma in and in contact with water can be accompanied with ultraviolet radiation and electron impact, thus can generate hydroxyl radicals, ozone, nitrite nitrogen and hydrogen peroxide. In this paper, a non-equilibrium plasma processing system was established by means of an atmospheric pressure plasma jet immersed in water. The hydroxyl intensities and discharge energy waveforms were tested. The results show that the positive and negative discharge energy peaks were asymmetric, where the positive discharge energy peak was greater than the negative one. Meanwhile, the yield of ozone and nitrite nitrogen was enhanced with the increase of both the treatment time and the discharge energy. Moreover, the pH value of treated water was reduced rapidly and maintained at a lower level. The residual concentration of hydrogen peroxide in APPJ treated water was kept at a low level. Additionally, both the efficiency energy ratio of the yield of ozone and nitrite nitrogen and that of the removal of p-nitrophenol increased as a function of discharge energy and discharge voltage. The experimental results were fully analyzed and the chemical reaction equations and the physical processes of discharges in water were given. supported by National Natural Science Foundation of China (Nos. 11274092, 11404092, 61401146), the Nantong Science and Technology Project, Nantong, China (No. BK2014024), the Open Project of Jiangsu Province Key Laboratory of Environmental Engineering, Nanjing, China (No. KF2014001), and the Fundamental Research Funds for the Central Universities of China (No. 2014B11414)

  7. Thermodynamic, Kinetic, and Equilibrium Parameters for the Removal of Lead and Cadmium from Aqueous Solutions with Calcium Alginate Beads

    PubMed Central

    Alfaro-Cuevas-Villanueva, Ruth; Hidalgo-Vázquez, Aura Roxana; Cortés Penagos, Consuelo de Jesús; Cortés-Martínez, Raúl

    2014-01-01

    The sorption of cadmium (Cd) and lead (Pb) by calcium alginate beads (CAB) from aqueous solutions in batch systems was investigated. The kinetic and thermodynamic parameters, as well as the sorption capacities of CAB in each system at different temperatures, were evaluated. The rate of sorption for both metals was rapid in the first 10 minutes and reached a maximum in 50 minutes. Sorption kinetic data were fitted to Lagergren, pseudo-second-order and Elovich models and it was found that the second-order kinetic model describes these data for the two metals; comparing kinetic parameters for Cd and Pb sorption a higher kinetic rate (K2) for Pb was observed, indicating that the interaction between lead cations and alginate beads was faster than for cadmium. Similarly, isotherm data were fitted to different models reported in literature and it was found that the Langmuir-Freundlich (L-F) and Dubinin-Radushkevich (D-R) models describe the isotherms in all cases. CAB sorption capacity for cadmium was 27.4 mg/g and 150.4 mg/g for lead, at 25°C. Sorption capacities of Cd and Pb increase as temperature rises. According to the thermodynamic parameters, the cadmium and lead adsorption process was spontaneous and endothermic. It was also found that pH has an important effect on the adsorption of these metals by CAB, as more were removed at pH values between 6 and 7. PMID:24587740

  8. Measurement of the {bar B} {yields} D{ell}{bar {nu}} Anti-Neutrino Partial Width and Form Factor Parameters

    SciTech Connect

    Jessop, Colin P.

    2003-05-05

    We have studied the decay {bar B} {yields} D{ell}{bar {nu}}, where {ell} = e or {mu}. From a fit to the differential decay rate d{Lambda}/dw we measure the rate normalization F{sub D}(1)|V{sub cb}| and form factor slope {rho}{sub D}{sup 2}, and, using measured values of {tau}{sub B}, find {Lambda}({bar B} {yields} D{ell}{bar {nu}}) = (12.0 {+-} 0.9 {+-} 2.1) ns{sup -1}. The resulting branching fractions are {Beta}({bar B}{sup 0} {yields} D{sup +}{ell}{sup -}{bar {nu}}) = (1.87 {+-} 0.15 {+-} 0.32)% and {Beta}(B{sup -} {yields} D{sup 0}{ell}{sup -}{bar {nu}}) = (1.94 {+-} 0.15 {+-} 0.34)%. The form factor parameters are in agreement with those measured in {bar B} {yields} D*{ell}{bar {nu}} decays, as predicted by heavy quark effective theory.

  9. Determination of the kinetic parameters of the CALIBAN metallic core reactor from stochastic neutron measurements

    SciTech Connect

    Casoli, P.; Authier, N.; Chapelle, A.

    2012-07-01

    Several experimental devices are operated by the Criticality and Neutron Science Research Dept. of the CEA Valduc Laboratory. One of these is the Caliban metallic core reactor. The purpose of this study is to develop and perform experiments allowing to determinate some of fundamental kinetic parameters of the reactor. The prompt neutron decay constant and particularly its value at criticality can be measured with reactor noise techniques such as Rossi-{alpha} and Feynman variance-to-mean methods. Subcritical, critical, and even supercritical experiments were performed. Fission chambers detectors were put nearby the core and measurements were analyzed with the Rossi-{alpha} technique. A new value of the prompt neutron decay constant at criticality was determined, which allows, using the Nelson number method, new evaluations of the effective delayed neutron fraction and the in core neutron lifetime. As an introduction of this paper, some motivations of this work are given in part 1. In part 2, principles of the noise measurements experiments performed at the CEA Valduc Laboratory are reminded. The Caliban reactor is described in part 3. Stochastic neutron measurements analysis techniques used in this study are then presented in part 4. Results of fission chamber experiments are summarized in part 5. Part 6 is devoted to the current work, improvement of the experimental device using He 3 neutron detectors and first results obtained with it. Finally, conclusions and perspectives are given in part 7. (authors)

  10. Isopeptidase activity of human transglutaminase 2: disconnection from transamidation and characterization by kinetic parameters.

    PubMed

    Király, Róbert; Thangaraju, Kiruphagaran; Nagy, Zsófia; Collighan, Russell; Nemes, Zoltán; Griffin, Martin; Fésüs, László

    2016-01-01

    Transglutaminase 2 (TG2) is a multifunctional protein with diverse catalytic activities and biological roles. Its best studied function is the Ca(2+)-dependent transamidase activity leading to formation of γ-glutamyl-ε-lysine isopeptide crosslinks between proteins and γ-glutamyl-amine derivatives. TG2 has a poorly studied isopeptidase activity cleaving these bonds. We have developed and characterised TG2 mutants which are significantly deficient in transamidase activity while have normal or increased isopeptidase activity (W332F) and vice versa (W278F). The W332F mutation led to significant changes of both the K m and the V max kinetic parameters of the isopeptidase reaction of TG2 while its calcium and GTP sensitivity was similar to the wild-type enzyme. The W278F mutation resulted in six times elevated amine incorporating transamidase activity demonstrating the regulatory significance of W278 and W332 in TG2 and that mutations can change opposed activities located at the same active site. The further application of our results in cellular systems may help to understand TG2-driven physiological and pathological processes better and lead to novel therapeutic approaches where an increased amount of crosslinked proteins correlates with the manifestation of degenerative disorders. PMID:26250429

  11. Study of kinetic parameters for the production of recombinant rabies virus glycoprotein.

    PubMed

    Mendonça, Ronaldo Z; Greco, Katia N; Moraes, Roberto H P; Astray, Renato M; Barral, M

    2009-07-01

    Gene expression in insect cells is an advantageous system for recombinant protein production, mainly because of its capacity to produce complex proteins with correct post-translational modifications. Recently, we identified and purified a protein from Lonomia obliqua hemolymph able to increase the production of rabies virus glycoprotein, expressed in Drosophila melanogaster cells, by about 60%. In this work, the kinetic parameters for cell growth and recombinant rabies virus glycoprotein production were determined in cultures of transfected Drosophila melanogaster Schneider 2 (S2) cells expressing recombinant rabies virus glycoprotein (rRVGP), enriched and non-enriched with the hemolymph of Lonomia obliqua (Hb). The highest concentration of rRVGP was achieved at the beginning of the culture enriched with Hb, indicating that the cells produce greater amounts of rRVGP per cell (specific rRVGP concentration) at the early exponential growth phase. After day 8, a decrease in the concentration of rRVGP (ng/mL) was observed, probably due to protein decomposition. The average specific rRVGP production rate (mu(rRVGP)) was 30 ng rRVGP/10(7)cell.day, higher than that observed in the non-enriched culture. PMID:19842054

  12. Rate Equations and Kinetic Parameters of the Reactions Involved in Pyrite Oxidation by Thiobacillus ferrooxidans

    PubMed Central

    Lizama, Hector M.; Suzuki, Isamu

    1989-01-01

    Rate equations and kinetic parameters were obtained for various reactions involved in the bacterial oxidation of pyrite. The rate constants were 3.5 μM Fe2+ per min per FeS2 percent pulp density for the spontaneous pyrite dissolution, 10 μM Fe2+ per min per mM Fe3+ for the indirect leaching with Fe3+, 90 μM O2 per min per mg of wet cells per ml for the Thiobacillus ferrooxidans oxidation of washed pyrite, and 250 μM O2 per min per mg of wet cells per ml for the T. ferrooxidans oxidation of unwashed pyrite. The Km values for pyrite concentration were similar and were 1.9, 2.5, and 2.75% pulp density for indirect leaching, washed pyrite oxidation by T. ferrooxidans, and unwashed pyrite oxidation by T. ferrooxidans, respectively. The last reaction was competitively inhibited by increasing concentrations of cells, with a Ki value of 0.13 mg of wet cells per ml. T. ferrooxidans cells also increased the rate of Fe2+ production from Fe3+ plus pyrite. PMID:16348054

  13. [Comparison of kinematic and kinetic parameters between the locomotion patterns in nordic walking, walking and running].

    PubMed

    Kleindienst, F I; Michel, K J; Schwarz, J; Krabbe, B

    2006-03-01

    Based on a higher cardio-pulmonary and cardio-vascular benefit and a promised reduction of mechanical load of the musculoskeletal system Nordic Walking (NW) shows an increased market potential. The present study should investigate whether there are biomechanical differences between the locomotion patterns NW, walking and running. Moreover possible resultant load differences should be determined. Eleven subjects, who were already experienced with the NW-technique, participated in this experiment. The kinematic data were collected using two high-speed camera systems from posterior and from lateral at the same time. Simultaneously the ground reaction forces were recorded. The kinematic and the kinetic data reveal differences between the three analyzed locomotion patterns. For NW as well as walking the mechanical load of the lower extremity is lower compared to running. None of the kinematic parameters suggest a "physiological benefit" of NW compared to walking. Moreover NW shows higher vertical and horizontal forces during landing. Exclusively the lower vertical force peak during push off indicates a lower mechanical load for NW in comparison to walking. Consequently it is questionable is NW -- based on its promised "biomechanical benefits" compared to walking -- should be still recommended for overweight people and for people with existing musculoskeletal problems of the lower limb. PMID:16544213

  14. Rate equations and kinetic parameters of the reactions involved in pyrite oxidation by Thiobacillus ferrooxidans

    SciTech Connect

    Lizama, H.M.; Suzuki, Isamu )

    1989-11-01

    Rate equations and kinetic parameters were obtained for various reactions involved in the bacterial oxidation of pyrite. The rate constants were 3.5 {mu}M Fe{sup 2+} per min per FeS{sub 2} percent pulp density for the spontaneous pyrite dissolution, 10 {mu}M Fe{sup 2+} per min per mM Fe{sup 3+} for the indirect leaching with Fe{sup 3+}, 90 {mu}M O{sub 2} per min per mg of wet cells per ml for the Thiobacillus ferrooxidans oxidation of washing pyrite, and 250 {mu}M O{sub 2} per min per mg of wet cells per ml for the T. ferrooxidans oxidation of unwashed pyrite. The K{sub m} values for pyrite concentration were similar and were 1.9, 2.5, and 2.75% pulp density for indirect leaching, washed pyrite oxidation by T. ferrooxidans, and unwashed pyrite oxidation by T. ferrooxidans, respectively. The last reaction was competitively inhibited by increasing concentrations of cells, with a K{sub i} value of 0.13 mg of wet cells per ml. T. ferrooxidans cells also increased the rate of Fe{sup 2+} production from Fe{sup 3+} plus pyrite.

  15. Non-Isothermic Chemical Kinetics in the Undergraduate Laboratory: Arrhenius Parameters from Experiments with Hyperbolic Temperature Variation.

    ERIC Educational Resources Information Center

    Salvador, F.; And Others

    1984-01-01

    Describes a method which adapts itself to the characteristics of the kinetics of a chemical reaction in solution, enabling students to determine the Arrhenius parameters with satisfactory accuracy by means of a single non-isothermic experiment. Both activation energy and the preexponential factor values can be obtained by the method. (JN)

  16. The interrelationship of biological marker maturity parameters and molecular yields during contact metamorphism

    NASA Astrophysics Data System (ADS)

    Bishop, A. N.; Abbott, G. D.

    1993-08-01

    Jurassic siltstone samples were collected, on a centimetre scale, as a function of increasing distance from a dolerite dyke (Isle of Skye, northwest Scotland). The constant origin and type of the organic matter in this single lithological horizon is indicated by organic petrological observations as well as organic geochemical analyses. Therefore, changes in biological marker distributions, with distance from the dyke contact, can be unequivocally correlated with the thermal influence of the intrusion. The vitrinite reflectance ( R0 Average) values of these samples increase gradually from 0.35% to 3.60% as the dyke contact is approached. Four classical biological marker maturity parameters ( 20S/(20S + 20R), TA/(TA + MA), C 20/(C 20 + C 28) , and 22S/(22S + 22R)). have been measured from GCMS analyses of the sample extracts. Changes in these molecular parameters were compared with changes in the concentrations of the individual biological marker compounds, expressed relative to mass of rock extracted. This comparison revealed that these molecular parameters are not governed by the conventional productreactant relationships (chiral isomerisation, aromatisation or side-chain cracking reactions) operating solely in the free saturated or aromatic hydrocarbon structures. Release/formation from macromolecular and/or functionalised moieties (hydrocarbon or non-hydrocarbon) followed by compound loss provide an alternative paradigm in all four cases in this particular thermal regime. Direct chiral isomerisation in the free sterane or homohopane cannot, however, be completely ruled out as a contributor to an admixture of processes. Similarly, aromatisation in the free hydrocarbon fraction may account for a proportion of the triaromatic steroids.

  17. Binding of glycosaminoglycans to cyano-activated agarose membranes: kinetic and diffusional effects on yield and homogeneity.

    PubMed

    Mattern, Kristin J; Deen, William M

    2007-11-01

    Methods were developed for binding a glycosaminoglycan (GAG, a 50 kDa chondroitin sulfate) to thin agarose membranes using 1-cyano-4-(dimethylamino)pyridinium tetrafluoroborate (CDAP) as the activating agent. Process conditions were optimized to achieve high yields and spatially uniform concentrations of bound ligand. Yields were varied mainly by manipulating the duration and temperature of the aqueous washes prior to coupling, which affected the concentration of active sites available for subsequent GAG binding. The rate constants for degradation of the active cyanate esters in 0.1M bicarbonate solutions were 0.24+/-0.02 h(-1) at 4 degrees C and 0.08+/-0.03 h(-1) at 0 degrees C. Steric limitations in the 3% agarose gels severely restricted binding, with only about 0.1% of active sites being accessible to GAG molecules. The GAG binding occurred primarily in the outer 50-70 microm of the membranes, so that coupling was homogeneous only for thin gels. A model of GAG diffusion and reaction in the coupling step was developed to explain the observed effects of parameters such as the GAG concentration in solution and the membrane thickness. An analysis of the key time scales in the synthesis provides design principles that should be useful also for other cyanylating agents, other ligands, and for beads as well as membranes. PMID:17610855

  18. [Estimation of biological parameters and yield per recruitment for Coilia nasustaihuensis in Dianshan Lake, Shanghai, China].

    PubMed

    Gao, Chun-Xia; Tian, Si-Quan; Dai, Xiao-Jie

    2014-05-01

    Coilia nasustaihuensis is the most abundant species in Dianshan Lake and plays an important role in the lake ecosystem. From July 2010 to August 2011, a total of 3107 samples of C. nasustaihuensis were collected from Dianshan Lake. Based on length data of these samples, ELEFAN I technique was employed to estimate growth and mortality parameters, and the Beverton-Holt dynamic model was used to evaluate the population dynamics trend for C. nasustaihuensis. Growth of this species was described using avon Bertalanffy model, and the estimated parameters were Linfinity = 35.70 cm, k = 0.54, and t0 = -0.48 a. The turning point for body mass growth curve of the stock was situated at t = 1.37 a. Natural mortality coefficient M was then estimated using Pauly's empirical equation and found to be 0. 872. Length-converted catch curves were used to estimate the total mortality coefficient Z, which was found to be 2.121. Accordingly, the fishing mortality coefficient (F) was equal to 1.249, and the current exploitation rate was 0. 589, suggesting the stock was over-exploited. According to the Beverton-Holt dynamic model, the minimum capture size for C. nasustaihuensis should be 21.42 cm (age 1.22 years). PMID:25129955

  19. Effects of plasma kinetic parameters on turbulent layer formation by the Kelvin-Helmholtz instability

    NASA Astrophysics Data System (ADS)

    Matsumoto, Y.; Seki, K.

    2010-12-01

    We have recently shown by 2D MHD simulations of the Kelvin-Helmholtz instability (KHI) in a highly asymmetric density layer in a large simulation domain that rapid formation of a broad plasma turbulent layer can be achieved by forward and inverse energy cascades of the KHI [Matsumoto and Seki, JGR, in press.]. The forward cascade is triggered by the growth of the secondary Rayleigh-Taylor instability (RTI) excited during the nonlinear evolution. The inverse cascade is accomplished by a nonlinear coupling of the fastest growing mode of the KHI with other unstable modes. We suggested that the proposed mechanism well explained the observational requirements of the LLBL formation, although some issues are remained to be understood. One major issue, which is not treated accurately in the MHD simulation, is the mixing process itself; the mixing of plasmas is due to the numerical dissipation implicitly or explicitly added in the simulation. To understand all the mechanisms ranging from the dissipating scale to the scale of the largest vortex in a self-consistent manner, we have carried out 2D fully kinetic particle-in-cell (PIC) simulations of the KHI in a large simulation domain which allows growth of multiple KH unstable modes. As a result, we found the inverse energy cascade among the KH unstable modes as have been shown by the 2D MHD simulation. It is also found that the direct energy cascade results in plasma mixing by exciting strong electric fields embedded in electron inertial scales with amplitudes larger than the initial convective electric field. The locally excited electric field is the key agent for the mixing. We have also found two-component distribution functions in the mixed region for the ion and the electron which have been reported by in-situ observations. In this presentation, we show that both direct and inverse energy cascades of the KHI contribute to formation of a large scale plasma mixing layer in a time scale much faster than we expect from the linear theory of the KHI. Also, dependence of the mixing efficiency on the mass ratio (M/m) and the ratio of plasma to gyro frequencies (ωpe/Ωge) are discussed by results from simulation runs with various kinetic parameters.

  20. Silica coating and photocatalytic activities of ZnO nanoparticles: Effect of operational parameters and kinetic study

    NASA Astrophysics Data System (ADS)

    Ismail, L. F. M.; Emara, M. M.; El-Moselhy, M. M.; Maziad, N. A.; Hussein, O. K.

    2014-10-01

    Silica-coating ZnO nanoparticles were prepared using the hydrothermal method. The prepared nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy dispersive X-ray Spectroscopy (EDX). It was found that ultrafine core/shell structured silica-coating ZnO nanoparticles were successfully obtained. TEM analysis revealed a continuous and uniform silica coating layer of about 8 nm in thickness on the surface of ZnO nanoparticles. The photocatalytic performance of silica-coating ZnO core/shell nanoparticles in methylene blue aqueous solution was investigated. The effects of some operational parameters such as pH value, nanocatalyst loading and initial MB concentration on the degradation efficiency were discussed. Kinetic parameters were experimentally determined and a pseudo-first-order kinetic was observed. Thus, the main advantage of the coating is the stability of the photocatalysts and the better performance in acidic or alkaline solutions. Compared to ZnO the maximum apparent rate constant is obtained at pH 8.5 (pH 11.5 in case of bare ZnO). Moreover, the Langmuir adsorption model was applied to describe the equilibrium isotherm at different MB concentration. The applicability of the Langmuir isotherm suggests monolayer coverage of the MB onto surface of silica-coating ZnO nanoparticles. The kinetics of the adsorption with respect to the initial dye concentration, were also investigated. The pseudo-first-order and second-order kinetic models were used and the rate constants were evaluated. The kinetic studies revealed that the pseudo-second-order kinetic model better represented the adsorption kinetics, suggesting that the adsorption process may be chemisorption.

  1. Kinetic parameters for nutrient enhanced crude oil biodegradation in intertidal marine sediments

    PubMed Central

    Singh, Arvind K.; Sherry, Angela; Gray, Neil D.; Jones, D. Martin; Bowler, Bernard F. J.; Head, Ian M.

    2014-01-01

    Availability of inorganic nutrients, particularly nitrogen and phosphorous, is often a primary control on crude oil hydrocarbon degradation in marine systems. Many studies have empirically determined optimum levels of inorganic N and P for stimulation of hydrocarbon degradation. Nevertheless, there is a paucity of information on fundamental kinetic parameters for nutrient enhanced crude oil biodegradation that can be used to model the fate of crude oil in bioremediation programmes that use inorganic nutrient addition to stimulate oil biodegradation. Here we report fundamental kinetic parameters (Ks and qmax) for nitrate- and phosphate-stimulated crude oil biodegradation under nutrient limited conditions and with respect to crude oil, under conditions where N and P are not limiting. In the marine sediments studied, crude oil degradation was limited by both N and P availability. In sediments treated with 12.5 mg/g of oil but with no addition of N and P, hydrocarbon degradation rates, assessed on the basis of CO2 production, were 1.10 ± 0.03 μmol CO2/g wet sediment/day which were comparable to rates of CO2 production in sediments to which no oil was added (1.05 ± 0.27 μmol CO2/g wet sediment/day). When inorganic nitrogen was added alone maximum rates of CO2 production measured were 4.25 ± 0.91 μmol CO2/g wet sediment/day. However, when the same levels of inorganic nitrogen were added in the presence of 0.5% P w/w of oil (1.6 μmol P/g wet sediment) maximum rates of measured CO2 production increased more than four-fold to 18.40 ± 1.04 μmol CO2/g wet sediment/day. Ks and qmax estimates for inorganic N (in the form of sodium nitrate) when P was not limiting were 1.99 ± 0.86 μmol/g wet sediment and 16.16 ± 1.28 μmol CO2/g wet sediment/day respectively. The corresponding values for P were 63 ± 95 nmol/g wet sediment and 12.05 ± 1.31 μmol CO2/g wet sediment/day. The qmax values with respect to N and P were not significantly different (P < 0.05). When N and P were not limiting Ks and qmax for crude oil were 4.52 ± 1.51 mg oil/g wet sediment and 16.89 ± 1.25 μmol CO2/g wet sediment/day. At concentrations of inorganic N above 45 μmol/g wet sediment inhibition of CO2 production from hydrocarbon degradation was evident. Analysis of bacterial 16S rRNA genes indicated that Alcanivorax spp. were selected in these marine sediments with increasing inorganic nutrient concentration, whereas Cycloclasticus spp. were more prevalent at lower inorganic nutrient concentrations. These data suggest that simple empirical estimates of the proportion of nutrients added relative to crude oil concentrations may not be sufficient to guarantee successful crude oil bioremediation in oxic beach sediments. The data we present also help define the maximum rates and hence timescales required for bioremediation of beach sediments. PMID:24782848

  2. Kinetic parameters for nutrient enhanced crude oil biodegradation in intertidal marine sediments.

    PubMed

    Singh, Arvind K; Sherry, Angela; Gray, Neil D; Jones, D Martin; Bowler, Bernard F J; Head, Ian M

    2014-01-01

    Availability of inorganic nutrients, particularly nitrogen and phosphorous, is often a primary control on crude oil hydrocarbon degradation in marine systems. Many studies have empirically determined optimum levels of inorganic N and P for stimulation of hydrocarbon degradation. Nevertheless, there is a paucity of information on fundamental kinetic parameters for nutrient enhanced crude oil biodegradation that can be used to model the fate of crude oil in bioremediation programmes that use inorganic nutrient addition to stimulate oil biodegradation. Here we report fundamental kinetic parameters (Ks and qmax) for nitrate- and phosphate-stimulated crude oil biodegradation under nutrient limited conditions and with respect to crude oil, under conditions where N and P are not limiting. In the marine sediments studied, crude oil degradation was limited by both N and P availability. In sediments treated with 12.5 mg/g of oil but with no addition of N and P, hydrocarbon degradation rates, assessed on the basis of CO2 production, were 1.10 ± 0.03 μmol CO2/g wet sediment/day which were comparable to rates of CO2 production in sediments to which no oil was added (1.05 ± 0.27 μmol CO2/g wet sediment/day). When inorganic nitrogen was added alone maximum rates of CO2 production measured were 4.25 ± 0.91 μmol CO2/g wet sediment/day. However, when the same levels of inorganic nitrogen were added in the presence of 0.5% P w/w of oil (1.6 μmol P/g wet sediment) maximum rates of measured CO2 production increased more than four-fold to 18.40 ± 1.04 μmol CO2/g wet sediment/day. Ks and qmax estimates for inorganic N (in the form of sodium nitrate) when P was not limiting were 1.99 ± 0.86 μmol/g wet sediment and 16.16 ± 1.28 μmol CO2/g wet sediment/day respectively. The corresponding values for P were 63 ± 95 nmol/g wet sediment and 12.05 ± 1.31 μmol CO2/g wet sediment/day. The qmax values with respect to N and P were not significantly different (P < 0.05). When N and P were not limiting Ks and qmax for crude oil were 4.52 ± 1.51 mg oil/g wet sediment and 16.89 ± 1.25 μmol CO2/g wet sediment/day. At concentrations of inorganic N above 45 μmol/g wet sediment inhibition of CO2 production from hydrocarbon degradation was evident. Analysis of bacterial 16S rRNA genes indicated that Alcanivorax spp. were selected in these marine sediments with increasing inorganic nutrient concentration, whereas Cycloclasticus spp. were more prevalent at lower inorganic nutrient concentrations. These data suggest that simple empirical estimates of the proportion of nutrients added relative to crude oil concentrations may not be sufficient to guarantee successful crude oil bioremediation in oxic beach sediments. The data we present also help define the maximum rates and hence timescales required for bioremediation of beach sediments. PMID:24782848

  3. Evaluation of kinetic parameters for enzymatic interesterification synthesis of L-ascorbyl lactate by response surface methodology.

    PubMed

    Gao, Jing; Jiang, Yanjun; Huang, Zhihong; Zhou, Liya

    2007-02-01

    The kinetics of lipase-catalyzed interesterification synthesis of L-ascorbyl lactate was studied. To determine the enzyme kinetic constants of the interesterification, a three-factor and five-level central composite design was used. The factors studied were ethyl lactate concentration, reaction temperature (T), and water content (w). Moreover, a statistical approach called the response surface method (RSM) was used to predict the kinetic constants. Finally, the relationships between the kinetic constants (Vm and Km) and the reaction parameters (T and w) were obtained. To assess the accuracy of the RSM approach for determining Vm and Km, detailed validation experiments were carried out by the conventional approach at four different reaction parameters(35 degrees C, 10 microL; 45 degrees C, 20 microL; 55 degrees C, 15 microL; 65 degrees C, 18 microL). The results indicated that the RSM approach gave reasonable results for the determination of Vm and Km in the range of tested parameters. PMID:17496337

  4. Thermal analysis of paddy husk. Part 1: Sensitivity of kinetic parameters to selection of stage transition points

    SciTech Connect

    Jain, A.K.; Sharma, S.K.; Singh, D.

    1997-12-31

    Experimentally obtained TGA data on paddy husk and cellulose has been correlated using a two stage model. The data correlation is highly sensitive to the choice of the stage transition point. The effect of different stage transition points on the kinetic parameters is examined in this paper and an optimum stage transition point identified. The technique has also been tested on earlier published data and found to give satisfactory results. The systematic choice of the stage transition point should lead to greater uniformity and reliability in reported kinetic data.

  5. A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling

    USGS Publications Warehouse

    Palandri, James L.; Kharaka, Yousif K.

    2004-01-01

    Geochemical reaction path modeling is useful for rapidly assessing the extent of water-aqueous-gas interactions both in natural systems and in industrial processes. Modeling of some systems, such as those at low temperature with relatively high hydrologic flow rates, or those perturbed by the subsurface injection of industrial waste such as CO2 or H2S, must account for the relatively slow kinetics of mineral-gas-water interactions. We have therefore compiled parameters conforming to a general Arrhenius-type rate equation, for over 70 minerals, including phases from all the major classes of silicates, most carbonates, and many other non-silicates. The compiled dissolution rate constants range from -0.21 log moles m-2 s-1 for halite, to -17.44 log moles m-2 s-1 for kyanite, for conditions far from equilibrium, at 25 ?C, and pH near neutral. These data have been added to a computer code that simulates an infinitely well-stirred batch reactor, allowing computation of mass transfer as a function of time. Actual equilibration rates are expected to be much slower than those predicted by the selected computer code, primarily because actual geochemical processes commonly involve flow through porous or fractured media, wherein the development of concentration gradients in the aqueous phase near mineral surfaces, which results in decreased absolute chemical affinity and slower reaction rates. Further differences between observed and computed reaction rates may occur because of variables beyond the scope of most geochemical simulators, such as variation in grain size, aquifer heterogeneity, preferred fluid flow paths, primary and secondary mineral coatings, and secondary minerals that may lead to decreased porosity and clogged pore throats.

  6. Interaction between chitosan and uranyl ions. Role of physical and physicochemical parameters on the kinetics of sorption

    SciTech Connect

    Piron, E.; Accominotti, M.; Domard, A.

    1997-03-19

    This work corresponds to the first part of our studies on the interactions between chitosan particles dispersed in water and uranyl ions. The measurements were obtained by ICP, and we considered the role of various physical and physicochemical parameters related to chitosan. We showed that the crystallinity, the particle dimensions, and the swelling in water of chitosan are parameters which are connected together and govern the kinetic laws of metal diffusion and sorption. The molecular mobility of the polymer chains is then essential parameter. 31 refs., 5 figs., 3 tabs.

  7. Quantitative analysis of relationships between irradiation parameters and the reproducibility of cyclotron-produced (99m)Tc yields.

    PubMed

    Tanguay, J; Hou, X; Buckley, K; Schaffer, P; Bénard, F; Ruth, T J; Celler, A

    2015-05-21

    Cyclotron production of (99m)Tc through the (100)Mo(p,2n) (99m)Tc reaction channel is actively being investigated as an alternative to reactor-based (99)Mo generation by nuclear fission of (235)U. An exciting aspect of this approach is that it can be implemented using currently-existing cyclotron infrastructure to supplement, or potentially replace, conventional (99m)Tc production methods that are based on aging and increasingly unreliable nuclear reactors. Successful implementation will require consistent production of large quantities of high-radionuclidic-purity (99m)Tc. However, variations in proton beam currents and the thickness and isotopic composition of enriched (100)Mo targets, in addition to other irradiation parameters, may degrade reproducibility of both radionuclidic purity and absolute (99m)Tc yields. The purpose of this article is to present a method for quantifying relationships between random variations in production parameters, including (100)Mo target thicknesses and proton beam currents, and reproducibility of absolute (99m)Tc yields (defined as the end of bombardment (EOB) (99m)Tc activity). Using the concepts of linear error propagation and the theory of stochastic point processes, we derive a mathematical expression that quantifies the influence of variations in various irradiation parameters on yield reproducibility, quantified in terms of the coefficient of variation of the EOB (99m)Tc activity. The utility of the developed formalism is demonstrated with an example. We show that achieving less than 20% variability in (99m)Tc yields will require highly-reproducible target thicknesses and proton currents. These results are related to the service rate which is defined as the percentage of (99m)Tc production runs that meet the minimum daily requirement of one (or many) nuclear medicine departments. For example, we show that achieving service rates of 84.0%, 97.5% and 99.9% with 20% variations in target thicknesses requires producing on average 1.2, 1.5 and 1.9 times the minimum daily activity requirement. The irradiation parameters that would be required to achieve these service rates are described. We believe the developed formalism will aid in the development of quality-control criteria required to ensure consistent supply of large quantities of high-radionuclidic-purity cyclotron-produced (99m)Tc. PMID:25909462

  8. Quantitative analysis of relationships between irradiation parameters and the reproducibility of cyclotron-produced 99mTc yields

    NASA Astrophysics Data System (ADS)

    Tanguay, J.; Hou, X.; Buckley, K.; Schaffer, P.; Bénard, F.; Ruth, T. J.; Celler, A.

    2015-05-01

    Cyclotron production of 99mTc through the 100Mo(p,2n) 99mTc reaction channel is actively being investigated as an alternative to reactor-based 99Mo generation by nuclear fission of 235U. An exciting aspect of this approach is that it can be implemented using currently-existing cyclotron infrastructure to supplement, or potentially replace, conventional 99mTc production methods that are based on aging and increasingly unreliable nuclear reactors. Successful implementation will require consistent production of large quantities of high-radionuclidic-purity 99mTc. However, variations in proton beam currents and the thickness and isotopic composition of enriched 100Mo targets, in addition to other irradiation parameters, may degrade reproducibility of both radionuclidic purity and absolute 99mTc yields. The purpose of this article is to present a method for quantifying relationships between random variations in production parameters, including 100Mo target thicknesses and proton beam currents, and reproducibility of absolute 99mTc yields (defined as the end of bombardment (EOB) 99mTc activity). Using the concepts of linear error propagation and the theory of stochastic point processes, we derive a mathematical expression that quantifies the influence of variations in various irradiation parameters on yield reproducibility, quantified in terms of the coefficient of variation of the EOB 99mTc activity. The utility of the developed formalism is demonstrated with an example. We show that achieving less than 20% variability in 99mTc yields will require highly-reproducible target thicknesses and proton currents. These results are related to the service rate which is defined as the percentage of 99mTc production runs that meet the minimum daily requirement of one (or many) nuclear medicine departments. For example, we show that achieving service rates of 84.0%, 97.5% and 99.9% with 20% variations in target thicknesses requires producing on average 1.2, 1.5 and 1.9 times the minimum daily activity requirement. The irradiation parameters that would be required to achieve these service rates are described. We believe the developed formalism will aid in the development of quality-control criteria required to ensure consistent supply of large quantities of high-radionuclidic-purity cyclotron-produced 99mTc.

  9. Investigation of thermoluminescence and kinetic parameters of CaMgB2O5: Dy3+ nanophosphor

    NASA Astrophysics Data System (ADS)

    Manhas, M.; Kumar, Vinay; Ntwaeaborwa, O. M.; Swart, H. C.

    2016-05-01

    In this paper, thermoluminescence (TL) properties of Dy3+ (1.5 mol %) doped CaMgB2O5 nanophosphor after being exposed to ultraviolet (UV) radiations (λ=254nm) were investigated. In UV exposed samples, the thermoluminescence glow curve consists of a broad glow peak located at 380 K with a small shoulder at 507 K. A shift in glow peak temperature from 367 K to 380 K after the UV exposure for 80 min was observed, which clearly shows that glow peaks follow the second order kinetics. The TL intensity of the peaks increases with an increase in the exposure time of UV rays (10-180 min). The TL Anal program was used to analyze the glow curve. The kinetic parameters such as activation energy (E), the frequency factor (s) and the order of kinetics (b) were calculated for CaMgB2O5: Dy3+ nanophosphors.

  10. Kinetic theory of turbulence modeling: smallness parameter, scaling and microscopic derivation of Smagorinsky model

    NASA Astrophysics Data System (ADS)

    Ansumali, Santosh; Karlin, Iliya V.; Succi, Sauro

    2004-07-01

    A mean-field approach (filtering out subgrid scales) is applied to the Boltzmann equation in order to derive a subgrid turbulence model based on kinetic theory. It is demonstrated that the only Smagorinsky type model which survives in the hydrodynamic limit on the viscosity time scale is the so-called tensor-diffusivity model. Scaling of the filter-width with Reynolds number and Knudsen number is established. This sets the first rigorous step in deriving turbulence models from kinetic theory.

  11. Determination of char combustion kinetics parameters: Comparison of point detector and imaging-based particle-sizing pyrometry

    NASA Astrophysics Data System (ADS)

    Schiemann, Martin; Geier, Manfred; Shaddix, Christopher R.; Vorobiev, Nikita; Scherer, Viktor

    2014-07-01

    In this study, the char burnout characteristics of two German coals (a lignite and a high-volatile bituminous coal) were investigated using two different experimental configurations and optical techniques in two distinct laboratories for measurement of temperature and size of burning particles. The optical diagnostic hardware is quite different in the two systems, but both perform two-color pyrometry and optical sizing measurements on individual particles burning in isolation from each other in high-temperature laminar flows to characterize the char consumption kinetics. The performance of the specialized systems is compared for two different combustion atmospheres (with 6.6 and 12 vol.% O2) and gas temperatures between 1700 and 1800 K. The measured particle temperatures and diameters are converted to char burning rate parameters for several residence times during the course of the particles' burnout. The results confirm that comparable results are obtained with the two configurations, although higher levels of variability in the measured data were observed in the imaging-based pyrometer setup. Corresponding uncertainties in kinetics parameters were larger, and appear to be more sensitive to systematic measurement errors when lower oxygen contents are used in the experiments. Consequently, burnout experiments in environments with sufficiently high O2 contents may be used to measure reliable char burning kinetics rates. Based on simulation results for the two coals, O2 concentrations in the range 10%-30% are recommended for kinetic rate measurements on 100 μm particles.

  12. Kinetics and activation parameter analysis for the prebiotic oligocytidylate formation on Na(+)-montmorillonite at 0-100 degrees C.

    PubMed

    Kawamura, Kunio; Maeda, Jun

    2008-09-01

    The kinetic analysis of the temperature dependence of the formation of oligocytidylate (oligo(C)) from the 5'-monophosphorimidazolide moiety of cytidine (ImpC) in the presence of Na (+)-montmorillonite (Na (+)-Mont) catalyst has been carried out at 0-100 degrees C. The rate constants for the formation of oligo(C), hydrolysis of ImpC with and without Na (+)-Mont and degradation of oligo(C) were determined. The apparent activation parameters were 30.8 +/- 3.9 kJ mol (-1) ( Ea), 28.3 +/- 4.0 kJ mol (-1) (Delta H++), and -231 +/- 13 J mol (-1) K (-1) (Delta S++) for the formation of the 2-mer; 45.6 +/- 2.9 kJ mol (-1) ( Ea), 43.0 +/- 3.0 kJ mol (-1) (Delta H++), -164 +/- 10 J mol (-1) K (-1) (Delta S++) for the 3-mer; and 45.2 +/- 0.6 kJ mol (-1) ( Ea), 42.7 +/- 0.7 kJ mol (-1) (Delta H++), -159 +/- 2 J mol (-1) K (-1) (Delta S++) for the 4-mer in the presence of Na (+)-Mont. An increasing trend for the rate constants for the formation of oligo(C) in the order 2-mer < 3-mer <4-mer was observed at high temperatures, which is consistent with that observed at low temperatures. These analyses implied for the first time that the associate formation between an activated nucleotide monomer and an elongating oligonucleotide prior to the phosphodiester bond formation during the elongation of an oligonucleotide on a clay surface would be based on the interaction between the two reactants at the phosphoester and/or ribose moieties rather than at the nucleotide bases. The hydrolysis rate of ImpC at 25-100 degrees C was 5.3-10.6 times greater in the presence of Na (+)-Mont than in its absence. Although the degradation of oligo(C) in the presence of Na (+)-Mont was slower than the formation of the 3-mer and longer oligo(C) on Na (+)-Mont, its yield decreased with temperature. This is mainly because the ratios of the rate constant of the 2-mer formation to those of ImpC hydrolysis and the 3-mer and 4-mer formation decrease with an increase in temperature, which is attributed to the enthalpy and entropy changes for the formation of the 2-mer. This trend resembles the case of the template-directed formation of oligo(G) on a poly(C) template but is different from the Pb (2+)-ion-catalyzed oligo(C) formation. According to the kinetics and activation parameter analyses regarding the clay reaction and other prebiotic polymerase models, the possible pathways for the oligonucleotide formation are discussed and compared. PMID:18693705

  13. Monoculture parameters successfully predict coculture growth kinetics of Bacteroides thetaiotaomicron and two Bifidobacterium strains.

    PubMed

    Van Wey, A S; Cookson, A L; Roy, N C; McNabb, W C; Soboleva, T K; Shorten, P R

    2014-11-17

    Microorganisms rarely live in isolation but are most often found in a consortium. This provides the potential for cross-feeding and nutrient competition among the microbial species, which make it challenging to predict the growth kinetics in coculture. In this paper we developed a mathematical model to describe substrate consumption and subsequent microbial growth and metabolite production for bacteria grown in monoculture. The model characterized substrate utilization kinetics of 18 Bifidobacterium strains. Some bifidobacterial strains demonstrated preferential degradation of oligofructose in that sugars with low degree of polymerization (DP) (DP≤3 or 4) were metabolized before sugars of higher DP, or vice versa. Thus, we expanded the model to describe the preferential degradation of oligofructose. In addition, we adapted the model to describe the competition between human colonic bacteria Bacteroides thetaiotaomicron LMG 11262 and Bifidobacterium longum LMG 11047 or Bifidobacterium breve Yakult for inulin as well as cross-feeding of breakdown products from the extracellular hydrolysis of inulin by B. thetaiotaomicron LMG 11262. We found that the coculture growth kinetics could be predicted based on the respective monoculture growth kinetics. Using growth kinetics from monoculture experiments to predict coculture dynamics will reduce the number of in vitro experiments required to parameterize multi-culture models. PMID:25282609

  14. Genetic parameters of different measures of cheese yield and milk nutrient recovery from an individual model cheese-manufacturing process.

    PubMed

    Bittante, G; Cipolat-Gotet, C; Cecchinato, A

    2013-01-01

    Cheese yield (CY) is an important technological trait in the dairy industry, and the objective of this study was to estimate the genetic parameters of cheese yield in a dairy cattle population using an individual model-cheese production procedure. A total of 1,167 Brown Swiss cows belonging to 85 herds were sampled once (a maximum of 15 cows were sampled per herd on a single test day, 1 or 2 herds per week). From each cow, 1,500 mL of milk was processed according to the following steps: milk sampling and heating, culture addition, rennet addition, gelation-time recording, curd cutting, whey draining and sampling, wheel formation, pressing, salting in brine, weighing, and cheese sampling. The compositions of individual milk, whey, and curd samples were determined. Three measures of percentage cheese yield (%CY) were calculated: %CY(CURD), %CY(SOLIDS), and %CY(WATER), which represented the ratios between the weight of fresh curd, the total solids of the curd, and the water content of the curd, respectively, and the weight of the milk processed. In addition, 3 measures of daily cheese yield (dCY, kg/d) were defined, considering the daily milk yield. Three measures of nutrient recovery (REC) were computed: REC(FAT), REC(PROTEIN), and REC(SOLIDS), which represented the ratio between the weights of the fat, protein, and total solids in the curd, respectively, and the corresponding nutrient in the milk. Energy recovery, REC(ENERGY), represented the energy content of the cheese versus that in the milk. For statistical analysis, a Bayesian animal model was implemented via Gibbs sampling. The effects of parity (1 to ≥4), days in milk (6 classes), and laboratory vat (15 vats) were assigned flat priors; those of herd-test-date, animal, and residual were given Gaussian prior distributions. Intra-herd heritability estimates of %CY(CURD), %CY(SOLIDS), and %CY(WATER) ranged from 0.224 to 0.267; these were larger than the estimates obtained for milk yield (0.182) and milk fat content (0.122), and similar to that for protein content (0.275). Daily cheese yields showed heritability estimates similar to those of daily milk yield. The trait %CY(WATER) showed a highly positive genetic correlation with %CY(SOLIDS) (0.87), whereas their phenotypic correlation was moderate (0.37), and the fat and protein contents of milk showed high genetic correlations with %CY traits. The heritability estimates of REC(PROTEIN) and REC(FAT) were larger (0.490 and 0.208, respectively) than those obtained for the protein and fat contents of milk, and the genetic relationships between REC(PROTEIN) and REC(FAT) with milk protein and fat content were low or moderate; REC(PROTEIN) and REC(FAT) were moderately correlated with the %CY traits and highly correlated with REC(SOLIDS) and REC(ENERGY). Both REC(SOLIDS) and REC(ENERGY) were heritable (0.274 and 0.232), and showed high correlations with each other (0.96) and with the %CY traits (0.83 to 0.97). Together, these findings demonstrate the existence of economically important, genetically determined variability in cheese yield that does not depend solely upon the fat and protein contents of milk, but also relies on the ability of the coagulum to retain the highest possible proportions of the available protein, fat, and water. Exploitation of this interesting genetic variation does not seem to be feasible through direct measurement of the phenotype in cows at the population level. Instead, further research is warranted to examine possible means for indirect prediction, such as through assessing the mid-infrared spectra of milk samples. PMID:24094539

  15. Conjugation of highly reactive aflatoxin B1 exo-8,9-epoxide catalyzed by rat and human glutathione transferases: estimation of kinetic parameters.

    PubMed

    Johnson, W W; Ueng, Y F; Widersten, M; Mannervik, B; Hayes, J D; Sherratt, P J; Ketterer, B; Guengerich, F P

    1997-03-18

    Aflatoxin B1 (AFB1) exo-8,9-epoxide, the reactive product of the hepatocarcinogen AFB1, is stable in aprotic solvents but hydrolyzes rapidly in H2O at 25 degrees C and pH 7 (t1/2 = 1 s). However, it is also known that some glutathione (GSH) transferases can conjugate the epoxide with GSH to give the adduct in high yield. We developed an approach to estimating kinetic parameters for reactions involving this epoxide or other substrates that are unstable to H2O. Varying concentrations of the (anhydrous) epoxide and GSH transferase were mixed and the GSH conjugates were measured. The final concentrations of product were known for each set of the starting epoxide and enzyme concentrations in a modeling approach, where the competition with the hydrolysis reaction is considered with two variables, a K for binding of the enzyme and epoxide and a rate k2, which includes microscopic steps following complex formation and resulting in conjugate formation. The ratio k2/K, a measure of enzyme efficiency, varied among individual recombinant GSH transferases in the the order (rat) 10-10 > 3-3 > (human) M1-1 > T1-1 > A1-1 > P1-1 > A2-2, from 3 x 10(6) to 10 M(-1) s(-1). The high ratio of M1-1 among the human GSH transferase enzymes tested is consistent with other work in which GSH-AFB1 conjugates were not detected in hepatocytes with an M1 null polymorphism. This general kinetic approach should be applicable to estimation of kinetic parameters involved in the interaction of other unstable substrates with enzymes. PMID:9115980

  16. Effects of Multiple-Bond Ruptures on Kinetic Parameters Extracted from Force Spectroscopy Measurements: Revisiting Biotin-Streptavidin Interactions

    PubMed Central

    Guo, Senli; Ray, Chad; Kirkpatrick, Andrea; Lad, Nimit; Akhremitchev, Boris B.

    2008-01-01

    Force spectroscopy measurements of the rupture of the molecular bond between biotin and streptavidin often results in a wide distribution of rupture forces. We attribute the long tail of high rupture forces to the nearly simultaneous rupture of more than one molecular bond. To decrease the number of possible bonds, we employed hydrophilic polymeric tethers to attach biotin molecules to the atomic force microscope probe. It is shown that the measured distributions of rupture forces still contain high forces that cannot be described by the forced dissociation from a deep potential well. We employed a recently developed analytical model of simultaneous rupture of two bonds connected by polymer tethers with uneven length to fit the measured distributions. The resulting kinetic parameters agree with the energy landscape predicted by molecular dynamics simulations. It is demonstrated that when more than one molecular bond might rupture during the pulling measurements there is a noise-limited range of probe velocities where the kinetic parameters measured by force spectroscopy correspond to the true energy landscape. Outside this range of velocities, the kinetic parameters extracted by using the standard most probable force approach might be interpreted as artificial energy barriers that are not present in the actual energy landscape. Factors that affect the range of useful velocities are discussed. PMID:18621812

  17. An approach to the determination of the kinetic parameters for atom formation in electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Xiu-ping, Yan; Zhe-ming, Ni; Xiao-tao, Yang; Guo-qiang, Hong

    1993-03-01

    A method for the simultaneous determination of the kinetic order, activation energy and frequency factor for atom formation from one single absorbance signal under normal analytical conditions in electrothermal atomic absorption spectrometry (ETAAS) has been investigated. Both computer simulation techniques, with known kinetic parameters of atom formation, and ETAAS experiments are employed to examine the validity of the present method and comparison is made among several methods so as to elucidate the merits of the present method. The results show that the activation energy values obtained at lower temperatures by the previous methods and by the present method are almost identical. However, the Arrhenius plots obtained by the previous methods often bend at higher temperatures while those obtained by the present method exhibit much wider linearity. The curvature may result from the assumption of the first order kinetics for atom formation, the steady state approximation and/or multiple release mechanisms. The present method has been successfully applied to the determination of the kinetic parameters for the atomization of copper and manganese. The values of the kinetic order, activation energy and frequency factor, are found to be 1.07 ± 0.04, 40 ± 2 kcal mol -1 and (3.2 ± 1.1) × 10 5 s -1 for copper, and 1.00 ± 0.04, 45 ± 2 kcal mol -1 and (2.5 ± 1.2) × 10 5 s -1 for manganese, respectively. In addition, a method for the simultaneous determination of the diffusion coefficient of gaseous atoms and its temperature dependence from the decay portion of one single absorbance signal has been proposed.

  18. Identification of quantitative trait loci for resistance to Verticillium wilt and yield parameters in hop (Humulus lupulus L.).

    PubMed

    Jakse, Jernej; Cerenak, Andreja; Radisek, Sebastjan; Satovic, Zlatko; Luthar, Zlata; Javornik, Branka

    2013-06-01

    Verticillium wilt (VW) can cause substantial yield loss in hop particularly with the outbreaks of the lethal strain of Verticillium albo-atrum. To elucidate genetic control of VW resistance in hop, an F1 mapping population derived from a cross of cultivar Wye Target, with the predicted genetic basis of resistance, and susceptible male breeding line BL2/1 was developed to assess wilting symptoms and to perform QTL mapping. The genetic linkage map, constructed with 203 markers of various types using a pseudo-testcross strategy, formed ten major linkage groups (LG) of the maternal and paternal maps, covering 552.98 and 441.1 cM, respectively. A significant QTL for VW resistance was detected at LOD 7 on a single chromosomal region on LG03 of both parental maps, accounting for 24.2-26.0 % of the phenotypic variance. QTL analysis for alpha-acid content and yield parameters was also performed on this map. QTLs for these traits were also detected and confirmed our previously detected QTLs in a different pedigree and environment. The work provides the basis for exploration of QTL flanking markers for possible use in marker-assisted selection. PMID:23423654

  19. Combined Yamamoto approach for simultaneous estimation of adsorption isotherm and kinetic parameters in ion-exchange chromatography.

    PubMed

    Rüdt, Matthias; Gillet, Florian; Heege, Stefanie; Hitzler, Julian; Kalbfuss, Bernd; Guélat, Bertrand

    2015-09-25

    Application of model-based design is appealing to support the development of protein chromatography in the biopharmaceutical industry. However, the required efforts for parameter estimation are frequently perceived as time-consuming and expensive. In order to speed-up this work, a new parameter estimation approach for modelling ion-exchange chromatography in linear conditions was developed. It aims at reducing the time and protein demand for the model calibration. The method combines the estimation of kinetic and thermodynamic parameters based on the simultaneous variation of the gradient slope and the residence time in a set of five linear gradient elutions. The parameters are estimated from a Yamamoto plot and a gradient-adjusted Van Deemter plot. The combined approach increases the information extracted per experiment compared to the individual methods. As a proof of concept, the combined approach was successfully applied for a monoclonal antibody on a cation-exchanger and for a Fc-fusion protein on an anion-exchange resin. The individual parameter estimations for the mAb confirmed that the new approach maintained the accuracy of the usual Yamamoto and Van Deemter plots. In the second case, offline size-exclusion chromatography was performed in order to estimate the thermodynamic parameters of an impurity (high molecular weight species) simultaneously with the main product. Finally, the parameters obtained from the combined approach were used in a lumped kinetic model to simulate the chromatography runs. The simulated chromatograms obtained for a wide range of gradient lengths and residence times showed only small deviations compared to the experimental data. PMID:26306913

  20. A comparison of region-based and pixel-based CEUS kinetics parameters in the assessment of arthritis

    NASA Astrophysics Data System (ADS)

    Grisan, E.; Raffeiner, B.; Coran, A.; Rizzo, G.; Ciprian, L.; Stramare, R.

    2014-03-01

    Inflammatory rheumatic diseases are leading causes of disability and constitute a frequent medical disorder, leading to inability to work, high comorbidity and increased mortality. The gold-standard for diagnosing and differentiating arthritis is based on patient conditions and radiographic findings, as joint erosions or decalcification. However, early signs of arthritis are joint effusion, hypervascularization and synovial hypertrophy. In particular, vascularization has been shown to correlate with arthritis' destructive behavior, more than clinical assessment. Contrast Enhanced Ultrasound (CEUS) examination of the small joints is emerging as a sensitive tool for assessing vascularization and disease activity. The evaluation of perfusion pattern rely on subjective semi-quantitative scales, that are able to capture the macroscopic degree of vascularization, but are unable to detect the subtler differences in kinetics perfusion parameters that might lead to a deeper understanding of disease progression and a better management of patients. Quantitative assessment is mostly performed by means of the Qontrast software package, that requires the user to define a region of interest, whose mean intensity curve is fitted with an exponential function. We show that using a more physiologically motivated perfusion curve, and by estimating the kinetics parameters separately pixel per pixel, the quantitative information gathered is able to differentiate more effectively different perfusion patterns. In particular, we will show that a pixel-based analysis is able to provide significant markers differentiating rheumatoid arthritis from simil-rheumatoid psoriatic arthritis, that have non-significant differences in clinical evaluation (DAS28), serological markers, or region-based parameters.

  1. Applicability of fluorescence-based sensors to the determination of kinetic parameters for O2 in oxygenases

    PubMed Central

    Di Russo, Natali V.; Bruner, Steven D.; Roitberg, Adrian E.

    2015-01-01

    Optical methods for O2 determination based on dynamic fluorescence quenching have been applied to measure oxygen uptake rates in cell culture, and to determine intracellular oxygen levels. Here we demonstrate the applicability of fluorescence-based probes in determining kinetic parameters for O2 using as an example catalysis by a cofactor-independent oxygenase (DpgC). Fluorescence-based sensors provide a direct assessment of enzyme-catalyzed O2 consumption using commercially available, low-cost instrumentation that is easily customizable and thus constitute a convenient alternative to the widely-used Clark-type electrode, especially in cases where chemical interference is expected to be problematic. PMID:25637681

  2. Kinetic parameters of red pepper waste as biomass to solid biofuel.

    PubMed

    Maia, Amanda Alves Domingos; de Morais, Leandro Cardoso

    2016-03-01

    This work aimed to study the kinetic of thermal degradation of red pepper waste as solid biofuel to bioenergy production. The thermal degradation experiments were conducted at three heating rates, 5°C/min, 7.5°C/min and 10°C/min in a thermogravimetric analyzer and oxidative atmosphere. The kinetic analysis was carried out applying the isoconversional model of Ozawa-Flynn-Wall. The activation energy was considerate low and varied 29.49-147.25k J/mol. The enthalpies revealed the energy difference between the reagent and the activated complex agreed with activation energies, the values of the pre-exponential factor indicated empirical first order reactions, Gibbs free energy varied from 71.77 kJ/mol to 207.03 kJ/mol and the changes of entropies had negative values, indicating that the degree of disorder of products formed through bond dissociations was lower than initial reactants. The calorific value was 19.5 MJ/kg, considered a relevant result for bioenergy production. PMID:26773950

  3. The influence of estimated body segment parameters on predicted joint kinetics during diplegic cerebral palsy gait.

    PubMed

    Kiernan, D; Walsh, M; O'Sullivan, R; O'Brien, T; Simms, C K

    2014-01-01

    Inverse Dynamic calculations are routinely used in joint moment and power estimates during gait with anthropometric data often taken from published sources. Many biomechanical analyses have highlighted the need to obtain subject-specific anthropometric data (e.g. Mass, Centre of Mass, Moments of Inertia) yet the types of imaging techniques required to achieve this are not always available in the clinical setting. Differences in anthropometric sets have been shown to affect the reactive force and moment calculations in normal subjects but the effect on a paediatric diplegic cerebral palsy group has not been investigated. The aim of this study was to investigate the effect of using different anthropometric sets on predicted sagittal plane moments during normal and diplegic cerebral palsy gait. Three published anthropometric sets were applied to the reactive force and moment calculations of 14 Cerebral Palsy and 14 Control subjects. Statistically significant differences were found when comparing the different anthropometric sets but variability in the resulting sagittal plane moment calculations between sets was low (0.01-0.07 Nm/kg). In addition, the GDI-Kinetic, used as an outcome variable to assess whether differences were clinically meaningful, indicated no clinically meaningful difference between sets. The results suggest that the effects of using different anthropometric sets on the kinetic profiles of normal and diplegic cerebral palsy subjects are clinically insignificant. PMID:24200337

  4. Indoor formaldehyde removal by thermal catalyst: kinetic characteristics, key parameters, and temperature influence.

    PubMed

    Xu, Qiujian; Zhang, Yinping; Mo, Jinhan; Li, Xinxiao

    2011-07-01

    Thermal catalytic oxidation (TCO) technology can continuously degrade formaldehyde at room temperature without added energy. However, there is very little knowledge on the TCO kinetic reaction mechanism, which is necessary in developing such air cleaners and in comparison with other air cleaning techniques. This paper addresses the problem of a novel TCO catalyst, Pt/MnO(x)-CeO(2). The experiments measuring the outlet concentrations of formaldehyde and other possible byproducts were conducted at temperatures of 25, 40, 60, 100, and 180 °C and at a series of inlet formaldehyde concentrations (280-3000 ppb). To measure the concentrations precisely and real timely, proton transfer reaction-mass spectrometry (PTR-MS) was used. We found the following from the experimental results: (1) no byproducts were detected; (2) the bimolecular L-H kinetic model best described the catalytic reaction rate; (3) the activation energy of the oxidation was about 25.8 kJ mol(-1); (4) TCO is most energy efficient at room temperature without auxiliary heating; (5) compared with photocatalytic oxidation (PCO) which needs ultraviolet light radiation, the reaction area of TCO can be much larger for a given volume so that TCO can perform much better not only in formaldehyde removal efficiency but also in energy saving. PMID:21667968

  5. Non-isothermal kinetic parameters and models of crystallization for amorphous Fe-Co-Nb-Cu-B alloys

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Deng, Longjiang; Xie, Jianliang; Liang, Difei

    2013-02-01

    The non-isothermal differential scanning calorimetry (DSC) measurements are often used to study kinetics of amorphous alloys. However non-isothermal kinetic parameters and models of amorphous alloy crystallization process were unclear. In our research, amorphous (FexCo1-x)NbCuB (x=0.33, 0.5 and 0.75) alloys were produced in the form of ribbon by a single roller melt-spinning method. DSC curves at heating rate 5, 10, 15, 20 and 25 K/min were obtained. Kissinger, Ozawa and model-free methods obtain identical activation energies at each exothermic peak of all compositions. We conclude that first exothermic reaction is determined by the migration activation energy of Fe or Co atom; second reaction determined by the energy between parent and product boride phases; and the third reaction determined by the energy between parent α-FeCo phase and product bcc-Fe/fcc-Co phases. We hypothesized a non-isothermal kinetic modelf(α)=α(1, which fit our experiment results well. In this model, m depends on nucleus shape and growth dimension, and n are determined by lattice positions participated in new phase formation.

  6. A neural network approach for the prediction of in vitro culture parameters for maximum biomass yields in hairy root cultures.

    PubMed

    Prakash, Om; Mehrotra, Shakti; Krishna, Aneesh; Mishra, Bhartendu N

    2010-08-21

    The present study deals with ANN based prediction of culture parameters in terms of inoculum density, pH and volume of growth medium per culture vessel and sucrose content of the growth medium for Glycyrrhiza hairy root cultures. This kind of study could be a model system in exploitation of hairy root cultures for commercial production of pharmaceutical compounds using large bioreactors. The study is aimed to evaluate the efficiency of regression neural network and back propagation neural network for the prediction of optimal culture conditions for maximum hairy root biomass yield. The training data for regression and back propagation networks were primed on the basis of function approximation, where final biomass fresh weight (f(wt)) was considered as a function of culture parameters. On this basis the variables in culture conditions were described in the form of equations which are for inoculum density: y=0.02x+0.04, for pH of growth medium: y=x+2.8, for sucrose content in medium: y=9.9464x+(-9.7143) and for culture medium per culture vessel: y=10x. The fresh weight values obtained from training data were considered as target values and further compared with predicted fresh weight values. The empirical data were used as testing data and further compared with values predicted from trained networks. Standard MATLAB inbuilt generalized regression network with radial basis function radbas as transfer function in layer one and purelin in layer two and back propagation having purelin as transfer function in output layer and logsig in hidden layer were used. Although in comparative assessment both the networks were found efficient for prediction of optimal culture conditions for high biomass production, more accuracy in results was seen with regression network. PMID:20561985

  7. Model of 2,3-bisphosphoglycerate metabolism in the human erythrocyte based on detailed enzyme kinetic equations: equations and parameter refinement.

    PubMed Central

    Mulquiney, P J; Kuchel, P W

    1999-01-01

    Over the last 25 years, several mathematical models of erythrocyte metabolism have been developed. Although these models have identified the key features in the regulation and control of erythrocyte metabolism, many important aspects remain unexplained. In particular, none of these models have satisfactorily accounted for 2,3-bisphosphoglycerate (2,3-BPG) metabolism. 2,3-BPG is an important modulator of haemoglobin oxygen affinity, and hence an understanding of the regulation of 2,3-BPG concentration is important for understanding blood oxygen transport. A detailed, comprehensive, and hence realistic mathematical model of erythrocyte metabolism is presented that can explain the regulation and control of 2,3-BPG concentration and turnover. The model is restricted to the core metabolic pathways, namely glycolysis, the 2,3-BPG shunt and the pentose phosphate pathway (PPP), and includes membrane transport of metabolites, the binding of metabolites to haemoglobin and Mg(2+), as well as pH effects on key enzymic reactions and binding processes. The model is necessarily complex, since it is intended to describe the regulation and control of 2,3-BPG metabolism under a wide variety of physiological and experimental conditions. In addition, since H(+) and blood oxygen tension are important external effectors of 2,3-BPG concentration, it was important that the model take into account the large array of kinetic and binding phenomena that result from changes in these effectors. Through an iterative loop of experimental and simulation analysis many values of enzyme-kinetic parameters of the model were refined to yield close conformity between model simulations and 'real' experimental data. This iterative process enabled a single set of parameters to be found which described well the metabolic behaviour of the erythrocyte under a wide variety of conditions. PMID:10477269

  8. Model of 2,3-bisphosphoglycerate metabolism in the human erythrocyte based on detailed enzyme kinetic equations: equations and parameter refinement.

    PubMed

    Mulquiney, P J; Kuchel, P W

    1999-09-15

    Over the last 25 years, several mathematical models of erythrocyte metabolism have been developed. Although these models have identified the key features in the regulation and control of erythrocyte metabolism, many important aspects remain unexplained. In particular, none of these models have satisfactorily accounted for 2,3-bisphosphoglycerate (2,3-BPG) metabolism. 2,3-BPG is an important modulator of haemoglobin oxygen affinity, and hence an understanding of the regulation of 2,3-BPG concentration is important for understanding blood oxygen transport. A detailed, comprehensive, and hence realistic mathematical model of erythrocyte metabolism is presented that can explain the regulation and control of 2,3-BPG concentration and turnover. The model is restricted to the core metabolic pathways, namely glycolysis, the 2,3-BPG shunt and the pentose phosphate pathway (PPP), and includes membrane transport of metabolites, the binding of metabolites to haemoglobin and Mg(2+), as well as pH effects on key enzymic reactions and binding processes. The model is necessarily complex, since it is intended to describe the regulation and control of 2,3-BPG metabolism under a wide variety of physiological and experimental conditions. In addition, since H(+) and blood oxygen tension are important external effectors of 2,3-BPG concentration, it was important that the model take into account the large array of kinetic and binding phenomena that result from changes in these effectors. Through an iterative loop of experimental and simulation analysis many values of enzyme-kinetic parameters of the model were refined to yield close conformity between model simulations and 'real' experimental data. This iterative process enabled a single set of parameters to be found which described well the metabolic behaviour of the erythrocyte under a wide variety of conditions. PMID:10477269

  9. An identification algorithm of model kinetic parameters of the interfacial layer growth in fiber composites

    NASA Astrophysics Data System (ADS)

    Zubov, V.; Lurie, S.; Solyaev, Y.

    2016-04-01

    This paper considers the identification algorithm of parameters included in a parabolic law that is often used to predict the time dependence of the thickness of the interfacial layers in the structure of composite materials based on a metal matrix. The incubation period of the process and the speed of reaction and pressure are taken into account. The proposed algorithm of identification is based on the introduction of a minimized objective function of a special kind. The problem of identification of unknown parameters in the parabolic law is formulated in a variational form. The authors of the paper have determined the desired parameters, under which the objective function has a minimum value. It is shown that on the basis of four known experimental values of the interfacial layer thickness, corresponding to different values of temperature, pressure and the time of the interfacial layer growth, it is possible to identified four model parameters. They are the activation energy, a pre-exponential parameter, the delay time of the start of the interfacial layer formation, and the parameter determining the pressure effect on the rate of interfacial layer growth. The stability of the proposed identification algorithm is also studied.

  10. A laser flash photolysis kinetics study of the reaction OH + H2O2 yields HO2 + H2O

    NASA Technical Reports Server (NTRS)

    Wine, P. H.; Semmes, D. H.; Ravishankara, A. R.

    1981-01-01

    Absolute rate constants for the reaction are reported as a function of temperature over the range 273-410 K. OH radicals are produced by 266 nm laser photolysis of H2O2 and detected by resonance fluorescence. H2O2 concentrations are determined in situ in the slow flow system by UV photometry. The results confirm the findings of two recent discharge flow-resonance fluorescence studies that the title reaction is considerably faster, particularly at temperatures below 300 K, than all earlier studies had indicated. A table giving kinetic data from the reaction is included.

  11. Isotherm parameters and intraparticle mass transfer kinetics on molecularly imprinted polymers in acetonitrile/buffer mobile phases

    SciTech Connect

    Kim, Hyunjung; Kaczmarski, Krzysztof; Guiochon, Georges A

    2006-03-01

    The equilibrium isotherm and the intraparticle mass transfer kinetics of the enantiomers of the template were investigated on an Fmoc-L-tryptophan (Fmoc-L-Trp) imprinted polymer at different pHs and water concentrations in acetonitrile/aqueous buffer mobile phases. The equilibrium isotherm data were measured using frontal analysis at 25 {+-} 2 C. The adsorption energy distribution was found to be trimodal, with narrow modes. Consistent with this distribution, the adsorption data were modeled using a tri-Langmuir isotherm equation and the best estimates of the isotherm parameters were determined. The intraparticle mass transfer parameters were derived by comparing the profiles of experimental overloaded bands and the profiles calculated using the isotherm model and the lumped pore diffusion (POR) model of chromatography. These results showed that different adsorption and mass transfer mechanisms exist in mobile phases made of acetonitrile/aqueous buffer and of acetonitrile/acetic acid solutions.

  12. Crystallization kinetics of lithium niobate glass: determination of the Johnson-Mehl-Avrami-Kolmogorov parameters.

    PubMed

    Choi, H W; Kim, Y H; Rim, Y H; Yang, Y S

    2013-06-28

    The formation of crystalline LiNbO3 (LN) from LN glass has been studied by means of differential scanning calorimetry and in situ synchrotron X-ray diffraction. The LN glass with no glass former was prepared by the polymerized complex method. The isothermal kinetics of the crystallization process is described using the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation and the Avrami exponent n is found to be ~2.0, indicating that the crystallization mechanism is diffusion-controlled growth with a decreasing nucleation rate. The effective activation energy of crystallization calculated from isothermal measurements is 6.51 eV. It is found that the LN glass directly transforms into a rhombohedral LN crystal without any intermediate crystalline phase and most crystal grains are confined within the size of ~40 nm irrespective of different isothermal temperatures. Application of JMAK theory to the non-isothermal thermoanalytical study of crystallization of LN glass is discussed. PMID:23677338

  13. Degradation of ciprofloxacin in water by advanced oxidation process: kinetics study, influencing parameters and degradation pathways.

    PubMed

    Sayed, Murtaza; Ismail, M; Khan, Sanaullah; Tabassum, Safia; Khan, Hasan M

    2016-03-01

    Gamma-radiation-induced degradation of ciprofloxacin (CIP) in aqueous solution and the factors affecting the degradation process have been investigated. The results showed that CIP (4.6 mg/L) was almost completely degraded at an absorbed dose of 870 Gy. The kinetic studies of aqueous solutions containing 4.6, 10, 15 and 17.9 mg/L indicated that the decomposition of CIP by gamma irradiation followed pseudo-first-order kinetics and the decay constant (k) decreased from 5.9  ×  10(-3) to 1.6  ×  10(-3) Gy(-1) with an increase in CIP initial concentration from 4.6 to 17.9 mg/L. The effect of saturation of CIP solution with N2, N2O or air on radiation-induced degradation of CIP was also investigated. The effects of radical scavengers, such as t-BuOH and i-PrOH, showed the role of reactive radicals towards degradation of CIP in the order of [Formula: see text]. The apparent second-order rate constant of [Formula: see text] with CIP was calculated to be 2.64 × 10(9) M(-1) s(-1). The effects of solution pH as well as natural water contaminants, such as [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text], on CIP degradation by gamma-irradiation were also investigated. Major degradation products, including organic acids, were identified using UPLC-MS/MS and IC, and degradation pathways have been proposed. PMID:26208491

  14. Methyl isocyanide isomerization kinetics: determination of collisional deactivation parameters following C-H overtone excitation

    SciTech Connect

    Snavely, D.L.; Zare, R.N.; Miller, J.A.; Chandler, D.W.

    1986-07-31

    The isomerization of methyl isocyanide (CH/sub 3/NC) to acetonitrile (CH/sub 3/CN) was studied by excitation of the 5nu/sub C-H/ (726.6 nm) and 6nu/sub C-H/ (621.4 nm) overtone states, which lie about 1 and 8 kcal/mol, respectively, above the isomerization barrier. Products yields were measured as a function of pressure and collision partner. A Stern-Volmer plot (yield/sup -1/ vs. pressure) shows that (1) deactivation by collision with pure CH/sub 3/NC is more rapid than with C/sub 3/H/sub 6/, SF/sub 6/, or Ar, (2) the collisional deactivation efficiencies decrease in going from C/sub 3/H/sub 6/ to SF/sub 6/ to Ar, and (3) the single-collision deactivation approximation (strong collider approximation) fails for both the 6nu/sub C-H/ and 5nu/sub C-H/ data. With the use of a master equation solution, assuming an exponential down energy-transfer function, the average energy transferred in a deactivating collision, -<..delta..E>/sub down/, is extracted from each data set, as well as the average energy transferred fer collision, -<..delta..E>. It is concluded that the isomerization yield depends markedly on the collision partner and on the average energy transferred per collision, -<..delta..E>, even though the single-collision deactivation approximation might have been expected to have its greatest validity in this energy regime.

  15. Kinetic Modeling and Parameter Estimation in a Tower Bioreactor for Bioethanol Production

    NASA Astrophysics Data System (ADS)

    Rivera, Elmer Ccopa; da Costa, Aline Carvalho; Lunelli, Betânia Hoss; Maciel, Maria Regina Wolf; Filho, Rubens Maciel

    In this work, a systematic method to support the building of bioprocess models through the use of different optimization techniques is presented. The method was applied to a tower bioreactor for bioethanol production with immobilized cells of Saccharomyces cerevisiae. Specifically, a step-by-step procedure to the estimation problem is proposed. As the first step, the potential of global searching of real-coded genetic algorithm (RGA) was applied for simultaneous estimation of the parameters. Subsequently, the most significant parameters were identified using the Placket-Burman (PB) design. Finally, the quasi-Newton algorithm (QN) was used for optimization of the most significant parameters, near the global optimum region, as the initial values were already determined by the RGA global-searching algorithm. The results have shown that the performance of the estimation procedure applied in a deterministic detailed model to describe the experimental data is improved using the proposed method (RGA-PB-QN) in comparison with a model whose parameters were only optimized by RGA.

  16. Sensitivity analysis of large system of chemical kinetic parameters for engine combustion simulation

    SciTech Connect

    Hsieh, H; Sanz-Argent, J; Petitpas, G; Havstad, M; Flowers, D

    2012-04-19

    In this study, the authors applied the state-of-the art sensitivity methods to downselect system parameters from 4000+ to 8, (23000+ -> 4000+ -> 84 -> 8). This analysis procedure paves the way for future works: (1) calibrate the system response using existed experimental observations, and (2) predict future experiment results, using the calibrated system.

  17. Kinetics study of the Cl/2P/ + Cl2O yields Cl2 + ClO reaction at 298 K

    NASA Technical Reports Server (NTRS)

    Ray, G. W.; Keyser, L. F.; Watson, R. T.

    1980-01-01

    The kinetics of the Cl + Cl2O reaction, a possible source of ClO(2 Pi) radicals for atmospheric photochemical studies, are investigated at 298 K. The discharge flow/mass spectrometry and discharge flow/resonance fluorescence techniques were used to monitor the decay of C12O in the presence of excess concentrations of atomic chlorine and chlorine monoxide, respectively. The pseudo-first order rate constants obtained from both experiments are found to be in excellent agreement, averaging 9.8 + or - 0.8 x 10 to the -11th cu cm/molecule per sec. Results are consistent with the lower limit obtained by Edgecombe et al. (1957) but differ by a factor of 150 from those of Basco and Dogra (1971). The present value is also noted to be consistent with a lower value for the rate constant of the reaction of oxygen atoms with Cl2O.

  18. Temperature Effects on Kinetic Parameters and Substrate Affinity of Cel7A Cellobiohydrolases.

    PubMed

    Srensen, Trine Holst; Cruys-Bagger, Nicolaj; Windahl, Michael Skovbo; Badino, Silke Flindt; Borch, Kim; Westh, Peter

    2015-09-01

    We measured hydrolytic rates of four purified cellulases in small increments of temperature (10-50 C) and substrate loads (0-100 g/liter) and analyzed the data by a steady state kinetic model that accounts for the processive mechanism. We used wild type cellobiohydrolases (Cel7A) from mesophilic Hypocrea jecorina and thermophilic Rasamsonia emersonii and two variants of these enzymes designed to elucidate the role of the carbohydrate binding module (CBM). We consistently found that the maximal rate increased strongly with temperature, whereas the affinity for the insoluble substrate decreased, and as a result, the effect of temperature depended strongly on the substrate load. Thus, temperature had little or no effect on the hydrolytic rate in dilute substrate suspensions, whereas strong temperature activation (Q10 values up to 2.6) was observed at saturating substrate loads. The CBM had a dual effect on the activity. On one hand, it diminished the tendency of heat-induced desorption, but on the other hand, it had a pronounced negative effect on the maximal rate, which was 2-fold larger in variants without CBM throughout the investigated temperature range. We conclude that although the CBM is beneficial for affinity it slows down the catalytic process. Cel7A from the thermophilic organism was moderately more activated by temperature than the mesophilic analog. This is in accord with general theories on enzyme temperature adaptation and possibly relevant information for the selection of technical cellulases. PMID:26183777

  19. Visualization and Curve-Parameter Estimation Strategies for Efficient Exploration of Phenotype Microarray Kinetics

    PubMed Central

    Vaas, Lea A. I.; Sikorski, Johannes; Michael, Victoria; Göker, Markus; Klenk, Hans-Peter

    2012-01-01

    Background The Phenotype MicroArray (OmniLog® PM) system is able to simultaneously capture a large number of phenotypes by recording an organism's respiration over time on distinct substrates. This technique targets the object of natural selection itself, the phenotype, whereas previously addressed ‘-omics’ techniques merely study components that finally contribute to it. The recording of respiration over time, however, adds a longitudinal dimension to the data. To optimally exploit this information, it must be extracted from the shapes of the recorded curves and displayed in analogy to conventional growth curves. Methodology The free software environment R was explored for both visualizing and fitting of PM respiration curves. Approaches using either a model fit (and commonly applied growth models) or a smoothing spline were evaluated. Their reliability in inferring curve parameters and confidence intervals was compared to the native OmniLog® PM analysis software. We consider the post-processing of the estimated parameters, the optimal classification of curve shapes and the detection of significant differences between them, as well as practically relevant questions such as detecting the impact of cultivation times and the minimum required number of experimental repeats. Conclusions We provide a comprehensive framework for data visualization and parameter estimation according to user choices. A flexible graphical representation strategy for displaying the results is proposed, including 95% confidence intervals for the estimated parameters. The spline approach is less prone to irregular curve shapes than fitting any of the considered models or using the native PM software for calculating both point estimates and confidence intervals. These can serve as a starting point for the automated post-processing of PM data, providing much more information than the strict dichotomization into positive and negative reactions. Our results form the basis for a freely available R package for the analysis of PM data. PMID:22536335

  20. Characterization of Nicotinamidases: Steady-State Kinetic Parameters, Class-wide Inhibition by Nicotinaldehydes and Catalytic Mechanism

    PubMed Central

    French, Jarrod B.; Cen, Yana; Vrablik, Tracy L.; Xu, Ping; Allen, Eleanor; Hanna-Rose, Wendy; Sauve, Anthony A.

    2010-01-01

    Nicotinamidases are metabolic enzymes that hydrolyze nicotinamide to nicotinic acid. These enzymes are widely distributed across biology, with examples found encoded in the genomes of Mycobacteria, Archaea, Eubacteria, Protozoa, yeast and invertebrates but there are none found in mammals. Although recent structural work has improved understanding of these enzymes, their catalytic mechanism is still not well understood. Recent data shows that nicotinamidases are required for growth and virulence of several pathogenic microbes. The enzymes of Saccharomyces cerevisiae, Drosophila melanogaster and Caenorhabditis elegans regulate lifespan in their respective organisms, consistent with proposed roles in the regulation of NAD+ metabolism and organismal aging. In this manuscript, the steady state kinetic parameters of nicotinamidase enzymes from C. elegans, S. cerevisiae, Streptococcus pneumoniae (a pathogen responsible for human pneumonia), Borrelia burgdorferi (the pathogen that causes Lyme Disease) and Plasmodium falciparum (responsible for most human malaria) are reported. Nicotinamidases are generally efficient catalysts with steady state kcat values typically exceeding 1 s?1. The Km values for nicotinamide are low and are in the range from 2 110 M. Nicotinaldehyde was determined to be a potent competitive inhibitor of these enzymes, binding in the low M to low nM range for all nicotinamidases tested. A variety of nicotinaldehyde derivatives were synthesized and evaluated as inhibitors in kinetic assays. Inhibitions are consistent with reaction of the universally conserved catalytic Cys on each enzyme with the aldehyde carbonyl carbon to form a thiohemiacetal complex which is stabilized by a conserved oxyanion hole. The S. pneumoniae nicotinamidase can catalyse exchange of 18O into the carboxy oxygens of nicotinic acid with 18O-water. The collected data, along with kinetic analysis of several mutants, allowed us to propose a catalytic mechanism that explains nicotinamidase and nicotinic acid 18O exchange chemistry for the S. pneumoniae enzyme involving key catalytic residues, a catalytic transition metal ion and the intermediacy of a thioester intermediate. PMID:20979384

  1. Malonic acid concentration as a control parameter in the kinetic analysis of the Belousov-Zhabotinsky reaction under batch conditions.

    PubMed

    Blagojević, Slavica M; Anić, Slobodan R; Cupić, Zeljko D; Pejić, Natasa D; Kolar-Anić, Ljiljana Z

    2008-11-28

    The influence of the initial malonic acid concentration [MA]0 (8.00 x 10(-3) < or = [MA]0 < or = 4.30 x 10(-2) mol dm(-3)) in the presence of bromate (6.20 x 10(-2) mol dm(-3)), bromide (1.50 x 10(-5) mol dm(-3)), sulfuric acid (1.00 mol dm(-3)) and cerium sulfate (2.50 x 10(-3) mol dm(-3)) on the dynamics and the kinetics of the Belousov-Zhabotinsky (BZ) reactions was examined under batch conditions at 30.0 degrees C. The kinetics of the BZ reaction was analyzed by the earlier proposed method convenient for the examinations of the oscillatory reactions. In the defined region of parameters where oscillograms with only large-amplitude relaxation oscillations appeared, the pseudo-first order of the overall malonic acid decomposition with a corresponding rate constant of 2.14 x 10(-2) min(-1) was established. The numerical results on the dynamics and kinetics of the BZ reaction, carried out by the known skeleton model including the Br2O species, were in good agreement with the experimental ones. The already found saddle node infinite period (SNIPER) bifurcation point in transition from a stable quasi-steady state to periodic orbits and vice versa is confirmed by both experimental and numerical investigations of the system under consideration. Namely, the large-amplitude relaxation oscillations with increasing periods between oscillations in approaching the bifurcation points at the beginning and the end of the oscillatory domain, together with excitability of the stable quasi-steady states in their vicinity are obtained. PMID:18989478

  2. Deciphering the impact of parameters influencing transgene expression kinetics after repeated cell transduction with integration-deficient retroviral vectors.

    PubMed

    Schott, Juliane W; Jaeschke, Nico M; Hoffmann, Dirk; Maetzig, Tobias; Ballmaier, Matthias; Godinho, Tamaryin; Cathomen, Toni; Schambach, Axel

    2015-05-01

    Lentiviral and gammaretroviral vectors are state-of-the-art tools for transgene expression within target cells. The integration of these vectors can be deliberately suppressed to derive a transient gene expression system based on extrachromosomal circular episomes with intact coding regions. These episomes can be used to deliver DNA templates and to express RNA or protein. Importantly, transient gene transfer avoids the genotoxic side effects of integrating vectors. Restricting their applicability, episomes are rapidly lost upon dilution in dividing target cells. Addressing this limitation, we could establish comparably stable percentages of transgene-positive cells over prolonged time periods in proliferating cells by repeated transductions. Flow cytometry was applied for kinetic analyses to decipher the impact of individual parameters on the kinetics of fluoroprotein expression after episomal retransduction and to visualize sequential and simultaneous transfer of heterologous fluoroproteins. Expression windows could be exactly timed by the number of transduction steps. The kinetics of signal loss was affected by the cell proliferation rate. The transfer of genes encoding fluoroproteins with different half-lives revealed a major impact of protein stability on temporal signal distribution and accumulation, determining optimal retransduction intervals. In addition, sequential transductions proved broad applicability in different cell types and using different envelope pseudotypes without receptor overload. Stable percentages of cells coexpressing multiple transgenes could be generated upon repeated coadministration of different episomal vectors. Alternatively, defined patterns of transgene expression could be recapitulated by sequential transductions. Altogether, we established a methodology to control and adjust a temporally defined window of transgene expression using retroviral episomal vectors. Combined with the highly efficient cell entry of these vectors while avoiding integration, the developed technology is of great significance for a broad panel of applications, including transcription-factor-based induced cell fate conversion and controlled transfer of genetically encoded RNA- or protein-based drugs. PMID:25728583

  3. Use of a Plackett-Burman experimental design to examine the impact of extraction parameters on yields and compositions of pectins extracted from chicory roots (Chicorium intybus L.).

    PubMed

    Robert, Christelle; Devillers, Thierry; Wathelet, Bernard; Van Herck, Jean-Claude; Paquot, Michel

    2006-09-20

    Chicory root pectin was isolated by acid extraction followed by alcohol precipitation. Because the extraction conditions have important effects on the features of pectins, an experimental design was used to study the influence of 17 different extraction parameters on yield and composition of pectin: pH, temperature, time of extraction, solid/liquid ratio, and different pretreatments of the pulps before extraction. Twenty extractions were conducted and examined for their significance on yield and sugar content using the Plackett-Burman factorial design. The acid extraction of chicory roots resulted in an average yield of 11% containing 86% of sugars. It was found that extraction temperature, time, protease pretreatment, water purity, and water washing of pulps significantly affected yield and pectin composition with an increase of yield and purity of pectin in harsher extraction conditions. PMID:16968078

  4. Determination of kinetic and thermodynamic parameters that describe isothermal seed germination: A student research project

    NASA Astrophysics Data System (ADS)

    Hageseth, Gaylord T.

    1982-02-01

    Students under the supervision of a faculty member can collect data and fit the data to the theoretical mathematical model that describes the rate of isothermal seed germination. The best-fit parameters are interpreted as an initial substrate concentration, product concentration, and the autocatalytic reaction rate. The thermodynamic model enables one to calculate the activation energy for the substrate and product, the activation energy for the autocatalytic reaction, and changes in enthalpy, entropy, and the Gibb's free energy. Turnip, lettuce, soybean, and radish seeds have been investigated. All data fit the proposed model.

  5. Differences between elite, junior and non-rowers in kinematic and kinetic parameters during ergometer rowing.

    PubMed

    Cerne, Tomaž; Kamnik, Roman; Vesnicer, Boštjan; Zganec Gros, Jerneja; Munih, Marko

    2013-08-01

    This paper presents an analysis of the rowing parameters of differently skilled rowers. The study focuses on technique dependency on stroke rate. Five elite, five junior and five non-rowers participated, and the biomechanics of rowing on an ergometer was analyzed at stroke rates of 20, 26 and 34 str/min. The results show that elite rowers use a similar, consistent rowing technique at all stroke rates, the technique of junior rowers follows similar principles, while the technique of non-rowers varies. Elite rowers' stroke length, handle motion and body posture do not change with stroke rate while the ratio of stroke phases, maximum forces, stroke work and joint loadings are constant at the same stroke rate but dependent on stroke rate. Junior rowers with stroke rate change also the stroke length. In non-rowers the differences can be observed in the handle motion and body posture during the stroke, their stroke length changes with stroke rate while the ratio of stroke phases stays constant. Although different movement execution is evident and variable with stroke rate, non-rowers demonstrate a consistent pattern at the same stroke rate. On the basis of the results, the crucial parameters that differentiate elite, junior, and non-rowers are identified. PMID:23756001

  6. Measurement of kinetic rate law parameters on a NaCaAl borosilicate glass for low-activity waste

    NASA Astrophysics Data System (ADS)

    McGrail, B. P.; Ebert, W. L.; Bakel, A. J.; Peeler, D. K.

    1997-10-01

    The dissolution kinetics of a NaCaAl borosilicate glass, being studied for immobilization of low-activity waste, were measured between 20 and 90°C and solution pH between 6 and 12 using the single-pass flow-through method. Dissolution kinetics measurements are needed to parameterize a mechanistic model that is being used to compute the corrosion rate of the glass waste form as a function of temperature, pH, and the concentrations of the other glass components in water percolating through a proposed shallow-land disposal facility. The key factors that were found to influence the test results include test duration and background subtraction of the raw data. Background subtraction is shown to be important to prevent a non-physical increase in the computed rate with increasing flow rate, particularly in tests run at higher flow rates. Experimental factors that were found to have no detectable influence on the test results included the glass particle size and buffer type. We also illustrate how flow rate variations can be used to obtain information about the reaction order and equilibrium constant parameters in a conventional transition-state theory rate law.

  7. Photooxidative degradation of Acid Red 27 (AR27): modeling of reaction kinetic and influence of operational parameters.

    PubMed

    Daneshvar, Nezameddin; Rabbani, Mohammad; Modirshahla, Nasser; Behnajady, Mohammad-Ali

    2004-01-01

    The decolorization and mineralization of Acid Red 27 (AR27), an anionic monoazo dye of acid class, were studied by UV/H202 process in laboratory and real samples. Effects of different process parameters such as initial H2O2 and AR27 concentrations, pH and EtOH as an electron scavenger have been studied. H2O2 and UV light have a negligible effect when they were used on their own. The decolorization rate follows pseudo-first order kinetic with respect to the dye concentration. The rate constant of the attack of *OH radicals to the AR27 has been estimated through the adoption of a simplified kinetic model (1.03 x 10(8)M(-1)s(-1)). This model allows predicting the pseudo-first order rate constant and concentration of AR27 in different illumination times for different initial concentrations of H2O2. Mineralization studies showed, the formation of sulfate ions, the decrease of pH and 85% of COD reduction occur in less than 60 min. In the real wastewater color removal could be achieved after only 75 min, whereas 45% of COD reduction occurs after 105 min of illumination. PMID:15478925

  8. Modelling Escherichia coli concentration in a wastewater reservoir using an operational parameter MRT%FE and first order kinetics.

    PubMed

    Cirelli, Giuseppe Luigi; Consoli, Simona; Juanicó, Marcelo

    2009-01-01

    The operational parameter MRT%FE, representing the mean residence time of different ages fractions of effluent within a completely mixed reactor, was evaluated and integrated with first order kinetics. The parameter was used to model Escherichia coli concentrations in a municipal wastewater reservoir managed under different operating conditions (continuous and discontinuous). The study was conducted during 2004-2005 in a reservoir receiving effluents from the activated sludge treatment plant of Caltagirone (Eastern Sicily - Italy). The analytical approach is applied to the hydraulic state variables of the system (daily stored volumes, inlet and outlet flows), and the physical-chemical (pH, temperature, EC, TSS, BOD(5), COD) and bacteriological wastewater parameters (E. coli, FC, FS). In order to evaluate the reliability of the proposed approach, predicted E. coli concentrations within the reservoir were compared with measured ones by the correlation coefficient, F-test and Sperman's index. The study included the evaluation of die-off coefficient K(T) (d(-1)), light extinction coefficient K (m(-1)) and their relationships with climatic factors. Results of the study confirm that E. coli removal is related to the fractions of fresh effluent remaining each day within the reservoir with MRT%FE of about 5-8d, significantly lower than the nominal detention time (about 27d). The E. coli die-off coefficient (K(T)) was higher during system discontinuous operations and correlated with incident solar radiation and water temperature. PMID:18222594

  9. Thermoluminescence dosimetry properties and kinetic parameters of lithium potassium borate glass co-doped with titanium and magnesium oxides.

    PubMed

    Hashim, S; Alajerami, Y S M; Ramli, A T; Ghoshal, S K; Saleh, M A; Abdul Kadir, A B; Saripan, M I; Alzimami, K; Bradley, D A; Mhareb, M H A

    2014-09-01

    Lithium potassium borate (LKB) glasses co-doped with TiO2 and MgO were prepared using the melt quenching technique. The glasses were cut into transparent chips and exposed to gamma rays of (60)Co to study their thermoluminescence (TL) properties. The TL glow curve of the Ti-doped material featured a single prominent peak at 230 °C. Additional incorporation of MgO as a co-activator enhanced the TL intensity threefold. LKB:Ti,Mg is a low-Z material (Z(eff)=8.89) with slow signal fading. Its radiation sensitivity is 12 times lower that the sensitivity of TLD-100. The dose response is linear at doses up to 10(3) Gy. The trap parameters, such as the kinetics order, activation energy, and frequency factor, which are related to the glow peak, were determined using TolAnal software. PMID:24929526

  10. Determination of kinetic parameters of crystal growth rate of borax in aqueous solution by using the rotating disc technique

    NASA Astrophysics Data System (ADS)

    Sahin, Omer; Aslan, Fevzi; Ozdemir, Mustafa; Durgun, Mustafa

    2004-10-01

    Growth rate of polycrystalline disc of borax compressed at different pressure and rotated at various speed has been measured in a rotating disc crystallizer under well-defined conditions of supersaturation. It was found that the mass transfer coefficient, K, increased while overall growth rate constant, Kg, and surface reaction constant, kr, decreased with increasing smoothness of the disc. It was also determined that kinetic parameters (kr , r , K , g) of crystal growth rate of borax decreased with increasing rotating speed of the polycrystalline disc. The effectiveness factor was calculated from the growth rate data to evaluate the relative magnitude of the steps in series bulk diffusion through the mass transfer boundary layer and the surface integration. At low rotating speed of disc, the crystal growth rate of borax is mainly controlled by integration. However, both diffusion and integration steps affect the growth rate of borax at higher rotating speed of polycrystalline disc.

  11. Estimation of Hoffman-Lauritzen parameters from nonisothermal crystallization kinetics of PET/MWCNT nanocomposites

    NASA Astrophysics Data System (ADS)

    Gaonkar, Amita; Murudkar, Vrishali; Deshpande, V. D.

    2016-05-01

    Polyethylene terephthalate (PET) and Nucleated PET/ multi-walled carbon nanotubes (MWCNTs) nanocomposites with different MWCNTs loadings were prepared by melt compounding. The influence of the addition of MWCNTs and precipitated PET (p-PET) on the morphology and thermal properties of the nanocomposites was investigated. From Transmission Electronic Microscopy (TEM) and Wide angle X-Ray diffraction (WAXD) study, it can be clearly seen that nanocomposites with low MWCNTs contents (0.1 wt. %) get better MWCNTs dispersion than higher MWCNT loading. Comparing with PET, nucleated PET nanocomposite with 0.1% MWCNT loading shows higher value of Lauritzen-Hoffman parameters U* and Kg evaluated using the differential isoconversional method. Crystallization regime transition temperature range shifts to higher temperature (208°C - 215°C) for nanocomposites. The presence of p-PET in addition of MWCNT, which act as good nucleating agent, enhanced the crystallization of PET through heterogeneous nucleation.

  12. Interactive effects of elevated CO2 concentration and irrigation on photosynthetic parameters and yield of maize in Northeast China.

    PubMed

    Meng, Fanchao; Zhang, Jiahua; Yao, Fengmei; Hao, Cui

    2014-01-01

    Maize is one of the major cultivated crops of China, having a central role in ensuring the food security of the country. There has been a significant increase in studies of maize under interactive effects of elevated CO2 concentration ([CO2]) and other factors, yet the interactive effects of elevated [CO2] and increasing precipitation on maize has remained unclear. In this study, a manipulative experiment in Jinzhou, Liaoning province, Northeast China was performed so as to obtain reliable results concerning the later effects. The Open Top Chambers (OTCs) experiment was designed to control contrasting [CO2] i.e., 390, 450 and 550 µmol·mol(-1), and the experiment with 15% increasing precipitation levels was also set based on the average monthly precipitation of 5-9 month from 1981 to 2010 and controlled by irrigation. Thus, six treatments, i.e. C550W+15%, C550W0, C450W+15%, C450W0, C390W+15% and C390W0 were included in this study. The results showed that the irrigation under elevated [CO2] levels increased the leaf net photosynthetic rate (Pn) and intercellular CO2 concentration (Ci) of maize. Similarly, the stomatal conductance (Gs) and transpiration rate (Tr) decreased with elevated [CO2], but irrigation have a positive effect on increased of them at each [CO2] level, resulting in the water use efficiency (WUE) higher in natural precipitation treatment than irrigation treatment at elevated [CO2] levels. Irradiance-response parameters, e.g., maximum net photosynthetic rate (Pnmax) and light saturation points (LSP) were increased under elevated [CO2] and irrigation, and dark respiration (Rd) was increased as well. The growth characteristics, e.g., plant height, leaf area and aboveground biomass were enhanced, resulting in an improved of yield and ear characteristics except axle diameter. The study concluded by reporting that, future elevated [CO2] may favor to maize when coupled with increasing amount of precipitation in Northeast China. PMID:24848097

  13. Interactive Effects of Elevated CO2 Concentration and Irrigation on Photosynthetic Parameters and Yield of Maize in Northeast China

    PubMed Central

    Meng, Fanchao; Zhang, Jiahua; Yao, Fengmei; Hao, Cui

    2014-01-01

    Maize is one of the major cultivated crops of China, having a central role in ensuring the food security of the country. There has been a significant increase in studies of maize under interactive effects of elevated CO2 concentration ([CO2]) and other factors, yet the interactive effects of elevated [CO2] and increasing precipitation on maize has remained unclear. In this study, a manipulative experiment in Jinzhou, Liaoning province, Northeast China was performed so as to obtain reliable results concerning the later effects. The Open Top Chambers (OTCs) experiment was designed to control contrasting [CO2] i.e., 390, 450 and 550 µmol·mol−1, and the experiment with 15% increasing precipitation levels was also set based on the average monthly precipitation of 5–9 month from 1981 to 2010 and controlled by irrigation. Thus, six treatments, i.e. C550W+15%, C550W0, C450W+15%, C450W0, C390W+15% and C390W0 were included in this study. The results showed that the irrigation under elevated [CO2] levels increased the leaf net photosynthetic rate (Pn) and intercellular CO2 concentration (Ci) of maize. Similarly, the stomatal conductance (Gs) and transpiration rate (Tr) decreased with elevated [CO2], but irrigation have a positive effect on increased of them at each [CO2] level, resulting in the water use efficiency (WUE) higher in natural precipitation treatment than irrigation treatment at elevated [CO2] levels. Irradiance-response parameters, e.g., maximum net photosynthetic rate (Pnmax) and light saturation points (LSP) were increased under elevated [CO2] and irrigation, and dark respiration (Rd) was increased as well. The growth characteristics, e.g., plant height, leaf area and aboveground biomass were enhanced, resulting in an improved of yield and ear characteristics except axle diameter. The study concluded by reporting that, future elevated [CO2] may favor to maize when coupled with increasing amount of precipitation in Northeast China. PMID:24848097

  14. Effects of 10-week eccentric overload training on kinetic parameters during change of direction in football players.

    PubMed

    de Hoyo, Moisés; Sañudo, Borja; Carrasco, Luis; Mateo-Cortes, Jesús; Domínguez-Cobo, Sergio; Fernandes, Orlando; Del Ojo, Juan J; Gonzalo-Skok, Oliver

    2016-07-01

    The aim of the current study was to analyse the effect of 10-week eccentric overload training on kinetic parameters during change of direction (COD) in U-19 football players. The outcome measured included relative peak braking (rPB) and propulsive force (rPF), contact time (CT), time spent during braking (BT) and propulsive phase (PT), relative total (rTOT_IMP), braking (rB_IMP) and propulsive (rP_IMP) impulses. Between-group results showed a substantial better improvement (likely) in CT (ES: 0.72) and BT (ES: 0.74) during side-step cutting, and in rPB (ES: 0.84) and rB_IMP (ES: 0.72) during crossover cutting, in the experimental group (EXP) in comparison to control group (CON). Within-group analysis showed a substantially better performance (likely to almost certain) in CT (ES: 1.19), BT (ES: 1.24), PT (ES: 0.70), rPB (ES: 0.75), rPF (ES: 0.68), rTOT_IMP (ES: 0.48) and rB_IMP (ES: 0.50) in EXP during side-step cutting. Regarding crossover cutting, within-group analysis showed a substantial better performance (likely to almost certain) in CT (ES: 0.75), rPB (ES: 0.75), rPF (ES: 1.34), rTOT_IMP (ES: 0.61), rB_IMP (ES: 0.76) and rP_IMP (ES: 0.46) in EXP. In conclusion, the eccentric overload-based programme led to an improvement in kinetic parameters during COD football tasks. PMID:26963941

  15. Estimation of kinetic parameters for glucose transport in human brain cortex

    SciTech Connect

    Vyska, K.; Machulla, H.J.; Mehdorn, H.M.; Notohamiprodjo, G.; Knapp, W.H.; Feinendegen, L.E.

    1985-05-01

    3-O-C-11-methyl-D-glucose (CMG), F-18-3-deoxy-3-fluoro D-glucose (3FDG), and dynamic positron-emission-tomography (dPET) were used to measure the rate constants for glucose transport across the blood brain barrier (BBB) in human cortex. The assay takes advantage of CMG or 3FDG being practically not metabolized in brain and being transported back from the tissue into the circulation. The simultaneous registration of tracer concentration in blood and tissue by dPET at 1 min intervals for 40 min yields time activity curves, which permit the in vivo determination of the rate constants for CMG or 3FDG transport across the BBB. In the present study, 4 healthy volunteers and 10 patients suffering from a single-sided ischemic brain disease were examined. In all cases the CMG/3FDG measurements were carried out at two different glucose plasma concentrations i.e. at normoglycemia and hyperglycemia after i.v. application of 10 g glucose. The determination of glucose plasma concentration was performed just before and immediately after the CMG/3FDG study. Using these data and a new mathematical model the Michaelis-Menten constant (K/sub M/) and maximal velocity (V/sub M/) for CMG, 3FDG and glucose transport across the BBB in normal and non-affected human cortex were determined. K/sub M CMG/ was 7.21 ..mu..mol/g; K/sub M 3FDG/ was 3.93 ..mu..mol/g and K/sub M gluc/ was 6.31 ..mu..mol/g. V/sub M/ was found in all cases to be 2.1 ..mu..mol/min g. The data obtained suggest that the CMG/3FDG method might provide a powerful tool for studying the mechanisms involved in the pathological alterations of glucose carrier system.

  16. Measurements of fluorescence yield of electrons in air under atmospheric conditions: A key parameter for energy of cosmic rays

    NASA Astrophysics Data System (ADS)

    Monnier Ragaigne, D.; Gorodetzky, P.; Blacksley, C.; Wicek, F.; Monard, H.; Dagoret-Campagne, S.

    2012-12-01

    The measurement of the fluorescence yield and its dependence on atmospheric properties such as pressure, temperature or pollutants, are essential to obtain a reliable measurement of the primary energy of cosmic rays. A new type of absolute measurement of the nitrogen fluorescence yield in the air will be performed at LAL using 3 items which will yield an unprecedented precision in all conditions of pressure, temperature, and pollutants. A 5 MeV electron beam will be provided by the new electron accelerator PHIL at LAL(Laboratoire de l'Accélérateur Linéaire, Univ Paris-Sud, CNRS/IN2P3, Orsay). This source will induce florescence yield inside an integrating sphere. The sphere will be surrounded by a spherical envelope to create a temperature controlled chamber (a Dewar). With this setup it will be possible to vary the temperature from -60 C to +40 C and the pressure from 1 to 0.01 atm. An output device on this sphere will be equipped with a set of optical fibers driving the fluorescence light to a Jobin-Yvon spectrometer equipped with an LN_{2} cooled CCD. The fluorescence spectrum in the 300-430 nm range will be accurately measured in steps of 0.1 nm resolution. A PMT equipped with a BG3 filter (the same as on JEM-EUSO) will be set on the sphere to measure the integrated yield. The expected precision of the yield should be better than 5%.

  17. Kinetics of the reaction OH + HO2 yields H2O + O2 from 254 to 382 K

    NASA Technical Reports Server (NTRS)

    Keyser, Leon F.

    1988-01-01

    The discharge-flow resonance fluorescence technique has been used to determine the absolute rate constant for the reaction OH + HO2 yields H2O + O2 from 254 to 382 K at a total pressure of 1 Torr. Pseudo-=first-order conditions were used with HO2 in large excess over OH. The rate constant was obtained directly from observed decays of OH and measured concentrations of HO2. Since the observed rate constant was found to be very sensitive to small background concentrations of O and H atoms, NO2 was used to remove both atom species from the system. With added NO2 the result at 299 K is (1.1 + or - 0.3) x 10 to the -10th cu cm/molecule where the error limits are one standard deviation and include an estimate of overall experimental uncertainty. The temperature dependence expressed in Arrhenius form is (4.8 + or - 0.8) x 10 to the -11th exp (250 + or - 50)/T. The results are independent of the type of reactor surface and the precursor used to produce OH and HO2. The present results agree well with earlier measurements near 1-atm total pressure and suggest that this rate constant exhibits little or no pressure dependence between 1 and 1000 Torr.

  18. Kinetic Parameters and Cytotoxic Activity of Recombinant Methionine γ-Lyase from Clostridium tetani, Clostridium sporogenes, Porphyromonas gingivalis and Citrobacter freundii.

    PubMed

    Morozova, E A; Kulikova, V V; Yashin, D V; Anufrieva, N V; Anisimova, N Y; Revtovich, S V; Kotlov, M I; Belyi, Y F; Pokrovsky, V S; Demidkina, T V

    2013-07-01

    The steady-state kinetic parameters of pyridoxal 5'-phosphate-dependent recombinant methionine γ -lyase from three pathogenic bacteria, Clostridium tetani, Clostridium sporogenes, and Porphyromonas gingivalis, were determined in β- and γ-elimination reactions. The enzyme from C. sporogenes is characterized by the highest catalytic efficiency in the γ-elimination reaction of L-methionine. It was demonstrated that the enzyme from these three sources exists as a tetramer. The N-terminal poly-histidine fragment of three recombinant enzymes influences their catalytic activity and facilitates the aggregation of monomers to yield dimeric forms under denaturing conditions. The cytotoxicity of methionine γ-lyase from C. sporogenes and C. tetani in comparison with Citrobacter freundii was evaluated using K562, PC-3, LnCap, MCF7, SKOV-3, and L5178y tumor cell lines. K562 (IC50=0.4-1.3 U/ml), PC-3 (IC50=0.1-0.4 U/ml), and MCF7 (IC50=0.04-3.2 U/ml) turned out to be the most sensitive cell lines. PMID:24303205

  19. Kinetics and product yields of the acetyl peroxy + HO2 radical reaction studied by photoionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Dodson, L. G.; Shen, L.; Savee, J. D.; Eddingsaas, N. C.; Welz, O.; Taatjes, C. A.; Osborn, D. L.; Sander, S. P.; Okumura, M.

    2013-12-01

    The acetyl peroxy radical (CH3C(O)O2) is a key intermediate in the oxidation of carbonyl-containing hydrocarbons in the troposphere. Reaction of acetyl peroxy radicals with HO2 has been suggested as a source of OH radicals in low-NOx environments. Previous work on this reaction observed only two product channels forming (1) peracetic acid and (2) acetic acid. Recent experiments have shown that there is a third channel that generates the radicals OH and acetoxy: CH3C(O)O2 + HO2 → (1) CH3C(O)OOH + O2 (2) CH3C(O)OH + O3 (3) CH3C(O)O + O2 + OH This last pathway to OH formation would then contribute to the apparent isoprene OH recycling suggested by discrepancies between atmospheric models and field observations of OH. There have, however, been significant disagreements among experiments on the yield of OH from reaction of acetyl peroxy radicals with HO2. We report our preliminary studies of acetyl peroxy self-reaction and its reaction with HO2 at 298 K and 8 Torr. Experiments were conducted at the Advanced Light Source synchrotron at the Lawerence Berkeley National Laboratory using tunable VUV ionizing radiation coupled to the Sandia National Laboratory pulsed-laser-photolysis multiplexed photoionization mass spectrometer to detect the time- and isomer-resolved formation of radical intermediates and products. From these results, we report new branching fractions of the three product channels in the acetyl peroxy + HO2 radical reaction.

  20. Pyrolysis of safflower (Charthamus tinctorius L.) seed press cake: part 1. The effects of pyrolysis parameters on the product yields.

    PubMed

    Sensz, Sevgi; Angin, Dilek

    2008-09-01

    Safflower (Charthamus tinctorius L.) seed press cake was pyrolysed in a fixed-bed reactor. The effects of pyrolysis temperature, heating rate and sweep gas flow rates on the yields of the products were investigated. Pyrolysis runs were performed using pyrolysis temperatures between 400 and 600 degrees C with heating rates of 10, 30 and 50 degrees C min(-1). The obtained bio-char, gas and bio-oil yields ranged between 25 and 34 wt%, 19 and 25 wt%, and 28 and 36 wt%, respectively, at different pyrolysis conditions. The highest liquid yield was obtained at 500 degrees C pyrolysis temperature with a heating rate of 50 degrees C min(-1) under the sweep gas of N(2) with a flow rate of 100 cm(3)min(-1). Employing the higher heating rate of 50 degrees C min(-1) results in maximum bio-oil yield, probably due to the decrease in mass transfer limitations. According to the results obtained under the conditions of this study, the effects of pyrolysis temperature and sweep gas flow rate are more significant than the effect of heating rate on the yields. PMID:18068973

  1. Computer-based gait analysis of dogs: evaluation of kinetic and kinematic parameters after cemented and cementless total hip replacement.

    PubMed

    Drüen, S; Böddeker, J; Meyer-Lindenberg, A; Fehr, M; Nolte, I; Wefstaedt, P

    2012-01-01

    To date it is unclear whether cementless total hip replacement (THR) in dogs is of clinical advantage in comparison to cemented THR with regard to lameness improvement. Thus the aim of this study was to compare objectively the development of the gait pattern after cemented and cementless THR in dogs. For this purpose, 18 adult dogs with hip dysplasia underwent computer-based gait analysis on an instrumented treadmill prior to unilateral THR and then again ten days, four weeks and four months after surgery. Analysed kinetic parameters were symmetry indices (SI) of vertical ground reaction forces (GRF), which included peak vertical forces (PFz), mean vertical forces (MFz), vertical impulse (IFz), and vertical ground reaction forces of the arthroplasty limbs only. Analysed kinematic parameters were range-of-motion and the flexion and extension angles of hip, stifle and hock joints. The symmetry indice for PVF, MFz and IFz decreased to a value less than six in both THR groups four months after surgery, which is defined as not lame. Improvement in lameness of the arthroplasty limbs during the examination period of four months was not significantly different between the cemented and cementless groups. The results suggest that within a short-term observation period of four months after surgery, neither cementless nor cemented THR have a greater advantage with regard to lameness improvement. Additional studies with larger pools of subjects and longer time periods for follow-up examinations are necessary to verify these findings. PMID:22828804

  2. Estimation of turbulent kinetic energy using 4D phase-contrast MRI: Effect of scan parameters and target vessel size.

    PubMed

    Ha, Hojin; Hwang, Dongha; Kim, Guk Bae; Kweon, Jihoon; Lee, Sang Joon; Baek, Jehyun; Kim, Young-Hak; Kim, Namkug; Yang, Dong Hyun

    2016-07-01

    Quantifying turbulence velocity fluctuation is important because it indicates the fluid energy dissipation of the blood flow, which is closely related to the pressure drop along the blood vessel. This study aims to evaluate the effects of scan parameters and the target vessel size of 4D phase-contrast (PC)-MRI on quantification of turbulent kinetic energy (TKE). Comprehensive 4D PC-MRI measurements with various velocity-encoding (VENC), echo time (TE), and voxel size values were carried out to estimate TKE distribution in stenotic flow. The total TKE (TKEsum), maximum TKE (TKEmax), and background noise level (TKEnoise) were compared for each scan parameter. The feasibility of TKE estimation in small vessels was also investigated. Results show that the optimum VENC for stenotic flow with a peak velocity of 125cm/s was 70cm/s. Higher VENC values overestimated the TKEsum by up to six-fold due to increased TKEnoise, whereas lower VENC values (30cm/s) underestimated it by 57.1%. TE and voxel size did not significantly influence the TKEsum and TKEnoise, although the TKEmax significantly increased as the voxel size increased. TKE quantification in small-sized vessels (3-5-mm diameter) was feasible unless high-velocity turbulence caused severe phase dispersion in the reference image. PMID:26968139

  3. Effect of fertilization treatments on yield parameters and mucilage and fat contents in roots of moghat (Glossostemon bruguiri Desf.).

    PubMed

    el-Gengaihi, S; Turkey, K A; Shalaby, A S; Ibrahim, N A

    1995-04-01

    Moghat plants, Glossostemon bruguieri, Desf., received three levels of both N and K fertilizers, either alone or in combination, with a basic dose of P for all the treatments. The results with one and two year old plants revealed the importance of potassium for higher yield of roots, reflected in greater length and diameter. The lower level K1 was enough to attain that goal and the N1K1 treatment was the best in this regard. On the other hand, N fertilization rather favoured the vegetative growth and seed yield. Both N and K fertilization decreased the mucilage content of the roots, but increased their fat content. The root yield after two years increased by 72% compared with one year old plants. That increment was rather dependent on the root diameter than its elongation. The mucilage content was doubled, while the fat content decreased. PMID:7659701

  4. Effects of sulfate reduction on the bacterial community and kinetic parameters of a dechlorinating culture under chemostat growth conditions.

    PubMed

    Berggren, Dusty R V; Marshall, Ian P G; Azizian, Mohammad F; Spormann, Alfred M; Semprini, Lewis

    2013-02-19

    Results are presented from a chemostat study where the reductive dehalogenation of PCE was evaluated in the absence and presence of sulfate. Two chemostats inoculated with the Point Mugu culture, which contains strains of Dehalococcoides mccartyi, were operated at a 50 day HRT and fed PCE (1.12 mM) and lactate (4.3 mM). The control chemostat (PM-5L, no sulfate), achieved pseudo-steady-state transformation of PCE to ethene (98%) and VC (2%) at 2.4 nM of H(2). Batch kinetic tests with chemostat harvested cells showed the maximum rate (k(max)X) value for each dehalogenation step remained fairly constant, while hupL clone library analyses showed maintenance of a diverse D. mccartyi community. Sulfate (1 mM) was introduced to the second chemostat, PM-2L. Effective sulfate reduction was achieved 110 days later, resulting in 600 μM of total sulfide. PCE dechlorination efficiency decreased following complete sulfate reduction, yielding ethene (25%), VC (67%), and cis-DCE (8%). VC dechlorination was most affected, with k(max)X values decreasing by a factor of 50. The decrease was associated with the enrichment of the Cornell group of D. mccartyi and decline of the Pinellas group. Long-term exposure to sulfides and/or competition for H(2) may have been responsible for the community shift. PMID:23316874

  5. Chitosan-tripolyphosphate nanoparticles: Optimization of formulation parameters for improving process yield at a novel pH using artificial neural networks.

    PubMed

    Hashad, Rania A; Ishak, Rania A H; Fahmy, Sherif; Mansour, Samar; Geneidi, Ahmed S

    2016-05-01

    At a novel pH value of the polymeric solution (6.2), variable chitosan (Cs) and sodium tripolyphosphate (TPP) concentrations and mass ratios were optimized to improve the process yield without undesirable particle flocculation. Prepared formulations were characterized in terms of particle size (PS), zeta potential (ZP) and percentage yield (% yield). Artificial neural networks (ANN) were built up and used to identify the parameters that control nanoparticle (NP) size and yield, in addition to being tested for their ability to predict these two experimental outputs. Using these networks, it was found that TPP concentration has the greatest effect on PS and% yield. The most optimum formulation was characterized by a notable process yield reaching 91.5%, a mean hydrodynamic PS 227nm, ZP+24.13mv and spherical compact morphology. Successful Cs-TPP interaction in NP formation was confirmed by both Fourier transform-infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC). This study demonstrated the ability of ANN to predict not only PS of the formed particles but also NP% yield. This may have a great impact on Cs-TPP NPs preparation and can be used to customize the required target formulations. PMID:26783636

  6. Contribution of counterions and degree of ionization for birefringence creation and relaxation kinetics parameters of PAH/PAZO films

    NASA Astrophysics Data System (ADS)

    Raposo, Maria; Ferreira, Quirina; Monteiro Timóteo, Ana Rita; Ribeiro, Paulo A.; do Rego, Ana Maria Botelho

    2015-09-01

    Photo induced birefringent materials can be used to develop optical and conversion energy devices, and consequently, the study of the variables that influences the creation and relaxation of birefringence should be carefully analyzed. In this work, the parameters of birefringence creation and relaxation kinetics curves obtained on layer-by-layer (LBL) films, prepared from azo-polyectrolyte poly[1-[4-(3-carboxy-4 hydroxyphenylazo) benzene sulfonamido]-1,2-ethanediyl, sodium salt] (PAZO) and poly(allylamine hydrochloride)(PAH), are related with the presence of counterions and the degree of ionization of the polyelectrolytes. Those kinetics curves obtained on PAH/PAZO LBL films, prepared from PAH solutions with different pHs and maintaining the pH of PAZO solution constant at pH = 9, were analyzed taking into account the films composition which was characterized by X-ray photoelectron spectroscopy. The creation and relaxation birefringence curves are justified by two processes: one associated to local mobility of the azobenzene with a characteristic time 30 s and intensity constant and other associated with polymeric chains mobility with the characteristic time and intensity decreasing with pH. These results allow us to conclude that the birefringence creation process, associated to local mobility of azobenzenes is independent of the degree of ionization and of number of counterions or co-ions present while the birefringence creation process associated to mobility of chains have its characteristic time and intensity dependent of both degree of ionization and number of counterions. The birefringence relaxation processes are dependent of the degree of ionization. The analysis of the films composition revealed, in addition, the presence of a protonated secondary or tertiary amine revealing that PAZO may have positive charges and consequently a zwitterionic behavior.

  7. Final Report for NFE-07-00912: Development of Model Fuels Experimental Engine Data Base & Kinetic Modeling Parameter Sets

    SciTech Connect

    Bunting, Bruce G

    2012-10-01

    The automotive and engine industries are in a period of very rapid change being driven by new emission standards, new types of after treatment, new combustion strategies, the introduction of new fuels, and drive for increased fuel economy and efficiency. The rapid pace of these changes has put more pressure on the need for modeling of engine combustion and performance, in order to shorten product design and introduction cycles. New combustion strategies include homogeneous charge compression ignition (HCCI), partial-premixed combustion compression ignition (PCCI), and dilute low temperature combustion which are being developed for lower emissions and improved fuel economy. New fuels include bio-fuels such as ethanol or bio-diesel, drop-in bio-derived fuels and those derived from new crude oil sources such as gas-to-liquids, coal-to-liquids, oil sands, oil shale, and wet natural gas. Kinetic modeling of the combustion process for these new combustion regimes and fuels is necessary in order to allow modeling and performance assessment for engine design purposes. In this research covered by this CRADA, ORNL developed and supplied experimental data related to engine performance with new fuels and new combustion strategies along with interpretation and analysis of such data and consulting to Reaction Design, Inc. (RD). RD performed additional analysis of this data in order to extract important parameters and to confirm engine and kinetic models. The data generated was generally published to make it available to the engine and automotive design communities and also to the Reaction Design Model Fuels Consortium (MFC).

  8. Contribution of counterions and degree of ionization for birefringence creation and relaxation kinetics parameters of PAH/PAZO films

    SciTech Connect

    Raposo, Maria Monteiro Timóteo, Ana Rita; Ribeiro, Paulo A.; Ferreira, Quirina; Botelho do Rego, Ana Maria

    2015-09-21

    Photo induced birefringent materials can be used to develop optical and conversion energy devices, and consequently, the study of the variables that influences the creation and relaxation of birefringence should be carefully analyzed. In this work, the parameters of birefringence creation and relaxation kinetics curves obtained on layer-by-layer (LBL) films, prepared from azo-polyectrolyte poly[1-[4-(3-carboxy-4 hydroxyphenylazo) benzene sulfonamido]-1,2-ethanediyl, sodium salt] (PAZO) and poly(allylamine hydrochloride)(PAH), are related with the presence of counterions and the degree of ionization of the polyelectrolytes. Those kinetics curves obtained on PAH/PAZO LBL films, prepared from PAH solutions with different pHs and maintaining the pH of PAZO solution constant at pH = 9, were analyzed taking into account the films composition which was characterized by X-ray photoelectron spectroscopy. The creation and relaxation birefringence curves are justified by two processes: one associated to local mobility of the azobenzene with a characteristic time 30 s and intensity constant and other associated with polymeric chains mobility with the characteristic time and intensity decreasing with pH. These results allow us to conclude that the birefringence creation process, associated to local mobility of azobenzenes is independent of the degree of ionization and of number of counterions or co-ions present while the birefringence creation process associated to mobility of chains have its characteristic time and intensity dependent of both degree of ionization and number of counterions. The birefringence relaxation processes are dependent of the degree of ionization. The analysis of the films composition revealed, in addition, the presence of a protonated secondary or tertiary amine revealing that PAZO may have positive charges and consequently a zwitterionic behavior.

  9. Estimation of regional genetic parameters for mortality and 305-d milk yield of US Holsteins in the first 3 parities.

    PubMed

    Tokuhisa, K; Tsuruta, S; De Vries, A; Bertrand, J K; Misztal, I

    2014-07-01

    Several research reports have indicated increasing dairy cow mortality in recent years. The objectives of this research were to characterize the phenotypic differences in mortality in the first 3 parities across 3 regions of the United States to estimate the heritability of mortality of Holstein cows across regions and parities, and to estimate genetic and environmental correlations between milk yield and mortality across parities and regions. Dairy Herd Information (DHI) milk yield and mortality data were obtained from 3 different US regions: the Southeast (SE), Southwest (SW), and Northeast (NE). A total of 3,522,824 records for the first 3 parities were used: 732,009 (SE), 656,768 (SW), and 2,134,047 (NE) from 1999 to 2008. Cows that received a termination code of 6--"Cow died on the dairy; downer cows that were euthanized should be included here"--were given a mortality score of 2 (dead), whereas all other codes were assigned a mortality score of 1 (alive). Average annual mortalities in the first 3 parities across regions ranged from 2.2 to 7.2%, with mortality frequency increasing with increasing parity across all regions and with the SE having the highest mortality frequency. For genetic analysis, a 2-trait (305-d milk yield and mortality) linear-threshold animal model that fitted fixed effects of herd-year (for 305-d milk yield), cow age, days in milk (in month classes), month-of-termination, and random effects of herd-year (for mortality), animal, and residual was implemented. The model was used to estimate variance components separately for each region and parity. Heritability estimates for mortality were similar for all regions and parities, ranging from 0.04 to 0.07. Genetic correlations between mortality and 305-d milk yield across the first 3 parities were 0.14, 0.20, and 0.29 in SE; -0.01, 0.01, and 0.31 in SW; and 0.28, 0.33, and 0.19 in NE. We detected an adverse genetic relationship between milk production and mortality; however, the moderate magnitudes of the genetic correlations suggest that indices that include both milk yield and mortality could be effective in identifying sires that would provide opportunities for minimizing death loss even when selecting for increased milk yield. PMID:24792794

  10. NIRS-aided monitoring and prediction of biogas yields from maize silage at a full-scale biogas plant applying lumped kinetics.

    PubMed

    Jacobi, H Fabian; Ohl, Susanne; Thiessen, Eiko; Hartung, Eberhard

    2012-01-01

    The aim of this study was to apply near-infrared spectroscopy (NIRS), available biogas plant data and lumped degradation kinetics to predict biogas production (BPr) of maize silage. A full-scale agricultural biogas plant was equipped with NIRS-metrology at the feeding station. Continuously NIR-spectra were collected for 520 d. Substrate samples were analyzed by means of feedstuff analysis. Biogas potential of the samples was calculated from the laboratory analysis results and for a sample-subset practically assessed by "Hohenheim biogas tests". NIRS-regression-models for all mentioned parameters were calibrated. Continuously gathered spectra, NIRS-models, actual plant-feeding data and degradation kinetics were used to calculate time-series of theoretically expectable BPr. Results were validated against measured gas quantity. Determination coefficients between calculated and measured BPr were up to 58.2%. This outcome was mainly due to the positive correlation between BPr and input amount since the substrate was very homogeneous. The use of NIRS seems more promising for plants with stronger substrate heterogeneity. PMID:22055101

  11. A deficiency of manganese ions in the presence of high sugar concentrations is the critical parameter for achieving high yields of itaconic acid by Aspergillus terreus.

    PubMed

    Karaffa, Levente; Díaz, Rafael; Papp, Benedek; Fekete, Erzsébet; Sándor, Erzsébet; Kubicek, Christian P

    2015-10-01

    Itaconic acid (IA), an unsaturated dicarboxylic acid with a high potential as a platform for chemicals derived from sugars, is industrially produced by large-scale submerged fermentation by Aspergillus terreus. Although the biochemical pathway and the physiology leading to IA is almost the same as that leading to citric acid production in Aspergillus niger, published data for the volumetric (g L(-1)) and the specific yield (mol/mol carbon source) of IA are significantly lower than for citric acid. Citric acid is known to accumulate to high levels only when a number of nutritional parameters are carefully adjusted, of which the concentration of the carbon source and that of manganese ions in the medium are particularly important. We have therefore investigated whether a variation in these two parameters may enhance IA production and yield by A. terreus. We show that manganese ion concentrations < 3 ppb are necessary to obtain highest yields. Highest yields were also dependent on the concentration of the carbon source (D-glucose), and highest yields (0.9) were only obtained at concentrations of 12-20 % (w/v), thus allowing the accumulation of up to 130 g L(-1) IA. These findings perfectly mirror those obtained when these parameters are varied in citric acid production by A. niger, thus showing that the physiology of both processes is widely identical. Consequently, applying the fermentation technology established for citric acid production by A. niger citric acid production to A. terreus should lead to high yields of IA, too. PMID:26078111

  12. Environmental and kinetic parameters for Cr(VI) bioreduction by a bacterial monoculture purified from Cr(VI)-resistant consortium.

    PubMed

    Okeke, Benedict C; Laymon, Jeffery; Crenshaw, Shakena; Oji, Charles

    2008-01-01

    Hexavalent chromium, Cr(VI), is toxic to living systems. Widespread contamination of water and soil by Cr(VI) present a serious public health problem. Chromium-resistant bacteria can reduce and detoxify Cr(VI). Twelve bacteria resistant to high concentrations of Cr(VI) were isolated from soil enrichment cultures. Environmental parameters and kinetic parameters of Cr(VI) bioreduction by one monoculture isolate, identified by 16S rRNA gene sequence as Bacillus sp. PB2, were studied. The optimal temperature for growth and Cr(VI) reduction was 35 degrees C. The isolate grew luxuriantly and substantially reduced Cr(VI) at initial pH 7.5 to 9. Maximal Cr(VI) bioreduction occurred at initial pH 8.0. Substantial Cr(VI) bioreduction was observed in salt media, but removal efficiency was inversely related to salt concentration (1-9%). Michaelis-Menten hyperbolic equation and the Lineweaver-Burk double reciprocal plot were comparatively employed to determine the k (m) and V (max) of Cr(VI) bioreduction. A k (m) of 82.5 microg mL(-1) and V (max) of 7.78 microg mL(-1) h(-1) were calculated by nonlinear regression analysis of the hyperbola curve. Linear regression analysis of the double reciprocal plot revealed k (m) and V (max) of 80.9 microg mL(-1) and 10.6 microg mL(-1) h(-1), respectively. Time course studies displayed about 90% reduction of Cr(VI) at an initial concentration of 8,000 microg L(-1) in 8 h, with an estimated t (1/2) of 4 h. Data from time course analysis of the rate of Cr(VI) bioreduction fitted zero-order model, and the kinetic constant k was calculated to be 840 microg L(-1) h(-1). The monoculture isolate, Bacillus sp. PB2, strongly reduces Cr(VI) and could be used for bioremediation of Cr(VI)-contaminated aquatic and terrestrial environments. PMID:18317706

  13. TU-C-12A-11: Comparisons Between Cu-ATSM PET and DCE-CT Kinetic Parameters in Canine Sinonasal Tumors

    SciTech Connect

    La Fontaine, M; Bradshaw, T; Kubicek, L; Forrest, L; Jeraj, R

    2014-06-15

    Purpose: Regions of poor perfusion within tumors may be associated with higher hypoxic levels. This study aimed to test this hypothesis by comparing measurements of hypoxia from Cu-ATSM PET to vasculature kinetic parameters from DCE-CT kinetic analysis. Methods: Ten canine patients with sinonasal tumors received one Cu-ATSM PET/CT scan and three DCE-CT scans prior to treatment. Cu-ATSM PET/CT and DCE-CT scans were registered and resampled to matching voxel dimensions. Kinetic analysis was performed on DCE-CT scans and for each patient, the resulting kinetic parameter values from the three DCE-CT scans were averaged together. Cu-ATSM SUVs were spatially correlated (r{sub spatial}) on a voxel-to-voxel basis against the following DCE-CT kinetic parameters: transit time (t{sub 1}), blood flow (F), vasculature fraction (v{sub 1}), and permeability (PS). In addition, whole-tumor comparisons were performed by correlating (r{sub ROI}) the mean Cu-ATSM SUV (SUV{sub mean}) with median kinetic parameter values. Results: The spatial correlations (r{sub spatial}) were poor and ranged from -0.04 to 0.21 for all kinetic parameters. These low spatial correlations may be due to high variability in the DCE-CT kinetic parameter voxel values between scans. In our hypothesis, t{sub 1} was expected to have a positive correlation, while F was expected to have a negative correlation to hypoxia. However, in wholetumor analysis the opposite was found for both t{sub 1} (r{sub ROI} = -0.25) and F (r{sub ROI} = 0.56). PS and v{sub 1} may depict angiogenic responses to hypoxia and found positive correlations to Cu-ATSM SUV for PS (r{sub ROI} = 0.41), and v{sub 1} (r{sub ROI} = 0.57). Conclusion: Low spatial correlations were found between Cu-ATSM uptake and DCE-CT vasculature parameters, implying that poor perfusion is not associated with higher hypoxic regions. Across patients, the most hypoxic tumors tended to have higher blood flow values, which is contrary to our initial hypothesis. Funding: R01 CA136927.

  14. Torrefaction of invasive alien plants: Influence of heating rate and other conversion parameters on mass yield and higher heating value.

    PubMed

    Mundike, Jhonnah; Collard, François-Xavier; Görgens, Johann F

    2016-06-01

    With the aim of controlling their proliferation, two invasive alien plants, Lantana camara (LC) and Mimosa pigra (MP), both widespread in Africa, were considered for torrefaction for renewable energy applications. Using thermogravimetric analysis, the influence of heating rate (HR: 2.18-19.82°Cmin(-1)) together with variable temperature and hold time on char yield and HHV (in a bomb calorimeter) were determined. Statistically significant effects of HR on HHV with optima at 10.5°Cmin(-1) for LC and 20°Cmin(-1) for MP were obtained. Increases of HHV up to 0.8MJkg(-1) or energy yield greater than 10%, together with a 3-fold reduction in torrefaction conversion time could be achieved by optimisation of HR. Analysis of the torrefaction volatiles by TG-MS showed that not only hemicelluloses, but also lignin conversion, could influence the optimum HR value. PMID:26954309

  15. Infrared warming reduced winter wheat yields and some physiological parameters, which were mitigated by irrigation and worsened by delayed sowing.

    PubMed

    Fang, Shibo; Su, Hua; Liu, Wei; Tan, Kaiyan; Ren, Sanxue

    2013-01-01

    Winter wheat has a central role in ensuring the food security and welfare of 1.3 billion people in China. Extensive previous studies have concluded that winter wheat yields would decrease with higher temperatures, owing to warming-induced soil drying or shortening of phenophase. Temperature in China is predicted to increase by 1-5°C by 2100, which may greatly impact plant production and cause other negative effects. We performed a manipulative field experiment, creating diverse growth regimes for wheat by infrared radiation (IR) warming day and night, including IR warming only (DW), IR warming + delayed sowing dates (DS), IR warming + increased irrigation (IW), and a control (CK). The results show that IR warming increased daily average wheat canopy and soil temperatures by 2.0°C and 2.3°C, respectively. DW was associated with an advanced maturity of 10 days and yield reduction of 8.2%. IR-warming effects on the photosynthetic apparatus of wheat varied with season as well as significant differences were found in the booting stage. DS represented a worsened situation, lowering yield per plant by 16.4%, with a significant decline in aboveground biomass and functional leaf area. Wheat under DS showed double-peak patterns of diurnal gas exchange during booting stages and, consequently, lower photosynthetic capacity with high transpiration for cooling. Significantly lower actual water use efficiency and intrinsic water use efficiency from jointing to anthesis stages were also found under DS. However, IW had no significant difference from CK, irrespective of yield and photosynthesis. Therefore, we concluded that delayed sowing date may not be a good choice for winter wheat, whereas a thoroughly-watered wheat agroecosystem should be promoted in the context of global warming. PMID:23874424

  16. [Determination of enzyme kinetic parameters and differentiation between various mechanisms by means of a non-linear least squares method].

    PubMed

    Haerlin, R; Steinijans, V

    1978-01-01

    The effect produced by an inhibitor on an enzyme is characterized by the underlying mechanism and the molar inhibition coefficients Ki and Ki', respectively. The commonly used graphical estimation methods according to Lineweaver-Burk, Dixon and Cornish-Bowden do not always yield a differentiation between various possible mechanisms. According to our experience, a non-linear least-squares procedure allows a unique identification of the mechanism even in cases that are not at all, or not uniquely, solvable by graphical methods. The major advantages of this procedures and the used FORTRAN program are: 1. Fitting of the model equation itself-and not of a reciprocal conditional form-simultaneously to all measurements; 2. confidence limits for the parameter estimates; 3. residual plots to judge the goodness of fit; 4. parallel calculations and comparison of various mechanisms using the same set of data; 5. addition of further mechanisms as FORTRAN-subroutines. PMID:580396

  17. Olive oil pilot-production assisted by pulsed electric field: impact on extraction yield, chemical parameters and sensory properties.

    PubMed

    Puértolas, Eduardo; Martínez de Marañón, Iñigo

    2015-01-15

    The impact of the use of pulsed electric field (PEF) technology on Arroniz olive oil production in terms of extraction yield and chemical and sensory quality has been studied at pilot scale in an industrial oil mill. The application of a PEF treatment (2 kV/cm; 11.25 kJ/kg) to the olive paste significantly increased the extraction yield by 13.3%, with respect to a control. Furthermore, olive oil obtained by PEF showed total phenolic content, total phytosterols and total tocopherols significantly higher than control (11.5%, 9.9% and 15.0%, respectively). The use of PEF had no negative effects on general chemical and sensory characteristics of the olive oil, maintaining the highest quality according to EU legal standards (EVOO; extra virgin olive oil). Therefore, PEF could be an appropriate technology to improve olive oil yield and produce EVOO enriched in human-health-related compounds, such as polyphenols, phytosterols and tocopherols. PMID:25149017

  18. Effect of Simultaneous Inoculation with Yeast and Bacteria on Fermentation Kinetics and Key Wine Parameters of Cool-Climate Chardonnay

    PubMed Central

    Jussier, Delphine; Dubé Morneau, Amélie; Mira de Orduña, Ramón

    2006-01-01

    Inoculating grape musts with wine yeast and lactic acid bacteria (LAB) concurrently in order to induce simultaneous alcoholic fermentation (AF) and malolactic fermentation (MLF) can be an efficient alternative to overcome potential inhibition of LAB in wines because of high ethanol concentrations and reduced nutrient content. In this study, the simultaneous inoculation of yeast and LAB into must was compared with a traditional vinification protocol, where MLF was induced after completion of AF. For this, two suitable commercial yeast-bacterium combinations were tested in cool-climate Chardonnay must. The time courses of glucose and fructose, acetaldehyde, several organic acids, and nitrogenous compounds were measured along with the final values of other key wine parameters. Sensory evaluation was done after 12 months of storage. The current study could not confirm a negative impact of simultaneous AF/MLF on fermentation success and kinetics or on final wine parameters. While acetic acid concentrations were slightly increased in wines after simultaneous AF/MLF, the differences were of neither practical nor legal significance. No statistically significant differences were found with regard to the final values of pH or total acidity and the concentrations of ethanol, acetaldehyde, glycerol, citric and lactic acids, and the nitrogen compounds arginine, ammonia, urea, citrulline, and ornithine. Sensory evaluation by a semiexpert panel confirmed the similarity of the wines. However, simultaneous inoculation led to considerable reductions in overall fermentation durations. Furthermore, differences of physiological and microbiological relevance were found. Specifically, we report the vinification of “super-dry” wines devoid of glucose and fructose after simultaneous inoculation of yeast and bacteria. PMID:16391046

  19. Carbon reaction and diffusion on Ni(111), Ni(100), and Fe(110): Kinetic parameters from x-ray photoelectron spectroscopy and density functional theory analysis

    SciTech Connect

    Wiltner, A.; Linsmeier, Ch.; Jacob, T.

    2008-08-28

    This paper investigates the reactivity of elemental carbon films deposited from the vapor phase with Fe and Ni substrates at room temperature. X-ray photoelectron spectroscopy (XPS) measurements are presented as a method for evaluating kinetic reaction data. Carbon films are deposited on different surface orientations representing geometries from a dense atom packing as in fcc (111) to an open surface structure as in fcc (100). During annealing experiments several reactions are observed (carbon subsurface diffusion, carbide formation, carbide decomposition, and graphite ordering). These reactions and the respective kinetic parameters are analyzed and quantified by XPS measurements performed while annealing at elevated temperatures (620-820 K). The resulting activation barriers for carbon subsurface diffusion are compared with calculated values using the density functional theory. The determined kinetic parameters are used to reproduce the thermal behavior of carbon films on nickel surfaces.

  20. Theoretical estimation of kinetic parameters for nucleophilic substitution reactions in solution: an application of a solution translational entropy model.

    PubMed

    Han, Ling-Li; Li, Shi-Jun; Fang, De-Cai

    2016-02-17

    The kinetic parameters, such as activation entropy, activation enthalpy, activation free-energy, and reaction rate constant, for a series of nucleophilic substitution (SN) reactions in solution, are investigated using both a solution-phase translational entropy model and an ideal gas-phase translational entropy model. The results obtained from the solution translational entropy model are in excellent agreement with the experimental values, while the overestimation of activation free-energy from the ideal gas-phase translational entropy model is as large as 6.9 kcal mol(-1). For some of the reactions studied, such as and in methanol, and and in aqueous solution, the explicit + implicit model, namely, a cluster-continuum type model, should be employed to account for the strong solvent-solute interactions. In addition, the explicit + implicit models have also been applied to the DMSO-H2O mixtures, which would open up a door to investigate the reactions in a mixed solvent using density functional theory (DFT) methods. PMID:26847838

  1. Study of kinetic parameters and development of a voltammetric sensor for the determination of butylated hydroxyanisole (BHA) in oil samples.

    PubMed

    Thomas, Divya; Rasheed, Zafna; Jagan, Jesny Siri; Kumar, Krishnapillai Girish

    2015-10-01

    Electrochemical behavior of artificial antioxidant, butylated hydroxyanisole (BHA), was investigated at a glassy carbon electrode modified with poly L- cysteine [poly (L- Cys/GCE)]. BHA exhibits a pair of well - defined redox peak on L- cysteine modified GCE with Epa = 69 mV and Epc = 4 mV. The modified electrode showed good electrocatalytic activity towards the oxidation of BHA under optimal conditions and exhibited a linear response in the range from 1.0 × 10(-5) to 1.0 × 10(-6) M with a correlation coefficient of 0.998. The limit of detection was found to be 4.1 × 10(-7) M. The kinetics parameters of the proposed sensor such as heterogeneous electron transfer rate, k s , and charge transfer coefficient,α, was calculated and found to be 1.20 s(-1) and 0.575 respectively. The average surface concentration of BHA on the surface of poly (L- Cys/GCE) was calculated to be 3.18 × 10(-4) mol cm(-2). The analytical utility of the proposed sensor was evaluated by the successful determination of BHA in coconut oil and sesame oil samples. PMID:26396421

  2. Optimization of laccase fermentation and evaluation of kinetic and thermodynamic parameters of a partially purified laccase produced by Daedalea flavida.

    PubMed

    Singha, Siddhartha; Panda, Tapobrata

    2015-01-01

    Studies on laccase production by Daedalea flavida were carried out in static and low-speed shake cultures. The enzyme production was reduced drastically at a high speed of shaking. Optimal production conditions are necessary to assess the quality of laccase suitable for a specific application. Thus, the production of laccase was optimized by the application of response surface methodology. Laccase production was 8-fold and 7.5-fold more in static and low-speed shake conditions, respectively, in an optimal medium composition than in an unoptimized medium. Laccase obtained using the optimal culture medium of D. flavida was tested for its stability at different temperatures and pH conditions. The partially purified enzyme was most stable at 30°C and pH 5. The half-life of laccase is 87 min at 60°C and at pH 6. The kinetic and thermodynamic parameters were evaluated for the inactivation of the partially purified laccase. The entropy change of inactivation of the enzyme is least at pH 4. PMID:24547974

  3. Effect of parity on milk yield, composition, somatic cell count, renneting parameters and bacteria counts of Comisana ewes.

    PubMed

    Sevi; Taibi; Albenzio; Muscio; Annicchiarico

    2000-07-01

    Twenty-four Comisana ewes, with no history of mastitis, were included in this study, with eight ewes each in parities 1, 2 and 3. Groups were separately penned on straw litter and ewes were individually checked for yield, composition, renneting properties and bacteriological characteristics of milk from January, when separated from their lambs (50+/-3 days after lambing), to May. Samples with more than 3.5x10(5) somatic cells/ml were cultured for mastitis related pathogens. Milk yield was not significantly affected by parity. The P3 ewes had significantly higher milk protein, casein and fat contents compared to the P1 and P2 ewes. The P3 ewes also had improved renneting ability of milk as compared to the P1 ewes. Quality of milk decreased with lower lactations. The milk of P1 ewes had significantly greater amounts of mesophilic bacteria than the P2 and P3 ewes, as well as higher concentrations of psychrotrophs and total coliforms in their milk with respect to the P3 ewes. Somatic cell counts in milk and the prevalence of subclinical mastitis were not changed by parity, although mastitis infection set in progressively earlier as the number of lactations decreased. These results suggest that ewes in first or second lactation have a less favourable milk secretion status in relation to mastitis than ewes with a higher number of lactations. Milk yield and quality of younger ewes may be improved by offering feed rations that take into account this reduced capacity to mobilise body reserves. Also, most scrupulous control of sanitation of housing, equipment and personnel is necessary. PMID:10818309

  4. Studies on fission with ALADIN. Precise and simultaneous measurement of fission yields, total kinetic energy and total prompt neutron multiplicity at GSI

    NASA Astrophysics Data System (ADS)

    Martin, Julie-Fiona; Taieb, Julien; Chatillon, Audrey; Bélier, Gilbert; Boutoux, Guillaume; Ebran, Adeline; Gorbinet, Thomas; Grente, Lucie; Laurent, Benoit; Pellereau, Eric; Alvarez-Pol, Héctor; Audouin, Laurent; Aumann, Thomas; Ayyad, Yassid; Benlliure, Jose; Casarejos, Enrique; Cortina Gil, Dolores; Caamaño, Manuel; Farget, Fanny; Fernández Domínguez, Beatriz; Heinz, Andreas; Jurado, Beatriz; Kelić-Heil, Aleksandra; Kurz, Nikolaus; Nociforo, Chiara; Paradela, Carlos; Pietri, Stéphane; Ramos, Diego; Rodríguez-Sànchez, Jose-Luis; Rodríguez-Tajes, Carme; Rossi, Dominic; Schmidt, Karl-Heinz; Simon, Haik; Tassan-Got, Laurent; Vargas, Jossitt; Voss, Bernd; Weick, Helmut

    2015-12-01

    A novel technique for fission studies, based on the inverse kinematics approach, is presented. Following pioneering work in the nineties, the SOFIA Collaboration has designed and built an experimental set-up dedicated to the simultaneous measurement of isotopic yields, total kinetic energies and total prompt neutron multiplicities, by fully identifying both fission fragments in coincidence, for the very first time. This experiment, performed at GSI, permits to study the fission of a wide variety of fissioning systems, ranging from mercury to neptunium, possibly far from the valley of stability. A first experiment, performed in 2012, has provided a large array of unprecedented data regarding the nuclear fission process. An excerpt of the results is presented. With this solid starter, further improvements of the experimental set-up are considered, which are consistent with the expected developments at the GSI facility, in order to measure more fission observables in coincidence. The completeness reached in the SOFIA data, permits to scrutinize the correlations between the interesting features of fission, offering a very detailed insight in this still unraveled mechanism.

  5. A laser flash photolysis-resonance fluorescence kinetics study of the reaction Cl/2P/ + CH4 yields CH3 + HCl

    NASA Technical Reports Server (NTRS)

    Ravishankara, A. R.; Wine, P. H.

    1980-01-01

    The technique of laser flash photolysis-resonance fluorescence is employed to study the kinetics of the reaction Cl(2P) + CH4 yields CH3 + HCl over the temperature range 221-375 K. At temperatures less than or equal to 241 K the apparent bimolecular rate constant is found to be dependent upon the identity of the chemically inert gases in the reaction mixture. For Cl2/CH4/He reaction mixtures (total pressure = 50 torr) different bimolecular rate constants are measured at low and high methane concentrations. For Cl2/CH4/CCl/He and Cl2/CH4/Ar reaction mixtures, the bimolecular rate constant is independent of methane concentration, being approximately equal to the rate constant measured at low methane concentrations for Cl2/CH4/He mixtures. These rate constants are in good agreement with previous results obtained using the discharge flow-resonance fluorescence and competitive chlorination techniques. At 298 K the measured bimolecular rate constant is independent of the identity of the chemically inert gases in the reaction mixture and in good agreement with all previous investigations. The low-temperature results obtained in this investigation and all previous investigations can be rationalized in terms of a model which assumes that the Cl(2P 1/2) state reacts with CH4 much faster than the Cl(2P 3/2) state. Extrapolation of this model to higher temperatures, however, is not straightforward.

  6. Kinetic study of the reaction CH (X 2Pi) + H2 yields CH2 (X 3B1) + H in the temperature range 372 to 675 K

    NASA Technical Reports Server (NTRS)

    Zabarnick, S.; Fleming, J. W.; Lin, M. C.

    1986-01-01

    The kinetics of the reversible reaction CH (X 2Pi) + H2 yields CH2 (X 3B1) + H at 372-675 K and total pressure 100 torr (mainly Ar) is investigated experimentally. The ground-state CH radicals are produced by photolysis of CHBr3 using 10-mJ 266-nm laser pulses (repetition rate 10 Hz) and monitored by measuring the fluorescence induced by a 429.8-nm dye laser, in the apparatus described by Berman et al. (1982) and Berman and Lin (1984). The results are presented in tables and graphs and characterized. The absolute rate constants for the forward and reverse reactions are determined, and their temperature dependence is given by Arrhenius expressions and formulas obtained in transition-state-theory calculations. The heat of formation of CH2 at 0 K is estimated (assuming that the recombination reaction CH2 + H has zero activation energy) as 92.6 + or - 0.5 kcal/mol.

  7. Quantitative Genetics and Functional–Structural Plant Growth Models: Simulation of Quantitative Trait Loci Detection for Model Parameters and Application to Potential Yield Optimization

    PubMed Central

    Letort, Véronique; Mahe, Paul; Cournède, Paul-Henry; de Reffye, Philippe; Courtois, Brigitte

    2008-01-01

    Background and Aims Prediction of phenotypic traits from new genotypes under untested environmental conditions is crucial to build simulations of breeding strategies to improve target traits. Although the plant response to environmental stresses is characterized by both architectural and functional plasticity, recent attempts to integrate biological knowledge into genetics models have mainly concerned specific physiological processes or crop models without architecture, and thus may prove limited when studying genotype × environment interactions. Consequently, this paper presents a simulation study introducing genetics into a functional–structural growth model, which gives access to more fundamental traits for quantitative trait loci (QTL) detection and thus to promising tools for yield optimization. Methods The GREENLAB model was selected as a reasonable choice to link growth model parameters to QTL. Virtual genes and virtual chromosomes were defined to build a simple genetic model that drove the settings of the species-specific parameters of the model. The QTL Cartographer software was used to study QTL detection of simulated plant traits. A genetic algorithm was implemented to define the ideotype for yield maximization based on the model parameters and the associated allelic combination. Key Results and Conclusions By keeping the environmental factors constant and using a virtual population with a large number of individuals generated by a Mendelian genetic model, results for an ideal case could be simulated. Virtual QTL detection was compared in the case of phenotypic traits – such as cob weight – and when traits were model parameters, and was found to be more accurate in the latter case. The practical interest of this approach is illustrated by calculating the parameters (and the corresponding genotype) associated with yield optimization of a GREENLAB maize model. The paper discusses the potentials of GREENLAB to represent environment × genotype interactions, in particular through its main state variable, the ratio of biomass supply over demand. PMID:17766844

  8. Model of curing shrinkage and kinetic parameters of an acrylate-based ultraviolet-embossing resist based on free volume theory

    NASA Astrophysics Data System (ADS)

    Liu, Nan; Liu, Jingbei; Lin, Jie; Davies, Graham; Jin, Peng; Zhang, Dou

    2013-04-01

    Free volume theory and a model of polymerization kinetics are introduced to predict and analyze the curing shrinkage and kinetic parameters of an acrylate-based ultraviolet-embossing resist. Curing shrinkage tests have been designed and performed to verify the accuracy of the model. The experimental results are in good agreement with the simulated results of the conversion behavior. The reaction coefficients of polymerization predicted by this model are essentially correct when compared to the classical experimental values. Moreover, the dynamic shrinkage during polymerization determined experimentally matches the simulated result predicted by our model.

  9. Influence of Different Parameters on a Dual-Fractal Analysis for Antigen-Antibody Binding Kinetics for Biosensor Applications

    PubMed

    Milum; Sadana

    1997-03-01

    The diffusion-limited binding kinetics of antigen (or antibody) in solution to antibody (or antigen) immobilized on a biosensor surface is analyzed within a fractal framework. The fit obtained by a dual-fractal analysis is compared with that obtained from a single-fractal analysis. In some cases, the dual-fractal analysis provides an improved fit when compared with a single-fractal analysis. This was indicated by the regression analysis provided by Sigmaplot (46). It is of interest to note that the state of disorder (or the fractal dimension) and the binding rate coefficient both increase as the reaction progresses on the biosensor surface. For example, for the binding of HIV-1 p24 in solution to monoclonal antibody (MAb) 18 covalently attached to a biosensor surface (49), an increase in the fractal dimension by 59% from a value of Df1 equal to 1.91 to Df2 equal to 2.95 leads to an increase in the binding rate coefficient by a factor of 15 from k1 equal to 21.1 to k2 equal to 339. Also, the binding of MAb 6301 and 6303 in solution to insulin growth factor binding protein-1 (IGFBP-1) covalently attached to the sensor surface is adequately described by a single-fractal analysis (48). The binding of MAb 6302 to IGFBP-1, however, requires dual fractals. This indicates a difference in the binding mechanisms of these MAbs. The different examples analyzed and presented together provide a means by which the antigen-antibody reactions may be better controlled by noting the magnitude of the changes in the fractal dimension and in the binding rate coefficient as the reaction progresses on the biosensor surface. Also, the magnitude of the changes in the binding rate coefficients (k1 and k2) and in the fractal dimensions (Df1 and Df2) as different parameters are changed for the different biosensor applications are of particular value. PMID:9245322

  10. Kinetic and thermodynamic parameters for thermal denaturation of ovine milk lactoferrin determined by its loss of immunoreactivity.

    PubMed

    Navarro, F; Harouna, S; Calvo, M; Pérez, M D; Sánchez, L

    2015-07-01

    Lactoferrin is a protein with important biological functions that can be obtained from milk and by-products derived from the dairy industry, such as whey. Although bovine lactoferrin has been extensively studied, ovine lactoferrin is not quite as well known. In the present study, the effect of several heat treatments in 3 different media, over a temperature range from 66 to 75°C, has been studied on lactoferrin isolated from sheep milk. Denaturation of lactoferrin was determined by measuring its immunoreactivity with specific polyclonal antibodies. Kinetic and thermodynamic parameters obtained indicate that lactoferrin denatures by heat more rapidly in whey than in phosphate buffer or milk. The value of activation energy found for the denaturation process of lactoferrin when treated in whey is higher (390kJ/mol) than that obtained in milk (194kJ/mol) or phosphate buffer (179kJ/mol). This indicates that a great amount of energy is necessary to start denaturation of ovine lactoferrin, probably due to the interaction of this protein with other whey proteins. The changes in the hydrophobicity of lactoferrin after heat treatments were determined by fluorescence measurement using acrylamide. The decrease in the hydrophobicity constant was very small for the treatments from 66 to 75°C, up to 20min, which indicates that lactoferrin conformation did not experienced a great change. The results obtained in this study permit the prediction of behavior of ovine lactoferrin under several heat treatments and show that high-temperature, short-time pasteurization (72°C, 15 s) does not cause loss of its immunoreactivity and, consequently, would not affect its conformation and biological activity. PMID:25958286

  11. Release kinetics, quantal parameters and their modulation during short-term depression at a developing synapse in the rat CNS.

    PubMed

    Taschenberger, Holger; Scheuss, Volker; Neher, Erwin

    2005-10-15

    We have characterized developmental changes in the kinetics and quantal parameters of action potential (AP)-evoked neurotransmitter release during maturation of the calyx of Held synapse. Quantal size (q) and peak amplitudes of evoked EPSCs increased moderately, whereas the fraction of vesicles released by single APs decreased. During synaptic depression induced in postnatal day (P) 5-7 synapses by 10-100 Hz stimulation, q declined rapidly to 40-12% of its initial value. The decrease in q was generally smaller in more mature synapses (P12-14), but quite severe for frequencies > or = 300 Hz. The stronger decline of q in immature synapses resulted from a slower recovery from desensitization, presumably due to delayed glutamate clearance. Recovery from this desensitization followed an exponential time course with a time constant of approximately 480 ms in P5-7 synapses, and sped up > 20-fold during maturation. Deconvolution analysis of EPSCs revealed a significant acceleration of the release time course during development, which was accompanied by a 2-fold increase of the peak release rate. During long 100 Hz trains, more mature synapses were able to sustain average rates of 8-10 quanta s(-1) per active zone for phasic release. The rates of asynchronous vesicle release increased transiently > 35-fold immediately after such stimuli and decayed rapidly with an exponential time constant of approximately 50 ms to low resting levels of spontaneous release. However, even following extended periods of 100 Hz stimulation, the amount of asynchronous release was relatively minor with peak rates of less than 5% of the average rate of synchronous release measured at steady state during the tetani. Therefore, a multitude of mechanisms seems to converge on the generation of fast, temporally precise and reliable high-frequency transmission at the mature calyx of Held synapse. PMID:16096340

  12. Random regression test day models to estimate genetic parameters for milk yield and milk components in Philippine dairy buffaloes.

    PubMed

    Flores, E B; van der Werf, J

    2015-08-01

    Heritabilities and genetic correlations for milk production traits were estimated from first-parity test day records on 1022 Philippine dairy buffalo cows. Traits analysed included milk (MY), fat (FY) and protein (PY) yields, and fat (Fat%) and protein (Prot%) concentrations. Varying orders of Legendre polynomials (Leg(m)) as well as the Wilmink function (Wil) were used in random regression models. These various models were compared based on log likelihood, Akaike's information criterion, Bayesian information criterion and genetic variance estimates. Six residual variance classes were sufficient for MY, FY, PY and Fat%, while seven residual classes for Prot%. Multivariate analysis gave higher estimates of genetic variance and heritability compared with univariate analysis for all traits. Heritability estimates ranged from 0.25 to 0.44, 0.13 to 0.31 and 0.21 to 0.36 for MY, FY and PY, respectively. Wilmink's function was the better fitting function for additive genetic effects for all traits. It was also the preferred function for permanent environment effects for Fat% and Prot%, but for MY, FY and PY, the Legm was the appropriate function. Genetic correlations of MY with FY and PY were high and they were moderately negative with Fat% and Prot%. To prevent deterioration in Fat% and Prot% and improve milk quality, more weight should be applied to milk component traits. PMID:25727642

  13. Determination of betulinic acid, oleanolic acid and ursolic acid from Achyranthes aspera L. using RP-UFLC-DAD analysis and evaluation of various parameters for their optimum yield.

    PubMed

    Pai, Sandeep R; Upadhya, Vinayak; Hegde, Harsha V; Joshi, Rajesh K; Kholkute, Sanjiva D

    2016-03-01

    Achyranthes aspera L. is a well known herb commonly used in traditional system of Indian medicine to treat various disorders, such as cough, dysentery, gonorrhea, piles, kidney stone, pneumonia, renal dropsy, skin eruptions, snake bite, etc. Here, we used RP-UFLC-DAD method for determining triterpenoids betulinic acid (BA), oleanolic acid (OA) and ursolic acid (UA) from A. aspera. Optimum yield of these compounds were studied and evaluated using parameters viz., method of extraction, time of extraction, age of plant and plant parts (leaves, stem and roots). Linear relationships in RP-UFLC-DAD analysis were obtained in the range 0.05-100 µg/mL with 0.035, 0.042 and 0.033 µg/mL LOD for BA, OA and UA, respectively. Of the variables tested, extraction method and parts used significantly affected content yield. Continuous shaking extraction (CSE) at ambient temperature gave better extraction efficiency than exposure to ultra sonic extraction (USE) or microwave assisted extraction (MAE) methods. The highest content of BA, OA and UA were determined individually in leaf, stem and root extracts with CSE. Collective yield of these triterpenoids were higher in leaf part exposed to 15 min USE method. To best of our knowledge, the study newly reports UA from A. aspera and the same was confirmed using ATR-FT-IR studies. This study explains the distribution pattern of these major triterpenoids and optimum extraction parameters in detail. PMID:27145633

  14. Effect of Tannin-Binding Agents (Polyethylene Glycol and Polyvinylpyrrolidone) Supplementation on In Vitro Gas Production Kinetics of Some Grape Yield Byproducts

    PubMed Central

    Besharati, Maghsoud; Taghizadeh, Akbar

    2011-01-01

    The effects of polyethylene glycol (PEG) and polyvinylpyrrolidone (PVP) on in vitro gas production characteristics, organic matter digestibility (OMD), and metabolizable energy (ME) contents of some grape yield byproducts were investigated. The gas production was recorded after 2, 4, 6, 8, 12, 16, 24, 36, and 48 h of incubation. The gas production profiles in triplicate fitted with equation Y = A (1 – e−ct). The data was analyzed using completely randomized design. Total phenol (TP) and total tannin (TT) contents were highest for raisin waste (RW). The TP content (g/kg DM) ranged from 30.1 in grape pomace (GP) to 96.3 in RW, which also had the higher TT (72.1 g/kg DM). The potential gas production (a + b) of DGB, GP, and RW were 239.43, 263.49, and 208.22 mL/g DM, respectively. In the absence of PEG and PVP, rate constant of gas production (c) for GP was highest among the feedstuffs (0.1073 mL/h), but in presence of PEG or PVP, RW had highest fraction (c) among the feedstuffs. Addition of PEG and PVP inactivated effects of tannins and increased gas production, ME, NE1, OMD, and VFA in grape yield byproducts. Addition of PEG and PVP could overcome adverse effects of tannins on nutrient availability as indicated by gas production parameters. PMID:23738107

  15. VERY LONG BASELINE NEUTRINO OSCILLATION EXPERIMENTS FOR PRECISE MEASURMENTS OF OSCILLATION PARAMETERS AND SEARCH FOR N MU YIELDS N EPSILON.

    SciTech Connect

    DIWAN,M.; MARCIANO,W.; WENG,W.; BEAVIS,D.; BRENNAN,M.; CHEN,M.C.; FERNOW,R.; ET AL

    2002-10-18

    Brookhaven National Laboratory and collaborators started a neutrino working group to identify new opportunities in the field of neutrino oscillations and explore how our laboratory facilities can be used to explore this field of research. The memo to the working group and the charge are included in Appendix I. This report is the result of the deliberations of the working group. Previously, we wrote a letter of intent to build a new high intensity neutrino beam at BNL. A new intense proton beam will be used to produce a conventional horn focused neutrino beam directed at a detector located in either the Homestake mine in Lead, South Dakota at 2540 km or the Waste Isolation Pilot Plant (WIPP) in Carlsbad, NM at 2880 km. As a continuation of the study that produced the letter of intent, this report examines several items in more detail. We mainly concentrate on the use of water Cherenltov detectors because of their size, resolution, and background rejection capability, and cost. We examine the prospects of building such a detector in the Homestake mine. The accelerator upgrade will be carried out in phases. We expect the first phase to yield a 0.4 MW proton beam and the second phase to result in a 1.0 MW beam. The details of this upgrade will be reported in a companion report. In this report we assume accelerator intensity of 1 MW for calculating event rates and spectra. We also assume a total experimental duration of 5 years with running time of 10{sup 7} seconds per year. We examine the target station and the horn produced neutrino beam with focus on two topics: target and horn design for a 1 MW beam and the broad band spectrum of neutrinos from a 28 GeV proton beam.

  16. Erbium hydride decomposition kinetics.

    SciTech Connect

    Ferrizz, Robert Matthew

    2006-11-01

    Thermal desorption spectroscopy (TDS) is used to study the decomposition kinetics of erbium hydride thin films. The TDS results presented in this report are analyzed quantitatively using Redhead's method to yield kinetic parameters (E{sub A} {approx} 54.2 kcal/mol), which are then utilized to predict hydrogen outgassing in vacuum for a variety of thermal treatments. Interestingly, it was found that the activation energy for desorption can vary by more than 7 kcal/mol (0.30 eV) for seemingly similar samples. In addition, small amounts of less-stable hydrogen were observed for all erbium dihydride films. A detailed explanation of several approaches for analyzing thermal desorption spectra to obtain kinetic information is included as an appendix.

  17. Kinetics of excited states of pigment clusters in solubilized light-harvesting complex II: photon density-dependent fluorescence yield and transmittance.

    PubMed Central

    Schödel, R; Hillmann, F; Schrötter, T; Voigt, J; Irrgang, K D; Renger, G

    1996-01-01

    Relative fluorescence yield, phi F, and transmittance, T, were measured in solubilized light-harvesting complex II (LHCII) as a function of photon density, Ip, of monochromatic 645-nm laser pulses (duration: approximately 2.5 ns). Special efforts were made in constructing an optical set-up that allows the accurate determination of the fluorescence from an area of constant Ip, phi F(Ip) starts to decline at approximately 10(14) and drops to values below 0.01% at maximum Ip (approximately 10(19) photons cm-2 pulse-1). T(Ip) decreases only slightly at photon densities of approximately 10(15) but increases steeply at values of > 10(17) photons cm-2 pulse-1. The interpretation of the phi F(Ip) data using the saturation limit of Mauzerall's multiple hit model leads to a unit size of about 10-15 chlorophyll molecules. One interpretation is to attribute this result to a very fast exciton-exciton annihilation of multiple excited states generated within this small domain. Alternatively, based on the assumption that delocalized cluster states within the monomeric/trimeric subunit of LHCII exist, the results can be consistently described by a kinetic model comprising ground, monoexcitonic, and biexcitonic states of clusters and a triplet state that is quenched by carotenoids in LHCII. Within the framework of this model the annihilation of multiple excitations is explained as ultrafast radiationless relaxation of higher excited cluster states. Comparative measurements in diluted acetonic Chl a solution are consistently described by the depletion of the ground state, taking the absorption cross section at the used wavelength. Images FIGURE 1 PMID:8968606

  18. Displacement cascades and defect annealing in tungsten, Part III: The sensitivity of cascade annealing in tungsten to the values of kinetic parameters

    SciTech Connect

    Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard L.; Roche, Kenneth J.; Kurtz, Richard J.; Wirth, Brian D.

    2015-07-01

    Object kinetic Monte Carlo (OKMC) simulations have been performed to investigate various aspects of cascade aging in bulk tungsten and to determine the sensitivity of the results to the kinetic parameters. The primary focus is on how the kinetic parameters affect the initial recombination of defects in the first few ns of a simulation. The simulations were carried out using the object kinetic Monte Carlo (OKMC) code KSOME (kinetic simulations of microstructure evolution), using a database of cascades obtained from results of molecular dynamics (MD) simulations at various primary knock-on atom (PKA) energies and directions at temperatures of 300, 1025 and 2050 K. The OKMC model was parameterized using defect migration barriers and binding energies from ab initio calculations. Results indicate that, due to the disparate mobilities of SIA and vacancy clusters in tungsten, annealing is dominated by SIA migration even at temperatures as high as 2050 K. For 100 keV cascades initiated at 300 K recombination is dominated by annihilation of large defect clusters. But for all other PKA energies and temperatures most of the recombination is due to the migration and rotation of small SIA clusters, while all the large SIA clusters escape the cubic simulation cell. The inverse U-shape behavior exhibited by the annealing efficiency as a function of temperature curve, especially for cascades of large PKA energies, is due to asymmetry in SIA and vacancy clustering assisted by the large difference in mobilities of SIAs and vacancies. This annealing behavior is unaffected by the dimensionality of SIA migration persists over a broad range of relative mobilities of SIAs and vacancies.

  19. Systematics of Fission-Product Yields

    SciTech Connect

    A.C. Wahl

    2002-05-01

    Empirical equations representing systematics of fission-product yields have been derived from experimental data. The systematics give some insight into nuclear-structure effects on yields, and the equations allow estimation of yields from fission of any nuclide with atomic number Z{sub F} = 90 thru 98, mass number A{sub F} = 230 thru 252, and precursor excitation energy (projectile kinetic plus binding energies) PE = 0 thru {approx}200 MeV--the ranges of these quantities for the fissioning nuclei investigated. Calculations can be made with the computer program CYFP. Estimates of uncertainties in the yield estimates are given by equations, also in CYFP, and range from {approx} 15% for the highest yield values to several orders of magnitude for very small yield values. A summation method is used to calculate weighted average parameter values for fast-neutron ({approx} fission spectrum) induced fission reactions.

  20. Spectra, Emission Yields, Cross Sections, and Kinetic Energy Distributions of Hydrogen Atoms from H2 X 1Eg+-d 3IIu Excitation by Electron Impact

    NASA Astrophysics Data System (ADS)

    Liu, Xianming; Shemansky, Donald E.; Yoshii, Jean; Johnson, Paul V.; Malone, Charles P.; Ajello, Joseph M.

    2016-02-01

    Electron-impact excitation of H2 triplet states plays an important role in the heating of outer planet upper thermospheres. The {d}3{{{\\Pi }}}u state is the third ungerade triplet state, and the {d}3{{{\\Pi }}}u-a{}3{{{Σ }}}g+ emission is the largest cascade channel for the a{}3{{{Σ }}}g+ state. Accurate energies of the d{}3{{{\\Pi }}}u-(v, J) levels are calculated from an ab initio potential energy curve. Radiative lifetimes of the {d}3{{{\\Pi }}}u(v, J) levels are obtained by an accurate evaluation of the {d}3{{{\\Pi }}}u-a{}3{{{Σ }}}g+ transition probabilities. The emission yields are determined from experimental lifetimes and calculated radiative lifetimes and are further verified by comparing experimental and synthetic {d}3{{{\\Pi }}}u-a{}3{{{Σ }}}g+ spectra at 20 eV impact energy. Spectral analysis revealed that multipolar components beyond the dipolar term are required to model the {X}1{{{Σ }}}g+-{d}3{{{\\Pi }}}u excitation, and significant cascade excitation occurs at the {d}3{{{\\Pi }}}u(v = 0,1) levels. Kinetic energy (Ek) distributions of H atoms produced via predissociation of the {d}3{{{\\Pi }}}u state and the {d}3{{{\\Pi }}}u-a{}3{{{Σ }}}g+-b{}3{{{Σ }}}u+ cascade dissociative emission are obtained. Predissociation of the {d}3{{{\\Pi }}}u state produces H atoms with an average Ek of 2.3 ± 0.4 eV/atom, while the Ek distribution of the {d}3{{{\\Pi }}}u-a{}3{{{Σ }}}g+-b{}3{{{Σ }}}u+ channel is similar to that of the {X}1{{{Σ }}}g+-a{}3{{{Σ }}}g+-b{}3{{{Σ }}}u+ channel and produces H(1s) atoms with an average Ek of 1.15 ± 0.05 eV/atom. On average, each H2 excited to the {d}3{{{\\Pi }}}u state in an H2-dominated atmosphere deposits 3.3 ± 0.4 eV into the atmosphere, while each H2 directly excited to the a{}3{{{Σ }}}g+ state gives 2.2-2.3 eV to the atmosphere. The spectral distribution of the calculated a{}3{{{Σ }}}g+ -b{}3{{{Σ }}}u+ continuum emission due to the {X}1{{{Σ }}}g+-{d}3{{{\\Pi }}}u excitation is significantly different from that of direct a{}3{{{Σ }}}g+ excitation.

  1. Impact of process parameters on the breakage kinetics of poorly water-soluble drugs during wet stirred media milling: a microhydrodynamic view.

    PubMed

    Afolabi, Afolawemi; Akinlabi, Olakemi; Bilgili, Ecevit

    2014-01-23

    Wet stirred media milling has proven to be a robust process for producing nanoparticle suspensions of poorly water-soluble drugs. As the process is expensive and energy-intensive, it is important to study the breakage kinetics, which determines the cycle time and production rate for a desired fineness. Although the impact of process parameters on the properties of final product suspensions has been investigated, scant information is available regarding their impact on the breakage kinetics. Here, we elucidate the impact of stirrer speed, bead concentration, and drug loading on the breakage kinetics via a microhydrodynamic model for the bead-bead collisions. Suspensions of griseofulvin, a model poorly water-soluble drug, were prepared in the presence of two stabilizers: hydroxypropyl cellulose and sodium dodecyl sulfate. Laser diffraction, scanning electron microscopy, and rheometry were used to characterize them. Various microhydrodynamic parameters including a newly defined milling intensity factor was calculated. An increase in either the stirrer speed or the bead concentration led to an increase in the specific energy and the milling intensity factor, consequently faster breakage. On the other hand, an increase in the drug loading led to a decrease in these parameters and consequently slower breakage. While all microhydrodynamic parameters provided significant physical insight, only the milling intensity factor was capable of explaining the influence of all parameters directly through its strong correlation with the process time constant. Besides guiding process optimization, the analysis rationalizes the preparation of a single high drug-loaded batch (20% or higher) instead of multiple dilute batches. PMID:24036164

  2. Kinetics of improved 1,4-alpha-D-glucan glucohydrolase biosynthesis from a newly isolated Aspergillus oryzae IIB-6 and parameter significance analysis by 2-factorial design.

    PubMed

    Fatima, Bilqees; Ali, Sikander

    2012-01-01

    Sixteen different mould cultures viz. Aspergillus, Alternaria, Arthroderma, Trichoderma, Fusarium, Penicillium, Rhizopus and Chochliobolus were isolated from the soil samples of Qatar by serial dilution method. The preliminary screening of isolates was done by selecting initial colonies showing relatively bigger zones of starch hydrolysis on nutrient agar plates. The isolates were then subjected to secondary screening by submerged fermentation (SmF). The 1,4-α-D-glucan glucohydrolase (GGH) activity ranged from 1.906-12.675 U/ml/min. The product yield was analysed in dependence of mycelial morphology, biomass level and protein content. The isolate Aspergillus oryzae llB-6 which gave maximum enzyme production was incubated in M3 medium containing 20 g/l starch, 10 g/l lactose, 8.5 g/l yeast extract, 6 g/l corn steep liquor (CSL), 1.2 g/l MgSO4.7H2O, 1.3 g/l NH4Cl, 0.6 g/l CaCl2.2H2O, pH 5 at 30±2°C and 200 rpm. On the basis of kinetic variables, notably Qp (0.058±0.01(a) U/g/h), Yp/s (0.308±0.03(ab) U/g) and qp (0.210±0.032(abc) U/g fungal biomass/h), A. oryzae IIB-6 was found to be a hyper producer of GGH (LSD 0.0345) compared to A. kawachii IIB-2. A noticeable enhancement in enzyme activity of over 30% was observed (13.917±1.01 U/ml/min) when the process parameters viz. cultural conditions (pH 5, incubation period 72 h) and nutritional requirements (6 g/l CSL, 9.5 g/l yeast extract, 10 g/l starch, 20 g/l lactose) were further optimized using a 2-factorial Plackett-Burman design. The model terms were found to be highly significant (HS, p≤0.05), indicating the potential utility of the culture (dof~3). PMID:23961361

  3. Kinetics of hydrogen abstraction O({sup 3}P) + alkane {yields} OH + alkyl reaction class: An application of the reaction class transition state theory

    SciTech Connect

    Huynh, Lam K.; Truong, Thanh N.; Zhang, Shaowen

    2008-01-15

    This paper presents an application of the reaction class transition state theory (RC-TST) for prediction of thermal rate constants of the O({sup 3}P) + alkane {yields} OH + alkyl reaction class. Parameters of the RC-TST were derived from first principles from a set of 19 reactions representing hydrogen abstractions from primary, secondary, and tertiary carbon atoms so that rate constants of any reaction in this class can be estimated without any further information or with its reaction energy calculated either at the density functional theory BH and HLYP/cc-pVDZ level or the semiempirical AM1 level. Detailed error analyses show that when compared to explicit theoretical calculations, the systematic errors in the calculated rate constants arising from the use of analytical expressions to approximate different reaction class factors in the RC-TST method are less than 40% on the average over the temperature range from 300 to 3000 K. In addition, we found that the rate constants estimated using either approach are in good agreement with available data in the literature. (author)

  4. Modeling sugar cane yield with a process-based model from site to continental scale: uncertainties arising from model structure and parameter values

    NASA Astrophysics Data System (ADS)

    Valade, A.; Ciais, P.; Vuichard, N.; Viovy, N.; Huth, N.; Marin, F.; Martiné, J.-F.

    2014-01-01

    Agro-Land Surface Models (agro-LSM) have been developed from the integration of specific crop processes into large-scale generic land surface models that allow calculating the spatial distribution and variability of energy, water and carbon fluxes within the soil-vegetation-atmosphere continuum. When developing agro-LSM models, a particular attention must be given to the effects of crop phenology and management on the turbulent fluxes exchanged with the atmosphere, and the underlying water and carbon pools. A part of the uncertainty of Agro-LSM models is related to their usually large number of parameters. In this study, we quantify the parameter-values uncertainty in the simulation of sugar cane biomass production with the agro-LSM ORCHIDEE-STICS, using a multi-regional approach with data from sites in Australia, La Réunion and Brazil. In ORCHIDEE-STICS, two models are chained: STICS, an agronomy model that calculates phenology and management, and ORCHIDEE, a land surface model that calculates biomass and other ecosystem variables forced by STICS' phenology. First, the parameters that dominate the uncertainty of simulated biomass at harvest date are determined through a screening of 67 different parameters of both STICS and ORCHIDEE on a multi-site basis. Secondly, the uncertainty of harvested biomass attributable to those most sensitive parameters is quantified and specifically attributed to either STICS (phenology, management) or to ORCHIDEE (other ecosystem variables including biomass) through distinct Monte-Carlo runs. The uncertainty on parameter values is constrained using observations by calibrating the model independently at seven sites. In a third step, a sensitivity analysis is carried out by varying the most sensitive parameters to investigate their effects at continental scale. A Monte-Carlo sampling method associated with the calculation of Partial Ranked Correlation Coefficients is used to quantify the sensitivity of harvested biomass to input parameters on a continental scale across the large regions of intensive sugar cane cultivation in Australia and Brazil. Ten parameters driving most of the uncertainty in the ORCHIDEE-STICS modeled biomass at the 7 sites are identified by the screening procedure. We found that the 10 most sensitive parameters control phenology (maximum rate of increase of LAI) and root uptake of water and nitrogen (root profile and root growth rate, nitrogen stress threshold) in STICS, and photosynthesis (optimal temperature of photosynthesis, optimal carboxylation rate), radiation interception (extinction coefficient), and transpiration and respiration (stomatal conductance, growth and maintenance respiration coefficients) in ORCHIDEE. We find that the optimal carboxylation rate and photosynthesis temperature parameters contribute most to the uncertainty in harvested biomass simulations at site scale. The spatial variation of the ranked correlation between input parameters and modeled biomass at harvest is well explained by rain and temperature drivers, suggesting climate-mediated different sensitivities of modeled sugar cane yield to the model parameters, for Australia and Brazil. This study reveals the spatial and temporal patterns of uncertainty variability for a highly parameterized agro-LSM and calls for more systematic uncertainty analyses of such models.

  5. Modeling sugarcane yield with a process-based model from site to continental scale: uncertainties arising from model structure and parameter values

    NASA Astrophysics Data System (ADS)

    Valade, A.; Ciais, P.; Vuichard, N.; Viovy, N.; Caubel, A.; Huth, N.; Marin, F.; Martiné, J.-F.

    2014-06-01

    Agro-land surface models (agro-LSM) have been developed from the integration of specific crop processes into large-scale generic land surface models that allow calculating the spatial distribution and variability of energy, water and carbon fluxes within the soil-vegetation-atmosphere continuum. When developing agro-LSM models, particular attention must be given to the effects of crop phenology and management on the turbulent fluxes exchanged with the atmosphere, and the underlying water and carbon pools. A part of the uncertainty of agro-LSM models is related to their usually large number of parameters. In this study, we quantify the parameter-values uncertainty in the simulation of sugarcane biomass production with the agro-LSM ORCHIDEE-STICS, using a multi-regional approach with data from sites in Australia, La Réunion and Brazil. In ORCHIDEE-STICS, two models are chained: STICS, an agronomy model that calculates phenology and management, and ORCHIDEE, a land surface model that calculates biomass and other ecosystem variables forced by STICS phenology. First, the parameters that dominate the uncertainty of simulated biomass at harvest date are determined through a screening of 67 different parameters of both STICS and ORCHIDEE on a multi-site basis. Secondly, the uncertainty of harvested biomass attributable to those most sensitive parameters is quantified and specifically attributed to either STICS (phenology, management) or to ORCHIDEE (other ecosystem variables including biomass) through distinct Monte Carlo runs. The uncertainty on parameter values is constrained using observations by calibrating the model independently at seven sites. In a third step, a sensitivity analysis is carried out by varying the most sensitive parameters to investigate their effects at continental scale. A Monte Carlo sampling method associated with the calculation of partial ranked correlation coefficients is used to quantify the sensitivity of harvested biomass to input parameters on a continental scale across the large regions of intensive sugarcane cultivation in Australia and Brazil. The ten parameters driving most of the uncertainty in the ORCHIDEE-STICS modeled biomass at the 7 sites are identified by the screening procedure. We found that the 10 most sensitive parameters control phenology (maximum rate of increase of LAI) and root uptake of water and nitrogen (root profile and root growth rate, nitrogen stress threshold) in STICS, and photosynthesis (optimal temperature of photosynthesis, optimal carboxylation rate), radiation interception (extinction coefficient), and transpiration and respiration (stomatal conductance, growth and maintenance respiration coefficients) in ORCHIDEE. We find that the optimal carboxylation rate and photosynthesis temperature parameters contribute most to the uncertainty in harvested biomass simulations at site scale. The spatial variation of the ranked correlation between input parameters and modeled biomass at harvest is well explained by rain and temperature drivers, suggesting different climate-mediated sensitivities of modeled sugarcane yield to the model parameters, for Australia and Brazil. This study reveals the spatial and temporal patterns of uncertainty variability for a highly parameterized agro-LSM and calls for more systematic uncertainty analyses of such models.

  6. Displacement cascades and defect annealing in tungsten, Part III: The sensitivity of cascade annealing in tungsten to the values of kinetic parameters

    NASA Astrophysics Data System (ADS)

    Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard L.; Roche, Kenneth J.; Kurtz, Richard J.; Wirth, Brian D.

    2015-07-01

    A study has been performed using object kinetic Monte Carlo (OKMC) simulations to investigate various aspects of cascade aging in bulk tungsten (W) and to determine its sensitivity to the kinetic parameters. The primary focus is on how the kinetic parameters affect the intracascade recombination of defects. Results indicate that, due to the disparate mobilities of SIA and vacancy clusters, annealing is dominated by SIA migration even at 2050 K. It was found that for 100 keV cascades initiated at 300 K, recombination is dominated by the annihilation of large defect clusters, while for all the other primary knock-on atom (PKA) energies and temperatures, recombination is primarily due to the migration and rotation of small SIA clusters, while the large SIA clusters escape the simulation cell. The annealing efficiency exhibits an inverse U-shaped curve behavior with increasing temperature, especially at large PKA energies, caused by the asymmetry in SIA and vacancy clustering assisted by the large differences in their mobilities. This behavior is unaffected by the dimensionality of SIA migration, and it persists over a broad range of relative mobilities of SIAs and vacancies.

  7. Detrimental effect of selection for milk yield on genetic tolerance to heat stress in purebred Zebu cattle: Genetic parameters and trends.

    PubMed

    Santana, M L; Pereira, R J; Bignardi, A B; Filho, A E Vercesi; Menéndez-Buxadera, A; El Faro, L

    2015-12-01

    In an attempt to determine the possible detrimental effects of continuous selection for milk yield on the genetic tolerance of Zebu cattle to heat stress, genetic parameters and trends of the response to heat stress for 86,950 test-day (TD) milk yield records from 14,670 first lactations of purebred dairy Gir cows were estimated. A random regression model with regression on days in milk (DIM) and temperature-humidity index (THI) values was applied to the data. The most detrimental effect of THI on milk yield was observed in the stage of lactation with higher milk production, DIM 61 to 120 (-0.099kg/d per THI). Although modest variations were observed for the THI scale, a reduction in additive genetic variance as well as in permanent environmental and residual variance was observed with increasing THI values. The heritability estimates showed a slight increase with increasing THI values for any DIM. The correlations between additive genetic effects across the THI scale showed that, for most of the THI values, genotype by environment interactions due to heat stress were less important for the ranking of bulls. However, for extreme THI values, this type of genotype by environment interaction may lead to an important error in selection. As a result of the selection for milk yield practiced in the dairy Gir population for 3 decades, the genetic trend of cumulative milk yield was significantly positive for production in both high (51.81kg/yr) and low THI values (78.48kg/yr). However, the difference between the breeding values of animals at high and low THI may be considered alarming (355kg in 2011). The genetic trends observed for the regression coefficients related to general production level (intercept of the reaction norm) and specific ability to respond to heat stress (slope of the reaction norm) indicate that the dairy Gir population is heading toward a higher production level at the expense of lower tolerance to heat stress. These trends reflect the genetic antagonism between production and tolerance to heat stress demonstrated by the negative genetic correlation between these components (-0.23). Monitoring trends of the genetic component of heat stress would be a reasonable measure to avoid deterioration in one of the main traits of Zebu cattle (i.e., high tolerance to heat stress). On the basis of current genetic trends, the need for future genetic evaluation of dairy Zebu animals for tolerance to heat stress cannot be ruled out. PMID:26476953

  8. The use of the logarithmic transformation in the calculation of the transport parameters of a system that obeys Michaelis–Menten kinetics

    PubMed Central

    Barber, H. E.; Welch, B. L.; Mackay, D.

    1967-01-01

    1. A logarithmic method is described for the calculation of the transport parameters, Km and Vmax.' of a biological system obeying Michaelis–Menten kinetics. 2. This logarithmic method leads to a way of estimating the transport parameters that has not apparently been used previously. It allows the separation of variance due to Vmax. from other variance, and so reduces the fiducial limits that can be placed on an estimation of Km. 3. The results of studies on the transport of l-histidine and l-monoiodohistidine by rat intestinal sacs in vitro have been used to illustrate the application of the new method. Estimates of the transport parameters have also been made by two alternative procedures. The relative merits of the three methods are discussed. PMID:6033766

  9. Parameter identifiability and Extended Multiple Studies Analysis of a compartmental model for human vitamin A kinetics: fixing fractional transfer coefficients for the initial steps in the absorptive process.

    PubMed

    Park, Hyunjin; Green, Michael H

    2014-03-28

    In the existing compartmental models of human vitamin A metabolism, parameters related to the absorption of the isotopic oral dose have not been well identified. We hypothesised that fixing some poorly identified parameters related to vitamin A absorption would improve parameter identifiability and add statistical certainty to such models. In the present study, data for serum vitamin A kinetics in nine subjects given [2H8]retinyl acetate orally and a model with absorption fixed at 75 % were used to test this hypothesis. In addition to absorption efficiency, we fixed two other fractional transfer coefficients: one representing the initial processing of the ingested dose and the other representing the direct secretion of retinol bound to retinol-binding protein (RBP) from enterocytes into the plasma. The Windows version of Simulation, Analysis and Modeling software (WinSAAM) was used to fit serum tracer data v. time for each subject. Then, a population model was generated by WinSAAM's Extended Multiple Studies Analysis. All the parameters had fractional standard deviations < 0·5, and none of the pairs of parameters had a correlation coefficient >0·8 (accepted criteria for well-identified parameters). Similar to the values predicted by the original model, total traced mass for retinol was 1160 (sd 468) μmol, and the time for retinol to appear in the plasma bound to RBP was 31·3 (sd 4·4) h. In conclusion, we suggest that this approach holds promise for advancing compartmental modelling of vitamin A kinetics in humans when the dose must be administered orally. PMID:24229649

  10. Generalized solvent scales as a tool for investigating solvent dependence of spectroscopic and kinetic parameters. Application to fluorescent BODIPY dyes.

    PubMed

    Filarowski, Aleksander; Kluba, Małgorzata; Cieślik-Boczula, Katarzyna; Koll, Aleksander; Kochel, Andrzej; Pandey, Lesley; De Borggraeve, Wim M; Van der Auweraer, Mark; Catalán, Javier; Boens, Noël

    2010-07-30

    Two difluoroboron dipyrromethene (BODIPY) based fluorescent dyes - 4,4-difluoro-3-{2-[4-(dimethylamino)phenyl]ethenyl}-8-[4-(methoxycarbonyl)phenyl]-1,5,7-trimethyl-3a,4a-diaza-4-bora-s-indacene (1) and 4,4-difluoro-3-[2-(4-fluoro-3-hydroxyphenyl)ethenyl]-8-[4-(methoxycarbonyl)phenyl]-1,5,7-trimethyl-3a,4a-diaza-4-bora-s-indacene (3) - have been synthesized via condensation of p-N,N-dimethylaminobenzaldehyde and 4-fluoro-3-hydroxybenzaldehyde, respectively, with 4,4-difluoro-8-[4-(methoxycarbonyl)phenyl]-1,3,5,7-tetramethyl-3a,4a-diaza-4-bora-s-indacene (2). UV-vis spectrophotometry and steady-state and time-resolved fluorometry have been used to study the spectroscopic and photophysical characteristics of in various solvents. The multi-parameter Kamlet-Taft {pi*, alpha, beta} solvent scales and a new, generalized treatment of the solvent effect, proposed by Catalán (J. Phys. Chem. B, 2009, 113, 5951-5960), have been used in the analysis of the solvatochromic shifts of the UV-vis absorption and fluorescence emission maxima of 1-3, and the rate constants of excited-state deactivation via fluorescence (k(f)) and radiationless decay (k(nr)). The four Catalán solvent scales (dipolarity, polarizability, acidity and basicity of the medium) are the most appropriate for describing the solvatochromic effects. Solvent dipolarity and polarizability are the important causes for the solvatochromism of 1. Conversely, the absorption and emission maxima of 2 and 3 are hardly dependent on the solvent: the small changes reflect primarily the polarizability of the solvent surrounding the dye. Fluorescence decay profiles of 1 can be described by a single-exponential function in aprotic solvents, whereas two decay times are found in alcohols. The fluorescence decays of 2 (lifetimes tau in 1.9-2.9 ns range) and 3 (tau between 3.5 and 4.0 ns) are mono-exponential in all solvents studied. The fluorescence properties of dye are very sensitive to the solvent: upon increasing solvent dipolarity, the fluorescence quantum yields and k(f) values decrease and the emission maxima become more red-shifted. The k(f) values of 2 [(1.6 +/- 0.3) x 10(8) s(-1)] and 3 [(1.5 +/- 0.2) x 10(8) s(-1)] are practically independent of the solvent properties. The crystal structure of reveals that the BODIPY core is nearly planar with the boron atom moved out of the plane. The angle between the phenyl group at the meso-position and the BODIPY plane equals 80 degrees. PMID:20505875

  11. Determination of kinetic parameters of fermentation processes by a continuous unsteady-state method: Application to the alcoholic fermentation of D-xylose by Pichia stipitis

    SciTech Connect

    Dominguez, H.; Nunez, M.J.; Lema, J.M. ); Chamy, R. )

    1993-05-01

    A quick technique for determination of kinetic parameters of fermentation processes is proposed and applied to the transformation of D-xylose into ethanol by Pichi stipitis. The commonly used method to evaluate these parameters is based on achieving several steady states. In the proposed procedure, [mu][sub m] and K[sub S] can be determined from only one steady state, by provoking a disturbance over it, after allowing the system to return to the original conditions. The main difference between the steady and unsteady state methods is the required fermentation time; while the former method lasted 350 h, the latter required a period 25 times lower. Kinetic and stoichiometric parameters were determined with both methods under anoxic and limited oxygen concentration conditions. Results from the two methods were compared, giving only 2% and 4.5% differences in the values of K[sub S] and [mu][sub m], respectively, under anoxic conditions; 12.5% for K[sub S] and a little over 4% for [mu][sub m] were the deviations under the latter ones.

  12. Assessment and parameter identification of simplified models to describe the kinetics of semi-continuous biomethane production from anaerobic digestion of green and food waste.

    PubMed

    Owhondah, Raymond O; Walker, Mark; Ma, Lin; Nimmo, Bill; Ingham, Derek B; Poggio, Davide; Pourkashanian, Mohamed

    2016-06-01

    Biochemical reactions occurring during anaerobic digestion have been modelled using reaction kinetic equations such as first-order, Contois and Monod which are then combined to form mechanistic models. This work considers models which include between one and three biochemical reactions to investigate if the choice of the reaction rate equation, complexity of the model structure as well as the inclusion of inhibition plays a key role in the ability of the model to describe the methane production from the semi-continuous anaerobic digestion of green waste (GW) and food waste (FW). A parameter estimation method was used to investigate the most important phenomena influencing the biogas production process. Experimental data were used to numerically estimate the model parameters and the quality of fit was quantified. Results obtained reveal that the model structure (i.e. number of reactions, inhibition) has a much stronger influence on the quality of fit compared with the choice of kinetic rate equations. In the case of GW there was only a marginal improvement when moving from a one to two reaction model, and none with inclusion of inhibition or three reactions. However, the behaviour of FW digestion was more complex and required either a two or three reaction model with inhibition functions for both ammonia and volatile fatty acids. Parameter values for the best fitting models are given for use by other authors. PMID:26961220

  13. Kinetics of lipogenic genes expression in milk purified mammary epithelial cells (MEC) across lactation and their correlation with milk and fat yield in buffalo.

    PubMed

    Yadav, Poonam; Kumar, Parveen; Mukesh, Manishi; Kataria, R S; Yadav, Anita; Mohanty, A K; Mishra, B P

    2015-04-01

    Expression patterns of lipogenic genes (LPL, ABCG2, ACSS2, ACACA, SCD, BDH, LIPIN1, SREBF1, PPARα and PPARγ) were studied in milk purified MEC across different stages of lactation (15, 30, 45, 60, 90, 120 and 240 days relative to parturition) in buffalo. PPARα was the most abundant gene while ABCG2 and ACSS2 had moderate level of expression; whereas expression of SREBF and PPARγ was very low. The expression patterns of some genes (BDH1, ACSS2, and LIPIN1) across lactation were positively correlated with milk yield while negatively correlated with fat yield. SCD also showed weak correlation with milk yield (p, 0.53) and fat yield (p, -0.47). On the other hand, expression pattern of ACACA was negatively correlated with milk yield (p, -0.88) and positively correlated with fat yield (p, 0.62). Strong correlation was observed between genes involved in de novo milk fat synthesis (BDH1, ACSS2, LIPIN2 and SCD) and milk yield. PMID:25660400

  14. Network topology and parameter estimation: from experimental design methods to gene regulatory network kinetics using a community based approach

    PubMed Central

    2014-01-01

    Background Accurate estimation of parameters of biochemical models is required to characterize the dynamics of molecular processes. This problem is intimately linked to identifying the most informative experiments for accomplishing such tasks. While significant progress has been made, effective experimental strategies for parameter identification and for distinguishing among alternative network topologies remain unclear. We approached these questions in an unbiased manner using a unique community-based approach in the context of the DREAM initiative (Dialogue for Reverse Engineering Assessment of Methods). We created an in silico test framework under which participants could probe a network with hidden parameters by requesting a range of experimental assays; results of these experiments were simulated according to a model of network dynamics only partially revealed to participants. Results We proposed two challenges; in the first, participants were given the topology and underlying biochemical structure of a 9-gene regulatory network and were asked to determine its parameter values. In the second challenge, participants were given an incomplete topology with 11 genes and asked to find three missing links in the model. In both challenges, a budget was provided to buy experimental data generated in silico with the model and mimicking the features of different common experimental techniques, such as microarrays and fluorescence microscopy. Data could be bought at any stage, allowing participants to implement an iterative loop of experiments and computation. Conclusions A total of 19 teams participated in this competition. The results suggest that the combination of state-of-the-art parameter estimation and a varied set of experimental methods using a few datasets, mostly fluorescence imaging data, can accurately determine parameters of biochemical models of gene regulation. However, the task is considerably more difficult if the gene network topology is not completely defined, as in challenge 2. Importantly, we found that aggregating independent parameter predictions and network topology across submissions creates a solution that can be better than the one from the best-performing submission. PMID:24507381

  15. Kinetics of the reactions of HBr with O3 and HO2: The yield of HBr from HO2 + BrO

    NASA Technical Reports Server (NTRS)

    Mellouki, Abdelwahid; Talukdar, Ranajit K.; Howard, Carleton J.

    1994-01-01

    An upper limit on the yield of HBr from reaction (R1) (HO2 + BrO yields products) has been determined by measuring an upper limit for the rate coefficient of the reverse reaction (R1') (HBr + O3 yields HO2 + BrO). The limits measured at 300 and 441 K were extrapolated to low temperatures to determine that the yield of HBr from reaction (R1) is negligible throughout the stratosphere (less than 0.01% of k(sub 1)). An upper limit for the rate coefficient of the reaction of HO2 with HBr was also determined to be very low less than or equal to 3 x 10(exp -17) cu cm/molecule/sec at 300 K and less than or equal to 3 x 10(exp -16) cu cm/molecule/sec at 400 K. The implications of these results to stratospheric chemistry are discussed.

  16. Errors in Sounding of the Atmosphere Using Broadband Emission Radiometry (SABER) Kinetic Temperature Caused by Non-Local Thermodynamic Equilibrium Model Parameters

    NASA Technical Reports Server (NTRS)

    Garcia-Comas, Maya; Lopez-Puertas, M.; Funke, B.; Bermejo-Pantaleon, D.; Marshall, Benjamin T.; Mertens, Christopher J.; Remsberg, Ellis E.; Mlynczak, Martin G.; Gordley, L. L.; Russell, James M.

    2008-01-01

    The vast set of near global and continuous atmospheric measurements made by the SABER instrument since 2002, including daytime and nighttime kinetic temperature (T(sub k)) from 20 to 105 km, is available to the scientific community. The temperature is retrieved from SABER measurements of the atmospheric 15 micron CO2 limb emission. This emission separates from local thermodynamic equilibrium (LTE) conditions in the rarefied mesosphere and thermosphere, making it necessary to consider the CO2 vibrational state non-LTE populations in the retrieval algorithm above 70 km. Those populations depend on kinetic parameters describing the rate at which energy exchange between atmospheric molecules take place, but some of these collisional rates are not well known. We consider current uncertainties in the rates of quenching of CO2 (v2 ) by N2 , O2 and O, and the CO2 (v2 ) vibrational-vibrational exchange to estimate their impact on SABER T(sub k) for different atmospheric conditions. The T(sub k) is more sensitive to the uncertainty in the latter two and their effects depend on altitude. The T(sub k) combined systematic error due to non-LTE kinetic parameters does not exceed +/- 1.5 K below 95 km and +/- 4-5 K at 100 km for most latitudes and seasons (except for polar summer) if the Tk profile does not have pronounced vertical structure. The error is +/- 3 K at 80 km, +/- 6 K at 84 km and +/- 18 K at 100 km under the less favourable polar summer conditions. For strong temperature inversion layers, the errors reach +/- 3 K at 82 km and +/- 8 K at 90 km. This particularly affects tide amplitude estimates, with errors of up to +/- 3 K.

  17. Applying thermodynamic and kinetic parameters to predict the physical stability of two differently prepared amorphous forms of simvastatin.

    PubMed

    Graeser, Kirsten A; Patterson, James E; Rades, Thomas

    2009-08-01

    Converting drugs from the crystalline to the amorphous state has gained increasing interest in the past decades as a potential method to overcome solubility issues of poorly water soluble drugs. A variety of techniques exist to convert the crystalline state of a drug to its amorphous form, including solution based, heat based and solid - solid conversion based methods. Inherent to the amorphous state, regardless of its preparation technique, is its physical instability and tendency to recrystallize. In this study, quench-cooled and cryo-milled simvastatin were compared with regards to their configurational thermodynamic parameters (entropy, enthalpy and Gibbs free energy) and mobility (relaxation times calculated using the Adam-Gibbs and Kohlrausch-Williams-Watts method). Stability studies showed quench-cooled simvastatin to be more stable than cryo-milled simvastatin. This was reflected in the calculated parameters although their absolute values did not agree with the stability behaviour. Relaxation time parameters of tau = 6.9 x 10(4) s for quench-cooled and tau = 1.7 x 10(4) s for cryo-milled simvastatin were calculated. The results from this study suggested that differences in the physical stability of amorphous forms prepared by different techniques are reflected in their mobility and thermodynamic parameters. Even though the predictive capabilities of these parameters for a set of different drugs may be limited, they can serve as a predictive tool for physical stability assessment if differently prepared amorphous forms of the same drug are investigated. PMID:19534709

  18. Extracting kinetic parameters for homogeneous [Os(bpy)2ClPyCOOH]+ mediated enzyme reactions from cyclic voltammetry and simulations

    PubMed Central

    Flexer, V.; Ielmini, M.V.; Calvo, E.J.; Bartlett, P.N.

    2008-01-01

    The homogeneous reaction between glucose oxidase and osmium bipyridine–pyridine carboxylic acid in the presence of glucose has been studied in detail by cyclic voltammetry and digital simulation. Combination of the analytical equations that describe the dependence of the amperometric response on enzyme, substrate and co-substrate concentrations for the limiting cases with digital simulation of the coupled enzyme reaction diffusion problem allows us to extract kinetic parameters for the substrate–enzyme reaction: KMS = 10.8 mM, kcat = 254 s− 1 and for the redox mediator–enzyme reaction, k = 2.2 × 105 M− 1 s− 1. The accurate determination of the kinetic parameters at low substrate concentrations (< 7 mM) is limited by depletion of the substrate close to the electrode surface. At high substrate concentrations (> 20 mM) inactivation of the reduced form of glucose oxidase in the bulk solution must be taken into account in the analysis of the results. PMID:18824418

  19. The effect of organic solvents on enzyme kinetic parameters of human CYP3A4 and CYP1A2 in vitro.

    PubMed

    Rokitta, Dennis; Pfeiffer, Kay; Streich, Christina; Gerwin, Henrik; Fuhr, Uwe

    2013-10-01

    Abstract Enzyme kinetic parameters provide essential quantitative information about characterization of individual steps in drug metabolism. Such enzymes are located in a (partially) aqueous environment. For in vitro measurements potential lipophilic substrates regularly require organic solvents to achieve concentrations sufficient for access of the drug to the binding site of the enzyme. However, solvents may interact with the enzymes. In this study, we investigated the effects of methanol, ethanol, acetonitrile and dimethyl sulfoxide (1% to 4%) on the assessment of km, Vmax and Clint for the metabolism of midazolam via CYP3A4 to 1-hydroxymidazolam and the metabolism of caffeine to paraxanthine via CYP1A2 using expressed enzymes in vitro. The presence of acetonitrile proved the highest apparent Vmax value for paraxanthine formation but the lowest values for 1-hydroxymidazolam formation. The km value for midazolam showed no systematic effects of organic solvents, while for caffeine km was up to 8-fold lower for solvent free samples compared to solvent containing samples. The present example suggests that effects of solvents may considerably influence enzyme kinetic parameters beyond a mere change in apparent activity. These effects illustrate a difference for individual enzyme--substrate pairs, solvents, and solvent concentrations. What remains is the determination to which extent these effects compromise in vitro-in vivo extrapolations, and which solvents are most appropriate. PMID:23682612

  20. Crystal Growth Simulations To Establish Physically Relevant Kinetic Parameters from the Empirical Kolmogorov-Johnson-Mehl-Avrami Model

    SciTech Connect

    Dill, Eric D.; Folmer, Jacob C.W.; Martin, James D.

    2013-12-05

    A series of simulations was performed to enable interpretation of the material and physical significance of the parameters defined in the Kolmogorov, Johnson and Mehl, and Avrami (KJMA) rate expression commonly used to describe phase boundary controlled reactions of condensed matter. The parameters k, n, and t0 are shown to be highly correlated, which if unaccounted for seriously challenge mechanistic interpretation. It is demonstrated that rate measurements exhibit an intrinsic uncertainty without precise knowledge of the location and orientation of nucleation with respect to the free volume into which it grows. More significantly, it is demonstrated that the KJMA rate constant k is highly dependent on sample size. However, under the simulated conditions of slow nucleation relative to crystal growth, sample volume and sample anisotropy correction affords a means to eliminate the experimental condition dependence of the KJMA rate constant, k, producing the material-specific parameter, the velocity of the phase boundary, vpb.

  1. Kinetic approach to the formation of 3D electromagnetic structures in flows of expanding plasma coronas. II. flow anisotropy parameters

    NASA Astrophysics Data System (ADS)

    Gubchenko, V. M.

    2015-12-01

    The formation of magnetic structures in moving hot solar coronal plasma and hot collisionless laser-produced plasma, as determined by nonlinear criteria for weak and strong magnetization on the basis of the friction parameter Γ B and Alfven number M A, is considered within the Vlasov and Maxwell equations in the second part of the work. The flow velocities are lower then the thermal electron velocity. The energy and pulse anisotropy parameters of a flow, which determine its electromagnetic properties in the Cherenkov resonance line, are calculated by shape of particle distribution function (PDF). The ratio of these parameters is the Q-factor G V ; it characterizes the electromagnetic properties of a plasma flow and is expressed via the ratio of diamagnetic and resistive current densities or via the ratio of irregular and diamagnetic plasma scales. A particle flow is similar to a conductive medium at G V ≪ 1 and a diamagnetic medium at G V ≫ 1. The following cases are considered. (1) A plasma flow is specified by an isotropic PDF and interacts with distributed magnetization. Expressions for anisotropy parameters are derived, 3D field structures in the tail wake are found, and a possibility of topological reconstruction into a compact state under variation in the parameter G V is shown. (2) A plasma flow is specified by an isotropic PDF; a steady-state diamagnetic current layer, characterized by an anisotropic PDF, is immersed inside it. The system is in the diamagnetic state G ≫ 1. The generalized anisotropy parameter is calculated and a possibility of the excitation of three types of diamagnetic structures with low resistive currents is shown. (3) The nonlinear dynamics of anisotropic quasi-current-free plasma ( G =-1), in which the diamagnetic and resistive current densities locally compensate each other in the phase space of particle velocities, is studied. This dynamics is implemented in the long wavelength limit in plasma with an anisotropic PDF.

  2. A protocol for the measurement of all the parameters of the mass transfer kinetics in columns used in liquid chromatography

    SciTech Connect

    Gritti, Fabrice; Guiochon, Georges A

    2010-01-01

    Band broadening in chromatography results from the combination of the dispersive effects that are associated with the different steps involved in the migration of compound bands along the column. These steps include longitudinal diffusion, trans-particle mass transfer, external film mass transfer, overall eddy diffusion, including trans-column, short-range inter-channel, trans-channel eddy diffusion, and the possible, additional mass transfer contributions arising from heat friction and the thermal heterogeneity of the column. We describe a series of experiments that provide the data needed to determine the coefficients of the contributions to band broadening of each one of these individual mass transfer steps. This specifically designed protocol can provide key information regarding the kinetic performance of columns used in liquid chromatography and explain why different columns behave so differently. The limitations, accuracy and precision of these methods are discussed. Further avenues of research that could improve the characterization of the mass transfer mechanisms in chromatographic columns, possibly contributing to the development of better columns, are suggested.

  3. Rationalization and prediction of in vivo metabolite exposures: The role of metabolite kinetics, clearance predictions and in vitro parameters

    PubMed Central

    Lutz, Justin D.; Fujioka, Yasushi; Isoherranen, Nina

    2010-01-01

    Importance of the field Due to growing concerns over toxic or active metabolites, significant efforts have been focused on qualitative identification of potential in vivo metabolites from in vitro data. However, limited tools are available to quantitatively predict their human exposures. Areas covered in this review Theory of clearance predictions and metabolite kinetics is reviewed together with supporting experimental data. In vitro and in vivo data of known circulating metabolites and their parent drugs was collected and the predictions of in vivo exposures of the metabolites were evaluated. What the reader will gain The theory and data reviewed will be useful in early identification of human metabolites that will circulate at significant levels in vivo and help in designing in vivo studies that focus on characterization of metabolites. It will also assist in rationalization of metabolite-to-parent ratios used as markers of specific enzyme activity. Take home message The relative importance of a metabolite in comparison to the parent compound as well as other metabolites in vivo can only be predicted using the metabolites in vitro formation and elimination clearances, and the in vivo disposition of a metabolite can only be rationalized when the elimination pathways of that metabolite are known. PMID:20557268

  4. Kinetic parameters and monomeric conversion of different dental composites using standard and soft-start photoactivation modes

    NASA Astrophysics Data System (ADS)

    Denis, A. B.; Viana, R. B.; Plepis, A. M. G.

    2012-06-01

    This paper evaluates the photopolymerization kinetics and degree of conversion of different commercial dental composites when photoactivated by a LED curing unit using two different modes (standard and soft-start mode). The investigation was performed on with RelyX ARC (dual-cured), Filtek Z-350 (Nanocomposite), Filtek Z-250 (Hybrid), and Filtek Z-350flow (Flowable) resin composites. The analysis used was attenuated total reflection with a Fourier transform infrared (ATR-FTIR). The RelyX ARC resin demonstrated the highest degree of conversion with both LED photoactivation modes. For this resin a 28% decrease in maximum rate was observed and the time to reach its highest rate was almost 2.3 times higher than when the soft-start photoactivation light curing was used. Z-350flow resin recorder a higher maximum rate using the soft-start mode rather than the standard mode. In contrast, the Z-250 showed a higher value using the standard mode. Although Z-250 and Z-350 showed a higher total degree of conversion effectiveness using the soft-start mode, RelyX and Z-350flow achieved a higher value using the standard mode.

  5. Chemical modification and pH dependence of kinetic parameters to identify functional groups in a glucosyltransferase from Strep. Mutans

    SciTech Connect

    Bell, J.E.; Leone, A.; Bell, E.T.

    1986-05-01

    A glucosyltransferase, forming a predominantly al-6 linked glucan, was partially purified from the culture filtrate of S. mutans GS-5. The kinetic properties of the enzyme, assessed using the transfer of /sup 14/C glucose from sucrose into total glucan, were studied at pH values from pH 3.5 to 6.5. From the dependence of km on pH, a group with pKa = 5.5 must be protonated to maximize substrate binding. From plots of V/sub max/ vs pH two groups, with pKa's of 4.5 and 5.5 were indicated. The results suggest the involvement of either two carboxyl groups (one protonated, one unprotonated in the native enzyme) or a carboxyl group (unprotonated) and some other protonated group such as histidine, cysteine. Chemical modification studies showed that Diethylyrocarbonate (histidine specific) had no effect on enzyme activity while modification with p-phydroxy-mercuribenzoate or iodoacetic acid (sulfhydryl reactive) and carbodimide reagents (carboxyl specific) resulted in almost complete inactivation. Activity loss was dependent upon time of incubation and reagent concentration. The disaccharide lylose, (shown to be an inhibitor of the enzyme with similar affinity to sucrose) offers no protection against modification by the sulfhydryl reactive reagents.

  6. Do organic solvents affect the catalytic properties of lipase? Intrinsic kinetic parameters of lipases in ester hydrolysis and formation in various organic solvents

    SciTech Connect

    Tol, J.B.A. van; Stevens, R.M.M.; Veldhuizen, W.J.; Jongejan, J.A.; Duine, J.A.

    1995-07-05

    When it is assumed that organic solvents do not interfere with the binding process nor with the catalytic mechanism, the contribution of substrate-solvent interactions to enzyme kinetics can be accounted for by just replacing substrate concentrations in the equations by thermodynamic activities. It appears from the transformation that only the affinity parameters (K{sub m},k{sub sp}) are affected by this. Thus, in theory, the values of these corrected, intrinsic parameters (K{sub m}{sup int}, k{sub sp}{sup int}) and the maximal rate (V{sub 1}) should be equal for all media. This was tested for hydrolysis, transesterification, and esterification reactions catalyzed by pig pancreas lipase and Pseudomonas cepacia lipase in various organic solvents. Correction was carried out via experimentally determined activity coefficients for the substrates in these solvents or, if not feasible, from values in data bases. However, although the kinetic performances of each enzyme in the solvents became much more similar after correction, differences still remained. Analysis of the enzyme suspensions revealed massive particles, which explains the low activity of enzymes in organic solvents. However, no correlation was found between estimates of the amount of catalytically available enzyme (present at the surface of suspended particles or immobilized on beads) and the maximal rates observed. Moreover, the solvents had similar effects on the intrinsic parameters of suspended and immobilized enzyme. The possible causes for the effects of the solvents on the catalytic performance of the enzymes, remaining after correction for solvent-substrate interactions and the amount of participating enzyme, are discussed with respect to the premises on which the correction method is based.

  7. Regulators of Calcium Homeostasis Identified by Inference of Kinetic Model Parameters from Live Single Cells Perturbed by siRNA

    PubMed Central

    Bandara, Samuel; Malmersjö, Seth; Meyer, Tobias

    2013-01-01

    Assigning molecular functions and revealing dynamic connections between large numbers of partially characterized proteins in regulatory networks are challenges in systems biology. We showed that functions of signaling proteins can be discovered with a differential equations model of the underlying signaling process to extract specific molecular parameter values from single-cell, time-course measurements. By analyzing the effects of 250 small interfering RNAs on Ca2+ signals in single cells over time, we identified parameters that were specifically altered in the Ca2+ regulatory system. Analysis of the screen confirmed known functions of the Ca2+ sensors STIM1 (stromal interaction molecule 1) and calmodulin and of Ca2+ channels and pumps localized in the endoplasmic reticulum (ER) or plasma membrane. Furthermore, we showed that the Alzheimer’s disease–linked protein presenilin-2 and the channel protein ORAI2 prevented overload of ER Ca2+ and that feedback from Ca2+ to phosphatidylinositol 4-kinase and PLCδ (phospholipase Cδ) may regulate the abundance of the plasma membrane lipid PI(4,5)P2 (phosphatidylinositol 4,5-bisphosphate) to control Ca2+ extrusion. Thus, functions of signaling proteins and dynamic regulatory connections can be identified by extracting molecular parameter values from single-cell, time-course data. PMID:23838183

  8. Quality changes of pasteurised orange juice during storage: A kinetic study of specific parameters and their relation to colour instability.

    PubMed

    Wibowo, Scheling; Grauwet, Tara; Santiago, Jihan Santanina; Tomic, Jovana; Vervoort, Liesbeth; Hendrickx, Marc; Van Loey, Ann

    2015-11-15

    In view of understanding colour instability of pasteurised orange juice during storage, to the best of our knowledge, this study reports for the first time in a systematic and quantitative way on a range of changes in specific quality parameters as a function of time and as well as temperature (20-42 °C). A zero-order (°Brix, fructose, glucose), a first-order (vitamin C), a second-order (sucrose) and a fractional conversion model (oxygen) were selected to model the evolution of the parameters between parentheses. Activation energies ranged from 22 to 136 kJ mol(-1), HMF formation being the most temperature sensitive. High correlations were found between sugars, ascorbic acid, their degradation products (furfural and HMF) and total colour difference (ΔE(∗)). Based on PLS regression, the importance of the quality parameters for colour degradation was ranked relatively among each other: the acid-catalysed degradation of sugars and ascorbic acid degradation reactions appeared to be important for browning development in pasteurised orange juice during ambient storage. PMID:25977009

  9. Photocatalytic parameters and kinetic study for degradation of dichlorophenol-indophenol (DCPIP) dye using highly active mesoporous TiO2 nanoparticles.

    PubMed

    Hamad, H A; Sadik, W A; Abd El-Latif, M M; Kashyout, A B; Feteha, M Y

    2016-05-01

    Highly active mesoporous TiO2 of about 6nm crystal size and 280.7m(2)/g specific surface areas has been successfully synthesized via controlled hydrolysis of titanium butoxide at acidic medium. It was characterized by means of XRD (X-ray diffraction), SEM (scanning electron microscopy), TEM (transmission electron microscopy), FT-IR (Fourier transform infrared spectroscopy), TGA (thermogravimetric analysis), DSC (differential scanning calorimetry) and BET (Brunauer-Emmett-Teller) surface area. The degradation of dichlorophenol-indophenol (DCPIP) under ultraviolet (UV) light was studied to evaluate the photocatalytic activity of samples. The effects of different parameters and kinetics were investigated. Accordingly, a complete degradation of DCPIP dye was achieved by applying the optimal operational conditions of 1g/L of catalyst, 10mg/L of DCPIP, pH of 3 and the temperature at 25±3°C after 3min under UV irradiation. Meanwhile, the Langmuir-Hinshelwood kinetic model described the variations in pure photocatalytic branch in consistent with a first order power law model. The results proved that the prepared TiO2 nanoparticle has a photocatalytic activity significantly better than Degussa P-25. PMID:27155406

  10. Structural characterization, thermoluminescence studies and kinetic parameters of SrSO4:Eu nanophosphors under X-ray and gamma excitations.

    PubMed

    Jayasudha, S; Madhukumar, K; Nair, C M K; Nair, Resmi G; Anandakumar, V M; Elias, Thayal Singh

    2016-02-15

    Nanostructured SrSO4:Eu phosphors with high thermoluminescence (TL) emission temperatures have been synthesized through a controlled chemical precipitation method. Structural analysis and TL studies under both γ-ray and X-ray excitations were done. The phosphors were characterized using Powder X-ray diffraction, X-ray photoelectron spectroscopy, SEM, TEM, thermogravimetry, UV-VIS and photoluminescence studies. The average crystallite size estimated using PXRD data is found to be around 40nm. XPS and PL studies reveal that Eu(2+) ions are the luminescence emission centres in the phosphor. The phosphor is found to be highly TL sensitive to both γ-rays and X-rays with very high emission temperature which is not reported so far. The emission behaviour is suitable for environmental radiation dosimetry applications. The TL glow curve shows well-defined isolated high temperature emission peak at 312°C under 2Gy γ-excitation and 284°C for low energy diagnostic X-ray irradiation and 271°C for high energy therapeutic X-rays. Chen's peak shape method is applied to obtain the kinetic parameters behind the TL emission. The TL mechanism is found to follow second order kinetics, suggesting the probability of re-trapping of charge carriers. PMID:26562181

  11. Structural characterization, thermoluminescence studies and kinetic parameters of SrSO4:Eu nanophosphors under X-ray and gamma excitations

    NASA Astrophysics Data System (ADS)

    Jayasudha, S.; Madhukumar, K.; Nair, C. M. K.; Nair, Resmi G.; Anandakumar, V. M.; Elias, Thayal Singh

    2016-02-01

    Nanostructured SrSO4:Eu phosphors with high thermoluminescence (TL) emission temperatures have been synthesized through a controlled chemical precipitation method. Structural analysis and TL studies under both γ-ray and X-ray excitations were done. The phosphors were characterized using Powder X-ray diffraction, X-ray photoelectron spectroscopy, SEM, TEM, thermogravimetry, UV-VIS and photoluminescence studies. The average crystallite size estimated using PXRD data is found to be around 40 nm. XPS and PL studies reveal that Eu2 + ions are the luminescence emission centres in the phosphor. The phosphor is found to be highly TL sensitive to both γ-rays and X-rays with very high emission temperature which is not reported so far. The emission behaviour is suitable for environmental radiation dosimetry applications. The TL glow curve shows well-defined isolated high temperature emission peak at 312 °C under 2 Gy γ-excitation and 284 °C for low energy diagnostic X-ray irradiation and 271 °C for high energy therapeutic X-rays. Chen's peak shape method is applied to obtain the kinetic parameters behind the TL emission. The TL mechanism is found to follow second order kinetics, suggesting the probability of re-trapping of charge carriers.

  12. Kinetic and Energetic Parameters of Carob Wastes Fermentation by Saccharomyces cerevisiae: Crabtree Effect, Ethanol Toxicity, and Invertase Repression.

    PubMed

    Rodrigues, B; Peinado, J M; Raposo, S; Constantino, A; Quintas, C; Lima-Costa, M E

    2015-06-01

    Carob waste is a useful raw material for the second-generation ethanol because 50% of its dry weight is sucrose, glucose, and fructose. To optimize the process, we have studied the influence of the initial concentration of sugars on the fermentation performance of Saccharomyces cerevisiae. With initial sugar concentrations (S0) of 20 g/l, the yeasts were derepressed and the ethanol produced during the exponential phase was consumed in a diauxic phase. The rate of ethanol consumption decreased with increasing S0 and disappeared at 250 g/l when the Crabtree effect was complete and almost all the sugar consumed was transformed into ethanol with a yield factor of 0.42 g/g. Sucrose hydrolysis was delayed at high S0 because of glucose repression of invertase synthesis, which was triggered at concentrations above 40 g/l. At S0 higher than 250 g/l, even when glucose had been exhausted, sucrose was hydrolyzed very slowly, probably due to an inhibition at this low water activity. Although with lower metabolic rates and longer times of fermentation, 250 g/l is considered the optimal initial concentration because it avoids the diauxic consumption of ethanol and maintains enough invertase activity to consume all the sucrose, and also avoids the inhibitions due to lower water activities at higher S0. PMID:25588557

  13. Sonochemical degradation of ethyl paraben in environmental samples: Statistically important parameters determining kinetics, by-products and pathways.

    PubMed

    Papadopoulos, Costas; Frontistis, Zacharias; Antonopoulou, Maria; Venieri, Danae; Konstantinou, Ioannis; Mantzavinos, Dionissios

    2016-07-01

    The sonochemical degradation of ethyl paraben (EP), a representative of the parabens family, was investigated. Experiments were conducted at constant ultrasound frequency of 20kHz and liquid bulk temperature of 30°C in the following range of experimental conditions: EP concentration 250-1250μg/L, ultrasound (US) density 20-60W/L, reaction time up to 120min, initial pH 3-8 and sodium persulfate 0-100mg/L, either in ultrapure water or secondary treated wastewater. A factorial design methodology was adopted to elucidate the statistically important effects and their interactions and a full empirical model comprising seventeen terms was originally developed. Omitting several terms of lower significance, a reduced model that can reliably simulate the process was finally proposed; this includes EP concentration, reaction time, power density and initial pH, as well as the interactions (EP concentration)×(US density), (EP concentration)×(pHo) and (EP concentration)×(time). Experiments at an increased EP concentration of 3.5mg/L were also performed to identify degradation by-products. LC-TOF-MS analysis revealed that EP sonochemical degradation occurs through dealkylation of the ethyl chain to form methyl paraben, while successive hydroxylation of the aromatic ring yields 4-hydroxybenzoic, 2,4-dihydroxybenzoic and 3,4-dihydroxybenzoic acids. By-products are less toxic to bacterium V. fischeri than the parent compound. PMID:26964924

  14. Isotherm Modelling, Kinetic Study and Optimization of Batch Parameters Using Response Surface Methodology for Effective Removal of Cr(VI) Using Fungal Biomass

    PubMed Central

    Chidambaram, Ramalingam

    2015-01-01

    Biosorption is a promising alternative method to replace the existing conventional technique for Cr(VI) removal from the industrial effluent. In the present experimental design, the removal of Cr(VI) from the aqueous solution was studied by Aspergillus niger MSR4 under different environmental conditions in the batch systems. The optimum conditions of biosorption were determined by investigating pH (2.0) and temperature (27°C). The effects of parameters such as biomass dosage (g/L), initial Cr(VI) concentration (mg/L) and contact time (min) on Cr(VI) biosorption were analyzed using a three parameter Box–Behnken design (BBD). The experimental data well fitted to the Langmuir isotherm, in comparison to the other isotherm models tested. The results of the D-R isotherm model suggested that a chemical ion-exchange mechanism was involved in the biosorption process. The biosorption process followed the pseudo-second-order kinetic model, which indicates that the rate limiting step is chemisorption process. Fourier transform infrared (FT-IR) spectroscopic studies revealed the possible involvement of functional groups, such as hydroxyl, carboxyl, amino and carbonyl group in the biosorption process. The thermodynamic parameters for Cr(VI) biosorption were also calculated, and the negative ∆Gº values indicated the spontaneous nature of biosorption process. PMID:25786227

  15. Heterogeneity of the coumarin anticoagulant targeted vitamin K epoxide reduction system. Study of kinetic parameters in susceptible and resistant mice (Mus musculus domesticus).

    PubMed

    Lasseur, Romain; Grandemange, Agnès; Longin-Sauvageon, Christiane; Berny, Philippe; Benoit, Etienne

    2006-01-01

    Vitamin K epoxide reductase (VKOR) activity in liver microsomes from a susceptible and a genetically warfarin-resistant strain of mice (Mus Musculus domesticus) was analyzed to determine the mechanism of resistance to this 4-hydroxycoumarin derivative. Kinetic parameters for VKOR were calculated for each strain by incubating liver microsomes with vitamin K epoxide +/- warfarin. In susceptible mice, an Eadie-Hofstee plot of the data was not linear and suggested the involvement of at least two different components. Apparent kinetic parameters were obtained by nonlinear regression using a Michaelis--Menten model, which takes into account two enzymatic components. Component A presents a high Km and a high Vm, and as a consequence only an enzymatic efficiency Vm/Km was obtained (0.0024 mL/min/mg). Estimated warfarin Ki was 0.17 microM. Component B presented an apparent Km of 12.73 microM, an apparent Vm of 0.32 nmol/min/mg, and an apparent Ki for warfarin of 6.0 microM. In resistant mice, the enzymatic efficiency corresponding to component A was highly decreased (0.0003-0.00066 mL/min/mg) while the Ki for warfarin was not modified. The apparent Vm of component B was poorly modified between susceptible and resistant mice. The apparent Km of component B observed in resistant mice was similar to the Km observed in susceptible mice. These modifications of the catalytic properties are associated with a single nucleotide polymorphism (T175G) in the VKOR-C1 gene, which corresponds to a Trp59Gly mutation in the protein. PMID:17009238

  16. Steam explosion pretreatment of wheat straw to improve methane yields: investigation of the degradation kinetics of structural compounds during anaerobic digestion.

    PubMed

    Theuretzbacher, Franz; Lizasoain, Javier; Lefever, Christopher; Saylor, Molly K; Enguidanos, Ramon; Weran, Nikolaus; Gronauer, Andreas; Bauer, Alexander

    2015-03-01

    Wheat straw can serve as a low-cost substrate for energy production without competing with food or feed production. This study investigated the effect of steam explosion pretreatment on the biological methane potential and the degradation kinetics of wheat straw during anaerobic digestion. It was observed that the biological methane potential of the non steam exploded, ground wheat straw (276 l(N) kg VS(-1)) did not significantly differ from the best steam explosion treated sample (286 l(N) kg VS(-1)) which was achieved at a pretreatment temperature of 140°C and a retention time of 60 min. Nevertheless degradation speed was improved by the pretreatment. Furthermore it was observed that compounds resulting from chemical reactions during the pretreatment and classified as pseudo-lignin were also degraded during the anaerobic batch experiments. Based on the rumen simulation technique, a model was developed to characterise the degradation process. PMID:25549903

  17. Prospects for Simultaneous Improvement of Corn Grain Yield and Stover Quality for Cellulosic Ethanol: Quantitative Genetic Parameters, Genetic Value Predictions, and QTL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn (Zea mays L.) has been bred for increased grain yield but not for stover quality for cellulosic ethanol production. Our objectives were to: (1) identify potential barriers, at the quantitative trait and molecular marker level, for simultaneous improvement of grain yield and stover quality; (2) ...

  18. Estimation of Genetic Parameters for First Lactation Monthly Test-day Milk Yields using Random Regression Test Day Model in Karan Fries Cattle.

    PubMed

    Singh, Ajay; Singh, Avtar; Singh, Manvendra; Prakash, Ved; Ambhore, G S; Sahoo, S K; Dash, Soumya

    2016-06-01

    A single trait linear mixed random regression test-day model was applied for the first time for analyzing the first lactation monthly test-day milk yield records in Karan Fries cattle. The test-day milk yield data was modeled using a random regression model (RRM) considering different order of Legendre polynomial for the additive genetic effect (4th order) and the permanent environmental effect (5th order). Data pertaining to 1,583 lactation records spread over a period of 30 years were recorded and analyzed in the study. The variance component, heritability and genetic correlations among test-day milk yields were estimated using RRM. RRM heritability estimates of test-day milk yield varied from 0.11 to 0.22 in different test-day records. The estimates of genetic correlations between different test-day milk yields ranged 0.01 (test-day 1 [TD-1] and TD-11) to 0.99 (TD-4 and TD-5). The magnitudes of genetic correlations between test-day milk yields decreased as the interval between test-days increased and adjacent test-day had higher correlations. Additive genetic and permanent environment variances were higher for test-day milk yields at both ends of lactation. The residual variance was observed to be lower than the permanent environment variance for all the test-day milk yields. PMID:26954137

  19. Modeling of the shape of polyethylene oxide single crystals and determination of the kinetic crystallization parameters: Theoretical and experimental approaches

    NASA Astrophysics Data System (ADS)

    Shcherbina, M. A.; Chvalun, S. N.; Ungar, G.

    2012-11-01

    The curvature of faces of polymer single crystals is described by the system of Mansfield equations, which is based on the Frank-Seto growth model. This model assumes the velocity of nucleus steps to be the same for their propagation to the right and left and is valid only for symmetric crystallographic planes. To describe the shape of polyethylene oxide single crystals grown from melt and limited by the {100} and {120} folding planes, it is assumed that the layer velocities to the right and left are different on {120} faces. This approach allows modeling, with a high accuracy, of the observed shapes of polymer single crystals grown at different temperatures, which makes it possible to determine unambiguously the fundamental crystallization parameters: the dimensionless ratio of the secondary homogeneous nucleation rate to the average velocities of nuclei along the crystallization planes and the ratio of nucleus velocities to the right and left. In addition, it was found that a known macroscopic single-crystal growth rate can be used to determine the absolute values of the secondary homogeneous nucleation rate and the velocities of nuclei along the growth plane.

  20. Inverse method to estimate kinetic degradation parameters of grape anthocyanins in wheat flour under simultaneously changing temperature and moisture.

    PubMed

    Lai, K P K; Dolan, K D; Ng, P K W

    2009-06-01

    Thermal and moisture effects on grape anthocyanin degradation were investigated using solid media to simulate processing at temperatures above 100 degrees C. Grape pomace (anthocyanin source) mixed with wheat pastry flour (1: 3, w/w dry basis) was used in both isothermal and nonisothermal experiments by heating the same mixture at 43% (db) initial moisture in steel cells in an oil bath at 80, 105, and 145 degrees C. To determine the effect of moisture on anthocyanin degradation, the grape pomace-wheat flour mixture was heated isothermally at 80 degrees C at constant moisture contents of 10%, 20%, and 43% (db). Anthocyanin degradation followed a pseudo first-order reaction with moisture. Anthocyanins degraded more rapidly with increasing temperature and moisture. The effects of temperature and moisture on the rate constant were modeled according to the Arrhenius and an exponential relationship, respectively. The nonisothermal reaction rate constant and activation energy (mean +/- standard error) were k(80 degrees C, 43% (db) moisture) = 2.81 x 10(-4)+/- 1.1 x 10(-6) s(-1) and DeltaE = 75273 +/- 197 J/g mol, respectively. The moisture parameter for the exponential model was 4.28 (dry basis moisture content)(-1). One possible application of this study is as a tool to predict the loss of anthocyanins in nutraceutical products containing grape pomace. For example, if the process temperature history and moisture history in an extruded snack fortified with grape pomace is known, the percentage anthocyanin loss can be predicted. PMID:19646039

  1. Isotopic discrimination and kinetic parameters of RubisCO from the marine bloom-forming diatom, Skeletonema costatum.

    PubMed

    Boller, A J; Thomas, P J; Cavanaugh, C M; Scott, K M

    2015-01-01

    The cosmopolitan, bloom-forming diatom, Skeletonema costatum, is a prominent primary producer in coastal oceans, fixing CO2 with ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) that is phylogenetically distinct from terrestrial plant RubisCO. RubisCOs are subdivided into groups based on sequence similarity of their large subunits (IA-ID, II, and III). ID is present in several major oceanic primary producers, including diatoms such as S. costatum, coccolithophores, and some dinoflagellates, and differs substantially in amino acid sequence from the well-studied IB enzymes present in most cyanobacteria and in green algae and plants. Despite this sequence divergence, and differences in isotopic discrimination apparent in other RubisCO enzymes, stable carbon isotope compositions of diatoms and other marine phytoplankton are generally interpreted assuming enzymatic isotopic discrimination similar to spinach RubisCO (IB). To interpret phytoplankton δ(13) C values, S. costatum RubisCO was characterized via sequence analysis, and measurement of its KCO2 and Vmax , and degree of isotopic discrimination. The sequence of this enzyme placed it among other diatom ID RubisCOs. Michaelis-Menten parameters were similar to other ID enzymes (KCO2 = 48.9 ± 2.8 μm; Vmax = 165.1 ± 6.3 nmol min(-1 ) mg(-1) ). However, isotopic discrimination (ε = [(12) k/(13) k - 1] × 1000) was low (18.5‰; 17.0-19.9, 95% CI) when compared to IA and IB RubisCOs (22-29‰), though not as low as ID from coccolithophore, Emiliania huxleyi (11.1‰). Variability in ε-values among RubisCOs from primary producers is likely reflected in δ(13) C values of oceanic biomass. Currently, δ(13) C variability is ascribed to physical or chemical factors (e.g. illumination, nutrient availability) and physiological responses to these factors (e.g. carbon-concentrating mechanisms). Estimating the importance of these factors from δ(13) C measurements requires an accurate ε-value, and a mass-balance model using the ε-value for S. costatum RubisCO is presented. Clearly, appropriate ε-values must be included in interpreting δ(13) C values of environmental samples. PMID:25302659

  2. Analysis of the kinetics and yields of OH radical production from the CH3OCH2 + O2 reaction in the temperature range 195-650 K: an experimental and computational study.

    PubMed

    Eskola, A J; Carr, S A; Shannon, R J; Wang, B; Blitz, M A; Pilling, M J; Seakins, P W; Robertson, S H

    2014-08-28

    The methoxymethyl radical, CH3OCH2, is an important intermediate in the low temperature combustion of dimethyl ether. The kinetics and yields of OH from the reaction of the methoxymethyl radical with O2 have been measured over the temperature and pressure ranges of 195-650 K and 5-500 Torr by detecting the hydroxyl radical using laser-induced fluorescence following the excimer laser photolysis (248 nm) of CH3OCH2Br. The reaction proceeds via the formation of an energized CH3OCH2O2 adduct, which either dissociates to OH + 2 H2CO or is collisionally stabilized by the buffer gas. At temperatures above 550 K, a secondary source of OH was observed consistent with thermal decomposition of stabilized CH3OCH2O2 radicals. In order to quantify OH production from the CH3OCH2 + O2 reaction, extensive relative and absolute OH yield measurements were performed over the same (T, P) conditions as the kinetic experiments. The reaction was studied at sufficiently low radical concentrations (?10(11) cm(-3)) that secondary (radical + radical) reactions were unimportant and the rate coefficients could be extracted from simple bi- or triexponential analysis. Ab initio (CBS-GB3)/master equation calculations (using the program MESMER) of the CH3OCH2 + O2 system were also performed to better understand this combustion-related reaction as well as be able to extrapolate experimental results to higher temperatures and pressures. To obtain agreement with experimental results (both kinetics and yield data), energies of the key transition states were substantially reduced (by 20-40 kJ mol(-1)) from their ab initio values and the effect of hindered rotations in the CH3OCH2 and CH3OCH2OO intermediates were taken into account. The optimized master equation model was used to generate a set of pressure and temperature dependent rate coefficients for the component nine phenomenological reactions that describe the CH3OCH2 + O2 system, including four well-skipping reactions. The rate coefficients were fitted to Chebyshev polynomials over the temperature and density ranges 200 to 1000 K and 1 10(17) to 1 10(23) molecules cm(-3) respectively for both N2 and He bath gases. Comparisons with an existing autoignition mechanism show that the well-skipping reactions are important at a pressure of 1 bar but are not significant at 10 bar. The main differences derive from the calculated rate coefficient for the CH3OCH2OO ? CH2OCH2OOH reaction, which leads to a faster rate of formation of O2CH2OCH2OOH. PMID:25069059

  3. Pressure and temperature dependence kinetics study of the NO + BrO yielding NO2 + Br reaction - Implications for stratospheric bromine photochemistry

    NASA Technical Reports Server (NTRS)

    Watson, R. T.; Sander, S. P.; Yung, Y. L.

    1979-01-01

    The reactivity of NO with BrO radicals over a wide range of pressure (100-700 torr) and temperature (224-398 K) is investigated using the flash photolysis-ultraviolet absorption technique. The flash photolysis system consists of a high-pressure xenon arc light source, a reaction cell/gas filter/flash lamp combination, and a 216.5 half-meter monochromator/polychromator/spectrography for wavelength selectivity. The details of the reaction and its corresponding Arrhenius expression are identified. The results are compared with previous measurements, and atmospheric implications of the reaction are discussed. The NO + BrO yielding NO2 + Br reaction is shown to be important in controlling the concentration ratios of BrO/Br and BrO/HBr in the stratosphere, but this reaction does not affect the catalytic efficiency of BrOx in ozone destruction.

  4. High-temperature photochemistry kinetics study of the reaction H + NO2 yields OH + NO from 296 to 760 k. (Reannouncement with new availability information)

    SciTech Connect

    Ko, T.; Fontijn, A.

    1991-12-31

    Rate coefficients for the H + NO2 yields OH + NO reaction have been measured by using the high-temperature photochemistry (HTP) technique. H atoms are generated by flash photolysis of CH4, and their relative concentration is monitored by time-resolved resonance-fluorescence detection. The data are well-fitted by the empirical expression k(T) = 2.2 X 10-10 exp(-182 K/T) cm3/molecule for the 296-760 K temperature range. The precision of the data is 7%, and the accuracy is estimated to be 21%, where both figures represent statistical confidence intervals. Comparison of the ratio of the experimental reaction cross sections, at the temperature extremes, to the theoretical ratio supports a zero energy barrier. The potential stabilization channel leading to HONO is discussed.

  5. Time profiles and toxicokinetic parameters of key biomarkers of exposure to cypermethrin in orally exposed volunteers compared with previously available kinetic data following permethrin exposure.

    PubMed

    Ratelle, Mylène; Coté, Jonathan; Bouchard, Michèle

    2015-12-01

    Biomonitoring of pyrethroid exposure is largely conducted but human toxicokinetics has not been fully documented. This is essential for a proper interpretation of biomonitoring data. Time profiles and toxicokinetic parameters of key biomarkers of exposure to cypermethrin in orally exposed volunteers have been documented and compared with previously available kinetic data following permethrin dosing. Six volunteers ingested 0.1 mg kg(-1) bodyweight of cypermethrin acutely. The same volunteers were exposed to permethrin earlier. Blood samples were taken over 72 h after treatment and complete timed urine voids were collected over 84 h postdosing. Cis- and trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-1-carboxylic acids (trans- and cis-DCCA) and 3-phenoxybenzoic acid (3-PBA) metabolites, common to both cypermethrin and permethrin, were quantified. Blood and urinary time courses of all three metabolites were similar following cypermethrin and permethrin exposure. Plasma levels of metabolites reached peak values on average ≈ 5-7 h post-dosing; the elimination phase showed mean apparent half-lives (t½ ) for trans-DCCA, cis-DCCA and 3-PBA of 5.1, 6.9 and 9.2 h, respectively, following cypermethrin treatment as compared to 7.1, 6.2 and 6.5 h after permethrin dosing. Corresponding mean values obtained from urinary rate time courses were peak values at ≈ 9 h post-dosing and apparent elimination t½ of 6.3, 6.4 and 6.4 h for trans-DCCA, cis-DCCA and 3-PBA, respectively, following cypermethrin treatment as compared to 5.4, 4.5 and 5.7 h after permethrin dosing. These data confirm that the kinetics of cypermethrin is similar to that of permethrin in humans and that their common biomarkers of exposure may be used for an overall assessment of exposure. PMID:25772368

  6. Fundamental electrode kinetics

    NASA Technical Reports Server (NTRS)

    Elder, J. P.

    1968-01-01

    Report presents the fundamentals of electrode kinetics and the methods used in evaluating the characteristic parameters of rapid-charge transfer processes at electrode-electrolyte interfaces. The concept of electrode kinetics is outlined, followed by the principles underlying the experimental techniques for the investigation of electrode kinetics.

  7. "a" interfacial parameter in Nicolais-Narkis model for yield strength of polymer particulate nanocomposites as a function of material and interphase properties.

    PubMed

    Zare, Yasser

    2016-05-15

    In this paper, "a" interfacial parameter in Nicolais-Narkis model is expressed by thickness "ri" and strength "σi" of interphase between polymer and nanoparticles as well as material properties. "a" parameter is connected to "B1" interfacial parameter in modified Pukanszky model and the effects of "ri" and "σi" on "a" are explained. The negligible difference between "a" values calculated by fitting the experimental results to Nicolais-Narkis model and also, by "B1" results confirms the accurateness of the suggested relation between "a" and "B1" parameters. Additionally, an inverse relation is found between "a" and "B1" parameters for nanocomposites containing spherical nanoparticles. The results demonstrate that the slight levels of "ri" and "σi" data give a large value of "a" which indicates the poor interfacial adhesion. PMID:26955000

  8. Kinetic model framework for aerosol and cloud surface chemistry and gas-particle interactions - Part 1: General equations, parameters, and terminology

    NASA Astrophysics Data System (ADS)

    Pschl, U.; Rudich, Y.; Ammann, M.

    2007-12-01

    Aerosols and clouds play central roles in atmospheric chemistry and physics, climate, air pollution, and public health. The mechanistic understanding and predictability of aerosol and cloud properties, interactions, transformations, and effects are, however, still very limited. This is due not only to the limited availability of measurement data, but also to the limited applicability and compatibility of model formalisms used for the analysis, interpretation, and description of heterogeneous and multiphase processes. To support the investigation and elucidation of atmospheric aerosol and cloud surface chemistry and gas-particle interactions, we present a comprehensive kinetic model framework with consistent and unambiguous terminology and universally applicable rate equations and parameters. It enables a detailed description of mass transport and chemical reactions at the gas-particle interface, and it allows linking aerosol and cloud surface processes with gas phase and particle bulk processes in systems with multiple chemical components and competing physicochemical processes. The key elements and essential aspects of the presented framework are: a simple and descriptive double-layer surface model (sorption layer and quasi-static layer); straightforward flux-based mass balance and rate equations; clear separation of mass transport and chemical reactions; well-defined and consistent rate parameters (uptake and accommodation coefficients, reaction and transport rate coefficients); clear distinction between gas phase, gas-surface, and surface-bulk transport (gas phase diffusion, surface and bulk accommodation); clear distinction between gas-surface, surface layer, and surface-bulk reactions (Langmuir-Hinshelwood and Eley-Rideal mechanisms); mechanistic description of concentration and time dependences (transient and steady-state conditions); flexible addition of unlimited numbers of chemical species and physicochemical processes; optional aggregation or resolution of intermediate species, sequential processes, and surface layers; and full compatibility with traditional resistor model formulations. The outlined double-layer surface concept and formalisms represent a minimum of model complexity required for a consistent description of the non-linear concentration and time dependences observed in experimental studies of atmospheric multiphase processes (competitive co-adsorption and surface saturation effects, etc.). Exemplary practical applications and model calculations illustrating the relevance of the above aspects are presented in a companion paper (Ammann and Pschl, 2007). We expect that the presented model framework will serve as a useful tool and basis for experimental and theoretical studies investigating and describing atmospheric aerosol and cloud surface chemistry and gas-particle interactions. It shall help to end the "Babylonian confusion" that seems to inhibit scientific progress in the understanding of heterogeneous chemical reactions and other multiphase processes in aerosols and clouds. In particular, it shall support the planning and design of laboratory experiments for the elucidation and determination of fundamental kinetic parameters; the establishment, evaluation, and quality assurance of comprehensive and self-consistent collections of rate parameters; and the development of detailed master mechanisms for process models and derivation of simplified but yet realistic parameterizations for atmospheric and climate models.

  9. Evaluation of the Parameters and Conditions of Process in the Ethylbenzene Dehydrogenation with Application of Permselective Membranes to Enhance Styrene Yield.

    PubMed

    Araújo, Paulo Jardel P; Leite, Manuela Souza; Kakuta Ravagnani, Teresa M

    2016-01-01

    Styrene is an important monomer in the manufacture of thermoplastic. Most of it is produced by the catalytic dehydrogenation of ethylbenzene. In this process that depends on reversible reactions, the yield is usually limited by the establishment of thermodynamic equilibrium in the reactor. The styrene yield can be increased by using a hybrid process, with reaction and separation simultaneously. It is proposed using permselective composite membrane to remove hydrogen and thus suppress the reverse and secondary reactions. This paper describes the simulation of a dehydrogenation process carried out in a tubular fixed-bed reactor wrapped in a permselective composite membrane. A mathematical model was developed, incorporating the various mass transport mechanisms found in each of the membrane layers and in the catalytic fixed bed. The effects of the reactor feed conditions (temperature, steam-to-oil ratio, and the weight hourly space velocity), the fixed-bed geometry (length, diameter, and volume), and the membrane geometry (thickness of the layers) on the styrene yield were analyzed. These variables were used to determine experimental conditions that favour the production of styrene. The simulation showed that an increase of 40.98% in the styrene yield, compared to a conventional fixed-bed process, could be obtained by wrapping the reactor in a permselective composite membrane. PMID:27069982

  10. Evaluation of the Parameters and Conditions of Process in the Ethylbenzene Dehydrogenation with Application of Permselective Membranes to Enhance Styrene Yield

    PubMed Central

    Araújo, Paulo Jardel P.; Leite, Manuela Souza; Kakuta Ravagnani, Teresa M.

    2016-01-01

    Styrene is an important monomer in the manufacture of thermoplastic. Most of it is produced by the catalytic dehydrogenation of ethylbenzene. In this process that depends on reversible reactions, the yield is usually limited by the establishment of thermodynamic equilibrium in the reactor. The styrene yield can be increased by using a hybrid process, with reaction and separation simultaneously. It is proposed using permselective composite membrane to remove hydrogen and thus suppress the reverse and secondary reactions. This paper describes the simulation of a dehydrogenation process carried out in a tubular fixed-bed reactor wrapped in a permselective composite membrane. A mathematical model was developed, incorporating the various mass transport mechanisms found in each of the membrane layers and in the catalytic fixed bed. The effects of the reactor feed conditions (temperature, steam-to-oil ratio, and the weight hourly space velocity), the fixed-bed geometry (length, diameter, and volume), and the membrane geometry (thickness of the layers) on the styrene yield were analyzed. These variables were used to determine experimental conditions that favour the production of styrene. The simulation showed that an increase of 40.98% in the styrene yield, compared to a conventional fixed-bed process, could be obtained by wrapping the reactor in a permselective composite membrane. PMID:27069982

  11. Dynamic determination of kinetic parameters for the interaction between polypeptide hormones and cell-surface receptors in the perfused rat liver by the multiple-indicator dilution method

    SciTech Connect

    Sato, H.; Sugiyama, Y.; Sawada, Y.; Iga, T.; Sakamoto, S.; Fuwa, T.; Hanano, M. )

    1988-11-01

    Hepatic elimination of epidermal growth factor (EGF) via receptor-mediated endocytosis was studied by a multiple-indicator dilution method in the isolated perfused rat liver, in which cell polarity and spatial organization are maintained. In this method EGF was given with inulin, an extracellular reference, as a bolus into the portal vein, and dilution curves of both compounds in the hepatic vein effluent were analyzed. Analysis of the dilution curve for EGF, compared with that for somatostatin, which showed no specific binding to isolated liver plasma membranes, resulted as follows: (i) both extraction ratio and distribution volume of {sup 125}I-labeled EGF decreased as the injected amount of unlabeled EGF increased; (ii) the ratio plot of the dilution curve for EGF exhibited an upward straight line initially for a short period of time, whereas the ratio plot of somatostatin gradually decreased. The multiple-indicator dilution method was used for other peptides also. Insulin and glucagon, known to have hepatocyte receptors, behaved similarly to EGF in shape of their ratio plots. The kinetic parameters calculated by this analysis were comparable with reported values obtained by in vitro direct binding measurements at equilibrium using liver homogenates. They conclude that the multiple-indicator dilution method is a good tool for analyzing the dynamics of peptide hormones-cell-surface receptor interaction under a condition in which spatial architecture of the liver is maintained.

  12. Magnetic hyperthermia properties of nanoparticles inside lysosomes using kinetic Monte Carlo simulations: Influence of key parameters and dipolar interactions, and evidence for strong spatial variation of heating power

    NASA Astrophysics Data System (ADS)

    Tan, R. P.; Carrey, J.; Respaud, M.

    2014-12-01

    Understanding the influence of dipolar interactions in magnetic hyperthermia experiments is of crucial importance for fine optimization of nanoparticle (NP) heating power. In this study we use a kinetic Monte Carlo algorithm to calculate hysteresis loops that correctly account for both time and temperature. This algorithm is shown to correctly reproduce the high-frequency hysteresis loop of both superparamagnetic and ferromagnetic NPs without any ad hoc or artificial parameters. The algorithm is easily parallelizable with a good speed-up behavior, which considerably decreases the calculation time on several processors and enables the study of assemblies of several thousands of NPs. The specific absorption rate (SAR) of magnetic NPs dispersed inside spherical lysosomes is studied as a function of several key parameters: volume concentration, applied magnetic field, lysosome size, NP diameter, and anisotropy. The influence of these parameters is illustrated and comprehensively explained. In summary, magnetic interactions increase the coercive field, saturation field, and hysteresis area of major loops. However, for small amplitude magnetic fields such as those used in magnetic hyperthermia, the heating power as a function of concentration can increase, decrease, or display a bell shape, depending on the relationship between the applied magnetic field and the coercive/saturation fields of the NPs. The hysteresis area is found to be well correlated with the parallel or antiparallel nature of the dipolar field acting on each particle. The heating power of a given NP is strongly influenced by a local concentration involving approximately 20 neighbors. Because this local concentration strongly decreases upon approaching the surface, the heating power increases or decreases in the vicinity of the lysosome membrane. The amplitude of variation reaches more than one order of magnitude in certain conditions. This transition occurs on a thickness corresponding to approximately 1.3 times the mean distance between two neighbors. The amplitude and sign of this variation is explained. Finally, implications of these various findings are discussed in the framework of magnetic hyperthermia optimization. It is concluded that feedback on two specific points from biology experiments is required for further advancement of the optimization of magnetic NPs for magnetic hyperthermia. The present simulations will be an advantageous tool to optimize magnetic NPs heating power and interpret experimental results.

  13. Sediment Loads and Yield, and Selected Water-Quality Parameters in Clear Creek, Carson City and Douglas County, Nevada, Water Years 2004-07

    USGS Publications Warehouse

    Seiler, Ralph L.; Wood, James L.

    2009-01-01

    Some reaches of Clear Creek above U.S. Highway 395 have experienced severe erosion as a result of fires, extreme precipitation events, and past and current human activities in the basin. Previous evaluations of erosion in the basin have concluded that most of the sediment produced and transported in the basin was associated with U.S. Highway 50, a four-lane highway that roughly parallels Clear Creek through much of the basin. During this study (water years 2004-07), construction of roads and a large residential area and golf course in the area began and are likely to affect water quality and sediment transport in the basin. Sediment data were collected between October 2003 and September 2007 (water years 2004-07) from three sites along Clear Creek. Annual suspended-sediment load was estimated to range from 1,456 tons in water year 2006 to only 100 tons in water year 2004, which corresponds to suspended-sediment yields of 93.9 tons per square mile per year in 2006 to 6.4 tons per square mile per year in 2004. In water year 2006, the suspended-sediment load on December 31, 2005, alone exceeded the combined annual load for water years 2004, 2005, and 2007. Bedload sediment was estimated to comprise 73 percent of total sediment load in the creek. Mean annual suspended-sediment yield in Clear Creek basin was much greater than yields in the Logan House, Edgewood, and Glenbrook Creek basins in the adjacent Lake Tahoe basin. Comparison of data collected during this study with data collected by university researchers in the 1970s is inconclusive as to whether fundamental changes in basin sediment characteristics have occurred during the 30-year period because different methods and sampling locations were used in the earlier studies.

  14. A coupled transport and solid mechanics formulation with improved reaction kinetics parameters for modeling oxidation and decomposition in a uranium hydride bed.

    SciTech Connect

    Salloum, Maher N.; Shugard, Andrew D.; Kanouff, Michael P.; Gharagozloo, Patricia E.

    2013-03-01

    Modeling of reacting flows in porous media has become particularly important with the increased interest in hydrogen solid-storage beds. An advanced type of storage bed has been proposed that utilizes oxidation of uranium hydride to heat and decompose the hydride, releasing the hydrogen. To reduce the cost and time required to develop these systems experimentally, a valid computational model is required that simulates the reaction of uranium hydride and oxygen gas in a hydrogen storage bed using multiphysics finite element modeling. This SAND report discusses the advancements made in FY12 (since our last SAND report SAND2011-6939) to the model developed as a part of an ASC-P&EM project to address the shortcomings of the previous model. The model considers chemical reactions, heat transport, and mass transport within a hydride bed. Previously, the time-varying permeability and porosity were considered uniform. This led to discrepancies between the simulated results and experimental measurements. In this work, the effects of non-uniform changes in permeability and porosity due to phase and thermal expansion are accounted for. These expansions result in mechanical stresses that lead to bed deformation. To describe this, a simplified solid mechanics model for the local variation of permeability and porosity as a function of the local bed deformation is developed. By using this solid mechanics model, the agreement between our reacting bed model and the experimental data is improved. Additionally, more accurate uranium hydride oxidation kinetics parameters are obtained by fitting the experimental results from a pure uranium hydride oxidation measurement to the ones obtained from the coupled transport-solid mechanics model. Finally, the coupled transport-solid mechanics model governing equations and boundary conditions are summarized and recommendations are made for further development of ARIA and other Sandia codes in order for them to sufficiently implement the model.

  15. Biohydrogen production based on the evaluation of kinetic parameters of a mixed microbial culture using glucose and fruit-vegetable waste as feedstocks.

    PubMed

    Garcia-Peña, E I; Canul-Chan, M; Chairez, I; Salgado-Manjarez, E; Aranda-Barradas, J

    2013-09-01

    Hydrogen (H2) production from the organic fraction of solid waste such as fruit and vegetable waste (FVW) is a novel and feasible energy technology. Continuous application of this process would allow for the simultaneous treatment of organic residues and energy production. In this study, batch experiments were conducted using glucose as substrate, and data of H2 production obtained were successfully adjusted by a logistic model. The kinetic parameters (μ max = 0.101 h(-1), K s = 2.56 g/L) of an H2-producing microbial culture determined by the Monod and Haldane-Andrews growth models were used to establish the continuous culture conditions. This strategy led to a productive steady state in continuous culture. Once the steady state was reached in the continuous reactor, a maximum H2 production of 700 mL was attained. The feasibility of producing H2 from the FVW obtained from a local market in Mexico City was also evaluated using batch conditions. The effect of the initial FVW concentration on the H2 production and waste organic material degradation was determined. The highest H2 production rate (1.7 mmol/day), the highest cumulative H2 volume (310 mL), and 25 % chemical oxygen demand (COD) removal were obtained with an initial substrate (FVW) concentration of 37 g COD/L. The lowest H2 production rates were obtained with relatively low initial substrate concentrations of 5 and 11 g COD/L. The H2 production rates with FVW were also characterized by the logistic model. Similar cumulative H2 production was obtained when glucose and FVW were used as substrates. PMID:23832860

  16. Biosorption of Cr(VI) by Ceratocystis paradoxa MSR2 using isotherm modelling, kinetic study and optimization of batch parameters using response surface methodology.

    PubMed

    Samuel, Melvin S; E A Abigail, M; Ramalingam, Chidambaram

    2015-01-01

    This study is focused on the possible use of Ceratocystis paradoxa MSR2 native biomass for Cr(VI) biosorption. The influence of experimental parameters such as initial pH, temperature, biomass dosage, initial Cr(VI) concentration and contact time were optimized using batch systems as well as response surface methodology (RSM). Maximum Cr(VI) removal of 68.72% was achieved, at an optimal condition of biomass dosage 2 g L(-1), initial Cr(VI) concentration of 62.5 mg L(-1) and contact time of 60 min. The closeness of the experimental and the predicted values exhibit the success of RSM. The biosorption mechanism of MSR2 biosorbent was well described by Langmuir isotherm and a pseudo second order kinetic model, with a high regression coefficient. The thermodynamic study also revealed the spontaneity and exothermic nature of the process. The surface characterization using FT-IR analysis revealed the involvement of amine, carbonyl and carboxyl groups in the biosorption process. Additionally, desorption efficiency of 92% was found with 0.1 M HNO3. The Cr(VI) removal efficiency, increased with increase in metal ion concentration, biomass concentration, temperature but with a decrease in pH. The size of the MSR2 biosorbent material was found to be 80 μm using particle size analyzer. Atomic force microscopy (AFM) visualizes the distribution of Cr(VI) on the biosorbent binding sites with alterations in the MSR2 surface structure. The SEM-EDAX analysis was also used to evaluate the binding characteristics of MSR2 strain with Cr(VI) metals. The mechanism of Cr(VI) removal of MSR2 biomass has also been proposed. PMID:25822726

  17. A kinetic study on nucleophilic displacement reactions of aryl benzenesulfonates with potassium ethoxide: role of K+ ion and reaction mechanism deduced from analyses of LFERs and activation parameters.

    PubMed

    Um, Ik-Hwan; Kang, Ji-Sun; Shin, Young-Hee; Buncel, Erwin

    2013-01-18

    Pseudofirst-order rate constants (k(obsd)) have been measured spectrophotometrically for the nucleophilic substitution reactions of 2,4-dinitrophenyl X-substituted benzenesulfonates 4a-f and Y-substituted phenyl benzenesulfonates 5a-k with EtOK in anhydrous ethanol. Dissection of k(obsd) into k(EtO(-)) and k(EtOK) (i.e., the second-order rate constants for the reactions with the dissociated EtO(-) and ion-paired EtOK, respectively) shows that the ion-paired EtOK is more reactive than the dissociated EtO(-), indicating that K(+) ion catalyzes the reaction. The catalytic effect exerted by K(+) ion (e.g., the k(EtOK)/k(EtO(-)) ratio) decreases linearly as the substituent X in the benzenesulfonyl moiety changes from an electron-donating group (EDG) to an electron-withdrawing group (EWG), but it is independent of the electronic nature of the substituent Y in the leaving group. The reactions have been concluded to proceed through a concerted mechanism from analyses of the kinetic data through linear free energy relationships (e.g., the Brønsted-type, Hammett, and Yukawa-Tsuno plots). K(+) ion catalyzes the reactions by increasing the electrophilicity of the reaction center through a cyclic transition state (TS) rather than by increasing the nucleofugality of the leaving group. Activation parameters (e.g., ΔH(‡) and ΔS(‡)) determined from the reactions performed at five different temperatures further support the proposed mechanism and TS structures. PMID:23215678

  18. Biosorption of Cr(VI) by Ceratocystis paradoxa MSR2 Using Isotherm Modelling, Kinetic Study and Optimization of Batch Parameters Using Response Surface Methodology

    PubMed Central

    Ramalingam, Chidambaram

    2015-01-01

    This study is focused on the possible use of Ceratocystis paradoxa MSR2 native biomass for Cr(VI) biosorption. The influence of experimental parameters such as initial pH, temperature, biomass dosage, initial Cr(VI) concentration and contact time were optimized using batch systems as well as response surface methodology (RSM). Maximum Cr(VI) removal of 68.72% was achieved, at an optimal condition of biomass dosage 2g L−1, initial Cr(VI) concentration of 62.5 mg L−1 and contact time of 60 min. The closeness of the experimental and the predicted values exhibit the success of RSM. The biosorption mechanism of MSR2 biosorbent was well described by Langmuir isotherm and a pseudo second order kinetic model, with a high regression coefficient. The thermodynamic study also revealed the spontaneity and exothermic nature of the process. The surface characterization using FT-IR analysis revealed the involvement of amine, carbonyl and carboxyl groups in the biosorption process. Additionally, desorption efficiency of 92% was found with 0.1 M HNO3. The Cr(VI) removal efficiency, increased with increase in metal ion concentration, biomass concentration, temperature but with a decrease in pH. The size of the MSR2 biosorbent material was found to be 80 μm using particle size analyzer. Atomic force microscopy (AFM) visualizes the distribution of Cr(VI) on the biosorbent binding sites with alterations in the MSR2 surface structure. The SEM-EDAX analysis was also used to evaluate the binding characteristics of MSR2 strain with Cr(VI) metals. The mechanism of Cr(VI) removal of MSR2 biomass has also been proposed. PMID:25822726

  19. Glucuronidation of paracetamol by human liver microsomes in vitro / enzyme kinetic parameters and interactions with short-chain aliphatic alcohols and opiates.

    PubMed

    Boldt, Petra; Rothschild, Markus A; Kaeferstein, Herbert

    2007-01-01

    In this study, glucuronidation of paracetamol (CAS 103-90-2) by human liver microsomes and the effects of aliphatic alcohols and opiates were investigated. Paracetamol glucuronidation was optimised for various incubation conditions. Ten different aliphatic alcohols and the opiates morphine, codeine and dihydrocodeine were analysed as inhibitors of paracetamol glucuronidation. Furthermore, the effects of paracetamol on morphine-3 and codeine glucuronidation were investigated. Enzyme kinetic analysis was carried out via determination of the parameters Km, Vmax, Ki and the type of inhibition. Except for methanol and ethanol, all Investigated alcohols inhibited glucuronidation of paracetamol. Ki values ranged between 4.59 mmol/l (n-pentanol) and 340.54 mmol/l (2-propanol). Extent of inhibition strongly depended on the structure and clearly increased with the length of the alkyl chain. All tested opiates inhibited paracetamol glucuronidation with Ki values between 4.02 mmol/l (dihydrocodeine) and 11.44 mmol/l (morphine). Paracetamol itself turned out to be an inhibitor of opiate glucuronidation. The apparent Ki values were 4.62 mmol/l (inhibition of morphine-3 glucuronidation) and 9.44 mmol/l (inhibition of codeine glucuronidation). A mixed inhibition type was determined for all substances. The in vitro studies show a great inhibition potential for the analysed substances. Transferring the results to the in vivo situation, a higher liver toxicity of paracetamol can be assumed, if concomitantly a lot of alcoholic beverages with congener alcohols--e.g. fruit schnapps or whisky--are drunk or if opiates--as analgesics or narcotics--are taken in higher doses. PMID:18380412

  20. Kinetic investigation of wood pyrolysis

    SciTech Connect

    Thurner, F.; Mann, U.; Beck, S. R.

    1980-06-01

    The objective of this investigation was to determine the kinetics of the primary reactions of wood pyrolysis. A new experimental method was developed which enabled us to measure the rate of gas, tar, and char production while taking into account the temperature variations during the wood heating up. The experimental method developed did not require any sophisticated instruments. It facilitated the collection of gas, tar and residue (unreacted wood and char) as well as accurate measurement of the temperature inside the wood sample. Expressions relating the kinetic parameters to the measured variables were derived. The pyrolysis kinetics was investigated in the range of 300 to 400/sup 0/C at atmospheric pressure and under nitrogen atmosphere. Reaction temperature and mass fractions of gas, tar, and residue were measured as a function of time. Assuming first-order reactions, the kinetic parameters were determined using differential method. The measured activation energies of wood pyrolysis to gas, tar, and char were 88.6, 112.7, and 106.5 kJ/mole, respectively. These kinetic data were then used to predict the yield of the various pyrolysis products. It was found that the best prediction was obtained when an integral-mean temperature obtained from the temperature-time curve was used as reaction temperature. The pyrolysis products were analyzed to investigate the influence of the pyrolysis conditions on the composition. The gas consisted mainly of carbon dioxide, carbon monoxide, oxygen, and C/sub 3//sup +/-compounds. The gas composition depended on reaction time as well as reactor temperature. The tar analysis indicated that the tar consisted of about seven compounds. Its major compound was believed to be levoglucosan. Elemental analysis for the char showed that the carbon content increased with increasing temperature.

  1. Increasing Yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize yield improvement in the 20th century represents one of the great success stories of plant breeding and agronomy. Maize grain yield in the United States has increased on average by 0.122 metric tons per hectare per year since 1945 (Figure 1). This is in sharp contrast to essentially zero gain ...

  2. Neutron monitors and muon detectors for solar modulation studies: Interstellar flux, yield function, and assessment of critical parameters in count rate calculations

    NASA Astrophysics Data System (ADS)

    Maurin, D.; Cheminet, A.; Derome, L.; Ghelfi, A.; Hubert, G.

    2015-01-01

    Particles count rates at given Earth location and altitude result from the convolution of (i) the interstellar (IS) cosmic-ray fluxes outside the solar cavity, (ii) the time-dependent modulation of IS into Top-of-Atmosphere (TOA) fluxes, (iii) the rigidity cut-off (or geomagnetic transmission function) and grammage at the counter location, (iv) the atmosphere response to incoming TOA cosmic rays (shower development), and (v) the counter response to the various particles/energies in the shower. Count rates from neutron monitors or muon counters are therefore a proxy to solar activity. In this paper, we review all ingredients, discuss how their uncertainties impact count rate calculations, and how they translate into variation/uncertainties on the level of solar modulation ϕ (in the simple Force-Field approximation). The main uncertainty for neutron monitors is related to the yield function. However, many other effects have a significant impact, at the 5-10% level on ϕ values. We find no clear ranking of the dominant effects, as some depend on the station position and/or the weather and/or the season. An abacus to translate any variation of count rates (for neutron and μ detectors) to a variation of the solar modulation ϕ is provided.

  3. A study of the spray injection Reynolds number effects on gasoline yields of an FCC riser reactor

    SciTech Connect

    Bowman, B. J.; Zhou, C. Q.; Chang, S. L.; Lottes, S. A.

    2000-04-03

    A computational analysis of the combined effects of feed oil injection parameters in a commercial-scale fluidized catalytic cracking riser reactor was performed using a three-phase, multiple species kinetic cracking computer code. The analysis showed that the injection operating parameters (droplet diameter and injection velocity) had strong impacts on the gasoline yields of the FCC unit. A spray injection Reynolds number combining the two parameters was defined. A correlation between the spray injection Reynolds number and the gasoline product yields for various feed injection conditions was developed. A range of spray injection Reynolds number for the maximum gasoline yield was identified.

  4. Evaluation of the intrinsic photocatalytic oxidation kinetics of indoor air pollutants.

    PubMed

    Salvadó-Estivill, Ignasi; Hargreaves, David M; Puma, Gianluca Li

    2007-03-15

    This paper presents a methodology for the evaluation of the intrinsic photocatalytic oxidation (PCO) kinetics of indoor air pollutants. It combines computational fluid dynamics (CFD) modeling of the fluid flow in the reactor with radiation field modeling and photocatalytic reaction kinetics to yield a rigorous model of a flat-plate, single-pass, flow-through photocatalytic reactor for indoor air purification. This method was applied to model the PCO of trichloroethylene (TCE) in humidified air and to derive kinetic parameters directly from kinetic data in an integral flow reactor. Steady-state PCO experiments of TCE over irradiated TiO2 (Degussa P25) thin films immobilized on glass supports were carried out at different radiation intensities, flow rates, and inlet substrate concentrations. The oxidation rate of TCE was found to be first-order on the incident photon flux and to follow a Langmuir-Hinshelwood type reaction kinetics rate law. Mass transfer resistances were observed at Reynolds numbers less than 46. Apparent quantum yields were found to be up to 0.97 mol Einstein(-1). A comparison of the model prediction with the experimental results in an integral reactor yielded pollutant-specific kinetic rate parameters which were independent of reactor geometry, radiation field, and fluid-dynamics. The kinetic parameters would,therefore, be more universally applicable to the design and scale-up of photocatalytic reactors for indoor air purification. PMID:17410801

  5. Sensitivity of kinetic macro parameters to changes in dopamine synthesis, storage, and metabolism: a simulation study for [¹⁸F]FDOPA PET by a model with detailed dopamine pathway.

    PubMed

    Matsubara, Keisuke; Watabe, Hiroshi; Kumakura, Yoshitaka; Hayashi, Takuya; Endres, Christopher J; Minato, Kotaro; Iida, Hidehiro

    2011-08-01

    Quantitative interpretation of brain [¹⁸F]FDOPA PET data has been made possible by several kinetic modeling approaches, which are based on different assumptions about complex [¹⁸F]FDOPA metabolic pathways in brain tissue. Simple kinetic macro parameters are often utilized to quantitatively evaluate metabolic and physiological processes of interest, which may include DDC activity, vesicular storage, and catabolism from (18) F-labeled dopamine to DOPAC and HVA. A macro parameter most sensitive to the changes of these processes would be potentially beneficial to identify impaired processes in a neurodegenerative disorder such as Parkinson's disease. The purpose of this study is a systematic comparison of several [¹⁸F]FDOPA macro parameters in terms of sensitivities to process-specific changes in simulated time-activity curve (TAC) data of [¹⁸F]FDOPA PET. We introduced a multiple-compartment kinetic model to simulate PET TACs with physiological changes in the dopamine pathway. TACs in the alteration of dopamine synthesis, storage, and metabolism were simulated with a plasma input function obtained by a non-human primate [¹⁸F]FDOPA PET study. Kinetic macro parameters were calculated using three conventional linear approaches (Gjedde-Patlak, Logan, and Kumakura methods). For simulated changes in dopamine storage and metabolism, the slow clearance rate (k(loss) ) as calculated by the Kumakura method showed the highest sensitivity to these changes. Although k(loss) performed well at typical ROI noise levels, there was large bias at high noise level. In contrast, for simulated changes in DDC activity it was found that K(i) and V(T), estimated by Gjedde-Patlak and Logan method respectively, have better performance than k(loss). PMID:21190220

  6. Measurement of the CP-violation parameter of B{sup 0} mixing and decay with pp{yields}{mu}{mu}X data

    SciTech Connect

    Abazov, V. M.; Alexeev, G. D.; Kalinin, A. M.; Kharzheev, Y. M.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.; Abbott, B.; Gutierrez, P.; Hall, I.; Jain, S.; Kopal, M.; Pompos, A.; Severini, H.; Skubic, P.; Strauss, M.; Abolins, M.; Benitez, J. A.; Brock, R.

    2006-11-01

    We measure the dimuon charge asymmetry A in pp collisions at a center of mass energy {radical}(s)=1960 GeV. The data was recorded with the D0 detector and corresponds to an integrated luminosity of approximately 1.0 fb{sup -1}. Assuming that the asymmetry A is due to asymmetric B{sup 0}{r_reversible}B{sup 0} mixing and decay, we extract the CP-violation parameter of B{sup 0} mixing and decay: ((Re({epsilon}{sub B{sup 0}})/1+ vertical bar {epsilon}{sub B{sup 0}} vertical bar{sup 2})=(A{sub B{sup 0}}/4)-0.0023{+-}0.0011(stat){+-}0.0008(syst).A{sub B{sup 0}} is the dimuon charge asymmetry from decays of B{sup 0}B{sup 0} pairs. The general case, with CP violation in both B{sup 0} and B{sub s}{sup 0} systems, is also considered. Finally we obtain the forward-backward asymmetry that quantifies the tendency of {mu}{sup +} to go in the proton direction and {mu}{sup -} to go in the antiproton direction. The results are consistent with the standard model and constrain new physics.

  7. Kinetic analysis of HO{sub 2} addition to ethylene, propene, and isobutene, and thermochemical parameters of alkyl hydroperoxides and hydroperoxide alkyl radicals

    SciTech Connect

    Chen, C.J.; Bozzelli, J.W.

    2000-06-01

    Thermochemical kinetic analysis for the reactions of HO{sub 2} radical addition to the primary, secondary, and tertiary carbon-carbon double bonds of ethylene, propene, and isobutene are studied using canonical transition state theory (TST). Thermochemical properties of reactants, alkyl hydroperoxides (ROOH), hydroperoxy alkyl radicals (R-OOH), and transition states (TSs) are determined by ab initio and density functional calculations. Enthalpies of formation ({Delta}H{sub f 298}{degree}) of product radicals (R-OOH) are determined using isodesmic reactions with group balance at MP4(full)6-31G(d,p)/MP2(full)/6-31G(d), MP2(full)/6-31G(d), complete basis set model chemistry (CBS-q with MP2(full)/6-31g(d) and B3LYP/6-31g(d) optimized geometries), and density functional (B3LYP/6-31g(d) and B3LYP/6-311+g(3df,2p)//B3LYP/6-31g(d)) calculations. {Delta}H{sub f 298}{degree} of TSs are obtained from the {Delta}H{sub f 298}{degree} of reactants plus energy differences between reactants and TSs. Entropies (S{sub 298}{degree}) and heat capacities (Cp(T) 300 {le} T/K {le} 1,500) contributions from vibrational, translational, and external rotational are calculated using the rigid-rotor-harmonic-oscillator approximation based on geometric parameters and vibrational frequencies obtained at MP2(full)/6-31G(d) and B3LYP/6-31G(d) levels of theory. Selected potential barriers of internal rotations for hydroperoxy alkyl radicals and TSs are calculated at MP2(full)/6-31G(d) and CBS-Q//MP2(full)/6-31G(d) levels. Contributions from hindered rotors of S{sub 298}{degree} and Cp(T) are calculated by the method of Pitzer and Gwinn and by summation over the energy levels obtained by direct diagonalization of the Hamiltonian matrix of hindered internal rotations when the potential barriers of internal rotations are available. calculated rate constants obtained at CBS-q/MP2(full)/6-31G(d) and CBS-q//B3LYP/6-31G(d) levels of theory show similar trends with experimental data: HO{sub 2} radical addition to the tertiary carbon-carbon double bond (HO{sub 2} addition at CD/C2 carbon atom of isobutene) has a lower activation energy than addition to the secondary carbon-carbon double bond CD/C/H, which is lower than addition to the primary carbon-carbon bond CD/H2; the values are 12.11(11.56), 11.08(10.34), and 7.63(7.03) kcal/mol, respectively, at CBS-q//MP2(full)/6-31G(d) level. Data in parentheses are calculations at the CBS-q//B3LYP/6-31G(d) level. The E{sub a} for addition to primary carbon-carbon double bonds of ethylene, propene, and isobutene also show a decreasing trend 13.49(12.89), 12.16(11.20), and 10.70(10.59) kcal/mol, respectively. The high-pressure limit rate constants are calculated.

  8. DIRECT COMPARISON OF KINETIC AND LOCAL EQUILIBRIUM FORMULATIONS FOR SOLUTE TRANSPORT AFFECTED BY SURFACE REACTIONS.

    USGS Publications Warehouse

    Bahr, Jean M.; Rubin, Jacob

    1987-01-01

    Modeling transport of reacting solutes in porous media often requires a choice between models based on the local equilibrium assumption (LEA) and models involving reaction kinetics. Direct comparison of the mathematical formulations for these two types of transport models can aid in this choice. For cases of transport affected by surface reaction, such a comparison is made possible by a new derivation procedure. This procedure yields a kinetics-based formulation that is the sum of the LEA formulation and one or more kinetically influenced terms. The dimensionless form of the new kinetics-based formulation facilitates identification of critical parameter groupings which control the approach to transport behavior consistent with LEA model predictions. Results of numerical experiments demonstrate that criteria for LEA applicability can be expressed conveniently in terms of these parameter groupings. The derivation procedure is demonstrated for examples of surface reactions including first-order reversible sorption, Langmuir-type kinetics and binary, homovalent ion exchange.

  9. Temperature-Dependent Kinetics Studies of the Reactions Br((sup 2)P3/2) + H2S yields SH + HBr and Br((sup 2)P3/2) + CH3SH yields CH3S + HBr. Heats of Formation of SH and CH3S Radicals

    NASA Technical Reports Server (NTRS)

    Nicovich, J. M.; Kreutter, K. D.; vanDijk, C. A.; Wine, P. H.

    1997-01-01

    Time resolved resonance fluorescence detection of Br(sup 2)P3/2) atom disappearance or appearance following 266-nm laser flash photolysis of CF2Br2/H2S/H2/N2, CF2Br2/CH3SH/H2/N2, Cl2CO/H2S/HBr/N2, and CH3SSCH3/HBr/H2/N2 mixtures has been employed to study the kinetics of the reactions Br((sup 2)P3/2) + H2S = SH + HBr (1,-1) and Br((sup2)P3/2) + CH3SH = CH3S + HBr (2, -2) as a function of temperature over the range 273-431K. Arrhenius expressions in units of 10(exp -12) cu cm/molecule/s which describe the results are k1 = (14.2 +/- 3.4) exp[(-2752 +/- 90)/T],(k-1) = (4.40 +/- 0.92) exp[(-971 +/- 73)/T],k(2) = (9.24 +/- 1.15) exp[(-386 +/- 41)/T], and k(-2) = (1.46 +/-0.21) exp[(-399 +/-41)/T; errors are 2 sigma and represent precision only. By examining Br((sup 2)P3/2) equilibrium kinetics following 355nm laser flash photolysis of Br2/CH3SH/H2/N2 mixtures, a 298 K rate coefficient of (1.7 +/- 0.5) x 10(exp -10) cu cm/molecule/s has been obtained for the reaction CH3S + Br2 yields CH3SBr + Br. To our knowledge, these are the first kinetic data reported for each of the reactions studied. Measured rate coefficients, along with known rate coefficients for similar radical + H2S, CH3SH, HBr,Br2 reactions are considered in terms of possible correlations of reactivity with reaction thermochemistry and with IP - EA, the difference between the ionization potential of the electron donor and the electron affinity of the electron acceptor. Both thermochemical and charge-transfer effects appear to be important in controlling observed reactivities. Second and third law analyses of the equilibrium data for reactions 1 and 2 have been employed to obtain the following enthalpies of reaction in units of kcal/mol: for reaction 1, Delta-H(298) = 3.64 +/- 0.43 and Delta-H(0) = 3.26 +/-0.45; for reaction 2, Delta-H(298) = -0.14 +/- 0.28 and Delta-H(0) = -0.65 +/- 0.36. Combining the above enthalpies of reaction with the well-known heats of formation of Br, HBr, H2S, and CH3SH gives the following heats of formation for the RS radicals in units of kcal/mol: Delta-H(sub f)(sub 0)(SH) = 34.07 +/- 0.72, Delta-H(sub f)(sub 298)(SH) = 34.18 +/- 0.68, Delta-H(sub f)(sub 0)(CH3S) = 31.44 +/- 0.54, Delta-H(sub f)(sub 298)(CH3S) = 29.78 +/- 0.44; errors are 2 sigma and represent estimates of absolute accuracy. The SH heat of formation determined from our data agrees well with literature values but has reduced error limits compared to other available values. The CH3S heat of formation determined from our date is near the low end of the range of previous estimates and is 3-4 kcal/mol lower than values derived from recent molecular beam photofragmentation studies.

  10. Comparative study of diethyl phthalate degradation by UV/H2O2 and UV/TiO2: kinetics, mechanism, and effects of operational parameters.

    PubMed

    Song, Chengjie; Wang, Liping; Ren, Jie; Lv, Bo; Sun, Zhonghao; Yan, Jing; Li, Xinying; Liu, Jingjing

    2016-02-01

    The photodegradation of diethyl phthalate (DEP) by UV/H2O2 and UV/TiO2 is studied. The DEP degradation kinetics and multiple crucial factors effecting the clearance of DEP are investigated, including initial DEP concentration ([DEP]0), initial pH values (pH0), UV light intensity, anions (Cl(-), NO(3-), SO4 (2-), HCO3 (-), and CO3 (2-)), cations (Mg(2+), Ca(2+), Mn(2+), and Fe(3+)), and humic acid (HA). Total organic carbon (TOC) removal is tested by two treatments. And, cytotoxicity evolution of DEP degradation intermediates is detected. The relationship between molar ratio ([H2O2]/[DEP] or [TiO2]/[DEP]) and degradation kinetic constant (K) is also studied. And, the cytotoxicity tests of DEP and its degradation intermediates in UV/H2O2 and UV/TiO2 treatments are researched. The DEP removal efficiency of UV/H2O2 treatment is higher than UV/TiO2 treatment. The DEP degradation fitted a pseudo-first-order kinetic pattern under experimental conditions. The K linearly related with molar ratio in UV/H2O2 treatment while nature exponential relationship is observed in the case of UV/TiO2. However, K fitted corresponding trends better in H2O2 treatment than in TiO2 treatment. The Cl(-) is in favor of the DEP degradation in UV/H2O2 treatment; in contrast, it is disadvantageous to the DEP degradation in UV/TiO2 treatment. Other anions are all disadvantageous to the DEP degradation in two treatments. Fe(3+) promotes the degradation rates significantly. And, all other cations in question inhibit the degradation of DEP. HA hinders DEP degradation in two treatments. The intermediates of DEP degradation in UV/TiO2 treatment are less toxic to biological cell than that in UV/H2O2 treatment. PMID:26432268

  11. Characterizing O2 uptake response kinetics during exercise.

    PubMed

    Whipp, B J; Casaburi, R

    1982-05-01

    It has recently been proposed that the half time for the kinetics of VO2 during exercise may be accurately determined from a linear fit to the exponential response on linear coordinates. We demonstrate that although this is the case for two periods of data utilization, it is not true for any others, and that small variations in this period markedly influence the estimate. Furthermore, it is necessary to know the parameters of the response to determine the appropriate period of data collection. We conclude that the proposed linear estimation procedure is likely to yield erroneous values for VO2 kinetics during exercise. PMID:7107106

  12. Kinetic parameters and mechanisms of the batch biosorption of Cr(VI) and Cr(III) onto Leersia hexandra Swartz biomass.

    PubMed

    Li, Jianping; Lin, Qingyu; Zhang, Xuehong; Yan, Yan

    2009-05-01

    The hyperaccumulative plant species Leersia hexandra Swartz, particularly, has been considered for its detoxification mechanism for phytoremediation of chromium-contaminated water environments. This study investigates the role of the adsorption mechanism of the L. hexandra Sw. biomass on the removal of chromium ions Cr(VI) and Cr(III) from an aqueous solution. The interaction between chromium ions and the L. hexandra Sw. biomass was characterized by using infrared spectroscopy. The results indicate that the binding process of the chromium ions involves the active participation of ligands present in the biomass, such as acylamide, carbonyl, amino, carboxyl, and hydroxyl groups, to immobilize the chromium ions. Equilibrium biosorption experiments were carried out to investigate the effects of pH values and contact time. Adsorption isotherms were modeled with the Langmuir and Freundlich equations and isotherm constants were calculated. Kinetic experiments showed the rapid process of biosorption and the pseudo-second-order model was successfully applied to predict the rate constant of biosorption. This study firstly discovered the kinetics equilibrium modelling of L. hexandra Sw. biomass on biosorption Cr(VI) and Cr(III). PMID:19251269

  13. An analytical model of nonproportional scintillator light yield in terms of recombination rates

    SciTech Connect

    Bizarri, G.; Moses, W. W.; Singh, J.; Vasil'ev, A. N.; Williams, R. T.

    2009-02-15

    Analytical expressions for the local light yield as a function of the local deposited energy (-dE/dx) and total scintillation yield integrated over the track of an electron of initial energy E are derived from radiative and/or nonradiative rates of first through third order in density of electronic excitations. The model is formulated in terms of rate constants, some of which can be determined independently from time-resolved spectroscopy and others estimated from measured light yield efficiency as a constraint assumed to apply in each kinetic order. The rates and parameters are used in the theory to calculate scintillation yield versus primary electron energy for comparison to published experimental results on four scintillators. Influence of the track radius on the yield is also discussed. Results are found to be qualitatively consistent with the observed scintillation light yield. The theory can be applied to any scintillator if the rates of the radiative and nonradiative processes are known.

  14. Electrophysiological approach to determine kinetic parameters of sucrose uptake by single sieve elements or phloem parenchyma cells in intact Vicia faba plants

    PubMed Central

    Hafke, Jens B.; Höll, Sabina-Roxana; Kühn, Christina; van Bel, Aart J. E.

    2013-01-01

    Apart from cut aphid stylets in combination with electrophysiology, no attempts have been made thus far to measure in vivo sucrose-uptake properties of sieve elements. We investigated the kinetics of sucrose uptake by single sieve elements and phloem parenchyma cells in Vicia faba plants. To this end, microelectrodes were inserted into free-lying phloem cells in the main vein of the youngest fully-expanded leaf, half-way along the stem, in the transition zone between the autotrophic and heterotrophic part of the stem, and in the root axis. A top-to-bottom membrane potential gradient of sieve elements was observed along the stem (−130 mV to −110 mV), while the membrane potential of the phloem parenchyma cells was stable (approx. −100 mV). In roots, the membrane potential of sieve elements dropped abruptly to −55 mV. Bathing solutions having various sucrose concentrations were administered and sucrose/H+-induced depolarizations were recorded. Data analysis by non-linear least-square data fittings as well as by linear Eadie–Hofstee (EH) -transformations pointed at biphasic Michaelis–Menten kinetics (2 MM, EH: Km1 1.2–1.8 mM, Km2 6.6–9.0 mM) of sucrose uptake by sieve elements. However, Akaike's Information Criterion (AIC) favored single MM kinetics. Using single MM as the best-fitting model, Km values for sucrose uptake by sieve elements decreased along the plant axis from 1 to 7 mM. For phloem parenchyma cells, higher Km values (EH: Km1 10 mM, Km2 70 mM) as compared to sieve elements were found. In preliminary patch-clamp experiments with sieve-element protoplasts, small sucrose-coupled proton currents (−0.1 to −0.3 pA/pF) were detected in the whole-cell mode. In conclusion (a) Km values for sucrose uptake measured by electrophysiology are similar to those obtained with heterologous systems, (b) electrophysiology provides a useful tool for in situ determination of Km values, (c) As yet, it remains unclear if one or two uptake systems are involved in sucrose uptake by sieve elements, (d) Affinity for sucrose uptake by sieve elements exceeds by far that by phloem parenchyma cells, (e) Patch-clamp studies provide a feasible basis for quantification of sucrose uptake by single cells. The consequences of the findings for whole-plant carbohydrate partitioning are discussed. PMID:23914194

  15. Advanced oxidation of the commercial nonionic surfactant octylphenol polyethoxylate Triton™ X-45 by the persulfate/UV-C process: effect of operating parameters and kinetic evaluation

    PubMed Central

    Arslan-Alaton, Idil; Olmez-Hanci, Tugba; Genç, Bora; Dursun, Duygu

    2013-01-01

    This study explored the potential use of a sulfate radical (SO·−4)-based photochemical oxidation process to treat the commercial nonionic surfactant octylphenol polyethoxylate (OPPE) Triton™ X-45. For this purpose, the effect of initial S2O2−8 (0–5.0 mM) and OPPE (10–100 mg/L) concentrations on OPPE and its organic carbon content (TOC) removal were investigated at an initial reaction pH of 6.5. Results indicated that very fast OPPE degradation (100%) accompanied with high TOC abatement rates (90%) could be achieved for 10 and 20 mg/L aqueous OPPE at elevated S2O2−8 concentrations (≥2.5 mM). S2O2−8/UV-C treatment was still capable of complete OPPE removal up to an initial concentration of 40 mg/L in the presence of 2.5 mM S2O2−8. On the other hand, TOC removal efficiencies dropped down to only 40% under the same reaction conditions. S2O2−8/UV-C oxidation of OPPE was also compared with the relatively well-known and established H2O2/UV-C oxidation process. Treatment results showed that the performance of S2O2−8/UV-C was comparable to that of H2O2/UV-C oxidation for the degradation and mineralization of OPPE. In order to elucidate the relative reactivity and selectivity of SO·−4 and HO·, bimolecular reaction rate coefficients of OPPE with SO·−4 and HO· were determined by employing competition kinetics with aqueous phenol (47 μM) selected as the reference compound. The pseudo-first-order abatement rate coefficient obtained for OPPE during S2O2−8/UV-C oxidation (0.044 min−1) was found to be significantly lower than that calculated for phenol (0.397 min−1). In the case of H2O2/UV-C oxidation however, similar pseudo-first-order abatement rate coefficients were obtained for both OPPE (0.087 min−1) and phenol (0.140 min−1). From the kinetic study, second-order reaction rate coefficients for OPPE with SO·−4 and HO· were determined as 9.8 × 108 M−1 s−1 and 4.1 × 109 M−1 s−1, respectively. The kinetic study also revealed that the selectivity of SO·−4 was found to be significantly higher than that of HO·. PMID:24790933

  16. Kinetics of the processes, plasma parameters, and output characteristics of a UV emitter operating on XeI molecules and iodine molecules and atoms

    SciTech Connect

    Shuaibov, A. K.; Grabovaya, I. A.; Minya, A. I.; Homoki, Z. T.; Kalyuzhnaya, A. G.; Shchedrin, A. I.

    2011-03-15

    A kinetic model of the processes occurring in the plasma of a high-power low-pressure gas-discharge lamp is presented, and the output characteristics of the lamp are described. The lamp is excited by a longitudinal glow discharge and emits the I{sub 2}(D Prime -A Prime ) 342-nm and XeI(B-X) 253-nm bands and the 206.2-nm spectral line of atomic iodine. When the emitter operates in a sealed-off mode on the p(He): p(Xe): p(I{sub 2}) = 400: 120: (100-200) Pa mixture, the fractions of the UV radiation power of iodine atoms, exciplex molecules of xenon iodide, and iodine molecules comprise 55, 10, and 35%, respectively. At the optimal partial pressure, the maximum total radiation power of the lamp reaches 37 W, the energy efficiency being about 15%.

  17. Kinetic Demonstration.

    ERIC Educational Resources Information Center

    Burgardt, Erik D.; Ryan, Hank

    1996-01-01

    Presents a unit on chemical reaction kinetics that consists of a predemonstration activity, the demonstration, and a set of postdemonstration activities that help students transfer the concepts to actual chemical reactions. Simulates various aspects of chemical reaction kinetics. (JRH)

  18. Kinetic Atom.

    ERIC Educational Resources Information Center

    Wilson, David B.

    1981-01-01

    Surveys the research of scientists like Joule, Kelvin, Maxwell, Clausius, and Boltzmann as it comments on the basic conceptual issues involved in the development of a more precise kinetic theory and the idea of a kinetic atom. (Author/SK)

  19. Enzyme Kinetics.

    ERIC Educational Resources Information Center

    Moe, Owen; Cornelius, Richard

    1988-01-01

    Conveys an appreciation of enzyme kinetic analysis by using a practical and intuitive approach. Discusses enzyme assays, kinetic models and rate laws, the kinetic constants (V, velocity, and Km, Michaels constant), evaluation of V and Km from experimental data, and enzyme inhibition. (CW)

  20. Advanced oxidation of the commercial nonionic surfactant octylphenol polyethoxylate TritonTM X-45 by the persulfate/UV-C process: effect of operating parameters and kinetic evaluation

    NASA Astrophysics Data System (ADS)

    Arslan-Alaton, Idil; Olmez-Hanci, Tugba; Genc, Bora; Dursun, Duygu

    2013-03-01

    This study explored the potential use of a sulfate radical (SO4●-)-based photochemical oxidation process to treat the commercial nonionic surfactant octylphenol polyethoxylate (OPPE) TritonTMX-45. For this purpose, the effect of initial S2O82- (0-5.0 mM) and OPPE (10-100 mg/L) concentrations on OPPE and its organic carbon content (TOC) removal were investigated at an initial reaction pH of 6.5. Results indicated that very fast OPPE degradation (100%) accompanied with high TOC abatement rates (90%) could be achieved for 10 and 20 mg/L aqueous OPPE at elevated S2O82- concentrations (>2.5 mM). S2O82-/UV-C treatment was still capable of complete OPPE removal up to an initial concentration of 40 mg/L in the presence of 2.5 mM S2O82-. On the other hand, TOC removal efficiencies dropped down to only 40% under the same reaction conditions. S2O82-/UV-C oxidation of OPPE was also compared with the relatively well-known and established H2O2/UV-C oxidation process. Treatment results showed that the performance of S2O82-/UV-C was comparable to that of H2O2/UV-C oxidation for the degradation and mineralization of OPPE. In order to elucidate the relative reactivity and selectivity of SO4●- and HO●, bimolecular reaction rate coefficients of OPPE with SO4●- and HO● were determined by employing competition kinetics with aqueous phenol (47 M) selected as the reference compound. The first-order abatement rate coefficient obtained for OPPE during S2O82-/UV-C oxidation (0.044 min-1) was found to be significantly lower than that calculated for phenol (0.397 min-1). In the case of H2O2/UV-C oxidation however, similar first-order abatement rate coefficients were obtained for both OPPE (0.087 min-1) and phenol (0.140 min-1). Second-order reaction rate coefficients for OPPE with SO4●- and HO● were determined as 9.8108 M-1s-1 and 4.1109 M-1s-1, respectively. The kinetic study also revealed that the selectivity of SO4●- was found to be significantly higher than that of HO●.

  1. Evaluation and modeling of thermal kinetic degradation for PVA doped PbS quantum dot

    SciTech Connect

    Mahmoud, Waleed E.; Al-Heniti, S.H.

    2011-09-15

    Highlights: {yields} Synthesis of PVA doped PbS quantum dots. {yields} Data fitting using integral and differential thermal kinetic models for calculating activation energy. {yields} Prediction of thermal degradation using iso-conversion model. -- Abstract: The kinetic analysis of the thermogravimetric curves for the thermal decomposition processes of PVA/PbS was performed. The samples were heated in nitrogen, with three different heating rates: 10, 20 and 30 {sup o}C min{sup -1}. Various forms of non-isothermal methods of analysis for determining the kinetic parameters were used. The differential and integral models were used to calculate the activation energies. Comparing with pure PVA, the results showed that the maximum activation energy of thermal degradation is achieved for PVA/PbS nanocomposite. Isoconversion model is used for predicting the thermal degradation acceleration. The results showed that the acceleration of thermal degradation for pure PVA was faster than PVA/PbS nanocomposite.

  2. Effects of particle size and coating on toxicologic parameters, fecal elimination kinetics and tissue distribution of acutely ingested silver nanoparticles in a mouse model.

    PubMed

    Bergin, Ingrid L; Wilding, Laura A; Morishita, Masako; Walacavage, Kim; Ault, Andrew P; Axson, Jessica L; Stark, Diana I; Hashway, Sara A; Capracotta, Sonja S; Leroueil, Pascale R; Maynard, Andrew D; Philbert, Martin A

    2016-04-01

    Consumer exposure to silver nanoparticles (AgNP) via ingestion can occur due to incorporation of AgNP into products such as food containers and dietary supplements. AgNP variations in size and coating may affect toxicity, elimination kinetics or tissue distribution. Here, we directly compared acute administration of AgNP of two differing coatings and sizes to mice, using doses of 0.1, 1 and 10 mg/kg body weight/day administered by oral gavage for 3 days. The maximal dose is equivalent to 2000× the EPA oral reference dose. Silver acetate at the same doses was used as ionic silver control. We found no toxicity and no significant tissue accumulation. Additionally, no toxicity was seen when AgNP were dosed concurrently with a broad-spectrum antibiotic. Between 70.5% and 98.6% of the administered silver dose was recovered in feces and particle size and coating differences did not significantly influence fecal silver. Peak fecal silver was detected between 6- and 9-h post-administration and <0.5% of the administered dose was cumulatively detected in liver, spleen, intestines or urine at 48 h. Although particle size and coating did not affect tissue accumulation, silver was detected in liver, spleen and kidney of mice administered ionic silver at marginally higher levels than those administered AgNP, suggesting that silver ion may be more bioavailable. Our results suggest that, irrespective of particle size and coating, acute oral exposure to AgNP at doses relevant to potential human exposure is associated with predominantly fecal elimination and is not associated with accumulation in tissue or toxicity. PMID:26305411

  3. Measurement of blood protease kinetic parameters with self-assembled monolayer ligand binding assays and label-free MALDI-TOF MS.

    PubMed

    Patrie, Steven M; Roth, Michael J; Plymire, Daniel A; Maresh, Erica; Zhang, Junmei

    2013-11-01

    We report novel ligand binding assay (LBA) surface modalities that permit plasma protease catalytic efficiency (kcat/km) determination by MALDI-TOF MS without the use of liquid chromatography or internal standards such as chemical or metalized labels. Two model LBAs were constructed on planar self-assembled monolayers (SAMs) and used to evaluate the clinically relevant metalloprotease ADAMTS-13 kinetics in plasma. The SAM chemistries were designed to improve biosampling efficiency by minimization of nonspecific adsorption of abundant proteins present at ~100,000 the concentration of the endogenous enzyme. In the first protocol, in-solution digestion of the ADAMTS-13 substrate (vWFh) was performed with immunoaffinity enrichment of the reaction substrate and product to SAM arrays. The second configuration examined protease kcat/km via a surface digestion modality where different substrates were covalently immobilized to the SAM at controlled surface density for optimized protease screens. The results show the MALDI-TOF MS LBA platforms provide limits of quantitation to ~1% protease activity (~60 pM enzyme concentration) in <1 h analysis time, a ~16 improvement over other MS-based LBA formats. Implementation of a vacuum-sublimed MALDI matrix provided good MALDI-TOF MS intra- and interday repeatability, ~1.2 and ~6.6% RSD, respectively. Platform reliability permitted kcat/km determination without internal standards with observed values ~10 improved versus conventional fluorophoric assays. Application of the assays to 12 clinical plasma samples demonstrated proof-of-concept for clinical applications. Overall, this work demonstrates that rationally designed surface chemistries for MALDI-TOF MS may serve as an alternative, label-free methodology with potential for a wide range of biotechnology applications related to targeted enzyme molecular diagnostics. PMID:24107006

  4. A calculator program for least-squares parameter estimation according to the one-compartment kinetic model with zero-order input.

    PubMed

    Messori, A; Donati-Cori, G; Tendi, E

    1984-01-01

    A calculator program that performs a nonlinear least-squares fit to data conforming to the one-compartment model with zero-order input is described. The program, which is designed for the Hewlett-Packard HP-41 CV calculator, is based on the Gauss-Newton iterative algorithm as modified by Hartley. A subroutine for calculation of initial parameter estimates is incorporated into the program. Plasma concentration data relative to a single oral dose of a sustained-release theophylline formulation are used to demonstrate the practical application of the program. PMID:6547651

  5. Dual-point competition association assay: a fast and high-throughput kinetic screening method for assessing ligand-receptor binding kinetics.

    PubMed

    Guo, Dong; van Dorp, Erika J H; Mulder-Krieger, Thea; van Veldhoven, Jacobus P D; Brussee, Johannes; Ijzerman, Adriaan P; Heitman, Laura H

    2013-03-01

    The concept of ligand-receptor binding kinetics is emerging as an important parameter in the early phase of drug discovery. Since the currently used kinetic assays are laborious and low throughput, we developed a method that enables fast and large format screening. It is a so-called dual-point competition association assay, which measures radioligand binding at two different time points in the absence or presence of unlabeled competitors. Specifically, this assay yields the kinetic rate index (KRI), which is a measure for the binding kinetics of the unlabeled ligands screened. As a prototypical drug target, the adenosine A(1) receptor (A(1)R) was chosen for assay validation and optimization. A screen with 35 high-affinity A(1)R antagonists yielded seven compounds with a KRI value above 1.0, which indicated a relatively slow dissociation from the target. All other compounds had a KRI value below or equal to 1.0, predicting a relatively fast dissociation rate. Several compounds were selected for follow-up kinetic quantifications in classical kinetic assays and were shown to have kinetic rates that corresponded to their KRI values. The dual-point assay and KRI value may have general applicability at other G-protein-coupled receptors, as well as at drug targets from other protein families. PMID:23093571

  6. Causal network inference using biochemical kinetics

    PubMed Central

    Oates, Chris J.; Dondelinger, Frank; Bayani, Nora; Korkola, James; Gray, Joe W.; Mukherjee, Sach

    2014-01-01

    Motivation: Networks are widely used as structural summaries of biochemical systems. Statistical estimation of networks is usually based on linear or discrete models. However, the dynamics of biochemical systems are generally non-linear, suggesting that suitable non-linear formulations may offer gains with respect to causal network inference and aid in associated prediction problems. Results: We present a general framework for network inference and dynamical prediction using time course data that is rooted in non-linear biochemical kinetics. This is achieved by considering a dynamical system based on a chemical reaction graph with associated kinetic parameters. Both the graph and kinetic parameters are treated as unknown; inference is carried out within a Bayesian framework. This allows prediction of dynamical behavior even when the underlying reaction graph itself is unknown or uncertain. Results, based on (i) data simulated from a mechanistic model of mitogen-activated protein kinase signaling and (ii) phosphoproteomic data from cancer cell lines, demonstrate that non-linear formulations can yield gains in causal network inference and permit dynamical prediction and uncertainty quantification in the challenging setting where the reaction graph is unknown. Availability and implementation: MATLAB R2014a software is available to download from warwick.ac.uk/chrisoates. Contact: c.oates@warwick.ac.uk or sach@mrc-bsu.cam.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25161235

  7. Effect of Mn and Cr additions on kinetics of recrystallization and parameters of grain-boundary relaxation of Al-4.9Mg alloy

    NASA Astrophysics Data System (ADS)

    Mikhailovskaya, A. V.; Golovin, I. S.; Zaitseva, A. A.; Portnoi, V. K.; Dröttboom, P.; Cifre, J.

    2013-03-01

    Methods of microstructural analysis, measurements of hardness, and temperature and time dependences of internal friction (TDIF and TDIF(iso), respectively) have been used to study recrystallization in cold-rolled alloys and grain-boundary relaxation in annealed alloys. A complex analysis of the effect of additions of transition metals (Mn, Cr) on the magnitude of the activation energy of the background of the internal friction in deformed and annealed states and on the activation parameters of grain-boundary relaxation has been performed. Methods of amplitude dependences of internal friction (ADIF) have been used to determine the critical amplitude that corresponds to the beginning of microplastic deformation in the alloys at different temperatures.

  8. Nonphotochemical hole burning and dispersive kinetics in amorphous solids

    SciTech Connect

    Kenney, M.J.

    1990-09-21

    Results covering burn intensities in the nW to {mu}W/cm{sup 2} range, of dispersive hole growth kinetics are reported for Oxazine 720 in glycerol glasses and polyvinyl alcohol polymer films and their deuterated analogues. A theoretical model which employs a distribution function for the hole burning rate constant based upon a Gaussian distribution for the tunnel parameter is shown to accurately describe the kinetic data. This model incorporates the linear electron-phonon coupling. A method for calculating the nonphotochemical quantum yield is presented which utilizes the Gaussian distribution of tunnel parameters. The quantum yield calculation can be extended to determine a quantum yield as a function of hole depth. The effect of spontaneous hole filling is shown to be insignificant over the burn intensity range studied. Average relaxation rates for hole burning are {approximately}8 orders of magnitude greater than for hole filling. The dispersive kinetics of hole burning are observed to be independent over the temperature range of these experiments, 1.6 to 7.0 K. 6 refs., 20 figs., 1 tab.

  9. Kinetic Turbulence

    NASA Astrophysics Data System (ADS)

    Howes, Gregory G.

    The weak collisionality typical of turbulence in many diffuse astrophysical plasmas invalidates an MHD description of the turbulent dynamics, motivating the development of a more comprehensive theory of kinetic turbulence. In particular, a kinetic approach is essential for the investigation of the physical mechanisms responsible for the dissipation of astrophysical turbulence and the resulting heating of the plasma. This chapter reviews the limitations of MHD turbulence theory and explains how kinetic considerations may be incorporated to obtain a kinetic theory for astrophysical plasma turbulence. Key questions about the nature of kinetic turbulence that drive current research efforts are identified. A comprehensive model of the kinetic turbulent cascade is presented, with a detailed discussion of each component of the model and a review of supporting and conflicting theoretical, numerical, and observational evidence.

  10. Processing parameters and kinetics of bromination and chlorination in the YBa sub 2 Cu sub 3 O sub 6+x system

    SciTech Connect

    Radousky, H.B.; Glass, R.S.; Back, D.; Chin, A.H.; Fluss, M.J. ); Liu, J.Z.; Mosly, W.D.; Klavins, P.; Shelton, R.N. . Dept. of Physics)

    1990-09-01

    The introduction of halogens such as Cl{sub 2}, Br{sub 2} can restore 90 K superconductivity to oxygen deficient YBa{sub 2}Cu{sub 3}O{sub 6+x}. This is potentially important for applications to thin film devices due to the low processing temperatures required relative to reprocessing with oxygen. Low temperature 260{degrees}C and short time (>5 minute) bromination has been shown to convert initially insulting YBa{sub 2}Cu{sub 3}O{sub 6.2} powder to a high temperature superconductor with properties similar to the standard O{sub 7} material. This process has now been extended to single crystals as well, but with somewhat different processing parameters. Thermal gravimetric analysis (TGA) coupled with mass spectrometry indicates that the Br becomes strongly bonded, with no release of Br observed in taking powder samples to 1000{degree}C in flowing forming gas (2%H{sub 2}/98%N{sub 2}). The reaction has also been found to be highly exothermic for both Br and Cl treatments, which is consistent with the strong bonding of the bromine discussed above.

  11. Development of a chemical kinetic model for a biosolids fluidized-bed gasifier and the effects of operating parameters on syngas quality.

    PubMed

    Champion, Wyatt M; Cooper, C David; Mackie, Kevin R; Cairney, Paul

    2014-02-01

    In an effort to decrease the land disposal of sewage sludge biosolids and to recover energy, gasification has become a viable option for the treatment of waste biosolids. The process of gasification involves the drying and devolatilization and partial oxidation of biosolids, followed closely by the reduction of the organic gases and char in a single vessel. The products of gasification include a gaseous fuel composed largely of N2, H2O, CO2, CO, H2, CH4, and tars, as well as ash and unburned solid carbon. A mathematical model was developed using published devolatilization, oxidation, and reduction reactions, and calibrated using data from three different experimental studies of laboratory-scale fluidized-bed sewage sludge gasifiers reported in the literature. The model predicts syngas production rate, composition, and temperature as functions of the biosolids composition and feed rate, the air input rate, and gasifier bottom temperature. Several data sets from the three independent literature sources were reserved for model validation, with a focus placed on five species of interest (CO, CO2, H2, CH4, and C6H6). The syngas composition predictions from the model compared well with experimental results from the literature. A sensitivity analysis on the most important operating parameters of a gasifier (bed temperature and equivalence ratio) was performed as well, with the results of the analysis offering insight into the operations of a biosolids gasifier. PMID:24654385

  12. Effect of driver impedance on dense plasma focus Z-pinch neutron yield

    NASA Astrophysics Data System (ADS)

    Sears, Jason; Link, Anthony; Schmidt, Andrea; Welch, Dale

    2014-12-01

    The Z-pinch phase of a dense plasma focus (DPF) heats the plasma by rapid compression and accelerates ions across its intense electric fields, producing neutrons through both thermonuclear and beam-target fusion. Driver characteristics have empirically been shown to affect performance, as measured by neutron yield per unit of stored energy. We are exploring the effect of driver characteristics on DPF performance using particle-in-cell (PIC) simulations of a kJ scale DPF. In this work, our PIC simulations are fluid for the run-down phase and transition to fully kinetic for the pinch phase, capturing kinetic instabilities, anomalous resistivity, and beam formation during the pinch. The anode-cathode boundary is driven by a circuit model of the capacitive driver, including system inductance, the load of the railgap switches, the guard resistors, and the coaxial transmission line parameters. It is known that the driver impedance plays an important role in the neutron yield: first, it sets the peak current achieved at pinch time; and second, it affects how much current continues to flow through the pinch when the pinch inductance and resistance suddenly increase. Here we show from fully kinetic simulations how total neutron yield depends on the impedance of the driver and the distributed parameters of the transmission circuit. Direct comparisons between the experiment and simulations enhance our understanding of these plasmas and provide predictive design capability for neutron source applications.

  13. Effect of driver impedance on dense plasma focus Z-pinch neutron yield

    SciTech Connect

    Sears, Jason E-mail: schmidt36@llnl.gov; Link, Anthony E-mail: schmidt36@llnl.gov; Schmidt, Andrea E-mail: schmidt36@llnl.gov; Welch, Dale

    2014-12-15

    The Z-pinch phase of a dense plasma focus (DPF) heats the plasma by rapid compression and accelerates ions across its intense electric fields, producing neutrons through both thermonuclear and beam-target fusion. Driver characteristics have empirically been shown to affect performance, as measured by neutron yield per unit of stored energy. We are exploring the effect of driver characteristics on DPF performance using particle-in-cell (PIC) simulations of a kJ scale DPF. In this work, our PIC simulations are fluid for the run-down phase and transition to fully kinetic for the pinch phase, capturing kinetic instabilities, anomalous resistivity, and beam formation during the pinch. The anode-cathode boundary is driven by a circuit model of the capacitive driver, including system inductance, the load of the railgap switches, the guard resistors, and the coaxial transmission line parameters. It is known that the driver impedance plays an important role in the neutron yield: first, it sets the peak current achieved at pinch time; and second, it affects how much current continues to flow through the pinch when the pinch inductance and resistance suddenly increase. Here we show from fully kinetic simulations how total neutron yield depends on the impedance of the driver and the distributed parameters of the transmission circuit. Direct comparisons between the experiment and simulations enhance our understanding of these plasmas and provide predictive design capability for neutron source applications.

  14. Inverse Kinetics

    Energy Science and Technology Software Center (ESTSC)

    2000-03-20

    Given the space-independent, one energy group reactor kinetics equations and the initial conditions, this prgram determines the time variation of reactivity required to produce the given input of flux-time data.

  15. Calculation of Kinetics Parameters for the NBSR

    SciTech Connect

    Hanson A. L.; Diamond D.

    2012-03-06

    The delayed neutron fraction and prompt neutron lifetime have been calculated at different times in the fuel cycle for the NBSR when fueled with both high-enriched uranium (HEU) and low-enriched uranium (LEU) fuel. The best-estimate values for both the delayed neutron fraction and the prompt neutron lifetime are the result of calculations using MCNP5-1.60 with the most recent ENDFB-VII evaluations. The best-estimate values for the total delayed neutron fraction from fission products are 0.00665 and 0.00661 for the HEU fueled core at startup and end-of-cycle, respectively. For the LEU fuel the best estimate values are 0.00650 and 0.00648 at startup and end-of-cycle, respectively. The present recommendations for the delayed neutron fractions from fission products are smaller than the value reported previously of 0.00726 for the HEU fuel. The best-estimate values for the contribution from photoneutrons will remain as 0.000316, independent of the fuel or time in the cycle.The values of the prompt neutron lifetime as calculated with MCNP5-1.60 are compared to values calculated with two other independent methods and the results are in reasonable agreement with each other. The recommended, conservative values of the neutron lifetime for the HEU fuel are 650 {micro}s and 750 {micro}s for the startup and end-of-cycle conditions, respectively. For LEU fuel the recommended, conservative values are 600 {micro}s and 700 {micro}s for the startup and end-of-cycle conditions, respectively. In all three calculations, the prompt neutron lifetime was determined to be longer for the end-of-cycle equilibrium condition when compared to the startup condition. The results of the three analyses were in agreement that the LEU fuel will exhibit a shorter prompt neutron lifetime when compared to the HEU fuel.

  16. Study on kinetic model of microwave thermocatalytic treatment of biomass tar model compound.

    PubMed

    Anis, Samsudin; Zainal, Z A

    2014-01-01

    Kinetic model parameters for toluene conversion under microwave thermocatalytic treatment were evaluated. The kinetic rate constants were determined using integral method based on experimental data and coupled with Arrhenius equation for obtaining the activation energies and pre-exponential factors. The model provides a good agreement with the experimental data. The kinetic model was also validated with standard error of 3% on average. The extrapolation of the model showed a reasonable trend to predict toluene conversion and product yield both in thermal and catalytic treatments. Under microwave irradiation, activation energy of toluene conversion was lower in the range of 3-27 kJ mol(-1) compared to those of conventional heating reported in the literatures. The overall reaction rate was six times higher compared to conventional heating. As a whole, the kinetic model works better for tar model removal in the absence of gas reforming within a level of reliability demonstrated in this study. PMID:24231266

  17. Interactions between SH2 domains and tyrosine-phosphorylated platelet-derived growth factor beta-receptor sequences: analysis of kinetic parameters by a novel biosensor-based approach.

    PubMed Central

    Panayotou, G; Gish, G; End, P; Truong, O; Gout, I; Dhand, R; Fry, M J; Hiles, I; Pawson, T; Waterfield, M D

    1993-01-01

    The interaction between SH2 domains and phosphotyrosine-containing sequences was examined by real-time measurements of kinetic parameters. The SH2 domains of the p85 subunit of the phosphatidylinositol 3-kinase as well as of other signaling molecules were expressed in bacteria as glutathione S-transferase fusion proteins. Phosphotyrosine-containing peptides, corresponding to two autophosphorylation sites on the human platelet-derived growth factor beta-receptor that are responsible for phosphatidylinositol 3-kinase binding, were synthesized and used as capturing molecules, immobilized on a biosensor surface. The association and dissociation rate constants for binding to both sites were determined for intact p85 and the recombinant SH2 domains. High association rates were found to be coupled to very fast dissociation rates for all interactions studied. A binding specificity was observed for the two SH2 domains of p85, with the N-terminal SH2 binding with high affinity to the Tyr-751 site but not to the Tyr-740 site, and the C-terminal SH2 interacting strongly with both sites. This approach should be generally applicable to the study of the specificity inherent in the assembly of signaling complexes by activated protein-tyrosine kinase receptors. PMID:8388538

  18. Multiple heating rate kinetic parameters, thermal, X-ray diffraction studies of newly synthesized octahedral copper complexes based on bromo-coumarins along with their antioxidant, anti-tubercular and antimicrobial activity evaluation

    NASA Astrophysics Data System (ADS)

    Patel, Ketan S.; Patel, Jiten C.; Dholariya, Hitesh R.; Patel, Kanuprasad D.

    2012-10-01

    Series of new Cu(II) complexes were synthesized by classical thermal technique. The biologically potent ligands (L) were prepared by refluxing 6-brom 3-acetyl coumarin with aldehydes in the presence of piperidine in ethanol. The Cu(II) complexes have been synthesized by mixing an aqueous solution of Cu(NO3)2 in 1:1 molar ratios with ethanolic bidentate ligands and Clioquinol. The structures of the ligands and their copper complexes were investigated and confirmed by the elemental analysis, FT-IR, 1H NMR, 13C NMR, mass spectral and powder X-ray diffraction studies respectively. Thermal behaviour of newly synthesized mixed ligand Cu(II) complexes were investigated by means of thermogravimetry, differential thermogravimetry, differential scanning calorimetry, electronic spectra and magnetic measurements. Dynamic scan of DSC experiments for Cu(II) complexes were taken at different heating rates (2.5-20 °C min-1). Kinetic parameters for second step degradation of all complexes obtained by Kissinger's and Ozawa's methods were in good agreement. On the basis of these studies it is clear that ligands coordinated to metal atom in a monobasic bidentate mode, by Osbnd O and Osbnd N donor system. Thus, suitable octahedral geometry for hexa-coordinated state has been suggested for the metal complexes. Both the ligands as well as its complexes have been screened for their in vitro antioxidant, anti-tubercular and antimicrobial activities. All were found to be significant potent compared to parent ligands employed for complexation.

  19. Comparison of egg and high yielding MDCK cell-derived live attenuated influenza virus for commercial production of trivalent influenza vaccine: in vitro cell susceptibility and influenza virus replication kinetics in permissive and semi-permissive cells.

    PubMed

    Hussain, Althaf I; Cordeiro, Melissa; Sevilla, Elizabeth; Liu, Jonathan

    2010-05-14

    Currently MedImmune manufactures cold-adapted (ca) live, attenuated influenza vaccine (LAIV) from specific-pathogen free (SPF) chicken eggs. Difficulties in production scale-up and potential exposure of chicken flocks to avian influenza viruses especially in the event of a pandemic influenza outbreak have prompted evaluation and development of alternative non-egg based influenza vaccine manufacturing technologies. As part of MedImmune's effort to develop the live attenuated influenza vaccine (LAIV) using cell culture production technologies we have investigated the use of high yielding, cloned MDCK cells as a substrate for vaccine production by assessing host range and virus replication of influenza virus produced from both SPF egg and MDCK cell production technologies. In addition to cloned MDCK cells the indicator cell lines used to evaluate the impact of producing LAIV in cells on host range and replication included two human cell lines: human lung carcinoma (A549) cells and human muco-epidermoid bronchiolar carcinoma (NCI H292) cells. The influenza viruses used to infect the indicators cell lines represented both the egg and cell culture manufacturing processes and included virus strains that composed the 2006-2007 influenza seasonal trivalent vaccine (A/New Caledonia/20/99 (H1N1), A/Wisconsin/67/05 (H3N2) and B/Malaysia/2506/04). Results from this study demonstrate remarkable similarity between influenza viruses representing the current commercial egg produced and developmental MDCK cell produced vaccine production platforms. MedImmune's high yielding cloned MDCK cells used for the cell culture based vaccine production were highly permissive to both egg and cell produced ca attenuated influenza viruses. Both the A549 and NCI H292 cells regardless of production system were less permissive to influenza A and B viruses than the MDCK cells. Irrespective of the indicator cell line used the replication properties were similar between egg and the cell produced influenza viruses. Based on these study results we conclude that the MDCK cell produced and egg produced vaccine strains are highly comparable. PMID:20307595

  20. Kinetic Study of Acid Hydrolysis of Rice Straw

    PubMed Central

    Sarkar, Nibedita; Aikat, Kaustav

    2013-01-01

    Rice straw is a renewable, cheap, and abundant waste in tropical countries. The pentose content of rice straw can be used as a substrate for many types of value-added products such as xylitol and biofuel. Dilute acid hydrolysis mainly releases pentose from rice straw. The objective of the study was to determine the effect of H2SO4 concentration and reaction time on the xylose production. The variation of the main product xylose with the reaction time was described by a kinetic model and kinetic parameters were calculated to describe the variation of the xylose production with time. The optimum yield (19.35?g/L) was obtained at 0.24?mol/L H2SO4 and 30 minutes. PMID:25969789

  1. Oxidative desulfurization: kinetic modelling.

    PubMed

    Dhir, S; Uppaluri, R; Purkait, M K

    2009-01-30

    Increasing environmental legislations coupled with enhanced production of petroleum products demand, the deployment of novel technologies to remove organic sulfur efficiently. This work represents the kinetic modeling of ODS using H(2)O(2) over tungsten-containing layered double hydroxide (LDH) using the experimental data provided by Hulea et al. [V. Hulea, A.L. Maciuca, F. Fajula, E. Dumitriu, Catalytic oxidation of thiophenes and thioethers with hydrogen peroxide in the presence of W-containing layered double hydroxides, Appl. Catal. A: Gen. 313 (2) (2006) 200-207]. The kinetic modeling approach in this work initially targets the scope of the generation of a superstructure of micro-kinetic reaction schemes and models assuming Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms. Subsequently, the screening and selection of above models is initially based on profile-based elimination of incompetent schemes followed by non-linear regression search performed using the Levenberg-Marquardt algorithm (LMA) for the chosen models. The above analysis inferred that Eley-Rideal mechanism describes the kinetic behavior of ODS process using tungsten-containing LDH, with adsorption of reactant and intermediate product only taking place on the catalyst surface. Finally, an economic index is presented that scopes the economic aspects of the novel catalytic technology with the parameters obtained during regression analysis to conclude that the cost factor for the catalyst is 0.0062-0.04759 US $ per barrel. PMID:18541367

  2. Simple model relating recombination rates and non-proportional light yield in scintillators

    SciTech Connect

    Moses, William W.; Bizarri, Gregory; Singh, Jai; Vasil'ev, Andrey N.; Williams, Richard T.

    2008-09-24

    We present a phenomenological approach to derive an approximate expression for the local light yield along a track as a function of the rate constants of different kinetic orders of radiative and quenching processes for excitons and electron-hole pairs excited by an incident {gamma}-ray in a scintillating crystal. For excitons, the radiative and quenching processes considered are linear and binary, and for electron-hole pairs a ternary (Auger type) quenching process is also taken into account. The local light yield (Y{sub L}) in photons per MeV is plotted as a function of the deposited energy, -dE/dx (keV/cm) at any point x along the track length. This model formulation achieves a certain simplicity by using two coupled rate equations. We discuss the approximations that are involved. There are a sufficient number of parameters in this model to fit local light yield profiles needed for qualitative comparison with experiment.

  3. Comparison of four kinds of extraction techniques and kinetics of microwave-assisted extraction of vanillin from Vanilla planifolia Andrews.

    PubMed

    Dong, Zhizhe; Gu, Fenglin; Xu, Fei; Wang, Qinghuang

    2014-04-15

    Vanillin yield, microscopic structure, antioxidant activity and overall odour of vanilla extracts obtained by different treatments were investigated. MAE showed the strongest extraction power, shortest time and highest antioxidant activity. Maceration gave higher vanillin yields than UAE and PAE, similar antioxidant activity with UAE, but longer times than UAE and PAE. Overall odour intensity of different vanilla extracts obtained by UAE, PAE and MAE were similar, while higher than maceration extracts. Then, powered vanilla bean with a sample/solvent ratio of 4 g/100 mL was selected as the optimum condition for MAE. Next, compared with other three equations, two-site kinetic equation with lowest RMSD and highest R²(adj) was shown to be more suitable in describing the kinetics of vanillin extraction. By fitting the parameters C(eq), k₁, k₂, and f, a kinetics model was constructed to describe vanillin extraction in terms of irradiation power, ethanol concentration, and extraction time. PMID:24295676

  4. A descriptive model for the kinetics of a homogeneous fluorometric immunoassay.

    PubMed

    Zuber, E; Rosso, L; Darbouret, B; Socquet, F; Mathis, G; Flandrois, J P

    1997-02-01

    A descriptive mathematical model was chosen to fit the antigen-antibody association kinetics of a new homogeneous immunometric assay for prolactin, involving time-resolved fluorescence detection (TRACE technology, Time Resolved Amplified Cryptate Emission). We paid special attention to the methodology and criteria applied, to yield a convenient and statistically valid model, designed to allow potential exploitation of kinetic information in the data processing of the assay. We compared specific parameterizations of an hyperbolic model, the Gompertz, and the monomolecular models on the basis of morphological considerations, a statistical analysis of fit, and an assessment of the parameters estimation quality, over a wide range of antigen concentrations. The monomolecular model gave the best fit, and the most precise and stable estimation of its parameters. The study of parameter properties confirmed this choice. PMID:9139047

  5. MAIZE YIELD POTENTIAL: CRITICAL PROCESSES AND SIMULATION MODELING IN A HIGH-YIELDING ENVIRONMENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate parameters describing processes of maize (Zea mays L.) growth and grain yield production in high-yielding, irrigated conditions provide a system for studying grain yield potential in different environments. In this study we measured maize leaf area index (LAI), the light extinction coeffic...

  6. Efficient kinetic macrocyclization.

    PubMed

    Feng, Wen; Yamato, Kazuhiro; Yang, Liuqing; Ferguson, Joseph S; Zhong, Lijian; Zou, Shuliang; Yuan, Lihua; Zeng, Xiao Cheng; Gong, Bing

    2009-02-25

    In this article, the highly efficient formation of a series of recently discovered aromatic oligoamide macrocycles consisting of six meta-linked residues is first discussed. The macrocycles, with their backbones rigidified by three-center hydrogen bonds, were found to form in high yields that deviate dramatically from the theoretically allowed value obtained from kinetic simulation of a typical kinetically controlled macrocyclization reaction. The folding of the uncyclized six-residue oligomeric precursors, which belong to a class of backbone-rigidified oligoamides that have been demonstrated by us to adopt well-defined crescent conformations, plays a critical role in the observed high efficiency. Out of two possible mechanisms, one is consistent with experimental results obtained from the coupling of crescent oligoamides of different lengths, which suggests a remote steric effect that discourages the formation of oligomers having lengths longer than the backbone of the six-residue precursors. The suggested mechanism is supported by the efficient formation of very large aromatic oligoamide macrocycles consisting of alternating meta- and para-linked residues. These large macrocycles, having H-bond-rigidified backbones and large internal lumens, are formed in high (>80%) yields on the basis of one-step, multicomponent macrocyclization reactions. The condensation of monomeric meta-diamines and a para-diacid chloride leads to the efficient formation of macrocycles with 14, 16, and 18 residues, corresponding to 70-, 80-, and 90-membered rings that contain internal cavities of 2.2, 2.5, and 2.9 nm across. In addition, the condensation between trimeric or pentameric diamines and a monomeric diacid chloride had resulted in the selective formation of single macrocyclic products with 16 or 18 residues. The efficient formation of the macrocycles, along with the absence of other noncyclic oligomeric and polymeric byproducts, is in sharp contrast to the poor yields associated with most kinetically controlled macrocyclization reactions. This system represents a rare example of highly efficient kinetic macrocyclization reactions involving large numbers of reacting units, which provides very large, shape-persistent macrocycles. PMID:19191583

  7. New kinetic model for thermal decomposition of heterogeneous materials

    SciTech Connect

    Caballero, J.A.; Font, R.; Marcilla, A.; Conesa, J.A.

    1995-03-01

    In the kinetic studies of thermal decomposition of lignocellulosic materials using dynamic TG, relationships between the biomass fraction ``w`` and the time ``t`` of the form dw/dt = {minus}k(w {minus} w{sub {infinity}}){sup n} are usually admitted, and the residue fraction at infinite time (w{sub {infinity}}) is considered constant. However, in heterogeneous solids such as lignocellulosic materials, the different polymers decompose at different temperatures, and so the value of w{sub {infinity}} is not constant, Therefore, the previous equation must be considered approximate. To illustrate this feature, experiments with kraft lignin, which decomposes in an interval of temperatures between 150 and 750 C, have been carried out. A kinetic model is proposed, bearing in mind that there is a maximum pyrolyzable fraction at each temperature. This model considers that the thermal decomposition of a heterogeneous material occurs through a great number of reactions and that at a given temperature only some fractions can decompose. The kinetic parameters (activation energy and preexponential factor) can change during the decomposition process as function of the reactions taking place. Under some assumptions, it is deduced that this model is equivalent to assume the kinetic law dw/dt = {minus}k(w{minus}w{sub {infinity}}) for first-order reaction, where the residue yield w{sub {infinity}} is a function of the temperature.

  8. Kinetic modeling of kraft delignification of Eucalyptus globulus

    SciTech Connect

    Santos, A.; Rodriguez, F.; Gilarranz, M.A.; Moreno, D.; Garcia-Ochoa, F.

    1997-10-01

    A kinetic model for the kraft pulping delignification of Eucalyptus globulus is proposed. This model is discriminated among some kinetic expressions often used in the literature, and the kinetic parameters are determined by fitting of experimental results. A total of 25 isothermal experiments at liquor-to-wood ratios of 50 and 5 L/kg have been carried out. Initial, bulk, and residual delignification stages have been observed during the lignin removal, the transitions being, referring to the lignin initial content, about 82 and 3%. Carbohydrate removal and effective alkali-metal and hydrosulfide consumption have been related with the lignin removal by means of effective stoichiometric coefficients for each stage, coefficients also being calculated by fitting of the experimental data. The kinetic model chosen has been used to simulate typical kraft pulping experiments carried out at nonisothermal conditions, using a temperature ramp. The model yields simulated values close to those obtained experimentally for the wood studied and also ably reproduces the trends of the literature data.

  9. Kinetic distance and kinetic maps from molecular dynamics simulation.

    PubMed

    No, Frank; Clementi, Cecilia

    2015-10-13

    Characterizing macromolecular kinetics from molecular dynamics (MD) simulations requires a distance metric that can distinguish slowly interconverting states. Here, we build upon diffusion map theory and define a kinetic distance metric for irreducible Markov processes that quantifies how slowly molecular conformations interconvert. The kinetic distance can be computed given a model that approximates the eigenvalues and eigenvectors (reaction coordinates) of the MD Markov operator. Here, we employ the time-lagged independent component analysis (TICA). The TICA components can be scaled to provide a kinetic map in which the Euclidean distance corresponds to the kinetic distance. As a result, the question of how many TICA dimensions should be kept in a dimensionality reduction approach becomes obsolete, and one parameter less needs to be specified in the kinetic model construction. We demonstrate the approach using TICA and Markov state model (MSM) analyses for illustrative models, protein conformation dynamics in bovine pancreatic trypsin inhibitor and protein-inhibitor association in trypsin and benzamidine. We find that the total kinetic variance (TKV) is an excellent indicator of model quality and can be used to rank different input feature sets. PMID:26574285

  10. Kinetic roughening: how directionality changes the game

    NASA Astrophysics Data System (ADS)

    Araujo, Nuno

    The nonequilibrium evolution of growing interfaces has attracted many experimental and theoretical studies over decades. One of the most popular theoretical approaches considers kinetic discrete models to describe particle aggregation on substrates. Albeit simple, these models are expected to contain the relevant physics. Inspired by recent advances in the production of functionalized colloidal particles, with attractive patches on their surface, we have proposed a stochastic model to study the effect of directionality and selective pairwise interactions on the kinetics of aggregation. We find a nontrivial dependence of the bulk and surface properties on the strength and flexibility of the patch-patch interactions, and on the spatial-patch distribution. For three-patch particles, sustained growth is only observed for a finite-range of the distance between patches, yielding two absorbing phase transitions and a tricritical flexibility. For four-patch particles with two distinct patches, i.e. strong and weak bonds, and sufficiently different bonding probabilities, the scaling properties of the interface crossover from the universality class of Kardar-Parisi-Zhang to the critical class of Kardar-Parisi-Zhang with quenched disorder. The latter is observed for an extended range of the parameters revealing the presence of a self-organized critical mechanism. Implications of our findings beyond functionalized particles are also discussed.

  11. Compartmental analysis of (11C)flumazenil kinetics for the estimation of ligand transport rate and receptor distribution using positron emission tomography

    SciTech Connect

    Koeppe, R.A.; Holthoff, V.A.; Frey, K.A.; Kilbourn, M.R.; Kuhl, D.E. )

    1991-09-01

    The in vivo kinetic behavior of (11C)flumazenil ((11C)FMZ), a non-subtype-specific central benzodiazepine antagonist, is characterized using compartmental analysis with the aim of producing an optimized data acquisition protocol and tracer kinetic model configuration for the assessment of (11C)FMZ binding to benzodiazepine receptors (BZRs) in human brain. The approach presented is simple, requiring only a single radioligand injection. Dynamic positron emission tomography data were acquired on 18 normal volunteers using a 60- to 90-min sequence of scans and were analyzed with model configurations that included a three-compartment, four-parameter model, a three-compartment, three-parameter model, with a fixed value for free plus nonspecific binding; and a two-compartment, two-parameter model. Statistical analysis indicated that a four-parameter model did not yield significantly better fits than a three-parameter model. Goodness of fit was improved for three- versus two-parameter configurations in regions with low receptor density, but not in regions with moderate to high receptor density. Thus, a two-compartment, two-parameter configuration was found to adequately describe the kinetic behavior of (11C)FMZ in human brain, with stable estimates of the model parameters obtainable from as little as 20-30 min of data. Pixel-by-pixel analysis yields functional images of transport rate (K1) and ligand distribution volume (DV), and thus provides independent estimates of ligand delivery and BZR binding.

  12. Compartmental analysis of [11C]flumazenil kinetics for the estimation of ligand transport rate and receptor distribution using positron emission tomography.

    PubMed

    Koeppe, R A; Holthoff, V A; Frey, K A; Kilbourn, M R; Kuhl, D E

    1991-09-01

    The in vivo kinetic behavior of [11C]flumazenil ([11C]FMZ), a non-subtype-specific central benzodiazepine antagonist, is characterized using compartmental analysis with the aim of producing an optimized data acquisition protocol and tracer kinetic model configuration for the assessment of [11C]FMZ binding to benzodiazepine receptors (BZRs) in human brain. The approach presented is simple, requiring only a single radioligand injection. Dynamic positron emission tomography data were acquired on 18 normal volunteers using a 60- to 90-min sequence of scans and were analyzed with model configurations that included a three-compartment, four-parameter model, a three-compartment, three-parameter model, with a fixed value for free plus nonspecific binding; and a two-compartment, two-parameter model. Statistical analysis indicated that a four-parameter model did not yield significantly better fits than a three-parameter model. Goodness of fit was improved for three- versus two-parameter configurations in regions with low receptor density, but not in regions with moderate to high receptor density. Thus, a two-compartment, two-parameter configuration was found to adequately describe the kinetic behavior of [11C]FMZ in human brain, with stable estimates of the model parameters obtainable from as little as 20-30 min of data. Pixel-by-pixel analysis yields functional images of transport rate (K1) and ligand distribution volume (DV"), and thus provides independent estimates of ligand delivery and BZR binding. PMID:1651944

  13. Chemical kinetics modeling

    SciTech Connect

    Westbrook, C.K.; Pitz, W.J.

    1993-12-01

    This project emphasizes numerical modeling of chemical kinetics of combustion, including applications in both practical combustion systems and in controlled laboratory experiments. Elementary reaction rate parameters are combined into mechanisms which then describe the overall reaction of the fuels being studied. Detailed sensitivity analyses are used to identify those reaction rates and product species distributions to which the results are most sensitive and therefore warrant the greatest attention from other experimental and theoretical research programs. Experimental data from a variety of environments are combined together to validate the reaction mechanisms, including results from laminar flames, shock tubes, flow systems, detonations, and even internal combustion engines.

  14. Extractable alkyldibenzothiophenes in Posidonia Shale (Toarcian) source rocks: Relationship of yields to petroleum formation and expulsion

    NASA Astrophysics Data System (ADS)

    Radke, M.; Willsch, H.

    1994-12-01

    Extractable C 0 to C 2 dibenzothiophenes were determined by capillary gas chromatography in 125 rock samples of the Posidonia Shale formation with vitrinite reflectance (R r) between 0.4 and 1.5% mostly derived from the Hils syncline area in northwestern Germany. Average yields of individual methyldibenzothiophenes in the range of 2-110 μg/g total organic carbon (TOC) are comparable to respective data for forty-seven rock samples of the Kimmeridge Clay formation (0.4-0.9% R r) from the Dorset coast and different regions of the North Sea including the Brae Oilfield area ( LEYTHAEUSER et al., 1988a,b) Alkyldibenzothiophenes in samples of either formation display distinct yield profiles which agree with those of C 15+ soluble organic matter and hydrocarbon groups, i.e., an immature zone with low yields at 0.4-0.5% R r is followed by a zone of enhanced yields between 0.5 and 0.9% R r, which corresponds to the oil-generation window. Yields are low again in overmature Posidonia Shale samples beyond 1.4% R r. Yield profiles are disturbed towards their maximum around 0.7% R r due to highly variable depletion by erratic petroleum expulsion. Maturity parameters, such as the methyldibenzothiophene ratio (MDR) and the ethyldibenzothiophene ratio (EDR) are based on discrepancies in yield profiles among individual C 1and C 2 dibenzothiophenes that can be attributed to variations in kinetic stability. The parameters are virtually unaffected by depletion, as evidenced by variabilities, much lower for MDR and EDR than for the yields of the components employed. They are likely to be influenced by geothermal heating rates however. When compared to Kimmeridge Clay samples, MDR and EDR increase more gradually with R r beyond 0.7% in Posidonia Shale samples that have experienced enhanced geothermal heating rates owing to an intrusive body in the Hils syncline area.

  15. Measurements of Euglena motion parameters by laser light scattering.

    PubMed Central

    Ascoli, C; Barbi, M; Frediani, C; Murè, A

    1978-01-01

    Measurements of Euglena gracilis motion parameters have been performed by the spectral analysis of the scattered laser light. Samples were oriented by a radiofrequency field to obtain easily interpretable spectra. Cell rotation frequency and flagellar beating frequency distributions were obtained from the homodyne spectra, whereas the Doppler lines obtained at small observation angles by heterodyne detection yielded the swimming speed distributions. We discuss the broadening of the heterodyne spectra at large angles of observation. An application of this method to the study of the photo-kinetic effect is also described. Images FIGURE 3 PMID:104747

  16. A Comprehensive Enzyme Kinetic Exercise for Biochemistry

    ERIC Educational Resources Information Center

    Barton, Janice S.

    2011-01-01

    This article describes a comprehensive treatment of experimental enzyme kinetics strongly coupled to electronic data acquisition and use of spreadsheets to organize data and perform linear and nonlinear least-squares analyses, all in a manner that promotes development of important reasoning skills. Kinetic parameters are obtained for the stable

  17. [Kinetic analysis of the chemotaxis of bacteria].

    PubMed

    Zaval'skiĭ, L Iu

    1988-01-01

    On the basis of a kinetic model of bacterial chemotactic movement the system of differential equations was reduced to describe the phenomenon of bacterial bonds migration. It follows that Keller-Segel equation is a private case of a more general "diffusion approximation" of the kinetic model. The functional parameters of the reduced equation for E. coli K-12 are estimated. PMID:3390483

  18. A Comprehensive Enzyme Kinetic Exercise for Biochemistry

    ERIC Educational Resources Information Center

    Barton, Janice S.

    2011-01-01

    This article describes a comprehensive treatment of experimental enzyme kinetics strongly coupled to electronic data acquisition and use of spreadsheets to organize data and perform linear and nonlinear least-squares analyses, all in a manner that promotes development of important reasoning skills. Kinetic parameters are obtained for the stable…

  19. Yield Improvement in Steel Casting (Yield II)

    SciTech Connect

    Richard A. Hardin; Christoph Beckermann; Tim Hays

    2002-02-18

    This report presents work conducted on the following main projects tasks undertaken in the Yield Improvement in Steel Casting research program: Improvement of Conventional Feeding and Risering Methods, Use of Unconventional Yield Improvement Techniques, and Case Studies in Yield Improvement. Casting trials were conducted and then simulated using the precise casting conditions as recorded by the participating SFSA foundries. These results present a statistically meaningful set of experimental data on soundness versus feeding length. Comparisons between these casting trials and casting trials performed more than forty years ago by Pellini and the SFSA are quite good and appear reasonable. Comparisons between the current SFSA feeding rules and feeding rules based on the minimum Niyama criterion reveal that the Niyama-based rules are generally less conservative. The niyama-based rules also agree better with both the trials presented here, and the casting trails performed by Pellini an d the SFSA years ago. Furthermore, the use of the Niyama criterion to predict centerline shrinkage for horizontally fed plate sections has a theoretical basis according to the casting literature reviewed here. These results strongly support the use of improved feeding rules for horizontal plate sections based on the Niyama criterion, which can be tailored to the casting conditions for a given alloy and to a desired level of soundness. The reliability and repeatability of ASTM shrinkage x-ray ratings was investigated in a statistical study performed on 128 x-rays, each of which were rated seven different times. A manual ''Feeding and Risering Guidelines for Steel Castings' is given in this final report. Results of casting trials performed to test unconventional techniques for improving casting yield are presented. These use a stacked arrangement of castings and riser pressurization to increase the casting yield. Riser pressurization was demonstrated to feed a casting up to four time s the distance of a non-pressurized riser, and can increase casting yield by decreasing the required number of risers. All case studies for this projects were completed and compiled into an SFSA Technical Report that is submitted part of this Final Report

  20. Atmospheric Nitrogen Fluorescence Yield

    NASA Technical Reports Server (NTRS)

    Adams, J. H., Jr.; Christl, M. J.; Fountain, W. F.; Gregory, J. C.; Martens, K. U.; Sokolsky, Pierre; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Several existing and planned experiments estimate the energies of ultra-high energy cosmic rays from air showers using the atmospheric nitrogen fluorescence. The nitrogen fluorescence yield from air shower electrons depends on the atmospheric composition. We will discuss the uncertainties in the fluorescence yield form electrons in the real atmosphere and describe a concept for a small balloon payload to measure the atmospheric fluorescence yield as a function of attitude.

  1. Determining Enzyme Kinetics for Systems Biology with Nuclear Magnetic Resonance Spectroscopy

    PubMed Central

    Eicher, Johann J.; Snoep, Jacky L.; Rohwer, Johann M.

    2012-01-01

    Enzyme kinetics for systems biology should ideally yield information about the enzymes activity under in vivo conditions, including such reaction features as substrate cooperativity, reversibility and allostery, and be applicable to enzymatic reactions with multiple substrates. A large body of enzyme-kinetic data in the literature is based on the uni-substrate Michaelis-Menten equation, which makes unnatural assumptions about enzymatic reactions (e.g., irreversibility), and its application in systems biology models is therefore limited. To overcome this limitation, we have utilised NMR time-course data in a combined theoretical and experimental approach to parameterize the generic reversible Hill equation, which is capable of describing enzymatic reactions in terms of all the properties mentioned above and has fewer parameters than detailed mechanistic kinetic equations; these parameters are moreover defined operationally. Traditionally, enzyme kinetic data have been obtained from initial-rate studies, often using assays coupled to NAD(P)H-producing or NAD(P)H-consuming reactions. However, these assays are very labour-intensive, especially for detailed characterisation of multi-substrate reactions. We here present a cost-effective and relatively rapid method for obtaining enzyme-kinetic parameters from metabolite time-course data generated using NMR spectroscopy. The method requires fewer runs than traditional initial-rate studies and yields more information per experiment, as whole time-courses are analyzed and used for parameter fitting. Additionally, this approach allows real-time simultaneous quantification of all metabolites present in the assay system (including products and allosteric modifiers), which demonstrates the superiority of NMR over traditional spectrophotometric coupled enzyme assays. The methodology presented is applied to the elucidation of kinetic parameters for two coupled glycolytic enzymes from Escherichia coli (phosphoglucose isomerase and phosphofructokinase). 31P-NMR time-course data were collected by incubating cell extracts with substrates, products and modifiers at different initial concentrations. NMR kinetic data were subsequently processed using a custom software module written in the Python programming language, and globally fitted to appropriately modified Hill equations. PMID:24957764

  2. Large-scale reactive molecular dynamics simulation and kinetic modeling of high-temperature pyrolysis of the Gloeocapsomorphaprisca microfossils.

    PubMed

    Zou, Chenyu; Raman, Sumathy; van Duin, Adri C T

    2014-06-12

    The ability to predict accurately the thermal conversion of complex carbonaceous materials is of value in both petroleum exploration and refining operations. Modeling the thermal cracking of kerogen under basinal heating conditions improves the predrill prediction of oil and gas yields and quality, thereby ultimately lowering the exploration risk. Modeling the chemical structure and reactivity of asphaltene from petroleum vacuum residues enables prediction of coke formation and properties in refinery processes, thereby lowering operating cost. The chemical structure-chemical yield modeling (CS-CYM) developed by Freund et al. is more rigorous, time-consuming, and requires a great deal of chemical insight into reaction network and reaction kinetics. The present work explores the applicability of a more fundamental atomistic simulation using the quantum mechanically based reactive force field to predict the product yield and overall kinetics of decomposition of two biopolymers, namely, the Kukersite and Gutternberg. Reactive molecular dynamics (RMD) simulations were performed on systems consisting of 10(4) to 10(5) atoms at different densities and temperatures to derive the overall kinetic parameters and a lumped kinetic model for pyrolysis. The kinetic parameters derived from the simulated pyrolysis of an individual component and the mixture of all four components in Guttenberg reveal the role of cross-talk between the fragments and enhanced reactivity of component A by radicals from other components. The Arrhenius extrapolation of the model yields reasonable prediction for the overall barrier for cracking. Because simulations were run at very high temperature (T > 1500 K) to study cracking within the simulation time of up to 1 ns, it, however, led to the entropically favored ethylene formation as a dominant decomposition route. Future work will focus on evaluating the applicability of accelerated reactive MD approaches to study cracking. PMID:24821589

  3. Kinetics of drying in a fluidized bed

    SciTech Connect

    Kharin, V.M.; Shishatskii, Y.I.

    1995-03-01

    The kinetics of drying with constant input parameters of drying gas is described on the basis of the kinetic equations of mass and heat transfer and the material and heat balances written in differential form and allowing for the variation of parameters of the material and gas in the bed. The model equations are solved analytically. The solutions are shown to check well with experimental data.

  4. Slope diffusion models and digitally-acquired morphometric parameters yield age constraints on cinder cones, examples from the Spencer High Point and Craters of the Moon National Monument, Snake River Plain, Idaho

    NASA Astrophysics Data System (ADS)

    Blaser, A. P.; Holman, R. J.; Brown, D. E.; Willis, J. B.

    2011-12-01

    An analytical solution to a diffusion equation for cinder cones and a new digital method for collecting and comparing morphometric data on cinder cones are developed and used to constrain relative KT ages of undated cinder cones from the Spencer High Point (SHP) basalt plateau, southeastern Idaho. We assume that the interior slope of cinder cone craters diffuse at a steady state and that a range of diffusion constants (K=5-15 m^2/ky) derived in other areas of the Intermountain west are applicable in SE Idaho. Previous workers developed diffusion equations that model degradation of the outer flanks of cinder cones over time. The outer flanks of several SHP cones are heavily eroded by landsliding, a non-diffusive process, which invalidates diffusion modeling. However, our observations of the morphology of cinder cones throughout SE Idaho and comparisons with cones in other regions suggest that the interior slopes of cinder cone craters erode diffusively even when the outer flanks of the cones do not. We model and compare KT ages using morphometric measures from both the exterior flanks and the crater interiors; we conclude that the ages based on interior slopes are more valid than those based on exterior slopes. The topographic profiles, used to derive the necessary morphometric parameters (e.g. slope, slope inflection, cone and crater height/width ratios, and crater radius), are generated in a geographic information system (GIS) from readily available 10-m resolution digital elevation models (DEMs) rather than from topographic maps used by previous workers. We analytically solve diffusion equations for cinder cone degradation and compare the consistency of resulting relative KT ages. The one-dimensional equation models how a single topographic profile degrades through time and depends on a diffusion constant K (m^2/ky) that describes the erosion rate. We assume an initial slope of 33° and allow the model to degrade to the slope of the inflection point in the crater interior; this slope is determined by optimizing multiple DEM-derived topographic profiles of the cinder cone. The KT age is based on the amount of time required for the degradation to occur. The models establish relative KT ages between the cones as well as between dated basalt flows of the SHP. These ages will increase understanding of the spatial and temporal migration of stress fields associated with passage of the Yellowstone hotspot, Basin and Range extension, and development of the SHP.

  5. Soybean Yield and Genetics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seed yield is both the most important soybean breeding objective and the most challenging. The increase in the number of breeders and the increasing application of technology has done little to increase the rate of yield improvement over the past 20 years, but current rapid changes in technology and...

  6. Spherical ion kinetic simulations of DT implosions

    SciTech Connect

    Vidal, F.; Matte, J.P.; Casanova, M.; Larroche, O.

    1995-10-01

    The implosion of the DT plasma in an ablatively driven glass microballoon was simulated with a spherical ion kinetic code. The ion velocity distribution functions were strongly non-Maxwellian, and mostly depleted of fast ions. A high viscosity contributed to fuel heating, while large ion heat fluxes towards the pusher strongly cooled the fuel. This latter kinetic effect may explain in part why hydrodynamic simulations usually predict higher neutron yields than are measured.

  7. Phenanthrene biodegradation kinetics in unsaturated soils

    SciTech Connect

    Johnson, C.R.; Scow, K.M.

    1995-12-31

    Organic compounds when sorbed to soil solids are thought to be unavailable to soil microorganisms. The biodegradation kinetics of sorbed chemicals should thus be influenced by sorption/desorption processes as well as by the metabolic capacities of soil microbes. In the research, phenanthrene, a hydrophobic polyaromatic hydrocarbon, was used as a model compound to investigate the biodegradation kinetics of strongly sorbing organic compounds in soil. Biodegradation kinetics for phenanthrene in seven soils with moisture contents near field capacity were measured during a six and one half month experiment. Phenanthrene biodegradation rates initially increased in all soils and then declined. The declining portion of the biodegradation rate versus time plots exhibited either first order or biphasic kinetics. Both first order and biphasic kinetics are consistent with models which link microbial degradation to substrate sorption/desorption from equilibrium and kinetically controlled sorption sites. No single rate constant or analytical expression adequately captured the complexity of the observed biodegradation rates. This result is again consonant with a process derived from coupled biological and physical systems. Biodegradation kinetics were quantified using a combination of fitted and descriptive parameters. Significant correlations exist between several of the descriptive parameters. The correlations observed between descriptive biodegradation parameters mirror correlations expected from the hypothesized underlying biological process and help evince the influence this underlying process exerts on observed biodegradation kinetics.

  8. Calculation of the total electron excitation cross section in the Born approximation using Slater wave functions for the Li (2s yields 2p), Li (2s yields 3p), Na (3s yields 4p), Mg (3p yields 4s), Ca (4s yields 4p) and K (4s yields 4p) excitations. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Simsic, P. L.

    1974-01-01

    Excitation of neutral atoms by inelastic scattering of incident electrons in gaseous nebulae were investigated using Slater Wave functions to describe the initial and final states of the atom. Total cross sections using the Born Approximation are calculated for: Li(2s yields 2p), Na(3s yields 4p), k(4s yields 4p). The intensity of emitted radiation from gaseous nebulae is also calculated, and Maxwell distribution is employed to average the kinetic energy of electrons.

  9. Kinetic and stoichiometric characterization for efficient enhanced biological phosphorus removal (EBPR) process at high temperatures.

    PubMed

    Liau, Kee Fui; Shoji, Tadashi; Ong, Ying Hui; Chua, Adeline Seak May; Yeoh, Hak Koon; Ho, Pei Yee

    2015-04-01

    A recently reported stable and efficient EBPR system at high temperatures around 30 °C has led to characterization of kinetic and stoichiometric parameters of the Activated Sludge Model no. 2d (ASM2d). Firstly, suitable model parameters were selected by identifiability analysis. Next, the model was calibrated and validated. ASM2d was found to represent the processes well at 28 and 32 °C except in polyhyroxyalkanoate (PHA) accumulation of the latter. The values of the kinetic parameters for PHA storage (q PHA), polyphosphate storage (q PP) and growth (μ PAO) of polyphosphate-accumulating organisms (PAOs) at 28 and 32 °C were found to be much higher than those reported by previous studies. Besides, the value of the stoichiometric parameter for the requirement of polyphosphate for PHA storage (Y PO4) was found to decrease as temperature rose from 28 to 32 °C. Values of two other stoichiometric parameters, i.e. the growth yield of heterotrophic organisms (Y H) and PAOs (Y PAO), were high at both temperatures. These calibrated parameters imply that the extremely active PAOs of the study were able to store PHA, store polyphosphate and even utilize PHA for cell growth. Besides, the parameters do not follow the Arrhenius correlation due to the previously reported unique microbial clade at 28 and 32 °C, which actively performs EBPR at high temperatures. PMID:25381606

  10. Modeling solute advection coupled with sorption kinetics in heterogeneous formations

    NASA Astrophysics Data System (ADS)

    Selroos, Jan-Olof; Cvetkovic, Vladimir

    1992-05-01

    A method for coupling sorption kinetics and solute advection in particle-tracking models is proposed; this method is efficient for the case where sorption rate coefficients can be assumed constant field scale parameters. A simulation example of reactive solute advection in two-dimensional heterogeneous porous media is presented. The effect of sorption kinetics on solute advection is investigated. Nonequilibrium effects are exhibited as enhanced tailing in the solute breakthrough. Because high variability in the hydraulic conductivity also yields enhanced tailing, the nonequilibrium effect is more pronounced for the case of low variability. Moreover, it may be difficult to distinguish cases of low variability with nonequilibrium sorption from cases of high variability with equilibrium sorption. A comparison of Monte Carlo ensemble results is made with an analytical model for the mass arrival of kinetically sorbing solute in heterogeneous porous media obtained using first-order perturbation. The comparison indicates that the analytical model provides reasonable approximations of the expected solute breakthrough if the variance of the natural logarithm of the hydraulic conductivity is smaller than 1.

  11. Reaction Kinetics of the Hydrothermal Treatment of Lignin

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Huang, Hua-Jiang; Ramaswamy, Shri

    Lignins derived from abundant and renewable resources are nontoxic and extremely versatile in performance, qualities that have made them increasingly important in many industrial applications. We have shown recently that liquefaction of lignin extracted from aspen wood resulted in a 90% yield of liquid. In this paper, the hydrothermal treatment of five types of lignin and biomass residues was studied: Kraft pine lignin provided by MeadWestvaco, Kraft pine lignin from Sigma-Aldrich, organosolv lignin extracted from oat hull, the residues of mixed southern hardwoods, and switchgrass after hydrolysis. The yields were found dependent on the composition or structure of the raw materials, which may result from different pretreatment processes. We propose a kinetic model to describe the hydrothermal treatment of Kraft pine lignin and compare it with another model from the literature. The kinetic parameters of the presented model were estimated, including the reaction constants, the pre-exponential factor, and the activation energy of the Arrhenius equations. Results show that the presented model is well in agreement with the experiments.

  12. Stoichiometry and kinetics of the anaerobic ammonium oxidation (Anammox) with trace hydrazine addition.

    PubMed

    Yao, Zongbao; Lu, Peili; Zhang, Daijun; Wan, Xinyu; Li, Yulian; Peng, Shuchan

    2015-12-01

    Purpose of this study is to investigate the stoichiometry and kinetics of anaerobic ammonium oxidation (Anammox) with trace hydrazine addition. The stoichiometry was established based on the electron balance of Anammox process with trace N2H4 addition. The stoichiometric coefficients were determined by the proton consumption and the changes in substrates and products. It was found that trace N2H4 addition can increase the yield of Anammox bacteria (AnAOB) and reduce NO3(-) yield, which enhances the Anammox. Subsequently, kinetic model of Anammox with trace N2H4 addition was developed, and the parameters of the anaerobic degradation model of N2H4 were obtained for the first time. The maximum specific substrate utilization rate, half-saturation constant and inhibition constant of N2H4 were 25.09mgN/g VSS/d, 10.42mgN/L and 1393.88mgN/L, respectively. These kinetic parameters might provide important information for the engineering applications of Anammox with trace N2H4 addition. PMID:26364230

  13. Argentina wheat yield model

    NASA Technical Reports Server (NTRS)

    Callis, S. L.; Sakamoto, C.

    1984-01-01

    Five models based on multiple regression were developed to estimate wheat yields for the five wheat growing provinces of Argentina. Meteorological data sets were obtained for each province by averaging data for stations within each province. Predictor variables for the models were derived from monthly total precipitation, average monthly mean temperature, and average monthly maximum temperature. Buenos Aires was the only province for which a trend variable was included because of increasing trend in yield due to technology from 1950 to 1963.

  14. Argentina soybean yield model

    NASA Technical Reports Server (NTRS)

    Callis, S. L.; Sakamoto, C.

    1984-01-01

    A model based on multiple regression was developed to estimate soybean yields for the country of Argentina. A meteorological data set was obtained for the country by averaging data for stations within the soybean growing area. Predictor variables for the model were derived from monthly total precipitation and monthly average temperature. A trend variable was included for the years 1969 to 1978 since an increasing trend in yields due to technology was observed between these years.

  15. Argentina corn yield model

    NASA Technical Reports Server (NTRS)

    Callis, S. L.; Sakamoto, C.

    1984-01-01

    A model based on multiple regression was developed to estimate corn yields for the country of Argentina. A meteorological data set was obtained for the country by averaging data for stations within the corn-growing area. Predictor variables for the model were derived from monthly total precipitation, average monthly mean temperature, and average monthly maximum temperature. A trend variable was included for the years 1965 to 1980 since an increasing trend in yields due to technology was observed between these years.

  16. Kinetics study on biomass pyrolysis for fuel gas production.

    PubMed

    Chen, Guan-Yi; Fang, Meng-Xiang; Andries, J; Luo, Zhong-Yang; Spliethoff, H; Cen, Ke-Fa

    2003-01-01

    Kinetic knowledge is of great importance in achieving good control of the pyrolysis and gasification process and optimising system design. An overall kinetic pyrolysis scheme is therefore addressed here. The kinetic modelling incorporates the following basic steps: the degradation of the virgin biomass materials into primary products (tar, gas and semi-char), the decomposition of primary tar into secondary products and the continuous interaction between primary gas and char. The last step is disregarded completely by models in the literature. Analysis and comparison of predicted results from different kinetic schemes and experimental data on our fixed bed pyrolyser yielded very positive evidence to support our kinetic scheme. PMID:12861621

  17. The effects of intensity on V̇O2 kinetics during incremental free swimming.

    PubMed

    de Jesus, Kelly; Sousa, Ana; de Jesus, Karla; Ribeiro, João; Machado, Leandro; Rodríguez, Ferran; Keskinen, Kari; Vilas-Boas, João Paulo; Fernandes, Ricardo J

    2015-09-01

    Swimming and training are carried out with wide variability in distances and intensities. However, oxygen uptake kinetics for the intensities seen in swimming has not been reported. The purpose of this study was to assess and compare the oxygen uptake kinetics throughout low-moderate to severe intensities during incremental swimming exercise. We hypothesized that the oxygen uptake kinetic parameters would be affected by swimming intensity. Twenty male trained swimmers completed an incremental protocol of seven 200-m crawl swims to exhaustion (0.05 m·s(-1) increments and 30-s intervals). Oxygen uptake was continuously measured by a portable gas analyzer connected to a respiratory snorkel and valve system. Oxygen uptake kinetics was assessed using a double exponential regression model that yielded both fast and slow components of the response of oxygen uptake to exercise. From low-moderate to severe swimming intensities changes occurred for the first and second oxygen uptake amplitudes (P ≤ 0.04), time constants (P = 0.01), and time delays (P ≤ 0.02). At the heavy and severe intensities, a notable oxygen uptake slow component (>255 mL·min(-1)) occurred in all swimmers. Oxygen uptake kinetics whilst swimming at different intensities offers relevant information regarding cardiorespiratory and metabolic stress that might be useful for appropriate performance diagnosis and training prescription. PMID:26300011

  18. Dose dependent oxidation kinetics of lipids in fish during irradiation processing

    NASA Astrophysics Data System (ADS)

    Tükenmez, İbrahi˙m.; Ersen, M. Sitki; Bak.¨oǦlu, A. Tayfur; Bi˙çer, Ahmet; Pamuk, Veci˙h.İ

    1997-10-01

    Kinetic aspects of the development of lipid oxidation in complex foods as fish in the course of irradiation were analyzed with respect to the associated formation of malonaldehyde (MA) through the reactions modified so as to be consistent with those in complex foods as fish. Air-packed anchovy ( Engraulis encrasicholus) samples in polyethylene pouches were irradiated at the doses of 1, 2, 5, 10, 15, 20 and 25 kGy at 20°C in a Cs-137 gamma irradiator of 1.806 kGy/h dose rate. Immediately after each irradiation, MA contents of irradiated and unirridiated samples were determined by thiobarbituric acid test. Based on the MA formation, a kinetic model to simulate the apparent oxidation of lipid in fish as a function of irradiation dose was derived from the rate equations consistent with modified reactions. Kinetic parameters and simulation were related to conditions of lipid oxidation, and associated rancidity state of fish with respect to the doses applied in different irradiation-preservation processes. Numerical values of kinetic parameters based on the MA formation were found as a threshold dose of 0.375 kGy, an apparent yield of 1.871 μmol/kg kGy, and a maximum attainable concentration of 15.853 μmol/kg which may be used for process control and dosimetry.

  19. Molecular dynamics and kinetic study of carbon coagulation in the release wave of detonation products.

    PubMed

    Chevrot, Guillaume; Sollier, Arnaud; Pineau, Nicolas

    2012-02-28

    We present a combined molecular dynamics and kinetic study of a carbon cluster aggregation process in thermodynamic conditions relevant for the detonation products of oxygen deficient explosives. Molecular dynamics simulations with the LCBOPII potential under gigapascal pressure and high temperatures indicate that (i) the cluster motion in the detonation gas is compatible with Brownian diffusion and (ii) the coalescence probability is 100% for two clusters entering the interaction cutoff distance. We used these results for a subsequent kinetic study with the Smoluchowski model, with realistic models applied for the physical parameters such as viscosity and cluster size. We found that purely aggregational kinetics yield too fast clustering, with moderate influence of the model parameters. In agreement with previous studies, the introduction of surface reactivity through a simple kinetic model is necessary to approach the clustering time scales suggested by experiments (1000 atoms after 100 ns, 10 000 atoms after 1 μs). However, these models fail to reach all experimental criteria simultaneously and more complex modelling of the surface process seems desirable to go beyond these current limitations. PMID:22380052

  20. Saffman-Taylor fingers with kinetic undercooling.

    PubMed

    Gardiner, Bennett P J; McCue, Scott W; Dallaston, Michael C; Moroney, Timothy J

    2015-02-01

    The mathematical model of a steadily propagating Saffman-Taylor finger in a Hele-Shaw channel has applications to two-dimensional interacting streamer discharges which are aligned in a periodic array. In the streamer context, the relevant regularization on the interface is not provided by surface tension but instead has been postulated to involve a mechanism equivalent to kinetic undercooling, which acts to penalize high velocities and prevent blow-up of the unregularized solution. Previous asymptotic results for the Hele-Shaw finger problem with kinetic undercooling suggest that for a given value of the kinetic undercooling parameter, there is a discrete set of possible finger shapes, each analytic at the nose and occupying a different fraction of the channel width. In the limit in which the kinetic undercooling parameter vanishes, the fraction for each family approaches 1/2, suggesting that this "selection" of 1/2 by kinetic undercooling is qualitatively similar to the well-known analog with surface tension. We treat the numerical problem of computing these Saffman-Taylor fingers with kinetic undercooling, which turns out to be more subtle than the analog with surface tension, since kinetic undercooling permits finger shapes which are corner-free but not analytic. We provide numerical evidence for the selection mechanism by setting up a problem with both kinetic undercooling and surface tension and numerically taking the limit that the surface tension vanishes. PMID:25768606

  1. The platinum microelectrode/Nafion interface - An electrochemical impedance spectroscopic analysis of oxygen reduction kinetics and Nafion characteristics

    NASA Technical Reports Server (NTRS)

    Parthasarathy, Arvind; Dave, Bhasker; Srinivasan, Supramaniam; Appleby, John A.; Martin, Charles R.

    1992-01-01

    The objectives of this study were to use electrochemical impedance spectroscopy (EIS) to study the oxygen-reduction reaction under lower humidification conditions than previously studied. The EIS technique permits the discrimination of electrode kinetics of oxygen reduction, mass transport of O2 in the membrane, and the electrical characteristics of the membrane. Electrode-kinetic parameters for the oxygen-reduction reaction, corrosion current densities for Pt, and double-layer capacitances were calculated. The production of water due to electrochemical reduction of oxygen greatly influenced the EIS response and the electrode kinetics at the Pt/Nafion interface. From the finite-length Warburg behavior, a measure of the diffusion coefficient of oxygen in Nafion and diffusion-layer thickness was obtained. An analysis of the EIS data in the high-frequency domain yielded membrane and interfacial characteristics such as ionic conductivity of the membrane, membrane grain-boundary capacitance and resistance, and uncompensated resistance.

  2. Science Yield Modeling with EXOSIMS

    NASA Astrophysics Data System (ADS)

    Garrett, Daniel; Savransky, Dmitry

    2016-01-01

    Accurately modeling science yield of an exoplanet direct imaging mission to build confidence in the achievement of science goals can be almost as complicated as designing the mission itself. It is challenging to compare science simulation results and systematically test the effects of changing instrument or mission designs. EXOSIMS (Exoplanet Open-Source Imaging Mission Simulator) addresses this by generating ensembles of mission simulations for exoplanet direct imaging missions to estimate distributions of science yield. EXOSIMS consists of stand-alone modules written in Python which may be individually modified without requiring modifications to the code elsewhere. This structure allows for user driven systemic exploration of the effects of changing designs on the estimated science yield.The modules of EXOSIMS are classified as either input or simulation modules. Input modules contain specific mission design parameters and functions. These include Planet Population, Star Catalog, Optical System, Zodiacal Light, Planet Physical Model, Observatory, Time Keeping, and Post-Processing. Simulation modules perform tasks requiring input from one or more input modules as well as calling functions from other simulation modules. These include Completeness, Target List, Simulated Universe, Survey Simulation, and Survey Ensemble. The required parameters and functionality of each of these modules is defined in the documentation for EXOSIMS.EXOSIMS is available to the public at https://github.com/dsavransky/EXOSIMS. Included in the documentation is an interface control document which defines the required inputs and outputs to each input and simulation module. Future development of EXOSIMS is intended to be community-driven. Mission planners and instrument designers may quickly write their own modules, following the guidelines in the interface control document, and drop them directly into the code without making additional modifications elsewhere. It is expected that EXOSIMS will be highly useful for designing and planning future exoplanet direct imaging missions.

  3. Effect of annealing on the kinetic properties and band parameters of Hg{sub 1?x?y}Cd{sub x}Eu{sub y}Se semiconductor crystals

    SciTech Connect

    Kovalyuk, T. T. Maistruk, E. V.; Maryanchuk, P. D.

    2014-12-15

    The results of studies of the kinetic properties of Hg{sub 1?x?y}Cd{sub x}Eu{sub y}Se semiconductor crystals in the ranges of temperatures T = 77300 K and magnetic fields H = 0.55 kOe before and after heat treatment of the samples in Se vapors are reported. It is established that annealing of the samples in Se vapors induces a decrease in the electron concentration. From the concentration dependence of the electron effective mass at the Fermi level, the band gap, the matrix element of interband interaction, and the electron effective mass at the bottom of the conduction band are determined.

  4. Modeling recovery and recrystallization kinetics in cold-rolled Ti-Nb stabilized interstitial-free steel

    NASA Astrophysics Data System (ADS)

    Mukunthan, K.; Hawbolt, E. B.

    1996-11-01

    The recovery and recrystallization kinetics in an 80 pct cold-rolled Ti-Nb stabilized interstitial-free (IF) steel have been characterized for isothermal (500 to 760 °C) and continuous heating (0.025 °C s-1 to 20.2 °C s-1 annealing. Isothermal recovery kinetics, as monitored by {220} X-ray peak resolution measurements, were described using a semiempirical logarithmic equation. The IF steel recovered relatively easily, with approximately 45 to 60 pct of the total peak resolution occurring prior to the onset of recrystallization. An iterative procedure was adopted to separate the diffraction effects associated with the concurrent recovery and recrystallization processes. Microstructural observations indicated that the recrystallization event was heterogeneous, with preferential nucleation and early site saturation at grain boundaries in the cold-rolled material. Isothermal recrystallization kinetics, determined by quantitative metallography, were described using the Johnson-Mehl-Avrami-Kol-mogorov (JMAK) and Speich-Fisher (SF) relationships. An alternative description of the isothermal recrystallization kinetics was provided by the experimentally determined microstructural path function, independent of the thermal path, and an empirical kinetic function describing the interface averaged growth rate. The kinetic analysis yielded an apparent recrystallization activation energy of 501.7 kJ/mole, indicating severe retardation of recrystallization in IF steels. Recovery and recrystallization kinetics during continuous heating have been modeled using the isothermal kinetic parameters, assuming the validity of the principle of additivity. The results were validated by experimental measurements obtained at heating rates simulating both batch and continuous annealing. Although the Scheil additivity equation overestimated the recrystallization start time for continuous heating conditions, the associated higher temperature and more rapid initial recrystallization resulted in similar overall kinetics.

  5. Kinetics of thermal decomposition of surrogate solid wastes

    SciTech Connect

    Missoum, A.; Gupta, A.K.; Chen, J.; Keating, E.L.

    1996-12-31

    Decomposition behavior of different materials in a controlled environment at different heating rates are presented. The surrogate materials used are cellulose, polyethylene, polystyrene, polypropylene, nylon and bisphenol-A-polycarbonate. A series of tests were performed using a Perkin-Elmer 7 series thermal analysis system. Two heating rates of 10 C/minute and 100 C/minute were used. The temperature dependence and mass load characteristics of materials was obtained and used to obtain Arrhenius kinetic parameters and therefore the decomposition rates under defined conditions of pressure, temperature, environment, heating rate and waste composition. This information is helpful in characterizing and understanding the thermal decomposition properties of these materials during their thermal destruction. The decomposition rates are affected by the heating rate. The higher the heating rate the faster the decomposition. The results show that an increase in heating rate shifted thermal decomposition to higher temperatures and that the temperature at which maximum devolatilization began and ended was affected by heating rate. The kinetic parameters were calculated and the char yield from the different samples was less than 2% by weight except for polycarbonate which was around 5%. The remaining char in nylon and polycarbonate is attributed to the inert impurities in these materials. The thermal decomposition of the materials studied here could be related to their composition. It was found that polyethylene, polypropylene and polycarbonate have comparable decomposition rates over the same temperature range. Cellulose has the lowest decomposition rate and polystyrene has the highest.

  6. Slow-tight binding inhibition of xylanase by an aspartic protease inhibitor: kinetic parameters and conformational changes that determine the affinity and selectivity of the bifunctional nature of the inhibitor.

    PubMed

    Dash, Chandravanu; Vathipadiekal, Vinod; George, Sudeep P; Rao, Mala

    2002-05-17

    The first report of slow-tight inhibition of xylanase by a bifunctional inhibitor alkalo-thermophilic Bacillus inhibitor (ATBI), from an extremophilic Bacillus sp. is described. ATBI inhibits aspartic protease (Dash, C., and Rao, M. (2001) J. Biol. Chem., 276, 2487-2493) and xylanase (Xyl I) from a Thermomonospora sp. The steady-state kinetics revealed time-dependent competitive inhibition of Xyl I by ATBI, consistent with two-step inhibition mechanism. The inhibition followed a rapid equilibrium step to form a reversible enzyme-inhibitor complex (EI), which isomerizes to the second enzyme-inhibitor complex (EI*), which dissociated at a very slow rate. The rate constants determined for the isomerization of EI to EI*, and the dissociation of EI* were 13 +/- 1 x 10(-6) s(-1) and 5 +/- 0.5 x 10(-8) s(-1), respectively. The K(i) value for the formation of EI complex was 2.5 +/- 0.5 microm, whereas the overall inhibition constant K(i)* was 7 +/- 1 nm. The conformational changes induced in Xyl I by ATBI were monitored by fluorescence spectroscopy and the rate constants derived were in agreement with the kinetic data. Thus, the conformational alterations were correlated to the isomerization of EI to EI*. ATBI binds to the active site of the enzyme and disturbs the native interaction between the histidine and lysine, as demonstrated by the abolished isoindole fluorescence of o-phthalaldehyde (OPTA)-labeled Xyl I. Our results revealed that the inactivation of Xyl I is due to the disruption of the hydrogen-bonding network between the essential histidine and other residues involved in catalysis and a model depicting the probable interaction between ATBI or OPTA with Xyl I has been proposed. PMID:11844793

  7. Nonphotochemical quenching of excitation energy in photosystem II. A picosecond time-resolved study of the low yield of chlorophyll a fluorescence induced by single-turnover flash in isolated spinach thylakoids.

    PubMed

    Vasil'ev, S; Bruce, D

    1998-08-01

    Chlorophyll a fluorescence emission is widely used as a noninvasive measure of a number of parameters related to photosynthetic efficiency in oxygenic photosynthetic organisms. The most important component for the estimation of photochemistry is the relative increase in fluorescence yield between dark-adapted samples which have a maximal capacity for photochemistry and a minimal fluorescence yield (F0) and light-saturated samples where photochemistry is saturated and fluorescence yield is maximal (Fm). However, when photosynthesis is saturated with a short (less than 50 micro(s)) flash of light, which induces only one photochemical turnover of photosystem II, the maximal fluorescence yield is significantly lower (Fsat) than when saturation is achieved with a millisecond duration multiturnover flash (Fm). To investigate the origins of the difference in fluorescence yield between these two conditions, our time-resolved fluorescence apparatus was modified to allow collection of picosecond time-resolved decay kinetics over a short time window immediately following a saturating single-turnover flash (Fsat) as well as after a multiturnover saturating pulse (Fm). Our data were analyzed with a global kinetic model based on an exciton radical pair equilibrium model for photosystem II. The difference between Fm and Fsat was modeled well by changing only the rate constant for quenching of excitation energy in the antenna of photosystem II. An antenna-based origin for the quenching was verified experimentally by the observation that addition of the antenna quencher 5-hydroxy-1,4-naphthoquinone to thylakoids under Fm conditions resulted in decay kinetics and modeled kinetic parameters very similar to those observed under Fsat conditions in the absence of added quinone. Our data strongly support the origin of low fluorescence yield at Fsat to be an antenna-based nonphotochemical quenching of excitation energy in photosystem II which has not usually been considered explicitly in calculations of photochemical and nonphotochemical quenching parameters. The implications of our data with respect to kinetic models for the excited-state dynamics of photosystem II and the practical applications of the fluorescence yield parameters Fm and Fsat to calculations of photochemical yield are discussed. PMID:9693000

  8. Yield gaps and yield relationships in US soybean production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The magnitude of yield gaps (YG) (potential yield – farmer yield) provides some indication of the prospects for increasing crop yield to meet the food demands of future populations. Quantile regression analysis was applied to county soybean [Glycine max (L.) Merrill] yields (1971 – 2011) from Kentuc...

  9. Chemical and Biological Kinetics

    NASA Astrophysics Data System (ADS)

    Emanuel', N. M.

    1981-10-01

    Examples of the application of the methods and ideas of chemical kinetics in various branches of chemistry and biology are considered and the results of studies on the kinetics and mechanisms of autoxidation and inhibited and catalysed oxidation of organic substances in the liquid phase are surveyed. Problems of the kinetics of the ageing of polymers and the principles of their stabilisation are discussed and certain trends in biological kinetics (kinetics of tumour growth, kinetic criteria of the effectiveness of chemotherapy, problems of gerontology, etc.) are considered. The bibliography includes 281 references.

  10. Waste lubricating oil removal in a batch reactor by mixed bacterial consortium: a kinetic study.

    PubMed

    Bhattacharya, Munna; Guchhait, Sugata; Biswas, Dipa; Datta, Sriparna

    2015-11-01

    The growth kinetics and biodegradation of two waste lubricating oil samples including waste engine oil (WEO) and waste transformer oil (WTO) were studied using pure isolates and mixed culture of Ochrobactrum sp. C1 and Bacillus sp. K1. The mixed culture significantly influenced degradation efficiency of the pure isolates through bioaugmentation process. In particular, the mixed culture was capable of growing on various n-alkanes and polycyclic aromatic hydrocarbons and was able to tolerate unusually high concentrations of waste lubricants (WEO-86.0 g/L and WTO-81.5 g/L). The initial concentration of waste lubricating oils has been varied in the range of 1-10 % (v/v). Under this experimental range, the bacterial growth has been observed to follow Haldane-type kinetics characterizing the presence of substrate inhibition. Haldane model was used to fit the exponential growth data and the following kinetic parameters were obtained: μ max = 0.078 h(-1), K S = 23.101 g/L, K i = 43.844 g/L for WEO; and μ max = 0.044 h(-1), K S = 10.662 g/L, K i = 58.310 g/L for WTO. The values of intrinsic kinetic parameters, like specific growth rate μ max, half saturation constant, K S, inhibition constant, K i and the maximum substrate concentration, S max and growth yield coefficient Y x/s , have been determined using each model hydrocarbon and their mixture as limiting substrate. Relative changes in the values of the kinetic parameters have been correlated to the number of carbon atoms present in n-alkanes. The metabolites from degradation of model hydrocarbon compounds have been identified by GC-MS to elucidate the possible pathway of waste lubricating oil degradation process. PMID:26271337

  11. Arbitrary amplitude kinetic Alfven solitons in a plasma with a q-nonextensive electron velocity distribution

    SciTech Connect

    Liu, Y.; Liu, S. Q.; Dai, B.

    2011-09-15

    Arbitrary amplitude solitary kinetic Alfven waves (KAWs) in a plasma with q-nonextensive electrons are investigated by the conventional Sagdeev pseudopotential method, through which the existence of solitary KAWs is analyzed theoretically and numerically. It is shown only solitons with density hump can exist, the amplitude of which depends sensitively on the parameter q and the plasma {beta}. There is an upper limit for the amplitude of solitary wave which decreases with the increase of q and {beta}. The results obtained in the framework of Maxwellian distribution are reproduced when q {yields} 1.

  12. Reaction kinetics of cellulose hydrolysis in subcritical and supercritical water

    NASA Astrophysics Data System (ADS)

    Olanrewaju, Kazeem Bode

    The uncertainties in the continuous supply of fossil fuels from the crisis-ridden oil-rich region of the world is fast shifting focus on the need to utilize cellulosic biomass and develop more efficient technologies for its conversion to fuels and chemicals. One such technology is the rapid degradation of cellulose in supercritical water without the need for an enzyme or inorganic catalyst such as acid. This project focused on the study of reaction kinetics of cellulose hydrolysis in subcritical and supercritical water. Cellulose reactions at hydrothermal conditions can proceed via the homogeneous route involving dissolution and hydrolysis or the heterogeneous path of surface hydrolysis. The work is divided into three main parts. First, the detailed kinetic analysis of cellulose reactions in micro- and tubular reactors was conducted. Reaction kinetics models were applied, and kinetics parameters at both subcritical and supercritical conditions were evaluated. The second major task was the evaluation of yields of water soluble hydrolysates obtained from the hydrolysis of cellulose and starch in hydrothermal reactors. Lastly, changes in molecular weight distribution due to hydrothermolytic degradation of cellulose were investigated. These changes were also simulated based on different modes of scission, and the pattern generated from simulation was compared with the distribution pattern from experiments. For a better understanding of the reaction kinetics of cellulose in subcritical and supercritical water, a series of reactions was conducted in the microreactor. Hydrolysis of cellulose was performed at subcritical temperatures ranging from 270 to 340 °C (tau = 0.40--0.88 s). For the dissolution of cellulose, the reaction was conducted at supercritical temperatures ranging from 375 to 395 °C (tau = 0.27--0.44 s). The operating pressure for the reactions at both subcritical and supercritical conditions was 5000 psig. The results show that the rate-limiting step in converting cellulose to fermentable sugars in subcritical and supercritical water differs because of the difference in their activation energies. Cellulose and starch were both hydrolyzed in micro- and tubular reactors and at subcritical and supercritical conditions. Due to the difficulty involved in generating an aqueous based dissolved cellulose and having it reacted in subcritical water, dissolved starch was used instead. Better yield of water soluble hydrolysates, especially fermentable sugars, were observed from the hydrolysis of cellulose and dissolved starch in subcritical water than at supercritical conditions. The concluding phase of this project focuses on establishing the mode of scission of cellulose chains in the hydrothermal reactor. This was achieved by using the simulated degradation pattern generated based on different scission modes to fingerprint the degradation pattern obtained from experiment.

  13. Dimensional analysis for establishing the testing criteria of kinetic study with respirometry.

    PubMed

    Wu, Y S; Chiang, C F; Lu, C J

    2003-01-01

    The kinetic study of a microbial system requires the determination of kinetic parameters under a set of operating variables. Previous researchers indicated that initial conditions, such as S0/X0 and S0/KS may influence the reliability of the parameter estimation. However, little study has been done to identify the sensitivity of system variables to the parameter estimation. This study proposes a novel dimensional analysis and identifies six dimensionless groups: mu(m)/fw, kd/fw, Yg, S0/KS, KS/S0, and 1/(fw theta(c) - 1). By incorporating the SP-moving algorithm proposed by Wu and coworkers in 2001, an algorithm was proposed in this study to perform a sensitivity analysis on the six dimensionless groups. Results of this analysis reveal that S0/X0 is more sensitive than S0/KS, as also evidenced by the fact that gross growth yield (Yg) is sensitive and affecting S0/X0. The analysis also suggests that the theta(c)-based wasting frequency (fw theta(c)) is more sensitive than the daily wasting frequency (fw). A critical minimum value of 1.3 for S0/X0 and a maximum value of 0.1 for S0/KS were suggested to establish the testing criteria for the kinetic study under the respirometric conditions. PMID:12906300

  14. Kinetics of Bose-Einstein condensation in a dimple potential

    NASA Astrophysics Data System (ADS)

    Dutta, Shovan; Mueller, Erich J.

    2015-01-01

    We model the dynamics of condensation in a bimodal trap, consisting of a large reservoir region, and a tight "dimple" whose depth can be controlled. Experimental investigations have found that such dimple traps provide an efficient means of achieving condensation. In our kinetic equations, we include two- and three-body processes. The two-body processes populate the dimple, and lead to loss when one of the colliding atoms is ejected from the trap. The three-body processes produce heating and loss. We explain the principal trends, give a detailed description of the dynamics, and provide quantitative predictions for time scales and condensate yields. From these simulations, we extract optimal parameters for future experiments.

  15. Optimization and kinetic modeling of cell-associated camptothecin production from an endophytic Fusarium oxysporum NFX06.

    PubMed

    Musavi, Sogra Fathima; Dhavale, Abhinandan; Balakrishnan, Raj Mohan

    2015-01-01

    The production of cell-associated camptothecin (CPT) from an endophytic fungus Fusarium oxysporum NFX06 isolated from Nothapodytes foetida and its kinetics studies were proposed. Response surface methodology (RSM) based on central composite design (CCD) was used to construct a model to describe the effects of substrate concentration. Three independent variables (dextrose, peptone, and MgSO4) were successfully employed to study the yield of CPT under submerged fermentation. The maximum yield of CPT obtained from CCD was about 598.0 ng/g biomass. The model-validated optimum predicted CPT yield and experimental CPT yield from the biomass were found to be 628.08 ng/g and 610.09 ng/g at the concentrations of dextrose 42.64 (g/L), peptone 9.23 (g/L), and MgSO4 0.26 (g/L) respectively. The predicted yield of CPT was 4.90% higher than the value obtained from CCD and 2.85% higher than the value obtained from experiment conducted at optimum conditions. The kinetic parameters, maximum specific growth rate μmax=1.212 day(-1), growth-associated CPT production coefficient (α=29.35 ng/g biomass), and non-growth-associated CPT production coefficient (β=0.03 ng CPT/g biomass-day) were obtained. The logistic model was found suitable to predict mycelial growth with a high determination coefficient (R2). Luedeking-Piret and modified Luedeking-Piret models were employed to represent the product kinetics and substrate consumption kinetics. A good concurrence was found between the experimental and predicted values, representing that the unstructured models were able to illustrate the fermentation profile effectively. PMID:24840354

  16. Reaction {pi}N {yields} {pi}{pi}N near threshold

    SciTech Connect

    Frlez, E.

    1993-11-01

    The LAMPF E1179 experiment used the {pi}{sup 0} spectrometer and an array of charged particle range counters to detect and record {pi}{sup +}{pi}{sup 0}, {pi}{sup 0}p, and {pi}{sup +}{pi}{sup 0}p coincidences following the reaction {pi}{sup +}p {yields} {pi}{sup 0}{pi}{sup +}p near threshold. The total cross sections for single pion production were measured at the incident pion kinetic energies 190, 200, 220, 240, and 260 MeV. Absolute normalizations were fixed by measuring {pi}{sup +}p elastic scattering at 260 MeV. A detailed analysis of the {pi}{sup 0} detection efficiency was performed using cosmic ray calibrations and pion single charge exchange measurements with a 30 MeV {pi}{sup {minus}} beam. All published data on {pi}N {yields} {pi}{pi}N, including our results, are simultaneously fitted to yield a common chiral symmetry breaking parameter {xi} ={minus}0.25{plus_minus}0.10. The threshold matrix element {vert_bar}{alpha}{sub 0}({pi}{sup 0}{pi}{sup +}p){vert_bar} determined by linear extrapolation yields the value of the s-wave isospin-2 {pi}{pi} scattering length {alpha}{sub 0}{sup 2}({pi}{pi}) = {minus}0.041{plus_minus}0.003 m{sub {pi}}{sup {minus}1}, within the framework of soft-pion theory.

  17. Effects of Experimental Conditions on Extraction Yield of Extracellular Polymeric Substances by Cation Exchange Resin

    PubMed Central

    Cho, Jinwoo; Hermanowicz, Slawomir W.; Hur, Jin

    2012-01-01

    Effects of experimental conditions on the yield of extracellular polymeric substances (EPSs) extraction by cation exchange resin (CER) were investigated using activated sludge flocs. The experimental variables included resin dose, extraction time, sample dilution, and storage time. An empirical model was proposed to describe the kinetics of extraction process. The extraction yield increases with the extraction time and CER dose until it reached the maximum amount of EPS extraction. The maximum yield of EPS was affected as well by the sample dilution, exhibiting a decreasing trend with increasing dilution factor. It was also found that the amount of EPS extracted from a raw sample depends on the storage time. Once EPS was extracted from the sample, however, the EPS keeps its original quantity under storage at 4C. Based on the model, the maximum amount of EPS extraction and yield rate could be estimated for different conditions. Comparing the model parameters allows one to quantitatively compare the extraction efficiencies under various extracting conditions. Based on the results, we recommend the original sample should be diluted with the volume ratio of above 1?:?2 and a raw sample should be treated quickly to prevent the reduction of sample homogeneity and original integrity. PMID:22919352

  18. Ozone mass transfer and kinetics experiments

    SciTech Connect

    Bollyky, L.J.; Beary, M.M.

    1981-12-01

    Experiments were conducted at the Hanford Site to determine the most efficient pH and temperature levels for the destruction of complexants in Hanford high-level defense waste. These complexants enhance migration of radionuclides in the soil and inhibit the growth of crystals in the evaporator-crystallizer. Ozone mass transfer and kinetics tests have been outlined for the determination of critical mass transfer and kinetics parameters of the ozone-complexant reaction.

  19. Kinetics and modeling of gas formation in the thermal decomposition of powdery cellulose and pine sawdust

    SciTech Connect

    Bilbao, R.; Arauzo, J.; Salvador, M.L.

    1995-03-01

    The formation of different gases in the thermal decomposition of cellulose and pine sawdust has been studied. The kinetic constants of CO{sub 2} and H{sub 2} formation in cellulose decomposition have been determined from results obtained in isothermal experiments. These kinetic constants have been taken as representative of pine sawdust decomposition at T > 292 C, and values for lower temperatures have bene obtained from isothermal experiments performed with pine sawdust. For both materials, a simple model without adjustable parameters has been applied that allows one to calculate the local temperature, solid conversion, and yield of each gas. The results obtained in dynamic experiments with heating rates ranging between 2 and 53 C/min have been compared with the theoretical results, and an acceptable agreement has been achieved.

  20. Investigation of kinetic and thermodynamic characteristics of removal of tetracycline with sponge like, tannin based cryogels.

    PubMed

    Er?an, Mehtap; Ba?da, Esra; Ba?da, Efkan

    2013-04-01

    The removal of tetracycline (TC) from aqueous environment by new type of sorbents, tannin based cryogels (TAB CRGs) and control cryogels (CRGs) was studied in a batch system. The experimental parameters that affect the sorption of TC were optimized to achieve maximum removal yield. Prepared cryogels were characterized by SEM imaging, IR spectroscopy (ATR). Produced TAB cryogels have thin polymeric walls and interconnected large pores. The TAB cryogels are elastic and sponge like; its water content can easily be removed by only compressed with hand. The TAB cryogels restore their original shape and size within seconds after soaked in water. On the other, elasticity of blank CRG is lower. The Freundlich and Langmuir adsorption isotherms were conducted to deduce the mechanism of the process. The kinetics of TC adsorption was moderately fast and almost reached equilibrium in 150 min and the results followed pseudo-second-order kinetic model. PMID:23298591

  1. Atmospheric Fluorescence Yield

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.; Christl, M. J.; Fountain, W. F.; Gregory, J. C.; Martens, K.; Sokolsky, P.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Several existing and planned experiments estimate the energies of ultra-high energy cosmic rays from air showers using the atmospheric fluorescence from these showers. Accurate knowledge of the conversion from atmospheric fluorescence to energy loss by ionizing particles in the atmosphere is key to this technique. In this paper we discuss a small balloon-borne instrument to make the first in situ measurements versus altitude of the atmospheric fluorescence yield. The instrument can also be used in the lab to investigate the dependence of the fluorescence yield in air on temperature, pressure and the concentrations of other gases that present in the atmosphere. The results can be used to explore environmental effects on and improve the accuracy of cosmic ray energy measurements for existing ground-based experiments and future space-based experiments.

  2. Generalized yield stress equation for electrorheological fluids.

    PubMed

    Zhang, Ke; Liu, Ying Dan; Jhon, Myung S; Choi, Hyoung Jin

    2013-11-01

    A new generalized yield stress scaling equation for electrorheological (ER) fluids was developed by introducing the critical electric field (Ec) and material parameter. This equation can be used to describe the dependency of the yield stress on an electric field not only for conventional ER suspensions with a change in slope from 2.0 to 1.5, but also for giant ER fluids with a change in slope from 2.0 to 1.0. The yield stress data obtained from different ER fluid systems with different material parameters was collapsed onto a single curve for the entire range of electric field strengths using the proper scaling method proposed in this study. PMID:23993784

  3. Predicting yields for autotrophic and cometabolic processes

    SciTech Connect

    Andrews, G.

    1995-12-31

    The goal of bioprocess engineering is to state how the optimum design and control strategy for a bioprocess follow from the metabolism of the particular microorganism. A necessary step toward this goal is to show how the parameters used in quantitative descriptions of a process (e.g., yield and maintenance coefficients) are related to those describing the metabolism [e.g., Y{sub ATP}, (P/O)]. The {open_quotes}yield equation{close_quotes} approach to this problem involves dividing metabolism into the separate pathways for catabolism, anabolism, respiration, and product formation and balancing the production and consumption of reducing equivalents and ATP. The general approach, demonstrated previously for heterotrophic cell growth and products of fermentation, is illustrated by three new examples: the cell yield for chemoautotrophic iron-oxidizing bacteria, the cometabolic degradation of chloroform by methanotrophic bacteria, and the theoretical yield of succinic acid from glucose.

  4. Photon kinetic modeling of laser pulse propagation in underdense plasma

    SciTech Connect

    Reitsma, A. J. W.; Trines, R. M. G. M.; Bingham, R.; Cairns, R. A.; Mendonca, J. T.; Jaroszynski, D. A.

    2006-11-15

    This paper discusses photon kinetic theory, which is a description of the electromagnetic field in terms of classical particles in coordinate and wave number phase space. Photon kinetic theory is applied to the interaction of laser pulses with underdense plasma and the transfer of energy and momentum between the laser pulse and the plasma is described in photon kinetic terms. A comparison is made between a one-dimensional full wave and a photon kinetic code for the same laser and plasma parameters. This shows that the photon kinetic simulations accurately reproduce the pulse envelope evolution for photon frequencies down to the plasma frequency.

  5. Extracting kinetic information from literature with KineticRE.

    PubMed

    Freitas, Ana Alão; Costa, Hugo; Rocha, Miguel; Rocha, Isabel

    2015-01-01

    To better understand the dynamic behavior of metabolic networks in a wide variety of conditions, the field of Systems Biology has increased its interest in the use of kinetic models. The different databases, available these days, do not contain enough data regarding this topic. Given that a significant part of the relevant information for the development of such models is still wide spread in the literature, it becomes essential to develop specific and powerful text mining tools to collect these data. In this context, this work has as main objective the development of a text mining tool to extract, from scientific literature, kinetic parameters, their respective values and their relations with enzymes and metabolites. The approach proposed integrates the development of a novel plug-in over the text mining framework @Note2. In the end, the pipeline developed was validated with a case study on Kluyveromyces lactis, spanning the analysis and results of 20 full text documents. PMID:26673933

  6. Recombination Kinetics and Effects of Superacid Treatment in Sulfur- and Selenium-Based Transition Metal Dichalcogenides.

    PubMed

    Amani, Matin; Taheri, Peyman; Addou, Rafik; Ahn, Geun Ho; Kiriya, Daisuke; Lien, Der-Hsien; Ager, Joel W; Wallace, Robert M; Javey, Ali

    2016-04-13

    Optoelectronic devices based on two-dimensional (2D) materials have shown tremendous promise over the past few years; however, there are still numerous challenges that need to be overcome to enable their application in devices. These include improving their poor photoluminescence (PL) quantum yield (QY) as well as better understanding of exciton-based recombination kinetics. Recently, we developed a chemical treatment technique using an organic superacid, bis(trifluoromethane)sulfonimide (TFSI), which was shown to improve the quantum yield in MoS2 from less than 1% to over 95%. Here, we perform detailed steady-state and transient optical characterization on some of the most heavily studied direct bandgap 2D materials, specifically WS2, MoS2, WSe2, and MoSe2, over a large pump dynamic range to study the recombination mechanisms present in these materials. We then explore the effects of TFSI treatment on the PL QY and recombination kinetics for each case. Our results suggest that sulfur-based 2D materials are amenable to repair/passivation by TFSI, while the mechanism is thus far ineffective on selenium based systems. We also show that biexcitonic recombination is the dominant nonradiative pathway in these materials and that the kinetics for TFSI treated MoS2 and WS2 can be described using a simple two parameter model. PMID:26978038

  7. Lipase-catalyzed synthesis of palmitanilide: Kinetic model and antimicrobial activity study.

    PubMed

    Liu, Kuan-Miao; Liu, Kuan-Ju

    2016-01-01

    Enzymatic syntheses of fatty acid anilides are important owing to their wide range of industrial applications in detergents, shampoo, cosmetics, and surfactant formulations. The amidation reaction of Mucor miehei lipase Lipozyme IM20 was investigated for direct amidation of triacylglycerol in organic solvents. The process parameters (reaction temperature, substrate molar ratio, enzyme amount) were optimized to achieve the highest yield of anilide. The maximum yield of palmitanilide (88.9%) was achieved after 24 h of reaction at 40 °C at an enzyme concentration of 1.4% (70 mg). Kinetics of lipase-catalyzed amidation of aniline with tripalmitin has been investigated. The reaction rate could be described in terms of the Michaelis-Menten equation with a Ping-Pong Bi-Bi mechanism and competitive inhibition by both the substrates. The kinetic constants were estimated by using non-linear regression method using enzyme kinetic modules. The enzyme operational stability study showed that Lipozyme IM20 retained 38.1% of the initial activity for the synthesis of palmitanilide (even after repeated use for 48 h). Palmitanilide, a fatty acid amide, exhibited potent antimicrobial activity toward Bacillus cereus. PMID:26672452

  8. Biohydrogen Production and Kinetic Modeling Using Sediment Microorganisms of Pichavaram Mangroves, India

    PubMed Central

    Mullai, P.; Sridevi, K.

    2013-01-01

    Mangrove sediments host rich assemblages of microorganisms, predominantly mixed bacterial cultures, which can be efficiently used for biohydrogen production through anaerobic dark fermentation. The influence of process parameters such as effect of initial glucose concentration, initial medium pH, and trace metal (Fe2+) concentration was investigated in this study. A maximum hydrogen yield of 2.34, 2.3, and 2.6 mol H2 mol−1 glucose, respectively, was obtained under the following set of optimal conditions: initial substrate concentration—10,000 mg L−1, initial pH—6.0, and ferrous sulphate concentration—100 mg L−1, respectively. The addition of trace metal to the medium (100 mg L−1 FeSO4·7H2O) enhanced the biohydrogen yield from 2.3 mol H2 mol−1 glucose to 2.6 mol H2 mol−1 glucose. Furthermore, the experimental data was subjected to kinetic analysis and the kinetic constants were estimated with the help of well-known kinetic models available in the literature, namely, Monod model, logistic model and Luedeking-Piret model. The model fitting was found to be in good agreement with the experimental observations, for all the models, with regression coefficient values >0.92. PMID:24319679

  9. Kinetic Modeling of Esterification of Ethylene Glycol with Acetic Acid

    NASA Astrophysics Data System (ADS)

    Yadav, Vishnu P.; Mukherjee, Rudra Palash; Bantraj, Kandi; Maity, Sunil K.

    2010-10-01

    The reaction kinetics of the esterification of ethylene glycol with acetic acid in the presence of cation exchange resin has been studied and kinetic models based on empirical and Langmuir approach has been developed. The Langmuir based model involving eight kinetic parameters fits experimental data much better compared to empirical model involving four kinetic parameters. The effect of temperature and catalyst loading on the reaction system has been analyzed. Further, the activation energy and frequency factor of the rate constants for Langmuir based model has been estimated.

  10. Kinetic Modeling of Esterification of Ethylene Glycol with Acetic Acid

    SciTech Connect

    Yadav, Vishnu P.; Maity, Sunil K.; Mukherjee, Rudra Palash; Bantraj, Kandi

    2010-10-26

    The reaction kinetics of the esterification of ethylene glycol with acetic acid in the presence of cation exchange resin has been studied and kinetic models based on empirical and Langmuir approach has been developed. The Langmuir based model involving eight kinetic parameters fits experimental data much better compared to empirical model involving four kinetic parameters. The effect of temperature and catalyst loading on the reaction system has been analyzed. Further, the activation energy and frequency factor of the rate constants for Langmuir based model has been estimated.

  11. Regression Models For Saffron Yields in Iran

    NASA Astrophysics Data System (ADS)

    S. H, Sanaeinejad; S. N, Hosseini

    Saffron is an important crop in social and economical aspects in Khorassan Province (Northeast of Iran). In this research wetried to evaluate trends of saffron yield in recent years and to study the relationship between saffron yield and the climate change. A regression analysis was used to predict saffron yield based on 20 years of yield data in Birjand, Ghaen and Ferdows cities.Climatologically data for the same periods was provided by database of Khorassan Climatology Center. Climatologically data includedtemperature, rainfall, relative humidity and sunshine hours for ModelI, and temperature and rainfall for Model II. The results showed the coefficients of determination for Birjand, Ferdows and Ghaen for Model I were 0.69, 0.50 and 0.81 respectively. Also coefficients of determination for the same cities for model II were 0.53, 0.50 and 0.72 respectively. Multiple regression analysisindicated that among weather variables, temperature was the key parameter for variation ofsaffron yield. It was concluded that increasing temperature at spring was the main cause of declined saffron yield during recent years across the province. Finally, yield trend was predicted for the last 5 years using time series analysis.

  12. Yielding elastic tethers stabilize robust cell adhesion.

    PubMed

    Whitfield, Matt J; Luo, Jonathon P; Thomas, Wendy E

    2014-12-01

    Many bacteria and eukaryotic cells express adhesive proteins at the end of tethers that elongate reversibly at constant or near constant force, which we refer to as yielding elasticity. Here we address the function of yielding elastic adhesive tethers with Escherichia coli bacteria as a model for cell adhesion, using a combination of experiments and simulations. The adhesive bond kinetics and tether elasticity was modeled in the simulations with realistic biophysical models that were fit to new and previously published single molecule force spectroscopy data. The simulations were validated by comparison to experiments measuring the adhesive behavior of E. coli in flowing fluid. Analysis of the simulations demonstrated that yielding elasticity is required for the bacteria to remain bound in high and variable flow conditions, because it allows the force to be distributed evenly between multiple bonds. In contrast, strain-hardening and linear elastic tethers concentrate force on the most vulnerable bonds, which leads to failure of the entire adhesive contact. Load distribution is especially important to noncovalent receptor-ligand bonds, because they become exponentially shorter lived at higher force above a critical force, even if they form catch bonds. The advantage of yielding is likely to extend to any blood cells or pathogens adhering in flow, or to any situation where bonds are stretched unequally due to surface roughness, unequal native bond lengths, or conditions that act to unzip the bonds. PMID:25473833

  13. Yielding Elastic Tethers Stabilize Robust Cell Adhesion

    PubMed Central

    Whitfield, Matt J.; Luo, Jonathon P.; Thomas, Wendy E.

    2014-01-01

    Many bacteria and eukaryotic cells express adhesive proteins at the end of tethers that elongate reversibly at constant or near constant force, which we refer to as yielding elasticity. Here we address the function of yielding elastic adhesive tethers with Escherichia coli bacteria as a model for cell adhesion, using a combination of experiments and simulations. The adhesive bond kinetics and tether elasticity was modeled in the simulations with realistic biophysical models that were fit to new and previously published single molecule force spectroscopy data. The simulations were validated by comparison to experiments measuring the adhesive behavior of E. coli in flowing fluid. Analysis of the simulations demonstrated that yielding elasticity is required for the bacteria to remain bound in high and variable flow conditions, because it allows the force to be distributed evenly between multiple bonds. In contrast, strain-hardening and linear elastic tethers concentrate force on the most vulnerable bonds, which leads to failure of the entire adhesive contact. Load distribution is especially important to noncovalent receptor-ligand bonds, because they become exponentially shorter lived at higher force above a critical force, even if they form catch bonds. The advantage of yielding is likely to extend to any blood cells or pathogens adhering in flow, or to any situation where bonds are stretched unequally due to surface roughness, unequal native bond lengths, or conditions that act to unzip the bonds. PMID:25473833

  14. Combustion kinetics and reaction pathways

    SciTech Connect

    Klemm, R.B.; Sutherland, J.W.

    1993-12-01

    This project is focused on the fundamental chemistry of combustion. The overall objectives are to determine rate constants for elementary reactions and to elucidate the pathways of multichannel reactions. A multitechnique approach that features three independent experiments provides unique capabilities in performing reliable kinetic measurements over an exceptionally wide range in temperature, 300 to 2500 K. Recent kinetic work has focused on experimental studies and theoretical calculations of the methane dissociation system (CH{sub 4} + Ar {yields} CH{sub 3} + H + Ar and H + CH{sub 4} {yields} CH{sub 3} + H{sub 2}). Additionally, a discharge flow-photoionization mass spectrometer (DF-PIMS) experiment is used to determine branching fractions for multichannel reactions and to measure ionization thresholds of free radicals. Thus, these photoionization experiments generate data that are relevant to both reaction pathways studies (reaction dynamics) and fundamental thermochemical research. Two distinct advantages of performing PIMS with high intensity, tunable vacuum ultraviolet light at the National Synchrotron Light Source are high detection sensitivity and exceptional selectivity in monitoring radical species.

  15. Toward Self-Assembled Plasmonic Devices: High-Yield Arrangement of Gold Nanoparticles on DNA Origami Templates.

    PubMed

    Gür, Fatih N; Schwarz, Friedrich W; Ye, Jingjing; Diez, Stefan; Schmidt, Thorsten L

    2016-05-24

    Plasmonic structures allow the manipulation of light with materials that are smaller than the optical wavelength. Such structures can consist of plasmonically active metal nanoparticles and can be fabricated through scalable bottom-up self-assembly on DNA origami templates. To produce functional devices, the precise and high-yield arrangement of each of the nanoparticles on a structure is of vital importance as the absence of a single particle can destroy the functionality of the entire device. Nevertheless, the parameters influencing the yield of the multistep assembly process are still poorly understood. To overcome this deficiency, we employed a test system consisting of a tubular six-helix bundle DNA origami with binding sites for eight oligonucleotide-functionalized gold nanoparticles. We systematically studied the assembly yield as a function of a wide range of parameters such as ionic strength, stoichiometric ratio, oligonucleotide linker chemistry, and assembly kinetics by an automated high-throughput analysis of electron micrographs of the formed heterocomplexes. Our optimized protocols enable particle placement yields up to 98.7% and promise the reliable production of sophisticated DNA-based multiparticle plasmonic devices for applications in photonics, optoelectronics, and nanomedicine. PMID:27159647

  16. Systems biology from micro-organisms to human metabolic diseases: the role of detailed kinetic models.

    PubMed

    Bakker, Barbara M; van Eunen, Karen; Jeneson, Jeroen A L; van Riel, Natal A W; Bruggeman, Frank J; Teusink, Bas

    2010-10-01

    Human metabolic diseases are typically network diseases. This holds not only for multifactorial diseases, such as metabolic syndrome or Type 2 diabetes, but even when a single gene defect is the primary cause, where the adaptive response of the entire network determines the severity of disease. The latter may differ between individuals carrying the same mutation. Understanding the adaptive responses of human metabolism naturally requires a systems biology approach. Modelling of metabolic pathways in micro-organisms and some mammalian tissues has yielded many insights, qualitative as well as quantitative, into their control and regulation. Yet, even for a well-known pathway such as glycolysis, precise predictions of metabolite dynamics from experimentally determined enzyme kinetics have been only moderately successful. In the present review, we compare kinetic models of glycolysis in three cell types (African trypanosomes, yeast and skeletal muscle), evaluate their predictive power and identify limitations in our understanding. Although each of these models has its own merits and shortcomings, they also share common features. For example, in each case independently measured enzyme kinetic parameters were used as input. Based on these 'lessons from glycolysis', we will discuss how to make best use of kinetic computer models to advance our understanding of human metabolic diseases. PMID:20863302

  17. SYSTEMS BIOLOGY FROM MICROORGANISMS TO HUMAN METABOLIC DISEASES THE ROLE OF DETAILED KINETIC MODELS

    PubMed Central

    van Eunen, Karen; Jeneson, Jeroen A.L.; van Riel, Natal A.W.; Bruggeman, Frank J.; Teusink, Bas

    2012-01-01

    Human metabolic diseases are typically network diseases. This holds not only for multifactorial diseases, such as metabolic syndrome or type II diabetes: even when a single gene defect is the primary cause, the adaptive response of the entire network determines the severity of disease. The latter may differ between individuals carrying the same mutation. Understanding the adaptive responses of human metabolism naturally requires a systems biology approach. Modelling of metabolic pathways in micro-organisms and some mammalian tissues has yielded many insights - qualitative as well as quantitative - into their control and regulation. Yet, even for a well-known pathway like glycolysis precise predictions of metabolite dynamics from experimentally determined enzyme-kinetics have been only moderately successful. Here, we compare kinetic models of glycolysis in three cell types (African trypanosomes, yeast and skeletal muscle), evaluate their predictive power and identify limitations in our understanding. While each of these models has its own merits and shortcomings, they also share common features. For example, in each case independently measured enzyme kinetic parameters were used as input. Based on these lessons from glycolysis, we will discuss how to make best use of kinetic computer models to advance our understanding of human metabolic diseases. PMID:20863302

  18. Kinetics of Uranium(VI) Desorption from Contaminated Sediments: Effect of Geochemical Conditions and Model Evaluation

    SciTech Connect

    Liu, Chongxuan; Shi, Zhenqing; Zachara, John M.

    2009-09-01

    Stirred-flow cell experiments were performed to investigate the kinetics of uranyl [U(VI)] desorption from a contaminated sediment collected from the Hanford 300 Area at the US Department of Energy (DOE) Hanford Site, Washington. Three influent solutions of variable pH, Ca and carbonate concentrations that affected U(VI) aqueous and surface speciation were used under dynamic flow conditions to evaluate the effect of geochemical conditions on the rate of U(VI) desorption. The measured rate of U(VI) desorption varied with solution chemical composition that evolved as a result of thermodynamic and kinetic interactions between the influent solutions and sediment. The solution chemical composition that led to a lower equilibrium U(VI) sorption to the solid phase yielded a faster desorption rate. The experimental results were used to evaluate a multi-rate, surface complexation model (SCM) that has been proposed to describe U(VI) desorption kinetics in the Hanford sediment that contained complex sorbed U(VI) species in mass transfer limited domains. The model was modified and supplemented by including multi-rate, ion exchange reactions to describe the geochemical interactions between the solutions and sediment. With the same set of model parameters, the modified model reasonably well described the evolution of major ions and the rates of U(VI) desorption under variable geochemical and flow conditions, implying that the multi-rate SCM is an effective way to describe U(VI) desorption kinetics in subsurface sediments.

  19. Optimization and kinetic analysis on the sulfuric acid - Catalyzed depolymerization of wheat straw.

    PubMed

    Wu, Qian-Qian; Ma, Yu-Long; Chang, Xuan; Sun, Yong-Gang

    2015-09-20

    The objectives of this work were to optimize the experimental condition and to study the kinetic behavior of wheat straw depolymerization with sulfuric acid (2 wt%, 3 wt%, and 4 wt%) at different temperatures (120°C, 130°C, and 140°C). The two-fraction kinetic model was obtained for the prediction of the generations of product and by-product during depolymerization. The kinetic parameters of the two-fraction model were analyzed using an Arrhenius-type equation. Applying the kinetic two-fraction model, the optimum condition for wheat straw depolymerization was 3 wt% H2SO4 at 130°C for 75 min, which yielded a high concentration of fermentable sugars (xylose 8.934 g/L, glucose 1.363 g/L, and arabinose 1.203 g/L) and low concentrations of microbial inhibitors (furfural 0.526 g/L and acetic acid 1.192 g/L). These results suggest that the model obtained in this study can satisfactorily describe the formation of degradation products and the depolymerization mechanism of wheat straw. PMID:26050891

  20. Compartment modeling of dynamic brain PET—The impact of scatter corrections on parameter errors

    SciTech Connect

    Häggström, Ida Karlsson, Mikael; Larsson, Anne; Schmidtlein, C. Ross

    2014-11-01

    Purpose: The aim of this study was to investigate the effect of scatter and its correction on kinetic parameters in dynamic brain positron emission tomography (PET) tumor imaging. The 2-tissue compartment model was used, and two different reconstruction methods and two scatter correction (SC) schemes were investigated. Methods: The GATE Monte Carlo (MC) software was used to perform 2 × 15 full PET scan simulations of a voxelized head phantom with inserted tumor regions. The two sets of kinetic parameters of all tissues were chosen to represent the 2-tissue compartment model for the tracer 3′-deoxy-3′-({sup 18}F)fluorothymidine (FLT), and were denoted FLT{sub 1} and FLT{sub 2}. PET data were reconstructed with both 3D filtered back-projection with reprojection (3DRP) and 3D ordered-subset expectation maximization (OSEM). Images including true coincidences with attenuation correction (AC) and true+scattered coincidences with AC and with and without one of two applied SC schemes were reconstructed. Kinetic parameters were estimated by weighted nonlinear least squares fitting of image derived time–activity curves. Calculated parameters were compared to the true input to the MC simulations. Results: The relative parameter biases for scatter-eliminated data were 15%, 16%, 4%, 30%, 9%, and 7% (FLT{sub 1}) and 13%, 6%, 1%, 46%, 12%, and 8% (FLT{sub 2}) for K{sub 1}, k{sub 2}, k{sub 3}, k{sub 4}, V{sub a}, and K{sub i}, respectively. As expected, SC was essential for most parameters since omitting it increased biases by 10 percentage points on average. SC was not found necessary for the estimation of K{sub i} and k{sub 3}, however. There was no significant difference in parameter biases between the two investigated SC schemes or from parameter biases from scatter-eliminated PET data. Furthermore, neither 3DRP nor OSEM yielded the smallest parameter biases consistently although there was a slight favor for 3DRP which produced less biased k{sub 3} and K{sub i} estimates while OSEM resulted in a less biased V{sub a}. The uncertainty in OSEM parameters was about 26% (FLT{sub 1}) and 12% (FLT{sub 2}) larger than for 3DRP although identical postfilters were applied. Conclusions: SC was important for good parameter estimations. Both investigated SC schemes performed equally well on average and properly corrected for the scattered radiation, without introducing further bias. Furthermore, 3DRP was slightly favorable over OSEM in terms of kinetic parameter biases and SDs.

  1. Temperature dependence of protein folding kinetics in living cells

    PubMed Central

    Guo, Minghao; Xu, Yangfan; Gruebele, Martin

    2012-01-01

    We measure the stability and folding rate of a mutant of the enzyme phosphoglycerate kinase (PGK) inside bone tissue cells as a function of temperature from 38 to 48 °C. To facilitate measurement in individual living cells, we developed a rapid laser temperature stepping method capable of measuring complete thermal melts and kinetic traces in about two min. We find that this method yields improved thermal melts compared to heating a sample chamber or microscope stage. By comparing results for six cells with in vitro data, we show that the protein is stabilized by about 6 kJ/mole in the cytoplasm, but the temperature dependence of folding kinetics is similar to in vitro. The main difference is a slightly steeper temperature dependence of the folding rate in some cells that can be rationalized in terms of temperature-dependent crowding, local viscosity, or hydrophobicity. The observed rate coefficients can be fitted within measurement uncertainty by an effective two-state model, even though PGK folds by a multistate mechanism. We validate the effective two-state model with a three-state free energy landscape of PGK to illustrate that the effective fitting parameters can represent a more complex underlying free energy landscape. PMID:22665776

  2. Continuous growth kinetics of Candida utilis in pineapple cannery effluent

    SciTech Connect

    Prior, B.A.

    1984-01-01

    Candida utilis was grown on a pineapple cannery effluent as the sole carbon and energy source in a chemostat at dilution rates between 0.10 and 0.62 h/sup -1/ to determine the growth kinetics. The principal sugars in the effluent were sucrose, glucose, and fructose. The cell yield coefficient on carbohydrate varied with dilution rate and a maximum value of 0.63 was observed at a dilution rate of 0.33 h/sup -1/. The steady-state concentrations of carbohydrate, reducing sugar, and chemical oxygen demand (COD) appeared to follow Monod saturation kinetics with increasing dilution rate, although none of the measured parameters represented a pure substrate. The maximum specific growth rate and reducing sugar saturation constant were 0.64 h/sup -1/ and 0.060 g/L, respectively. A maximum cell mass productivity of 2.3 g/L h was observed at a dilution rate of 0.51 h/sup -1/. At this dilution rate, only 68% of the COD was removed. A 95% COD removal was attained at a dilution rate of 0.10 h/sup -1/. Optimal yeast productivity and COD reduction occurred at a dilution rate of 0.33 h/sup -1/.

  3. Temperature dependence of protein folding kinetics in living cells.

    PubMed

    Guo, Minghao; Xu, Yangfan; Gruebele, Martin

    2012-10-30

    We measure the stability and folding rate of a mutant of the enzyme phosphoglycerate kinase (PGK) inside bone tissue cells as a function of temperature from 38 to 48 C. To facilitate measurement in individual living cells, we developed a rapid laser temperature stepping method capable of measuring complete thermal melts and kinetic traces in about two min. We find that this method yields improved thermal melts compared to heating a sample chamber or microscope stage. By comparing results for six cells with in vitro data, we show that the protein is stabilized by about 6 kJ/mole in the cytoplasm, but the temperature dependence of folding kinetics is similar to in vitro. The main difference is a slightly steeper temperature dependence of the folding rate in some cells that can be rationalized in terms of temperature-dependent crowding, local viscosity, or hydrophobicity. The observed rate coefficients can be fitted within measurement uncertainty by an effective two-state model, even though PGK folds by a multistate mechanism. We validate the effective two-state model with a three-state free energy landscape of PGK to illustrate that the effective fitting parameters can represent a more complex underlying free energy landscape. PMID:22665776

  4. Drilling ban yields verdict

    SciTech Connect

    Nation, L.M.

    1992-01-01

    This paper briefly reviews a lawsuit which is under appeal by the State of Michigan regarding a takings claim filed over a petroleum exploration site. The dispute arose as a result of a 1987 decision by the Michigan Department of Natural Resources forbidding the property owners from developing the mineral rights leased to Miller Brothers in the Huron/Manistee National Forest. This area is bisected by a trend of Silurian Niagaran reef complexes which has a known production history throughout the State. The dunes area of the national forest has been deemed a wilderness area. As a result of the State's decision, the courts have awarded a sum of 71 million dollars to the developer to cover damages and lost resources. The reserve estimates were taken from adjacent areas which showed that the Niagaran reefs are relatively consistent in their yield.

  5. b{yields}s penguin amplitude in charmless B{yields}PP decays

    SciTech Connect

    Gronau, Michael; Rosner, Jonathan L.

    2005-04-01

    The b{yields}s penguin amplitude affects a number of B meson decays to two pseudoscalar (P) mesons in which potential anomalies are being watched carefully, though none has yet reached a statistically compelling level. These include (a) a sum of rates for B{sup 0}{yields}K{sup 0}{pi}{sup 0} and B{sup +}{yields}K{sup +}{pi}{sup 0} enhanced relative to half the sum for B{sup 0}{yields}K{sup +}{pi}{sup -} and B{sup +}{yields}K{sup 0}{pi}{sup +} (b) a time-dependent CP asymmetry parameter S for B{sup 0}{yields}K{sup 0}{pi}{sup 0} which is low in comparison with the expected value of sin2{beta}{approx_equal}0.73, and (c) a similar deviation in the parameter S for B{sup 0}{yields}{eta}{sup '}K{sub S}. These and related phenomena involving vector mesons in the final state are discussed in a unified way in and beyond the standard model. Future experiments which would conclusively indicate the presence of new physics are identified. Several of these involve decays of the strange B meson B{sub s}. In the standard model we prove an approximate sum rule for CP rate differences in B{sup 0}{yields}K{sup +}{pi}{sup -}, B{sup +}{yields}K{sup +}{pi}{sup 0} and B{sup 0}{yields}K{sup 0}{pi}{sup 0}, predicting a negative sign for the latter asymmetry.

  6. Experimental kinetics and mechanistic modeling of the oxidation of simple mixtures in near-critical water

    SciTech Connect

    Boock, L.T.; Klein, M.T. . Dept. of Chemical Engineering)

    1994-11-01

    The oxidation of organics in supercritical aqueous waste streams is an appealing waste treatment complement to the current technologies of incineration, land application, and deep-well injection. A novel kinetics lumping strategy is assessed through the confrontation of experimental kinetics for the hydrothermal oxidation of mixtures of simple alcohols and acetic acid with the predictions of a mechanistic model. According to this lumping strategy, each of the elementary steps in the reaction model was lumped into one of eight reaction families. Each reaction family, in turn, was assigned an Arrhenius A factor, a Polanyi relation slope [alpha] = 0.5, and a Polanyi parameter E[sub 0]* determined via optimization to previous pure component experimental data only. Quantitative prediction of the kinetics of mixtures of these components was achieved by adjusting only the A factor for the H-abstraction reaction family to the value log[sub 10] A (L/mol[center dot]s) = 8.3, characteristic of H-abstraction for secondary alcohols. In short, the 167 rate constants of the mechanistic model were predicted by the eight reaction family parameter vectors such that an excellent correlation (r[sup 2] = 0.987) existed between experimental and predicted yields.

  7. Estimation of temperature transients for biomass pretreatment in tubular batch reactors and impact on xylan hydrolysis kinetics.

    PubMed

    Stuhler, Suzanne L; Wyman, Charles E

    2003-01-01

    A combined heat transfer/kinetic model was developed to quantify temperature variations in small tubular batch reactors and estimate the effect of deviations from isothermal operation on the kinetics of biomass pretreatment. Assuming that heat transfer was dominated by conduction in the radial direction, a classic parabolic time-dependent partial differential equation was applied to describe the temperature in the system and dedimensionalized to provide a single solution for application to all situations. A dimensionless expression for the reaction kinetics for xylan hydrolysis was then developed, and a single parameter expressed as the dimensionless ratio of the first-order rate constant times the tube radius squared divided by the thermal diffusivity was found to control the reaction rate. Three different characterizations of the deviation between the concentration profile predicted for isothermal xylan hydrolysis and that based on the transient temperature were directly related to this dimensionless rate constant parameter for both catalyzed and uncatalyzed hydrolysis kinetics. These results were then used to project the relationship between deviations in yield from isothermal results and the tube radius and reaction time. PMID:12721478

  8. Mechanisms and kinetics of coal hydrogenation

    SciTech Connect

    Baldwin, R M; Furlong, M W

    1981-05-01

    Colorado School of Mines is engaged in an experimental program to develop comprehensive models for the effects of coal composition upon the kinetics and mechanisms of coal hydrogenation, for the effects of mineral matter additives (disposable catalysts) upon kinetics and mechanisms of coal hydrogenation, and for the kinetics and mechanisms of the hydrogenation of coal derived products such as preasphaltenes, and asphaltenes. Experimental work was completed on a suite of bituminous coals, thus completing the initial phase of the coal reactivity study. Eleven of the 14 coals of the suite were successfully run in duplicate. Conversion to THF solubles was correlated well by pseudo-second order kinetics. The resulting kinetic rate constants correlated with H/C ratio, mean-max vitrinite reflectance, and a specially-defined fraction of reactive macerals. The data did not correlate well with O/C ratios of the parent coals. Computer-derived statistical fits of various kinetic models were limited in their effectiveness at fitting the experimental data. Experimental work on the first phase of the disposal catalyst studies was completed. Statistical significance testing of the experimental data showed: fractional conversion and yield of light hydrocarbon products increased with time; and mineral properties of the additives were more significant in increasing overall conversion than the additive surface areas. The relative effects of the additives are given.

  9. YIELD EDITOR: SOFTWARE FOR REMOVING ERRORS FROM CROP YIELD MAPS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Yield maps are a key component of precision agriculture, due to their usefulness in both development and evaluation of precision management strategies. The value of these yield maps can be compromised by the fact that raw yield maps contain a variety of inherent errors. Researchers have reported t...

  10. Effect of Driver Impedance on Dense Plasma Focus Z-Pinch Neutron Yield and Beam Acceleration

    NASA Astrophysics Data System (ADS)

    Sears, J.; Link, A.; Ellsworth, J.; Falabella, S.; Rusnak, B.; Tang, V.; Schmidt, A.; Welch, D.

    2014-10-01

    We explore the effect of driver characteristics on dense plasma focus (DPF) neutron yield and beam acceleration using particle-in-cell (PIC) simulations of a kJ-scale DPF. Our PIC simulations are fluid for the run-down phase and transition to fully kinetic for the pinch phase. The anode-cathode boundary is driven by a circuit model of the capacitive driver, including system inductance, the load of the railgap switches, the guard resistors, and the coaxial transmission line parameters. Simulations are benchmarked to measurements of a table top kJ DPF experiment with neutron yield measured with He3-based detectors. Simulated neutron yield scales approximately with the fourth power of peak current, I4. We also probe the accelerating fields by measuring the acceleration of a 4 MeV deuteron beam and by measuring the DPF self-generated beam energy distribution, finding gradients higher than 50 MV/m. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and supported by the Laboratory Directed Research and Development Program (11-ERD-063) at LLNL.

  11. The effect of particle inlet conditions on FCC riser hydrodynamics and product yields.

    SciTech Connect

    Chang, S. L.; Golchert, B.; Lottes, S. A.; Zhou, C. Q.; Huntsinger, A.; Petrick, M.

    1999-10-11

    Essential to today's modern refineries and the gasoline production process are fluidized catalytic cracking units. By using a computational fluid dynamics (CFD) code developed at Argonne National Laboratory to simulate the riser, parametric and sensitivity studies were performed to determine the effect of catalyst inlet conditions on the riser hydrodynamics and on the product yields. Simulations were created on the basis of a general riser configuration and operating conditions. The results of this work are indications of riser operating conditions that will maximize specific product yields. The CFD code is a three-dimensional, multiphase, turbulent, reacting flow code with phenomenological models for particle-solid interactions, droplet evaporation, and chemical kinetics. The code has been validated against pressure, particle loading, and product yield measurements. After validation of the code, parametric studies were performed on various parameters such as the injection velocity of the catalyst, the angle of injection, and the particle size distribution. The results indicate that good mixing of the catalyst particles with the oil droplets produces a high degree of cracking in the riser.

  12. Yield enhancement with DFM

    NASA Astrophysics Data System (ADS)

    Paek, Seung Weon; Kang, Jae Hyun; Ha, Naya; Kim, Byung-Moo; Jang, Dae-Hyun; Jeon, Junsu; Kim, DaeWook; Chung, Kun Young; Yu, Sung-eun; Park, Joo Hyun; Bae, SangMin; Song, DongSup; Noh, WooYoung; Kim, YoungDuck; Song, HyunSeok; Choi, HungBok; Kim, Kee Sup; Choi, Kyu-Myung; Choi, Woonhyuk; Jeon, JoongWon; Lee, JinWoo; Kim, Ki-Su; Park, SeongHo; Chung, No-Young; Lee, KangDuck; Hong, YoungKi; Kim, BongSeok

    2012-03-01

    A set of design for manufacturing (DFM) techniques have been developed and applied to 45nm, 32nm and 28nm logic process technologies. A noble technology combined a number of potential confliction of DFM techniques into a comprehensive solution. These techniques work in three phases for design optimization and one phase for silicon diagnostics. In the DFM prevention phase, foundation IP such as standard cells, IO, and memory and P&R tech file are optimized. In the DFM solution phase, which happens during ECO step, auto fixing of process weak patterns and advanced RC extraction are performed. In the DFM polishing phase, post-layout tuning is done to improve manufacturability. DFM analysis enables prioritization of random and systematic failures. The DFM technique presented in this paper has been silicon-proven with three successful tape-outs in Samsung 32nm processes; about 5% improvement in yield was achieved without any notable side effects. Visual inspection of silicon also confirmed the positive effect of the DFM techniques.

  13. Cotranslational folding increases GFP folding yield.

    PubMed

    Ugrinov, Krastyu G; Clark, Patricia L

    2010-04-01

    Protein sequences evolved to fold in cells, including cotranslational folding of nascent polypeptide chains during their synthesis by the ribosome. The vectorial (N- to C-terminal) nature of cotranslational folding constrains the conformations of the nascent polypeptide chain in a manner not experienced by full-length chains diluted out of denaturant. We are still discovering to what extent these constraints affect later, posttranslational folding events. Here we directly address whether conformational constraints imposed by cotranslational folding affect the partitioning between productive folding to the native structure versus aggregation. We isolated polyribosomes from Escherichia coli cells expressing GFP, analyzed the nascent chain length distribution to determine the number of nascent chains that were long enough to fold to the native fluorescent structure, and calculated the folding yield for these nascent chains upon ribosome release versus the folding yield of an equivalent concentration of full-length, chemically denatured GFP polypeptide chains. We find that the yield of native fluorescent GFP is dramatically higher upon ribosome release of nascent chains versus dilution of full-length chains from denaturant. For kinetically trapped native structures such as GFP, folding correctly the first time, immediately after release from the ribosome, can lead to lifelong population of the native structure, as opposed to aggregation. PMID:20371331

  14. Kinetic simulation of a plasma collision experiment

    SciTech Connect

    Larroche, O. )

    1993-08-01

    The ionic Fokker--Planck code which was written for describing plasma shock wave fronts [M. Casanova [ital et] [ital al]. Phys. Rev. Lett. [bold 67], 2143 (1991)] is applied to model the collision of two plasmas in plane geometry. Improvements brought to the code for that purpose are described. The initial phase of the experiment during which the plasmas interpenetrate is accounted for by a simple fluid model, which yields qualitative insight into the phenomena at play as well as an initial condition to start the kinetic simulation. The kinetic results obtained in the stagnation and thermalization phases are discussed with respect to a specific laser-produced plasma collision experiment, as well as to existing fluid and kinetic ( particle-in-cell'') simulations.

  15. Kinetic simulation of a plasma collision experiment

    NASA Astrophysics Data System (ADS)

    Larroche, Olivier

    1993-08-01

    The ionic Fokker-Planck code which was written for describing plasma shock wave fronts [M. Casanova et al. Phys. Rev. Lett. 67, 2143 (1991)] is applied to model the collision of two plasmas in plane geometry. Improvements brought to the code for that purpose are described. The initial phase of the experiment during which the plasmas interpenetrate is accounted for by a simple fluid model, which yields qualitative insight into the phenomena at play as well as an initial condition to start the kinetic simulation. The kinetic results obtained in the stagnation and thermalization phases are discussed with respect to a specific laser-produced plasma collision experiment, as well as to existing fluid and kinetic (``particle-in-cell'') simulations.

  16. Kinetic-energy-momentum tensor in electrodynamics

    NASA Astrophysics Data System (ADS)

    Sheppard, Cheyenne J.; Kemp, Brandon A.

    2016-01-01

    We show that the Einstein-Laub formulation of electrodynamics is invalid since it yields a stress-energy-momentum (SEM) tensor that is not frame invariant. Two leading hypotheses for the kinetic formulation of electrodynamics (Chu and Einstein-Laub) are studied by use of the relativistic principle of virtual power, mathematical modeling, Lagrangian methods, and SEM transformations. The relativistic principle of virtual power is used to demonstrate the field dynamics associated with energy relations within a relativistic framework. Lorentz transformations of the respective SEM tensors demonstrate the relativistic frameworks for each studied formulation. Mathematical modeling of stationary and moving media is used to illustrate the differences and discrepancies of specific proposed kinetic formulations, where energy relations and conservation theorems are employed. Lagrangian methods are utilized to derive the field kinetic Maxwell's equations, which are studied with respect to SEM tensor transforms. Within each analysis, the Einstein-Laub formulation violates special relativity, which invalidates the Einstein-Laub SEM tensor.

  17. Determining the bistability parameter ranges of artificially induced lac operon using the root locus method.

    PubMed

    Avcu, N; Alyürük, H; Demir, G K; Pekergin, F; Cavas, L; Güzeliş, C

    2015-06-01

    This paper employs the root locus method to conduct a detailed investigation of the parameter regions that ensure bistability in a well-studied gene regulatory network namely, lac operon of Escherichia coli (E. coli). In contrast to previous works, the parametric bistability conditions observed in this study constitute a complete set of necessary and sufficient conditions. These conditions were derived by applying the root locus method to the polynomial equilibrium equation of the lac operon model to determine the parameter values yielding the multiple real roots necessary for bistability. The lac operon model used was defined as an ordinary differential equation system in a state equation form with a rational right hand side, and it was compatible with the Hill and Michaelis-Menten approaches of enzyme kinetics used to describe biochemical reactions that govern lactose metabolism. The developed root locus method can be used to study the steady-state behavior of any type of convergent biological system model based on mass action kinetics. This method provides a solution to the problem of analyzing gene regulatory networks under parameter uncertainties because the root locus method considers the model parameters as variable, rather than fixed. The obtained bistability ranges for the lac operon model parameters have the potential to elucidate the appearance of bistability for E. coli cells in in vivo experiments, and they could also be used to design robust hysteretic switches in synthetic biology. PMID:25864166

  18. A numerical study of short residence time FCC riser flows with a new flow/kinetics modeling technique.

    SciTech Connect

    Chang, S. L.

    1998-08-25

    Fluid Catalytic Cracking (FCC) technology is the most important process used by the refinery industry to convert crude oil to valuable lighter products such as gasoline. New and modified processes are constantly developed by refinery companies to improve their global competitiveness and meet more stringent environmental regulations. Short residence time FCC riser reactor is one of the advanced processes that the refining industry is actively pursuing because it can improve the yield selectivity and efficiency of an FCC unit. However, as the residence time becomes shorter, the impact of the mixing between catalyst and feed oil at the feed injection region on the product yield becomes more significant. Currently, most FCC computer models used by the refineries perform sophisticated kinetic calculations on simplified flow field and can not be used to evaluate the impact of fluid mixing on the performance of an FCC unit. Argonne National Laboratory (AFL) is developing a computational fluid dynamic (CFD) code ICRKFLO for FCC riser flow modeling. The code, employing hybrid hydrodynamic-chemical kinetic coupling techniques, is used to investigate the effect of operating and design conditions on the product yields of FCC riser reactors. Numerical calculations were made using the code to examine the impacts of the operating and design conditions on the product yields. The controlling parameters under investigation include the residence time, reaction temperature, and catalyst/oil ratio. This paper describes the CFD code, presents computation results, and discusses the effects of operating conditions on the performance of short residence time FCC riser reactors.

  19. Integrating kinetics with thermodynamics to study the alkaline extraction of protein from Caragana korshinskii Kom.

    PubMed

    Zhong, Cheng; Zhou, Zhao; Zhang, Yu-Ming; Jia, Shi-Ru; Sun, Zhuo; Dale, Bruce E

    2014-09-01

    Extraction and recovery of protein from abundant plant biomass is one potential way to improve the economic feasibility of biorefineries. However, valorization of the protein fraction is challenging due to its low yield (kg protein extraction/kg biomass). In order to reveal the limiting operation parameters, the alkaline extraction process of protein from Caragana korshinskii Kom. was investigated by an integrative analysis of kinetics and thermodynamics. Both a two-site kinetic extraction model and a second-order mo