Science.gov

Sample records for young eruptive star

  1. NEW CANDIDATE ERUPTIVE YOUNG STARS IN LYNDS 1340

    SciTech Connect

    Kun, M.; Moór, A.; Szegedi-Elek, E.; Apai, D.; O'Linger-Luscusk, J.; Stecklum, B.; Wolf-Chase, G.

    2014-11-10

    We report on the discovery of three candidate eruptive young stars, found during our comprehensive multi-wavelength study of the young stellar population of the dark cloud L1340. These stars are as follows. (1) IRAS 02224+7227 (2MASS 02270555+7241167, HH 487S) exhibited FUor-like spectrum in our low-resolution optical spectra. The available photometric data restrict its luminosity to 23 L {sub ☉} < L {sub bol} < 59 L {sub ☉}. (2) 2MASS 02263797+7304575, identified as a classical T Tauri star during our Hα survey, exhibited an EXor-type brightening in 2005 November at the time of the Sloan Digital Sky Survey observations of the region. (3) 2MASS 02325605+7246055, a low-mass embedded young star, associated with a fan-shaped infrared nebula, underwent an outburst between the DSS 1 and DSS 2 surveys, leading to the appearance of a faint optical nebula. Our [S II] and Hα images, as well as the Spitzer Infrared Array Camera 4.5 μm images, revealed Herbig-Haro objects associated with this star. Our results suggest that amplitudes and timescales of outbursts do not necessarily correlate with the evolutionary stage of the stars.

  2. Search for rapid inner disk re-arrangements in a young eruptive star

    NASA Astrophysics Data System (ADS)

    Kóspál, Á .; Á Brahám, P.; Kun, M.; Henning, Th.

    2012-03-01

    Young eruptive stars form a spectacular class of Sun-like pre-main sequence objects. They are characterized by strong optical outbursts due to enhanced accretion from the circumstellar disk onto the star. Recently, some unusual eruptive stars were identified where the brightening was due partly to enhanced accretion and partly to a dust-clearing event which reduced the extinction along the line of sight. In 2010, the outburst of a so-far unknown young star, V2492 Cyg, provided an opportunity to study the dust clearing phenomenon. Here we report on the first results of our coordinated Herschel, Spitzer, and ground-based monitoring of V2492 Cyg. Comparing the amplitude of observed variability at different wavelengths from optical to far-infrared, we investigate the physical cause of the extinction changes towards the star. We consider two scenarios: (1) a transient appearance/disappearance of a large amount of dust in the system either due to dust condensation/evaporation driven by the changing accretion heating, or being released from the disk surface by turbulence; (2) a pre-existing, long-lived dust structure that moves in/out of the line of sight, similarly to the orbiting warp in the inner disk of the low-mass young star LRLL 31. The Herschel/PACS 70 and 160 μm light curves trace the effect of rapid inner disk re-arrangements on the outer cold disk and help to decide between the two scenarios.

  3. The outburst and nature of young eruptive low mass stars in dark clouds

    NASA Astrophysics Data System (ADS)

    Ninan, J. P.; Ojha, D. K.; Bhatt, B. C.; Mallick, K. K.; Tej, A.; Sahu, D. K.; Ghosh, S. K.; Mohan, V.

    The FU Orionis (FUor) or EX Orionis (EXor) phenomenon has attracted increasing attention in recent years and is now accepted as a crucial element in the early evolution of low-mass stars. FUor and EXor eruptions of young stellar objects (YSOs) are caused by strongly enhanced accretion from the surrounding disk. FUors display optical outbursts of ˜ 4 mag or more and last for several decades, whereas EXors show smaller outbursts (Δm ˜ 2 - 3 mag) that last from a few months to a few years and may occur repeatedly. Therefore, FUor/EXor eruptions represent a rare but very important phenomenon in early stellar evolution, during which a young low-mass YSO brightens by up to several optical magnitudes. Hence, long-term observations of this class of eruptive variables are important to design theoretical models of low-mass star formation. In this paper, we present recent results from our long-term monitoring observations of three rare types of eruptive young variables with the 2-m Himalayan Chandra Telescope (HCT) and the 2-m IUCAA Girawali Observatory (IGO) telescope.

  4. Radial velocity variations in the young eruptive star EX Lupi

    NASA Astrophysics Data System (ADS)

    Kóspál, Á.; Mohler-Fischer, M.; Sicilia-Aguilar, A.; Ábrahám, P.; Curé, M.; Henning, Th.; Kiss, Cs.; Launhardt, R.; Moór, A.; Müller, A.

    2014-01-01

    Context. EX Lup-type objects (EXors) are low-mass pre-main sequence objects characterized by optical and near-infrared outbursts attributed to highly enhanced accretion from the circumstellar disk onto the star. Aims: The trigger mechanism of EXor outbursts is still debated. One type of theory requires a close (sub)stellar companion that perturbs the inner part of the disk and triggers the onset of the enhanced accretion. Here, we study the radial velocity (RV) variations of EX Lup, the prototype of the EXor class, and test whether they can be related to a close companion. Methods: We conducted a five-year RV survey, collecting 54 observations with HARPS and FEROS. We analyzed the activity of EX Lup by checking the bisector, the equivalent width of the Ca 8662 Å line, the asymmetry of the Ca II K line, the activity indicator SFEROS, the asymmetry of the cross-correlation function, the line depth ratio of the VI/FeI lines, and the TiO, CaH 2, CaH 3, CaOH, and Hα indices. We complemented the RV measurements with a 14-day optical/infrared photometric monitoring to look for signatures of activity or varying accretion. Results: We found that the RV of EX Lup is periodic (P = 7.417 d), with stable period, semi-amplitude (2.2 km s-1), and phase over at least four years of observations. This period is not present in any of the above-mentioned activity indicators. However, the RVs of narrow metallic emission lines suggest the same period, but with an anti-correlating phase. The observed absorption line RVs can be fitted with a Keplerian solution around a 0.6 M⊙ central star with msini = (14.7 ± 0.7) MJup and eccentricity of e = 0.24. Alternatively, we attempted to model the observations with a cold or hot stellar spot as well. We found that in our simple model, the spot parameters needed to reproduce the RV semi-amplitude are in contradiction with the photometric variability, making the spot scenario unlikely. Conclusions: We qualitatively discuss two possibilities to

  5. The Progenitor of the FUor-Type Young Eruptive Star 2MASS J06593158-0405277

    NASA Astrophysics Data System (ADS)

    Kóspál, Á.; Ábrahám, P.; Moór, A.; Haas, M.; Chini, R.; Hackstein, M.

    2015-03-01

    Only a dozen confirmed FU Orionis-type young outbursting stars (FUors) are known today; this explains the interest in the recent FUor eruption of 2MASS J06593158-0405277. Its outburst and expected decline will be subject to numerous studies in the future. Almost equally important for the understanding of the eruption mechanism, however, is the physical characterization of the FUor’s precursor. Here we analyze unpublished archival data and summarize—and partly revise—all relevant photometry from optical to submillimeter wavelengths. Our analysis implies that the FUor is possibly associated with eight T Tauri star candidates and a strong Class 0 source. Adopting a distance of 450 pc for the FUor, we derive a quiescent bolometric luminosity and temperature of {{L}bol} = 4.8 L ⊙ and {{T}bol} = 1190 K, typical for young Class II sources. The central star has a temperature of {{T}eff} = 4000 K, a mass of 0.75 M ⊙ , and an age of about 6 × 105 yr. The SED implies a circumstellar mass of 0.01-0.06 M ⊙ , and the system is surrounded by a faint infrared nebulosity. Our results provide an almost complete picture of a FUor progenitor, supporting the interpretation of future post-outburst studies. Based on observations made with the Herschel Space Observatory. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  6. Exploring the circumstellar environment of the young eruptive star V2492 Cygni

    NASA Astrophysics Data System (ADS)

    Kóspál, Á.; Ábrahám, P.; Acosta-Pulido, J. A.; Arévalo Morales, M. J.; Balog, Z.; Carnerero, M. I.; Szegedi-Elek, E.; Farkas, A.; Henning, Th.; Kelemen, J.; Kovács, T.; Kun, M.; Marton, G.; Mészáros, Sz.; Moór, A.; Pál, A.; Sárneczky, K.; Szakáts, R.; Szalai, N.; Szing, A.; Tóth, I.; Turner, N. J.; Vida, K.

    2013-03-01

    Context. V2492 Cyg is a young eruptive star that went into outburst in 2010. The near-infrared color changes observed since the outburst peak suggest that the source belongs to a newly defined sub-class of young eruptive stars, where time-dependent accretion and variable line-of-sight extinction play a combined role in the flux changes. Aims: In order to learn about the origin of the light variations and to explore the circumstellar and interstellar environment of V2492 Cyg, we monitored the source at ten different wavelengths, between 0.55 μm and 2.2 μm from the ground and between 3.6 μm and 160 μm from space. Methods: We analyze the light curves and study the color-color diagrams via comparison with the standard reddening path. We examine the structure of the molecular cloud hosting V2492 Cyg by computing temperature and optical depth maps from the far-infrared data. Results: We find that the shapes of the light curves at different wavelengths are strictly self-similar and that the observed variability is related to a single physical process, most likely variable extinction. We suggest that the central source is episodically occulted by a dense dust cloud in the inner disk and, based on the invariability of the far-infrared fluxes, we propose that it is a long-lived rather than a transient structure. In some respects, V2492 Cyg can be regarded as a young, embedded analog of UX Orionis-type stars. Conclusions: The example of V2492 Cyg demonstrates that the light variations of young eruptive stars are not exclusively related to changing accretion. The variability provided information on an azimuthally asymmetric structural element in the inner disk. Such an asymmetric density distribution in the terrestrial zone may also have consequences for the initial conditions of planet formation. This work is based on observations made with the Herschel Space Observatory and with the Spitzer Space Telescope. Herschel is an ESA space observatory with science instruments

  7. A PECULIAR YOUNG ERUPTIVE STAR IN THE DARK CLOUD LYNDS 1340

    SciTech Connect

    Kun, M.; Szegedi-Elek, E.; Moor, A.; Abraham, P.; Kelemen, J.; Pal, A.; Racz, M.; Regaly, Zs.; Szalai, N.; Szing, A.; Acosta-Pulido, J. A.; Apai, D.; Szakats, R.

    2011-05-20

    We conducted a long-term optical photometric and spectroscopic monitoring of the strongly variable, accreting young sun-like star [KOS94] HA11, associated with the dark cloud Lynds 1340 that exhibited large amplitude (5-6 mag in the I{sub C} band) brightness variations on 2-3 years timescales, flat spectral energy distribution (SED), and extremely strong (300{approx}< EW/A {approx}< 900) H{alpha} emission. In this Letter we describe the basic properties of the star, derived from our observations between 1999 and 2011, and put into context the observed phenomena. The observed variations in the emission spectra, near-infrared colors, and SED suggest that [KOS94] HA11 (spectral type: K7-M0) is an eruptive young star, possibly similar in nature to V1647 Ori: its large-scale photometric variations are governed by variable accretion rate, associated with variations in the inner disk structure. The star recently has undergone strong and rapid brightness variations, thus its further observations may offer a rare opportunity for studying structural and chemical rearrangements of the inner disk, induced by variable central luminosity.

  8. Second outburst phase of a young eruptive star V1647 Orionis (McNeil's nebula)

    NASA Astrophysics Data System (ADS)

    Ninan, J. P.; Ojha, D. K.; Mallick, K. K.; Ghosh, S. K.; Joshi, J. S.

    2013-06-01

    Young low mass stars still embedded in dust and molecular gas pass through a stage of outbursts. These outbursts are due to sudden increase in accretion rate from the inner disc. V1647 Orionis underwent an FU Ori kind of outburst in 2004 and returned to its pre-outburst phase in early 2006. Within just 2 years it again underwent a second outburst in 2008; such an event is rarely seen in FU Ori type of outburst. We therefore followed the source in its second outburst phase from 2-m Himalayan Chandra Telescope (HCT) and 2-m IUCAA Girawali Observatory (IGO) Telescope. Our optical and near-infrared (NIR) photometric data show that the source is undergoing a slow but steady dimming of ˜ 0.3 - 0.5 mag since the recent second outburst. It seems that the observed properties of the outburst of V1647 Ori are different from both the EX Ori and FU Ori type of outbursts, and suggest that this star probably represents a new type of eruptive young star, to be different from both FU Ori and EX Ori classes.

  9. Cold CO Gas in the Disk of the Young Eruptive Star EX Lup

    NASA Astrophysics Data System (ADS)

    Kóspál, Á.; Ábrahám, P.; Csengeri, T.; Gorti, U.; Henning, Th.; Moór, A.; Semenov, D. A.; Szűcs, L.; Güsten, R.

    2016-04-01

    EX Lupi-type objects (EXors) form a sub-class of T Tauri stars, defined by sudden sporadic flare-ups of 1–5 mag at optical wavelengths. These eruptions are attributed to enhanced mass accretion from the circumstellar disk to the star, and may constitute important events in shaping the structure of the inner disk and the forming planetary system. Although disk properties must play a fundamental role in driving the outbursts, they are surprisingly poorly known. In order to characterize the dust and gas components of EXor disks, here we report on observations of the 12CO J = 3‑2 and 4–3 lines, and the 13CO 3–2 line in EX Lup, the prototype of the EXor class. We reproduce the observed line fluxes and profiles with a line radiative transfer model and compare the obtained parameters with corresponding ones of other T Tauri disks.

  10. VizieR Online Data Catalog: Candidate eruptive young stars in Lynds 1340 (Kun+, 2014)

    NASA Astrophysics Data System (ADS)

    Kun, M.; Apai, D.; O'Linger-Luscusk, J.; Moor, A.; Stecklum, B.; Szegedi-Elek, E.; Wolf-Chase, G.

    2016-07-01

    Lynds 1340 was observed by the Spitzer Space Telescope using the Infrared Array Camera (IRAC) on 2009 March 16 and the Multiband Imaging Photometer (MIPS) for Spitzer on 2008 November 26 (Prog. ID: 50691, PI: G. Fazio). The observations covered ~1deg2 in each band. We obtained low-resolution optical spectra for the star coinciding with IRAS 02224+7227 on 2003 February 5 using CAFOS with the G-100 grism on the 2.2m Telescope of the Calar Alto Observatory, and on 2004 December 11 using FAST on the 1.5m FLWO Telescope. High angular resolution JHK images, centered on the same star, were obtained on 2002 October 24 using the near-infrared camera Omega-Cass, mounted on the 3.5m Telescope of the Calar Alto Observatory. We performed a new search for Hα emission stars in L1340 using the Wide Field Grism Spectrograph 2 installed on the University of Hawaii 2.2m Telescope. We observed 2MASS J02263797+7304575 on 2011 October 16 and detected a Hα emission with EW(Hα)=-80Å in its spectrum. The Ks magnitude of 2MASS J02325605+7246055 was measured on the images obtained on 2010 October 18, during the monitoring program of V1180 Cas (Kun et al. 2011, J/ApJ/733/L8), using the MAGIC camera on the 2.2m Telescope of the Calar Alto Observatory. Narrow-band images through [SII] and Hα filters, as well as broad R-band images containing the environment of 2MASSJ02325605+7246055, were obtained with the Schmidt Telescope of the Thuringer Landessternwarte (TLS), Tautenburg in 2011 May, June, and September. Spectra of the nebula and the two brightest HH knots were obtained using the TLS medium-resolution Nasmyth spectrograph (R~700) in 2011 November. BVRCIC photometric observations of IRAS 02224+7227 were performed with the 1m Ritchey-Chretien-Coude (RCC) Telescope of the Konkoly Observatory at three epochs between 2001 and 2011. We measured the RC and IC magnitudes of IRAS 02224+7227 and 2MASSJ02263797+7304575 at several epochs between 2011 January and 2014 June on the images collected

  11. The past photometric history of the FU Ori-type young eruptive star 2MASS J06593158-0405277 = V960 Mon

    NASA Astrophysics Data System (ADS)

    Jurdana-Šepić, Rajka; Munari, Ulisse

    2016-02-01

    The known FU Ori-type young eruptive stars are exceedingly rare (a dozen or so confirmed objects) and 2MASS J06593158-0405277, with its 2014 outburst, is likely the latest addition to the family. All members have displayed just one such eruption in their recorded history, an event lasting for decades. To test the FU Ori nature of 2MASS J06593158-0405277, we have reconstructed its photometric history by measuring its brightness on Harvard photographic plates spanning the time interval 1899-1989. No previous large amplitude eruption similar to that initiated in 2014 has been found, as in bona fide FU Ori-type objects. The median value of the brightness in quiescence of 2MASS J06593158-0405277 is B = 15.5, with the time interval 1935-1950 characterized by a large variability (˜ 1 mag amplitude) that contrasts with the remarkable photometric stability displayed at later epochs. The variability during 1935-1950 can either be ascribed to some T Tau like activity of 2MASS J06593158-0405277 itself or to the also young and fainter star 2MASS J06593168-0405224 that lies 5 arcsec to the North and forms an unresolved pair at the astrometric scale of Harvard photographic plates.

  12. Recovery From Giant Eruptions in Massive Stars

    NASA Astrophysics Data System (ADS)

    Kashi, A.; Davidson, K.; Humphreys, R. M.

    2015-12-01

    We perform radiation hydrodynamic simulations to study how very massive stars recover from giant eruptions. The post eruption star experience strong mass loss due to strong winds, driven by radial pulsations in the star*s interior, that operate by the κ-mechanism. The mass loss history obtained in our simulations resembles η Car*s history.

  13. Dwarf Star Erupts in Giant Flare

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This movie taken by NASA'S Galaxy Evolution Explorer shows one of the largest flares, or star eruptions, ever recorded at ultraviolet wavelengths. The star, called GJ 3685A, just happened to be in the Galaxy Evolution Explorer's field of view while the telescope was busy observing galaxies. As the movie demonstrates, the seemingly serene star suddenly exploded once, then even more intensely a second time, pouring out in total about one million times more energy than a typical flare from our Sun. The second blast of light constituted an increase in brightness by a factor of at least 10,000.

    Flares are huge explosions of energy stemming from a single location on a star's surface. They are caused by the brief destruction of a star's magnetic fields. Many types of stars experience them, though old, small, rapidly rotating 'red dwarfs' like GJ 3685A tend to flare more frequently and dramatically. These stars, called flare stars, can experience powerful eruptions as often as every few hours. Younger stars, in general, also erupt more often. One of the reasons astronomers study flare stars is to gain a better picture and history of flare events taking place on the Sun.

    A preliminary analysis of the GJ 3685A flare shows that the mechanisms underlying stellar eruptions may be more complex than previously believed. Evidence for the two most popular flare theories was found.

    Though this movie has been sped up (the actual flare lasted about 20 minutes), time-resolved data exist for each one-hundredth of a second. These observations were taken at 2 p.m. Pacific time, April 24, 2004. In the still image, the time sequence starts in the upper left panel, continues in the upper right, then moves to the lower left and ends in the lower right.

    The circular and linear features that appear below and to the right of GJ 3685A during the flare event are detector artifacts caused by the extreme brightness of the flare.

  14. Identifying Young, Nearby Stars

    NASA Technical Reports Server (NTRS)

    Webb, Rich; Song, Inseok; Zuckerman, Ben; Bessell, Mike

    2001-01-01

    Young stars have certain characteristics, e.g., high atmospheric abundance of lithium and chromospheric activity, fast rotation, distinctive space motion and strong X-ray flux compared to that of older main sequence stars. We have selected a list of candidate young (<100Myr) and nearby (<60pc) stars based on their space motion and/or strong X-ray flux. To determine space motion of a star, one needs to know its coordinates (RA, DEC), proper motion, distance, and radial velocity. The Hipparcos and Tycho catalogues provide all this information except radial velocities. We anticipate eventually searching approx. 1000 nearby stars for signs of extreme youth. Future studies of the young stars so identified will help clarify the formation of planetary systems for times between 10 and 100 million years. Certainly, the final output of this study will be a very useful resource, especially for adaptive optics and space based searches for Jupiter-mass planets and dusty proto-planetary disks. We have begun spectroscopic observations in January, 2001 with the 2.3 m telescope at Siding Spring Observatory (SSO) in New South Wales, Australia. These spectra will be used to determine radial velocities and other youth indicators such as Li 6708A absorption strength and Hydrogen Balmer line intensity. Additional observations of southern hemisphere stars from SSO are scheduled in April and northern hemisphere observations will take place in May and July at the Lick Observatory of the University of California. AT SSO, to date, we have observed about 100 stars with a high resolution spectrometer (echelle) and about 50 stars with a medium spectral resolution spectrometer (the "DBS"). About 20% of these stars turn out to be young stars. Among these, two especially noteworthy stars appear to be the closest T-Tauri stars ever identified. Interestingly, these stars share the same space motions as that of a very famous star with a dusty circumstellar disk--beta Pictoris. This new finding better

  15. Instability considerations for massive star eruptions

    SciTech Connect

    Guzik, J. A.

    2004-01-01

    We propose a mechanism to explain the observed properties of the giant eruptions of 'supernova imposters' such as {eta} Car and P Cyg. This mechanism must be episodic, generate a large amount of energy, and be very deep-seated, in order to lift about 10 solar masses out of the deep gravitational potential well of these massive evolved stars. We suggest that nonradial gravity mode oscillations capable of existing in the core grow slowly to sufficient amplitude to cause an episode of mixing. This mixing generates a burst of nuclear energy deep in the star that is responsible for the observed large mass ejection and bolometric magnitude increase.

  16. Young Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    Portegies Zwart, Simon F.; McMillan, Stephen L. W.; Gieles, Mark

    2010-09-01

    Young massive clusters (YMCs) are dense aggregates of young stars that form the fundamental building blocks of galaxies. Several examples exist in the Milky Way Galaxy and the Local Group, but they are particularly abundant in starburst and interacting galaxies. The few YMCs that are close enough to resolve are of prime interest for studying the stellar mass function and the ecological interplay between stellar evolution and stellar dynamics. The distant unresolved clusters may be effectively used to study the star-cluster mass function, and they provide excellent constraints on the formation mechanisms of young cluster populations. YMCs are expected to be the nurseries for many unusual objects, including a wide range of exotic stars and binaries. So far only a few such objects have been found in YMCs, although their older cousins, the globular clusters, are unusually rich in stellar exotica. In this review, we focus on star clusters younger than ˜100 Myr, more than a few current crossing times old, and more massive than ˜104M⊙; the size of the cluster and its environment are considered less relevant as distinguishing parameters. We describe the global properties of the currently known young massive star clusters in the Local Group and beyond, and discuss the state of the art in observations and dynamical modeling of these systems. In order to make this review readable by observers, theorists, and computational astrophysicists, we also review the cross-disciplinary terminology.

  17. Eruptive star V1180 Cas now in outburst

    NASA Astrophysics Data System (ADS)

    Antoniucci, S.; Arkharov, A. A.; Efimova, N.; Kopatskaya, E. N.; Larionov, V. M.; Di Paola, A.; Giannini, T.; Li Causi, G.; Lorenzetti, D.; Vitali, F.

    2013-09-01

    In the framework of our optical/near-IR EXor monitoring program dubbed EXORCISM (EXOR optiCal Infrared Systematic Monitoring - Antoniucci et al. PPVI), we have been observing since two months the variable star V1180 Cas, associated with the dark cloud Lynds 1340. This source has been originally recognized as a young eruptive object by Kun et al. (2011, ApJ 733, L8), who observed a powerful outburst (5-6 mag in the Ic band) in the period 2005-2008.

  18. Jets from young stars

    NASA Astrophysics Data System (ADS)

    Bally, John

    2007-10-01

    Most stars produce spectacular jets during their formation. There are thousands of young stars within 500 pc of the Sun and many power jets. Thus protostellar jets may be the most common type of collimated astrophysical outflow. Shocks powered by outflows excite many emission lines, exhibit a rich variety of structure, and motions with velocities ranging from 50 to over 500 km s-1. Due to their relative proximity, proper motions and structural changes can be observed in less than a year. I review the general properties of protostellar jets, summarize some results from recent narrow-band imaging surveys of entire clouds, discuss irradiated jets, and end with some comments concerning outflows from high-mass young stellar objects. Protostellar outflows are ideal laboratories for the exploration of the jet physics.

  19. Young Stars in IC 2118

    NASA Astrophysics Data System (ADS)

    Spuck, Tim; Sepulveda, Babs; Maranto, Tony; Weehler, Cynthia; Roelofsen, Theresa; Rebull, Luisa

    2006-02-01

    IC 2118, the Witch Head Nebula (~210 parsecs), is a region of star formation located near the supergiant star Rigel in the constellation Orion. Last year, we observed the head of the nebula and approximately QUADRUPLED the number of young stars known here. We propose using IRAC and MIPS to continue our investigation by observing the densest part of the rest of the cloud. Our team proposes to use IRAC and MIPS observations to (1) investigate star formation, (2) look for likely cluster member stars with infrared excesses, and characterize this young star population by obtaining their colors and therefore estimates of masses and ages, (3) study the distribution of stars, their relationship to the ISM, and the possibilities of triggered star formation, (4) compare the young star population, distribution, and age to other similar sites of star formation, e.g., IC 1396 and (5) produce a dramatic image of the interstellar medium in the region surrounding IC 2118. Since this region is in the Orion constellation near the bright star Rigel, it provides additional appeal to students and the general public.

  20. Young Stars in IC 2118

    NASA Astrophysics Data System (ADS)

    Spuck, Tim; Rebull, Luisa; Daou, Doris; Maranto, Tony; Roelofsen, Theresa; Sepulveda, Babs; Weehler, Cynthia

    2005-02-01

    IC 2118, the Witch Head Nebula (~210 parsecs), is region forming stars located near the supergiant star Rigel in the constellation Orion. Kun et al. (2004, A&A, 418, 89) have determined that IC 2118 is on the near side of the Orion-Eridanus Super Bubble and that stellar winds from the Orion OB1 association may be triggering new star formation in the nebula. We propose using IRAC and MIPS to reexamine a small dense region of this nebula where Kun et al. have spectroscopically identified three 2MASS sources as T Tauri stars embedded in the cloud. Previous all-sky surveys, including both IRAS and 2MASS, have included this region, but not to the resolution that Spitzer can provide, and there are few studies of this particular region in the literature. Our team proposes to use IRAC and MIPS observations to (1) investigate star formation, (2) look for likely cluster member stars with infrared excesses, and characterize this young star population by obtaining their colors and therefore estimates of masses and ages, (3) study the distribution of stars, their relationship to the ISM, and the possibilities of triggered star formation, (4) compare the young star population, distribution, and age to other similar sites of star formation, e.g., IC 1396 and (5) produce a dramatic image of the interstellar medium in the region surrounding IC 2118. Since this region is in the Orion constellation near the bright star Rigel, it provides additional appeal to students and the general public.

  1. Disk Dispersal Around Young Stars

    NASA Technical Reports Server (NTRS)

    Hollenbach, David

    2004-01-01

    We first review the evidence pertaining to the lifetimes of planet-forming disks of gas and dust around young stars and discuss possible disk dispersal mechanisms: 1) viscous accretion of material onto the central source, 2) close stellar encounters, 3) stellar winds, and 4) photoevaporation caused by the heating of the disk surface by ultraviolet radiation. Photoevaporation is likely the most important dispersal mechanism for the outer regions of disks, and this talk focuses on the evaporation caused by the presence of a nearby, luminous star rather than the central star itself. We also focus on disks around low-mass stars like the Sun rather than high-mass stars, which we have treated previously. Stars often form in clusters and the ultraviolet flux from the most luminous star in the cluster can have a dramatic effect on the disk orbiting a nearby low-mass star. We apply our theoretical models to the evaporating protoplanetary disks (or "proplyds") in the Trapezium cluster in Orion, to the formation of gas giant planets like Jupiter around Sun-like stars in the Galaxy, and to the formation of Kuiper belts around low mass stars. We find a possible explanation for the differences between Neptune and Jupiter, and make a prediction concerning recent searches for giant planets in large clusters. We discuss recent models of the infrared spectra from gaseous disks around young stars.

  2. Giant eruptions of very massive stars

    NASA Astrophysics Data System (ADS)

    Davidson, Kris

    2016-07-01

    Giant eruptions or supernova-impostor events are far more mysterious than true supernovae. An extreme example can release as much radiative energy as a SN, ejecting several Mʘ of material. These events involve continuous radiation-driven outflows rather than blast waves. They constitute one of the main unsolved problems in stellar astrophysics, but have received little theoretical attention. The most notorious giant-eruption survivor, ƞ Carinae, is amazingly close to us for such a rare event. It offers a wealth of observational clues, many of them quite unexpected in terms of simple theory.

  3. Studying Young Stars with Large Spectroscopic Surveys

    NASA Astrophysics Data System (ADS)

    Martell, Sarah L.

    2016-01-01

    Galactic archaeology is the study of the history of star formation and chemical evolution in the Milky Way, based on present-day stellar populations. Studies of young stars are a key anchor point for Galactic archaeology, since quantities like the initial mass function and the star formation rate can be studied directly in young clusters and star forming regions. Conversely, massive spectroscopic Galactic archaeology surveys can be used as a data source for young star studies.

  4. Young and Waltzing Binary Stars

    NASA Astrophysics Data System (ADS)

    2001-10-01

    ADONIS Observes Low-mass Eclipsing System in Orion Summary A series of very detailed images of a binary system of two young stars have been combined into a movie . In merely 3 days, the stars swing around each other. As seen from the earth, they pass in front of each other twice during a full revolution, producing eclipses during which their combined brightness diminishes . A careful analysis of the orbital motions has now made it possible to deduce the masses of the two dancing stars . Both turn out to be about as heavy as our Sun. But while the Sun is about 4500 million years old, these two stars are still in their infancy. They are located some 1500 light-years away in the Orion star-forming region and they probably formed just 10 million years ago . This is the first time such an accurate determination of the stellar masses could be achieved for a young binary system of low-mass stars . The new result provides an important piece of information for our current understanding of how young stars evolve. The observations were obtained by a team of astronomers from Italy and ESO [1] using the ADaptive Optics Near Infrared System (ADONIS) on the 3.6-m telescope at the ESO La Silla Observatory. PR Photo 29a/01 : The RXJ 0529.4+0041 system before primary eclipse PR Photo 29b/01 : The RXJ 0529.4+0041 system at mid-primary eclipse PR Photo 29c/01 : The RXJ 0529.4+0041 system after primary eclipse PR Photo 29d/01 : The RXJ 0529.4+0041 system before secondary eclipse PR Photo 29e/01 : The RXJ 0529.4+0041 system at mid-secondary eclipse PR Photo 29f/01 : The RXJ 0529.4+0041 system after secondary eclipse PR Video Clip 06/01 : Video of the RXJ 0529.4+0041 system Binary stars and stellar masses Since some time, astronomers have noted that most stars seem to form in binary or multiple systems. This is quite fortunate, as the study of binary stars is the only way in which it is possible to measure directly one of the most fundamental quantities of a star, its mass. The mass of a

  5. Recovery from Giant Eruptions in Very Massive Stars

    NASA Astrophysics Data System (ADS)

    Kashi, Amit; Davidson, Kris; Humphreys, Roberta M.

    2016-01-01

    We use a hydro-and-radiative-transfer code to explore the behavior of a very massive star (VMS) after a giant eruption—i.e., following a supernova impostor event. Beginning with reasonable models for evolved VMSs with masses of 80 M⊙ and 120 M⊙, we simulate the change of state caused by a giant eruption via two methods that explicitly conserve total energy. (1) Synthetically removing outer layers of mass of a few M⊙ while reducing the energy of the inner layers. (2) Synthetically transferring energy from the core to the outer layers, an operation that automatically causes mass ejection. Our focus is on the aftermath, not the poorly understood eruption itself. Then, using a radiation-hydrodynamic code in 1D with realistic opacities and convection, the interior disequilibrium state is followed for about 200 years. Typically the star develops a ˜400 km s-1 wind with a mass loss rate that begins around 0.1 M⊙ yr-1 and gradually decreases. This outflow is driven by κ-mechanism radial pulsations. The 1D models have regular pulsations but 3D models will probably be more chaotic. In some cases a plateau in the mass-loss rate may persist about 200 years, while other cases are more like η Car which lost >10 M⊙ and then had an abnormal mass loss rate for more than a century after its eruption. In our model, the post-eruption outflow carried more mass than the initial eruption. These simulations constitute a useful preliminary reconnaissance for 3D models which will be far more difficult.

  6. Eruptions at Lone Star Geyser, Yellowstone National Park, USA, part 1: energetics and eruption dynamics

    USGS Publications Warehouse

    Karlstrom, Leif; Hurwitz, Shaul; Sohn, Robert; Vandemeulebrouck, Jean; Murphy, Fred; Rudolph, Maxwell L.; Johnston, Malcolm J.S.; Manga, Michael; McCleskey, R. Blaine

    2013-01-01

    Geysers provide a natural laboratory to study multiphase eruptive processes. We present results from a four–day experiment at Lone Star Geyser in Yellowstone National Park, USA. We simultaneously measured water discharge, acoustic emissions, infraredintensity, and visible and infrared video to quantify the energetics and dynamics of eruptions, occurring approximately every three hours. We define four phases in the eruption cycle: 1) a 28 ± 3 minute phase with liquid and steam fountaining, with maximum jet velocities of 16–28 m s− 1, steam mass fraction of less than ∼ 0.01. Intermittently choked flow and flow oscillations with periods increasing from 20 to 40 s are coincident with a decrease in jet velocity and an increase of steam fraction; 2) a 26 ± 8 minute post–eruption relaxation phase with no discharge from the vent, infrared (IR) and acoustic power oscillations gliding between 30 and 40 s; 3) a 59 ± 13 minute recharge period during which the geyser is quiescent and progressively refills, and 4) a 69 ± 14 minute pre–play period characterized by a series of 5–10 minute–long pulses of steam, small volumes of liquid water discharge and 50–70 s flow oscillations. The erupted waters ascend froma 160 − 170° C reservoir and the volume discharged during the entire eruptive cycle is 20.8 ± 4.1 m3. Assuming isentropic expansion, we calculate a heat output from the geyser of 1.4–1.5 MW, which is < 0.1% of the total heat output from Yellowstone Caldera.

  7. Young and Waltzing Binary Stars

    NASA Astrophysics Data System (ADS)

    2001-10-01

    ADONIS Observes Low-mass Eclipsing System in Orion Summary A series of very detailed images of a binary system of two young stars have been combined into a movie . In merely 3 days, the stars swing around each other. As seen from the earth, they pass in front of each other twice during a full revolution, producing eclipses during which their combined brightness diminishes . A careful analysis of the orbital motions has now made it possible to deduce the masses of the two dancing stars . Both turn out to be about as heavy as our Sun. But while the Sun is about 4500 million years old, these two stars are still in their infancy. They are located some 1500 light-years away in the Orion star-forming region and they probably formed just 10 million years ago . This is the first time such an accurate determination of the stellar masses could be achieved for a young binary system of low-mass stars . The new result provides an important piece of information for our current understanding of how young stars evolve. The observations were obtained by a team of astronomers from Italy and ESO [1] using the ADaptive Optics Near Infrared System (ADONIS) on the 3.6-m telescope at the ESO La Silla Observatory. PR Photo 29a/01 : The RXJ 0529.4+0041 system before primary eclipse PR Photo 29b/01 : The RXJ 0529.4+0041 system at mid-primary eclipse PR Photo 29c/01 : The RXJ 0529.4+0041 system after primary eclipse PR Photo 29d/01 : The RXJ 0529.4+0041 system before secondary eclipse PR Photo 29e/01 : The RXJ 0529.4+0041 system at mid-secondary eclipse PR Photo 29f/01 : The RXJ 0529.4+0041 system after secondary eclipse PR Video Clip 06/01 : Video of the RXJ 0529.4+0041 system Binary stars and stellar masses Since some time, astronomers have noted that most stars seem to form in binary or multiple systems. This is quite fortunate, as the study of binary stars is the only way in which it is possible to measure directly one of the most fundamental quantities of a star, its mass. The mass of a

  8. Interstellar Extinction Toward Young Stars

    NASA Astrophysics Data System (ADS)

    McJunkin, Matthew; France, Kevin

    2015-01-01

    We present work on a molecular hydrogen (H2) fluorescence model to characterize the ultraviolet (UV) extinction curve along the line of sight towards young stars with circumstellar disks. Stellar UV radiation plays a strong role in heating the disk gas and driving chemical reactions, so it is important to measure the UV extinction curve in order to reconstruct the intrinsic stellar UV flux impacting the disk. To measure the extinction, we compare modeled H2 fluorescence spectra to observed H2 lines. Lyman-alpha radiation from the stars pumps electronic transitions of H2 in the disk, and we model the flux that is re-emitted through the subsequent fluorescent cascade. We then extract the extinction along the line-of-sight over the 1100-1700 Angstrom wavelength region from the difference between the modeled H2 fluorescence and the HST-COS data. The shape of the extinction curve allows us to characterize the dust grain distribution in the intervening material as well as to recover the intrinsic spectral energy distribution of the stars over a wide wavelength range.

  9. Candidates for Young Super Star Clusters in the Milky Way

    NASA Astrophysics Data System (ADS)

    Rahman, Mubdi; Matzner, C. D.; Moon, D.

    2011-01-01

    Massive Star Clusters (M > 104 M⊙) have been known to exist throughout the local Universe, but few such objects have been found within our own Galaxy. These clusters the majority of the galactic OB star formation, and thus dramatically alter their surroundings through winds, ionizing flux and radiation pressure, and supernovae, eventually destroying their natal clouds and inflating superbubbles which will erupt from the Galactic plane. We search for the young stellar clusters within the star forming complexes identified by Rahman & Murray (2010) using the WMAP free-free and Spitzer GLIMPSE 8 micron observations. Located far across the Galactic plane, these clusters are highly extinguished and crowded by field stars. Using the 2MASS catalogue, we have developed a method of identifying overdensities of sources with colours consistent with the extinguished upper main sequence coincident with the star forming complexes. The difficulty in this method comes from the large number of overlapping foreground sources in comparison to the expected number of cluster sources in any given candidate cluster. We identify a candidate for the most massive young cluster in the Galaxy (M 105 M⊙), which we have dubbed the Dragonfish Cluster. The candidate cluster is at a distance of 9.7 kpc and has a total ionizing luminosity of 7×1051 photons s-1. We identify nearly 400 OB star candidates associated with the cluster, to be confirmed with near-infrared spectroscopy.

  10. THE GALEX NEARBY YOUNG-STAR SURVEY

    SciTech Connect

    Rodriguez, David R.; Faherty, Jacqueline K.; Zuckerman, B.; Kastner, Joel H.; Bessell, M. S.; Murphy, Simon J.

    2013-09-10

    We describe a method that exploits data from the Galaxy Evolution Explorer (GALEX) ultraviolet and Wide-field Infrared Survey Explorer and Two Micron All Sky Survey infrared source catalogs, combined with proper motions and empirical pre-main sequence isochrones, to identify candidate nearby, young, low-mass stars. Applying our method across the full GALEX-covered sky, we identify 2031 mostly M-type stars that, for an assumed age of 10 (100) Myr, all lie within {approx}150 ({approx}90) pc of Earth. The distribution of M spectral subclasses among these {approx}2000 candidate young stars peaks sharply in the range M3-M4; these subtypes constitute 50% of the sample, consistent with studies of the M star population in the immediate solar neighborhood. We focus on a subset of 58 of these candidate young M stars in the vicinity of the Tucana-Horologium association. Only 20 of these 58 candidates were detected in the ROSAT All-Sky X-ray Survey-reflecting the greater sensitivity of GALEX for the purposes of identifying active nearby, young stars, particularly for stars of type M4 and later. Based on statistical analysis of the kinematics and/or spectroscopic followup of these 58 M stars, we find that 50% (29 stars) indeed have properties consistent with Tuc-Hor membership, while 12 are potential new members of the Columba association, and 2 may be AB Dor moving group members. Hence, {approx}75% of our initial subsample of 58 candidates are likely members of young (age {approx} 10-40 Myr) stellar moving groups within 100 pc, verifying that the stellar color- and kinematics-based selection algorithms described here can be used to efficiently isolate nearby, young, low-mass objects from among the field star population. Future studies will focus on characterizing additional subsamples selected from among this list of candidate nearby, young M stars.

  11. Searching for Young Stars in Northern Orion

    NASA Astrophysics Data System (ADS)

    Urban, Laurie; Kraus, A.

    2011-01-01

    The Orion Molecular Cloud contains many known star-forming regions mostly located in the southern parts of the constellation. However, northern Orion is largely unsurveyed outside of a few well-established clusters meaning there could be more sites of ongoing star formation. We have conducted a search for young stars in northern Orion to find new star-forming regions. Using the MG1 Variable Star Survey we identified 2118 variable stars spanning a region of 30 deg2 from R.A.=4h 00m to 6h 30m and Dec=2.9 to 3.7 degrees. These stars’ variability could result from accretion or spots, which are common characteristics of young stars. We use several methods to detect candidate young stars from these data: selection cuts with color-magnitude diagrams (CMDs), measurement of proper motions and visual inspection of the source images. We make cuts to only include stars that have CMD positions consistent with the Orion sequence, have proper motions within 3 sigma of known Orion members, and are not contaminated by other nearby sources. These cuts identify an area between 5h 20m and 5h 52m in R.A. with a significant overdensity of 74 young star candidates. We will discuss in detail our selection cuts and the implication of these discoveries. This work was conducted by a Research Experience for Undergraduates (REU) position at the University of Hawai'i's Institute for Astronomy and funded by the NSF.

  12. The inner disks of EXor-type eruptive stars

    NASA Astrophysics Data System (ADS)

    Sipos, Nikoletta; Kóspál, Ágnes

    2014-01-01

    EX Lupi-type young stars (EXors) show sporadic brightenings of several magnitudes, caused by the episodic increase in the accretion rate of the circumstellar matter onto the young star. As the inner disk plays a crucial role during the onset of the outburst, we examined the quiescent properties of the circumstellar environment of EXors, focusing on the inner regions. We found that in case of three EXors (VY Tau, V1143 Ori and EX Lup) the spectral energy distributions show no or weak excess above the stellar photosphere at NIR-MIR wavelengths, indicative of inner disk clearing. A detailed radiative transfer modeling of the sources revealed that the inner regions of these disks had to go through significant evolution, either the inner radius of the dusty disk is beyond the sublimation radius and/or the inner disks are flattened.

  13. Spatial Distributions of Young Stars

    NASA Astrophysics Data System (ADS)

    Kraus, Adam L.; Hillenbrand, Lynne A.

    2008-10-01

    We analyze the spatial distribution of young stars in Taurus-Auriga and Upper Sco, as determined from the two-point correlation function (i.e., the mean surface density of neighbors). The corresponding power-law fits allow us to determine the fractal dimensions of each association's spatial distribution, measure the stellar velocity dispersions, and distinguish between the bound binary population and chance alignments of members. We find that the fractal dimension of Taurus is D ~ 1.05, consistent with its filamentary structure. The fractal dimension of Upper Sco may be even shallower (D ~ 0.7), but this fit is uncertain due to the limited area and possible spatially variable incompleteness. We also find that random stellar motions have erased all primordial structure on scales of lsim0.07° in Taurus and lsim1.7° in Upper Sco; given ages of ~1 and ~5 Myr, the corresponding internal velocity dispersions are ~0.2 and ~1.0 km s-1, respectively. Finally, we find that binaries can be distinguished from chance alignments at separations of lsim120'' (17,000 AU) in Taurus and lsim75'' (11,000 AU) in Upper Sco. The binary populations in these associations that we previously studied, spanning separations of 3''-30'', is dominated by binary systems. However, the few lowest mass pairs (Mprim <~ 0.3 M⊙) might be chance alignments.

  14. The Evolving Structure of Young Volcanic Eruption Clouds

    NASA Astrophysics Data System (ADS)

    Carn, S. A.; Bursik, M. I.

    2015-12-01

    Processes acting in nascent volcanic clouds within seconds to hours of eruption (e.g., ash aggregation, ice nucleation, gravity waves) set the stage for subsequent advection and diffusion of volcanic ash, hence strongly influence aviation hazards and atmospheric impacts, but are very difficult to observe. Young plumes initially spread by gravity in the crosswind direction due to density differences with the surrounding stratified atmosphere. Subsequently, plumes lose their density contrast with the atmosphere and are advected as lenses of aerosol and gas, slowly thinning, spreading and dispersing as shearing and small scale turbulence act at their margins, and as fine ash settles out. Since 2006, satellite observations from NASA's A-Train constellation, including the CALIOP lidar and CloudSat radar, have provided tantalizing glimpses of young volcanic clouds in the first few hours of atmospheric residence. These unique observations, although spatially limited, provide insight into the evolving structure of young volcanic clouds from an optically thick, vertically extensive initial state to thin layers confined to a limited altitude range. Layered volcanic clouds may develop due to the existence of alternating turbulent and stable layers in the free troposphere and stratosphere. Turbulent layers retain particles longer than do quiescent layers because the turbulence retains particles in suspension. Particles fall more rapidly through the quiescent layers by single particle settling, or more rapidly because of convective sedimentation. The result is a distinct, banded ash cloud structure. We present A-Train satellite observations of volcanic clouds at various stages of evolution from several recent eruptions (including Kelut, Redoubt, Chaitén, Eyjafjallajökull, Okmok and Kasatochi) and also show the results of preliminary model simulations of the development of volcanic cloud layering.

  15. Variability of Young Stars: the Importance of Keeping an Eye on Children

    NASA Astrophysics Data System (ADS)

    Herbst, W.

    2013-06-01

    (Abstract only) I will review the state of our understanding of young stars with an emphasis on how and why they vary in brightness. The main causes of the variations will be reviewed, including the rotation of spotted weak-lined T Tauri stars, accretion onto classical T Tauri stars, the eruptive behavior of FUors, and the enigmatic variations of the UXors. The important role that amateurs have and will continue to play in these studies is highlighted. I will also discuss the latest results on two unusual young binaries, BM Orionis in the Trapezium asterism and KH 15D in NGC 2264.

  16. Photoevaporating Disks Around Young Stars

    NASA Technical Reports Server (NTRS)

    Hollenbach, David

    2004-01-01

    Ultraviolet radiation from the central star or from a nearby massive star heats the surfaces of protoplanetary disks and causes the outer, less gravitationally bound part of the disks, to photoevaporate into interstellar space. Photoevaporation is likely the most important dispersal mechanism for the outer regions of disks. We focus in this talk on disks around low-mass stars like the Sun rather than high-mass stars, which we have treated previously. Stars often form in clusters and the ultraviolet flux from the most luminous star in the cluster can have a dramatic effect on the disk orbiting a nearby low-mass star. We apply our theoretical models to the evaporating protoplanetary disks (or "proplyds") in the Trapezium cluster in Orion, to the formation of gas giant planets like Jupiter around Sun-like stars in the Galaxy, and to the formation of Kuiper belts around low mass stars. We discuss recent models of the effects of the radiation from the central low mass star including both the predicted infrared spectra from the heated disks as well as preliminary results on the photoevaporation rates.

  17. Young stars in the Galactic center

    NASA Astrophysics Data System (ADS)

    Lu, Jessica R.; Ghez, Andrea M.; Morris, Mark R.; Clarkson, Will; Stolte, Andrea; Do, Tuan; Yelda, Sylvana; Anderson, Jay

    2014-05-01

    The central parsec of our Galaxy hosts not only a supermassive black hole, but also a large population of young stars (age <6 Myr) whose presence is puzzling given how inhospitable the region is for star formation. The strong tidal forces require gas densities many orders of magnitude higher than is found in typical molecular clouds. Kinematic observations of this young nuclear cluster show complex structures, including a well-defined inner disk, but also a substantial off-disk population. Spectroscopic and photometric measurements indicate the initial mass function (IMF) differs significantly from the canonical IMF found in the solar neighborhood. These observations have led to a number of proposed star formation scenarios, such as an infalling massive star cluster, a single infalling molecular cloud, or cloud-cloud collisions. I will review recent works on the young stars in the central parsec and discuss connections with young nuclear star clusters in other galaxies, such as M31, and with star formation in the larger central molecular zone.

  18. Triggered star formation in the environment of young massive stars

    NASA Astrophysics Data System (ADS)

    Gritschneder, Matthias; Naab, T.; Heitsch, F.; Burkert, A.

    Recent observations with the Spitzer Space Telescope show clear evidence that star formation takes place in the surrounding of young massive O-type stars, which are shaping their environment due to their powerful radiation and stellar winds. In this work we investigate the effect of ionising radiation of massive stars on the ambient interstellar medium (ISM): In particular we want to examine whether the UV-radiation of O-type stars can lead to the observed pillar-like structures and can trigger star formation. We developed a new implementation, based on a parallel Smooth Particle Hydrodynamics code (VINE), that allows an efficient treatment of the effect of ionising radiation from massive stars on their turbulent gaseous environment. Here we present first results at very high resolution. We show that ionising radiation can trigger the collapse of an otherwise stable molecular cloud. The arising structures resemble observed structures (e.g. the pillars of creation in the Eagle Nebula (M16) or the Horsehead Nebula B33). Including the effect of gravitation we find small regions that can be identified as formation places of individual stars. We conclude that ionising radiation from massive stars alone can trigger substantial star formation in molecular clouds.

  19. Bimodal Distribution of Geyser Preplay Eruptions: Lone Star Geyser, Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Namiki, A.; Hurwitz, S.; Murphy, F.; Manga, M.

    2014-12-01

    Geyser eruption intervals are determined by rates of water and heat discharge into shallow subsurface reservoirs and the conduit. In some geysers, small amounts of water discharge prior to a main eruption ('Preplay') can affect eruption intervals. Water discharge during preplay reduces the hydrostatic pressure, which in turn, induces boiling of water that is at, or near the critical temperature. Ascending steam slugs from depth can also lead to shorter eruption intervals (Namiki et al., 2014). In April 2014, we carried a five day experiment at Lone Star Geyser, Yellowstone National Park. Eruptions and their preplays were recorded with an infrared sensor that measured temperature variations immediately above the geyser cone (3.4~m high), temperature loggers that measured water temperature at the base of the cone and in the outflow channels, and visual observations. At Lone Star Geyser, during the preplay phase of the eruption, mainly liquid water is erupted, whereas the main phase of the eruption begins with the liquid-water dominated eruption and turns into the steam discharge. The temperature rise in an outflow channel indicates the occurrence of preplays and initiation of the main eruption. The acquired data suggests that the preplay patterns of Lone Star Geyser are vigorous and complex, consistent with previous observations (Karlstrom et al., 2013). Our new observations reveal two typical styles: 1) vigorous preplays with few events (<5) and long intervals (>20~minutes) that last approximately 40~minutes, and 2) less vigorous preplays that include several events (>5) with short intervals (few minutes), and continue approximately for one hour. Probability distributions of preplay durations show two peaks indicating the bimodal activity. The bimodality of Lone Star preplays may be a result of subtle change of temperature distribution in a convecting reservoir which has been observed in laboratory experiments (Toramaru and Maeda, 2013).

  20. Episodic Accretion in Young Stars

    NASA Astrophysics Data System (ADS)

    Audard, M.; Ábrahám, P.; Dunham, M. M.; Green, J. D.; Grosso, N.; Hamaguchi, K.; Kastner, J. H.; Kóspál, Á.; Lodato, G.; Romanova, M. M.; Skinner, S. L.; Vorobyov, E. I.; Zhu, Z.

    In the last 20 years, the topic of episodic accretion has gained significant interest in the star-formation community. It is now viewed as a common, although still poorly understood, phenomenon in low-mass star formation. The FU Orionis objects (FUors) are long-studied examples of this phenomenon. FU Orionis objects are believed to undergo accretion outbursts during which the accretion rate rapidly increases from typically 10-7 to a few 10-4 M⊙ yr-1, and remains elevated over several decades or more. EXors, a loosely defined class of pre-main-sequence stars, exhibit shorter and repetitive outbursts, associated with lower accretion rates. The relationship between the two classes, and their connection to the standard pre-main-sequence evolutionary sequence, is an open question: Do they represent two distinct classes, are they triggered by the same physical mechanism, and do they occur in the same evolutionary phases? Over the past couple of decades, many theoretical and numerical models have been developed to explain the origin of FUor and EXor outbursts. In parallel, such accretion bursts have been detected at an increasing rate, and as observing techniques improve, each individual outburst is studied in increasing detail. We summarize key observations of pre-main-sequence star outbursts, and review the latest thinking on outburst triggering mechanisms, the propagation of outbursts from star/disk to disk/jet systems, the relation between classical EXors and FUors, and newly discovered outbursting sources — all of which shed new light on episodic accretion. We finally highlight some of the most promising directions for this field in the near- and long-term.

  1. Radio and infrared properties of young stars

    NASA Technical Reports Server (NTRS)

    Panagia, Nino

    1987-01-01

    Observing young stars, or more appropriately, pre-main-sequence (PMS) stars, in the infrared and at radio frequencies has the advantage over optical observation in that the heavy extinction associated with a star forming region is only a minor problem, so that the whole region can be studied thoroughly. Therefore, it means being able to: (1) search for stars and do statistical studies on the rate of star formation; (2) determine their luminosity, hence, to study luminosity functions and initial mass functions down to low masses; and (3) to study their spectra and, thus, to determine the prevailing conditions at and near the surface of a newly born star and its relations with the surrounding environment. The third point is of principal interest. The report limits itself to a consideration of the observations concerning the processes of outflows from, and accretion onto, PMS stars and the theory necessary to interpret them. Section 2 discusses the radiative processes relevant in stellar outflows. The main observational results are presented in Section 3. A discussion of the statistical properties of stellar winds from PMS stars are given in Section 4.

  2. Finding Young Stars in IC417

    NASA Astrophysics Data System (ADS)

    Odden, Caroline; Rebull, Luisa M.; Sanchez, Richard; Hall, Garrison; Dear, AnnaMaria; Hengel, Cassie; LaRocca, Mia; Lin, Samantha; Nix, Sabine; Sweckard, Teaghan; Wilhelm, Katie

    2016-01-01

    IC 417 is a young cluster in the constellation Auriga, towards the Galactic anti-center in the Perseus arm, at a distance of ~2.3 kpc. Previous studies suggested that there are young stars in this region; Camargo et al. (2012) identified several few-Myr-old clusters in this region from 2MASS clustering, and Jose et al. (2008) identified H-alpha excess sources. Since stars form from clouds of interstellar dust and gas, a signature of star formation is excess infrared (IR) emission, which is interpreted as evidence for circumstellar dust around young stars. We identified new candidate young stellar objects (YSOs) in IC 417 by incorporating near- and mid-infrared observations from the Wide-field Infrared Survey Explorer (WISE) and the Two Micron All-Sky Survey (2MASS). Infrared excess sources were identified by using a series of color cuts in various 2MASS/WISE color-magnitude and color-color diagrams following Koenig & Leisawitz (2014). We also assembled a list of OB and H-alpha stars from the literature, including those from Jose et al. (2008), and H-alpha bright stars from the IPHAS survey (Witham et al. 2008). Starting with this compiled list of approximately 200 interesting objects in the region, we then set about checking their reliability in three ways. We inspected the POSS, 2MASS, and WISE images of the sources. We assembled and inspected spectral energy distributions (SEDs) from archival data ranging from wavelengths of 0.7 to 22 um. Finally, we created and inspected color-color and color-magnitude diagrams. We find enough new YSO candidates to more than double the number yet identified in the IC 417 region. This research was made possible through the NASA/IPAC Teacher Archive Research Program (NITARP) and was funded by NASA Astrophysics Data Program.

  3. Probing Young Star Physics with Aperiodic Variability

    NASA Astrophysics Data System (ADS)

    Findeisen, Krzysztof

    2014-01-01

    Ongoing time domain surveys such as PTF, CRTS, and Pan-STARRS1, as well as upcoming surveys such as LSST, promise to revolutionize optical astronomy by providing a comprehensive picture of the variability properties of everything from local flare stars to distant quasars. Time domain surveys have already proven a boon for studies of young stars, whose variability is frequently aperiodic and may have time scales of days to decades, depending on the physics underlying the variability. I present an overview of the PTF-NAN (North America Nebula) survey, which allows us, for the first time, to simultaneously resolve day-scale variability and to monitor changes in photometric behavior in young stars over several years, without large data gaps and without any assumptions about periodicity. I describe preliminary results of the survey, including a search for episodic stellar behavior, a study of the most robust methods for identifying the characteristic time scale(s) of an aperiodic signal, and a characterization of the full range of amplitudes and time scales represented in optical variability of young stars.

  4. Young Star Probably Ejected From Triple System

    NASA Astrophysics Data System (ADS)

    2003-01-01

    Astronomers analyzing nearly 20 years of data from the National Science Foundation's Very Large Array radio telescope have discovered that a small star in a multiple-star system in the constellation Taurus probably has been ejected from the system after a close encounter with one of the system's more-massive components, presumed to be a compact double star. This is the first time any such event has been observed. Path of Small Star, 1983-2001 "Our analysis shows a drastic change in the orbit of this young star after it made a close approach to another object in the system," said Luis Rodriguez of the Institute of Astronomy of the National Autonomous University of Mexico (UNAM). "The young star was accelerated to a large velocity by the close approach, and certainly now is in a very different, more remote orbit, and may even completely escape its companions," said Laurent Loinard, leader of the research team that also included Monica Rodriguez in addition to Luis Rodriguez. The UNAM astronomers presented their findings at the American Astronomical Society's meeting in Seattle, WA. The discovery of this chaotic event will be important for advancing our understanding of classical dynamic astronomy and of how stars evolve, including possibly providing an explanation for the production of the mysterious "brown dwarfs," the astronomers said. The scientists analyzed VLA observations of T Tauri, a multiple system of young stars some 450 light-years from Earth. The observations were made from 1983 to 2001. The T Tauri system includes a "Northern" star, the famous star that gives its name to the class of young visible stars, and a "Southern" system of stars, all orbiting each other. The VLA data were used to track the orbit of the smaller Southern star around the larger Southern object, presumed to be a pair of stars orbiting each other closely. The astronomers' plot of the smaller star's orbit shows that it followed an apparently elliptical orbit around its twin companions

  5. Ten Micron Observations of Nearby Young Stars

    NASA Astrophysics Data System (ADS)

    Metchev, Stanimir A.; Hillenbrand, Lynne A.; Meyer, Michael R.

    2004-01-01

    We present new 10 μm photometry of 21 nearby young stars obtained at the Palomar 5 m and at the Keck I 10 m telescopes as part of a program to search for dust in the habitable zone of young stars. Thirteen of the stars are in the F-K spectral type range (``solar analogs''), four have B or A spectral types, and four have spectral type M. We confirm existing IRAS 12 μm and ground-based 10 μm photometry for 10 of the stars and present new insight into this spectral regime for the rest. Excess emission at 10 μm is not found in any of the young solar analogs, except for a possible 2.4 σ detection in the G5 V star HD 88638. The G2 V star HD 107146, which does not display a 10 μm excess, is identified as a new Vega-like candidate, based on our 10 μm photospheric detection, combined with previously unidentified 60 and 100 μm IRAS excesses. Among the early-type stars, a 10 μm excess is detected only in HD 109573A (HR 4796A), confirming prior observations; among the M dwarfs, excesses are confirmed in AA Tau, CD -40°8434, and Hen 3-600A. A previously suggested N-band excess in the M3 dwarf CD -33°7795 is shown to be consistent with photospheric emission. We calculate infrared to stellar bolometric luminosity ratios for all stars exhibiting mid-infrared excesses and infer the total mass of orbiting dust in the cases of optically thin disks. For a derived median photometric precision of +/-0.11 mag, we place an upper limit of Mdust~2×10-5 M⊕ on the dust mass (assuming a dust temperature of 300 K) around solar analogs not seen in excess at 10 μm. Our calculations for the nearby K1 V star HD 17925 show that it may have the least massive debris disk known outside our solar system (Mdust>~7×10-6 M⊕). Our limited data confirm the expected tendency of decreasing fractional dust excess fd=LIR/L* with increasing stellar age. However, we argue that estimates of fd suffer from a degeneracy between the temperature and the amount of circumstellar dust Mdust, and we

  6. An X-ray outburst from the rapidly accreting young star that illuminates McNeil's nebula.

    PubMed

    Kastner, J H; Richmond, M; Grosso, N; Weintraub, D A; Simon, T; Frank, A; Hamaguchi, K; Ozawa, H; Henden, A

    2004-07-22

    Young, low-mass stars are luminous X-ray sources whose powerful X-ray flares may exert a profound influence over the process of planet formation. The origin of the X-ray emission is uncertain. Although many (or perhaps most) recently formed, low-mass stars emit X-rays as a consequence of solar-like coronal activity, it has also been suggested that X-ray emission may be a direct result of mass accretion onto the forming star. Here we report X-ray imaging spectroscopy observations which reveal a factor approximately 50 increase in the X-ray flux from a young star that is at present undergoing a spectacular optical/infrared outburst (this star illuminates McNeil's nebula). The outburst seems to be due to the sudden onset of a phase of rapid accretion. The coincidence of a surge in X-ray brightness with the optical/infrared eruption demonstrates that strongly enhanced high-energy emission from young stars can occur as a consequence of high accretion rates. We suggest that such accretion-enhanced X-ray emission from erupting young stars may be short-lived, because intense star-disk magnetospheric interactions are quenched rapidly by the subsequent flood of new material onto the star. PMID:15269761

  7. Dispersal of Disk Around Young Stars

    NASA Technical Reports Server (NTRS)

    DeVincenzi, Donald L.; Hollenbach, David

    2000-01-01

    Young stars produce sufficient ultraviolet photon luminosity and mechanical luminosity in their winds to significantly affect the structure and evolution of the accretion disks surrounding them. The Lyman continuum photons create a nearly static, ionized, isothermal 10(exp 4) K atmosphere forms above the neutral disk at small distances from the star. Further out, they create a photoevaporative flow which relatively rapidly destroys the disk. The resulting slow (10-50 km per second) ionized outflow, which persists for greater than or equal to 10(exp 5) years for disk masses Md approx. 0.3M*, may explain the observational characteristics of many ultracompact HII regions. We compare model results to the observed radio free-free Spectra and luminosities of ultracompact HII regions and to the interesting source MWC349, which is observed to produce hydrogen masers. We also apply the results to the early solar nebula to explain the the dispersal of the solar nebula and the differences in hydrogen content in the giant planets. Finally, we model the small bright objects ("proplyds") observed in the Orion Nebula as disks around young, low mass stars which are externally illuminated by the UV photons from the nearby massive star.

  8. Eruptions at Lone Star geyser, Yellowstone National Park, USA: 2. Constraints on subsurface dynamics

    NASA Astrophysics Data System (ADS)

    Vandemeulebrouck, Jean; Sohn, Robert A.; Rudolph, Maxwell L.; Hurwitz, Shaul; Manga, Michael; Johnston, Malcolm J. S.; Soule, S. Adam; McPhee, Darcy; Glen, Jonathan M. G.; Karlstrom, Leif; Murphy, Fred

    2014-12-01

    We use seismic, tilt, lidar, thermal, and gravity data from 32 consecutive eruption cycles of Lone Star geyser in Yellowstone National Park to identify key subsurface processes throughout the geyser's eruption cycle. Previously, we described measurements and analyses associated with the geyser's erupting jet dynamics. Here we show that seismicity is dominated by hydrothermal tremor (~5-40 Hz) attributed to the nucleation and/or collapse of vapor bubbles. Water discharge during eruption preplay triggers high-amplitude tremor pulses from a back azimuth aligned with the geyser cone, but during the rest of the eruption cycle it is shifted to the east-northeast. Moreover, ~4 min period ground surface displacements recur every 26 ± 8 min and are uncorrelated with the eruption cycle. Based on these observations, we conclude that (1) the dynamical behavior of the geyser is controlled by the thermo-mechanical coupling between the geyser conduit and a laterally offset reservoir periodically filled with a highly compressible two-phase mixture, (2) liquid and steam slugs periodically ascend into the shallow crust near the geyser system inducing detectable deformation, (3) eruptions occur when the pressure decrease associated with overflow from geyser conduit during preplay triggers an unstable feedback between vapor generation (cavitation) and mass discharge, and (4) flow choking at a constriction in the conduit arrests the runaway process and increases the saturated vapor pressure in the reservoir by a factor of ~10 during eruptions.

  9. Eruptions at Lone Star geyser, Yellowstone National Park, USA: 2. Constraints on subsurface dynamics

    USGS Publications Warehouse

    Vandemeulebrouck, Jean; Sohn, Robert A.; Rudolph, Maxwell L.; Hurwitz, Shaul; Manga, Michael; Johnston, Malcolm J.S.; Soule, S. Adam; McPhee, Darcy K.; Glen, Jonathan M.G.; Karlstrom, Leif; Murphy, Fred

    2014-01-01

    We use seismic, tilt, lidar, thermal, and gravity data from 32 consecutive eruption cycles of Lone Star geyser in Yellowstone National Park to identify key subsurface processes throughout the geyser's eruption cycle. Previously, we described measurements and analyses associated with the geyser's erupting jet dynamics. Here we show that seismicity is dominated by hydrothermal tremor (~5–40 Hz) attributed to the nucleation and/or collapse of vapor bubbles. Water discharge during eruption preplay triggers high-amplitude tremor pulses from a back azimuth aligned with the geyser cone, but during the rest of the eruption cycle it is shifted to the east-northeast. Moreover, ~4 min period ground surface displacements recur every 26 ± 8 min and are uncorrelated with the eruption cycle. Based on these observations, we conclude that (1) the dynamical behavior of the geyser is controlled by the thermo-mechanical coupling between the geyser conduit and a laterally offset reservoir periodically filled with a highly compressible two-phase mixture, (2) liquid and steam slugs periodically ascend into the shallow crust near the geyser system inducing detectable deformation, (3) eruptions occur when the pressure decrease associated with overflow from geyser conduit during preplay triggers an unstable feedback between vapor generation (cavitation) and mass discharge, and (4) flow choking at a constriction in the conduit arrests the runaway process and increases the saturated vapor pressure in the reservoir by a factor of ~10 during eruptions.

  10. Dispersal of Disks Around Young Stars

    NASA Technical Reports Server (NTRS)

    Hollenbach, David; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    We review the evidence pertaining to the lifetimes of planet-forming disks and discuss possible disk dispersal mechanisms: 1) viscous accretion of material onto the central source; 2) close stellar encounters; 3) stellar winds; and 4) photoevaporation by ultraviolet radiation. We focus on 3) and 4) and describe the quasi-steady state appearance and the overall evolution of disks under the influence of winds and radiation from the central star and of radiation from external OB stars. Viscous accretion likely dominates disk dispersal in the inner disk (r approx. or less than 10 AU), while photoevaporation is the principal process of disk dispersal outside of r approx. or greater than 10 AU for low mass stars. Disk dispersal timescales are compared and discussed in relation to theoretical estimates for planet formation timescales. Photoevaporation may explain the large differences in the hydrogen content of the giant planets in the solar system. The commonly held belief that our early sun's stellar wind dispersed he solar nebula is called into question. Finally, we model the small bright objects ('proplyds') observed in the Orion Nebula as disks around young, low mass stars which are externally illuminated by the UV (ultraviolet) photons from the nearby massive star Theta(1)C.

  11. Dispersal of Disks Around Young Stars

    NASA Technical Reports Server (NTRS)

    Hollenbach, David

    2001-01-01

    We review the evidence pertaining to the lifetimes of planet-forming disks and discuss possible disk dispersal mechanisms: 1) viscous accretion of material onto the central source, 2) close stellar encounters, 3) stellar winds, and 4) photoevaporation by ultraviolet radiation. We focus on 3) and 4) and describe the quasi-steady state appearance and the overall evolution of disks under the influence of winds and radiation from the central star and of radiation from external OB stars. Viscous accretion likely dominates disk dispersal in the inner disk (r < or approx. equals 10 AU), while photoevaporation is the principal process of disk dispersal outside of r > or approx. equals 10 AU for low mass stars. Disk dispersal timescales are compared and discussed in relation to theoretical estimates for planet formation timescales. Photoevaporation may explain the large differences in the hydrogen content of the giant planets in the solar system. The commonly held belief that our early sun's stellar wind dispersed the solar nebula is called into question. Finally, we model the small bright objects ("proplyds") observed in the Orion Nebula as disks around young, low mass stars which are externally illuminated by the UV photons from the nearby massive star Theta(sup 1)C.

  12. The structure of young star clusters

    NASA Astrophysics Data System (ADS)

    Gladwin, P. P.; Kitsionas, S.; Boffin, H. M. J.; Whitworth, A. P.

    1999-01-01

    In this paper we analyse and compare the clustering of young stars in Chamaeleon I and Taurus. We compute the mean surface density of companion stars N as a function of angular displacement theta from each star. We then fit N theta) with two simultaneous power laws, i.e. N(theta) ~ K_bintheta^-beta_bin + K_clutheta^-beta_clu. For Chamaeleon I, we obtain beta_bin= 1.97 +/- and beta_clu= 0.28 +/- 0.06, with the elbow at theta_elb~ 0 011 +/- 0 004. For Taurus, we obtain beta_bin= 2.02 +/- 0.04 and beta _clu= 0.87 +/- 0.01, with the elbow at theta _elb~ 0 013 +/- 0 003. For both star clusters the observational data make large (~ 5 sigma) systematic excursions from the best-fitting curve in the binary regime (theta < theta_elb). These excursions are visible also in the data used by Larson and Simon, and may be attributable to evolutionary effects of the types discussed recently by Nakajima et al. and Bate et al. In the clustering regime (theta > theta_elb) the data conform to the best-fitting curve very well, but the beta_clu values we obtain differ significantly from those obtained by other workers. These differences are due partly to the use of different samples, and partly to different methods of analysis. We also calculate the box dimensions for the two star clusters: for Chamaeleon I we obtain D_box~=1.51+/-0.12, and for Taurus D_box~=1.39+/-0.01. However, the limited dynamic range makes these estimates simply descriptors of the large-scale clustering, and not admissible evidence for fractality. We propose two algorithms for objectively generating maps of constant stellar surface density in young star clusters. Such maps are useful for comparison with molecular-line and dust-continuum maps of star-forming clouds, and with the results of numerical simulations of star formation. They are also useful because they retain information that is suppressed in the evaluation of N(theta). Algorithm I (SCATTER) uses a universal smoothing length, and therefore has a restricted

  13. Disks and Outflows Around Young Stars

    NASA Astrophysics Data System (ADS)

    Beckwith, Steven; Staude, Jakob; Quetz, Axel; Natta, Antonella

    The subject of the book, the ubiquitous circumstellar disks around very young stars and the corresponding jets of outflowing matter, has recently become one of the hottest areas in astrophysics. The disks are thought to be precursors to planetary systems, and the outflows are thought to be a necessary phase in the formation of a young star, helping the star to get rid of angular momentum and energy as it makes its way onto the main sequence. The possible connections to planetary systems and stellar astrophysics makes these topics especially broad, appealing to generalists and specialists alike. The CD not only contains papers that could not be printed in the book but allows the authors to include a fair amount of data, often displayed as color images. The CD-ROM contains all the contributions printed in the corresponding book (Lecture Notes in Physics Vol. 465) and, in addition, those presented exclusively in digital form. Each contribution consists of a file in portable document format (PDF). The electronic version allows full-text searching within each file using Adobe's Acrobat Reader providing instructions for installation on Unix (Sun), PC and Macintosh computers, respectively. All contributions can be printed out; the color diagrams and color frames, which are printed in black and white in the book, can be viewed in color on screen.

  14. X-ray emission of young solar type stars

    NASA Astrophysics Data System (ADS)

    Casanova, Sophie

    1994-12-01

    .25 microns) magnitude, and we findthe same correlation with the X-ray luminosity than for the visible stars of the Chamaeleon Cloud. Thanks to the near equality of the absorption in the keV X-ray and J bands we derive a relation between the X-ray counts and J magnitude which may be used as a selection criterion for the young stars. We also discuss the influence of the X-rays on the interstellar gas and dust. 3) Young stars far from dense cores. We then present the preliminary results of an on-going program of optical spectroscopy carried out at La Palma and ESO to caracterize the counterparts of new ROSAT sources far from the ρ Oph dense core. Thanks to the detection of the lithium absorption line and of the Hα emission line we classiify most of them as CTTS or WTTS. We show that great differences in the density of sources, in the WTTS/CTTS ratio and in the equivalent width of the lithium line exist between regions relatively close to one another in the sky. One possibility could be that these stars outside the dense core may be older, possibly ``Post T Tauri" Stars, on their way to the main sequence. 4) Variability of the Xray emission of T Tauri stars. The last part of the thesis deals with the study of time variability of the X-ray emission of TTS. These sources show evidence of variabilility both in the form of rare strong events (eruptions) and of more subtle variations of the presumed ``quiescent" emission. In some cases, we have access to the heating and cooling timescales which constrain some parameters of the plasma confined in flare loops. It is important to note that the X-ray emission of all strong sources is variable, which indicates that probably only the lack of statistics may prevent the detection of flares for the faint sources. Besides, a circumstellar disk has no influence on the variability of the star. In conclusion, X-ray are necessary to have access to the total population of young solar-type stars. They should allow to understand better the process

  15. NEW YOUNG STAR CANDIDATES IN CG4 AND Sa101

    SciTech Connect

    Rebull, L. M.; Laine, S.; Laher, R.; Legassie, M.; Hoette, V.; Kim, J. S.; Foster, M.; Mallory, C. R.; McCarron, K.; Sherry, W. H.

    2011-07-15

    The CG4 and Sa101 regions together cover a region of {approx}0.5 deg{sup 2} in the vicinity of a 'cometary globule' that is part of the Gum Nebula. There are seven previously identified young stars in this region; we have searched for new young stars using mid- and far-infrared data (3.6-70 {mu}m) from the Spitzer Space Telescope, combined with ground-based optical data and near-infrared data from the Two Micron All Sky Survey. We find infrared excesses in all six of the previously identified young stars in our maps and identify 16 more candidate young stars based on apparent infrared excesses. Most (73%) of the new young stars are Class II objects. There is a tighter grouping of young stars and young star candidates in the Sa101 region, in contrast to the CG4 region, where there are fewer young stars and young star candidates, and they are more dispersed. Few likely young objects are found in the 'fingers' of the dust being disturbed by the ionization front from the heart of the Gum Nebula.

  16. Multiple Outflows in the Giant Eruption of a Massive Star

    NASA Astrophysics Data System (ADS)

    Humphreys, Roberta M.; Martin, John C.; Gordon, Michael S.; Jones, Terry J.

    2016-08-01

    The supernova impostor PSN J09132750+7627410 in NGC 2748 reached a maximum luminosity of ≈‑14 mag. It was quickly realized that it was not a true supernova, but another example of a nonterminal giant eruption. PSN J09132750+7627410 is distinguished by multiple P Cygni absorption minima in the Balmer emission lines that correspond to outflow velocities of ‑400, ‑1100, and ‑1600 km s‑1. Multiple outflows have been observed in only a few other objects. In this paper we describe the evolution of the spectrum and the P Cygni profiles for 3 months past maximum, the post-maximum formation of a cool, dense wind, and the identification of a possible progenitor. One of the possible progenitors is an infrared source. Its pre-eruption spectral energy distribution suggests a bolometric luminosity of ‑8.3 mag and a dust temperature of 780 K. If it is the progenitor, it is above the AGB limit, unlike the intermediate-luminosity red transients. The three P Cygni profiles could be due to ejecta from the current eruption, the wind of the progenitor, or previous mass-loss events. We suggest that they were all formed as part of the same high-mass-loss event and are due to material ejected at different velocities or energies. We also suggest that multiple outflows during giant eruptions may be more common than reported. Based on observations obtained with the Large Binocular Telescope (LBT), an international collaboration among institutions in the United States, Italy, and Germany. LBT Corporation partners are the University of Arizona on behalf of the Arizona university system; Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; The Ohio State University and The Research Corporation, on behalf of the University of Notre Dame, University of Minnesota, and University of Virginia.

  17. New Young Star Candidates in BRC 27

    NASA Astrophysics Data System (ADS)

    Novatne, Lauren J.; Mattrocce, G.; Milan, T.; Quinonez, A.; Rebull, L. M.; Barge, J.; Amayo, R.; Bieber, H.; Block, L.; Cheung, E.; Cruz, A.; Elkin, D.; Figueroa, A.; Jakus, M.; Kelo, A.; Larson, O.; Lemma, B.; Li, Y.; Loe, C.; Maciag, V.; Moreno, N.; Nevels, M.; Pezanoski-Cohen, G.; Short, M.; Skatchke, K.; Tur-Kaspa, A.; Zegeye, D.; Armstrong, J.; Bonadurer, R.; French, D.; Free, B.; Miller, C.; Scherich, H.; Willis, T.; Koenig, X.; Laher, R.; Padgett, D.; Piper, M.; Pavlak, A.; Piper, M.; Venezio, E.; Ali, B.

    2013-01-01

    All stars originate from clouds of interstellar gas that collapse either under their own gravity or with external help. In triggered star formation, the collapse of a cloud is initiated by pressure, e.g., from nearby star(s). When the external source is bright stars, it can illuminate the rims of the cloud, creating bright-rimmed clouds (BRCs) to be visible at optical and infrared (IR) wavelengths. We searched for new candidate young stellar objects (YSOs) primarily using the March 2012 all-sky release of Wide-field Infrared Survey Explorer (WISE) data in BRC 27, which is part of CMa R1, a region of known star formation. Spitzer data of a 5’x5’ region centered on BRC 27 were presented by Johnson et al. 2012 and Rebull et al. 2012. We investigated WISE data within a 20 arcminute radius of BRC 27 0.35 sq. deg), combining it with Spitzer data serendipitously obtained in this region, 2MASS data, and optical data. We started from nearly 4000 WISE sources and identified about 200 candidate YSOs via a series of color cuts (Koenig et al. 2012) to identify objects with WISE colors consistent with other YSOs, e.g., having an apparent IR excess. There are about 100 objects in this region already identified in the literature as possible YSOs, about 40 of which we recovered with the color cuts. We investigated these literature YSOs and YSO candidates in all available images, and created spectral energy distributions (SEDs) and color-magnitude diagrams for further analysis of each object. We will present an analysis of our selected sub-sample of YSO candidates. This research was made possible through the NASA/IPAC Teacher Archive Research Project (NITARP) and was funded by NASA Astrophysics Data Program and Archive Outreach funds. Our education results are described in a companion education poster, Bonadurer et al.

  18. Young Stars Emerge from Orion's Head

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This image from NASA's Spitzer Space Telescope shows infant stars 'hatching' in the head of the hunter constellation, Orion. Astronomers suspect that shockwaves from a supernova explosion in Orion's head, nearly three million years ago, may have initiated this newfound birth

    The region featured in this Spitzer image is called Barnard 30. It is located approximately 1,300 light-years away and sits on the right side of Orion's 'head,' just north of the massive star Lambda Orionis.

    Wisps of green in the cloud are organic molecules called polycyclic aromatic hydrocarbons. These molecules are formed anytime carbon-based materials are burned incompletely. On Earth, they can be found in the sooty exhaust from automobile and airplane engines. They also coat the grills where charcoal-broiled meats are cooked.

    Tints of orange-red in the cloud are dust particles warmed by the newly forming stars. The reddish-pink dots at the top of the cloud are very young stars embedded in a cocoon of cosmic gas and dust. Blue spots throughout the image are background Milky Way along this line of sight.

    This composite includes data from Spitzer's infrared array camera instrument, and multiband imaging photometer instrument. Light at 4.5 microns is shown as blue, 8.0 microns is green, and 24 microns is red.

  19. Shock Waves in Outflows from Young Stars

    NASA Astrophysics Data System (ADS)

    Hartigan, Patrick

    This review focuses on physics of the cooling zones behind radiative shocks and the emission line diagnostics that can be used to infer physical conditions and mass loss rates in jets from young stars. Spatial separations of the cooling zones from the shock fronts, now resolvable with HST, and recent evidence for C-shocks have greatly increased our understanding of how shocks in outflows interact with the surrounding medium and with other material within the flow. By combining multiple epoch HST images, one can create `movies' of flows like those produced from numerical codes, and learn what kinds of instabilities develop within these systems.

  20. Circumstellar material around young stars in Orion

    NASA Technical Reports Server (NTRS)

    Odell, C. R.

    1994-01-01

    The star cluster associated with the Orion nebula is one of the richest known. Lying at the nearside of the Orion Molecular cloud and at a distance of about 500 pc from us, it contains many premain-sequence stars with ages of about 300,000 yr. The nebula itself is a blister type, representing a wall of material ionized by the hottest star in the Trapezium group (member C). Although this is not the closest star formation region, it is probably the easiest place to detect circumstellar, possibly proto-planetary, material around these solar mass stars. This is because the same process of photoionization that creates the nebula also photoionizes these circumstellar clouds, thus rendering them easily visible. Moreover, their dust component is made visible by extinction of light from the background nebula. Young stars with circumstellar material were found in Orion on the second set of HST images and were called proplyds, indicating their special nature as circumstellar clouds caused to be luminous by being in or near a gaseous nebula. The brightest objects in the field had previously been seen in the optical and radio, and although their true nature had been hypothesized it was the HST images that made it clear what they are. The forms vary from cometlike when near the Trapezium to elliptical when further away, with the largest being 1000 AU and the bright portions of the smallest, which are found closest to the Trapezium, being about 100 AU in diameter. We now have a second set of HST observations made immediately after the refurbishment mission that provides even greater detail and reveals even more of these objects. About half of all the low-luminosity stars are proplyds. The poster paper describes quantitative tests about their fundamental structure and addresses the question of whether the circumstellar material is a disk or shell. One object (HST 16) is seen only in silhouette against the nebula and is easily resolved into an elliptical form of optical depth

  1. THE SIZES OF THE NEAREST YOUNG STARS

    SciTech Connect

    McCarthy, Kyle; White, Russel J.

    2012-06-15

    We present moderate resolution (R {approx} 3575) optical spectra of 19 known or suspected members of the AB Doradus and {beta} Pictoris Moving Groups, obtained with the DeVeny Spectrograph on the 72 inch Perkins telescope at Lowell Observatory. For four of five recently proposed members, signatures of youth such as Li I 6708 A absorption and H{alpha} emission further strengthen the case for youth and membership. The lack of detected lithium in the proposed {beta} Pic member TYC 2211-1309-1 implies that it is older than all other K-type members and weakens the case for membership. Effective temperatures are determined via line ratio analyses for the 11 F, G, and early-K stars observed, and via spectral comparisons for the eight late-K and M stars observed. We assemble updated candidate membership lists for these moving groups that account for known binarity. Currently, the AB Dor Moving Group contains 127 proposed members and the {beta} Pic Moving Group holds 77 proposed members. We then use temperature, luminosity, and distance estimates to predict angular diameters for these stars; the motivation is to identify stars that can be spatially resolved with long-baseline optical/infrared interferometers in order to improve age estimates for these groups and to constrain evolutionary models at young ages. Considering the portion of the sky accessible to northern hemisphere facilities (decl. > - 30), six stars have diameters large enough to be spatially resolved ({theta} > 0.4 mas) with the CHARA Array, which currently has the world's longest baseline of 331 m; this subsample includes the low-mass M2.5 member of AB Dor, GJ 393, which is likely to still be pre-main sequence. For southern hemisphere facilities (decl. < + 30), 18 stars have diameters larger than this limiting size, including the low-mass debris disk star AU Mic (0.72 mas). However, the longest baselines of southern hemisphere interferometers (160 m) are only able to resolve the largest of these, the B6 star

  2. A BOW SHOCK NEAR A YOUNG STAR

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Hubble Space Telescope continues to reveal various stunning and intricate treasures that reside within the nearby, intense star-forming region known as the Great Nebula in Orion. One such jewel is the bow shock around the very young star, LL Ori, featured in this Hubble Heritage image. Named for the crescent-shaped wave made by a ship as it moves through water, a bow shock can be created in space when two streams of gas collide. LL Ori emits a vigorous solar wind, a stream of charged particles moving rapidly outward from the star. Our own Sun has a less energetic version of this wind that is responsible for auroral displays on the Earth. The material in the fast wind from LL Ori collides with slow-moving gas evaporating away from the center of the Orion Nebula, which is located to the lower right in this Heritage image. The surface where the two winds collide is the crescent-shaped bow shock seen in the image. Unlike a water wave made by a ship, this interstellar bow shock is a three-dimensional structure. The filamentary emission has a very distinct boundary on the side facing away from LL Ori, but is diffuse on the side closest to the star, a characteristic common to many bow shocks. A second, fainter bow shock can be seen around a star near the upper right-hand corner of the Heritage image. Astronomers have identified numerous shock fronts in this complex star-forming region and are using this data to understand the many complex phenomena associated with the birth of stars. This image was taken in February 1995 as part of the Hubble Orion Nebula mosaic. A close visitor in our Milky Way galaxy, the nebula is only 1,500 light-years from Earth. The filters used in this color composite represent oxygen, nitrogen, and hydrogen emissions. Image Credit: NASA and the Hubble Heritage Team (STScI/AURA) Acknowledgment: C. R. O'Dell (Vanderbilt University)

  3. Accretion, winds and outflows in young stars

    NASA Astrophysics Data System (ADS)

    Günther, H. M.

    2013-02-01

    Young stars and planetary systems form in molecular clouds. After the initial radial infall an accretion disk develops. For classical T Tauri stars (CTTS, F-K type precursors) the accretion disk does not reach down to the central star, but it is truncated near the co-rotation radius by the stellar magnetic field. The inner edge of the disk is ionized by the stellar radiation, so that the accretion stream is funneled along the magnetic field lines. On the stellar surface an accretion shock develops, which is observed over a wide wavelength range as X-ray emission, UV excess, optical veiling and optical and IR emission lines. Some of the accretion tracers, e.g. Hα, can be calibrated to measure the accretion rate. This accretion process is variable on time scales of hours to years due to changing accretion rates, stellar rotation and reconfiguration of the magnetic field. Furthermore, many (if not all) accreting systems also drive strong outflows which are ultimately powered by accretion. However, the exact driving mechanism is still unclear. Several components could contribute to the outflows: slow, wide-angle disk winds, X-winds launched close to the inner disk rim, and thermally driven stellar winds. In any case, the outflows contain material of very different temperatures and speeds. The disk wind is cool and can have a molecular component with just a few tens of km s-1, while the central component of the outflow can reach a few 100 km s-1. In some cases the inner part of the outflow is collimated to a small-angle jet. These jets have an onion-like structure, where the inner components are consecutively hotter and faster. The jets can contain working surfaces, which show up as Herbig-Haro knots. Accretion and outflows in the CTTS phase do not only determine stellar parameters like the rotation rate on the main-sequence, they also can have a profound impact on the environment of young stars. This review concentrates on CTTS in near-by star forming regions where

  4. A-Train Observations of Young Volcanic Eruption Clouds

    NASA Astrophysics Data System (ADS)

    Carn, S. A.; Prata, F.; Yang, K.; Rose, W. I.

    2011-12-01

    NASA's A-Train satellite constellation (including Aqua, CloudSat, CALIPSO, and Aura) has been flying in formation since 2006, providing unprecedented synergistic observations of numerous volcanic eruption clouds in various stages of development. Measurements made by A-Train sensors include total column SO2 by the Ozone Monitoring Instrument (OMI) on Aura, upper tropospheric and stratospheric (UTLS) SO2 column by the Atmospheric Infrared Sounder (AIRS) on Aqua and Microwave Limb Sounder (MLS) on Aura, ash mass loading from AIRS and the Moderate resolution Imaging Spectroradiometer (MODIS) on Aqua, UTLS HCl columns and ice water content (IWC) from MLS, aerosol vertical profiles from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument aboard CALIPSO, and hydrometeor profiles from the Cloud Profiling Radar (CPR) on CloudSat. The active vertical profiling capability of CALIPSO, CloudSat and MLS sychronized with synoptic passive sensing of trace gases and aerosols by OMI, AIRS and MODIS provides a unique perspective on the structure and composition of volcanic clouds. A-Train observations during the first hours of atmospheric residence are particularly valuable, as the fallout, segregation and stratification of material in this period determines the concentration and altitude of constituents that remain to be advected downwind. This represents the eruption 'source term' essential for dispersion modeling, and hence for aviation hazard mitigation. In this presentation we show examples of A-Train data collected during recent eruptions including Chaitén (May 2008), Kasatochi (August 2008), Redoubt (March 2009), Eyjafjallajökull (April 2010) and Cordón Caulle (June 2011). We interpret the observations using the canonical three-stage view of volcanic cloud development [e.g., Rose et al., 2000] from initial rapid ash fallout to far-field dispersion of fine ash, gas and aerosol, and results from numerical modeling of volcanic plumes [e.g., Textor et al

  5. YoungStar in Wisconsin: Analysis of Data as of July 2014. YoungStar Progress Report #5

    ERIC Educational Resources Information Center

    Wisconsin Council on Children and Families, 2014

    2014-01-01

    YoungStar is a program of the Department of Children and Families (DCF) designed to improve the quality of child care for Wisconsin children. YoungStar is designed to: (1) evaluate and rate the quality of care given by child care providers; (2) help parents choose the best child care for their kids; (3) support providers with tools and training to…

  6. Fundamental Parameters of Nearby Young Stars

    NASA Astrophysics Data System (ADS)

    McCarthy, Kyle; Wilhelm, R. J.

    2013-06-01

    We present high resolution (R ~ 60,000) spectroscopic data of F and G members of the nearby, young associations AB Doradus and β Pictoris obtained with the Cross-Dispersed Echelle Spectrograph on the 2.7 meter telescope at the McDonald Observatory. Effective temperatures, log(g), [Fe/H], and microturbulent velocities are first estimated using the TGVIT code, then finely tuned using MOOG. Equivalent width (EW) measurements were made using TAME alongside a self-produced IDL routine to constrain EW accuracy and improve computed fundamental parameters. MOOG is also used to derive the chemical abundance of several elements including Mn which is known to be over abundant in planet hosting stars. Vsin(i) are also computed using a χ2 analysis of our observed data to Atlas9 model atmospheres passed through the SPECTRUM spectral synthesis code on lines which do not depend strongly on surface gravity. Due to the limited number of Fe II lines which govern the surface gravity fit in both TGVIT and MOOG, we implement another χ2 analysis of strongly log(g) dependent lines to ensure the values are correct. Coupling the surface gravities and temperatures derived in this study with the luminosities found in the Tycho-2 catalog, we estimate masses for each star and compare these masses to several evolutionary models to begin the process of constraining pre-main sequence evolutionary models.

  7. Angular Momentum Evolution of Young Solar-type Stars

    NASA Astrophysics Data System (ADS)

    Amard, Louis; Palacios, Ana; Charbonnel, Corinne

    2016-01-01

    We present stellar evolution models of young solar-type stars including self consistent treatment of rotational mixing and extraction of angular momentum (AM) by magnetized wind including the most up-to-date physic of AM transport.

  8. 8-13 Micron Spectroscopy of Young Stars

    NASA Technical Reports Server (NTRS)

    Hanner, M. S.; Brooke, T. Y.; Tokunaga, A. T.

    1997-01-01

    We presen 8-13 meu spectra of 23 young stars acquired with the UKIRT CGS3 spectromere, including T Tauri, Herbig Ae/Be, and FU Ori stars. Silicate emission and absorption features can generally be matched with the Trapezium emissivity, by employing simple models to account for optical depth effects.

  9. Inferring Rotation Periods of Young Stars from Synoptic Observations

    NASA Astrophysics Data System (ADS)

    Hartigan, Patrick; Johns-Krull, Christopher M.; Scowen, Paul

    2012-04-01

    Using known distributions for the periods, amplitudes and light-curve shapes of young stars, we examine how well one could measure periods of these objects in the upcoming era of large synoptic surveys. Surveys like the LSST should be able to recover accurate rotation periods for over 90% of targets of interest in regions near to massive-star formation. That information will usher in a new era in our understanding of how the angular momentum of a young star/disk system evolves with time.

  10. Asteroseismology. Echography of young stars reveals their evolution.

    PubMed

    Zwintz, K; Fossati, L; Ryabchikova, T; Guenther, D; Aerts, C; Barnes, T G; Themeßl, N; Lorenz, D; Cameron, C; Kuschnig, R; Pollack-Drs, S; Moravveji, E; Baglin, A; Matthews, J M; Moffat, A F J; Poretti, E; Rainer, M; Rucinski, S M; Sasselov, D; Weiss, W W

    2014-08-01

    We demonstrate that a seismic analysis of stars in their earliest evolutionary phases is a powerful method with which to identify young stars and distinguish their evolutionary states. The early star that is born from the gravitational collapse of a molecular cloud reaches at some point sufficient temperature, mass, and luminosity to be detected. Accretion stops, and the pre-main sequence star that emerges is nearly fully convective and chemically homogeneous. It will continue to contract gravitationally until the density and temperature in the core are high enough to start nuclear burning of hydrogen. We show that there is a relationship for a sample of young stars between detected pulsation properties and their evolutionary status, illustrating the potential of asteroseismology for the early evolutionary phases. PMID:24993346

  11. Direct Detections of Young Stars in Nearby Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Ford, H. Alyson; Bregman, Joel N.

    2013-06-01

    Small amounts of star formation in elliptical galaxies are suggested by several results: surprisingly young ages from optical line indices, cooling X-ray gas, and mid-infrared dust emission. Such star formation has previously been difficult to directly detect, but using ultraviolet Hubble Space Telescope Wide Field Camera 3 imaging, we have identified individual young stars and star clusters in four nearby ellipticals. Ongoing star formation is detected in all galaxies, including three ellipticals that have previously exhibited potential signposts of star-forming conditions (NGC 4636, NGC 4697, and NGC 4374), as well as the typical "red and dead" NGC 3379. The current star formation in our closest targets, where we are most complete, is between 2.0 and 9.8 × 10-5 M ⊙ yr-1. The star formation history was roughly constant from 0.5 to 1.5 Gyr (at (3-5) × 10-4 M ⊙ yr-1), but decreased by a factor of several in the past 0.3 Gyr. Most star clusters have a mass between 102 and 104 M ⊙. The specific star formation rates of ~10-16 yr-1 (at the present day) or ~10-14 yr-1 (when averaging over the past Gyr) imply that a fraction 10-8 of the stellar mass is younger than 100 Myr and 10-5 is younger than 1 Gyr, quantifying the level of frosting of recent star formation over the otherwise passive stellar population. There is no obvious correlation between either the presence or spatial distribution of postulated star formation indicators and the star formation we detect. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program 11583.

  12. DIRECT DETECTIONS OF YOUNG STARS IN NEARBY ELLIPTICAL GALAXIES

    SciTech Connect

    Ford, H. Alyson; Bregman, Joel N.

    2013-06-20

    Small amounts of star formation in elliptical galaxies are suggested by several results: surprisingly young ages from optical line indices, cooling X-ray gas, and mid-infrared dust emission. Such star formation has previously been difficult to directly detect, but using ultraviolet Hubble Space Telescope Wide Field Camera 3 imaging, we have identified individual young stars and star clusters in four nearby ellipticals. Ongoing star formation is detected in all galaxies, including three ellipticals that have previously exhibited potential signposts of star-forming conditions (NGC 4636, NGC 4697, and NGC 4374), as well as the typical ''red and dead'' NGC 3379. The current star formation in our closest targets, where we are most complete, is between 2.0 and 9.8 Multiplication-Sign 10{sup -5} M{sub Sun} yr{sup -1}. The star formation history was roughly constant from 0.5 to 1.5 Gyr (at (3-5) Multiplication-Sign 10{sup -4} M{sub Sun} yr{sup -1}), but decreased by a factor of several in the past 0.3 Gyr. Most star clusters have a mass between 10{sup 2} and 10{sup 4} M{sub Sun }. The specific star formation rates of {approx}10{sup -16} yr{sup -1} (at the present day) or {approx}10{sup -14} yr{sup -1} (when averaging over the past Gyr) imply that a fraction 10{sup -8} of the stellar mass is younger than 100 Myr and 10{sup -5} is younger than 1 Gyr, quantifying the level of frosting of recent star formation over the otherwise passive stellar population. There is no obvious correlation between either the presence or spatial distribution of postulated star formation indicators and the star formation we detect.

  13. Observational diagnostics of accretion on young stars and brown dwarfs

    NASA Astrophysics Data System (ADS)

    Stelzer, Beate; Argiroffi, Costanza

    I present a summary of recent observational constraints on the accretion properties of young stars and brown dwarfs with focus on the high-energy emission. In their T Tauri phase young stars assemble a few percent of their mass by accretion from a disk. Various observational signatures of disks around pre-main sequence stars and the ensuing accretion process are found in the IR and optical regime: e.g. excess emission above the stellar photosphere, strong and broad emission lines, optical veiling. At high energies evidence for accretion is less obvious, and the X-ray emission from stars has historically been ascribed to magnetically confined coronal plasmas. While being true for the bulk of the emission, new insight obtained from XMM-Newton and Chandra observations has unveiled contributions from accretion and outflow processes to the X-ray emission from young stars. Their smaller siblings, the brown dwarfs, have been shown to undergo a T Tauri phase on the basis of optical/IR observations of disks and measurements of accretion rates. Most re-cently, first evidence was found for X-rays produced by accretion in a young brown dwarf, complementing the suspected analogy between stars and substellar objects.

  14. Searching for substellar companions of young isolated neutron stars

    NASA Astrophysics Data System (ADS)

    Posselt, B.; Neuhäuser, R.; Haberl, F.

    2009-03-01

    Context: Only two planetary systems orbiting old ms-pulsars have been discovered. Young radio pulsars and radio-quiet neutron stars cannot be analysed by the usually-applied radio-pulse-timing technique. However, finding substellar companions orbiting these neutron stars would be of significant importance: the companion may have had an exotic formation, its observation may also enable us to study neutron-star physics. Aims: We investigate the closest young neutron stars to Earth to search for orbiting substellar companions. Methods: Young, thus warm substellar companions are visible in the Near infrared, in which the neutron star itself is much fainter. Four young neutron stars are at sufficient speed to enable a common proper-motion search for substellar companions within few years. Results: For Geminga, RX J0720.4-3125, RX J1856.6-3754, and PSR J1932+1059 we found no comoving companion of masses as low as 12, 15, 11, and 42 Jupiter masses, respectively, for assumed ages of 1, 1, 1, and 3.1 Myr, and distances of 250, 361, 167, and 361 pc, respectively. Near infrared limits are presented for these four and five additional neutron stars for which we have observations for only one epoch. Conclusions: We conclude that young, isolated neutron stars rarely have brown-dwarf companions. Based on observations made with ESO Telescopes at the La Silla or Paranal Observatories under programme IDs: 66.D-0135, 71.C-0189, 72.C-0051, 74.C-0596, 077.C-0162, 78.C-0686, 79.C-0570.

  15. Young stars and protostellar cores near NGC 2023

    NASA Astrophysics Data System (ADS)

    Mookerjea, B.; Sandell, G.; Jarrett, T. H.; McMullin, J. P.

    2009-12-01

    Context: We investigate the young (proto)stellar population in NGC 2023 and the L 1630 molecular cloud bordering the h ii region IC 434, using Spitzer IRAC and MIPS archive data, JCMT SCUBA imaging and spectroscopy as well as targeted BIMA observations of one of the Class 0 protostars, NGC 2023 MM 1. Aims: We study the distribution of gas, dust and young stars in this region to see where stars are forming, whether the expansion of the h ii region has triggered star formation, and whether dense cold cores have already formed stars. Methods: We have performed photometry of all IRAC and MIPS images, and used color-color diagrams to identify and classify all young stars seen within a 22'×26' field along the boundary between IC 434 and L 1630. For some stars, which have sufficient optical, IR, and/or sub-millimeter data we have also used the online SED fitting tool for a large 2D archive of axisymmetric radiative transfer models to perform more detailed modeling of the observed SEDs. We identify 5 sub-millimeter cores in our 850 and 450 μm SCUBA images, two of which have embedded class 0 or I protostars. Observations with BIMA are used to refine the position and characteristics of the Class 0 source NGC 2023 MM 1. These observations show that it is embedded in a very cold cloud core, which is strongly enhanced in NH2D. Results: We find that HD 37903 is the most massive member of a cluster with 20-30 PMS stars. We also find smaller groups of PMS stars formed from the Horsehead nebula and another elephant trunk structure to the north of the Horsehead. Star formation is also occurring in the dark lane seen in IRAC images and in the sub-millimeter continuum. We refine the spectral classification of HD 37903 to B2 Ve. We find that the star has a clear IR excess, and therefore it is a young Herbig Be star. Conclusions: Our study shows that the expansion of the IC 434 h ii region has triggered star formation in some of the dense elephant trunk structures and compressed gas

  16. RCW 108: Massive Young Stars Trigger Stellar Birth

    NASA Technical Reports Server (NTRS)

    2008-01-01

    RCW 108 is a region where stars are actively forming within the Milky Way galaxy about 4,000 light years from Earth. This is a complicated region that contains young star clusters, including one that is deeply embedded in a cloud of molecular hydrogen. By using data from different telescopes, astronomers determined that star birth in this region is being triggered by the effect of nearby, massive young stars.

    This image is a composite of X-ray data from NASA's Chandra X-ray Observatory (blue) and infrared emission detected by NASA's Spitzer Space Telescope (red and orange). More than 400 X-ray sources were identified in Chandra's observations of RCW 108. About 90 percent of these X-ray sources are thought to be part of the cluster and not stars that lie in the field-of-view either behind or in front of it. Many of the stars in RCW 108 are experiencing the violent flaring seen in other young star-forming regions such as the Orion nebula. Gas and dust blocks much of the X-rays from the juvenile stars located in the center of the image, explaining the relative dearth of Chandra sources in this part of the image.

    The Spitzer data show the location of the embedded star cluster, which appears as the bright knot of red and orange just to the left of the center of the image. Some stars from a larger cluster, known as NGC 6193, are also visible on the left side of the image. Astronomers think that the dense clouds within RCW 108 are in the process of being destroyed by intense radiation emanating from hot and massive stars in NGC 6193.

    Taken together, the Chandra and Spitzer data indicate that there are more massive star candidates than expected in several areas of this image. This suggests that pockets within RCW 108 underwent localized episodes of star formation. Scientists predict that this type of star formation is triggered by the effects of radiation from bright, massive stars such as those in NGC 6193. This radiation may cause the interior of gas

  17. Young Star Cluster Aglow With Mysterious X-Ray Cloud

    NASA Technical Reports Server (NTRS)

    2002-01-01

    At a distance of 6,000 light years from Earth, the star cluster RCW 38 is a relatively close star-forming region. This area is about 5 light years across, and contains thousands of hot, very young stars formed less than a million years ago, 190 of which exposed x-rays to Chandra. Enveloping the star cluster, the diffused cloud of x-rays shows an excess of high energy x-rays, which indicates that the x-rays come from trillion-volt electrons moving in a magnetic field. Such particles are typically produced by exploding stars, or in the strong magnetic fields around neutron stars or black holes, none of which are evident in RCW 38. One possible origin for the particles, could be an undetected supernova that occurred in the cluster, possibly thousands of years ago, producing a shock wave that is interacting with the young stars. Regardless of the origin of these energetic electrons, their presence could change the chemistry of the disks that will eventually form planets around the stars in the cluster.

  18. Search for associations containing young stars (SACY). II. Chemical abundances of stars in 11 young associations in the solar neighborhood

    NASA Astrophysics Data System (ADS)

    Viana Almeida, P.; Santos, N. C.; Melo, C.; Ammler-von Eiff, M.; Torres, C. A. O.; Quast, G. R.; Gameiro, J. F.; Sterzik, M.

    2009-07-01

    The recently discovered coeval, moving groups of young stellar objects in the solar neighborhood represent invaluable laboratories for studying recent star formation and searching for high metallicity stars that can be included in future exo-planet surveys. In this study, we derived through an uniform and homogeneous method stellar atmospheric parameters and abundances for iron, silicium, and nickel in 63 post-T Tauri stars from 11 nearby young associations. We further compare the results with two different pre-main sequence (PMS) and main sequence (MS) star populations. The stellar atmospheric parameters and the abundances presented here were derived using the equivalent width of individual lines in the stellar spectra by assuming the excitation/ionization equilibrium of iron. Moreover, we compared the observed Balmer lines with synthetic profiles calculated for model atmospheres with a different line-formation code. We found that the synthetic profiles agree reasonably well with the observed profiles, although the Balmer lines of many stars are substantially filled-in, probably by chromospheric emission. Solar metallicity is found to be a common trend in all the nearby young associations studied. The low abundance dispersion within each association strengthens the idea that the origin of these nearby young associations is related to the nearby star-forming regions (SFR). Abundances of elements other than iron are consistent with previous results for Main Sequence stars in the solar neighborhood. The chemical characterization of the members of the newly found nearby young associations, performed in this study and intended to proceed in subsequent works, is essential to understanding and testing the context of local star formation and the evolutionary history of the galaxy. Based on observations collected with the UVES spectrograph at the VLT/UT2 8.2-m Kueyen Telescope (ESO run ID. 079.C-0556(A)) at the Paranal Observatory, Chile. Tables 1, 2 and 5 are only

  19. Circumstellar disks of the most vigorously accreting young stars.

    PubMed

    Liu, Hauyu Baobab; Takami, Michihiro; Kudo, Tomoyuki; Hashimoto, Jun; Dong, Ruobing; Vorobyov, Eduard I; Pyo, Tae-Soo; Fukagawa, Misato; Tamura, Motohide; Henning, Thomas; Dunham, Michael M; Karr, Jennifer L; Kusakabe, Nobuhiko; Tsuribe, Toru

    2016-02-01

    Stars may not accumulate their mass steadily, as was previously thought, but in a series of violent events manifesting themselves as sharp stellar brightening. These events can be caused by fragmentation due to gravitational instabilities in massive gaseous disks surrounding young stars, followed by migration of dense gaseous clumps onto the star. Our high-resolution near-infrared imaging has verified the presence of the key associated features, large-scale arms and arcs surrounding four young stellar objects undergoing luminous outbursts. Our hydrodynamics simulations and radiative transfer models show that these observed structures can indeed be explained by strong gravitational instabilities occurring at the beginning of the disk formation phase. The effect of those tempestuous episodes of disk evolution on star and planet formation remains to be understood. PMID:26989772

  20. A young massive planet in a star-disk system.

    PubMed

    Setiawan, J; Henning, Th; Launhardt, R; Müller, A; Weise, P; Kürster, M

    2008-01-01

    There is a general consensus that planets form within disks of dust and gas around newly born stars. Details of their formation process, however, are still a matter of ongoing debate. The timescale of planet formation remains unclear, so the detection of planets around young stars with protoplanetary disks is potentially of great interest. Hitherto, no such planet has been found. Here we report the detection of a planet of mass (9.8+/-3.3)M(Jupiter) around TW Hydrae (TW Hya), a nearby young star with an age of only 8-10 Myr that is surrounded by a well-studied circumstellar disk. It orbits the star with a period of 3.56 days at 0.04 au, inside the inner rim of the disk. This demonstrates that planets can form within 10 Myr, before the disk has been dissipated by stellar winds and radiation. PMID:18172492

  1. Circumstellar disks of the most vigorously accreting young stars

    PubMed Central

    Liu, Hauyu Baobab; Takami, Michihiro; Kudo, Tomoyuki; Hashimoto, Jun; Dong, Ruobing; Vorobyov, Eduard I.; Pyo, Tae-Soo; Fukagawa, Misato; Tamura, Motohide; Henning, Thomas; Dunham, Michael M.; Karr, Jennifer L.; Kusakabe, Nobuhiko; Tsuribe, Toru

    2016-01-01

    Stars may not accumulate their mass steadily, as was previously thought, but in a series of violent events manifesting themselves as sharp stellar brightening. These events can be caused by fragmentation due to gravitational instabilities in massive gaseous disks surrounding young stars, followed by migration of dense gaseous clumps onto the star. Our high-resolution near-infrared imaging has verified the presence of the key associated features, large-scale arms and arcs surrounding four young stellar objects undergoing luminous outbursts. Our hydrodynamics simulations and radiative transfer models show that these observed structures can indeed be explained by strong gravitational instabilities occurring at the beginning of the disk formation phase. The effect of those tempestuous episodes of disk evolution on star and planet formation remains to be understood. PMID:26989772

  2. Development of dental charts according to tooth development and eruption for Turkish children and young adults

    PubMed Central

    Afşin, Hüseyin; Ozaslan, Abdi; Karadayı, Şükriye

    2014-01-01

    Purpose In this study, we aimed to develop dental charts for Turkish children and young adults of both genders within the age group of 4.5-22.5 years according to tooth mineralization and eruption in a format similar to that proposed by AlQahtani et al. Materials and Methods In total, 753 digital panoramic radiographs from 350 males and 403 females were assessed. The permanent teeth were evaluated according to the classification system described by Demirjian et al. The eruption stage was assessed with Bengston's system, which was modified by AlQahtani et al at four points. Results Teeth generally developed earlier in females than in males. This was particularly notable in the age group of 5-14 years. However, this difference was usually visible in only one stage, not in all teeth. It has been determined that the mixed dentition period ended with the shedding of the second deciduous molars in both genders. Conclusion The dental charts presented here included information that could be beneficial to dental clinicians in making appropriate diagnosis and planning orthodontic and surgical procedures. These charts also provided datasets for preliminary dental age estimation in Turkish children and young adults. PMID:24944959

  3. A debris disk around an isolated young neutron star.

    PubMed

    Wang, Zhongxiang; Chakrabarty, Deepto; Kaplan, David L

    2006-04-01

    Pulsars are rotating, magnetized neutron stars that are born in supernova explosions following the collapse of the cores of massive stars. If some of the explosion ejecta fails to escape, it may fall back onto the neutron star or it may possess sufficient angular momentum to form a disk. Such 'fallback' is both a general prediction of current supernova models and, if the material pushes the neutron star over its stability limit, a possible mode of black hole formation. Fallback disks could dramatically affect the early evolution of pulsars, yet there are few observational constraints on whether significant fallback occurs or even the actual existence of such disks. Here we report the discovery of mid-infrared emission from a cool disk around an isolated young X-ray pulsar. The disk does not power the pulsar's X-ray emission but is passively illuminated by these X-rays. The estimated mass of the disk is of the order of 10 Earth masses, and its lifetime (> or = 10(6) years) significantly exceeds the spin-down age of the pulsar, supporting a supernova fallback origin. The disk resembles protoplanetary disks seen around ordinary young stars, suggesting the possibility of planet formation around young neutron stars. PMID:16598251

  4. GRACES observations of young [α/Fe]-rich stars

    NASA Astrophysics Data System (ADS)

    Yong, David; Casagrande, Luca; Venn, Kim A.; Chené, André-Nicolas; Keown, Jared; Malo, Lison; Martioli, Eder; Alves-Brito, Alan; Asplund, Martin; Dotter, Aaron; Martell, Sarah L.; Meléndez, Jorge; Schlesinger, Katharine J.

    2016-06-01

    We measure chemical abundance ratios and radial velocities in four massive (i.e. young) [α/Fe]-rich red giant stars using high-resolution high-S/N spectra from ESPaDOnS fed by Gemini-GRACES. Our differential analysis ensures that our chemical abundances are on the same scale as the Alves-Brito et al. (2010) study of bulge, thin, and thick disc red giants. We confirm that the program stars have enhanced [α/Fe] ratios and are slightly metal poor. Aside from lithium enrichment in one object, the program stars exhibit no chemical abundance anomalies when compared to giant stars of similar metallicity throughout the Galaxy. This includes the elements Li, O, Si, Ca, Ti, Cr, Ni, Cu, Ba, La, and Eu. Therefore, there are no obvious chemical signatures that can help to reveal the origin of these unusual stars. While our new observations show that only one star (not the Li-rich object) exhibits a radial velocity variation, simulations indicate that we cannot exclude the possibility that all four could be binaries. In addition, we find that two (possibly three) stars show evidence for an infrared excess, indicative of a debris disc. This is consistent with these young [α/Fe]-rich stars being evolved blue stragglers, suggesting their apparent young age is a consequence of a merger or mass transfer. We would expect a binary fraction of ˜50 per cent or greater for the entire sample of these stars, but the signs of the circumbinary disc may have been lost since these features can have short time-scales. Radial velocity monitoring is needed to confirm the blue straggler origin.

  5. Luminosity Function Evolution of Young Star Clusters

    NASA Astrophysics Data System (ADS)

    Chen, W. P.; Kao, K. C.; Hu, J. Y.

    The luminosity function of a star cluster evolves markedly during the pre-main sequence phase. With an assumed initial mass function (Miller & Scalo, 1979) and pre-main sequence tracks (D'Antona & Mazzitelli, 1994), we calculate a set of monochromatic luminosity functions which, when compared with observations, can be used to infer the age and star formation history (coeval versus intermittent) of a star cluster. Applied to the Trapezium cluster (2.2 micron imaging data by Zinncker et al 1993), our model suggests an age close to 10^6 years, whereas in IC 348 (2 micron data from Lada & Lada, 1995) the age estimate yields 4--6 times 10^6 years and continual bursts of star formation seem to have occurred in this cluster. CCD imaging observations at optical-infrared I band are presented for NGC 663, for which an age of 1--3 times 10^7 years is inferred. The initial mass function for NGC 663 in the range 2--7.1 {Modot} has a slope of -0.77 plus or minus 0.20, much shallower than that for the solar neighborhood field stars. We interpret this being due to the mass segregation in the cluster.

  6. Anne S. Young: Professor and Variable Star Observer Extraordinaire

    NASA Astrophysics Data System (ADS)

    Bracher, K.

    2012-06-01

    One of the original eight members of the AAVSO, but not well known today, was Professor Anne Sewell Young of Mount Holyoke College. Miss Young taught there for thirty-seven years, and trained many women astronomers during the first third of the 20th century. This paper will attempt to present her life as an inspiring teacher, as well as a contributor of more than 6,500 variable star observations to the AAVSO.

  7. Search for OB stars running away from young star clusters. I. NGC 6611

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Bomans, D. J.

    2008-11-01

    N-body simulations have shown that the dynamical decay of the young (~1 Myr) Orion Nebula cluster could be responsible for the loss of at least half of its initial content of OB stars. This result suggests that other young stellar systems could also lose a significant fraction of their massive stars at the very beginning of their evolution. To confirm this expectation, we used the Mid-Infrared Galactic Plane Survey (completed by the Midcourse Space Experiment satellite) to search for bow shocks around a number of young (⪉several Myr) clusters and OB associations. We discovered dozens of bow shocks generated by OB stars running away from these stellar systems, supporting the idea of significant dynamical loss of OB stars. In this paper, we report the discovery of three bow shocks produced by O-type stars ejected from the open cluster NGC 6611 (M16). One of the bow shocks is associated with the O9.5Iab star HD165319, which was suggested to be one of “the best examples for isolated Galactic high-mass star formation” (de Wit et al. 2005, A&A, 437, 247). Possible implications of our results for the origin of field OB stars are discussed.

  8. The evolutionary tracks of young massive star clusters

    SciTech Connect

    Pfalzner, S.; Steinhausen, M.; Vincke, K.; Menten, K.; Parmentier, G.

    2014-10-20

    Stars mostly form in groups consisting of a few dozen to several ten thousand members. For 30 years, theoretical models have provided a basic concept of how such star clusters form and develop: they originate from the gas and dust of collapsing molecular clouds. The conversion from gas to stars being incomplete, the leftover gas is expelled, leading to cluster expansion and stars becoming unbound. Observationally, a direct confirmation of this process has proved elusive, which is attributed to the diversity of the properties of forming clusters. Here we take into account that the true cluster masses and sizes are masked, initially by the surface density of the background and later by the still present unbound stars. Based on the recent observational finding that in a given star-forming region the star formation efficiency depends on the local density of the gas, we use an analytical approach combined with N-body simulations to reveal evolutionary tracks for young massive clusters covering the first 10 Myr. Just like the Hertzsprung-Russell diagram is a measure for the evolution of stars, these tracks provide equivalent information for clusters. Like stars, massive clusters form and develop faster than their lower-mass counterparts, explaining why so few massive cluster progenitors are found.

  9. Search for OB stars running away from young star clusters. II. The NGC 6357 star-forming region

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Kniazev, A. Y.; Kroupa, P.; Oh, S.

    2011-11-01

    Dynamical few-body encounters in the dense cores of young massive star clusters are responsible for the loss of a significant fraction of their massive stellar content. Some of the escaping (runaway) stars move through the ambient medium supersonically and can be revealed via detection of their bow shocks (visible in the infrared, optical or radio). In this paper, which is the second of a series of papers devoted to the search for OB stars running away from young ( ≲ several Myr) Galactic clusters and OB associations, we present the results of the search for bow shocks around the star-forming region NGC 6357. Using the archival data of the Midcourse Space Experiment (MSX) satellite and the Spitzer Space Telescope, and the preliminary data release of the Wide-Field Infrared Survey Explorer (WISE), we discovered seven bow shocks, whose geometry is consistent with the possibility that they are generated by stars expelled from the young (~1-2 Myr) star clusters, Pismis 24 and AH03 J1725-34.4, associated with NGC 6357. Two of the seven bow shocks are driven by the already known OB stars, HD 319881 and [N78] 34. Follow-up spectroscopy of three other bow-shock-producing stars showed that they are massive (O-type) stars as well, while the 2MASS photometry of the remaining two stars suggests that they could be B0 V stars, provided that both are located at the same distance as NGC 6357. Detection of numerous massive stars ejected from the very young clusters is consistent with the theoretical expectation that star clusters can effectively lose massive stars at the very beginning of their dynamical evolution (long before the second mechanism for production of runaway stars, based on a supernova explosion in a massive tight binary system, begins to operate) and lends strong support to the idea that probably all field OB stars have been dynamically ejected from their birth clusters. A by-product of our search for bow shocks around NGC 6357 is the detection of three circular

  10. Dynamical ejections of massive stars from young star clusters under diverse initial conditions

    NASA Astrophysics Data System (ADS)

    Oh, Seungkyung; Kroupa, Pavel

    2016-05-01

    We study the effects that initial conditions of star clusters and their massive star population have on dynamical ejections of massive stars from star clusters up to an age of 3 Myr. We use a large set of direct N-body calculations for moderately massive star clusters (Mecl ≈ 103.5 M⊙). We vary the initial conditions of the calculations, such as the initial half-mass radius of the clusters, initial binary populations for massive stars and initial mass segregation. We find that the initial density is the most influential parameter for the ejection fraction of the massive systems. The clusters with an initial half-mass radius rh(0) of 0.1 (0.3) pc can eject up to 50% (30)% of their O-star systems on average, while initially larger (rh(0) = 0.8 pc) clusters, that is, lower density clusters, eject hardly any OB stars (at most ≈ 4.5%). When the binaries are composed of two stars of similar mass, the ejections are most effective. Most of the models show that the average ejection fraction decreases with decreasing stellar mass. For clusters that are efficient at ejecting O stars, the mass function of the ejected stars is top-heavy compared to the given initial mass function (IMF), while the mass function of stars that remain in the cluster becomes slightly steeper (top-light) than the IMF. The top-light mass functions of stars in 3 Myr old clusters in our N-body models agree well with the mean mass function of young intermediate-mass clusters in M 31, as reported previously. This implies that the IMF of the observed young clusters is the canonical IMF. We show that the multiplicity fraction of the ejected massive stars can be as high as ≈ 60%, that massive high-order multiple systems can be dynamically ejected, and that high-order multiples become common especially in the cluster. We also discuss binary populations of the ejected massive systems. Clusters that are initially not mass-segregated begin ejecting massive stars after a time delay that is caused by mass

  11. Astronomers Discover Rotating Disk Around Young, Massive Star

    NASA Astrophysics Data System (ADS)

    1999-01-01

    Astronomers using radio telescopes in New Mexico and California have discovered a giant, rotating disk of material around a young, massive star, indicating that very massive stars as well as those closer to the size of the Sun may be circled by disks from which planets are thought to form. This is the most massive young star for which such a disk has yet been found. Debra Shepherd of the California Institute of Technology (Caltech) and Stan Kurtz of the National Autonomous University of Mexico, used the National Science Foundation's Very Large Array (VLA) radio telescope and telescopes of Caltech's Owens Valley Radio Observatory (OVRO) to make a detailed study of an object called G192.16-3.82, in the constellation Orion. They announced their findings at the American Astronomical Society's meeting in Austin, TX, today. What astronomers call Young Stellar Objects (YSOs) -- stars still in the process of formation -- are enigmatic objects, both drawing in material from their surroundings and expelling material outward at the same time. "The details of the interaction between these two processes are poorly understood," Shepherd said. "In addition, most theories are based on observing low-mass stars, and we don't know if things work the same way with higher-mass stars." "We now have the first unambiguous evidence for a rotating disk around a high-mass star that also is powering an outflow," Shepherd said. "We need to make more observations to confirm the finding, but this information will help test theories of how such young stellar objects operate." It has been difficult to study massive star formation, because massive stars are rarer than smaller ones, they tend to form in clusters, making observations more difficult, and there are few of them forming relatively nearby. The object that Shepherd and Kurtz chose is reasonably isolated. "We think it provides us with a good laboratory for studying the process," Kurtz said. The young star at the core of G192.16-3.82 is

  12. Coronal Mass Ejections from a Young K0 Dwarf Star

    NASA Astrophysics Data System (ADS)

    Soderblom, David R.

    We propose to carry out a joint ESA NASA IUE and ground-based spectroscopic study of the rapid ly rotating (P = 0.514 day), bright (V =6.9). young K0 dwarf HD 36705 (= AB Doradus). Cameron and Robinson have recently discovered prominence-like clouds of neutral material in the outer corona of this star. We intend to determine the column densities and temperatures of the clouds from the widths of the Mg II h and k absorption features produced as those clouds transit the stellar disk. We can thus determine the masses of these clouds, which are ejected from the star about twice per day, and hence their effectiveness as a magnetic braking mechanism in very young, low-mass, main sequence stars. Between Mg II observations. we will obtain short-wavelength spectra to monitor the variability in other chromospheric and transition region line emissions over six consecutive stellar rotations.

  13. STAR-FORMING GAS IN YOUNG CLUSTERS

    SciTech Connect

    Myers, Philip C.

    2010-05-10

    Initial conditions for star formation in clusters are estimated for protostars whose masses follow the initial mass function from 0.05 to 10 solar masses. Star-forming infall is assumed equally likely to stop at any moment, due to gas dispersal dominated by stellar feedback. For spherical infall, the typical initial condensation must have a steep density gradient, as in low-mass cores, surrounded by a shallower gradient, as in the clumps around cores. These properties match observed column densities in cluster-forming regions when the mean infall stopping time is 0.05 Myr and the accretion efficiency is 0.5. The infall duration increases with final protostar mass, from 0.01 to 0.3 Myr, and the mass accretion rate increases from 3 to 300 x 10{sup -6} solar masses yr{sup -1}. The typical spherical accretion luminosity is {approx}5 solar luminosities, reducing the 'luminosity problem' to a factor of {approx}3. The initial condensation density gradient changes from steep to shallow at radius 0.04 pc, enclosing 0.9 solar masses, with mean column density 2 x 10{sup 22} cm{sup -2} and with effective central temperature 16 K. These initial conditions are denser and warmer than those for isolated star formation.

  14. Evolution of massive stars in very young clusters and associations

    NASA Technical Reports Server (NTRS)

    Stothers, R. B.

    1985-01-01

    Statistics concerning the stellar content of young galactic clusters and associations which show well defined main sequence turnups have been analyzed in order to derive information about stellar evolution in high-mass galaxies. The analytical approach is semiempirical and uses natural spectroscopic groups of stars on the H-R diagram together with the stars' apparent magnitudes. The new approach does not depend on absolute luminosities and requires only the most basic elements of stellar evolution theory. The following conclusions are offered on the basis of the statistical analysis: (1) O-tupe main-sequence stars evolve to a spectral type of B1 during core hydrogen burning; (2) most O-type blue stragglers are newly formed massive stars burning core hydrogen; (3) supergiants lying redward of the main-sequence turnup are burning core helium; and most Wolf-Rayet stars are burning core helium and originally had masses greater than 30-40 solar mass. The statistics of the natural spectroscopic stars in young galactic clusters and associations are given in a table.

  15. X-Ray Outburst from Young Star in McNeil's Nebula

    NASA Astrophysics Data System (ADS)

    2004-07-01

    Observations with NASA's Chandra X-ray Observatory captured an X-ray outburst from a young star, revealing a probable scenario for the intermittent brightening of the recently discovered McNeil's Nebula. It appears the interaction between the young star's magnetic field and an orbiting disk of gas can cause dramatic, episodic increases in the light from the star and disk, illuminating the surrounding gas. "The story of McNeil's Nebula is a wonderful example of the importance of serendipity in science," said Joel Kastner of the Rochester Institute of Technology in Rochester, New York, lead author of a paper in the July 22 issue of Nature describing the X-ray results. "Visible-light images were made of this region several months before Jay McNeil made his discovery, so it could be determined approximately when and by how much the star flared up to produce McNeil's Nebula." The small nebula, which lies in the constellation Orion about 1300 light years from Earth, was discovered with a 3-inch telescope by McNeil, an amateur astronomer from Paducah, Kentucky, in January 2004. In November 2002, a team led by Ted Simon of the Institute for Astronomy in Hawaii had observed the star-rich region with Chandra in search of young, X-ray emitting stars, and had detected several objects. Optical and infrared astronomers had, as part of independent surveys, also observed the region about a year later, in 2003. After the announcement of McNeil's discovery, optical, infrared and X-ray astronomers rushed to observe the region again. They found that a young star buried in the nebula had flared up, and was illuminating the nebula. This star was coincident with one of the X-ray sources discovered earlier by Simon. Chandra observations obtained by Kastner's group just after the optical outburst showed that the source had brightened fifty-fold in X-rays when compared to Simon's earlier observation. The visible-light eruption provides evidence that the cause of the X-ray outburst is the

  16. A multiwavelength study of young stars in the Elephant Trunk

    NASA Astrophysics Data System (ADS)

    López Martí, B.; Bayo, A.; Morales Calderón, M.; Barrado, D.

    2013-05-01

    We present the results of a multiwavelength study of young stars in IC 1396A, ``the Elephant Trunk Nebula''. Our targets are selected combining optical, near-infrared and mid-infrared photometry. Near-infrared and optical spectroscopy are used to confirm their youth and to derive spectral types for these objects, showing that they are early to mid-M stars, and that our sample includes some of the lowest-mass objects reported so far in the region. The photometric and spectroscopic information is used to construct the spectral energy distributions and to study the properties of the stars (mass, age, accretion, disks, spatial location). The implications for the triggered star formation picture are discussed.

  17. Angular Momentum Evolution in Young Low Mass Stars

    NASA Astrophysics Data System (ADS)

    Pinzón, G.; de La Reza, R.

    2006-06-01

    During the last decades, the study of rotation in young low mass stars has been one of the more active areas in the field of stellar evolution. Many theoretical efforts have been made to understand the angular momentum evolution and our picture now, reveals the main role of the stellar magnetic field in all pre-main sequence stage (Ghosh & Lamb 1979, ApJ, 234, 296; Cameron & Campbell 1993, A&A, 274, 309; Cameron & Campbell 1995, A&A, 298, 133; Kúker, Henning, & Rúdiger 2003, ApJ, 589, 397; Matt & Pudritz 2005, MNRAS, 356, 167). The mean rotation of most of the cool low mass stars remains roughly constant during the T Tauri stage. This can be explained by the disc locking scenario. This paradigm suggest that star start out as CTTS with periods of 4-14 days, perhaps locked to their disc, and that this disc is eventually lost mainly by accretion. At the current time, it is not clear that this is true for all low mass stars. Some authors have questioned its validity for stars less massive than 0.5 solar masses. Although the reality may eventually turn out to be considerably more complex, a simple consideration of the effects of and limits on disc locking of young low mass stars seems necessary.We have investigated the exchange of angular momentum between a low mass star and an accretion disc during the Hayashi Track (Pinzón, Kúker, & de la Reza 2005, in preparation) and also along the first 100Myr of stellar evolution. The model incorporates changes in the star's moment of inertia, magnetic field strength (Elstner & Rúdiger 2000, A&A, 358, 612), angular momentum loss by a magnetic wind and an exponential decrease of the accretion rate. The lifetime of the accretion disc is a free parameter in our model. The resulting rotation rates are in agreement with observed vsin and photometric periods for young stars belonging to co-moving groups and open young clusters.

  18. Young Stars Emerge from Orion's Head

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This image from NASA's Spitzer Space Telescope shows infant stars 'hatching' in the head of the hunter constellation, Orion. Astronomers suspect that shockwaves from a supernova explosion in Orion's head, nearly three million years ago, may have initiated this newfound birth

    The region featured in this Spitzer image is called Barnard 30. It is located approximately 1,300 light-years away and sits on the right side of Orion's 'head,' just north of the massive star Lambda Orionis.

    Wisps of red in the cloud are organic molecules called polycyclic aromatic hydrocarbons. These molecules are formed anytime carbon-based materials are burned incompletely. On Earth, they can be found in the sooty exhaust from automobile and airplane engines. They also coat the grills where charcoal-broiled meats are cooked.

    This image shows infrared light captured by Spitzer's infrared array camera. Light with wavelengths of 8 and 5.8 microns (red and orange) comes mainly from dust that has been heated by starlight. Light of 4.5 microns (green) shows hot gas and dust; and light of 3.6 microns (blue) is from starlight.

  19. Young volcanoes in the Chilean Southern Volcanic Zone: A statistical approach to eruption prediction based on time series

    NASA Astrophysics Data System (ADS)

    Dzierma, Y.; Wehrmann, H.

    2010-03-01

    Forecasting volcanic activity has long been an aim of applied volcanology with regard to mitigating consequences of volcanic eruptions. Effective disaster management requires both information on expected physical eruption behaviour such as types and magnitudes of eruptions as typical for the individual volcano, usually reconstructed from deposits of past eruptions, and the likelihood that a new eruption will occur within a given time. Here we apply a statistical procedure to provide a probability estimate for future eruptions based on eruption time series, and discuss the limitations of this approach. The statistical investigation encompasses a series of young volcanoes of the Chilean Southern Volcanic Zone. Most of the volcanoes considered have been active in historical times, in addition to several volcanoes with a longer eruption record from Late-Pleistocene to Holocene. Furthermore, eruption rates of neighbouring volcanoes are compared with the aim to reveal possible regional relations, potentially resulting from local to medium-scale tectonic dynamics. One special focus is directed to the two currently most active volcanoes of South America, Llaima and Villarrica, whose eruption records comprise about 50 historical eruptions over the past centuries. These two front volcanoes are considered together with Lanín Volcano, situated in the back-arc of Villarrica, for which the analysis is based on eight eruptions in the past 10 ka. For Llaima and Villarrica, affirmed tests for independence of the repose times between successive eruptions permit to assume Poisson processes; which is hampered for Lanín because of the more limited availability of documented eruptions. The assumption of stationarity reaches varying degrees of confidence depending on the time interval considered, ameliorating towards the more recent and hence probably more complete eruption record. With these pre-requisites of the time series, several distribution functions are fit and the goodness of

  20. Southern near-infrared photometric monitoring of Galactic young star clusters (NIP of Stars)

    NASA Astrophysics Data System (ADS)

    Barbá, R.; Morrell, N. I.; Gunthardt, G.; Torres Robledo, S.; Jaque, M.; Soto, M.; Ferrero, G.; Arias, J. I.; Roman-Lopes, A.; Gamen, R. C.; Astudillo Hormazabal, J.

    We have performed a near-infrared photometric monitoring of 39 galactic young star clusters and star-forming regions, known as NIP of Stars, be- tween the years 2009-2011, using the Swope telescope at Las Campanas Observatory (Chile) and the RetroCam camera. The primary objective of the campaign is to perform a census of photometric variability of such clus- ters and to discover massive eclipsing binary stars. In this work, we describe the general idea, the implementation of the survey, and the first preliminary results of some of the observed clusters. This monitoring program is com- plementary to the Vista Variables in the Vía Láctea (VVV), as the brightest sources observed in NIP of Stars are saturated in VVV.

  1. HOT WHITE DWARF SHINES IN YOUNG STAR CLUSTER

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A dazzling 'jewel-box' collection of over 20,000 stars can be seen in crystal clarity in this NASA Hubble Space Telescope image, taken with the Wide Field and Planetary Camera 2. The young (40 million year old) cluster, called NGC 1818, is 164,000 light-years away in the Large Magellanic Cloud (LMC), a satellite galaxy of our Milky Way. The LMC, a site of vigorous current star formation, is an ideal nearby laboratory for studying stellar evolution. In the cluster, astronomers have found a young white dwarf star, which has only very recently formed following the burnout of a red giant. Based on this observation astronomers conclude that the red giant progenitor star was 7.6 times the mass of our Sun. Previously, astronomers have estimated that stars anywhere from 6 to 10 solar masses would not just quietly fade away as white dwarfs but abruptly self-destruct in torrential explosions. Hubble can easily resolve the star in the crowded cluster, and detect its intense blue-white glow from a sizzling surface temperature of 50,000 degrees Fahrenheit. IMAGE DATA Date taken: December 1995 Wavelength: natural color reconstruction from three filters (I,B,U) Field of view: 100 light-years, 2.2 arc minutes TARGET DATA Name: NGC 1818 Distance: 164,000 light-years Constellation: Dorado Age: 40 million years Class: Rich star cluster Apparent magnitude: 9.7 Apparent diameter: 7 arc minutes Credit: Rebecca Elson and Richard Sword, Cambridge UK, and NASA (Original WFPC2 image courtesy J. Westphal, Caltech) Image files are available electronically via the World Wide Web at: http://oposite.stsci.edu/pubinfo/1998/16 and via links in http://oposite.stsci.edu/pubinfo/latest.html or http://oposite.stsci.edu/pubinfo/pictures.html. GIF and JPEG images are available via anonymous ftp to oposite.stsci.edu in /pubinfo/GIF/9816.GIF and /pubinfo/JPEG/9816.jpg.

  2. Near-IR Spectral Variability of Young Stars

    NASA Astrophysics Data System (ADS)

    Zajac, Stephanie; Eisner, J. A.; Rudolph, A.

    2011-01-01

    Young stars (such as T Tauri and Herbig Ae/Be sources) exhibit photometric variability across the electromagnetic spectrum, including in the visible and infrared regions. Time-variable mass accretion rates may cause some of the observed variability, although other mechanisms such as starspots or structural changes in the circumstellar disks, provide alternative explanations. Spectroscopic observations provide a means to probe accretion via diagnostic emission lines, and to probe the ratio of stellar-to-circumstellar flux via veiling of stellar absorption lines. While spectroscopic variability in the optical range has been previously investigated, variability in the near-IR has not been explored as thoroughly. We have undertaken a project to track the spectral variability of young stars in the near-IR. Using the 90-inch Bok telescope on Kitt Peak, we observed about 40 young stars with FSPEC during two five-night runs separated by one month. As this project continues, in order to extend the timescales covered by our data, we will survey the same targets under similar circumstances in the summer of 2011. Ultimately, we hope to follow a sample of about 100 young stars with five-night observing runs every month of the year. Here we present initial results showing Brackett gamma Hydrogen line emission for several sources. We show that the emission line luminosity varies, and we use this variability to constrain the mass accretion rate with time for the observed objects. We acknowledge the NSF for funding under Award No. AST-0847170, a PAARE Grant for the Calfornia-Arizona Minority Partnership for Astronomy Research and Education (CAMPARE).

  3. AN INTERMEDIATE LUMINOSITY TRANSIENT IN NGC 300: THE ERUPTION OF A DUST-ENSHROUDED MASSIVE STAR

    SciTech Connect

    Berger, E.; Soderberg, A. M.; Foley, R. J.; Dupree, A. K.; Chevalier, R. A.; Fransson, C.; Leonard, D. C.; Debes, J. H.; Diamond-Stanic, A. M.; Tremonti, C. A.; Ivans, I. I.; Thompson, I. B.; Simmerer, J.

    2009-07-10

    We present multi-epoch high-resolution optical spectroscopy, UV/radio/X-ray imaging, and archival Hubble and Spitzer observations of an intermediate luminosity optical transient recently discovered in the nearby galaxy NGC 300. We find that the transient (NGC 300 OT2008-1) has a peak absolute magnitude of M{sub bol} {approx} -11.8 mag, intermediate between novae and supernovae, and similar to the recent events M85 OT2006-1 and SN 2008S. Our high-resolution spectra, the first for this event, are dominated by intermediate velocity ({approx}200-1000 km s{sup -1}) hydrogen Balmer lines and Ca II emission and absorption lines that point to a complex circumstellar environment, reminiscent of the yellow hypergiant IRC+10420. In particular, we detect asymmetric Ca II H and K absorption with a broad red wing extending to {approx}10{sup 3} km s{sup -1}, indicative of gas inflow at high velocity (possibly the wind of a massive binary companion). The low luminosity, intermediate velocities, and overall similarity to a known eruptive star indicate that the event did not result in a complete disruption of the progenitor. We identify the progenitor in archival Spitzer observations, with deep upper limits from Hubble data. The spectral energy distribution points to a dust-enshrouded star with a luminosity of about 6 x 10{sup 4} L{sub sun}, indicative of a {approx}10-20 M{sub sun} progenitor (or binary system). This conclusion is in good agreement with our interpretation of the outburst and circumstellar properties. The lack of significant extinction in the transient spectrum indicates that the dust surrounding the progenitor was cleared by the outburst. We thus predict that the progenitor should be eventually visible with Hubble if the transient event marks an evolutionary transition to a dust-free state, or with Spitzer if the event marks a cyclical process of dust formation.

  4. Misaligned protoplanetary disks in a young binary star system.

    PubMed

    Jensen, Eric L N; Akeson, Rachel

    2014-07-31

    Many extrasolar planets follow orbits that differ from the nearly coplanar and circular orbits found in our Solar System; their orbits may be eccentric or inclined with respect to the host star's equator, and the population of giant planets orbiting close to their host stars suggests appreciable orbital migration. There is at present no consensus on what produces such orbits. Theoretical explanations often invoke interactions with a binary companion star in an orbit that is inclined relative to the planet's orbital plane. Such mechanisms require significant mutual inclinations between the planetary and binary star orbital planes. The protoplanetary disks in a few young binaries are misaligned, but often the measurements of these misalignments are sensitive only to a small portion of the inner disk, and the three-dimensional misalignment of the bulk of the planet-forming disk mass has hitherto not been determined. Here we report that the protoplanetary disks in the young binary system HK Tauri are misaligned by 60 to 68 degrees, such that one or both of the disks are significantly inclined to the binary orbital plane. Our results demonstrate that the necessary conditions exist for misalignment-driven mechanisms to modify planetary orbits, and that these conditions are present at the time of planet formation, apparently because of the binary formation process. PMID:25079553

  5. Young segment-scale eruption discovered on the eastern Galapagos rift during the GALREX 2011 Expedition

    NASA Astrophysics Data System (ADS)

    Embley, R. W.; White, S. M.; Hammond, S. R.; McClinton, J. T.; Rex, C.

    2011-12-01

    youngest lavas observed near Rosebud vent field, which were erupted between 1990 and 2002. Diffuse venting characterized by high microbial productivity and mobile vent fauna on the young lavas were found at both sites and indicate a youthful hydrothermal system associated with a diking event similar to those characterized on the East Pacific Rise and Juan de Fuca Ridge during the past two decades (also see abstract by Shank et al., this meeting). Thus, the known extent of this eruption is at least 14 km along axis. If the third site to the west is also shown to be characterized by young lavas the diking event would be ~30 km in total length making it the longest submarine diking event documented to date and showing that single diking events can relieve stress over entire an segment on the GSC. This latest serendipitous discovery of a probable major seafloor spreading event emphasizes the need for a better monitoring system along eastern Pacific spreading centers to "catch" these events in real-time and provide context for follow-up in situ studies.

  6. On the spin-down of young neutron stars

    NASA Astrophysics Data System (ADS)

    Bernal, Cristian G.; Negreiros, R.

    2015-12-01

    The Rotation Powered-Pulsars (RPPs) are exposed to a long-term changes in the period of rotation, which are measured by the frequency and its derivatives, Ω, Ω˙, Ω¨, obtained from timing observations. The parameter that links these observables with pulsar deceleration is the braking index, n, which is exactly 3 for purely dipolar radiation. Few braking indices have been estimated to date, for very young pulsars, and in all cases, n < 3. These observations suggest that there are complex plasma processes in the magnetosphere of the pulsar that are not fully well understood. In the present work we revisit the magnetic torque problem for young pulsars in the approach of magnetic field growth due ohmic diffusion. We show that such approach could explain the low values of n in very young neutron stars and may be relevant to explain why a small group of neutron stars, found in young supernova remnants or CCOs, exhibit little or no evidence for the presence of a magnetic field.

  7. HUNTING FOR YOUNG DISPERSING STAR CLUSTERS IN IC 2574

    SciTech Connect

    Pellerin, Anne; Meyer, Martin M.; Calzetti, Daniella; Harris, Jason E-mail: martin.meyer@uwa.edu.au E-mail: jharris@30doradus.org

    2012-12-01

    Dissolving stellar groups are very difficult to detect using traditional surface photometry techniques. We have developed a method to find and characterize non-compact stellar systems in galaxies where the young stellar population can be spatially resolved. By carrying out photometry on individual stars, we are able to separate the luminous blue stellar population from the star field background. The locations of these stars are used to identify groups by applying the HOP algorithm, which are then characterized using color-magnitude and stellar density radial profiles to estimate age, size, density, and shape. We test the method on Hubble Space Telescope Advanced Camera for Surveys archival images of IC 2574 and find 75 dispersed stellar groups. Of these, 20 highly dispersed groups are good candidates for dissolving systems. We find few compact systems with evidence of dissolution, potentially indicating that star formation in this galaxy occurs mostly in unbound clusters or groups. These systems indicate that the dispersion rate of groups and clusters in IC 2574 is at most 0.45 pc Myr{sup -1}. The location of the groups found with HOP correlate well with H I contour map features. However, they do not coincide with H I holes, suggesting that those holes were not created by star-forming regions.

  8. The Search for Young Planetary Systems And the Evolution of Young Stars

    NASA Technical Reports Server (NTRS)

    Beichman, Charles A.; Boden, Andrew; Ghez, Andrea; Hartman, Lee W.; Hillenbrand, Lynn; Lunine, Jonathan I.; Simon, Michael J.; Stauffer, John R.; Velusamy, Thangasamy

    2004-01-01

    The Space Interferometer Mission (SIM) will provide a census of planetary systems by con- ducting a broad survey of 2,000 stars that will be sensitive to the presence of planets with masses as small as approx. 15 Earth masses (1 Uranus mass) and a deep survey of approx. 250 of the nearest, stars with a mass limit of approx.3 Earth masses. The broad survey will include stars spanning a wide range of ages, spectral types, metallicity, and other important parameters. Within this larger context, the Young Stars and Planets Key Project will study approx. 200 stars with ages from 1 Myr to 100 Myr to understand the formation and dynamical evolution of gas giant planets. The SIM Young Stars and Planets Project will investigate both the frequency of giant planet formation and the early dynamical history of planetary systems. We will gain insight into how common the basic architecture of our solar system is compared with recently discovered systems with close-in giant planets by examining 200 of the nearest (less than 150 pc) and youngest (1-100 Myr) solar-type stars for planets. The sensitivity of the survey for stars located 140 pc away is shown in the planet mass-separation plane. We expect to find anywhere from 10 (assuming that only the presently known fraction of stars. 5-7%, has planets) to 200 (all young stars have planets) planetary systems. W-e have set our sensitivity threshold to ensure the detection of Jupiter-mass planets in the critical orbital range of 1 to 5 AU. These observations, when combined with the results of planetary searches of mature stars, will allow us to test theories of planetary formation and early solar system evolution. By searching for planets around pre-main sequence stars carefully selected to span an age range from 1 to 100 Myr, we will learn a t what epoch and with what frequency giant planets are found at the water-ice snowline where they are expected to form. This will provide insight into the physical mechanisms by which planets form

  9. Young Stars Poised for Production of Rocky Planets

    NASA Astrophysics Data System (ADS)

    2004-11-01

    VLT Interferometer Studies the Inner Region of Circumstellar Discs [1] Summary One of the currently hottest astrophysical topics - the hunt for Earth-like planets around other stars - has just received an important impetus from new spectral observations with the MIDI instrument at the ESO VLT Interferometer (VLTI). An international team of astronomers [2] has obtained unique infrared spectra of the dust in the innermost regions of the proto-planetary discs around three young stars - now in a state possibly very similar to that of our solar system in the making, some 4,500 million years ago. Reporting in this week's issue of the science journal Nature, and thanks to the unequalled, sharp and penetrating view of interferometry, they show that in all three, the right ingredients are present in the right place to start formation of rocky planets at these stars. PR Photo 32a/04: Mid-IR spectrum of the inner disc around the star HD 142527, compared to those of common types of dust. PR Photo 32b/04: Mid-IR spectra of the inner and outer disc regions of three young stars. PR Photo 32c/04: Comparison of mid-IR spectra of various astronomical objects with those of the inner and outer disc regions of three young stars. "Sand" in the inner regions of stellar discs ESO PR Photo 32a/04 ESO PR Photo 32a/04 Mid-IR spectrum of the inner disc around the star HD 142527, compared to those of common types of dust [Preview - JPEG: 400 x 541 pix - 120k] [Normal - JPEG: 800 x 1032 pix - 280k] Caption: ESO PR Photo 32a/04 presents a mid-IR spectrum of the inner region of the protoplanetary disc around the young star HD 142527, as observed with the MIDI instrument at the VLT Interferometer (upper). Below it are shown laboratory spectra of two crystalline minerals as well as of an Interplanetary Dust Particle (IDP; captured in the Earth's upper atmosphere) with hydrated silicates and, at the bottom, a typical telescopic spectrum of dust grains in the interstellar space. The spectral

  10. On the Rotational Evolution of Young Low-Mass Stars

    NASA Astrophysics Data System (ADS)

    Siess, Lionel; Livio, Mario

    1997-12-01

    Observations of young clusters indicate that a significant fraction of solar-type stars are rotating very slowly, with equatorial velocities less than 10 km s-1. So far, models have failed to reproduce a sufficiently large proportion of these stars on the zero-age main sequence. On the basis of the idea that the mixing length in convection theories could depend on the size of the convective zone (Canuto & Mazzitelli), we examine the influence of a varying mixing-length parameter α on the rotational evolution of solar-type stars. A decreasing α (owing to evolution) in the mixing-length theory (MLT) leads to a slower contraction rate and to a larger stellar moment of inertia. The stellar spin-up is consequently reduced, and this helps to increase the number of very slow rotators present in young clusters. We also investigate the possibility that α could depend on the rotation rate, and show the consequences of this parameterization for the lithium surface abundance.

  11. HUBBLE PICTURES SHOW HOT GAS BUBBLE EJECTED BY YOUNG STAR

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These images taken with the Hubble Space Telescope's Wide Field and Planetary Camera 2 reveal the evolution of bubbles of glowing gas being blown out from the young binary star system XZ Tauri. Gas from an unseen disk around one or both of the stars is channeled through magnetic fields surrounding the binary system and then is forced out into space at nearly 300,000 miles per hour (540,000 kilometers per hour). This outflow, which is only about 30 years old, extends nearly 60 billion miles (96 billion kilometers). Hubble first discovered this unique bubble in 1995, and additional observations were made between 1998 and 2000. These images show that there was a dramatic change in its appearance between 1995 and 1998. In 1995, the bubble's edge was the same brightness as its interior. However, when Hubble took another look at XZ Tauri in 1998, the edge was suddenly brighter. This brightening is probably caused by the hot gas cooling off, which allows electrons in the gas to recombine with atoms, a process that gives off light. This is the first time that astronomers have seen such a cooling zone 'turn on.' These images provide an unprecedented opportunity to study the development of a very recent outflow from young (about 1 million years old) stars. Credits: NASA, John Krist (Space Telescope Science Institute), Karl Stapelfeldt (Jet Propulsion Laboratory), Jeff Hester (Arizona State University), Chris Burrows (European Space Agency/Space Telescope Science Institute)

  12. Surface deformation and seismic signatures associated with the eruption cycle of Lone Star Geyser, Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Gomez, F. G.; Johnson, H. E., III; LeWinter, A. L.; Finnegan, D. C.; Sandvol, E. A.; Nayak, A.; Hurwitz, S.

    2014-12-01

    Geysers are important subjects for studying processes involved with multi-phase eruptions. As part of a larger field effort, this study applies imaging geodesy and seismology to study eruptive cycles of the Lone Star Geyser in Yellowstone National Park. Lone Star Geyser is an ideal candidate for such study, as it erupts with a nearly regular period of approximately 3 hours. The geyser includes a 5 m diameter cone that rises 2 meters above the sinter terrace, and the entire system can be viewed from a nearby hillside. Fieldwork was accomplished during April 2014. Ground-based interferometric radar (GBIR) and terrestrial laser scanning (TLS) were used to image possible surface deformations associated with Lone Star Geyer's eruption cycles. Additional observations were provided by global positioning system (GPS) measurements and six broad-band seismometers deployed in the immediate vicinity of the geyser. The GBIR and TLS were deployed approximately 65 meters from the sinter cone of the geyser. The GBIR involves a ku-band radar (1.7 cm wavelength) that is sensitive to approximately half-millimeter changes in the line-of-sight distance. Radar images were acquired every minute for 3 or more eruptions per day. Temporally redundant, overlapping interferograms were used to improve the sensitivity and interpolate a minute-wise time series of line-of-sight displacement, and efforts were made to account for possible path-delay effects resulting from water vapor around the geyser cone. Repeat (every minute) high-speed TLS scans were acquired for multiple eruption cycles over the course of two-days. Resulting measurement point spacing on the sinter cone was ~3cm. The TLS point-clouds were geo-referenced using static surveyed reflectors and scanner positions. In addition to measuring ground deformation, filtering and classification of the TLS point cloud was used to construct a mask that allows radar interferometry to exclude non-ground areas (vegetation, snow, sensors

  13. Outflows from young stars : The Rosetta stone of astrophysical Jets?

    NASA Astrophysics Data System (ADS)

    Ray, T.

    2012-02-01

    It can be argued that all astrophysical jets, from lowly sub-stellar objects such as young brown dwarfs to massive black holes at the centre of AGN, are generated by the same basic physical mechanism. While the nature of that mechanism is still debated, jets from young stars may represent our best chance of deciphering it. There are several reasons for this statement. First of all they are nearby, thus affording us not only high spatial resolution studies of the "central engine" but also time-resolved analysis of their kinematics. Moreover as they radiate emission lines, spectroscopy can reveal radial velocities, temperature, density, ion fraction, etc., along their flow. This wealth of data is a challenge to the theorist/computational simulator but also a highly effective means of discriminating between models. In addition, the observations tightly constrain laboratory experiments. Here, I briefly review what is known about conditions in jets from young stars as a guide to experiments, their generation including their link with accretion disks, and their evolution from the earliest proto-stellar to pre-main sequence phase.

  14. Panchromatic Hubble Andromeda Treasury. XVI. Star Cluster Formation Efficiency and the Clustered Fraction of Young Stars

    NASA Astrophysics Data System (ADS)

    Johnson, L. Clifton; Seth, Anil C.; Dalcanton, Julianne J.; Beerman, Lori C.; Fouesneau, Morgan; Lewis, Alexia R.; Weisz, Daniel R.; Williams, Benjamin F.; Bell, Eric F.; Dolphin, Andrew E.; Larsen, Søren S.; Sandstrom, Karin; Skillman, Evan D.

    2016-08-01

    We use the Panchromatic Hubble Andromeda Treasury survey data set to perform spatially resolved measurements of star cluster formation efficiency (Γ), the fraction of stellar mass formed in long-lived star clusters. We use robust star formation history and cluster parameter constraints, obtained through color–magnitude diagram analysis of resolved stellar populations, to study Andromeda’s cluster and field populations over the last ∼300 Myr. We measure Γ of 4%–8% for young, 10–100 Myr-old populations in M31. We find that cluster formation efficiency varies systematically across the M31 disk, consistent with variations in mid-plane pressure. These Γ measurements expand the range of well-studied galactic environments, providing precise constraints in an H i-dominated, low-intensity star formation environment. Spatially resolved results from M31 are broadly consistent with previous trends observed on galaxy-integrated scales, where Γ increases with increasing star formation rate surface density (ΣSFR). However, we can explain observed scatter in the relation and attain better agreement between observations and theoretical models if we account for environmental variations in gas depletion time (τ dep) when modeling Γ, accounting for the qualitative shift in star formation behavior when transitioning from a H2-dominated to a H i-dominated interstellar medium. We also demonstrate that Γ measurements in high ΣSFR starburst systems are well-explained by τ dep-dependent fiducial Γ models.

  15. Panchromatic Hubble Andromeda Treasury. XVI. Star Cluster Formation Efficiency and the Clustered Fraction of Young Stars

    NASA Astrophysics Data System (ADS)

    Johnson, L. Clifton; Seth, Anil C.; Dalcanton, Julianne J.; Beerman, Lori C.; Fouesneau, Morgan; Lewis, Alexia R.; Weisz, Daniel R.; Williams, Benjamin F.; Bell, Eric F.; Dolphin, Andrew E.; Larsen, Søren S.; Sandstrom, Karin; Skillman, Evan D.

    2016-08-01

    We use the Panchromatic Hubble Andromeda Treasury survey data set to perform spatially resolved measurements of star cluster formation efficiency (Γ), the fraction of stellar mass formed in long-lived star clusters. We use robust star formation history and cluster parameter constraints, obtained through color–magnitude diagram analysis of resolved stellar populations, to study Andromeda’s cluster and field populations over the last ˜300 Myr. We measure Γ of 4%–8% for young, 10–100 Myr-old populations in M31. We find that cluster formation efficiency varies systematically across the M31 disk, consistent with variations in mid-plane pressure. These Γ measurements expand the range of well-studied galactic environments, providing precise constraints in an H i-dominated, low-intensity star formation environment. Spatially resolved results from M31 are broadly consistent with previous trends observed on galaxy-integrated scales, where Γ increases with increasing star formation rate surface density (ΣSFR). However, we can explain observed scatter in the relation and attain better agreement between observations and theoretical models if we account for environmental variations in gas depletion time (τ dep) when modeling Γ, accounting for the qualitative shift in star formation behavior when transitioning from a H2-dominated to a H i-dominated interstellar medium. We also demonstrate that Γ measurements in high ΣSFR starburst systems are well-explained by τ dep-dependent fiducial Γ models.

  16. Modelling and observations of molecules in discs around young stars

    NASA Astrophysics Data System (ADS)

    Ilee, John David

    2013-04-01

    This thesis contains a study of molecules within circumstellar discs around young stars. Firstly, the chemistry of a disc around a young, Class 0 protostar is modelled. Such discs are thought to be massive, and thus experience gravitational instabilities, which produce spiral density waves. These affect the chemistry in three ways; by desorbing molecules from dust grains, by providing extra energy for new reactions to take place, and by mixing the internal structure of the disc to provide a rich chemistry near the midplane. Secondly, high resolution near-infrared spectra of 20 massive young stellar objects are presented. The objects display CO first overtone bandhead emission, which is excited in the conditions expected within circumstellar discs. The emission is modelled using a simple analytic model of a Keplerian disc, and good fits are found to all spectra. On average, the discs correspond to being geometrically thin, spread across a wide range of inclinations. The discs are located within the dust sublimation radius, providing strong evidence that the CO emission originates in small gaseous discs, supporting the scenario in which massive stars form via disc accretion. Finally, medium resolution near-infrared spectra of 5 Herbig Ae/Be stars are presented. The spectra cover both CO bandhead and Br gamma emission. Accretion rates are derived from the measuring the Br gamma emission and through modelling the CO emission, however these accretion rates are found to be inconsistent. High resolution archival data of one of the targets is presented, and it is shown that this CO disc model is unable to fit the high resolution data. Therefore, it is concluded that to properly fit CO spectra, high resolution data are needed, and that previously published information determined from low resolution spectra should be treated with caution.

  17. MYStIX: Subclusters of Young Stars in Massive Star Forming Regions

    NASA Astrophysics Data System (ADS)

    Kuhn, Michael A.; Feigelson, Eric D.; Getman, Konstantin V.; Baddeley, Adrian; Townsley, Leisa K.; Broos, Patrick S.; Povich, Matthew S.; Luhman, Kevin L.; Busk, Heather A.; Naylor, Tim; King, Robert R.; Garmire, Gordon P.

    2013-07-01

    The MYStIX (Massive Young Star-Forming Complex Study in Infrared and X-ray; Feigelson et al. 2013) project provides improved censuses of young stars in 20 nearby OB-dominated star-forming regions that were observed by the Chandra X-ray observatory, the Spitzer Space Telescope, and the UKIRT/UKIDSS and 2MASS surveys. The sample of >33,000 members reveals new details about the structure of clusters in these regions. Clusters of young stars are identified using finite mixture models -\\ the sums of isothermal ellipsoids used to model individual (sub)clusters. Maximum likelihood estimation is used to estimate the model parameters and the Akaike Information Criterion is used to detemine the number of subclusters. In the MYStIX star-forming regions, ˜150 subclusters are found (1 to >10 per region). The distribution of cluster core radii is log-normal, peaked at 0.18 pc (similar to the ONC) with a standard deviation of 0.4 dex. The locations of subclusters are often correlated with molecular-cloud clumps or cores. We also recover several well-known embedded subclusters such as the BN-KL region in Orion and the KW Object cluster in M 17. MYStIX star-forming regions typically have one dominant cluster surrounded by smaller subclusters and filamentary groups of young stars. Some clusters are well fit by the ellipsoid model (e.g. Flame Nebula), but others have lumpy structure and are poorly fit (e.g. M 17). A few clusters have a core-halo structure modeled with two overlapping ellipsoids (e.g. RCW 36). Clumpy and core-halo structures could originate in the merger of subclusters. There is a power-law relation between the fitted cluster central density and core radius (index slightly shallower than -3), which may be an effect of cluster expansion. There is also a statistically significant negative relation between median gas/dust absorption of a subcluster and the subcluster's size that can also be explained by cluster expansion if absorption acts as a proxy for age.

  18. X-Ray Spectroscopy of Accretion Shocks in Young Stars

    NASA Astrophysics Data System (ADS)

    Brickhouse, Nancy S.

    2011-01-01

    High resolution X-ray spectroscopy of accreting young stars is providing new insights into the physical conditions of the shocked plasma. While young stars exhibit exceedingly active coronae (>10 MK) with highly energetic flares, the relatively low temperature ( 3 MK), high density (>1012 cm-3) accretion shock can only be clearly distinguished at high spectral resolution. The nearby Classical T Tauri star TW Hydrae was the first to show evidence of accretion using 50 ks with the Chandra High Energy Transmission Grating (HETG). More recently a Chandra HETG Large Program (489 ks obtained over the course of one month) on TW Hydrae has found evidence for a new type of coronal structure. In the standard model, the accreting gas shocks near the atmosphere of the star and gently settles onto the surface as it slows down and cools. On TW Hydrae the observed post-shock region is not this predicted settling flow, since its mass is 30 times the mass of material that passes through the shock. Instead the stellar atmosphere must be heated to soft X-ray emitting temperatures. Of the CTTS systems observed with the gratings on Chandra and XMM-Newton not all show the accretion shock signature; however, all of them show excess soft X-ray emission related to accretion. The production of highly charged ions in the proximity of both open and closed magnetic field lines has important implications for coronal heating, winds and jets in the presence of accretion. This work is supported by the Chandra X-ray Observatory through a NASA contract with the Smithsonian Astrophysical Observatory.

  19. The variable stars of the young LMC cluster NGC 2164

    NASA Technical Reports Server (NTRS)

    Welch, Douglas L.; Mateo, Mario; Olszewski, Edward W.; Fischer, Philippe; Takamiya, Marianne

    1993-01-01

    The present search of the LMC cluster NGC 2164 for variable stars has uncovered one new member classical Cepheid variable with 3.772-day period; attention is also given to photometry for a previously unknown field overtone Cepheid variable with 3.4626-day period, and the 10.6878-day period HV 12078, which may be a member of the young NGC 2156 cluster. The clear separation of fundamental and overtone pulsators in the period-luminosity-color relation of known LMC cluster Cepheids establishes that the NGC 2164 member is a true overtone.

  20. Young, Ultraviolet-bright Stars Dominate Dust Heating in Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Law, Ka-Hei; Gordon, Karl D.; Misselt, K. A.

    2011-09-01

    In star-forming galaxies, dust plays a significant role in shaping the ultraviolet (UV) through infrared (IR) spectrum. Dust attenuates the radiation from stars, and re-radiates the energy through equilibrium and non-equilibrium emission. Polycyclic aromatic hydrocarbons (PAHs), graphite, and silicates contribute to different features in the spectral energy distribution; however, they are all highly opaque in the same spectral region—the UV. Compared to old stellar populations, young populations release a higher fraction of their total luminosity in the UV, making them a good source of the energetic UV photons that can power dust emission. However, given their relative abundance, the question of whether young or old stellar populations provide most of these photons that power the IR emission is an interesting question. Using three samples of galaxies observed with the Spitzer Space Telescope and our dusty radiative transfer model, we find that young stellar populations (on the order of 100 million years old) dominate the dust heating in star-forming galaxies, and old stellar populations (13 billion years old) generally contribute less than 20% of the far-IR luminosity.

  1. YOUNG, ULTRAVIOLET-BRIGHT STARS DOMINATE DUST HEATING IN STAR-FORMING GALAXIES

    SciTech Connect

    Law, Ka-Hei; Gordon, Karl D.; Misselt, K. A. E-mail: kgordon@stsci.edu

    2011-09-10

    In star-forming galaxies, dust plays a significant role in shaping the ultraviolet (UV) through infrared (IR) spectrum. Dust attenuates the radiation from stars, and re-radiates the energy through equilibrium and non-equilibrium emission. Polycyclic aromatic hydrocarbons (PAHs), graphite, and silicates contribute to different features in the spectral energy distribution; however, they are all highly opaque in the same spectral region-the UV. Compared to old stellar populations, young populations release a higher fraction of their total luminosity in the UV, making them a good source of the energetic UV photons that can power dust emission. However, given their relative abundance, the question of whether young or old stellar populations provide most of these photons that power the IR emission is an interesting question. Using three samples of galaxies observed with the Spitzer Space Telescope and our dusty radiative transfer model, we find that young stellar populations (on the order of 100 million years old) dominate the dust heating in star-forming galaxies, and old stellar populations (13 billion years old) generally contribute less than 20% of the far-IR luminosity.

  2. Massive Young Star Clusters in M33: Stochastic Star Formation Ruled Out

    NASA Astrophysics Data System (ADS)

    González-Lópezlira, R. A.; Pflamm-Altenburg, J.; Kroupa, P.

    2014-09-01

    It is widely accepted that the distribution function of the masses of young star clusters is universal and can be purely interpreted as a probability density distribution function with a constant upper mass limit. As a result of this picture, the masses of the most massive objects would be exclusively determined by the size of the sample. Conversely we show, with very high confidence, that the masses of the most massive young (< 10 Myr) star clusters in the flocculent galaxy M33 decrease with increasing galactocentric radius, in contradiction with a constant shape and upper mass limit of the cluster mass function. Moreover, by comparing the radial distributions of gas surface densities and highest cluster masses, we find that M_{max} ∝ Σ_{gas, total}^{3.8 ± 0.3}, M_{max} ∝ Σ_{H_2}^{1.2± 0.1} and M_{max} ∝ Σ_{SFR}^{0.9 ± 0.1}. Hence, in M33 we can rule out stochastic star formation. The change of the maximum cluster mass there must be due to physical causes, i.e., very massive star clusters may require special physical conditions, like high gas surface densities, in order to form.

  3. Large and kinematically unbiased samples of G- and K-type stars. II - Observations of evolved stars in the Bright Star sample. III - Evolved young disk stars in the Bright Star sample

    NASA Astrophysics Data System (ADS)

    Eggen, Olin J.

    1989-01-01

    Four color and RI observations were obtained for a large sample of G-type and K-type stars in the Bright Star Catalogue. Data are first presented for 110 evolved stars. Photometry of evolved young disk population stars have then been calibrated for luminosity, reddening, and metallicity on the basis of results for members of the Hyades and Sirius superclusters. New DDO results are given for 120 stars.

  4. Young Star May Be Belching Spheres of Gas, Astronomers Say

    NASA Astrophysics Data System (ADS)

    2001-05-01

    A young star more than 2,000 light-years away in the constellation Cepheus may be belching out spheres of gas, say astronomers who observed it with the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope. Not only is the star ejecting spheres of gas, the researchers say, but it also may be ejecting them repeatedly, phenomena not predicted by current theories of how young stars shed matter. Cepheus A star-forming region with blowups of detail In order to remain stable while accumulating matter, young stars have to throw off some of the infalling material to avoid "spinning up" so fast they would break apart, according to current theories. Infalling matter forms a thin spinning disk around the core of the new star, and material is ejected in twin "jets" perpendicular to the plane of the disk. "Twin jets have been seen emerging from many young stars, so we are quite surprised to see evidence that this object may be ejecting not jets, but spheres of gas," said Paul T.P. Ho, an astronomer at the Harvard-Smithsonian Center for Astrophysics. The research is reported in the May 17 edition of the scientific journal Nature. The astronomers observed a complex star-forming region in Cepheus and found an arc of water molecules that act like giant celestial amplifiers to boost the strength of radio signals at a frequency of 22 GHz. Such radio-wave amplifiers, called masers, show up as bright spots readily observed with radio telescopes. "With the great ability of the VLBA to show fine detail, we could track the motions of these maser spots over a period of weeks, and saw that this arc of water molecules is expanding at nearly 20,000 miles per hour," said Ho. "This was possible because we could detect detail equivalent to seeing Lincoln's nose on a penny in Los Angeles from the distance of New York," Ho added. "These observations pushed the tremendous capabilities of the VLBA and of modern computing power to their limits. This is an extremely complex

  5. The dynamical fate of planetary systems in young star clusters

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaochen; Kouwenhoven, M. B. N.; Wang, Long

    2015-11-01

    We carry out N-body simulations to examine the effects of dynamical interactions on planetary systems in young open star clusters. We explore how the planetary populations in these star clusters evolve, and how this evolution depends on the initial amount of substructure, the virial ratio, the cluster mass and density, and the initial semi-major axis of the planetary systems. The fraction of planetary systems that remains intact as a cluster member, fBPS, is generally well-described by the functional form fBPS = f0(1 + [a/a0]c)-1, where (1 - f0) is the fraction of stars that escapes from the cluster, a0 the critical semi-major axis for survival, and c a measure for the width of the transition region. The effect of the initial amount of substructure over time t can be quantified as fBPS = A(t) + B(D), where A(t) decreases nearly linearly with time, and B(D) decreases when the clusters are initially more substructured. Provided that the orbital separation of planetary systems is smaller than the critical value a0, those in clusters with a higher initial stellar density (but identical mass) have a larger probability of escaping the cluster intact. These results help us to obtain a better understanding of the difference between the observed fractions of exoplanets-hosting stars in star clusters and in the Galactic field. It also allows us to make predictions about the free-floating planet population over time in different stellar environments.

  6. JET FORMATION FROM MASSIVE YOUNG STARS: MAGNETOHYDRODYNAMICS VERSUS RADIATION PRESSURE

    SciTech Connect

    Vaidya, Bhargav; Porth, Oliver; Fendt, Christian; Beuther, Henrik E-mail: fendt@mpia.de

    2011-11-20

    Observations indicate that outflows from massive young stars are more collimated during their early evolution compared to later stages. Our paper investigates various physical processes that impact the outflow dynamics, i.e., its acceleration and collimation. We perform axisymmetric magnetohydrodynamic (MHD) simulations particularly considering the radiation pressure exerted by the star and the disk. We have modified the PLUTO code to include radiative forces in the line-driving approximation. We launch the outflow from the innermost disk region (r < 50 AU) by magnetocentrifugal acceleration. In order to disentangle MHD effects from radiative forces, we start the simulation in pure MHD and later switch on the radiation force. We perform a parameter study considering different stellar masses (thus luminosity), magnetic flux, and line-force strength. For our reference simulation-assuming a 30 M{sub Sun} star-we find substantial de-collimation of 35% due to radiation forces. The opening angle increases from 20 Degree-Sign to 32 Degree-Sign for stellar masses from 20 M{sub Sun} to 60 M{sub Sun }. A small change in the line-force parameter {alpha} from 0.60 to 0.55 changes the opening angle by {approx}8 Degree-Sign . We find that it is mainly the stellar radiation that affects the jet dynamics. Unless the disk extends very close to the star, its force is too small to have much impact. Essentially, our parameter runs with different stellar masses can be understood as a proxy for the time evolution of the star-outflow system. Thus, we have shown that when the stellar mass (thus luminosity) increases with age, the outflows become less collimated.

  7. Mandibular canine tooth impaction in a young dog--treatment and subsequent eruption: a case report.

    PubMed

    Stapleton, B L; Clarke, L L

    1999-09-01

    Extraction of an embedded supranumerary incisor tooth and surgical exposure of the crown of an impacted left mandibular canine tooth were performed in a 5 month-old Doberman Pinscher dog. Six months following surgery, the canine tooth was fully erupted and in normal occlusion. A review of tooth eruption in the dog is provided. PMID:10863519

  8. Transformed photometry of young stars in Cha requested

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2013-01-01

    Dr. Peter Abraham (Konkoly Observatory, Budapest, Hungary) requested the assistance of AAVSO observers in monitoring eight young stars in Chamaeleon in support of photometry he and his colleagues will be obtaining with the VLT/ISAAC (infrared) and Herschel Space Observatory (far-infrared) during January-February 2013. The targets are CR Cha, CT Cha, HP Cha (Glass I), VW Cha, VZ Cha, WW CHa, WX Cha, XX Cha. Calibrated, transformed VRI photometry is requested to precisely monitor changes in the optical brightness and colors of these objects. Calibration and transformation of the photometry is crucial - if all of the data are not on the same system and particularly if the colors are not transformed, it will be extremely difficult to correlate the data usefully. Previous observations indicate that the stars are highly variable. Brightness changes can be expected from a few tenths of a magnitude to up to 1-2 magnitudes on a timescale of a few days to a few weeks. Observers are asked to try to obtain one to two sets of VRI images per night. Finder charts with sequences may be created using the AAVSO Variable Star Plotter (http://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details.

  9. Bright Young Star Clusters in NGC5253 with LEGUS

    NASA Astrophysics Data System (ADS)

    Calzetti, Daniela; Johnson, Kelsey E.; Adamo, Angela; Gallagher, John S.; Andrews, Jennifer E.; Smith, Linda J.; Clayton, Geoffrey C.; Lee, Janice C.; Sabbi, Elena; Ubeda, Leonardo; Kim, Hwihyun; Ryon, Jenna E.; Thilker, David A.; Bright, Stacey N.; Zackrisson, Erik; Kennicutt, Robert; de Mink, Selma E.; Whitmore, Bradley C.; Aloisi, Alessandra; Chandar, Rupali; Cignoni, Michele; Cook, David; Dale, Daniel A.; Elmegreen, Bruce; Elmegreen, Debra M.; Evans, Aaron S.; Fumagalli, Michele; Gouliermis, Dimitrios; Grasha, Kathryn; Grebel, Eva; Krumholz, Mark R.; Walterbos, Rene A. M.; Wofford, Aida; Brown, Thomas M.; Christian, Carol A.; Dobbs, Claire; Herrero-Davo`, Artemio; Kahre, Lauren; Messa, Matteo; Nair, Preethi; Nota, Antonella; Östlin, Göran; Pellerin, Anne; Sacchi, Elena; Schaerer, Daniel; Tosi, Monica

    2016-01-01

    Using UV-to-H broad and narrow-band HST imaging, we derive the ages and masses of the 11 brightest star clusters in the dwarf galaxy NGC5253. This galaxy, located at ~3 Mpc, hosts an intense starburst, which includes a centrally-concentrated dusty region with strong thermal radio emission (the `radio nebula'). The HST imaging includes data from the Cycle 21 Treasury Program LEGUS (Legacy ExtraGalactic UV Survey), in addition to narrow--band H-alpha (6563 A), P-beta (12820 A), and P-alpha (18756 A). The bright clusters have ages ~1-15 Myr and masses ~1E4 - 2.5E5 Msun. Two of the 11 star clusters are located within the radio nebula, and suffer from significant dust attenuation. Both are extremely young, with a best-fit age around 1 Myr, and masses ~7.5E4 and ~2.5E5 Msun, respectively. The most massive of the two `radio nebula' clusters is 2-4 times less massive than previously estimated and is embedded within a cloud of dust with A_V~50 mag. The two clusters account for about half of the ionizing photon rate in the radio nebula, and will eventually supply about 2/3 of the mechanical energy in present-day shocks. Additional sources are required to supply the remaining ionizing radiation, and may include very massive stars.

  10. Empirical Isochrones for Low Mass Stars in Nearby Young Associations

    NASA Astrophysics Data System (ADS)

    Herczeg, Gregory J.; Hillenbrand, Lynne A.

    2015-07-01

    Absolute ages of young stars are important for many issues in pre-main-sequence stellar and circumstellar evolution but long have been recognized as difficult to derive and calibrate. In this paper, we use literature spectral types and photometry to construct empirical isochrones in Hertzsprung-Russell diagrams for low mass stars and brown dwarfs in the η Cha, ɛ Cha, and TW Hya Associations and the β Pic and Tuc-Hor Moving Groups. A successful theory of pre-main-sequence evolution should match the shapes of the stellar loci for these groups of young stars. However, when comparing the combined empirical isochrones to isochrones predicted from evolutionary models, discrepancies lead to a spectral type (mass) dependence in stellar age estimates. Improved prescriptions for convection and boundary conditions in the latest models of pre-main-sequence evolution lead to a significantly improved correspondence between empirical and model isochrones, with small offsets at low temperatures that may be explained by observational uncertainties or by model limitations. Independent of model predictions, linear fits to combined stellar loci of these regions provide a simple empirical method to order clusters by luminosity with a reduced dependence on spectral type. Age estimates calculated from various sets of modern models that reproduce Li depletion boundary ages of the β Pic Moving Group also imply a ˜4 Myr age for the low mass members of the Upper Sco OB Association, which is younger than the 11 Myr age that has been recently estimated for intermediate and high mass members.

  11. High resolution spectroscopy of old stars and young disks

    NASA Astrophysics Data System (ADS)

    Bitner, Martin Allan, Jr.

    published results obtained using similar techniques, we find [left angle bracket]K K [right angle bracket] = 163.7 ± 0.7 km s -1 and [left angle bracket] q [right angle bracket] = 0.683 ± 0.012. The orbital light curve of SS Cyg shows an ellipsoidal variation diluted by light from the disk and white dwarf. From an analysis of the ellipsoidal variations we limit the orbital inclination to the range 45° <= i <= 56°. The derived masses of the K star and white dwarf are M K = 0.55 ± 0.13 [Special characters omitted.] and M wd = 0.81 ± 0.19[Special characters omitted.] , where the uncertainties are dominated by systematic errors in the orbital inclination. The K star in SS Cyg is 10% to 50% larger than an unevolved star with the same mass and thus does not follow the mass-radius relation for Zero-Age Main- Sequence stars; nor does it follow the ZAMS mass/spectral-type relation. Its mass and spectral type are, however, consistent with models in which the core hydrogen has been significantly depleted. In Chapters 4 and 5, we report the results of a search for pure rotational molecular hydrogen emission from the circumstellar environments of young stellar objects with disks using the Texas Echelon Cross Echelle Spectrograph (TEXES) on the NASA Infrared Telescope Facility and the Gemini North Observatory. We searched for mid-infrared H 2 emission in the S(1), S(2), and S (4) transitions. Keck NIRSPEC observations of the H2 S(9) transition were included for some sources as an additional constraint on the gas temperature. We detected H 2 emission from 6 of 28 sources observed: AB Aur, DoAr 21, Elias 29, GSS 30 IRS 1, GV Tau N, and HL Tau. Four of the six targets with detected emission are class I sources that show evidence for surrounding material in an envelope in addition to a circumstellar disk. The detected emission lines are narrow (~10 km s -1 ), centered at the stellar velocity, and spatially unresolved at scales of 0.4 inches, which is consistent with origin from a disk

  12. Stellar contents and star formation in the young star cluster Be 59

    NASA Astrophysics Data System (ADS)

    Pandey, A. K.; Sharma, Saurabh; Ogura, K.; Ojha, D. K.; Chen, W. P.; Bhatt, B. C.; Ghosh, S. K.

    2008-01-01

    We present UBV Ic CCD photometry of the young open cluster Be 59 with the aim to study the star formation scenario in the cluster. The radial extent of the cluster is found to be ~10 arcmin (2.9 pc). The interstellar extinction in the cluster region varies between E(B - V) ~= 1.4 to 1.8 mag. The ratio of total-to-selective extinction in the cluster region is estimated as 3.7 +/- 0.3. The distance of the cluster is found to be 1.00 +/- 0.05 kpc. Using near-infrared (NIR) colours and slitless spectroscopy, we have identified young stellar objects (YSOs) in the open cluster Be 59 region. The ages of these YSOs range between <1 and ~2 Myr, whereas the mean age of the massive stars in the cluster region is found to be ~2 Myr. There is evidence for second-generation star formation outside the boundary of the cluster, which may be triggered by massive stars in the cluster. The slope of the initial mass function, Γ, in the mass range 2.5 < M/Msolar <= 28 is found to be -1.01 +/- 0.11 which is shallower than the Salpeter value (-1.35), whereas in the mass range 1.5 < M/Msolar <= 2.5 the slope is almost flat. The slope of the K-band luminosity function is estimated as 0.27 +/- 0.02, which is smaller than the average value (~0.4) reported for young embedded clusters. Approximately 32 per cent of Hα emission stars of Be 59 exhibit NIR excess indicating that inner discs of the T Tauri star (TTS) population have not dissipated. The Midcourse Space Experiment (MSX) and IRAS-HIRES images around the cluster region are also used to study the emission from unidentified infrared bands and to estimate the spatial distribution of optical depth of warm and cold interstellar dust.

  13. Vertical Structure of Magnetized Accretion Disks around Young Stars

    NASA Astrophysics Data System (ADS)

    Lizano, S.; Tapia, C.; Boehler, Y.; D'Alessio, P.

    2016-01-01

    We model the vertical structure of the magnetized accretion disks that are subject to viscous and resistive heating and irradiation by the central star. We apply our formalism to the radial structure of the magnetized accretion disks that are threaded by the poloidal magnetic field dragged during the process of star formation, which was developed by Shu and coworkers. We consider disks around low-mass protostars, T Tauri, and FU Orionis stars, as well as two levels of disk magnetization: {λ }{sys}=4 (strongly magnetized disks) and {λ }{sys}=12 (weakly magnetized disks). The rotation rates of strongly magnetized disks have large deviations from Keplerian rotation. In these models, resistive heating dominates the thermal structure for the FU Ori disk, and the T Tauri disk is very thin and cold because it is strongly compressed by magnetic pressure; it may be too thin compared with observations. Instead, in the weakly magnetized disks, rotation velocities are close to Keplerian, and resistive heating is always less than 7% of the viscous heating. In these models, the T Tauri disk has a larger aspect ratio, which is consistent with that inferred from observations. All the disks have spatially extended hot atmospheres where the irradiation flux is absorbed, although most of the mass (˜90%-95%) is in the disk midplane. With the advent of ALMA one expects direct measurements of magnetic fields and their morphology at disk scales. It will then be possible to determine the mass-to-flux ratio of magnetized accretion disks around young stars, an essential parameter for their structure and evolution. Our models contribute to the understanding of the vertical structure and emission of these disks.

  14. Analysis of star-disk interaction in young stellar systems

    NASA Astrophysics Data System (ADS)

    Fonseca, Nathalia N. J.; Alencar, Silvia H. P.; Bouvier, Jérôme

    2014-08-01

    We present preliminary results of the study of star-disk interaction in the classical T Tauri star V354 Mon, a member of the young stellar cluster NGC 2264. As part of an international campaign of observations of NGC 2264 organized from December 2011 to February 2012, high resolution photometric and spectroscopic data of this object were obtained simultaneously with the Chandra, CoRoT and Spitzer satellites, and ground-based telescopes, such as CFHT and ESO/VLT. The optical and infrared light curves of V354 Mon show periodic brightness minima that vary in depth and width every 5.21 days rotational cycle. We found evidence that the Hα emission line profile changes according to the period of photometric variations, indicating that the same phenomenon causes both modulations. Such correlation was also identified in a previous observational campaign on the same object, where we concluded that material non-uniformly distributed in the inner part of the disk is the main cause of the photometric modulation. This assumption is supported by the fact that the system is seen at high inclination. It is believed that this distortion of the inner part of the disk results from the dynamical interaction between the stellar magnetosphere, inclined with respect to the rotation axis, and the circumstellar disk, as also observed in the classical T Tauri star AA Tau, and predicted by magnetohydrodynamic numerical simulations. A model of occultation by circumstellar material was applied to the photometric data in order to determine the parameters of the obscuring material during both observational campaigns, thus providing an investigation of its stability on a timescale of a few years. We also studied V422 Mon, a classical T Tauri star with photometric variations similar to those of V354 Mon at optical wavelengths, but with a distinct behavior in the infrared. The mechanism that produces such a difference is investigated, testing the predictions of magnetospheric accretion models.

  15. Analysis of Star-Disk Interaction in Young Stellar Systems

    NASA Astrophysics Data System (ADS)

    Fonseca, Nathalia; Alencar, Silvia; Bouvier, Jérôme

    2013-07-01

    We present the study of star-disk interaction in the classical T Tauri star V354 Mon, a member of the young stellar cluster NGC 2264. As part of an international campaign of observation of NGC 2264 organized from December 2011 to February 2012, high resolution photometric and spectroscopic data of this object were obtained simultaneously with the Chandra, CoRoT and Spitzer satellites, and ground-based telescopes, as CFHT and VLT/FLAMES at ESO. The optical and infrared light curves of V354 Mon show periodic brightness minima that vary in depth and width every rotational cycle. We found evidence that the H/alpha emission line profile changes according to the period of photometric variations, indicating that the same phenomenon causes both modulations. Such correlation was also identified in a previous observational campaign on the same object, where we concluded that material non-uniformly distributed in the inner part of the disk is the main cause of the photometric modulation. This assumption is supported by the fact that the system is seen at high inclination. It is believed that this distortion of the inner part of the disk results from the dynamical interaction between the stellar magnetosphere, inclined with respect to the rotation axis, and the circumstellar disk, as also observed in the classical T Tauri star AA Tau, and predicted by magnetohydrodynamic numerical simulations. A model of occultation by circumstellar material was applied to the photometric data in order to determine the parameters of the obscuring material during both observational campaigns, thus providing an investigation of its stability on a timescale of a few years. We also studied V422 Mon, a classical T Tauri star with photometric variations similar to those of V354 Mon at optical wavelengths, but with a distinct behavior in the infrared. The mechanism that produces such difference is investigated, testing the predictions of magnetospheric accretion models.

  16. YoungStar in Wisconsin: An Initial Progress Report as of July 2011

    ERIC Educational Resources Information Center

    Edie, Dave

    2011-01-01

    YoungStar is a program of the Department of Children and Families (DCF) created to improve the quality of child care for Wisconsin children. YoungStar is designed to: (1) Evaluate and rate the quality of care given by child care providers; (2) Help parents choose the best child care for their kids; (3) Support providers with tools and training to…

  17. YoungStar in Milwaukee County: An Initial Progress Report as of July 2011

    ERIC Educational Resources Information Center

    Edie, Dave

    2011-01-01

    YoungStar is a program of the Department of Children and Families (DCF) created to improve the quality of child care for Wisconsin children. YoungStar is designed to: (1) Evaluate and rate the quality of care given by child care providers; (2) Help parents choose the best child care for their kids; (3) Support providers with tools and training to…

  18. Where to Find Young Bright Stars in Geosciences: GGD, NSU

    NASA Astrophysics Data System (ADS)

    Rakhmenkoulova, I. F.; Sharapov, V. N.

    2004-12-01

    Geology and Geophysics Department (GGD) of Novosibirsk State University (NSU) can be regarded as infant, because it was founded in 1962. On the other hand, if to judge by what have been done - it is not only full-fledged, but well-known department. The unique location and specific educational and scientific traditions make GGD a famous school not only in Siberia, but in Russia, and all over the world. What are the tips to prepare bright stars in geosciences? 1.NSU is located in Academgorodok (Novosibirsk scientific center), unique place in Siberia, where more than 20 scientific institutions are located. This makes the University different from other schools in Russia. Famous Russian scientists, including members of RAS, together with foreign professors give lectures and seminars for NSU students. 2.The bright star hunting starts far below the NSU level. Each year in April there is a special event in Academgorodok -`Geologic Olympiad', where children of all Russian regions, as well as ex-Soviet republics are gathered together to submit their papers, to discuss most interesting geoscience problems and to win prizes for their knowledge. The youngest stars happen to be only 6-7 years old. The event is sponsored by NSU, UIGGM, and the Ministry of Natural Resources. The brightest geostars are grown from `Geologic Olympiad' participants. 3.There is special physics-mathematical high school in Academgorodok. Each summer this school gathers young stars from farthest Siberian and Far East regions and gives classes and seminars in mathematics, physics, chemistry and geology. As the result the most talented children become the students of this school (for two years). The school in turn supplies GGD with the students. 4.NSU has the study curriculum different from other universities in Russia. That is why the entrance examinations are much more difficult as compared to other schools and are taken in July (a month earlier then at other universities). However the entrance

  19. Activity trends in young solar-type stars

    NASA Astrophysics Data System (ADS)

    Lehtinen, J.; Jetsu, L.; Hackman, T.; Kajatkari, P.; Henry, G. W.

    2016-04-01

    Aims: We study a sample of 21 young and active solar-type stars with spectral types ranging from late F to mid K and characterize the behaviour of their activity. Methods: We apply the continuous period search (CPS) time series analysis method on Johnson B- and V-band photometry of the sample stars, collected over a period of 16 to 27 years. Using the CPS method, we estimate the surface differential rotation and determine the existence and behaviour of active longitudes and activity cycles on the stars. We supplement the time series results by calculating new log R'HK = log F'HK/σTeff4 emission indices for the stars from high resolution spectroscopy. Results: The measurements of the photometric rotation period variations reveal a positive correlation between the relative differential rotation coefficient and the rotation period as k ∝ Prot1.36, but do not reveal any dependence of the differential rotation on the effective temperature of the stars. Secondary period searches reveal activity cycles in 18 of the stars and temporary or persistent active longitudes in 11 of them. The activity cycles fall into specific activity branches when examined in the log Prot/Pcyc vs. log Ro-1, where Ro-1 = 2Ωτc, or log Prot/Pcyc vs. log R'HK diagram. We find a new split into sub-branches within this diagram, indicating multiple simultaneously present cycle modes. Active longitudes appear to be present only on the more active stars. There is a sharp break at approximately log R'HK = -4.46 separating the less active stars with long-term axisymmetric spot distributions from the more active ones with non-axisymmetric configurations. In seven out of eleven of our stars with clearly detected long-term non-axisymmetric spot activity the estimated active longitude periods are significantly shorter than the mean photometric rotation periods. This systematic trend can be interpreted either as a sign of the active longitudes being sustained from a deeper level in the stellar interior

  20. Resolved photometry of extragalactic young massive star clusters

    NASA Astrophysics Data System (ADS)

    Larsen, S. S.; de Mink, S. E.; Eldridge, J. J.; Langer, N.; Bastian, N.; Seth, A.; Smith, L. J.; Brodie, J.; Efremov, Yu. N.

    2011-08-01

    Aims: We present colour-magnitude diagrams (CMDs) of young massive star clusters in several galaxies located well beyond the Local Group. The richness of these clusters allows us to obtain large samples of post-main sequence stars and test how well the observed CMDs are reproduced by canonical stellar isochrones. Methods: We use imaging of seven clusters in the galaxies NGC 1313, NGC 1569, NGC 1705, NGC 5236 and NGC 7793 obtained with the Advanced Camera for Surveys on board the Hubble Space Telescope and carry out PSF-fitting photometry of individual stars in the clusters. The clusters have ages in the range ~(5-50) × 106 years and masses of ~105 M⊙-106 M⊙. Although crowding prevents us from obtaining photometry in the inner regions of the clusters, we are still able to measure up to 30-100 supergiant stars in each of the richest clusters. The resulting CMDs and luminosity functions are compared with photometry of artificially generated clusters, designed to reproduce the photometric errors and completeness as realistically as possible. Results: In agreement with previous studies, our CMDs show no clear gap between the H-burning main sequence and the He-burning supergiant stars, contrary to predictions by common stellar isochrones. In general, the isochrones also fail to match the observed number ratios of red-to-blue supergiant stars, although the difficulty of separating blue supergiants from the main sequence complicates this comparison. In several cases we observe a large spread (1-2 mag) in the luminosities of the supergiant stars that cannot be accounted for by observational errors. We find that this spread can be reproduced by including an age spread of ~(10-30) × 106 years in the models. However, age spreads cannot fully account for the observed morphology of the CMDs and other processes, such as the evolution of interacting binary stars, may also play a role. Conclusions: Colour-magnitude diagrams can be successfully obtained for massive star

  1. The energetics and environments of young neutron stars

    NASA Astrophysics Data System (ADS)

    Gelfand, Joseph David

    In this thesis, information concerning the energetics and environments of isolated young neutron star is used to study the formation and physical properties of these objects. I first present evidence that compact X-ray source, 1E 1547.0-5408, is a magnetar--a neutron star with an extremely strong magnetic field. I then present the results of radio observations of SGR 1806-20 after the 2004 December 27 giant flare which detected a new, variable radio source at the position of this magnetar. Measurements of the flux, position, size, and orientation of this source suggest that the observed radio emission is being powered by the interaction between material ablated off the surface of this neutron star during the giant flare and the surrounding ambient medium, and that this emission is now dominated by hotspots in the layer of shocked ambient material which surrounds the neutron star ejecta. Lastly, I present a hydrodynamic model for the evolution of a pulsar wind nebula (PWN) inside a supernova remnant (SNR), and use this model to infer the properties of the progenitor supernova and central neutron star for three objects--SNR G292.0+1.8, PWN 3C 58, and non-thermal Galactic radio source G328.4+0.2. I find that, if G292.0+1.8 is a SNR where the PWN has not yet collided with the reverse shock, as suggested by the weakness of S, Si, and Fe lines in the thermal X-ray spectrum of this source, G292.0+1.8 was most likely created in a low kinetic energy ([Special characters omitted.] 10 51 ergs), high ejecta mass ([Special characters omitted.] 10 [Special characters omitted.] ) explosion. For 3C 58, I am unable to find a combination of supernova explosion energy and ejecta mass, ambient density, and neutron star initial period and braking index which can reproduced the observed size, expansion velocity, and mass of thermal X-ray emitting material of this PWN if it was created during SN 1181. If I relax this restriction on the age of 3C 58, we find that the observed properties

  2. Fourth Day of Creation: The Proto-history of Young Stars, Star Streams, and Exoplanets Near the Sun

    NASA Astrophysics Data System (ADS)

    Trimble, Virginia

    2016-01-01

    Items of scientific knowledge at any moment in time have pre-histories when they were debated, doubted, or absolutely denied. The examples considered here are the admitted facts that star formation is an on-going process in the Milky Way, that there are young moving groups (the products of young star clusters in the process of dissolution and perhaps more complex processes), and that planets orbiting other stars are common. It is hard to imagine any of these ceasing to be part of core astronomical knowledge, but you are advised not to place large bets on this.

  3. An Infrared Examination of Young Stars in Upper Centaurus Lupus

    NASA Astrophysics Data System (ADS)

    Johnson, Chelen H.; Linahan, M.; Barge, J.; Rebull, L. M.; Aranda, D.; Canlas, N. G.; Donahoe, K. E.; Ernst, M. K.; Ford, S.; Fox, M. E.; Gutierrez, E.; Haecker, L. W.; Hibbs, C. A.; Maddaus, M. R.; Martin, T. A.; Ng, E.; Niedbalec, A. P.; O'Bryan, S. E.; Searls, E. F.; Zeidner, A. B.; Zegeye, D.

    2014-01-01

    Optical studies of the Upper Centaurus Lupus (UCL) region of the Scorpius-Centaurus (Sco-Cen) complex have found many young stellar objects. The nearby G/K/M Sco-Cen members have been estimated to be much younger 10 Myr) than similar star associations (Song, et al 2012). We have assembled infrared data for the objects thought to be members of UCL by mining various archives including the 2-Micron All-Sky Survey (2MASS), the Spitzer Heritage Archive (SHA), specifically the Spitzer Enhanced Imaging Products Source List, and the Wide-field Infrared Survey Explorer (WISE) all-sky source catalog. We created spectral energy distributions (SEDs) and color-magnitude diagrams (CMDs) with multiple wavelengths to identify infrared excesses and determine what fraction of these stars have circumstellar disks. Students from three high schools collaborated on this project, which is a follow-up project made possible through the NASA/IPAC Teacher Archive Research Project (NITARP; http://nitarp.ipac.caltech.edu).

  4. SpS1-Measuring magnetic fields on young stars

    NASA Astrophysics Data System (ADS)

    Johns-Krull, Christopher M.; Valenti, Jeff A.

    2010-11-01

    T Tauri stars (TTSs) are young (~few Myr) late type stars that have only recently emerged from their natal molecular cloud material to become visible at optical wavelengths. It is now generally accepted that accretion of circumstellar disk material onto the surface of a TTS is controlled by a strong stellar magnetic field (e.g. see review by Bouvier et al. 2007). The stellar field appears critical for explaining the rotational properties of TTSs (Bouvier et al. 2007, Herbst et al. 2007) and may also play a critical role in driving the outflows seen from many of these sources (e.g. Shang et al. 2007, Mohanty & Shu 2008). As a result, there is a great deal of interest in measuring the magnetic field properties of TTSs (e.g. Johns-Krull 2007, Donati et al. 2008). In particular, disk locking theories predict that an equilibrium is established where the disk is trunctated at or close to corotation and the stellar rotation rate depends only on the (assumed) dipolar magnetic field strength, the stellar mass, radius, and the mass accretion rate in the disk (see Bouvier et al. 2007).

  5. Analysis of star-disk interaction in young stellar systems

    NASA Astrophysics Data System (ADS)

    Fonseca, N. N. J.; Alencar, S. H. P.; Bouvier, J.

    2014-01-01

    We present preliminary results of the study of star-disk interaction in the classical T Tauri star V354 Mon, a member of the young stellar cluster NGC 2264. As part of an international campaign of observation of NGC 2264 organized from December 2011 to February 2012, high resolution photometric and spectroscopic data of this object were obtained simultaneously with the Chandra, CoRoT and Spitzer satellites, and ground-based telescopes, as CFHT and VLT at ESO. The optical and infrared light curves of V354 Mon show periodic brightness minima that vary in depth and width every rotational cycle. We found evidence that the Hα emission line profile changes according to the period of photometric variations, indicating that the same phenomenon causes both modulations. Such a correlation between emission line variability and light curve modulation was also identified in a previous observational campaign on the same object, where we concluded that material non-uniformly distributed in the inner part of the disk is the main cause of the photometric modulation. This assumption is supported by the fact that the system is seen at high inclination. It is believed that this distortion of the inner part of the disk results from the dynamical interaction between the stellar magnetosphere, inclined with respect to the rotation axis, and the circumstellar disk, as also observed in the classical T Tauri star AA Tau, and predicted by magnetohydrodynamic numerical simulations. A model of occultation by circumstellar material was applied to the photometric data in order to determine the parameters of the obscuring material during both observational campaigns, thus providing an investigation of its stability on a timescale of a few years.

  6. SUPERSONIC LINE BROADENING WITHIN YOUNG AND MASSIVE SUPER STAR CLUSTERS

    SciTech Connect

    Tenorio-Tagle, Guillermo; Silich, Sergiy; Wuensch, Richard; Munoz-Tunon, Casiana; Palous, Jan E-mail: richard@wunsch.c E-mail: cmt@ll.iac.e

    2010-01-10

    The origin of supersonic infrared and radio recombination nebular lines often detected in young and massive superstar clusters is discussed. We suggest that these arise from a collection of repressurizing shocks (RSs), acting effectively to re-establish pressure balance within the cluster volume and from the cluster wind which leads to an even broader although much weaker component. The supersonic lines here are shown to occur in clusters that undergo a bimodal hydrodynamic solution, that is within clusters that are above the threshold line in the mechanical luminosity or cluster mass versus the size of the cluster plane. A plethora of RSs is due to frequent and recurrent thermal instabilities that take place within the matter reinserted by stellar winds and supernovae. We show that the maximum speed of the RSs and of the cluster wind are both functions of the temperature reached at the stagnation radius. This temperature depends only on the cluster heating efficiency (eta). Based on our two-dimensional simulations we calculate the line profiles that result from several models and confirm our analytical predictions. From a comparison between the predicted and observed values of the half-width zero intensity of the two line components, we conclude that the thermalization efficiency in young super star clusters above the threshold line must be lower than 20%.

  7. Star Formation Ecology: YSO Outflow Feedback in Young Clusters

    NASA Astrophysics Data System (ADS)

    Frank, Adam; Bally, John; Blackman, Eric; Gutermuth, Robert; Pipher, Judy; Quillen, Alice

    2007-05-01

    Energetic outflows associated with young stellar objects exert a strong effect on their parent molecular clouds. The dynamics of this interaction is yet to be well understood. In particular the role of jets and outflows in powering cloud turbulence, modifying the star formation efficiency (SFE) and/or disrupting the parent clouds remains unclear. Spitzer images of young clusters have provided new views of jet-cloud interactions that can help resolve these critical issues. In this proposal we seek to continue a highly successful (cycle 2) theory program to explore theoretical issues of jet-cloud interactions, turbulence and cloud disruption. Our research relies on 3-D Adaptive Mesh Refinement hydrodynamic and MHD simulations developed in house, in concert with Spitzer databases and other complementary observations. The team we have assembled includes computational and analytic theorists (Frank, Blackman) as well as observers who have worked closely with existing Spitzer Datasets (Bally, Quillen, Pipher, Gutermuth) The work funded through the previous TR program revealed fundamentally new aspects of YSO outflow feedback on parent cloud cores including the importance of the temporal evolution of outflow power. In this proposal we seek to extend the understanding gained in those studies to address specific questions on the nature and efficacy of outflow feedback in real systems.

  8. Radiological age estimation: based on third molar mineralization and eruption in Turkish children and young adults.

    PubMed

    Karadayi, Beytullah; Kaya, Ahsen; Kolusayın, Melek Ozlem; Karadayi, Sükriye; Afsin, Hüseyin; Ozaslan, Abdi

    2012-11-01

    Radiographic evaluation of mineralization and eruption stages of third molars using dental panoramic radiographies can be an efficient tool for chronological age estimation in both forensic sciences and legal medicine. The third molar tooth is utilized for dental age estimation about the age span of 15-23 years because it represents the only tooth still in development. The aim of this study is to obtain and analyze data regarding third molar development and eruption in Turkish population for dental age estimation. A total of 744 dental panoramic radiographies of 394 female and 350 male subjects aged between 8 and 22 years were examined. Third molar development was determined according to the Nolla classification system, and eruption was assessed relative to the alveolar bone level. Mandibular and maxillary third molars were generally found at similar stages of development on both sides. Nolla stage 6 (completed crown calcification) was reached at around the age of 15 in both maxillary and mandibular third molars in both sexes. Alveolar emergence was at around the age of 16 in males and around age of 17 in females. Although third molars' eruption shows greater variability than development of third molars, data which were obtained from this study about eruption of these teeth can be supportive to development data for age estimation. PMID:23010906

  9. An X-ray Survey of FU Orionis Stars andUnusual X-ray Emission from Embedded YoungStars in NGC 2071

    NASA Astrophysics Data System (ADS)

    Skinner, Steve L.; Simmons, A. E.; Audard, M.; Briggs, K. R.; Guedel, M.; Meyer, M. R.

    2006-12-01

    We present new results from the first X-ray survey of accreting FU Orionis stars (FUors) and a pointed X-ray observation of the infrared cluster near the reflection nebula NGC 2071 in the Orion B cloud. Both observations reveal unusual X-ray spectra that challenge interpretive models. FUors are low-mass pre-main sequence (PMS) stars that have undergone optical eruptions attributed to a large increase in the disk accretion rate. The prototype FU Ori and V1735 Cyg were both detected and show high temperature plasma typical of magnetic (e.g. coronal) emission. FU Ori also reveals a cooler component at kT = 0.7 keV viewed through lower absorption that could be shock-related, but a magnetic origin seems more likely (Skinner et al. 2006, ApJ, 643, 995). The IR cluster in NGC 2071 is one of the closest star-forming regions known to contain young high-mass stars. We have detected an unusual X-ray source within 1 arcsec of IRS-1, which is thought to be an embedded high-mass star. It drives a powerful outflow and is surrounded by a dense molecular disk or ring. The X-ray spectrum shows a hard continuum extending up to at least 8 keV and a broad fluorescent Fe line at 6.43 keV. The fluorescent line likely originates in cold nearby material (possibly the surrounding disk) illuminated by the heavily-absorbed X-ray source. This work is supported by NASA grants NNG05GJ15G, NNG05GK52G, and NNX06AE93G.

  10. The Brightest Young Star Clusters in NGC 5253.

    NASA Astrophysics Data System (ADS)

    Calzetti, D.; Johnson, K. E.; Adamo, A.; Gallagher, J. S., III; Andrews, J. E.; Smith, L. J.; Clayton, G. C.; Lee, J. C.; Sabbi, E.; Ubeda, L.; Kim, H.; Ryon, J. E.; Thilker, D.; Bright, S. N.; Zackrisson, E.; Kennicutt, R. C.; de Mink, S. E.; Whitmore, B. C.; Aloisi, A.; Chandar, R.; Cignoni, M.; Cook, D.; Dale, D. A.; Elmegreen, B. G.; Elmegreen, D. M.; Evans, A. S.; Fumagalli, M.; Gouliermis, D. A.; Grasha, K.; Grebel, E. K.; Krumholz, M. R.; Walterbos, R.; Wofford, A.; Brown, T. M.; Christian, C.; Dobbs, C.; Herrero, A.; Kahre, L.; Messa, M.; Nair, P.; Nota, A.; Östlin, G.; Pellerin, A.; Sacchi, E.; Schaerer, D.; Tosi, M.

    2015-10-01

    The nearby dwarf starburst galaxy NGC 5253 hosts a number of young, massive star clusters, the two youngest of which are centrally concentrated and surrounded by thermal radio emission (the “radio nebula”). To investigate the role of these clusters in the starburst energetics, we combine new and archival Hubble Space Telescope images of NGC 5253 with wavelength coverage from 1500 Å to 1.9 μm in 13 filters. These include Hα, Pβ, and Pα, and the imaging from the Hubble Treasury Program LEGUS (Legacy Extragalactic UV Survey). The extraordinarily well-sampled spectral energy distributions enable modeling with unprecedented accuracy the ages, masses, and extinctions of the nine optically brightest clusters (MV < -8.8) and the two young radio nebula clusters. The clusters have ages ˜1-15 Myr and masses ˜1 × 104-2.5 × 105 M⊙. The clusters’ spatial location and ages indicate that star formation has become more concentrated toward the radio nebula over the last ˜15 Myr. The most massive cluster is in the radio nebula; with a mass ˜2.5 × 105 M⊙ and an age ˜1 Myr, it is 2-4 times less massive and younger than previously estimated. It is within a dust cloud with AV ˜ 50 mag, and shows a clear near-IR excess, likely from hot dust. The second radio nebula cluster is also ˜1 Myr old, confirming the extreme youth of the starburst region. These two clusters account for about half of the ionizing photon rate in the radio nebula, and will eventually supply about 2/3 of the mechanical energy in present-day shocks. Additional sources are required to supply the remaining ionizing radiation, and may include very massive stars. Based on observations obtained with the NASA/ESA Hubble Space Telescope, at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  11. FAKE STAR FORMATION BURSTS: BLUE HORIZONTAL BRANCH STARS MASQUERADE AS YOUNG MASSIVE STARS IN OPTICAL INTEGRATED LIGHT SPECTROSCOPY

    SciTech Connect

    Ocvirk, P.

    2010-01-20

    Model color-magnitude diagrams of low-metallicity globular clusters (GCs) usually show a deficit of hot evolved stars with respect to observations. We investigate quantitatively the impact of such modeling inaccuracies on the significance of star formation history reconstructions obtained from optical integrated spectra. To do so, we analyze the sample of spectra of galactic globular clusters of Schiavon et al. with STECKMAP (Ocvirk et al.), and the stellar population models of Vazdekis et al. and Bruzual and Charlot, and focus on the reconstructed stellar age distributions. First, we show that background/foreground contamination correlates with E(B - V), which allows us to define a clean subsample of uncontaminated GCs, on the basis of an E(B - V) filtering. We then identify a 'confusion zone' where fake young bursts of star formation pop up in the star formation history although the observed population is genuinely old. These artifacts appear for 70%-100% of cases depending on the population model used, and contribute up to 12% of the light in the optical. Their correlation with the horizontal branch (HB) ratio indicates that the confusion is driven by HB morphology: red HB clusters are well fitted by old stellar population models while those with a blue HB require an additional hot component. The confusion zone extends over [Fe/H] = [ - 2, - 1.2], although we lack the data to probe extreme high and low metallicity regimes. As a consequence, any young starburst superimposed on an old stellar population in this metallicity range could be regarded as a modeling artifact, if it weighs less than 12% of the optical light, and if no emission lines typical of an H II region are present. This work also provides a practical method for constraining HB morphology from high signal to noise integrated light spectroscopy in the optical. This will allow post-asymptotic giant branch evolution studies in a range of environments and at distances where resolving stellar populations

  12. SPITZER INFRARED SPECTROGRAPH SURVEY OF YOUNG STARS IN THE CHAMAELEON I STAR-FORMING REGION

    SciTech Connect

    Manoj, P.; Kim, K. H.; Watson, Dan M.; Forrest, W. J.; Bohac, C.; Arnold, L. A.; Furlan, E.; McClure, M. K.; Calvet, N.; Luhman, K. L.; Espaillat, C.; Najita, J. R.; D'Alessio, P.; Adame, L.; Sargent, B. A.; Green, J. D.

    2011-03-15

    We present 5-36 {mu}m mid-infrared spectra of 82 young stars in the {approx}2 Myr old Chamaeleon I star-forming region, obtained with the Spitzer Infrared Spectrograph (IRS). We have classified these objects into various evolutionary classes based on their spectral energy distributions and the spectral features seen in the IRS spectra. We have analyzed the mid-IR spectra of Class II objects in Chamaeleon I in detail, in order to study the vertical and radial structure of the protoplanetary disks surrounding these stars. We find evidence for substantial dust settling in most protoplanetary disks in Chamaeleon I. We have identified several disks with altered radial structures in Chamaeleon I, among them transitional disk candidates which have holes or gaps in their disks. Analysis of the silicate emission features in the IRS spectra of Class II objects in Cha I shows that the dust grains in these disks have undergone significant processing (grain growth and crystallization). However, disks with radial holes/gaps appear to have relatively unprocessed grains. We further find the crystalline dust content in the inner ({approx}<1-2 AU) and the intermediate ({approx}<10 AU) regions of the protoplanetary disks to be tightly correlated. We also investigate the effects of accretion and stellar multiplicity on the disk structure and dust properties. Finally, we compare the observed properties of protoplanetary disks in Cha I with those in slightly younger Taurus and Ophiuchus regions and discuss the effects of disk evolution in the first 1-2 Myr.

  13. Spectral Energy Distributions of Young Stars in IC 348: The Role of Disks in Angular Momentum Evolution of Young, Low-mass Stars

    NASA Astrophysics Data System (ADS)

    Le Blanc, Thompson S.; Covey, Kevin R.; Stassun, Keivan G.

    2011-08-01

    Theoretical work suggests that a young star's angular momentum content and rotation rate may be strongly influenced by magnetic interactions with its circumstellar disk. A generic prediction of these "disk-locking" theories is that a disk-locked star will be forced to co-rotate with the Keplerian angular velocity of the inner edge of the disk; that is, the disk's inner-truncation radius should equal its co-rotation radius. These theories have also been interpreted to suggest a gross correlation between young stars' rotation periods and the structural properties of their circumstellar disks, such that slowly rotating stars possess close-in disks that enforce the star's slow rotation, whereas rapidly rotating stars possess anemic or evacuated inner disks that are unable to brake the stars and instead the stars spin up as they contract. To test these expectations, we model the spectral energy distributions (SEDs) of 33 young stars in IC 348 with known rotation periods and infrared excesses indicating the presence of circumstellar disks. For each star, we match the observed SED, typically sampling 0.6-8.0 μm, to a grid of 200,000 pre-computed star+disk radiative transfer models, from which we infer the disk's inner-truncation radius. We then compare this truncation radius to the disk's co-rotation radius, calculated from the star's measured rotation period. We do not find obvious differences in the disk truncation radii of slow rotators versus rapid rotators. This holds true both at the level of whether close-in disk material is present at all, and in analyzing the precise location of the inner disk edge relative to the co-rotation radius among the subset of stars with close-in disk material. One interpretation is that disk locking is unimportant for the IC 348 stars in our sample. Alternatively, if disk locking does operate, then it must operate on both the slow and rapid rotators, potentially producing both spin-up and spin-down torques, and the transition from the

  14. Structure, stratigraphy, and eruption dynamics of a young tuff ring: Hanauma Bay, O'ahu, Hawai'i

    NASA Astrophysics Data System (ADS)

    Rottas, K. M.; Houghton, B. F.

    2012-09-01

    The Hanauma Bay-Koko Head complex is one of several young volcanic landforms along the Koko fissure, in southeastern O'ahu. The Hanauma Bay region of the complex comprises two nested tuff rings, inner and outer Hanauma Bay, and multiple smaller vents. The internal structure of the inner tuff ring, well exposed due to subsequent breaching by the ocean and wave erosion, indicates that it formed during a minimum of five distinct phases of deposition that produced five mappable units. Significant inward collapses generated major unconformities that separate the units exposed in the inner wall. The planes of failure are cut by narrow steep-walled, locally overhung channels and gullies, suggesting that the collapse events were each followed by short time breaks during which the deposits were eroded by rainfall runoff. Within each pyroclastic unit, there are many local slump scars and unconformities, suggesting that minor instability of the inner wall was a near-constant feature. From bedding sags and surge bed forms, it is apparent that the vent shifted at least twice during tuff ring growth. Ballistic blocks in the youngest unit indicate that the eruption overlapped in time with a separate eruption to the north, most likely to be that of the Kahauloa tuff ring 880 m away.

  15. Reconstructing the Initial Relaxation Time of Young Star Clusters in the Large Magellanic Cloud: The Evolution of Star Clusters

    NASA Astrophysics Data System (ADS)

    Portegies Zwart, S. F.; Chen, H.-C.

    2008-06-01

    We reconstruct the initial two-body relaxation time at the half mass radius for a sample of young ⪉ 300 Myr star clusters in the Large Magellanic cloud. We achieve this by simulating star clusters with 12288 to 131072 stars using direct N-body integration. The equations of motion of all stars are calculated with high precision direct N-body simulations which include the effects of the evolution of single stars and binaries. We find that the initial relaxation times of the sample of observed clusters in the Large Magellanic Cloud ranges from about 200 Myr to about 2 Gyr. The reconstructed initial half-mass relaxation times for these clusters have a much narrower distribution than the currently observed distribution, which ranges over more than two orders of magnitude.

  16. Multi-dimensional structure of accreting young stars

    NASA Astrophysics Data System (ADS)

    Geroux, C.; Baraffe, I.; Viallet, M.; Goffrey, T.; Pratt, J.; Constantino, T.; Folini, D.; Popov, M. V.; Walder, R.

    2016-04-01

    This work is the first attempt to describe the multi-dimensional structure of accreting young stars based on fully compressible time implicit multi-dimensional hydrodynamics simulations. One major motivation is to analyse the validity of accretion treatment used in previous 1D stellar evolution studies. We analyse the effect of accretion on the structure of a realistic stellar model of the young Sun. Our work is inspired by the numerical work of Kley & Lin (1996, ApJ, 461, 933) devoted to the structure of the boundary layer in accretion disks, which provides the outer boundary conditions for our simulations. We analyse the redistribution of accreted material with a range of values of specific entropy relative to the bulk specific entropy of the material in the accreting object's convective envelope. Low specific entropy accreted material characterises the so-called cold accretion process, whereas high specific entropy is relevant to hot accretion. A primary goal is to understand whether and how accreted energy deposited onto a stellar surface is redistributed in the interior. This study focusses on the high accretion rates characteristic of FU Ori systems. We find that the highest entropy cases produce a distinctive behaviour in the mass redistribution, rms velocities, and enthalpy flux in the convective envelope. This change in behaviour is characterised by the formation of a hot layer on the surface of the accreting object, which tends to suppress convection in the envelope. We analyse the long-term effect of such a hot buffer zone on the structure and evolution of the accreting object with 1D stellar evolution calculations. We study the relevance of the assumption of redistribution of accreted energy into the stellar interior used in the literature. We compare results obtained with the latter treatment and those obtained with a more physical accretion boundary condition based on the formation of a hot surface layer suggested by present multi

  17. Removing a Major Uncertainty in Mass and Age Determinations of Young Stars

    NASA Astrophysics Data System (ADS)

    Huerta, Marcos; Hartigan, Patrick

    2005-08-01

    Mass and age measurements of young stars rely on the stars' placement in an HR diagram relative to pre-main-sequence evolutionary tracks. Uncertainties in T_eff include a systematic error introduced by converting spectral types to T_eff according to a conversion scale derived from main-sequence stars. The advent of sophisticated synthetic spectra and modern molecular opacities offers us an opportunity to determine a new T_eff scale designed for young stars. We propose to measure T_eff for a large sample of non- accreting (weak-lined) T Tauri stars using low resolution red spectra on Goldcam. The resulting spectra will make it possible to estimate T_eff for any young star by simply finding the best spectral match with a star in our sample. This procedure will also work for accreting (classical) T Tauri stars, where weak-lined T Tauri stars are used as photospheric templates to distinguish stellar features from accretion signatures.

  18. AGE AND MASS STUDIES FOR YOUNG STAR CLUSTERS IN M31 FROM SEDS-FIT

    SciTech Connect

    Wang Song; Ma Jun; Fan Zhou; Wu Zhenyu; Zhang Tianmeng; Zou Hu; Zhou Xu

    2012-12-01

    In this paper, we present photometry for young star clusters in M31, which are selected from Caldwell et al. These star clusters have been observed as part of the Beijing-Arizona-Taiwan-Connecticut (BATC) Multicolor Sky Survey from 1995 February to 2008 March. The BATC images including these star clusters are taken with 15 intermediate-band filters covering 3000-10000 A. Combined with photometry in the GALEX far- and near-ultraviolet, broadband UBV RI, SDSS ugriz, and infrared JHK{sub s} of Two Micron All Sky Survey, we obtain their accurate spectral energy distributions (SEDs) from 1538 to 20000 A. We derive these star clusters' ages and masses by comparing their SEDs with stellar population synthesis models. Our results are in good agreement with previous determinations. The mean value of age and mass of young clusters (<2 Gyr) is about 385 Myr and 2 Multiplication-Sign 10{sup 4} M{sub Sun }, respectively. There are two distinct peaks in the age distribution, a highest peak at age {approx}60 Myr and a secondary peak around 250 Myr, while the mass distribution shows a single peak around 10{sup 4} M{sub Sun }. A few young star clusters have two-body relaxation times greater than their ages, indicating that those clusters have not been well dynamically relaxed and therefore have not established the thermal equilibrium. There are several regions showing aggregations of young star clusters around the 10 kpc ring and the outer ring, indicating that the distribution of the young star clusters is well correlated with M31's star-forming regions. The young massive star clusters (age {<=}100 Myr and mass {>=}10{sup 4} M{sub Sun }) show apparent concentration around the ring splitting region, suggesting a recent passage of a satellite galaxy (M32) through M31 disk.

  19. Age and Mass Studies for Young Star Clusters in M31 from SEDS-FIT

    NASA Astrophysics Data System (ADS)

    Wang, Song; Ma, Jun; Fan, Zhou; Wu, Zhenyu; Zhang, Tianmeng; Zou, Hu; Zhou, Xu

    2012-12-01

    In this paper, we present photometry for young star clusters in M31, which are selected from Caldwell et al. These star clusters have been observed as part of the Beijing-Arizona-Taiwan-Connecticut (BATC) Multicolor Sky Survey from 1995 February to 2008 March. The BATC images including these star clusters are taken with 15 intermediate-band filters covering 3000-10000 Å. Combined with photometry in the GALEX far- and near-ultraviolet, broadband UBV RI, SDSS ugriz, and infrared JHK s of Two Micron All Sky Survey, we obtain their accurate spectral energy distributions (SEDs) from 1538 to 20000 Å. We derive these star clusters' ages and masses by comparing their SEDs with stellar population synthesis models. Our results are in good agreement with previous determinations. The mean value of age and mass of young clusters (<2 Gyr) is about 385 Myr and 2 × 104 M ⊙, respectively. There are two distinct peaks in the age distribution, a highest peak at age ~60 Myr and a secondary peak around 250 Myr, while the mass distribution shows a single peak around 104 M ⊙. A few young star clusters have two-body relaxation times greater than their ages, indicating that those clusters have not been well dynamically relaxed and therefore have not established the thermal equilibrium. There are several regions showing aggregations of young star clusters around the 10 kpc ring and the outer ring, indicating that the distribution of the young star clusters is well correlated with M31's star-forming regions. The young massive star clusters (age <=100 Myr and mass >=104 M ⊙) show apparent concentration around the ring splitting region, suggesting a recent passage of a satellite galaxy (M32) through M31 disk.

  20. Discovery at Young Star Hints Magnetism Common to All Cosmic Jets

    NASA Astrophysics Data System (ADS)

    2010-11-01

    Astronomers have found the first evidence of a magnetic field in a jet of material ejected from a young star, a discovery that points toward future breakthroughs in understanding the nature of all types of cosmic jets and of the role of magnetic fields in star formation. Throughout the Universe, jets of subatomic particles are ejected by three phenomena: the supermassive black holes at the cores of galaxies, smaller black holes or neutron stars consuming material from companion stars, and young stars still in the process of gathering mass from their surroundings. Previously, magnetic fields were detected in the jets of the first two, but until now, magnetic fields had not been confirmed in the jets from young stars. "Our discovery gives a strong hint that all three types of jets originate through a common process," said Carlos Carrasco-Gonzalez, of the Astrophysical Institute of Andalucia Spanish National Research Council (IAA-CSIC) and the National Autonomous University of Mexico (UNAM). The astronomers used the National Science Foundation's Very Large Array (VLA) radio telescope to study a young star some 5,500 light-years from Earth, called IRAS 18162-2048. This star, possibly as massive as 10 Suns, is ejecting a jet 17 light-years long. Observing this object for 12 hours with the VLA, the scientists found that radio waves from the jet have a characteristic indicating they arose when fast-moving electrons interacted with magnetic fields. This characteristic, called polarization, gives a preferential alignment to the electric and magnetic fields of the radio waves. "We see for the first time that a jet from a young star shares this common characteristic with the other types of cosmic jets," said Luis Rodriguez, of UNAM. The discovery, the astronomers say, may allow them to gain an improved understanding of the physics of the jets as well as of the role magnetic fields play in forming new stars. The jets from young stars, unlike the other types, emit radiation

  1. Chromospherically active stars. II - HD 82558, a young single BY Draconis variable

    NASA Technical Reports Server (NTRS)

    Fekel, Francis C.; Bopp, Bernard W.; Africano, John L.; Goodrich, Bret D.; Palmer, Leigh Hunter

    1986-01-01

    It is presently noted that the HD 82558 chromospherically active star is a young and rapidly rotating K2 V single BY Draconis variable with very strong far-UV emission features and an H-alpha line filled to the continuum level by emission. HD 82558 has constant velocity and is not a member of the Hyades Supercluster. Its light curve behavior, which appears to have been stable for several hundred rotation cycles, is reminiscent of that of the young, rapidly rotating, single K V variable H II 1883 in the Pleiades; this stability may be characteristic of young, single, chromospherically active stars.

  2. A WIYN Lithium Survey for Young Stars Near lambda Orionis

    NASA Astrophysics Data System (ADS)

    Mathieu, R. D.; Dolan, C. J.

    1999-09-01

    We have used the WIYN Multi-Object Spectrograph to test 537 stars within 0.5 deg of the lambda Orionis OB association for the presence of lithium 6708{ Angstroms} absorption, a diagnostic of youth. These stars were selected as a complete sample of pre-main-sequence candidates in the region, based on our CCD photometric survey. We find 72 stars which show large lithium equivalent widths and radial velocities consistent with association membership, only two of which were previously discovered by Hα surveys. Comparison with evolutionary models indicate that these stars have an age distribution either younger than (D'Antona & Mazzitelli 1998) or coeval with (Baraffe et al. 1998) the 2-6 Myr OB stars, and that they are roughly 0.3-1.0 M_sun. Kinematic evidence and the shape of the age distributions suggest that an event about a million years ago has strongly affected the star formation history of the region. Estimating our sample completeness at about 80%, we find that the local initial mass function within 7 parsecs of the 11 OB stars is indistinguishable from the IMF of the field. Finally, despite their youth, only four of these stars have T Tauri-like Hα emission, suggesting an absence of accretion disks. This absence may be indicative of photoevaporation of the disks due to close proximity with the OB stars. This work is supported by NSF grant AST 94-1715 and the Wisconsin Space Grant Consortium.

  3. Connecting the Dense Gas and Young Stars in the CARMA Large Area Star Formation Survey

    NASA Astrophysics Data System (ADS)

    Mundy, Lee G.; Storm, Shaye; Looney, Leslie; Lee, Katherine I.; Fernandez Lopez, Manuel; Ostriker, Eve C.; Chen, Che-Yu; CLASSy Team

    2016-01-01

    The CARMA Large Area Star Formation Survey (CLASSy) imaged the dense gas structure and kinematics in five, roughly 1 pc scale regions in the Serpens and Perseus clouds with 7" angular resolution. The spatial distribution and Class of the young stellar population (YSOs) is available for these regions from the Spitzer c2d and Gould Belt surveys, with added sources from the Herschel 70 micron images. Together, these datasets allow us to compare, for the first time at similar spatial resolutions, the distributions of the dense gas and YSOs over regions containing up to 90 identified YSOs. This enables a detailed look at the separation between YSOs and the nearest dense gas peak and a measure of overall relationship between the YSO and dense gas distributions. We find that most Class 0 YSOs are forming in the highest column density regions: leaves in the dendrogram analysis utilized by CLASSy. In Serpens and Perseus, we find that 29% and 38%, respectively, of the leaves have identified embedded YSOs. Class 1 sources are less confined to leaf locations; Class II sources are distributed throughout regions, mostly away from hierarchical peaks. This trend could be due to a modest (0.1 km/sec) velocity difference between YSOs and their natal cores, or due to the YSOs consuming or dispersing their natal cores.

  4. KMOS view of the Galactic centre. I. Young stars are centrally concentrated

    NASA Astrophysics Data System (ADS)

    Feldmeier-Krause, A.; Neumayer, N.; Schödel, R.; Seth, A.; Hilker, M.; de Zeeuw, P. T.; Kuntschner, H.; Walcher, C. J.; Lützgendorf, N.; Kissler-Patig, M.

    2015-12-01

    Context. The Galactic centre hosts a crowded, dense nuclear star cluster with a half-light radius of 4 pc. Most of the stars in the Galactic centre are cool late-type stars, but there are also ≳100 hot early-type stars in the central parsec of the Milky Way. These stars are only 3-8 Myr old. Aims: Our knowledge of the number and distribution of early-type stars in the Galactic centre is incomplete. Only a few spectroscopic observations have been made beyond a projected distance of 0.5 pc of the Galactic centre. The distribution and kinematics of early-type stars are essential to understand the formation and growth of the nuclear star cluster. Methods: We cover the central >4 pc2 (0.75 sq. arcmin) of the Galactic centre using the integral-field spectrograph KMOS (VLT). We extracted more than 1000 spectra from individual stars and identified early-type stars based on their spectra. Results: Our data set contains 114 bright early-type stars: 6 have narrow emission lines, 23 are Wolf-Rayet stars, 9 stars have featureless spectra, and 76 are O/B type stars. Our wide-field spectroscopic data confirm that the distribution of young stars is compact, with 90% of the young stars identified within 0.5 pc of the nucleus. We identify 24 new O/B stars primarily at large radii. We estimate photometric masses of the O/B stars and show that the total mass in the young population is ≳12 000 M⊙. The O/B stars all appear to be bound to the Milky Way nuclear star cluster, while less than 30% belong to the clockwise rotating disk. We add one new star to the sample of stars affiliated with this disk. Conclusions: The central concentration of the early-type stars is a strong argument that they have formed in situ. An alternative scenario, in which the stars formed outside the Galactic centre in a cluster that migrated to the centre, is refuted. A large part of the young O/B stars is not on the disk, which either means that the early-type stars did not all form on the same disk or

  5. Open Clusters as Laboratories: The Angular Momentum Evolution of Young Stars

    NASA Technical Reports Server (NTRS)

    Stauffer, John R.

    1998-01-01

    The core group concentrated on three primary research topics: (1) ROSAT observation of the coronal activity of low mass stars in young open clusters; (2) the determination of stellar ages and the determination of the timescale for dissipation of circumstellar disks around young stars; and (3) the determination of rotation velocities of low mass stars in young open cluster and the inferred angular momentum evolution of low mass stars. With accurate ages for the clusters, we can then derive an independent estimate of the timescale for debris disks to dissipate. As the second half of that project, we are using the Caltech/UC/NASA Keck telescopes to obtain spectra of brown dwarf candidates in a number of nearby, young open clusters, from which we can determine new and accurate cluster ages. The final primary program that we have addressed was the determination of rotational velocities for low mass stars in our target open clusters. Our group has obtained rotational velocities for a large number of stars in several open clusters during this LTSA program, and we have published the results in several papers. One particularly time-consuming aspect of our program was the development of a database of the photometry and rotational velocities for nearby open clusters, which we have made available to the community.

  6. ACCRETION RATES ON PRE-MAIN-SEQUENCE STARS IN THE YOUNG OPEN CLUSTER NGC 6530

    SciTech Connect

    Gallardo, Jose; Del Valle, Luciano; Ruiz, Maria Teresa E-mail: ldelvall@das.uchile.cl

    2012-01-15

    It is well accepted that during the star formation process, material from a protoplanetary disk is accreted onto the central object during the first {approx}1-5 Myr. Different authors have published measurements of accretion rates for young low- and intermediate-mass stars in several nearby star-forming regions (SFRs). Due to its somewhat larger distance, the SFR M8 (the Lagoon Nebula) has not been studied to the same extent, despite its abundant population of young stellar objects. We have obtained optical band low-resolution spectra of a sample of pre-main-sequence stars in the open cluster NGC 6530 located in the aforementioned nebulae using the Gemini Multi Object Spectrograph at Gemini-South in multi-object mode. Spectra cover the H{sub {alpha}} emission line used to measure the accretion rate, following the method presented by Natta et al. The observed spectral characteristics are fully consistent with pre-main-sequence stars, showing lithium absorption lines, which are very common in young stellar objects, as well as prominent and broad H{sub {alpha}} emission lines, indicating a T Tauri evolutionary stage. This work presents the first determinations of mass accretion rates of young stellar objects in the open cluster NGC 6530, confirming that they are classical T Tauri stars going through the accretion phase. These observations contribute to a better understanding of the stellar content and evolutionary phase of the very active Lagoon Nebula SFR.

  7. Nuclear ashes and outflow in the eruptive star Nova Vul 1670.

    PubMed

    Kamiński, Tomasz; Menten, Karl M; Tylenda, Romuald; Hajduk, Marcin; Patel, Nimesh A; Kraus, Alexander

    2015-04-16

    CK Vulpeculae was observed in outburst in 1670-1672 (ref. 1), but no counterpart was seen until 1982, when a bipolar nebula was found at its location. Historically, CK Vul has been considered to be a nova (Nova Vul 1670), but its similarity to 'red transients', which are more luminous than classical novae and thought to be the results of stellar collisions, has re-opened the question of CK Vul's status. Red transients cool to resemble late M-type stars, surrounded by circumstellar material rich in molecules and dust. No stellar source has been seen in CK Vul, though a radio continuum source was identified at the expansion centre of the nebula. Here we report that CK Vul is surrounded by chemically rich molecular gas in the form of an outflow, as well as dust. The gas has peculiar isotopic ratios, revealing that CK Vul's composition was strongly enhanced by the nuclear ashes of hydrogen burning. The chemical composition cannot be reconciled with a nova or indeed any other known explosion. In addition, the mass of the surrounding gas is too large for a nova, though the conversion from observations of CO to a total mass is uncertain. We conclude that CK Vul is best explained as the remnant of a merger of two stars. PMID:25799986

  8. STAR FORMATION HISTORY OF A YOUNG SUPER-STAR CLUSTER IN NGC 4038/39: DIRECT DETECTION OF LOW-MASS PRE-MAIN SEQUENCE STARS

    SciTech Connect

    Greissl, Julia; Meyer, Michael R.; Christopher, Micol H.; Scoville, Nick Z.

    2010-02-20

    We present an analysis of the near-infrared spectrum of a young massive star cluster in the overlap region of the interacting galaxies NGC 4038/39 using population synthesis models. Our goal is to model the cluster population as well as provide rough constraints on its initial mass function (IMF). The cluster shows signs of youth, such as thermal radio emission and strong hydrogen emission lines in the near-infrared. Late-type absorption lines are also present which are indicative of late-type stars in the cluster. The strength and ratio of these absorption lines cannot be reproduced through either late-type pre-main sequence (PMS) stars or red supergiants alone. Thus, we interpret the spectrum as a superposition of two star clusters of different ages, which is feasible since the 1'' spectrum encompasses a physical region of {approx}90 pc and radii of super-star clusters (SSCs) are generally measured to be a few parsecs. One cluster is young (<= 3 Myr) and is responsible for part of the late-type absorption features, which are due to PMS stars in the cluster, and the hydrogen emission lines. The second cluster is older (6 Myr-18 Myr) and is needed to reproduce the overall depth of the late-type absorption features in the spectrum. Both are required to accurately reproduce the near-infrared spectrum of the object. Thus, we have directly detected PMS objects in an unresolved SSC for the first time using a combination of population synthesis models and PMS tracks. This analysis serves as a testbed of our technique to constrain the low-mass IMF in young SSCs as well as an exploration of the star formation history of young UC H II regions.

  9. STAR FORMATION AND YOUNG STELLAR CONTENT IN THE W3 GIANT MOLECULAR CLOUD

    SciTech Connect

    Rivera-Ingraham, Alana; Martin, Peter G.; Polychroni, Danae; Moore, Toby J. T.

    2011-12-10

    In this work, we have carried out an in-depth analysis of the young stellar content in the W3 giant molecular cloud (GMC). The young stellar object (YSO) population was identified and classified in the Infrared Array Camera/Multiband Imaging Photometer color-magnitude space according to the 'Class' scheme and compared to other classifications based on intrinsic properties. Class 0/I and II candidates were also compared to low-/intermediate-mass pre-main-sequence (PMS) stars selected through their colors and magnitudes in the Two Micron All Sky Survey. We find that a reliable color/magnitude selection of low-mass PMS stars in the infrared requires prior knowledge of the protostar population, while intermediate-mass objects can be more reliably identified. By means of the minimum spanning tree algorithm and our YSO spatial distribution and age maps, we investigated the YSO groups and the star formation history in W3. We find signatures of clustered and distributed star formation in both triggered and quiescent environments. The central/western parts of the GMC are dominated by large-scale turbulence likely powered by isolated bursts of star formation that triggered secondary star formation events. Star formation in the eastern high-density layer (HDL) also shows signs of quiescent and triggered stellar activity, as well as extended periods of star formation. While our findings support triggering as a key factor for inducing and enhancing some of the major star-forming activity in the HDL (e.g., W3 Main/W3(OH)), we argue that some degree of quiescent or spontaneous star formation is required to explain the observed YSO population. Our results also support previous studies claiming a spontaneous origin for the isolated massive star(s) powering KR 140.

  10. Star Formation and Young Stellar Content in the W3 Giant Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Rivera-Ingraham, Alana; Martin, Peter G.; Polychroni, Danae; Moore, Toby J. T.

    2011-12-01

    In this work, we have carried out an in-depth analysis of the young stellar content in the W3 giant molecular cloud (GMC). The young stellar object (YSO) population was identified and classified in the Infrared Array Camera/Multiband Imaging Photometer color-magnitude space according to the "Class" scheme and compared to other classifications based on intrinsic properties. Class 0/I and II candidates were also compared to low-/intermediate-mass pre-main-sequence (PMS) stars selected through their colors and magnitudes in the Two Micron All Sky Survey. We find that a reliable color/magnitude selection of low-mass PMS stars in the infrared requires prior knowledge of the protostar population, while intermediate-mass objects can be more reliably identified. By means of the minimum spanning tree algorithm and our YSO spatial distribution and age maps, we investigated the YSO groups and the star formation history in W3. We find signatures of clustered and distributed star formation in both triggered and quiescent environments. The central/western parts of the GMC are dominated by large-scale turbulence likely powered by isolated bursts of star formation that triggered secondary star formation events. Star formation in the eastern high-density layer (HDL) also shows signs of quiescent and triggered stellar activity, as well as extended periods of star formation. While our findings support triggering as a key factor for inducing and enhancing some of the major star-forming activity in the HDL (e.g., W3 Main/W3(OH)), we argue that some degree of quiescent or spontaneous star formation is required to explain the observed YSO population. Our results also support previous studies claiming a spontaneous origin for the isolated massive star(s) powering KR 140.

  11. Planetary science: Preventing stars from eating their young

    NASA Astrophysics Data System (ADS)

    Duncan, Martin J.

    2015-04-01

    Researchers have found a mechanism that prevents newly forming giant-planet cores from spiralling in towards their parent stars. The result may explain why planets such as Saturn and Jupiter are where they are today. See Letter p.63

  12. The Mass-Radius Relation of Young Stars from K2

    NASA Astrophysics Data System (ADS)

    Kraus, Adam L.; Cody, Ann Marie; Covey, Kevin R.; Rizzuto, Aaron C.; Mann, Andrew; Ireland, Michael; Jensen, Eric L. N.; Muirhead, Philip Steven

    2016-01-01

    Evolutionary models of pre-main sequence stars remain largely uncalibrated, especially for masses below that of the Sun, and dynamical masses and radii pose valuable tests of these theoretical models. Stellar mass dependent features of star formation (such as disk evolution, planet formation, and even the IMF) are fundamentally tied to these models, which implies a systematic uncertainty that can only be improved with precise measurements of calibrator stars. We will describe the discovery and characterization of ten eclipsing binary systems in the Upper Scorpius star-forming region from K2 Campaign 2 data, spanning from B stars to the substellar boundary. We have obtained complementary RV curves, spectral classifications, and high-resolution imaging for these targets; the combination of these data yield high-precision masses and radii for the binary components, and hence a dense sampling of the (nominally coeval) mass-radius relation of 10 Myr old stars. We already reported initial results from this program for the young M4.5 eclipsing binary UScoCTIO 5 (Kraus et al. 2015), demonstrating that theoretically predicted masses are discrepant by ~50% for low-mass stars. K2's unique radius measurements allow us to isolate the source of the discrepancy: models of young stars do not predict luminosities that are too low, as is commonly thought, but rather temperatures that are too warm.

  13. Optically visible post-AGB stars, post-RGB stars and young stellar objects in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Kamath, D.; Wood, P. R.; Van Winckel, H.

    2015-12-01

    We have carried out a search for optically visible post-asymptotic giant branch (post-AGB) stars in the Large Magellanic Cloud (LMC). First, we selected candidates with a mid-IR excess and then obtained their optical spectra. We disentangled contaminants with unique spectra such as M stars, C stars, planetary nebulae, quasi-stellar objects and background galaxies. Subsequently, we performed a detailed spectroscopic analysis of the remaining candidates to estimate their stellar parameters such as effective temperature, surface gravity (log g), metallicity ([Fe/H]), reddening and their luminosities. This resulted in a sample of 35 likely post-AGB candidates with late-G to late-A spectral types, low log g, and [Fe/H] < -0.5. Furthermore, our study confirmed the existence of the dusty post-red giant branch (post-RGB) stars, discovered previously in our Small Magellanic Cloud survey, by revealing 119 such objects in the LMC. These objects have mid-IR excesses and stellar parameters (Teff, log g, [Fe/H]) similar to those of post-AGB stars except that their luminosities (< 2500 L⊙), and hence masses and radii, are lower. These post-RGB stars are likely to be products of binary interaction on the RGB. The post-AGB and post-RGB objects show spectral energy distribution properties similar to the Galactic post-AGB stars, where some have a surrounding circumstellar shell, while some others have a surrounding stable disc similar to the Galactic post-AGB binaries. This study also resulted in a new sample of 162 young stellar objects, identified based on a robust log g criterion. Other interesting outcomes include objects with an UV continuum and an emission line spectrum; luminous supergiants; hot main-sequence stars; and 15 B[e] star candidates, 12 of which are newly discovered in this study.

  14. IDENTIFYING THE YOUNG LOW-MASS STARS WITHIN 25 pc. II. DISTANCES, KINEMATICS, AND GROUP MEMBERSHIP

    SciTech Connect

    Shkolnik, Evgenya L.; Anglada-Escude, Guillem; Liu, Michael C.; Bowler, Brendan P.; Weinberger, Alycia J.; Boss, Alan P.; Reid, I. Neill; Tamura, Motohide

    2012-10-10

    We have conducted a kinematic study of 165 young M dwarfs with ages of {approx}<300 Myr. Our sample is composed of stars and brown dwarfs with spectral types ranging from K7 to L0, detected by ROSAT and with photometric distances of {approx}<25 pc assuming that the stars are single and on the main sequence. In order to find stars kinematically linked to known young moving groups (YMGs), we measured radial velocities for the complete sample with Keck and CFHT optical spectroscopy and trigonometric parallaxes for 75 of the M dwarfs with the CAPSCam instrument on the du Pont 2.5 m Telescope. Due to their youthful overluminosity and unresolved binarity, the original photometric distances for our sample underestimated the distances by 70% on average, excluding two extremely young ({approx}<3 Myr) objects found to have distances beyond a few hundred parsecs. We searched for kinematic matches to 14 reported YMGs and identified 10 new members of the AB Dor YMG and 2 of the Ursa Majoris group. Additional possible candidates include six Castor, four Ursa Majoris, two AB Dor members, and one member each of the Her-Lyr and {beta} Pic groups. Our sample also contains 27 young low-mass stars and 4 brown dwarfs with ages {approx}<150 Myr that are not associated with any known YMG. We identified an additional 15 stars that are kinematic matches to one of the YMGs, but the ages from spectroscopic diagnostics and/or the positions on the sky do not match. These warn against grouping stars together based only on kinematics and that a confluence of evidence is required to claim that a group of stars originated from the same star-forming event.

  15. Re-brightening of the young star RW Aur: the end of the second deep eclipse

    NASA Astrophysics Data System (ADS)

    Scholz, Aleks; Bozhinova, Inna; Lux, Oliver; Pannicke, Anna; Mugrauer, Markus

    2016-08-01

    The young star RW Aur (05 07 49.6, +30 24 05.2) has been in eclipse for the last two years. From spring 2015 onwards, the star has been measured at R-band magnitudes between 11.9 and 12.6, more than 2 magnitudes fainter than normal, as we report in a forthcoming paper (Bozhinova et al., MNRAS, under review).

  16. Chemical Composition of the Magellanic Clouds, from Young to Old Stars

    NASA Astrophysics Data System (ADS)

    Hill, Vanessa

    I review the current state of our knowledge of the detailed chemical composition of the Magellanic Clouds, concentrating on the best probes of detailed elemental abundances, namely individual stars observed by means of high-resolution spectroscopy, probing stellar population of all ages from the oldest (>10 Gyr) stellar generations, intermediate-age populations (1--10 Gyr), and young massive stars, complemented by H ii region abundances.

  17. A WIYN Lithium Survey for Young Stars in the λ Orionis Star-Forming Region

    NASA Astrophysics Data System (ADS)

    Dolan, Christopher J.; Mathieu, Robert D.

    1999-11-01

    We have found 72 pre-main-sequence (PMS) stars near the center of the λ Orionis star-forming region by spectroscopically testing a magnitude-limited sample for the presence of lithium λ6708 absorption, a diagnostic of youth. All of these stars show large lithium equivalent widths and radial velocities consistent with Orion membership, but only two were discovered previously via Hα or X-ray surveys. Comparison with PMS evolutionary tracks show that the low-mass star formation did not begin prior to the initiation of high-mass star formation 5-7 Myr ago. However, the subsequent detailed star formation history is model dependent. Baraffe et al. isochrones imply that high- and low-mass stars began to form together 5-7 Myr ago, with the low-mass stellar formation ceasing abruptly 1 Myr ago. On the other hand, D'Antona & Mazzitelli isochrones indicate a narrow spread of PMS ages, which suggests a burst of low-mass star formation 1-2 Myr ago. Furthermore, kinematic arguments require that the parent molecular cloud gravitationally bound the stars together until recently, but at present the requisite gas mass is not visible. This leads us to conjecture that both the high- and low-mass stars were in a tightly bound cluster until a supernova blast about 1 Myr ago disrupted the parent cloud. This supernova also impacted on the PMS formation process by either (1) ceasing formation through removal of the gas supply or (2) triggering star births via cloud compression, depending on choice of stellar evolution models. Finally, we find that despite their youth, only four of the 72 PMS stars have T Tauri-like Hα emission, suggesting the absence of accretion disks. We conjecture that this may be the result of photoevaporation of the disks while the low-mass stars were in much closer proximity to the OB stars prior to becoming gravitationally unbound.

  18. Serendipitous Chandra X-ray Spectroscopy of GALEX Nearby Young-Star Survey (GALNYSS) Candidates

    NASA Astrophysics Data System (ADS)

    Kastner, Joel H.; Baum, N.; Principe, D.; Rodriguez, D.

    2014-01-01

    More than 2000 candidate young (age 10-100 Myr) low-mass stars within ~100 pc of Earth have been identified by the Galex Nearby Young-Star Survey (GALNYSS), via the combination of ultraviolet (Galex) and near-IR (WISE and 2MASS) photometry and kinematic data. Among these candidates, we find more than a dozen objects for which serendipitous archival Chandra X-ray observations are available. The spectral types for these objects, if stellar, range from early- to mid-M. Hence, this serendipitously observed subsample affords the opportunity to study the X-ray emission characteristics of young stars at the low-mass end of the stellar mass spectrum. We present preliminary results of spectral analysis, including estimates of plasma temperature, intervening absorption, and intrinsic X-ray luminosities, for these Chandra X-ray counterparts to GALNYSS candidates. These results will be used both to confirm young, late-type star status and to investigate the evolution of magnetic (coronal) activity in stars whose masses potentially range from a few tenths of a solar mass down to near the H-burning limit. This work is supported by NASA Astrophysics Data Analysis Program award NNX12AH37G to RIT and UCLA and Chilean FONDECYT grant 3130520 to Universidad de Chile.

  19. Evolved GK stars near the Sun. 2: The young disk population

    NASA Astrophysics Data System (ADS)

    Eggen, O. J.

    1994-02-01

    From a sample of nearly 2000 GK giants a group of young disk stars with well determined space motions has been selected. The zero point of the luminosity calibrations, both from the ultraviolet flux (modified Stroemgren system) and that in the region of 4200 to 4900 A (DDO system), show a discontinuity of about a half magnitude at the border of the young disk and old disk domains. The population separation is based on the space velocity components, which are also an age discriminant, with the population interface near 2 x 109 yr, based on models with convective overshoot at the core. This age corresponds to giant masses near 1.7 solar mass, near the critical mass separating the young stars that do not burn helium in degenerate cores from older stars that do. Ten percent of both populations show CN anomalies in that the derived value of P(Fe/H) from CN (Cm) and from Fe(M1) differ by more than 0.1 dex and the weak and strong CN stars occur equally in the old disk but the weak CN stars predominate in the young disk. Peculiar stars, where flux distortions affect the luminosity calibrations, are of the CH+(Ba II) and CH-(weak G band) variety and represent less than 1% of the stars in both populations. The young disk giants are restricted to ages greater than about 109 yr, because younger stars are bright giants or supergiants (luminosity class 2 or 1), and younger than about 2 x 109 yr, because the old disk-young disk boundary occurs near 1.7 solar mass. The distribution of heavy element abundances, P(Fe/H), for young disk giants is both more limited in range (+/- 0.4 dex) and is skewed toward higher abundances, compared with the nearly normal distribution for old disk giants. The distribution of (U,V) velocity vectors gives (U,V,W) and their dispersions = (+17.6 +/- 18.4, -14.8 +/- 8.4, -6.9 +/- 13.0) and (+3.6 +/- 38.4, -20.7 +/- 27.5, -6.7 +/-17.3) km/s for young and old disk giants, respectively.

  20. M-dwarf rapid rotators and the detection of relatively young multiple M-star systems

    SciTech Connect

    Rappaport, S.; Joss, M.; Sanchis-Ojeda, R. E-mail: mattjoss@mit.edu; and others

    2014-06-20

    We have searched the Kepler light curves of ∼3900 M-star targets for evidence of periodicities that indicate, by means of the effects of starspots, rapid stellar rotation. Several analysis techniques, including Fourier transforms, inspection of folded light curves, 'sonograms', and phase tracking of individual modulation cycles, were applied in order to distinguish the periodicities due to rapid rotation from those due to stellar pulsations, eclipsing binaries, or transiting planets. We find 178 Kepler M-star targets with rotation periods, P {sub rot}, of <2 days, and 110 with P {sub rot} < 1 day. Some 30 of the 178 systems exhibit two or more independent short periods within the same Kepler photometric aperture, while several have 3 or more short periods. Adaptive optics imaging and modeling of the Kepler pixel response function for a subset of our sample support the conclusion that the targets with multiple periods are highly likely to be relatively young physical binary, triple, and even quadruple M star systems. We explore in detail the one object with four incommensurate periods all less than 1.2 days, and show that two of the periods arise from one of a close pair of stars, while the other two arise from the second star, which itself is probably a visual binary. If most of these M-star systems with multiple periods turn out to be bound M stars, this could prove a valuable way discovering young hierarchical M-star systems; the same approach may also be applicable to G and K stars. The ∼5% occurrence rate of rapid rotation among the ∼3900 M star targets is consistent with spin evolution models that include an initial contraction phase followed by magnetic braking, wherein a typical M star can spend several hundred Myr before spinning down to periods longer than 2 days.

  1. Buoyancy and g-modes in young superfluid neutron stars

    NASA Astrophysics Data System (ADS)

    Passamonti, A.; Andersson, N.; Ho, W. C. G.

    2016-01-01

    We consider the local dynamics of a realistic neutron-star core, including composition gradients, superfluidity and thermal effects. The main focus is on the gravity g-modes, which are supported by composition stratification and thermal gradients. We derive the equations that govern this problem in full detail, paying particular attention to the input that needs to be provided through the equation of state and distinguishing between normal and superfluid regions. The analysis highlights a number of key issues that should be kept in mind whenever equation of state data is compiled from nuclear physics for use in neutron-star calculations. We provide explicit results for a particular stellar model and a specific nucleonic equation of state, making use of cooling simulations to show how the local wave spectrum evolves as the star ages. Our results show that the composition gradient is effectively dominated by the muons whenever they are present. When the star cools below the superfluid transition, the support for g-modes at lower densities (where there are no muons) is entirely thermal. We confirm the recent suggestion that the g-modes in this region may be unstable, but our results indicate that this instability will be weak and would only be present for a brief period of the star's life. Our analysis accounts for the presence of thermal excitations encoded in entrainment between the entropy and the superfluid component. Finally, we discuss the complete spectrum, including the normal sound waves and, in superfluid regions, the second sound.

  2. Young star clusters in the circumnuclear region of NGC 2110

    SciTech Connect

    Durré, Mark; Mould, Jeremy

    2014-03-20

    High-resolution observations in the near infrared show star clusters around the active galactic nucleus (AGN) of the Seyfert 1 NGC 2110, along with a 90 × 35 pc bar of shocked gas material around its nucleus. These are seen for the first time in our imaging and gas kinematics of the central 100 pc with the Keck OSIRIS instrument with adaptive optics. Each of these clusters is two to three times brighter than the Arches cluster close to the center of the Milky Way. The core star formation rate is 0.3 M {sub ☉} yr{sup –1}. The photoionized gas (He I) dynamics imply an enclosed mass of 3-4 × 10{sup 8} M {sub ☉}. These observations demonstrate the physical linkage between AGN feedback, which triggers star formation in massive clusters, and the resulting stellar (and supernovae) winds, which cause the observed [Fe II] emission and feed the black hole.

  3. GRAVITATIONAL SLINGSHOT OF YOUNG MASSIVE STARS IN ORION

    SciTech Connect

    Chatterjee, Sourav; Tan, Jonathan C. E-mail: jt@astro.ufl.edu

    2012-08-01

    The Orion Nebula Cluster (ONC) is the nearest region of massive star formation and thus a crucial testing ground for theoretical models. Of particular interest among the ONC's {approx}1000 members are: {theta}{sup 1} Ori C, the most massive binary in the cluster with stars of masses 38 and 9 M{sub Sun }; the Becklin-Neugebauer (BN) object, a 30 km s{sup -1} runaway star of {approx}8 M{sub Sun }; and the Kleinmann-Low (KL) nebula protostar, a highly obscured, {approx}15 M{sub Sun} object still accreting gas while also driving a powerful, apparently 'explosive' outflow. The unusual behavior of BN and KL is much debated: How did BN acquire its high velocity? How is this related to massive star formation in the KL nebula? Here, we report the results of a systematic survey using {approx}10{sup 7} numerical experiments of gravitational interactions of the {theta}{sup 1}C and BN stars. We show that dynamical ejection of BN from this triple system at its observed velocity leaves behind a binary with total energy and eccentricity matching those observed for {theta}{sup 1}C. Five other observed properties of {theta}{sup 1}C are also consistent with it having ejected BN and altogether we estimate that there is only a {approx}< 10{sup -5} probability that {theta}{sup 1}C has these properties by chance. We conclude that BN was dynamically ejected from the {theta}{sup 1}C system about 4500 years ago. BN then plowed through the KL massive star-forming core within the last 1000 years causing its recently enhanced accretion and outflow activity.

  4. HUBBLE IMAGES REVEAL A YOUNG STAR'S DYNAMIC DISK AND JETS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These images of HH 30 show changes over only a five-year period in the disk and jets of this newborn star, which is about half a million years old. The pictures were taken between 1995 and 2000 with the Wide Field and Planetary Camera 2 aboard NASA's Hubble Space Telescope. Astronomers are interested in the disk because it is probably similar to the one from which the Sun and the planets in our solar system formed. Hubble reveals an edge-on disk (located at the bottom of the images), which appears as a flattened cloud of dust split into two halves by a dark lane. The disk blocks light from the central star. All that is visible is the reflection of the star's light by dust above and below the plane of the disk. The disk's diameter is 450 astronomical units (one astronomical unit equals the Earth-Sun distance). Shadows billions of miles in size can be seen moving across the disk. In 1995 and 2000, the left and right sides of the disk were about the same brightness, but in 1998 the right side was brighter. These patterns may be caused by bright spots on the star or variations in the disk near the star. The dust cloud near the top of these frames is illuminated by the star and reflects changes in its brightness. The star's magnetic field plays a major role in forming the jets (located above and below the disk), which look like streams of water from a fire hose. The powerful magnetic field creates the jets by channeling gas from the disk along the magnetic poles above and below the star. The gaps between the compact knots of gas seen in the jet above the disk indicate that this is a sporadic process. By tracking the motion of these knots over time, astronomers have measured the jet's speed at between 200,000 to 600,000 miles per hour (160,000 and 960,000 kilometers per hour). Oddly, the jet below the disk is moving twice as fast as the one above it. Credits: NASA, Alan Watson (Universidad Nacional Autonoma de Mexico), Karl Stapelfeldt (Jet Propulsion Laboratory), John

  5. X-RAY VARIABILITY OF {sigma} ORIONIS YOUNG STARS AS OBSERVED WITH ROSAT

    SciTech Connect

    Caballero, J. A.; Lopez-Santiago, J.; De Castro, E.; Cornide, M.

    2009-06-15

    We used the Aladin Virtual Observatory tool and High Resolution Imager ROSAT archival data to search for X-ray variability in scale of days in 23 young stars in the {sigma} Orionis cluster and a background galaxy. Five stars displayed unambiguous flares and had probabilities p {sub var}>> 99% of being actual variables. Two of the detected flares were violent and long lasting, with maximum duration of six days and amplitude of eight times above the quiescent level. We classified another four stars as possible X-ray variables, including the binary system formed by the B2Vp star {sigma} Ori E and its close late-type companion. This makes a minimum frequency of high-amplitude X-ray variability in excess of a day of 39% among {sigma} Orionis stars. The incidence of this kind of X-ray variability seems to be lower among classical T Tauri stars with mid-infrared flux excesses than among fast-rotating, disk-less young stars.

  6. SPIN EVOLUTION OF ACCRETING YOUNG STARS. II. EFFECT OF ACCRETION-POWERED STELLAR WINDS

    SciTech Connect

    Matt, Sean P.; Greene, Thomas P.; Pudritz, Ralph E. E-mail: thomas.p.greene@nasa.gov E-mail: pudritz@physics.mcmaster.ca

    2012-01-20

    We present a model for the rotational evolution of a young, solar-mass star interacting magnetically with an accretion disk. As in a previous paper (Paper I), the model includes changes in the star's mass and radius as it descends the Hayashi track, a decreasing accretion rate, and a prescription for the angular momentum transfer between the star and disk. Paper I concluded that, for the relatively strong magnetic coupling expected in real systems, additional processes are necessary to explain the existence of slowly rotating pre-main-sequence stars. In the present paper, we extend the stellar spin model to include the effect of a spin-down torque that arises from an accretion-powered stellar wind (APSW). For a range of magnetic field strengths, accretion rates, initial spin rates, and mass outflow rates, the modeled stars exhibit rotation periods within the range of 1-10 days in the age range of 1-3 Myr. This range coincides with the bulk of the observed rotation periods, with the slow rotators corresponding to stars with the lowest accretion rates, strongest magnetic fields, and/or highest stellar wind mass outflow rates. We also make a direct, quantitative comparison between the APSW scenario and the two types of disk-locking models (namely, the X-wind and Ghosh and Lamb type models) and identify some remaining theoretical issues for understanding young star spins.

  7. Workshop on Physics of Accretion Disks Around Compact and Young Stars

    NASA Technical Reports Server (NTRS)

    Liang, E (Editor); Stepinski, T. F. (Editor)

    1995-01-01

    The purpose of the two-day Workshop on Physics of Accretion Disks Around Compact and Young Stars was to bring together workers on accretion disks in the western Gulf region (Texas and Louisiana). Part 2 presents the workshop program, a list of poster presentations, and a list of workshop participants. Accretion disks are believed to surround many stars. Some of these disks form around compact stars, such as white dwarfs, neutron stars, or black holes that are members of binary systems and reveal themselves as a power source, especially in the x-ray and gamma regions of the spectrum. On the other hand, protostellar disks are believed to be accretion disks associated with young, pre-main-sequence stars and manifest themselves mostly in infrared and radio observations. These disks are considered to be a natural outcome of the star formation process. The focus of this workshop included theory and observations relevant to accretion disks around compact objects and newly forming stars, with the primary purpose of bringing the two communities together for intellectual cross-fertilization. The nature of the workshop was exploratory, to see how much interaction is possible between distinct communities and to better realize the local potential in this subject. A critical workshop activity was identification and documentation of key issues that are of mutual interest to both communities.

  8. SIM PlanetQuest Key Project Precursor Observations to Detect Gas Giant Planets Around Young Stars

    NASA Technical Reports Server (NTRS)

    Tanner, Angelle; Beichman, Charles; Akeson, Rachel; Ghez, Andrea; Grankin, Konstantin N.; Herbst, William; Hillenbrand, Lynne; Huerta, Marcos; Konopacky, Quinn; Metchev, Stanimir; Mohanty, Subhanjoy; Prato, L.; Simon, Michal

    2008-01-01

    We present a review of precursor observing programs for the SIM PlanetQuest Key project devoted to detecting Jupiter mass planets around young stars. In order to ensure that the stars in the sample are free of various sources of astrometric noise that might impede the detection of planets, we have initiated programs to collect photometry, high contrast images, interferometric data and radial velocities for stars in both the Northern and Southern hemispheres. We have completed a high contrast imaging survey of target stars in Taurus and the Pleiades and found no definitive common proper motion companions within one arcsecond (140 AU) of the SIM targets. Our radial velocity surveys have shown that many of the target stars in Sco-Cen are fast rotators and a few stars in Taurus and the Pleiades may have sub-stellar companions. Interferometric data of a few stars in Taurus show no signs of stellar or sub-stellar companions with separations of <5 mas. The photometric survey suggests that approximately half of the stars initially selected for this program are variable to a degree (1(sigma) >0.1 mag) that would degrade the astrometric accuracy achievable for that star. While the precursor programs are still a work in progress, we provide a comprehensive list of all targets ranked according to their viability as a result of the observations taken to date. By far, the observable that removes the most targets from the SIM-YSO program is photometric variability.

  9. Circumstellar environment, infrared excess and variable extinction in young stars. I. The model.

    NASA Astrophysics Data System (ADS)

    Mitskevich, A. S.

    1995-06-01

    We give a critical analysis of the hypothesis of an accretion disk around young stars. We show that the accretion disk model, which is based mainly on the interpretation of the observed infrared excesses, is often in contradiction with observations. Recent results obtained for some Herbig Ae/Be stars in a serie of papers by Grinin and coauthors, as well as the similarity in the behaviour of Ae/Be stars and T Tauri stars, show that the circumstellar dust near such young objects cannot be entirely confined to thin disks. This conclusion is supported by the correlations between the forbidden line luminosities, the near infrared excess, and the reddening of T Tauri stars from Cabrit et al. (1990). Such correlations clearly indicate that the near infrared excess cannot solely be interpreted as being due to accretion disks. Here, we suggest a new model of the circumstellar environment of young stars, based on the assumption that circumstellar dust is in clouds rather than in a homogeneous, spherical shell. The dusty clouds are optically thick at optical wavelengths and thin in the infrared. Such an envelope produces very little reddening, whereas in the infrared it reveals a significant excess. We estimate that a small amount of dust, distributed in the intercloud circumstellar space, is responsible for the observed reddening. A detailed analysis of the 10μm silicate feature shows that our model can explain the appearance of the feature both in absorption and emission. The absorption feature should be associated with the objects having a flat energy distribution in the infrared. The maximum intensity of the silicate feature indicates that circumstellar disks cannot contribute significantly (at least in some young stars) to the formation of an infrared excess at 10μm.

  10. Properties of the remnant clockwise disk of young stars in the galactic center

    SciTech Connect

    Yelda, S.; Ghez, A. M.; Meyer, L.; Morris, M. R.; Lu, J. R.; Do, T.; Matthews, K. E-mail: ghez@astro.ucla.edu E-mail: morris@astro.ucla.edu E-mail: do@di.utoronto.ca

    2014-03-10

    We present new kinematic measurements and modeling of a sample of 116 young stars in the central parsec of the Galaxy in order to investigate the properties of the young stellar disk. The measurements were derived from a combination of speckle and laser guide star adaptive optics imaging and integral field spectroscopy from the Keck telescopes. Compared to earlier disk studies, the most important kinematic measurement improvement is in the precision of the accelerations in the plane of the sky, which have a factor of six smaller uncertainties (σ ∼ 10 μas yr{sup –2}). We have also added the first radial velocity measurements for eight young stars, increasing the sample at the largest radii (6''-12'') by 25%. We derive the ensemble properties of the observed stars using Monte Carlo simulations of mock data. There is one highly significant kinematic feature (∼20σ), corresponding to the well-known clockwise disk, and no significant feature is detected at the location of the previously claimed counterclockwise disk. The true disk fraction is estimated to be ∼20%, a factor of ∼2.5 lower than previous claims, suggesting that we may be observing the remnant of what used to be a more densely populated stellar disk. The similarity in the kinematic properties of the B stars and the O/WR stars suggests a common star formation event. The intrinsic eccentricity distribution of the disk stars is unimodal, with an average value of (e) = 0.27 ± 0.07, which we show can be achieved through dynamical relaxation in an initially circular disk with a moderately top-heavy mass function.

  11. Analysis of MOST light curves of five young stars in Taurus-Auriga and Lupus 3 star-forming regions

    NASA Astrophysics Data System (ADS)

    Siwak, Michal; Rucinski, Slavek M.; Matthews, Jaymie M.; Kuschnig, Rainer; Guenther, David B.; Moffat, Anthony F. J.; Sasselov, Dimitar; Weiss, Werner W.

    2011-08-01

    Continuous photometric observations of five young stars obtained by the MOST satellite in 2009 and 2010 in the Taurus and Lupus star formation regions are presented. Using light-curve modelling under the assumption of internal invariability of spots, we obtained small values of the solar-type differential-rotation parameter (k = 0.0005-0.009) for three spotted weak-line T Tauri stars, V410 Tau, V987 Tau and Lupus 3-14; for another spotted weak-line T Tauri star (WTTS), Lupus 3-48, the data are consistent with a rigidly rotating surface (k = 0). Three flares of similar rise (4 min and 30 s) and decay (1 h and 45 min) times were detected in the light curve of Lupus 3-14. The brightness of the classical T Tauri star RY Tau continuously decreased over 3 weeks of its observations with a variable modulation not showing any obvious periodic signal. Based on data from the MOST satellite, a Canadian Space Agency mission, jointly operated by Dynacon Inc., the University of Toronto Institute of Aerospace Studies and the University of British Columbia, with the assistance of the University of Vienna.

  12. PROGRESSIVE STAR FORMATION IN THE YOUNG GALACTIC SUPER STAR CLUSTER NGC 3603

    SciTech Connect

    Beccari, Giacomo; Spezzi, Loredana; De Marchi, Guido; Andersen, Morten; Paresce, Francesco; Young, Erick; Panagia, Nino; Bond, Howard; Balick, Bruce; Calzetti, Daniela; Carollo, C. Marcella; Disney, Michael J.; Dopita, Michael A.; Frogel, Jay A.; Hall, Donald N. B.; Holtzman, Jon A.; Kimble, Randy A.; McCarthy, Patrick J.; O'Connell, Robert W.; Saha, Abhijit

    2010-09-10

    Early Release Science observations of the cluster NGC 3603 with the WFC3 on the refurbished Hubble Space Telescope allow us to study its recent star formation history. Our analysis focuses on stars with H{alpha} excess emission, a robust indicator of their pre-main sequence (PMS) accreting status. The comparison with theoretical PMS isochrones shows that 2/3 of the objects with H{alpha} excess emission have ages from 1 to 10 Myr, with a median value of 3 Myr, while a surprising 1/3 of them are older than 10 Myr. The study of the spatial distribution of these PMS stars allows us to confirm their cluster membership and to statistically separate them from field stars. This result establishes unambiguously for the first time that star formation in and around the cluster has been ongoing for at least 10-20 Myr, at an apparently increasing rate.

  13. Progressive Star Formation in the Young Galactic Super Star Cluster NGC 3603

    NASA Astrophysics Data System (ADS)

    Beccari, Giacomo; Spezzi, Loredana; De Marchi, Guido; Paresce, Francesco; Young, Erick; Andersen, Morten; Panagia, Nino; Balick, Bruce; Bond, Howard; Calzetti, Daniela; Carollo, C. Marcella; Disney, Michael J.; Dopita, Michael A.; Frogel, Jay A.; Hall, Donald N. B.; Holtzman, Jon A.; Kimble, Randy A.; McCarthy, Patrick J.; O'Connell, Robert W.; Saha, Abhijit; Silk, Joseph I.; Trauger, John T.; Walker, Alistair R.; Whitmore, Bradley C.; Windhorst, Rogier A.

    2010-09-01

    Early Release Science observations of the cluster NGC 3603 with the WFC3 on the refurbished Hubble Space Telescope allow us to study its recent star formation history. Our analysis focuses on stars with Hα excess emission, a robust indicator of their pre-main sequence (PMS) accreting status. The comparison with theoretical PMS isochrones shows that 2/3 of the objects with Hα excess emission have ages from 1 to 10 Myr, with a median value of 3 Myr, while a surprising 1/3 of them are older than 10 Myr. The study of the spatial distribution of these PMS stars allows us to confirm their cluster membership and to statistically separate them from field stars. This result establishes unambiguously for the first time that star formation in and around the cluster has been ongoing for at least 10-20 Myr, at an apparently increasing rate.

  14. On the velocity dispersion of young star clusters: super-virial or binaries?

    NASA Astrophysics Data System (ADS)

    Gieles, M.; Sana, H.; Portegies Zwart, S. F.

    2010-03-01

    Many young extra-galactic clusters have a measured velocity dispersion that is too high for the mass derived from their age and total luminosity, which has led to the suggestion that they are not in virial equilibrium. Most of these clusters are confined to a narrow age range centred around 10Myr because of observational constraints. At this age, the cluster light is dominated by luminous evolved stars, such as red supergiants, with initial masses of ~13-22Msolar for which (primordial) binarity is high. In this study, we investigate to what extent the observed excess velocity dispersion is the result of the orbital motions of binaries. We demonstrate that estimates for the dynamical mass of young star clusters, derived from the observed velocity dispersion, exceed the photometric mass by up to a factor of 10 and are consistent with a constant offset in the square of the velocity dispersion. This can be reproduced by models of virialized star clusters hosting a massive star population of which ~25 per cent is in binaries, with typical mass ratios of ~0.6 and periods of ~1000 d. We conclude that binaries play a pivotal role in deriving the dynamical masses of young (~10Myr), moderately massive and compact (<~105Msolar >~1pc) star clusters.

  15. Photometry and Polarization of the UXor Type Young Star GM Cep

    NASA Astrophysics Data System (ADS)

    Huang, Po-Chieh; Chen, Chang-Yao; Hu, Chia-Ling; Chen, Wen-Ping

    2015-08-01

    UX Orionis stars, or UXORs, are a sub-type of Herbig Ae/be or T Tauri stars exhibiting sporadic extinction of stellar light due to circumstellar dust obscuration. GM Cep is such a UXOR in the young (~4 Myr) open cluster Trumper 37 at ~900 pc, showing prominent infrared access, H-alpha emission, and abrupt brightness variation. Here we present intense multi-color photometric monitoring from 2009 to 2015, together with the century-long photometric behavior reported in the literature, to add to the study by Chen et al. (2012) that GM Cep showed (i) sporadic brightening on a time scale of days due to young stellar accretion, (ii) occultation events, each lasting for a couple months, with a probable recurrence time of about two years, (iii) normal dust reddening as the star became redder when dimmer, (iv) the unusual “blueing” phenomena near the brightness minima when the star appeared bluer when dimmer. The occultation events may be caused by a dust clump, signifying the density inhomogeneity in a young stellar disk from grain coagulation to planetesimal formation. We present evidence of possible radial drift of the clump toward the star, stretching longer along the orbit and thinner in the line of sight. GM Cep is moderately polarized, from 4% to 9% in g, r, and i bands, with the level of polarization anticorrelated with the brightness in the bright state, during which the dust clump is back-scattering stellar light.

  16. Accretion Disks around Young Stars: An Observational Perspective

    NASA Astrophysics Data System (ADS)

    Ménard, F.; Bertout, C.

    Accretion disks are pivotal elements in the formation and early evolution of solar-like stars. On top of supplying the raw material, their internal conditions also regulate the formation of planets. Their study therefore holds the key to solve this long standing mystery: how did our Solar System form? This chapter focuses on observational studies of the circumstellar environment, and in particular of circumstellar disks, associated with pre-main sequence solar-like stars. The direct measurement of disk parameters poses an obvious challenge: at the distance of the typical star forming regions ( e.g. 140 pc for Taurus), a planetary system like ours (with diameter simeq50 AU out to Pluto, but excluding the Kuiper belt which could extend much farther out) subtends only 0.35''. Yet its surface brightness is low in comparison to the bright central star and high angular and high contrast imaging techniques are required if one hopes to resolve and measure these protoplanetary disks. Fortunately, capable instruments providing 0.1'' resolution or better and high contrast have been available for just about 10 years now. They are covering a large part of the electromagnetic spectrum, from the UV/Optical with HST and the near-infrared from ground-based adaptive optics systems, to the millimetric range with long-baseline radio interferometers. It is therefore not surprising that our knowledge of the structure of the disks surrounding low-mass stars has made a gigantic leap forward in the last decade. In the following pages we will attempt to describe, in a historical perpective, the road that led to the idea that most solar-like stars are surrounded by an accretion disk at one point in their early life and how, nowadays, their structural and physical parameters can be estimated from direct observations. We will follow by a short discussion of a few of the constraints available regarding the evolution and dissipation of these disks. This last topic is particularly relevant today

  17. Anne S. Young: Professor and Variable Star Observer Extraordinaire

    NASA Astrophysics Data System (ADS)

    Bracher, Katherine

    2011-05-01

    Anne Sewell Young (1871-1961) was one of the eight original members of the AAVSO, to which she contributed more than 6500 observations over 33 years. She also taught astronomy for 37 years at Mount Holyoke College; among her students was Helen Sawyer Hogg. This paper will look at her life and career both at Mount Holyoke and with the AAVSO.

  18. Turbulent Convection in Young Solar-like Stars: Influence of rotation

    NASA Astrophysics Data System (ADS)

    Ballot, J.; Brun, A. S.; Turck-Chièze, S.

    2004-12-01

    The study of the relationship between X-ray emission and rotation in young stars (Feigelson et al. 2003) and observations of magnetic-field topology of such stars with Zeeman-Doppler Imaging (Donati et al. 2003) indicate that the dynamo processes differ from those operating in main sequence stars. In this context, 3-D numerical simulations have been started. The first step is to study the purely hydrodynamic case. We have simulated the convective shell of a young sun (10 Myr) with the Anelastic Spherical Harmonic (ASH) code. We have studied the angular momentum transfer, the meridional circulation and the differential rotation in this shell. We have also studied the effects of different rotation rates (1, 2 and 5 solar rate).

  19. A NEW SUB-STELLAR COMPANION AROUND THE YOUNG STAR HD 284149

    SciTech Connect

    Bonavita, Mariangela; Desidera, Silvano; Daemgen, Sebastian; Jayawardhana, Ray; Janson, Markus; Lafrenière, David

    2014-08-20

    Even though only a handful of sub-stellar companions have been found via direct imaging, each of these discoveries has had a tremendous impact on our understanding of the star formation process and the physics of cool atmospheres. Young stars are prime targets for direct imaging searches for planets and brown dwarfs due to the favorable brightness contrast expected at such ages and also because it is often possible to derive relatively good age estimates for these primaries. Here we present the direct imaging discovery of HD 284149 b, a 18-50 M {sub Jup} companion at a projected separation of 400 AU from a young (25{sub 10}{sup +25} Myr) F8 star, with which it shares common proper motion.

  20. COOL YOUNG STARS IN THE NORTHERN HEMISPHERE: {beta} PICTORIS AND AB DORADUS MOVING GROUP CANDIDATES

    SciTech Connect

    Schlieder, Joshua E.; Simon, Michal; Lepine, Sebastien E-mail: schlieder@mpia-hd.mpg.de

    2012-04-15

    As part of our continuing effort to identify new, low-mass members of nearby, young moving groups (NYMGs), we present a list of young, low-mass candidates in the northern hemisphere. We used our proven proper-motion selection procedure and ROSAT X-ray and GALEX-UV activity indicators to identify 204 young stars as candidate members of the {beta} Pictoris and AB Doradus NYMGs. Definitive membership assignment of a given candidate will require a measurement of its radial velocity and distance. We present a simple system of indices to characterize the young candidates and help prioritize follow-up observations. New group members identified in this candidate list will be high priority targets for (1) exoplanet direct imaging searches, (2) the study of post-T-Tauri astrophysics, (3) understanding recent local star formation, and (4) the study of local galactic kinematics. Information available now allows us to identify eight likely new members in the list. Two of these, a late-K and an early-M dwarf, we find to be likely members of the {beta} Pic group. The other six stars are likely members of the AB Dor moving group. These include an M dwarf triple system, and three very cool objects that may be young brown dwarfs, making them the lowest-mass, isolated objects proposed in the AB Dor moving group to date.

  1. Magnetic fields on young, moderately rotating Sun-like stars - I. HD 35296 and HD 29615

    NASA Astrophysics Data System (ADS)

    Waite, I. A.; Marsden, S. C.; Carter, B. D.; Petit, P.; Donati, J.-F.; Jeffers, S. V.; Boro Saikia, S.

    2015-05-01

    Observations of the magnetic fields of young solar-type stars provide a way to investigate the signatures of their magnetic activity and dynamos. Spectropolarimetry enables the study of these stellar magnetic fields and was thus employed at the Télescope Bernard Lyot and the Anglo-Australian Telescope to investigate two moderately rotating young Sun-like stars, namely HD 35296 (V119 Tau, HIP 25278) and HD 29615 (HIP 21632). The results indicate that both stars display rotational variation in chromospheric indices consistent with their spot activity, with variations indicating a probable long-term cyclic period for HD 35296. Additionally, both stars have complex, and evolving, large-scale surface magnetic fields with a significant toroidal component. High levels of surface differential rotation were measured for both stars. For the F8V star HD 35296 a rotational shear of ΔΩ = 0.22^{+0.04}_{-0.02} rad d- 1 was derived from the observed magnetic profiles. For the G3V star HD 29615, the magnetic features indicate a rotational shear of ΔΩ = 0.48_{-0.12}^{+0.11} rad d- 1, while the spot features, with a distinctive polar spot, provide a much lower value of ΔΩ of 0.07_{-0.03}^{+0.10} rad d- 1. Such a significant discrepancy in shear values between spot and magnetic features for HD 29615 is an extreme example of the variation observed for other lower mass stars. From the extensive and persistent azimuthal field observed for both targets, it is concluded that a distributed dynamo operates in these moderately rotating Sun-like stars, in marked contrast to the Sun's interface-layer dynamo.

  2. Infrared Spectroscopic Studies of Water and Organics in Protoplanetary Disks around Young Stars

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin; Forrest, William; Watson, Dan M.; Calvet, Nuria; Furlan, Elise; Kim, Kyoung-Hee; Green, Joel; Pontoppidan, Klaus Martin; Tayrien, Cyprian

    2015-08-01

    The building blocks of planets in planet-forming ("protoplanetary") disks are assembled early in the lifetime of a young star. The gas disks are relatively short-lived, with a half-life of about 3 million years, as chemical reactions modify the reservoir of material from the natal molecular cloud. 5 - 7.5 μm wavelength Spitzer Space Telescope Infrared Spectrograph (IRS) spectra of about a dozen T Tauri stars in the Taurus-Auriga star-forming region showing emission from water vapor and absorption from other gases in these stars' protoplanetary disks will be presented. Some of these stars' spectra show a strong emission manifold at 6.6 μm due to the nu2 = 1 - 0 bending mode of water vapor, with the shape of the spectrum suggesting water vapor temperatures > 500 K. Other stars' spectra show a strong absorption band, peaking in strength at 5.6 - 5.7 μm, which appears consistent in some cases with gaseous formaldehyde (H2CO) and in other cases with formic acid (HCOOH). Modeling of these stars' spectra suggests these gases are present in the inner few AU -- i.e., in the planet-forming regions -- of their disks. How the gaseous features observed between 5 - 7.5 μm relate to those at other wavelengths will be discussed. Future directions for this research, including both pursuing confirmation of HCOOH and H2CO features at these and other wavelengths and modeling of the gas features at these wavelengths in other Spitzer-IRS spectra of protoplanetary disks around young stars, will also be discussed. This work suggests that water and organic molecules, which are crucial for life as we know it, are present in the habitable zones of stars at a very early age [of 1-3 million years].

  3. Distances with <4% precision from type Ia supernovae in young star-forming environments.

    PubMed

    Kelly, Patrick L; Filippenko, Alexei V; Burke, David L; Hicken, Malcolm; Ganeshalingam, Mohan; Zheng, WeiKang

    2015-03-27

    The luminosities of type Ia supernovae (SNe), the thermonuclear explosions of white-dwarf stars, vary systematically with their intrinsic color and the rate at which they fade. From images taken with the Galaxy Evolution Explorer (GALEX), we identified SNe Ia that erupted in environments that have high ultraviolet surface brightness and star-formation surface density. When we apply a steep model extinction law, we calibrate these SNe using their broadband optical light curves to within ~0.065 to 0.075 magnitude, corresponding to <4% in distance. The tight scatter, probably arising from a small dispersion among progenitor ages, suggests that variation in only one progenitor property primarily accounts for the relationship between their light-curve widths, colors, and luminosities. PMID:25814580

  4. Vertical Structure of Magnetized Accretion Disks Around Young Stars

    NASA Astrophysics Data System (ADS)

    Tapia, Carlos; Lizano, Susana

    2016-01-01

    We model the vertical structure of magnetized accretion disks subject to viscous and resistive heating, and irradiation by the central star. We apply our formalism to the radial structure of magnetized accretion disks threaded by a poloidal magnetic field dragged during the process of star formation developed by Shu and coworkers. We consider disks around low mass protostars, T Tauri, and FU Orionis stars. We consider two levels of disk magnetization, λsys = 4 (strongly magnetized disks), and λsys = 12 (weakly magnetized disks). The rotation rates of strongly magnetized disks have large deviations from Keplerian rotation. In these models, resistive heating dominates the thermal structure for the FU Ori disk. The T Tauri disk is very thin and cold because it is strongly compressed by magnetic pressure; it may be too thin compared with observations. Instead, in the weakly magnetized disks, rotation velocities are close to Keplerian, and resistive heating is always less than 7% of the viscous heating. In these models, the T Tauri disk has a larger aspect ratio, consistent with that inferred from observations. All the disks have spatially extended hot atmospheres where the irradiation flux is absorbed, although most of the mass (~ 90 - 95 %) is in the disk midplane.

  5. THE NEARBY, YOUNG, ISOLATED, DUSTY STAR HD 166191

    SciTech Connect

    Schneider, Adam; Song, Inseok; Hufford, Tara; Melis, Carl; Zuckerman, B.; Bessell, Mike; Hinkley, Sasha E-mail: song@physast.uga.edu E-mail: cmelis@ucsd.edu E-mail: bessell@mso.anu.edu.au

    2013-11-01

    We report an in-depth study of the F8-type star HD 166191, identified in an ongoing survey for stars exhibiting infrared emission above their expected photospheres in the Wide-field Infrared Survey Explorer all-sky catalog. The fractional IR luminosity measured from 3.5 to 70 μm is exceptionally high (L{sub IR}/L{sub bol} ∼ 10%). Near-diffraction-limited imaging observations with the T-ReCS Si filter set on the Gemini South telescope and adaptive optics imaging with the NIRC2 Lp filter on the Keck II telescope confirmed that the excess emission coincides with the star. Si-band images show a strong solid-state emission feature at ∼10 μm. Theoretical evolutionary isochrones and optical spectroscopic observations indicate a stellar age in the range 10-100 Myr. The large dust mass seen in HD 166191's terrestrial planet zone is indicative of a recent collision between planetary embryos or massive ongoing collisional grinding associated with planet building.

  6. Determining the Locations of Brown Dwarfs in Young Star Clusters

    NASA Technical Reports Server (NTRS)

    Porter, Lauren A.

    2005-01-01

    Brown dwarfs are stellar objects with masses less than 0.08 times that of the Sun that are unable to sustain nuclear fusion. Because of the lack of fusion, they are relatively cold, allowing the formation of methane and water molecules in their atmospheres. Brown dwarfs can be detected by examining stars' absorption spectra in the near-infrared to see whether methane and water are present. The objective of this research is to determine the locations of brown dwarfs in Rho Ophiuchus, a star cluster that is only 1 million years old. The cluster was observed in four filters in the near-infrared range using the Wide-Field Infra-Red Camera (WIRC) on the 100" DuPont Telescope and Persson's Auxiliary Nasymith Infrared Camera (PANIC) on the 6.5-m Magellan Telescope. By comparing the magnitude of a star in each of the four filters, an absorption spectrum can be formed. This project uses standard astronomical techniques to reduce raw frames into final images and perform photometry on them to obtain publishable data. Once this is done, it will be possible to determine the locations and magnitudes of brown dwarfs within the cluster.

  7. Lunar Occultations of Young Stars in Southern Taurus

    NASA Astrophysics Data System (ADS)

    Simon, M.; Beck, Tracy L.; Greene, T. P.; Howell, R. R.; Lumsden, S.; Prato, L.

    1999-03-01

    We have obtained lunar occultation observations of NTT 042916+1751, V826 Tau, L1551-55, HN Tau, DQ Tau, and DR Tau by high-speed single-channel photometry in the IR K band. We detect no companions in the angular separation range 0.020"-10" to a magnitude limit typically 2 mag fainter than the target. Additional occultation observations of GG Tau and HL Tau using IR cameras at K reveal no new stars in the GG Tau A binary within ~2 mag of the primary in the range ~0.08"-10" and no companion of HL Tau within 1.5 mag and ~0.09"-10". The binary fraction of the 56 systems in the Taurus star formation region that have been surveyed by lunar occultation and imaging is 61%. Of the 56 systems, 53 have been surveyed for companions in the angular separation range 0.020"-10". Their binary frequency is at least 1.4+/-0.3 times that measured by Duquennoy & Mayor for the nearby F and G stars. These values for the binary frequency are lower bounds because they contain no corrections for incompleteness.

  8. A census of variable stars in the young cluster NGC 2282

    NASA Astrophysics Data System (ADS)

    Dutta, Somnath; Mondal, Soumen; Das, Ramkrishna; Joshi, Santosh; Jose, Jessy; Ghosh, Supriyo

    2016-07-01

    We report the results of CCD I time series photometry of the young (2-5 Myr) cluster NGC 2282 using 2m Himalayan Chandra Telescope (HCT), India and 1.3m Devasthal Fast Optical Telescope, Aries, Nainital, India. The deep I-band (˜20.5 mag) analysis enables us to probe the study of variability towards low-mass end of pre-main sequence (PMS) stars. The technique of differential photometry has been used to identify photometric variable stars, which provides high photometric precision, even in the central crowded nebulous region. Additionally, large rms deviation of magnitudes from normal trends and significant periods in a Lomb-Scargle analysis were also considered as signatures of variable stars. A total of 65 stars were found as photometric variable. The PMS members associated with the region were identified using infrared (IR) data from UKIDSS and Spitzer-IRAC. Based on the optical and NIR color-magnitude diagram analyses, the age of the probable PMS variable sources has been estimated to be in the range of 1-5 Myr. Masses of these PMS variable stars were found to be ˜0.15-3.0 Msun these could be T Tauri stars. Majority of the variable T Tauri stars have periods less than 15 days, such periodic variability are proposed to be the results of rotational modulation by hot or cool stellar spots on the star surface.

  9. Formation of new stellar populations from gas accreted by massive young star clusters.

    PubMed

    Li, Chengyuan; de Grijs, Richard; Deng, Licai; Geller, Aaron M; Xin, Yu; Hu, Yi; Faucher-Giguère, Claude-André

    2016-01-28

    Stars in clusters are thought to form in a single burst from a common progenitor cloud of molecular gas. However, massive, old 'globular' clusters--those with ages greater than ten billion years and masses several hundred thousand times that of the Sun--often harbour multiple stellar populations, indicating that more than one star-forming event occurred during their lifetimes. Colliding stellar winds from late-stage, asymptotic-giant-branch stars are often suggested to be triggers of second-generation star formation. For this to occur, the initial cluster masses need to be greater than a few million solar masses. Here we report observations of three massive relatively young star clusters (1-2 billion years old) in the Magellanic Clouds that show clear evidence of burst-like star formation that occurred a few hundred million years after their initial formation era. We show that such clusters could have accreted sufficient gas to form new stars if they had orbited in their host galaxies' gaseous disks throughout the period between their initial formation and the more recent bursts of star formation. This process may eventually give rise to the ubiquitous multiple stellar populations in globular clusters. PMID:26819043

  10. PRECISE HIGH-CADENCE TIME SERIES OBSERVATIONS OF FIVE VARIABLE YOUNG STARS IN AURIGA WITH MOST

    SciTech Connect

    Cody, Ann Marie; Tayar, Jamie; Hillenbrand, Lynne A.; Matthews, Jaymie M.; Kallinger, Thomas

    2013-03-15

    To explore young star variability on a large range of timescales, we have used the MOST satellite to obtain 24 days of continuous, sub-minute cadence, high-precision optical photometry on a field of classical and weak-lined T Tauri stars (TTSs) in the Taurus-Auriga star formation complex. Observations of AB Aurigae, SU Aurigae, V396 Aurigae, V397 Aurigae, and HD 31305 reveal brightness fluctuations at the 1%-10% level on timescales of hours to weeks. We have further assessed the variability properties with Fourier, wavelet, and autocorrelation techniques, identifying one significant period per star. We present spot models in an attempt to fit the periodicities, but find that we cannot fully account for the observed variability. Rather, all stars exhibit a mixture of periodic and aperiodic behavior, with the latter dominating stochastically on timescales less than several days. After removal of the main periodicity, periodograms for each light curve display power-law trends consistent with those seen for other young accreting stars. Several of our targets exhibited unusual variability patterns not anticipated by prior studies, and we propose that this behavior originates with the circumstellar disks. The MOST observations underscore the need for investigation of TTS light variations on a wide range of timescales in order to elucidate the physical processes responsible; we provide guidelines for future time series observations.

  11. New circumstellar disk candidates around young low mass stars and brown dwarfs

    NASA Astrophysics Data System (ADS)

    Boucher, Anne; Lafrenière, David; Gagné, Jonathan; Malo, Lison; Doyon, Rene

    2015-12-01

    It is now common knowledge that circumstellar disks are signposts of past or ongoing planetary system formation. Their presence and their properties, in relation to those of their host star, also bear valuable information about the process of star formation itself. To address these questions, we started a project to uncover new circumstellar disks around newly identified low mass star and brown dwarf candidates in nearby young kinematic associations. Being near the stellar/substellar mass boundary, these hosts - and their potential disks - are particularly interesting to study both star and planet formation. We used a least squares approach to fit synthetic spectra to the observed photometric data of each star, covering from 0.8 µm up to 22 µm, and then identified candidates showing a significant excess compared to the best fits. We then carefully looked at the data for these candidates to filter out those biased by contaminants or other artefacts. We ended up with a list of 4 young stars and brown dwarfs strongly suspected of being surrounded by a disk. Here we will present our search method and some properties of our newly identified disk-bearing candidates.

  12. Modeling tracers of young stellar population age in star-forming galaxies

    SciTech Connect

    Levesque, Emily M.; Leitherer, Claus

    2013-12-20

    The young stellar population of a star-forming galaxy is the primary engine driving its radiative properties. As a result, the age of a galaxy's youngest generation of stars is critical for a detailed understanding of its star formation history, stellar content, and evolutionary state. Here we present predicted equivalent widths for the Hβ, Hα, and Brγ recombination lines as a function of stellar population age. The equivalent widths are produced by the latest generations of stellar evolutionary tracks and the Starburst99 stellar population synthesis code, and are the first to fully account for the combined effects of both nebular emission and continuum absorption produced by the synthetic stellar population. Our grid of model stellar populations spans six metallicities (0.001 < Z < 0.04), two treatments of star formation history (a 10{sup 6} M {sub ☉} instantaneous burst and a continuous star formation rate of 1 M {sub ☉} yr{sup –1}), and two different treatments of initial rotation rate (v {sub rot} = 0.0v {sub crit} and 0.4v {sub crit}). We also investigate the effects of varying the initial mass function. Given constraints on galaxy metallicity, our predicted equivalent widths can be applied to observations of star-forming galaxies to approximate the age of their young stellar populations.

  13. YOUNG STARS IN AN OLD BULGE: A NATURAL OUTCOME OF INTERNAL EVOLUTION IN THE MILKY WAY

    SciTech Connect

    Ness, M.; Debattista, Victor P.; Cole, D. R.; Bensby, T.; Feltzing, S.; Roškar, R.; Johnson, J. A.; Freeman, K.

    2014-06-01

    The center of our disk galaxy, the Milky Way, is dominated by a boxy/peanut-shaped bulge. Numerous studies of the bulge based on stellar photometry have concluded that the bulge stars are exclusively old. The perceived lack of young stars in the bulge strongly constrains its likely formation scenarios, providing evidence that the bulge is a unique population that formed early and separately from the disk. However, recent studies of individual bulge stars using the microlensing technique have reported that they span a range of ages, emphasizing that the bulge may not be a monolithic structure. In this Letter we demonstrate that the presence of young stars that are located predominantly nearer to the plane is expected for a bulge that has formed from the disk via dynamical instabilities. Using an N-body+ smoothed particle hydrodynamics simulation of a disk galaxy forming out of gas cooling inside a dark matter halo and forming stars, we find a qualitative agreement between our model and the observations of younger metal-rich stars in the bulge. We are also able to partially resolve the apparent contradiction in the literature between results that argue for a purely old bulge population and those that show a population comprised of a range in ages; the key is where to look.

  14. Young Stars in an Old Bulge: A Natural Outcome of Internal Evolution in the Milky Way

    NASA Astrophysics Data System (ADS)

    Ness, M.; Debattista, Victor P.; Bensby, T.; Feltzing, S.; Roškar, R.; Cole, D. R.; Johnson, J. A.; Freeman, K.

    2014-06-01

    The center of our disk galaxy, the Milky Way, is dominated by a boxy/peanut-shaped bulge. Numerous studies of the bulge based on stellar photometry have concluded that the bulge stars are exclusively old. The perceived lack of young stars in the bulge strongly constrains its likely formation scenarios, providing evidence that the bulge is a unique population that formed early and separately from the disk. However, recent studies of individual bulge stars using the microlensing technique have reported that they span a range of ages, emphasizing that the bulge may not be a monolithic structure. In this Letter we demonstrate that the presence of young stars that are located predominantly nearer to the plane is expected for a bulge that has formed from the disk via dynamical instabilities. Using an N-body+ smoothed particle hydrodynamics simulation of a disk galaxy forming out of gas cooling inside a dark matter halo and forming stars, we find a qualitative agreement between our model and the observations of younger metal-rich stars in the bulge. We are also able to partially resolve the apparent contradiction in the literature between results that argue for a purely old bulge population and those that show a population comprised of a range in ages; the key is where to look.

  15. Accretion Rates on Pre-main-sequence Stars in the Young Open Cluster NGC 6530

    NASA Astrophysics Data System (ADS)

    Gallardo, José; del Valle, Luciano; Ruiz, María Teresa

    2012-01-01

    It is well accepted that during the star formation process, material from a protoplanetary disk is accreted onto the central object during the first ~1-5 Myr. Different authors have published measurements of accretion rates for young low- and intermediate-mass stars in several nearby star-forming regions (SFRs). Due to its somewhat larger distance, the SFR M8 (the Lagoon Nebula) has not been studied to the same extent, despite its abundant population of young stellar objects. We have obtained optical band low-resolution spectra of a sample of pre-main-sequence stars in the open cluster NGC 6530 located in the aforementioned nebulae using the Gemini Multi Object Spectrograph at Gemini-South in multi-object mode. Spectra cover the Hα emission line used to measure the accretion rate, following the method presented by Natta et al. The observed spectral characteristics are fully consistent with pre-main-sequence stars, showing lithium absorption lines, which are very common in young stellar objects, as well as prominent and broad Hα emission lines, indicating a T Tauri evolutionary stage. This work presents the first determinations of mass accretion rates of young stellar objects in the open cluster NGC 6530, confirming that they are classical T Tauri stars going through the accretion phase. These observations contribute to a better understanding of the stellar content and evolutionary phase of the very active Lagoon Nebula SFR. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciencia e Tecnologia (Brazil), and Ministerio de Ciencia, Tecnología e Innovación Productiva

  16. BAYESIAN ANALYSIS TO IDENTIFY NEW STAR CANDIDATES IN NEARBY YOUNG STELLAR KINEMATIC GROUPS

    SciTech Connect

    Malo, Lison; Doyon, Rene; Lafreniere, David; Artigau, Etienne; Gagne, Jonathan; Baron, Frederique; Riedel, Adric E-mail: doyon@astro.umontreal.ca E-mail: artigau@astro.umontreal.ca E-mail: baron@astro.umontreal.ca

    2013-01-10

    We present a new method based on a Bayesian analysis to identify new members of nearby young kinematic groups. The analysis minimally takes into account the position, proper motion, magnitude, and color of a star, but other observables can be readily added (e.g., radial velocity, distance). We use this method to find new young low-mass stars in the {beta} Pictoris and AB Doradus moving groups and in the TW Hydrae, Tucana-Horologium, Columba, Carina, and Argus associations. Starting from a sample of 758 mid-K to mid-M (K5V-M5V) stars showing youth indicators such as H{alpha} and X-ray emission, our analysis yields 214 new highly probable low-mass members of the kinematic groups analyzed. One is in TW Hydrae, 37 in {beta} Pictoris, 17 in Tucana-Horologium, 20 in Columba, 6 in Carina, 50 in Argus, 32 in AB Doradus, and the remaining 51 candidates are likely young but have an ambiguous membership to more than one association. The false alarm rate for new candidates is estimated to be 5% for {beta} Pictoris and TW Hydrae, 10% for Tucana-Horologium, Columba, Carina, and Argus, and 14% for AB Doradus. Our analysis confirms the membership of 58 stars proposed in the literature. Firm membership confirmation of our new candidates will require measurement of their radial velocity (predicted by our analysis), parallax, and lithium 6708 A equivalent width. We have initiated these follow-up observations for a number of candidates, and we have identified two stars (2MASSJ01112542+1526214, 2MASSJ05241914-1601153) as very strong candidate members of the {beta} Pictoris moving group and one strong candidate member (2MASSJ05332558-5117131) of the Tucana-Horologium association; these three stars have radial velocity measurements confirming their membership and lithium detections consistent with young age.

  17. Young Stellar Populations and Star Clusters in NGC 1705

    NASA Astrophysics Data System (ADS)

    Annibali, F.; Tosi, M.; Monelli, M.; Sirianni, M.; Montegriffo, P.; Aloisi, A.; Greggio, L.

    2009-07-01

    We present Hubble Space Telescope (HST) photometry of the late-type dwarf galaxy NGC 1705 observed with the Wide-Field Planetary Camera 2 (WFPC2) in the F380W and F439W bands and with the Advanced Camera for Surveys/High-Resolution Channel (HRC) in the F330W, F555W, and F814W broad-band filters. We cross-correlate these data with previous ones acquired with the WFPC2 in the F555W, F814W bands, and derive multiband color-magnitude diagrams (CMDs) of the cross-identified individual stars and candidate star clusters. For the central regions of the galaxy, where HST-NICMOS F110W and F160W photometry is also available, we present U, B, V, I, J, H CMDs of the 256 objects with magnitudes measured in all bands. While our previous study based on F555W, F814W, F110W, and F160W data allowed us to trace the star formation history of NGC 1705 back to a Hubble time, the new data provide a better insight on its recent evolution. With the method of the synthetic CMDs, we confirm the presence of two strong bursts of star formation (SF). The older of the two bursts (B1) occurred between ~10 and 15 Myr ago, coeval to the age of the central super star cluster (SSC). The younger burst (B2) started ~3 Myr ago, and it is still active. The stellar mass produced by B2 amounts to ~106 M sun, and it is a factor of ~3 lower for B1. The interburst phase was likely characterized by a much lower level of SF rather than by its complete cessation. The two bursts show distinct spatial distributions: while B1 is centrally concentrated, B2 is more diffused, and presents ring and arclike structures that remind of an expanding shell. This suggests a feedback mechanism, in which the expanding superbubble observed in NGC 1705, likely generated by the 10-15 Myr burst, triggered the current strong SF activity. The excellent spatial resolution of the HRC allowed us to reliably identify 12 star clusters (plus the SSC) in the central ~26'' × 29'' region of NGC 1705, 10 of which have photometry in all the

  18. YOUNG STELLAR POPULATIONS AND STAR CLUSTERS IN NGC 1705

    SciTech Connect

    Annibali, F.; Greggio, L.; Tosi, M.; Montegriffo, P.; Monelli, M.; Sirianni, M.; Aloisi, A.

    2009-07-15

    We present Hubble Space Telescope (HST) photometry of the late-type dwarf galaxy NGC 1705 observed with the Wide-Field Planetary Camera 2 (WFPC2) in the F380W and F439W bands and with the Advanced Camera for Surveys/High-Resolution Channel (HRC) in the F330W, F555W, and F814W broad-band filters. We cross-correlate these data with previous ones acquired with the WFPC2 in the F555W, F814W bands, and derive multiband color-magnitude diagrams (CMDs) of the cross-identified individual stars and candidate star clusters. For the central regions of the galaxy, where HST-NICMOS F110W and F160W photometry is also available, we present U, B, V, I, J, H CMDs of the 256 objects with magnitudes measured in all bands. While our previous study based on F555W, F814W, F110W, and F160W data allowed us to trace the star formation history of NGC 1705 back to a Hubble time, the new data provide a better insight on its recent evolution. With the method of the synthetic CMDs, we confirm the presence of two strong bursts of star formation (SF). The older of the two bursts (B1) occurred between {approx}10 and 15 Myr ago, coeval to the age of the central super star cluster (SSC). The younger burst (B2) started {approx}3 Myr ago, and it is still active. The stellar mass produced by B2 amounts to {approx}10{sup 6} M {sub sun}, and it is a factor of {approx}3 lower for B1. The interburst phase was likely characterized by a much lower level of SF rather than by its complete cessation. The two bursts show distinct spatial distributions: while B1 is centrally concentrated, B2 is more diffused, and presents ring and arclike structures that remind of an expanding shell. This suggests a feedback mechanism, in which the expanding superbubble observed in NGC 1705, likely generated by the 10-15 Myr burst, triggered the current strong SF activity. The excellent spatial resolution of the HRC allowed us to reliably identify 12 star clusters (plus the SSC) in the central {approx}26'' x 29'' region of NGC

  19. Are superluminous supernovae and long GRBs the products of dynamical processes in young dense star clusters?

    SciTech Connect

    Van den Heuvel, E. P. J.; Portegies Zwart, S. F.

    2013-12-20

    Superluminous supernovae (SLSNe) occur almost exclusively in small galaxies (Small/Large Magellanic Cloud (SMC/LMC)-like or smaller), and the few SLSNe observed in larger star-forming galaxies always occur close to the nuclei of their hosts. Another type of peculiar and highly energetic supernovae are the broad-line Type Ic SNe (SN Ic-BL) that are associated with long-duration gamma-ray bursts (LGRBs). Also these have a strong preference for occurring in small (SMC/LMC-like or smaller) star-forming galaxies, and in these galaxies LGRBs always occur in the brightest spots. Studies of nearby star-forming galaxies that are similar to the hosts of LGRBs show that these brightest spots are giant H II regions produced by massive dense young star clusters with many hundreds of O- and Wolf-Rayet-type stars. Such dense young clusters are also found in abundance within a few hundred parsecs from the nucleus of larger galaxies like our own. We argue that the SLSNe and the SNe Ic-BL/LGRBs are exclusive products of two types of dynamical interactions in dense young star clusters. In our model the high angular momentum of the collapsing stellar cores required for the engines of an SN Ic-BL results from the post-main-sequence mergers of dynamically produced cluster binaries with almost equal-mass components. The merger produces a critically rotating single helium star with sufficient angular momentum to produce an LGRB; the observed 'metal aversion' of LGRBs is a natural consequence of the model. We argue that, on the other hand, SLSNe could be the products of runaway multiple collisions in dense clusters, and we present (and quantize) plausible scenarios of how the different types of SLSNe can be produced.

  20. Are Superluminous Supernovae and Long GRBs the Products of Dynamical Processes in Young Dense Star Clusters?

    NASA Astrophysics Data System (ADS)

    van den Heuvel, E. P. J.; Portegies Zwart, S. F.

    2013-12-01

    Superluminous supernovae (SLSNe) occur almost exclusively in small galaxies (Small/Large Magellanic Cloud (SMC/LMC)-like or smaller), and the few SLSNe observed in larger star-forming galaxies always occur close to the nuclei of their hosts. Another type of peculiar and highly energetic supernovae are the broad-line Type Ic SNe (SN Ic-BL) that are associated with long-duration gamma-ray bursts (LGRBs). Also these have a strong preference for occurring in small (SMC/LMC-like or smaller) star-forming galaxies, and in these galaxies LGRBs always occur in the brightest spots. Studies of nearby star-forming galaxies that are similar to the hosts of LGRBs show that these brightest spots are giant H II regions produced by massive dense young star clusters with many hundreds of O- and Wolf-Rayet-type stars. Such dense young clusters are also found in abundance within a few hundred parsecs from the nucleus of larger galaxies like our own. We argue that the SLSNe and the SNe Ic-BL/LGRBs are exclusive products of two types of dynamical interactions in dense young star clusters. In our model the high angular momentum of the collapsing stellar cores required for the engines of an SN Ic-BL results from the post-main-sequence mergers of dynamically produced cluster binaries with almost equal-mass components. The merger produces a critically rotating single helium star with sufficient angular momentum to produce an LGRB; the observed "metal aversion" of LGRBs is a natural consequence of the model. We argue that, on the other hand, SLSNe could be the products of runaway multiple collisions in dense clusters, and we present (and quantize) plausible scenarios of how the different types of SLSNe can be produced.

  1. A M2FS Spectroscopic Study of Low-mass Young Stars in Orion OB1

    NASA Astrophysics Data System (ADS)

    Kaleida, Catherine C.; Briceno, Cesar; Calvet, Nuria; Mateo, Mario L.; Hernandez, Jesus

    2015-01-01

    Surveys of pre-main sequence stars in the ~4-10 Myr range provide a window into the decline of the accretion phase of stars and the formation of planets. Nearby star clusters and stellar associations allow for the study of these young stellar populations all the way down to the lowest mass members. One of the best examples of nearby 4-10 Myr old stellar populations is the Orion OB1 association. The CIDA Variability Survey of Orion OB1 (CVSO - Briceño et al. 2001) has used the variability properties of low-mass pre-main-sequence (PMS) stars to identify hundreds of K and M-type stellar members of the Orion OB1 association, a number of them displaying IR-excess emission and thought to be representative of more evolved disk-bearing young stars. Characterizing these young, low-mass objects using spectroscopy is integral to understanding the accretion phase in young stars. We present preliminary results of a spectroscopic survey of candidate and confirmed Orion OB1 low-mass members taken during November 2014 and February 2014 using the Michigan/Magellan Fiber Spectrograph (M2FS), a PI instrument on the Magellan Clay Telescope (PI: M. Matteo). Target fields located in the off-cloud regions of Orion were identified in the CVSO, and observed using the low and high-resolution modes of M2FS. Both low and high-resolution spectra are needed in order to confirm membership and derive masses, ages, kinematics and accretion properties. Initial analysis of these spectra reveal many new K and M-type members of the Orion OB1 association in these low extinction, off-cloud areas. These are the more evolved siblings of the youngest stars still embedded in the molecular clouds, like those in the Orion Nebula Cluster. With membership and spectroscopic indicators of accretion we are building the most comprehensive stellar census of this association, enabling us to derive a robust estimate of the fraction of young stars still accreting at a various ages, a key constraint for the end of

  2. Young, Star Forming Regions in NGC 3994 and NGC 3995

    NASA Astrophysics Data System (ADS)

    Weistrop, D.; Eggers, D.; Stone, A.; Nelson, C. H.; Bachilla, R.

    2000-12-01

    NGC 3991, NGC 3994, and NGC 3995 comprise a small group of interacting galaxies. Groundbased images indicate significantly distorted morphology in NGC 3991 and NGC 3995, while NGC 3994 appears to be a normal, inclined spiral. Spectra of NGC 3991 and NGC 3995 have features typical of strong HII regions. NGC 3994 is a LINER. All three galaxies have strong ultraviolet emission and have been observed with IUE (Kinney, et al. 1993). As part of an investigation of star formation in interacting galaxies, we have obtained ultraviolet and visible images of the central regions of NGC 3994 and 3995 with the Space Telescope Imaging Spectrograph on HST. Imaging was obtained in two ultraviolet (FUV-MAMA+F25QTZ, NUV-MAMA+F25CN182) and one visible (CCD+F28X50LP) band. Individual star forming knots (at HST resolution) have been identified in both galaxies. In NGC 3994 star-forming knots are found tracing the spiral arms. Results from ground based spectroscopy indicate nuclear reddening of E(B-V) ~ 0.3- 0.4, suggesting that the lack of UV-bright knots in the center is real and not due to extinction. The knots in NGC 3995 have a distorted, 'hook shaped' distribution. The knots are typically 12 - 45 pc in diameter (FWHM), with observed FUV fluxes of approximately 10-17 to 10-16 ergs cm-2sec-1 Å-1. We compare our imaging and spectroscopy data to current starburst models to constrain knot ages and masses. Knot characteristics as a function of location in the galaxy will also be discussed. This work has been supported in part by NASA, under contract NAS5-31231, and through the Nevada Space Grant Consortium.

  3. Spitzer Observations of Young Stars in IC2118, the Witch Head Nebula

    NASA Astrophysics Data System (ADS)

    Guieu, Sylvain; Rebull, L. M.; Stauffer, J. R.; Vrba, F.; Noriega-Crespo, A.; Roelofsen Moody, T.; Sepulveda, B.; Spuck, T.; Weehler, C.; Maranto, A.; Penprase, B.

    2010-01-01

    We have used Spitzer infrared photometry, combined with complementary optical photometry, to conduct a census of young stellar objects in IC2118. IC2118 is most likely an example of triggered star formation, where the trigger is the Trapezium and/or the Orion-Eridanus superbubble. The characterization of YSOs in these clouds helps us to understand the process of triggered star formation in comparison to cloud-collapse star formation, specifically how the star formation efficiency, the initial mass function and the statistical circumstellar properties differ for this two formation modes. In this poster we present how we used IRAC (3.6, 4.5, 5.8, and 8 microns), MIPS (24, 70, and 160 microns) and UVRcIc photometry to discover 6 new YSOs showing infrared excess, and we discuss the characteristics of the total of 11 (including our new 6) YSOs in IC2118.

  4. The ultraviolet spectra of the O and B stars in the young galactic cluster NGC 6530

    NASA Technical Reports Server (NTRS)

    Boehm-Vitense, E.; Hodge, P.; Boggs, D.

    1984-01-01

    The UV spectra between 1200 and 3000 A of stars in the young galactic cluster NGC 6530 and the surrounding association are studied. From the UBV colors and empirical as well as theoretical calibrations, the T(eff) and L for those stars which follow a sequence in the H-R diagram corresponding to the main sequence are determined. From a comparison with theoretical evolutionary tracks, the age of the cluster is estimated to be 5 + or - 2 x 10 to the 6th yr, with a very small scatter for the different stars. The UV extinction is determined for the stars from a comparison of theoretical model energy distributions for the stellar T(eff)s and the observed energy distributions. The stellar wind lines are studied, and strong stellar winds are found for bolometric magnetidues less than -8.

  5. DD 13 - A very young and heavily reddened early O star in the Large Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    Conti, Peter S.; Fitzpatrick, Edward L.

    1991-01-01

    This paper investigates the Large Magellanic Cloud star DD 13, which is likely the major ionizing source of the nebula N159A. New optical spectroscopy and new estimates of the broadband photometric properties of DD 13 are obtained. A spectral type of O3-O6 V, E(B-V) = 0.64, and M(V) = -6.93 is found. The spectral type cannot be more precisely defined due to contamination of the spectral data by nebular emission, obliterating the important He I classification lines. These results, plus a published estimate of the Lyman continuum photon injection rate into N159A, suggest that DD 13 actually consists of about 2-4 young, early O stars still enshrouded by their natal dust cloud. The star DD 13 may be a younger example of the type of tight cluster represented by the LMC 'star' Sk-66 deg 41, recently revealed to be composed of six or more components.

  6. Stellar Masses in the Mysterious Young Triple Star System AS 205

    NASA Astrophysics Data System (ADS)

    Encalada, Frankie; Rosero, Viviana A.; Prato, Lisa A.; Bruhns, Sara

    2015-01-01

    The lack of accurate absolute mass measurements for young, low-mass pre-main sequence stars is problematic for the calibration of stellar evolutionary track models. An on-going program to increase the sample of young star masses begins with mass ratio measurements in spectroscopic binaries. By the end of its 5-year duration, the GAIA all-sky mission will provide new astrometric measurements for young spectroscopic binaries down to separations of tens of microarcseconds, yielding absolute masses for double-lined systems. We obtain mass ratios by taking high-resolution spectra of young double-lined spectroscopic binaries over a few epochs to construct a radial velocity versus phase diagram. For the young spectroscopic binary AS 205B, using eight of our own spectra supplied by the CSHELL instrument on the IRTF at Mauna Kea, plus one from the literature, we estimate a period of approximately 140 days, an eccentricity of 0.7, and a mass-ratio of 0.5. This spectroscopic system comprises the secondary in a 1.4'' visual binary in which both the A and B components are surrounded by optically thick, actively accreting disks, making AS 205B a member of that rare class of young spectroscopic binaries with a primordial circumbinary disk.

  7. Mass Ejection from Old and Young Stars and the Sun

    NASA Astrophysics Data System (ADS)

    Jatenco-Pereira, V.; Opher, R.

    1990-11-01

    RESUMEN. Para poder explicar: 1) la enorme cantidad de perdida de masa y la baja velocidad asint5tica de las estrellas gigantes de o, y 2) los flujos de masa observados en protoestrellas, se sugiere un modelo para Ia perdida de masa, en donde se usa un flujo de ondas de Alfvencomo un mecanismo de aceleraci6n para los vientos de estrellas de tipo y vientos en protoestrellas. Se estudian los mecanismos de disipaci5n de las ondas de Alfven: los amortiguamientos no lineal, de superficie reso- nante y turbulento. En nuestro modelo se usa una divergente A(r) = A(R0) (r/r0)5 (donde A(r) es el area a una distancia radial r, y (A(r)/r2)max/(A(ro)/r02 - 10). Tambien se sugiere un modelo para una de hoyo coronal en el Sol. Se muestra que para satisfacer los datos observacionales en el Sol, tomando en cuenta la deposici6n del momento de las ondas de Alfven sobre el viento, se necesita: (a) una divergencia lenta en un hoyo coronal hasta una altura de 0.01 - 0.1 R seguido de (b) una divergencia rap ida de hasta una altura aproximada de 1 R . ABSTRACT: In order to explain (1) a large mass-loss rate and a small asymptotic flow speed of late-type giant stars and (2) the observed protostellar mass outflows, we suggest a model for mass loss, where we use a flux of Alfven waves as a mechanism of acceleration for late-type giant star winds and protostellar winds. We study the Alfven wave dissipation mechanisms: nonlinear damping, resonant surface damping, and turbulent damping. In our model we use a diverging geometry A(r) = A(r0) (r I r )S (where A(r) is the cross sectional area of the geometry at a radial distance r, and(A(r) I r2)max/(A(r0)/r02) = 10). We also suggest a model for a coronal hole geometry in the sun. We show that in order to satisfy the observational data of the sun, taking into account Alfven wave momentum deposition in the wind, we need: (a) a slow divergence in a coronal hole up t6 a height of 0.01 - 0.1 followed by (b) a rapid divergence up to a height of

  8. Magnetocentrifugally driven flows from young stars and disks. 1: A generalized model

    NASA Astrophysics Data System (ADS)

    Shu, Frank; Najita, Joan; Ostriker, Eve; Wilkin, Frank; Ruden, Steven; Lizano, Susana

    1994-07-01

    We propose a generalized model for stellar spin-down, disk accretion, and truncation, and the origin of winds, jets, and bipolar outflows from young stellar objects. We consider the steady state dynamics of accretion of matter from a viscous and imperfectly conducting disk onto a young star with a strong magnetic field. For an aligned stellar magnetosphere, shielding currents in the surface layers of the disk prevent stellar field lines from penetrating the disk everywhere except for a range of radii about pi = Rx, where the Keplerian angular speed of rotation Omegax equals the angular speed of the star Omega*. For the low disk accretion rates and high magnetic fields associated with typical T Tauri stars, Rx exceeds the radius of the star R* by a factor of a few, and the inner disk is effectively truncated at a radius Rt somewhat smaller than Rx. Where the closed field lines between Rt and Rx bow sufficiently inward, the accreting gas attaches itself to the field and is funneled dynamically down the effective potential (gravitational plus centrifugal) onto the star. Contrary to common belief, the accompanying magnetic torques associated with this accreting gas may transfer angular momentum mostly to the disk rather than to the star. Thus, the star can spin slowly as long as Rx remains significantly greater than R*. Exterior to Rx field lines threading the disk bow outward, which makes the gas off the mid-plane rotate at super-Keplerian velocities. This combination drives a magnetocentrifugal wind with a mass-loss rate Mw equal to a definite fraction f of the disk accretion rate MD. For high disk accretion rates, Rx is forced down to the stellar surface, the star is spun to breakup, and the wind is generated in a manner identical to that proposed by Shu, Lizano, Ruden, & Najita in a previous communication to this journal. In two companion papers (II and III), we develop a detailed but idealized theory of the magnetocentrifugal acceleration process.

  9. Deep HST/ACS Photometry of an Arc of Young Stars in the Southern Halo of M82

    NASA Astrophysics Data System (ADS)

    Suwannajak, Chutipong

    2016-01-01

    We present deep HST/ACS photometry of an arclike, overdense region of stars in the southern halo of M82, located approximately 5 kpc from its disk. This arc feature was originally identified about a decade ago. The early ground-based studies suggested that it contains young stars with ages and metallicities similar to those that formed in the tidal tails between M81, M82, and NGC3077 during their interactions. The arc is clearly presented in the spatial distribution of stars in our field with significantly higher stellar density than the background M82 halo stars. The location of the tip of the red giant branch (RGB) reveals the arc to have a similar distance to M81 and M82, therefore confirming that it belongs to this interacting system. Combining our data with those from the ACS Nearby Galaxy Survey Treasury (ANGST), we construct a color-magnitude diagram (CMD) for the arc. A sequence of young stars is clearly presented on its CMD. This young main sequence is not seen in other parts of the M82 halo. Single-metallicity isochrones are used to derive the age of the young stars in the arc. We confirm that these stars exhibit ages consistent with young stars found in the HI bridges between M81, M82 and NGC3077. Furthermore, the mean metallicity of the RGB stars is also derived from their metallicity distribution function and found to be similar to that found in the HI bridges.

  10. Gyrochronology of Low-mass Stars - Age-Rotation-Activity Relations for Young M Dwarfs

    NASA Astrophysics Data System (ADS)

    Kidder, Benjamin; Shkolnik, E.; Skiff, B.

    2014-01-01

    New rotation periods for 34 young <300 Myr), early-M dwarfs within 25 parsecs were measured using photometric data collected with telescopes at Lowell Observatory during 2012 and 2013. An additional 25 rotation periods for members of the same sample were found in the literature. Ages were derived from Hα and X-ray emission, lithium absorption, surface gravity, and kinematic association of members of known young moving groups (YMGs). We compared rotation periods with the estimated ages as well as indicators of magnetic activity, with the intention of strengthening age-rotation-activity relations and assessing the possible use of gyrochronology in young, low-mass stars. We compared ages and rotation periods of our target stars to cluster members spanning 1-600 Myr. Rotation periods at every age exhibit a large scatter, with values typically ranging from 0.2 to 15 days. This suggests that gyrochronology for individual field stars will not be possible without a better understanding of the underlying mechanisms that govern angular momentum evolution. Yet, on average, the data still support the predicted trends for spin-up during contraction and spin-down on the main sequence, with the turnover occurring at around 150 Myr for early Ms. This suggests that rotation period distributions can be helpful in evaluating the ages of coeval groups of stars. Many thanks to the National Science Foundation for their support through the Research Experience for Undergraduates Grant AST- 1004107.

  11. MAIN-SEQUENCE STARS MASQUERADING AS YOUNG STELLAR OBJECTS IN THE CENTRAL MOLECULAR ZONE

    SciTech Connect

    Koepferl, Christine M.; Robitaille, Thomas P.; Morales, Esteban F. E.; Johnston, Katharine G.

    2015-01-20

    In contrast to most other galaxies, star formation rates in the Milky Way can be estimated directly from young stellar objects (YSOs). In the central molecular zone the star formation rate calculated from the number of YSOs with 24 μm emission is up to an order of magnitude higher than the value estimated from methods based on diffuse emission (such as free-free emission). Whether this effect is real or whether it indicates problems with either or both star formation rate measures is not currently known. In this paper, we investigate whether estimates based on YSOs could be heavily contaminated by more evolved objects such as main-sequence stars. We present radiative transfer models of YSOs and of main-sequence stars in a constant ambient medium which show that the main-sequence objects can indeed mimic YSOs at 24 μm. However, we show that in some cases the main-sequence models can be marginally resolved at 24 μm, whereas the YSO models are always unresolved. Based on the fraction of resolved MIPS 24 μm sources in the sample of YSOs previously used to compute the star formation rate, we estimate the fraction of misclassified ''YSOs'' to be at least 63%, which suggests that the star formation rate previously determined from YSOs is likely to be at least a factor of three too high.

  12. Spitzer Observations of Young Stars in the Witch Head Nebula (IC2118)

    NASA Astrophysics Data System (ADS)

    Spuck, T. S.; Bowser, D. H., II; Ehrhart, B. R.; Maranto, A. R.; Greer, M. T.; Preis, J. V.; Weston, P. D.; Rebull, L. M.; Roelofsen, T. E.; Sepulveda, B.; Hughes, A. S.; Sharma, N. D.; Weehler, C. R.; Herrera, J. M.

    2005-12-01

    Two high-Galactic latitude molecular clouds (HLC) in the region of IC 2118, the Witch Head Nebula, appear to be forming stars (Kun et al. 2004). Star formation in HLCs, while rare, may be the origin of some of the apparently isolated T Tauri stars revealed by ROSAT. At only ˜210 pc away, the clouds in IC 2118 are thought to be excited by Rigel. Kun et al. (2004) reported the discovery of several T Tauri stars in this region and estimated their ages to be 2.5 Myr. We observed a ˜15'}×15{' region centered on the head of the northernmost cloud with Spitzer, using IRAC (3.6, 4.5, 5.8, and 8 microns) and MIPS (24, 70, and 160 microns). We have approximately quadrupled the number of known or suspected young objects in this region. In this poster, we will present color-color plots and SEDs of these stars, and we will compare the properties of these stars to those of other star-forming regions. These observations are part of the Spitzer Space Telescope Research Program for Teachers and Students, so these data are also being used for educational purposes; please see our companion educational poster by Weehler et al.

  13. Testing the Generation of Jets in Young Stars with ALMA

    NASA Astrophysics Data System (ADS)

    Bacciotti, F.; Podio, L.; Codella, C.; Coffey, D.

    2015-12-01

    Jets are a crucial element in the star formation process, as they are thought to remove the excess angular momentum from the system. A firm detection of jet rotation could lend support to this statement. Jet rotation studies, however, are hindered by the requirement of simultaneous high spatial and spectral resolution, and as a matter of fact, the rotation interpretation is still debated. Soon, however, the improved spatial resolution of ALMA will allow us to firmly establish rotation patterns. At the same time the new ALMA polarimetric capabilities will permit the determination of the magnetic configuration in the system. The ALMA combined search for rotation properties and magnetic fields will be a powerful test of the proposed jet generation mechanisms.

  14. Young Stars and Planets Near the Sun: Explosive Phenomena from Falling Evaporating Bodies

    NASA Astrophysics Data System (ADS)

    Ibadov, Subhon; Ibodov, Firuz S.

    2016-01-01

    Impacts of falling evaporating bodies (FEBs) with stars and planets at velocities V >~ 10 - 20 km/s will be accompanied, due to aerodynamic effects such as crushing and transversal expansion of the crushed mass, by the FEB's ``explosion'' and the generation of a strong ``blast'' wave, resulting in FEB-generated explosive/flare phenomena. Multiwavelength monitoring of nearby young stars (and exoplanets) with dense protoplanetary disks rich in FEB's is hence of interest for identifying such FEB-related mechanisms possibly underlying their variability.

  15. Identifying the Young Low-mass Stars within 25 pc. II. Distances, Kinematics, and Group Membership

    NASA Astrophysics Data System (ADS)

    Shkolnik, Evgenya L.; Anglada-Escudé, Guillem; Liu, Michael C.; Bowler, Brendan P.; Weinberger, Alycia J.; Boss, Alan P.; Reid, I. Neill; Tamura, Motohide

    2012-10-01

    We have conducted a kinematic study of 165 young M dwarfs with ages of lsim300 Myr. Our sample is composed of stars and brown dwarfs with spectral types ranging from K7 to L0, detected by ROSAT and with photometric distances of lsim25 pc assuming that the stars are single and on the main sequence. In order to find stars kinematically linked to known young moving groups (YMGs), we measured radial velocities for the complete sample with Keck and CFHT optical spectroscopy and trigonometric parallaxes for 75 of the M dwarfs with the CAPSCam instrument on the du Pont 2.5 m Telescope. Due to their youthful overluminosity and unresolved binarity, the original photometric distances for our sample underestimated the distances by 70% on average, excluding two extremely young (lsim3 Myr) objects found to have distances beyond a few hundred parsecs. We searched for kinematic matches to 14 reported YMGs and identified 10 new members of the AB Dor YMG and 2 of the Ursa Majoris group. Additional possible candidates include six Castor, four Ursa Majoris, two AB Dor members, and one member each of the Her-Lyr and β Pic groups. Our sample also contains 27 young low-mass stars and 4 brown dwarfs with ages lsim150 Myr that are not associated with any known YMG. We identified an additional 15 stars that are kinematic matches to one of the YMGs, but the ages from spectroscopic diagnostics and/or the positions on the sky do not match. These warn against grouping stars together based only on kinematics and that a confluence of evidence is required to claim that a group of stars originated from the same star-forming event. Based on observations collected at the W. M. Keck Observatory, the Canada-France-Hawaii Telescope, the du Pont Telescope at Las Campanas Observatory, and the Subaru Telescope. The Keck Observatory is operated as a scientific partnership between the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial

  16. Young Star Clusters in the Outer Disks of LITTLE THINGS Dwarf Irregular Galaxies

    NASA Astrophysics Data System (ADS)

    Hunter, Deidre A.; Elmegreen, Bruce G.; Gehret, Elizabeth

    2016-06-01

    We examine FUV images of the LITTLE THINGS sample of nearby dwarf irregular (dIrr) and Blue Compact Dwarf galaxies to identify distinct young regions in their far outer disks. We use these data, obtained with the Galaxy Evolution Explorer satellite, to determine the furthest radius at which in situ star formation can currently be identified. The FUV knots are found at distances from the center of the galaxies of 1–8 disk scale lengths and have ages of ≤slant 20 Myr and masses of 20 M{}ȯ to 1 × 105M{}ȯ . The presence of young clusters and OB associations in the outer disks of dwarf galaxies shows that dIrrs do have star formation taking place there in spite of the extreme nature of the environment. Most regions are found where the H i surface density is ∼1 M{}ȯ pc‑2, though both the H i and dispersed old stars go out much further. This limiting density suggests a cutoff in the ability to form distinct OB associations and perhaps even stars. We compare the star formation rates in the FUV regions to the average rates expected at their radii and beyond from the observed gas, using the conventional correlation for gas-rich regions. The localized rates are typically 10% of the expected average rates for the outer disks. Either star formation in dIrrs at surface densities \\lt 1 {M}ȯ pc‑2 occurs without forming distinct associations, or the Kennicutt–Schmidt relation over-predicts the rate beyond this point. In the latter case, the stellar disks in the far-outer parts of dIrrs result from scattering of stars from the inner disk.

  17. 30 Doradus - Relating Young Stars Imaged by Spitzer and Hubble to the CO Molecular Gas Observed with ALMA

    NASA Astrophysics Data System (ADS)

    Nayak, Omnarayani; Meixner, Margaret; Indebetouw, Remy; Sabbi, Elena; De Marchi, Guido; Panagia, Nino

    2016-01-01

    The majority of star have masses less than 8 solar mass and form in clumps that are less than 1 pc in size. The sub-parsec scales in which star formation takes place makes it difficult to resolve the effects star formation and the surrounding dense gas have on each other. The Magellanic Clouds are more active in forming high mass stars as compared to the Milky Way. The SAGE and Heritage surveys combined with the Hubble Tarantula Treasury Project provide us the opportunity to study high-mass (>15 solar masses) and low-mass (<1 solar mass) star formation. ALMA observations cover a 60 pc x 30 pc region of CO gas slightly north of the R136 cluster in 30 Doradus. We find 16 young stellar objects and about a 100 pre-main-sequence stars within the ALMA footprint. We define young stellar objects to be very early stage stars that are about 10,000 years old and whose SEDs peak in the infrared, and we use pre-main-sequence-stars to refer to slightly older stars that can be seen in the optical. I will use dendrograms to analyze both the high- and low-mass star properties with respect to the CO gas structure observed with ALMA. Preliminary results show that not all massive young stellar objects are associated with CO gas, higher mass clumps tend to form higher mass stars and are more likely to have multiple young stars, and lower mass clumps tend to not be gravitationally bound however the larger clouds are bound. Looking at the interplay between dense molecular gas and the newly forming stars in a stellar nursery will shed light on how these stars formed: monolithic collapse or competitive accretion.

  18. Young Stars & Planets Near the Sun in 2015: Five Takeaways and Five Predictions

    NASA Astrophysics Data System (ADS)

    Liu, Michael C.

    2016-01-01

    I present a highly biased and skewed summary of IAU Symposium 314, ``Young Stars and Planets Near the Sun,'' held in May 2015. This summary includes some takeaway thoughts about the rapidly evolving state of the field, as well as some crowd-sourced predictions for progress over the next ~10 years. We predict the elimination of 1-2 of the currently recognized young moving groups, the addition of 3 or more new moving groups within 100 pc, the continued lack of a predictive theory of stellar mass, robust measurements of the gas and dust content of circumstellar disks, and an ongoing struggle to achieve a consensus definition for a planet.

  19. Three supernova shells around a young M33 star cluster

    NASA Astrophysics Data System (ADS)

    Camps-Fariña, A.; Beckman, J. E.; Font, J.; Borlaff, A.; Zaragoza-Cardiel, J.; Amram, P.

    2016-09-01

    Using a specialized technique sensitive to the presence of expanding ionized gas, we have detected a set of three concentric expanding shells in an H II region in the nearby spiral galaxy M33. After mapping the kinematics in Hα with Fabry-Perot spectroscopy, we used slit spectra to measure the intensities of the [S II] doublet at λλ671.9, 673.1 nm and the [N II] doublet at λλ645.8, 658.3 nm to corroborate the kinematics and apply diagnostic tests using line ratios. These showed that the expanding shells are shock dominated as would be the case if they had originated with supernova explosions. Estimating their kinetic energies, we find fairly low values, indicating a fairly advanced stage of evolution. We obtain density, mass and parent star mass estimates, which, along with the kinetic energies, are inconsistent with the simplest models of shock-interstellar medium interaction. We propose that the presence and properties of an inhomogeneous medium offer a scenario which can account for these observations, and discuss the implications. Comparing our results with data from the literature supports the combined presence of an H II region and supernova remnant material at the observed position.

  20. The Mass Function of Young Star Clusters in the "Antennae" Galaxies.

    PubMed

    Zhang; Fall

    1999-12-20

    We determine the mass function of young star clusters in the merging galaxies known as the "Antennae" (NGC 4038/9) from deep images taken with the Wide Field Planetary Camera 2 on the refurbished Hubble Space Telescope. This is accomplished by means of reddening-free parameters and a comparison with stellar population synthesis tracks to estimate the intrinsic luminosity and age, and hence the mass, of each cluster. We find that the mass function of the young star clusters (with ages less, similar160 Myr) is well represented by a power law of the form psi&parl0;M&parr0;~M-2 over the range 104 less, similarM less, similar106 M middle dot in circle. This result may have important implications for our understanding of the origin of globular clusters during the early phases of galactic evolution. PMID:10577944

  1. A dusty torus around the luminous young star LkH alpha101.

    PubMed

    Tuthill, P G; Monnier, J D; Danchi, W C

    2001-02-22

    A star forms when a cloud of dust and gas collapses. It is generally believed that this collapse first produces a flattened rotating disk, through which matter is fed onto the embryonic star at the centre of the disk. When the temperature and density at the centre of the star pass a critical threshold, thermonuclear fusion begins. The remaining disk, which can still contain up to 0.3 times the mass of the star, is then sculpted and eventually dissipated by the radiation and wind from the newborn star. But this picture of the structure and evolution of the disk remains speculative because of the lack of morphological data of sufficient resolution and uncertainties regarding the underlying physical processes. Here we present images of a young star, LkH alpha101, in which the structure of the inner accretion disk is resolved. We find that the disk is almost face-on, with a central gap (or cavity) and a hot inner edge. The cavity is bigger than previous theoretical predictions, and we infer that the position of the inner edge is probably determined by sublimation of dust grains by direct stellar radiation, rather than by disk-reprocessing or viscous-heating processes as usually assumed. PMID:11234003

  2. The star-forming history of the young cluster NGC 2264

    NASA Technical Reports Server (NTRS)

    Adams, M. T.; Strom, K. M.; Strom, S. E.

    1983-01-01

    UBVRI H-alpha photographic photometry was obtained for a sample of low-mass stars in the young open cluster NGC 2264 in order to investigate the star-forming history of this region. A theoretical H-R diagram was constructed for the sample of probable cluster members. Isochrones and evolutionary tracks were adopted from Cohen and Kuhi (1979). Evidence for a significant age spread in the cluster was found amounting to over ten million yr. In addition, the derived star formation rate as a function of stellar mass suggests that the principal star-forming mass range in NGC 2264 has proceeded sequentially in time from the lowest to the highest masses. The low-mass cluster stars were the first cluster members to form in significant numbers, although their present birth rate is much lower now than it was about ten million yr ago. The star-formation rate has risen to a peak at successively higher masses and then declined.

  3. Radiation-driven warping of circumbinary disks around eccentric young star binaries

    SciTech Connect

    Hayasaki, Kimitake; Sohn, Bong Won; Jung, Taehyun; Zhao, Guangyao; Okazaki, Atsuo T.; Naito, Tsuguya

    2014-12-10

    We study a warping instability of a geometrically thin, non-self-gravitating, circumbinary disk around young binary stars on an eccentric orbit. Such a disk is subject to both the tidal torques due to a time-dependent binary potential and the radiative torques due to radiation emitted from each star. The tilt angle between the circumbinary disk plane and the binary orbital plane is assumed to be very small. We find that there is a radius within/beyond which the circumbinary disk is unstable to radiation-driven warping, depending on the disk density and temperature gradient indices. This marginally stable warping radius is very sensitive to viscosity parameters, a fiducial disk radius and the temperature measured there, the stellar luminosity, and the disk surface density at a radius where the disk changes from optically thick to thin for the irradiation from the central stars. On the other hand, it is insensitive to the orbital eccentricity and binary irradiation parameter, which is a function of the binary mass ratio and luminosity of each star. Since the tidal torques can suppress the warping in the inner part of the circumbinary disk, the disk starts to be warped in the outer part. While the circumbinary disks are most likely to be subject to the radiation-driven warping on an AU to kilo-AU scale for binaries with young massive stars more luminous than 10{sup 4} L {sub ☉}, the radiation-driven warping does not work for those around young binaries with the luminosity comparable to the solar luminosity.

  4. Radiation-driven Warping of Circumbinary Disks around Eccentric Young Star Binaries

    NASA Astrophysics Data System (ADS)

    Hayasaki, Kimitake; Sohn, Bong Won; Okazaki, Atsuo T.; Jung, Taehyun; Zhao, Guangyao; Naito, Tsuguya

    2014-12-01

    We study a warping instability of a geometrically thin, non-self-gravitating, circumbinary disk around young binary stars on an eccentric orbit. Such a disk is subject to both the tidal torques due to a time-dependent binary potential and the radiative torques due to radiation emitted from each star. The tilt angle between the circumbinary disk plane and the binary orbital plane is assumed to be very small. We find that there is a radius within/beyond which the circumbinary disk is unstable to radiation-driven warping, depending on the disk density and temperature gradient indices. This marginally stable warping radius is very sensitive to viscosity parameters, a fiducial disk radius and the temperature measured there, the stellar luminosity, and the disk surface density at a radius where the disk changes from optically thick to thin for the irradiation from the central stars. On the other hand, it is insensitive to the orbital eccentricity and binary irradiation parameter, which is a function of the binary mass ratio and luminosity of each star. Since the tidal torques can suppress the warping in the inner part of the circumbinary disk, the disk starts to be warped in the outer part. While the circumbinary disks are most likely to be subject to the radiation-driven warping on an AU to kilo-AU scale for binaries with young massive stars more luminous than 104 L ⊙, the radiation-driven warping does not work for those around young binaries with the luminosity comparable to the solar luminosity.

  5. The structure of protoplanetary discs around evolving young stars

    NASA Astrophysics Data System (ADS)

    Bitsch, Bertram; Johansen, Anders; Lambrechts, Michiel; Morbidelli, Alessandro

    2015-03-01

    The formation of planets with gaseous envelopes takes place in protoplanetary accretion discs on time scales of several million years. Small dust particles stick to each other to form pebbles, pebbles concentrate in the turbulent flow to form planetesimals and planetary embryos and grow to planets, which undergo substantial radial migration. All these processes are influenced by the underlying structure of the protoplanetary disc, specifically the profiles of temperature, gas scale height, and density. The commonly used disc structure of the minimum mass solar nebula (MMSN) is a simple power law in all these quantities. However, protoplanetary disc models with both viscous and stellar heating show several bumps and dips in temperature, scale height, and density caused by transitions in opacity, which are missing in the MMSN model. These play an important role in the formation of planets, since they can act as sweet spots for forming planetesimals via the streaming instability and affect the direction and magnitude of type-I migration. We present 2D simulations of accretion discs that feature radiative cooling and viscous and stellar heating, and they are linked to the observed evolutionary stages of protoplanetary discs and their host stars. These models allow us to identify preferred planetesimal and planet formation regions in the protoplanetary disc as a function of the disc's metallicity, accretion rate, and lifetime. We derive simple fitting formulae that feature all structural characteristics of protoplanetary discs during the evolution of several Myr. These fits are straightforward for applying to modelling any growth stage of planets where detailed knowledge of the underlying disc structure is required. Appendix A is available in electronic form at http://www.aanda.org

  6. CCD photometry of late-type stars in the young open cluster IC 2602

    NASA Astrophysics Data System (ADS)

    Foster, D. C.; Byrne, P. B.; Hawley, S. L.; Rolleston, W. R. J.

    1997-11-01

    We present the results of VRI photometry of the young open cluster IC 2602. Two 15 arcmin times 15 arcmin fields were observed in February and May 1991 using the 1-m Swope telescope at Las Campanas. Using theoretical isochrones obtained from \\cite[D'Antona & Mazzitelli (1994)]{dam94}, and allowing for observational and other uncertainties, we identify 78 primary candidate members with 12stars to be large, >= 50%, as might be expected given its low galactic latitude. We also compare our photometry with that given for the X-ray detected stars of \\cite[Randich et al. (1995)]{ran95}. We present complimentary narrow band H alpha photometry for a subset of the stars.

  7. Anatomy of a flaring proto-planetary disk around a young intermediate-mass star.

    PubMed

    Lagage, Pierre-Olivier; Doucet, Coralie; Pantin, Eric; Habart, Emilie; Duchêne, Gaspard; Ménard, François; Pinte, Christophe; Charnoz, Sébastien; Pel, Jan-Willem

    2006-10-27

    Although planets are being discovered around stars more massive than the Sun, information about the proto-planetary disks where such planets have built up is sparse. We have imaged mid-infrared emission from polycyclic aromatic hydrocarbons at the surface of the disk surrounding the young intermediate-mass star HD 97048 and characterized the disk. The disk is in an early stage of evolution, as indicated by its large content of dust and its hydrostatic flared geometry, indicative of the presence of a large amount of gas that is well mixed with dust and gravitationally stable. The disk is a precursor of debris disks found around more-evolved A stars such as beta-Pictoris and provides the rare opportunity to witness the conditions prevailing before (or during) planet formation. PMID:17008490

  8. Young and old massive star clusters: Theoretical challenges for the next decade

    NASA Astrophysics Data System (ADS)

    Charbonnel, Corinne

    2015-08-01

    Breakthrough results of high resolution observations both with HST and from the ground have revolutionized our view and our understanding of massive star clusters, young and old, in the Galaxy, in the Local Group, as well as in merging and interacting galaxies. This drastic paradigm shift has revealed the complexity of these systems and has raised a number of fundamental questions on the physical processes that drive the formation and evolution of massive star clusters in different environments, on the star cluster initial mass function, and on the contribution of these objects to the general galactic field stellar population. In this talk we review some of the main theoretical challenges that have to be faced in the field at the very same moment when we enter a golden age for observations and numerical multi-dimensional simulations.

  9. Signatures of multiple stellar populations in unresolved extragalactic globular/young massive star clusters

    SciTech Connect

    Peacock, Mark B.; Zepf, Stephen E.; Finzell, Thomas

    2013-06-01

    We present an investigation of potential signatures of the formation of multiple stellar populations in recently formed extragalactic star clusters. All of the Galactic globular clusters for which good samples of individual stellar abundances are available show evidence for multiple populations. This appears to require that multiple episodes of star formation and light element enrichment are the norm in the history of a globular cluster. We show that there are detectable observational signatures of multiple formation events in the unresolved spectra of massive, young extragalactic star clusters. We present the results of a pilot program to search for one of the cleanest signatures that we identify—the combined presence of emission lines from a very recently formed population and absorption lines from a somewhat older population. A possible example of such a system is identified in the Antennae galaxies. This source's spectrum shows evidence of two stellar populations with ages of 8 Myr and 80 Myr. Further investigation shows that these populations are in fact physically separated, but only by a projected distance of 59 pc. We show that the clusters are consistent with being bound and discuss the possibility that their coalescence could result in a single globular cluster hosting multiple stellar populations. While not the prototypical system proposed by most theories of the formation of multiple populations in clusters, the detection of this system in a small sample is both encouraging and interesting. Our investigation suggests that expanded surveys of massive young star clusters should detect more clusters with such signatures.

  10. Spectroscopic Study of Young Star Clusters in the Outskirts of NGC 1275 (Perseus A)

    NASA Astrophysics Data System (ADS)

    Gallagher, John S., III; Smith, Linda J.; Trancho, Gelys; Westmoquette, Mark; Zweibel, Ellen

    2009-08-01

    NGC 1275, the brightest galaxy in the A426 (Perseus) cluster, offers an extraordinary opportunity to explore feedback processes in a nearby (75 Mpc) system. This galaxy hosts a powerful AGN that feeds a double- lobe radio source in combination with a massive molecular ISM that supports extensive star formation. While the existence of a spider web array of ionized gas filaments extending R=90 kpc to the north is well known, their quiescent kinematics, molecular content, and associated spatially extended star formation only now is becoming clear. Our ongoing research addresses a variety of interrelated issues ranging from understanding what prevents high ICM cooling rates to the origin and evolution of the giant ionized filaments and the population of the halo with massive young star clusters. A major theme is an exploration of the ways in which mechanical luminosity and momentum from the AGN and SNe II operate as a feedback mechanism to halt the cooling flow and build new stellar content in NGC 1275. This proposal requests use of the Gemini-N GMOS IFU system to obtain spectra of young star clusters and their associated ionized gas located at a progression of galactocentric radii in NGC 1275. The resulting measurements of cluster kinematics, conditions in surrounding HII filaments, estimated ages, and chemical abundances will add fundamental new constraints on the evolution of this amazing galaxy.

  11. Variability in young very low mass stars: two surprises from spectrophotometric monitoring

    NASA Astrophysics Data System (ADS)

    Bozhinova, I.; Scholz, A.; Eislöffel, J.

    2016-05-01

    We present simultaneous photometric and spectroscopic observations of seven young and highly variable M dwarfs in star-forming regions in Orion, conducted in four observing nights with FOcal Reducer and low dispersion Spectrograph2 at European Southern Observatory/VLT. All seven targets show significant photometric variability in the I band, with amplitudes between 0.1-0.8 mag, The spectra, however, remain remarkably constant, with spectral type changes less than 0.5 subtypes. Thus, the brightness changes are not caused by veiling that `fills in' absorption features. Three objects in the σ Ori cluster (age ˜3 Myr) exhibit strong Hα emission and Hα variability, in addition to the continuum variations. Their behaviour is mostly consistent with the presence of spots with temperature of ˜300 K above the photosphere and filling factors between 0.2-0.4, in contrast to typical hotspots observed in more massive stars. The remaining targets near ɛ Ori, likely to be older, show eclipse-like light curves, no significant Hα activity and are better represented by variable extinction due to circumstellar material. Interestingly, two of them show no evidence of infrared excess emission. Our study shows that high-amplitude variability in young very low mass stars can be caused by different phenomena than in more massive T Tauri stars and can persist when the disc has disappeared and accretion has ceased.

  12. Highly Red Objects in M31: Candidates for Massive Young Stellar Objects or Superwind-Phase Asymptotic Giant Branch Stars

    NASA Astrophysics Data System (ADS)

    Kodaira, Keiichi; Tamura, Motohide; Vansevičius, Vladas; Miyazaki, Satoshi

    1998-06-01

    Several highly red objects (H-K>=0.9) are detected in the ~2'×2' field of OB association A24 near the 7 kpc spiral arm of M31. They show infrared excesses on the J-H versus H-K diagram, which is typical for stars with thick dust shells. We suspect them to be candidates either for compact young clusters containing massive young stellar objects or for superwind-phase asymptotic giant branch stars in M31.

  13. StarPals International Young Astronomers' Network Collaborative Projects for IYA

    NASA Astrophysics Data System (ADS)

    Kingan, Jessi

    2008-09-01

    StarPals is a nascent non-profit organization with the goal of providing opportunities for international collaboration between students of all ages within space science research. We believe that by encouraging an interest in the cosmos, the one thing that is truly Universal, from a young age, students will not only further their knowledge of and interest in science but will learn valuable teamwork and life skills. The goal is to foster respect, understanding and appreciation of cultural diversity among all StarPals participants, whether students, teachers, or mentors. StarPals aims to inspire students by providing opportunities in which, more than simply visualizing themselves as research scientists, they can actually become one. The technologies of robotic telescopes, videoconferencing, and online classrooms are expanding the possibilities like never before. In honor of IYA2009, StarPals would like to encourage 400 schools to participate on a global scale in astronomy/cosmology research on various concurrent projects. We will offer in-person or online workshops and training sessions to teach the teachers. We will be seeking publication in scientific journals for some student research. For our current project, the Double Stars Challenge, students use the robotic telescopes to take a series of four images of one of 30 double stars from a list furnished by the US Naval Observatory and then use MPO Canopus software to take distance and position angle measurements. StarPals provides students with hands-on training, telescope time, and software to complete the imaging and measuring. A paper will be drafted from our research data and submitted to the Journal of Double Star Observations. The kids who participate in this project may potentially be the youngest contributors to an article in a vetted scientific journal. Kids rapidly adapt and improve their computer skills operating these telescopes and discover for themselves that science is COOL!

  14. Similarities in Populations of Young Star Clusters: Evidence for Quasi-Universal Processes

    NASA Astrophysics Data System (ADS)

    Fall, Michael

    2015-08-01

    Star clusters are the link between interstellar clouds and star-forming galaxies - the topics of this symposium. They are important in the ecology of galaxies, as the sites of star formation and stellar feedback and as the building blocks of stellar populations. This talk presents observations of the mass functions of young star clusters (i.e., the spectrum of cluster masses) in different galaxies, including dwarf and giant, interacting and quiescent galaxies. These observations reveal some remarkable similarities in the mass functions of clusters in these different environments, analogous to the similarities in stellar initial mass functions (IMFs). Thus, we have evidence for universal or quasi-universal processes regulating the formation and early evolution of star clusters. This in turn is highly suggestive of universal or quasi-universal processes regulating the structure of the interstellar medium on the scales of protoclusters. This talk presents some theoretical explanations for these similarities. Specifically, we focus on the similarity of the mass functions of star clusters and their progenitor molecular clouds (protoclusters); both are power laws with indices near -2 (after correcting the observed distributions for life-time effects). This similarity indicates that the average efficiency of star formation in the protoclusters is independent of their masses (or nearly so), which in turn places interesting constraints on the dominant types of stellar feedback within the protoclusters. In particular, momentum-driven processes such as radiation pressure are favored. This talk also presents some theoretical explanations for the observed similarity of the mass functions of star clusters of different ages. These gas-free objects are affected primarily by stellar mass loss, tidal interactions with passing molecular clouds, and internal two-body relaxation. All these processes reduce the masses of clusters, progressively lowering the amplitude of their mass

  15. Chandra Observations of a Young Embedded Magnetic B Star in the p Ophiuchus Cloud

    NASA Technical Reports Server (NTRS)

    Hamaguchi, Kenji; Imanishi, Kensuke

    2002-01-01

    This paper reports the analysis of two Chandra X-ray observations of the young magnetic B star rho Ophiuchus S1. X-ray emission from the star was detected in both observations. The average flux is almost the same in both, but during each observation the flux shows significant time variations by a factor of two on timescales of 20-40 ksec. Each spectrum can be fit by either an absorbed power law model with a photon index of approx. -3 or a thin-thermal plasma model with a temperature of approx. 2 keV and an extremely low metal abundance (approx. less than 0.1 solar). The spectrum of the first observation has an apparent line feature at about 6.8 keV, which likely corresponds to highly ionized iron K alpha. In contrast, the spectrum of the second observation shows an anomalous edge absorption component at E approx. 1 keV. The continuum emission and log (L(sub X)/L(sub bol)) approx. -6 are similar to those of young intermediate-mass stars (Herbig Ae/Be stars) although the presence of the magnetic field inferred from the detection of non-thermal radio emission has drawn an analogy between rho Ophiuchus S1 and magnetic chemically peculiar (MCP) stars. If the X-ray emission is thermal, the highest plasma temperature observed is too high to be explained by the conventional theories of magnetic stars, and favors some kind of magnetic dynamo activity, while if the emission is nonthermal, it might be related to mass infall. The 6.8 keV line and 4 keV edge features are marginal but they give important information near the stellar body if they are real. Their physical interpretation is discussed.

  16. Precise High-cadence Time Series Observations of Five Variable Young Stars in Auriga with MOST

    NASA Astrophysics Data System (ADS)

    Cody, Ann Marie; Tayar, Jamie; Hillenbrand, Lynne A.; Matthews, Jaymie M.; Kallinger, Thomas

    2013-03-01

    To explore young star variability on a large range of timescales, we have used the MOST satellite to obtain 24 days of continuous, sub-minute cadence, high-precision optical photometry on a field of classical and weak-lined T Tauri stars (TTSs) in the Taurus-Auriga star formation complex. Observations of AB Aurigae, SU Aurigae, V396 Aurigae, V397 Aurigae, and HD 31305 reveal brightness fluctuations at the 1%-10% level on timescales of hours to weeks. We have further assessed the variability properties with Fourier, wavelet, and autocorrelation techniques, identifying one significant period per star. We present spot models in an attempt to fit the periodicities, but find that we cannot fully account for the observed variability. Rather, all stars exhibit a mixture of periodic and aperiodic behavior, with the latter dominating stochastically on timescales less than several days. After removal of the main periodicity, periodograms for each light curve display power-law trends consistent with those seen for other young accreting stars. Several of our targets exhibited unusual variability patterns not anticipated by prior studies, and we propose that this behavior originates with the circumstellar disks. The MOST observations underscore the need for investigation of TTS light variations on a wide range of timescales in order to elucidate the physical processes responsible; we provide guidelines for future time series observations. Based on data from the MOST satellite, a Canadian Space Agency mission, jointly operated by Systems Canada Inc. (MSCI), formerly part of Dynacon, Inc., the University of Toronto Institute for Aerospace Studies, and the University of British Columbia with the assistance of the University of Vienna.

  17. Infrared Spectra of Young Stars Embedded in the R Coronae Australis Cloud

    NASA Astrophysics Data System (ADS)

    Meyer, Michael R.; Wilking, Bruce A.

    2009-04-01

    Infrared spectra are presented for a magnitude-limited (K < 12.5 mag) sample of stellar objects observed toward the R Coronae Australis molecular core. These spectra, which are used to identify young stellar objects in the cloud, include the wavelengths of emission lines from [Fe II] and H2, four of the Brackett series lines, the CO bandheads, as well as photospheric absorption lines of Al, Na, Mg, Si, and Ca. For a subset of the sample, the spectra are compared to those of infrared spectral standard stars to derive spectral types and luminosity classes. By comparing their placement in a Hertzsprung-Russell diagram with theoretical pre-main-sequence tracks and isochrones, we estimate the stellar masses and assess the evolutionary states of the members of this young aggregate. All of the sources classified via near-IR spectroscopy have masses in the range 0.2-2.5 Msolar. The locus of points in the H-R diagram is lower than observed for other embedded clusters (e.g., NGC 2024 and the ρ Oph core), suggesting either a more advanced evolutionary state or a difference in the intrinsic stellar birthline for very young clusters. We discuss the implications of our results for the shape of the initial mass function of the embedded young cluster and the star-forming history of the cloud.

  18. Galex-selected Nearby Young Stars: X-ray Counterparts and Potential New eps Cha Members

    NASA Astrophysics Data System (ADS)

    Diaz, Mariangelly; Rodriguez, D.; Darling, S.; Principe, D.; Kastner, J. H.; Montez, R.; Zuckerman, B. M.

    2013-01-01

    We are searching the GALEX (UV) and 2MASS+WISE (infrared) sky survey data for nearby young, low-mass stars. We select candidates on the basis of proper motions (PMs), infrared colors and magnitudes, and UV excesses that are all indicative of young M dwarfs within ~100 pc of Earth. Here, we describe the preliminary results of searches of available ROSAT, XMM, and Chandra archival data for X-ray detections that might establish high levels of coronal activity and, hence, help confirm the youth of UV/IR/PM-selected candidates. We also present an analysis of candidate young stars in the vicinity of the ~7-Myr-old epsilon Chamaeleonis Association, in an effort to identify possible new members (and companions to known members) of this young stellar group. Support for this work was provided in part by the National Science Foundation under a Research Experience for Undergraduates program grant (PHY-1062874) to RIT and by NASA Astrophysics Data Analysis Program award NNX12AH37G to RIT and UCLA.

  19. YoungStar in Wisconsin: Analysis of Data as of July 2014. Executive Summary: Key Findings and Analysis

    ERIC Educational Resources Information Center

    Wisconsin Council on Children and Families, 2014

    2014-01-01

    YoungStar is a five-star quality rating system for child care providers based on education, learning environment, business methods, and practices around child health and well-being. Through this rating system, the state is addressing several key issues in Wisconsin's child care system. The rating system will: (1) Improve the overall quality of…

  20. Bayesian Analysis to Identify New Star Candidates in Nearby Young Stellar Kinematic Groups

    NASA Astrophysics Data System (ADS)

    Malo, Lison; Doyon, René; Lafrenière, David; Artigau, Étienne; Gagné, Jonathan; Baron, Frédérique; Riedel, Adric

    2013-01-01

    We present a new method based on a Bayesian analysis to identify new members of nearby young kinematic groups. The analysis minimally takes into account the position, proper motion, magnitude, and color of a star, but other observables can be readily added (e.g., radial velocity, distance). We use this method to find new young low-mass stars in the β Pictoris and AB Doradus moving groups and in the TW Hydrae, Tucana-Horologium, Columba, Carina, and Argus associations. Starting from a sample of 758 mid-K to mid-M (K5V-M5V) stars showing youth indicators such as Hα and X-ray emission, our analysis yields 214 new highly probable low-mass members of the kinematic groups analyzed. One is in TW Hydrae, 37 in β Pictoris, 17 in Tucana-Horologium, 20 in Columba, 6 in Carina, 50 in Argus, 32 in AB Doradus, and the remaining 51 candidates are likely young but have an ambiguous membership to more than one association. The false alarm rate for new candidates is estimated to be 5% for β Pictoris and TW Hydrae, 10% for Tucana-Horologium, Columba, Carina, and Argus, and 14% for AB Doradus. Our analysis confirms the membership of 58 stars proposed in the literature. Firm membership confirmation of our new candidates will require measurement of their radial velocity (predicted by our analysis), parallax, and lithium 6708 Å equivalent width. We have initiated these follow-up observations for a number of candidates, and we have identified two stars (2MASSJ01112542+1526214, 2MASSJ05241914-1601153) as very strong candidate members of the β Pictoris moving group and one strong candidate member (2MASSJ05332558-5117131) of the Tucana-Horologium association; these three stars have radial velocity measurements confirming their membership and lithium detections consistent with young age. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre

  1. As Eyes See Young Stars Assemble: Star and Planet Formation in the VLT Era

    NASA Astrophysics Data System (ADS)

    McCaughrean, Mark J.

    The river of time leading to this meeting on star and planet formation with the VLT can apparently be traced back to somewhere in the vicinity of Lake Geneva almost 25 years ago, in 1977. In this introductory talk, I attempt to navigate back upstream and locate the source of the river and in doing so, discover a rather surprising link to musical happenings elsewhere on the lake at the same time. The reader is free to decide whether they find the connection more than mere coincidence, let alone interesting.

  2. Uncovering The Properties of Young Neutron Stars and Their Surrounding Supernova A Remnants

    NASA Technical Reports Server (NTRS)

    Slane, Patrick O.; Oliversen, Ronald J. (Technical Monitor)

    2003-01-01

    In the third year of this program, the following studies have been undertaken in support of this effort: G292.0+1.8: In our previous work on this SNR, we discovered a young neutron star and its associated pulsar wind nebula. Radio observations by Camilo et al. (2002) have identified a young 136 ms pulsar in the direction of G292.0+1.8. We have used Chandra HRC observations of the central source to identify X-ray pulsations at the same period, thus establishing the neutron star as the radio pulsar counterpart. We have also set limits on the cooling of this young neutron star based on the unpulsed component of the X-ray emission. We find that the limit falls slightly below standard cooling models in which the modified Urca process is responsible for the bulk of the interior neutrino emission. A paper summarizing these results is currently being circulated amongst co-authors for review prior to publication. 3c 58: Our Chandra observations of this Crab-like SNR revealed the presence of a young, rapidly rotating pulsar as well as a central compact nebula which we interpret as a toroidal structure associated with the pulsar wind termination shock. Our modeling of this structure has allowed us to establish a temperature upper limit for the neutron star which falls well below predictions from standard cooling models, and implies the presence of exotic particles (such as pion condensates) or other processes that increase the neutrino production rate in the interior. A paper summarizing this work has been published in the Astrophysical Journal (Slane, Helfand, & Murray 2002, ApJ, 571, L45), and the results were the subject of a NASA Space Science Update (4/10/2002) which led to extensive media coverage. Based upon our initial observations, we submitted a successful Chandra Large Project proposal for a 350 ks observation of this young neutron star and its wind nebula. Kes 79: Our Chandra observations of this SNR reveal a compact central source which appears to be the neutron

  3. Commissioning COSMOS: Detection of Lithium in Young Stars in Lupus 3 through Multi-Object Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lackey, Kyle; Briceno, Cesar; Elias, Jonathan H.

    2015-01-01

    COSMOS, a multi-object spectrograph and imager, is a new instrument on the Blanco 4-meter telescope at the Cerro Tololo Inter-American Observatory. In order to demonstrate the instrument's operations during commissioning, we used COSMOS, its red grism and three custom slit masks to conduct a spectroscopic survey of the star-forming core of the Lupus 3 dark cloud in an effort to detect the presence of Lithium in the T Tauri stars that have been previously identified in that region. We detected the Li I 6708 Angstrom resonance transition in several (but not all) stars that were observed, consistent with prior studies that have observed Lithium in other young stars at the center of the Lupus 3 dark cloud and in other star-forming regions. These results also demonstrate the ability of COSMOS to significantly reduce the time required to complete spectroscopic surveys, relative to single-object instruments.Lackey was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program (AST-1262829).

  4. Formation of massive black holes through runaway collisions in dense young star clusters.

    PubMed

    Zwart, Simon F Portegies; Baumgardt, Holger; Hut, Piet; Makino, Junichiro; McMillan, Stephen L W

    2004-04-15

    A luminous X-ray source is associated with MGG 11--a cluster of young stars approximately 200 pc from the centre of the starburst galaxy M 82 (refs 1, 2). The properties of this source are best explained by invoking a black hole with a mass of at least 350 solar masses (350 M(o)), which is intermediate between stellar-mass and supermassive black holes. A nearby but somewhat more massive cluster (MGG 9) shows no evidence of such an intermediate-mass black hole, raising the issue of just what physical characteristics of the clusters can account for this difference. Here we report numerical simulations of the evolution and motion of stars within the clusters, where stars are allowed to merge with each other. We find that for MGG 11 dynamical friction leads to the massive stars sinking rapidly to the centre of the cluster, where they participate in a runaway collision. This produces a star of 800-3,000 M(o) which ultimately collapses to a black hole of intermediate mass. No such runaway occurs in the cluster MGG 9, because the larger cluster radius leads to a mass segregation timescale a factor of five longer than for MGG 11. PMID:15085124

  5. Photoevaporating Disks around Young Stars: Ultracompact HII Regions and Protoplanetary Disks.

    NASA Astrophysics Data System (ADS)

    Johnstone, Douglas Ian

    1995-01-01

    -mass stars are known to have enhanced extreme ultraviolet luminosity suggested to be due to boundary layer accretion. Assuming that most low mass stars have such an enhanced Lyman luminosity phi ~ 1041 s ^{-1}, for ~ 3 times 10^7 yrs it is possible to remove most of the gas in the outer disk. A diagnostic of this mass loss may be the low-velocity forbidden oxygen, nitrogen, and sulphur line emission observed around young stars with disks. Photoevaporating disk models yield reasonable agreement with the flux seen in these lines. The process of photoevaporation also has implications for the formation of the giant planets within the solar nebula. Within young stellar clusters a few high mass stars may overwhelm the internal Lyman continuum flux from low mass stars and externally evaporated disks may result. The Trapezium region presents the best studied example of such a cluster. Photoionization due to high energy photons from the high mass stars erode the disks around nearby low mass stars. The resulting short destruction times for these disks constrain the gestation period for creating planets.

  6. The life-cycle of young star-clusters; the role of the galactic environment on cluster formation and evolution

    NASA Astrophysics Data System (ADS)

    Adamo, Angela

    2015-08-01

    Our understanding of star formation on galactic scales has been fairly grasped (e.g. the rate at which stars form scales proportionally to the molecular gas content) both in the local and high redshift universe. However, our knowledge on how star formation proceeds at small scales (e.g. the fraction of star formation happening in stellar clusters, the time-scales for star-forming regions to dissolve, the impact of the galactic environment on star and cluster formation) remains a challenge. Gravitationally bound young stellar clusters appear to be a commune product of star formation. There are tantalizing similarities between young star clusters and globular clusters, the latter formed by gravitationally bound ancient stellar populations. However, the young and globular cluster populations show statistical properties (mass functions, formation efficiencies, and survival times) that have been claimed incompatible, leaving the two populations being the results of distinct processes of formation. In my contribution, I will discuss the latest results produced with the analysis of the young cluster populations in several nearby galaxies. The use of new statistical methods, the link with dense gas fueling star formation, the access to homogenous datasets show, for the first time, clear evidence of the influence of the galactic environment in shaping the properties of young star cluster populations. After all, the differences between the two cluster populations may not be so pronounced, suggesting that the same physical formation process under different environmental conditions has been (and currently is) at work at high redshift (when globular clusters were formed) and in the local universe.

  7. Completing the census of young stars near the Sun with the FunnelWeb spectroscopic survey

    NASA Astrophysics Data System (ADS)

    Lawson, Warrick; Murphy, Simon; Tinney, Christopher G.; Ireland, Michael; Bessell, Michael S.

    2016-06-01

    From late 2016, the Australian FunnelWeb survey will obtain medium-resolution (R~2000) spectra covering the full optical range for 2 million of the brightest stars (I<12) in the southern sky. It will do so using an upgraded UK Schmidt Telescope at Siding Spring Observatory, equipped with a revolutionary, parallelizable optical fibre positioner ("Starbugs") and spectrograph. The ability to reconfigure a multi-fibre plate in less than 5 minutes allows FunnelWeb to observe more stars per night than any other competing multi-fibre spectrograph and enables a range of previously inefficient bright star science not attempted since the completion of the HD catalogues in the 1940s. Among its key science aims, FunnelWeb will obtain spectra for thousands of young and adolescent (<1 Gyr) stars near the Sun (<200 pc) across a wide range of spectral types. These spectra will include well-studied youth and activity indicators such as H-alpha, Li I 6708A, Ca II H&K, as well as surface gravity diagnostics (e.g. Na I, K I). In addition, FunnelWeb will obtain stellar parameters (Teff, logg, vsini), abundances (Fe/H, alpha/Fe) and radial velocities to 1-2 km/s for every star in the survey. When combined with high precision parallaxes and proper motions from the Gaia mission expected from 2017, this dataset will provide a near-complete census of adolescent stars in the solar neighbourhood. It will help reveal the typical formation environments of young solar-type stars, how such stars move from their stellar nurseries to their adult lives in the field, and identifying thousands of high-priority targets for follow-up direct imaging (GPI, SPHERE), transit (including TESS) and radial velocity exoplanet studies. In this poster contribution we introduce the FunnelWeb survey, its science goals and input catalogue, as well as provide an update on the status of the fibre positioner and spectrograph commissioning at Siding Spring.

  8. Magnetocentrifugally driven flows from young stars and disks. 1: A generalized model

    NASA Technical Reports Server (NTRS)

    Shu, Frank; Najita, Joan; Ostriker, Eve; Wilkin, Frank; Ruden, Steven; Lizano, Susana

    1994-01-01

    We propose a generalized model for stellar spin-down, disk accretion, and truncation, and the origin of winds, jets, and bipolar outflows from young stellar objects. We consider the steady state dynamics of accretion of matter from a viscous and imperfectly conducting disk onto a young star with a strong magnetic field. For an aligned stellar magnetosphere, shielding currents in the surface layers of the disk prevent stellar field lines from penetrating the disk everywhere except for a range of radii about pi = R(sub x), where the Keplerian angular speed of rotation Omega(sub x) equals the angular speed of the star Omega(sub *). For the low disk accretion rates and high magnetic fields associated with typical T Tauri stars, R(sub x) exceeds the radius of the star R(sub *) by a factor of a few, and the inner disk is effectively truncated at a radius R(sub t) somewhat smaller than R(sub x). Where the closed field lines between R(sub t) and R(sub x) bow sufficiently inward, the accreting gas attaches itself to the field and is funneled dynamically down the effective potential (gravitational plus centrifugal) onto the star. Contrary to common belief, the accompanying magnetic torques associated with this accreting gas may transfer angular momentum mostly to the disk rather than to the star. Thus, the star can spin slowly as long as R(sub x) remains significantly greater than R(sub *). Exterior to R(sub x) field lines threading the disk bow outward, which makes the gas off the mid-plane rotate at super-Keplerian velocities. This combination drives a magnetocentrifugal wind with a mass-loss rate M(sub w) equal to a definite fraction f of the disk accretion rate M(sub D). For high disk accretion rates, R(sub x) is forced down to the stellar surface, the star is spun to breakup, and the wind is generated in a manner identical to that proposed by Shu, Lizano, Ruden, & Najita in a previous communication to this journal. In two companion papers (II and III), we develop a

  9. GEMINI near-infrared spectroscopic observations of young massive stars embedded in molecular clouds

    NASA Astrophysics Data System (ADS)

    Roman-Lopes, A.; Abraham, Z.; Ortiz, R.; Rodriguez-Ardila, A.

    2009-03-01

    K-band spectra of young stellar candidates in four Southern hemisphere clusters have been obtained with the Gemini Near-Infrared Spectrograph in Gemini South. The clusters are associated with IRAS sources that have colours characteristic of ultracompact HII regions. Spectral types were obtained by comparison of the observed spectra with those of a near-infrared (NIR) library; the results include the spectral classification of nine massive stars and seven objects confirmed as background late-type stars. Two of the studied sources have K-band spectra compatible with those characteristic of very hot stars, as inferred from the presence of CIV, NIII and NV emission lines at 2.078, 2.116 and 2.100 μm, respectively. One of them, I16177_IRS1, has a K-band spectrum similar to that of Cyg OB2 7, an O3If* supergiant star. The nebular K-band spectrum of the associated Ultra-Compact (UC) HII region shows the s-process [KrIII] and [SeIV] high excitation emission lines, previously identified only in planetary nebula. One young stellar object was found in each cluster, associated with either the main IRAS source or a nearby resolved Midecourse Space eXperiment (MSX) component, confirming the results obtained from previous NIR photometric surveys. The distances to the stars were derived from their spectral types and previously determined JHK magnitudes; they agree well with the values obtained from the kinematic method, except in the case of IRAS 15408-5356, for which the spectroscopic distance is about a factor of 2 smaller than the kinematic value.

  10. Bolometric temperature and young stars in the Taurus and Ophiuchus complexes

    NASA Technical Reports Server (NTRS)

    Chen, H.; Myers, P. C.; Ladd, E. F.; Wood, D. O. S.

    1995-01-01

    We calculated bolometric temperature (T(sub bol)) and luminosity (L(sub bol)) for 128 young stellar objects (YSOs) in Taurus, 74 in the Ophiuchus 'core', and 33 in the Ophiuchus 'off-core' region. We have constructed the bolometric luminosity-temperature (BLT) diagram, the log-log plot of L(sub bol) versus T(sub bol), for the three samples. T(sub bol) is defined as the temperature of a blackbody having the same frequency as the observed continuum spectrum. It measures the redness (or coldness) of an astronomical source. The BLT diagram is analogous to the H-R diagram and allows for a direct and quantitative comparison of YSOs at a wide variety of evolutionary states, ranging from the most deeply embedded stars to T Tauri stars nearly on the main sequence. We found (1) T(sub bol) increases monotonically from embedded sources (approximately 60-500 K) to classical T Tauri stars (approximately 1000-3000 K) to weak-line T Tauri stars (approximately 2000-5000 K); (2) T(sub bol) correlates reasonably well with the age inferred from the evolutionary models of pre-main-sequence stars and protostars for embedded 'protostars' and weak-line T Tauri stars. There is no significant correlation for the classical T Tauri stars. These results can be understood in terms of dissipation of circumstellar dust envelope and disk during the early stages of stellar evolution. Sources in the three regions have different distributions in the BLT diagram. The Ophiuchus core has the highest fraction of cold sources among the three regions. These cold sources are also more luminous than the YSOs in the other regions. The Ophiuchus off-core sample is dominated by the more evolved pre-main-sequence stars. The Taurus sources have distributions intermediate in L(sub bol), T(sub bol), and age between the Ophiuchus core and off-core distributions. These may suggest differences in the star formation history, and possibly in the stellar masses and mass accretion rates in these star-forming regions.

  11. Detection of Variable Gaseous Absorption Features in the Debris Disks Around Young A-type Stars

    NASA Astrophysics Data System (ADS)

    Montgomery, Sharon L.; Welsh, Barry Y.

    2012-10-01

    We present medium resolution (R = 60,000) absorption measurements of the interstellar Ca II K line observed towards five nearby A-type stars (49 Ceti, 5 Vul, ι Cyg, 2 And, and HD 223884) suspected of possessing circumstellar gas debris disks. The stars were observed on a nightly basis during a six night observing run on the 2.1-meter Otto Struve telescope at the McDonald Observatory, Texas. We have detected nightly changes in the absorption strength of the Ca II K line observed near the stellar radial velocity in three of the stars (49 Ceti, i Cyg and HD 223884). Such changes in absorption suggest the presence of a circumstellar (atomic) gas disk around these stars. In addition to the absorption changes in the main Ca II K line profile, we have also observed weak transient absorption features that randomly appear at redshifted velocities in the spectra of 49 Ceti, 5 Vul, and 2 And. These absorption features are most probably associated with the presence of falling evaporated bodies (exo-comets) that liberate evaporating gas on their approach to the central star. This now brings the total number of systems in which exocomet activity has been observed at Ca II or Na I wavelengths on a nightly basis to seven (β Pic, HR 10, HD 85905, β Car, 49 Ceti, 5 Vul, and 2 And), with 2 And exhibiting weaker and less frequent changes. All of the disk systems presently known to exhibit either type of short-term variability in Ca II K line absorption are rapidly rotating A-type stars (V sin i > 120 km s-1). Most exhibit mid-IR excesses, and many of them are very young (< 20 Myr), thus supporting the argument that many of them are transitional objects between Herbig Ae and "Vega-like" A-type stars with more tenuous circumstellar disks. No mid-IR excess (due to the presence of a dust disk) has yet been detected around either 2 And or HD 223884, both of which have been classified as λ Boötis-type stars. This may indicate that the observed changes in gas absorption for these two

  12. NEAR-INFRARED VARIABILITY IN YOUNG STARS IN CYGNUS OB7

    SciTech Connect

    Rice, Thomas S.; Wolk, Scott J.; Aspin, Colin

    2012-08-10

    We present the first results from a 124 night J, H, K near-infrared monitoring campaign of the dark cloud L 1003 in Cygnus OB7, an active star-forming region. Using three seasons of UKIRT observations spanning 1.5 years, we obtained high-quality photometry on 9200 stars down to J = 17 mag, with photometric uncertainty better than 0.04 mag. On the basis of near-infrared excesses from disks, we identify 30 pre-main-sequence stars, including 24 which are newly discovered. We analyze those stars and find that the NIR excesses are significantly variable. All 9200 stars were monitored for photometric variability; among the field star population, {approx}160 exhibited near-infrared variability (1.7% of the sample). Of the 30 young stellar objects (YSOs), 28 of them (93%) are variable at a significant level. Of the 30 YSOs, twenty-five have near-infrared excess consistent with simple disk-plus-star classical T Tauri models. Nine of these (36%) drift in color space over the course of these observations and/or since Two Micron All Sky Survey observations such that they cross the boundary defining the NIR excess criteria; effectively, they have a transient near-infrared excess. Thus, time-series JHK observations can be used to obtain a more complete sample of disk-bearing stars than single-epoch JHK observations. About half of the YSOs have color-space variations parallel to either the classical T Tauri star locus or a hybrid track which includes the dust reddening trajectory. This indicates that the NIR variability in YSOs that possess accretion disks arises from a combination of variable extinction and changes in the inner accretion disk: either in accretion rate, central hole size, and/or the inclination of the inner disk. While some variability may be due to stellar rotation, the level of variability on the individual stars can exceed a magnitude. This is a strong empirical suggestion that protoplanetary disks are quite dynamic and exhibit more complex activity on short

  13. Search for associations containing young stars (SACY). VII. New stellar and substellar candidate members in the young associations

    NASA Astrophysics Data System (ADS)

    Elliott, P.; Bayo, A.; Melo, C. H. F.; Torres, C. A. O.; Sterzik, M. F.; Quast, G. R.; Montes, D.; Brahm, R.

    2016-04-01

    Context. The young associations offer us one of the best opportunities to study the properties of young stellar and substellar objects and to directly image planets thanks to their proximity (<200 pc) and age (≈5-150 Myr). However, many previous works have been limited to identifying the brighter, more active members (≈1 M⊙) owing to photometric survey sensitivities limiting the detections of lower mass objects. Aims: We search the field of view of 542 previously identified members of the young associations to identify wide or extremely wide (1000-100 000 au in physical separation) companions. Methods: We combined 2MASS near-infrared photometry (J, H, K) with proper motion values (from UCAC4, PPMXL, NOMAD) to identify companions in the field of view of known members. We collated further photometry and spectroscopy from the literature and conducted our own high-resolution spectroscopic observations for a subsample of candidate members. This complementary information allowed us to assess the efficiency of our method. Results: We identified 84 targets (45: 0.2-1.3 M⊙, 17: 0.08-0.2 M⊙, 22: <0.08 M⊙) in our analysis, ten of which have been identified from spectroscopic analysis in previous young association works. For 33 of these 84, we were able to further assess their membership using a variety of properties (X-ray emission, UV excess, Hα, lithium and K I equivalent widths, radial velocities, and CaH indices). We derive a success rate of 76-88% for this technique based on the consistency of these properties. Conclusions: Once confirmed, the targets identified in this work would significantly improve our knowledge of the lower mass end of the young associations. Additionally, these targets would make an ideal new sample for the identification and study of planets around nearby young stars. Given the predicted substellar mass of the majority of these new candidate members and their proximity, high-contrast imaging techniques would facilitate the search for

  14. Search for associations containing young stars (SACY). VII. New stellar and substellar candidate members in the young associations

    NASA Astrophysics Data System (ADS)

    Elliott, P.; Bayo, A.; Melo, C. H. F.; Torres, C. A. O.; Sterzik, M. F.; Quast, G. R.; Montes, D.; Brahm, R.

    2016-05-01

    Context. The young associations offer us one of the best opportunities to study the properties of young stellar and substellar objects and to directly image planets thanks to their proximity (<200 pc) and age (≈5-150 Myr). However, many previous works have been limited to identifying the brighter, more active members (≈1 M⊙) owing to photometric survey sensitivities limiting the detections of lower mass objects. Aims: We search the field of view of 542 previously identified members of the young associations to identify wide or extremely wide (1000-100 000 au in physical separation) companions. Methods: We combined 2MASS near-infrared photometry (J, H, K) with proper motion values (from UCAC4, PPMXL, NOMAD) to identify companions in the field of view of known members. We collated further photometry and spectroscopy from the literature and conducted our own high-resolution spectroscopic observations for a subsample of candidate members. This complementary information allowed us to assess the efficiency of our method. Results: We identified 84 targets (45: 0.2-1.3 M⊙, 17: 0.08-0.2 M⊙, 22: <0.08 M⊙) in our analysis, ten of which have been identified from spectroscopic analysis in previous young association works. For 33 of these 84, we were able to further assess their membership using a variety of properties (X-ray emission, UV excess, Hα, lithium and K I equivalent widths, radial velocities, and CaH indices). We derive a success rate of 76-88% for this technique based on the consistency of these properties. Conclusions: Once confirmed, the targets identified in this work would significantly improve our knowledge of the lower mass end of the young associations. Additionally, these targets would make an ideal new sample for the identification and study of planets around nearby young stars. Given the predicted substellar mass of the majority of these new candidate members and their proximity, high-contrast imaging techniques would facilitate the search for

  15. Photometric properties of stars clusters with young or mixed age stellar populations

    NASA Astrophysics Data System (ADS)

    Mollá, M.; García-Vargas, M. L.; Martín-Manjón, M. L.

    2013-05-01

    The main goal of this work is to present and discuss the synthetic photometrical properties of stellar clusters resulting from the PopStar code. Colors in Johnson and SDSS systems, Hα and Hβ luminosities and equivalent widths, and ionizing region size, have been computed for a wide range of metallicities Z = 0.0001, 0.0004, 0.004,0.008,0.02 and 0.05, and ages, from 0.1 Myr to 20 Gyr in Mollá, Garc{í}a-Vargas, & Bressan (2009, MNRAS, 398, 451). Emission lines are shown in Mart{í}n-Manj{ó}n et al. (2010, MNRAS, 403, 2012). Now we calculate colors with the emission lines contribution to the broad band color, so colors include stellar and nebular components, plus the emission lines following the evolution of the cluster and the region geometry in a consistent way. We compare the Single Stellar Populations contaminated and uncontaminated colors (in both Johnson and SDSS systems) and show the importance of emission lines contribution when photometry is used as a tool to characterize stellar populations. With these models we may determine the physical properties of young ionizing clusters when only photometrical observations are available and these correspond to the isolated star forming regions, subtracted the contribution of the underlying population In most cases, however, the ionizing population is usually embedded in a large and complex system, and the observed photometrical properties are the result of the combination of both the young star-forming burst and the host-underlying older population. The second objective of our work is therefore to provide a grid of models for nearby galaxies able to interpret mixed regions where the separation of young and old population is not possible or reliable enough. We obtain a set of PopStar Spectral Energy Distributions (available at PopStar site and also in VO) and derived colors for mixed populations where an underlying host population is combined in different mass ratios with a recent, metal-rich ionizing burst. These

  16. X-Ray and Infrared Observations of Embedded Young Stars in NGC 2264

    NASA Technical Reports Server (NTRS)

    Simon, Theordore; Dahm, S. E.

    2005-01-01

    Images of the NGC 2264 star-forming region, which we have acquired with the XMM-Newton spacecraft, reveal strong X-ray emission from three deeply embedded (Av > 10 mag) young stellar objects in the vicinity of Allen's infrared source (AFGL 989 = IRS 1) and Castelaz & Grasdalen s infrared source (RNO-EW = IRS 2). Thermal plasma models for the brightest source in X-rays, located 11 southwest of Allen's star, yield a quasi-steady luminosity of Lx = 10 ergs s-1 and an extraordinarily high X-ray temperature of 100 MK. The high temperature is consistent with the presence of emission lines of Fe xxv and Fe xxvi at photon energies of 6.7 and 6.9 keV, respectively. An even higher temperature of nearly 140 MK was observed during the rise phase of a powerful impulsive X-ray flare of another young star in the IRS 2 region. Moderate-resolution near-infrared (1-4 um) spectra of the embedded objects, obtained at the NASA Infrared Telescope Facility, exhibit deep water ice absorption bands, as well as a variety of emission and absorption features of H I, CO, and both neutral and ionized metals.

  17. Millimeter continuum measurements of circumstellar dust around very young low-mass stars

    NASA Technical Reports Server (NTRS)

    Terebey, S.; Chandler, C. J.; Andre, P.

    1994-01-01

    We investigate the question of disk formation during the protostar phase. We build on the results of Keene and Masson (1990) whose analysis of L1551 showed the millimeter continuum emission comes from both an unresolved circumstellar component, i.e., a disk and an extended cloud core. We model the dust continuum emission from the cloud core and show how it is important at 1.3 mm but negligible at 2.7 mm. Combining new 2.7 mm Owens Valley Interferometer data of IRAS-Dense cores with data from the literature we conclude that massive disks are also seen toward a number of other sources. However, 1.3 mm data from the IRAM 30 m telescope for a larger sample shows that massive disks are relatively rare, occurring around perhaps 5% of young embedded stars. This implies that either massive disks occur briefly during the embedded phase or that relatively few young stars form massive disks. At 1.3 mm the median flux of IRAS-Dense cores is nearly the same as T Tauri stars in the sample of Beckwith et al. (1990). We conclude that the typical disk mass during the embedded phase is nearly the same or less than the typical disk mass during the T Tauri phase.

  18. Photoevaporation of Disks Around Young Stars: Application to Ultracompact HII Regions, Proplyds, and the Solar Nebula

    NASA Technical Reports Server (NTRS)

    Hollenbach, David; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Young massive stars produce sufficient Lyman continuum photon luminosity to significantly affect the structure and evolution of the accretion disks surrounding them. A nearly static, ionized, isothermal 10' K atmosphere forms above the neutral disk, creating a photoevaporative flow from the outer parts of the disk. The resulting slow (10-50 km/s) ionized outflow, which persists for greater than or approximately 10(exp 5) years for disk masses M(sub d) to approximately 0.3M(sub *), may explain the observational characteristics of many ultracompact HII regions. We compare model results to the observed radio free-free spectra and luminosities of ultracompact HII regions and to the interesting source MWC349, which is observed to produce hydrogen masers. We also apply the results to the early solar nebula to explain the the dispersal of the solar nebula and the differences in hydrogen content in the giant planets. Finally, we model the small bright objects ("proplyds") observed in the Orion Nebula as disks around young, low mass stars which axe externally illuminated by the UV photons from the nearby massive star theta(sup 1)C.

  19. Near-IR Spectral Variability Of Young Stars: A Multi-year Survey

    NASA Astrophysics Data System (ADS)

    Hawkins, Clint; Eisner, J.; Rudolph, A. L.

    2012-01-01

    T-Tauri type stars exhibit variability across the electromagnetic spectrum, including in the visible and the infrared regions. While spectroscopic variability in the optical range has been previously investigated, variability in the near-IR has not been explored as thoroughly. We have been tracking the spectral variability of about 40 young stars in the near-IR during the past year. Using the 90-inch Bok telescope on Kitt Peak, we observed our sample with FSPEC during four five-night runs, two in 2010 separated by one month and two in 2011, also separated by one month. Here we present spectra for each of these epochs that show emission from the Brackett Gamma (BrG) transition of hydrogen. Changes in the BrG line profile from epoch to epoch are used to constrain the properties of accretion onto our young star targets as a function of time. We acknowledge the NSF for funding under Award No. AST-0847170, a PAARE Grant for the Calfornia-Arizona Minority Partnership for Astronomy Research and Education (CAMPARE).

  20. Direct measurement of interstellar extinction toward young stars using atomic hydrogen Lyα absorption

    SciTech Connect

    McJunkin, Matthew; France, Kevin; Brown, Alexander; Schneider, P. C.; Herczeg, Gregory J.; Hillenbrand, Lynne; Schindhelm, Eric; Edwards, Suzan

    2014-01-10

    Interstellar reddening corrections are necessary to reconstruct the intrinsic spectral energy distributions (SEDs) of accreting protostellar systems. The stellar SED determines the heating and chemical processes that can occur in circumstellar disks. Measurement of neutral hydrogen absorption against broad Lyα emission profiles in young stars can be used to obtain the total H I column density (N(H I)) along the line of sight. We measure N(H I) with new and archival ultraviolet observations from the Hubble Space Telescope (HST) of 31 classical T Tauri and Herbig Ae/Be stars. The H I column densities range from log{sub 10}(N(H I)) ≈19.6-21.1, with corresponding visual extinctions of A{sub V} =0.02-0.72 mag, assuming an R{sub V} of 3.1. We find that the majority of the H I absorption along the line of sight likely comes from interstellar rather than circumstellar material. Extinctions derived from new HST blue-optical spectral analyses, previous IR and optical measurements, and new X-ray column densities on average overestimate the interstellar extinction toward young stars compared to the N(H I) values by ∼0.6 mag. We discuss possible explanations for this discrepancy in the context of a protoplanetary disk geometry.

  1. Eruptive style of the young high-Mg basaltic-andesite Pelagatos scoria cone, southeast of México City

    NASA Astrophysics Data System (ADS)

    Guilbaud, Marie-Noëlle; Siebe, Claus; Agustín-Flores, Javier

    2009-10-01

    The eruption of the Pelagatos scoria cone in the Sierra Chichinautzin monogenetic field near the southern suburbs of Mexico City occurred less than 14,000 years ago. The eruption initiated at a fissure with an effusive phase that formed a 7-km-long lava flow, and continued with a phase of alternating and/or simultaneous explosive and effusive activity that built a 50-m-high scoria cone on the western end of the fissure and formed a compound lava flow-field near the vent. The eruption ended with the emplacement of a short lava flow that breached the cone and was accompanied by weak explosions at the crater. Products consist of a microlite-rich high-Mg basaltic andesite. Samples were analyzed to determine the magma’s initial properties as well as the effects of degassing-induced crystallization on eruptive style. Although distal ash fallout deposits from this eruption are not preserved, a recent quarry exposes a large section of the scoria cone. Detailed study of exposed layers allows us to elucidate the mode of cone-building activity. Petrological and textural data, combined with models calibrated by experimental work and melt-inclusion analyses of similar magmas elsewhere, indicate that the magma was initially hot (>1,200°C), gas-rich (up to 5 wt.% H2O), crystal-poor (~10 vol.% Fo90 olivine phenocrysts) and thus poorly viscous (40-80 Pa s). During the early phase, low magma ascent velocity at the fissure vent allowed low-viscosity magma to degas and crystallize during ascent, producing lava flows with elevated crystal contents at T < 1,100°C, and blocky surfaces. Later, the closure of the fissure by cooling dikes focused the magma flow at a narrow section of the fissure. This led to an increased magma ascent velocity. Rapid and shallow degassing (<3 km deep) triggered ~40 vol.% microlite crystallization. Limited times for gas-escape and higher magma viscosity (6 × 105-4 × 106 Pa s) drove strong explosions of highly (60-80 vol.%) and finely vesicular magma

  2. The structure of accretion discs around low-mass young stars

    NASA Astrophysics Data System (ADS)

    Lachaume, R.

    2003-07-01

    interferometry concerning marginally resolved objects, as most young star will be. I then shall present best fits of the two-layer models for low mass young stars already observed by interferometers. The LaTeX and PDF files of the manuscript (in French with English appendices) are made available by the National Centre for Scientific Reasearch (CNRS) archive site (http://tel.ccsd.cnrs.fr/documents/archives0/00/00/64/74).

  3. X-ray Emission from Young Stars in the TW Hya Association

    NASA Astrophysics Data System (ADS)

    Brown, Alexander; Herczeg, Gregory J.; Ayres, Thomas R.; France, Kevin; Brown, Joanna M.

    2015-01-01

    The 9 Myr old TW Hya Association (TWA) is the nearest group (typical distances of ˜50 pc) of pre-main-sequence (PMS) stars with ages less than 10 Myr and contains stars with both actively accreting disks and debris disks. We have studied the coronal X-ray emission from a group of low mass TWA common proper motion binaries using the Chandra and Swift satellites. Our aim is to understand better their coronal properties and how high energy photons affect the conditions around young stars and their role in photo-exciting atoms, molecules and dust grains in circumstellar disks and lower density circumstellar gas. Once planet formation is underway, this emission influences protoplanetary evolution and the atmospheric conditions of the newly-formed planets. The X-ray properties for 7 individual stars (TWA 13A, TWA 13B, TWA 9A, TWA 9B, TWA 8A, TWA 8B, and TWA 7) and 2 combined binary systems (TWA 3AB and TWA 2AB) have been measured. All the stars with sufficient signal require two-component fits to their CCD-resolution X-ray spectra, typically with a dominant hot (~2 kev (25 MK)) component and a cooler component at ~0.4 keV (4 MK). The brighter sources all show significant X-ray variability (at a level of 50-100% of quiescence) over the course of 5-15 ksec observations due to flares. We present the X-ray properties for each of the stars and find that the coronal emission is in the super-saturated rotational domain.

  4. Rotating models of young solar-type stars. Exploring braking laws and angular momentum transport processes

    NASA Astrophysics Data System (ADS)

    Amard, L.; Palacios, A.; Charbonnel, C.; Gallet, F.; Bouvier, J.

    2016-03-01

    Context. Understanding the angular momentum evolution of stars is one of the greatest challenges of modern stellar physics. Aims: We study the predicted rotational evolution of solar-type stars from the pre-main sequence to the solar age with 1D rotating evolutionary models including physical ingredients. Methods: We computed rotating evolution models of solar-type stars including an external stellar wind torque and internal transport of angular momentum following the method of Maeder and Zahn with the code STAREVOL. We explored different formalisms and prescriptions available from the literature. We tested the predictions of the models against recent rotational period data from extensive photometric surveys, lithium abundances of solar-mass stars in young clusters, and the helioseismic rotation profile of the Sun. Results: We find a best-matching combination of prescriptions for both internal transport and surface extraction of angular momentum. This combination provides a very good fit to the observed evolution of rotational periods for solar-type stars from early evolution to the age of the Sun. Additionally, we show that fast rotators experience a stronger coupling between their radiative region and the convective envelope. Regardless of the set of prescriptions, however, we cannot simultaneously reproduce surface angular velocity and the internal profile of the Sun or the evolution of lithium abundance. Conclusions: We confirm the idea that additional transport mechanisms must occur in solar-type stars until they reach the age of the Sun. Whether these processes are the same as those needed to explain recent asteroseismic data in more advanced evolutionary phases is still an open question.

  5. A CubeSat to Search for Transiting Planets Around the Young Star Beta Pictoris

    NASA Astrophysics Data System (ADS)

    Blake, Ameer; Roberge, Aki

    2016-01-01

    The goal of this project is to further our growing knowledge of exoplanets in the solar neighborhood. The nearby star Beta Pictoris, which is nearly twice the mass of the Sun, is encircled by a huge disk of dust and gas reaching out 500-800 AU from the star. This so-called "debris disk" is the product of collisions between large numbers of asteroids and comets orbiting this relatively young star. The presence of these small planetary bodies hinted that there might be planets in the disk as well, which was recently confirmed when a ground-based telescope directly imaged a super-Jupiter exoplanet orbiting the star.The debris disk of Beta Pic tells us that this planetary system is edge-on from our vantage point on Earth. Therefore, it is an ideal system to use transit photometry to search for additional planets. We hope to due so by monitoring the brightness of the star over a given period, using a telescope on small satellite (a CubeSat). A CubeSat is a very small satellite tasked with a single purpose and, in this case, a single target. The advantage of a CubeSat over a larger telescope is the low cost and fast development schedule. Since we wish to study only one star's system, a CubeSat is an economical choice, although the limited lifetime of a CubeSat means that only planets with relatively short (up to few month) periods may be found. Our preliminary calculations show that, in principle, we can discover planets from Jupiter-size down to Neptune-size around Beta Pic with a telescope sized to fit in a CubeSat.

  6. The INfrared Survey of Young Nebulous Clusters (IN-SYNC): Surveying the Dynamics and Star Formation Histories of Young Clusters with APOGEE

    NASA Astrophysics Data System (ADS)

    Covey, Kevin R.; Cottaar, Michiel; Foster, Jonathan B.; Da Rio, Nicola; Tan, Jonathan; Meyer, Michael; Nidever, David L.; Flaherty, Kevin M.; Arce, Hector G.; Rebull, Luisa M.; Chojnowski, S. Drew; Frinchaboy, Peter M.; Hearty, Fred R.; Majewski, Steven R.; Skrutskie, Michael F.; Stassun, Keivan; Wilson, John C.; Zasowski, Gail

    2015-01-01

    Young clusters are the most prolific sites of star formation in the Milky Way, but demographic studies indicate that relatively few of the Milky Way's stellar clusters persist as bound structures for 100 Myrs or longer. Uniform & precise measurements of the stellar populations and internal dynamics of these regions are difficult to obtain, however, particularly for extremely young clusters whose optical visibility is greatly hampered by their parental molecular cloud. The INfrared Survey of Young Nebulous Clusters (IN-SYNC), an SDSS-III ancillary science program, leverages the stability and multiplex capability of the APOGEE spectrograph to obtain high resolution spectra at near-infrared wavelengths, where photospheric emission is better able to penetrate the dusty shrouds that surround sites of active star formation. We summarize our recent measurements of the kinematics and stellar populations of IC 348 and NGC 1333, two young clusters in the Perseus Molecular Cloud, and of the members of the Orion Nebula Cluster (ONC) and L1641 filament in the Orion molecular complex. These measurements highlight the dynamically 'warm' environment within these young clusters, and suggest a range of stellar radii within these quasi-single-age populations. We close with a preview of plans for continuing this work as part of the APOGEE-2 science portfolio: self-consistent measurements of the kinematics and star formation histories for clusters spanning a range of initial conditions and ages will provide a opportunity to disentangle the mechanisms that drive the formation and dissolution of sites of active star formation.

  7. Substantial reservoirs of molecular hydrogen in the debris disks around young stars

    NASA Technical Reports Server (NTRS)

    Thi, W. F.; Blake, G. A.; van Dishoeck, E. F.; van Zadelhoff, G. J.; Horn, J. M.; Becklin, E. E.; Mannings, V.; Sargent, A. I.; van Den Ancker, M. E.; Natta, A.

    2001-01-01

    Circumstellar accretion disks transfer matter from molecular clouds to young stars and to the sites of planet formation. The disks observed around pre-main-sequence stars have properties consistent with those expected for the pre-solar nebula from which our own Solar System formed 4.5 Gyr ago. But the 'debris' disks that encircle more than 15% of nearby main-sequence stars appear to have very small amounts of gas, based on observations of the tracer molecule carbon monoxide: these observations have yielded gas/dust ratios much less than 0.1, whereas the interstellar value is about 100 (ref. 9). Here we report observations of the lowest rotational transitions of molecular hydrogen (H2) that reveal large quantities of gas in the debris disks around the stars beta Pictoris, 49 Ceti and HD135344. The gas masses calculated from the data are several hundreds to a thousand times greater than those estimated from the CO observations, and yield gas/dust ratios of the same order as the interstellar value.

  8. NuSTAR Observations of Bright X-ray Flares from Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Vievering, Juliana; Glesener, Lindsay; Grefenstette, Brian; Smith, David

    2016-05-01

    Bright x-ray flares are observed to occur on young stellar objects (YSOs) and are presumed to be driven by similar processes as those seen on our sun. Observations of the flaring activity of YSOs can add to our understanding of the early lives of stars and the development of planetary systems. In particular, x-ray observations of these stellar flares are essential for probing the youngest stars, as these stars are most obscured by dense molecular clouds. One such cloud complex of YSOs, rho Ophiuchi, has been a past target for soft x-ray (SXR) missions, including Chandra and XMM-Newton. However, the energy ranges covered by these missions drop off prior to the hard x-ray (HXR) regime, where the crossover to a dominant nonthermal component could be observed. Whether or not this nonthermal emission is strong enough to be observed could then be an indicator of how large an influence these flares have on the surrounding protoplanetary disk. To begin investigating this HXR emission, two 50ks observations of rho Ophiuchi have been taken with the Nuclear Spectroscopic Telescope Array (NuSTAR), which is optimized over the energy range of 3-79 keV. Multiple stellar flares have been identified in the observations; here we present the preliminary analysis, including light curves and spectra, of the brightest of these flaring events. We explore the implications of the data for flaring activity of YSOs and compare the results to typical flaring activity of the sun.

  9. Are Young Massive Star Clusters in the Local Universe Analogous to Globular Clusters Progenitors?

    NASA Astrophysics Data System (ADS)

    Charbonnel, Corinne

    2015-08-01

    Several models do compete to reproduce the present-day characteristics of globular clusters (GC) and to explain the origin of the multiple stellar populations these systems are hosting.In parallel, independent clues on GC early evolution may be derived from observations of young massive clusters (YMC) in the Local Group.But are these two populations of clusters related? In this talk, we discuss how and if GC and YMC data can be reconciled.We revisit in particular the impact of massive stars on the early evolution of massive star clusters, as well as the question of early gas expulsion.We propose several tests to probe whether the YMC we are observing today can be considered as the analogues of GC progenitors.

  10. A circumstellar molecular gas structure associated with the massive young star Cepheus A-HW 2

    NASA Technical Reports Server (NTRS)

    Torrelles, Jose M.; Rodriguez, Luis F.; Canto, Jorge; Ho, Paul T. P.

    1993-01-01

    We report the detection via VLA-D observations of ammonia of a circumstellar high-density molecular gas structure toward the massive young star related to the object Cepheus A-HW 2, a firm candidate for the powering source of the high-velocity molecular outflow in the region. We suggest that the circumstellar molecular gas structure could be related to the circumstellar disk previously suggested from infrared, H2O, and OH maser observations. We consider as a plausible scenario that the double radio continuum source of HW 2 could represent the ionized inner part of the circumstellar disk, in the same way as proposed to explain the double radio source in L1551. The observed motions in the circumstellar molecular gas can be produced by bound motions (e.g., infall or rotation) around a central mass of about 10-20 solar masses (B0.5 V star or earlier).

  11. Disks, Young Stars, and Radio Waves: The Quest for Forming Planetary Systems

    NASA Astrophysics Data System (ADS)

    Chandler, C. J.; Shepherd, D. S.

    2008-08-01

    Kant and Laplace suggested the Solar System formed from a rotating gaseous disk in the 18th century, but convincing evidence that young stars are indeed surrounded by such disks was not presented for another 200 years. As we move into the 21st century the emphasis is now on disk formation, the role of disks in star formation, and on how planets form in those disks. Radio wavelengths play a key role in these studies, currently providing some of the highest-spatial-resolution images of disks, along with evidence of the growth of dust grains into planetesimals. The future capabilities of EVLA and ALMA provide extremely exciting prospects for resolving disk structure and kinematics, studying disk chemistry, directly detecting protoplanets, and imaging disks in formation.

  12. Economic Development Activities at the Young - Rainey Science, Technology, & Research (STAR) Center

    SciTech Connect

    Paul S. Sacco; Carl Smeigh; John Caponiti, Jr.

    2008-06-30

    Project mission was to mitigate the adverse economic effects of closing the U.S. Department of Energy's Pinellas Plant in Largo, Florida. This project was to facilitate the physical renovation of the plant and to help maintain and create jobs for the employees that worked at the plant when DOE terminated its operations. It also included finding and attracting high technology, industrial manufacturing and related firms to utilize the space and high tech equipment to remain at the plant. Stakeholders included the affected plant employees, local government and related public organizations, and businesses and universities in the Tampa Bay Florida area. The $17.6 million funded for this project helped produce 2,780 jobs at the Young - Rainey STAR Center at an average cost of $6,328. Rental income from STAR Center tenants and third party cash input amounted to approximately $66 million over the project period of 13.3 years.

  13. Gas expulsion in massive star clusters?. Constraints from observations of young and gas-free objects

    NASA Astrophysics Data System (ADS)

    Krause, Martin G. H.; Charbonnel, Corinne; Bastian, Nate; Diehl, Roland

    2016-03-01

    Context. Gas expulsion is a central concept in some of the models for multiple populations and the light-element anti-correlations in globular clusters. If the star formation efficiency was around 30 per cent and the gas expulsion happened on the crossing timescale, this process could preferentially expel stars born with the chemical composition of the proto-cluster gas, while stars with special composition born in the centre would remain bound. Recently, a sample of extragalactic, gas-free, young massive clusters has been identified that has the potential to test the conditions for gas expulsion. Aims: We investigate the conditions required for residual gas expulsion on the crossing timescale. We consider a standard initial mass function and different models for the energy production in the cluster: metallicity-dependent stellar winds, radiation, supernovae and more energetic events, such as hypernovae, which are related to gamma ray bursts. The latter may be more energetic than supernovae by up to two orders of magnitude. Methods: We computed a large number of thin-shell models for the gas dynamics, and calculated whether the Rayleigh-Taylor instability is able to disrupt the shell before it reaches the escape speed. Results: We show that the success of gas expulsion depends on the compactness index of a star cluster C5 ≡ (M∗/ 105 M⊙)/(rh/ pc), with initial stellar mass M∗ and half-mass radius rh. For given C5, a certain critical, local star formation efficiency is required to remove the rest of the gas. Common stellar feedback processes may not lead to gas expulsion with significant loss of stars above C5 ≈ 1. Considering pulsar winds and hypernovae, the limit increases to C5 ≈ 30. If successful, gas expulsion generally takes place on the crossing timescale. Some observed young massive clusters have 1

  14. Zeeman-Doppler imaging of active young solar-type stars

    NASA Astrophysics Data System (ADS)

    Hackman, T.; Lehtinen, J.; Rosén, L.; Kochukhov, O.; Käpylä, M. J.

    2016-03-01

    Context. By studying young magnetically active late-type stars, i.e. analogues to the young Sun, we can draw conclusions on the evolution of the solar dynamo. Aims: We determine the topology of the surface magnetic field and study the relation between the magnetic field and cool photospheric spots in three young late-type stars. Methods: High-resolution spectropolarimetry of the targets was obtained with the HARPSpol instrument mounted at the ESO 3.6 m telescope. The signal-to-noise ratios of the Stokes IV measurements were boosted by combining the signal from a large number of spectroscopic absorption lines through the least squares deconvolution technique. Surface brightness and magnetic field maps were calculated using the Zeeman-Doppler imaging technique. Results: All three targets show clear signs of magnetic fields and cool spots. Only one of the targets, V1358 Ori, shows evidence of the dominance of non-axisymmetric modes. In two of the targets, the poloidal field is significantly stronger than the toroidal one, indicative of an α2-type dynamo, in which convective turbulence effects dominate over the weak differential rotation. In two of the cases there is a slight anti-correlation between the cool spots and the strength of the radial magnetic field. However, even in these cases the correlation is much weaker than in the case of sunspots. Conclusions: The weak correlation between the measured radial magnetic field and cool spots may indicate a more complex magnetic field structure in the spots or spot groups involving mixed magnetic polarities. Comparison with a previously published magnetic field map shows that on one of the stars, HD 29615, the underlying magnetic field changed its polarity between 2009 and 2013. Based on observations made with the HARPSpol instrument on the ESO 3.6 m telescope at La Silla (Chile), under the program ID 091.D-0836.

  15. Chemical analysis of giant stars in the young open cluster NGC 3114

    NASA Astrophysics Data System (ADS)

    Santrich, O. J. Katime; Pereira, C. B.; Drake, N. A.

    2013-06-01

    Context. Open clusters are very useful targets for examining possible trends in galactocentric distance and age, especially when young and old open clusters are compared. Aims: We carried out a detailed spectroscopic analysis to derive the chemical composition of seven red giants in the young open cluster NGC 3114. Abundances of C, N, O, Li, Na, Mg, Al, Ca, Si, Ti, Ni, Cr, Y, Zr, La, Ce, and Nd were obtained, as well as the carbon isotopic ratio. Methods: The atmospheric parameters of the studied stars and their chemical abundances were determined using high-resolution optical spectroscopy. We employed the local-thermodynamic-equilibrium model atmospheres of Kurucz and the spectral analysis code MOOG. The abundances of the light elements were derived using the spectral synthesis technique. Results: We found that NGC 3114 has a mean metallicity of [Fe/H] = -0.01 ± 0.03. The isochrone fit yielded a turn-off mass of 4.2 M⊙. The [N/C] ratio is in good agreement with the models predicted by first dredge-up. We found that two stars, HD 87479 and HD 304864, have high rotational velocities of 15.0 km s-1 and 11.0 km s-1; HD 87526 is a halo star and is not a member of NGC 3114. Conclusions: The carbon and nitrogen abundance in NGC 3114 agree with the field and cluster giants. The oxygen abundance in NGC 3114 is lower compared to the field giants. The [O/Fe] ratio is similar to the giants in young clusters. We detected sodium enrichment in the analyzed cluster giants. As far as the other elements are concerned, their [X/Fe] ratios follow the same trend seen in giants with the same metallicity. Based on observations made with the 2.2 m telescope at the European Southern Observatory (La Silla, Chile).Tables 2 and 5 are available in electronic form at http://www.aanda.org

  16. Far-Ultraviolet Spectroscopy of the Circumstellar and Interstellar Environment of Young Stars

    NASA Astrophysics Data System (ADS)

    McJunkin, Matthew

    I have analyzed absorption from the CO Fourth Positive band system in the ultraviolet spectra of 6 Classical T Tauri stars, tripling the measurements in the literature. CO traces the molecular gas in the inner disk, providing constraints on the material in the planet-forming environment. I fit an absorption model in order to determine the column density and temperature of the gas in the disk. My CO rotational temperatures agree well with CO fluorescence measurements in the ultraviolet, but are in between infrared CO absorption and emission measurements. I also fit absorption profiles of HI against the Lyman-alpha emission from a large sample of young stars (Classical T Tauri and Herbig Ae/Be) in order to determine the amount of interstellar extinction along the line of sight. Knowing the extinction value will allow us to reconstruct the intrinsic emission from the stars, which is the radiation impacting the protoplanetary disk. This radiation determines the thermal and chemical structure of the material that may form planets. I find lower visual extinction values than those in the literature using optical, infrared, and X-ray measurement techniques. In addition, I have created a new technique using H2 fluorescence to empirically estimate the full ultraviolet extinction curve of young stars. I compare predicted line fluxes from my created H2 fluorescence model to observed fluxes from 7 strong progressions in order to determine the extinction over the 1100 - 1700 angstrom range. I then fit my extinction curves with models from the literature to determine best-fit Av and Rv values. I find that this technique is limited by the degeneracy between the Av and Rv values, needing one or the other to be determined independently. I hope to improve the technique and mitigate the limitations in future work.

  17. The relevance of the IUE results on young stars for Earth's paleoatmosphere

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Levine, J. S.; Augustsson, T. R.; Imhoff, C. L.; Giampap, M. S.

    1982-01-01

    Using the latest IUE results for seven T Tauri stars, which are believed to represent the young Sun and a detailed photochemical chemical model of the paleoatmosphere, the vertical distribution of Oxygen and Ozone in the early atmosphere was calculated. The calculations indicate that the surface Oxygen mixing ratio is as much as six orders of magnitude larger than previously estimated, but appears low enough for the formation of amino acids via the Urey-Miller type of experiments. It is believed that the quantification of the oxygen level in the Earth's paleoatmosphere presented can reconcile the demands of both biological and geological considerations.

  18. The relevance of the IUE results on young stars for Earth's paleoatmosphere

    NASA Astrophysics Data System (ADS)

    Canuto, V. M.; Levine, J. S.; Augustsson, T. R.; Imhoff, C. L.; Giampapa, M. S.

    Using the latest IUE results for seven T Tauri stars, which are believed to represent the young Sun and a detailed photochemical chemical model of the paleoatmosphere, the vertical distribution of Oxygen and Ozone in the early atmosphere was calculated. The calculations indicate that the surface Oxygen mixing ratio is as much as six orders of magnitude larger than previously estimated, but appears low enough for the formation of amino acids via the Urey-Miller type of experiments. It is believed that the quantification of the oxygen level in the Earth's paleoatmosphere presented can reconcile the demands of both biological and geological considerations.

  19. VizieR Online Data Catalog: Young Massive Star Clusters. II. (Larsen, 1999)

    NASA Astrophysics Data System (ADS)

    Larsen, S. S.

    1999-07-01

    Table 4 lists photometric data for Young Massive Star Clusters identified in a sample of 21 nearby galaxies. The photometric data have been corrected for Galactic foreground extinction. Each cluster is identified by the abbreviated NGC number of its host galaxy and an object number: nxxx-yyy is object number yyy in the galaxy NGC xxx. Effective cluster radii have been obtained by modeling the cluster images as MOFFAT15 functions convolved with the point-spread function measured on the CCD images. (1 data file).

  20. Periodic modulation in pulse arrival times from young pulsars: a renewed case for neutron star precession

    NASA Astrophysics Data System (ADS)

    Kerr, M.; Hobbs, G.; Johnston, S.; Shannon, R. M.

    2016-01-01

    In a search for periodic variation in the arrival times of pulses from 151 young, energetic pulsars, we have identified seven cases of modulation consistent with one or two harmonics of a single fundamental with time-scale 0.5-1.5 yr. We use simulations to show that these modulations are statistically significant and of high quality (sinusoidal) even when contaminated by the strong stochastic timing noise common to young pulsars. Although planetary companions could induce such modulation, the large implied masses and 2:1 mean motion resonances challenge such an explanation. Instead, the modulation is likely to be intrinsic to the pulsar, arising from quasi-periodic switching between stable magnetospheric states, and we propose that precession of the neutron star may regulate this switching.

  1. Episodic formation of cometary material in the outburst of a young Sun-like star.

    PubMed

    Abrahám, P; Juhász, A; Dullemond, C P; Kóspál, A; van Boekel, R; Bouwman, J; Henning, Th; Moór, A; Mosoni, L; Sicilia-Aguilar, A; Sipos, N

    2009-05-14

    The Solar System originated in a cloud of interstellar gas and dust. The dust is in the form of amorphous silicate particles and carbonaceous dust. The composition of cometary material, however, shows that a significant fraction of the amorphous silicate dust was transformed into crystalline form during the early evolution of the protosolar nebula. How and when this transformation happened has been a question of debate, with the main options being heating by the young Sun and shock heating. Here we report mid-infrared features in the outburst spectrum of the young Sun-like star EX Lupi that were not present in quiescence. We attribute them to crystalline forsterite. We conclude that the crystals were produced through thermal annealing in the surface layer of the inner disk by heat from the outburst, a process that has hitherto not been considered. The observed lack of cold crystals excludes shock heating at larger radii. PMID:19444209

  2. Magnetic Complexity as an Explanation for Bimodal Rotation Populations among Young Stars

    NASA Astrophysics Data System (ADS)

    Garraffo, Cecilia; Drake, Jeremy J.; Cohen, Ofer

    2015-07-01

    Observations of young open clusters have revealed a bimodal distribution of fast and slower rotation rates that has proven difficult to explain with predictive models of spin down that depend on rotation rates alone. The Metastable Dynamo Model proposed recently by Brown, employing a stochastic transition probability from slow to more rapid spin down regimes, appears to be more successful but lacks a physical basis for such duality. Using detailed 3D MHD wind models computed for idealized multipole magnetic fields, we show that surface magnetic field complexity can provide this basis. Both mass and angular momentum losses decline sharply with increasing field complexity. Combined with observation evidence for complex field morphologies in magnetically active stars, our results support a picture in which young, rapid rotators lose angular momentum in an inefficient way because of field complexity. During this slow spin-down phase, magnetic complexity is eroded, precipitating a rapid transition from weak to strong wind coupling.

  3. A Comprehensive GALEX Ultraviolet Catalog of Star Clusters in M31 and a Study of the Young Clusters

    NASA Astrophysics Data System (ADS)

    Kang, Yongbeom; Rey, Soo-Chang; Bianchi, Luciana; Lee, Kyungsook; Kim, YoungKwang; Sohn, Sangmo Tony

    2012-04-01

    We present a comprehensive catalog of 700 confirmed star clusters in the field of M31 compiled from three major existing catalogs. We detect 418 and 257 star clusters in Galaxy Evolution Explorer near-ultraviolet and far-ultraviolet (FUV) imaging, respectively. Our final catalog includes photometry of star clusters in up to 16 passbands ranging from FUV to NIR as well as ancillary information such as reddening, metallicity, and radial velocities. In particular, this is the most extensive and updated catalog of UV-integrated photometry for M31 star clusters. Ages and masses of star clusters are derived by fitting the multi-band photometry with model spectral energy distribution (SED); UV photometry enables more accurate age estimation of young clusters. Our catalog includes 182 young clusters with ages less than 1 Gyr. Our estimated ages and masses of young clusters are in good agreement with previously determined values in the literature. The mean age and mass of young clusters are about 300 Myr and 104 M ⊙, respectively. We found that the compiled [Fe/H] values of young clusters included in our catalog are systematically lower (by more than 1 dex) than those from recent high-quality spectroscopic data and our SED-fitting result. We confirm that most of the young clusters' kinematics shows systematic rotation around the minor axis and association with the thin disk of M31. The young cluster distribution exhibits a distinct peak in the M31 disk around 10-12 kpc from the center and follows a spatial distributions similar to other tracers of disk structure such as OB stars, UV star-forming regions, and dust. Some young clusters also show concentration around the ring splitting regions found in the southern part of the M31 disk and most of them have systematically younger (<100 Myr) ages. Considering the kinematical properties and spatial distribution of young clusters, they might be associated with the well-known 10 kpc star formation ring structure in the M31 disk

  4. VizieR Online Data Catalog: Probable young stars in the MYStIX project (Broos+, 2013)

    NASA Astrophysics Data System (ADS)

    Broos, P. S.; Getman, K. V.; Povich, M. S.; Feigelson, E. D.; Townsley, L. K.; Naylor, T.; Kuhn, M. A.; King, R. R.; Busk, H. A.

    2014-01-01

    The Massive Young star-forming complex Study in Infrared and X-rays (MYStIX) project, described by Feigelson et al. (2013ApJS..209...26F), seeks to identify and study samples of young stars in 20 nearby (0.4star-forming regions (MSFRs). These samples are derived using X-ray data from the Chandra X-ray Observatory, near-infrared (NIR) photometry from the United Kingdom InfraRed Telescope (UKIRT) and from the Two Micron All Sky Survey (2MASS), mid-infrared (MIR) photometry from the Spitzer Space Telescope, and published spectroscopically identified massive stars. Our purpose here is to describe our efforts to minimize contaminants in the MYStIX catalogs of young stars, which we refer to as "MYStIX Probable Complex Members" (MPCMs), and to present the MPCM catalog for each MYStIX MSFR. An MPCM catalog is the union of three sets of probable members identified by three established methods for identifying young stars (Feigelson et al. 2013ApJS..209...26F, Fig. 3). (3 data files).

  5. Young stars in old galaxies - surprising discovery with the world's leading telescopes

    NASA Astrophysics Data System (ADS)

    2002-06-01

    similar to the way a palaeontologist uses the skeletons of dinosaurs to deduce information about the era in which they lived. A surprising discovery The team combined images of a number of galaxies from Hubble's Wide Field and Planetary Camera 2 with infrared images obtained from the multi-mode ISAAC instrument on the 8.2m VLT Antu telescope at the ESO Paranal Observatory (Chile). To their great surprise, they discovered that many of the globular clusters in one of these galaxies, NGC 4365, a member of the large Virgo cluster of galaxies, were only a few thousand million years old, much younger than most of the other stars in this galaxy (roughly 12 thousand million years old). The astronomers were able to identify three major groups of stellar clusters. There is an old population of clusters of metal-poor stars, some clusters of old but metal-rich stars and now, seen for the first time, a population of clusters with young and metal-rich stars. These results have been fully confirmed by spectroscopic observations made with another of the world's giant telescopes, the 10-metre Keck on Hawaii. "It is a great pleasure to see two projects wholly or partly funded by Europe - VLT and Hubble - work in concert to produce such an important scientific result", says Piero Benvenuti, ESA Hubble Project Scientist. "The synergy between the most advanced ground and space telescopes continues to prove its effectiveness, paving the way to impressive new discoveries that would not otherwise be possible." The discovery of young globular clusters within old galaxies is surprising since the stars in the giant elliptical galaxies were until now believed to have formed during a single period early in the history of the Universe. It is now clear that some of the galaxies may be hiding their true nature and have indeed experienced much more recent periods of major star formation. Notes for editors This press release is issued in coordination between ESA and ESO. The Hubble Space Telescope project

  6. CSI 2264: Accretion process in classical T Tauri stars in the young cluster NGC 2264

    NASA Astrophysics Data System (ADS)

    Sousa, A. P.; Alencar, S. H. P.; Bouvier, J.; Stauffer, J.; Venuti, L.; Hillenbrand, L.; Cody, A. M.; Teixeira, P. S.; Guimarães, M. M.; McGinnis, P. T.; Rebull, L.; Flaccomio, E.; Fürész, G.; Micela, G.; Gameiro, J. F.

    2016-02-01

    Context. NGC 2264 is a young stellar cluster (~3 Myr) with hundreds of low-mass accreting stars that allow a detailed analysis of the accretion process taking place in the pre-main sequence. Aims: Our goal is to relate the photometric and spectroscopic variability of classical T Tauri stars to the physical processes acting in the stellar and circumstellar environment, within a few stellar radii from the star. Methods: NGC 2264 was the target of a multiwavelength observational campaign with CoRoT, MOST, Spitzer, and Chandra satellites and photometric and spectroscopic observations from the ground. We classified the CoRoT light curves of accreting systems according to their morphology and compared our classification to several accretion diagnostics and disk parameters. Results: The morphology of the CoRoT light curve reflects the evolution of the accretion process and of the inner disk region. Accretion burst stars present high mass-accretion rates and optically thick inner disks. AA Tau-like systems, whose light curves are dominated by circumstellar dust obscuration, show intermediate mass-accretion rates and are located in the transition of thick to anemic disks. Classical T Tauri stars with spot-like light curves correspond mostly to systems with a low mass-accretion rate and low mid-IR excess. About 30% of the classical T Tauri stars observed in the 2008 and 2011 CoRoT runs changed their light-curve morphology. Transitions from AA Tau-like and spot-like to aperiodic light curves and vice versa were common. The analysis of the Hα emission line variability of 58 accreting stars showed that 8 presented a periodicity that in a few cases was coincident with the photometric period. The blue and red wings of the Hα line profiles often do not correlate with each other, indicating that they are strongly influenced by different physical processes. Classical T Tauri stars have a dynamic stellar and circumstellar environment that can be explained by magnetospheric

  7. TRIGGERED STAR FORMATION AND YOUNG STELLAR POPULATION IN BRIGHT-RIMMED CLOUD SFO 38

    SciTech Connect

    Choudhury, Rumpa; Bhatt, H. C.; Mookerjea, Bhaswati E-mail: hcbhatt@iiap.res.i

    2010-07-10

    We have investigated the young stellar population in and around SFO 38, one of the massive globules located in the northern part of the Galactic H II region IC 1396, using the Spitzer IRAC and MIPS observations (3.6-24 {mu}m), and followed up with ground-based optical photometric and spectroscopic observations. Based on the IRAC and MIPS colors and H{alpha} emission, we identify {approx}45 young stellar objects (Classes 0/I/II) and 13 probable pre-main-sequence candidates. We derive the spectral types (mostly K- and M-type stars), effective temperatures, and individual extinction of the relatively bright and optically visible Class II objects. Most of the Class II objects show variable H{alpha} emission as well as optical and near-infrared photometric variability, which confirm their 'youth'. Based on optical photometry and theoretical isochrones, we estimate the spread in stellar ages to be between 1 and 8 Myr with a median age of 3 Myr and a mass distribution of 0.3-2.2 M{sub sun} with a median value around 0.5 M{sub sun}. Using the width of the H{alpha} emission line measured at 10% peak intensity, we derive the mass accretion rates of individual objects to be between 10{sup -10} and 10{sup -8} M{sub sun} yr{sup -1}. From the continuum-subtracted H{alpha} line image, we find that the H{alpha} emission of the globule is not spatially symmetric with respect to the O-type ionizing star HD 206267, and the interstellar extinction toward the globule is also anomalous. We clearly detect an enhanced concentration of YSOs closer to the southern rim of SFO 38 and identify an evolutionary sequence of YSOs from the rim to the dense core of the cloud, with most of the Class II objects located at the bright rim. The YSOs appear to be aligned along two different directions toward the O6.5V type star HD 206267 and the B0V type star HD 206773. This is consistent with the Radiation Driven Implosion (RDI) model for triggered star formation. Further, the apparent speed of

  8. Supersaturation and activity-rotation relation in PMS stars: the young cluster h Persei

    NASA Astrophysics Data System (ADS)

    Argiroffi, C.; Caramazza, M.; Micela, G.; Sciortino, S.; Moraux, E.; Bouvier, J.; Flaccomio, E.

    2016-05-01

    Context. Several studies showed that the magnetic activity of late-type main-sequence (MS) stars is characterized by different regimes and that their activity levels are well described by the Rossby number, Ro, defined as the ratio between the rotational period Prot and the convective turnover time. Very young pre-main-sequence (PMS) stars show, similarly to MS stars, intense magnetic activity. However, they do not show clear activity-rotation trends, and it still debated which stellar parameters determine their magnetic activity levels. Aims: To bridge the gap between MS and PMS stars, we studied the activity-rotation relation in the young cluster h Persei, a ~13 Myr old cluster, that contains both fast and slow rotators. The cluster members have ended their accretion phase and have developed a radiative core. It therefore offers us the opportunity of studying the activity level of intermediate-age PMS stars with different rotational velocities, excluding any interactions with the circumstellar environment. Methods: We constrained the magnetic activity levels of h Per members by measuring their X-ray emission from a Chandra observation, while rotational periods were obtained previously in the framework of the MONITOR project. By cross-correlating these data, we collected a final catalog of 414 h Per members with known rotational period, effective temperature, and mass. In 169 of these, X-ray emission has also been detected. Results: We found that h Per members with 1.0 M⊙stars, indicating that at this age, magnetic field production is most likely regulated by the αΩ type dynamo. Moreover, we observed that supersaturation is better described by Prot than Ro, and that the

  9. Supersaturation and activity-rotation relation in PMS stars: the young cluster h Persei

    NASA Astrophysics Data System (ADS)

    Argiroffi, C.; Caramazza, M.; Micela, G.; Sciortino, S.; Moraux, E.; Bouvier, J.; Flaccomio, E.

    2016-04-01

    Context. Several studies showed that the magnetic activity of late-type main-sequence (MS) stars is characterized by different regimes and that their activity levels are well described by the Rossby number, Ro, defined as the ratio between the rotational period Prot and the convective turnover time. Very young pre-main-sequence (PMS) stars show, similarly to MS stars, intense magnetic activity. However, they do not show clear activity-rotation trends, and it still debated which stellar parameters determine their magnetic activity levels. Aims: To bridge the gap between MS and PMS stars, we studied the activity-rotation relation in the young cluster h Persei, a ~13 Myr old cluster, that contains both fast and slow rotators. The cluster members have ended their accretion phase and have developed a radiative core. It therefore offers us the opportunity of studying the activity level of intermediate-age PMS stars with different rotational velocities, excluding any interactions with the circumstellar environment. Methods: We constrained the magnetic activity levels of h Per members by measuring their X-ray emission from a Chandra observation, while rotational periods were obtained previously in the framework of the MONITOR project. By cross-correlating these data, we collected a final catalog of 414 h Per members with known rotational period, effective temperature, and mass. In 169 of these, X-ray emission has also been detected. Results: We found that h Per members with 1.0 M⊙stars, indicating that at this age, magnetic field production is most likely regulated by the αΩ type dynamo. Moreover, we observed that supersaturation is better described by Prot than Ro, and that the

  10. The masses of young stars: CN as a probe of dynamical masses

    NASA Astrophysics Data System (ADS)

    Guilloteau, S.; Simon, M.; Piétu, V.; Di Folco, E.; Dutrey, A.; Prato, L.; Chapillon, E.

    2014-07-01

    Aims: We attempt to determine the masses of single or multiple young T Tauri and HAeBe stars from the rotation of their Keplerian disks. Methods: We used the IRAM PdBI interferometer to perform arcsecond resolution images of the CN N = 2-1 transition with good spectral resolution. Integrated spectra from the 30 m radiotelescope show that CN is relatively unaffected by contamination from the molecular clouds. Our sample includes 12 sources, among which isolated stars like DM Tau and MWC 480 are used to demonstrate the method and its accuracy. We derive the dynamical mass by fitting a disk model to the emission, a process giving M/D, the mass-to-distance ratio. We also compare the CN results with higher resolution CO data, that are however affected by contamination. Results: All disks are found in nearly perfect Keplerian rotation. We determine accurate masses for 11 stars, in the mass range 0.5 to 1.9 M⊙. The remaining one, DG Tau B, is a deeply embedded object for which CN emission partially arises from the outflow. With previous determinations, this leads to 14 (single) stars with dynamical masses. Comparison with evolutionary tracks, in a distance independent modified HR diagram, show good overall agreement (with one exception, CW Tau), and indicate that measurement of effective temperatures are the limiting factor. The lack of low mass stars in the sample does not allow to distinguish between alternate tracks. Based on observations carried out with the IRAM Plateau de Bure interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).Appendices are available in electronic form at http://www.aanda.org

  11. A wide-field near- and mid-infrared Census of young stars in NGC 6334

    SciTech Connect

    Willis, S.; Marengo, M.; Allen, L.; Fazio, G. G.; Smith, H. A.; Carey, S.

    2013-12-01

    This paper presents a study of the rate and efficiency of star formation in the NGC 6334 star-forming region. We obtained observations at J, H, and K{sub s} taken with the NOAO Extremely Wide-Field Infrared Imager and combined them with observations taken with the Infrared Array Camera (IRAC) on the Spitzer Space Telescope at wavelengths = 3.6, 4.5, 5.8, and 8.0 μm. We also analyzed previous observations taken at 24 μm using the Spitzer MIPS camera as part of the MIPSGAL survey. We have produced a point source catalog with >700, 000 entries. We have identified 2283 young stellar object (YSO) candidates, 375 Class I YSOs, and 1908 Class II YSOs using a combination of existing IRAC-based color classification schemes that we have extended and validated to the near-IR for use with warm Spitzer data. We have identified multiple new sites of ongoing star formation activity along filamentary structures extending tens of parsecs beyond the central molecular ridge of NGC 6334. By mapping the extinction, we derived an estimate for the gas mass, 2.2 × 10{sup 5} M {sub ☉}. The heavy concentration of protostars along the dense filamentary structures indicates that NGC 6334 may be undergoing a 'mini-starburst' event with Σ{sub SFR} > 8.2 M {sub ☉} Myr{sup –1} pc{sup –2} and SFE > 0.10. We have used these estimates to place NGC 6334 in the Kennicutt-Schmidt diagram to help bridge the gap between observations of local low-mass star-forming regions and star formation in other galaxies.

  12. Signatures of Young Star Formation Activity within Two Parsecs of Sgr A*

    NASA Astrophysics Data System (ADS)

    Yusef-Zadeh, F.; Wardle, M.; Sewilo, M.; Roberts, D. A.; Smith, I.; Arendt, R.; Cotton, W.; Lacy, J.; Martin, S.; Pound, M. W.; Rickert, M.; Royster, M.

    2015-07-01

    We present radio and infrared observations indicating ongoing star formation activity inside the ˜2-5 pc circumnuclear ring at the Galactic center. Collectively these measurements suggest a continued disk-based mode of ongoing star formation has taken place near Sgr A* over the last few million years. First, Very Large Array observations with spatial resolution 2.″17 × 0.″81 reveal 13 water masers, several of which have multiple velocity components. The presence of interstellar water masers suggests gas densities that are sufficient for self-gravity to overcome the tidal shear of the 4× {10}6 {M}⊙ black hole. Second, spectral energy distribution modeling of stellar sources indicates massive young stellar object (YSO) candidates interior to the molecular ring, supporting in situ star formation near Sgr A* and appear to show a distribution similar to that of the counter-rotating disks of ˜100 OB stars orbiting Sgr A*. Some YSO candidates (e.g., IRS 5) have bow shock structures, suggesting that they have gaseous disks that are phototoevaporated and photoionized by the strong radiation field. Third, we detect clumps of SiO (2-1) and (5-4) line emission in the ring based on Combined Array for Research in Millimeter-wave Astronomy and Sub-Millimeter Array observations. The FWHM and luminosity of the SiO emission is consistent with shocked protostellar outflows. Fourth, two linear ionized features with an extent of ˜0.8 pc show blue and redshifted velocities between +50 and -40 km s-1, suggesting protostellar jet driven outflows with mass-loss rates of ˜ 5× {10}-5 {M}⊙ yr-1. Finally, we present the imprint of radio dark clouds at 44 GHz, representing a reservoir of molecular gas that feeds star formation activity close to Sgr A*.

  13. Young stars in ɛ Chamaleontis and their disks: disk evolution in sparse associations

    NASA Astrophysics Data System (ADS)

    Fang, M.; van Boekel, R.; Bouwman, J.; Henning, Th.; Lawson, W. A.; Sicilia-Aguilar, A.

    2013-01-01

    Context. The nearby young stellar association ɛ Cha has an estimated age of 3-5 Myr, making it an ideal laboratory to study the disk dissipation process and provide empirical constraints on the timescale of planet formation. Aims: We wish to complement existing optical and near-infrared data of the ɛ Cha association, which provide the stellar properties of its members, with mid-infrared data that probe the presence, geometry, and mineralogical composition of protoplanetary disks around individual stars. Methods: We combine the available literature data with our Spitzer/IRS spectroscopy and VLT/VISIR imaging data. We use proper motions to refine the membership of ɛ Cha. Masses and ages of individual stars are estimated by fitting model atmospheres to the optical and near-infrared photometry, followed by placement in the Hertzsprung-Russell diagram. The Spitzer/IRS spectra are analyzed using the two-layer temperature distribution spectral decomposition method. Results: Two stars previously identified as members, CXOU J120152.8 and 2MASS J12074597, have proper motions that are very different from those of the other stars. But other observations suggest that the two stars are still young and thus might still be related to ɛ Cha. HD 104237C is the lowest mass member of ɛ Cha with an estimated mass of ~13-15 Jupiter masses. The very low mass stars USNO-B120144.7 and 2MASS J12005517 show globally depleted spectral energy distributions, pointing at strong dust settling. 2MASS J12014343 may have a disk with a very specific inclination, where the central star is effectively screened by the cold outer parts of a flared disk, but the 10 μm radiation of the warm inner disk can still reach us. We find that the disks in sparse stellar associations are dissipated more slowly than those in denser (cluster) environments. We detect C2H2 rovibrational band around 13.7 μm on the IRS spectrum of USNO-B120144.7. We find strong signatures of grain growth and crystallization in all

  14. Acneiform facial eruptions

    PubMed Central

    Cheung, Melody J.; Taher, Muba; Lauzon, Gilles J.

    2005-01-01

    OBJECTIVE To summarize clinical recognition and current management strategies for four types of acneiform facial eruptions common in young women: acne vulgaris, rosacea, folliculitis, and perioral dermatitis. QUALITY OF EVIDENCE Many randomized controlled trials (level I evidence) have studied treatments for acne vulgaris over the years. Treatment recommendations for rosacea, folliculitis, and perioral dermatitis are based predominantly on comparison and open-label studies (level II evidence) as well as expert opinion and consensus statements (level III evidence). MAIN MESSAGE Young women with acneiform facial eruptions often present in primary care. Differentiating between morphologically similar conditions is often difficult. Accurate diagnosis is important because treatment approaches are different for each disease. CONCLUSION Careful visual assessment with an appreciation for subtle morphologic differences and associated clinical factors will help with diagnosis of these common acneiform facial eruptions and lead to appropriate management. PMID:15856972

  15. Ages of young star clusters, massive blue stragglers, and the upper mass limit of stars: Analyzing age-dependent stellar mass functions

    SciTech Connect

    Schneider, F. R. N.; Izzard, R. G.; Langer, N.; Stolte, A.; Hußmann, B.; De Mink, S. E.; De Koter, A.; Sana, H.; Gvaramadze, V. V.; Liermann, A.

    2014-01-10

    Massive stars rapidly change their masses through strong stellar winds and mass transfer in binary systems. The latter aspect is important for populations of massive stars as more than 70% of all O stars are expected to interact with a binary companion during their lifetime. We show that such mass changes leave characteristic signatures in stellar mass functions of young star clusters that can be used to infer their ages and to identify products of binary evolution. We model the observed present-day mass functions of the young Galactic Arches and Quintuplet star clusters using our rapid binary evolution code. We find that the shaping of the mass function by stellar wind mass loss allows us to determine the cluster ages as 3.5 ± 0.7 Myr and 4.8 ± 1.1 Myr, respectively. Exploiting the effects of binary mass exchange on the cluster mass function, we find that the most massive stars in both clusters are rejuvenated products of binary mass transfer, i.e., the massive counterpart of classical blue straggler stars. This resolves the problem of an apparent age spread among the most luminous stars exceeding the expected duration of star formation in these clusters. We perform Monte Carlo simulations to probe stochastic sampling, which support the idea of the most massive stars being rejuvenated binary products. We find that the most massive star is expected to be a binary product after 1.0 ± 0.7 Myr in Arches and after 1.7 ± 1.0 Myr in Quintuplet. Today, the most massive 9 ± 3 stars in Arches and 8 ± 3 in Quintuplet are expected to be such objects. Our findings have strong implications for the stellar upper mass limit and solve the discrepancy between the claimed 150 M {sub ☉} limit and observations of four stars with initial masses of 165-320 M {sub ☉} in R136 and of supernova 2007bi, which is thought to be a pair-instability supernova from an initial 250 M {sub ☉} star. Using the stellar population of R136, we revise the upper mass limit to values in the range

  16. YOUNG STELLAR OBJECTS IN THE LARGE MAGELLANIC CLOUD STAR-FORMING REGION N206

    SciTech Connect

    Romita, Krista Alexandra; Meixner, M.; Sewilo, M.; Shiao, B.; Carlson, Lynn Redding; Whitney, B.; Babler, B.; Meade, M.; Indebetouw, R.; Hora, J. L. E-mail: carlson@stsci.ed E-mail: brian@sal.wisc.ed E-mail: jhora@cfa.harvard.ed

    2010-09-20

    We present analysis of the energetic star-forming region Henize 206 (N206) located near the southern edge of the Large Magellanic Cloud (LMC) based on photometric data from the Spitzer Surveying the Agents of Galaxy Evolution (SAGE-LMC; IRAC 3.6, 4.5, 5.8, 8.0 {mu}m and MIPS 24 {mu}m), Infrared Survey Facility near-infrared survey (J, H, K{sub s}), and the Magellanic Clouds Photometric Survey (MCPS UBVI) covering a wavelength range of 0.36-24 {mu}m. Young stellar object (YSO) candidates are identified based upon their location in infrared color-magnitude space and classified by the shapes of their spectral energy distributions in comparison with a pre-computed grid of YSO models. We identify 116 YSO candidates: 102 are well characterized by the YSO models, predominately Stage I, and 14 may be multiple sources or young sources with transition disks. Careful examination of the individual sources and their surrounding environment allows us to identify a factor of {approx}14.5 more YSO candidates than have already been identified. The total mass of these well-fit YSO candidates is {approx}520 M{sub sun}. We calculate a current star formation rate of 0.27 x 10{sup -1} M{sub sun} yr{sup -1} kpc{sup -2}. The distribution of YSO candidates appears to follow shells of neutral material in the interstellar medium.

  17. Discovery of a wide planetary-mass companion to the young M3 star GU PSC

    SciTech Connect

    Naud, Marie-Eve; Artigau, Étienne; Malo, Lison; Albert, Loïc; Doyon, René; Lafrenière, David; Gagné, Jonathan; Boucher, Anne; Saumon, Didier; Morley, Caroline V.; Allard, France; Homeier, Derek; Beichman, Charles A.; Gelino, Christopher R.

    2014-05-20

    We present the discovery of a comoving planetary-mass companion ∼42'' (∼2000 AU) from a young M3 star, GU Psc, a likely member of the young AB Doradus Moving Group (ABDMG). The companion was first identified via its distinctively red i – z color (>3.5) through a survey made with Gemini-S/GMOS. Follow-up Canada-France-Hawaii Telescope/WIRCam near-infrared (NIR) imaging, Gemini-N/GNIRS NIR spectroscopy and Wide-field Infrared Survey Explorer photometry indicate a spectral type of T3.5 ± 1 and reveal signs of low gravity which we attribute to youth. Keck/Adaptive Optics NIR observations did not resolve the companion as a binary. A comparison with atmosphere models indicates T {sub eff} = 1000-1100 K and log g = 4.5-5.0. Based on evolution models, this temperature corresponds to a mass of 9-13 M {sub Jup} for the age of ABDMG (70-130 Myr). The relatively well-constrained age of this companion and its very large angular separation to its host star will allow its thorough characterization and will make it a valuable comparison for planetary-mass companions that will be uncovered by forthcoming planet-finder instruments such as Gemini Planet Imager and SPHERE 9.

  18. Hierarchical black hole triples in young star clusters: impact of Kozai-Lidov resonance on mergers

    NASA Astrophysics Data System (ADS)

    Kimpson, Thomas O.; Spera, Mario; Mapelli, Michela; Ziosi, Brunetto M.

    2016-08-01

    Mergers of compact object binaries are one of the most powerful sources of gravitational waves (GWs) in the frequency range of second-generation ground-based gravitational wave detectors (Advanced LIGO and Virgo). Dynamical simulations of young dense star clusters (SCs) indicate that ˜27 per cent of all double compact object binaries are members of hierarchical triple systems (HTs). In this paper, we consider 570 HTs composed of three compact objects (black holes or neutron stars) that formed dynamically in N-body simulations of young dense SCs. We simulate them for a Hubble time with a new code based on the Mikkola's algorithmic regularization scheme, including the 2.5 post-Newtonian term. We find that ˜88 per cent of the simulated systems develop Kozai-Lidov (KL) oscillations. KL resonance triggers the merger of the inner binary in three systems (corresponding to 0.5 per cent of the simulated HTs), by increasing the eccentricity of the inner binary. Accounting for KL oscillations leads to an increase of the total expected merger rate by ≈50 per cent. All binaries that merge because of KL oscillations were formed by dynamical exchanges (i.e. none is a primordial binary) and have chirp mass >20 M⊙. This result might be crucial to interpret the formation channel of the first recently detected GW events.

  19. The Spatial Distribution of the Young Stellar Clusters in the Star-forming Galaxy NGC 628

    NASA Astrophysics Data System (ADS)

    Grasha, K.; Calzetti, D.; Adamo, A.; Kim, H.; Elmegreen, B. G.; Gouliermis, D. A.; Aloisi, A.; Bright, S. N.; Christian, C.; Cignoni, M.; Dale, D. A.; Dobbs, C.; Elmegreen, D. M.; Fumagalli, M.; Gallagher, J. S., III; Grebel, E. K.; Johnson, K. E.; Lee, J. C.; Messa, M.; Smith, L. J.; Ryon, J. E.; Thilker, D.; Ubeda, L.; Wofford, A.

    2015-12-01

    We present a study of the spatial distribution of the stellar cluster populations in the star-forming galaxy NGC 628. Using Hubble Space Telescope broadband WFC3/UVIS UV and optical images from the Treasury Program LEGUS (Legacy ExtraGalactic UV Survey), we have identified 1392 potential young (≲ 100 Myr) stellar clusters within the galaxy using a combination of visual inspection and automatic selection. We investigate the clustering of these young stellar clusters and quantify the strength and change of clustering strength with scale using the two-point correlation function. We also investigate how image boundary conditions and dust lanes affect the observed clustering. The distribution of the clusters is well fit by a broken power law with negative exponent α. We recover a weighted mean index of α ˜ -0.8 for all spatial scales below the break at 3.″3 (158 pc at a distance of 9.9 Mpc) and an index of α ˜ -0.18 above 158 pc for the accumulation of all cluster types. The strength of the clustering increases with decreasing age and clusters older than 40 Myr lose their clustered structure very rapidly and tend to be randomly distributed in this galaxy, whereas the mass of the star cluster has little effect on the clustering strength. This is consistent with results from other studies that the morphological hierarchy in stellar clustering resembles the same hierarchy as the turbulent interstellar medium.

  20. Protoplanetary Disk Shadowing by Gas Infalling onto the Young Star AK Sco

    NASA Astrophysics Data System (ADS)

    Gómez de Castro, Ana I.; Loyd, Robert O. P.; France, Kevin; Sytov, Alexey; Bisikalo, Dmitry

    2016-02-01

    Young solar-type stars grow through the accretion of material from the circumstellar disk during pre-main-sequence (PMS) evolution. The ultraviolet radiation generated in this process plays a key role in the chemistry and evolution of young planetary disks. In particular, the hydrogen Lyα line (Lyα) etches the disk surface by driving photoevaporative flows that control disk evolution. Using the Hubble Space Telescope, we have monitored the PMS binary star AK Sco during the periastron passage and have detected a drop of the H2 flux by up to 10% lasting 5.9 hr. We show that the decrease of the H2 flux can be produced by the occultation of the stellar Lyα photons by a gas stream in free fall from 3 R{}*. Given the high optical depth of the Lyα line, a very low gas column of {N}{{H}}\\gt 5× {10}17 cm‑2 suffices to block the Lyα radiation without producing noticeable effects in the rest of the stellar spectral tracers.

  1. MASS DISTRIBUTIONS OF STARS AND CORES IN YOUNG GROUPS AND CLUSTERS

    SciTech Connect

    Michel, Manon; Kirk, Helen; Myers, Philip C. E-mail: hkirk@cfa.harvard.edu

    2011-07-01

    We investigate the relation of the stellar initial mass function and the dense core mass function (CMF), using stellar masses and positions in 14 well-studied young groups. Initial column density maps are computed by replacing each star with a model initial core having the same star formation efficiency (SFE). For each group the SFE, core model, and observational resolution are varied to produce a realistic range of initial maps. A clump-finding algorithm parses each initial map into derived cores, derived core masses, and a derived CMF. The main result is that projected blending of initial cores causes derived cores to be too few and too massive. The number of derived cores is fewer than the number of initial cores by a mean factor of 1.4 in sparse groups and 5 in crowded groups. The mass at the peak of the derived CMF exceeds the mass at the peak of the initial CMF by a mean factor of 1.0 in sparse groups and 12.1 in crowded groups. These results imply that in crowded young groups and clusters, the mass distribution of observed cores may not reliably predict the mass distribution of protostars that will form in those cores.

  2. A multiwavelength investigation of the H II region S311: young stellar population and star formation

    NASA Astrophysics Data System (ADS)

    Yadav, Ram Kesh; Pandey, A. K.; Sharma, Saurabh; Ojha, D. K.; Samal, M. R.; Mallick, K. K.; Jose, J.; Ogura, K.; Richichi, Andrea; Irawati, Puji; Kobayashi, N.; Eswaraiah, C.

    2016-09-01

    We present a multiwavelength investigation of the young stellar population and star formation activities around the H II region Sharpless 311. Using our deep near-infrared observations and archival Spitzer-IRAC observations, we have detected a total of 125 young stellar objects (YSOs) in an area of ˜86 arcmin2. The YSO sample includes eight Class I and 117 Class II candidate YSOs. The mass completeness of the identified YSO sample is estimated to be 1.0 M⊙. The ages and masses of the majority of the candidate YSOs are estimated to be in the range ˜0.1-5 Myr and ˜0.3-6 M⊙, respectively. The 8-μm image of S311 displays an approximately spherical cavity around the ionizing source, which was possibly created by the expansion of the H II region. The spatial distribution of the candidate YSOs reveals that a significant number of them are distributed systematically along the 8-μm emission with a majority clustered around the eastern border of the H II region. Four clumps/compact H II regions are detected in the radio continuum observations at 1280 MHz, which may have been formed during the expansion of the H II region. The estimated dynamical age of the region, main-sequence lifetime of the ionizing source, the spatial distribution and ages of the candidate YSOs indicate triggered star formation in the complex.

  3. Hubble space telescope observations of young star clusters in NGC-4038/4039, 'the antennae' galaxies

    NASA Technical Reports Server (NTRS)

    Whitmore, Bradley C.; Schweizer, Francois

    1995-01-01

    New, high-resolution images of the disks of NGC 4038/4039 obtained with the Wide Field Camera of the Hubble Space Telescope (HST) are presented. NGC 4038/4039, nicknamed The Antennae, is a prototypical example of a pair of colliding galaxies believed to be at an early stage of a merger. Down to the limiting magnitude of V approximately 23 mag, the HST images reveal a population of over 700 blue pointlike objects within the disks. The mean absolute magnitude of these objects is M(sub V) = -11 mag, with the brightest objects reaching M(sub V) approximately -15. Their mean apparent color indices ar U - V = -0.7 mag and V - 1 = 0.8 mag on the Johnson UVI passband system, while their mean indices corrected for internal reddening are (u - v)(sub 0) = -1.0 mag and (V - I(sub 0) = 0.5. Their mean effective radius, determined from slightly resolved images, is 18 pc (for H(sub 0) = 50 km/s /Mpc). Based on their luminosities and resolution, most of these objects cannot be individual stars, but are likely young compact star clusters. The brighter ones are similar to the objects found in NGC 1275 and NGC 7252, which appear to be young globular clusters formed during recent galazy mergers. Based on their U - V and V - I colors, the brightest, bluest clusters of NGC 4038/4039 appear to be less than 10 Myr old. Most of these bright clusters are relatively tightly clustered themselves, with typically a dozen individual clusters belonging to a complex identified as a giant H II region from ground-based observations. The cluster luminosity function (LF) is approximately a power law, phi(L)dL proportional to L(exp -1.78+/-0.05)dL, with no hint of a turnover at fainter magnitudes. This power-law shape agrees with the LF of Magellanic Cloud clusters and Galactic open clusters, but differs from the LF of old globular cluster systems that is typically Gaussian with a Full Width at Half Maximum (FWHM) of approximately 3 mag. Besides the blue clusters, we also find about a dozen extremely

  4. Orion in a New Light - VISTA exposes high-speed antics of young stars

    NASA Astrophysics Data System (ADS)

    2010-02-01

    The Orion Nebula reveals many of its hidden secrets in a dramatic image taken by ESO's new VISTA survey telescope. The telescope's huge field of view can show the full splendour of the whole nebula and VISTA's infrared vision also allows it to peer deeply into dusty regions that are normally hidden and expose the curious behaviour of the very active young stars buried there. VISTA - the Visible and Infrared Survey Telescope for Astronomy - is the latest addition to ESO's Paranal Observatory (eso0949). It is the largest survey telescope in the world and is dedicated to mapping the sky at infrared wavelengths. The large (4.1-metre) mirror, wide field of view and very sensitive detectors make VISTA a unique instrument. This dramatic new image of the Orion Nebula illustrates VISTA's remarkable powers. The Orion Nebula [1] is a vast stellar nursery lying about 1350 light-years from Earth. Although the nebula is spectacular when seen through an ordinary telescope, what can be seen using visible light is only a small part of a cloud of gas in which stars are forming. Most of the action is deeply embedded in dust clouds and to see what is really happening astronomers need to use telescopes with detectors sensitive to the longer wavelength radiation that can penetrate the dust. VISTA has imaged the Orion Nebula at wavelengths about twice as long as can be detected by the human eye. As in the many visible light pictures of this object, the new wide field VISTA image shows the familiar bat-like form of the nebula in the centre of the picture as well as the fascinating surrounding area. At the very heart of this region lie the four bright stars forming the Trapezium, a group of very hot young stars pumping out fierce ultraviolet radiation that is clearing the surrounding region and making the gas glow. However, observing in the infrared allows VISTA to reveal many other young stars in this central region that cannot be seen in visible light. Looking to the region above the

  5. Young Stars in Old Galaxies - a Cosmic Hide and Seek Game

    NASA Astrophysics Data System (ADS)

    2002-05-01

    Surprise Discovery with World's Leading Telescopes [1] Summary Combining data from the NASA/ESA Hubble Space Telescope (HST) and the ESO Very Large Telescope (VLT) , a group of European and American astronomers [2] have made an unexpected, major discovery. They have identified a huge number of "young" stellar clusters , only a few billion years old [3], inside an "old" elliptical galaxy (NGC 4365), probably aged some 12 billion years. For the first time, it has been possible to identify several distinct periods of star-formation in a galaxy as old as this one . Elliptical galaxies like NGC 4365 have until now been considered to have undergone one early star-forming period and thereafter to be devoid of any star formation. However, the combination of the best and largest telescopes in space and on the ground has now clearly shown that there is more than meets the eye. This important new information will help to understand the early history of galaxies and the general theory of star formation in the Universe . PR Photo 15a/02 : Combined HST+VLT image of elliptical galaxy NGC 4365 PR Photo 15b/02 : Same image, with "old" and "young" stellar clusters indicated PR Photo 15c/02 : Animated GIF image, showing the three cluster populations observed in NGC 4365 Do elliptical galaxies only contain old stars? One of the challenges of modern astronomy is to understand how galaxies, those large systems of stars, gas and dust, form and evolve. In this connection, a central question has always been to learn when most of the stars in the Universe formed. Did this happen at a very early stage, within a few billion years after the Big Bang? Or were a significant number of the stars we now observe formed much more recently? Spectacular collisions between galaxies take place all the time, triggering the formation of thousands or even millions of stars, cf. ESO PR Photo 29b/99 of the dramatic encounter between NGC 6872 and IC 4970. However, when looking at the Universe as a whole, most

  6. Low-Mass Star Formation and the Initial Mass Function in Young Clusters

    NASA Astrophysics Data System (ADS)

    Luhman, Kevin Lee

    I have used optical and near-infrared spectroscopy and imaging to measure spectral types and luminosities for young (/tau<10 Myr), embedded (AV=0[-]50), low-mass (0.1-1 Msolar) stars in three nearby (d<300 pc) clusters: L1495E, IC 348, and ρ Ophiuchi. In conjunction with theoretical evolutionary tracks, I have derived the star formation history and initial mass function for each stellar population. A large number of brown dwarf candidates have been identified in the photometry, several of which are confirmed through spectroscopy. Finally, I have measured the frequency and survival times of circumstellar disks and investigated the photometric and spectroscopic properties of protostars. In S 2, I apply observational tests to the available sets of evolutionary models for low-mass stars, concluding that the calculations of D'Antona & Mazzitelli are preferred for the range of masses and ages considered here. In S 3 and S 4, I examine in detail the spectroscopic characteristics and substellar nature of two brown dwarf candidates. The study then expands to include the populations within the clusters L1495E (S 5), IC 348 (S 6), and ρ Ophiuchi (S 7). In S 8, I briefly discuss the past, present, and future of scientific research related to this thesis.

  7. CLOSE STELLAR ENCOUNTERS IN YOUNG, SUBSTRUCTURED, DISSOLVING STAR CLUSTERS: STATISTICS AND EFFECTS ON PLANETARY SYSTEMS

    SciTech Connect

    Craig, Jonathan; Krumholz, Mark R.

    2013-06-01

    Both simulations and observations indicate that stars form in filamentary, hierarchically clustered associations, most of which disperse into their galactic field once feedback destroys their parent clouds. However, during their early evolution in these substructured environments, stars can undergo close encounters with one another that might have significant impacts on their protoplanetary disks or young planetary systems. We perform N-body simulations of the early evolution of dissolving, substructured clusters with a wide range of properties, with the aim of quantifying the expected number and orbital element distributions of encounters as a function of cluster properties. We show that the presence of substructure both boosts the encounter rate and modifies the distribution of encounter velocities compared to what would be expected for a dynamically relaxed cluster. However, the boost only lasts for a dynamical time, and as a result the overall number of encounters expected remains low enough that gravitational stripping is unlikely to be a significant effect for the vast majority of star-forming environments in the Galaxy. We briefly discuss the implications of this result for models of the origin of the solar system, and of free-floating planets. We also provide tabulated encounter rates and orbital element distributions suitable for inclusion in population synthesis models of planet formation in a clustered environment.

  8. Clarifying Our View of Milky Way Massive Young Star Clusters with Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Lu, Jessica R.; Ghez, A. M.; McCrady, N.; Yelda, S.

    2011-01-01

    We present Keck laser guide star adaptive optics (AO) observations of the massive young star clusters W51 G48.9-0.3 and W49A Cluster 1 in an effort to test the universality of the initial mass function (IMF) in extreme star forming environments. High-precision AO astrometry over a 1 year time baseline is successfully used to separate cluster members from contaminating field objects with differential proper motions as small as 0.5 mas/yr (15 km/s at 6 pc). We have developed improved AO photometric analysis techniques and use the near-infrared photometry of the proper motion selected cluster members to construct mass functions corrected for spatially varying extinction and incompleteness. Contrary to previous results for W51, we measure a mass function that has a high-mass end slope consistent with a Salpeter IMF and find that the observed cluster mass within 0.3 pc is <700 solar masses between 1 and 60 solar masses.

  9. VizieR Online Data Catalog: Stellar physical parameters for young stars (Monguio+, 2014)

    NASA Astrophysics Data System (ADS)

    Monguio, M.; Figueras, F.; Grosbol, P.

    2014-08-01

    A uvbyHβ Stromgren photometric survey covering 16 square degrees in the anticenter direction was carried out using the Wide Field Camera at the Isaac Newton Telescope. Physical parameters like stellar distances and extinctions for the young stars of our survey are presented here. We developed a new method for deriving physical parameters from Stromgren photometry and also implemented and tested it. This is a model-based method that uses the most recent available stellar atmospheric models and evolutionary tracks to interpolate in a 3D grid of the unreddened indexes [m1], [c1] and Hβ. Distances derived from both this method and the classical pre-Hipparcos calibrations were tested against Hipparcos parallaxes and found to be accurate. Furthermore, a shift in the atmospheric grids in the range Teff=[7000,9000]K was detected and a correction is proposed. The two methods were used to compute distances and reddening for around 12000 OBA-type stars in our Stromgren anticenter survey. Data from the IPHAS and 2MASS catalogs were used to complement the detection of emission line stars and to break the degeneracy between early and late photometric regions. We note that photometric distances can differ by more than 20%, those derived from the empirical calibrations being smaller than those derived with the new method, which agree better with the Hipparcos data. (1 data file).

  10. A new method for measuring metallicities of young super star clusters

    SciTech Connect

    Gazak, J. Zachary; Kudritzki, Rolf; Bresolin, Fabio; Davies, Ben; Bastian, Nate; Bergemann, Maria; Plez, Bertrand; Evans, Chris; Patrick, Lee; Schinnerer, Eva

    2014-06-01

    We demonstrate how the metallicities of young super star clusters (SSC) can be measured using novel spectroscopic techniques in the J-band. The near-infrared flux of SSCs older than ∼6 Myr is dominated by tens to hundreds of red supergiant stars. Our technique is designed to harness the integrated light of that population and produces accurate metallicities for new observations in galaxies above (M83) and below (NGC 6946) solar metallicity. In M83 we find [Z] = +0.28 ± 0.14 dex using a moderate resolution (R ∼ 3500) J-band spectrum and in NGC 6496 we report [Z] = -0.32 ± 0.20 dex from a low resolution spectrum of R ∼ 1800. Recently commissioned low resolution multiplexed spectrographs on the Very Large Telescope (KMOS) and Keck (MOSFIRE) will allow accurate measurements of SSC metallicities across the disks of star-forming galaxies up to distances of 70 Mpc with single night observation campaigns using the method presented in this paper.

  11. Exploring Bias and Uncertainty in Gaussian Mixture Models of Young, Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    Elrod, Aunna; Clarkson, William I.

    2016-06-01

    Mixture models are important for studies of star clusters observed against a foreground or background field population. By directly estimating both the distribution parameters of the components and the component fractions (and thus the formal membership probabilities), the populations of interest can be fit directly without recourse to binning. Gaussian Mixtures are a highly popular choice when modeling star clusters, and their determination using the Expectation Maximization algorithm, or its extension to cases with strongly varying measurement uncertainty (e.g. Bovy et al.’s Extreme Deconvolution) now appears in some statistics textbooks.Here we describe our Monte Carlo study to estimate the effect of the choice of instrumental setup, particularly different field of views, on parameter recovery for simulated star clusters under a variety of situations. We simulate observations of a Young, Massive Cluster like those near the Galactic Center, focusing mainly on scenarios where the same cluster is observed from ground and from space. We characterize the bias and uncertainty that might be introduced when using this fairly recent yet increasingly popular technique across heterogenous instrumental setups.

  12. Atmospheric measurements of volcanic eruptions with the infrared sounder IASI (Arne Richter Award for Outstanding Young Scientists Lecture)

    NASA Astrophysics Data System (ADS)

    Clarisse, L.

    2012-04-01

    Due to their spatial coverage, satellite sounders are ideal for measuring volcanic emissions. They are able to monitor (dormant) volcanoes in remote parts of the world and measure large plumes from explosive eruptions. Currently over a dozen instruments (operating in the IR and UV spectral ranges) are capable of detecting volcanic ash and/or sulphur dioxide. Satellite measurements are highly relevant for hazard mitigation, locally but also on large scales for air traffic avoidance of volcanic clouds. Their coverage enables to establish an accurate time-record of global volcanic emissions. This is useful from a volcanology perspective, but also for assessing the global climate impact of volcanic emissions. In this talk we give an overview of four years of measurements of large eruptive plumes from the high resolution infrared atmospheric sounding interferometer (IASI). The focus is on the detection and measurement of volcanic aerosol (volcanic ash, ice and sulphuric acid). In the second part of this talk, we discuss sulphur dioxide measurements and the recent first observations of hydrogen sulphide. We conclude with a discussion of open problems and challenges which lie ahead for the remote sensing of volcanic products.

  13. The Red MSX Source survey: distribution and properties of a sample of massive young stars

    NASA Astrophysics Data System (ADS)

    Urquhart, J. S.; Moore, T. J. T.; Hoare, M. G.; Lumsden, S. L.; Oudmaijer, R. D.; Rathborne, J. M.; Mottram, J. C.; Davies, B.; Stead, J. J.

    2011-01-01

    The Red MSX Source (RMS) survey has identified a large sample of massive young stellar objects and ultra compact H II regions from a sample of ˜2000 MSX and Two Micron All Sky Survey (2MASS) colour selected sources. Using a recent catalogue of molecular clouds derived from the Boston University-Five College Radio Astronomy Observatory (BU-FCRAO) Galactic Ring Survey (GRS), and by applying a Galactic scaleheight cut-off of 120 pc, we solve the distance ambiguity for RMS sources located within 18°<|l|> 54°. These two steps yield kinematic distances to 291 sources out of a possible 326, located within the GRS longitude range. Combining distances and integrated fluxes derived from spectral energy distributions, we estimate luminosities to these sources and find that >90 per cent are indicative of the presence of a massive star. We find the completeness limit of our sample is ˜104 L⊙, which corresponds to a zero-age main-sequence star with a mass of ˜12 M⊙. Selecting only these sources, we construct a complete sample of 196 sources. Comparing the properties of the sample of young massive stars with the general population, we find the RMS clouds are generally larger, more massive, and more turbulent. We examine the distribution of this subsample with respect to the location of the spiral arms and the Galactic bar and find them to be spatially correlated. We identify three significant peaks in the source surface density at Galactocentric radii of approximately 4, 6 and 8 kpc, which correspond to the proposed positions of the Scutum, Sagittarius and Perseus spiral arms, respectively. Fitting a scaleheight to the data we obtain an average value of ˜29 ± 0.5 pc, which agrees well with other reported values in the literature, however we note a dependence of the scaleheight on galactocentric radius with it increases from 30 to 45 pc between 2.5 and 8.5 kpc.

  14. NGC 2782: A Merger Remnant with Young Stars in its Gaseous Tidal Tail

    NASA Technical Reports Server (NTRS)

    Torres-Flores, S.; de Oliveira, C. Mendes; de Mello, D. F.; Scarano, S. Jr.; Urrutia-Viscarra, R.

    2012-01-01

    We have searched for young star-forming regions around the merger remnant NGC 2782. By using GALEX FUV and NUV imaging and HI data we found seven UV sources, located at distances greater than 26 kpc from the center of NGG 2782, and coinciding with its western HI tidal tail. These regions were resolved in several smaller systems when Gemini/GMOS r-band images were used. We compared the observed colors to stellar population synthesis models and we found that these objects have ages of l to ll11yr and masses ranging from 10(exp 3.9) to l0(exp 4.6) Solar Mass. By using Gemini/GMOS spectroscopic data we confirm memberships and derive high metallicities for three of the young regions in the tail (12+log(O/H)=8.74+/-0.20, 8.81+/-0.20 and 8.78+/-0.20). These metallicities are similar to the value presented by the nuclear region of NGG 2782 and also similar to the value presented for an object located close to the main body of NGG 2782. The high metallicities measured for the star-forming regions in the gaseous tidal tail of NGG 2782 could be explained if they were formed out of highly enriched gas which was once expelled from the center of the merging galaxies when the system collided. An additional possibility is that the tail has been a nursery of a few generations of young stellar systems which ultimately polluted this medium with metals, further enriching the already pre-enriched gas ejected to the tail when the galaxies collided.

  15. GIANO-TNG spectroscopy of red supergiants in the young star cluster RSGC3

    NASA Astrophysics Data System (ADS)

    Origlia, L.; Oliva, E.; Sanna, N.; Mucciarelli, A.; Dalessandro, E.; Scuderi, S.; Baffa, C.; Biliotti, V.; Carbonaro, L.; Falcini, G.; Giani, E.; Iuzzolino, M.; Massi, F.; Sozzi, M.; Tozzi, A.; Ghedina, A.; Ghinassi, F.; Lodi, M.; Harutyunyan, A.; Pedani, M.

    2016-01-01

    Aims: The Scutum complex in the inner disk of the Galaxy has a number of young star clusters dominated by red supergiants that are heavily obscured by dust extinction and observable only at infrared wavelengths. These clusters are important tracers of the recent star formation and chemical enrichment history in the inner Galaxy. Methods: During the technical commissioning and as a first science verification of the GIANO spectrograph at the Telescopio Nazionale Galileo, we secured high-resolution (R ≃ 50 000) near-infrared spectra of five red supergiants in the young Scutum cluster RSGC3. Results: Taking advantage of the full YJHK spectral coverage of GIANO in a single exposure, we were able to measure several tens of atomic and molecular lines that were suitable for determining chemical abundances. By means of spectral synthesis and line equivalent width measurements, we obtained abundances of Fe and iron-peak elements such as Ni, Cr, and Cu, alpha (O, Mg, Si, Ca, Ti), other light elements (C, N, F, Na, Al, and Sc), and some s-process elements (Y, Sr). We found average half-solar iron abundances and solar-scaled [X/Fe] abundance patterns for most of the elements, consistent with a thin-disk chemistry. We found depletion of [C/Fe] and enhancement of [N/Fe], consistent with standard CN burning, and low 12C /13C abundance ratios (between 9 and 11), which require extra-mixing processes in the stellar interiors during the post-main sequence evolution. We also found local standard of rest VLSR = 106 km s-1 and heliocentric Vhel = 90 km s-1 radial velocities with a dispersion of 2.3 km s-1. Conclusions: The inferred radial velocities, abundances, and abundance patterns of RSGC3 are very similar to those previously measured in the other two young clusters of the Scutum complex, RSGC1 and RSGC2, suggesting a common kinematics and chemistry within the Scutum complex.

  16. GMRT detections of low-mass young stars at 323 and 608 MHz

    NASA Astrophysics Data System (ADS)

    Ainsworth, Rachael E.; Scaife, Anna M. M.; Green, David A.; Coughlan, Colm P.; Ray, Tom P.

    2016-06-01

    We present the results of a pathfinder project conducted with the Giant Metrewave Radio Telescope (GMRT) to investigate protostellar systems at low radio frequencies. The goal of these investigations is to locate the break in the free-free spectrum where the optical depth equals unity in order to constrain physical parameters of these systems, such as the mass of the ionized gas surrounding these young stars. We detect all three target sources, L1551 IRS 5 (Class I), T Tau and DG Tau (Class II), at frequencies 323 and 608 MHz (wavelengths 90 and 50 cm, respectively). These are the first detections of low-mass young stellar objects at such low frequencies. We combine these new GMRT data with archival information to construct the spectral energy distributions for each system and find a continuation of the optically thin free-free spectra extrapolated from higher radio frequencies to 323 MHz for each target. We use these results to place limits on the masses of the ionized gas and average electron densities associated with these young systems on scales of ˜1000 au. Future observations with higher angular resolution at lower frequencies are required to constrain these physical parameters further.

  17. Stars and star systems

    NASA Astrophysics Data System (ADS)

    Martynov, D. Ia.

    Topics examined include close binary systems, supernovae and their remnants, variable stars, young star groups (e.g., clusters and associations), spherical star clusters, and planetary nebulae. Also considered are the interstellar medium and star formation, systems of galaxies, and current problems in cosmology.

  18. The Starchive: An open access, open source archive of nearby and young stars and their planets

    NASA Astrophysics Data System (ADS)

    Tanner, Angelle; Gelino, Chris; Elfeki, Mario

    2015-12-01

    Historically, astronomers have utilized a piecemeal set of archives such as SIMBAD, the Washington Double Star Catalog, various exoplanet encyclopedias and electronic tables from the literature to cobble together stellar and exo-planetary parameters in the absence of corresponding images and spectra. As the search for planets around young stars through direct imaging, transits and infrared/optical radial velocity surveys blossoms, there is a void in the available set of to create comprehensive lists of the stellar parameters of nearby stars especially for important parameters such as metallicity and stellar activity indicators. For direct imaging surveys, we need better resources for downloading existing high contrast images to help confirm new discoveries and find ideal target stars. Once we have discovered new planets, we need a uniform database of stellar and planetary parameters from which to look for correlations to better understand the formation and evolution of these systems. As a solution to these issues, we are developing the Starchive - an open access stellar archive in the spirit of the open exoplanet catalog, the Kepler Community Follow-up Program and many others. The archive will allow users to download various datasets, upload new images, spectra and metadata and will contain multiple plotting tools to use in presentations and data interpretations. While we will highly regulate and constantly validate the data being placed into our archive the open nature of its design is intended to allow the database to be expanded efficiently and have a level of versatility which is necessary in today's fast moving, big data community. Finally, the front-end scripts will be placed on github and users will be encouraged to contribute new plotting tools. Here, I will introduce the community to the content and expected capabilities of the archive and query the audience for community feedback.

  19. Young ``Dipper" Stars in Upper Sco and Oph Observed by K2

    NASA Astrophysics Data System (ADS)

    Ansdell, M.; Gaidos, E.; Rappaport, S. A.; Jacobs, T. L.; LaCourse, D. M.; Jek, K. J.; Mann, A. W.; Wyatt, M. C.; Kennedy, G.; Williams, J. P.; Boyajian, T. S.

    2016-01-01

    We present ten young (≲10 Myr) late-K and M dwarf stars observed in K2 Campaign 2 that host protoplanetary disks and exhibit quasi-periodic or aperiodic dimming events. Their optical light curves show ˜10-20 dips in flux over the 80-day observing campaign with durations of ˜0.5-2 days and depths of up to ˜40%. These stars are all members of the ρ Ophiuchus (˜1 Myr) or Upper Scorpius (˜10 Myr) star-forming regions. To investigate the nature of these “dippers” we obtained: optical and near-infrared spectra to determine stellar properties and identify accretion signatures; adaptive optics imaging to search for close companions that could cause optical variations and/or influence disk evolution; and millimeter-wavelength observations to constrain disk dust and gas masses. The spectra reveal Li i absorption and Hα emission consistent with stellar youth (<50 Myr), but also accretion rates spanning those of classical and weak-line T Tauri stars. Infrared excesses are consistent with protoplanetary disks extending to within ˜10 stellar radii in most cases; however, the sub-millimeter observations imply disk masses that are an order of magnitude below those of typical protoplanetary disks. We find a positive correlation between dip depth and WISE-2 (Wide-field Infrared Survey Explorer-2) excess, which we interpret as evidence that the dipper phenomenon is related to occulting structures in the inner disk, although this is difficult to reconcile with the weakly accreting aperiodic dippers. We consider three mechanisms to explain the dipper phenomenon: inner disk warps near the co-rotation radius related to accretion; vortices at the inner disk edge produced by the Rossby Wave Instability; and clumps of circumstellar material related to planetesimal formation.

  20. Chandra and NTT Observations of Massive Young Stars in the Heavily Reddened Galactic Cluster Westerlund 1

    NASA Astrophysics Data System (ADS)

    Skinner, S. L.; Damineli, A.; Palla, F.; Zhekov, S. A.; Simmons, A. E.; Teodoro, M.

    2005-12-01

    The southern galactic starburst cluster Westerlund 1 (Wd1) contains a rich population of massive young stars that is spectacularly revealed in infrared images. Recent studies give a mean extinction in the range Av = 9.5 - 13.6 mag and age estimates of ˜3 - 5 Myr (Brandner et al. 2005, Clark et al. 2005). The cluster contains numerous supergiants, hypergiants, a LBV candidate, and at least 19 Wolf-Rayet (WR) stars. We present new results from Chandra X-ray and NTT near-IR observations of Wd1. Our immediate objectives are to obtain an X-ray census, identify optical or near-IR counterparts to the X-ray sources, and quantify the X-ray properties of the cluster members. Chandra detections include a newly-discovered 10.61 sec pulsar, the unusual B[e] supergiant W9, and half of the currently known WR stars in the cluster. The Chandra ACIS-S CCD spectrum of the Wd1 pulsar (CXO J164710.2-455217) can be acceptably reproduced by an absorbed soft blackbody emission model, but the model is not uniquely constrained by the existing data. A high-temperature component is clearly present in the X-ray spectrum of W9, suggesting that it is a close binary or unresolved multiple. Most of the Chandra WR detections are nitrogen-rich WN stars, but a few carbon-rich WC stars are surprisingly detected. At an assumed distance of 4 kpc, the X-ray luminosity of W87-239 (WC9) is two orders of magnitude greater than upper limits previously obtained for closer less-obscured single WC stars such as WR 135 (WC8, log Lx < 29.82 ergs/s; Skinner et al. 2005). The luminous X-ray emission and hot plasma in W87-239 point toward binarity. This study was supported by NASA/SAO grants GO5-6009X (PI: S.S.) and GO4-5003X (PI: S.Z.).

  1. Direct imaging search for planets around low-mass stars and spectroscopic characterization of young exoplanets

    NASA Astrophysics Data System (ADS)

    Bowler, Brendan Peter

    Low--mass stars between 0.1--0.6 M⊙ are the most abundant members our galaxy and may be the most common sites of planet formation, but little is known about the outer architecture of their planetary systems. We have carried out a high-contrast adaptive imaging search for gas giant planets between 1--13 MJup around 122 newly identified young M dwarfs in the solar neighborhood ( ≲ 35 pc). Half of our targets are younger than 145 Myr, and 90% are younger than 580 Myr. After removing 39 resolved stellar binaries, our homogeneous sample of 83 single young M dwarfs makes it the largest imaging search for planets around low--mass stars to date. Our H- and K- band coronagraphic observations with Subaru/HiCIAO and Keck/NIRC2 achieve typical contrasts of 9--13 mag and 12--14 mag at 100, respectively, which corresponds to limiting masses of ˜1--10 M Jup at 10--30 AU for most of our sample. We discovered four brown dwarfs with masses between 25--60 MJup at projected separations of 4--190 AU. Over 100 candidate planets were discovered, nearly all of which were found to be background stars from follow-up second epoch imaging. Our null detection of planets nevertheless provides strong statistical constraints on the occurrence rate of giant planets around M dwarfs. Assuming circular orbits and a logarithmically-flat power law distribution in planet mass and semi--major axis of the form d 2N=(dloga dlogm) infinity m0 a0, we measure an upper limit (at the 95% confidence level) of 8.8% and 12.6% for 1--13 MJup companions between 10--100 AU for hot start and cold start evolutionary models, respectively. For massive gas giant planets in the 5--13 M Jup range like those orbiting HR 8799, GJ 504, and beta Pictoris, we find that fewer than 5.3% (7.8%) of M dwarfs harbor these planets between 10--100 AU for a hot start (cold start) formation scenario. Our best constraints are for brown dwarf companions; the frequency of 13--75 MJup companions between (de--projected) physical

  2. Fundamental Parameters of a Large, Unbiased Sample of Massive, Young, Embedded Star Clusters in the Milky Way

    NASA Astrophysics Data System (ADS)

    Dallilar, Yigit; Barnes, Peter; Lada, Elizabeth; Ryder, Stuart

    2015-08-01

    Massive star cluster formation in our Galaxy is still a mystery. Unlike studies on nearby star formation regions (Pleiades, Orion Nebula), there is no unbiased sample of massive young star clusters except the CHaMP survey, which is focused on the Carina Arm (Barnes et al. 2011, ApJS, 196, 12). In this project, we examine properties of young clusters identified in the CHaMP survey through infrared photometry. Near infrared (J,H,K) imaging was obtained with the Australian Astronomical Telescope and deep mid infrared (IRAC bands 1,2) imaging was obtained with the Spitzer Space Telescope during the warm mission. Photometric analysis was performed with a combination of Sextrac- tor and Psfex software. Photometric calibration for NIR data was handled exploiting 2Mass coverage for our fields. For MIR data, photometric calibration was obtained using GLIMPSE coverage for a small number of our images, then bootstrapping this to calibrate other images, since all images are obtained with the same pipeline. To identify cluster members, we provide constraints on the source classification using field AGB stars and faint background galaxies, which have similar characteristics as reddened young stellar objects. Predicted locations of these objects on color-magnitude and color-color diagrams are used as a guide, as are the stellar classification parameter from Sextractor and faint galaxy catalogs covering our fields. We also examine extinction properties towards these young clusters, exploiting well known properties of AGB star population in our fields. Combining the IR data with existing mm-wave specroscopy, we compute values for the gas to dust ratio of these young clusters using extinction properties plus differential H-K color maps and NH column density measurements, all obtained as a part of the CHaMP survey. These results help us to identify evolutionary stages of these young clusters. Eventually, we will constrain cluster properties like age, distance and metallicity with

  3. Elemental abundances of low-mass stars in nearby young associations: AB Doradus, Carina Near and Ursa Major

    NASA Astrophysics Data System (ADS)

    Biazzo, K.; D'Orazi, V.; Desidera, S.; Covino, E.; Alcalá, J. M.; Zusi, M.

    2012-12-01

    We present stellar parameters and abundances of 11 elements (Li, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni and Zn) of 13 F6-K2 main-sequence stars in the young groups AB Doradus, Carina Near and Ursa Major. The exoplanet-host star ι Horologii is also analysed. The three young associations have lithium abundance consistent with their age. All other elements show solar abundances. The three groups are characterized by a small scatter in all abundances, with mean [Fe/H] values of 0.10 (σ = 0.03), 0.08 (σ = 0.05) and 0.01 (σ = 0.03) dex for AB Doradus, Carina Near and Ursa Major, respectively. The distribution of elemental abundances appears congruent with the chemical pattern of the Galactic thin disc in the solar vicinity, as found for other young groups. This means that the metallicity distribution of nearby young stars, targets of direct-imaging planet-search surveys, is different from that of old, field solar-type stars, i.e. the typical targets of radial velocity surveys. The young planet-host star ι Horologii shows a lithium abundance lower than that found for the young association members. It is found to have a slightly super-solar iron abundance ([Fe/H] = 0.16 ± 0.09), while all [X/Fe] ratios are similar to the solar values. Its elemental abundances are close to those of the Hyades cluster derived from the literature, which seems to reinforce the idea of a possible common origin with the primordial cluster. Based on observations performed with European Southern Observatory (ESO) telescopes [programme IDs: 70.D-0081(A), 082.A-9007(A), 083.A-9011(B), 084.A-9011(B)].

  4. Interacting supernovae and supernova impostors. SN 2007sv: the major eruption of a massive star in UGC 5979

    NASA Astrophysics Data System (ADS)

    Tartaglia, L.; Pastorello, A.; Taubenberger, S.; Cappellaro, E.; Maund, J. R.; Benetti, S.; Boles, T.; Bufano, F.; Duszanowicz, G.; Elias-Rosa, N.; Harutyunyan, A.; Hermansson, L.; Höflich, P.; Maguire, K.; Navasardyan, H.; Smartt, S. J.; Taddia, F.; Turatto, M.

    2015-02-01

    We report the results of the photometric and spectroscopic monitoring campaign of the transient SN 2007sv. The observables are similar to those of Type IIn supernovae, a well-known class of objects whose ejecta interact with pre-existing circumstellar material (CSM). The spectra show a blue continuum at early phases and prominent Balmer lines in emission; however, the absolute magnitude at the discovery of SN 2007sv (MR = -14.25 ± 0.38) indicate it to be most likely a supernova impostor. This classification is also supported by the lack of evidence in the spectra of very high velocity material as expected in supernova ejecta. In addition, we find no unequivocal evidence of broad lines of α- and/or Fe-peak elements. The comparison with the absolute light curves of other interacting objects (including Type IIn supernovae) highlights the overall similarity with the prototypical impostor SN 1997bs. This supports our claim that SN 2007sv was not a genuine supernova, and was instead a supernova impostor, most likely similar to the major eruption of a luminous blue variable.

  5. Revealing the Chamaeleon: Young, low-mass stars surrounding eta and epsilon Chamaeleontis

    NASA Astrophysics Data System (ADS)

    Murphy, S. J.

    2012-01-01

    The deep southern sky surrounding the Chamaeleon dark clouds is abundant with pre-main sequence stars of various ages. Because of their youth (5-10 Myr) and proximity (d~100 pc), members of the open cluster eta Chamaeleontis and the nearby epsilon Chamaeleontis Association are ideal laboratories to study the formation and evolution of extrasolar planetary systems. To better understand their role as potential planet hosts, this thesis explores the formation, dynamical evolution, accretion and disk properties of both groups' low-mass members. The notable lack of low-mass stars in the young open cluster eta Cha has long been puzzling. Two possible explanations have been suggested; a top-heavy initial mass function or dynamical evolution, which preferentially ejected the low-mass members. Previous efforts to find these stars several degrees from the cluster core have been unsuccessful. By undertaking a wider (95 sq deg) photometric and proper motion survey with extensive follow-up spectroscopy, we have identified eight low-mass stars that were ejected from eta Cha over the past 5-10 Myr. Comparison with recent simulations shows our results are consistent with a dynamical origin for the current configuration of the cluster, without the need to invoke an initial mass function deficient in low-mass objects. Two of the dispersed members exhibited strong, variable H-alpha emission during our observations, including a star which had an event suggestive of accretion from a circumstellar disk. New infrared photometry confirms the presence of the disk. This star demonstrates that infrequent, episodic accretion can continue at low levels long after most disks around `old' pre-main sequence stars have dissipated. Another two confirmed non-members are slightly older than the cluster, but are only 42 arcseconds apart and share similar kinematics and distances. We show that they almost certainly form a wide (4000-6000 AU) ~10 Myr-old binary at 100-150 pc. The system is one of the

  6. COMPARISON OF CONVECTIVE OVERSHOOTING MODELS AND THEIR IMPACT ON ABUNDANCES FROM INTEGRATED LIGHT SPECTROSCOPY OF YOUNG (<3 Gyr) STAR CLUSTERS

    SciTech Connect

    Colucci, Janet E.; Bernstein, Rebecca A. E-mail: rab@ucolick.org

    2012-04-20

    As part of an ongoing program to measure detailed chemical abundances in nearby galaxies, we use a sample of young- to intermediate-age clusters in the Large Magellanic Cloud with ages of 10 Myr-2 Gyr to evaluate the effect of isochrone parameters, specifically core convective overshooting, on Fe abundance results from high-resolution, integrated light spectroscopy. In this work we also obtain fiducial Fe abundances from high-resolution spectroscopy of the cluster individual member stars. We compare the Fe abundance results for the individual stars to the results from isochrones and integrated light spectroscopy to determine whether isochrones with convective overshooting should be used in our integrated light analysis of young- to intermediate-age (10 Myr-3 Gyr) star clusters. We find that when using the isochrones from the Teramo group, we obtain more accurate results for young- and intermediate-age clusters over the entire age range when using isochrones without convective overshooting. While convective overshooting is not the only uncertain aspect of stellar evolution, it is one of the most readily parameterized ingredients in stellar evolution models, and thus important to evaluate for the specific models used in our integrated light analysis. This work demonstrates that our method for integrated light spectroscopy of star clusters can provide unique tests for future constraints on stellar evolution models of young- and intermediate-age clusters.

  7. GIANO-TNG spectroscopy of red supergiants in the young star cluster RSGC2

    NASA Astrophysics Data System (ADS)

    Origlia, L.; Oliva, E.; Maiolino, R.; Mucciarelli, A.; Baffa, C.; Biliotti, V.; Bruno, P.; Falcini, G.; Gavriousev, V.; Ghinassi, F.; Giani, E.; Gonzalez, M.; Leone, F.; Lodi, M.; Massi, F.; Montegriffo, P.; Mochi, I.; Pedani, M.; Rossetti, E.; Scuderi, S.; Sozzi, M.; Tozzi, A.

    2013-12-01

    Aims: The inner disk of the Galaxy has a number of young star clusters dominated by red supergiants that are heavily obscured by dust extinction and observable only at infrared wavelengths. These clusters are important tracers of the recent star formation and chemical enrichment history in the inner Galaxy. Methods: During the technical commissioning and as a first science verification of the GIANO spectrograph at the Telescopio Nazionale Galileo, we secured high-resolution (R ≃ 50 000) near-infrared spectra of three red supergiants in the young Scutum cluster RSGC2. Results: Taking advantage of the full YJHK spectral coverage of GIANO in a single exposure, we were able to identify several tens of atomic and molecular lines suitable for chemical abundance determinations. By means of spectral synthesis and line equivalent width measurements, we obtained abundances of Fe and other iron-peak elements such as V, Cr, Ni, of alpha (O, Mg, Si, Ca and Ti) and other light elements (C, N, Na, Al, K, Sc), and of some s-process elements (Y, Sr). We found iron abundances between half and one third solar and solar-scaled [X/Fe] abundance patterns of iron-peak, alpha and most of the light elements, consistent with a thin-disk chemistry. We found a depletion of [C/Fe] and enhancement of [N/Fe], consistent with CN burning, and low 12C/13C abundance ratios (between 9 and 11), requiring extra-mixing processes in the stellar interiors during the post-main-sequence evolution. Finally, we found a slight [Sr/Fe] enhancement and a slight [Y/Fe] depletion (by a factor of ≤2), with respect to solar. Table 3 is available in electronic form at http://www.aanda.org

  8. Spectral evolution and dust mixing in the recently erupted disk of EXLup

    NASA Astrophysics Data System (ADS)

    Abraham, Peter; Bouwman, Jeroen; Dullemond, Cornelis; Henning, Thomas; Juhasz, Attila; Kospal, Agnes; Moor, Attila; Mosoni, Laszlo; Sicilia Aguilar, Aurora; Sipos, Nikoletta

    2008-09-01

    This proposal is a follow-up of our previous Spitzer DDT PID 477, where we observed the young eruptive star EX Lup during its outburst, and detected on-going silicate crystal formation for the first time in a young eruptive star. We argue that spectral evolution at mid-infrared wavelengths takes place also in the fading phase of the outburst, and we request two new IRS observations to complete our spectral monitoring program and document the spectral changes. The data will help to characterize the newly formed crystal population, and provide important insight into the mixing processes in the disk. Spitzer/IRS is the only instrument we could use for our program. We request 0.5 hours observing time. Since the propose date of the first observation is early October 2008, this is a time-critical program.

  9. Periodic Disk Eclipsing Stars: A New Class of Variable Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Plavchan, Peter; Laohakunakorn, N.; Seifahrt, A.; Staplefeldt, K.; Gee, A. H.

    2010-01-01

    We present the discovery of 92.6 day periodic near-infrared flu variability for the Class I T Tauri star YLW 16A. Our data are from the 2MASS Calibration Point Source Working Database and constitute 1582 observations in J, H and Ks of a field in Rho Ophiuchus used to calibrate the 2MASS All-Sky Survey. We identify a light curve that brightens from a quiescent faint state by 0.4 mag for only 20% of the period. The long period cannot be explained by stellar rotation. We propose that YLW 16A is a triple YSO system, with an inner binary orbital period of 92.6 days. We postulate that we are observing a component of the binary being eclipsed by a circumbinary disk with respect to our line of site. YLW 16A joins WL 4 and KH-15D as a third member of a new class of disk-eclipsing young stars. Both YLW 16A and WL 4 have been identified to have tertiary companions with projected separations of 20--50 AU. We propose that the tertiary companion can warp the inner circumbinary disk to produce the disk eclipses. We present NIRSPEC observations of WL 4 that suggest three distinct radial velocity components, and present a model SED for YLW 16A. These systems will be useful in investigating terrestrial-zone YSO disk properties and dynamics at 1 Myr.

  10. Successful Field-Scale In Situ Thermal NAPL Remediation at the Young-Rainey Star Center

    SciTech Connect

    Juhlin, Randall; Butherus, Michael; Joseph Daniel; Ingle, David S.; Heron, Gorm; McGee, Bruce

    2004-05-04

    The U.S. Department of Energy (DOE) successfully completed a fieldscale remediation to remove non-aqueous phase liquids (NAPLs) from the subsurface at a site on the Young-Rainey Science, Technology, and Research (STAR) Center, Largo, Florida. The STAR Center is a former DOE facility. The remediation project covered an area of 930 m2 (10,000 ft2) and depths extending to 10.5 m (35 ft) below ground surface. In July 2001, DOE’s contractor awarded a subcontract to SteamTech Environmental Services for removal of NAPLs from a portion of the Northeast Site. The technologies used for remediation were steam-enhanced extraction and Electro-Thermal Dynamic Stripping Process, an electrical resistive heating technology. McMillan-McGee Corporation implemented the process. Construction of the remediation system was completed in September 2002. Operations began immediately after construction, and active heating ended in February 2003. After operations were completed, confirmatory sampling was conducted over a 6-month period to verify the level of cleanup achieved. Results of the sampling showed that NAPL concentrations were reduced significantly below the required cleanup goals and, in most cases, below the regulatory maximum contaminant levels. Lessons learned relative to the design, construction, operation, confirmatory sampling approach, and subcontracting could benefit managers of similar remediation projects

  11. Spitzer Space Telescope Research Program for Teachers and Students: Young Stars in IC2118

    NASA Astrophysics Data System (ADS)

    Weehler, C. R.; Herrera, J. M.; Maranto, A. R.; Greer, M. T.; Preis, J. V.; Weston, P. D.; Rebull, L. M.; Roelofsen, T. E.; Sepulveda, B.; Hughes, A. S.; Sharma, N. D.; Spuck, T. S.; Bowser, D. H., II; Ehrhart, B. R.

    2005-12-01

    The Spitzer Space Telescope Teacher Program is a collaboration between the Spitzer Science Center and National Optical Astronomy Observatory. Through the program, twelve teachers were selected to submit observing proposals for time on the Spitzer Space Telescope. The Young Stars in IC 2118 Project was one of those selected and awarded 62 minutes of Director's discretionary observing time to study a small region of IC 2118 (the Witch Head Nebula), a star forming region of small-mass stars embedded in their natal cloud. The five teachers involved in this project met at the Spitzer Science Center in August and September 2005 to analyze the data received from IRAC and MIPS observations. Six high school students were included in these visits, and several more are working on data analysis at their home schools. We are making tri-color images to identify structure in the ISM, Spectral Energy Distributions to identify cluster members and color plots to determine their stage of development, thereby estimating their ages. We are working toward adapting lessons that can use software that is readily available in public schools to do the data analysis. As teachers develop lesson plans for these activities, they will apply them in their science classes and provide professional development on infrared astronomy and the use of astronomical data to other teachers through in-service training around the country. The team is being mentored by Dr. Luisa Rebull from the Spitzer Science Center. Please see our companion poster, Spuck et al., on our science results using these data.

  12. YOUNG STELLAR OBJECTS IN LYNDS 1641: DISKS, ACCRETION, AND STAR FORMATION HISTORY

    SciTech Connect

    Fang Min; Kim, Jinyoung Serena; Flaherty, Kevin; Van Boekel, Roy; Henning, Thomas; Sicilia-Aguilar, Aurora

    2013-07-01

    We investigate the young stellar objects (YSOs) in the Lynds 1641 (L1641) cloud using multi-wavelength data including Spitzer, WISE, the Two Micron All Sky Survey, and XMM covering {approx}1390 YSOs across a range of evolutionary stages. In addition, we targeted a sub-sample of YSOs for optical spectroscopy with the MMT/Hectospec and the MMT/Hectochelle. We use these data, along with archival photometric data, to derive spectral types, extinction values, masses, ages, and accretion rates. We obtain a disk fraction of {approx}50% in L1641. The disk frequency is almost constant as a function of stellar mass with a slight peak at log (M{sub *}/M{sub Sun }) Almost-Equal-To -0.25. The analysis of multi-epoch spectroscopic data indicates that the accretion variability of YSOs cannot explain the two orders of magnitude of scatter for YSOs with similar masses. Forty-six new transition disk (TD) objects are confirmed in this work, and we find that the fraction of accreting TDs is lower than for optically thick disks (40%-45% versus 77%-79%, respectively). We confirm our previous result that the accreting TDs have a median accretion rate similar to normal optically thick disks. We confirm that two star formation modes (isolated versus clustered) exist in L1641. We find that the diskless YSOs are statistically older than the YSOs with optically thick disks and the TD objects have a median age that is intermediate between those of the other two populations. We tentatively study the star formation history in L1641 based on the age distribution and find that star formation started to be active 2-3 Myr ago.

  13. The chromospheric emission of solar-type stars in the young open clusters IC 2391 and IC 2602

    NASA Astrophysics Data System (ADS)

    Marsden, S. C.; Carter, B. D.; Donati, J.-F.

    2009-10-01

    In this paper we present chromospheric emission levels of the solar-type stars in the young open clusters IC 2391 and IC 2602. High-resolution spectroscopic data were obtained for over 50 F, G and K stars from these clusters over several observing campaigns using the University College London Echelle Spectrograph on the 3.9-m Anglo-Australian Telescope. Unlike older clusters, the majority (28/52) of the solar-type stars in the two clusters are rapid rotators (vsini > 20kms-1) with five of the stars being classified as ultra-rapid rotators (vsini > 100 km s-1). The emission levels in the calcium infrared triplet lines were then used as a measure of the chromospheric activity of the stars. When plotted against the Rossby number (NR), the star's chromospheric emission levels show a plateau in the emission for log(NR) <~ -1.1 indicating chromospheric saturation similar to the coronal saturation seen in previously observed X-ray emission from the same stars. However, unlike the coronal emission, the chromospheric emission of the stars shows little evidence of a reduction in emission (i.e. supersaturation) for the ultra-rapid rotators in the clusters. Thus we believe that coronal supersaturation is not the result of an overall decrease in magnetic dynamo efficiency for ultra-rapid rotators.

  14. How Do Astronomers Know That? Educating Teachers, Students & the Public on HOW You Discover Young Stars

    NASA Astrophysics Data System (ADS)

    Bonadurer, Robert; Piper, M.; French, D.; Barge, J.; Novatne, L. J.; Rebull, L. M.; Ali, B.; Laher, R.; Armstrong, J.

    2013-01-01

    Every day amazing astronomical facts are taught to thousands of curious people. Students learn them in the classroom. Museum visitors hear them in a Planetarium show or lecture. When it’s time for questions, many intuitively ask, “how do you know that?” NITARP helps close this gap in astronomy education. NITARP stands for NASA/IPAC Teacher Archive Research Program. NITARP brings together an astronomer with a small group of teachers and students to do real astronomical research. After the year long program is completed, the education and experiences gained the teachers are brought back to their classrooms and museums across America. Our NITARP group researched apparent infrared (IR) excesses to identify Young Stellar Objects (YSOs). Our science results are presented in a companion paper, Novatne et al, at this AAS conference. We concentrated our search in the Bright Rimmed Cloud (BRC) 27, located in the constellation Canis Major. Our main focus was to use data from the Wide-field Infrared Survey Explorer (WISE), along with other archived infrared data such as Spitzer and 2MASS. Thus, our NITARP group was called C-WAYS—standing for Cool, WISE and Young Stars. In this poster, we present our educational plan to connect real science by astronomers to educators, students, and ultimately our communities.

  15. A pulsation search among young brown dwarfs and very-low-mass stars

    SciTech Connect

    Cody, Ann Marie; Hillenbrand, Lynne A.

    2014-12-01

    In 2005, Palla and Baraffe proposed that brown dwarfs (BDs) and very-low-mass stars (VLMSs; < 0.1 solar masses) may be unstable to radial oscillations during the pre-main-sequence deuterium burning phase. With associated periods of one to four hours, this potentially new class of pulsation offers unprecedented opportunities to probe the interiors and evolution of low-mass objects in the 1-15 million year age range. Following up on reports of short-period variability in young clusters, we designed a high-cadence photometric monitoring campaign to search for deuterium-burning pulsation among a sample of 348 BDs and VLMSs in the four young clusters σ Orionis, Chamaeleon I, IC 348, and Upper Scorpius. In the resulting light curves we achieved sensitivity to periodic signals of amplitude several millimagnitudes, on timescales from 15 minutes to two weeks. Despite the exquisite data quality, we failed to detect any periodicities below seven hours. We conclude that D-burning pulsations are not able to grow to observable amplitudes in the early pre-main sequence. In spite of the nondetection, we did uncover a rich set of variability behavior—both periodic and aperiodic—on day to week timescales. We present new compilations of variable sources from our sample, as well as three new candidate cluster members in Chamaeleon I.

  16. Young Low-Mass Stars and Brown Dwarfs in IC 348

    NASA Astrophysics Data System (ADS)

    Luhman, K. L.

    1999-11-01

    I present new results from a continuing program to identify and characterize the low-mass stellar and substellar populations in the young cluster IC 348 (0.5-10 Myr). Optical spectroscopy has revealed young objects with spectral types as late as M8.25. The intrinsic J-H and H-K colors of these sources are dwarflike, whereas the R-I and I-J colors appear intermediate between the colors of dwarfs and giants. Furthermore, the spectra from 6500 to 9500 Å are reproduced well with averages of standard dwarf and giant spectra, suggesting that such averages should be used in the classification of young late-type sources. An H-R diagram is constructed for the low-mass population in IC 348 (K6-M8). The presumably coeval components of the young quadruple system GG Tau (White et al.) and the locus of stars in IC 348 are used as empirical isochrones to test the theoretical evolutionary models. The calculations of Burrows et al. do not appear to be consistent with the data at these earliest stages of stellar evolution. There is fair agreement between the data and the model isochrones of D'Antona & Mazzitelli, except near the hydrogen-burning limit. The agreement cannot be improved by changing the conversion between spectral types and effective temperatures. On the other hand, for the models of Baraffe et al., an adjustment of the temperature scale to progressively warmer temperatures at later M types, intermediate between dwarfs and giants, brings all components of GG Tau onto the same model isochrone and gives the population of IC 348 a constant age and age spread as a function of mass. When other observational constraints are considered, such as the dynamical masses of GM Aur, DM Tau, and GG Tau A, the models of Baraffe et al. are the most consistent with observations of young systems. With compatible temperature scales, the models of both D'Antona & Mazzitelli and Baraffe et al. suggest that the hydrogen-burning mass limit occurs near M6 at ages of <~10 Myr. Thus, several

  17. X-shooter spectroscopy of young stellar objects. V. Slow winds in T Tauri stars

    NASA Astrophysics Data System (ADS)

    Natta, A.; Testi, L.; Alcalá, J. M.; Rigliaco, E.; Covino, E.; Stelzer, B.; D'Elia, V.

    2014-09-01

    Disks around T Tauri stars are known to lose mass, as best shown by the profiles of the forbidden emission lines of low-ionization species. At least two separate kinematic components have been identified, one characterized by velocity shifts of tens to hundreds of km s-1 (HVC) and one with a much lower velocity of a few km s-1 (LVC). The HVC are convincingly associated to the emission of jets, but the origin of the LVC is still unknown. In this paper we analyze the forbidden line spectrum of a sample of 44 mostly low-mass young stars in Lupus and σ Ori observed with the X-shooter ESO spectrometer. We detect forbidden line emission of O i, O ii, S ii, N i, and N ii, and characterize the line profiles as LVC, blueshifted HVC, and redshifted HVC. We focus our study on the LVC. We show that there is a good correlation between line luminosity and both Lstar and the accretion luminosity (or the mass accretion rate) over a large interval of values (Lstar~ 10-2-1 L⊙; Lacc~ 10-5-10-1 L⊙; Ṁacc~ 10-11 - 10-7 M⊙/yr). The lines show the presence of a slow wind (Vpeak< 20 km s-1) that is dense (nH> 108 cm-3), warm (T ~ 5000-10 000 K), mostly neutral. We estimate the mass of the emitting gas and provide a value for the maximum volume it occupies. Both quantities increase steeply with the stellar mass, from ~ 10-12 M⊙ and ~0.01 AU3 for Mstar~ 0.1 M⊙, to ~ 3 × 10-10 M⊙ and ~1 AU3 for Mstar~ 1 M⊙, respectively. These results provide quite stringent constraints to wind models in low-mass young stars, that need to be explored further. Based on observations collected at the European Souther Observatory at Paranal, under programs 084.C-0269(A), 085.C-0238(A), 086.C-0173(A), 087.C-0244(A) and 089.C-0143(A).Appendices are available in electronic form at http://www.aanda.org

  18. A Deep Chandra X-Ray Spectrum of the Accreting Young Star TW Hydrae

    NASA Astrophysics Data System (ADS)

    Brickhouse, N. S.; Cranmer, S. R.; Dupree, A. K.; Luna, G. J. M.; Wolk, S.

    2010-02-01

    We present X-ray spectral analysis of the accreting young star TW Hydrae from a 489 ks observation using the Chandra High Energy Transmission Grating. The spectrum provides a rich set of diagnostics for electron temperature Te , electron density Ne , hydrogen column density NH , relative elemental abundances, and velocities, and reveals its source in three distinct regions of the stellar atmosphere: the stellar corona, the accretion shock, and a very large extended volume of warm postshock plasma. The presence of Mg XII, Si XIII, and Si XIV emission lines in the spectrum requires coronal structures at ~10 MK. Lower temperature lines (e.g., from O VIII, Ne IX, and Mg XI) formed at 2.5 MK appear more consistent with emission from an accretion shock. He-like Ne IX line ratio diagnostics indicate that Te = 2.50 ± 0.25 MK and Ne = 3.0 ± 0.2 × 1012 cm-3 in the shock. These values agree well with standard magnetic accretion models. However, the Chandra observations significantly diverge from current model predictions for the postshock plasma. This gas is expected to cool radiatively, producing O VII as it flows into an increasingly dense stellar atmosphere. Surprisingly, O VII indicates Ne = 5.7+4.4 -1.2 × 1011 cm-3, 5 times lower than Ne in the accretion shock itself and ~7 times lower than the model prediction. We estimate that the postshock region producing O VII has roughly 300 times larger volume and 30 times more emitting mass than the shock itself. Apparently, the shocked plasma heats the surrounding stellar atmosphere to soft X-ray emitting temperatures and supplies this material to nearby large magnetic structures—which may be closed magnetic loops or open magnetic field leading to mass outflow. Our model explains the soft X-ray excess found in many accreting systems as well as the failure to observe high Ne signatures in some stars. Such accretion-fed coronae may be ubiquitous in the atmospheres of accreting young stars.

  19. Dynamical star-disk interaction in the young stellar system V354 Monocerotis

    NASA Astrophysics Data System (ADS)

    Fonseca, N. N. J.; Alencar, S. H. P.; Bouvier, J.; Favata, F.; Flaccomio, E.

    2014-07-01

    Aims: The main goal of this work is to characterize the mass accretion and ejection processes of the classical T Tauri star V354 Mon, a member of the young stellar cluster NGC 2264. Methods: In March 2008, photometric and spectroscopic observations of V354 Mon were obtained simultaneously with the CoRoT satellite, the 60 cm telescope at the Observatório Pico dos Dias (LNA, Brazil) equipped with a CCD camera and Johnson/Cousins BV(RI)c filters, and the SOPHIE échelle spectrograph at the Observatoire de Haute-Provence (CNRS, France). Results: The light curve of V354 Mon shows periodical minima (P = 5.26 ± 0.50 days) that vary in depth and width at each rotational cycle. The BV(RI)c observations indicate that the system becomes slightly bluer as the flux increases. The spectra of this T Tauri star exhibit variable emission lines, with blueshifted and redshifted absorption components associated with a disk wind and with the accretion process, respectively, confirming the magnetospheric accretion scenario. From the analysis of the photometric and spectroscopic data, it is possible to identify correlations between the emission line variability and the light-curve modulation of the young system, such as the occurrence of pronounced redshifted absorption in the Hα line at the epoch of minimum flux. This is evidence that during photometric minima we see the accretion funnel projected onto the stellar photosphere in our line of sight, implying that the hot spot coincides with the light-curve minima. We applied models of cold and hot spots and a model of occultation by circumstellar material to investigate the source of the observed photometric variations. Conclusions: We conclude that nonuniformly distributed material in the inner part of the circumstellar disk is the main cause of the photometric modulation, which does not exclude the presence of hot and cold spots at the stellar surface. It is believed that the distortion in the inner part of the disk is created by the

  20. Revised North Star Ambulatory Assessment for Young Boys with Duchenne Muscular Dystrophy

    PubMed Central

    Mercuri, Eugenio; Coratti, Giorgia; Messina, Sonia; Ricotti, Valeria; Baranello, Giovanni; D’Amico, Adele; Pera, Maria Carmela; Albamonte, Emilio; Sivo, Serena; Mazzone, Elena Stacy; Arnoldi, Maria Teresa; Fanelli, Lavinia; De Sanctis, Roberto; Romeo, Domenico M; Vita, Gian Luca; Battini, Roberta; Bertini, Enrico; Muntoni, Francesco; Pane, Marika

    2016-01-01

    The advent of therapeutic approaches for Duchenne muscular dystrophy (DMD) has highlighted the need to identify reliable outcome measures for young boys with DMD. The aim of this study was to develop a revised version of the North Star Ambulatory Assessment (NSAA) suitable for boys between the age of 3 and 5 years by identifying age appropriate items and revising the scoring system accordingly. Using the scale in 171 controls between the age of 2.9 and 4.8 years, we identified items that were appropriate at different age points. An item was defined as age appropriate if it was completed, achieving a full score, by at least 85% of the typically developing boys at that age. At 3 years (±3months) there were only 8 items that were age appropriate, at 3 years and 6 months there were 13 items while by the age of 4 years all 17 items were appropriate. A revised version of the scale was developed with items ordered according to the age when they could be reliably performed. The application of the revised version of the scale to data collected in young DMD boys showed that very few of the DMD boys were able to complete with a full score all the age appropriate items. In conclusion, our study suggests that a revised version of the NSAA can be used in boys from the age of 3 years to obtain information on how young DMD boys acquire new abilities and how this correlates with their peers. PMID:27494024

  1. Revised North Star Ambulatory Assessment for Young Boys with Duchenne Muscular Dystrophy.

    PubMed

    Mercuri, Eugenio; Coratti, Giorgia; Messina, Sonia; Ricotti, Valeria; Baranello, Giovanni; D'Amico, Adele; Pera, Maria Carmela; Albamonte, Emilio; Sivo, Serena; Mazzone, Elena Stacy; Arnoldi, Maria Teresa; Fanelli, Lavinia; De Sanctis, Roberto; Romeo, Domenico M; Vita, Gian Luca; Battini, Roberta; Bertini, Enrico; Muntoni, Francesco; Pane, Marika

    2016-01-01

    The advent of therapeutic approaches for Duchenne muscular dystrophy (DMD) has highlighted the need to identify reliable outcome measures for young boys with DMD. The aim of this study was to develop a revised version of the North Star Ambulatory Assessment (NSAA) suitable for boys between the age of 3 and 5 years by identifying age appropriate items and revising the scoring system accordingly. Using the scale in 171 controls between the age of 2.9 and 4.8 years, we identified items that were appropriate at different age points. An item was defined as age appropriate if it was completed, achieving a full score, by at least 85% of the typically developing boys at that age. At 3 years (±3months) there were only 8 items that were age appropriate, at 3 years and 6 months there were 13 items while by the age of 4 years all 17 items were appropriate. A revised version of the scale was developed with items ordered according to the age when they could be reliably performed. The application of the revised version of the scale to data collected in young DMD boys showed that very few of the DMD boys were able to complete with a full score all the age appropriate items. In conclusion, our study suggests that a revised version of the NSAA can be used in boys from the age of 3 years to obtain information on how young DMD boys acquire new abilities and how this correlates with their peers. PMID:27494024

  2. The T Tauri Star Population of the Young Cluster NGC 2264

    NASA Astrophysics Data System (ADS)

    Dahm, S. E.; Simon, Theodore

    2005-02-01

    An Hα emission survey of the young cluster NGC 2264 in the Mon OB1 association resulted in the detection of 490 Hα emission stars in a 25'×40' field approximately centered between the O7 V multiple star S Mon and the Cone Nebula. The survey was carried out with the wide-field grism spectrograph (WFGS) on the University of Hawaii 2.2 m telescope on Mauna Kea. X-ray observations made with the European Photon Imaging Camera on board the European Space Agency's XMM-Newton satellite observatory will be discussed in a subsequent paper. Optical (BVRCIC) photometry was obtained for selected fields to supplement similar data from the literature. Spectra covering the 6000-8000 Å region at a resolution of R~3000 (adequate for the determination of Li I λ6708 line strengths) were obtained for 150 Hα and X-ray emission sources with the Gemini Multi-Object Spectrograph. Near-infrared spectra (1-2.5 μm) of a number of T Tauri stars (TTSs), X-ray sources, and LHα25 (W90) were also obtained using SpeX on the Infrared Telescope Facility. Ages and masses for the Hα emitters were inferred from the isochrones and evolutionary tracks of D'Antona & Mazzitelli. The median age for the TTS population is about 1.1 Myr, but a considerable dispersion, from 0.1 to 5 Myr, exists for individual objects. Several fields in the cluster were observed with the WFGS on more than one occasion, permitting an examination of Hα variability over long baselines in time. About 90% of the classical T Tauri stars (CTTSs) showed changes in W(Hα) of at least 10%, while 57% varied at levels of 50% or more. No evidence was found for a significant pool of dormant Hα emitters. Summing the masses of the TTSs and the OB stellar population of NGC 2264, a lower limit for the total stellar mass content of the cluster is about 430 Msolar. This is less than 1% of the total mass of the atomic and molecular gas believed to be associated with NGC 2264. Evidence for hierarchical structure within the cluster is

  3. A UKIDSS-based search for low-mass stars and small stellar clumps in off-cloud parts of young star-forming regions *

    NASA Astrophysics Data System (ADS)

    Perger, M.; Lodieu, N.; Martín, E. L.; Barrado Y Navascués, D.

    2011-07-01

    The form and universality of the mass function of young and nearby star-forming regions is still under debate. Its relation to the stellar density, its mass peak and the dependency on most recent models shows significant differencies for the various regions and remains unclear up to date. We aim to get a more complete census of two of such regions. We investigate yet unexplored areas of Orion and Taurus-Auriga, observed by the UKIDSS survey. In the latter, we search for low-mass stars via photometric and proper motion criteria and signs for variability. In Orion, we search for small stellar clumps via nearest-neighbor methods. Highlights in Taurus would be the finding of the missing low-mass stars and the detection of a young cluster T dwarf. In Orion, we discovered small stellar associations of its OB1b and OB1c populations. Combined with what is known in literature, we will provide by this investigations a general picture of the results of the star-forming processes in large areas of Taurus and Orion and probe the most recent models. Based on data of the UKIRT (operated by the Joint Astronomy Centre on behalf of the Science and Technology Facilities Council of the U.K.) Infrared Deep Sky Survey (UKIDSS).Supported by the Marie Curie Research Training Network `CONSTELLATION' under grant no. MRTN-CT-2006-035890.

  4. Using young massive star clusters to understand star formation and feedback in high-redshift-like environments

    NASA Astrophysics Data System (ADS)

    Longmore, S.; Barnes, A.; Battersby, C.; Bally, J.; Kruijssen, J. M. Diederik; Dale, J.; Henshaw, J.; Walker, D.; Rathborne, J.; Testi, L.; Ott, J.; Ginsburg, A.

    2016-05-01

    The formation environment of stars in massive stellar clusters is similar to the environment of stars forming in galaxies at a redshift of 1 - 3, at the peak star formation rate density of the Universe. As massive clusters are still forming at the present day at a fraction of the distance to high-redshift galaxies they offer an opportunity to understand the processes controlling star formation and feedback in conditions similar to those in which most stars in the Universe formed. Here we describe a system of massive clusters and their progenitor gas clouds in the centre of the Milky Way, and outline how detailed observations of this system may be able to: (i) help answer some of the fundamental open questions in star formation and (ii) quantify how stellar feedback couples to the surrounding interstellar medium in this high-pressure, high-redshift analogue environment.

  5. Exploring the origins of the young stars in the central parsec of the Galaxy with stellar dynamics

    NASA Astrophysics Data System (ADS)

    Lu, Jessica Ryan

    One of the most perplexing problems associated with the supermassive black hole at the center of our Galaxy is the origin of the young stars in its close vicinity. In this thesis, the question of the young stars' origins is addressed using high-resolution infrared images obtained at the W. M. Keck telescopes to study both the distribution and kinematics of the young stellar population. First, using proper motion measurements and stellar number density counts based on 9 years of diffraction-limited K(2.2 microm)-band speckle imaging at the W. M. Keck 10-meter telescopes, we have identified a new comoving group of stars, which we call the IRS 16SW comoving group, located 1'' .9 (0.08 pc, in projection) from the central black hole. Four of the five members of this comoving group have been spectroscopically identified as massive young stars, specifically He I emission-line stars and OBN stars. This is the second young comoving group within the central parsec of the Milky Way to be recognized and is the closest, by a factor of 2, in projection to the central black hole. Second, we present new proper motions from the 10 m Keck telescopes for a puzzling population of massive, young stars located within a parsec of the supermassive black hole at the Galactic Center. Our proper motion measurements have uncertainties of only 0.07 mas/yr (3 km/s), which is ≳ 7 times better than previous proper motion measurements for these stars, and enables us to measure accelerations as low as 0.2 mas/yr 2 (7 km/s/yr). These measurements, along with stellar line-of-sight velocities from the literature, constrain the true orbit of each individual star and allow us to directly test the hypothesis that the massive stars reside in two stellar disks as has been previously proposed. Analysis of the stellar orbits reveals only one disk of young stars. No second disk was detected using a method that is capable of detecting disks with half-opening angles of 19° and containing at least 7 stars

  6. Absolute parameters of young stars: GG Lup and μ1 Sco

    NASA Astrophysics Data System (ADS)

    Budding, E.; Butland, R.; Blackford, M.

    2015-04-01

    New high-resolution spectroscopy and BVR photometry, together with literature data, on the Gould's Belt close binary systems GG Lup and μ1 Sco are presented and analysed. In the case of GG Lup, light and radial velocity curve fittings confirm a near-main-sequence picture of a pair of close stars. Absolute parameters are found, to within a few per cent, thus: M1 = 4.16 ± 0.12, M2 = 2.64 ± 0.12 (M⊙); R1 = 2.42 ± 0.05, R2 = 1.79 ± 0.04 (R⊙); T1 ˜ 13 000, T2 ˜ 10 600 (K); photometric distance ˜160 (pc). The high eccentricity and relatively short period (105 yr) of apsidal revolution may be related to an apparent `slow B-type pulsator' oscillation. Disturbances of the outer envelope of at least one of the components then compromise comparisons to standard evolutionary models, at least regarding the age of the system. A rate of apsidal advance is derived, which allows a check on the mean internal structure constant overline{k_2} = 0.0058 ± 0.0004. This is in agreement with values recently derived for young stars of solar composition and mass ˜3 M⊙. For μ1 Sco, we agree with previous authors that the secondary component is considerably oversized for its mass, implying binary (interactive) stellar evolution, probably of the `Case A' type. The primary appears relatively little affected by this evolution, however. Its parameters show consistency with a star of its derived mass at age about 13 Myr, consistent with the star's membership of the Sco-Cen OB2 Association. The absolute parameters are as follows: M1 = 8.3 ± 1.0, M2 = 4.6 ± 1.0 (M⊙); R1 = 3.9 ± 0.3, R2 = 4.6 ± 0.4 (R⊙); T1 ˜ 24 000, T2 ˜ 17 000 (K); photometric distance ˜135 (pc).

  7. Star Formation in W3—AFGL 333: Young Stellar Content, Properties, and Roles of External Feedback

    NASA Astrophysics Data System (ADS)

    Jose, Jessy; Kim, Jinyoung S.; Herczeg, Gregory J.; Samal, Manash R.; Bieging, John H.; Meyer, Michael R.; Sherry, William H.

    2016-05-01

    One of the key questions in the field of star formation is the role of stellar feedback on the subsequent star formation process. The W3 giant molecular cloud complex at the western border of the W4 super bubble is thought to be influenced by the massive stars in W4. This paper presents a study of the star formation activity within AFGL 333, a ˜104 M ⊙ cloud within W3, using deep JHK s photometry obtained from the NOAO Extremely Wide Field Infrared Imager combined with Spitzer IRAC and MIPS photometry. Based on the infrared excess, we identify 812 candidate young stellar objects (YSOs) in the complex, of which 99 are Class I and 713 are Class II sources. The stellar density analysis of YSOs reveals three major stellar aggregates within AFGL 333, namely AFGL 333 Main, AFGL 333 NW1 and AFGL 333 NW2. The disk fraction within AFGL 333 is estimated to be ˜50%–60%. We use the extinction map made from the H-{K}s colors of the background stars and CO data to understand the cloud structure and to estimate the cloud mass. From the stellar and cloud mass associated with AFGL 333, we infer that the region is currently forming stars with an efficiency of ˜4.5% and at a rate of ˜2–3 M ⊙ Myr‑1 pc‑2. In general, the star formation activity within AFGL 333 is comparable to that of nearby low mass star-forming regions. We do not find any strong evidence to suggest that the stellar feedback from the massive stars of nearby W4 super bubble has affected the global star formation properties of the AFGL 333 region.

  8. Star Formation in W3—AFGL 333: Young Stellar Content, Properties, and Roles of External Feedback

    NASA Astrophysics Data System (ADS)

    Jose, Jessy; Kim, Jinyoung S.; Herczeg, Gregory J.; Samal, Manash R.; Bieging, John H.; Meyer, Michael R.; Sherry, William H.

    2016-05-01

    One of the key questions in the field of star formation is the role of stellar feedback on the subsequent star formation process. The W3 giant molecular cloud complex at the western border of the W4 super bubble is thought to be influenced by the massive stars in W4. This paper presents a study of the star formation activity within AFGL 333, a ∼104 M ⊙ cloud within W3, using deep JHK s photometry obtained from the NOAO Extremely Wide Field Infrared Imager combined with Spitzer IRAC and MIPS photometry. Based on the infrared excess, we identify 812 candidate young stellar objects (YSOs) in the complex, of which 99 are Class I and 713 are Class II sources. The stellar density analysis of YSOs reveals three major stellar aggregates within AFGL 333, namely AFGL 333 Main, AFGL 333 NW1 and AFGL 333 NW2. The disk fraction within AFGL 333 is estimated to be ∼50%–60%. We use the extinction map made from the H-{K}s colors of the background stars and CO data to understand the cloud structure and to estimate the cloud mass. From the stellar and cloud mass associated with AFGL 333, we infer that the region is currently forming stars with an efficiency of ∼4.5% and at a rate of ∼2–3 M ⊙ Myr‑1 pc‑2. In general, the star formation activity within AFGL 333 is comparable to that of nearby low mass star-forming regions. We do not find any strong evidence to suggest that the stellar feedback from the massive stars of nearby W4 super bubble has affected the global star formation properties of the AFGL 333 region.

  9. A search for flares and mass ejections on young late-type stars in the open cluster Blanco-1

    NASA Astrophysics Data System (ADS)

    Leitzinger, M.; Odert, P.; Greimel, R.; Korhonen, H.; Guenther, E. W.; Hanslmeier, A.; Lammer, H.; Khodachenko, M. L.

    2014-09-01

    We present a search for stellar activity (flares and mass ejections) in a sample of 28 stars in the young open cluster Blanco-1. We use optical spectra obtained with European Southern Observatory's Visible Multi-Object Spectrograph installed on the Very Large Telescope. From the total observing time of ˜5 h, we find four Hα flares but no distinct indication of coronal mass ejections (CMEs) on the investigated dK-dM stars. Two flares show `dips' in their light curves right before their impulsive phases which are similar to previous discoveries in photometric light curves of active dMe stars. We estimate an upper limit of <4 CMEs per day per star and discuss this result with respect to a empirical estimation of the CME rate of main-sequence stars. We find that we should have detected at least one CME per star with a mass of ≤ 3 × 1017 g depending on the star's X-ray luminosity, but the estimated Hα fluxes associated with these masses are below the detection limit of our observations. We conclude that the parameter which mainly influences the detection of stellar CMEs using the method of Doppler-shifted emission caused by moving plasma is not the spectral resolution/velocity but the flux/mass of the CME.

  10. Galactic Globular Cluster NGC1261: "Young", Low-alpha and Star-to-Star Abundance Variations In Na-O?

    NASA Astrophysics Data System (ADS)

    Filler, Dan; Ivans, I. I.; Simmerer, J.

    2012-01-01

    We present the first high-resolution (R 40,000) chemical abundance analysis of the relatively young (8-9 Gyr), outer halo Galactic globular cluster NGC 1261. Stellar parameters for three stars were derived using spectroscopic constraints. Abundances were deduced using a combination of EWs and fitting synthetic spectra. Our derived metallicity ([Fe/H] = -1.19 ± 0.02) is in excellent agreement with the metallicity scale of Kraft & Ivans (2003, 2004). However, the Na-O anticorrelation spanning 1.1 ± 0.1 dex in sodium, is as large as any other cluster reported to date. In the light element group, we report -0.9 < [C/Fe] < -0.6 with C12/C13 = 4, (for which three regions in the G-band were synthesized); +0.5 < [N/Fe] < +1.1 from the CN band head near 8004A; -0.25 < [O/Fe] < +0.2 from the forbidden lines; -0.3 < [Al/Fe] < +0.15 from the aluminum doublet near 6696A. We also present abundances for the alpha-elements [Mg/Fe] = +0.2 ± 0.1; [Si/Fe] = +0.1 ± 0.1; [Ca/Fe] = +0.15 ± 0.1; [Ti/Fe] = +0.15 ± 0.15. NGC 1261 is distinguished from other clusters of comparable metallicity due to low-alpha abundances. We will discuss the nucleosynthetic histories that may have given rise to these abundances including the possibility of enrichment by Type 1a supernovae. We also report abundances for the iron-peak elements [Sc/Fe] = +0.0 ± 0.2; [V/Fe] = -0.1 ± 0.1; [Cr/Fe] = -0.1 ± 0.15; [Mn/Fe] = -0.1 ± 0.15; [Co/Fe] = +0.2 ± 0.1; [Ni/Fe] = +0.0 ± 0.1; the light neutron-capture elements [Y/Fe] = +0.1 ± 0.1; [Zr/Fe] = +0.35 ± 0.1; the s-process elements [Ba/Fe] = +0.15 ± 0.1; [La/Fe] = +0.1 ± 0.1; [Nd/Fe] = +0.15 ± 0.1; and the r-process element [Eu/Fe] = 0.6 ± 0.2.

  11. TENTATIVE EVIDENCE FOR RELATIVISTIC ELECTRONS GENERATED BY THE JET OF THE YOUNG SUN-LIKE STAR DG Tau

    SciTech Connect

    Ainsworth, Rachael E.; Ray, Tom P.; Taylor, Andrew M.; Scaife, Anna M. M.; Green, David A.; Buckle, Jane V.

    2014-09-01

    Synchrotron emission has recently been detected in the jet of a massive protostar, providing further evidence that certain jet formation characteristics for young stars are similar to those found for highly relativistic jets from active galactic nuclei. We present data at 325 and 610 MHz taken with the Giant Metrewave Radio Telescope of the young, low-mass star DG Tau, an analog of the Sun soon after its birth. This is the first investigation of a low-mass young stellar object at such low frequencies. We detect emission with a synchrotron spectral index in the proximity of the DG Tau jet and interpret this emission as a prominent bow shock associated with this outflow. This result provides tentative evidence for the acceleration of particles to relativistic energies due to the shock impact of this otherwise very low-power jet against the ambient medium. We calculate the equipartition magnetic field strength B {sub min} ≈ 0.11 mG and particle energy E {sub min} ≈ 4 × 10{sup 40} erg, which are the minimum requirements to account for the synchrotron emission of the DG Tau bow shock. These results suggest the possibility of low energy cosmic rays being generated by young Sun-like stars.

  12. Core-halo age gradients and star formation in the Orion Nebula and NGS 2024 young stellar clusters

    SciTech Connect

    Getman, Konstantin V.; Feigelson, Eric D.; Kuhn, Michael A.

    2014-06-01

    We analyze age distributions of two nearby rich stellar clusters, the NGC 2024 (Flame Nebula) and Orion Nebula cluster (ONC) in the Orion molecular cloud complex. Our analysis is based on samples from the MYStIX survey and a new estimator of pre-main sequence (PMS) stellar ages, Age{sub JX} , derived from X-ray and near-infrared photometric data. To overcome the problem of uncertain individual ages and large spreads of age distributions for entire clusters, we compute median ages and their confidence intervals of stellar samples within annular subregions of the clusters. We find core-halo age gradients in both the NGC 2024 cluster and ONC: PMS stars in cluster cores appear younger and thus were formed later than PMS stars in cluster peripheries. These findings are further supported by the spatial gradients in the disk fraction and K-band excess frequency. Our age analysis is based on Age{sub JX} estimates for PMS stars and is independent of any consideration of OB stars. The result has important implications for the formation of young stellar clusters. One basic implication is that clusters form slowly and the apparent age spreads in young stellar clusters, which are often controversial, are (at least in part) real. The result further implies that simple models where clusters form inside-out are incorrect and more complex models are needed. We provide several star formation scenarios that alone or in combination may lead to the observed core-halo age gradients.

  13. Young Stars in Orion May Solve Mystery of Our Solar System

    NASA Astrophysics Data System (ADS)

    2001-09-01

    Scientists may have to give the Sun a little more credit. Exotic isotopes present in the early Solar System--which scientists have long-assumed were sprinkled there by a powerful, nearby star explosion--may have instead been forged locally by our Sun during the colossal solar-flare tantrums of its baby years. The isotopes--special forms of atomic nuclei, such as aluminum-26, calcium-41, and beryllium-10--can form in the X-ray solar flares of young stars in the Orion Nebula, which behave just like our Sun would have at such an early age. The finding, based on observations by the Chandra X-ray Observatory, has broad implications for the formation of our own Solar System. Eric Feigelson, professor of astronomy and astrophysics at Penn State, led a team of scientists on this Chandra observation and presents these results in Washington, D.C., today at a conference entitled "Two Years of Science with Chandra". "The Chandra study of Orion gives us the first chance to study the flaring properties of stars resembling the Sun when our solar system was forming," said Feigelson. "We found a much higher rate of flares than expected, sufficient to explain the production of many unusual isotopes locked away in ancient meteorites. If the young stars in Orion can do it, then our Sun should have been able to do it too." Scientists who study how our Solar System formed from a collapsed cloud of dust and gas have been hard pressed to explain the presence of these extremely unusual chemical isotopes. The isotopes are short-lived and had to have been formed no earlier than the creation of the Solar System, some five billion years ago. Yet these elements cannot be produced by a star as massive as our Sun under normal circumstances. (Other elements, such as silver and gold, were created long before the creation of the solar system.) The perplexing presence of these isotopic anomalies, found in ancient meteoroids orbiting the Earth, led to the theory that a supernova explosion occurred

  14. Mass and period limits on the ringed companion transiting the young star J1407

    NASA Astrophysics Data System (ADS)

    Kenworthy, M. A.; Lacour, S.; Kraus, A.; Triaud, A. H. M. J.; Mamajek, E. E.; Scott, E. L.; Ségransan, D.; Ireland, M.; Hambsch, F.-J.; Reichart, D. E.; Haislip, J. B.; LaCluyze, A. P.; Moore, J. P.; Frank, N. R.

    2015-01-01

    The young (˜16 Myr) pre-main-sequence star in Sco-Cen 1SWASP J140747.93-394542.6, hereafter referred to as J1407, underwent a deep eclipse in 2007 April, bracketed by several shallower eclipses in the surrounding 54 d. This has been interpreted as the first detection of an eclipsing ring system circling a substellar object (dubbed J1407b). We report on a search for this companion with Sparse Aperture Mask imaging and direct imaging with both the UT4 VLT and Keck telescopes. Radial velocity measurements of J1407 provide additional constraints on J1407b and on short period companions to the central star. Follow-up photometric monitoring using the Panchromatic Robotic Optical Monitoring and Polarimetry Telescopes (PROMPT)-4 and ROAD observatories during 2012-2014 has not yielded any additional eclipses. Large regions of mass-period space are ruled out for the companion. For circular orbits the companion period is constrained to the range 3.5-13.8 yr (a ≃ 2.2-5.6 au), and stellar masses (>80MJup) are ruled out at 3σ significance over these periods. The complex ring system appears to occupy more than 0.15 of its Hill radius, much larger than its Roche radius and suggesting a ring structure in transition. Further, we demonstrate that the radial velocity of J1407 is consistent with membership in the Upper Cen-Lup subgroup of the Sco-Cen association, and constraints on the rotation period and projected rotational velocity of J1407 are consistent with a stellar inclination of i⋆ ≃ 68° ± 10°.

  15. Chemistry and kinematics of red supergiant stars in the young massive cluster NGC 2100

    NASA Astrophysics Data System (ADS)

    Patrick, L. R.; Evans, C. J.; Davies, B.; Kudritzki, R.-P.; Hénault-Brunet, V.; Bastian, N.; Lapenna, E.; Bergemann, M.

    2016-06-01

    We have obtained K-band Multi-Object Spectrograph (KMOS) near-IR spectroscopy for 14 red supergiant stars (RSGs) in the young massive star cluster NGC 2100 in the Large Magellanic Cloud (LMC). Stellar parameters including metallicity are estimated using the J-band analysis technique, which has been rigorously tested in the Local Universe. We find an average metallicity for NGC 2100 of [Z] = -0.43 ± 0.10 dex, in good agreement with estimates from the literature for the LMC. Comparing our results in NGC 2100 with those for a Galactic cluster (at Solar-like metallicity) with a similar mass and age we find no significant difference in the location of RSGs in the Hertzsprung-Russell diagram. We combine the observed KMOS spectra to form a simulated integrated-light cluster spectrum and show that, by analysing this spectrum as a single RSG, the results are consistent with the average properties of the cluster. Radial velocities are measured for the targets and the dynamical properties are estimated for the first time within this cluster. The data are consistent with a flat velocity dispersion profile, and with an upper limit of 3.9 kms-1, at the 95 per cent confidence level, for the velocity dispersion of the cluster. However, the intrinsic velocity dispersion is unresolved and could, therefore, be significantly smaller than the upper limit reported here. An upper limit on the dynamical mass of the cluster is derived as Mdyn ≤ 15.2 × 104 M⊙ assuming virial equilibrium.

  16. The statistics of triggered star formation: an overdensity of massive young stellar objects around Spitzer bubbles

    NASA Astrophysics Data System (ADS)

    Thompson, M. A.; Urquhart, J. S.; Moore, T. J. T.; Morgan, L. K.

    2012-03-01

    We present a detailed statistical study of massive star formation in the environment of 322 Spitzer mid-infrared bubbles by using the Red MSX Source (RMS) survey for massive young stellar objects (YSOs). Using a combination of simple surface density plots and a more sophisticated angular cross-correlation function analysis, we show that there is a statistically significant overdensity of RMS YSOs towards the bubbles. There is a clear peak in the surface density and angular cross-correlation function of YSOs projected against the rim of the bubbles. By investigating the autocorrelation function of the RMS YSOs, we show that this is not due to intrinsic clustering of the RMS YSO sample. RMS YSOs and Spitzer bubbles are essentially uncorrelated with each other beyond a normalized angular distance of two bubble radii. The bubbles associated with RMS YSOs tend to be both smaller and thinner than those that are not associated with YSOs. We interpret this tendency to be due to an age effect, with YSOs being preferentially found around smaller and younger bubbles. We find no evidence to suggest that the YSOs associated with the bubbles are any more luminous than the rest of the RMS YSO population, which suggests that the triggering process does not produce a top-heavy luminosity function or initial mass function. We suggest that it is likely that the YSOs were triggered by the expansion of the bubbles and estimate that the fraction of massive stars in the Milky Way formed by this process could be between 14 and 30 per cent.

  17. A direct imaging search for close stellar and sub-stellar companions to young nearby stars

    NASA Astrophysics Data System (ADS)

    Vogt, N.; Mugrauer, M.; Neuhäuser, R.; Schmidt, T. O. B.; Contreras-Quijada, A.; Schmidt, J. G.

    2015-01-01

    A total of 28 young nearby stars (ages {≤ 60} Myr) have been observed in the K_s-band with the adaptive optics imager Naos-Conica of the Very Large Telescope at the Paranal Observatory in Chile. Among the targets are ten visual binaries and one triple system at distances between 10 and 130 pc, all previously known. During a first observing epoch a total of 20 faint stellar or sub-stellar companion-candidates were detected around seven of the targets. These fields, as well as most of the stellar binaries, were re-observed with the same instrument during a second epoch, about one year later. We present the astrometric observations of all binaries. Their analysis revealed that all stellar binaries are co-moving. In two cases (HD 119022 AB and FG Aqr B/C) indications for significant orbital motions were found. However, all sub-stellar companion candidates turned out to be non-moving background objects except PZ Tel which is part of this project but whose results were published elsewhere. Detection limits were determined for all targets, and limiting masses were derived adopting three different age values; they turn out to be less than 10 Jupiter masses in most cases, well below the brown dwarf mass range. The fraction of stellar multiplicity and of the sub-stellar companion occurrence in the star forming regions in Chamaeleon are compared to the statistics of our search, and possible reasons for the observed differences are discussed. Based on observations made with ESO telescopes at Paranal Observatory under programme IDs 083.C-0150(B), 084.C-0364(A), 084.C-0364(B), 084.C-0364(C), 086.C-0600(A) and 086.C-0600(B).

  18. THE FIRST X-SHOOTER OBSERVATIONS OF JETS FROM YOUNG STARS

    SciTech Connect

    Bacciotti, F.; Randich, S.; Whelan, E. T.; Alcala, J. M.; Nisini, B.; Podio, L.; Stelzer, B.; Cupani, G.

    2011-08-20

    We present the first pilot study of jets from young stars conducted with X-shooter, on the ESO/Very Large Telescope. As it offers simultaneous, high-quality spectra in the range 300-2500 nm, X-shooter is uniquely important for spectral diagnostics in jet studies. We chose to probe the accretion/ejection mechanisms at low stellar masses examining two targets with well-resolved continuous jets lying on the plane of the sky: ESO-HA 574 in Chameleon I and Par-Lup3-4 in Lupus III. The mass of the latter is close to the sub-stellar boundary (M{sub *} = 0.13 M{sub sun}). A large number of emission lines probing regions of different excitation are identified, position-velocity diagrams are presented, and mass outflow/accretion rates are estimated. Comparison between the two objects is striking. ESO-HA 574 is a weakly accreting star for which we estimate a mass accretion rate of log ( M-dot{sub acc}) = -10.8{+-}0.5 (in M{sub sun} yr{sup -1}), yet it drives a powerful jet with M-dot{sub out} {approx} 1.5-2.7 x 10{sup -9} M{sub sun} yr{sup -1}. These values can be reconciled with a magneto-centrifugal jet acceleration mechanism assuming that the presence of the edge-on disk severely depresses the luminosity of the accretion tracers. In comparison, Par-Lup3-4, with stronger mass accretion ( log ( M-dot{sub acc}) = -9.1{+-}0.4 M{sub sun} yr{sup -1}), drives a low-excitation jet with about M-dot{sub out} {approx} 3.2 x 10{sup -10} M{sub sun} yr{sup -1} in both lobes. Despite the low stellar mass, M-dot{sub out}/ M-dot{sub acc} for Par-Lup3-4 is at the upper limit of the range usually measured for young objects, but still compatible with a steady magneto-centrifugal wind scenario if all uncertainties are considered.

  19. Constraining globular cluster formation through studies of young massive clusters - IV. Testing the fast rotating massive star scenario

    NASA Astrophysics Data System (ADS)

    Bastian, N.; Hollyhead, K.; Cabrera-Ziri, I.

    2014-11-01

    One of the leading models for the formation of multiple stellar populations within globular clusters is the `fast rotating massive star' (FRMS) scenario, where the ejecta of rapidly rotating massive stars is mixed with primordial material left over from the star formation process, to form a second generation of stars within the decretion discs of the high-mass stars. A requirement of this model, at least in its current form, is that young massive (i.e. proto-globular) clusters are not able to eject the unused gas and dust from the star formation process from the cluster for 20-30 Myr after the formation of the first generation of stars, i.e. the cluster remains embedded within the gas cloud in which it forms. Here, we test this prediction by performing a literature search for young massive clusters in nearby galaxies, which have ages less than 20 Myr that are not embedded. We report that a number of such clusters exist, with masses near or significantly above 106 M⊙, with ages between a few Myr and ˜15 Myr, suggesting that even high-mass clusters are able to clear any natal gas within them within a few Myr after formation. Additionally, one cluster, Cluster 23 in ESO 338-IG04, has a metallicity below that of some Galactic globular clusters that have been found to host multiple stellar populations, mitigating any potential effect of differences in metallicity in the comparison. The clusters reported here are in contradiction to the expectations of the FRMS scenario, at least in its current form.

  20. Effects of Turbulence on Cosmic Ray Propagation in Protostars and Young Star/Disk Systems

    NASA Astrophysics Data System (ADS)

    Fatuzzo, Marco; Adams, Fred C.

    2014-05-01

    The magnetic fields associated with young stellar objects are expected to have an hour-glass geometry, i.e., the magnetic field lines are pinched as they thread the equatorial plane surrounding the forming star but merge smoothly onto a background field at large distances. With this field configuration, incoming cosmic rays experience both a funneling effect that acts to enhance the flux impinging on the circumstellar disk and a magnetic mirroring effect that acts to reduce that flux. To leading order, these effects nearly cancel out for simple underlying magnetic field structures. However, the environments surrounding young stellar objects are expected to be highly turbulent. This paper shows how the presence of magnetic field fluctuations affects the process of magnetic mirroring, and thereby changes the flux of cosmic rays striking circumstellar disks. Turbulence has two principle effects: (1) the (single) location of the magnetic mirror point found in the absence of turbulence is replaced with a wide distribution of values. (2) The median of the mirror point distribution moves outward for sufficiently large fluctuation amplitudes (roughly when δB/B 0 > 0.2 at the location of the turbulence-free mirror point); the distribution becomes significantly non-Gaussian in this regime as well. These results may have significant consequences for the ionization fraction of the disk, which in turn dictates the efficiency with which disk material can accrete onto the central object. A similar reduction in cosmic ray flux can occur during the earlier protostellar stages; the decrease in ionization can help alleviate the magnetic braking problem that inhibits disk formation.

  1. Effects of turbulence on cosmic ray propagation in protostars and young star/disk systems

    SciTech Connect

    Fatuzzo, Marco; Adams, Fred C. E-mail: fca@umich.edu

    2014-05-20

    The magnetic fields associated with young stellar objects are expected to have an hour-glass geometry, i.e., the magnetic field lines are pinched as they thread the equatorial plane surrounding the forming star but merge smoothly onto a background field at large distances. With this field configuration, incoming cosmic rays experience both a funneling effect that acts to enhance the flux impinging on the circumstellar disk and a magnetic mirroring effect that acts to reduce that flux. To leading order, these effects nearly cancel out for simple underlying magnetic field structures. However, the environments surrounding young stellar objects are expected to be highly turbulent. This paper shows how the presence of magnetic field fluctuations affects the process of magnetic mirroring, and thereby changes the flux of cosmic rays striking circumstellar disks. Turbulence has two principle effects: (1) the (single) location of the magnetic mirror point found in the absence of turbulence is replaced with a wide distribution of values. (2) The median of the mirror point distribution moves outward for sufficiently large fluctuation amplitudes (roughly when δB/B {sub 0} > 0.2 at the location of the turbulence-free mirror point); the distribution becomes significantly non-Gaussian in this regime as well. These results may have significant consequences for the ionization fraction of the disk, which in turn dictates the efficiency with which disk material can accrete onto the central object. A similar reduction in cosmic ray flux can occur during the earlier protostellar stages; the decrease in ionization can help alleviate the magnetic braking problem that inhibits disk formation.

  2. The Importance of Nebular Continuum and Line Emission in Observations of Young Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    Reines, Amy E.; Nidever, David L.; Whelan, David G.; Johnson, Kelsey E.

    2010-01-01

    In this spectroscopic study of infant massive star clusters, we find that continuum emission from ionized gas rivals the stellar luminosity at optical wavelengths. In addition, we find that nebular line emission is significant in many commonly used broadband Hubble Space Telescope (HST) filters including the F814W I-band, the F555W V-band, and the F435W B-band. Two young massive clusters (YMCs) in the nearby starburst galaxy NGC 4449 were targeted for follow-up spectroscopic observations after Reines et al. discovered an F814W I-band excess in their photometric study of radio-detected clusters in the galaxy. The spectra were obtained with the Dual Imaging Spectrograph (DIS) on the 3.5 m Apache Point Observatory (APO) telescope and have a spectral range of ~3800-9800 Å. We supplement these data with HST and Sloan Digital Sky Survey photometry of the clusters. By comparing our data to the Starburst99 and GALEV evolutionary synthesis models, we find that nebular continuum emission competes with the stellar light in our observations and that the relative contribution from the nebular continuum is largest in the U- and I-bands, where the Balmer (3646 Å) and Paschen jumps (8207 Å) are located. The spectra also exhibit strong line emission including the [S III] λλ9069, 9532 lines in the HST F814W I-band. We find that the combination of nebular continuum and line emission can account for the F814W I-band excess previously found by Reines et al. In an effort to provide a benchmark for estimating the impact of ionized gas emission on photometric observations of young massive stellar populations, we compute the relative contributions of the stellar continuum, nebular continuum, and emission lines to the total observed flux of a 3 Myr old cluster through various HST filter/instrument combinations, including filters in the Wide Field Camera 3. We urge caution when comparing observations of YMCs to evolutionary synthesis models since nebular continuum and line emission can

  3. CLOSE COMPANIONS TO YOUNG STARS. I. A LARGE SPECTROSCOPIC SURVEY IN CHAMAELEON I AND TAURUS-AURIGA

    SciTech Connect

    Nguyen, Duy Cuong; Brandeker, Alexis; Van Kerkwijk, Marten H.; Jayawardhana, Ray E-mail: mhvk@astro.utoronto.ca E-mail: dcnguyen@pas.rochester.edu E-mail: alexis@astro.su.se

    2012-02-01

    We present the results of a multiplicity survey of 212 T Tauri stars in the Chamaeleon I and Taurus-Auriga star-forming regions, based on high-resolution spectra from the Magellan Clay 6.5 m telescope. From these data, we achieved a typical radial velocity (RV) precision of {approx}80 m s{sup -1} with slower rotators yielding better precision, in general. For 174 of these stars, we obtained multi-epoch data with sufficient time baselines to identify binaries based on RV variations. We identified eight close binaries and four close triples, of which three and two, respectively, are new discoveries. The spectroscopic multiplicity fractions we find for Chamaeleon I (7%) and Taurus-Auriga (6%) are similar to each other, and to the results of field star surveys in the same mass and period regime. However, unlike the results from imaging surveys, the frequency of systems with close companions in our sample is not seen to depend on primary mass. Additionally, we do not find a strong correlation between accretion and close multiplicity. This implies that close companions are not likely the main source of the accretion shut down observed in weak-lined T Tauri stars. Our results also suggest that sufficient RV precision can be achieved for at least a subset of slowly rotating young stars to search for hot Jupiter planets.

  4. The Hidden Magnetic Field of the Young Neutron Star in Kesteven 79

    NASA Astrophysics Data System (ADS)

    Shabaltas, Natalia; Lai, Dong

    2012-04-01

    Recent observations of the central compact object in the Kesteven 79 supernova remnant show that this neutron star (NS) has a weak dipole magnetic field (a few × 1010 G) but an anomalously large (~64%) pulse fraction in its surface X-ray emission. We explore the idea that a substantial sub-surface magnetic field exists in the NS crust, which produces diffuse hot spots on the stellar surface due to anisotropic heat conduction, and gives rise to the observed X-ray pulsation. We develop a general-purpose method, termed "Temperature Template with Full Transport" (TTFT), that computes the synthetic pulse profile of surface X-ray emission from NSs with arbitrary magnetic field and surface temperature distributions, taking into account magnetic atmosphere opacities, beam pattern, vacuum polarization, and gravitational light bending. We show that a crustal toroidal magnetic field of order a few × 1014 G or higher, varying smoothly across the crust, can produce sufficiently distinct surface hot spots to generate the observed pulse fraction in the Kes 79 NS. This result suggests that substantial sub-surface magnetic fields, much stronger than the "visible" dipole fields, may be buried in the crusts of some young NSs, and such hidden magnetic fields can play an important role in their observational manifestations. The general TTFT tool we have developed can also be used for studying radiation from other magnetic NSs.

  5. The evolution of the composition of a young star cluster ejecta

    NASA Astrophysics Data System (ADS)

    Mollá, M.; Terlevich, R.

    2013-05-01

    We have computed with a fine time grid the evolution of the elemental abundances of He, C, N and O ejected by young (t < 20Myr) and massive (M = 10^{6} M_{⊙} coeval stellar cluster with a Salpeter initial mass function (IMF) over a wide range of initial abundances. Our computations incorporate the mass loss from massive stars (M ≥0 M_{⊙}) during their wind phase including the Wolf-Rayet phase and the ejecta from the core collapse supernovae. We find that during the Wolf-Rayet phase (t < 5 Myr) the cluster ejecta composition suddenly becomes vastly overabundant in N for all initial abundances and in He, C, and O for initial abundances higher than 1/5^{th} Solar. The C and O abundance in the cluster ejecta can reach over 50 times the solar value with important consequences for the chemical and hydro-dynamical evolution of the surrounding ISM. To see the whole tables and results see Moll{á} & Terlevich (2012, MNRAS, 425, 1696).

  6. Do circumstellar disks regulate rotation in young very low mass stars and brown dwarfs?

    NASA Astrophysics Data System (ADS)

    Rodriguez-Ledesma, M. V.; Mundt, R.; Eislöffel, J.

    Rotational studies at a variety of ages and masses are important for con- straining the angular momentum evolution of young stellar objects. Of particular interest are the very low mass (VLM) stars and brown dwarfs (BDs), because of the significant lack of known rotational periods in that mass range. We present results of an extensive rotational study in the Orion Nebula Clus- ter from where 487 new rotational periods were measured. In order to inves- tigate a rotation-disk correlation, we derived near infrared (NIR) excesses (from IJHK photometry) for a sample of 732 very low mass periodic vari- ables. We found a highly significant rotation-disk correlation for objects with masses between 0.4-0.075 M , in which objects with NIR excess tend to rotate slower than objects without NIR excess. Interestingly we found no corre- lation in the substellar regime. We discuss possible scenarios which may explain the lack of rotation-disk connection in the substellar mass regime.

  7. Investigating the borderline between a young star cluster and a small stellar association: a test case with Bochum 1

    NASA Astrophysics Data System (ADS)

    Bica, E.; Bonatto, C.; Dutra, C. M.

    2008-10-01

    Context: Usually, a loose stellar distribution can be classified as an OB stellar group, an association, or a young open cluster. We compare data with the typical OB association Vul OB1. Aims: Here, we discuss the nature of Bochum 1, a typical example of an object affected by the above classification problem. Methods: Field-decontaminated 2MASS photometry is used to analyse colour-magnitude diagrams (CMDs) and stellar radial density profiles (RDPs) of the structures present in the region of Bochum 1. Results: The field-decontaminated CMD of Bochum 1 shows main sequence (MS) and pre-main sequence (PMS) stars. We report two new small angular-size, compact young clusters and one embedded cluster in the area of Bochum 1. Vul OB1 harbours the young open cluster NGC 6823 and the very compact embedded cluster Cr 404. The Vul OB1 association includes the H II region Sh2-86, and its stellar content is younger (≈3 Myr) than that of Bochum 1 (≈9 Myr), which shows no gas emission. Bochum 1 harbours one of the newly found compact clusters as its core. The RDP of Bochum 1 is irregular and cannot be fitted by a King-like profile, which suggests significant erosion or dispersion of stars from a primordial cluster. Similarly to Bochum 1, the decontaminated CMD of NGC 6823 presents conspicuous MS and PMS sequences. Taken separately, RDPs of MS and PMS stars follow a King-like profile. The core shows an excess density of MS stars that mimics the profile of a post-core collapse cluster. At such a young age, it can be explained by an excess of stars formed in the prominent core. Conclusions: The present study suggests that Bochum 1 is a star cluster fossil remain that might be dynamically evolving into an OB association. Bochum 1 may be a missing link connecting early star cluster dissolution with the formation of low-mass OB associations.

  8. THE GEMINI NICI PLANET-FINDING CAMPAIGN: THE FREQUENCY OF GIANT PLANETS AROUND YOUNG B AND A STARS

    SciTech Connect

    Nielsen, Eric L.; Liu, Michael C.; Chun, Mark; Ftaclas, Christ; Wahhaj, Zahed; Biller, Beth A.; Hayward, Thomas L.; Hartung, Markus; Alencar, Silvia H. P.; Artymowicz, Pawel; Boss, Alan; Clarke, Fraser; De Gouveia Dal Pino, Elisabete; Gregorio-Hetem, Jane; Kuchner, Marc; Lin, Douglas N. C.; and others

    2013-10-10

    We have carried out high contrast imaging of 70 young, nearby B and A stars to search for brown dwarf and planetary companions as part of the Gemini NICI Planet-Finding Campaign. Our survey represents the largest, deepest survey for planets around high-mass stars (≈1.5-2.5 M{sub ☉}) conducted to date and includes the planet hosts β Pic and Fomalhaut. We obtained follow-up astrometry of all candidate companions within 400 AU projected separation for stars in uncrowded fields and identified new low-mass companions to HD 1160 and HIP 79797. We have found that the previously known young brown dwarf companion to HIP 79797 is itself a tight (3 AU) binary, composed of brown dwarfs with masses 58{sup +21}{sub -20} M{sub Jup} and 55{sup +20}{sub -19} M{sub Jup}, making this system one of the rare substellar binaries in orbit around a star. Considering the contrast limits of our NICI data and the fact that we did not detect any planets, we use high-fidelity Monte Carlo simulations to show that fewer than 20% of 2 M{sub ☉} stars can have giant planets greater than 4 M{sub Jup} between 59 and 460 AU at 95% confidence, and fewer than 10% of these stars can have a planet more massive than 10 M{sub Jup} between 38 and 650 AU. Overall, we find that large-separation giant planets are not common around B and A stars: fewer than 10% of B and A stars can have an analog to the HR 8799 b (7 M{sub Jup}, 68 AU) planet at 95% confidence. We also describe a new Bayesian technique for determining the ages of field B and A stars from photometry and theoretical isochrones. Our method produces more plausible ages for high-mass stars than previous age-dating techniques, which tend to underestimate stellar ages and their uncertainties.

  9. Star formation in the outer Galaxy: membership and fundamental parameters of the young open cluster NGC 1893

    NASA Astrophysics Data System (ADS)

    Prisinzano, L.; Sanz-Forcada, J.; Micela, G.; Caramazza, M.; Guarcello, M. G.; Sciortino, S.; Testi, L.

    2011-03-01

    Context. Different environmental conditions can play a crucial role in determining final products of the star formation process, and in this context, less favorable activities of star formation are expected in the external regions of our Galaxy. Aims: We studied the properties of the young open cluster NGC 1893 located about 12 Kpc from the galactic center, to investigate how different physical conditions can affect the process of star formation. Methods: By adopting a multiwavelength approach, we compiled a catalog extending from X-rays to NIR data to derive the cluster membership. In addition, optical and NIR photometric properties are used to evaluate the cluster parameters. Results: We find 415 diskless candidate members and 1061 young stellar objects with a circumstellar disk or class II candidate members, 125 of which are also Hα emitters. Considering the diskless candidate members, we find that the cluster distance is 3.6 ± 0.2 kpc and the mean interstellar reddening is E(B - V) = 0.6 ± 0.1 with evidence of differential reddening in the whole surveyed region. Conclusions: NGC 1893 contains a conspicuous population of pre-main sequence stars, together with the well-studied main sequence cluster population. We found a disk fraction of about 70% similar to the one found in clusters of similar age in the solar neighbor and then, despite expected unfavorable conditions for star formation, we conclude that very rich young clusters can also form in the outer regions of our Galaxy. Full Tables 5-8 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/527/A77

  10. Rotational Velocities for B0-B3 Stars in Seven Young Clusters: Further Study of the Relationship between Rotation Speed and Density in Star-Forming Regions

    NASA Astrophysics Data System (ADS)

    Wolff, S. C.; Strom, S. E.; Dror, D.; Venn, K.

    2007-03-01

    We present the results of a study aimed at assessing the differences in the distribution of rotation speeds N(vsini) among young (1-15 Myr) B stars spanning a range of masses 6 Msolar>1 Msolar pc-3) ensembles that will survive as rich, bound stellar clusters for ages well in excess of 108 yr. Our results demonstrate (1) that independent of environment, the rotation rates for stars in this mass range do not change by more than 0.1 dex over ages t~1 to ~15 Myr; and (2) that stars formed in high-density regions lack the cohort of slow rotators that dominate the low-density regions and young field stars. We suggest that the differences in N(vsini) between low- and high-density regions may reflect a combination of initial conditions and environmental effects: (1) the higher turbulent speeds that characterize molecular gas in high-density, cluster-forming regions; and (2) the stronger UV radiation fields and high stellar densities that characterize such regions. Higher turbulent speeds may lead to higher time-averaged accretion rates during the stellar assembly phase. In the context of stellar angular momentum regulation via ``disk-locking,'' higher accretion rates lead to both higher initial angular momenta and evolution-driven increases in surface rotation rates as stars contract from the birth line to the zero-age main sequence (ZAMS). Stronger UV radiation fields and higher densities may lead to shorter disk lifetimes in cluster-forming regions. If so, B stars formed in dense clusters are more likely to be ``released'' from their disks early during their pre-main-sequence lifetimes and evolve into rapid rotators as they conserve angular momentum and spin up in response to contraction. By contrast, the majority of their brethren in low-density, association-forming regions can retain

  11. Dynamic Young Stars and their Disks: A Temporal View of NGC 2264 with Spitzer and CoRoT

    NASA Astrophysics Data System (ADS)

    Cody, Ann Marie; Stauffer, John; Bouvier, Jèrôme

    2014-01-01

    Variability is a signature feature of young stars. Among the well known light curve phenomena are periodic variations attributed to surface spots and irregular changes associated with accretion or circumstellar disk material. While decades of photometric monitoring have provided a framework for classifying young star variability, we still know surprisingly little about its underlying mechanisms and connections to the surrounding disks. In the past few years, dedicated photometric monitoring campaigns from the ground and space have revolutionized our view of young stars in the time domain. We present a selection of optical and infrared time series from several recent campaigns, highlighting the Coordinated Synoptic Investigation of NGC 2264 ("CSI 2264")- a joint30-day effort with the Spitzer, CoRoT, and MOST telescopes. The extraordinary photometric precision, high cadence, and long time baseline of these observations is now enabling correlation of variability properties at very different wavelengths, corresponding to locations from the stellar surface to the inner 0.1 AU of the disk. We present some results of the CSI 2264 program, including new classes of optical/infrared behavior. Further efforts to tie observed variability features to physical models will provide insights into the inner disk environment at a time when planet formation may be underway. Based on data from the Spitzer and CoRoT missions. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA-s RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain.

  12. Two O2 If*/WN6 stars found in the outskirts of the massive young Galactic cluster Westerlund 2

    NASA Astrophysics Data System (ADS)

    Roman-Lopes, A.; Barbá, R.; Morrell, N. I.

    In this paper we report the identification of two Galactic O2 If*/WN6 stars (WR20aa and WR20c), localized in the periphery of the massive young stellar cluster Westerlund 2. From the 3.6μm Spitzer images of the region we found that the two new O2 If*/WN6ha are well beyond the cluster core, at 36 pc (15.7 arcmin) and 58 pc (25.0 arcmin) respectively. Also very remarkably, a radius vector connecting the stars intercepts the Westerlund 2 cluster exactly at the place where its stellar density reaches a maximum. We postulate a scenario in which the new stars had a common origin some- where in the cluster core, being ejected from their birthplace by dynamical interaction with some other very massive objects.

  13. The embedded young stars in the Taurus-Auriga molecular cloud. I - Models for spectral energy distributions

    NASA Technical Reports Server (NTRS)

    Kenyon, Scott J.; Calvet, Nuria; Hartmann, Lee

    1993-01-01

    We describe radiative transfer calculations of infalling, dusty envelopes surrounding pre-main-sequence stars and use these models to derive physical properties for a sample of 21 heavily reddened young stars in the Taurus-Auriga molecular cloud. The density distributions needed to match the FIR peaks in the spectral energy distributions of these embedded sources suggest mass infall rates similar to those predicted for simple thermally supported clouds with temperatures about 10 K. Unless the dust opacities are badly in error, our models require substantial departures from spherical symmetry in the envelopes of all sources. These flattened envelopes may be produced by a combination of rotation and cavities excavated by bipolar flows. The rotating infall models of Terebey et al. (1984) models indicate a centrifugal radius of about 70 AU for many objects if rotation is the only important physical effect, and this radius is reasonably consistent with typical estimates for the sizes of circumstellar disks around T Tauri stars.

  14. KEPLER-63b: A GIANT PLANET IN A POLAR ORBIT AROUND A YOUNG SUN-LIKE STAR

    SciTech Connect

    Sanchis-Ojeda, Roberto; Winn, Joshua N.; Albrecht, Simon; Marcy, Geoffrey W.; Isaacson, Howard; Howard, Andrew W.; Johnson, John Asher; Torres, Guillermo; Carter, Joshua A.; Dawson, Rebekah I.; Geary, John C.; Campante, Tiago L.; Chaplin, William J.; Davies, Guy R.; Lund, Mikkel N.; Buchhave, Lars A.; Everett, Mark E.; Fischer, Debra A.; Gilliland, Ronald L.; Horch, Elliott P.; and others

    2013-09-20

    We present the discovery and characterization of a giant planet orbiting the young Sun-like star Kepler-63 (KOI-63, m{sub Kp} = 11.6, T{sub eff} = 5576 K, M{sub *} = 0.98 M{sub ☉}). The planet transits every 9.43 days, with apparent depth variations and brightening anomalies caused by large starspots. The planet's radius is 6.1 ± 0.2 R{sub ⊕}, based on the transit light curve and the estimated stellar parameters. The planet's mass could not be measured with the existing radial-velocity data, due to the high level of stellar activity, but if we assume a circular orbit, then we can place a rough upper bound of 120 M{sub ⊕} (3σ). The host star has a high obliquity (ψ = 104°), based on the Rossiter-McLaughlin effect and an analysis of starspot-crossing events. This result is valuable because almost all previous obliquity measurements are for stars with more massive planets and shorter-period orbits. In addition, the polar orbit of the planet combined with an analysis of spot-crossing events reveals a large and persistent polar starspot. Such spots have previously been inferred using Doppler tomography, and predicted in simulations of magnetic activity of young Sun-like stars.

  15. Optical Spectroscopy of X-Ray-selected Young Stars in the Carina Nebula

    NASA Astrophysics Data System (ADS)

    Vaidya, Kaushar; Chen, Wen-Ping; Lee, Hsu-Tai

    2015-12-01

    We present low-resolution optical spectra for 29 X-ray sources identified as either massive star candidates or low-mass pre-main-sequence (PMS) star candidates in the clusters Trumpler 16 and Trumpler 14 of the Carina Nebula. Spectra of two more objects (one with an X-ray counterpart, and one with no X-ray counterpart), not originally our targets, but found close (˜3″) to two of our targets, are presented as well. Twenty early-type stars, including an O8 star, seven B1-B2 stars, two B3 stars, a B5 star, and nine emission-line stars, are identified. Eleven T Tauri stars, including eight classical T Tauri stars (CTTSs) and three weak-lined T Tauri stars, are identified. The early-type stars in our sample are more reddened compared to the previously known OB stars of the region. The Chandra hardness ratios of our T Tauri stars are found to be consistent with the Chandra hardness ratios of T Tauri stars of the Orion Nebula Cluster. Most early-type stars are found to be nonvariable in X-ray emission, except the B2 star J104518.81-594217.9, the B3 star J104507.84-594134.0, and the Ae star J104424.76-594555.0, which are possible X-ray variables. J104452.20-594155.1, a CTTS, is among the brightest and the hardest X-ray sources in our sample, appears to be a variable, and shows a strong X-ray flare. The mean optical and near-infrared photometric variability in the V and Ks bands, of all sources, is found to be ˜0.04 and 0.05 mag, respectively. The T Tauri stars show significantly larger mean variation, ˜0.1 mag, in the Ks band. The addition of one O star and seven B1-B2 stars reported here contributes to an 11% increase of the known OB population in the observed field. The 11 T Tauri stars are the first ever confirmed low-mass PMS stars in the Carina Nebula region.

  16. GAS SURFACE DENSITY, STAR FORMATION RATE SURFACE DENSITY, AND THE MAXIMUM MASS OF YOUNG STAR CLUSTERS IN A DISK GALAXY. I. THE FLOCCULENT GALAXY M 33

    SciTech Connect

    Gonzalez-Lopezlira, Rosa A.; Pflamm-Altenburg, Jan; Kroupa, Pavel

    2012-12-20

    We analyze the relationship between maximum cluster mass M{sub max} and surface densities of total gas ({Sigma}{sub gas}), molecular gas ({Sigma}{sub H{sub 2}}), and star formation rate ({Sigma}{sub SFR}) in the flocculent galaxy M 33, using published gas data and a catalog of more than 600 young star clusters in its disk. By comparing the radial distributions of gas and most massive cluster masses, we find that M{sub max}{proportional_to}{Sigma}{sup 4.7{+-}0.4}{sub gas}, M{sub max}{proportional_to}{Sigma}{sup 1.3{+-}0.1}{sub H{sub 2}}, and M{sub max}{proportional_to}{Sigma}{sup 1.0{+-}0.1}{sub SFR}. We rule out that these correlations result from the size of the sample; hence, the change of the maximum cluster mass must be due to physical causes.

  17. The Formation and Evolution of Young Low-mass Stars within Halos with High Concentration of Dark Matter Particles

    NASA Astrophysics Data System (ADS)

    Casanellas, Jordi; Lopes, IlíDio

    2009-11-01

    The formation and evolution of low-mass stars within dense halos of dark matter (DM) leads to evolution scenarios quite different from the classical stellar evolution. As a result of our detailed numerical work, we describe these new scenarios for a range of DM densities on the host halo, for a range of scattering cross sections of the DM particles considered, and for stellar masses from 0.7 to 3 M sun. For the first time, we also computed the evolution of young low-mass stars in their Hayashi track in the pre-main-sequence phase and found that, for high DM densities, these stars stop their gravitational collapse before reaching the main sequence, in agreement with similar studies on first stars. Such stars remain indefinitely in an equilibrium state with lower effective temperatures (|ΔT eff|>103 K for a star of one solar mass), the annihilation of captured DM particles in their core being the only source of energy. In the case of lower DM densities, these protostars continue their collapse and progress through the main-sequence burning hydrogen at a lower rate. A star of 1 M sun will spend a time period greater than the current age of the universe consuming all the hydrogen in its core if it evolves in a halo with DM density ρχ = 109 GeV cm-3. We also show the strong dependence of the effective temperature and luminosity of these stars on the characteristics of the DM particles and how this can be used as an alternative method for DM research.

  18. The massive disk around the young B-star AFGL 490

    NASA Astrophysics Data System (ADS)

    Schreyer, Katharina; Semenov, Dmitry; Henning, Thomas; Pavlyuchenkov, Yaroslav; Dullemond, Cornelius

    The AFGL 490 is a key target in the class of deeply embedded young stellar objects with masses of 8x10 Msol being in a transition stage to the pre-main-sequence Herbig Be stars. We observe this system at sub-arcsecond resolution with the Plateau de Bure Interferometer (PdBI) in the C17O(2-1) transition in order to confirm the presence of a rotating disk. The C17O(2-1) data show clear evidence for a rotating ~ 1 500 AU disk centered at the the 1 mm continuum point source. We model these data iteratively. First, the physical structure of the disk is obtained using a two-dimensional radiative transfer code. Second, with this model in hand, we calculate time-dependent abundances in the disk using a gas-grain chemical network. Finally, the beam-convolved C17O(2-1) interferometric map is synthesized by a 2D line transfer code, and these results are compared with the observations in the step-by-step way (Semenov et al. 2005). We estimate that (1) the disk inclination angle is 30 ± 5◦, (2) its positional angle is 150 ± 10◦, (3) the disk is in Keplerian rotation, (4) it has a radius of about 1 400 AU, and (5) the disk mass is about 0.2-0.4 Msol (depending on the assumed surface density gradient p ~ -1). This is in contrast to the value of 4 ± 2 Msol estimated from the intensity of the PdBI 1 mm continuum emission within 1000 AU around the star, and ~ 8 Msol for the mass of the gas located within about 4 000 AU around the star, as it has been found using our CS(2-1) PdBI data (Schreyer et al. 2002). It is interesting that the geometry of the detected C17O emission map speaks in favor of a larger inclination angle, > 60◦. Thus, the C17O interferometric map traces the densest part of a more extended and likely asymmetric disklike structure. Moreover, we find clear indication for on-going accretion in this object, since the detected PdBI CH3OH J=2(0,2)-1(0,1) A+ emission lines show characteristic inverse P Cygni profiles. Given the large mass of the circumstellar gas

  19. MAGNETIC CYCLES IN A CONVECTIVE DYNAMO SIMULATION OF A YOUNG SOLAR-TYPE STAR

    SciTech Connect

    Brown, Benjamin P.; Miesch, Mark S.; Browning, Matthew K.; Brun, Allan Sacha

    2011-04-10

    Young solar-type stars rotate rapidly and many are magnetically active. Some appear to undergo magnetic cycles similar to the 22 yr solar activity cycle. We conduct simulations of dynamo action in rapidly rotating suns with the three-dimensional magnetohydrodynamic anelastic spherical harmonic (ASH) code to explore dynamo action achieved in the convective envelope of a solar-type star rotating at five times the current solar rotation rate. We find that dynamo action builds substantial organized global-scale magnetic fields in the midst of the convection zone. Striking magnetic wreaths span the convection zone and coexist with the turbulent convection. A surprising feature of this wreath-building dynamo is its rich time dependence. The dynamo exhibits cyclic activity and undergoes quasi-periodic polarity reversals where both the global-scale poloidal and toroidal fields change in sense on a roughly 1500 day timescale. These magnetic activity patterns emerge spontaneously from the turbulent flow and are more organized temporally and spatially than those realized in our previous simulations of the solar dynamo. We assess in detail the competing processes of magnetic field creation and destruction within our simulations that contribute to the global-scale reversals. We find that the mean toroidal fields are built primarily through an {Omega}-effect, while the mean poloidal fields are built by turbulent correlations which are not well represented by a simple {alpha}-effect. During a reversal the magnetic wreaths propagate toward the polar regions, and this appears to arise from a poleward propagating dynamo wave. As the magnetic fields wax and wane in strength and flip in polarity, the primary response in the convective flows involves the axisymmetric differential rotation which varies on similar timescales. Bands of relatively fast and slow fluid propagate toward the poles on timescales of roughly 500 days and are associated with the magnetic structures that propagate

  20. Refining the asteroseismic model for the young δ Scuti star HD 144277 using HARPS spectroscopy

    NASA Astrophysics Data System (ADS)

    Zwintz, K.; Ryabchikova, T.; Lenz, P.; Pamyatnykh, A. A.; Fossati, L.; Sitnova, T.; Breger, M.; Poretti, E.; Rainer, M.; Hareter, M.; Mantegazza, L.

    2014-07-01

    Context. HD 144277 was previously discovered by Microvariability and Oscillations of Stars (MOST) space photometry to be a young and hot δ Scuti star showing regular groups of pulsation frequencies. The first asteroseismic models required lower than solar metallicity to fit the observed frequency range based on a purely photometric analysis. Aims: The aim of the present paper is to determine, by means of high-resolution spectroscopy, fundamental stellar parameters required for the asteroseismic model of HD 144277, and subsequently, to refine it. Methods: High-resolution, high signal-to-noise spectroscopic data obtained with the HARPS spectrograph were used to determine the fundamental parameters and chemical abundances of HD 144277. These values were put into context alongside the results from asteroseismic models. Results: The effective temperature, Teff, of HD 144277 was determined as 8640 +300-100 K, log g is 4.14 ± 0.15 and the projected rotational velocity, υsini, is 62.0 ± 2.0 km s-1. As the υsini value is significantly larger than previously assumed, we refined the first asteroseimic model accordingly. The overall metallicity Z was determined to be 0.011 where the light elements He, C, O, Na, and S show solar chemical composition, but the heavier elements are significantly underabundant. In addition, the radius of HD 144277 was determined to be 1.55 ± 0.65 R⊙ from spectral energy distribution fitting, based on photometric data taken from the literature. Conclusions: From the spectroscopic observations, we could confirm our previous assumption from asteroseismic models that HD 144277 has less than solar metallicity. The fundamental parameters derived from asteroseismology, Teff, log g, L/L⊙ and R/R⊙ agree within one sigma to the values found from spectroscopic analysis. As the υsini value is significantly higher than assumed in the first analysis, near-degeneracies and rotational mode coupling were taken into account in the new models. These

  1. Rotating molecular outflows: the young T Tauri star in CB 26

    NASA Astrophysics Data System (ADS)

    Launhardt, R.; Pavlyuchenkov, Ya.; Gueth, F.; Chen, X.; Dutrey, A.; Guilloteau, S.; Henning, Th.; Piétu, V.; Schreyer, K.; Semenov, D.

    2009-01-01

    Context: The disk-outflow connection is thought to play a key role in extracting excess angular momentum from a forming proto-star. Although jet rotation has been observed in a few objects, no rotation of molecular outflows has been unambiguously reported so far. Aims: We report new millimeter-interferometric observations of the edge-on T Tauri star - disk system in the isolated Bok globule CB 26. The aim of these observations was to study the disk-outflow relation in this 1 Myr old low-mass young stellar object. Methods: The IRAM PdBI array was used to observe 12CO(2-1) at 1.3 mm in two configurations, resulting in spectral line maps with 1.5´´ resolution. We use an empirical parameterized steady-state outflow model combined with 2-D line radiative transfer calculations and χ^2-minimization in parameter space to derive a best-fit model and constrain parameters of the outflow. Results: The data reveal a previously undiscovered collimated bipolar molecular outflow of total length ≈2000 AU, escaping perpendicular to the plane of the disk. We find peculiar kinematic signatures that suggest that the outflow is rotating with the same orientation as the disk. However, we could not ultimately exclude jet precession or two misaligned flows as possible origins of the observed peculiar velocity field. There is indirect indication that the embedded driving source is a binary system, which, together with the youth of the source, could provide a clue to the observed kinematic features of the outflow. Conclusions: CB 26 is so far the most promising source in which to study the rotation of a molecular outflow. Assuming that the outflow is rotating, we compute and compare masses, mass flux, angular momenta, and angular momentum flux of the disk and outflow and derive disk dispersal timescales of 0.5 ldots 1 Myr, comparable to the age of the system. Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG

  2. Magnetocentrifugally driven flows from young stars and disks. 2: Formulation of the dynamical problem

    NASA Technical Reports Server (NTRS)

    Shu, Frank H.; Najita, Joan; Ruden, Steven P.; Lizano, Susana

    1994-01-01

    We formulate the dynamical problem of a cool wind centrifugally driven from the magnetic interface of a young star and an adjoining Keplerian disk. We examine the situation for mildly accreting T Tauri stars that rotate slowly as well as rapidly accreting protostars that rotate near break-up. In both cases a wind can be driven from a small X-region just outside the stellar magnetopause, where the field lines assume an open geometry and are rooted to material that rotates at an angular speed equal both to the local Keplerian value and to the stellar angular speed. Assuming axial symmetry for the ideal magnetohydrodynamic flow, which requires us to postpone asking how the (lightly ionized) gas is loaded onto field lines, we can formally integrate all the governing equations analytically except for a partial equation that describes how streamlines spread in the meridional plane. Apart from the difficulty of dealing with PDEs of mixed type, finding the functional forms of the conserved quantities along streamlines - the ratio beta of magnetic field to mass flux, the specific energy H of the fluid in the rotating frame, and the total specific angular momentum J carried in the matter and the field - constitutes a standard difficulty in this kind of (Grad-Shafranov) formalism. Fortunately, because the ratio of the thermal speed of the mass-loss regions to the Keplerian speed of rotation of the interface constitutes a small parameter epsilon, we can attack the overall problem by the method of matched asymptotic expansions. This procedure leads to a natural and systematic technique for obtaining the relevant functional dependences of beta, H, and J. Moreover, we are able to solve analytically for the properties of the flow emergent from the small transsonic region driven by gas pressure without having to specify the detailed form of any of the conserved functions, beta, H, and J. This analytical solution provides inner boundary conditions for the numerical computation in a

  3. An Extraordinary Cluster of Massive Young Stars in the Milky Way's Nucleus

    NASA Technical Reports Server (NTRS)

    Serabyn, E.; Shupe, D.; Figer, D. F.

    1998-01-01

    The mass distribution of newborn stars is key to the evolution of galaxies, as it determines whether a galaxy's interstellar medium is funneled predominantly into dim, long-lived, low-mass stars, as is the case in normal galactic disks, or into bright, short-lived, massive stars, as is perhaps the case in starburst nuclei.

  4. Identifying the Young Low-mass Stars within 25 pc. I. Spectroscopic Observations

    NASA Astrophysics Data System (ADS)

    Shkolnik, Evgenya; Liu, Michael C.; Reid, I. Neill

    2009-07-01

    We have completed a high-resolution (R ≈ 60,000) optical spectroscopic survey of 185 nearby M dwarfs identified using ROSAT data to select active, young objects with fractional X-ray luminosities comparable to or greater than Pleiades members. Our targets are drawn from the NStars 20 pc census and the Moving-M sample with distances determined from parallaxes or spectrophotometric relations. We limited our sample to 25 pc from the Sun, prior to correcting for pre-main-sequence overluminosity or binarity. Nearly half of the resulting M dwarfs are not present in the Gliese catalog and have no previously published spectral types. We identified 30 spectroscopic binaries (SBs) from the sample, which have strong X-ray emission due to tidal spin-up rather than youth. This is equivalent to a 16% SB fraction, with at most a handful of undiscovered SBs. We estimate upper limits on the age of the remaining M dwarfs using spectroscopic youth indicators such as surface gravity-sensitive indices (CaH and K I). We find that for a sample of field stars with no metallicity measurements, a single CaH gravity index may not be sufficient, as higher metallicities mimic lower gravity. This is demonstrated in a subsample of metal-rich radial velocity (RV) standards, which appear to have low surface gravity as measured by the CaH index, yet show no other evidence of youth. We also use additional youth diagnostics such as lithium absorption and strong Hα emission to set more stringent age limits. Eleven M dwarfs with no Hα emission or absorption are likely old (>400 Myr) and were caught during an X-ray flare. We estimate that our final sample of the 144 youngest and nearest low-mass objects in the field is less than 300 Myr old, with 30% of them being younger than 150 Myr and four very young (lap10 Myr), representing a generally untapped and well-characterized resource of M dwarfs for intensive planet and disk searches. Based on observations collected at the W. M. Keck Observatory and

  5. Two O2 If*/WN6 stars possibly ejected from the massive young Galactic cluster Westerlund 2

    NASA Astrophysics Data System (ADS)

    Roman-Lopes, A.; Barba, R. H.; Morrell, N. I.

    2011-09-01

    In this paper we report the identification of two new Galactic O2 If*/WN6 stars (WR20aa and WR20c), on the outskirts of the massive young stellar cluster Westerlund 2. The morphological similarity between the near-infrared spectra of the new stars with that of WR20a and WR21a (two of the most massive binaries known to date) is remarkable, indicating that probably they are also very massive stars. New optical spectroscopic observations of WR20aa suggest an intermediate O2 If*/WN6 spectral type. Based on a mosaic made from the 3.6 μm Spitzer IRAC images of the region including part of the RCW49 complex, we studied the spatial location of the new emission line stars, finding that WR20aa and WR20c are well displaced from the centre of Westerlund 2, being placed at ≈36 pc (15.7 arcmin) and ≈58 pc (25.0 arcmin), respectively, for an assumed heliocentric distance of 8 kpc. Also, very remarkably, a radius vector connecting the two stars would intercept the Westerlund 2 cluster exactly at the place where its stellar density reaches a maximum. We consequently postulate a scenario in which WR20aa and WR20c had a common origin somewhere in the cluster core, being ejected from their birthplace by dynamical interaction with some other very massive objects, perhaps during some earlier stage of the cluster evolution.

  6. High Mass Star Formation in the Vicinity of a Young Massive Protocluster IRAS 04073+5102 (SH 209)

    NASA Astrophysics Data System (ADS)

    Chibueze, James

    2015-08-01

    IRAS 04073+5102 (SH 209) is a massive high mass star forming regions hosting massive protoclusters. Star formation in the vicinity of expanding HII region could toll different path from those of pristine environment. IRAS 04073+5102 (SH 209) provides an ideal region to study the influence of expanding region on the star formation activities in a region. We performed a 15-pointing mosaic observation of the region at 230 GHz with submillimeter array (SMA) and detected dust continuum emissions, 12CO, 13CO, C18O and SO. We used SMA dust continuum and CO data to identify and characterize the major filaments and cores in the complex. The brightest mm clump of 4000 M⊙ observed at low resolution fragments into just three cores and the prominent core is an excellent candidate for a massive protocluster. Comparing of SMA images with Spitzer images, we could isolate very young filaments containing pre-protoclusters that would likely form clusters. The expanding HII region may have contributed to the formation of the observed filamentary structures and in triggering star formation in the region. We performed core-core velocity dispersion analysis of the region. Scaling the distance of our target to the distance of Orion molecular cloud (OMC), we compared star formation in both regions.

  7. An M Dwarf Companion to an F-type Star in a Young Main-sequence Binary

    NASA Astrophysics Data System (ADS)

    Eigmüller, Ph.; Eislöffel, J.; Csizmadia, Sz.; Lehmann, H.; Erikson, A.; Fridlund, M.; Hartmann, M.; Hatzes, A.; Pasternacki, Th.; Rauer, H.; Tkachenko, A.; Voss, H.

    2016-03-01

    Only a few well characterized very low-mass M dwarfs are known today. Our understanding of M dwarfs is vital as these are the most common stars in our solar neighborhood. We aim to characterize the properties of a rare F+dM stellar system for a better understanding of the low-mass end of the Hertzsprung-Russel diagram. We used photometric light curves and radial velocity follow-up measurements to study the binary. Spectroscopic analysis was used in combination with isochrone fitting to characterize the primary star. The primary star is an early F-type main-sequence star with a mass of (1.493 ± 0.073) M⊙ and a radius of (1.474 ± 0.040) R⊙. The companion is an M dwarf with a mass of (0.188 ± 0.014) M⊙ and a radius of (0.234 ± 0.009) R⊙. The orbital period is (1.35121 ± 0.00001) days. The secondary star is among the lowest-mass M dwarfs known to date. The binary has not reached a 1:1 spin-orbit synchronization. This indicates a young main-sequence binary with an age below ˜250 Myr. The mass-radius relation of both components are in agreement with this finding.

  8. Stars

    NASA Astrophysics Data System (ADS)

    Capelato, Hugo Vicente

    1999-01-01

    We will begin our study with a more or less superficial inspection of the "forest" of stars that we see in the skies. The first thing we notice is that, as sources of light, they are much weaker than the Sun. Second, their apparent colors vary; from a bluish-white in most of them to a reddish-yellow, which is rarer. There is also a third aspect, though it is not very obvious to the naked eye: most of the stars group themselves in small families of two, three or more members. A good example is the Alpha Centauri, the closest star to us, which, in fact, is a triple system of stars. Another is the group of 7 stars that make up the Pleiades, which will be discussed later on. In fact, almost half of the stars are double systems with only two members, called binary stars. Most of these double stars, though together, are separated by several astronomical units (one astronomical unit, AU, is the distance from Earth to the sun: see Chapter 1), and revolve around each other over periods of several years. And yet the revolutions of some binary stars, separated by much smaller distances, occur in only a few hours! These stars are so close to each other that they can share enveloping material. Often this exchange occurs in a somewhat violent manner. Local explosions may occur, expelling matter away from the system. In other binary systems, where one of the components is a very compact, dense star, companion material flows more calmly, making up a light disk around the compact star.

  9. NEAR-INFRARED VARIABILITY AMONG YOUNG STELLAR OBJECTS IN THE STAR FORMATION REGION CYGNUS OB7

    SciTech Connect

    Wolk, Scott J.; Rice, Thomas S.; Aspin, Colin

    2013-08-20

    We present an analysis of near-infrared time-series photometry in J, H, and K bands for about 100 epochs of a 1 Degree-Sign Multiplication-Sign 1 Degree-Sign region of the Lynds 1003/1004 dark cloud in the Cygnus OB7 region. Augmented by data from the Wide-field Infrared Survey Explorer, we identify 96 candidate disk bearing young stellar objects (YSOs) in the region. Of these, 30 are clearly Class I or earlier. Using the Wide-Field Imaging Camera on the United Kingdom Infrared Telescope, we were able to obtain photometry over three observing seasons, with photometric uncertainty better than 0.05 mag down to J Almost-Equal-To 17. We study detailed light curves and color trajectories of {approx}50 of the YSOs in the monitored field. We investigate the variability and periodicity of the YSOs and find the data are consistent with all YSOs being variable in these wavelengths on timescales of a few years. We divide the variability into four observational classes: (1) stars with periodic variability stable over long timescales, (2) variables which exhibit short-lived cyclic behavior, (3) long-duration variables, and (4) stochastic variables. Some YSO variability defies simple classification. We can explain much of the observed variability as being due to dynamic and rotational changes in the disk, including an asymmetric or changing blocking fraction, changes to the inner disk hole size, as well as changes to the accretion rate. Overall, we find that the Class I:Class II ratio of the cluster is consistent with an age of <1 Myr, with at least one individual, wildly varying source {approx}100, 000 yr old. We have also discovered a Class II eclipsing binary system with a period of 17.87 days.

  10. Structure and Evolution of the Envelopes of Deeply Embedded Massive Young Stars

    NASA Astrophysics Data System (ADS)

    van der Tak, Floris F. S.; van Dishoeck, Ewine F.; Evans, Neal J., II; Blake, Geoffrey A.

    2000-07-01

    The physical structure of the envelopes around a sample of 14 massive young stars is investigated using maps and spectra in submillimeter continuum and lines of C17O, CS, C34S, and H2CO. Nine of the sources are highly embedded luminous (103-105 Lsolar) young stellar objects that are bright near-infrared sources but weak in radio continuum; the other objects are similar but not bright in the near-infrared and contain ``hot-core''-type objects and/or ultracompact H II regions. The data are used to constrain the temperature and density structure of the circumstellar envelopes on 102-105 AU scales, to investigate the relation between the different objects, and to search for evolutionary effects. The total column densities and the temperature profiles are obtained by fitting self-consistent dust models to submillimeter photometry. The calculated temperatures range from 300 to 1000 K at ~102 AU and from 10 to 30 K at ~105 AU from the star. Visual extinctions are a few hundred to a few thousand magnitudes, assuming a grain opacity at 1300 μm of ~1 cm-2 g-1 of dust, as derived earlier for one of our sources. The mid-infrared data are consistent with a 30% decrease of the opacity at higher temperatures, caused by the evaporation of the ice mantles. The CS, C34S, and H2CO data as well as the submillimeter dust emission maps indicate density gradients n~r-α. Assuming a constant CS abundance throughout the envelope, values of α=1.0-1.5 are found, which is significantly flatter than the α=2.0+/-0.3 generally found for low-mass objects. This flattening may indicate that in massive young stellar objects, nonthermal pressure is more important for the support against gravitational collapse, while thermal pressure dominates for low-mass sources. We find α=2 for two hot-core-type sources but regard this as an upper limit since, in these objects, the CS abundance may be enhanced in the warm gas close to the star. The assumption of spherical symmetry is tested by modeling infrared

  11. The Initial Mass Function of Low-Mass Stars and Brown Dwarfs in Young Clusters

    NASA Astrophysics Data System (ADS)

    Luhman, K. L.; Rieke, G. H.; Young, Erick T.; Cotera, Angela S.; Chen, H.; Rieke, Marcia J.; Schneider, Glenn; Thompson, Rodger I.

    2000-09-01

    We have obtained images of the Trapezium Cluster (140''×140'' 0.3 pc×0.3 pc) with the Hubble Space Telescope Near-Infrared Camera and Multi-Object Spectrometer (NICMOS). Combining these data with new ground-based K-band spectra (R=800) and existing spectral types and photometry, we have constructed an H-R diagram and used it and other arguments to infer masses and ages. To allow comparison with the results of our previous studies of IC 348 and ρ Oph, we first use the models of D'Antona & Mazzitelli. With these models, the distributions of ages of comparable samples of stars in the Trapezium, ρ Oph, and IC 348 indicate median ages of ~0.4 Myr for the first two regions and ~1-2 Myr for the latter. The low-mass initial mass functions (IMFs) in these sites of clustered star formation are similar over a wide range of stellar densities (ρ Oph, n=0.2-1×103 pc-3 IC 348, n=1×103 pc-3 Trapezium, n=1-5×104 pc-3) and other environmental conditions (e.g., presence or absence of OB stars). With current data, we cannot rule out modest variations in the substellar mass functions among these clusters. We then make the best estimate of the true form of the IMF in the Trapezium by using the evolutionary models of Baraffe et al. and an empirically adjusted temperature scale and compare this mass function to recent results for the Pleiades and the field. All of these data are consistent with an IMF that is flat or rises slowly from the substellar regime to about 0.6 Msolar and then rolls over into a power law that continues from about 1 Msolar to higher masses with a slope similar to or somewhat larger than the Salpeter value of 1.35. For the Trapezium, this behavior holds from our completeness limit of ~0.02 Msolar and probably, after a modest completeness correction, even from 0.01-0.02 Msolar. These data include ~50 likely brown dwarfs. We test the predictions of theories of the IMF against (1) the shape of the IMF, which is not log-normal, in clusters and the field, (2) the

  12. Popocatepetl Erupts

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Popocatepetl Volcano, almost 30 miles south of Mexico City, erupted yesterday (December 18, 2000) in what authorities are calling its most spectacular eruption since 800 A.D. This morning, Popocatepetl (pronounced poh-poh-kah-TEH-peh-til) continued spewing red-hot rocks as well as a column of smoke and ash about 2.5 miles high into the atmosphere. This true-color image of the volcano was acquired today by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) flying aboard the OrbView-2 satellite. In this image, Popocatepetl's plume (greyish pixels) can be seen blowing southward, away from Mexico City. There is a large cloud bank (bright white pixels) just to the east of the volcanic plume. Although Popocatepetl has been active since 1994-when it awoke from a 70-year slumber-this most recent eruption is most concerning to the greater Mexico City region's 20 million residents. The volcano demonstrated what it can do in 800 A.D. when it belched forth enough lava to fill many of the valleys in the surrounding region. Earlier, scientists warned the citizens of Mexico that there is a dome of lava at the base of the volcano that is causing pressure to build inside. They are concerned that, if it continues to build unabated, this pressure could cause even larger eruptions in the future. Image provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  13. Evidence for a correlation between mass accretion rates onto young stars and the mass of their protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Manara, C. F.; Rosotti, G.; Testi, L.; Natta, A.; Alcalá, J. M.; Williams, J. P.; Ansdell, M.; Miotello, A.; van der Marel, N.; Tazzari, M.; Carpenter, J.; Guidi, G.; Mathews, G. S.; Oliveira, I.; Prusti, T.; van Dishoeck, E. F.

    2016-06-01

    A relation between the mass accretion rate onto the central young star and the mass of the surrounding protoplanetary disk has long been theoretically predicted and observationally sought. For the first time, we have accurately and homogeneously determined the photospheric parameters, mass accretion rate, and disk mass for an essentially complete sample of young stars with disks in the Lupus clouds. Our work combines the results of surveys conducted with VLT/X-Shooter and ALMA. With this dataset we are able to test a basic prediction of viscous accretion theory, the existence of a linear relation between the mass accretion rate onto the central star and the total disk mass. We find a correlation between the mass accretion rate and the disk dust mass, with a ratio that is roughly consistent with the expected viscous timescale when assuming an interstellar medium gas-to-dust ratio. This confirms that mass accretion rates are related to the properties of the outer disk. We find no correlation between mass accretion rates and the disk mass measured by CO isotopologues emission lines, possibly owing to the small number of measured disk gas masses. This suggests that the mm-sized dust mass better traces the total disk mass and that masses derived from CO may be underestimated, at least in some cases.

  14. ON THE DYNAMICAL FORMATION OF VERY YOUNG, X-RAY EMITTING BLACK HOLE BINARIES IN DENSE STAR CLUSTERS

    SciTech Connect

    Garofali, Kristen; Converse, Joseph M.; Chandar, Rupali; Rangelov, Blagoy

    2012-08-10

    We recently discovered a population of very young ({tau} {approx}< 6-8 Myr), X-ray emitting black hole binaries (BHBs) in the nearby starburst galaxy NGC 4449. These BHBs are located within or near to very young star clusters, indicating that they form within the clusters, but that some fraction are dynamically ejected. Here we present results from a suite of N-body simulations of N = 16,384 ({approx}6000 M{sub Sun }) star clusters, similar to the masses of BHB hosts in NGC 4449, through the first 10 Myr of their lives. Our goal is to determine whether dynamical interactions are responsible for the observed population of BHBs in NGC 4449. Our simulations span a wide range of initial size and density profiles, both with and without primordial mass segregation, testing both realistic initial conditions and extreme ones. We find that clusters without primordial mass segregation only dynamically produce BHBs within 10 Myr when they are extremely compact and centrally concentrated. Preliminary results that include primordial binaries support this conclusion. The introduction of strong primordial mass segregation, however, greatly increases the rapidity with which the binaries form, although these are still not tight enough that they will emit X-rays. We conclude that X-ray emitting BHBs are unlikely to form dynamically in clusters of this mass under realistic conditions. Instead, they probably originate from binaries that contain two massive stars with small orbital separations, which are present from the cluster's birth.

  15. THE GEMINI NICI PLANET-FINDING CAMPAIGN: DISCOVERY OF A MULTIPLE SYSTEM ORBITING THE YOUNG A STAR HD 1160

    SciTech Connect

    Nielsen, Eric L.; Liu, Michael C.; Wahhaj, Zahed; Bowler, Brendan; Kraus, Adam; Chun, Mark; Ftaclas, Christ; Biller, Beth A.; Hayward, Thomas L.; Shkolnik, Evgenya L.; Tecza, Matthias; Clarke, Fraser; Close, Laird M.; Hartung, Markus; Males, Jared R.; Skemer, Andrew J.; Reid, I. Neill; Alencar, Silvia H. P.; Burrows, Adam; and others

    2012-05-01

    We report the discovery of two low-mass companions to the young A0V star HD 1160 at projected separations of 81 {+-} 5 AU (HD 1160 B) and 533 {+-} 25 AU (HD 1160 C) by the Gemini NICI Planet-Finding Campaign. Very Large Telescope images of the system taken over a decade for the purpose of using HD 1160 A as a photometric calibrator confirm that both companions are physically associated. By comparing the system to members of young moving groups and open clusters with well-established ages, we estimate an age of 50{sup +50}{sub -40} Myr for HD 1160 ABC. While the UVW motion of the system does not match any known moving group, the small magnitude of the space velocity is consistent with youth. Near-IR spectroscopy shows HD 1160 C to be an M3.5 {+-} 0.5 star with an estimated mass of 0.22{sup +0.03}{sub -0.04} M{sub Sun }, while NIR photometry of HD 1160 B suggests a brown dwarf with a mass of 33{sup +12}{sub -9} M{sub Jup}. The very small mass ratio (0.014) between the A and B components of the system is rare for A star binaries, and would represent a planetary-mass companion were HD 1160 A to be slightly less massive than the Sun.

  16. YOUNG STARS NEAR EARTH: THE OCTANS-NEAR ASSOCIATION AND CASTOR MOVING GROUP

    SciTech Connect

    Zuckerman, B.; Vican, Laura; Song, Inseok; Schneider, Adam E-mail: lvican@ucla.edu E-mail: Adam.Schneider@Utoledo.edu

    2013-11-20

    All cataloged stellar moving groups and associations with ages ≤100 Myr and within 100 pc of Earth have Galactic space motions (UVW) situated in a 'good box' with dimensions ∼20 km s{sup –1} on a side. Torres et al. defined the Octans Association as a group of 15 stars with age '20 Myr?' and located ∼140 pc from Earth, but with average V space velocity –3.6 km s{sup –1} that is well outside of the good box. We present a list of 14 Hipparcos star systems within 100 pc of Earth that we call {sup O}ctans-Near{sup ;} these systems have UVW similar to those of the much more distant Octans Association. The Octans-Near stars have apparent ages between about 30 and 100 Myr and their relationship to the Octans Association stars is unclear. Six additional star systems have UVW similar to those of Octans-Near stars and likely ages ≤200 Myr. These six systems include the late-type binary star EQ Peg—6.2 pc from Earth with likely age ≤100 Myr and thus likely to be the nearest known pre-main sequence star system. The UVW of stars in a previously proposed ∼200 Myr old Castor moving group are not too dissimilar from the UVW of Octans-Near stars. However, stars in the Castor group—if it exists at all—are mostly substantially older than 200 Myr and thus generally can readily be distinguished from the much younger Octans-Near stars.

  17. Limits of detection in debris disks around young stars with NaCo/Sparse Aperture Masking observations

    NASA Astrophysics Data System (ADS)

    Gauchet, L.; Lacour, S.

    2014-09-01

    To understand the formation and evolution of solar systems and planets formations in the stars neighbourhood, we need to obtain information of their state at different time of their evolution. Here, we focus on debris disks around young stars aged of ten to few tens of Myr, we analyze NaCo/Sparse Aperture Masking (SAM) observations in the L' band (3.8 μm) of eight objects (beta Pictoris, AU Mic, 49 Ceti, eta Tel, Fomalhaut, G Lupi, HD182327 and HR8799). The aim is to get limits of detection about the mass of the debris orbiting around their stars. The SAM technique consists in transforming a single telescope into a Fizeau interferometer using a non redundant mask inserted in a pupil plane of the instrument. The analysis of the observations was completed with the sparse aperture mode pipeline. Interference fringes are fitted to obtain complex visibilities of the object, then the closure phases are calibrated and evaluated. Finally, a map of the detection limits is obtained as it is related to the closure phases previously estimated. In order to obtain an estimation of the mass corresponding to the luminosity measured with the reduction pipeline we are using theoretical isochrones interpolated into synthetic color tables. The results are maps of detection limits in unit of Jupiter Mass in a range of up to 450 mas around the stars.

  18. How and Why Do Geysers Erupt?

    NASA Astrophysics Data System (ADS)

    Manga, M.

    2014-12-01

    Geysers are features that produce episodic eruptions of water, steam and sometimes non-condensable gases. Natural geysers are rare, with fewer than 1,000 worldwide. They are more than curiosities and popular tourist attractions: they offer a direct window into geothermal processes, and may serve as a natural small-scale laboratory to study larger-scale eruptive process such as those at volcanoes, and other self-organized, intermittent processes that result from phase separation and localized input of energy and mass. Despite > 200 years of scientific study, basic questions remain: Do eruptions begin from the bottom or top of the geyser? What controls eruption duration? Why do eruptions end? What are the required special subsurface geometries? Why are some geysers periodic, and others irregular? How and why do they respond to external influences such as weather, tides, and earthquakes? This presentation will review new insights from field studies at Lone Star geyser, Yellowstone National Park, geysers in the El Tatio geyser field, Chile, and laboratory models. At Lone Star we infer that dynamics are controlled by thermal and mechanical coupling between the conduit and a deeper, laterally-offset reservoir (called a "bubble trap" in previous studies). At El Tatio, we measured pressure and temperature within geysers over multiple eruption cycles: this data document the heating of liquid water by steam delivered from below. The laboratory experiments reveal how episodic release of steam from a bubble trap prepares a conduit for eruption and can generate a range of eruption intensities. In all cases, the eruption initiation, duration and termination are controlled by the interaction between the accumulation and transport of steam and liquid, and modulated by the geometry of the geyser's plumbing. Time series of thousands of eruptions confirm that internal processes control eruptions, with only pool geysers showing a sensitivity to air temperature; only very large stress

  19. Solar Activity and Solar Eruptions

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.

    2006-01-01

    Our Sun is a dynamic, ever-changing star. In general, its atmosphere displays major variation on an 11-year cycle. Throughout the cycle, the atmosphere occasionally exhibits large, sudden outbursts of energy. These "solar eruptions" manifest themselves in the form of solar flares, filament eruptions, coronal mass ejections (CMEs), and energetic particle releases. They are of high interest to scientists both because they represent fundamental processes that occur in various astrophysical context, and because, if directed toward Earth, they can disrupt Earth-based systems and satellites. Research over the last few decades has shown that the source of the eruptions is localized regions of energy-storing magnetic field on the Sun that become destabilized, leading to a release of the stored energy. Solar scientists have (probably) unraveled the basic outline of what happens in these eruptions, but many details are still not understood. In recent years we have been studying what triggers these magnetic eruptions, using ground-based and satellite-based solar observations in combination with predictions from various theoretical models. We will present an overview of solar activity and solar eruptions, give results from some of our own research, and discuss questions that remain to be explored.

  20. An Icy Kuiper-Belt Around the Young Solar-Type Star HD 181327

    NASA Technical Reports Server (NTRS)

    Lebreton, J.; Augereau, J.-C.; Thi, W.-F.; Roberge, A.; Donaldson, J.; Schneider, G.; Maddison, S. T.; Menard, F.; Riviere-Marichalar, P.; Mathews, G. S.; Kamp, I.; Pinte, C.; Dent, W. R. F.; Barrado, D.; Duchene, G.; Gonzalez, J.-F.; Grady, C. A.; Meeus, G.; Pantin, E.; Williams, J. P.; Woitke, P.

    2011-01-01

    HD 181327 is a young Main Sequence F5/F6 V star belonging to the Beta Pictoris moving group (age approx 12 Myr). It harbors an optically thin belt of circumstellar material at approx90 AU, presumed to result from collisions in a populat.ion of unseen planetesimals. Aims. We aim to study the dust properties in the belt in great details, and to constrain the gas-to-dust ratio. Methods. We obtained far-IR photometric observations of HD 181327 with the PACS instrument onboard the Herschel Space Observatory, complemented by new 3.2 nun observations carried with the ATCA array. The geometry of the belt is constrained with newly reduced HST /NICMOS scattered light images that break the degeneracy between the disk geometry and the dust properties. We then use the radiative transfer code GRaTer to compute a large grid of dust models, and we apply a Bayesian inference method to identify the grain models that best reproduce the SED. We attempt to detect the oxygen and ionized carbon fine-structure lines with Herschel/PACS spectroscopy, providing observables to our photochemical code ProDiMo. Results. The HST observations confirm that the dust is confined in a narrow belt. The continuum is detected with Herschel/PACS completing nicely the SED in the far-infrared. The disk is marginally resolved with both PACS and ATCA. A medium integration of the gas spectral lines only provides upper limits on the [OI] and [CII] line fluxes. We show that the HD 181327 dust disk consists of micron-sized grains of porous amorphous silicates and carbonaceous material surrounded by an import.ant layer of ice for a total dust mass of approx 0.05 stellar Mass. We discuss evidences that the grains consists of fluffy aggregates. The upper limits on the gas atomic lines do not provide unambiguous constraints: only if the PAH abundance is high, the gas mass must be lower than approx 17 Stellar Mass Conclusions. Despite the weak constraints on the gas disk, the age of HD 181327 and the properties of the

  1. An Icy Kuiper Belt Around the Young Solar-type Star HD 181327

    NASA Technical Reports Server (NTRS)

    Lebreton, J.; Augereau, J.-C.; Thi, W.-F.; Roberge, A.; Donaldson, J; Schneider, G.; Maddison, S. T.; Menard, F.; Riviere-Marichalar, P.; Matthews, G. S.; Kamp, I.; Pinte, C.; Dent, W. R. F.; Barrado, D.; Duchene, G.; Gonzalez, J.-F.; Grady C. A.; Meeus,G.; Pantin, E.; Williams, J. P.; Woitke, P.

    2012-01-01

    Context. HD 181327 is a young main sequence F5/F6 V star belonging to the Beta Pictoris moving group (age approx.. 12 Myr). It harbors an optically thin belt of circumstellar material at radius approx.. 90 AU, presumed to result from collisions in a population of unseen planetesimals. Aims. We aim to study the dust properties in the belt in details, and to constrain the gas-to-dust ratio. Methods. We obtained far-infrared photometric observations of HD 181327 with the PACS instrument onboard the Herschel Space Observatory, complemented by new 3.2 mm observations carried with the ATCA array. The geometry of the belt is constrained with newly reduced HST/NICMOS scattered light images that allow the degeneracy between the disk geometry and the dust properties to be broken. We then use the radiative transfer code GRaTeR to compute a large grid of models, and we identify the grain models that best reproduce the spectral energy distribution (SED) through a Bayesian analysis. We attempt to detect the oxygen and ionized carbon fine-structure lines with Herschel/PACS spectroscopy, providing observables to our photochemical code ProDiMo. Results. The HST observations confirm that the dust is confined in a narrow belt. The continuum is detected with Herschel/PACS completing nicely the SED in the far-infrared. The disk is marginally resolved with both PACS and ATCA. A medium integration of the gas spectral lines only provides upper limits on the [OI] and [CII] line fluxes.We show that the HD 181327 dust disk consists of micron-sized grains of porous amorphous silicates and carbonaceous material surrounded by an important layer of ice, for a total dust mass of approx.. 0.05 Solar Mass (in grains up to 1 mm). We discuss evidences that the grains consists of fluffy aggregates. The upper limits on the gas atomic lines do not provide unambiguous constraints: only if the PAH abundance is high, the gas mass must be lower than approx. 17 Solar Mass. Conclusions. Despite the weak

  2. Spectral and Structure Modeling of Low and High Mass Young Stars Using a Radiative Trasnfer Code

    NASA Astrophysics Data System (ADS)

    Robson Rocha, Will; Pilling, Sergio

    The spectroscopy data from space telescopes (ISO, Spitzer, Herchel) shows that in addition to dust grains (e.g. silicates), there is also the presence of the frozen molecular species (astrophysical ices, such as H _{2}O, CO, CO _{2}, CH _{3}OH) in the circumstellar environments. In this work we present a study of the modeling of low and high mass young stellar objects (YSOs), where we highlight the importance in the use of the astrophysical ices processed by the radiation (UV, cosmic rays) comes from stars in formation process. This is important to characterize the physicochemical evolution of the ices distributed by the protostellar disk and its envelope in some situations. To perform this analysis, we gathered (i) observational data from Infrared Space Observatory (ISO) related with low mass protostar Elias29 and high mass protostar W33A, (ii) absorbance experimental data in the infrared spectral range used to determinate the optical constants of the materials observed around this objects and (iii) a powerful radiative transfer code to simulate the astrophysical environment (RADMC-3D, Dullemond et al, 2012). Briefly, the radiative transfer calculation of the YSOs was done employing the RADMC-3D code. The model outputs were the spectral energy distribution and theoretical images in different wavelengths of the studied objects. The functionality of this code is based on the Monte Carlo methodology in addition to Mie theory for interaction among radiation and matter. The observational data from different space telescopes was used as reference for comparison with the modeled data. The optical constants in the infrared, used as input in the models, were calculated directly from absorbance data obtained in the laboratory of both unprocessed and processed simulated interstellar samples by using NKABS code (Rocha & Pilling 2014). We show from this study that some absorption bands in the infrared, observed in the spectrum of Elias29 and W33A can arises after the ices

  3. Non-LTE modeling of the structure and spectra of hot accretion spots on the surface of young stars

    NASA Astrophysics Data System (ADS)

    Dodin, A. V.

    2015-05-01

    The results of modeling the structure and spectra of hot accretion spots on the surface of young stars with allowance made for the departures from LTE for hydrogen and helium are presented. The existence of ram pressure of the infalling gas at the outer boundary of the hot spot has been found to lead to Stark broadening of the hydrogen line profiles to ˜1000 km s-1 at the accretion parameters considered. It is shown that allowance for the departures from LTE for carbon and oxygen atoms and ions does not lead to noticeable changes in the structure of the hot spot.

  4. On the absence of young white dwarf companions to five technetium stars

    NASA Technical Reports Server (NTRS)

    Smith, Verne V.; Lambert, David L.

    1987-01-01

    A search for hot companions to five stars of type MS and S has been carried out using the IUE satellite. No hot companions were detected for the MS stars HR 85, 4647, 6702, and 8062, and the S star HR 8714. Limits on the luminosities of possible white dwarf companions provide lower limits of 2-5x10 to the 8th yr to the ages of any degenerate companions. All five stars exhibit strong Tc I lines, and the presence of technetium, with a half-life of 2.1x10 to the 5th yr, signifies recent nucleosynthesis. The limits on the ages of possible white dwarf companions that are equal to or greater than 1000 half-lives of Tc exclude the possibility that the s-process elemental enhancement seen in these MS and S stars resulted from mass transfer from a more highly evolved companion (as is probably the mechanism by which barium stars are created). These MS and S stars represent a sample of true thermally pulsing asymptotic giant-branch stars.

  5. Pre-main sequence variable stars in young open cluster NGC 1893

    NASA Astrophysics Data System (ADS)

    Lata, Sneh; Pandey, A. K.; Chen, W. P.; Maheswar, G.; Chauhan, Neelam

    We present results of multi-epoch (14 nights during 2007-2010) V-band photometry of the cluster NGC 1893 region to identify photometric variable stars in the cluster. The study identified a total of 53 stars showing photometric variability. The members associated with the region are identified on the basis of spectral energy distribution, J-H/H-K two colour diagram and V/V-I colour-magnitude diagram. The ages and masses of the majority of pre-main-sequence sources are found to be ≲5 Myr and in the range 0.5 ≲ M/M_{⊙} ≲4, respectively. These pre-main-sequence sources hence could be T Tauri stars. We also determined the physical parameters like disk mass and accretion rate from the spectral energy distribution of these T Tauri stars. The periods of majority of the T Tauri stars range from 0.1 to 20 day. We found that the brightness of Classical T Tauri stars is varying with larger amplitude in comparison to weak line T Tauri stars. The amplitude is found to decrease with increase in mass, which could be due to the dispersal of disks of massive stars.

  6. Pre-main-sequence variable stars in young open cluster NGC 1893

    NASA Astrophysics Data System (ADS)

    Lata, Sneh; Pandey, A. K.; Chen, W. P.; Maheswar, G.; Chauhan, Neelam

    2012-12-01

    We present results of multi-epoch (14 nights during 2007-2010) V-band photometry of the cluster NGC 1893 region to identify photometric variable stars in the cluster. The study identified a total of 53 stars showing photometric variability. The members associated with the region are identified on the basis of spectral energy distribution, J - H/H - K two-colour diagram and V/V - I colour-magnitude diagram. The ages and masses of the majority of pre-main-sequence sources are found to be ≲5 Myr and in the range 0.5≲M/M≲4, respectively. These pre-main-sequence sources hence could be T Tauri stars. We also determined the physical parameters like disc mass and accretion rate from the spectral energy distribution of these T Tauri stars. The periods of majority of the T Tauri stars range from 0.1 to 20 d. The brightness of Classical T Tauri stars is found to vary with larger amplitude in comparison to weak line T Tauri stars. It is found that the amplitude decreases with increase in mass, which could be due to the dispersal of discs of massive stars.

  7. POPULATION SYNTHESIS OF YOUNG ISOLATED NEUTRON STARS: THE EFFECT OF FALLBACK DISK ACCRETION AND MAGNETIC FIELD EVOLUTION

    SciTech Connect

    Fu, Lei; Li, Xiang-Dong

    2013-10-01

    The spin evolution of isolated neutron stars (NSs) is dominated by their magnetic fields. The measured braking indices of young NSs show that the spin-down mechanism due to magnetic dipole radiation with constant magnetic fields is inadequate. Assuming that the NS magnetic field is buried by supernova fallback matter and re-emerges after accretion stops, we carry out a Monte Carlo simulation of the evolution of young NSs, and show that most of the pulsars have braking indices ranging from –1 to 3. The results are compatible with the observational data of NSs associated with supernova remnants. They also suggest that the initial spin periods of NSs might occupy a relatively wide range.

  8. Chemical tagging of FGK stars: Testing the Membership of Young Stellar Kinematics Groups

    NASA Astrophysics Data System (ADS)

    Montes, D.; Tabernero, H. M.; González Hernández, J. I.

    2016-01-01

    In this contribution talk we summarize the results of our ongoing project of detailed analysis of the chemical content (chemical tagging) as a promising powerful method to provide clear constraints on the membership of FGK kinematic candidates to stellar kinematic groups of different ages that can be used as an alternative or complementary to the methods that use kinematics, photometry or age indicators. This membership information is very important to better understand the star formation history in the solar neighborhood discerning between field-like stars (associated with dynamical resonances (bar) or spiral structure) and real physical structures of coeval stars with a common origin (debris of star-forming aggregates in the disk). We have already applied the chemical tagging method to constrain the membership of FGK candidate stars to the Hyades supercluster and the Ursa Major moving group and in this contribution we present the preliminary results of our study of the Castor moving group.

  9. Search for x ray emitting young stars outside of massive molecular clouds

    NASA Technical Reports Server (NTRS)

    Feigelson, Eric D.

    1991-01-01

    This project is intended to determine whether X-ray surveys of the sky can uncover previously unrecognized populations of pre-main sequence stars outside of large well-known star forming regions. X-ray observations of large regions such as the Taurus-Auriga complex, Orion molecular cloud, Ophiuchi and Chamaeleon clouds had revealed that low mass pre-main sequence emit X-rays 10(exp 2)-10(exp 4) above main sequence levels, and that X-ray surveys select a large population of 'weak' T Tauri stars that are not easily found in traditional optical and infrared surveys. The present project sought to find 'weak' T Tauri stars around smaller and more distant molecular clouds. X-ray surveys potentially could elucidate the star forming capabilities of small clouds, which are not well understood.

  10. A TREASURY STUDY OF STAR-FORMING REGIONS IN THE LOCAL GROUP. I. HST PHOTOMETRY OF YOUNG POPULATIONS IN SIX DWARF GALAXIES

    SciTech Connect

    Bianchi, Luciana; Efremova, Boryana; Hodge, Paul; Massey, Philip; Olsen, K. A. G.

    2012-03-15

    We present a comprehensive study of young stellar populations in six dwarf galaxies in or near the Local Group: Phoenix, Pegasus, Sextans A, Sextans B, WLM, and NGC 6822. Their star-forming regions, selected from GALEX wide-field far-UV imaging, were imaged (at sub-pc resolution) with the WFPC2 camera on board the Hubble Space Telescope (HST) in six bandpasses from far-UV to I to detect and characterize their hot massive star content. This study is part of HST treasury survey program HST-GO-11079; the general data characteristics and reduction procedures are detailed in this paper and results are presented for the first six galaxies. From a total of 180 HST images, we provide catalogs of the multi-band stellar photometry and derive the physical parameters of massive stars by analyzing it with model-atmosphere colors. We use the results to infer ages, number of massive stars, extinction, and spatial characteristics of the young stellar populations. The hot massive star content varies largely across our galaxy sample, from an inconspicuous presence in Phoenix and Pegasus to the highest relative abundance of young massive stars in Sextans A and WLM. Albeit to a largely varying extent, most galaxies show a very young population (a few Myrs, except for Phoenix), and older ones (a few 10{sup 7} years in Sextans A, Sextans B, NGC 6822, and WLM, {approx}10{sup 8}yr in Phoenix and Pegasus), suggesting discrete bursts of recent star formation in the mapped regions. The hot massive star content (indicative of the young populations) broadly correlates with the total galaxy stellar mass represented by the integrated optical magnitude, although it varies by a factor of {approx}3 between Sextans A, WLM, and Sextans B, which have similar M{sub V}. Extinction properties are also derived.

  11. Star warriors: The young scientists who are inventing the weaponry of space

    SciTech Connect

    Broad, W.J.

    1985-01-01

    Broad's account of a week spent at Livermore nuclear lab in California offers a picture of the breakthrough weaponry-their theoretical origins and technology-that gave rise to the President's ''Star Wars'' proposal.

  12. Star Formation in the Central 400 pc of the Milky Way: Evidence for a Population of Massive Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Yusef-Zadeh, F.; Hewitt, J. W.; Arendt, R. G.; Whitney, B.; Rieke, G.; Wardle, M.; Hinz, J. L.; Stolovy, S.; Lang, C. C.; Burton, M. G.; Ramirez, S.

    2009-09-01

    The central kpc of the Milky Way might be expected to differ significantly from the rest of the Galaxy with regard to gasdynamics and the formation of young stellar objects (YSOs). We probe this possibility with mid-infrared observations obtained with Infrared Array Camera and Multiband Imaging Photometer on Spitzer and with Midcourse Space Experiment. We use color-color diagrams and spectral energy distribution (SED) fits to explore the nature of YSO candidates (including objects with 4.5 μm excesses possibly due to molecular emission). There is an asymmetry in the distribution of the candidate YSOs, which tend to be found at negative Galactic longitudes; this behavior contrasts with that of the molecular gas, approximately 2/3 of which is at positive longitudes. The small-scale height of these objects suggests that they are within the Galactic center region and are dynamically young. They lie between two layers of infrared dark clouds and may have originated from these clouds. We identify new sites for this recent star formation by comparing the mid-IR, radio, submillimeter, and methanol maser data. The methanol masers appear to be associated with young, embedded YSOs characterized by 4.5 μm excesses. We use the SEDs of these sources to estimate their physical characteristics; their masses appear to range from ~10 to ~20 M sun. Within the central 400 × 50 pc (|l| < 1fdg3 and |b| < 10') the star formation rate (SFR) based on the identification of Stage I evolutionary phase of YSO candidates is about 0.14 M sun yr-1. Given that the majority of the sources in the population of YSOs are classified as Stage I objects, we suggest that a recent burst of star formation took place within the last 105 yr. This suggestion is also consistent with estimates of SFRs within the last ~107 yr showing a peak around 105 yr ago. Lastly, we find that the Schmidt-Kennicutt Law applies well in the central 400 pc of the Galaxy. This implies that star formation does not appear to be

  13. Imaging the circumstellar environment of the young T Tauri star SU Aurigae

    NASA Astrophysics Data System (ADS)

    Jeffers, S. V.; Min, M.; Canovas, H.; Rodenhuis, M.; Keller, C. U.

    2014-01-01

    The circumstellar environments of classical T Tauri stars are challenging to directly image because of their high star-to-disk contrast ratio. One method to overcome this is by using imaging polarimetry where scattered and consequently polarised starlight from the star's circumstellar disk can be separated from the unpolarised light of the central star. We present images of the circumstellar environment of SU Aur, a classical T Tauri star at the transition of T Tauri to Herbig stars. The images directly show that the disk extends out to 500 AU with an inclination angle of ~50°. Using interpretive models, we derived very small grains in the surface layers of its disk, with a very steep size- and surface-density distribution. Additionally, we resolved a large and extended nebulosity in our images that is most likely a remnant of the prenatal molecular cloud. The position angle of the disk, determined directly from our images, rules out a polar outflow or jet as the cause of this large-scale nebulosity.

  14. Main-sequence variable stars in young open cluster NGC 1893

    NASA Astrophysics Data System (ADS)

    Lata, Sneh; Yadav, Ram Kesh; Pandey, A. K.; Richichi, Andrea; Eswaraiah, C.; Kumar, Brajesh; Kappelmann, Norbert; Sharma, Saurabh

    2014-07-01

    In this paper, we present time series photometry of 104 variable stars in the cluster region NGC 1893. The association of the present variable candidates to the cluster NGC 1893 has been determined by using (U - B)/(B - V) and (J - H)/(H - K) two colour diagrams, and V/(V - I) colour-magnitude diagram. 45 stars are found to be main-sequence variables and these could be B-type variable stars associated with the cluster. We classified these objects as β Cep, slowly pulsating B stars and new class variables as discussed by Mowlavi et al. These variable candidates show ˜0.005 to ˜0.02 mag brightness variations with periods of <1.0 d. 17 new class variables are located in the H - R diagram between the slowly pulsating B stars and δ Scuti variables. Pulsation could be one of the causes for periodic brightness variations in these stars. The X-ray emission of present main-sequence variables associated with the cluster lies in the saturated region of X-ray luminosity versus period diagram and follows the general trend by Pizzolato et al.

  15. Star formation in the outer Galaxy: the young cluster NGC 1893

    NASA Astrophysics Data System (ADS)

    Sanz-Forcada, J.; Prisinzano, L.; Micela, G.; Caramazza, M.; Sciortino, S.

    2013-05-01

    Stellar formation in the outer Galaxy is expected to be less conspicuous due to worse conditions. Several stellar forming regions in the outer Galaxy have shown similar characteristics to others in the inner Galaxy. The very recent episodes of stellar formation in NGC 1893 (age ˜1.5 Myr) demonstrates it. This cluster is an optimal laboratory to study stellar formation phenomena: it includes the presence of at least 6 O-type stars, two pennant nebulae, dark nebular clouds, and a high disc frequency among its members. We are conducting a series of papers on this cluster based on multiwavelength data, including Spitzer and Chandra observations. We study membership, morphology of the cluster, the spatial distribution of stellar ages and circumstellar discs, and the influence of the massive stars of the cluster in the evolution of circumstellar discs. NGC 1893 has shown similar characteristics to other stellar forming regions at closer distances to the Sun. The ionizing UV flux from massive stars plays an important role in the earlier dissipation of circumstellar discs in closer stars. There is a disc frequency of 52% in a sample complete in the mass range 0.35-2 M_{⊙}. This frequency is slightly lower than in clusters of similar age at closer distance. We attribute this to the faster disc evaporation by radiation of massive stars, the use of a different mass range in each case, and/or the method employed to select stars with and without discs.

  16. From Stars to Super-Planets: The Low-Mass IMF in the Young Cluster IC348

    NASA Technical Reports Server (NTRS)

    Najita, Joan R.; Tiede, Glenn P.; Carr, John S.

    2000-01-01

    We investigate the low-mass population of the young cluster IC348 down to the deuterium-burning limit, a fiducial boundary between brown dwarf and planetary mass objects, using a new and innovative method for the spectral classification of late-type objects. Using photometric indices, constructed from HST/NICMOS narrow-band imaging, that measure the strength of the 1.9 micron water band, we determine the spectral type and reddening for every M-type star in the field, thereby separating cluster members from the interloper population. Due to the efficiency of our spectral classification technique, our study is complete from approximately 0.7 solar mass to 0.015 solar mass. The mass function derived for the cluster in this interval, dN/d log M alpha M(sup 0.5), is similar to that obtained for the Pleiades, but appears significantly more abundant in brown dwarfs than the mass function for companions to nearby sun-like stars. This provides compelling observational evidence for different formation and evolutionary histories for substellar objects formed in isolation vs. as companions. Because our determination of the IMF is complete to very low masses, we can place interesting constraints on the role of physical processes such as fragmentation in the star and planet formation process and the fraction of dark matter in the Galactic halo that resides in substellar objects.

  17. Accretion in young stars: measure of the stream velocity of TW Hya from the X-ray Doppler shift

    NASA Astrophysics Data System (ADS)

    Argiroffi, Costanza; Bonito, Rosaria; Orlando, Salvatore; Miceli, Marco; Peres, Giovanni

    2015-09-01

    High-resolution X-ray spectra are a unique tool to investigate the accretion process in young stars. In fact X-rays allow to investigate the accretion-shock region, where the infalling material is heated by strong shocks due to the impact with the denser stellar atmosphere. Here we show for the first time that it is possible to constrain the velocity of the accretion stream by measuring the Doppler shift of the emitted X-rays. To this aim we analyzed the deep Chandra/HETGS observation of the accreting young star TW Hya. We selected a sample of emission lines free from significant blends, fitted them with gaussian profiles, computed the radial velocity corresponding to each line, and averaged these velocities to obtain an accurate estimate of the global velocity of the X-ray emitting plasma. After correcting for Earth's motion, we compared this observed velocity with the photospheric radial velocity. In order to check this procedure we applied the same technique to other Chandra/HETGS spectra of single stars, whose X-rays are due only to coronal plasma. While spectra of pure coronal sources provide Doppler shifts in agreement with the known stellar radial velocity, we found that the X-ray spectrum of TW Hya is red-shifted by ~30-40 km/s with respect to the stellar photosphere. This proves that the X-ray emitting plasma on TW Hya is moving with respect to the stellar surface, definitively confirming that it originates in the accretion-shock region. The observed velocity suggests that the base of the accretion region is located at low latitudes of the stellar surface.

  18. The young low-mass star ISO-Oph-50: extreme variability induced by a clumpy, evolving circumstellar disc

    NASA Astrophysics Data System (ADS)

    Scholz, Alexander; Mužić, Koraljka; Geers, Vincent

    2015-07-01

    ISO-Oph-50 is a young low-mass object in the ˜1 Myr old Ophiuchus star-forming region undergoing dramatic changes in its optical/near/mid-infrared brightness by 2-4 mag. We present new multi-band photometry and near-infrared spectra, combined with a synopsis of the existing literature data. Based on the spectroscopy, the source is confirmed as a mid-M dwarf, with evidence for ongoing accretion. The near-infrared light curves show large-scale variations, with 2-4 mag amplitude in the bands IJHK, with the object generally being bluer when faint. Near its brightest state, the object shows colour changes consistent with variable extinction of ΔAV ˜ 7 mag. High-cadence monitoring at 3.6 μm reveals quasi-periodic variations with a typical time-scale of 1-2 weeks. The best explanation for these characteristics is a low-mass star seen through circumstellar matter, whose complex variability is caused by changing inhomogeneities in the inner parts of the disc. When faint, the direct stellar emission is blocked; the near-infrared radiation is dominated by scattered light. When bright, the emission is consistent with a photosphere strongly reddened by circumstellar dust. Based on the available constraints, the inhomogeneities have to be located at or beyond ˜0.1 au distance from the star. If this scenario turns out to be correct, a major portion of the inner disc has to be clumpy, structured, and/or in turmoil. In its observational characteristics, this object resembles other types of young stellar objects with variability caused in the inner disc. Compared to other objects, however, ISO-Oph-50 is clearly an extreme case, given the large amplitude of the brightness and colour changes combined with the erratic behaviour. ISO-Oph-50 has been near its brightest state since 2013; further monitoring is highly encouraged.

  19. The star fish twins: Two young planetary nebulae with extreme multipolar morphology

    NASA Technical Reports Server (NTRS)

    Sahai, R.

    2000-01-01

    We present alpha images of two objects, He 2-47 and M1-37, obtained during a Hubble Space Telescope imaging survey of young planetary nebulae (PNs) selected on the basis of their low-excitation characteristics.

  20. The SEEDS High-Contrast Imaging Survey: Exoplanet and Brown Dwarf Survey for Nearby Young Stars Dated with Gyrochronology and Activity Age Indicators

    NASA Astrophysics Data System (ADS)

    Kuzuhara, Masayuki; Tamura, Motohide; Helminiak, Kris; Mede, Kyle; Brandt, Timothy; Janson, Markus; Kandori, Ryo; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Hashimoto, Jun

    2015-12-01

    The SEEDS campaign has successfully discovered and characterized exoplanets, brown dwarfs, and circumstellar disks since it began in 2009, via the direct imaging technique. The survey has targeted nearby young stars, as well as stars associated to star-forming regions, the Pleiades open cluster, moving groups, and debris disks. We selected the nearby young stars that have been dated with age indicators based on stellar rotation periods (i.e., gyrochronology) and chromoshperic/coronal activities. Of these, nearly 40 were observed, with ages mainly between 100 and 1000 Myr and distances less than 40 pc. Our observations typically attain the contrast of ~6 x 10-6 at 1'' and better than ~1 x 10-6 beyond 2'', enabling us to detect a planetary-mass companion even around such old stars. Indeed, the SEEDS team reported the discovery that the nearby Sun-like star GJ 504 hosts a Jovian companion GJ 504b, which has a mass of 3-8.5 Jupiter masses that is inferred according to the hot-start cooling models and our estimated system age of 100-510 Myr. The remaining observations out of the selected ~40 stars have resulted in no detection of additional planets or brown dwarf companions. Meanwhile, we have newly imaged a low-mass stellar companion orbiting the G-type star HIP 10321, for which the presence of companion was previously announced via radial velocity technique. The astrometry and radial velocity measurements are simultaneously analyzed to determine the orbit, providing constraints on the dynamical mass of both objects and stellar evolution models. Here we summarize our direct imaging observations for the nearby young stars dated with gyrochrolorogy and activity age indicators. Furthermore, we report the analysis for the HIP 10321 system with the imaged low-mass companion.

  1. CSI 2264: Characterizing Young Stars in NGC 2264 With Short-Duration Periodic Flux Dips in Their Light Curves

    NASA Technical Reports Server (NTRS)

    Stauffer, John; Cody, Ann Marie; McGinnis, Pauline; Rebull, Luisa; Hillenbrand, Lynne A.; Turner, Neal J.; Carpenter, John; Plavchan, Peter; Carey, Sean; Terebey, Susan; Morales-Calderon, Maria; Alencar, Silvia H. P.; Bouvier, Jerome; Venuti, Laura; Hartmann, Lee; Calvet, Nuria; Micela, Giusi; Flaccomio, Ettore; Song, Inseok; Gutermuth, Rob; Barrado, David; Vrba, Frederick J.; Covey, Kevin; Padgett, Debbie; Herbst, William; Gillen, Edward; Lyra, Wladimir; Guimaraes, Marcelo Medeiros; Bouy, Herve; Favata, Fabio

    2015-01-01

    We identify nine young stellar objects (YSOs) in the NGC 2264 star-forming region with optical CoRoT light curves exhibiting short-duration, shallow, periodic flux dips. All of these stars have infrared (IR) excesses that are consistent with their having inner disk walls near the Keplerian corotation radius. The repeating photometric dips have FWHM generally less than one day, depths almost always less than 15%, and periods (3 < P < 11 days) consistent with dust near the Keplerian co-rotation period. The flux dips vary considerably in their depth from epoch to epoch, but usually persist for several weeks and, in two cases, were present in data collected on successive years. For several of these stars, we also measure the photospheric rotation period and find that the rotation and dip periods are the same, as predicted by standard \\disk-locking" models. We attribute these flux dips to clumps of material in or near the inner disk wall, passing through our line of sight to the stellar photosphere. In some cases, these dips are also present in simultaneous Spitzer IRAC light curves at 3.6 and 4.5 microns. We characterize the properties of these dips, and compare the stars with light curves exhibiting this behavior to other classes of YSO in NGC 2264. A number of physical mechanisms could locally increase the dust scale height near the inner disk wall, and we discuss several of those mechanisms; the most plausible mechanisms are either a disk warp due to interaction with the stellar magnetic field or dust entrained in funnel- ow accretion columns arising near the inner disk wall.

  2. Two Remarkable Spectroscopic Categories of Young O Stars from the VLT-FLAMES Tarantula Survey

    NASA Astrophysics Data System (ADS)

    Walborn, N. R.; Sana, H.; Taylor, W. D.; Simón-Díaz, S.; Evans, C. J.

    2012-12-01

    The spectral and spatial characteristics of two special categories of O stars found in the VFTS dataset are presented. One of them comprises very rapid rotators, including several more extreme than any previously known. These objects are distributed around the peripheries of the main 30 Doradus clusters, suggesting a runaway nature for which their radial velocities already provide preliminary supporting evidence. The other category consists of a large number of Vz stars, previously hypothesized on spectroscopic grounds to be on or very near the ZAMS. Their distribution is the inverse of that of the rapid rotators: the Vz are strongly concentrated to the ionizing clusters, plus a newly recognized band of recent and current star formation to the north, which provides strong circumstantial evidence for their extreme youth.

  3. Cooling of young neutron stars and the Einstein X-ray observations

    NASA Technical Reports Server (NTRS)

    Nomoto, K.; Tsuruta, S.

    1981-01-01

    Cooling of neutron stars is calculated using an exact stellar evolution code. The full general relativistic version of the stellar structure equations are solved, with the best physical input available. For neutron stars with a stiff equation of state, it is found that the deviation from the isothermality in the interior is significant and that it takes at least a few thousand years to reach the isothermal state. By comparing theoretical and observational results, it is concluded that for Cas A, SN1006, and probably Tycho, standard cooling is inconsistent with the results from the Einstein Observatory, if neutron stars are assumed to be present in these objects. On the other hand, the detection points for RCW103 and the Crab are consistent with these theoretical results.

  4. Polymorphic light eruption

    MedlinePlus

    ... outdoors. Wear a sun hat. Wear sunglasses with UV protection. Use a lip balm with sunscreen. Alternative Names Polymorphic light eruption; Photodermatosis; PMLE Images Polymorphic light eruption on ...

  5. The Young, Massive, Star Cluster Sandage-96 After the Explosion of Supernova 2004dj in NGC 2403

    NASA Astrophysics Data System (ADS)

    Vinkó, J.; Sárneczky, K.; Balog, Z.; Immler, S.; Sugerman, B. E. K.; Brown, P. J.; Misselt, K.; Szabó, Gy. M.; Csizmadia, Sz.; Kun, M.; Klagyivik, P.; Foley, R. J.; Filippenko, A. V.; Csák, B.; Kiss, L. L.

    2009-04-01

    The bright Type II-plateau supernova (SN) 2004dj occurred within the young, massive stellar cluster Sandage-96 in a spiral arm of NGC 2403. New multiwavelength observations obtained with several ground-based and space-based telescopes were combined to study the radiation from Sandage-96 after SN 2004dj faded away. Sandage-96 started to dominate the flux in the optical bands starting from 2006 September (~800 days after explosion). The optical fluxes are equal to the pre-explosion ones within the observational uncertainties. An optical Keck spectrum obtained ~900 days after explosion shows the dominant blue continuum from the cluster stars shortward of 6000 Å as well as strong SN nebular emission lines redward. The integrated spectral energy distribution (SED) of the cluster has been extended into the ultraviolet region by archival XMM-Newton and new Swift observations, and compared with theoretical models. The outer parts of the cluster have been resolved by the Hubble Space Telescope, allowing the construction of a color-magnitude diagram (CMD). The fitting of the cluster SED with theoretical isochrones results in cluster ages distributed between 10 and 40 Myr, depending on the assumed metallicity and the theoretical model family. The isochrone fitting of the CMDs indicates that the resolved part of the cluster consists of stars having a bimodal age distribution: a younger population at ~10-16 Myr and an older one at ~32-100 Myr. The older population has an age distribution similar to that of the other nearby field stars. This may be explained with the hypothesis that the outskirts of Sandage-96 are contaminated by stars captured from the field during cluster formation. The young age of Sandage-96 and the comparison of its pre and postexplosion SEDs suggest 12 lsim M prog lsim 20 M sun as the most probable mass range for the progenitor of SN 2004dj. This is consistent with, but perhaps slightly higher than, most of the other Type II-plateau SN progenitor masses

  6. Spectrophotometric Evolution of Eta Carinae's Great Eruption

    NASA Astrophysics Data System (ADS)

    Rest, Armin; Prieto, Jose Luis; Bianco, Federica; Matheson, Thomas; Smith, Nathan; Smith, Chris; Chornock, Ryan; Sinnott, Brendan; Welch, Douglas; Walborn, Nolan

    2013-06-01

    Eta Carinae is one of the most massive binaries in the Milky Way, and its expanding circumstellar nebula has been studied in detail. It was seen as the second brightest star in the sky during its 1800s "Great Eruption", but only visual estimates of its brightness were recorded. We discovered light echoes of the Great Eruption, which allowed us to obtain a spectrum of this event now, 150 years after it was first observed. We will present our new follow-up observations with which we have started to retrace its spectrophotometric evolution during and before the eruption.

  7. Constraining the initial conditions and final outcomes of accretion processes around young stars and supermassive black holes

    NASA Astrophysics Data System (ADS)

    Stone, Jordan M.

    In this thesis I discuss probes of small spatial scales around young stars and protostars and around the supermassive black hole at the galactic center. I begin by describing adaptive optics-fed infrared spectroscopic studies of nascent and newborn binary systems. Binary star formation is a significant mode of star formation that could be responsible for the production of a majority of the galactic stellar population. Better characterization of the binary formation mechanism is important for better understanding many facets of astronomy, from proper estimates of the content of unresolved populations, to stellar evolution and feedback, to planet formation. My work revealed episodic accretion onto the more massive component of the pre-main sequence binary system UY Aur. I also showed changes in the accretion onto the less massive component, revealing contradictory indications of the change in accretion rate when considering disk-based and shock-based tracers. I suggested two scenarios to explain the inconsistency. First, increased accretion should alter the disk structure, puffing it up. This change could obscure the accretion shock onto the central star if the disk is highly inclined. Second, if accretion through the disk is impeded before it makes it all the way onto the central star, then increased disk tracers of accretion would not be accompanied by increased shock tracers. In this case mass must be piling up at some radius in the disk, possibly supplying the material for planet formation or a future burst of accretion. My next project focused on characterizing the atmospheres of very low-mass companions to nearby young stars. Whether these objects form in an extension of the binary-star formation mechanism to very low masses or they form via a different process is an open question. Different accretion histories should result in different atmospheric composition, which can be constrained with spectro