These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

New Candidate Eruptive Young Stars in Lynds 1340  

NASA Astrophysics Data System (ADS)

We report on the discovery of three candidate eruptive young stars, found during our comprehensive multi-wavelength study of the young stellar population of the dark cloud L1340. These stars are as follows. (1) IRAS 02224+7227 (2MASS 02270555+7241167, HH 487S) exhibited FUor-like spectrum in our low-resolution optical spectra. The available photometric data restrict its luminosity to 23 L ? < L bol < 59 L ?. (2) 2MASS 02263797+7304575, identified as a classical T Tauri star during our H? survey, exhibited an EXor-type brightening in 2005 November at the time of the Sloan Digital Sky Survey observations of the region. (3) 2MASS 02325605+7246055, a low-mass embedded young star, associated with a fan-shaped infrared nebula, underwent an outburst between the DSS 1 and DSS 2 surveys, leading to the appearance of a faint optical nebula. Our [S II] and H? images, as well as the Spitzer Infrared Array Camera 4.5 ?m images, revealed Herbig-Haro objects associated with this star. Our results suggest that amplitudes and timescales of outbursts do not necessarily correlate with the evolutionary stage of the stars.

Kun, M.; Apai, D.; O'Linger-Luscusk, J.; Moór, A.; Stecklum, B.; Szegedi-Elek, E.; Wolf-Chase, G.

2014-11-01

2

Radial velocity variations in the young eruptive star EX Lupi  

NASA Astrophysics Data System (ADS)

Context. EX Lup-type objects (EXors) are low-mass pre-main sequence objects characterized by optical and near-infrared outbursts attributed to highly enhanced accretion from the circumstellar disk onto the star. Aims: The trigger mechanism of EXor outbursts is still debated. One type of theory requires a close (sub)stellar companion that perturbs the inner part of the disk and triggers the onset of the enhanced accretion. Here, we study the radial velocity (RV) variations of EX Lup, the prototype of the EXor class, and test whether they can be related to a close companion. Methods: We conducted a five-year RV survey, collecting 54 observations with HARPS and FEROS. We analyzed the activity of EX Lup by checking the bisector, the equivalent width of the Ca 8662 Å line, the asymmetry of the Ca II K line, the activity indicator SFEROS, the asymmetry of the cross-correlation function, the line depth ratio of the VI/FeI lines, and the TiO, CaH 2, CaH 3, CaOH, and H? indices. We complemented the RV measurements with a 14-day optical/infrared photometric monitoring to look for signatures of activity or varying accretion. Results: We found that the RV of EX Lup is periodic (P = 7.417 d), with stable period, semi-amplitude (2.2 km s-1), and phase over at least four years of observations. This period is not present in any of the above-mentioned activity indicators. However, the RVs of narrow metallic emission lines suggest the same period, but with an anti-correlating phase. The observed absorption line RVs can be fitted with a Keplerian solution around a 0.6 M? central star with msini = (14.7 ± 0.7) MJup and eccentricity of e = 0.24. Alternatively, we attempted to model the observations with a cold or hot stellar spot as well. We found that in our simple model, the spot parameters needed to reproduce the RV semi-amplitude are in contradiction with the photometric variability, making the spot scenario unlikely. Conclusions: We qualitatively discuss two possibilities to explain the RV data: a geometry with two accretion columns rotating with the star, and a single accretion flow synchronized with the orbital motion of the hypothetical companion; the second scenario is more consistent with the observed properties of EX Lup. In this scenario, the companion's mass would fall into the brown dwarf desert, which, together with the unusually small separation of 0.06 au would make EX Lup a unique binary system. The companion also has interesting implications on the physical mechanisms responsible for triggering the outburst. This work is based in part on observations made with ESO Telescopes at the La Silla Paranal Observatory under program IDs 079.A-9017, 081.A-9005, 081.A-9023, 081.C-0779, 082.C-0390, 082.C-0427, 083.A-9011, 083.A-9017, 084.A-9011, 085.A-9027, 086.A-9006, 086.A-9012, 087.A-9013, 087.A-9029, and 089.A-9007.Tables 2 and 3 are available in electronic form at http://www.aanda.org

Kóspál, Á.; Mohler-Fischer, M.; Sicilia-Aguilar, A.; Ábrahám, P.; Curé, M.; Henning, Th.; Kiss, Cs.; Launhardt, R.; Moór, A.; Müller, A.

2014-01-01

3

Dynamical Young Star Masses  

NASA Astrophysics Data System (ADS)

Mass is a star's most important property, once composition has been established, and determines the entire life trajectory of an object. Only a couple dozen young stars have absolute dynamical mass measurements, and many of those are imprecise. We propose to observe ~17 young close visual binaries in the Taurus star forming region to advance our knowledge of young star masses. We will use NIRSPEC in high-resolution mode behind the adaptive optics system on the Keck II telescope.

Prato, Lisa; Schaefer, Gail; Simon, Michal

2013-08-01

4

Identifying Young, Nearby Stars  

NASA Technical Reports Server (NTRS)

Young stars have certain characteristics, e.g., high atmospheric abundance of lithium and chromospheric activity, fast rotation, distinctive space motion and strong X-ray flux compared to that of older main sequence stars. We have selected a list of candidate young (<100Myr) and nearby (<60pc) stars based on their space motion and/or strong X-ray flux. To determine space motion of a star, one needs to know its coordinates (RA, DEC), proper motion, distance, and radial velocity. The Hipparcos and Tycho catalogues provide all this information except radial velocities. We anticipate eventually searching approx. 1000 nearby stars for signs of extreme youth. Future studies of the young stars so identified will help clarify the formation of planetary systems for times between 10 and 100 million years. Certainly, the final output of this study will be a very useful resource, especially for adaptive optics and space based searches for Jupiter-mass planets and dusty proto-planetary disks. We have begun spectroscopic observations in January, 2001 with the 2.3 m telescope at Siding Spring Observatory (SSO) in New South Wales, Australia. These spectra will be used to determine radial velocities and other youth indicators such as Li 6708A absorption strength and Hydrogen Balmer line intensity. Additional observations of southern hemisphere stars from SSO are scheduled in April and northern hemisphere observations will take place in May and July at the Lick Observatory of the University of California. AT SSO, to date, we have observed about 100 stars with a high resolution spectrometer (echelle) and about 50 stars with a medium spectral resolution spectrometer (the "DBS"). About 20% of these stars turn out to be young stars. Among these, two especially noteworthy stars appear to be the closest T-Tauri stars ever identified. Interestingly, these stars share the same space motions as that of a very famous star with a dusty circumstellar disk--beta Pictoris. This new finding better constrains the age of beta Pictoris to be approx. 10 Myr.

Webb, Rich; Song, Inseok; Zuckerman, Ben; Bessell, Mike

2001-01-01

5

Activity on young stars.  

NASA Astrophysics Data System (ADS)

Simultaneous photometry and spectroscopy were made of 6 young stars during two observing periods mainly to study short-term variability on time-scales from minutes to a few hours. The material includes two classical T Tauri stars (CTTS): SY Ori and VW Cha; three T Tauri stars with weak emission line spectra (WTTS): San 1, SZ Cha and ADA 481 and one post-T Tauri candidate: HD 70309B. Both UBV and Stroemgren photometry was made. In the visible spectral region we resolved rapid fluctuations - events - with total amplitudes of about 5% (0.05 magnitudes). In the ultraviolet, the corresponding limit of detection was usually <=10%. On the basis of totally about 100 hours of monitoring we conclude that the normal state of these stars is that they are completely constant in brightness or that they vary only slowly with small amplitudes over several hours. Only a few percent of the time, on the average, is a given star caught at brightness changes >=0.2mag. during one night. No event reached a total amplitude of >=0.3mag. VW Cha is the most active star, but no events were seen on SY Ori and HD 70309B. This confirms earlier indications that powerful "flaring" on T Tauri stars is not frequent. We make a detailed study of all events and find two types of slow events, usually with d(U or u)/dt<=0.1mag/hour. One is caused by changes in the continuous emission (the veiling) superimposed on the stellar photospheric spectrum and operates mainly on VW Cha. These events have nothing to do with stellar surface flares of the type observed on flare stars and we suggest that they originate from inhomogeneous mass accretion from a circumstellar disk to the stellar surface. The time-scales support models with magnetically controlled accretion along the stellar dipole field to rings or spots at the stellar surface. The other type of event appears to originate from relatively rapid changes in the opacity of circumstellar dust in the line-of-sight to the star. This effect dominates on SZ Cha, a WTTS surrounded by a substantial dust reservoir. Also for the rapid events we distinguish two types. On two WTTS we detected a few flare-like events produced by a sudden increase in emission in the Balmer continuum and the Balmer lines and no detectable change of the continuum long-ward of the Balmer jump. With only UBV photometry the Balmer flares could erronously been interpreted as very hot blackbody radiators. We suggest that these events are genuine surface flares with total energies of 10^33^ to 10^34^erg, and discuss the implication of energy supply. On ADA 481 we detected 2 flare-like events in white light. If these are due to the ignition of a source of blackbody radiation, the inferred temperature of the flare is low compared to what is normally observed for flare stars. Even though the events are rare and have small total amplitudes in UV, they are extremely powerful, with the same total energies as the largest flares seen on flare stars. The flare stars may show much larger changes in UV, but the difference comes from the lower contrast of the flares on the TTS. If all TTS have surface magnetic activity similar to the flare stars, only the radii being larger, then we conclude that the frequency distribution of the flare-like events on WTTS are similar to flare stars in the field, but much higher than for the dwarfs in the Pleiades. No flare-like event was seen on the CTTS and we discuss possible implications. For the long-term changes (over days) we conclude that very dark spots on the rotating surfaces of SY Ori and San 1 dominates, while VW Cha varies because of variable veiling, but with an uncertain period. For SZ Cha variable circumstellar extinction operates, also in phase with the hydrogen line absorption. The situation for ADA 481 is still unclear. HD 70309B did not vary.

Gahm, G. F.; Loden, K.; Gullbring, E.; Hartstein, D.

1995-09-01

6

Disk Dispersal Around Young Stars  

NASA Technical Reports Server (NTRS)

We first review the evidence pertaining to the lifetimes of planet-forming disks of gas and dust around young stars and discuss possible disk dispersal mechanisms: 1) viscous accretion of material onto the central source, 2) close stellar encounters, 3) stellar winds, and 4) photoevaporation caused by the heating of the disk surface by ultraviolet radiation. Photoevaporation is likely the most important dispersal mechanism for the outer regions of disks, and this talk focuses on the evaporation caused by the presence of a nearby, luminous star rather than the central star itself. We also focus on disks around low-mass stars like the Sun rather than high-mass stars, which we have treated previously. Stars often form in clusters and the ultraviolet flux from the most luminous star in the cluster can have a dramatic effect on the disk orbiting a nearby low-mass star. We apply our theoretical models to the evaporating protoplanetary disks (or "proplyds") in the Trapezium cluster in Orion, to the formation of gas giant planets like Jupiter around Sun-like stars in the Galaxy, and to the formation of Kuiper belts around low mass stars. We find a possible explanation for the differences between Neptune and Jupiter, and make a prediction concerning recent searches for giant planets in large clusters. We discuss recent models of the infrared spectra from gaseous disks around young stars.

Hollenbach, David

2004-01-01

7

Starspots on Young pms Stars  

NASA Astrophysics Data System (ADS)

Long-term, multiband photometric observations of 8 young PMS stars are used to construct models for their starspots. It is shown that the average density of starspots is up to 40 % of the total surface of a star (V824 Ara), while the difference in temperatures between a quiet photosphere and a spot ranges from 870 K (AB Dor) to 1700-1800 K (PZ Tel, V1321 Ori, V395 Cep). The spots lie at low (2-8°, V343 Nor) and medium (25-61°) latitudes, while the largest latitude of starspots is 16-80°. A cyclical activity that shows up as changes in the total area and average latitude of the starspots is observed in the stars PZ Tel, TY Col, V824 Ara, and AB Dor. A latitudinal drift of the starspots and differential rotation of the star are observed which are analogous to those of the sun.

Alekseev, I. Yu.

2014-06-01

8

Profiling young massive stars  

NASA Astrophysics Data System (ADS)

We present the results of spectral energy distribution analysis for 162 of the 405 sources reported in the SIMBA survey of Hill et al. (2005). The fits reveal source specific parameters including: the luminosity, mass, temperature, H2 number density, the surface density and the luminosity-to-mass ratio. Each of these parameters are examined with respect to the four classes of source present in the sample. Obvious luminosity and temperature distinctions exist between the mm-only cores and those cores with methanol maser and/or radio continuum emission, with the former cooler and less luminous than the latter. The evidence suggests that the mm-only cores are a precursor to the methanol maser in the formation of massive stars. The mm-only cores comprise two distinct populations distinguished by temperature. Analysis and conclusions about the nature of the cool-mm and warm-mm cores comprising the mm-only population are drawn.

Hill, Tracey; Burton, M. G.; Cunningham, M. R.; Minier, V.

2007-03-01

9

Young and Waltzing Binary Stars  

NASA Astrophysics Data System (ADS)

ADONIS Observes Low-mass Eclipsing System in Orion Summary A series of very detailed images of a binary system of two young stars have been combined into a movie . In merely 3 days, the stars swing around each other. As seen from the earth, they pass in front of each other twice during a full revolution, producing eclipses during which their combined brightness diminishes . A careful analysis of the orbital motions has now made it possible to deduce the masses of the two dancing stars . Both turn out to be about as heavy as our Sun. But while the Sun is about 4500 million years old, these two stars are still in their infancy. They are located some 1500 light-years away in the Orion star-forming region and they probably formed just 10 million years ago . This is the first time such an accurate determination of the stellar masses could be achieved for a young binary system of low-mass stars . The new result provides an important piece of information for our current understanding of how young stars evolve. The observations were obtained by a team of astronomers from Italy and ESO [1] using the ADaptive Optics Near Infrared System (ADONIS) on the 3.6-m telescope at the ESO La Silla Observatory. PR Photo 29a/01 : The RXJ 0529.4+0041 system before primary eclipse PR Photo 29b/01 : The RXJ 0529.4+0041 system at mid-primary eclipse PR Photo 29c/01 : The RXJ 0529.4+0041 system after primary eclipse PR Photo 29d/01 : The RXJ 0529.4+0041 system before secondary eclipse PR Photo 29e/01 : The RXJ 0529.4+0041 system at mid-secondary eclipse PR Photo 29f/01 : The RXJ 0529.4+0041 system after secondary eclipse PR Video Clip 06/01 : Video of the RXJ 0529.4+0041 system Binary stars and stellar masses Since some time, astronomers have noted that most stars seem to form in binary or multiple systems. This is quite fortunate, as the study of binary stars is the only way in which it is possible to measure directly one of the most fundamental quantities of a star, its mass. The mass of a star determines its fate . Massive stars (with masses more than 50 times that of the Sun) lead a glorious, but short life. They are hot and very luminous and exhaust their energy supply in just a few million years. At the other end of the scale, low-mass stars like the Sun are more economical with their resources. Being cooler and dimmer, they are able to shine for billions of years [2]. But although the mass determines the fate of a star, it is not a trivial matter to measure this crucial parameter. In fact, it can only be determined directly if the star happens to be gravitationally bound to another star in a binary stellar system. Observations of the orbital motions of the two stars as they circle each other allows to "weigh" them, and also provide other important information, e.g. about their sizes and temperatures. Orbital motions The understanding of orbital motions has a long history in astronomy. The basic laws of Johannes Kepler (1571-1630) are still used to calculate the masses of orbiting objects, in the solar system as well as in binary stellar systems. However, while the observations of the motion of the nine planets and moons have allowed us to measure quite accurately the masses of objects in our vicinity, the information needed to "weigh" the binary stellar systems is not that easy to obtain. As a result, the mass estimates of the stars in binary systems are often rather uncertain. A main problem is that the individual stars in many binary systems can not be visually separated, even in the best telescopes. The information about the orbit may then come from the motions of the stars, if these are revealed by spectroscopic observations of the combined light (such systems are referred to as "spectroscopic binaries"). If absorption lines from both components are present in the spectrum, the measured wavelength of these double lines will shift periodically back and forth. This is the well-known Doppler effect and it directly reflects the changing velocities of the stars, as they move along their orbits and periodically a

2001-10-01

10

Eruptions at Lone Star Geyser, Yellowstone National Park, USA, part 1: energetics and eruption dynamics  

USGS Publications Warehouse

Geysers provide a natural laboratory to study multiphase eruptive processes. We present results from a four–day experiment at Lone Star Geyser in Yellowstone National Park, USA. We simultaneously measured water discharge, acoustic emissions, infraredintensity, and visible and infrared video to quantify the energetics and dynamics of eruptions, occurring approximately every three hours. We define four phases in the eruption cycle: 1) a 28?±?3 minute phase with liquid and steam fountaining, with maximum jet velocities of 16–28?m s??1, steam mass fraction of less than ??0.01. Intermittently choked flow and flow oscillations with periods increasing from 20 to 40?s are coincident with a decrease in jet velocity and an increase of steam fraction; 2) a 26?±?8 minute post–eruption relaxation phase with no discharge from the vent, infrared (IR) and acoustic power oscillations gliding between 30 and 40?s; 3) a 59?±?13 minute recharge period during which the geyser is quiescent and progressively refills, and 4) a 69?±?14 minute pre–play period characterized by a series of 5–10?minute–long pulses of steam, small volumes of liquid water discharge and 50–70?s flow oscillations. The erupted waters ascend froma 160???170° C reservoir and the volume discharged during the entire eruptive cycle is 20.8?±?4.1 m3. Assuming isentropic expansion, we calculate a heat output from the geyser of 1.4–1.5?MW, which is

Karlstrom, Leif; Hurwitz, Shaul; Sohn, Robert; Vandemeulebrouck, Jean; Murphy, Fred; Rudolph, Maxwell L.; Johnston, Malcolm J. S.; Manga, Michael; McCleskey, R. Blaine

2013-01-01

11

Eruptive Mass Loss in Very Massive Stars and Population III Stars  

E-print Network

I discuss the role played by short-duration eruptive mass loss in the evolution of very massive stars. Giant eruptions of Luminous Blue Variables (LBVs) like the 19th century event of eta Carinae can remove large quantities of mass almost instantaneously, making them significant in stellar evolution. They can potentially remove much more mass from the star than line-driven winds, especially if stellar winds are highly clumped such that previous estimates of O star mass-loss rates need to be revised downward. When seen in other galaxies as ``supernova impostors'', these LBV eruptions typically last for less than a decade, and they can remove of order 10 Msun as indicated by massive nebulae around LBVs. Such extreme mass-loss rates cannot be driven by radiation pressure on spectral lines, because the lines will completely saturate during the events. Instead, these outbursts must either be continuum-driven super-Eddington winds or outright hydrodynamic explosions, both of which are insensitive to metallicity. As such, this eruptive mode of mass loss could also play a pivotal role in the evolution and ultimate fate of massive metal-poor stars in the early universe. If they occur in these Population III stars, such eruptions would also profoundly affect the chemical yield and types of remnants from early supernovae and hypernovae thought to be the origin of long gamma ray bursts.

Nathan Smith

2006-07-19

12

Coronal Mass Ejections and Angular Momentum Loss in Young Stars  

NASA Astrophysics Data System (ADS)

In our own solar system, the necessity of understanding space weather is readily evident. Fortunately for Earth, our nearest stellar neighbor is relatively quiet, exhibiting activity levels several orders of magnitude lower than young, solar-type stars. In protoplanetary systems, stellar magnetic phenomena observed are analogous to the solar case, but dramatically enhanced on all physical scales: bigger, more energetic, more frequent. While coronal mass ejections (CMEs) could play a significant role in the evolution of protoplanets, they could also affect the evolution of the central star itself. To assess the consequences of prominence eruption/CMEs, we have invoked the solar-stellar connection to estimate, for young, solar-type stars, how frequently stellar CMEs may occur and their attendant mass and angular momentum loss rates. We will demonstrate the necessary conditions under which CMEs could slow stellar rotation.

Aarnio, Alicia N.; Stassun, Keivan G.; Matt, Sean P.

2014-01-01

13

Coronal Mass Ejections and Angular Momentum Loss in Young Stars  

E-print Network

In our own solar system, the necessity of understanding space weather is readily evident. Fortunately for Earth, our nearest stellar neighbor is relatively quiet, exhibiting activity levels several orders of magnitude lower than young, solar-type stars. In protoplanetary systems, stellar magnetic phenomena observed are analogous to the solar case, but dramatically enhanced on all physical scales: bigger, more energetic, more frequent. While coronal mass ejections (CMEs) could play a signi?cant role in the evolution of protoplanets, they could also a?ffect the evolution of the central star itself. To assess the consequences of prominence eruption/CMEs, we have invoked the solar-stellar connection to estimate, for young, solar-type stars, how frequently stellar CMEs may occur and their attendant mass and angular momentum loss rates. We will demonstrate the necessary conditions under which CMEs could slow stellar rotation.

Aarnio, Alicia; Matt, Sean

2014-01-01

14

Eruptions at Lone Star Geyser, Yellowstone National Park, USA: 1. Energetics and eruption dynamics  

NASA Astrophysics Data System (ADS)

Geysers provide a natural laboratory to study multiphase eruptive processes. We present results from a 4 day experiment at Lone Star Geyser in Yellowstone National Park, USA. We simultaneously measured water discharge, acoustic emissions, infrared intensity, and visible and infrared video to quantify the energetics and dynamics of eruptions, occurring approximately every 3 h. We define four phases in the eruption cycle (1) a 28±3 min phase with liquid and steam fountaining, with maximum jet velocities of 16-28 m s-1, steam mass fraction of less than ˜0.01. Intermittently choked flow and flow oscillations with periods increasing from 20 to 40 s are coincident with a decrease in jet velocity and an increase of steam fraction; (2) a 26±8 min posteruption relaxation phase with no discharge from the vent, infrared (IR), and acoustic power oscillations gliding between 30 and 40 s; (3) a 59±13 min recharge period during which the geyser is quiescent and progressively refills, and (4) a 69±14 min preplay period characterized by a series of 5-10 min long pulses of steam, small volumes of liquid water discharge, and 50-70 s flow oscillations. The erupted waters ascend from a 160-170°C reservoir, and the volume discharged during the entire eruptive cycle is 20.8±4.1 m3. Assuming isentropic expansion, we calculate a heat output from the geyser of 1.4-1.5 MW, which is <0.1% of the total heat output from Yellowstone Caldera.

Karlstrom, Leif; Hurwitz, Shaul; Sohn, Robert; Vandemeulebrouck, Jean; Murphy, Fred; Rudolph, Maxwell L.; Johnston, Malcolm J. S.; Manga, Michael; McCleskey, R. Blaine

2013-08-01

15

Accretion Models for Young Neutron Stars  

E-print Network

Interaction with possible fallback material, along with the magnetic fields and rotation rates at birth should determine the fates and categories of young neutron stars. This paper addresses some issues related to pure or hybrid accretion models for explaining the properties of young neutron stars.

M. Ali Alpar

2003-06-09

16

The GALEX Nearby Young-Star Survey  

NASA Astrophysics Data System (ADS)

Over the last few decades, many young stars (ages ~10-100 Myr) have been discovered in moving groups within 100 parsecs of Earth. These stars represent excellent targets for direct imaging searches of extrasolar planets during the coming decades as new imaging systems and larger telescopes are commissioned. However, if the mass functions of nearby young moving groups resembles that of the field or young, rich clusters, then the presently known membership of these nearby groups is significantly lacking in low-mass stars. We have initiated a program, the GALEX Nearby Young-Star Survey, or GALNYSS, to search for these missing M-stars. GALNYSS has combined ultraviolet data from GALEX with near-IR surveys (WISE and 2MASS), as well as kinematic information, in order to identify over 2000 candidate young low-mass stars near Earth. Spectroscopic followup is ongoing, and results thus far confirm the youthful nature of many stars among the GALNYSS sample. This suggests that our technique is capable of revealing the populations of low-mass stars that are presently missing from the nearby young moving groups. We present an overview of our survey to date, including the characteristics of the GALNYSS sample and a summary of GALNYSS's latest contributions to our knowledge of the number and membership of nearby, young stellar associations. This work is supported by NASA Astrophysics Data Analysis Program award NNX12AH37G to RIT and UCLA and Chilean FONDECYT grant 3130520 to Universidad de Chile.

Rodriguez, David; Zuckerman, B. M.; Kastner, J. H.; Vican, L.; Bessell, M. S.; Faherty, J. K.; Murphy, S.

2014-01-01

17

THE GALEX NEARBY YOUNG-STAR SURVEY  

SciTech Connect

We describe a method that exploits data from the Galaxy Evolution Explorer (GALEX) ultraviolet and Wide-field Infrared Survey Explorer and Two Micron All Sky Survey infrared source catalogs, combined with proper motions and empirical pre-main sequence isochrones, to identify candidate nearby, young, low-mass stars. Applying our method across the full GALEX-covered sky, we identify 2031 mostly M-type stars that, for an assumed age of 10 (100) Myr, all lie within {approx}150 ({approx}90) pc of Earth. The distribution of M spectral subclasses among these {approx}2000 candidate young stars peaks sharply in the range M3-M4; these subtypes constitute 50% of the sample, consistent with studies of the M star population in the immediate solar neighborhood. We focus on a subset of 58 of these candidate young M stars in the vicinity of the Tucana-Horologium association. Only 20 of these 58 candidates were detected in the ROSAT All-Sky X-ray Survey-reflecting the greater sensitivity of GALEX for the purposes of identifying active nearby, young stars, particularly for stars of type M4 and later. Based on statistical analysis of the kinematics and/or spectroscopic followup of these 58 M stars, we find that 50% (29 stars) indeed have properties consistent with Tuc-Hor membership, while 12 are potential new members of the Columba association, and 2 may be AB Dor moving group members. Hence, {approx}75% of our initial subsample of 58 candidates are likely members of young (age {approx} 10-40 Myr) stellar moving groups within 100 pc, verifying that the stellar color- and kinematics-based selection algorithms described here can be used to efficiently isolate nearby, young, low-mass objects from among the field star population. Future studies will focus on characterizing additional subsamples selected from among this list of candidate nearby, young M stars.

Rodriguez, David R.; Faherty, Jacqueline K. [Departamento de Astronomia, Universidad de Chile, Casilla 36-D, Santiago (Chile); Zuckerman, B. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Kastner, Joel H. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Bessell, M. S.; Murphy, Simon J., E-mail: drodrigu@das.uchile.cl [Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia)

2013-09-10

18

The inner disks of EXor-type eruptive stars  

NASA Astrophysics Data System (ADS)

EX Lupi-type young stars (EXors) show sporadic brightenings of several magnitudes, caused by the episodic increase in the accretion rate of the circumstellar matter onto the young star. As the inner disk plays a crucial role during the onset of the outburst, we examined the quiescent properties of the circumstellar environment of EXors, focusing on the inner regions. We found that in case of three EXors (VY Tau, V1143 Ori and EX Lup) the spectral energy distributions show no or weak excess above the stellar photosphere at NIR-MIR wavelengths, indicative of inner disk clearing. A detailed radiative transfer modeling of the sources revealed that the inner regions of these disks had to go through significant evolution, either the inner radius of the dusty disk is beyond the sublimation radius and/or the inner disks are flattened.

Sipos, Nikoletta; Kóspál, Ágnes

2014-01-01

19

Spatial Distributions of Young Stars  

E-print Network

We analyze the spatial distributions of young stars in Taurus-Auriga and Upper Sco as determined from the two-point correlation function (i.e. the mean surface density of neighbors). The corresponding power-law fits allow us to determine the fractal dimensions of each association's spatial distribution, measure the stellar velocity dispersions, and distinguish between the bound binary population and chance alignments of members. We find that the fractal dimension of Taurus is D~1.05, consistent with its filamentary structure. The fractal dimension of Upper Sco may be even shallower (D~0.7), but this fit is uncertain due to the limited area and possible spatially-variable incompleteness. We also find that random stellar motions have erased all primordial structure on scales of <0.07 degrees in Taurus and <1.7 degrees in Upper Sco; given ages of ~1 Myr and ~5 Myr, the corresponding internal velocity dispersions are ~0.2 km/s and ~1.0 km/s, respectively. Finally, we find that binaries can be distinguished from chance alignments at separations of <120" (17000 AU) in Taurus and 75" (11000 AU) in Upper Sco. The binary populations in these associations that we previously studied, spanning separations of 3-30", are dominated by binary systems. However, the few lowest-mass pairs (M_prim < 0.3 M_sun) might be chance alignments.

Adam L. Kraus; Lynne A. Hillenbrand

2008-09-04

20

Observations of jets from young stars.  

NASA Astrophysics Data System (ADS)

Results are presented of new CCD imaging and spatially resolved spectroscopy for ten young stellar objects with jets. Using these and previously published data on twenty known jets, the authors compiled a set of observational criteria describing the phenomena. From this compilation they addressed several physical questions pertaining to the nature of collimated outflows associated with young stars.

Brugel, E. W.; Mundt, R.; Bührke, T.

21

The GALEX Nearby Young-Star Survey  

NASA Astrophysics Data System (ADS)

Over the last few decades, many ~10-100 Myr-old stars have been identified in moving groups located closer than 100 parsecs to Earth. For direct imaging searches of extrasolar planets these stars represent the best targets and they will be continuously observed during the coming decades as new imaging systems and larger telescopes are commissioned. Recent work has shown that near-IR surveys, like 2MASS, combined with ultraviolet data from GALEX can be used to identify additional members in these moving groups. In particular, this methodology is well suited to searching for low-mass stars, which are generally lacking in moving group member statistics. Initial searches for young stars relied on optical identification (such as with Tycho and Hipparcos) and X-ray detection with ROSAT. The recent release of the all-sky WISE catalog has opened up a new frontier in the search for nearby, young, low-mass stars. We have carried out an all-sky cross correlation between the GALEX, WISE, and 2MASS databases and identified many candidate young, low-mass stars. Early spectroscopic results confirm the youthful nature of our candidates. This suggests that our technique is capable of identifying the many low-mass stars that remain to be found among the nearby young moving groups. This work is supported by a NASA Astrophysics Data Analysis Program award to RIT and UCLA and a FONDECYT grant at Universidad de Chile.

Rodriguez, David; Zuckerman, Ben; Kastner, Joel; Bessell, Mike; Faherty, Jacqueline; Murphy, Simon; Vican, Laura

2013-07-01

22

Photoevaporating Disks Around Young Stars  

NASA Technical Reports Server (NTRS)

Ultraviolet radiation from the central star or from a nearby massive star heats the surfaces of protoplanetary disks and causes the outer, less gravitationally bound part of the disks, to photoevaporate into interstellar space. Photoevaporation is likely the most important dispersal mechanism for the outer regions of disks. We focus in this talk on disks around low-mass stars like the Sun rather than high-mass stars, which we have treated previously. Stars often form in clusters and the ultraviolet flux from the most luminous star in the cluster can have a dramatic effect on the disk orbiting a nearby low-mass star. We apply our theoretical models to the evaporating protoplanetary disks (or "proplyds") in the Trapezium cluster in Orion, to the formation of gas giant planets like Jupiter around Sun-like stars in the Galaxy, and to the formation of Kuiper belts around low mass stars. We discuss recent models of the effects of the radiation from the central low mass star including both the predicted infrared spectra from the heated disks as well as preliminary results on the photoevaporation rates.

Hollenbach, David

2004-01-01

23

Echography of young stars reveals their evolution  

NASA Astrophysics Data System (ADS)

We demonstrate that a seismic analysis of stars in their earliest evolutionary phases is a powerful method with which to identify young stars and distinguish their evolutionary states. The early star that is born from the gravitational collapse of a molecular cloud reaches at some point sufficient temperature, mass, and luminosity to be detected. Accretion stops, and the pre-main sequence star that emerges is nearly fully convective and chemically homogeneous. It will continue to contract gravitationally until the density and temperature in the core are high enough to start nuclear burning of hydrogen. We show that there is a relationship for a sample of young stars between detected pulsation properties and their evolutionary status, illustrating the potential of asteroseismology for the early evolutionary phases.

Zwintz, K.; Fossati, L.; Ryabchikova, T.; Guenther, D.; Aerts, C.; Barnes, T. G.; Themeßl, N.; Lorenz, D.; Cameron, C.; Kuschnig, R.; Pollack-Drs, S.; Moravveji, E.; Baglin, A.; Matthews, J. M.; Moffat, A. F. J.; Poretti, E.; Rainer, M.; Rucinski, S. M.; Sasselov, D.; Weiss, W. W.

2014-08-01

24

Echography of young stars reveals their evolution  

E-print Network

We demonstrate that a seismic analysis of stars in their earliest evolutionary phases is a powerful method to identify young stars and distinguish their evolutionary states. The early star that is born from the gravitational collapse of a molecular cloud reaches at some point sufficient temperature, mass and luminosity to be detected. Accretion stops and the pre-main sequence star that emerges is nearly fully convective and chemically homogeneous. It will continue to contract gravitationally until the density and temperature in the core are high enough to start nuclear burning of hydrogen. We show that there is a relationship between detected pulsation properties for a sample of young stars and their evolutionary status illustrating the potential of asteroseismology for the early evolutionary phases.

Zwintz, K; Ryabchikova, T; Guenther, D; Aerts, C; Barnes, T G; Themessl, N; Lorenz, D; Cameron, C; Kuschnig, R; Pollack-Drs, S; Moravveji, E; Baglin, A; Matthews, J M; Moffat, A F J; Poretti, E; Rainer, M; Rucinski, S M; Sasselov, D; Weiss, W W

2014-01-01

25

Captured older stars as the reason for apparently prolonged star formation in young star clusters  

E-print Network

The existence of older stars within a young star cluster can be interpreted to imply that star formation occurs on time scales longer than a free-fall time of a pre-cluster cloud core. Here the idea is explored that these older stars are not related to the star formation process forming the young star cluster but rather that the orbits of older field stars are focused by the collapsing pre-cluster cloud core. Two effects appear: The focussing of stellar orbits leads to an enhancement of the density of field stars in the vicinity of the centre of the young star cluster. And due to the time-dependent potential of the forming cluster some of these stars can get bound gravitationally to the cluster. These stars exhibit similar kinematical properties as the newly formed stars and can not be distinguished from them on the basis of radial-velocity or proper-motion surveys. Such contaminations may lead to a wrong apparent star-formation history of a young cluster. In the case of the ONC the theoretical number of gravitationally bound older low-mass field stars agrees with the number of observed older low-mass stars.

Jan Pflamm-Altenburg; Pavel Kroupa

2006-11-16

26

Fundamental Properties of Young Binary Stars  

NASA Astrophysics Data System (ADS)

Spatially resolving the orbits of double-lined spectroscopic binaries provides a way to measure the dynamical masses of the component stars. At the distances to the nearest star-forming regions, high angular resolution techniques are required to resolve these short-period systems. In this paper, I provide an overview of the few low-mass pre-main-sequence spectroscopic binaries that have been resolved thus far using long-baseline optical/infrared interferometers. I also compiled a list of known spectroscopic binaries in nearby star-forming regions ( Taurus, Orion, Ophiuchus, Scorpius-Centaurus, etc.) and show that with modest improvements in the sensitivity of interferometers with 200–300 meter baselines, we can build a significant set of pre-main-sequence stars with precise mass determinations. This is important for validating and distinguishing among the theoretical calculations of evolution for young stars.

Schaefer, G. H.

2014-09-01

27

Eruptive Variable Stars and Outflows in Serpens NW  

E-print Network

We study the outflow activity, photometric variability and morphology of three very young stellar objects in the Serpens NW star forming region: OO Serpentis, EC 37 (V370 Ser) and EC 53 (V371 Ser). High spatial resolution Keck/NIRC2 laser guide star adaptive optics images obtained in 2007 and 2009 in broad-band K and in a narrow-band filter centered on the 1-0 S(1) emission line of molecular hydrogen allow us to identify the outflows from all three objects. We also present new, seeing-limited data on the photometric evolution of the OO Ser reflection nebula and re-analyze previously published data. We find that OO Ser declined in brightness from its outburst peak in 1995 to about 2003, but that this decline has recently stopped and actually reversed itself in some areas of the reflection nebula. The morphology and proper motions of the shock fronts MHO 2218 near EC 37 suggest that they all originate in EC 37 and that this is an outflow seen nearly along its axis. We identify a molecular hydrogen jet emerging ...

Hodapp, Klaus W; Watermann, Ramon; Lemke, Roland

2011-01-01

28

Young Massive Star Clusters. II. (Larsen, 1999)  

Microsoft Academic Search

Table 4 lists photometric data for Young Massive Star Clusters identified in a sample of 21 nearby galaxies. The photometric data have been corrected for Galactic foreground extinction. Each cluster is identified by the abbreviated NGC number of its host galaxy and an object number: nxxx-yyy is object number yyy in the galaxy NGC xxx. Effective cluster radii have been

S. S. Larsen

1999-01-01

29

Starspots on Young Solar-Type Stars  

NASA Astrophysics Data System (ADS)

Doppler Imaging of starspots on young solar analogues is a way to investigate the early history of solar magnetic activity by proxy. Doppler images of young G-dwarfs have yielded the presence of large polar spots, extending to moderate latitudes, along with measurements of the surface differential rotation. The differential rotation measurement for one star (RX J0850.1-7554) suggests it is possibly the first example of a young G-type dwarf whose surface rotates as almost a solid body, in marked contrast to the differential rotation of other rapidly rotating young G-dwarfs and the present-day Sun. Overall, our Doppler imaging results show that the young Sun possessed a fundamentally different dynamo to today.

Brown, Carolyn; Carter, Brad; Marsden, Stephen; Waite, Ian

2014-08-01

30

ERUPTIVE VARIABLE STARS AND OUTFLOWS IN SERPENS NW  

SciTech Connect

We study the outflow activity, photometric variability, and morphology of three very young stellar objects in the Serpens NW star-forming region: OO Serpentis, EC 37 (V370 Ser), and EC 53 (V371 Ser). High spatial resolution Keck/NIRC2 laser guide star adaptive optics images obtained in 2007 and 2009 in broadband K and in a narrowband filter centered on the 1-0 S(1) emission line of H{sub 2} allow us to identify the outflows from all three objects. We also present new, seeing-limited data on the photometric evolution of the OO Ser reflection nebula and re-analyze previously published data. We find that OO Ser declined in brightness from its outburst peak in 1995 to about 2003, but that this decline has recently stopped and actually reversed itself in some areas of the reflection nebula. The morphology and proper motions of the shock fronts MHO 2218 near EC 37 suggest that they all originate in EC 37 and that this is an outflow seen nearly along its axis. We identify an H{sub 2} jet emerging from the cometary nebula EC 53. The star illuminating EC 53 is periodically variable with a period of 543 days and has a close-by, non-variable companion at a projected distance of 92 AU. We argue that the periodic variability is the result of accretion instabilities triggered by another very close, not directly observable, binary companion and that EC 53 can be understood in the model of a multiple system developing into a hierarchical configuration.

Hodapp, Klaus W. [Institute for Astronomy, University of Hawaii, 640 N. Aohoku Place, Hilo, HI 96720 (United States); Chini, Rolf; Watermann, Ramon; Lemke, Roland, E-mail: hodapp@ifa.hawaii.edu [Ruhr Universitaet Bochum, Astronomisches Institut, Universitaetsstrasse 150, D-44801 Bochum (Germany)

2012-01-01

31

Episodic Accretion in Young Stars  

E-print Network

In the last twenty years, the topic of episodic accretion has gained significant interest in the star formation community. It is now viewed as a common, though still poorly understood, phenomenon in low-mass star formation. The FU Orionis objects (FUors) are long-studied examples of this phenomenon. FUors are believed to undergo accretion outbursts during which the accretion rate rapidly increases from typically $10^{-7}$ to a few $10^{-4}$ $M_\\odot$ yr$^{-1}$, and remains elevated over several decades or more. EXors, a loosely defined class of pre-main sequence stars, exhibit shorter and repetitive outbursts, associated with lower accretion rates. The relationship between the two classes, and their connection to the standard pre-main sequence evolutionary sequence, is an open question: do they represent two distinct classes, are they triggered by the same physical mechanism, and do they occur in the same evolutionary phases? Over the past couple of decades, many theoretical and numerical models have been dev...

Audard, Marc; Dunham, Michael M; Green, Joel D; Grosso, Nicolas; Hamaguchi, Kenji; Kastner, Joel H; Kóspál, Ágnes; Lodato, Giuseppe; Romanova, Marina; Skinner, Stephen L; Vorobyov, Eduard I; Zhu, Zhaohuan

2014-01-01

32

Radio and infrared properties of young stars  

NASA Technical Reports Server (NTRS)

Observing young stars, or more appropriately, pre-main-sequence (PMS) stars, in the infrared and at radio frequencies has the advantage over optical observation in that the heavy extinction associated with a star forming region is only a minor problem, so that the whole region can be studied thoroughly. Therefore, it means being able to: (1) search for stars and do statistical studies on the rate of star formation; (2) determine their luminosity, hence, to study luminosity functions and initial mass functions down to low masses; and (3) to study their spectra and, thus, to determine the prevailing conditions at and near the surface of a newly born star and its relations with the surrounding environment. The third point is of principal interest. The report limits itself to a consideration of the observations concerning the processes of outflows from, and accretion onto, PMS stars and the theory necessary to interpret them. Section 2 discusses the radiative processes relevant in stellar outflows. The main observational results are presented in Section 3. A discussion of the statistical properties of stellar winds from PMS stars are given in Section 4.

Panagia, Nino

1987-01-01

33

Understanding young stars - A history  

NASA Astrophysics Data System (ADS)

This paper is one of a series of invited reviews celebrating the centenary of the Astronomical Society of the Pacific. The history of pre-main-sequence theory is briefly reviewed. The paper of Henyey et al. (1955), 004.166, is seen as an important transitional work, one which abandoned previous simplifying assumptions yet failed to incorporate newer insights into the surface structure of late-type stars. The subsequent work of Hayashi and his contemporaries is outlined, with an emphasis on the underlying physical principles. Finally, the recent impact of protostar theory is discussed, and speculations are offered on future developments.

Stahler, Steven W.

1988-12-01

34

Jets from young stars and brown dwarfs  

E-print Network

The protostellar outflow mechanism operates for a significant fraction of the pre-main sequence phase of a solar mass star and is thought to have a key role in star and perhaps even planet formation. This energetic mechanism manifests itself in several different forms and on many scales. Thus outflow activity can be probed in numerous different regimes from radio to X-ray wavelengths. Recent discoveries have shown that it is not only solar mass stars that launch outflows during their formation but also the sub-stellar brown dwarfs. In this article what is currently known about jets from young stars is summarised, including an outline of why it is important to study jets. The second part of this article is dedicated to jets from young brown dwarfs. While only a small number of brown dwarf outflows have been investigated to date, interesting properties have been observed. Here observations of brown dwarf outflows are described and what is currently known of their properties compared to low mass protostellar out...

Whelan, E T

2014-01-01

35

Periodic flow instabilities during Lone Star Geyser (YNP) eruptions, as deduced from acoustic measurements  

NASA Astrophysics Data System (ADS)

We performed continuous acoustic measurements during four days at Lone Star Geyser, Yellowstone National Park, USA. The microphone was located at 10 meters from the geyser's cone, and the acoustic signal was sampled at 1000 Hz. The 3-hour-long eruptive cycle at Lone Star Geyser contains several water fountaining episodes followed by the main eruption, which generally lasts 25 minutes. During the 30 main eruptions that we studied, the acoustic signal patterns are very similar, and indicate the flow is unstable and clearly follows a pulsating regime. The period of the acoustic pulses drastically increases during the liquid to steam transition in the flow. This abrupt change in the flow regime corresponds to the start of the ground deflation recorded by tiltmeters, and could be due to a transition from hydro-static to vapor-static conditions in the vent.

Vandemeulebrouck, J.; Hurwitz, S.; Johnston, M. J.; Rudolph, M. L.; Karlstrom, L.; Sohn, R. A.; Murphy, F.; McPhee, D. K.; Glen, J. M.; Soule, S. A.; Meertens, C. M.

2011-12-01

36

New Young Star Candidates in BRC 27  

NASA Astrophysics Data System (ADS)

All stars originate from clouds of interstellar gas that collapse either under their own gravity or with external help. In triggered star formation, the collapse of a cloud is initiated by pressure, e.g., from nearby star(s). When the external source is bright stars, it can illuminate the rims of the cloud, creating bright-rimmed clouds (BRCs) to be visible at optical and infrared (IR) wavelengths. We searched for new candidate young stellar objects (YSOs) primarily using the March 2012 all-sky release of Wide-field Infrared Survey Explorer (WISE) data in BRC 27, which is part of CMa R1, a region of known star formation. Spitzer data of a 5’x5’ region centered on BRC 27 were presented by Johnson et al. 2012 and Rebull et al. 2012. We investigated WISE data within a 20 arcminute radius of BRC 27 0.35 sq. deg), combining it with Spitzer data serendipitously obtained in this region, 2MASS data, and optical data. We started from nearly 4000 WISE sources and identified about 200 candidate YSOs via a series of color cuts (Koenig et al. 2012) to identify objects with WISE colors consistent with other YSOs, e.g., having an apparent IR excess. There are about 100 objects in this region already identified in the literature as possible YSOs, about 40 of which we recovered with the color cuts. We investigated these literature YSOs and YSO candidates in all available images, and created spectral energy distributions (SEDs) and color-magnitude diagrams for further analysis of each object. We will present an analysis of our selected sub-sample of YSO candidates. This research was made possible through the NASA/IPAC Teacher Archive Research Project (NITARP) and was funded by NASA Astrophysics Data Program and Archive Outreach funds. Our education results are described in a companion education poster, Bonadurer et al.

Novatne, Lauren J.; Mattrocce, G.; Milan, T.; Quinonez, A.; Rebull, L. M.; Barge, J.; Amayo, R.; Bieber, H.; Block, L.; Cheung, E.; Cruz, A.; Elkin, D.; Figueroa, A.; Jakus, M.; Kelo, A.; Larson, O.; Lemma, B.; Li, Y.; Loe, C.; Maciag, V.; Moreno, N.; Nevels, M.; Pezanoski-Cohen, G.; Short, M.; Skatchke, K.; Tur-Kaspa, A.; Zegeye, D.; Armstrong, J.; Bonadurer, R.; French, D.; Free, B.; Miller, C.; Scherich, H.; Willis, T.; Koenig, X.; Laher, R.; Padgett, D.; Piper, M.; Pavlak, A.; Piper, M.; Venezio, E.; Ali, B.

2013-01-01

37

Population synthesis of young neutron stars  

NASA Astrophysics Data System (ADS)

We investigate the fortune of young neutron stars (NS) in the whole volume of the Milky Way with new code for population synthesis. We start our modeling from the birth of massive OB stars and follow their motion in the Galaxy up to the Supernova explosion. Next we integrate the equations of motion of NS in the averaged gravitational potential of the Galaxy. We estimate the mean kick velocities from a comparison the model Z and R-distributions of radio emitting NS with that for galactic NS accordingly ATNF pulsar catalog. We follow the history of the rotational velocity and the surface magnetic field of NS taking into account the significant magnetic field decay during the first million year of a neutron star's life. The derived value for the mean time of ohmic decay is 2.3?105 years. We model the subsample of galactic radio pulsars which can be detected with available radio telescopes, using a radio beaming model with inhomogeneous distribution of the radio emission in the cone. The distributions functions of the pulsar periods P, period derivatives ? and surface magnetic fields B appear to be in a close agreement with those obtained from an ensemble of neutron stars in the ATNF catalogue.

Igoshev, Andrei P.; Kholtygin, Alexander F.

2013-03-01

38

Kinematics of young stars. I. Local irregularities  

NASA Astrophysics Data System (ADS)

The local velocity field of young stars is dominated by the galactic rotation, the kinematics of the Gould Belt and the nearest OB associations and open clusters, and the kinematics of the spiral structure. We re-examined here this local velocity field by using a large sample of nearby O and B stars from the Hipparcos Catalogue. The high quality astrometric data are complemented with a careful compilation of radial velocities and Strömgren photometry, which allows individual photometric distances and ages to be derived. The Gould Belt extends up to 600 pc from the Sun with an inclination with respect to the galactic plane of iG = 16-22degr and the ascending node placed at Omega G = 275-295degr . Approximately 60% of the stars younger than 60 Myr belong to this structure. The values found for the Oort constants when different samples selected by age or distance were used allowed us to interpret the systematic trends observed as signatures induced by the kinematic behaviour of the Gould Belt. The contribution of Sco-Cen and Ori OB1 complexes in the characterization of the expansion of the Gould Belt system is also discussed. We found that a positive K-term remains when these aggregates are excluded. From the kinematic behaviour of the stars and their spatial distribution we derive an age for the Gould Belt system in the interval 30-60 Myr. Based on data from the Hipparcos astrometry satellite (European Space Agency)}

Torra, J.; Fernández, D.; Figueras, F.

2000-07-01

39

Young Stars Emerge from Orion's Head  

NASA Technical Reports Server (NTRS)

This image from NASA's Spitzer Space Telescope shows infant stars 'hatching' in the head of the hunter constellation, Orion. Astronomers suspect that shockwaves from a supernova explosion in Orion's head, nearly three million years ago, may have initiated this newfound birth

The region featured in this Spitzer image is called Barnard 30. It is located approximately 1,300 light-years away and sits on the right side of Orion's 'head,' just north of the massive star Lambda Orionis.

Wisps of green in the cloud are organic molecules called polycyclic aromatic hydrocarbons. These molecules are formed anytime carbon-based materials are burned incompletely. On Earth, they can be found in the sooty exhaust from automobile and airplane engines. They also coat the grills where charcoal-broiled meats are cooked.

Tints of orange-red in the cloud are dust particles warmed by the newly forming stars. The reddish-pink dots at the top of the cloud are very young stars embedded in a cocoon of cosmic gas and dust. Blue spots throughout the image are background Milky Way along this line of sight.

This composite includes data from Spitzer's infrared array camera instrument, and multiband imaging photometer instrument. Light at 4.5 microns is shown as blue, 8.0 microns is green, and 24 microns is red.

2007-01-01

40

On the properties of young multiple stars  

E-print Network

Abridged/ We present numerical results on the properties of young binary and multiple stellar systems. Our analysis is based on a series of SPH + Nbody simulations of the fragmentation of small molecular clouds, that fully resolve the opacity limit for fragmentation. We have produced a statistically significant number of stable multiple systems, with components separations in the range 1-1000 AU. At the end of the hydrodynamical evolution (0.5 Myr) we find that ~60% of stars and brown dwarfs are members of multiples systems, with about a third of these being low mass, weakly bound outliers in wide eccentric orbits. Our results imply that in the stellar regime most stars are in multiples (~80%) and that this fraction is an increasing function of primary mass. After Nbody integration to 10.5 Myr, the percentage of bound objects has dropped to ~40%, as most very low mass stars and brown dwarfs have been released to the field. Brown dwarfs are never found to be very close companions to stars (brown dwarf desert at very small separations), but one case exists of a brown dwarf companion at intermediate separations (10 AU). Our simulations can accommodate the existence of brown dwarf companions at large separations, but only if the primaries of these systems are themselves multiples. We have compared the outcome of our simulations with the properties of real stellar systems as deduced from the IR CM diagram of the Praesepe cluster and from spectroscopic and high-resolution imaging surveys of young clusters and the field.

E. J. Delgado-Donate; C. J. Clarke; M. R. Bate; S. T. Hodgkin

2004-03-03

41

Shock Waves in Outflows from Young Stars  

NASA Astrophysics Data System (ADS)

This review focuses on physics of the cooling zones behind radiative shocks and the emission line diagnostics that can be used to infer physical conditions and mass loss rates in jets from young stars. Spatial separations of the cooling zones from the shock fronts, now resolvable with HST, and recent evidence for C-shocks have greatly increased our understanding of how shocks in outflows interact with the surrounding medium and with other material within the flow. By combining multiple epoch HST images, one can create `movies' of flows like those produced from numerical codes, and learn what kinds of instabilities develop within these systems.

Hartigan, Patrick

42

THE SIZES OF THE NEAREST YOUNG STARS  

SciTech Connect

We present moderate resolution (R {approx} 3575) optical spectra of 19 known or suspected members of the AB Doradus and {beta} Pictoris Moving Groups, obtained with the DeVeny Spectrograph on the 72 inch Perkins telescope at Lowell Observatory. For four of five recently proposed members, signatures of youth such as Li I 6708 A absorption and H{alpha} emission further strengthen the case for youth and membership. The lack of detected lithium in the proposed {beta} Pic member TYC 2211-1309-1 implies that it is older than all other K-type members and weakens the case for membership. Effective temperatures are determined via line ratio analyses for the 11 F, G, and early-K stars observed, and via spectral comparisons for the eight late-K and M stars observed. We assemble updated candidate membership lists for these moving groups that account for known binarity. Currently, the AB Dor Moving Group contains 127 proposed members and the {beta} Pic Moving Group holds 77 proposed members. We then use temperature, luminosity, and distance estimates to predict angular diameters for these stars; the motivation is to identify stars that can be spatially resolved with long-baseline optical/infrared interferometers in order to improve age estimates for these groups and to constrain evolutionary models at young ages. Considering the portion of the sky accessible to northern hemisphere facilities (decl. > - 30), six stars have diameters large enough to be spatially resolved ({theta} > 0.4 mas) with the CHARA Array, which currently has the world's longest baseline of 331 m; this subsample includes the low-mass M2.5 member of AB Dor, GJ 393, which is likely to still be pre-main sequence. For southern hemisphere facilities (decl. < + 30), 18 stars have diameters larger than this limiting size, including the low-mass debris disk star AU Mic (0.72 mas). However, the longest baselines of southern hemisphere interferometers (160 m) are only able to resolve the largest of these, the B6 star {alpha} Gru (1.17 mas); proposed long-baseline stations may alleviate the current limitations.

McCarthy, Kyle; White, Russel J., E-mail: kyle.mccarthy@uky.edu [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303-4106 (United States)

2012-06-15

43

The Sizes of the Nearest Young Stars  

NASA Astrophysics Data System (ADS)

We present moderate resolution (R ~ 3575) optical spectra of 19 known or suspected members of the AB Doradus and ? Pictoris Moving Groups, obtained with the DeVeny Spectrograph on the 72 inch Perkins telescope at Lowell Observatory. For four of five recently proposed members, signatures of youth such as Li I 6708 Å absorption and H? emission further strengthen the case for youth and membership. The lack of detected lithium in the proposed ? Pic member TYC 2211-1309-1 implies that it is older than all other K-type members and weakens the case for membership. Effective temperatures are determined via line ratio analyses for the 11 F, G, and early-K stars observed, and via spectral comparisons for the eight late-K and M stars observed. We assemble updated candidate membership lists for these moving groups that account for known binarity. Currently, the AB Dor Moving Group contains 127 proposed members and the ? Pic Moving Group holds 77 proposed members. We then use temperature, luminosity, and distance estimates to predict angular diameters for these stars; the motivation is to identify stars that can be spatially resolved with long-baseline optical/infrared interferometers in order to improve age estimates for these groups and to constrain evolutionary models at young ages. Considering the portion of the sky accessible to northern hemisphere facilities (decl. > - 30), six stars have diameters large enough to be spatially resolved (? > 0.4 mas) with the CHARA Array, which currently has the world's longest baseline of 331 m; this subsample includes the low-mass M2.5 member of AB Dor, GJ 393, which is likely to still be pre-main sequence. For southern hemisphere facilities (decl. < + 30), 18 stars have diameters larger than this limiting size, including the low-mass debris disk star AU Mic (0.72 mas). However, the longest baselines of southern hemisphere interferometers (160 m) are only able to resolve the largest of these, the B6 star ? Gru (1.17 mas) proposed long-baseline stations may alleviate the current limitations.

McCarthy, Kyle; White, Russel J.

2012-06-01

44

A BOW SHOCK NEAR A YOUNG STAR  

NASA Technical Reports Server (NTRS)

NASA's Hubble Space Telescope continues to reveal various stunning and intricate treasures that reside within the nearby, intense star-forming region known as the Great Nebula in Orion. One such jewel is the bow shock around the very young star, LL Ori, featured in this Hubble Heritage image. Named for the crescent-shaped wave made by a ship as it moves through water, a bow shock can be created in space when two streams of gas collide. LL Ori emits a vigorous solar wind, a stream of charged particles moving rapidly outward from the star. Our own Sun has a less energetic version of this wind that is responsible for auroral displays on the Earth. The material in the fast wind from LL Ori collides with slow-moving gas evaporating away from the center of the Orion Nebula, which is located to the lower right in this Heritage image. The surface where the two winds collide is the crescent-shaped bow shock seen in the image. Unlike a water wave made by a ship, this interstellar bow shock is a three-dimensional structure. The filamentary emission has a very distinct boundary on the side facing away from LL Ori, but is diffuse on the side closest to the star, a characteristic common to many bow shocks. A second, fainter bow shock can be seen around a star near the upper right-hand corner of the Heritage image. Astronomers have identified numerous shock fronts in this complex star-forming region and are using this data to understand the many complex phenomena associated with the birth of stars. This image was taken in February 1995 as part of the Hubble Orion Nebula mosaic. A close visitor in our Milky Way galaxy, the nebula is only 1,500 light-years from Earth. The filters used in this color composite represent oxygen, nitrogen, and hydrogen emissions. Image Credit: NASA and the Hubble Heritage Team (STScI/AURA) Acknowledgment: C. R. O'Dell (Vanderbilt University)

2002-01-01

45

Evolution of Young Neutron Star Envelopes  

NASA Astrophysics Data System (ADS)

We extend our initial study of diffusive nuclear burning (DNB) for neutron stars (NSs) with hydrogen (H) atmospheres and an underlying layer of proton-capturing nuclei. Our initial study showed that DNB can alter the photospheric abundance of hydrogen on surprisingly short timescales (102-104 yr). Significant composition evolution impacts the radiated thermal spectrum from the NS as well as its overall cooling rate. In this paper, we consider the case when the rate-limiting step for the H consumption is diffusion to the burning layer rather than the local nuclear timescale. This is relevant for NSs with surface temperatures in excess of 106 K, such as young (<105 yr) radio pulsars and accreting NSs in quiescence. When downward diffusion is the limiting rate in DNB, the rate of H consumption is suppressed by 1-2 orders of magnitude compared to a DNB estimate that assumes diffusive equilibrium. In order to apply our ongoing study to young neutron stars, we also include the important effects of strong magnetic fields (B~1012 G). In this initial study of magnetic modifications to DNB, we find that the H-burning time is lengthened by 2-3 orders of magnitude for a 1012 G field. However, even for NSs with dipole field strengths of 1012 G, we find that all of the H can be burned before the pulsar reaches an age of ~105 yr, thus potentially revealing the underlying proton-capturing elements. Finally, we conclude by providing an overview of what can be learned about fallback and pulsar winds from measuring the surface composition of a young NS.

Chang, Philip; Bildsten, Lars

2004-04-01

46

JOURNAL OF GEOPHYSICAL RESEARCH: SOLID EARTH, VOL. 118, 115, doi:10.1002/jgrb.50251, 2013 Eruptions at Lone Star Geyser, Yellowstone National Park, USA  

E-print Network

Eruptions at Lone Star Geyser, Yellowstone National Park, USA: 1. Energetics and eruption dynamics Leif processes. We present results from a 4 day experiment at Lone Star Geyser in Yellowstone National Park, USA, Yellowstone National Park, USA: 1. Energetics and eruption dynamics, J. Geophys. Res. Solid Earth, 118, doi:10

Manga, Michael

47

The Young Stars The entity that emerges from a core is a young star that only vaguely  

E-print Network

Chapter 9 The Young Stars The entity that emerges from a core is a young star that only vaguely in a moderate form. This activity thus presents itself in manifestations explorable with our optical telescopes but a massive disk now dominates the environment. In this chapter, we describe and explore the reasons

Estalella, Robert

48

Fundamental Parameters of Nearby Young Stars  

NASA Astrophysics Data System (ADS)

We present high resolution (R ~ 60,000) spectroscopic data of F and G members of the nearby, young associations AB Doradus and ? Pictoris obtained with the Cross-Dispersed Echelle Spectrograph on the 2.7 meter telescope at the McDonald Observatory. Effective temperatures, log(g), [Fe/H], and microturbulent velocities are first estimated using the TGVIT code, then finely tuned using MOOG. Equivalent width (EW) measurements were made using TAME alongside a self-produced IDL routine to constrain EW accuracy and improve computed fundamental parameters. MOOG is also used to derive the chemical abundance of several elements including Mn which is known to be over abundant in planet hosting stars. Vsin(i) are also computed using a ?2 analysis of our observed data to Atlas9 model atmospheres passed through the SPECTRUM spectral synthesis code on lines which do not depend strongly on surface gravity. Due to the limited number of Fe II lines which govern the surface gravity fit in both TGVIT and MOOG, we implement another ?2 analysis of strongly log(g) dependent lines to ensure the values are correct. Coupling the surface gravities and temperatures derived in this study with the luminosities found in the Tycho-2 catalog, we estimate masses for each star and compare these masses to several evolutionary models to begin the process of constraining pre-main sequence evolutionary models.

McCarthy, Kyle; Wilhelm, R. J.

2013-06-01

49

Where are all the Young Stars in Aquila?  

E-print Network

The high Galactic longitude end of the Aquila Rift comprises the large Aquila molecular cloud complex, however, few young stars are known to be located in the area, and only one is directly associated with the Rift. In contrast, the Serpens star-forming region at the low Galactic longitude end of the Rift contains hundreds of young stars. We review studies of the raw molecular material and describe searches for young objects in the Aquila clouds. The characteristics of the known young stars and associated jets and outflows are also provided. Finally, we suggest some possible explanations for the dearth of star formation in this gas-rich region and propose some future observations to examine this mystery further.

L. Prato; E. L. Rice; T. M. Dame

2008-11-18

50

THE ASTROPHYSICAL IMPLICATIONS OF DUST FORMATION DURING THE ERUPTIONS OF HOT, MASSIVE STARS  

SciTech Connect

Dust formation in the winds of hot stars is inextricably linked to the classic eruptive state of luminous blue variables because it requires very high mass-loss rates, M-dot {approx}>10{sup -2.5} M{sub sun} year{sup -1}, for grains to grow and for the non-dust optical depth of the wind to shield the dust formation region from the true stellar photosphere. Thus, dusty shells around hot stars trace the history of 'great' eruptions, and the statistics of such shells in the Galaxy indicate that these eruptions are likely the dominant mass-loss mechanism for evolved, M{sub ZAMS} {approx}> 40 M{sub Sun} stars. Dust formation at such high M-dot also explains why very large grains (a{sub max} {approx}> 1 {mu}m) are frequently found in these shells, since a{sub max}{proportional_to} M-dot . The statistics of these shells (numbers, ages, masses, and grain properties such as a{sub max}) provide an archaeological record of this mass-loss process. In particular, the velocities v{sub shell}, transient durations (where known), and ejected masses M{sub shell} of the Galactic shells and the supernova (SN) 'impostors' proposed as their extragalactic counterparts are very different. While much of the difference is a selection effect created by shell lifetimes {proportional_to}(v{sub shell}{radical}(M{sub shell})){sup -1}, more complete Galactic and extragalactic surveys are needed to demonstrate that the two phenomena share a common origin given that their observed properties are essentially disjoint. If even small fractions (1%) of SNe show interactions with such dense shells of ejecta, as is currently believed, then the driving mechanism of the eruptions must be associated with the very final phases of stellar evolution, suggestive of some underlying nuclear burning instability.

Kochanek, C. S. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States)

2011-12-10

51

Accretion Disks and Eruptive Phenomena  

E-print Network

This paper describes eruptive phenomena in pre-main sequence stars. The eruptions of FU Orionis stars have much in common with outbursts in other accreting systems, such as dwarf novae and some symbiotic stars. These common features are best understood as increases in the rate material flows through an accretion disk. The spectroscopic properties, decay of the light curves, and outflow phenomena suggest that these outbursts arise from thermal instabilities in the disk. Available data and estimates for recurrence times indicate that young stars can accrete much, perhaps all, of their mass in FU Ori accretion events. Future observations can test this notion and place better constraints on the importance of eruptive events in the early life of a low mass star.

Scott J. Kenyon

1999-04-02

52

Young cumulate complex beneath Veniaminof caldera, Aleutian arc, dated by zircon in erupted plutonic blocks  

USGS Publications Warehouse

Mount Veniaminof volcano, Alaska Peninsula, provides an opportunity to relate Quaternary volcanic rocks to a coeval intrusive complex. Veniaminof erupted tholeiitic basalt through dacite in the past ???260 k.y. Gabbro, diorite, and miarolitic granodiorite blocks, ejected 3700 14C yr B.P. in the most recent caldera-forming eruption, are fragments of a shallow intrusive complex of cumulate mush and segregated vapor-saturated residual melts. Sensitive high-resolution ion microprobe (SHRIMP) analyses define 238U-230Th isochron ages of 17.6 ?? 2.7 ka, 5+11/-10 ka, and 10.2 ?? 4.0 ka (2??) for zircon in two granodiorites and a diorite, respectively. Sparse zircons from two gabbros give 238-230Th model ages of 36 ?? 8 ka and 26 ?? 7 ka. Zircons from granodiorite and diorite crystallized in the presence of late magmatic aqueous fluid. Although historic eruptions have been weakly explosive Strombolian fountaining and small lava effusions, the young ages of plutonic blocks, as well as late Holocene dacite pumice, are evidence that the intrusive complex remains active and that evolved magmas can segregate at shallow levels to fuel explosive eruptions. ?? 2007 The Geological Society of America.

Bacon, C.R.; Sison, T.W.; Mazdab, F.K.

2007-01-01

53

YOUNG STELLAR GROUPS AND THEIR MOST MASSIVE STARS  

SciTech Connect

We analyze the masses and spatial distributions of 14 young stellar groups in Taurus, Lupus3, ChaI, and IC348. These nearby groups, which typically contain 20-40 members, have membership catalogs complete to {approx}0.02 M{sub sun}, and are sufficiently young that their locations should be similar to where they formed. These groups show five properties seen in clusters having many more stars and much greater surface density of stars: (1) a broad range of masses, (2) a concentration of the most massive star toward the center of the group, (3) an association of the most massive star with a high surface density of lower mass stars, (4) a correlation of the mass of the most massive star with the total mass of the group, and (5) the distribution of a large fraction of the mass in a small fraction of the stars.

Kirk, Helen; Myers, Philip C., E-mail: hkirk@cfa.harvard.edu [Radio and Geoastronomy Division, Harvard Smithsonian Center for Astrophysics, MS-42, Cambridge, MA 02138 (United States)

2011-02-01

54

TeV mu Neutrinos from Young Neutron Stars  

E-print Network

Neutron stars are efficient accelerators for bringing charges up to relativistic energies. We show that if positive ions are accelerated to ~1 PeV near the surface of a young neutron star (t_age star's radiation field will produce beamed mu neutrinos with energies of ~50 TeV that could produce the brightest neutrino sources at these energies yet proposed. These neutrinos would be coincident with the radio beam, so that if the star is detected as a radio pulsar, the neutrino beam will sweep the Earth; the star would be a ``neutrino pulsar''. Looking for muon neutrino emission from young neutron stars will provide a valuable probe of the energetics of the neutron star magnetosphere.

B. Link; Fiorella Burgio

2004-12-20

55

Observational Tests of Magnetospheric Accretion Models in Young Stars  

NASA Astrophysics Data System (ADS)

Magnetically controlled accretion of disk material onto the surface of Classical T Tauri stars is the dominant paradigm in our understanding of how these young stars interact with their surrounding disks. These stars provide a powerful test of magnetically controlled accretion models since all of the relevant parameters, including the magnetic field strength and geometry, are in principle measureable. Both the strength and the field geometry are key for understanding how these stars interact with their disks. This talk will focus on recent advances in magnetic field measurements on a large number of T Tauri stars, as well as very recent studies of the accretion rates onto a sample of young stars in NGC 2264 with known rotation periods. We discuss how these observations provide critical tests of magnetospheric accretion models which predict a rotational equilibrium is reached. We find good support for the model predictions once the complex geometry of the stellar magnetic field is taken into account. We will also explore how the observations of the accretion properties of the 2264 cluster stars can be used to test emerging ideas on how magnetic fields on young stars are generated and organized as a function of their internal structure (i.e. the presence of a radiative core). We do not find support for the hypothesis that large changes in the magentic field geometry occur when a radiative core appears in these young stars.

Johns-Krull, Christopher M.; Cauley, P. Wilson

2014-01-01

56

Young, Massive Star Candidates Detected throughout the Nuclear Star Cluster of the Milky Way  

E-print Network

Aims. Young, massive stars have been found at projected distances R 0.5 pc. Our goal in this work is a systematic search for young, massive star candidates throughout the entire region within R ~ 2.5 pc of the black hole. Methods. The main criterion for the photometric identification of young, massive early-type stars is the lack of CO-absorption in the spectra. We used narrow-band imaging with VLT/ISAAC to search for young, massive stars within ~2.5 pc of Sgr A*. Results. We have found 63 early-type star candidates at R 0.5pc. The surface number density profile of the young, massive star candidates can be well fit by a single power-law, with Gamma = 1.6 +- 0.17 at R < 2.5 pc, which is significantly steeper than that of the late-type giants that make up the bulk of the observable stars in the NSC. Intriguingly, this power-law is consistent with the power-law that describes the surface density of young, massive stars in the same brightness range at R < 0.5 pc. Conclusions. The finding of a significant n...

Nishiyama, Shogo

2012-01-01

57

THE FORMATION OF YOUNG DENSE STAR CLUSTERS THROUGH MERGERS  

SciTech Connect

Young star clusters such as NGC 3603 and Westerlund 1 and 2 in the Milky Way and R136 in the Large Magellanic Cloud are dynamically more evolved than expected based on their current relaxation times. In particular, the combination of a high degree of mass segregation, a relatively low central density, and the large number of massive runaway stars in their vicinity are hard to explain with the monolithic formation of these clusters. Young star clusters can achieve such a mature dynamical state if they formed through the mergers of a number of less massive clusters. The shorter relaxation times of less massive clusters cause them to dynamically evolve further by the time they merge, and the merger product preserves the memory of the dynamical evolution of its constituent clusters. With a series of N-body simulations, we study the dynamical evolution of single massive clusters and those that are assembled through merging smaller clusters together. We find that the formation of massive star clusters through the mergers of smaller clusters can reproduce the currently observed spatial distribution of massive stars, the density, and the characteristics (number and mass distribution) of the stars ejected as runaways from young dense clusters. We therefore conclude that these clusters and possibly other young massive star clusters formed through the mergers of smaller clusters.

Fujii, M. S.; Portegies Zwart, S. F. [Leiden Observatory, Leiden University, NL-2300RA Leiden (Netherlands); Saitoh, T. R. [Interactive Research Center of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8551 (Japan)

2012-07-01

58

YOUNG CLUSTERS, PREMAIN SEQUENCE STARS, AND THE YOUNG SUN  

E-print Network

of the constel­ lation (e.g., Orion) or its apparent shape (e.g., Omega) or mythology (e.g., Pleiades = Subaru (Evolved Protostar), Class 2 (CTTS = classical T Tauri Star), Class 3 (WTTS = Weak­ lined T Tauri Star

Linsky, Jeffrey L.

59

Asteroseismology. Echography of young stars reveals their evolution.  

PubMed

We demonstrate that a seismic analysis of stars in their earliest evolutionary phases is a powerful method with which to identify young stars and distinguish their evolutionary states. The early star that is born from the gravitational collapse of a molecular cloud reaches at some point sufficient temperature, mass, and luminosity to be detected. Accretion stops, and the pre-main sequence star that emerges is nearly fully convective and chemically homogeneous. It will continue to contract gravitationally until the density and temperature in the core are high enough to start nuclear burning of hydrogen. We show that there is a relationship for a sample of young stars between detected pulsation properties and their evolutionary status, illustrating the potential of asteroseismology for the early evolutionary phases. PMID:24993346

Zwintz, K; Fossati, L; Ryabchikova, T; Guenther, D; Aerts, C; Barnes, T G; Themeßl, N; Lorenz, D; Cameron, C; Kuschnig, R; Pollack-Drs, S; Moravveji, E; Baglin, A; Matthews, J M; Moffat, A F J; Poretti, E; Rainer, M; Rucinski, S M; Sasselov, D; Weiss, W W

2014-08-01

60

Development of dental charts according to tooth development and eruption for Turkish children and young adults  

PubMed Central

Purpose In this study, we aimed to develop dental charts for Turkish children and young adults of both genders within the age group of 4.5-22.5 years according to tooth mineralization and eruption in a format similar to that proposed by AlQahtani et al. Materials and Methods In total, 753 digital panoramic radiographs from 350 males and 403 females were assessed. The permanent teeth were evaluated according to the classification system described by Demirjian et al. The eruption stage was assessed with Bengston's system, which was modified by AlQahtani et al at four points. Results Teeth generally developed earlier in females than in males. This was particularly notable in the age group of 5-14 years. However, this difference was usually visible in only one stage, not in all teeth. It has been determined that the mixed dentition period ended with the shedding of the second deciduous molars in both genders. Conclusion The dental charts presented here included information that could be beneficial to dental clinicians in making appropriate diagnosis and planning orthodontic and surgical procedures. These charts also provided datasets for preliminary dental age estimation in Turkish children and young adults. PMID:24944959

Afsin, Huseyin; Ozaslan, Abdi; Karaday?, Sukriye

2014-01-01

61

DIRECT DETECTIONS OF YOUNG STARS IN NEARBY ELLIPTICAL GALAXIES  

SciTech Connect

Small amounts of star formation in elliptical galaxies are suggested by several results: surprisingly young ages from optical line indices, cooling X-ray gas, and mid-infrared dust emission. Such star formation has previously been difficult to directly detect, but using ultraviolet Hubble Space Telescope Wide Field Camera 3 imaging, we have identified individual young stars and star clusters in four nearby ellipticals. Ongoing star formation is detected in all galaxies, including three ellipticals that have previously exhibited potential signposts of star-forming conditions (NGC 4636, NGC 4697, and NGC 4374), as well as the typical ''red and dead'' NGC 3379. The current star formation in our closest targets, where we are most complete, is between 2.0 and 9.8 Multiplication-Sign 10{sup -5} M{sub Sun} yr{sup -1}. The star formation history was roughly constant from 0.5 to 1.5 Gyr (at (3-5) Multiplication-Sign 10{sup -4} M{sub Sun} yr{sup -1}), but decreased by a factor of several in the past 0.3 Gyr. Most star clusters have a mass between 10{sup 2} and 10{sup 4} M{sub Sun }. The specific star formation rates of {approx}10{sup -16} yr{sup -1} (at the present day) or {approx}10{sup -14} yr{sup -1} (when averaging over the past Gyr) imply that a fraction 10{sup -8} of the stellar mass is younger than 100 Myr and 10{sup -5} is younger than 1 Gyr, quantifying the level of frosting of recent star formation over the otherwise passive stellar population. There is no obvious correlation between either the presence or spatial distribution of postulated star formation indicators and the star formation we detect.

Ford, H. Alyson; Bregman, Joel N., E-mail: aford@nrao.edu [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States)

2013-06-20

62

Young stars and protostellar cores near NGC 2023  

NASA Astrophysics Data System (ADS)

Context: We investigate the young (proto)stellar population in NGC 2023 and the L 1630 molecular cloud bordering the h ii region IC 434, using Spitzer IRAC and MIPS archive data, JCMT SCUBA imaging and spectroscopy as well as targeted BIMA observations of one of the Class 0 protostars, NGC 2023 MM 1. Aims: We study the distribution of gas, dust and young stars in this region to see where stars are forming, whether the expansion of the h ii region has triggered star formation, and whether dense cold cores have already formed stars. Methods: We have performed photometry of all IRAC and MIPS images, and used color-color diagrams to identify and classify all young stars seen within a 22'×26' field along the boundary between IC 434 and L 1630. For some stars, which have sufficient optical, IR, and/or sub-millimeter data we have also used the online SED fitting tool for a large 2D archive of axisymmetric radiative transfer models to perform more detailed modeling of the observed SEDs. We identify 5 sub-millimeter cores in our 850 and 450 ?m SCUBA images, two of which have embedded class 0 or I protostars. Observations with BIMA are used to refine the position and characteristics of the Class 0 source NGC 2023 MM 1. These observations show that it is embedded in a very cold cloud core, which is strongly enhanced in NH2D. Results: We find that HD 37903 is the most massive member of a cluster with 20-30 PMS stars. We also find smaller groups of PMS stars formed from the Horsehead nebula and another elephant trunk structure to the north of the Horsehead. Star formation is also occurring in the dark lane seen in IRAC images and in the sub-millimeter continuum. We refine the spectral classification of HD 37903 to B2 Ve. We find that the star has a clear IR excess, and therefore it is a young Herbig Be star. Conclusions: Our study shows that the expansion of the IC 434 h ii region has triggered star formation in some of the dense elephant trunk structures and compressed gas inside the L 1630 molecular cloud. This pre-shock region is seen as a sub-millimeter ridge in which stars have already formed. The cluster associated with NGC 2023 is very young, and has a large fraction of Class I sources. Table 2 is only available in electronic form at http://www.aanda.org

Mookerjea, B.; Sandell, G.; Jarrett, T. H.; McMullin, J. P.

2009-12-01

63

Ten-Micron Observations of Nearby Young Stars  

E-print Network

(abridged) We present new 10-micron photometry of 21 nearby young stars obtained at the Palomar 5-meter and at the Keck I 10-meter telescopes as part of a program to search for dust in the habitable zone of young stars. Thirteen of the stars are in the F-K spectral type range ("solar analogs"), 4 have B or A spectral types, and 4 have spectral type M. We confirm existing IRAS 12-micron and ground-based 10-micron photometry for 10 of the stars, and present new insight into this spectral regime for the rest. Excess emission at 10 micron is not found in any of the young solar analogs, except for a possible 2.4-sigma detection in the G5V star HD 88638. The G2V star HD 107146, which does not display a 10-micron excess, is identified as a new Vega-like candidate, based on our 10-micron photospheric detection, combined with previously unidentified 60-micron and 100-micron IRAS excesses. Among the early-type stars, a 10-micron excess is detected only in HD 109573A (HR 4796A), confirming prior observations; among the M dwarfs, excesses are confirmed in AA Tau, CD -40 8434, and Hen 3-600A. A previously suggested N band excess in the M3 dwarf CD -33 7795 is shown to be consistent with photospheric emission.

Stanimir A. Metchev; Lynne A. Hillenbrand; Michael R. Meyer

2003-09-16

64

RCW 108: Massive Young Stars Trigger Stellar Birth  

NASA Technical Reports Server (NTRS)

RCW 108 is a region where stars are actively forming within the Milky Way galaxy about 4,000 light years from Earth. This is a complicated region that contains young star clusters, including one that is deeply embedded in a cloud of molecular hydrogen. By using data from different telescopes, astronomers determined that star birth in this region is being triggered by the effect of nearby, massive young stars.

This image is a composite of X-ray data from NASA's Chandra X-ray Observatory (blue) and infrared emission detected by NASA's Spitzer Space Telescope (red and orange). More than 400 X-ray sources were identified in Chandra's observations of RCW 108. About 90 percent of these X-ray sources are thought to be part of the cluster and not stars that lie in the field-of-view either behind or in front of it. Many of the stars in RCW 108 are experiencing the violent flaring seen in other young star-forming regions such as the Orion nebula. Gas and dust blocks much of the X-rays from the juvenile stars located in the center of the image, explaining the relative dearth of Chandra sources in this part of the image.

The Spitzer data show the location of the embedded star cluster, which appears as the bright knot of red and orange just to the left of the center of the image. Some stars from a larger cluster, known as NGC 6193, are also visible on the left side of the image. Astronomers think that the dense clouds within RCW 108 are in the process of being destroyed by intense radiation emanating from hot and massive stars in NGC 6193.

Taken together, the Chandra and Spitzer data indicate that there are more massive star candidates than expected in several areas of this image. This suggests that pockets within RCW 108 underwent localized episodes of star formation. Scientists predict that this type of star formation is triggered by the effects of radiation from bright, massive stars such as those in NGC 6193. This radiation may cause the interior of gas clouds in RCW 108 to be compressed, leading to gravitational collapse and the formation of new stars.

2008-01-01

65

CANDIDATE CORONAGRAPHIC DETECTIONS OF PROTOPLANETARY DISKS AROUND FOUR YOUNG STARS  

SciTech Connect

We present potential detections of H-band scattered light emission around four young stars, selected from a total sample of 45 young stars observed with the Coronagraphic Imager with Adaptive Optics coronagraph of the Subaru telescope. Two Classical T Tauri stars, CI Tau and DI Cep, and two weak-lined T Tauri stars, LkCa 14 and RXJ 0338.3+1020, were detected. In all the four cases, the extended emission is within the area of the residual point-spread function halo, and is revealed only through careful data reduction. We compare the observed extended emission with simulations of the scattered light emission to evaluate the plausibility and nature of the detected emission.

Karr, J. L.; Ohashi, N. [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China); Kudo, T.; Tamura, M. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

2010-03-15

66

A young massive planet in a star-disk system.  

PubMed

There is a general consensus that planets form within disks of dust and gas around newly born stars. Details of their formation process, however, are still a matter of ongoing debate. The timescale of planet formation remains unclear, so the detection of planets around young stars with protoplanetary disks is potentially of great interest. Hitherto, no such planet has been found. Here we report the detection of a planet of mass (9.8+/-3.3)M(Jupiter) around TW Hydrae (TW Hya), a nearby young star with an age of only 8-10 Myr that is surrounded by a well-studied circumstellar disk. It orbits the star with a period of 3.56 days at 0.04 au, inside the inner rim of the disk. This demonstrates that planets can form within 10 Myr, before the disk has been dissipated by stellar winds and radiation. PMID:18172492

Setiawan, J; Henning, Th; Launhardt, R; Müller, A; Weise, P; Kürster, M

2008-01-01

67

Understanding the Spins of Young Stars  

NASA Astrophysics Data System (ADS)

We review the theoretical efforts to understand why pre-main-sequence stars spin much more slowly than expected. The first idea put forward was that massive stellar winds may remove substantial angular momentum. Since then, it has become clear that the magnetic interaction between the stars and their accretion disks explains many of the observed emission properties. The disk locking scenario, which assumes the magnetic star-disk interaction also solves the stellar spin problem, has received the most attention in the literature to date. However, recent considerations suggest that the torques in the star-disk interaction are insufficient for disk locking to explain the slow rotators. This prompts us to revisit stellar winds, and we conclude that stellar winds, working in conjunction with magnetospheric accretion, are a promising candidate for solving the angular momentum problem. We suggest future directions for both observations and theory, to help shed light on this issue.

Matt, S.; Pudritz, R.

2008-04-01

68

Young Star Cluster Aglow With Mysterious X-Ray Cloud  

NASA Technical Reports Server (NTRS)

At a distance of 6,000 light years from Earth, the star cluster RCW 38 is a relatively close star-forming region. This area is about 5 light years across, and contains thousands of hot, very young stars formed less than a million years ago, 190 of which exposed x-rays to Chandra. Enveloping the star cluster, the diffused cloud of x-rays shows an excess of high energy x-rays, which indicates that the x-rays come from trillion-volt electrons moving in a magnetic field. Such particles are typically produced by exploding stars, or in the strong magnetic fields around neutron stars or black holes, none of which are evident in RCW 38. One possible origin for the particles, could be an undetected supernova that occurred in the cluster, possibly thousands of years ago, producing a shock wave that is interacting with the young stars. Regardless of the origin of these energetic electrons, their presence could change the chemistry of the disks that will eventually form planets around the stars in the cluster.

2002-01-01

69

Winds and Accretion in Young Stars  

E-print Network

Establishing the origin of accretion powered winds from forming stars is critical for understanding angular momentum evolution in the star-disk interaction region. Here, the high velocity component of accretion powered winds is launched and accreting stars are spun down, in defiance of the expected spin-up during magnetospheric accretion. T Tauri stars in the final stage of disk accretion offer a unique opportunity to study the connection between accretion and winds and their relation to stellar spindown. Although spectroscopic indicators of high velocity T Tauri winds have been known for decades, the line of He I 10830 offers a promising new diagnostic to probe the magnetically controlled star-disk interaction and wind-launching region. The high opacity and resonance scattering properties of this line offer a powerful probe of the geometry of both the funnel flow and the inner wind that, together with other atomic and molecular spectral lines covering a wide range of excitation and ionization states, suggests that the magnetic interaction between the star and disk, and the subsequent launching of the inner high velocity wind, is sensitive to the disk accretion rate.

Suzan Edwards

2008-09-21

70

NIR high-resolution imaging of young stars  

Microsoft Academic Search

High resolution imaging of young stellar objects (YSOs) in the near-infrared wavelength region (NIR) can reveal the spatial distribution of warm circumstellar dust as well as the multiplicity of the sources. We investigated a sample of southern Herbig Ae\\/Be stars, Vega-type stars, and a region in the Hourglass nebula with high spatial resolution. For most of the objects, the observations

B. Stecklum; Th. Henning; A. Eckart; R. Hofmann

1994-01-01

71

Internal kinematics of the TW Hya association of young stars  

Microsoft Academic Search

Thirty one probable kinematic members of the nearby TW Hya association of young stars are selected from the RASSBSC\\/Tycho-2 sample of stars luminous in X-rays, detected by ROSAT. Eight of them have been listed already as members of the association, and 23 are new candidates. The association occupies a volume of some 106 pc3, the nearest member being at a

V. V. Makarov; C. Fabricius

2001-01-01

72

The young star cluster system of the Antennae galaxies  

E-print Network

The study of young star cluster (YSC) systems, preferentially in starburst and merging galaxies, has seen great interest in the recent past, as it provides important input to models of star formation. However, even some basic properties (like the luminosity function [LF]) of YSC systems are still under debate. Here we study the photometric properties of the YSC system in the nearest major merger system, the Antennae galaxies. We find evidence for the existence of a statistically significant turnover in the LF.

Peter Anders; Uta Fritze; Richard de Grijs

2008-01-23

73

Young stars in the Galactic Centre: a potential intermediate-mass star origin  

E-print Network

There has been recent speculation (Davies & King 2005) that the cores of intermediate-mass stars stripped of their envelopes by tidal interaction with the supermassive black hole in the Galactic centre could form a population observationally similar to the so-called Sgr A* cluster or `S' stars, which have close eccentric orbits around the hole. We model the evolution of such stars, and show that the more luminous end of the population may indeed appear similar to young B stars within the observational limits of the Galactic Centre region. Whether some or all of these cluster stars can be accounted for in this manner depends strongly on the assumed IMF of the loss cone stars and the scattering rate. If most of the observed stars are in fact scattered from the Galactic Centre inner cusp region itself then the population of ~20 to current observational limits may be reproduced. However, this only works if the local relaxation time is small and relies on the cusp stars themselves being young, i.e. it is dependent on some star formation being possible in the central few parsecs. Conversely, we obtain a possible constraint on the tidal stripping rate of `normal'-IMF stars if there are not to be red stars visible in the Sgr A* cluster.

L. M. Dray; A. R. King; M. B. Davies

2006-07-20

74

Extreme Coronal Mass Ejections in Young Low-Mass Stars  

NASA Astrophysics Data System (ADS)

Two long-standing questions in the study of young, low-mass stars are: (1) What are the mechanisms that govern the observed order-of-magnitude decrease of stellar angular momentum during pre-main-sequence evolution, and (2) What are the physical drivers of X-ray production in these stars at up to 104 times the solar value? Application of solar flare models to the most powerful X-ray flares observed among T Tauri stars in Orion suggests that the flares are produced by magnetic loop structures with lengths of up to tens of stellar radii. We present new results demonstrating that, for the majority of these stars, the extremely large flaring structures are not anchored to or stabilized by circumstellar disks. Given the energy and size scales involved, mass losses (e.g., via stellar coronal mass ejections -- CMEs -- associated with these flares) at such large effective lever arms could shed substantial angular momentum. To begin estimating the attendant angular momentum losses of such extreme CMEs in young stars, we have assembled from the solar literature a database of ˜10,000 X-ray flares and CMEs, from which we determine for the first time the empirical relationship between solar X-ray flare energy and CME ejected mass. Finally, we demonstrate how our flare flux/CME mass relationship can be used to estimate stellar angular momentum loss via extreme CMEs in young stars.

Aarnio, A. N.; Stassun, K. G.; Matt, S. P.; Hughes, W. J.; McGregor, S. L.

2011-12-01

75

The rotational evolution of young low mass stars  

E-print Network

Star-disk interaction is thought to drive the angular momentum evolution of young stars. In this review, I present the latest results obtained on the rotational properties of low mass and very low mass pre-main sequence stars. I discuss the evidence for extremely efficient angular momentum removal over the first few Myr of pre-main sequence evolution and describe recent results that support an accretion-driven braking mechanism. Angular momentum evolution models are presented and their implication for accretion disk lifetimes discussed.

Jerome Bouvier

2007-12-18

76

Young volcanoes in the Chilean Southern Volcanic Zone: A statistical approach to eruption prediction based on time series  

NASA Astrophysics Data System (ADS)

Forecasting volcanic activity has long been an aim of applied volcanology with regard to mitigating consequences of volcanic eruptions. Effective disaster management requires both information on expected physical eruption behaviour such as types and magnitudes of eruptions as typical for the individual volcano, usually reconstructed from deposits of past eruptions, and the likelihood that a new eruption will occur within a given time. Here we apply a statistical procedure to provide a probability estimate for future eruptions based on eruption time series, and discuss the limitations of this approach. The statistical investigation encompasses a series of young volcanoes of the Chilean Southern Volcanic Zone. Most of the volcanoes considered have been active in historical times, in addition to several volcanoes with a longer eruption record from Late-Pleistocene to Holocene. Furthermore, eruption rates of neighbouring volcanoes are compared with the aim to reveal possible regional relations, potentially resulting from local to medium-scale tectonic dynamics. One special focus is directed to the two currently most active volcanoes of South America, Llaima and Villarrica, whose eruption records comprise about 50 historical eruptions over the past centuries. These two front volcanoes are considered together with Lanín Volcano, situated in the back-arc of Villarrica, for which the analysis is based on eight eruptions in the past 10 ka. For Llaima and Villarrica, affirmed tests for independence of the repose times between successive eruptions permit to assume Poisson processes; which is hampered for Lanín because of the more limited availability of documented eruptions. The assumption of stationarity reaches varying degrees of confidence depending on the time interval considered, ameliorating towards the more recent and hence probably more complete eruption record. With these pre-requisites of the time series, several distribution functions are fit and the goodness of their fits is evaluated. The mixture of exponentials distribution (MOED), adopted from Mendoza-Rosas and De la Cruz-Reyna (2008), facilitates statistical evaluation of non-stationary eruptive regimes. Despite providing the least good fit of the data, the MOED proves particularly useful for Lanín Volcano, where stationarity can not be assessed because of possible gaps in the eruption record. In general, the Weibull, exponential and log-logistic distributions imply a higher likelihood of future eruptions within a given time, while the Bayesian and MOED analyses predict lower hazard probabilities. This study does not take into account the complexly interacting geophysical and geochemical processes triggering volcanic eruptions. Our aim is to contribute this statistical prediction to the integrative hazard assessment currently performed in the area by the SFB 574 ("Volatiles and Fluids in Subduction Zones"), complementing regional recording of seismic activity and quiescent gas release, as well as tectonic and geochemical characteristics of the investigated volcanic centres.

Dzierma, Y.; Wehrmann, H.

2010-03-01

77

The Evolutionary Tracks of Young Massive Star Clusters  

NASA Astrophysics Data System (ADS)

Stars mostly form in groups consisting of a few dozen to several ten thousand members. For 30 years, theoretical models have provided a basic concept of how such star clusters form and develop: they originate from the gas and dust of collapsing molecular clouds. The conversion from gas to stars being incomplete, the leftover gas is expelled, leading to cluster expansion and stars becoming unbound. Observationally, a direct confirmation of this process has proved elusive, which is attributed to the diversity of the properties of forming clusters. Here we take into account that the true cluster masses and sizes are masked, initially by the surface density of the background and later by the still present unbound stars. Based on the recent observational finding that in a given star-forming region the star formation efficiency depends on the local density of the gas, we use an analytical approach combined with N-body simulations to reveal evolutionary tracks for young massive clusters covering the first 10 Myr. Just like the Hertzsprung-Russell diagram is a measure for the evolution of stars, these tracks provide equivalent information for clusters. Like stars, massive clusters form and develop faster than their lower-mass counterparts, explaining why so few massive cluster progenitors are found.

Pfalzner, S.; Parmentier, G.; Steinhausen, M.; Vincke, K.; Menten, K.

2014-10-01

78

Dating young basalt eruptions by (U-Th)/He on xenolithic zircons  

NASA Astrophysics Data System (ADS)

Accurate ages for young (e.g., Pleistocene) volcanic eruptions are important for geomorphic, tectonic, climatic, and hazard studies. Existing techniques can be time-consuming and expensive when many ages are needed, and in the case of K/Ar and 40Ar/39Ar dating, extraneous Ar often can limit precision, especially for continental basalts erupted through old lithosphere. We present a new technique for dating young basaltic eruptions by (U-Th)/He dating of zircons (ZHe) from crustal xenoliths. Single-crystal ZHe dates generally have lower precision than typical 40Ar/39Ar dates, but can be determined relatively easily on multiple replicate grain aliquots. We dated zircons from xenoliths from four volcanic centers in western North America: Little Bear Mountain, British Columbia (157 ± 3.5 [2.2%] ka weighted 95% confidence interval [CI], mean square of weighted deviates [MSWD] = 1.7) and Prindle Volcano, Alaska (176 ± 16 [8.9%] ka, MSWD = 13), in the northern Cordilleran volcanic province, and Fish Springs (273 ± 23 [8.6%], MSWD = 43) and Oak Creek (179 ± 8.1 [4.5%] ka, MSWD = 12), in the Big Pine Volcanic Field, California. All ZHe ages are either equivalent to or younger than previously determined K/Ar or 40Ar/39Ar ages, indicating the possibility of inherited 40Ar in some of the previous measurements. Zircons from upper crustal xenoliths in the Oak Creek and Fish Springs vents show poorer reproducibility and multiple apparent age distribution peaks, consistent with either intracrystalline U-Th zonation or <99.99% He degassing (assuming ca. 100 Ma pre-entrainment ZHe ages) of some zircons during magmatic entrainment. Removal of clear outliers in the older age-distribution peaks of the upper crustal xenoliths, most of which have extremely high U compared to other zircons of the same xenolith, improve the reproducibilities of Fish Springs to 4.7% (95% CI, MSWD = 4.8) and Oak Creek to 3.4% (95% CI, MSWD = 6.2). Coupled thermal and He diffusion modeling using appropriate xenolith sizes and magma temperatures and assuming published diffusion kinetics for zircon indicate that incomplete He degassing would require entrainment times <1 h. However, the observation of extremely high U in most zircons with older ages raises the possibility that zircons with high radiation dosages may have more retentive He diffusion characteristics.

Blondes, Madalyn S.; Reiners, Peter W.; Edwards, Benjamin R.; Biscontini, Adrian

2007-01-01

79

STAR: articulation training for young children  

Microsoft Academic Search

The Speech Training, Assessment, and Remediation (STAR) system is intended to assist Speech and Language Pathologists in treating children with articulation problems. The system is embedded in an interactive video game that is set in a spaceship and involves teaching aliens to \\

H. Timothy Bunnell; Debra M. Yarrington; James B. Polikoff

2000-01-01

80

Instabilities in Very Young Neutron Stars: Density  

NSDL National Science Digital Library

This simulation shows the first 20 milliseconds in the life of a neutron star which is formed in a Type II supernova. After an initial collapse phase, the neutron star becomes unstable to convection. The resulting convective motions destroy the spherical symmetry of the star and rapidly mix the inner regions. In addition, the neutrino flux from the neutron star will be non-spherical and will be significantly enhanced by the convective motions. This may have major implications for the Type II supernova mechanism. The calculation was performed using the Piecewise-Parabolic Method for hydrodynamics. The computational grid contained 300 zones in radius and 200 zones in angle. The inner 200 zones in radius were uniformly spaced, ranging from the inner boundary at 25 km to 175 km. The outer 100 zones were non-uniformly spaced and stretched to 2000 km. Only the inner 200 zones are plotted. The inner boundary was treated as a hard sphere. At the outer boundary, zero gradients for all the variables were assumed. Periodic boundary conditions were used along the sides of the grid. The following sequence shows the density evolution for 20 milliseconds after the shock stalls. The density is plotted on a log scale. Values range from 10^9 gm-cm^3 at the outer boundary to 1.4 x 10^12 gm-cm^3 at the inner boundary.

Oneil, Pamela; Fryxell, Bruce; Burrows, Adam

1994-02-12

81

3D Visualization and Detection of Outflows From Young Stars  

Microsoft Academic Search

We present a novel method for the identification of outflows from young stars using 3D isosurface models of molecular line data. Conventional methods for outflow detection, such as the inspection of individual spectra or integrated maps, are tedious and very inefficient when examining large data sets. As part of the Astronomical Medicine project at the Initiative in Innovative Computing (IIC)

M. Borkin; H. Arce; A. Goodman; M. Halle

2008-01-01

82

Brown Dwarfs and Giant Planets Around Young Stars  

Microsoft Academic Search

How dry is the brown dwarf (BD) desert at young ages? Previous radial velocity (RV) surveys have revealed that the frequency of BDs as close companions to solar-age stars in the field is extraordinarily low compared to the frequency of close planetary and stellar companions. Is this a formation or an evolutionary effect? Do close-in BDs form at lower rates,

Naved Mahmud; C. Crockett; C. Johns-Krull; L. Prato; P. Hartigan; D. Jaffe; C. Beichman

2011-01-01

83

Shock Waves in Out ows from Young Stars Patrick Hartigan  

E-print Network

and mass loss rates in jets from young stars. Spatial separations of the cooling zones from the shock as material emerges from a collimated jet and interacts with previously ejected gas and with the surrounding medium. The shock speeds are low enough and the densities high enough that the shocked gas cools

Hartigan, Patrick

84

The Correlation Dimension of Young Stars in Dwarf Galaxies  

E-print Network

We present the correlation dimension of resolved young stars in four actively star-forming dwarf galaxies that are sufficiently resolved and transparent to be modeled as projections of three-dimensional point distributions. We use data in the Hubble Space Telescope archive; photometry for one of them, UGCA 292, is presented here for the first time. We find that there are statistically distinguishable differences in the nature of stellar clustering among the sample galaxies. The young stars of VII Zw 403, the brightest galaxy in the sample, have the highest value for the correlation dimension and also the most dramatic decrease with logarithmic scale, falling from $1.68\\pm0.14$ to $0.10\\pm0.05$ over less than a factor of ten in $r$. This decrease is consistent with the edge effect produced by a projected Poisson distribution within a 2:2:1 ellipsoid. The young stars in UGC 4483, the faintest galaxy in the sample, exhibit very different behavior, with a constant value of about 0.5 over this same range in $r$, extending nearly to the edge of the distribution. This behavior may indicate either a scale-free distribution with an unusually low correlation dimension, or a two-component (not scale-free) combination of cluster and field stars.

Mary Crone Odekon

2006-08-04

85

V838 Mon and the new class of stars erupting into cool supergiants (SECS)  

NASA Astrophysics Data System (ADS)

V838 Mon has undergone one of the most mysterious stellar outbursts on record. The spectrum at maximum closely resembled a cool AGB star, evolving toward cooler temperatures with time, never reaching optically thin conditions or showing increasing ionization and a nebular stage. The latest spectral type recorded is M8-9. The amplitude peaked at ?V=9 mag, with the outburst evolution being characterized by a fast rise, three maxima over four months, and a fast decay (possibly driven by dust condensation). BaII, LiI and s-element lines were prominent in the outburst spectra. Strong and wide (500 km/sec) P-Cyg profiles affected low ionization species, while Balmer lines emerged to modest emission only during the central phase of the outburst. A light-echo discovered expanding around the object constrains its distance to 790+/-30 pc, providing MV = +4.45 in quiescence and MV = -4.35 at optical maximum (dependent on the still uncertain EB-V=0.5 reddening). The visible progenitor resembles a somewhat under-luminous F0 main sequence star, that did not show detectable variability over the last half century. V838 Mon together with M31-RedVar and V4332 Sgr seems to define a new class of astronomical objects, Stars that Erupt into Cool Supergiants (SECS). They do not develop optically thin or nebular phases, and deep P-Cyg profiles denounce large mass loss at least in the early outburst phases. Their progenitors are photometrically located close to the Main Sequence, away from the post-AGB region. After the outburst, the remnants still closely resemble the precursors (same brightness, same spectral type). Many more similar objects could be buried among poorly studied variable stars that have been classified as Miras or SemiRegulars on the base of a single spectrum at maximum brightness.

Munari, U.; Henden, A.; Corradi, R. M. L.; Zwitter, T.

2002-11-01

86

Young, Massive Stars at Low Metallicity  

NASA Technical Reports Server (NTRS)

We report on an extensive analysis of O-type stars in the Small Magellanic Cloud that have been observed by HST and FUSE. The analysis, which involves detailed NLTE atmospheric models recently constructed by Lanz & Hubeny, has the following goals: (1) calibration of spectral properties in terms of fundamental parameters; (2) resolution of the discrepancy between spectro-scopic masses and evolutionary masses; and (3) evidence for mixing of nuclear-processed elements. We derive a significantly lower temperature scale for O-type stars than previously assumed; the lower temperatures help to resolve the mass discrepancy. We describe the results of our analysis and discuss their implications for stellar evolution at low metallicity.

Oegerle, William R. (Technical Monitor); Heap, S. R.; Lanz, T.

2002-01-01

87

X-Ray Outburst from Young Star in McNeil's Nebula  

NASA Astrophysics Data System (ADS)

Observations with NASA's Chandra X-ray Observatory captured an X-ray outburst from a young star, revealing a probable scenario for the intermittent brightening of the recently discovered McNeil's Nebula. It appears the interaction between the young star's magnetic field and an orbiting disk of gas can cause dramatic, episodic increases in the light from the star and disk, illuminating the surrounding gas. "The story of McNeil's Nebula is a wonderful example of the importance of serendipity in science," said Joel Kastner of the Rochester Institute of Technology in Rochester, New York, lead author of a paper in the July 22 issue of Nature describing the X-ray results. "Visible-light images were made of this region several months before Jay McNeil made his discovery, so it could be determined approximately when and by how much the star flared up to produce McNeil's Nebula." The small nebula, which lies in the constellation Orion about 1300 light years from Earth, was discovered with a 3-inch telescope by McNeil, an amateur astronomer from Paducah, Kentucky, in January 2004. In November 2002, a team led by Ted Simon of the Institute for Astronomy in Hawaii had observed the star-rich region with Chandra in search of young, X-ray emitting stars, and had detected several objects. Optical and infrared astronomers had, as part of independent surveys, also observed the region about a year later, in 2003. After the announcement of McNeil's discovery, optical, infrared and X-ray astronomers rushed to observe the region again. They found that a young star buried in the nebula had flared up, and was illuminating the nebula. This star was coincident with one of the X-ray sources discovered earlier by Simon. Chandra observations obtained by Kastner's group just after the optical outburst showed that the source had brightened fifty-fold in X-rays when compared to Simon's earlier observation. The visible-light eruption provides evidence that the cause of the X-ray outburst is the sudden infall of matter onto the surface of the star from an orbiting disk of gas. In general, the coupling of the magnetic field of the star and the magnetic field of its circumstellar disk regulates the inflow of gas from the disk onto the star. This slow, steady inflow suddenly can become much more rapid if a large amount of gas accumulates in the disk, and the disk and the star are rotating at different rates. The differing rotation rates would twist and shear the magnetic field, storing up energy. This energy is eventually released in an energetic, X-ray producing outburst as the magnetic field violently rearranges back to a more stable state. During this period, a large amount of gas can fall onto the star, producing the observed optical and infrared outburst. A new buildup of gas in the disk could lead to a new outburst in the future. Such a scenario may explain why the brightness of McNeil's Nebula appears to vary with time. It is faintly present in surveys of this region of Orion in images taken in the 1960s, but absent from images taken in the 1950s and 1990s. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for NASA's Office of Space Science, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

2004-07-01

88

The Beta Pictoris Phenomenon in Young Stars With Accreting Gas  

NASA Technical Reports Server (NTRS)

Program Hae2BPIC resulted in usable ISO spectra of three young, Herbig Ae stars: HR 5999 (A7e, t=0.6 Myr), SV Cep (al-2e, t=1-3 Myr), and MW Vul (Al-2e, t=1-3 Myr). While too small a sample to pursue our original goal of surveying the silicate emission in these young, protoplanetary disk systems, comparison of these data with ground-based IR spectra, and published ISO observations of other HAe stars (especially the posters at PPIV) reveals the following: The known binary stars in the sample show signatures of partially crystal line silicate features by t=0.6 Myr, at an epoch when ostensibly single Herbig Ae stars have substantially stronger silicate emission dominated by amorphous grains. The known binary stars also show deficits in the optically thick continuum flux relative to coeval single stars. Comparison of ISO spectra indicates that the flux deficit seen in WD 163296 over 10-100 microns relative to AB Aur reflects a real deficit of material interior to 300.

Grady, Carol A.

1999-01-01

89

Evolution of massive stars in very young clusters and associations  

NASA Technical Reports Server (NTRS)

Statistics concerning the stellar content of young galactic clusters and associations which show well defined main sequence turnups have been analyzed in order to derive information about stellar evolution in high-mass galaxies. The analytical approach is semiempirical and uses natural spectroscopic groups of stars on the H-R diagram together with the stars' apparent magnitudes. The new approach does not depend on absolute luminosities and requires only the most basic elements of stellar evolution theory. The following conclusions are offered on the basis of the statistical analysis: (1) O-tupe main-sequence stars evolve to a spectral type of B1 during core hydrogen burning; (2) most O-type blue stragglers are newly formed massive stars burning core hydrogen; (3) supergiants lying redward of the main-sequence turnup are burning core helium; and most Wolf-Rayet stars are burning core helium and originally had masses greater than 30-40 solar mass. The statistics of the natural spectroscopic stars in young galactic clusters and associations are given in a table.

Stothers, R. B.

1985-01-01

90

STAR-FORMING GAS IN YOUNG CLUSTERS  

SciTech Connect

Initial conditions for star formation in clusters are estimated for protostars whose masses follow the initial mass function from 0.05 to 10 solar masses. Star-forming infall is assumed equally likely to stop at any moment, due to gas dispersal dominated by stellar feedback. For spherical infall, the typical initial condensation must have a steep density gradient, as in low-mass cores, surrounded by a shallower gradient, as in the clumps around cores. These properties match observed column densities in cluster-forming regions when the mean infall stopping time is 0.05 Myr and the accretion efficiency is 0.5. The infall duration increases with final protostar mass, from 0.01 to 0.3 Myr, and the mass accretion rate increases from 3 to 300 x 10{sup -6} solar masses yr{sup -1}. The typical spherical accretion luminosity is {approx}5 solar luminosities, reducing the 'luminosity problem' to a factor of {approx}3. The initial condensation density gradient changes from steep to shallow at radius 0.04 pc, enclosing 0.9 solar masses, with mean column density 2 x 10{sup 22} cm{sup -2} and with effective central temperature 16 K. These initial conditions are denser and warmer than those for isolated star formation.

Myers, Philip C., E-mail: pmyers@cfa.harvard.ed [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

2010-05-10

91

Measuring the Rotational Velocities of Young M Stars  

NASA Astrophysics Data System (ADS)

We have measured the projected rotational velocities of 140 young M stars identified using ROSAT data and previously discussed in Shkolnik et al. 2009, 2012. Each stellar spectrum was fit with a specific spectral-type-matched, slowly rotating template spectrum to measure the projected rotational velocity, v sin i, for each star. Our preliminary analysis measured that 83% of the sample are rapid rotators, with vsini > 5 km/s. Unlike Reiners et al. 2012, who looked at old M stars, we do not see a strong correlation of more rapid rotation with later spectral type for the M0 through M4 stars. However our sample is all consistently younger, which may explain the higher percentage of rapid rotators. Many thanks to the National Science Foundation for their support through grant AST-1109693.

Martlin, Catherine; Jensen, E. L.; Shkolnik, E.

2014-01-01

92

Finding exoplanets orbiting young active stars - I. Technique  

NASA Astrophysics Data System (ADS)

Stellar activity, such as starspots, can induce radial velocity (RV) variations that can mask or even mimic the RV signature of orbiting exoplanets. For this reason RV exoplanet surveys have been unsuccessful when searching for planets around young, active stars and are therefore failing to explore an important regime which can help to reveal how planets form and migrate. This paper describes a new technique to remove spot signatures from the stellar line-profiles of moderately rotating, active stars (v sin i ranging from 10 to 50 km s-1). By doing so it allows planetary RV signals to be uncovered. We used simulated models of a G5V type star with differing dark spots on its surface along with archive data of the known active star HD 49933 to validate our method. The results showed that starspots could be effectively cleaned from the line-profiles so that the stellar RV jitter was reduced by more than 80 per cent. Applying this procedure to the same models and HD 49933 data, but with fake planets injected, enabled the effective removal of starspots so that Jupiter mass planets on short orbital periods were successfully recovered. These results show that this approach can be useful in the search for hot-Jupiter planets that orbit around young, active stars with a v sin i of ˜10-50 km s-1.

Moulds, V. E.; Watson, C. A.; Bonfils, X.; Littlefair, S. P.; Simpson, E. K.

2013-04-01

93

HOT WHITE DWARF SHINES IN YOUNG STAR CLUSTER  

NASA Technical Reports Server (NTRS)

A dazzling 'jewel-box' collection of over 20,000 stars can be seen in crystal clarity in this NASA Hubble Space Telescope image, taken with the Wide Field and Planetary Camera 2. The young (40 million year old) cluster, called NGC 1818, is 164,000 light-years away in the Large Magellanic Cloud (LMC), a satellite galaxy of our Milky Way. The LMC, a site of vigorous current star formation, is an ideal nearby laboratory for studying stellar evolution. In the cluster, astronomers have found a young white dwarf star, which has only very recently formed following the burnout of a red giant. Based on this observation astronomers conclude that the red giant progenitor star was 7.6 times the mass of our Sun. Previously, astronomers have estimated that stars anywhere from 6 to 10 solar masses would not just quietly fade away as white dwarfs but abruptly self-destruct in torrential explosions. Hubble can easily resolve the star in the crowded cluster, and detect its intense blue-white glow from a sizzling surface temperature of 50,000 degrees Fahrenheit. IMAGE DATA Date taken: December 1995 Wavelength: natural color reconstruction from three filters (I,B,U) Field of view: 100 light-years, 2.2 arc minutes TARGET DATA Name: NGC 1818 Distance: 164,000 light-years Constellation: Dorado Age: 40 million years Class: Rich star cluster Apparent magnitude: 9.7 Apparent diameter: 7 arc minutes Credit: Rebecca Elson and Richard Sword, Cambridge UK, and NASA (Original WFPC2 image courtesy J. Westphal, Caltech) Image files are available electronically via the World Wide Web at: http://oposite.stsci.edu/pubinfo/1998/16 and via links in http://oposite.stsci.edu/pubinfo/latest.html or http://oposite.stsci.edu/pubinfo/pictures.html. GIF and JPEG images are available via anonymous ftp to oposite.stsci.edu in /pubinfo/GIF/9816.GIF and /pubinfo/JPEG/9816.jpg.

2002-01-01

94

Wolf-Rayet Stars in Very Young Starburst Galaxies  

E-print Network

Preliminary results from spectrophotometric observations of galaxies with very young starbursts are presented. Starburst galaxies with an age of the burst in the range between 3 and 6 Myr have been observed and new detections of Wolf-Rayet galaxies are reported. We discuss the origin of high excitation nebular lines observed in these galaxies and their possible link with the population of Wolf-Rayet stars.

Thierry Contini

1996-10-10

95

Uncovering the Properties of Young Neutron Stars and Their Surroundings  

NASA Technical Reports Server (NTRS)

The subject grant provides funding through the NASA LTSA program. This five-year grant involves the study of young neutron stars, particularly those in supernova remnants. In the fifth year of this program, the following studies have been undertaken in support of this effort and are discussed in this report. 1) 3C 58; 2) Chandra Survey for Compact Objects in Supernova Remnants; 3) G327.1-1.1; 4) Infrared Emission from Pulsar Wind Nebulae; and Cas A.

Oliversen, Ronald (Technical Monitor); Slane, Patrick

2005-01-01

96

The occurrence and properties of disks around young stars  

NASA Technical Reports Server (NTRS)

The paper discusses the occurrence and properties of disks around young stars, emphasizing in particular how these may relate to planet formation and the evolution of the solar system. The global properties of such disks often resemble those attributed to the primitive solar nebula, suggesting that conditions appropriate for planet formation commonly accompany the birth of low-mass stars. Disk masses, between 0.001 and 1 solar mass, are generally lower than those of the stars, and may represent only a fraction (less than about 10 percent) of the total system mass. From the paucity of near-IR radiation from some disks it is inferred that the inner regions there are gaps where the opacity from small particles becomes vanishingly small. Evidence is presented to the effect that gaps in the inner disks develop preferentially in the oldest objects, suggesting that, with time, matter is lost or accumulates into large particles such as planetesimals, which cannot yet be detected.

Beckwith, Steven V. W.; Sargent, Anneila I.

1993-01-01

97

Stellar Content and Star Formation in Young Clusters Influenced by Massive Stars  

NASA Astrophysics Data System (ADS)

Star Formation (SF) in extreme environment is always challenging and can be significantly different from that in quiet environments. This study presents the comprehensive multi-wavelength (optical, NIR, MIR and radio) observational analysis of three Galactic starforming regions associated with H II regions/young clusters and located at > 2 kpc, which are found to be evolving under the influence of massive stars within their vicinity. The candidate massive stars, young stellar objects, their mass, age, age spread, the form of K-band Luminosity Function (KLF), Initial Mass Function (IMF) and a possible formation history of each region are studied. The major results on Sh2-252, an extended H II region that appears to be undergoing multiple episodes of SF, are highlighted. Our analysis shows that all the regions are undergoing complex SF activity and the new generation of stars in each region seem to be an outcome of the influence by the presence of massive stars within them. SF process in these regions are likely to be multi-fold and the results suggest that multiple modes of triggering mechanism and hierarchial modes of SF are a common phenomena within young clusters.

Jose, J.

2014-09-01

98

Misaligned protoplanetary disks in a young binary star system  

NASA Astrophysics Data System (ADS)

Many extrasolar planets follow orbits that differ from the nearly coplanar and circular orbits found in our Solar System; their orbits may be eccentric or inclined with respect to the host star's equator, and the population of giant planets orbiting close to their host stars suggests appreciable orbital migration. There is at present no consensus on what produces such orbits. Theoretical explanations often invoke interactions with a binary companion star in an orbit that is inclined relative to the planet's orbital plane. Such mechanisms require significant mutual inclinations between the planetary and binary star orbital planes. The protoplanetary disks in a few young binaries are misaligned, but often the measurements of these misalignments are sensitive only to a small portion of the inner disk, and the three-dimensional misalignment of the bulk of the planet-forming disk mass has hitherto not been determined. Here we report that the protoplanetary disks in the young binary system HK Tauri are misaligned by 60 to 68 degrees, such that one or both of the disks are significantly inclined to the binary orbital plane. Our results demonstrate that the necessary conditions exist for misalignment-driven mechanisms to modify planetary orbits, and that these conditions are present at the time of planet formation, apparently because of the binary formation process.

Jensen, Eric L. N.; Akeson, Rachel

2014-07-01

99

Young stars and protostellar cores near NGC 2023  

NASA Astrophysics Data System (ADS)

We present the results of our investigation of the young (proto)stellar population in NGC~2023 and the L~1630 molecular cloud bordering the H II region IC 434, using Spitzer IRAC and MIPS archive data and JCMT SCUBA imaging. We have performed photometry of all IRAC and MIPS images, and used colour-colour diagrams to identify and classify all young stars seen within a 22 arcmin × 26 arcmin field along the boundary between IC 434 and L 1630. We identify a total of 95 mid-infrared sources and 5 sub-millimeter cores in our 850 and 450 ?m SCUBA images, two (MM 1 and MM 3) of which have embedded class 0 or I protostars. We find that HD 37903 is the most massive member of a cluster with 20 -- 30 PMS stars. We also find smaller groups of PMS stars formed in the Horsehead nebula and another elephant trunk structure to the north of the Horsehead. Our study shows that the expansion of the IC 434 H II region has triggered star formation in some of the dense elephant trunk structures and compressed gas inside the L 1630 molecular cloud.

Mookerjea, B.; Sandell, G.; Jarrett, T. H.; McMullin, J.

100

Misaligned protoplanetary disks in a young binary star system.  

PubMed

Many extrasolar planets follow orbits that differ from the nearly coplanar and circular orbits found in our Solar System; their orbits may be eccentric or inclined with respect to the host star's equator, and the population of giant planets orbiting close to their host stars suggests appreciable orbital migration. There is at present no consensus on what produces such orbits. Theoretical explanations often invoke interactions with a binary companion star in an orbit that is inclined relative to the planet's orbital plane. Such mechanisms require significant mutual inclinations between the planetary and binary star orbital planes. The protoplanetary disks in a few young binaries are misaligned, but often the measurements of these misalignments are sensitive only to a small portion of the inner disk, and the three-dimensional misalignment of the bulk of the planet-forming disk mass has hitherto not been determined. Here we report that the protoplanetary disks in the young binary system HK Tauri are misaligned by 60 to 68 degrees, such that one or both of the disks are significantly inclined to the binary orbital plane. Our results demonstrate that the necessary conditions exist for misalignment-driven mechanisms to modify planetary orbits, and that these conditions are present at the time of planet formation, apparently because of the binary formation process. PMID:25079553

Jensen, Eric L N; Akeson, Rachel

2014-07-31

101

The influence of grain growth in circumstellar dust envelopes on observed colors and polarization of some eruptive stars  

NASA Technical Reports Server (NTRS)

R CrB stars are classical examples of stars where dust envelope formation takes place. Dust envelope formation was detected around the Kuwano-Honda object (PU Vul) in 1980 to 1981 when the star's brightness fell to 8(sup m). Such envelopes are also formed at nova outbursts. The process of dust envelope formation leads to appreciable variations in optical characteristics, which are seen in specific color and polarization variations in the course of light fading and the appearance of IR radiation. It is shown that the model of a circumstellar dust envelope with aligned particles of changing size can be successfully applied to explain most phenomena observed at the time of light minima for a number of eruptive stars. The polarization may arise in a nonspherical dust envelope or be produced by alignment of nonspherical particles.

Efimov, Yu. S.

1989-01-01

102

Observation of light echoes around very young stars  

NASA Astrophysics Data System (ADS)

Aims: The goal of the paper is to present new results on light echoes from young stellar objects. Methods: Broad band CCD images were obtained over three months at one-to-two week intervals for the field of NGC 6726, using the large field-of-view remotely-operated telescope on top of Cerro Burek. Results: We detected scattered light echoes around two young, low-amplitude, irregular variable stars. Observations revealed not just one, but multiple light echoes from brightness pulses of the T Tauri star S CrA and the Herbig Ae/Be star R CrA. Analysis of S CrA's recurring echoes suggests that the star is located 138 ± 16 pc from Earth, making these the closest echoes ever detected. The environment that scatters the stellar light from S CrA is compatible with an incomplete dust shell or an inclined torus some 10 000 AU in radius and containing ~2 × 10-3 M? of dust. The cause of such concentration at ~10 000 AU from the star is unknown. It could be the remnant of the envelope from which the star formed, but the distance of the cloud is remarkably similar to the nominal distance of the Oort cloud to the Sun, leading us to also speculate that the dust (or ice) seen around S CrA might have the same origin as the Solar System Oort cloud. Movies are available in electronic form at http://www.aanda.org, http://www.iaa.es/~ortiz/animacion1.avi, and http://www.iaa.es/~ortiz/S-animation.gif

Ortiz, J. L.; Sugerman, B. E. K.; de La Cueva, I.; Santos-Sanz, P.; Duffard, R.; Gil-Hutton, R.; Melita, M.; Morales, N.

2010-09-01

103

Young stars and brown dwarfs in Ori OB1b (Caballero+, 2008)  

Microsoft Academic Search

We present here exhaustive lists of known young stars and new candidate members around Alnilam and Mintaka in the Ori OB1b association as well as of fore- and background sources. A total of 133 stars display features of extreme youth, including early spectral types, lithium in absorption, or mid-infrared flux excess. Other two young brown dwarf and 289 star candidates

J. A. Caballero; E. Solano

2008-01-01

104

ADVANCED CAMERA FOR SURVEYS OBSERVATIONS OF YOUNG STAR CLUSTERS IN THE INTERACTING GALAXY UGC 10214  

E-print Network

of young star clusters in the colliding/merging galaxy UGC 10214. The observations were made as partADVANCED CAMERA FOR SURVEYS OBSERVATIONS OF YOUNG STAR CLUSTERS IN THE INTERACTING GALAXY UGC 10214: galaxies: individual (Arp 188, UGC 10214, VV 29) -- galaxies: star clusters 1. INTRODUCTION In 2002 April

Golimowski, David A.

105

The Search for Young Planetary Systems And the Evolution of Young Stars  

NASA Technical Reports Server (NTRS)

The Space Interferometer Mission (SIM) will provide a census of planetary systems by con- ducting a broad survey of 2,000 stars that will be sensitive to the presence of planets with masses as small as approx. 15 Earth masses (1 Uranus mass) and a deep survey of approx. 250 of the nearest, stars with a mass limit of approx.3 Earth masses. The broad survey will include stars spanning a wide range of ages, spectral types, metallicity, and other important parameters. Within this larger context, the Young Stars and Planets Key Project will study approx. 200 stars with ages from 1 Myr to 100 Myr to understand the formation and dynamical evolution of gas giant planets. The SIM Young Stars and Planets Project will investigate both the frequency of giant planet formation and the early dynamical history of planetary systems. We will gain insight into how common the basic architecture of our solar system is compared with recently discovered systems with close-in giant planets by examining 200 of the nearest (less than 150 pc) and youngest (1-100 Myr) solar-type stars for planets. The sensitivity of the survey for stars located 140 pc away is shown in the planet mass-separation plane. We expect to find anywhere from 10 (assuming that only the presently known fraction of stars. 5-7%, has planets) to 200 (all young stars have planets) planetary systems. W-e have set our sensitivity threshold to ensure the detection of Jupiter-mass planets in the critical orbital range of 1 to 5 AU. These observations, when combined with the results of planetary searches of mature stars, will allow us to test theories of planetary formation and early solar system evolution. By searching for planets around pre-main sequence stars carefully selected to span an age range from 1 to 100 Myr, we will learn a t what epoch and with what frequency giant planets are found at the water-ice snowline where they are expected to form. This will provide insight into the physical mechanisms by which planets form and migrate from their place of birth, and about their survival rate. With these data in hand, we will provide data, for the first time, on such important questions as: What processes affect the formation and dynamical evolution of planets? When and where do planets form? What is initial mass distribution of planetary systems around young stars? How might planets be destroyed? What is the origin of the eccentricity of planetary orbits? What is the origin of the apparent dearth of companion objects between planets and brown dwarfs seen in mature stars? The observational strategy is a compromise between the desire to extend the planetary mass function as low as possible and the essential need to build up sufficient statistics on planetary occurrence. About half of the sample will be used to address the "where" and "when" of planet formation. We will study classical T Tauri stars (cTTs) which have massive accretion disks and post- accretion, weak-lined T Tauri stars (wTTs). Preliminary estimates suggest the sample will consist of approx. 30% cTTs and approx. 70% wTTs, driven in part by the difficulty of making accurate astrometric measurements toward objects with strong variability or prominent disks.

Beichman, Charles A.; Boden, Andrew; Ghez, Andrea; Hartman, Lee W.; Hillenbrand, Lynn; Lunine, Jonathan I.; Simon, Michael J.; Stauffer, John R.; Velusamy, Thangasamy

2004-01-01

106

Evolution of the central stars of young planetary nebulae  

E-print Network

The evolution of central stars of planetary nebulae was so far documented in just a few cases. However, spectra collected a few decades ago may provide a good reference for studying the evolution of central stars using the emission line fluxes of their nebulae. We investigated evolutionary changes of the [OIII] 5007 A line flux in the spectra of planetary nebulae. We compared nebular fluxes collected during a decade or longer. We used literature data and newly obtained spectra. A grid of Cloudy models was computed using existing evolutionary models, and the models were compared with the observations. An increase of the [OIII] 5007 A line flux is frequently observed in young planetary nebulae hosting H-rich central stars. The increasing nebular excitation is the response to the increasing temperature and hardening radiation of the central stars. We did not observe any changes in the nebular fluxes in the planetary nebulae hosting late-type Wolf-Rayet (WR) central stars. This may indicate a slower temperature e...

Hajduk, Marcin; Zijlstra, Albert A

2014-01-01

107

HUNTING FOR YOUNG DISPERSING STAR CLUSTERS IN IC 2574  

SciTech Connect

Dissolving stellar groups are very difficult to detect using traditional surface photometry techniques. We have developed a method to find and characterize non-compact stellar systems in galaxies where the young stellar population can be spatially resolved. By carrying out photometry on individual stars, we are able to separate the luminous blue stellar population from the star field background. The locations of these stars are used to identify groups by applying the HOP algorithm, which are then characterized using color-magnitude and stellar density radial profiles to estimate age, size, density, and shape. We test the method on Hubble Space Telescope Advanced Camera for Surveys archival images of IC 2574 and find 75 dispersed stellar groups. Of these, 20 highly dispersed groups are good candidates for dissolving systems. We find few compact systems with evidence of dissolution, potentially indicating that star formation in this galaxy occurs mostly in unbound clusters or groups. These systems indicate that the dispersion rate of groups and clusters in IC 2574 is at most 0.45 pc Myr{sup -1}. The location of the groups found with HOP correlate well with H I contour map features. However, they do not coincide with H I holes, suggesting that those holes were not created by star-forming regions.

Pellerin, Anne [Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843-4242 (United States); Meyer, Martin M. [International Centre for Radio Astronomy Research, University of Western Australia, 35 Stirling Highway, CRAWLEY WA 6009 (Australia); Calzetti, Daniella [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Harris, Jason, E-mail: apellerin@mta.ca, E-mail: martin.meyer@uwa.edu.au, E-mail: calzetti@astro.umass.edu, E-mail: jharris@30doradus.org [Illumina, Inc., 25861 Industrial Blvd, Hayward, CA 94545 (United States)

2012-12-01

108

Discovery of solar system-size halos around young stars  

NASA Technical Reports Server (NTRS)

Near-infrared speckle interferometric observations of five pre-main-sequence stars reveal a core-halo structure around two of these stars: HL Tau and R Mon. The halo light distribution is shown to arise from scattered light from small circumstellar particles. Halo sizes of 320 x 200 AU (alpha x delta FWHM) and 1300 x 1300 AU are deduced for HL Tau and R Mon, respectively, and the halo light is substantially bluer than the stellar light. The minimum mass of small particles in the scattering regions is comparable to the earth's mass in HL Tau and ten times greater in R Mon. Mass loss from the stars is almost certainly insufficient to produce the halo matter. The halos probably consist of relatively slowly moving matter bound gravitationally to the stars. From the size and mass of the circumstellar matter, it appears likely that these halos are in the early stage in the formation of planet-forming disks around the young stars.

Beckwith, S.; Skrutskie, M. F.; Zuckerman, B.; Dyck, H. M.

1984-01-01

109

DISK-RELATED BURSTS AND FADES IN YOUNG STARS  

SciTech Connect

We present first results from a new, multiyear, time domain survey of young stars in the North America Nebula complex using the Palomar Transient Factory. Our survey is providing an unprecedented view of aperiodic variability in young stars on timescales of days to years. The analyzed sample covers R{sub PTF} Almost-Equal-To 13.5-18 and spans a range of mid-infrared color, with larger-amplitude optical variables (exceeding 0.4 mag root mean squared) more likely to have mid-infrared evidence for circumstellar material. This paper characterizes infrared excess stars with distinct bursts above or fades below a baseline of lower-level variability, identifying 41 examples. The light curves exhibit a remarkable diversity of amplitudes, timescales, and morphologies, with a continuum of behaviors that cannot be classified into distinct groups. Among the bursters, we identify three particularly promising sources that may represent theoretically predicted short-timescale accretion instabilities. Finally, we find that fading behavior is approximately twice as common as bursting behavior on timescales of days to years, although the bursting and fading duty cycle for individual objects often varies from year to year.

Findeisen, Krzysztof; Hillenbrand, Lynne; Levitan, David; Sesar, Branimir [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Ofek, Eran [Benoziyo Center for Astrophysics, Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 76100 (Israel); Laher, Russ; Surace, Jason, E-mail: krzys@astro.caltech.edu, E-mail: lah@astro.caltech.edu [Spitzer Science Center, California Institute of Technology, MC 314-6, Pasadena, CA 91125 (United States)

2013-05-01

110

FAST STAR, SLOW STAR; OLD STAR, YOUNG STAR: SUBGIANT ROTATION AS A POPULATION AND STELLAR PHYSICS DIAGNOSTIC  

SciTech Connect

Stellar rotation is a strong function of both mass and evolutionary state. Missions such as Kepler and CoRoT provide tens of thousands of rotation periods, drawn from stellar populations that contain objects at a range of masses, ages, and evolutionary states. Given a set of reasonable starting conditions and a prescription for angular momentum loss, we address the expected range of rotation periods for cool field stellar populations (?0.4-2.0 M{sub ?}). We find that cool stars fall into three distinct regimes in rotation. Rapid rotators with surface periods less than 10 days are either young low-mass main sequence (MS) stars, or higher mass subgiants which leave the MS with high rotation rates. Intermediate rotators (10-40 days) can be either cool MS dwarfs, suitable for gyrochronology, or crossing subgiants at a range of masses. Gyrochronology relations must therefore be applied cautiously, since there is an abundant population of subgiant contaminants. The slowest rotators, at periods greater than 40 days, are lower mass subgiants undergoing envelope expansion. We identify additional diagnostic uses of rotation periods. There exists a period-age relation for subgiants distinct from the MS period-age relations. There is also a period-radius relation that can be used as a constraint on the stellar radius, particularly in the interesting case of planet host stars. The high-mass/low-mass break in the rotation distribution on the MS persists onto the subgiant branch, and has potential as a diagnostic of stellar mass. Finally, this set of theoretical predictions can be compared to extensive datasets to motivate improved modeling.

Van Saders, Jennifer L.; Pinsonneault, Marc H., E-mail: vansaders@astronomy.ohio-state.edu [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States)

2013-10-20

111

The Photoevaporation of Discs Around Young Stars in Massive Clusters  

E-print Network

We present models in which the photoevaporation of discs around young stars by an external ultraviolet source (as computed by Adams et al 2004) is coupled with the internal viscous evolution of the discs. These models are applied to the case of the Orion Nebula Cluster, where the presence of a strong ultraviolet field from the central OB stars, together with a detailed census of circumstellar discs and photoevaporative flows, is well established. In particular we investigate the constraints that are placed on the initial disc properties in the ONC by the twin requirement that most stars possess a disc on a scale of a few A.U., but that only a minority ($ 0.1 M_\\odot$). The ubiquity of discs on a small scale, on the other hand, mainly constrains the timespan over which the discs have been exposed to the ultraviolet field ($< 2 $Myr). We argue that the discs that are resolved by HST represent a population of discs in which self-gravity was important at the time that the dominant central OB star switched on, but that, according to our models, self-gravity is unlikely to be important in these discs at the present time. We discuss the implications of our results for the so-called proplyd lifetime problem.

C. J. Clarke

2007-02-05

112

Multiplicity Among Young Brown Dwarfs and Very Low Mass Stars  

E-print Network

Characterizing multiplicity in the very low mass (VLM) domain is a topic of much current interest and fundamental importance. Here we report on a near-IR AO imaging survey of 31 young brown dwarfs and VLM stars, 28 of which are in Chamaeleon I, using the ESO VLT. Our survey is sensitive enough to detect equal mass binaries down to separations of 0.04-0.07" (6-10 AU at 160 pc) and, typically, companions with mass ratios as low as 0.2 outside of 0.2" (~30 AU). We resolve the suspected 0.16" (~26 AU) binary Cha_Halpha 2 and present two new binaries, Hn 13 and CHXR 15, with separations of 0.13" (~20 AU) and 0.30" (~50 AU); the latter is one of the widest VLM systems discovered to date. We do not find companions around the majority of our targets, giving a binary frequency of 11% [+9,-6], thus confirming the trend for a lower binary frequency with decreasing mass. By combining our work with previous surveys, we arrive at the largest sample of young VLMOs (72) with high angular resolution imaging to date. Its multiplicity fraction is in statistical agreement with that for VLMOs in the field. In addition we note that many field stellar binaries with lower binding energies and/or wider cross sections have survived dynamical evolution and that statistical models suggest tidal disruption by passing stars is unlikely to affect the binary properties of our systems. Thus, we argue that there is no significant evolution of multiplicity with age among brown dwarfs and VLM stars in OB and T associations between a few Myr to several Gyr. Instead, the observations to date suggest that VLM objects are either less likely to be born in fragile multiple systems than solar mass stars or such systems are disrupted very early.

Mirza Ahmic; Ray Jayawardhana; Alexis Brandeker; Alexander Scholz; Marten H. van Kerkwijk; Eduardo Delgado-Donate; Dirk Froebrich

2007-08-28

113

Gamma-ray emission from young neutron stars  

NASA Technical Reports Server (NTRS)

The emission models of Cheng et al. (1986) and Harding (1981) are employed to determine likely candidates for pulsed gamma-ray emission on the basis of recent radio data of pulsars. The recent detection of pulsed gamma rays from PSR 1951+32 lends observational support to the scenario of Cheng et al. which also suggests that PSR 1855+09 might be another excellent gamma-ray pulsar candidate. The possible contribution of young neutron stars to the diffuse high energy glow is also discussed.

Hartmann, Dieter H.; Liang, Edison P.; Cordes, J. M.

1991-01-01

114

Astrophysics of Young Star Binaries in the Taurus Star Forming Region  

NASA Astrophysics Data System (ADS)

This paper describes our studies of the individual components of young star binaries. Most stars are found in multiple systems; thus binaries are important to characterize and understand, both as a common mode for star formation and for their suitability for planet formation. We observed each component in 16 systems, located in the nearby Taurus-Auriga star forming region, using low-resolution (R=760) infrared spectroscopy and photometry. We detected photospheric absorption lines and were able to determine the spectral type, extinction, K-band excess, and luminosity for each component. We estimated the masses and ages by locating each star on the HR Diagram and comparing their positions with theoretical models. The extinction was greater for the secondary components in ~80% of the systems. For two thirds of the systems, the K-band excess of the primary components dominates that of their counterparts. A majority of the systems exhibit Brackett gamma emission at 2.16 microns, which implies that at least one star in these pairs is surrounded by an actively accreting circumstellar disk.

Johns, Paula; Prato, L. A.; Greene, T. P.

2013-01-01

115

Multiplicity study of young pre-main sequence stars in the Lupus star-forming Region  

NASA Astrophysics Data System (ADS)

We have conducted a high contrast imaging search for (sub)stellar companions among 63 young pre-main sequence stars in the Lupus star forming region, using the adaptive optics imager NACO at UT4 of the ESO Paranal observatory. We detected faint co-moving companions around our targets at angular separations between about 0.1 up to several arc seconds (binaries and triple systems). Some of these companions are in the sub stellar mass regime, according to their apparent near infrared photometry at the distance of the Lupus star forming region (about 140pc). We give a progress report to our long-term project, still in execution with the follow-up spectroscopy of detected substellar companion-candidates, and present some first results.

Vogt, Nikolaus; Mugrauer, Markus; Schmidt, Tobias O. B.; Neuhaeuser, Ralph; Ginski, Christian

2013-07-01

116

Massive Young Star Clusters in M33: Stochastic Star Formation Ruled Out  

NASA Astrophysics Data System (ADS)

It is widely accepted that the distribution function of the masses of young star clusters is universal and can be purely interpreted as a probability density distribution function with a constant upper mass limit. As a result of this picture, the masses of the most massive objects would be exclusively determined by the size of the sample. Conversely we show, with very high confidence, that the masses of the most massive young (< 10 Myr) star clusters in the flocculent galaxy M33 decrease with increasing galactocentric radius, in contradiction with a constant shape and upper mass limit of the cluster mass function. Moreover, by comparing the radial distributions of gas surface densities and highest cluster masses, we find that M_{max} ? ?_{gas, total}^{3.8 ± 0.3}, M_{max} ? ?_{H_2}^{1.2± 0.1} and M_{max} ? ?_{SFR}^{0.9 ± 0.1}. Hence, in M33 we can rule out stochastic star formation. The change of the maximum cluster mass there must be due to physical causes, i.e., very massive star clusters may require special physical conditions, like high gas surface densities, in order to form.

González-Lópezlira, R. A.; Pflamm-Altenburg, J.; Kroupa, P.

2014-09-01

117

X-ray emitting young stars in the Orion Nebula  

E-print Network

The Orion Nebula Cluster and the molecular cloud in its vicinity have been observed with the ACIS-I detector on board the Chandra X-ray Observatory with 23 hours exposure. We detect 1075 X-ray sources: 91% are spatially associated with known stellar members of the cluster, and 7% are newly identified deeply embedded cloud members. This provides the largest X-ray study of a pre-main sequence stellar population. We examine here the X-ray properties of Orion young stars as a function of mass. Results include: (a) the discovery of rapid variability in the O9.5 31 M_o star \\theta^2A Ori, and several early B stars, inconsistent with the standard model of X-ray production in small wind shocks; (b) support for the hypothesis that intermediate-mass mid-B through A type stars do not themselves produce significant X-ray emission; (c) confirmation that low-mass G- through M-type T Tauri stars exhibit powerful flaring but typically at luminosities considerably below the `saturation' level; (d) confirmation that the presence or absence of a circumstellar disk has no discernable effect on X-ray emission; (e) evidence that T Tauri plasma temperatures are often very high with T >= 100 MK, even when luminosities are modest and flaring is not evident; and (f) detection of the largest sample of pre-main sequence very low mass objects showing high flaring levels and a decline in magnetic activity as they evolve into L- and T-type brown dwarfs.

Eric D. Feigelson; Patrick Broos; James A. Gaffney III; Gordon Garmire; Lynne A. Hillenbrand; Steven H. Pravdo; Leisa Townsley; Yohko Tsuboi

2002-03-19

118

Jet Formation from Massive Young Stars: Magnetohydrodynamics versus Radiation Pressure  

NASA Astrophysics Data System (ADS)

Observations indicate that outflows from massive young stars are more collimated during their early evolution compared to later stages. Our paper investigates various physical processes that impact the outflow dynamics, i.e., its acceleration and collimation. We perform axisymmetric magnetohydrodynamic (MHD) simulations particularly considering the radiation pressure exerted by the star and the disk. We have modified the PLUTO code to include radiative forces in the line-driving approximation. We launch the outflow from the innermost disk region (r < 50 AU) by magnetocentrifugal acceleration. In order to disentangle MHD effects from radiative forces, we start the simulation in pure MHD and later switch on the radiation force. We perform a parameter study considering different stellar masses (thus luminosity), magnetic flux, and line-force strength. For our reference simulation—assuming a 30 M ? star—we find substantial de-collimation of 35% due to radiation forces. The opening angle increases from 20° to 32° for stellar masses from 20 M ? to 60 M ?. A small change in the line-force parameter ? from 0.60 to 0.55 changes the opening angle by ~8°. We find that it is mainly the stellar radiation that affects the jet dynamics. Unless the disk extends very close to the star, its force is too small to have much impact. Essentially, our parameter runs with different stellar masses can be understood as a proxy for the time evolution of the star-outflow system. Thus, we have shown that when the stellar mass (thus luminosity) increases with age, the outflows become less collimated.

Vaidya, Bhargav; Fendt, Christian; Beuther, Henrik; Porth, Oliver

2011-11-01

119

Photospheric temperature measurements in young main sequence stars  

E-print Network

As part of our program to study stellar photospheric and chromospheric activity, we have examined several young solar type stars with activity levels intermediate between the Sun and the very active RS CVn binaries. We have analysed contemporaneous spectroscopic data obtained at Catania Observatory (Serra La Nave station, Mt. Etna) and photometric data acquired in the Stromgren bands with an automatic photometric telescope (APT) at Fairborn Observatory (Arizona, USA). Surface inhomogeneities have been detected from the rotational modulation of stellar brightness as well as from the modulation of several photospheric line-depth ratios (LDRs). The presence of chromospheric plage-like regions has been inferred from the rotational modulation of the Halpha line equivalent width (EW_Halpha) evaluated with the spectral synthesis method. The most relevant results are the strong correlation between the brightness and temperature curves derived respectively from photometry and the LDRs as well as the striking anti-correlation between brightness and Halpha emission. This suggests a close spatial association of spots and plages, as frequently observed for the largest sunspot groups (e.g., Catalano et al. (1998)) and for some very active RS CVn systems (Catalano et al. 2002). Moreover, a simple spot/plage model applied to the observed flux curves allows a rough reconstruction of photospheric and chromospheric features of young main sequence stars.

K. Biazzo; A. Frasca; G. W. Henry; S. Catalano; E. Marilli

2006-10-18

120

New Young Star Candidates in BRC 27 and BRC 34  

NASA Astrophysics Data System (ADS)

We used archival Spitzer Space Telescope mid-infrared data to search for young stellar objects (YSOs) in the immediate vicinity of two bright-rimmed clouds, BRC 27 (part of CMa R1) and BRC 34 (part of the IC 1396 complex). These regions both appear to be actively forming young stars, perhaps triggered by the proximate OB stars. In BRC 27, we find clear infrared excesses around 22 of the 26 YSOs or YSO candidates identified in the literature, and identify 16 new YSO candidates that appear to have IR excesses. In BRC 34, the one literature-identified YSO has an IR excess, and we suggest 13 new YSO candidates in this region, including a new Class I object. Considering the entire ensemble, both BRCs are likely of comparable ages, within the uncertainties of small number statistics and without spectroscopy to confirm or refute the YSO candidates. Similarly, no clear conclusions can yet be drawn about any possible age gradients that may be present across the BRCs.

Rebull, L. M.; Johnson, C. H.; Gibbs, J. C.; Linahan, M.; Sartore, D.; Laher, R.; Legassie, M.; Armstrong, J. D.; Allen, L. E.; McGehee, P.; Padgett, D. L.; Aryal, S.; Badura, K. S.; Canakapalli, T. S.; Carlson, S.; Clark, M.; Ezyk, N.; Fagan, J.; Killingstad, N.; Koop, S.; McCanna, T.; Nishida, M. M.; Nuthmann, T. R.; O'Bryan, A.; Pullinger, A.; Rameswaram, A.; Ravelomanantsoa, T.; Sprow, H.; Tilley, C. M.

2013-01-01

121

Young Photodissociation Complexes in NGC 6822: Stars and PDRs  

NASA Astrophysics Data System (ADS)

I examine Photodissociation Region (PDR) properties in relation to stellar populations in three regions of NGC 6822. This Local Group dwarf galaxy has a metallicity less than half Solar and lies 490kpc away. It is close enough that stellar populations are resolved as are nebular structures of evolving young HII regions; we can see that these regions are being driven by O/B stars. We model the radiation field directly from the stellar content and find that it matches the radiation structure determined from far-infrared (FIR) line ratios from Herschel/PACS spectral maps (in [CII], [OI] 63micron, and [OIII] 88micron) and derived total FIR maps from dust spectral energy distribution fitting. This allows us to constrain the radiation and density structure of the PDR. Finally, with mid-IR [SIII] line ratios, we map the ionized gas density. At this distance, Spitzer images are insufficient to confirm continuing star formation in these regions via the identification of Young Stellar Objects (YSOs), but the evolutionary picture and ISM density distribution indicate that we are likely to find YSOs with the advent of JWST.

Carlson, Lynn; Dwarf Galaxy Survey Team

2014-01-01

122

Young Stars and Protostellar Cores near NGC 2023  

E-print Network

We investigate the young (proto)stellar population in NGC 2023 and the L 1630 molecular cloud bordering the HII region IC 434, using Spitzer IRAC and MIPS archive data, JCMT SCUBA imaging and spectroscopy as well as targeted BIMA observations of one of the Class 0 protostars, NGC 2023 MM1. We have performed photometry of all IRAC and MIPS images, and used color-color diagrams to identify and classify all young stars seen within a 22'x26' field along the boundary between IC 434 and L 1630. For some stars, which have sufficient optical, IR, and/or sub-millimeter data we have also used the online SED fitting tool for a large 2D archive of axisymmetric radiative transfer models to perform more detailed modeling of the observed SEDs. We identify 5 sub-millimeter cores in our 850 and 450 micron SCUBA images, two of which have embedded class 0 or I protostars. Observations with BIMA are used to refine the position and characteristics of the Class 0 source NGC 2023 MM 1. These observations show that it is embedded in...

Mookerjea, B; Jarrett, T H; McMullin, J P

2009-01-01

123

Spin Evolution of Accreting Young Stars. I. Effect of Magnetic Star-Disk Coupling  

NASA Astrophysics Data System (ADS)

We present a model for the rotational evolution of a young, solar mass star interacting with an accretion disk. The model incorporates a description of the angular momentum transfer between the star and the disk due to a magnetic connection, and includes changes in the star's mass and radius and a decreasing accretion rate. The model also includes, for the first time in a spin evolution model, the opening of the stellar magnetic field lines, as expected to arise from twisting via star-disk differential rotation. In order to isolate the effect that this has on the star-disk interaction torques, we neglect the influence of torques that may arise from open field regions connected to the star or disk. For a range of magnetic field strengths, accretion rates, and initial spin rates, we compute the stellar spin rates of pre-main-sequence stars as they evolve on the Hayashi track to an age of 3 Myr. How much the field opening affects the spin depends on the strength of the coupling of the magnetic field to the disk. For the relatively strong coupling (i.e., high magnetic Reynolds number) expected in real systems, all models predict spin periods of less than ~3 days, in the age range of 1-3 Myr. Furthermore, these systems typically do not reach an equilibrium spin rate within 3 Myr, so that the spin at any given time depends upon the choice of initial spin rate. This corroborates earlier suggestions that, in order to explain the full range of observed rotation periods of approximately 1-10 days, additional processes, such as the angular momentum loss from powerful stellar winds, are necessary.

Matt, Sean P.; Pinzón, Giovanni; de la Reza, Ramiro; Greene, Thomas P.

2010-05-01

124

YoungStar in Milwaukee County: An Initial Progress Report as of July 2011  

ERIC Educational Resources Information Center

YoungStar is a program of the Department of Children and Families (DCF) created to improve the quality of child care for Wisconsin children. YoungStar is designed to: (1) Evaluate and rate the quality of care given by child care providers; (2) Help parents choose the best child care for their kids; (3) Support providers with tools and training to…

Edie, Dave

2011-01-01

125

YoungStar in Wisconsin: An Initial Progress Report as of July 2011  

ERIC Educational Resources Information Center

YoungStar is a program of the Department of Children and Families (DCF) created to improve the quality of child care for Wisconsin children. YoungStar is designed to: (1) Evaluate and rate the quality of care given by child care providers; (2) Help parents choose the best child care for their kids; (3) Support providers with tools and training to…

Edie, Dave

2011-01-01

126

Analysis of Star-Disk Interaction in Young Stellar Systems  

NASA Astrophysics Data System (ADS)

We present the study of star-disk interaction in the classical T Tauri star V354 Mon, a member of the young stellar cluster NGC 2264. As part of an international campaign of observation of NGC 2264 organized from December 2011 to February 2012, high resolution photometric and spectroscopic data of this object were obtained simultaneously with the Chandra, CoRoT and Spitzer satellites, and ground-based telescopes, as CFHT and VLT/FLAMES at ESO. The optical and infrared light curves of V354 Mon show periodic brightness minima that vary in depth and width every rotational cycle. We found evidence that the H/alpha emission line profile changes according to the period of photometric variations, indicating that the same phenomenon causes both modulations. Such correlation was also identified in a previous observational campaign on the same object, where we concluded that material non-uniformly distributed in the inner part of the disk is the main cause of the photometric modulation. This assumption is supported by the fact that the system is seen at high inclination. It is believed that this distortion of the inner part of the disk results from the dynamical interaction between the stellar magnetosphere, inclined with respect to the rotation axis, and the circumstellar disk, as also observed in the classical T Tauri star AA Tau, and predicted by magnetohydrodynamic numerical simulations. A model of occultation by circumstellar material was applied to the photometric data in order to determine the parameters of the obscuring material during both observational campaigns, thus providing an investigation of its stability on a timescale of a few years. We also studied V422 Mon, a classical T Tauri star with photometric variations similar to those of V354 Mon at optical wavelengths, but with a distinct behavior in the infrared. The mechanism that produces such difference is investigated, testing the predictions of magnetospheric accretion models.

Fonseca, Nathalia; Alencar, Silvia; Bouvier, Jérôme

2013-07-01

127

Rotation of Jets from Young Stars: New Clues from the Hubble Space Telescope Imaging Spectrograph  

Microsoft Academic Search

We report findings from the first set of data in a current survey to establish conclusively whether jets from young stars rotate. We observed the bipolar jets from the T Tauri stars TH 28 and RW Aur and the blueshifted jet from T Tauri star LkHalpha 321, using the Hubble Space Telescope Imaging Spectrograph. Forbidden emission lines show distinct and

Deirdre Coffey; Francesca Bacciotti; Jens Woitas; Thomas P. Ray; Jochen Eislöffel

2004-01-01

128

Photospheric temperature measurements in young main sequence stars  

E-print Network

As part of our program to study stellar photospheric and chromospheric activity, we have examined several young solar type stars with activity levels intermediate between the Sun and the very active RS CVn binaries. We have analysed contemporaneous spectroscopic data obtained at Catania Observatory (Serra La Nave station, Mt. Etna) and photometric data acquired in the Stromgren bands with an automatic photometric telescope (APT) at Fairborn Observatory (Arizona, USA). Surface inhomogeneities have been detected from the rotational modulation of stellar brightness as well as from the modulation of several photospheric line-depth ratios (LDRs). The presence of chromospheric plage-like regions has been inferred from the rotational modulation of the Halpha line equivalent width (EW_Halpha) evaluated with the spectral synthesis method. The most relevant results are the strong correlation between the brightness and temperature curves derived respectively from photometry and the LDRs as well as the striking anti-corr...

Biazzo, K; Henry, G W; Catalano, S; Marilli, E

2006-01-01

129

Modelling the composition of a young star cluster ejecta  

NASA Astrophysics Data System (ADS)

We have computed with a fine time grid the evolution of the elemental abundances of He, C, N and O ejected by young (t < 20 Myr) and massive (M = 106 M?) coeval stellar cluster with a Salpeter initial mass function (IMF) over a wide range of initial abundances. Our computations incorporate the mass loss from massive stars (M ? 30 M?) during their wind phase including the Wolf-Rayet phase and the ejecta from the core-collapse supernovae. We find that during the Wolf-Rayet phase (t < 5 Myr) the cluster ejecta composition suddenly becomes vastly overabundant in N for all initial abundances and in He, C and O for initial abundances higher than one-fifth of the solar. The C and O abundances in the cluster ejecta can reach over 50 times the solar value with important consequences for the chemical and hydrodynamical evolution of the surrounding interstellar medium.

Mollá, Mercedes; Terlevich, Roberto

2012-09-01

130

Fossil magnetic field of accretion disks of young stars  

E-print Network

We elaborate the model of accretion disks of young stars with the fossil large-scale magnetic field in the frame of Shakura and Sunyaev approximation. Equations of the MHD model include Shakura and Sunyaev equations, induction equation and equations of ionization balance. Magnetic field is determined taking into account ohmic diffusion, magnetic ambipolar diffusion and buoyancy. Ionization fraction is calculated considering ionization by cosmic rays and X-rays, thermal ionization, radiative recombinations and recombinations on the dust grains. Analytical solution and numerical investigations show that the magnetic field is coupled to the gas in the case of radiative recombinations. Magnetic field is quasi-azimuthal close to accretion disk inner boundary and quasi-radial in the outer regions. Magnetic field is quasi-poloidal in the dusty "dead" zones with low ionization degree, where ohmic diffusion is efficient. Magnetic ambipolar diffusion reduces vertical magnetic field in 10 times comparing to the frozen-i...

Dudorov, A E

2014-01-01

131

Photon Bubbles in the Circumstellar Envelopes of Young Massive Stars  

E-print Network

We show that the optically-thick dusty envelopes surrounding young high-mass stars are subject to the photon bubble instability. The infrared radiation passing through the envelope amplifies magnetosonic disturbances, with growth rates in our local numerical radiation MHD calculations that are consistent with a linear analysis. Modes with wavelengths comparable to the gas pressure scale height grow by more than two orders of magnitude in a thousand years, reaching non-linear amplitudes within the envelope lifetime. If the magnetic pressure in the envelope exceeds the gas pressure, the instability develops into trains of propagating shocks. Radiation escapes readily through the low-density material between the shocks, enabling accretion to continue despite the Eddington limit imposed by the dust opacity. The supersonic motions arising from the photon bubble instability can help explain the large velocity dispersions of hot molecular cores, while conditions in the shocked gas are suitable for maser emission. We conclude that the photon bubble instability may play a key role in the formation of massive stars.

N. J. Turner; E. Quataert; H. W. Yorke

2007-01-28

132

Near-infrared imaging polarimetry of dusty young stars  

E-print Network

We have carried out JHK polarimetric observations of eleven dusty young stars, by using the polarimeter module IRPOL2 with the near-IR camera UIST on the 3.8-m United Kingdom Infrared Telescope (UKIRT). Our sample targeted systems for which UKIRT-resolvable discs had been predicted by model fits to their spectral energy distributions. Our observations have confirmed the presence of extended polarized emission around TW Hya and around HD 169142. HD 150193 and HD 142666 show the largest polarization values among our sample, but no extended structure was resolved. By combining our observations with HST coronographic data from the literature, we derive the J- and H-band intrinsic polarization radial dependences of TW Hya's disc. We find the disc's polarizing efficiency is higher at H than at J, and we confirm that the J- and H-band percentage polarizations are reasonably constant with radius in the region between 0.9 and 1.3 arcseconds from the star. We find that the objects for which we have detected extended po...

Hales, A S; Barlow, M J; Lowe, K T E

2006-01-01

133

Near-infrared imaging polarimetry of dusty young stars  

E-print Network

We have carried out JHK polarimetric observations of eleven dusty young stars, by using the polarimeter module IRPOL2 with the near-IR camera UIST on the 3.8-m United Kingdom Infrared Telescope (UKIRT). Our sample targeted systems for which UKIRT-resolvable discs had been predicted by model fits to their spectral energy distributions. Our observations have confirmed the presence of extended polarized emission around TW Hya and around HD 169142. HD 150193 and HD 142666 show the largest polarization values among our sample, but no extended structure was resolved. By combining our observations with HST coronographic data from the literature, we derive the J- and H-band intrinsic polarization radial dependences of TW Hya's disc. We find the disc's polarizing efficiency is higher at H than at J, and we confirm that the J- and H-band percentage polarizations are reasonably constant with radius in the region between 0.9 and 1.3 arcseconds from the star. We find that the objects for which we have detected extended polarizations are those for which previous modelling has suggested the presence of flared discs, which are predicted to be brighter than flat discs and thus would be easier to detect polarimetrically.

A. S. Hales; T. M. Gledhill; M. J. Barlow; K. T. E. Lowe

2005-11-29

134

An Infrared Examination of Young Stars in Upper Centaurus Lupus  

NASA Astrophysics Data System (ADS)

Optical studies of the Upper Centaurus Lupus (UCL) region of the Scorpius-Centaurus (Sco-Cen) complex have found many young stellar objects. The nearby G/K/M Sco-Cen members have been estimated to be much younger 10 Myr) than similar star associations (Song, et al 2012). We have assembled infrared data for the objects thought to be members of UCL by mining various archives including the 2-Micron All-Sky Survey (2MASS), the Spitzer Heritage Archive (SHA), specifically the Spitzer Enhanced Imaging Products Source List, and the Wide-field Infrared Survey Explorer (WISE) all-sky source catalog. We created spectral energy distributions (SEDs) and color-magnitude diagrams (CMDs) with multiple wavelengths to identify infrared excesses and determine what fraction of these stars have circumstellar disks. Students from three high schools collaborated on this project, which is a follow-up project made possible through the NASA/IPAC Teacher Archive Research Project (NITARP; http://nitarp.ipac.caltech.edu).

Johnson, Chelen H.; Linahan, M.; Barge, J.; Rebull, L. M.; Aranda, D.; Canlas, N. G.; Donahoe, K. E.; Ernst, M. K.; Ford, S.; Fox, M. E.; Gutierrez, E.; Haecker, L. W.; Hibbs, C. A.; Maddaus, M. R.; Martin, T. A.; Ng, E.; Niedbalec, A. P.; O'Bryan, S. E.; Searls, E. F.; Zeidner, A. B.; Zegeye, D.

2014-01-01

135

Young stars and brown dwarfs surrounding Alnilam (? Orionis) and Mintaka (delta Orionis)  

Microsoft Academic Search

Aims: We look for new regions to search for substellar objects. Methods: Two circular areas, 45 arcmin-radius each, centred on the young massive star systems Alnilam and Mintaka in the Orion Belt, were explored. The regions are very young (less than 10 Ma), have low extinction, and are neighbours to sigma Orionis (~3 Ma), a young open cluster very rich

J. A. Caballero; E. Solano

2008-01-01

136

Anatomy of a Young Massive Star Cluster: NGC 1569-B  

E-print Network

We present new H-band echelle spectra, obtained with the NIRSPEC spectrograph at Keck II, for the massive star cluster "B" in the nearby dwarf irregular galaxy NGC 1569. From spectral synthesis and equivalent width measurements we obtain abundances and abundance patterns. We derive an Fe abundance of [Fe/H]=-0.63+/-0.08, a super-solar [alpha/Fe] abundance ratio of +0.31+/-0.09, and an O abundance of [O/H]=-0.29+/-0.07. We also measure a low 12C/13C = 5+/-1 isotopic ratio. Using archival imaging from the Advanced Camera for Surveys on board HST, we construct a colour-magnitude diagram (CMD) for the cluster in which we identify about 60 red supergiant (RSG) stars, consistent with the strong RSG features seen in the H-band spectrum. The mean effective temperature of these RSGs, derived from their observed colours and weighted by their estimated H-band luminosities, is 3790 K, in excellent agreement with our spectroscopic estimate of Teff = 3800+/-200 K. From the CMD we derive an age of 15-25 Myr, slightly older than previous estimates based on integrated broad-band colours. We derive a radial velocity of -78+/-3 km/s and a velocity dispersion of 9.6+/-0.3 km/s. In combination with an estimate of the half-light radius of 0.20"+/-0.05" from the HST data, this leads to a dynamical mass of (4.4+/-1.1)E5 Msun. The dynamical mass agrees very well with the mass predicted by simple stellar population models for a cluster of this age and luminosity, assuming a normal stellar IMF. The cluster core radius appears smaller at longer wavelengths, as has previously been found in other extragalactic young star clusters.

S. S. Larsen; L. Origlia; J. P. Brodie; J. S. Gallagher III

2007-10-02

137

Analysis of star-disk interaction in young stellar systems  

NASA Astrophysics Data System (ADS)

We present preliminary results of the study of star-disk interaction in the classical T Tauri star V354 Mon, a member of the young stellar cluster NGC 2264. As part of an international campaign of observation of NGC 2264 organized from December 2011 to February 2012, high resolution photometric and spectroscopic data of this object were obtained simultaneously with the Chandra, CoRoT and Spitzer satellites, and ground-based telescopes, as CFHT and VLT at ESO. The optical and infrared light curves of V354 Mon show periodic brightness minima that vary in depth and width every rotational cycle. We found evidence that the H? emission line profile changes according to the period of photometric variations, indicating that the same phenomenon causes both modulations. Such a correlation between emission line variability and light curve modulation was also identified in a previous observational campaign on the same object, where we concluded that material non-uniformly distributed in the inner part of the disk is the main cause of the photometric modulation. This assumption is supported by the fact that the system is seen at high inclination. It is believed that this distortion of the inner part of the disk results from the dynamical interaction between the stellar magnetosphere, inclined with respect to the rotation axis, and the circumstellar disk, as also observed in the classical T Tauri star AA Tau, and predicted by magnetohydrodynamic numerical simulations. A model of occultation by circumstellar material was applied to the photometric data in order to determine the parameters of the obscuring material during both observational campaigns, thus providing an investigation of its stability on a timescale of a few years.

Fonseca, N. N. J.; Alencar, S. H. P.; Bouvier, J.

2014-01-01

138

Young stellar kinematic groups and their relation with young open clusters, star forming regions and the Gould Belt  

E-print Network

Stellar kinematic groups (SKG) are kinematically coherent groups of stars that share a common origin. We have compiled (Montes et al. 1999; 2000) a sample of late-type stars of previously established members and possible new candidates to different young SKG (Local Association (20 - 150 Myr), Ursa Mayor group (300 Myr), Hyades supercluster (600 Myr), IC 2391 supercluster (35 Myr) and Castor Moving Group (200 Myr)). In order to better understand the origin of these young SKG, and to be able to identify late-type stars members of the classical and the recently identified SKG, we also need to study the kinematic properties of nearby young open clusters and star forming regions. With this aim we have taken the most recent data available in the literature (including astrometric data from Hipparcos Catalogue) of the nearby young open clusters, OB associations, T associations, and other associations of young stars as TW Hya. We use these data to calculate their Galactic space motions (U, V, W) and space coordinates (X, Y, Z) and study their possible association with the different SKG as well as with the young flattened and inclined Galactic structure known as the Gould Belt.

D. Montes

1999-12-08

139

Age estimation from the number of teeth erupted in young children: An aid to demographic surveys  

Microsoft Academic Search

The reporting of children’s ages by parents is surprisingly inaccurate in many innumerate societies, but accurate knowledge\\u000a of age is important for estimating recent changes in demographic rates. The timing of the eruption of children’s teeth is\\u000a largely independent of environmental influences and can provide a relatively accurate and unbiased estimate of a child’s age.\\u000a We have collected published data

Nicholas Townsend; E. A. Hammel

1990-01-01

140

NGC 7419: A young open cluster with a number of very young intermediate mass pre-MS stars  

E-print Network

We present a photometric and spectroscopic study of the young open cluster NGC 7419, which is know to host a large number of classical Be stars for reasons not well understood. Based on CCD photometric observations of 327 stars in UBV passbands, we estimated the cluster parameters as, reddening E(B-V) = 1.65 +/- 0.15 mag and distance = 2900 +/- 400 pc. The turn off age of the cluster was estimated as 25 +/- 5 Myr using isochrone fits. UBV data of the stars were combined with JHK data from 2MASS and were used to create the near infrared (NIR) (J-H) vs (H-K) colour-colour diagram. A large fraction of stars (42%) was found to have NIR excess and their location in the diagram was used to identify them as intermediate mass pre-MS stars. The isochrone fits to pre-MS stars in the optical colour-magnitude diagram showed that the turn-on age of the cluster is 0.3 - 3 Myr. This indicates that there has been a recent episode of star formation in the vicinity of the cluster. Slit-less spectra were used to identify 27 stars which showed H-alpha in emission in the field of the cluster, of which 6 are new identifications. All these stars were found to show NIR excess and located closer to the region populated by Herbig Ae/Be stars in the (J-H) vs (H-K) diagram. Slit spectra of 25 stars were obtained in the region 3700A - 9000A. The spectral features were found to be very similar to those of Herbig Be stars. Those stars were found to be more reddened than the main sequence stars by 0.4 mag on an average. Thus the emission line stars found in this cluster are more similar to the Herbig Be type stars where the circumstellar material is the remnant of the accretion disk.

Annapurni Subramaniam; Blesson Mathew; Bhuwan Chandra Bhatt; S. Ramya

2006-04-30

141

Probing Young Stars' Accretion Flows Using Infrared Molecular Lines  

NASA Astrophysics Data System (ADS)

We propose to examine how accretion power is released in protostellar disks. We will build models of the formation of the infrared molecular rovibrational lines in the disk surface layers, and apply them to observed spectra to address the following questions: * Do protostellar disk atmospheres have turbulence, outflows, or both? How does this vary with distance from the star? With accretion rate? With stellar mass? * How is the accretion heating distributed through the disk, and what does this imply for the temperatures in the planet-forming material? * Which models of the angular momentum transfer in protostellar disks can explain the flows and heating, and what does this imply about the time history of the accretion? By solving the line transfer problem we will enable interpretation of the rovibrational lines of CO, H2O and other molecules which dominate the near-infrared spectra of many accreting young stars. We will link the spectral lines' shapes to the flow kinematics near the disk surface, and we will link diagnostics including the rotational temperature diagram to proposed accretion heating processes. A non-LTE treatment is essential since the transitions are excited through both thermal collisions and radiative pumping by stellar ultraviolet and disk infrared continuum photons. Furthermore since many of the lines form at very low continuum optical depths, the pumping radiation can arrive either radially or vertically, making a 2-D treatment necessary. This amounts to a challenging line transfer problem, for which we have assembled a team with expertise in two efficient numerical schemes: accelerated Monte Carlo iteration and the coupled escape probability method. Combining non-LTE line transfer modeling with observational investigations as we propose is essential for interpreting the large and growing library of molecular line data from ground-based telescopes, and will make it possible for SOFIA and JWST to reach their potential to determine the basic processes underlying the evolution of protostellar disks.

Turner, Neal

142

A CCD Search for Variable Stars in Young Open Cluster IC 4996 II  

Microsoft Academic Search

New photometric observations of the young open cluster IC 4996 are presented. Two new variable stars have been discovered. More complete light curves and unambiguous periods for two variable discovered earlier are also obtained.

G. Pietrzynski

1996-01-01

143

On the relationship between Very-Long-Period events, bubble collapse, and eruption processes at the Lone Star Geyser, Yellowstone National Park  

NASA Astrophysics Data System (ADS)

Broadband seismic data acquired at the Lone Star Geyser in Yellowstone National Park over a 5-day period in September, 2010 contain Very-Long-Period (VLP) events (~2 min period) and impulsive bubble collapse events (0.25 sec duration) that are correlated with eruption/discharge cycles. Geyser 'jet' eruptions at Lone Star are fairly regular at ~3 hour (180 min) intervals, but the VLP events typically occur at ~22.5 min intervals, which is effectively a 3rd order harmonic of the jet eruption fundamental period. Bubble collapse events are impulsive with nearly monochromatic frequencies of 20-25 Hz, and the rate of these events is correlated with the VLP event cycle. These results suggest a 2-stage process model for the Lone Star eruptions, where the deep/main reservoir discharges a slug of hot water into a shallow 'chimney' every ~22.5 min, which triggers boiling and bubble collapse events as it rises and decompresses in the chimney.

Sohn, R. A.; Vandemeulebrouck, J.; Hurwitz, S.; Johnston, M. J.; Karlstrom, L.; Rudolph, M. L.; Murphy, F.; Pontbriand, C.; Horning, G.

2011-12-01

144

Spectral Energy Distributions of Young Stars in IC 348: The Role of Disks in Angular Momentum Evolution of Young, Low-mass Stars  

NASA Astrophysics Data System (ADS)

Theoretical work suggests that a young star's angular momentum content and rotation rate may be strongly influenced by magnetic interactions with its circumstellar disk. A generic prediction of these "disk-locking" theories is that a disk-locked star will be forced to co-rotate with the Keplerian angular velocity of the inner edge of the disk; that is, the disk's inner-truncation radius should equal its co-rotation radius. These theories have also been interpreted to suggest a gross correlation between young stars' rotation periods and the structural properties of their circumstellar disks, such that slowly rotating stars possess close-in disks that enforce the star's slow rotation, whereas rapidly rotating stars possess anemic or evacuated inner disks that are unable to brake the stars and instead the stars spin up as they contract. To test these expectations, we model the spectral energy distributions (SEDs) of 33 young stars in IC 348 with known rotation periods and infrared excesses indicating the presence of circumstellar disks. For each star, we match the observed SED, typically sampling 0.6-8.0 ?m, to a grid of 200,000 pre-computed star+disk radiative transfer models, from which we infer the disk's inner-truncation radius. We then compare this truncation radius to the disk's co-rotation radius, calculated from the star's measured rotation period. We do not find obvious differences in the disk truncation radii of slow rotators versus rapid rotators. This holds true both at the level of whether close-in disk material is present at all, and in analyzing the precise location of the inner disk edge relative to the co-rotation radius among the subset of stars with close-in disk material. One interpretation is that disk locking is unimportant for the IC 348 stars in our sample. Alternatively, if disk locking does operate, then it must operate on both the slow and rapid rotators, potentially producing both spin-up and spin-down torques, and the transition from the disk-locked state to the disk-released state must occur more rapidly than the stellar contraction timescale.

Le Blanc, Thompson S.; Covey, Kevin R.; Stassun, Keivan G.

2011-08-01

145

Temperaments of young stars: rapid mass accretion rate changes in T Tauri and Herbig Ae stars  

NASA Astrophysics Data System (ADS)

Variability in emission lines is a characteristic feature in young stars and can be used as a tool to study the physics of the accretion process. Here, we present a study of H? variability in 15 T Tauri and Herbig Ae stars (K7 - B2) over a wide range of time windows, from minutes, to hours, to days, and years. We assess the variability using linewidth measurements and the time series of line profiles. All objects show gradual, slow profile changes on time-scales of days. In addition, in three cases there is evidence for rapid variations in H? with typical time-scales of 10 min, which occurs in 10 per cent of the total covered observing time. The mean accretion rate changes, inferred from the line fluxes, are 0.01-0.07 dex for time-scales of <1 h, 0.04-0.4 dex for time-scales of days, and 0.13-0.52 dex for time-scales of years. In Costigan et al., we derived an upper limit finding that the intermediate (days) variability dominated over longer (years) variability. Here, our new results, based on much higher cadence observations, also provide a lower limit to accretion rate variability on similar time-scales (days), thereby constraining the accretion rate variability physics in a much more definitive way. A plausible explanation for the gradual variations over days is an asymmetric accretion flow resulting in a rotational modulation of the accretion-related emission, although other interpretations are possible as well. In conjunction with our previous work, we find that the time-scales and the extent of the variability is similar for objects ranging in mass from ˜0.1 to ˜5 M?. This confirms that a single mode of accretion is at work from T Tauri to Herbig Ae stars - across a wide range of stellar masses.

Costigan, G.; Vink, Jorick S.; Scholz, A.; Ray, T.; Testi, L.

2014-06-01

146

SPITZER INFRARED SPECTROGRAPH SURVEY OF YOUNG STARS IN THE CHAMAELEON I STAR-FORMING REGION  

SciTech Connect

We present 5-36 {mu}m mid-infrared spectra of 82 young stars in the {approx}2 Myr old Chamaeleon I star-forming region, obtained with the Spitzer Infrared Spectrograph (IRS). We have classified these objects into various evolutionary classes based on their spectral energy distributions and the spectral features seen in the IRS spectra. We have analyzed the mid-IR spectra of Class II objects in Chamaeleon I in detail, in order to study the vertical and radial structure of the protoplanetary disks surrounding these stars. We find evidence for substantial dust settling in most protoplanetary disks in Chamaeleon I. We have identified several disks with altered radial structures in Chamaeleon I, among them transitional disk candidates which have holes or gaps in their disks. Analysis of the silicate emission features in the IRS spectra of Class II objects in Cha I shows that the dust grains in these disks have undergone significant processing (grain growth and crystallization). However, disks with radial holes/gaps appear to have relatively unprocessed grains. We further find the crystalline dust content in the inner ({approx}<1-2 AU) and the intermediate ({approx}<10 AU) regions of the protoplanetary disks to be tightly correlated. We also investigate the effects of accretion and stellar multiplicity on the disk structure and dust properties. Finally, we compare the observed properties of protoplanetary disks in Cha I with those in slightly younger Taurus and Ophiuchus regions and discuss the effects of disk evolution in the first 1-2 Myr.

Manoj, P.; Kim, K. H.; Watson, Dan M.; Forrest, W. J.; Bohac, C.; Arnold, L. A. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Furlan, E. [JPL, Caltech, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); McClure, M. K.; Calvet, N. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Luhman, K. L. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Espaillat, C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-78 Cambridge, MA 02138 (United States); Najita, J. R. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); D'Alessio, P.; Adame, L. [Instituto de AstronomIa, UNAM, Apartado Postal 70-264, Ciudad Universitaria, 04510, Mexico DF (Mexico); Sargent, B. A. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Green, J. D., E-mail: manoj@pas.rochester.edu [Department of Astronomy, University of Texas at Austin, Austin, TX 78712-0259 (United States)

2011-03-15

147

RCW 38: A Unique Laboratory for the Formation and Dynamics of Young Star Clusters  

NASA Astrophysics Data System (ADS)

Most stars form in rich clusters that quickly dissipate into field stars. The theory of cluster expansion and dynamical ejection of stars has few empirical constraints today. RCW 38 is a unique young star cluster seen at a critical juncture in its history just after the expulsion of molecular gas by massive stars during its brief stage of expansion and non-equilibrium dynamics. It has the densest core of any star cluster near the Sun with unequilibrated spatial structure. We proposed a 100 ks exposure (part GO and part GTO) to be combined with the archived 100 ks and improved near-infrared data. The known cluster population should triple to 2000 stars; star masses and ages will be estimated. RCW 38 will give a superb empirical foundation for understanding cluster early evolution.

Feigelson, Eric

2014-09-01

148

Infrared Search for Young Stars in H i High-Velocity Clouds  

Microsoft Academic Search

We have searched the IRAS Point Source Catalog and HIRES maps for young stellar objects (YSOs) in the direction of five H I high-velocity clouds (HVCs). In agreement with optical searches in the halo, no evidence was found for extensive star formation activity inside the high-latitude HVCs. Specifically, we have found no signs of star formation or YSOs in the

Zeljko Ivezic; Dimitris M. Christodoulou

1997-01-01

149

Brown Dwarf and Giant Planet Companions to Young Stars in Taurus  

Microsoft Academic Search

We are surveying ~100 T Tauri stars in the Taurus star forming region to detect stellar reflex motions resulting from brown dwarf and giant planet companions. Searches for brown dwarfs and extrasolar planets have revealed that the frequency of these objects as close companions is extraordinarily rare, i.e. the brown dwarf desert. Brown dwarfs should be common at young ages

Naved Mahmud; Christopher Johns-Krull; Lisa Prato; Patrick Hartigan; Daniel Jaffe

2008-01-01

150

Testing the Young Galaxy Hypothesis: RR Lyrae stars in Leo A  

Microsoft Academic Search

Leo A is a nearby (d=690 kpc), very low metallicity (~ 3% solar) isolated dwarf irregular galaxy which is gas rich and forming stars at the present time. Analysis of the evolved stellar populations in HST observations suggest that Leo A is a predominantly young galaxy (~1.5 Gyr old). The presence of a ``young'' galaxy in the Local Group would

Evan D. Skillman; Abi Saha; Andrew Dolphin; Jay Gallagher; Eline Tolstoy; Mario Mateo; Robbie Dohm-Palmer; Andrew Cole

2000-01-01

151

AGE AND MASS STUDIES FOR YOUNG STAR CLUSTERS IN M31 FROM SEDS-FIT  

SciTech Connect

In this paper, we present photometry for young star clusters in M31, which are selected from Caldwell et al. These star clusters have been observed as part of the Beijing-Arizona-Taiwan-Connecticut (BATC) Multicolor Sky Survey from 1995 February to 2008 March. The BATC images including these star clusters are taken with 15 intermediate-band filters covering 3000-10000 A. Combined with photometry in the GALEX far- and near-ultraviolet, broadband UBV RI, SDSS ugriz, and infrared JHK{sub s} of Two Micron All Sky Survey, we obtain their accurate spectral energy distributions (SEDs) from 1538 to 20000 A. We derive these star clusters' ages and masses by comparing their SEDs with stellar population synthesis models. Our results are in good agreement with previous determinations. The mean value of age and mass of young clusters (<2 Gyr) is about 385 Myr and 2 Multiplication-Sign 10{sup 4} M{sub Sun }, respectively. There are two distinct peaks in the age distribution, a highest peak at age {approx}60 Myr and a secondary peak around 250 Myr, while the mass distribution shows a single peak around 10{sup 4} M{sub Sun }. A few young star clusters have two-body relaxation times greater than their ages, indicating that those clusters have not been well dynamically relaxed and therefore have not established the thermal equilibrium. There are several regions showing aggregations of young star clusters around the 10 kpc ring and the outer ring, indicating that the distribution of the young star clusters is well correlated with M31's star-forming regions. The young massive star clusters (age {<=}100 Myr and mass {>=}10{sup 4} M{sub Sun }) show apparent concentration around the ring splitting region, suggesting a recent passage of a satellite galaxy (M32) through M31 disk.

Wang Song; Ma Jun; Fan Zhou; Wu Zhenyu; Zhang Tianmeng; Zou Hu; Zhou Xu, E-mail: majun@nao.cas.cn [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

2012-12-01

152

Young stars and brown dwarfs surrounding Alnilam (eps Ori) and Mintaka (del Ori)  

Microsoft Academic Search

Aims: We look for new regions for the search of substellar objects. Methods:\\u000aTwo circular areas, 45 arcmin-radius each, centred on the young massive star\\u000asystems Alnilam and Mintaka in the Orion Belt, have been explored. The regions\\u000aare very young (less than 10 Ma), have low extinction, and are neighbours to\\u000asigma Orionis (~3 Ma), a young open cluster

J. A. Caballero; E. Solano

2008-01-01

153

Reconstructing the Initial Relaxation Time of Young Star Clusters in the Large Magellanic Cloud: The Evolution of Star Clusters  

NASA Astrophysics Data System (ADS)

We reconstruct the initial two-body relaxation time at the half mass radius for a sample of young ? 300 Myr star clusters in the Large Magellanic cloud. We achieve this by simulating star clusters with 12288 to 131072 stars using direct N-body integration. The equations of motion of all stars are calculated with high precision direct N-body simulations which include the effects of the evolution of single stars and binaries. We find that the initial relaxation times of the sample of observed clusters in the Large Magellanic Cloud ranges from about 200 Myr to about 2 Gyr. The reconstructed initial half-mass relaxation times for these clusters have a much narrower distribution than the currently observed distribution, which ranges over more than two orders of magnitude.

Portegies Zwart, S. F.; Chen, H.-C.

2008-06-01

154

X-Rays from Young Stars and Eggs in the Eagle Nebula (M16)  

NASA Astrophysics Data System (ADS)

The Chandra X-ray Observatory observed the Eagle Nebula (M16) a young star forming region containing the dark columns of dust and cold molecular gas known as the ""Pillars of Creation"" or ""elephant trunks"". We identify more than 1000 X-ray sources coincident with K-band stars that are premain sequence stars ranging in spectral type from O to M. A handful of the hard X-ray sources in the pillars are spatially coincident with deeply embedded young stellar objects seen in JHK images. However none of the X-ray sources are associated with the evaporating gaseous globules (EGGs) first observed by Hester et al. (1996).

Linsky, Jeffrey L.; Gagne, Marc; Mytyk, Anna

155

Methanol masers as signposts of star formation and VLBI observations of coronal emission from young stars  

NASA Astrophysics Data System (ADS)

Using a consistent survey of the galactic plane at 6.7 GHz as a starting point, this thesis reports on the observational as well as theoretical results achieved by extensively studying of the phenomenon of class II methanol masers. The general catalogue of 6.7 GHz methanol masers in the Milky Way, gathers all known sources discovered since 1991, including the 4 new sources detected during the Onsala Blind Survey of the galactic plane. Their spatial distribution in the Galaxy follows the distribution of OB-associations hosting massive star formation, suggesting that methanol masers arise where massive stars form. Statistical considerations are presented with the aim of estimating the luminosity function of the masers. Dust continuum observations of methanol maser sites not uniquely associated to known infrared sources, were used to trace the Spectral Energy Distribution (SED) of these sites, yielding dust temperatures and enclosed masses. This study confirmed that many of 6.7 GHz methanol maser sources host large amounts of cold dust, making further evidence for classifying them as sites of (massive) star formation in an early stage. VLBI observations of strong 6.7 GHz methanol masers conducted for the first time including short baseline spacings showed that there is a considerably large, low brightness emission that was systematically resolved out at the usual spatial resolution. Various scenarios for the nature of this emission are presented as the basis for the investigation toward an explanation to this phenomenon. Theoretical work on modelling a circumstellar disc traced by methanol masers gave estimates for the mass of the central object and the extent of the masing disc in NGC7538-IRS1 N. The model fits both the spectrum and the integrated brightness profile using two parameters, the line of sight velocity gradient and the ratio between inner and outer radius. As a side project, results of 3.6 cm-continuum global VLBI observations of the young active stars YZ CMi, AD Leo and T TauriSb (first detection at this frequency and resolution) are presented, where size and polarisation of the coronal emission as well as accurate positions of all targets were measured. The emission mechanism for the corona could be non-thermal, and particularly for T TauriSb, an electron cyclotron maser is proposed to explain the flaring activity.

Pestalozzi, Michele Roberto

2004-10-01

156

Discovery at Young Star Hints Magnetism Common to All Cosmic Jets  

NASA Astrophysics Data System (ADS)

Astronomers have found the first evidence of a magnetic field in a jet of material ejected from a young star, a discovery that points toward future breakthroughs in understanding the nature of all types of cosmic jets and of the role of magnetic fields in star formation. Throughout the Universe, jets of subatomic particles are ejected by three phenomena: the supermassive black holes at the cores of galaxies, smaller black holes or neutron stars consuming material from companion stars, and young stars still in the process of gathering mass from their surroundings. Previously, magnetic fields were detected in the jets of the first two, but until now, magnetic fields had not been confirmed in the jets from young stars. "Our discovery gives a strong hint that all three types of jets originate through a common process," said Carlos Carrasco-Gonzalez, of the Astrophysical Institute of Andalucia Spanish National Research Council (IAA-CSIC) and the National Autonomous University of Mexico (UNAM). The astronomers used the National Science Foundation's Very Large Array (VLA) radio telescope to study a young star some 5,500 light-years from Earth, called IRAS 18162-2048. This star, possibly as massive as 10 Suns, is ejecting a jet 17 light-years long. Observing this object for 12 hours with the VLA, the scientists found that radio waves from the jet have a characteristic indicating they arose when fast-moving electrons interacted with magnetic fields. This characteristic, called polarization, gives a preferential alignment to the electric and magnetic fields of the radio waves. "We see for the first time that a jet from a young star shares this common characteristic with the other types of cosmic jets," said Luis Rodriguez, of UNAM. The discovery, the astronomers say, may allow them to gain an improved understanding of the physics of the jets as well as of the role magnetic fields play in forming new stars. The jets from young stars, unlike the other types, emit radiation that provides information on the temperatures, speeds, and densities within the jets. This information, combined with the data on magnetic fields, can improve scientists' understanding of how such jets work. "In the future, combining several types of observations could give us an overall picture of how magnetic fields affect the young star and all its surroundings. This would be a big advance in understanding the process of star formation," Rodriguez said. Carrasco-Gonzalez and Rodriguez worked with Guillem Anglada and Mayra Osorio of the Astrophysical Institute of Andalucia, Josep Marti of the University of Jaen in Spain, and Jose Torrelles of the University of Barcelona. The scientists reported their findings in the November 26 edition of Science.

2010-11-01

157

Chromospherically active stars. II - HD 82558, a young single BY Draconis variable  

NASA Technical Reports Server (NTRS)

It is presently noted that the HD 82558 chromospherically active star is a young and rapidly rotating K2 V single BY Draconis variable with very strong far-UV emission features and an H-alpha line filled to the continuum level by emission. HD 82558 has constant velocity and is not a member of the Hyades Supercluster. Its light curve behavior, which appears to have been stable for several hundred rotation cycles, is reminiscent of that of the young, rapidly rotating, single K V variable H II 1883 in the Pleiades; this stability may be characteristic of young, single, chromospherically active stars.

Fekel, Francis C.; Bopp, Bernard W.; Africano, John L.; Goodrich, Bret D.; Palmer, Leigh Hunter

1986-01-01

158

Dust and young embedded stars in the Lagoon Nebula - a near-IR imaging survey.  

NASA Astrophysics Data System (ADS)

A large HII region, the Lagoon Nebula is one of the brightest sources of CO emission in the sky, containing at least two OB stars, and is surrounded by fairly warm (25-30 K) molecular gas and dust. It may be the site of ongoing star formation triggered by the OB stars. We have taken near infra-red broad band data (J,H and Ks) to hunt for deeply embedded young stars and to estimate the dust opacity in the dense gas, by comparing the near-IR extinction to the submillimeter continuum emission mapped with SCUBA. We present initial imaging and photometry over a 30 by 20 arcminute field.

Kenworthy, M. A.; Tothill, N. F. H.

2001-12-01

159

ACCRETION RATES ON PRE-MAIN-SEQUENCE STARS IN THE YOUNG OPEN CLUSTER NGC 6530  

SciTech Connect

It is well accepted that during the star formation process, material from a protoplanetary disk is accreted onto the central object during the first {approx}1-5 Myr. Different authors have published measurements of accretion rates for young low- and intermediate-mass stars in several nearby star-forming regions (SFRs). Due to its somewhat larger distance, the SFR M8 (the Lagoon Nebula) has not been studied to the same extent, despite its abundant population of young stellar objects. We have obtained optical band low-resolution spectra of a sample of pre-main-sequence stars in the open cluster NGC 6530 located in the aforementioned nebulae using the Gemini Multi Object Spectrograph at Gemini-South in multi-object mode. Spectra cover the H{sub {alpha}} emission line used to measure the accretion rate, following the method presented by Natta et al. The observed spectral characteristics are fully consistent with pre-main-sequence stars, showing lithium absorption lines, which are very common in young stellar objects, as well as prominent and broad H{sub {alpha}} emission lines, indicating a T Tauri evolutionary stage. This work presents the first determinations of mass accretion rates of young stellar objects in the open cluster NGC 6530, confirming that they are classical T Tauri stars going through the accretion phase. These observations contribute to a better understanding of the stellar content and evolutionary phase of the very active Lagoon Nebula SFR.

Gallardo, Jose; Del Valle, Luciano; Ruiz, Maria Teresa, E-mail: gallardo@das.uchile.cl, E-mail: ldelvall@das.uchile.cl, E-mail: mtruiz@das.uchile.cl [Departamento de Astronomia, Universidad de Chile, Casilla 36-D, Santiago (Chile)

2012-01-15

160

Young Brown Dwarfs and Giant Planets as Companions to Weak-Line T Tauri Stars  

NASA Astrophysics Data System (ADS)

Weak-line T Tauri stars, contrary to classical T Tauri stars, no longer possess massive circumstellar disks. In weak-line T Tauri stars, the circumstellar matter was either accreted onto the T Tauri star or has been redistributed. Disk instabilities in the outer disk might result in the formation of brown dwarfs and giant planets. Based on photometric and spectroscopic studies of ROSAT sources, we have selected an initial sample of 200 weak-line T Tauri stars in the Chamaeleon T association and the Scorpius-Centaurus OB association. In the course of follow-up observations, we identified visual and spectroscopic binary stars and excluded them from our final list, as the complex dynamics and gravitational interaction in binary systems might aggravate or even completely inhibit the formation of planets (depending on physical separation of the binary components and their mass ratio). The membership of individual stars to the associations was established from proper motion studies and radial velocity surveys. Our final sample consists of 70 single weak-line T Tauri stars. We have initiated a program to spatially resolve young brown dwarfs and young giant planets as companions to single weak-line T Tauri stars using adaptive optics at the ESO 3.6 m telescope and HST/NICMOS. In this poster we describe the observing strategy and present first results of our adaptive optics observations. An update on the program status can be found at http://www.astro.uiuc.edu/~brandner/text/bd/bd.html

Brandner, Wolfgang; Frink, Sabine; Kohler, Rainer; Kunkel, Michael

161

Young star clusters: Metallicity tracers in external galaxies  

E-print Network

Star cluster formation is a major mode of star formation in the extreme conditions of interacting galaxies and violent starbursts. These newly-formed clusters are built from recycled gas, pre-enriched to various levels within the interacting galaxies. Hence, star clusters of different ages represent a fossil record of the chemical enrichment history of their host galaxy, as well as of the host galaxy's violent star formation history. We present a new set of evolutionary synthesis models of our GALEV code, specifically developed to include the gaseous emission of presently forming star clusters, and a new tool to analyse multi-color observations with our models. First results for newly-born clusters in the dwarf starburst galaxy NGC 1569 are presented.

P. Anders; U. Fritze--v. Alvensleben; R. de Grijs

2003-09-04

162

Young star clusters: Metallicity tracers in external galaxies  

E-print Network

Star cluster formation is a major mode of star formation in the extreme conditions of interacting galaxies and violent starbursts. These newly-formed clusters are built from recycled gas, pre-enriched to various levels within the interacting galaxies. Hence, star clusters of different ages represent a fossil record of the chemical enrichment history of their host galaxy, as well as of the host galaxy's violent star formation history. We present a new set of evolutionary synthesis models of our GALEV code, specifically developed to include the gaseous emission of presently forming star clusters, and a new tool to analyse multi-color observations with our models. First results for newly-born clusters in the dwarf starburst galaxy NGC 1569 are presented.

Anders, P; De Grijs, R

2003-01-01

163

An Intermediate Luminosity Transient in NGC300: The Eruption of a Dust-Enshrouded Massive Star  

E-print Network

[abridged] We present multi-epoch high-resolution optical spectroscopy, UV/radio/X-ray imaging, and archival Hubble and Spitzer observations of an intermediate luminosity optical transient recently discovered in the nearby galaxy NGC300. We find that the transient (NGC300 OT2008-1) has a peak absolute magnitude of M_bol~-11.8 mag, intermediate between novae and supernovae, and similar to the recent events M85 OT2006-1 and SN2008S. Our high-resolution spectra, the first for this event, are dominated by intermediate velocity (~200-1000 km/s) hydrogen Balmer lines and CaII emission and absorption lines that point to a complex circumstellar environment, reminiscent of the yellow hypergiant IRC+10420. In particular, we detect broad CaII H&K absorption with an asymmetric red wing extending to ~1000 km/s, indicative of gas infall onto a massive and relatively compact star (blue supergiant or Wolf-Rayet star); an extended red supergiant progenitor is unlikely. The origin of the inflowing gas may be a previous eje...

Berger, E; Chevalier, R A; Fransson, C; Foley, R J; Leonard, D C; Debes, J H; Diamond-Stanic, A M; Dupree, A K; Ivans, I I; Simmerer, J; Thompson, I B; Tremonti, C A

2009-01-01

164

A KINEMATIC AND PHOTOMETRIC STUDY OF THE GALACTIC YOUNG STAR CLUSTER NGC 7380  

SciTech Connect

We present proper motions, radial velocities, and a photometric study of the Galactic open cluster NGC 7380, which is associated with prominent emission nebulosity and dark molecular clouds. On the basis of the sample of highly probable member stars, the star cluster is found to be at a distance of 2.6 {+-} 0.4 kpc, has an age of around 4 Myr, and a physical size of {approx}6 pc across with a tidal structure. The binary O-type star DH Cep is a member of the cluster in its late stage of clearing the surrounding material, and may have triggered the ongoing star formation in neighboring molecular clouds which harbor young stars that are coeval and comoving with, but not gravitationally bound by, the star cluster.

Chen, W. P.; Chen, C. W. [Institute of Astronomy, National Central University, Jhongli 32001, Taiwan (China); Pandey, A. K.; Sharma, Saurabh [Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital 263 129, Uttaranchal (India); Chen Li [Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030 (China); Sperauskas, J. [Astronomical Observatory of Vilnius University (Lithuania); Ogura, K. [Department for Natural Sciences, Kokugakuin University, Higashi, Shibuya-ku, Tokyo 150-8440 (Japan); Chuang, R. J. [Department of Statistics and Information Science, Fu Jen University, Taiwan (China); Boyle, R. P. [Vatican Observatory Research Group, Steward Observatory, Tucson, AZ 85721 (United States)

2011-09-15

165

STAR FORMATION HISTORY OF A YOUNG SUPER-STAR CLUSTER IN NGC 4038/39: DIRECT DETECTION OF LOW-MASS PRE-MAIN SEQUENCE STARS  

SciTech Connect

We present an analysis of the near-infrared spectrum of a young massive star cluster in the overlap region of the interacting galaxies NGC 4038/39 using population synthesis models. Our goal is to model the cluster population as well as provide rough constraints on its initial mass function (IMF). The cluster shows signs of youth, such as thermal radio emission and strong hydrogen emission lines in the near-infrared. Late-type absorption lines are also present which are indicative of late-type stars in the cluster. The strength and ratio of these absorption lines cannot be reproduced through either late-type pre-main sequence (PMS) stars or red supergiants alone. Thus, we interpret the spectrum as a superposition of two star clusters of different ages, which is feasible since the 1'' spectrum encompasses a physical region of {approx}90 pc and radii of super-star clusters (SSCs) are generally measured to be a few parsecs. One cluster is young (<= 3 Myr) and is responsible for part of the late-type absorption features, which are due to PMS stars in the cluster, and the hydrogen emission lines. The second cluster is older (6 Myr-18 Myr) and is needed to reproduce the overall depth of the late-type absorption features in the spectrum. Both are required to accurately reproduce the near-infrared spectrum of the object. Thus, we have directly detected PMS objects in an unresolved SSC for the first time using a combination of population synthesis models and PMS tracks. This analysis serves as a testbed of our technique to constrain the low-mass IMF in young SSCs as well as an exploration of the star formation history of young UC H II regions.

Greissl, Julia; Meyer, Michael R. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Christopher, Micol H.; Scoville, Nick Z., E-mail: jgreissl@as.arizona.ed [California Institute of Technology, Pasadena, CA 91125 (United States)

2010-02-20

166

A Search for Diskless Young Stars in M17's Heart of Darkness  

NASA Astrophysics Data System (ADS)

We propose a 100-ks ACIS-I observation of a large (~100 pc long) molecular cloud complex associated with the giant H II region M17. The dense, central regions appear as filamentary infrared dark clouds containing >200 embedded intermediate-mass young stellar objects (YSOs) in Spitzer images; this is a rare example of a young proto-OB association. ACIS will detect a few hundred disk-dominated YSOs plus potentially hundreds of diskless young stars associated with the cloud. We may also detect hard X-ray emission and possibly soft, diffuse emission associated with ultracompact H II regions in the ACIS field. Our results will provide new constraints on circumstellar disk lifetimes, timescales for OB star formation, and the current star formation rate in the complex.

Povich, Matthew

2010-09-01

167

STAR FORMATION AND YOUNG STELLAR CONTENT IN THE W3 GIANT MOLECULAR CLOUD  

SciTech Connect

In this work, we have carried out an in-depth analysis of the young stellar content in the W3 giant molecular cloud (GMC). The young stellar object (YSO) population was identified and classified in the Infrared Array Camera/Multiband Imaging Photometer color-magnitude space according to the 'Class' scheme and compared to other classifications based on intrinsic properties. Class 0/I and II candidates were also compared to low-/intermediate-mass pre-main-sequence (PMS) stars selected through their colors and magnitudes in the Two Micron All Sky Survey. We find that a reliable color/magnitude selection of low-mass PMS stars in the infrared requires prior knowledge of the protostar population, while intermediate-mass objects can be more reliably identified. By means of the minimum spanning tree algorithm and our YSO spatial distribution and age maps, we investigated the YSO groups and the star formation history in W3. We find signatures of clustered and distributed star formation in both triggered and quiescent environments. The central/western parts of the GMC are dominated by large-scale turbulence likely powered by isolated bursts of star formation that triggered secondary star formation events. Star formation in the eastern high-density layer (HDL) also shows signs of quiescent and triggered stellar activity, as well as extended periods of star formation. While our findings support triggering as a key factor for inducing and enhancing some of the major star-forming activity in the HDL (e.g., W3 Main/W3(OH)), we argue that some degree of quiescent or spontaneous star formation is required to explain the observed YSO population. Our results also support previous studies claiming a spontaneous origin for the isolated massive star(s) powering KR 140.

Rivera-Ingraham, Alana [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Martin, Peter G. [Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8 (Canada); Polychroni, Danae [INAF-IFSI, via Fosso del Cavaliere 100, 00133 Roma (Italy); Moore, Toby J. T. [Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Egerton Wharf, Birkenhead CH41 1LD (United Kingdom)

2011-12-10

168

A New Method to Identify Nearby, Young, Low-mass Stars  

E-print Network

We describe a new method to identify young, late-type stars within ~150 pc of the Earth that employs visual or near-infrared data and the GALEX GR4/5 database. For spectral types later than K5, we demonstrate that the ratio of GALEX near-ultraviolet (NUV) to visual and near-IR emission is larger for stars with ages between 10 and 100 Myr than for older, main sequence stars. A search in regions of the sky encompassing the TW Hya and Scorpius-Centaurus Associations has returned 54 high-quality candidates for followup. Spectroscopic observations of 24 of these M1-M5 objects reveal Li 6708 angstrom absorption in at least 17 systems. Because GALEX surveys have covered a significant fraction of the sky, this methodology should prove valuable for future young star studies.

Rodriguez, David R; Zuckerman, B; Kastner, Joel H

2010-01-01

169

Search for Associations Containing Young stars (SACY). V. Is Multiplicity Universal?: Tight multiple systems  

E-print Network

Context: Dynamically undisrupted, young populations of stars are crucial to study the role of multiplicity in relation to star formation. Loose nearby associations provide us with a great sample of close ($research. Aims: We characterize the short period multiplicity fraction of the SACY (Search for Associations Containing Young stars) accounting for any identifiable bias in our techniques and present the role of multiplicity fractions of the SACY sample in the context of star formation. Methods: Using the cross-correlation technique we identified double-lined spectroscopic systems (SB2), in addition to this we computed Radial Velocity (RV) values for our subsample of SACY targets using several epochs of FEROS and UVES data. These values were used to revise the membership of each association then combined with archival data to determine significant RV variations across different data epochs chara...

Elliott, P; Melo, C H F; Torres, C A O; Sterzik, M; Quast, G R

2014-01-01

170

A NEW METHOD TO IDENTIFY NEARBY, YOUNG, LOW-MASS STARS  

SciTech Connect

We describe a new method to identify young, late-type stars within {approx}150 pc of the Earth that employs visual or near-infrared (NIR) data and the GALEX GR4/5 database. For spectral types later than K5, we demonstrate that the ratio of GALEX near-ultraviolet to visual and NIR emission is larger for stars with ages between 10 and 100 Myr than for older, main-sequence stars. A search in regions of the sky encompassing the TW Hya and Scorpius-Centaurus Associations has returned 54 high-quality candidates for follow up. Spectroscopic observations of 24 of these M1-M5 objects reveal Li 6708 A absorption in at least 17 systems. Because GALEX surveys have covered a significant fraction of the sky, this methodology should prove valuable for future young star studies.

Rodriguez, David R.; Zuckerman, B. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Bessell, M. S. [Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia); Kastner, Joel H., E-mail: drodrigu@astro.ucla.edu [Center for Imaging Science, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States)

2011-02-01

171

On the origin of young stars at the Galactic center  

NASA Astrophysics Data System (ADS)

The center of our Galaxy is home to a massive black hole, Sgr A*, and a nuclear star cluster containing stellar populations of various ages. While the late type stars may be too old to have retained memory of their initial orbital configuration, and hence formation mechanism, the kinematics of the early type stars should reflect their original distribution. In this contribution we present a new statistic which uses directly-observable kinematic stellar data to infer orbital parameters for stellar populations, and is capable of distinguishing between different origin scenarios. We use it on a population of B-stars in the Galactic center that extends out to large radii (˜0.5 pc) from the massive black hole. We find that the high K-magnitude population (?15 M?) form an eccentric distribution, suggestive of a Hills binary-disruption origin.

Madigan, Ann-Marie; Pfuhl, Oliver; Levin, Yuri; Gillessen, Stefan; Genzel, Reinhard; Perets, Hagai B.

2014-05-01

172

Gravitational Slingshot of Young Massive Stars in Orion  

NASA Astrophysics Data System (ADS)

The Orion Nebula Cluster (ONC) is the nearest region of massive star formation and thus a crucial testing ground for theoretical models. Of particular interest among the ONC's ~1000 members are: ?1 Ori C, the most massive binary in the cluster with stars of masses 38 and 9 M ? the Becklin-Neugebauer (BN) object, a 30 km s-1 runaway star of ~8 M ? and the Kleinmann-Low (KL) nebula protostar, a highly obscured, ~15 M ? object still accreting gas while also driving a powerful, apparently "explosive" outflow. The unusual behavior of BN and KL is much debated: How did BN acquire its high velocity? How is this related to massive star formation in the KL nebula? Here, we report the results of a systematic survey using ~107 numerical experiments of gravitational interactions of the ?1C and BN stars. We show that dynamical ejection of BN from this triple system at its observed velocity leaves behind a binary with total energy and eccentricity matching those observed for ?1C. Five other observed properties of ?1C are also consistent with it having ejected BN and altogether we estimate that there is only a <~ 10-5 probability that ?1C has these properties by chance. We conclude that BN was dynamically ejected from the ?1C system about 4500 years ago. BN then plowed through the KL massive star-forming core within the last 1000 years causing its recently enhanced accretion and outflow activity.

Chatterjee, Sourav; Tan, Jonathan C.

2012-08-01

173

Infrared Search for Young Stars in HI High-velocity Clouds  

E-print Network

We have searched the IRAS Point Source Catalog and HIRES maps for young stellar objects (YSOs) in the direction of five \\HI high-velocity clouds (HVCs). In agreement with optical searches in the halo, no evidence was found for extensive star-forming activity inside the high-latitude HVCs. Specifically, we have found no signs of star formation or YSOs in the direction of the A IV cloud or in the very-high-velocity clouds HVC~110-7-465 and HVC~114-10-440. We have identified only one young star in the direction of the M~I.1 cloud, which shows almost perfect alignment with a knot of \\HI emission. Because of the small number of early-type stars observed in the halo, the probability for such a positional coincidence is low; thus, this young star appears to be physically associated with the M~I.1 cloud. We have also identified a good YSO candidate in the \\HI shell-like structure observed in the core region of the low-latitude cloud complex H (HVC~131+1-200). This region could be a supernova remnant with several other YSO candidates formed along the shock front produced by the explosion. In agreement with recent theoretical estimates, these results point to a low but significant star-formation rate in intermediate and high Galactic latitude HVCs. For M~I.1 in particular, we estimate that the efficiency of the star-formation process is $M(YSO)/M(\\HI)\\ga 10^{-4}-10^{-3}$ by mass. Such efficiency is sufficient to account for (a) the existence of the few young blue stars whose ages imply that they were born in the Galactic halo, and (b) the nonprimordial metallicities inferred for some HVCs if their metal content proves to be low.

Z. Ivezic; D. M. Christodoulou

1997-05-25

174

Ground-based infrared imaging search for sub-stellar companions next to young nearby stars  

Microsoft Academic Search

We report first results from our ground-based infrared imaging search for sub-stellar companions next to young (up to 100 Myrs) nearby (up to 75 pc) stars, where companions should be well separated from the central stars and still relatively bright due to ongoing accretion and\\/or contraction. Among our targets are all members of the TW Hya association, as well as

Ralph Neuhäuser; Eike Guenther; Wolfgang Brandner; João Alves; Andreas Eckart; Thomas Ott; Nuria Huélamo; Matilde Fernández; Jean-Gabriel Cuby

2000-01-01

175

A CCD Search for Variable Stars in a Young Open Cluster IC 4996  

Microsoft Academic Search

The results of CCD search for variables stars in the young open cluster IC 4996 based on 18 nights are presented. Three variable stars have been discovered. Variable v1 is probably an RR Lyr type variable with the period of 0.236 d and semi-amplitude of 0.12 mag in filter I. v2 is an eclipsing systems. The most probable period of

G. Pietrzynski

1996-01-01

176

Spectral Characteristics of Young Stars Associated with the Sh2-296 Nebula  

NASA Astrophysics Data System (ADS)

Aiming to contribute to the understanding of star formation and evolution in the Canis Major (CMa R1) Molecular Clouds Complex, we analyze the spectral characteristics of a population of young stars associated with the arc-shaped nebula Sh2-296. Our XMM/Newton observations detected 109 X-ray sources in the region and optical spectroscopy was performed with Gemini telescope for 85 optical counterparts. We identified and characterized 51 objects that present features typically found in young objects, such as H? emission and strong absorption on the Li I line.

Fernandes, Beatriz; Gregorio-Hetem, Jane

177

Young stars and brown dwarfs surrounding Alnilam (eps Ori) and Mintaka (del Ori)  

E-print Network

Aims: We look for new regions for the search of substellar objects. Methods: Two circular areas, 45 arcmin-radius each, centred on the young massive star systems Alnilam and Mintaka in the Orion Belt, have been explored. The regions are very young (less than 10 Ma), have low extinction, and are neighbours to sigma Orionis (~3 Ma), a young open cluster very rich in brown dwarfs and planetary-mass objects. We have used Virtual Observatory tools, the astro-photometric Tycho-2, DENIS and 2MASS catalogues, 10 control fields at similar galactic latitudes, and X-ray, mid-infrared and spectroscopic data from the literature. Results: We have compiled exhaustive lists of known young stars and new candidate members in the Ori OB1b association, and of fore- and background sources. A total of 136 stars display features of extreme youth, like early spectral types, lithium in absorption, or mid-infrared flux excess. Other two young brown dwarf and 289 star candidates have been identified from an optical/near-infrared colour...

Caballero, J A

2008-01-01

178

Probing the Evolution of Stellar Activity in Young A Stars with FUSE  

NASA Astrophysics Data System (ADS)

Spatially resolved spectroscopy of several Herbig Ae stars at Lyman alpha has demonstrated that these stars drive collimated, bipolar outflows through much of their pre-main sequence evolution, and therefore closely resemble young solar-mass T Tauri stars. For those objects, the stellar magnetic field is important in channelling material accreting onto the star and in collimating the outflow. Older A stars, in general, do not exhibit X-ray emission or FUV emission lines indicating the presence of stellar activity associated with a magnetic field, but recent FUSE observations of beta Pic indicate that such activity persists into at least the early phases of an A star's main sequence lifetime. At present we do not know the frequency, duration of such activity, nor do we know whether activity signatures are enhanced in systems with protoplanetary or debris disks compared to coeval stars lacking disks. These are the questions we will address by supplementing the current FUSE archival holdings of actively accreting Herbig Ae stars and the brightest debris disk systems with observations of older Herbig Ae stars, and a suite of comparison A stars which are members of nearby stellar associations with secure age measurements.

Grady, M.

179

Planets around stars in young nearby associations *** radial Velocity searches: a feasibility study, and first results  

E-print Network

Stars in young nearby associations are the only targets allowing giant planet searches at all separations in the near future, by coupling indirect techniques such as radial velocity and deep imaging. These stars are first priorities targets for the forthcoming planets imagers on 10-m class telescopes. Young stars rotate more rapidly and are more active than their older counterparts. Both effects can limit the capability to detect planets using RV. We wish to explore the planet detection capabilities of a representative sample of stars in close and young associations with radial velocity data and explore the complementarity between this technique and direct imaging. We observed 26 such targets with spectral types from A to K and ages from 8 to 300 Myr with HARPS. We compute the detection limits. We also attempt to improve the detection limits in a few cases by correcting for the stellar activity. Our A-type stars RV show high frequency variations due to pulsations, while our F-K stars clearly show activity wit...

Lagrange, A -M; Chauvin, G; Sterzik, M; Galland, F; Curto, G Lo; Rameau, J; Sosnowska, D

2013-01-01

180

Mass Loss and Magnetospheres: X-rays from Hot Stars and Young Stellar Objects  

E-print Network

High-resolution X-ray spectra of high-mass stars and low-mass T-Tauri stars obtained during the first year of the Chandra mission are providing important clues about the mechanisms which produce X-rays on very young stars. For zeta Puppis (O4 If) and zeta Ori (O9.5 I), the broad, blue-shifted line profiles, line ratios, and derived temperature distribution suggest that the X-rays are produced throughout the wind via instability-driven wind shocks. For some less luminous OB stars, like theta^1 Ori C (O7 V) and tau Sco (B0 V), the line profiles are symmetric and narrower. The presence of time-variable emission and very high-temperature lines in theta^1 Ori C and tau Sco suggest that magnetically confined wind shocks may be at work. The grating spectrum of the classical T-Tauri star TW Hya is remarkable because the forbidden-line emission of He-like Ne IX and O VII is very weak, implying that the X-ray emitting region is very dense, n = 6E+12 cgs, or that the X-rays are produced very close to the ultraviolet hotspot at the base of an accretion funnel. ACIS light curves and spectra of flares and low-mass and high-mass young stellar objects in Orion and rho Ophiuchus further suggest that extreme magnetic activity is a general property of many very young stars.

Marc Gagne; David Cohen; Stanley Owocki; Asif Ud-Doula

2001-09-06

181

The Dispersal of Young Stars and the Greater Sco-Cen Association  

E-print Network

We review topics related to the dispersal of young stars from their birth-sites, and focus in particular on the entourage of young stars related to the ongoing star-formation event in the Sco-Cen OB association. We conduct a follow-up kinematic study to that presented in Mamajek, Lawson, & Feigelson (2000; ApJ 544, 356) amongst nearby, isolated, young stars. In addition to the eta Cha and TW Hya groups, we find several more intriguing Sco-Cen outlier candidates: most notably beta Pic, PZ Tel, HD 199143, and HD 100546. We discuss the connection between Sco-Cen and the southern ``150 pc Conspiracy'' molecular clouds, and in particular, Corona Australis. The kinematic evidence suggests that many of the nearby, isolated ~10 Myr-old stars were born near Sco-Cen during the UCL and LCC starbursts 10-15 Myr ago. We hypothesize that these stars inherited 5-10 km/s velocities moving away from Sco-Cen, either through molecular cloud turbulence, or through formation in molecular clouds associated with the expanding Sco-Cen superbubbles (e.g. Loop I).

E. E. Mamajek; E. D. Feigelson

2001-05-16

182

M-dwarf Rapid Rotators and the Detection of Relatively Young Multiple M-Star Systems  

NASA Astrophysics Data System (ADS)

We have searched the Kepler light curves of ~3900 M-star targets for evidence of periodicities that indicate, by means of the effects of starspots, rapid stellar rotation. Several analysis techniques, including Fourier transforms, inspection of folded light curves, "sonograms," and phase tracking of individual modulation cycles, were applied in order to distinguish the periodicities due to rapid rotation from those due to stellar pulsations, eclipsing binaries, or transiting planets. We find 178 Kepler M-star targets with rotation periods, P rot, of <2 days, and 110 with P rot < 1 day. Some 30 of the 178 systems exhibit two or more independent short periods within the same Kepler photometric aperture, while several have 3 or more short periods. Adaptive optics imaging and modeling of the Kepler pixel response function for a subset of our sample support the conclusion that the targets with multiple periods are highly likely to be relatively young physical binary, triple, and even quadruple M star systems. We explore in detail the one object with four incommensurate periods all less than 1.2 days, and show that two of the periods arise from one of a close pair of stars, while the other two arise from the second star, which itself is probably a visual binary. If most of these M-star systems with multiple periods turn out to be bound M stars, this could prove a valuable way discovering young hierarchical M-star systems; the same approach may also be applicable to G and K stars. The ~5% occurrence rate of rapid rotation among the ~3900 M star targets is consistent with spin evolution models that include an initial contraction phase followed by magnetic braking, wherein a typical M star can spend several hundred Myr before spinning down to periods longer than 2 days.

Rappaport, S.; Swift, J.; Levine, A.; Joss, M.; Sanchis-Ojeda, R.; Barclay, T.; Still, M.; Handler, G.; Oláh, K.; Muirhead, P. S.; Huber, D.; Vida, K.

2014-06-01

183

Gravitational Slingshot of Young Massive Stars in Orion  

NASA Astrophysics Data System (ADS)

The Orion Nebula Cluster (ONC) is the nearest region of massive star formation and thus a crucial testing ground for theoretical models. Of particular interest amongst the ONC's 1000 members are: theta1C, the most massive binary in the cluster with stars of masses 38 and 9 Msun; the Becklin-Neugebauer (BN) object, a 30 km/s runaway star of 8 Msun; and the Kleinmann-Low (KL) nebula protostar, a highly-obscured, 15 Msun object still accreting gas while also driving a powerful, apparently "explosive" outflow. The unusual behavior of BN and KL is much debated: How did BN acquire its high velocity? How is this related to massive star formation in the KL nebula? Here we report the results of a systematic survey using 10^7 numerical experiments of gravitational interactions of the theta1C and BN stars. We show that dynamical ejection of BN from this triple system at its observed velocity leaves behind a binary with total energy and eccentricity matching those observed for theta1C. Several other observed properties of theta1C are also consistent with it having ejected BN and altogether we estimate there is only a 10^-5 probability that theta1C has these properties by chance. Our results suggest that after being launched from theta1C 4,500 years ago, BN has plowed through the KL massive-star-forming core within the last 1,000 years causing its recently-enhanced accretion and outflow activity.

Tan, Jonathan; Chatterjee, S.

2012-05-01

184

SPIN EVOLUTION OF ACCRETING YOUNG STARS. II. EFFECT OF ACCRETION-POWERED STELLAR WINDS  

SciTech Connect

We present a model for the rotational evolution of a young, solar-mass star interacting magnetically with an accretion disk. As in a previous paper (Paper I), the model includes changes in the star's mass and radius as it descends the Hayashi track, a decreasing accretion rate, and a prescription for the angular momentum transfer between the star and disk. Paper I concluded that, for the relatively strong magnetic coupling expected in real systems, additional processes are necessary to explain the existence of slowly rotating pre-main-sequence stars. In the present paper, we extend the stellar spin model to include the effect of a spin-down torque that arises from an accretion-powered stellar wind (APSW). For a range of magnetic field strengths, accretion rates, initial spin rates, and mass outflow rates, the modeled stars exhibit rotation periods within the range of 1-10 days in the age range of 1-3 Myr. This range coincides with the bulk of the observed rotation periods, with the slow rotators corresponding to stars with the lowest accretion rates, strongest magnetic fields, and/or highest stellar wind mass outflow rates. We also make a direct, quantitative comparison between the APSW scenario and the two types of disk-locking models (namely, the X-wind and Ghosh and Lamb type models) and identify some remaining theoretical issues for understanding young star spins.

Matt, Sean P. [Laboratoire AIM Paris-Saclay, CEA/Irfu Universite Paris-Diderot CNRS/INSU, 91191 Gif-sur-Yvette (France); Pinzon, Giovanni [Observatorio Astronomico Nacional, Facultad de Ciencias, Universidad Nacional de Colombia, Bogota (Colombia); Greene, Thomas P. [NASA Ames Research Center, M.S. 245-6, Moffett Field, CA 94035-1000 (United States); Pudritz, Ralph E., E-mail: sean.matt@cea.fr, E-mail: thomas.p.greene@nasa.gov, E-mail: gapinzone@unal.edu.co, E-mail: pudritz@physics.mcmaster.ca [Physics and Astronomy Department, McMaster University, Hamilton, ON L8S 4M1 (Canada)

2012-01-20

185

Spin Evolution of Accreting Young Stars. II. Effect of Accretion-powered Stellar Winds  

NASA Astrophysics Data System (ADS)

We present a model for the rotational evolution of a young, solar-mass star interacting magnetically with an accretion disk. As in a previous paper (Paper I), the model includes changes in the star's mass and radius as it descends the Hayashi track, a decreasing accretion rate, and a prescription for the angular momentum transfer between the star and disk. Paper I concluded that, for the relatively strong magnetic coupling expected in real systems, additional processes are necessary to explain the existence of slowly rotating pre-main-sequence stars. In the present paper, we extend the stellar spin model to include the effect of a spin-down torque that arises from an accretion-powered stellar wind (APSW). For a range of magnetic field strengths, accretion rates, initial spin rates, and mass outflow rates, the modeled stars exhibit rotation periods within the range of 1-10 days in the age range of 1-3 Myr. This range coincides with the bulk of the observed rotation periods, with the slow rotators corresponding to stars with the lowest accretion rates, strongest magnetic fields, and/or highest stellar wind mass outflow rates. We also make a direct, quantitative comparison between the APSW scenario and the two types of disk-locking models (namely, the X-wind and Ghosh & Lamb type models) and identify some remaining theoretical issues for understanding young star spins.

Matt, Sean P.; Pinzón, Giovanni; Greene, Thomas P.; Pudritz, Ralph E.

2012-01-01

186

Workshop on Physics of Accretion Disks Around Compact and Young Stars  

NASA Technical Reports Server (NTRS)

The purpose of the two-day Workshop on Physics of Accretion Disks Around Compact and Young Stars was to bring together workers on accretion disks in the western Gulf region (Texas and Louisiana). Part 2 presents the workshop program, a list of poster presentations, and a list of workshop participants. Accretion disks are believed to surround many stars. Some of these disks form around compact stars, such as white dwarfs, neutron stars, or black holes that are members of binary systems and reveal themselves as a power source, especially in the x-ray and gamma regions of the spectrum. On the other hand, protostellar disks are believed to be accretion disks associated with young, pre-main-sequence stars and manifest themselves mostly in infrared and radio observations. These disks are considered to be a natural outcome of the star formation process. The focus of this workshop included theory and observations relevant to accretion disks around compact objects and newly forming stars, with the primary purpose of bringing the two communities together for intellectual cross-fertilization. The nature of the workshop was exploratory, to see how much interaction is possible between distinct communities and to better realize the local potential in this subject. A critical workshop activity was identification and documentation of key issues that are of mutual interest to both communities.

Liang, E (editor); Stepinski, T. F. (editor)

1995-01-01

187

A runaway collision in a young star cluster as the origin of the brightest supernova.  

PubMed

Supernova SN 2006gy in the galaxy NGC 1260 is the most luminous recorded. Its progenitor might have been a very massive (>100 Mo, where is the mass of the Sun) star, but that interpretation is incompatible with hydrogen in the spectrum of the supernova; stars >40 Moare believed to have shed their hydrogen envelopes several hundred thousand years before the explosion. Alternatively, the progenitor might have arisen from the merger of two massive stars. Here we show that the collision frequency of massive stars in a dense and young cluster (of the kind to be expected near the centre of a galaxy) is sufficient to provide a reasonable chance that SN 2006gy resulted from such a bombardment. If this is the correct explanation, then we predict that when the supernova fades (in a year or so) a dense cluster of massive stars will become visible at the site of the explosion. PMID:18004377

Portegies Zwart, Simon F; van den Heuvel, Edward P J

2007-11-15

188

SIM PlanetQuest Key Project Precursor Observations to Detect Gas Giant Planets Around Young Stars  

NASA Technical Reports Server (NTRS)

We present a review of precursor observing programs for the SIM PlanetQuest Key project devoted to detecting Jupiter mass planets around young stars. In order to ensure that the stars in the sample are free of various sources of astrometric noise that might impede the detection of planets, we have initiated programs to collect photometry, high contrast images, interferometric data and radial velocities for stars in both the Northern and Southern hemispheres. We have completed a high contrast imaging survey of target stars in Taurus and the Pleiades and found no definitive common proper motion companions within one arcsecond (140 AU) of the SIM targets. Our radial velocity surveys have shown that many of the target stars in Sco-Cen are fast rotators and a few stars in Taurus and the Pleiades may have sub-stellar companions. Interferometric data of a few stars in Taurus show no signs of stellar or sub-stellar companions with separations of <5 mas. The photometric survey suggests that approximately half of the stars initially selected for this program are variable to a degree (1(sigma) >0.1 mag) that would degrade the astrometric accuracy achievable for that star. While the precursor programs are still a work in progress, we provide a comprehensive list of all targets ranked according to their viability as a result of the observations taken to date. By far, the observable that removes the most targets from the SIM-YSO program is photometric variability.

Tanner, Angelle; Beichman, Charles; Akeson, Rachel; Ghez, Andrea; Grankin, Konstantin N.; Herbst, William; Hillenbrand, Lynne; Huerta, Marcos; Konopacky, Quinn; Metchev, Stanimir; Mohanty, Subhanjoy; Prato, L.; Simon, Michal

2008-01-01

189

Magnetic Properties of Young Stars in the TW Hydrae Association  

E-print Network

We present an analysis of infrared (IR) echelle spectra of five stars in the TW Hydrae Association (TWA). We model the Zeeman broadening in four magnetic-sensitive \\ion{Ti}{1} lines near $2.2 \\mu$m and measure the value of the photospheric magnetic field averaged over the surface of each star. To ensure that other broadening mechanisms are properly taken into account, we also inspect several magnetically insensitive CO lines near $2.3 \\mu$m and find no excess broadening above that produced by stellar rotation and instrumental broadening, providing confidence in the magnetic interpretation of the width of the \\ion{Ti}{1} lines. We then utilize our results to test the relationship between stellar magnetic flux and X-ray properties and compare the measured fields with equipartition field values. Finally, we use our results and recent results on a large sample of stars in Taurus to discuss the potential evolution of magnetic field properties between the age of Taurus ($\\sim$2 Myrs) and the age of TWA ($\\sim$10 Myrs). We find that the average stellar field strength increases with age; however, the total unsigned magnetic flux decreases as the stars contract onto the main-sequence.

Hao Yang; Christopher M. Johns-Krull; Jeff A. Valenti

2008-09-19

190

ccsd00000900 Accretion{ejection phenomena from young stars  

E-print Network

.Ferreira@obs.ujf-grenoble.fr ABSTRACT In the current paradigm of star formation magnetic #12;elds play a very central role. Indeed X-wind" scenario that leads to episodic jet formation with eÃ?cient removal of protostellar angular). Such a magnetic #12;eld is assumed to arise from either advection of interstellar (fossil) magnetic #12;eld

191

Constraining Stellar Winds of Young Sun-like Stars  

NASA Astrophysics Data System (ADS)

As part of the project Pathways to Habitability (http://path.univie.ac.at/), we study the properties of the stellar winds of low-mass and Sun-like stars, and their influences on the atmospheres of potentially habitable planets. For this purpose, we combine mapping of stellar magnetic fields with magnetohydrodynamic wind models.

Johnstone, Colin P.; Lüftinger, Theresa; Güdel, Manuel; Fichtinger, Bibiana

2014-08-01

192

Initial Results From The AO International Deep Planet Search Around Young A Stars  

NASA Astrophysics Data System (ADS)

Throughout their evolution, A stars exhibit favorable physical conditions and indirect evidence of planet formation, such as extended protoplanetary disks at the pre-main sequence stage and debris disks in the main sequence phase. Recent breakthrough discoveries of planetary companions around young, dusty A stars have identified the first massive planets at wide orbital separation. In order to understand the frequency of such systems -- an important factor for formation scenarios -- we are conducting a near-infrared adaptive optics search for giant planets around nearby A stars, part the on-going International Deep Planet Search (IDPS). We present the preliminary results of this survey of 40 stars: 28 of them are nearby (<65 pc) young (<200 Myr) A stars, and the others are star identified as extremely young (<20 Myr) from spectral analysis. The observations were obtained with 8 meter-class telescopes (VLT and Gemini). The Locally Optimized Combination of Images (LOCI) was used to suppress the speckle noise of the central star and reach the detection level of giant planets and low-mass brown dwarfs at wide orbital separation. The median 5-sigma sensitivity of our observations is 9.5 mag at 0.5 arcseconds and 14 mag at separations of a few arcseconds, allowing us to reach limits 1 to 20 Mjup, depending on the target mass and age. We present an overview of the observations, data analysis and performance, followed by a statistical analysis of the survey results, which provide upper limits on the fractions of stars with giant planet and low mass brown dwarf companions.

Vigan, Arthur; Patience, J.; Galicher, R.; Marois, C.; Macintosh, B.; Song, I.; Doyon, R.; Zuckerman, B.; Lafrenière, D.; Barman, T.

2011-09-01

193

Properties of the Remnant Clockwise Disk of Young Stars in the Galactic Center  

NASA Astrophysics Data System (ADS)

We present new kinematic measurements and modeling of a sample of 116 young stars in the central parsec of the Galaxy in order to investigate the properties of the young stellar disk. The measurements were derived from a combination of speckle and laser guide star adaptive optics imaging and integral field spectroscopy from the Keck telescopes. Compared to earlier disk studies, the most important kinematic measurement improvement is in the precision of the accelerations in the plane of the sky, which have a factor of six smaller uncertainties (? ~ 10 ?as yr-2). We have also added the first radial velocity measurements for eight young stars, increasing the sample at the largest radii (6''-12'') by 25%. We derive the ensemble properties of the observed stars using Monte Carlo simulations of mock data. There is one highly significant kinematic feature (~20?), corresponding to the well-known clockwise disk, and no significant feature is detected at the location of the previously claimed counterclockwise disk. The true disk fraction is estimated to be ~20%, a factor of ~2.5 lower than previous claims, suggesting that we may be observing the remnant of what used to be a more densely populated stellar disk. The similarity in the kinematic properties of the B stars and the O/WR stars suggests a common star formation event. The intrinsic eccentricity distribution of the disk stars is unimodal, with an average value of langerang = 0.27 ± 0.07, which we show can be achieved through dynamical relaxation in an initially circular disk with a moderately top-heavy mass function.

Yelda, S.; Ghez, A. M.; Lu, J. R.; Do, T.; Meyer, L.; Morris, M. R.; Matthews, K.

2014-03-01

194

The Long-term Survival Chances of Young Massive Star Clusters  

Microsoft Academic Search

We review the long-term survival chances of young massive star clusters (YMCs), hallmarks of intense starburst episodes often associated with violent galaxy interactions. We address the key question as to whether at least some of these YMCs can be considered proto-globular clusters (GCs), in which case these would be expected to evolve into counterparts of the ubiquitous old GCs believed

Richard de Grijs; Geneviève Parmentier

2007-01-01

195

VLT\\/NACO Deep imaging survey of young, nearby austral stars  

Microsoft Academic Search

Since November 2002, we have conducted the largest deep imaging survey of the young, nearby associations of the southern hemisphere. Our goal is detection and characterization of substellar companions at intermediate (10--500 AU) physical separations. We have observed a sample of 88 stars, mostly G to M dwarfs, that we essentially identify as younger than 100 Myr and closer to

G. Chauvin; A.-M. Lagrange; M. Bonavita; B. Zuckerman; C. Dumas; M. S. Bessell; J.-L. Beuzit; M. Bonnefoy; S. Desidera; J. Farihi; P. Lowrance; D. Mouillet; I. Song

2009-01-01

196

The relevance of the IUE results on young stars for Earth's paleoatmosphere  

Microsoft Academic Search

Using the latest IUE results for seven T Tauri stars, which are believed to represent the young Sun and a detailed photochemical chemical model of the paleoatmosphere, the vertical distribution of Oxygen and Ozone in the early atmosphere was calculated. The calculations indicate that the surface Oxygen mixing ratio is as much as six orders of magnitude larger than previously

V. M. Canuto; J. S. Levine; T. R. Augustsson; C. L. Imhoff; M. S. Giampapa

1982-01-01

197

Get A Bite On The "Delicious" Young Star Cluster NGC 3603  

NASA Astrophysics Data System (ADS)

Young star cluster NGC3603 is one of the most massive star clusters in the Milky Way. It hosts 10 times more OB stars than the Orion Nebular Cluster, among which two are the most massive binaries in the Galaxy (Schnurr et al. 2008). To investigate this star formation arena, we utilize the HST/WFPC2 data. Those data are 10 years apart, which permits us to determine star membership. The cluster displays a significant degree of mass segregation (Pang et al. 2010). To quantify the lower limit in stellar mass at which we see segregation, we apply the minimum spanning tree analysis to cluster stars. The result shows that the stars above 5 solar mass exhibit pronounced mass segregation. What's the origin of this mass segregation? Simulations by Moeckel & Bate (2010) show that primordial segregation is transient and exists within the first 1 Myr. The cluster pre-main sequence (PMS) stars display an age spread up to 3 Myr, while the main sequence stars are consistent with an age of 1 Myr (Pang et al. 2010). And Beccari et al. (2010) derive an age spread as large as 10 Myr among PMS stars. Therefore, at present, the age of NGC3603 is still highly uncertain. A way to improve the age determination of the cluster is to quantify the differential reddening across the cluster. The differential reddening is about 0.8 mag from the core of NGC3603 to the outer region (Sung & Bessel 2004). This affects the PMS stars, which are spatially distributed more widely than the MS stars. We are currently deriving an extinction map of the cluster through Halpha and Paschenbeta images from WFC3 (work in progress), in order to correct the color magnitude diagram, and thus to better constrain the age of the cluster and the masses of its members.

Pang, Xiaoying; Grebel, E.; Altmann, M.; Pasquali, A.

2011-01-01

198

Anne S. Young: Professor and Variable Star Observer Extraordinaire  

NASA Astrophysics Data System (ADS)

Anne Sewell Young (1871-1961) was one of the eight original members of the AAVSO, to which she contributed more than 6500 observations over 33 years. She also taught astronomy for 37 years at Mount Holyoke College; among her students was Helen Sawyer Hogg. This paper will look at her life and career both at Mount Holyoke and with the AAVSO.

Bracher, Katherine

2011-05-01

199

Young stars and protostellar cores near NGC 2023  

Microsoft Academic Search

Context: We investigate the young (proto)stellar population in NGC 2023 and the L 1630 molecular cloud bordering the h ii region IC 434, using Spitzer IRAC and MIPS archive data, JCMT SCUBA imaging and spectroscopy as well as targeted BIMA observations of one of the Class 0 protostars, NGC 2023 MM 1. Aims: We study the distribution of gas, dust

B. Mookerjea; G. Sandell; T. H. Jarrett; J. P. McMullin

2009-01-01

200

A New Sub-stellar Companion around the Young Star HD 284149  

NASA Astrophysics Data System (ADS)

Even though only a handful of sub-stellar companions have been found via direct imaging, each of these discoveries has had a tremendous impact on our understanding of the star formation process and the physics of cool atmospheres. Young stars are prime targets for direct imaging searches for planets and brown dwarfs due to the favorable brightness contrast expected at such ages and also because it is often possible to derive relatively good age estimates for these primaries. Here we present the direct imaging discovery of HD 284149 b, a 18-50 M Jup companion at a projected separation of 400 AU from a young (25^{+25}_{10} Myr) F8 star, with which it shares common proper motion.

Bonavita, Mariangela; Daemgen, Sebastian; Desidera, Silvano; Jayawardhana, Ray; Janson, Markus; Lafrenière, David

2014-08-01

201

A new sub-stellar companion around the young star HD 284149  

E-print Network

Even though only a handful of sub-stellar companions have been found via direct imaging, each of these discoveries has had a tremendous impact on our understanding of the star formation process and the physics of cool atmospheres. Young stars are prime targets for direct imaging searches for planets and brown dwarfs, due to the favorable brightness contrast expected at such ages and also because it is often possible to derive relatively good age estimates for these primaries. Here we present the direct imaging discovery of HD 284149 b, a 18-50 M_Jup companion at a projected separation of 400 AU from a young (25 Myr) F8 star, with which it shares common proper motion

Bonavita, Mariangela; Desidera, Silvano; Jayawardhana, Ray; Janson, Markus; Lafreniere, David

2014-01-01

202

Eruptive style of the young high-Mg basaltic-andesite Pelagatos scoria cone, southeast of México City  

Microsoft Academic Search

The eruption of the Pelagatos scoria cone in the Sierra Chichinautzin monogenetic field near the southern suburbs of Mexico\\u000a City occurred less than 14,000 years ago. The eruption initiated at a fissure with an effusive phase that formed a 7-km-long\\u000a lava flow, and continued with a phase of alternating and\\/or simultaneous explosive and effusive activity that built a 50-m-high\\u000a scoria cone

Marie-Noëlle Guilbaud; Claus Siebe; Javier Agustín-Flores

2009-01-01

203

K-Star rapid rotators and the detection of relatively young multiple K-Star systems  

E-print Network

In this thesis, I searched through the Kepler light curves of 14,440 K-star targets for evidence of periodicities that indicate rapid stellar rotation. Many Kepler M, K, and G stars show modulations in flux due to rotating ...

Joss, Matthew Albert Henry

2014-01-01

204

Emission Spectra of Fallback Disks Around Young Neutron Stars  

E-print Network

The nature of the energy source powering anomalous X-ray pulsars is uncertain. Proposed scenarios involve either an ultramagnetized neutron star, or accretion onto a neutron star. We consider the accretion model proposed recently by Chatterjee, Hernquist & Narayan, in which a disk is fed by fallback material following a supernova. We compute the optical, infrared, and submillimeter emission expected from such a disk, including both viscous dissipation and reradiation of X-ray flux impinging on the disk from the pulsar. We find that it is possible with current instruments to put serious constraints on this and on other accretion models of AXPs. Fallback disks could also be found around isolated radio pulsars and we compute the corresponding spectra. We show that the excess emission in the R and I bands observed for the pulsar PSR 0656+14 is broadly consistent with emission from a disk.

Rosalba Perna; Lars Hernquist; Ramesh Narayan

1999-12-15

205

Large-Scale Young Gould Belt Stars Across Orion  

NASA Astrophysics Data System (ADS)

We report first results on the large-scale distribution of the ROSAT All-Sky Survey (RASS) X-ray sources in a 5000 deg^2 field centered on Orion. Our final aim is to study the properties of different widespread populations in the Orion Complex close to the Gould Belt (GB) in order to trace the star formation history in the solar neighbourhood.

Biazzo, K.; Alcalá, J. M.; Sterzik, M. F.; Covino, E.; Frasca, A.; Guillout, P.

206

Large-scale young Gould Belt stars across Orion  

E-print Network

We report first results on the large-scale distribution of the ROSAT All-Sky Survey (RASS) X-ray sources in a 5000 deg^2 field centered on Orion. Our final aim is to study the properties of different widespread populations in the Orion Complex close to the Gould Belt (GB) in order to trace the star formation history in the solar neighbourhood.

Biazzo, K; Sterzik, M F; Covino, E; Frasca, A; Guillout, P

2011-01-01

207

PROGRESSIVE STAR FORMATION IN THE YOUNG GALACTIC SUPER STAR CLUSTER NGC 3603  

SciTech Connect

Early Release Science observations of the cluster NGC 3603 with the WFC3 on the refurbished Hubble Space Telescope allow us to study its recent star formation history. Our analysis focuses on stars with H{alpha} excess emission, a robust indicator of their pre-main sequence (PMS) accreting status. The comparison with theoretical PMS isochrones shows that 2/3 of the objects with H{alpha} excess emission have ages from 1 to 10 Myr, with a median value of 3 Myr, while a surprising 1/3 of them are older than 10 Myr. The study of the spatial distribution of these PMS stars allows us to confirm their cluster membership and to statistically separate them from field stars. This result establishes unambiguously for the first time that star formation in and around the cluster has been ongoing for at least 10-20 Myr, at an apparently increasing rate.

Beccari, Giacomo; Spezzi, Loredana; De Marchi, Guido; Andersen, Morten [ESA, Space Science Department, Keplerlaan 1, 2200 AG Noordwijk (Netherlands); Paresce, Francesco [INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica, Via P. Gobetti, 101, I-40129 Bologna (Italy); Young, Erick [NASA-Ames Research Center, Moffett Field, CA 94035 (United States); Panagia, Nino; Bond, Howard [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Balick, Bruce [Department of Astronomy, University of Washington, Seattle, WA 98195-1580 (United States); Calzetti, Daniela [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Carollo, C. Marcella [Department of Physics, ETH-Zurich, 8093 Zurich (Switzerland); Disney, Michael J. [School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA (United Kingdom); Dopita, Michael A. [Research School of Astronomy and Astrophysics, The Australian National University, ACT 2611 (Australia); Frogel, Jay A. [Association of Universities for Research in Astronomy, Washington, DC 20005 (United States); Hall, Donald N. B. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Holtzman, Jon A. [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 (United States); Kimble, Randy A. [NASA-Goddard Space Flight Center, Greenbelt, MD 20771 (United States); McCarthy, Patrick J. [Observatories of the Carnegie Institution of Washington, Pasadena, CA 91101-1292 (United States); O'Connell, Robert W. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States); Saha, Abhijit [National Optical Astronomy Observatories, Tucson, AZ 85726-6732 (United States)

2010-09-10

208

PRECISE HIGH-CADENCE TIME SERIES OBSERVATIONS OF FIVE VARIABLE YOUNG STARS IN AURIGA WITH MOST  

SciTech Connect

To explore young star variability on a large range of timescales, we have used the MOST satellite to obtain 24 days of continuous, sub-minute cadence, high-precision optical photometry on a field of classical and weak-lined T Tauri stars (TTSs) in the Taurus-Auriga star formation complex. Observations of AB Aurigae, SU Aurigae, V396 Aurigae, V397 Aurigae, and HD 31305 reveal brightness fluctuations at the 1%-10% level on timescales of hours to weeks. We have further assessed the variability properties with Fourier, wavelet, and autocorrelation techniques, identifying one significant period per star. We present spot models in an attempt to fit the periodicities, but find that we cannot fully account for the observed variability. Rather, all stars exhibit a mixture of periodic and aperiodic behavior, with the latter dominating stochastically on timescales less than several days. After removal of the main periodicity, periodograms for each light curve display power-law trends consistent with those seen for other young accreting stars. Several of our targets exhibited unusual variability patterns not anticipated by prior studies, and we propose that this behavior originates with the circumstellar disks. The MOST observations underscore the need for investigation of TTS light variations on a wide range of timescales in order to elucidate the physical processes responsible; we provide guidelines for future time series observations.

Cody, Ann Marie; Tayar, Jamie; Hillenbrand, Lynne A. [Department of Astrophysics, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Matthews, Jaymie M. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, British Columbia V6T 1Z1 (Canada); Kallinger, Thomas, E-mail: amc@ipac.caltech.edu [Institut fuer Astronomie, Universitaet Wien, Tuerkenschanzstrasse 17, A-1180 Vienna (Austria)

2013-03-15

209

THE NEARBY, YOUNG, ISOLATED, DUSTY STAR HD 166191  

SciTech Connect

We report an in-depth study of the F8-type star HD 166191, identified in an ongoing survey for stars exhibiting infrared emission above their expected photospheres in the Wide-field Infrared Survey Explorer all-sky catalog. The fractional IR luminosity measured from 3.5 to 70 ?m is exceptionally high (L{sub IR}/L{sub bol} ? 10%). Near-diffraction-limited imaging observations with the T-ReCS Si filter set on the Gemini South telescope and adaptive optics imaging with the NIRC2 Lp filter on the Keck II telescope confirmed that the excess emission coincides with the star. Si-band images show a strong solid-state emission feature at ?10 ?m. Theoretical evolutionary isochrones and optical spectroscopic observations indicate a stellar age in the range 10-100 Myr. The large dust mass seen in HD 166191's terrestrial planet zone is indicative of a recent collision between planetary embryos or massive ongoing collisional grinding associated with planet building.

Schneider, Adam; Song, Inseok; Hufford, Tara [Department of Physics and Astronomy, University of Georgia, Athens, GA 30602 (United States); Melis, Carl [Center for Astrophysics and Space Sciences, University of California, San Diego, CA 92093 (United States); Zuckerman, B. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Bessell, Mike [Research School of Astronomy and Astrophysics, The Australian National University, Weston Creek, ACT 2611 (Australia); Hinkley, Sasha, E-mail: aschneid@physast.uga.edu, E-mail: song@physast.uga.edu, E-mail: tara@physast.uga.edu, E-mail: cmelis@ucsd.edu, E-mail: ben@astro.ucla.edu, E-mail: bessell@mso.anu.edu.au, E-mail: shinkley@astro.caltech.edu [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States)

2013-11-01

210

The Nearby, Young, Isolated, Dusty Star HD 166191  

NASA Astrophysics Data System (ADS)

We report an in-depth study of the F8-type star HD 166191, identified in an ongoing survey for stars exhibiting infrared emission above their expected photospheres in the Wide-field Infrared Survey Explorer all-sky catalog. The fractional IR luminosity measured from 3.5 to 70 ?m is exceptionally high (L IR/L bol ~ 10%). Near-diffraction-limited imaging observations with the T-ReCS Si filter set on the Gemini South telescope and adaptive optics imaging with the NIRC2 Lp filter on the Keck II telescope confirmed that the excess emission coincides with the star. Si-band images show a strong solid-state emission feature at ~10 ?m. Theoretical evolutionary isochrones and optical spectroscopic observations indicate a stellar age in the range 10-100 Myr. The large dust mass seen in HD 166191's terrestrial planet zone is indicative of a recent collision between planetary embryos or massive ongoing collisional grinding associated with planet building.

Schneider, Adam; Song, Inseok; Melis, Carl; Zuckerman, B.; Bessell, Mike; Hufford, Tara; Hinkley, Sasha

2013-11-01

211

SIM PlanetQuest Key Project Precursor Observations to Detect Gas Giant Planets Around Young Stars  

E-print Network

We present a review of precursor observing programs for the SIM PlanetQuest Key project devoted to detecting Jupiter mass planets around young stars. In order to ensure that the stars in the sample are free of various sources of astrometric noise that might impede the detection of planets, we have initiated programs to collect photometry, high contrast images, interferometric data and radial velocities for stars in both the Northern and Southern hemispheres. We have completed a high contrast imaging survey of target stars in Taurus and the Pleiades and found no definitive common proper motion companions within one arcsecond (140 AU) of the SIM targets. Our radial velocity surveys have shown that many of the target stars in Sco-Cen are fast rotators and a few stars in Taurus and the Pleiades may have sub-stellar companions. Interferometric data of a few stars in Taurus show no signs of stellar or sub-stellar companions with separations of 0.1 mag) that would degrade the astrometric accuracy achievable for that star. While the precursor programs are still a work in progress, we provide a comprehensive list of all targets ranked according to their viability as a result of the observations taken to date. By far, the observable that moves the most targets from the SIM-YSO program is photometric variability.

Angelle Tanner; Charles Beichman; Rachel Akeson; Andrea Ghez; Konstantin N. Grankin; William Herbst; Lynne Hillenbrand; Marcos Huerta; Quinn Konopacky; Stanimir Metchev; Subhanjoy Mohanty; L. Prato; Michal Simon}

2007-05-25

212

Young stars and brown dwarfs surrounding Alnilam (eps Ori) and Mintaka (del Ori)  

E-print Network

Aims: We look for new regions for the search of substellar objects. Methods: Two circular areas, 45 arcmin-radius each, centred on the young massive star systems Alnilam and Mintaka in the Orion Belt, have been explored. The regions are very young (less than 10 Ma), have low extinction, and are neighbours to sigma Orionis (~3 Ma), a young open cluster very rich in brown dwarfs and planetary-mass objects. We have used Virtual Observatory tools, the astro-photometric Tycho-2, DENIS and 2MASS catalogues, 10 control fields at similar galactic latitudes, and X-ray, mid-infrared and spectroscopic data from the literature. Results: We have compiled exhaustive lists of known young stars and new candidate members in the Ori OB1b association, and of fore- and background sources. A total of 136 stars display features of extreme youth, like early spectral types, lithium in absorption, or mid-infrared flux excess. Other two young brown dwarf and 289 star candidates have been identified from an optical/near-infrared colour-magnitude diagram. We list additional 74 known objects that might belong to the association. This catalogue can serve as an input for characterisation of the stellar and high-mass substellar populations in the Orion Belt. Finally, we have investigated the surface densities and radial distributions of young objects surrounding Alnilam and Mintaka, and compared them with those in the sigma Orionis cluster. We report a new open cluster centred on Mintaka. Conclusions: Both regions can be analogs to the sigma Orionis cluster, but more massive, more extended, slightly older, and less radially concentrated.

J. A. Caballero; E. Solano

2008-04-14

213

Young stars and brown dwarfs surrounding Alnilam (? Orionis) and Mintaka (? Orionis)  

NASA Astrophysics Data System (ADS)

Aims: We look for new regions to search for substellar objects. Methods: Two circular areas, 45 arcmin-radius each, centred on the young massive star systems Alnilam and Mintaka in the Orion Belt, were explored. The regions are very young (less than 10 Ma), have low extinction, and are neighbours to ? Orionis (~3 Ma), a young open cluster very rich in brown dwarfs and planetary-mass objects. We used Virtual Observatory tools, the astro-photometric Tycho-2, DENIS and 2MASS catalogues, 10 control fields at similar galactic latitudes, as well as X-ray, mid-infrared, and spectroscopic data from the literature. Results: We compiled exhaustive lists of known young stars and new candidate members in the Ori OB1b association and of fore- and background sources. A total of 136 stars display features of extreme youth, like early spectral types, lithium in absorption, or mid-infrared flux excess. Other two young brown dwarf and 289 star candidates have been identified from an optical/near-infrared colour-magnitude diagram. We list another 74 known objects that might belong to the association. This catalogue can serve as input for characterising the stellar and high-mass substellar populations in the Orion Belt. Finally, we investigated the surface densities and radial distributions of young objects surrounding Alnilam and Mintaka and compared them with those in the ? Orionis cluster. We report on a new open cluster centred on Mintaka. Conclusions: Both regions can be analogues to the ? Orionis cluster, but more massive, more extended, slightly older, and less radially concentrated. Tables A.1 to A.18 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/485/931

Caballero, J. A.; Solano, E.

2008-07-01

214

Are Superluminous Supernovae and Long GRBs the Products of Dynamical Processes in Young Dense Star Clusters?  

NASA Astrophysics Data System (ADS)

Superluminous supernovae (SLSNe) occur almost exclusively in small galaxies (Small/Large Magellanic Cloud (SMC/LMC)-like or smaller), and the few SLSNe observed in larger star-forming galaxies always occur close to the nuclei of their hosts. Another type of peculiar and highly energetic supernovae are the broad-line Type Ic SNe (SN Ic-BL) that are associated with long-duration gamma-ray bursts (LGRBs). Also these have a strong preference for occurring in small (SMC/LMC-like or smaller) star-forming galaxies, and in these galaxies LGRBs always occur in the brightest spots. Studies of nearby star-forming galaxies that are similar to the hosts of LGRBs show that these brightest spots are giant H II regions produced by massive dense young star clusters with many hundreds of O- and Wolf-Rayet-type stars. Such dense young clusters are also found in abundance within a few hundred parsecs from the nucleus of larger galaxies like our own. We argue that the SLSNe and the SNe Ic-BL/LGRBs are exclusive products of two types of dynamical interactions in dense young star clusters. In our model the high angular momentum of the collapsing stellar cores required for the engines of an SN Ic-BL results from the post-main-sequence mergers of dynamically produced cluster binaries with almost equal-mass components. The merger produces a critically rotating single helium star with sufficient angular momentum to produce an LGRB; the observed "metal aversion" of LGRBs is a natural consequence of the model. We argue that, on the other hand, SLSNe could be the products of runaway multiple collisions in dense clusters, and we present (and quantize) plausible scenarios of how the different types of SLSNe can be produced.

van den Heuvel, E. P. J.; Portegies Zwart, S. F.

2013-12-01

215

Young Stars and Protostellar Cores near NGC 2023  

Microsoft Academic Search

We investigate the young (proto)stellar population in NGC 2023 and the L 1630\\u000amolecular cloud bordering the HII region IC 434, using Spitzer IRAC and MIPS\\u000aarchive data, JCMT SCUBA imaging and spectroscopy as well as targeted BIMA\\u000aobservations of one of the Class 0 protostars, NGC 2023 MM1. We have performed\\u000aphotometry of all IRAC and MIPS images, and

B. Mookerjea; G. Sandell; T. H. Jarrett; J. P. McMullin

2009-01-01

216

Discovering young stars in the Gum 31 region with infrared observations  

NASA Astrophysics Data System (ADS)

Context. The Gum 31 bubble, which contains the stellar cluster NGC 3324, is a poorly studied young region close to the Carina Nebula. Aims: We are aiming to characterise the young stellar and protostellar population in and around Gum 31 and to investigate the star-formation process in this region. Methods: We identified candidate young stellar objects from Spitzer, WISE, and Herschel data. Combining these, we analysed the spectral energy distributions of the candidate young stellar objects. With density and temperature maps obtained from Herschel data and comparisons to a collect-and-collapse scenario for the region we are able to further constrain the characteristics of the region as a whole. Results: We find 661 candidate young stellar objects from WISE data; 91 protostar candidates are detected through Herschel observations in a 1.0° × 1.1° area. Most of these objects are found in small clusters or are well aligned with the H II bubble. We also identify the sources of Herbig-Haro jets. The infrared morphology of the region suggests that it is part of the larger Carina Nebula complex. Conclusions: The location of the candidate young stellar objects on the rim of the H II bubble is suggestive of their being triggered according to a collect-and-collapse scenario, which agrees well with the observed parameters of the region. Some candidate young stellar objects are found in the heads of pillars, which indicates radiative triggering of star formation. All in all, we find evidence that in the region different mechanisms of triggered star formation are at work. Correcting the number of candidate young stellar objects for contamination, we find ~600 young stellar objects in Gum 31 above our completeness limit of about 1 M?. Extrapolating the initial mass function down to 0.1 M?, we estimate a total population of ~5000 young stars for the region. This work is based in part on data collected by Herschel, an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA, and on data observed by VISTA (ESO run number 088.C-0117(A)), an ESO survey telescope developed by a consortium of 18 universities in the United Kingdom, led by Queen Mary, University of London.Tables 1-3 are available in electronic form at http://www.aanda.org

Ohlendorf, H.; Preibisch, T.; Gaczkowski, B.; Ratzka, T.; Ngoumou, J.; Roccatagliata, V.; Grellmann, R.

2013-04-01

217

The Evolution of Planetary Systems: A FUSE Legacy View of Accretion and Stellar Activity for Young A Stars  

Microsoft Academic Search

Far Ultraviolet Spectroscopic Explorer (FUSE) far-UV (FUV) spectra provide an unique view of accretion and stellar activity in nearby, minimally reddened pre-main sequence stars. We present first results of the FUSE Legacy study of young, intermediate-mass stars. The FUSE data show that over 1--10 Myr, Herbig Ae stars closely resemble classical T Tauri stars by having FUV excess light and

G. M. Williger; C. A. Grady; B. E. Woodgate; J.-C. Bouret; A. Roberge; M. Sahu

2004-01-01

218

Mass Ejection from Old and Young Stars and the Sun  

NASA Astrophysics Data System (ADS)

RESUMEN. Para poder explicar: 1) la enorme cantidad de perdida de masa y la baja velocidad asint5tica de las estrellas gigantes de o, y 2) los flujos de masa observados en protoestrellas, se sugiere un modelo para Ia perdida de masa, en donde se usa un flujo de ondas de Alfvencomo un mecanismo de aceleraci6n para los vientos de estrellas de tipo y vientos en protoestrellas. Se estudian los mecanismos de disipaci5n de las ondas de Alfven: los amortiguamientos no lineal, de superficie reso- nante y turbulento. En nuestro modelo se usa una divergente A(r) = A(R0) (r/r0)5 (donde A(r) es el area a una distancia radial r, y (A(r)/r2)max/(A(ro)/r02 - 10). Tambien se sugiere un modelo para una de hoyo coronal en el Sol. Se muestra que para satisfacer los datos observacionales en el Sol, tomando en cuenta la deposici6n del momento de las ondas de Alfven sobre el viento, se necesita: (a) una divergencia lenta en un hoyo coronal hasta una altura de 0.01 - 0.1 R seguido de (b) una divergencia rap ida de hasta una altura aproximada de 1 R . ABSTRACT: In order to explain (1) a large mass-loss rate and a small asymptotic flow speed of late-type giant stars and (2) the observed protostellar mass outflows, we suggest a model for mass loss, where we use a flux of Alfven waves as a mechanism of acceleration for late-type giant star winds and protostellar winds. We study the Alfven wave dissipation mechanisms: nonlinear damping, resonant surface damping, and turbulent damping. In our model we use a diverging geometry A(r) = A(r0) (r I r )S (where A(r) is the cross sectional area of the geometry at a radial distance r, and(A(r) I r2)max/(A(r0)/r02) = 10). We also suggest a model for a coronal hole geometry in the sun. We show that in order to satisfy the observational data of the sun, taking into account Alfven wave momentum deposition in the wind, we need: (a) a slow divergence in a coronal hole up t6 a height of 0.01 - 0.1 followed by (b) a rapid divergence up to a height of approximately 1 Re Key : '? #TICS - STARS-LATE TYPE - STARS- LOSS

Jatenco-Pereira, V.; Opher, R.

1990-11-01

219

Properties of the Remnant Clockwise Disk of Young Stars in the Galactic Center  

E-print Network

We present new kinematic measurements and modeling of a sample of 116 young stars in the central parsec of the Galaxy in order to investigate the properties of the young stellar disk. The measurements were derived from a combination of speckle and laser guide star adaptive optics imaging and integral field spectroscopy from the Keck telescopes. Compared to earlier disk studies, the most important kinematic measurement improvement is in the precision of the accelerations in the plane of the sky, which have a factor of six smaller uncertainties (~10 uas/yr/yr). We have also added the first radial velocity measurements for 8 young stars, increasing the sample at the largest radii (6"-12") by 25%. We derive the ensemble properties of the observed stars using Monte-Carlo simulations of mock data. There is one highly significant kinematic feature (~20 sigma), corresponding to the well-known clockwise disk, and no significant feature is detected at the location of the previously claimed counterclockwise disk. The tr...

Yelda, Sylvana; Lu, Jessica R; Do, Tuan; Meyer, Leo; Morris, Mark R; Matthews, Keith

2014-01-01

220

Massive Young Stellar Objects in high-mass star-forming regions  

E-print Network

High-quality K-band spectra of point sources, deeply embedded in massive star-forming regions, have revealed a population of 20 young massive stars showing no photospheric absorption lines, but only emission lines. The K-band spectra exhibit one or more features commonly associated with massive Young Stellar Objects surrounded by circumstellar material: a very red color (J-K) = 2, CO bandhead emission, hydrogen emission lines (sometimes doubly peaked), and FeII and/or MgII emission lines. The CO emission comes from a relatively dense (~10^10 cm^(-3)) and hot (T ~ 2000-5000 K) region, sufficiently shielded from the intense UV radiation field of the young massive star. Modeling of the CO-first overtone emission shows that the CO gas is located within 5 AU of the star. The hydrogen emission is produced in an ionized medium exposed to UV radiation. The best geometrical configuration is a dense and neutral circumstellar disk causing the CO bandhead emission, and an ionized upper layer where the hydrogen lines are produced. We argue that the circumstellar disk is likely a remnant of the accretion via a circumstellar disk.

Arjan Bik; Lex Kaper; Wing-Fai Thi; Rens Waters

2005-06-14

221

Massive Young Stellar Objects in high-mass star-forming regions  

E-print Network

High-quality K-band spectra of point sources, deeply embedded in massive star-forming regions, have revealed a population of 20 young massive stars showing no photospheric absorption lines, but only emission lines. The K-band spectra exhibit one or more features commonly associated with massive Young Stellar Objects surrounded by circumstellar material: a very red color (J-K) = 2, CO bandhead emission, hydrogen emission lines (sometimes doubly peaked), and FeII and/or MgII emission lines. The CO emission comes from a relatively dense (~10^10 cm^(-3)) and hot (T ~ 2000-5000 K) region, sufficiently shielded from the intense UV radiation field of the young massive star. Modeling of the CO-first overtone emission shows that the CO gas is located within 5 AU of the star. The hydrogen emission is produced in an ionized medium exposed to UV radiation. The best geometrical configuration is a dense and neutral circumstellar disk causing the CO bandhead emission, and an ionized upper layer where the hydrogen lines are ...

Bik, A; Thi, W F; Waters, R; Bik, Arjan; Kaper, Lex; Thi, Wing-Fai; Waters, Rens

2005-01-01

222

Empirical Limits on Radial Velocity Planet Detection for Young Stars  

E-print Network

We report initial results from our long term search using precision radial velocities for planetary-mass companions located within a few AU of stars younger than the Sun. Based on a sample of >150 stars, we define a floor in the radial velocity scatter, sigma_RV, as a function of the chromospheric activity level R'_{HK}. This lower bound to the jitter, which increases with increasing stellar activity, sets the minimum planet mass that could be detected. Adopting a median activity-age relationship reveals the astrophysical limits to planet masses discernable via radial velocity monitoring, as a function of stellar age. Considering solar-mass primaries having the mean jitter-activity level, when they are younger than 100 / 300 / 1000 Myr, the stochastic jitter component in radial velocity measurements restricts detectable companion masses to > 0.3 / 0.2 / 0.1 M_Jupiter. These numbers require a large number -- several tens -- of radial velocity observations taken over a time frame longer than the orbital period....

Hillenbrand, Lynne; Marcy, Geoffrey; Barenfeld, Scott; Fischer, Debra; Howard, Andrew

2014-01-01

223

Spitzer and Variable Young Stars: Shining a Spotlight on Circumstellar Disks  

NASA Astrophysics Data System (ADS)

Since its launch in 2003, the Spitzer Space Telescope has helped to uncover hundreds of disk bearing young stars in clusters by detecting their infrared excesses. Study of the spectral energy distributions of these objects has shed light on disk evolution, dispersal, and the relationship to planet formation. With the start of the Warm Spitzer Mission, mid-infrared time series observations have opened up a new window into the dynamic nature of these systems. Not only are young stellar objects (YSOs) highly variable, but so are their disks! I will review recent findings on mid-infrared variability in young stars, highlighting the Young Stellar Object Variability project and the joint Spitzer/CoRoT Coordinated Synoptic Investigation of NGC 2264. These efforts have resulted in a comprehensive census and categorization of YSO flux behavior at 0.5 through 4.5 microns, on timescales from hours to months. We now have evidence for multiple simultaneous variability mechanisms, supporting the picture of a highly dynamic star-disk system.

Cody, Ann Marie; CSI 2264 Team

2014-01-01

224

Direct Imaging of Bridged Twin Protoplanetary Disks in a Young Multiple Star  

NASA Astrophysics Data System (ADS)

Protoplanetary disks are ubiquitously observed around young solar-mass stars and are considered to be not only natural by-products of stellar evolution but also precursors of planet formation. If a forming star has close companions, the protoplanetary disk may be seriously influenced. It is important to consider this effect because most stars form as multiples. Thus, studies of protoplanetary disks in multiple systems are essential to describe the general processes of star and planet formation. We present the direct image of an interacting binary protoplanetary system. We obtained an infrared image of a young multiple circumstellar disk system, SR24, with the Subaru 8.2-m Telescope. Both circumprimary and circumsecondary disks are clearly resolved with a 0.1 arcsecond resolution. The binary system exhibits a bridge of infrared emission connecting the two disks and a long spiral arm extending from the circumprimary disk. A spiral arm would suggest that the SR24 system rotates counter-clockwise. The orbital period of the binary is 15,000 yr. Numerical simulations reveal that the bridge corresponds to gas flow and a shock wave caused by the collision of gas rotating around the primary and secondary stars. The simulations also show that fresh material streams along the spiral arm, confirming the theoretical proposal that gas is replenished from a circum-multiple reservoir. These results reveal the mechanism of interacting protoplanetary disks in young multiple systems. Furthermore, our observations provide the first direct image that enables a comparison with theoretical models of mass accretion in binary systems. The observations of this binary system provide a great opportunity to test and refine theoretical models of star and planet formation in binary systems.

Mayama, Satoshi; Tamura, Motohide; Hanawa, Tomoyuki; Matsumoto, Tomoaki; Ishii, Miki; Pyo, Tae-Soo; Suto, Hiroshi; Naoi, Takahiro; Kudo, Tomoyuki; Hashimoto, Jun; Nishiyama, Shogo; Kuzuhara, Masayuki; Hayashi, Masahiko

2012-04-01

225

VizieR Online Data Catalog: Kinematics and HR Diagrams of Southern Young Stars (Sartori+ 2003)  

NASA Astrophysics Data System (ADS)

We investigate the spatial distribution, the space velocities and age distribution of the pre-main sequence (PMS) stars belonging to Ophiuchus, Lupus and Chamaeleon star-forming regions (SFRs), and of the young early-type star members of the Scorpius-Centaurus (Sco-Cen) OB association. These young stellar associations extend over the galactic longitude range from 280 to 360 degrees, and are at a distance interval of around 100 and 200pc. We present a compilation of PMS and early-type stars members of the investigated SFRs and OB associations. For these lists of stars we give the data used for the study of kinematic properties: positions, adopted distances, proper motions and radial velocities (whenever available), and the basic stellar data, used for the construction of Hertzsprung-Russel diagrams. All data have been taken from the literature. We also present the derived XYZ positions on the Galactic system, UVW components of the space velocities, visual extinction, and bolometric luminosity. (5 data files).

Sartori, M. J.; Lepine, J. R. D.; Dias, W. S.

2003-07-01

226

Gas and stars in compact (young) radio sources  

NASA Astrophysics Data System (ADS)

Gas can be used to trace the formation and evolution of galaxies as well as the impact that the nuclear activity has on the surrounding medium. For nearby compact radio sources, we have used observations of neutral hydrogen - that we detected in emission distributed over very large scales - combined with the study of the stellar population and deep optical images to investigate the history of the formation of their host galaxy and the triggering of the activity. For more distant and more powerful compact radio sources, we have used optical spectra and H I - in absorption - to investigate the presence of fast outflows that support the idea that compact radio sources are young radio loud AGN observed during the early stages of their evolution and currently shredding their natal cocoons through extreme circumnuclear outflows. We will review the most recent results obtained from these projects.

Morganti, B.; Emonts, R.; Holt, J.; Tadhunter, C.; Oosterloo, T.; Struve, C.

2009-02-01

227

The Mass Function of Young Star Clusters in the "Antennae" Galaxies.  

PubMed

We determine the mass function of young star clusters in the merging galaxies known as the "Antennae" (NGC 4038/9) from deep images taken with the Wide Field Planetary Camera 2 on the refurbished Hubble Space Telescope. This is accomplished by means of reddening-free parameters and a comparison with stellar population synthesis tracks to estimate the intrinsic luminosity and age, and hence the mass, of each cluster. We find that the mass function of the young star clusters (with ages less, similar160 Myr) is well represented by a power law of the form psi&parl0;M&parr0;~M-2 over the range 104 less, similarM less, similar106 M middle dot in circle. This result may have important implications for our understanding of the origin of globular clusters during the early phases of galactic evolution. PMID:10577944

Zhang; Fall

1999-12-20

228

Cooling of young neutron stars in GRB associated to Supernova  

E-print Network

Recent observations of the late ($t=10^8$--$10^9$ s) emission of supernovae (SNe) associated to GRBs (GRB-SN) show a distinctive emission in the X-ray regime consistent with temperatures $10^7$--$10^8$ K. Similar features have been also observed in the two Type Ic SNe SN 2002ap and SN 1994I that are not associated to GRBs. We advance the possibility that the late X-ray emission observed in GRB-SN and in isolated SN is associated to a hot neutron star (NS) just formed in the SN event, here defined as a neo-NS. We discuss the thermal evolution of neo-NS in the age regime that spans from $\\sim 1$ minute (just after the proto-NS phase) up to ages fusion and fission energy release, might also take place under such conditions and deserve further analysis. Observation of GRB-SN has shown the possibility of witnessing the thermal evolution of neo-NSs. A new campaign of dedicated observations is recommended both of GRB-SN and of isolated Type Ic SN.

Rodrigo Negreiros; Remo Ruffini; Carlo Luciano Bianco; Jorge A. Rueda

2011-12-15

229

Fine Structures of Giant Planet Forming Regions around a Young Star of AB AUr  

Microsoft Academic Search

We present the results of the high-resolution near-infrared dual-beam polarimetry of the circumstellar disk around AB Aur (2.4 Mo) using a new high contrast instrument HiCIAO mounted on the Subaru 8.2 m telescope. As a result of stellar evolution, it is widely known that planets are formed in circumstellar disks around young stars. Thus, investigating the detailed structures of circumstellar

J. Hashimoto; M. Tamura; T. Muto; T. Kudo; M. Fukagawa; T. Fukue; C. Grady; T. Henning; K. Hodapp; M. Honda; S. Inutsuka; E. Kokubo; G. Knapp; M. W. McElwain; M. Momose; N. Ohashi; Y. K. Okamoto; M. Takami; E. L. Turner; J. Wisniewski; M. Janson

2010-01-01

230

Subaru\\/COMICS Study on Silicate Dust Processing around Young Low-Mass Stars  

Microsoft Academic Search

We have obtained 8-13 mum spectra of 30 young (1-10 Myr) low-mass pre-main-sequence stars using COMICS on the 8.2 m Subaru Telescope to examine dust evolution in protoplanetary disks. Most spectra show silicate emission features of various strengths and shapes, indicative of dust processing during the different stages of protoplanetary disk evolution. We have analyzed the observed silicate emission features

Mitsuhiko Honda; Hirokazu Kataza; Yoshiko K. Okamoto; Takuya Yamashita; Michiel Min; Takashi Miyata; Shigeyuki Sako; Takuya Fujiyoshi; Itsuki Sakon; Takashi Onaka

2006-01-01

231

Photometric\\/spectroscopic analyses and magnetic activity in young late-type stars  

Microsoft Academic Search

We present preliminary results of a study in progress based on photometric and spectroscopic observations of young weak-line T Tauri and post-T Tauri stars just arriving on the Zero Age Main Sequence. The study is part of a project based on high-resolution spectra obtained with FOCESatCAHA (Spain) and SARGatTNG (Spain) and contemporaneous photometry performed at Catania (Italy) and TUBITAK (Turkey)

K. Biazzo; A. Frasca; E. Marilli; E. Covino; J. M. Alcalà; Ö. Çakirli

2009-01-01

232

A dust disk surrounding the young A star HR4796A  

E-print Network

We report the codiscovery of the spatially-resolved dust disk of the Vega-like star HR 4796A. Images of the thermal dust emission at $\\lambda = 18 \\mu$m show an elongated structure approximately 200 AU in diameter surrounding the central A0V star. The position angle of the disk, $30^{\\circ} \\pm 10^{\\circ}$, is consistent to the position angle of the M companion star, $225^{\\circ}$, suggesting that the disk-binary system is being seen nearly along its orbital plane. The surface brightness distribution of the disk is consistent with the presence of an inner disk hole of approximately 50 AU radius, as was originally suggested by Jura et al. on the basis of the infrared spectrum. HR 4796 is a unique system among the Vega-like or $\\beta$ Pictoris stars in that the M star companion (a weak-emission T Tauri star) shows that the system is relatively young, $\\sim 8 \\pm 3$ Myr. The inner disk hole may provide evidence for coagulation of dust into larger bodies on a timescale similar to that suggested for planet formation in the solar system.

Ray Jayawardhana; Scott Fisher; Lee Hartmann; Charles Telesco; Robert Pina; Giovanni Fazio

1998-06-13

233

Anatomy of a flaring proto-planetary disk around a young intermediate-mass star.  

PubMed

Although planets are being discovered around stars more massive than the Sun, information about the proto-planetary disks where such planets have built up is sparse. We have imaged mid-infrared emission from polycyclic aromatic hydrocarbons at the surface of the disk surrounding the young intermediate-mass star HD 97048 and characterized the disk. The disk is in an early stage of evolution, as indicated by its large content of dust and its hydrostatic flared geometry, indicative of the presence of a large amount of gas that is well mixed with dust and gravitationally stable. The disk is a precursor of debris disks found around more-evolved A stars such as beta-Pictoris and provides the rare opportunity to witness the conditions prevailing before (or during) planet formation. PMID:17008490

Lagage, Pierre-Olivier; Doucet, Coralie; Pantin, Eric; Habart, Emilie; Duchêne, Gaspard; Ménard, François; Pinte, Christophe; Charnoz, Sébastien; Pel, Jan-Willem

2006-10-27

234

The Rotation of Young Low-Mass Stars and Brown Dwarfs  

NASA Astrophysics Data System (ADS)

We review the current state of our knowledge concerning the rotation and angular momentum evolution of young stellar objects and brown dwarfs from a primarily observational viewpoint. There has been a tremendous growth in the number of young, low-mass objects with measured rotation periods over the last five years, due to the application of wide field imagers on 1-2-m-class telescopes. Periods are typically accurate to 1% and available for about 1700 stars and 30 brown dwarfs in young clusters. Discussion of angular momentum evolution also requires knowledge of stellar radii, which are poorly known for pre-main-sequence stars. It is clear that rotation rates at a given age depend strongly on mass; higher-mass stars (0.4-1.2 solar mass) have longer periods than lower-mass stars and brown dwarfs. On the other hand, specific angular momentum is approximately independent of mass for low-mass pre-main-sequence stars and young brown dwarfs. A spread of about a factor of 30 is seen at any given mass and age. The evolution of rotation of solar-like stars during the first 100 m.y. is discussed. A broad, bimodal distribution exists at the earliest observable phases (~1 m.y.) for stars more massive than 0.4 solar mass. The rapid rotators (50-60% of the sample) evolve to the ZAMS with little or no angular momentum loss. The slow rotators continue to lose substantial amounts of angular momentum for up to 5 m.y., creating the even broader bimodal distribution characteristic of 30-120-m.y.-old clusters. Accretion disk signatures are more prevalent among slowly rotating PMS stars, indicating a connection between accretion and rotation. Disks appear to influence rotation for, at most, ~5 m.y., and considerably less than that for the majority of stars. This time interval is comparable to the maximum lifetime of accretion disks derived from near-infrared studies, and may be a useful upper limit to the time available for forming giant planets. If the dense clusters studied so far are an accurate guide, then the typical solar-like star may have only ~1 m.y. for this task. There is less data available for very-low-mass stars and brown dwarfs but the indication is that the same mechanisms are influencing their rotation as for the solar-like stars. However, it appears that both disk interactions and stellar winds are less efficient at braking these objects. We also review our knowledge of the various types of variability of these objects over as broad a mass range as possible with particular attention to magnetically induced cool spots and magnetically channeled variable mass accretion.

Herbst, W.; Eislöffel, J.; Mundt, R.; Scholz, A.

235

Stellar contents and star formation in the young open cluster Stock 8  

E-print Network

We present $UBVI_c$ CCD photometry of the young open cluster Stock 8 with the aim to study the basic properties and star formation scenario in this region. The radius of the cluster is found to be $\\sim 6^{\\prime}$ ($\\sim 3.6$ pc) and the reddening within the cluster region varies from $E(B-V)=0.40$ to 0.60 mag. The cluster is located at a distance of $2.05 \\pm 0.10$ kpc. Using H$\\alpha$ slitless spectroscopy and 2MASS NIR data we identified H$\\alpha$ emission and NIR excess young stellar objects (YSOs), respectively. The colour-magnitude diagrams of these YSOs reveal that majority of these objects have ages between 1 to 5 Myr indicating a non-coeval star formation in the cluster. Massive stars in the cluster region reveal an average age of $\\le$ 2 Myr. In the cluster region ($r \\le 6^\\prime$) the slope of the mass function (MF), $\\Gamma$, in the mass range $\\sim 1.0 \\le M/M_\\odot Stock 8. It appears that star formation activity in the Nebulous Stream and embedded cluster may be independent from that of Stock 8.

Jessy Jose; A. K. Pandey; D. K. Ojha; K. Ogura; W. P. Chen; B. C. Bhatt; S. K. Ghosh; H. Mito; G. Maheswar; Saurabh Sharma

2007-12-13

236

Direct imaging search for planetary companions next to young nearby stars  

E-print Network

We report first results from our ground-based infrared imaging search for sub-stellar companions (brown dwarfs and giant planets) of young (up to 100 Myrs) nearby (up to 75 pc) stars, where companions should be well separated from the central stars and still relatively bright due to ongoing accretion and/or contraction. Among our targets are all members of the TW Hya association, as well as other binary and single young stars either discovered recently among ROSAT sources (some of which as yet unpublished) or known before. Our observations are performed mainly with SOFI and SHARP at the ESO 3.5m NTT on La Silla and with ISAAC at the ESO 8.2m Antu (VLT-UT1) on Cerro Paranal, all in the H- and K-bands. We present direct imaging data and H-band spectroscopy of a faint object detected next to TWA-7 which, if at the same age and distance as the central star, could be an object with only a few Jupiter masses. Our spectrum shows, though, that it is a background K-dwarf.

R. Neuhaeuser; E. Guenther; W. Brandner; N. Huelamo; T. Ott; J. Alves; F. Comeron; A. Eckart; J. -G. Cuby

2000-07-20

237

Chandra Observations of a Young Embedded Magnetic B Star in the p Ophiuchus Cloud  

NASA Technical Reports Server (NTRS)

This paper reports the analysis of two Chandra X-ray observations of the young magnetic B star rho Ophiuchus S1. X-ray emission from the star was detected in both observations. The average flux is almost the same in both, but during each observation the flux shows significant time variations by a factor of two on timescales of 20-40 ksec. Each spectrum can be fit by either an absorbed power law model with a photon index of approx. -3 or a thin-thermal plasma model with a temperature of approx. 2 keV and an extremely low metal abundance (approx. less than 0.1 solar). The spectrum of the first observation has an apparent line feature at about 6.8 keV, which likely corresponds to highly ionized iron K alpha. In contrast, the spectrum of the second observation shows an anomalous edge absorption component at E approx. 1 keV. The continuum emission and log (L(sub X)/L(sub bol)) approx. -6 are similar to those of young intermediate-mass stars (Herbig Ae/Be stars) although the presence of the magnetic field inferred from the detection of non-thermal radio emission has drawn an analogy between rho Ophiuchus S1 and magnetic chemically peculiar (MCP) stars. If the X-ray emission is thermal, the highest plasma temperature observed is too high to be explained by the conventional theories of magnetic stars, and favors some kind of magnetic dynamo activity, while if the emission is nonthermal, it might be related to mass infall. The 6.8 keV line and 4 keV edge features are marginal but they give important information near the stellar body if they are real. Their physical interpretation is discussed.

Hamaguchi, Kenji; Imanishi, Kensuke

2002-01-01

238

KEPLER-63b: A GIANT PLANET IN A POLAR ORBIT AROUND A YOUNG SUN-LIKE STAR  

E-print Network

We present the discovery and characterization of a giant planet orbiting the young Sun-like star Kepler-63 (KOI-63, m [subscript Kp] = 11.6, T [subscript eff] = 5576 K, M [star] = 0.98 M [subscript ?]). The planet transits ...

Marcy, Geoffrey W.

239

c2d Spitzer IRS spectra of embedded low-mass young stars: gas-phase emission lines  

Microsoft Academic Search

A survey of mid-IR gas-phase emission lines of H2, H2O and various atoms\\u000atoward a sample of 43 embedded low-mass young stars in nearby star-forming\\u000aregions is presented. The sources are selected from the Spitzer \\

Fred Lahuis; Ewine F. van Dishoeck; Jes K. Jørgensen; Geoffrey A. Blake; Neal J. Evans II

2010-01-01

240

Bayesian Analysis to Identify New Star Candidates in Nearby Young Stellar Kinematic Groups  

NASA Astrophysics Data System (ADS)

We present a new method based on a Bayesian analysis to identify new members of nearby young kinematic groups. The analysis minimally takes into account the position, proper motion, magnitude, and color of a star, but other observables can be readily added (e.g., radial velocity, distance). We use this method to find new young low-mass stars in the ? Pictoris and AB Doradus moving groups and in the TW Hydrae, Tucana-Horologium, Columba, Carina, and Argus associations. Starting from a sample of 758 mid-K to mid-M (K5V-M5V) stars showing youth indicators such as H? and X-ray emission, our analysis yields 214 new highly probable low-mass members of the kinematic groups analyzed. One is in TW Hydrae, 37 in ? Pictoris, 17 in Tucana-Horologium, 20 in Columba, 6 in Carina, 50 in Argus, 32 in AB Doradus, and the remaining 51 candidates are likely young but have an ambiguous membership to more than one association. The false alarm rate for new candidates is estimated to be 5% for ? Pictoris and TW Hydrae, 10% for Tucana-Horologium, Columba, Carina, and Argus, and 14% for AB Doradus. Our analysis confirms the membership of 58 stars proposed in the literature. Firm membership confirmation of our new candidates will require measurement of their radial velocity (predicted by our analysis), parallax, and lithium 6708 Å equivalent width. We have initiated these follow-up observations for a number of candidates, and we have identified two stars (2MASSJ01112542+1526214, 2MASSJ05241914-1601153) as very strong candidate members of the ? Pictoris moving group and one strong candidate member (2MASSJ05332558-5117131) of the Tucana-Horologium association; these three stars have radial velocity measurements confirming their membership and lithium detections consistent with young age. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientique of France, and the University of Hawaii.

Malo, Lison; Doyon, René; Lafrenière, David; Artigau, Étienne; Gagné, Jonathan; Baron, Frédérique; Riedel, Adric

2013-01-01

241

Star formation history of CMa R1: I. Wide-field X-ray study of the young stellar population  

Microsoft Academic Search

The CMa R1 star-forming region contains several compact clusters as well as\\u000amany young early-B stars. It is associated with a well-known bright rimmed\\u000anebula, the nature of which is unclear (fossil HII region or supernova\\u000aremnant). To help elucidate the nature of the nebula, our goal was to\\u000areconstruct the star-formation history of the CMa R1 region, including the

J. Gregorio-Hetem; T. Montmerle; C. V. Rodrigues; E. Marciotto; T. Preibisch; H. Zinnecker

2009-01-01

242

Neutron Stars From Young Nearby Associations: The Origin of RX J1605.3+3249  

NASA Astrophysics Data System (ADS)

Many neutron stars (NSs) and runaway stars apparently come from the same regions on the sky. This suggests that they share the same birth places, namely associations and clusters of young massive stars. To identify NS birth places, we attempt to find NS-runaway pairs that could be former companions that were disrupted in a supernova (SN). The remains of recent (stars HIP 68228 and HIP 89394 - as well as the appearance of a feature in the ?-ray emission from 26Al decay at the predicted SN place. Both, the progenitor masses estimated by comparison with theoretical 26Al yields as well as derived from the life-time of the progenitor star, are found to be ~11Msolar.

Tetzlaff, N.; Schmidt, J. G.; Hohle, M. M.; Neuhäuser, R.

2012-03-01

243

A New Method for Measuring Metallicities of Young Super Star Clusters  

E-print Network

We demonstrate how the metallicities of young super star clusters can be measured using novel spectroscopic techniques in the J-band. The near-infrared flux of super star clusters older than ~6 Myr is dominated by tens to hundreds of red supergiant stars. Our technique is designed to harness the integrated light of that population and produces accurate metallicities for new observations in galaxies above (M83) and below (NGC 6946) solar metallicity. In M83 we find [Z]= +0.28 +/- 0.14 dex using a moderate resolution (R~3500) J-band spectrum and in NGC 6496 we report [Z]= -0.32 +/- 0.20 dex from a low resolution spectrum of R~1800. Recently commissioned low resolution multiplexed spectrographs on the VLT (KMOS) and Keck (MOSFIRE) will allow accurate measurements of super star cluster metallicities across the disks of star-forming galaxies up to distances of 70 Mpc with single night observation campaigns using the method presented in this letter.

Gazak, J Zachary; Bastian, Nate; Kudritzki, Rolf; Bergemann, Maria; Plez, Bertrand; Evans, Chris; Patrick, Lee; Bresolin, Fabio; Schinnerer, Eva

2014-01-01

244

Main-sequence stars masquerading as Young Stellar Objects in the central molecular zone  

E-print Network

In contrast to most other galaxies, star-formation rates in the Milky Way can be estimated directly from Young Stellar Objects (YSOs). In the Central Molecular Zone (CMZ) the star-formation rate calculated from the number of YSOs with 24 microns emission is up to order of magnitude higher than the value estimated from methods based on diffuse emission (such as free-free emission). Whether this effect is real or whether it indicates problems with either or both star formation rate measures is not currently known. In this paper, we investigate whether estimates based on YSOs could be heavily contaminated by more evolved objects such as main-sequence stars. We present radiative transfer models of YSOs and of main-sequence stars in a constant ambient medium which show that the main-sequence objects can indeed mimic YSOs at 24 microns. However, we show that in some cases the main-sequence models can be marginally resolved at 24 microns, whereas the YSO models are always unresolved. Based on the fraction of resolve...

Koepferl, Christine M; Morales, Esteban F E; Johnston, Katharine G

2014-01-01

245

Protoplanetary disc evolution affected by star-disc interactions in young stellar clusters  

E-print Network

Most stars form in a clustered environment. Therefore, it is important to assess how this environment influences the evolution of protoplanetary discs around young stars. In turn, this affects their ability to produce planets and ultimately life. We present here for the first time 3D SPH/N-body simulations that include both the hydrodynamical evolution of the discs around their natal stars, as well as the dynamics of the stars themselves. The discs are viscously evolving, accreting mass onto the central star and spreading. We find penetrating encounters to be very destructive for the discs as in previous studies, although the frequency of such encounters is low. We also find, however, that encounter influence the disc radii more strongly than other disc properties such as the disc mass. The disc sizes are set by the competition between viscous spreading and the disruptive effect of encounters. As discs spread, encounters become more and more important. In the regime of rapid spreading encounters simply trunca...

Rosotti, Giovanni P; Ovelar, Maria de Juan; Hubber, David A; Kruijssen, J M Diederik; Ercolano, Barbara; Walch, Stefanie

2014-01-01

246

X-ray Emission from Young Stars in the TW Hya Association  

E-print Network

The 9 Myr old TW Hya Association (TWA) is the nearest group (typical distances of $\\sim$50 pc) of pre-main-sequence (PMS) stars with ages less than 10 Myr and contains stars with both actively accreting disks and debris disks. We have studied the coronal X-ray emission from a group of low mass TWA common proper motion binaries using the {\\it{Chandra}} and {\\it{Swift}} satellites. Our aim is to understand better their coronal properties and how high energy photons affect the conditions around young stars and their role in photo-exciting atoms, molecules and dust grains in circumstellar disks and lower density circumstellar gas. Once planet formation is underway, this emission influences protoplanetary evolution and the atmospheric conditions of the newly-formed planets. The X-ray properties for 7 individual stars (TWA 13A, TWA 13B, TWA 9A, TWA 9B, TWA 8A, TWA 8B, and TWA 7) and 2 combined binary systems (TWA 3AB and TWA 2AB) have been measured. All the stars with sufficient signal require two-component fits to...

Brown, Alexander; Ayres, Thomas R; France, Kevin; Brown, Joanna M

2014-01-01

247

A runaway collision in a young star cluster as the origin of the brightest supernova  

E-print Network

Supernova 2006gy in the galaxy NGC 1260 is the most luminous one recorded \\cite{2006CBET..644....1Q, 2006CBET..647....1H, 2006CBET..648....1P, 2006CBET..695....1F}. Its progenitor might have been a very massive ($>100$ \\msun) star \\cite{2006astro.ph.12617S}, but that is incompatible with hydrogen in the spectrum of the supernova, because stars $>40$ \\msun are believed to have shed their hydrogen envelopes several hundred thousand years before the explosion \\cite{2005A&A...429..581M}. Alternatively, the progenitor might have arisen from the merger of two massive stars \\cite{2007ApJ...659L..13O}. Here we show that the collision frequency of massive stars in a dense and young cluster (of the kind to be expected near the center of a galaxy) is sufficient to provide a reasonable chance that SN 2006gy resulted from such a bombardment. If this is the correct explanation, then we predict that when the supernova fades (in a year or so) a dense cluster of massive stars becomes visible at the site of the explosion.

Zwart, Simon Portegies

2007-01-01

248

Strong biases in estimating the time dependence of mass accretion rates in young stars  

NASA Astrophysics Data System (ADS)

The temporal decay of mass accretion in young stars is a fundamental tracer of the early evolution of circumstellar discs. Through population syntheses, we study how correlated uncertainties between the estimated parameters of young stars (luminosity, temperature, mass and age) and mass accretion rates dot{M}_acc, as well as observational selection effects, can bias the temporal decay of mass accretion rates (dot{M}_acc? t^{-? }) inferred from a comparison of measured dot{M}_acc with isochronal ages in young stellar clusters. We find that the presence of realistic uncertainties reduces the measured value of ? by up to a factor of 3, leading to the inference of shallower decays than the true value. This suggests a much faster temporal decay of dot{M}_acc than generally assumed. When considering the minimum uncertainties in ages affecting the Orion Nebula Cluster, the observed value ? ˜ 1.4, typical of Galactic star-forming regions, can only be reproduced if the real decay exponent is ? ? 4. This effect becomes more severe if one assumes that observational uncertainties are larger, as required by some fast star formation scenarios. Our analysis shows that while selection effects due to sample incompleteness do bias ?, they cannot alter this main result and strengthen it in many cases. A remaining uncertainty in our work is that it applies to the most commonly used and simple relationship between dot{M}_acc, the accretion luminosity and the stellar parameters. We briefly explore how a more complex interplay between these quantities might change the results.

Da Rio, N.; Jeffries, R. D.; Manara, C. F.; Robberto, M.

2014-04-01

249

?Horologi, the first coronal activity cycle in a young solar-like star  

NASA Astrophysics Data System (ADS)

Context. The shortest chromospheric (Ca ii H&K) activity cycle (1.6 yr) has been recently discovered in the young (~600 Myr) solar-like star ? Hor. Coronal X-ray activity cycles have only been discovered in a few stars other than the Sun, all of them with an older age and a lower activity level than ? Hor. Aims: We intended to find the X-ray coronal counterpart of the chromospheric cycle for ? Hor. This represents the first X-ray cycle observed in an active star, as well as the paradigm of the first coronal cycles in the life of a solar-like star. Methods: We monitored ? Hor with XMM-Newton observations spanning almost two years. The spectra of each observation are fit with two-temperature coronal models to study the long-term variability of the star. Results: We find a cyclic behavior in X-rays very similar to the contemporaneous chromospheric cycle. The continuous chromospheric monitoring for more than three cycle lengths shows a trend toward decreasing amplitude, apparently modulated by a longer term trend. The second cycle is disrupted prior to reaching its maximum, followed by a brief episode of chaotic variability before the cyclic behavior resumes, only to be disrupted again after slightly more than one cycle. Conclusions: We confirm the presence of an activity cycle of ~1.6 yr in ? Hor both in X-rays and Ca ii H&K. It is likely subject to the modulation of a longer, not yet constrained second cycle. The 1.6 yr cycle is the shortest coronal one observed to date, and ? Hor represents the most active star for which a coronal activity cycle has been found. This cycle is probably representative of the first coronal cycles in the life of a solar-like star, at the age when life started on Earth. Table 2 is available in electronic form at http://www.aanda.org

Sanz-Forcada, J.; Stelzer, B.; Metcalfe, T. S.

2013-05-01

250

FLAMES spectroscopy of low-mass stars in the young clusters sigma Ori and lambda Ori  

E-print Network

Aims. We performed a detailed membership selection and studied the accretion properties of low-mass stars in the two apparently very similar young (1-10 Myr) clusters sigma Ori and lambda Ori. Methods. We observed 98 and 49 low-mass (0.2-1.0 M_sun) stars in sigma Ori and lambda Ori respectively, using the multi-object optical spectrograph FLAMES at the VLT, with the high-resolution (R=17,000) HR15N grating (6470-6790 AA). We used radial velocities, Li and Halpha to establish cluster membership and Halpha and other optical emission lines to analyze the accretion properties of members. Results. We identified 65 and 45 members of the sigma Ori and lambda Ori clusters, respectively and discovered 16 new candidate binary systems. We also measured rotational broadening for 20 stars and estimated the mass accretion rates in 25 stars of the sigma Ori cluster, finding values between 10^-11 and 10^-7.7 M_sun yr^-1 and in 4 stars of the lambda Ori cluster, finding values between 10^-11 and 10^-10.1 M_sun yr-1. Comparing our results with the infrared photometry obtained by the Spitzer satellite, we find that the fraction of stars with disks and the fraction of active disks is larger in the sigma Ori cluster (52+-9% and 78+-16%) than in lambda Ori (28+-8% and 40+-20%) Conclusions. The different disk and accretion properties of the two clusters could be due either to the effect of the high-mass stars and the supernova explosion in the lambda Ori cluster or to different ages of the cluster populations. Further observations are required to draw a definitive conclusion.

G. G. Sacco; E. Franciosini; S. Randich; R. Pallavicini

2008-05-19

251

Young Stars in Old Galaxies: A UV Imaging Survey of the Sauron Galaxy Sample  

NASA Astrophysics Data System (ADS)

Simultaneously constraining the dynamics and stellar populations of galaxies is essential to understand their mass assembly and star formation histories. The SAURON Team has surveyed the two dimensional stellar/ionized-gas kinematics and stellar populations of a representative sample of 72 nearby early-type galaxies. It revealed a great dynamical diversity, discovering numerous central disks and kinematically decoupled components. The limited optical line strength diagnostics indicate that most (but not all) galaxies have homogeneously old stellar populations. By combining GALEX far-ultraviolet (FUV) and near-ultraviolet (NUV) imaging with SAURON data, we aim here to more reliably constrain the incidence, rate, and spatial distribution of recent and ongoing star formation in early-type galaxies, and to quantify those as function of luminosity, Hubble type, and environment. Of particular interest is whether star formation is closely associated with the kinematic (sub-)structures detected. Other important goals include measuring the spatial extent of the enigmatic UV-upturn population, identifying the orbital families populated by young stars and constraining their migration patterns, and testing the reliability and limitations of line strength-based methods to detect young populations. Progress toward those goals was achieved with Cycle 1 data, but we now request to complete the sample by observing galaxies originally planned for the GALEX Nearby Galaxies Survey (NGS). The combined SAURON and GALEX data will provide by far the best determination of the relative roles of merger-induced and passive star formation in early-type galaxies today, and they will give us a unique glimpse into the future of those objects.

Bureau, Martin

252

Near-infrared Variability in Young Stars in Cygnus OB7  

NASA Astrophysics Data System (ADS)

We present the first results from a 124 night J, H, K near-infrared monitoring campaign of the dark cloud L 1003 in Cygnus OB7, an active star-forming region. Using three seasons of UKIRT observations spanning 1.5 years, we obtained high-quality photometry on 9200 stars down to J = 17 mag, with photometric uncertainty better than 0.04 mag. On the basis of near-infrared excesses from disks, we identify 30 pre-main-sequence stars, including 24 which are newly discovered. We analyze those stars and find that the NIR excesses are significantly variable. All 9200 stars were monitored for photometric variability; among the field star population, ~160 exhibited near-infrared variability (1.7% of the sample). Of the 30 young stellar objects (YSOs), 28 of them (93%) are variable at a significant level. Of the 30 YSOs, twenty-five have near-infrared excess consistent with simple disk-plus-star classical T Tauri models. Nine of these (36%) drift in color space over the course of these observations and/or since Two Micron All Sky Survey observations such that they cross the boundary defining the NIR excess criteria; effectively, they have a transient near-infrared excess. Thus, time-series JHK observations can be used to obtain a more complete sample of disk-bearing stars than single-epoch JHK observations. About half of the YSOs have color-space variations parallel to either the classical T Tauri star locus or a hybrid track which includes the dust reddening trajectory. This indicates that the NIR variability in YSOs that possess accretion disks arises from a combination of variable extinction and changes in the inner accretion disk: either in accretion rate, central hole size, and/or the inclination of the inner disk. While some variability may be due to stellar rotation, the level of variability on the individual stars can exceed a magnitude. This is a strong empirical suggestion that protoplanetary disks are quite dynamic and exhibit more complex activity on short timescales than is attributable to rotation alone or captured in static disk models.

Rice, Thomas S.; Wolk, Scott J.; Aspin, Colin

2012-08-01

253

Young stars and their circumstellar disks in the Sigma Orionis cluster  

E-print Network

The sigma Orionis cluster is a young association evolving under the disruptive influence of its massive O-star namesake. We are analysing this cluster as part of a program to characterise the influence of O-stars on the early stages of stellar evolution. At an age of approximately 4 Myr, this cluster is at a crucial stage in terms of disk evolution and therefore it is a key case to better constrain disk dissipation timescales. We have obtained RI photometry and optical spectroscopy of the sigma Ori cluster; we have analysed the Li I and Na I features to establish cluster membership. We have thus gathered a unique sample of spectroscopically confirmed low-mass cluster members and brown dwarfs. Disk frequencies from K-band excesses from 2MASS suggest that less than 7% of the very low-mass sigma Ori members have disks, in stark contrast with even younger clusters (e.g. Trapezium). However, near-infrared disk frequencies have to be taken with caution. We are currently undertaking an L-band (imaging) and mid-infrared (imaging and spectroscopy) program to identify and probe the properties of circumstellar disks around young stars in this cluster. Preliminary results indicate that at least 30% of cluster members have circumstellar disks.

J. M. Oliveira; R. D. Jeffries; J. Th. van Loon; M. J. Kenyon

2003-05-27

254

Photometric/spectroscopic analyses and magnetic activity in young late-type stars  

E-print Network

We present the work in progress of a study based on photometric and spectroscopic observations of young Weak-line T Tauri and Post T Tauri stars just attiving on the Zero Age Main Sequence. This study is part of a project based on high-resolution spectra obtained with FOCES@CAHA (Spain) and SARG@TNG (Spain) and contemporaneous photometry performed at Catania (Italy) and Ege (Turkey) observatories. The main aim is to investigate the topology of magnetic active regions at photospheric and chromospheric levels in young single stars. Since our targets are slow rotators (vsini from the upper chromospheric layers, derive the lithium abundance (age indicator), and measure the rotational and radial velocities. We find a clear rotational modulation, due to photospheric spots, both in the light and the temperature curves. The Halpha and the CaII-IRT emissions display a fair variation correlated with the rotation. Finally, we are developing a spot/plage model to reproduce the data and derive the spot parameters (namely, filling factor and temperature) and to recover information about the chromospheric inhomogeneities (flux contrast and filling factor). This study is very important to explore the correlations between global stellar parameters (e.g., surface gravity, effective temperature) and spot/plage characteristics in stars with different activity level and evolutionary stage.

K. Biazzo; A. Frasca; E. Marilli; E. Covino; J. M. Alcala'; O. Cakirli

2008-10-07

255

X-Ray and Infrared Observations of Embedded Young Stars in NGC 2264  

NASA Technical Reports Server (NTRS)

Images of the NGC 2264 star-forming region, which we have acquired with the XMM-Newton spacecraft, reveal strong X-ray emission from three deeply embedded (Av > 10 mag) young stellar objects in the vicinity of Allen's infrared source (AFGL 989 = IRS 1) and Castelaz & Grasdalen s infrared source (RNO-EW = IRS 2). Thermal plasma models for the brightest source in X-rays, located 11 southwest of Allen's star, yield a quasi-steady luminosity of Lx = 10 ergs s-1 and an extraordinarily high X-ray temperature of 100 MK. The high temperature is consistent with the presence of emission lines of Fe xxv and Fe xxvi at photon energies of 6.7 and 6.9 keV, respectively. An even higher temperature of nearly 140 MK was observed during the rise phase of a powerful impulsive X-ray flare of another young star in the IRS 2 region. Moderate-resolution near-infrared (1-4 um) spectra of the embedded objects, obtained at the NASA Infrared Telescope Facility, exhibit deep water ice absorption bands, as well as a variety of emission and absorption features of H I, CO, and both neutral and ionized metals.

Simon, Theordore; Dahm, S. E.

2005-01-01

256

X-Ray and Infrared Observations of Embedded Young Stars in NGC 2264  

NASA Astrophysics Data System (ADS)

Images of the NGC 2264 star-forming region, which we have acquired with the XMM-Newton spacecraft, reveal strong X-ray emission from three deeply embedded (AV>=10 mag) young stellar objects in the vicinity of Allen's infrared source (AFGL 989 = IRS 1) and Castelaz & Grasdalen's infrared source (RNO-EW = IRS 2). Thermal plasma models for the brightest source in X-rays, located 11" southwest of Allen's star, yield a quasi-steady luminosity of LX=1033 ergs s-1 and an extraordinarily high X-ray temperature of 100 MK. The high temperature is consistent with the presence of emission lines of Fe XXV and Fe XXVI at photon energies of 6.7 and 6.9 keV, respectively. An even higher temperature of nearly ~140 MK was observed during the rise phase of a powerful impulsive X-ray flare of another young star in the IRS 2 region. Moderate-resolution near-infrared (1-4 ?m) spectra of the embedded objects, obtained at the NASA Infrared Telescope Facility, exhibit deep water ice absorption bands, as well as a variety of emission and absorption features of H I, CO, and both neutral and ionized metals.

Simon, Theodore; Dahm, S. E.

2005-01-01

257

IDENTIFYING NEARBY, YOUNG, LATE-TYPE STARS BY MEANS OF THEIR CIRCUMSTELLAR DISKS  

SciTech Connect

It has recently been shown that a significant fraction of late-type members of nearby, very young associations (age {approx}<10 Myr) display excess emission at mid-IR wavelengths indicative of dusty circumstellar disks. We demonstrate that the detection of mid-IR excess emission can be utilized to identify new nearby, young, late-type stars including two definite new members ('TWA 33' and 'TWA 34') of the TW Hydrae Association (TWA). Both new TWA members display mid-IR excess emission in the Wide-field Infrared Survey Explorer catalog and they show proper motion and youthful spectroscopic characteristics-namely, H{alpha} emission, strong lithium absorption, and low surface gravity features consistent with known TWA members. We also detect mid-IR excess-the first unambiguous evidence of a dusty circumstellar disk-around a previously identified UV-bright, young, accreting star (2M1337) that is a likely member of the Lower-Centaurus Crux region of the Scorpius-Centaurus Complex.

Schneider, Adam; Song, Inseok [Department of Physics and Astronomy, University of Georgia, Athens, GA 30602 (United States); Melis, Carl [Center for Astrophysics and Space Sciences, University of California, San Diego, CA 92093 (United States); Zuckerman, B. [Department of Physics and Astronomy, University of California, Los Angeles, CA, 90095 (United States); Bessell, Mike, E-mail: aschneid@physast.uga.edu, E-mail: song@physast.uga.edu, E-mail: cmelis@ucsd.edu, E-mail: ben@astro.ucla.edu, E-mail: bessell@mso.anu.edu.au [Research School of Astronomy and Astrophysics, The Australian National University, Weston Creek, ACT 2611 (Australia)

2012-10-01

258

Identifying nearby, Young, Late-type Stars by Means of their Circumstellar Disks  

NASA Astrophysics Data System (ADS)

It has recently been shown that a significant fraction of late-type members of nearby, very young associations (age lsim10 Myr) display excess emission at mid-IR wavelengths indicative of dusty circumstellar disks. We demonstrate that the detection of mid-IR excess emission can be utilized to identify new nearby, young, late-type stars including two definite new members ("TWA 33" and "TWA 34") of the TW Hydrae Association (TWA). Both new TWA members display mid-IR excess emission in the Wide-field Infrared Survey Explorer catalog and they show proper motion and youthful spectroscopic characteristics—namely, H? emission, strong lithium absorption, and low surface gravity features consistent with known TWA members. We also detect mid-IR excess—the first unambiguous evidence of a dusty circumstellar disk—around a previously identified UV-bright, young, accreting star (2M1337) that is a likely member of the Lower-Centaurus Crux region of the Scorpius-Centaurus Complex.

Schneider, Adam; Song, Inseok; Melis, Carl; Zuckerman, B.; Bessell, Mike

2012-10-01

259

Discovery of magnetic fields in the very young, massive stars W601 (NGC 6611) and OI 201 (NGC 2244)  

E-print Network

Context: Recent spectropolarimetric observations of Herbig Ae/Be stars have yielded new arguments in favour of a fossil origin for the magnetic fields of intermediate mass stars. Aims: To study the evolution of these magnetic fields, and their impact on the evolution of the angular momentum of these stars during the pre-main sequence phase, we observed Herbig Ae/Be members of young open clusters of various ages. Methods: We obtained high-resolution spectropolarimetric observations of Herbig Ae/Be stars belonging to the young open clusters NGC 6611 (OI 201 (NGC 2244; v sin i = 23.5 km/s). The Stokes V profile of this star does not vary over 5 days, suggesting a long rotational period, a pole-on orientation, or aligned magnetic and rotation axes. OI 201 is situtated near the Zero-Age Main Sequence on the HR diagram, and exhibits normal chemical abundances and no spectrum variability.

E. Alecian; G. A. Wade; C. Catala; S. Bagnulo; T. Boehm; D. Bohlender; J. -C. Bouret; J. -F. Donati; C. P. Folsom; J. Grunhut; J. D. Landstreet

2008-02-27

260

The Gemini NICI Planet-Finding Campaign: The Frequency of Giant Planets around Young B and A Stars  

NASA Astrophysics Data System (ADS)

We have carried out high contrast imaging of 70 young, nearby B and A stars to search for brown dwarf and planetary companions as part of the Gemini NICI Planet-Finding Campaign. Our survey represents the largest, deepest survey for planets around high-mass stars (~1.5-2.5 M?) conducted to date and includes the planet hosts ? Pic and Fomalhaut. Despite detecting two new brown dwarfs, our observations did not detect new planets around our target stars, and we present upper limits on the fraction of high-mass stars that can host giant planets that are consistent with our null result.

Nielsen, Eric L.; Liu, Michael C.; Wahhaj, Zahed; Biller, Beth A.; Hayward, Thomas L.; Hayward

2014-01-01

261

Rotational Velocities of Post T Tauri Stars in Young Stellar Associations  

NASA Astrophysics Data System (ADS)

This contribution summarizes the preliminary results concerning vsini measurements for a sample of G-K solar type stars in the solar neighborhood based on observations made with the European Southern Observatory telescopes obtained from ESO/ST-ECF Science Archive Facility. We conducted measurements of rotational projected velocities for a sample of 33 young low mass post-T Tauri stars with ages between 10 and 30 Myr belonging to the nearby associations: Beta Pictoris Moving Group (BPMG), Upper Centaurus Lupus (UCL), Lower Centaurus Crux (LCC), and Tucana Horologium (THA). When compared with data of members of the older clusters, the Pleiades and the Hyades, our vsini measurements appear to be consistent with an increase of the rotation between the age of BPMG and THA in agreement with the spin up expected after the disk disappearance.

Rodríguez, J.; Pinzón, G.

2013-04-01

262

Spatially Extended Brackett Gamma Emission in the Environments of Young Stars  

NASA Astrophysics Data System (ADS)

The majority of atomic hydrogen Br? emission detected in the spectra of young stellar objects is believed to arise from the recombination regions associated with the magnetospheric accretion of circumstellar disk material onto the forming star. In this paper, we present the results of a K-band integral field unit spectroscopic study of Br? emission in eight young protostars: CW Tau, DG Tau, Haro 6-10, HL Tau, HV Tau C, RW Aur, T Tau, and XZ Tau. We spatially resolve Br? emission structures in half of these young stars and find that most of the extended emission is consistent with the location and velocities of the known Herbig-Haro flows associated with these systems. At some velocities through the Br? line profile, the spatially extended emission comprises 20% or more of the integrated flux in that spectral channel. However, the total spatially extended Br? is typically less than ~10% of the flux integrated over the full emission profile. For DG Tau and Haro 6-10 S, we estimate the mass outflow rate using simple assumptions about the hydrogen emission region and compare this to the derived mass accretion rate. We detect extended Br? in the vicinity of the more obscured targets in our sample and conclude that spatially extended Br? emission may exist toward other stars, but unattenuated photospheric flux probably limits its detectability. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Particle Physics and Astronomy Research Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil), and CONICET (Argentina).

Beck, Tracy L.; Bary, Jeffery S.; McGregor, Peter J.

2010-10-01

263

X-Shooter spectroscopy of young stellar objects: V - Slow winds in T Tauri stars  

E-print Network

Disks around T Tauri stars are known to lose mass, as best shown by the profiles of forbidden emission lines of low ionization species. At least two separate kinematic components have been identified, one characterised by velocity shifts of tens to hundreds km/s (HVC) and one with much lower velocity of few km/s (LVC). The HVC are convincingly associated to the emission of jets, but the origin of the LVC is still unknown. In this paper we analyze the forbidden line spectrum of a sample of 44 mostly low mass young stars in Lupus and $\\sigma$-Ori observed with the X-Shooter ESO spectrometer. We detect forbidden line emission of [OI], [OII], [SII], [NI], and [NII], and characterize the line profiles as LVC, blue-shifted HVC and red-shifted HVC. We focus our study on the LVC. We show that there is a good correlation between line luminosity and both L$_{star}$ and the accretion luminosity (or the mass-accretion rate) over a large interval of values (L$_{star}$ $\\sim 10^{-2} - 1$ L$_\\odot$; L$_{acc}$ $\\sim 10^{-5} ...

Natta, A; Alcalá, J M; Rigliaco, E; Covino, E; Stelzer, B; D'Elia, V

2014-01-01

264

Young Stars in the Camelopardalis Dust and Molecular Clouds. I. The Cam OB1 Association  

E-print Network

The distribution of dust and molecular clouds in the direction of Galactic longitudes 132--158 deg and latitudes pm 12 deg is investigated. The maps of dust distribution in the area were plotted from the following surveys: the star counts in the DSS I database by Dobashi et al. (2005), the survey of the average infrared color excesses by Froebrich et al. (2007) and the thermal dust emission survey at 100 micrometers by Schlegel et al. (1998). The distribution of molecular clouds was taken from the whole sky CO survey by Dame et al. (2001). All these surveys show very similar cloud patterns in the area. Using the radial velocities of CO, the distances to separate clouds are estimated. A revised list of the Cam OB1 association members contains 43 stars and the open cluster NGC 1502. 18 young irregular variable and H alpha emission stars are identified in the area. All this proves that the star forming process in the Camelopardalis clouds is still in progress.

V. Straizys; V. Laugalys

2008-03-17

265

Substantial reservoirs of molecular hydrogen in the debris disks around young stars.  

PubMed

Circumstellar accretion disks transfer matter from molecular clouds to young stars and to the sites of planet formation. The disks observed around pre-main-sequence stars have properties consistent with those expected for the pre-solar nebula from which our own Solar System formed 4.5 Gyr ago. But the 'debris' disks that encircle more than 15% of nearby main-sequence stars appear to have very small amounts of gas, based on observations of the tracer molecule carbon monoxide: these observations have yielded gas/dust ratios much less than 0.1, whereas the interstellar value is about 100 (ref. 9). Here we report observations of the lowest rotational transitions of molecular hydrogen (H2) that reveal large quantities of gas in the debris disks around the stars beta Pictoris, 49 Ceti and HD135344. The gas masses calculated from the data are several hundreds to a thousand times greater than those estimated from the CO observations, and yield gas/dust ratios of the same order as the interstellar value. PMID:11343110

Thi, W F; Blake, G A; van Dishoeck, E F; van Zadelhoff, G J; Horn, J M; Becklin, E E; Mannings, V; Sargent, A I; van Den Ancker, M E; Natta, A

2001-01-01

266

NEW BROWN DWARF COMPANIONS TO YOUNG STARS IN SCORPIUS-CENTAURUS  

SciTech Connect

We present the discoveries of three faint companions to young stars in the Scorpius-Centaurus region, imaged with the NICI instrument on Gemini South. We have confirmed all three companions through common proper motion tests. Follow-up spectroscopy has confirmed two of them, HIP 65423 B and HIP 65517 B, to be brown dwarfs, while the third, HIP 72099 B, is more likely a very low mass star just above the hydrogen burning limit. The detection of wide companions in the mass range of {approx}40-100 M{sub jup} complements previous work in the same region, reporting detections of similarly wide companions with lower masses, in the range of {approx}10-30 M{sub jup}. Such low masses near the deuterium burning limit have raised the question of whether those objects formed like planets or stars. The existence of intermediate objects as reported here could represent a bridge between lower-mass companions and stellar companions, but in any case demonstrate that mass alone may not provide a clear-cut distinction for the formation of low-mass companions to stars.

Janson, Markus [Department of Astrophysical Sciences, Princeton University, Princeton, NJ (United States); Jayawardhana, Ray; Bonavita, Mariangela [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON (Canada); Girard, Julien H. [European Southern Observatory, Santiago (Chile); Lafreniere, David [Department of Physics, University of Montreal, Montreal, QC (Canada); Gizis, John [Department of Physics and Astronomy, University of Delaware, Newark, DE (United States); Brandeker, Alexis, E-mail: janson@astro.princeton.edu [Department of Astronomy, Stockholm University, Stockholm (Sweden)

2012-10-10

267

Discovery of a dense molecular cloud towards a young massive embedded star in 30 Doradus  

E-print Network

The 30 Doradus region in the Large Magellanic Cloud is one of the most outstanding star forming regions of the Local Group and a primary target to study star formation in an environment of low metallicity. In order to obtain a more complete picture of the not yet consumed or dispersed cool gas, we searched for line emission from molecular clouds that could be associated with molecular hydrogen emission detected in the region. We obtained a high sensitivity 12CO J=2-1 map with the 15-m SEST telescope, complemented by pointed observations of 13CO J=2-1 and CS J=2-1. We report the discovery of a dense molecular cloud towards an embedded young massive star at ~ 20" (~5 pc, at the distance of 50 kpc) northwest of R136, the compact massive central stellar cluster powering 30 Doradus in the LMC, that could be triggering star formation in the surrounding molecular clouds. We derived a molecular mass of $\\lesssim 10^4$ \\msol, a linear radius of 3 pc, as an upper limit, and a mean density of $\\gtrsim 10^{3}$ cm$^{-3}$ ...

Rubio, M; Dubner, G

2009-01-01

268

VizieR Online Data Catalog: Young Massive Star Clusters. II. (Larsen, 1999)  

NASA Astrophysics Data System (ADS)

Table 4 lists photometric data for Young Massive Star Clusters identified in a sample of 21 nearby galaxies. The photometric data have been corrected for Galactic foreground extinction. Each cluster is identified by the abbreviated NGC number of its host galaxy and an object number: nxxx-yyy is object number yyy in the galaxy NGC xxx. Effective cluster radii have been obtained by modeling the cluster images as MOFFAT15 functions convolved with the point-spread function measured on the CCD images. (1 data file).

Larsen, S. S.

1999-07-01

269

The relevance of the IUE results on young stars for Earth's paleoatmosphere  

NASA Technical Reports Server (NTRS)

Using the latest IUE results for seven T Tauri stars, which are believed to represent the young Sun and a detailed photochemical chemical model of the paleoatmosphere, the vertical distribution of Oxygen and Ozone in the early atmosphere was calculated. The calculations indicate that the surface Oxygen mixing ratio is as much as six orders of magnitude larger than previously estimated, but appears low enough for the formation of amino acids via the Urey-Miller type of experiments. It is believed that the quantification of the oxygen level in the Earth's paleoatmosphere presented can reconcile the demands of both biological and geological considerations.

Canuto, V. M.; Levine, J. S.; Augustsson, T. R.; Imhoff, C. L.; Giampap, M. S.

1982-01-01

270

A COMPREHENSIVE GALEX ULTRAVIOLET CATALOG OF STAR CLUSTERS IN M31 AND A STUDY OF THE YOUNG CLUSTERS  

SciTech Connect

We present a comprehensive catalog of 700 confirmed star clusters in the field of M31 compiled from three major existing catalogs. We detect 418 and 257 star clusters in Galaxy Evolution Explorer near-ultraviolet and far-ultraviolet (FUV) imaging, respectively. Our final catalog includes photometry of star clusters in up to 16 passbands ranging from FUV to NIR as well as ancillary information such as reddening, metallicity, and radial velocities. In particular, this is the most extensive and updated catalog of UV-integrated photometry for M31 star clusters. Ages and masses of star clusters are derived by fitting the multi-band photometry with model spectral energy distribution (SED); UV photometry enables more accurate age estimation of young clusters. Our catalog includes 182 young clusters with ages less than 1 Gyr. Our estimated ages and masses of young clusters are in good agreement with previously determined values in the literature. The mean age and mass of young clusters are about 300 Myr and 10{sup 4} M{sub Sun }, respectively. We found that the compiled [Fe/H] values of young clusters included in our catalog are systematically lower (by more than 1 dex) than those from recent high-quality spectroscopic data and our SED-fitting result. We confirm that most of the young clusters' kinematics shows systematic rotation around the minor axis and association with the thin disk of M31. The young cluster distribution exhibits a distinct peak in the M31 disk around 10-12 kpc from the center and follows a spatial distributions similar to other tracers of disk structure such as OB stars, UV star-forming regions, and dust. Some young clusters also show concentration around the ring splitting regions found in the southern part of the M31 disk and most of them have systematically younger (<100 Myr) ages. Considering the kinematical properties and spatial distribution of young clusters, they might be associated with the well-known 10 kpc star formation ring structure in the M31 disk. Consequently, we suggest that various properties of young clusters in M31 might be in line with the scenarios that a satellite galaxy had passed through the disk of M31 less than few hundred million years ago.

Kang, Yongbeom; Rey, Soo-Chang; Lee, Kyungsook; Kim, YoungKwang [Department of Astronomy and Space Science, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Bianchi, Luciana [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Sohn, Sangmo Tony, E-mail: ybkang@cnu.ac.kr, E-mail: screy@cnu.ac.kr [Space Telescope Science Institute, Baltimore, MD 21218 (United States)

2012-04-01

271

Eruption Variability  

NSDL National Science Digital Library

This resource provides information about variances in size and explosiveness of volcanoes that have erupted during the past 10,000 years. Included is a table showing that small eruptions are more frequent than larger ones. A feature of this site is the introduction of a scheme for estimating the magnitude of historic eruptions, called the Volcanic Explosivity Index (VEI). Historical eruptions can be assigned a VEI number on a scale of 0 to 8, using one or more of the criteria which include volume of ejecta, height of the eruptive column, qualitative descriptions, style of past activity, and height of spreading of the eruptive plume head. A chart shows an example for each VEI from 0 through 8 along with the plume height, volume, and eruption type classification. Each volcano name provides a link to detailed information about it.

Camp, Victor

272

The masses of young stars: CN as a probe of dynamical masses  

NASA Astrophysics Data System (ADS)

Aims: We attempt to determine the masses of single or multiple young T Tauri and HAeBe stars from the rotation of their Keplerian disks. Methods: We used the IRAM PdBI interferometer to perform arcsecond resolution images of the CN N = 2-1 transition with good spectral resolution. Integrated spectra from the 30 m radiotelescope show that CN is relatively unaffected by contamination from the molecular clouds. Our sample includes 12 sources, among which isolated stars like DM Tau and MWC 480 are used to demonstrate the method and its accuracy. We derive the dynamical mass by fitting a disk model to the emission, a process giving M/D, the mass-to-distance ratio. We also compare the CN results with higher resolution CO data, that are however affected by contamination. Results: All disks are found in nearly perfect Keplerian rotation. We determine accurate masses for 11 stars, in the mass range 0.5 to 1.9 M?. The remaining one, DG Tau B, is a deeply embedded object for which CN emission partially arises from the outflow. With previous determinations, this leads to 14 (single) stars with dynamical masses. Comparison with evolutionary tracks, in a distance independent modified HR diagram, show good overall agreement (with one exception, CW Tau), and indicate that measurement of effective temperatures are the limiting factor. The lack of low mass stars in the sample does not allow to distinguish between alternate tracks. Based on observations carried out with the IRAM Plateau de Bure interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).Appendices are available in electronic form at http://www.aanda.org

Guilloteau, S.; Simon, M.; Piétu, V.; Di Folco, E.; Dutrey, A.; Prato, L.; Chapillon, E.

2014-07-01

273

MASS DISTRIBUTIONS OF STARS AND CORES IN YOUNG GROUPS AND CLUSTERS  

SciTech Connect

We investigate the relation of the stellar initial mass function and the dense core mass function (CMF), using stellar masses and positions in 14 well-studied young groups. Initial column density maps are computed by replacing each star with a model initial core having the same star formation efficiency (SFE). For each group the SFE, core model, and observational resolution are varied to produce a realistic range of initial maps. A clump-finding algorithm parses each initial map into derived cores, derived core masses, and a derived CMF. The main result is that projected blending of initial cores causes derived cores to be too few and too massive. The number of derived cores is fewer than the number of initial cores by a mean factor of 1.4 in sparse groups and 5 in crowded groups. The mass at the peak of the derived CMF exceeds the mass at the peak of the initial CMF by a mean factor of 1.0 in sparse groups and 12.1 in crowded groups. These results imply that in crowded young groups and clusters, the mass distribution of observed cores may not reliably predict the mass distribution of protostars that will form in those cores.

Michel, Manon [Formation Interuniversitaire de Physique, Departement de Physique de l'Ecole Normale Superieure, 24 rue Lhomond, 75231 Paris Cedex 05 (France); Kirk, Helen; Myers, Philip C., E-mail: manon.michel@ens.fr, E-mail: hkirk@cfa.harvard.edu, E-mail: pmyers@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 42, Cambridge, MA 02138 (United States)

2011-07-01

274

The Gemini NICI Planet-Finding Campaign: Planet Frequency for Young Moving Group Stars  

NASA Astrophysics Data System (ADS)

We report results of a direct imaging survey for giant planets of a sample of 79 young FGK stars which are members of the ? Pic, TW Hya, AB Dor, Tucana-Horologium, or Hercules-Lyra moving groups and were observed as part of the Gemini-NICI Planet Finding Campaign. For this sample, we obtained median contrasts of ?(mag)=14.0 mag at 1'' in in combined ADI+SDI mode. We found numerous candidate companions in our survey images. The vast majority of these candidates were eliminated as background objects either from archival observations or NICI followup. However, four co-moving brown dwarf or stellar companions were discovered in the moving group sample, including PZ Tel B and CD -35 2722B. From a Bayesian analysis for a wide range of parameters and power-law models of planet distributions, we restrict the planet frequency for 1-20 M_{Jup} objects at semi-major axes from 10-150 AU to <10.5% or less at a 98% confidence level. This survey is the deepest search to date for giant planets around young Moving Group stars.

Biller, Beth A.; Liu, M. C.; Wahhaj, Z.; Nielsen, E. L.; Hayward, T. L.; Close, L. M.; Chun, M.; Ftaclas, C.; Toomey, D. W.; Gemini NICI Planet-Finding Campaign Team

2013-01-01

275

CSI 2264: Characterizing Accretion-Burst Dominated Light Curves for Young Stars in NGC 2264  

E-print Network

Based on more than four weeks of continuous high cadence photometric monitoring of several hundred members of the young cluster NGC 2264 with two space telescopes, NASA's Spitzer and the CNES CoRoT (Convection, Rotation, and planetary Transits), we provide high quality, multi-wavelength light curves for young stellar objects (YSOs) whose optical variability is dominated by short duration flux bursts, which we infer are due to enhanced mass accretion rates. These light curves show many brief -- several hour to one day -- brightenings at optical and near-infrared (IR) wavelengths with amplitudes generally in the range 5-50% of the quiescent value. Typically, a dozen or more of these bursts occur in a thirty day period. We demonstrate that stars exhibiting this type of variability have large ultraviolet (UV) excesses and dominate the portion of the u-g vs. g-r color-color diagram with the largest UV excesses. These stars also have large Halpha equivalent widths, and either centrally peaked, lumpy Halpha emission...

Stauffer, John; Baglin, Annie; Alencar, Silvia H P; Rebull, Luisa; Hillenbrand, Lynne A; Venuti, Laura; Turner, Neal J; Carpenter, John; Plavchan, Peter; Findeisen, Krzysztof; Carey, Sean; Terebey, Susan; Morales-Calderón, María; Bouvier, Jerome; Micela, Giusi; Flaccomio, Ettore; Song, Inseok; Gutermuth, Rob; Hartmann, Lee; Calvet, Nuria; Whitney, Barbara; Barrado, David; Vrba, Frederick J; Covey, Kevin; Herbst, William; Furesz, Gabor; Aigrain, Suzanne

2014-01-01

276

Discovery of a wide planetary-mass companion to the young M3 star GU Psc  

E-print Network

We present the discovery of a co-moving planetary-mass companion ~42" (~2000 AU) from a young M3 star, GU Psc, likely member of the young AB Doradus Moving Group (ABDMG). The companion was first identified via its distinctively red i - z color (> 3.5) through a survey made with Gemini-S/GMOS. Follow-up Canada-France-Hawaii Telescope/WIRCam near-infrared (NIR) imaging, Gemini-N/GNIRS NIR spectroscopy and Wide-field Infrared Survey Explorer photometry indicate a spectral type of T3.5+-1 and reveal signs of low gravity which we attribute to youth. Keck/Adaptive Optics NIR observations did not resolve the companion as a binary. A comparison with atmosphere models indicates Teff = 1000-1100 K and logg = 4.5-5.0. Based on evolution models, this temperature corresponds to a mass of 9-13 MJup for the age of ABDMG (70-130 Myr). The relatively well-constrained age of this companion and its very large angular separation to its host star will allow its thorough characterization and will make it a valuable comparison for ...

Naud, Marie-Eve; Malo, Lison; Albert, Loïc; Doyon, René; Lafrenière, David; Gagné, Jonathan; Saumon, Didier; Morley, Caroline V; Allard, France; Homeier, Derek; Beichman, Charles A; Gelino, Christopher R; Boucher, Anne

2014-01-01

277

Discovery of a Wide Planetary-mass Companion to the Young M3 Star GU Psc  

NASA Astrophysics Data System (ADS)

We present the discovery of a comoving planetary-mass companion ~42'' (~2000 AU) from a young M3 star, GU Psc, a likely member of the young AB Doradus Moving Group (ABDMG). The companion was first identified via its distinctively red i - z color (>3.5) through a survey made with Gemini-S/GMOS. Follow-up Canada-France-Hawaii Telescope/WIRCam near-infrared (NIR) imaging, Gemini-N/GNIRS NIR spectroscopy and Wide-field Infrared Survey Explorer photometry indicate a spectral type of T3.5 ± 1 and reveal signs of low gravity which we attribute to youth. Keck/Adaptive Optics NIR observations did not resolve the companion as a binary. A comparison with atmosphere models indicates T eff = 1000-1100 K and log g = 4.5-5.0. Based on evolution models, this temperature corresponds to a mass of 9-13 M Jup for the age of ABDMG (70-130 Myr). The relatively well-constrained age of this companion and its very large angular separation to its host star will allow its thorough characterization and will make it a valuable comparison for planetary-mass companions that will be uncovered by forthcoming planet-finder instruments such as Gemini Planet Imager and SPHERE.

Naud, Marie-Eve; Artigau, Étienne; Malo, Lison; Albert, Loïc; Doyon, René; Lafrenière, David; Gagné, Jonathan; Saumon, Didier; Morley, Caroline V.; Allard, France; Homeier, Derek; Beichman, Charles A.; Gelino, Christopher R.; Boucher, Anne

2014-05-01

278

A Wide-Field Survey for Low Mass Star Formation around the Galactic Massive Young Cluster NGC 3603  

NASA Astrophysics Data System (ADS)

NGC 3603 is one of the most massive (~10,000 solar masses) and compact (5~pc) young star clusters known in the Milky Way. It is therefore a candidate young globular cluster, with properties similar to massive young clusters found in other galaxies such as the LMC, M51 and the Antenna. Due to its proxmity and low extinction, NGC 3603 is one of the few massive clusters where it is possible to detect the low mass stars that dominate the total mass of the cluster. NGC 3603 lies in the center of a 40 pc diameter, 100,000 solar mass molecular cloud complex; little is known about the stars forming in this complex. We propose the first systematic survey of this complex using deep 3.6 and 4.5 micron Spitzer imaging of a 59 by 57 pc region centered on NGC 3603. By combining this data with scheduled VLT JHK imaging of the same field, we can detect and identify low to intermediate mass stars with disks and protostars in the cloud complex. Our goal is to probe the relationship between spatially extended OB associations and compact clusters of OB stars. Our method is to compare the spatial distribution of intermediate to low mass stars in the extended NGC 3603 complex to that found in OB associations like Orion. Specifically, is NGC 3603 part of a large, extended complex containing both clustered and distributed star formation, and consequently similar to nearby associations? Or did NGC 3603 result from a distinct, compact mode of star formation? These observations will give us unique insight into the process of massive star cluster formation in other galaxies and how this process may differ from star formation near the Sun.

Megeath, Tom; Chandar, Rupali; Nuernberger, Dieter; Zinnecker, Hans

2009-04-01

279

Young Stars in Old Galaxies - a Cosmic Hide and Seek Game  

NASA Astrophysics Data System (ADS)

Surprise Discovery with World's Leading Telescopes [1] Summary Combining data from the NASA/ESA Hubble Space Telescope (HST) and the ESO Very Large Telescope (VLT) , a group of European and American astronomers [2] have made an unexpected, major discovery. They have identified a huge number of "young" stellar clusters , only a few billion years old [3], inside an "old" elliptical galaxy (NGC 4365), probably aged some 12 billion years. For the first time, it has been possible to identify several distinct periods of star-formation in a galaxy as old as this one . Elliptical galaxies like NGC 4365 have until now been considered to have undergone one early star-forming period and thereafter to be devoid of any star formation. However, the combination of the best and largest telescopes in space and on the ground has now clearly shown that there is more than meets the eye. This important new information will help to understand the early history of galaxies and the general theory of star formation in the Universe . PR Photo 15a/02 : Combined HST+VLT image of elliptical galaxy NGC 4365 PR Photo 15b/02 : Same image, with "old" and "young" stellar clusters indicated PR Photo 15c/02 : Animated GIF image, showing the three cluster populations observed in NGC 4365 Do elliptical galaxies only contain old stars? One of the challenges of modern astronomy is to understand how galaxies, those large systems of stars, gas and dust, form and evolve. In this connection, a central question has always been to learn when most of the stars in the Universe formed. Did this happen at a very early stage, within a few billion years after the Big Bang? Or were a significant number of the stars we now observe formed much more recently? Spectacular collisions between galaxies take place all the time, triggering the formation of thousands or even millions of stars, cf. ESO PR Photo 29b/99 of the dramatic encounter between NGC 6872 and IC 4970. However, when looking at the Universe as a whole, most of its stars are found in large elliptical galaxies (this refers to their form) whose overall appearance has so far led us to believe that they, and their stars as well, are very old, indeed among the oldest objects in the Universe. These elliptical galaxies do shine with the diffuse, reddish glow normally associated with stars that are many billions of years old. However, what is really the underlying mix of stars that produces this elderly appearance? Could perhaps a significant number of much younger stars be "hiding" among the older ones? Whatever the case, this question must obviously be looked into, before it is possible to claim understanding of the evolution of these old galaxies. It is a very challenging investigation and it is only now that new and more detailed observations with the world's premier telescopes have been obtained that cast more light on this central question and thus on the true behaviour of some of the major building blocks of the Universe. Cosmic archaeology In order to identify the constitutents of the stellar "cocktail" in elliptical galaxies, a team of European and American astronomers [2] observed massive stellar clusters in and around several nearby galaxies. These clusters, referred to as "globular" because of their shape, are present in large numbers around most galaxies and together they form a kind of "skeleton" within their host galaxies. These "bones" receive an imprint for every episode of star formation they undergo. Thus, by reading the ages of the globular clusters in a galaxy, it is possible to identify the past epoch(s) of active star formation in that galaxy. This is like digging into the ruins of an ancient archaeological city site and to find those layers and establish those times when the city underwent bursts of building activity. In this way, by the study of the distribution and ages of the globular clusters in an elliptical galaxy, astronomers can reveal when many of its stars were formed. A surprise discovery ESO PR Phot

2002-05-01

280

Hubble space telescope observations of young star clusters in NGC-4038/4039, 'the antennae' galaxies  

NASA Technical Reports Server (NTRS)

New, high-resolution images of the disks of NGC 4038/4039 obtained with the Wide Field Camera of the Hubble Space Telescope (HST) are presented. NGC 4038/4039, nicknamed The Antennae, is a prototypical example of a pair of colliding galaxies believed to be at an early stage of a merger. Down to the limiting magnitude of V approximately 23 mag, the HST images reveal a population of over 700 blue pointlike objects within the disks. The mean absolute magnitude of these objects is M(sub V) = -11 mag, with the brightest objects reaching M(sub V) approximately -15. Their mean apparent color indices ar U - V = -0.7 mag and V - 1 = 0.8 mag on the Johnson UVI passband system, while their mean indices corrected for internal reddening are (u - v)(sub 0) = -1.0 mag and (V - I(sub 0) = 0.5. Their mean effective radius, determined from slightly resolved images, is 18 pc (for H(sub 0) = 50 km/s /Mpc). Based on their luminosities and resolution, most of these objects cannot be individual stars, but are likely young compact star clusters. The brighter ones are similar to the objects found in NGC 1275 and NGC 7252, which appear to be young globular clusters formed during recent galazy mergers. Based on their U - V and V - I colors, the brightest, bluest clusters of NGC 4038/4039 appear to be less than 10 Myr old. Most of these bright clusters are relatively tightly clustered themselves, with typically a dozen individual clusters belonging to a complex identified as a giant H II region from ground-based observations. The cluster luminosity function (LF) is approximately a power law, phi(L)dL proportional to L(exp -1.78+/-0.05)dL, with no hint of a turnover at fainter magnitudes. This power-law shape agrees with the LF of Magellanic Cloud clusters and Galactic open clusters, but differs from the LF of old globular cluster systems that is typically Gaussian with a Full Width at Half Maximum (FWHM) of approximately 3 mag. Besides the blue clusters, we also find about a dozen extremely red objects with V - I greater than 3.0. The highest number density of these red objects is found in the SE quadrant, where star formation appears to be most recent. We propose that these objects may be very young star clusters still embedded in their placental dust cocoons.

Whitmore, Bradley C.; Schweizer, Francois

1995-01-01

281

Orion in a New Light - VISTA exposes high-speed antics of young stars  

NASA Astrophysics Data System (ADS)

The Orion Nebula reveals many of its hidden secrets in a dramatic image taken by ESO's new VISTA survey telescope. The telescope's huge field of view can show the full splendour of the whole nebula and VISTA's infrared vision also allows it to peer deeply into dusty regions that are normally hidden and expose the curious behaviour of the very active young stars buried there. VISTA - the Visible and Infrared Survey Telescope for Astronomy - is the latest addition to ESO's Paranal Observatory (eso0949). It is the largest survey telescope in the world and is dedicated to mapping the sky at infrared wavelengths. The large (4.1-metre) mirror, wide field of view and very sensitive detectors make VISTA a unique instrument. This dramatic new image of the Orion Nebula illustrates VISTA's remarkable powers. The Orion Nebula [1] is a vast stellar nursery lying about 1350 light-years from Earth. Although the nebula is spectacular when seen through an ordinary telescope, what can be seen using visible light is only a small part of a cloud of gas in which stars are forming. Most of the action is deeply embedded in dust clouds and to see what is really happening astronomers need to use telescopes with detectors sensitive to the longer wavelength radiation that can penetrate the dust. VISTA has imaged the Orion Nebula at wavelengths about twice as long as can be detected by the human eye. As in the many visible light pictures of this object, the new wide field VISTA image shows the familiar bat-like form of the nebula in the centre of the picture as well as the fascinating surrounding area. At the very heart of this region lie the four bright stars forming the Trapezium, a group of very hot young stars pumping out fierce ultraviolet radiation that is clearing the surrounding region and making the gas glow. However, observing in the infrared allows VISTA to reveal many other young stars in this central region that cannot be seen in visible light. Looking to the region above the centre of the picture, curious red features appear that are completely invisible except in the infrared. Many of these are very young stars that are still growing and are seen through the dusty clouds from which they form. These youthful stars eject streams of gas with typical speeds of 700 000 km/hour and many of the red features highlight the places where these gas streams collide with the surrounding gas, causing emission from excited molecules and atoms in the gas. There are also a few faint, red features below the Orion Nebula in the image, showing that stars form there too, but with much less vigour. These strange features are of great interest to astronomers studying the birth and youth of stars. This new image shows the power of the VISTA telescope to image wide areas of sky quickly and deeply in the near-infrared part of the spectrum. The telescope is just starting to survey the sky and astronomers are anticipating a rich harvest of science from this unique ESO facility. Notes [1] The Orion Nebula lies in the sword of the famous celestial hunter and is a favourite target both for casual sky watchers and astrophysicists alike. It is faintly visible to the unaided eye and appeared to early telescopic observers as a small cluster of blue-white stars surrounded by a mysterious grey-green mist. The object was first described in the early seventeenth century although the identity of the discoverer is uncertain. The French comet-hunter Messier made an accurate sketch of its main features in the mid-eighteenth century and gave it the number 42 in his famous catalogue. He also allocated the number 43 to the smaller detached region just above the main part of the nebula. Later William Herschel speculated that the nebula might be "the chaotic material of future suns" and astronomers have since discovered that the mist is indeed gas glowing under the fierce ultraviolet light from young hot stars that have recently formed there. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the

2010-02-01

282

Irradiation phenomena in young solar-type stars and the early solar system: X-ray observations and ?-ray constraints  

NASA Astrophysics Data System (ADS)

The high levels of X-ray flaring activity observed in young stars and protostars suggest correspondingly high levels of low-energy particle irradiation of their circumstellar disks, and hence of early solar system material like meteorites. We first briefly review the latest X-ray observational results obtained by Chandra and XMM-Newton on two 'typical' star-forming regions, Orion and ? Ophiuchi. We then discuss a new 'accretion-ejection-irradiation-transport' model for young stars which, when scaled to the X-ray fluxes, accounts simultaneously for four extinct radioactivity ratios, in particular the purely spallogenic 10Be/ 9Be ratio, and the 26Al/ 27Al ratio. We point out the importance of the environment in which nearby star formation is taking place today, namely the Gould Belt, and the possible connection between Comptel detections of 26Al ?-ray line emission from these regions, and new constraints on the origin of the solar system.

Montmerle, Thierry

2002-07-01

283

Dynamical oscillation and propulsion of magnetic fields in the convective zone of a star. IV - Eruption to the surface  

NASA Technical Reports Server (NTRS)

It was shown in the previous paper that the heat accumulating beneath the azimuthal field in the convective zone of the sun initiates a Rayleight-Taylor instability, causing tongues of gas to intrude upward into the field. The present paper works out the conditions in an intruding tongue of gas, showing that it penetrates all the way through the field, emerging into the atmosphere above with a specific entropy significantly in excess of the ambient value. The entropy is large enough that the gas rises to the visible surface in 10 to the 6th s or less, where it produces a bipolar magnetic region. Once the eruption to the surface has carried away the accumulated hot gas below the field, there remains only the general downdraft which retracts the magnetic flux from the surface in a characteristic time of 10 to the 7th s.

Parker, E. N.

1988-01-01

284

THE GALACTIC CENTER CLOUD G2-A YOUNG LOW-MASS STAR WITH A STELLAR WIND  

SciTech Connect

We explore the possibility that the G2 gas cloud falling in toward SgrA* is the mass-loss envelope of a young T Tauri star. As the star plunges to smaller radius at 1000-6000 km s{sup -1}, a strong bow shock forms where the stellar wind is impacted by the hot X-ray emitting gas in the vicinity of SgrA*. For a stellar mass-loss rate of 4 Multiplication-Sign 10{sup -8} M{sub Sun} yr{sup -1} and wind velocity 100 km s{sup -1}, the bow shock will have an emission measure (EM = n {sup 2} vol) at a distance {approx}10{sup 16} cm, similar to that inferred from the IR emission lines. The ionization of the dense bow shock gas is potentially provided by collisional ionization at the shock front and cooling radiation (X-ray and UV) from the post shock gas. The former would predict a constant line flux as a function of distance from SgrA*, while the latter will have increasing emission at lesser distances. In this model, the star and its mass-loss wind should survive pericenter passage since the wind is likely launched at 0.2 AU and this is much less than the Roche radius at pericenter ({approx}3 AU for a stellar mass of 2 M{sub Sun }). In this model, the emission cloud will probably survive pericenter passage, discriminating this scenario from others.

Scoville, N. [California Institute of Technology, MC 249-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Burkert, A. [University Observatory Munich, Scheinerstrasse 1, D-81679 Munich (Germany)

2013-05-10

285

The masses of young stars: CN as a probe of dynamical masses  

E-print Network

Aims: We attempt to determine the masses of single or multiple young T Tauri and HAeBe stars from the rotation of their Keplerian disks. Methods:We used the IRAM PdBI interferometer to perform arcsecond resolution images of the CN N=2-1 transition with good spectral resolution. Integrated spectra from the 30-m radiotelescope show that CN is relatively unaffected by contamination from the molecular clouds. Our sample includes 12 sources, among which isolated stars like DM Tau and MWC 480 are used to demonstrate the method and its accuracy. We derive the dynamical mass by fitting a disk model to the emission, a process giving M/D the mass to distance ratio. We also compare the CN results with higher resolution CO data, that are however affected by contamination. Results: All disks are found in nearly perfect Keplerian rotation. We determine accurate masses for 11 stars, in the mass range 0.5 to 1.9 solar masses. The remaining one, DG Tau B, is a deeply embedded object for which CN emission partially arises from...

Guilloteau, S; Piétu, V; Di Folco, E; Dutrey, A; Prato, L; Chapillon, E

2014-01-01

286

M-Dwarf Fast Rotators and the Detection of Relatively Young Multiple M-Star Systems  

E-print Network

We have searched the Kepler light curves of ~3900 M-star targets for evidence of periodicities that indicate, by means of the effects of starspots, rapid stellar rotation. Several analysis techniques, including Fourier transforms, inspection of folded light curves, 'sonograms', and phase tracking of individual modulation cycles, were applied in order to distinguish the periodicities due to rapid rotation from those due to stellar pulsations, eclipsing binaries, or transiting planets. We find 178 Kepler M-star targets with rotation periods, P_rot, of < 2 days, and 110 with P_rot < 1 day. Some 30 of the 178 systems exhibit two or more independent short periods within the same Kepler photometric aperture, while several have three or more short periods. Adaptive optics imaging and modeling of the Kepler pixel response function for a subset of our sample support the conclusion that the targets with multiple periods are highly likely to be relatively young physical binary, triple, and even quadruple M star sy...

Rappaport, S; Levine, A; Joss, M; Sanchis-Ojeda, R; Barclay, T; Still, M; Handler, G; Oláh, K; Muirhead, P S; Huber, D; Vida, K

2014-01-01

287

CLOSE STELLAR ENCOUNTERS IN YOUNG, SUBSTRUCTURED, DISSOLVING STAR CLUSTERS: STATISTICS AND EFFECTS ON PLANETARY SYSTEMS  

SciTech Connect

Both simulations and observations indicate that stars form in filamentary, hierarchically clustered associations, most of which disperse into their galactic field once feedback destroys their parent clouds. However, during their early evolution in these substructured environments, stars can undergo close encounters with one another that might have significant impacts on their protoplanetary disks or young planetary systems. We perform N-body simulations of the early evolution of dissolving, substructured clusters with a wide range of properties, with the aim of quantifying the expected number and orbital element distributions of encounters as a function of cluster properties. We show that the presence of substructure both boosts the encounter rate and modifies the distribution of encounter velocities compared to what would be expected for a dynamically relaxed cluster. However, the boost only lasts for a dynamical time, and as a result the overall number of encounters expected remains low enough that gravitational stripping is unlikely to be a significant effect for the vast majority of star-forming environments in the Galaxy. We briefly discuss the implications of this result for models of the origin of the solar system, and of free-floating planets. We also provide tabulated encounter rates and orbital element distributions suitable for inclusion in population synthesis models of planet formation in a clustered environment.

Craig, Jonathan; Krumholz, Mark R., E-mail: krumholz@ucolick.org [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

2013-06-01

288

VizieR Online Data Catalog: Stellar physical parameters for young stars (Monguio+, 2014)  

NASA Astrophysics Data System (ADS)

A uvbyH? Stromgren photometric survey covering 16 square degrees in the anticenter direction was carried out using the Wide Field Camera at the Isaac Newton Telescope. Physical parameters like stellar distances and extinctions for the young stars of our survey are presented here. We developed a new method for deriving physical parameters from Stromgren photometry and also implemented and tested it. This is a model-based method that uses the most recent available stellar atmospheric models and evolutionary tracks to interpolate in a 3D grid of the unreddened indexes [m1], [c1] and Hbeta. Distances derived from both this method and the classical pre-Hipparcos calibrations were tested against Hipparcos parallaxes and found to be accurate. Furthermore, a shift in the atmospheric grids in the range Teff=[7000,9000]K was detected and a correction is proposed. The two methods were used to compute distances and reddening for around 12000 OBA-type stars in our Stromgren anticenter survey. Data from the IPHAS and 2MASS catalogs were used to complement the detection of emission line stars and to break the degeneracy between early and late photometric regions. We note that photometric distances can differ by more than 20%, those derived from the empirical calibrations being smaller than those derived with the new method, which agree better with the Hipparcos data. (1 data file).

Monguio, M.; Figueras, F.; Grosbol, P.

2014-08-01

289

Why do some young cool stars show spot modulation while others do not?  

NASA Astrophysics Data System (ADS)

We present far-red, intermediate-resolution spectroscopy of 572 photometrically selected, low-mass stars (0.2 < M/M? < 0.7) in the young open cluster NGC 2516, using the FLAMES spectrograph at the Very Large Telescope. Precise radial velocities confirm membership for 210 stars that have published rotation periods from spot-modulated light curves and for another 144 stars in which periodic modulation could not be found. The two subsamples are compared and no significant differences are found between their positions in colour-magnitude diagrams, the distribution of their projected equatorial velocities or their levels of chromospheric activity. We rule out differing observational sensitivity as an explanation and conclude that otherwise similar objects, with equally high levels of chromospheric activity, do not exhibit spot-induced light-curve modulation because their significant spot coverage is highly axisymmetric. We propose that the spot coverage consists of large numbers of small, dark spots with diameters of about 2°. This explains why about half of cluster members do not exhibit rotationally modulated light curves and why the light-curve amplitudes of those that do have mean values of only 0.01-0.02 mag.

Jackson, R. J.; Jeffries, R. D.

2012-07-01

290

Radiation-Driven Warping of Circumbinary Disks Around Eccentric Young Star Binaries  

E-print Network

We study a warping instability of a geometrically thin, non-self-gravitating, circumbinary disk around young binary stars on an eccentric orbit. Such a disk is subject to both the tidal torques due to a time-dependent binary potential and the radiative torques due to radiation emitted from each star. The tilt angle between the circumbinary disk plane and the binary orbital plane is assumed to be very small. We find that there is a radius within/beyond which the circumbinary disk is unstable to radiation-driven warping, depending on the disk density and temperature gradient indices. This marginally stable warping radius is very sensitive to viscosity parameters, a fiducial disk radius and the temperature measured there, the stellar luminosity, and the disk surface density at a radius where the disk changes from the optically thick to thin for the irradiation from the central stars. On the other hand, it is insensitive to the orbital eccentricity and binary irradiation parameter, which is a function of the bina...

Hayasaki, Kimitake; Okazaki, Atsuo T; Jung, Taehyun; Zhao, Guangyao; Naito, Tsuguya

2014-01-01

291

Ultra-High-Energy Cosmic Rays from Young Neutron Star Winds  

NASA Astrophysics Data System (ADS)

The long-held notion that the highest energy cosmic rays are of distant extragalactic origin is challenged by observations that events above ~1020 eV do not exhibit the expected high-energy cutoff from photopion production off the cosmic microwave background. We suggest that these unexpected ultra-high-energy events are due to iron nuclei accelerated from young strongly magnetized neutron stars through relativistic MHD winds. We find that neutron stars whose initial spin periods are shorter than ~10 ms and whose surface magnetic fields are in the 1012-1014 G range can accelerate iron cosmic rays to greater than ~1020 eV. These ions can pass through the remnant of the supernova explosion that produced the neutron star without suffering significant spallation reactions or energy loss. For plausible models of the Galactic magnetic field, the trajectories of the iron ions curve sufficiently to be consistent with the observed, largely isotropic arrival directions of the highest energy events.

Blasi, P.; Epstein, R. I.; Olinto, A. V.

2000-04-01

292

c2d Spitzer IRS spectra of embedded low-mass young stars: gas-phase emission lines  

Microsoft Academic Search

Context. A survey of mid-infrared gas-phase emission lines of H2, H2O and various atoms toward a sample of 43 embedded low-mass young stars in nearby star-forming regions is presented. The sources are selected from the Spitzer ``Cores to Disks'' (c2d) legacy program. Aims: The environment of embedded protostars is complex both in its physical structure (envelopes, outflows, jets, protostellar disks)

F. Lahuis; E. F. van Dishoeck; J. K. Jørgensen; G. A. Blake; N. J. Evans

2010-01-01

293

A Survey of Classical and Weak-line T Tauri Stars in the Young Cluster NGC 2264  

Microsoft Academic Search

We present initial results from an H-alpha and X-ray emission survey of the young cluster NGC 2264 in the Mon OB1 association. Approximately 450 emission H-alpha stars were identified in a 25'X40' field roughly centered between the O7V multiple star S Mon and the Cone Nebula. The H-alpha emission survey was carried out using the wide-field grism spectrograph on the

S. E. Dahm; T. Simon; E. David

2003-01-01

294

3-D Structure of Outflows from Young Stars: GMOS IFU Observations of HH 32  

NASA Astrophysics Data System (ADS)

To better understand the 3-D physics and kinematics of collimated outflows from young stars, we have observed two knots in the HH 32 outflow with the GMOS Integral Field Unit (IFU) at the The Frederick C. Gillett Gemini Telescope. These observations were obtained for System Verification of the dithered IFU observations of a purely emission line object. HH 32 is a collimated Herbig-Haro outflow from the active young binary AS 353. In one spectral setting we were easily able to detect the H alpha, [SII], [NII] and [OI] emission lines in the spectra of knots A and B. In this poster we present the 6275-6785 Angstrom spectra of HH 32 averaged over the A and B knots, images of the knots in each emisson line, and several images of the H alpha emission with velocities ranging from -15 km/s to 415km/s. These observations reveal a complicated 3-D velocity structure that could not be discerned with longslit spectroscopy alone, and thus demonstrate the success of observing outflows from active young stars with optical integral field technology. We will be collaborating closely with with theorists in this field to intepret this data within the confines of current HH flow excitation and kinematic models. This study is based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Particle Physics and Astronomy Research Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil), and CONICET (Argentina)

Beck, T. L.; Aspin, C.

2002-12-01

295

NGC 2782: A Merger Remnant with Young Stars in its Gaseous Tidal Tail  

NASA Technical Reports Server (NTRS)

We have searched for young star-forming regions around the merger remnant NGC 2782. By using GALEX FUV and NUV imaging and HI data we found seven UV sources, located at distances greater than 26 kpc from the center of NGG 2782, and coinciding with its western HI tidal tail. These regions were resolved in several smaller systems when Gemini/GMOS r-band images were used. We compared the observed colors to stellar population synthesis models and we found that these objects have ages of l to ll11yr and masses ranging from 10(exp 3.9) to l0(exp 4.6) Solar Mass. By using Gemini/GMOS spectroscopic data we confirm memberships and derive high metallicities for three of the young regions in the tail (12+log(O/H)=8.74+/-0.20, 8.81+/-0.20 and 8.78+/-0.20). These metallicities are similar to the value presented by the nuclear region of NGG 2782 and also similar to the value presented for an object located close to the main body of NGG 2782. The high metallicities measured for the star-forming regions in the gaseous tidal tail of NGG 2782 could be explained if they were formed out of highly enriched gas which was once expelled from the center of the merging galaxies when the system collided. An additional possibility is that the tail has been a nursery of a few generations of young stellar systems which ultimately polluted this medium with metals, further enriching the already pre-enriched gas ejected to the tail when the galaxies collided.

Torres-Flores, S.; de Oliveira, C. Mendes; de Mello, D. F.; Scarano, S. Jr.; Urrutia-Viscarra, R.

2012-01-01

296

X-ray Emission from Young Stellar Objects in the \\epsilon Chamaeleontis Group: the Herbig Ae Star HD 104237 and Associated Low-Mass Stars  

E-print Network

We present Chandra-HETGS observations of the Herbig Ae star HD 104237 and the associated young stars comprising lower mass stars, in the 0.15-1.75\\msol mass range, in their pre-main sequence phase. The brightest X-ray source in the association is the central system harboring the Herbig Ae primary, and a K3 companion. Its X-ray variability indicates modulation possibly on time scales of the rotation period of the Herbig Ae star, and this would imply that the primary significantly contributes to the overall emission. The spectrum of the Herbig Ae+K3 system shows a soft component significantly more pronounced than in other K-type young stars. This soft emission is reminiscent of the unusually soft spectra observed for the single Herbig Ae stars HD 163296 and AB Aur, and therefore we tentatively attribute it to the Herbig Ae of the binary system. The HETGS spectrum shows strong emission lines corresponding to a wide range of plasma temperatures. The He-like triplet of MgXI and NeIX suggest the presence of plasma ...

Testa, Paola; Schulz, Norbert S; Ishibashi, Kazunori

2008-01-01

297

Gemini Spectroscopic Survey of Young Star Clusters in Merging/Interacting Galaxies. IV. Stephan's Quintet  

NASA Astrophysics Data System (ADS)

We present a spectroscopic survey of 21 young massive clusters and complexes and one tidal dwarf galaxy (TDG) candidate in Stephan's Quintet, an interacting compact group of galaxies. All of the selected targets lie outside the main galaxies of the system and are associated with tidal debris. We find clusters with ages between a few and 125 Myr and confirm the ages estimated through Hubble Space Telescope photometry by Fedotov et al., as well as their modeled interaction history of the Quintet. Many of the clusters are found to be relatively long-lived, given their spectrosopically derived ages, while their high masses suggest that they will likely evolve to eventually become intergalactic clusters. One cluster, T118, is particularly interesting, given its age (~125 Myr), high mass (~2 × 106 M ?), and position in the extreme outer end of the young tidal tail. This cluster appears to be quite extended (R eff ~ 12-15 pc) compared to clusters observed in galaxy disks (R eff ~ 3-4 pc), which confirms an effect we previously found in the tidal tails of NGC 3256, where clusters are similarly extended. We find that star and cluster formation can proceed at a continuous pace for at least ~150 Myr within the tidal debris of interacting galaxies. The spectrum of the TDG candidate is dominated by a young population (~7 Myr), and, assuming a single age for the entire region, has a mass of at least 106 M ?.

Trancho, Gelys; Konstantopoulos, Iraklis S.; Bastian, Nate; Fedotov, Konstantin; Gallagher, Sarah; Mullan, Brendan; Charlton, Jane C.

2012-04-01

298

GEMINI SPECTROSCOPIC SURVEY OF YOUNG STAR CLUSTERS IN MERGING/INTERACTING GALAXIES. III. THE ANTENNAE  

SciTech Connect

We present optical spectroscopy of 16 star clusters in the merging galaxies NGC 4038/39 ('the Antennae') and supplement this data set with Hubble Space Telescope imaging. The age and metallicity of each cluster is derived through a comparison between the observed Balmer and metal line strengths with simple stellar population models. We then estimate extinctions and masses using the photometry. We find that all but three clusters have ages between {approx}3 and 200 Myr, consistent with the expected increase in the star formation rate (SFR) due to the merger. Most of the clusters have velocities in agreement with nearby molecular and H I gas that has been previously shown to be rotating within the progenitor galaxies, hence star/cluster formation is still taking place within the galactic disks. However, three clusters have radial velocities that are inconsistent with being part of the rotating gas disks, which is surprising given their young (200-500 Myr) ages. Interestingly, we find a stellar association with the same colors (V - I) near one of these three clusters, suggesting that the cluster and association were formed concurrently and have remained spatially correlated. We find evidence for spatially distributed cluster formation throughout the duration of the merger. The impact of various assumptions about the SFR/cluster formation rate on the interpretation of the cluster age distribution is explored, and we do not find evidence for long-term 'infant mortality' as has been previously suggested. Models of galaxy mergers that include a prescription for star formation can provide an overall good fit to the observed cluster age distribution.

Bastian, Nate [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Trancho, Gelys; Konstantopoulos, Iraklis S.; Miller, Bryan W. [Gemini Observatory, Casilla 603, La Serena (Chile)], E-mail: bastian@ast.cam.ac.uk, E-mail: gtrancho@gemini.edu

2009-08-10

299

Mid-infrared imaging of the massive young star AFGL 2591: Probing the circumstellar environment of an outflow source  

E-print Network

Most, if not all, stars are now believed to produce energetic outflows during their formation. Yet, almost 20 years after the discovery of bipolar outflows from young stars, the origins of this violent phenomenon are not well understood. One of the difficulties of probing the outflow process, particularly in the case of massive embedded stars, is a deficit of high spatial resolution observations. Here, we present sub-arcsecond-resolution mid-infrared images of one massive young stellar object, AFGL 2591, and its immediate surroundings. Our images, at 11.7, 12.5 and 18.0 microns, reveal a knot of emission ~6'' SW of the star, which may be evidence for a recent ejection event or an embedded companion star. This knot is roughly coincident with a previously seen near-infrared reflection nebula and a radio source, and lies within the known large-scale CO outflow. We also find a new faint NW source which may be another embedded lower-luminosity star. The IRAS mid-infrared spectrum of AFGL 2591 shows a large silicate absorption feature at 10 microns, implying that the primary source is surrounded by an optically thick dusty envelope. We discuss the interrelationship of these phenomena and suggest that mid-infrared imaging and spectroscopy provide powerful tools for probing massive star birth.

Massimo Marengo; Ray Jayawardhana; Giovanni G. Fazio; William F. Hoffmann; Joseph L. Hora; Aditya Dayal; Lynne K. Deutsch

2000-08-02

300

Constraining Globular Cluster Formation Through Studies of Young Massive Clusters - IV. Testing the Fast Rotating Massive Star Scenario  

E-print Network

One of the leading models for the formation of multiple stellar populations within globular clusters is the "Fast Rotating Massive Star" (FRMS) scenario, where the ejecta of rapidly rotating massive stars is mixed with primordial material left over from the star-formation process, to form a second generation of stars within the decretion discs of the high mass stars. A requirement of this model, at least in its current form, is that young massive (i.e. proto-globular) clusters are not able to eject the unused gas and dust from the star-formation process from the cluster for 20-30 Myr after the formation of the first generation of stars, i.e. the cluster remains embedded within the gas cloud in which it forms. Here, we test this prediction by performing a literature search for young massive clusters in nearby galaxies, which have ages less than 20 Myr that are not embedded. We report that a number of such clusters exist, with masses near, or significantly above 10^6 Msun, with ages between a few Myr and ~15 My...

Bastian, Nate; Cabrera-Ziri, Ivan

2014-01-01

301

Elemental abundances of low-mass stars in nearby young associations: AB Doradus, Carina Near and Ursa Major  

NASA Astrophysics Data System (ADS)

We present stellar parameters and abundances of 11 elements (Li, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni and Zn) of 13 F6-K2 main-sequence stars in the young groups AB Doradus, Carina Near and Ursa Major. The exoplanet-host star ? Horologii is also analysed. The three young associations have lithium abundance consistent with their age. All other elements show solar abundances. The three groups are characterized by a small scatter in all abundances, with mean [Fe/H] values of 0.10 (? = 0.03), 0.08 (? = 0.05) and 0.01 (? = 0.03) dex for AB Doradus, Carina Near and Ursa Major, respectively. The distribution of elemental abundances appears congruent with the chemical pattern of the Galactic thin disc in the solar vicinity, as found for other young groups. This means that the metallicity distribution of nearby young stars, targets of direct-imaging planet-search surveys, is different from that of old, field solar-type stars, i.e. the typical targets of radial velocity surveys. The young planet-host star ? Horologii shows a lithium abundance lower than that found for the young association members. It is found to have a slightly super-solar iron abundance ([Fe/H] = 0.16 ± 0.09), while all [X/Fe] ratios are similar to the solar values. Its elemental abundances are close to those of the Hyades cluster derived from the literature, which seems to reinforce the idea of a possible common origin with the primordial cluster. Based on observations performed with European Southern Observatory (ESO) telescopes [programme IDs: 70.D-0081(A), 082.A-9007(A), 083.A-9011(B), 084.A-9011(B)].

Biazzo, K.; D'Orazi, V.; Desidera, S.; Covino, E.; Alcalá, J. M.; Zusi, M.

2012-12-01

302

X-ray Emission from Young Stellar Objects in the ?Chamaeleontis Group: the Herbig Ae Star HD 104237 and Associated Low-Mass Stars  

E-print Network

We present Chandra-HETGS observations of the Herbig Ae star HD 104237 and the associated young stars comprising lower mass stars, in the 0.15-1.75\\msol mass range, in their pre-main sequence phase. The brightest X-ray source in the association is the central system harboring the Herbig Ae primary, and a K3 companion. Its X-ray variability indicates modulation possibly on time scales of the rotation period of the Herbig Ae star, and this would imply that the primary significantly contributes to the overall emission. The spectrum of the Herbig Ae+K3 system shows a soft component significantly more pronounced than in other K-type young stars. This soft emission is reminiscent of the unusually soft spectra observed for the single Herbig Ae stars HD 163296 and AB Aur, and therefore we tentatively attribute it to the Herbig Ae of the binary system. The HETGS spectrum shows strong emission lines corresponding to a wide range of plasma temperatures. The He-like triplet of MgXI and NeIX suggest the presence of plasma at densities of about $10^{12}$ cm$^{-3}$, possibly indicating accretion related X-ray production mechanism. The analysis of the zero-order spectra of the other sources indicates X-ray emission characteristics typical of pre-main sequence stars of similar spectral type, with the exception of the T Tauri HD104237-D, whose extremely soft emission is very similar to the emission of the classical T Tauri star TW Hya, and suggests X-ray production by shocked accreting plasma.

Paola Testa; David P. Huenemoerder; Norbert S. Schulz; Kazunori Ishibashi

2008-07-01

303

CSI 2264: Characterizing Accretion-burst Dominated Light Curves for Young Stars in NGC 2264  

NASA Astrophysics Data System (ADS)

Based on more than four weeks of continuous high-cadence photometric monitoring of several hundred members of the young cluster NGC 2264 with two space telescopes, NASA's Spitzer and the CNES CoRoT (Convection, Rotation, and planetary Transits), we provide high-quality, multi-wavelength light curves for young stellar objects whose optical variability is dominated by short-duration flux bursts, which we infer are due to enhanced mass accretion rates. These light curves show many brief—several hours to one day—brightenings at optical and near-infrared wavelengths with amplitudes generally in the range of 5%-50% of the quiescent value. Typically, a dozen or more of these bursts occur in a 30 day period. We demonstrate that stars exhibiting this type of variability have large ultraviolet (UV) excesses and dominate the portion of the u - g versus g - r color-color diagram with the largest UV excesses. These stars also have large H? equivalent widths, and either centrally peaked, lumpy H? emission profiles or profiles with blueshifted absorption dips associated with disk or stellar winds. Light curves of this type have been predicted for stars whose accretion is dominated by Rayleigh-Taylor instabilities at the boundary between their magnetosphere and inner circumstellar disk, or where magneto-rotational instabilities modulate the accretion rate from the inner disk. Among the stars with the largest UV excesses or largest H? equivalent widths, light curves with this type of variability greatly outnumber light curves with relatively smooth sinusoidal variations associated with long-lived hot spots. We provide quantitative statistics for the average duration and strength of the accretion bursts and for the fraction of the accretion luminosity associated with these bursts. Based on data from the Spitzer and CoRoT missions, as well as the Canada-France-Hawaii Telescope (CFHT) MegaCam CCD, and the European Southern Observatory Very Large Telescope, Paranal Chile, under program 088.C-0239. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain. MegaCam is a joint project of CFHT and CEA/DAPNIA, which is operated by the National Research Council (NRC) of Canada, the Institute National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.

Stauffer, John; Cody, Ann Marie; Baglin, Annie; Alencar, Silvia; Rebull, Luisa; Hillenbrand, Lynne A.; Venuti, Laura; Turner, Neal J.; Carpenter, John; Plavchan, Peter; Findeisen, Krzysztof; Carey, Sean; Terebey, Susan; Morales-Calderón, María; Bouvier, Jerome; Micela, Giusi; Flaccomio, Ettore; Song, Inseok; Gutermuth, Rob; Hartmann, Lee; Calvet, Nuria; Whitney, Barbara; Barrado, David; Vrba, Frederick J.; Covey, Kevin; Herbst, William; Furesz, Gabor; Aigrain, Suzanne; Favata, Fabio

2014-04-01

304

Direct imaging search for planets around low-mass stars and spectroscopic characterization of young exoplanets  

NASA Astrophysics Data System (ADS)

Low--mass stars between 0.1--0.6 M? are the most abundant members our galaxy and may be the most common sites of planet formation, but little is known about the outer architecture of their planetary systems. We have carried out a high-contrast adaptive imaging search for gas giant planets between 1--13 MJup around 122 newly identified young M dwarfs in the solar neighborhood ( ? 35 pc). Half of our targets are younger than 145 Myr, and 90% are younger than 580 Myr. After removing 39 resolved stellar binaries, our homogeneous sample of 83 single young M dwarfs makes it the largest imaging search for planets around low--mass stars to date. Our H- and K- band coronagraphic observations with Subaru/HiCIAO and Keck/NIRC2 achieve typical contrasts of 9--13 mag and 12--14 mag at 100, respectively, which corresponds to limiting masses of ˜1--10 M Jup at 10--30 AU for most of our sample. We discovered four brown dwarfs with masses between 25--60 MJup at projected separations of 4--190 AU. Over 100 candidate planets were discovered, nearly all of which were found to be background stars from follow-up second epoch imaging. Our null detection of planets nevertheless provides strong statistical constraints on the occurrence rate of giant planets around M dwarfs. Assuming circular orbits and a logarithmically-flat power law distribution in planet mass and semi--major axis of the form d 2N=(dloga dlogm) infinity m0 a0, we measure an upper limit (at the 95% confidence level) of 8.8% and 12.6% for 1--13 MJup companions between 10--100 AU for hot start and cold start evolutionary models, respectively. For massive gas giant planets in the 5--13 M Jup range like those orbiting HR 8799, GJ 504, and beta Pictoris, we find that fewer than 5.3% (7.8%) of M dwarfs harbor these planets between 10--100 AU for a hot start (cold start) formation scenario. Our best constraints are for brown dwarf companions; the frequency of 13--75 MJup companions between (de--projected) physical separations of 10--100 AU is 2.1+2.1-1.2 %. Altogether, our results show that gas giant planets, especially massive ones, are rare in the outskirts of M dwarf planetary systems. If disk instability is a viable way to form planets, our constraints for the most common type of star imply that overall it is an inefficient mechanism.

Bowler, Brendan Peter

305

THE GEMINI NICI PLANET-FINDING CAMPAIGN: THE FREQUENCY OF GIANT PLANETS AROUND YOUNG B AND A STARS  

SciTech Connect

We have carried out high contrast imaging of 70 young, nearby B and A stars to search for brown dwarf and planetary companions as part of the Gemini NICI Planet-Finding Campaign. Our survey represents the largest, deepest survey for planets around high-mass stars (?1.5-2.5 M{sub ?}) conducted to date and includes the planet hosts ? Pic and Fomalhaut. We obtained follow-up astrometry of all candidate companions within 400 AU projected separation for stars in uncrowded fields and identified new low-mass companions to HD 1160 and HIP 79797. We have found that the previously known young brown dwarf companion to HIP 79797 is itself a tight (3 AU) binary, composed of brown dwarfs with masses 58{sup +21}{sub -20} M{sub Jup} and 55{sup +20}{sub -19} M{sub Jup}, making this system one of the rare substellar binaries in orbit around a star. Considering the contrast limits of our NICI data and the fact that we did not detect any planets, we use high-fidelity Monte Carlo simulations to show that fewer than 20% of 2 M{sub ?} stars can have giant planets greater than 4 M{sub Jup} between 59 and 460 AU at 95% confidence, and fewer than 10% of these stars can have a planet more massive than 10 M{sub Jup} between 38 and 650 AU. Overall, we find that large-separation giant planets are not common around B and A stars: fewer than 10% of B and A stars can have an analog to the HR 8799 b (7 M{sub Jup}, 68 AU) planet at 95% confidence. We also describe a new Bayesian technique for determining the ages of field B and A stars from photometry and theoretical isochrones. Our method produces more plausible ages for high-mass stars than previous age-dating techniques, which tend to underestimate stellar ages and their uncertainties.

Nielsen, Eric L.; Liu, Michael C.; Chun, Mark; Ftaclas, Christ [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Wahhaj, Zahed [European Southern Observatory, Alonso de Córdova 3107, Vitacura, Santiago (Chile); Biller, Beth A. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Hayward, Thomas L.; Hartung, Markus [Gemini Observatory, Southern Operations Center, c/o AURA, Casilla 603, La Serena (Chile); Close, Laird M.; Males, Jared R.; Skemer, Andrew J. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Alencar, Silvia H. P. [Departamento de Fisica, ICEx, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, 30270-901 Belo Horizonte, MG (Brazil); Artymowicz, Pawel [University of Toronto at Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4 (Canada); Boss, Alan [Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road, N.W., Washington, DC 20015 (United States); Clarke, Fraser [Department of Astronomy, University of Oxford, DWB, Keble Road, Oxford OX1 3RH (United Kingdom); De Gouveia Dal Pino, Elisabete; Gregorio-Hetem, Jane [Departamento de Astronomia, Universidade de Sao Paulo, IAG/USP, Rua do Matao 1226, 05508-900 Sao Paulo, SP (Brazil); Ida, Shigeru [Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Kuchner, Marc [NASA Goddard Space Flight Center, Exoplanets and Stellar Astrophysics Laboratory, Greenbelt, MD 20771 (United States); Lin, Douglas N. C. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA (United States); and others

2013-10-10

306

The Gemini NICI Planet-Finding Campaign: The Frequency of Giant Planets around Young B and A Stars  

NASA Astrophysics Data System (ADS)

We have carried out high contrast imaging of 70 young, nearby B and A stars to search for brown dwarf and planetary companions as part of the Gemini NICI Planet-Finding Campaign. Our survey represents the largest, deepest survey for planets around high-mass stars (?1.5-2.5 M ?) conducted to date and includes the planet hosts ? Pic and Fomalhaut. We obtained follow-up astrometry of all candidate companions within 400 AU projected separation for stars in uncrowded fields and identified new low-mass companions to HD 1160 and HIP 79797. We have found that the previously known young brown dwarf companion to HIP 79797 is itself a tight (3 AU) binary, composed of brown dwarfs with masses 58^{+21}_{-20} M Jup and 55^{+20}_{-19} M Jup, making this system one of the rare substellar binaries in orbit around a star. Considering the contrast limits of our NICI data and the fact that we did not detect any planets, we use high-fidelity Monte Carlo simulations to show that fewer than 20% of 2 M ? stars can have giant planets greater than 4 M Jup between 59 and 460 AU at 95% confidence, and fewer than 10% of these stars can have a planet more massive than 10 M Jup between 38 and 650 AU. Overall, we find that large-separation giant planets are not common around B and A stars: fewer than 10% of B and A stars can have an analog to the HR 8799 b (7 M Jup, 68 AU) planet at 95% confidence. We also describe a new Bayesian technique for determining the ages of field B and A stars from photometry and theoretical isochrones. Our method produces more plausible ages for high-mass stars than previous age-dating techniques, which tend to underestimate stellar ages and their uncertainties.

Nielsen, Eric L.; Liu, Michael C.; Wahhaj, Zahed; Biller, Beth A.; Hayward, Thomas L.; Close, Laird M.; Males, Jared R.; Skemer, Andrew J.; Chun, Mark; Ftaclas, Christ; Alencar, Silvia H. P.; Artymowicz, Pawel; Boss, Alan; Clarke, Fraser; de Gouveia Dal Pino, Elisabete; Gregorio-Hetem, Jane; Hartung, Markus; Ida, Shigeru; Kuchner, Marc; Lin, Douglas N. C.; Reid, I. Neill; Shkolnik, Evgenya L.; Tecza, Matthias; Thatte, Niranjan; Toomey, Douglas W.

2013-10-01

307

X-ray Observations of Eight Young Open Star Clusters: I. Membership and X-ray Luminosity  

NASA Astrophysics Data System (ADS)

We present a detailed investigation of X-ray source contents of eight young open clusters with ages between 4 to 46 Myr using archival X-ray data from XMM-Newton. The probable cluster memberships of the X-ray sources have been established on the basis of multi-wavelength archival data, and samples of 152 pre-main sequence (PMS) low mass (<2 M ?), 36 intermediate mass (2-10 M ?) and 16 massive (>10 M ?) stars have been generated. X-ray spectral analyses of high mass stars reveal the presence of high temperature plasma with temperature <2 keV, and mean L X/ L bol of 10 - 6.9. In the case of PMS low mass stars, the plasma temperatures have been found to be in the range of 0.2 keV to 3 keV with a median value of ~1.3 keV, with no significant difference in plasma temperatures during their evolution from 4 to 46 Myr. The X-ray luminosity distributions of the PMS low mass stars have been found to be similar in the young star clusters under study. This may suggest a nearly uniform X-ray activity in the PMS low mass stars of ages ~4-14 Myr. These observed values of L X/ L bol are found to have a mean value of 10- 3.6±0.4, which is below the X-ray saturation level. The L X/ L bol values for the PMS low mass stars are well correlated with their bolometric luminosities, that implies its dependence on the internal structure of the low mass stars. The difference between the X-ray luminosity distributions of the intermediate mass stars and the PMS low mass stars has not been found to be statistically significant. Their L X/ L bol values, however have been found to be significantly different from each other with a confidence level greater than 99.999% and the strength of X-ray activity in the intermediate mass stars is found to be lower compared to the low mass stars. However, the possibility of X-ray emission from the intermediate mass stars due to a low mass star in close proximity of the intermediate mass star can not be ruled out.

Bhatt, Himali; Pandey, J. C.; Singh, K. P.; Sagar, Ram; Kumar, Brijesh

2013-12-01

308

COMPARISON OF CONVECTIVE OVERSHOOTING MODELS AND THEIR IMPACT ON ABUNDANCES FROM INTEGRATED LIGHT SPECTROSCOPY OF YOUNG (<3 Gyr) STAR CLUSTERS  

SciTech Connect

As part of an ongoing program to measure detailed chemical abundances in nearby galaxies, we use a sample of young- to intermediate-age clusters in the Large Magellanic Cloud with ages of 10 Myr-2 Gyr to evaluate the effect of isochrone parameters, specifically core convective overshooting, on Fe abundance results from high-resolution, integrated light spectroscopy. In this work we also obtain fiducial Fe abundances from high-resolution spectroscopy of the cluster individual member stars. We compare the Fe abundance results for the individual stars to the results from isochrones and integrated light spectroscopy to determine whether isochrones with convective overshooting should be used in our integrated light analysis of young- to intermediate-age (10 Myr-3 Gyr) star clusters. We find that when using the isochrones from the Teramo group, we obtain more accurate results for young- and intermediate-age clusters over the entire age range when using isochrones without convective overshooting. While convective overshooting is not the only uncertain aspect of stellar evolution, it is one of the most readily parameterized ingredients in stellar evolution models, and thus important to evaluate for the specific models used in our integrated light analysis. This work demonstrates that our method for integrated light spectroscopy of star clusters can provide unique tests for future constraints on stellar evolution models of young- and intermediate-age clusters.

Colucci, Janet E.; Bernstein, Rebecca A., E-mail: jcolucci@ucolick.org, E-mail: rab@ucolick.org [Department of Astronomy and Astrophysics, 1156 High Street, UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States)

2012-04-20

309

A Disk Census for the Nearest Group of Young Stars: Mid-Infrared Observations of the TW Hydrae Association  

Microsoft Academic Search

A group of young, active stars in the vicinity of TW Hydrae has recently been identified as a possible physical association with a common origin. Given its proximity (~50 pc), age (~10 Myr), and abundance of binary systems, the TW Hya association is ideally suited to studies of the diversity and evolution of circumstellar disks. Here we present mid-infrared observations

Ray Jayawardhana; Lee Hartmann; Giovanni Fazio; R. Scott Fisher; Charles M. Telesco; Robert K. Piña

1999-01-01

310

A systematic search for massive young stars in the Galaxy - the RMS survey  

E-print Network

We have selected red MSX sources (RMS) that have the colours of massive young stellar objects (MYSOs). Our aim is to generate a large, systematically selected sample to address questions such as their luminosity function, lifetimes, clustering and triggering. Other objects such as UCHIIs, PN, PPN and AGB stars have similar IR colours and a large programme of ground-based follow-up observations is underway to identify and eliminate these from the sample of the red MSX sources. These include radio continuum observations, kinematic distances, ground-based mid-IR imaging, near-IR imaging and spectroscopy to distinguish. We report the progress of these campaigns on the 3000 candidates, with initial indications showing that a substantial fraction are indeed massive YSOs.

MG Hoare; SL Lumsden; RD Oudmaijer; AL Busfield; TL King; TLJ Moore

2004-04-05

311

CCD photometric and mass function study of 9 young Large Magellanic Cloud star clusters  

E-print Network

We present CCD photometric and mass function study of 9 young Large Magellanic Cloud star clusters namely NGC 1767, NGC 1994, NGC 2002, NGC 2003, NGC 2006, SL 538, NGC 2011, NGC 2098 and NGC 2136. The BVRI data reaching down to V ~ 21 mag, are collected from 3.5-meter NTT/EFOSC2 in sub-arcsec seeing conditions. For NGC 1767, NGC 1994, NGC 2002, NGC 2003, NGC 2011 and NGC 2136, broad band photometric CCD data are presented for the first time. Seven of the 9 clusters have ages between 16 to 25 Myr while remaining two clusters have ages $32\\pm4$ Myr (NGC 2098) and $90\\pm10$ Myr (NGC 2136). For 7 younger clusters, the age estimates based on a recent model and the integrated spectra are found to be systematically lower ($\\sim$ 10 Myr) from the present estimate. In the mass range of $\\sim 2 - 12$ $M_{\\odot}$, the MF slopes for 8 out of nine clusters were found to be similar with the value of $\\gamma$ ranging from $-1.90\\pm0.16$ to $-2.28\\pm0.21$. For NGC 1767 it is flatter with $\\gamma = -1.23\\pm0.27$. Mass segregation effects are observed for NGC 2002, NGC 2006, NGC 2136 and NGC 2098. This is consistent with the findings of Kontizas et al. for NGC 2098. Presence of mass segregation in these clusters could be an imprint of star formation process as their ages are significantly smaller than their dynamical evolution time. Mean MF slope of $\\gamma = -2.22\\pm0.16$ derived for a sample of 25 young ($\\le 100$ Myr) dynamically unevolved LMC stellar systems provide support for the universality of IMF in the intermediate mass range $\\sim 2-12 M_{\\odot}$.

B. Kumar; R. Sagar; J. Melnick

2008-01-07

312

VizieR Online Data Catalog: Young stars and brown dwarfs in Ori OB1b (Caballero+, 2008)  

NASA Astrophysics Data System (ADS)

We present here exhaustive lists of known young stars and new candidate members around Alnilam and Mintaka in the Ori OB1b association as well as of fore- and background sources. A total of 133 stars display features of extreme youth, including early spectral types, lithium in absorption, or mid-infrared flux excess. Other two young brown dwarf and 289 star candidates have been identified from an optical/near-infrared colour-magnitude diagram. We list additional 74 known objects that might belong to the association. This compilation of tables can serve as an input for characterisation of the stellar and high-mass substellar populations in the Orion Belt. (20 data files).

Caballero, J. A.; Solano, E.

2008-06-01

313

Revealing the full young stellar population in the Carina Nebula, the nearest laboratory of massive star feedback, with VISTA  

NASA Astrophysics Data System (ADS)

The Carina Nebula (NGC 3372) represents one of the most massive star forming regions in our Galaxy. With a distance of 2.3 kpc, it has the most extreme stellar population within a few kpc of the sun (at least 65 O-type stars). It is our best connection between the nearby star forming regions like the Orion Nebula and the even larger and extremer, but more distant regions like 30 Doradus in the Large Magellanic Cloud. Therefore it is a unique target and our richest nearby laboratory for detailed studies of violent massive star formation and its resulting feedback effects of cloud dispersal and triggered star formation. Our recent Herschel far-infrared survey of the Carina Nebula showed that the cloud complex extends over some 2 × 2.5 deg on the sky. Most of the recent investigations of the Carina Nebula had, however, been focused on the central, ? 1 square-degree area of the region, leaving the periphery of the cloud complex poorly studied. In order to solve this problem and to allow a characterization of the young stars throughout the entire extent of the complex, we have used the ESO Visible and Infrared Survey Telescope for Astronomy (VISTA) to map a ˜2 × 3 deg area around the Carina Nebula in the near-infrared J-, H-, Ks bands. Our NIR survey is large enough to cover the full spatial extent of the Carina Nebula complex and is deep enough to detect all young stars down to masses of 0.1 Msun through extinctions of at least Av = 10 mag. We detected in more than ˜ 4 million individual point sources. The data has a typical completeness limit of J ? 18, H ? 18, and Ks ? 17. In combination with a recent Chandra X-ray survey, Spitzer-IRAC, and Herschel observations we have now a sample of data, which reaches from X-ray to the FIR. It will allow us to distinguish between young stars and background contaminating objects and it will allow the identification and characterization of all X-ray selected young stars and the embedded young stellar objects revealed by Herschel.

Zeidler, Peter; Preibisch, Thomas; Ratzka, Thorsten; Gaczkowski, Benjamin; Roccatagliata, Veronica

2013-07-01

314

Mass and period limits on the ringed companion transiting the young star J1407  

E-print Network

The young (~16 Myr) pre-main-sequence star in Sco-Cen 1SWASP J140747.93-394542.6, hereafter referred to as J1407, underwent a deep eclipse in 2007 April, bracketed by several shallower eclipses in the surrounding 54 d. This has been interpreted as the first detection of an eclipsing ring system circling a substellar object (dubbed J1407b). We report on a search for this companion with Sparse Aperture Mask imaging and direct imaging with both the UT4 VLT and Keck telescopes. Radial velocity measurements of J1407 provide additional constraints on J1407b and on short period companions to the central star. Follow-up photometric monitoring using the PROMPT-4 and ROAD observatories during 2012-2014 has not yielded any additional eclipses. Large regions of mass-period space are ruled out for the companion. For circular orbits the companion period is constrained to the range 3.5-13.8 yr (a ~ 2.2-5.6 au), and masses greater than 80 M_Jup are ruled out at 3 sigma significance over these periods. The complex ring system...

Kenworthy, M A; Kraus, A; Triaud, A H M J; Mamajek, E E; Scott, E L; Ségransan, D; Ireland, M; Hambsch, F -J; Reichart, D E; Haislip, J B; LaCluyze, A P; Moore, J P; Frank, N R

2014-01-01

315

Magnetic Cycles in a Convective Dynamo Simulation of a Young Solar-type Star  

E-print Network

Young solar-type stars rotate rapidly and many are magnetically active; some undergo magnetic cycles similar to the 22-year solar activity cycle. We conduct simulations of dynamo action in rapidly rotating suns with the 3D MHD anelastic spherical harmonic (ASH) code to explore dynamo action achieved in the convective envelope of a solar-type star rotating at 5 times the current solar rotation rate. Striking global-scale magnetic wreaths appear in the midst of the turbulent convection zone and show rich time-dependence. The dynamo exhibits cyclic activity and undergoes quasi-periodic polarity reversals where both the global-scale poloidal and toroidal fields change in sense on a roughly 1500 day time scale. These magnetic activity patterns emerge spontaneously from the turbulent flow and are more organized temporally and spatially than those realized in our previous simulations of the solar dynamo. We assess in detail the competing processes of magnetic field creation and destruction within our simulations tha...

Brown, Benjamin P; Brun, Allen Sacha; Toomre, Juri

2011-01-01

316

Line Emission from Gas in Optically Thick Dust Disks around Young Stars  

E-print Network

We present self-consistent models of gas in optically-thick dusty disks and calculate its thermal, density and chemical structure. The models focus on an accurate treatment of the upper layers where line emission originates, and at radii $\\gtrsim 0.7$ AU. We present results of disks around $\\sim 1{\\rm M}_{\\odot}$ stars where we have varied dust properties, X-ray luminosities and UV luminosities. We separately treat gas and dust thermal balance, and calculate line luminosities at infrared and sub-millimeter wavelengths from all transitions originating in the predominantly neutral gas that lies below the ionized surface of the disk. We find that the [ArII] 7$\\mu$m, [NeII] 12.8$\\mu$m, [FeI] 24$\\mu$m, [SI] 25$\\mu$m, [FeII] 26$\\mu$m, [SiII] 35 $\\mu$m, [OI] 63$\\mu$m and pure rotational lines of H$_2$, H$_2$O and CO can be quite strong and are good indicators of the presence and distribution of gas in disks. We apply our models to the disk around the nearby young star, TW Hya, and find good agreement between our mod...

Gorti, Uma

2008-01-01

317

Gemini Spectroscopic Survey of Young Star Clusters in Merging/Interacting Galaxies. II. NGC 3256 Clusters  

E-print Network

We present Gemini optical spectroscopy of 23 young star clusters in NGC3256. We find that the cluster ages range are from few Myr to ~150 Myr. All these clusters are relatively massive (2--40)x 10^{5} \\msun$ and appear to be of roughly 1.5 \\zo metallicity. The majority of the clusters in our sample follow the same rotation curve as the gas and hence were presumably formed in the molecular-gas disk. However, a western subsample of five clusters has velocities that deviate significantly from the gas rotation curve. These clusters may either belong to the second spiral galaxy of the merger or may have formed in tidal-tail gas falling back into the system. We discuss our observations in light of other known cluster populations in merging galaxies, and suggest that NGC 3256 is similar to Arp 220, and hence may become an Ultra-luminous Infrared Galaxy as the merger progresses and the star-formation rate increases. Some of the clusters which appeared as isolated in our ground-based images are clearly resolved into multiple sub-components in the HST-ACS images. The same effect has been observed in the Antennae galaxies, showing that clusters are often not formed in isolation, but instead tend to form in larger groups or cluster complexes.

Gelys Trancho; Nate Bastian; Bryan W. Miller; François Schweizer

2007-04-19

318

VLT/NACO Deep imaging survey of young, nearby austral stars  

E-print Network

Since November 2002, we have conducted the largest deep imaging survey of the young, nearby associations of the southern hemisphere. Our goal is detection and characterization of substellar companions at intermediate (10--500 AU) physical separations. We have observed a sample of 88 stars, mostly G to M dwarfs, that we essentially identify as younger than 100 Myr and closer to Earth than 100 pc. The VLT/NACO adaptive optics instrument of the ESO Paranal Observatory was used to explore the faint circumstellar environment between typically 0.1 and 10''. We report the discovery of 17 new close (0.1-5.0'') multiple systems. HIP108195AB and C (F1III-M6), HIP84642AB (a~14 AU, K0-M5) and TWA22AB (a~1.8 AU; M6-M6) confirmed comoving systems. TWA22AB is likely to be a astrometric calibrator that can be used to test evolutionary predictions. Among our complete sample, a total of 65 targets observed with deep coronagraphic imaging. About 240 faint candidates were detected around 36 stars. Follow-up observations VLT or H...

Chauvin, G; Bonavita, M; Zuckerman, B; Dumas, C; Bessell, M S; Beuzit, J -L; Bonnefoy, M; Desidera, S; Farihi, J; Lowrance, P; Mouillet, D; Song, I

2009-01-01

319

Periodic Disk Eclipsing Stars: A New Class of Variable Young Stellar Objects  

NASA Astrophysics Data System (ADS)

We present the discovery of 92.6 day periodic near-infrared flu variability for the Class I T Tauri star YLW 16A. Our data are from the 2MASS Calibration Point Source Working Database and constitute 1582 observations in J, H and Ks of a field in Rho Ophiuchus used to calibrate the 2MASS All-Sky Survey. We identify a light curve that brightens from a quiescent faint state by 0.4 mag for only 20% of the period. The long period cannot be explained by stellar rotation. We propose that YLW 16A is a triple YSO system, with an inner binary orbital period of 92.6 days. We postulate that we are observing a component of the binary being eclipsed by a circumbinary disk with respect to our line of site. YLW 16A joins WL 4 and KH-15D as a third member of a new class of disk-eclipsing young stars. Both YLW 16A and WL 4 have been identified to have tertiary companions with projected separations of 20--50 AU. We propose that the tertiary companion can warp the inner circumbinary disk to produce the disk eclipses. We present NIRSPEC observations of WL 4 that suggest three distinct radial velocity components, and present a model SED for YLW 16A. These systems will be useful in investigating terrestrial-zone YSO disk properties and dynamics at 1 Myr.

Plavchan, Peter; Laohakunakorn, N.; Seifahrt, A.; Staplefeldt, K.; Gee, A. H.

2010-01-01

320

On the time dependence of differential rotation in young late-type stars  

NASA Astrophysics Data System (ADS)

A model for the angular momentum transfer within the convection zone of a rapidly rotating star is introduced and applied to the analysis of recent observations of temporal fluctuations of the differential rotation on the young late-type stars AB Doradus (AB Dor) and LQ Hydrae (LQ Hya). Under the hypothesis that the mean magnetic field produced by the stellar dynamo rules the angular momentum exchanges and that the angular velocity depends only on the distance s from the rotation axis and the time, the minimum azimuthal Maxwell stress |BsB?|, averaged over the convection zone, is found to range from ~0.04 to ~0.14T2. If the poloidal mean magnetic field Bs is of the order of 0.01T, as indicated by the Zeeman-Doppler imaging maps of those stars, then the azimuthal mean field B? can reach an intensity of several teslas, which significantly exceeds equipartition with the turbulent kinetic energy. Such strong fields can account also for the orbital period modulation observed in cataclysmic variables and RS Canum Venaticorum systems with a main-sequence secondary component. Moreover, the model allows us to compute the kinetic energy dissipation rate during the maintenance of the differential rotation. Only in the case of the largest surface shear observed on LQ Hya may the dissipated power exceed the stellar luminosity, but the lack of a sufficient statistic on the occurrence of such episodes of large shear does not allow us to estimate their impact on the energy budget of the convection zone.

Lanza, Antonino F.

2006-12-01

321

Does the mass distribution in discs influence encounter-induced losses in young star clusters?  

NASA Astrophysics Data System (ADS)

Context. One mechanism for the external destruction of protoplanetary discs in young dense clusters is tidal disruption during the flyby of another cluster member. The degree of mass loss in such an encounter depends, among other parameters, on the distribution of the material within the disc. Previous work showed that this is especially so in encounters that truncate large parts of the outer disc. The expectation is that the number of completely destroyed discs in a cluster also depends on the mass distribution within the discs. Aims: Here we test this hypothesis by determining the influence of encounters on the disc fraction and average disc mass in clusters of various stellar densities for different mass distributions in the discs. Methods: This is done by performing nbody6simulations of a variety of cluster environments, where we track the encounter dynamics and determine the mass loss due to these encounters for different disc-mass distributions. Results: We find that although the disc-mass distribution has a significant impact on the disc losses for specific star-disc encounters, the overall disc frequency generally remains unaffected. The reason is that in single encounters the dependence on the mass distribution is strongest if both stars have very different masses. Such encounters are rather infrequent in sparse clusters. In dense clusters these encounters are more common; however, here the disc frequency is largely determined by encounters between low-mass stars such that the overall disc frequency does not change significantly. Conclusions: For tidal disruption the disc destruction in clusters is fairly independent of the actual distribution of the material in the disc. The all determining factor remains the cluster density.

Steinhausen, Manuel; Pfalzner, Susanne

2014-05-01

322

A Pulsation Search among Young Brown Dwarfs and Very-low-mass Stars  

NASA Astrophysics Data System (ADS)

In 2005, Palla & Baraffe proposed that brown dwarfs (BDs) and very-low-mass stars (VLMSs; < 0.1 solar masses) may be unstable to radial oscillations during the pre-main-sequence deuterium burning phase. With associated periods of one to four hours, this potentially new class of pulsation offers unprecedented opportunities to probe the interiors and evolution of low-mass objects in the 1-15 million year age range. Following up on reports of short-period variability in young clusters, we designed a high-cadence photometric monitoring campaign to search for deuterium-burning pulsation among a sample of 348 BDs and VLMSs in the four young clusters ? Orionis, Chamaeleon I, IC 348, and Upper Scorpius. In the resulting light curves we achieved sensitivity to periodic signals of amplitude several millimagnitudes, on timescales from 15 minutes to two weeks. Despite the exquisite data quality, we failed to detect any periodicities below seven hours. We conclude that D-burning pulsations are not able to grow to observable amplitudes in the early pre-main sequence. In spite of the nondetection, we did uncover a rich set of variability behavior—both periodic and aperiodic—on day to week timescales. We present new compilations of variable sources from our sample, as well as three new candidate cluster members in Chamaeleon I.

Cody, Ann Marie; Hillenbrand, Lynne A.

2014-12-01

323

GEMINI SPECTROSCOPIC SURVEY OF YOUNG STAR CLUSTERS IN MERGING/INTERACTING GALAXIES. IV. STEPHAN's QUINTET  

SciTech Connect

We present a spectroscopic survey of 21 young massive clusters and complexes and one tidal dwarf galaxy (TDG) candidate in Stephan's Quintet, an interacting compact group of galaxies. All of the selected targets lie outside the main galaxies of the system and are associated with tidal debris. We find clusters with ages between a few and 125 Myr and confirm the ages estimated through Hubble Space Telescope photometry by Fedotov et al., as well as their modeled interaction history of the Quintet. Many of the clusters are found to be relatively long-lived, given their spectrosopically derived ages, while their high masses suggest that they will likely evolve to eventually become intergalactic clusters. One cluster, T118, is particularly interesting, given its age ({approx}125 Myr), high mass ({approx}2 Multiplication-Sign 10{sup 6} M{sub Sun }), and position in the extreme outer end of the young tidal tail. This cluster appears to be quite extended (R{sub eff} {approx} 12-15 pc) compared to clusters observed in galaxy disks (R{sub eff} {approx} 3-4 pc), which confirms an effect we previously found in the tidal tails of NGC 3256, where clusters are similarly extended. We find that star and cluster formation can proceed at a continuous pace for at least {approx}150 Myr within the tidal debris of interacting galaxies. The spectrum of the TDG candidate is dominated by a young population ({approx}7 Myr), and, assuming a single age for the entire region, has a mass of at least 10{sup 6} M{sub Sun }.

Trancho, Gelys [Gemini Observatory, Casilla 603, La Serena (Chile); Konstantopoulos, Iraklis S.; Mullan, Brendan; Charlton, Jane C. [Department of Astronomy and Astrophysics, 525 Davey Laboratory, The Pennsylvania State University, University Park, PA 16802 (United States); Bastian, Nate [Excellence Cluster Universe, Boltzmannstr. 2, 85748 Garching (Germany); Fedotov, Konstantin; Gallagher, Sarah, E-mail: gtrancho@gmto.org [Physics and Astronomy Department, University of Western Ontario, London, ON N6A 3K7 (Canada)

2012-04-01

324

X-shooter spectroscopy of young stellar objects. V. Slow winds in T Tauri stars  

NASA Astrophysics Data System (ADS)

Disks around T Tauri stars are known to lose mass, as best shown by the profiles of the forbidden emission lines of low-ionization species. At least two separate kinematic components have been identified, one characterized by velocity shifts of tens to hundreds of km s-1 (HVC) and one with a much lower velocity of a few km s-1 (LVC). The HVC are convincingly associated to the emission of jets, but the origin of the LVC is still unknown. In this paper we analyze the forbidden line spectrum of a sample of 44 mostly low-mass young stars in Lupus and ? Ori observed with the X-shooter ESO spectrometer. We detect forbidden line emission of O i, O ii, S ii, N i, and N ii, and characterize the line profiles as LVC, blueshifted HVC, and redshifted HVC. We focus our study on the LVC. We show that there is a good correlation between line luminosity and both Lstar and the accretion luminosity (or the mass accretion rate) over a large interval of values (Lstar~ 10-2-1 L?; Lacc~ 10-5-10-1 L?; ?acc~ 10-11 - 10-7 M?/yr). The lines show the presence of a slow wind (Vpeak< 20 km s-1) that is dense (nH> 108 cm-3), warm (T ~ 5000-10 000 K), mostly neutral. We estimate the mass of the emitting gas and provide a value for the maximum volume it occupies. Both quantities increase steeply with the stellar mass, from ~ 10-12 M? and ~0.01 AU3 for Mstar~ 0.1 M?, to ~ 3 × 10-10 M? and ~1 AU3 for Mstar~ 1 M?, respectively. These results provide quite stringent constraints to wind models in low-mass young stars, that need to be explored further. Based on observations collected at the European Souther Observatory at Paranal, under programs 084.C-0269(A), 085.C-0238(A), 086.C-0173(A), 087.C-0244(A) and 089.C-0143(A).Appendices are available in electronic form at http://www.aanda.org

Natta, A.; Testi, L.; Alcalá, J. M.; Rigliaco, E.; Covino, E.; Stelzer, B.; D'Elia, V.

2014-09-01

325

Dynamical star-disk interaction in the young stellar system V354 Monocerotis  

NASA Astrophysics Data System (ADS)

Aims: The main goal of this work is to characterize the mass accretion and ejection processes of the classical T Tauri star V354 Mon, a member of the young stellar cluster NGC 2264. Methods: In March 2008, photometric and spectroscopic observations of V354 Mon were obtained simultaneously with the CoRoT satellite, the 60 cm telescope at the Observatório Pico dos Dias (LNA, Brazil) equipped with a CCD camera and Johnson/Cousins BV(RI)c filters, and the SOPHIE échelle spectrograph at the Observatoire de Haute-Provence (CNRS, France). Results: The light curve of V354 Mon shows periodical minima (P = 5.26 ± 0.50 days) that vary in depth and width at each rotational cycle. The BV(RI)c observations indicate that the system becomes slightly bluer as the flux increases. The spectra of this T Tauri star exhibit variable emission lines, with blueshifted and redshifted absorption components associated with a disk wind and with the accretion process, respectively, confirming the magnetospheric accretion scenario. From the analysis of the photometric and spectroscopic data, it is possible to identify correlations between the emission line variability and the light-curve modulation of the young system, such as the occurrence of pronounced redshifted absorption in the H? line at the epoch of minimum flux. This is evidence that during photometric minima we see the accretion funnel projected onto the stellar photosphere in our line of sight, implying that the hot spot coincides with the light-curve minima. We applied models of cold and hot spots and a model of occultation by circumstellar material to investigate the source of the observed photometric variations. Conclusions: We conclude that nonuniformly distributed material in the inner part of the circumstellar disk is the main cause of the photometric modulation, which does not exclude the presence of hot and cold spots at the stellar surface. It is believed that the distortion in the inner part of the disk is created by the dynamical interaction between the stellar magnetosphere, inclined with respect to the rotation axis, and the circumstellar disk, as also observed in the classical T Tauri star AA Tau and predicted by magnetohydrodynamical numerical simulations. Based on the observations obtained with the CoRoT satellite, at the Observatório Pico dos Dias, Brazil, and at the Observatoire de Haute Provence, France. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain.

Fonseca, N. N. J.; Alencar, S. H. P.; Bouvier, J.; Favata, F.; Flaccomio, E.

2014-07-01

326

X-ray sources associated with young stellar objects in the star formation region CMa R1  

NASA Astrophysics Data System (ADS)

In previous works we studied the star formation scenario in the molecular cloud Canis Major R1 (CMa R1), derived from the existence of young stellar population groups near the Be stars Z CMa and GU CMa. Using data from the ROSAT X-ray satellite, having a field-of-view of ~ 1° in diameter, Gregorio-Hetem et al. (2009) discovered in this region young stellar objects mainly grouped in two clusters of different ages, with others located in between. In order to investigate the nature of these objects and to test a possible scenario of sequential star formation in this region, four fields (each 30 arcmin diameter, with some overlap) have been observed with the XMM-Newton satellite, with a sensitivity about 10 times better than ROSAT. The XMM-Newton data are currently under analysis. Preliminary results indicate the presence of about 324 sources, most of them apparently having one or more near-infrared counterparts showing typical colors of young stars. The youth of the X-ray sources was also confirmed by X-ray hardness ratio diagrams (XHRD), in different energy bands, giving an estimate of their Lx/Lbol ratios. In addition to these results, we present a detailed study of the XMM field covering the cluster near Z CMa. Several of these sources were classified as T Tauri and Herbig Ae/Be stars, using optical spectroscopy obtained with Gemini telescopes, in order to validate the use of XHRD applied to the entire sample. This classification is also used to confirm the relation between the luminosities in the near-infrared and X-ray bands expected for the T Tauri stars in CMa R1. In the present work we show the results of the study based on the spectra of about 90 sources found nearby Z CMa. We checked that the X-ray spectra (0.3 to 10 keV) of young objects is different from that observed in field stars and extragalactic objects. Some of the candidates also have light curve showing flares that are typical of T Tauri stars, which confirms the young nature of these X-ray sources.

Santos-Silva, Thais; Gregorio-Hetem, Jane; Montmerle, Thierry

2013-07-01

327

Young Galaxy Surrounded by Material Needed to Make Stars, VLA Reveals  

NASA Astrophysics Data System (ADS)

Astronomers using the National Science Foundation's Very Large Array (VLA) radio telescope have discovered a massive reservoir of cold gas from which a primeval galaxy formed its first stars. Looking more than 12 billion years into the past, the scientists found that the young galaxy experiencing a "burst" of star formation was surrounded by enough cold molecular gas to make 100 billion suns. Optical and Radio Images of APM 08279+5255 at About the Same Scale "This is the first time anyone has seen the massive reservoir of cold gas required for these incredible 'starbursts' to produce a galaxy," said Chris Carilli, an astronomer at the NSF's National Radio Astronomy Observatory (NRAO) in Socorro, NM. "There is much more gas here than we anticipated," Carilli added. The research team was led by Padeli Papadoupoulos of Leiden Observatory in the Netherlands and also included Rob Ivison of University College London and Geraint Lewis of the Anglo-Australian Observatory in Australia. The scientists reported their findings in the January 4 edition of the journal Nature. The astronomers found the gas when studying a quasar called APM 08279+5255, discovered in 1998. Observations with optical and infrared telescopes revealed that the quasar, a young galaxy with a voracious black hole at its center, was forming new stars rapidly in a starburst. At a distance of more than 12 billion light-years, the quasar is seen as it was more than 12 billion years ago, just a billion or so years after the Big Bang. "This thing is at the edge of the dark ages," before the first stars in the universe were born, said Carilli. The year after its discovery, APM 08279+5255 was found to have warm carbon monoxide (CO) gas near its center, heated by the energy released as the galaxy's black hole devours material. The VLA observations revealed cold CO gas much more widely distributed than its warmer counterpart. Based on observations of closer objects, the astronomers presume the CO gas is accompanied by large amounts of molecular hydrogen gas (H2). Cold CO gas never has been detected before in such a distant object. Though APM 08279+5255 is a young galaxy undergoing its first massive burst of star formation, the CO gas indicates that very massive stars formed quickly, lived through their short lifetimes, and exploded as supernovae. Carbon and Oxygen, the component elements of CO, are formed in the cores of stars, so their presence in the cold gas tells the astronomers that massive, short-lived stars had to have exploded already, spreading these elements throughout the galaxy's interstellar gas. "The original discovery of this quasar was quite a surprise, as observations revealed it is among the most luminous objects known in the universe. The discovery of this massive reservoir of cold gas is equally surprising. It provides vital clues to the birth of galaxies, such as our own Milky Way," Lewis said. Discovery of the gas was made possible by the galaxy's great distance. The expansion of the universe "stretches" light and radio waves to longer wavelengths -- the more distant the object, the more stretching is seen. Radio waves emitted by the cold CO gas originally had wavelengths of about 1.3 and 2.6 millimeters, but were "redshifted" to wavelengths of 7 and 13 millimeters -- wavelengths the VLA can receive. "It took eight years to refine this technique, but the effort has been worthwhile. This is the golden age of cosmology. We are learning more and more about our universe, from the smallest planets to the largest galaxy clusters. This new result is a crucial piece in the jigsaw and may help resolve many misconceptions about how galaxies form and evolve" Ivison said. "Because of its sensitivity and its ability to make detailed images, the VLA is the only telescope able to unveil these large reservoirs of cold molecular gas in the distant universe," Carilli said. "In addition, as we expand the technical capabilities of the VLA in the coming years, making it even m

2001-01-01

328

A UKIDSS-based search for low-mass stars and small stellar clumps in off-cloud parts of young star-forming regions *  

NASA Astrophysics Data System (ADS)

The form and universality of the mass function of young and nearby star-forming regions is still under debate. Its relation to the stellar density, its mass peak and the dependency on most recent models shows significant differencies for the various regions and remains unclear up to date. We aim to get a more complete census of two of such regions. We investigate yet unexplored areas of Orion and Taurus-Auriga, observed by the UKIDSS survey. In the latter, we search for low-mass stars via photometric and proper motion criteria and signs for variability. In Orion, we search for small stellar clumps via nearest-neighbor methods. Highlights in Taurus would be the finding of the missing low-mass stars and the detection of a young cluster T dwarf. In Orion, we discovered small stellar associations of its OB1b and OB1c populations. Combined with what is known in literature, we will provide by this investigations a general picture of the results of the star-forming processes in large areas of Taurus and Orion and probe the most recent models. Based on data of the UKIRT (operated by the Joint Astronomy Centre on behalf of the Science and Technology Facilities Council of the U.K.) Infrared Deep Sky Survey (UKIDSS).Supported by the Marie Curie Research Training Network `CONSTELLATION' under grant no. MRTN-CT-2006-035890.

Perger, M.; Lodieu, N.; Martín, E. L.; Barrado Y Navascués, D.

2011-07-01

329

Tentative Evidence for Relativistic Electrons Generated by the Jet of the Young Sun-like Star DG Tau  

NASA Astrophysics Data System (ADS)

Synchrotron emission has recently been detected in the jet of a massive protostar, providing further evidence that certain jet formation characteristics for young stars are similar to those found for highly relativistic jets from active galactic nuclei. We present data at 325 and 610 MHz taken with the Giant Metrewave Radio Telescope of the young, low-mass star DG Tau, an analog of the Sun soon after its birth. This is the first investigation of a low-mass young stellar object at such low frequencies. We detect emission with a synchrotron spectral index in the proximity of the DG Tau jet and interpret this emission as a prominent bow shock associated with this outflow. This result provides tentative evidence for the acceleration of particles to relativistic energies due to the shock impact of this otherwise very low-power jet against the ambient medium. We calculate the equipartition magnetic field strength B min ? 0.11 mG and particle energy E min ? 4 × 1040 erg, which are the minimum requirements to account for the synchrotron emission of the DG Tau bow shock. These results suggest the possibility of low energy cosmic rays being generated by young Sun-like stars.

Ainsworth, Rachael E.; Scaife, Anna M. M.; Ray, Tom P.; Taylor, Andrew M.; Green, David A.; Buckle, Jane V.

2014-09-01

330

Young Stars in Orion May Solve Mystery of Our Solar System  

NASA Astrophysics Data System (ADS)

Scientists may have to give the Sun a little more credit. Exotic isotopes present in the early Solar System--which scientists have long-assumed were sprinkled there by a powerful, nearby star explosion--may have instead been forged locally by our Sun during the colossal solar-flare tantrums of its baby years. The isotopes--special forms of atomic nuclei, such as aluminum-26, calcium-41, and beryllium-10--can form in the X-ray solar flares of young stars in the Orion Nebula, which behave just like our Sun would have at such an early age. The finding, based on observations by the Chandra X-ray Observatory, has broad implications for the formation of our own Solar System. Eric Feigelson, professor of astronomy and astrophysics at Penn State, led a team of scientists on this Chandra observation and presents these results in Washington, D.C., today at a conference entitled "Two Years of Science with Chandra". "The Chandra study of Orion gives us the first chance to study the flaring properties of stars resembling the Sun when our solar system was forming," said Feigelson. "We found a much higher rate of flares than expected, sufficient to explain the production of many unusual isotopes locked away in ancient meteorites. If the young stars in Orion can do it, then our Sun should have been able to do it too." Scientists who study how our Solar System formed from a collapsed cloud of dust and gas have been hard pressed to explain the presence of these extremely unusual chemical isotopes. The isotopes are short-lived and had to have been formed no earlier than the creation of the Solar System, some five billion years ago. Yet these elements cannot be produced by a star as massive as our Sun under normal circumstances. (Other elements, such as silver and gold, were created long before the creation of the solar system.) The perplexing presence of these isotopic anomalies, found in ancient meteoroids orbiting the Earth, led to the theory that a supernova explosion occurred very close to the Solar System's progenitor gas cloud, simultaneously triggering its collapse and seeding it with short-lived isotopes. Solar flares could produce such isotopes, but the flares would have to be hundreds of thousands of times more powerful and hundreds of times more frequent than those our Sun generates. Enter the stars in the Orion Nebula. This star-forming region has several dozen new stars nearly identical to our Sun, only much younger. Feigelson's team used Chandra to study the flaring in these analogs of the early Sun and found that nearly all exhibit extremely high levels of X-ray flaring--powerful and frequent enough to forge many of the kinds of isotopes found in the ancient meteorites from the early solar system. "This is a very exciting result for space X-ray astronomy," said Donald Clayton, Centennial Professor of Physics and Astronomy at Clemson University. "The Chandra Penn State team has shown that stellar-flare acceleration produces radioactive nuclei whether we want them or not. Now the science debate can concentrate on whether such irradiation made some or even all of the extinct radioactivities that were present when our solar system was formed, or whether some contamination of our birth molecular cloud by external material is also needed." "This is an excellent example of how apparently distant scientific fields, like X-ray astronomy and the origins of solar systems, can in fact be closely linked," said Feigelson. The Orion observation was made with Chandra's Advanced CCD Imaging Spectrometer, which was conceived and developed for NASA by Penn State and Massachusetts Institute of Technology under the leadership of Gordon Garmire, the Evan Pugh Professor of Astronomy and Astrophysics at Penn State. The Penn State observation team includes Pat Broos, James Gaffney, Gordon Garmire, Leisa Townsley and Yohko Tsuboi. Collaborators also include Lynne Hillenbrand of CalTech and Steven Pravdo of the NASA Jet Propulsion Laboratory. Background: Isotopes are atoms whose nuclei have d

2001-09-01

331

Near-Infrared Polarimetric Imaging of Disks around Young Intermediate-mass Stars in SEEDS  

NASA Astrophysics Data System (ADS)

We present our recent results to directly image circumstellar disks around Herbig Fe/Ae/Be stars in scattered light with Subaru. Observations of such young disks are critically important to understand how disks evolve possibly under the mutual interaction with new-born planets. One of the observational approaches is direct imaging in scattered light, and the progress in this field since PPV can be found in the ability to prove inner regions of disks. This improvement largely owes to the technique of polarization differential imaging (PDI) which provides higher contrast by extracting scattered light from the disk while suppressing unpolarized stellar light. Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS) is the project dedicated to exoplanet hunting and study of circumstellar disks by direct imaging. Since its beginning in 2009, thirteen Herbig Fe/Ae/Be stars have been observed primarily in H band (1.6 micron). The PDI method has been employed with adaptive optics, enabling us to look into the inner region as close as 0.2 arcsec (˜30 AU) in radius with the typical angular resolution of 0.06 arcsec (˜8 AU). As a result, the SEEDS imagery has newly uncovered rich structures such as spiral arms, inner holes, and gaps for (pre-)transitional disks while suggested the variably illuminated disks for primordial systems. The highlight is the discovery of two spiral arms each for SAO 206462 and MWC 758. The spiral feature has been uniquely found toward Herbig Fe/Aes so far, which might be due to their warmer disks producing arms loosely wound and more easily detected. The observed morphology can be interpreted by the density-wave model, and those disks are implied to harbor Jupiter-mass companions as the exciting sources of the spiral structures according to these models.

Fukagawa, Misato; Hashimoto, Jun; Grady, C. A.; Momose, Munetake; Wisniewski, J. P.; Okamoto, Yoshiko; Muto, Takayuki; Kusakabe, Nobuhiko; Bonnefoy, Mickael; Kotani, Takayuki; Maruta, Yayoi; Tamura, Motohide; Seeds/Hiciao/Ao188 Collaboration,

2013-07-01

332

The luminosity function of young star clusters: implications for the maximum mass and luminosity of clusters  

E-print Network

We introduce a method to relate a possible truncation of the star cluster mass function at the high mass end to the shape of the cluster luminosity function (LF). We compare the observed LFs of five galaxies containing young star clusters with synthetic cluster population models with varying initial conditions. The LF of the SMC, the LMC and NGC 5236 are characterized by a power-law behavior NdL~L^-a dL, with a mean exponent of = 2.0 +/- 0.2. This can be explained by a cluster population formed with a constant cluster formation rate, in which the maximum cluster mass per logarithmic age bin is determined by the size-of-sample effect and therefore increases with log(age/yr). The LFs of NGC 6946 and M51 are better described by a double power-law distribution or a Schechter function. When a cluster population has a mass function that is truncated below the limit given by the size-of-sample effect, the total LF shows a bend at the magnitude of the maximum mass, with the age of the oldest cluster in the population, typically a few Gyr due to disruption. For NGC 6946 and M51 this implies a maximum mass of M_max = 5*10^5 M_sun. Faint-ward of the bend the LF has the same slope as the underlying initial cluster mass function and bright-ward of the bend it is steeper. This behavior can be well explained by our population model. We compare our results with the only other galaxy for which a bend in the LF has been observed, the ``Antennae'' galaxies (NGC 4038/4039). There the bend occurs brighter than in NGC 6946 and M51, corresponding to a maximum cluster mass of M_max = 2*10^6 M_sun (abridged).

Mark Gieles; Soeren Larsen; Nate Bastian; Ilaan Stein

2005-12-12

333

Line Emission from Gas in Optically Thick Dust Disks around Young Stars  

E-print Network

We present self-consistent models of gas in optically-thick dusty disks and calculate its thermal, density and chemical structure. The models focus on an accurate treatment of the upper layers where line emission originates, and at radii $\\gtrsim 0.7$ AU. We present results of disks around $\\sim 1{\\rm M}_{\\odot}$ stars where we have varied dust properties, X-ray luminosities and UV luminosities. We separately treat gas and dust thermal balance, and calculate line luminosities at infrared and sub-millimeter wavelengths from all transitions originating in the predominantly neutral gas that lies below the ionized surface of the disk. We find that the [ArII] 7$\\mu$m, [NeII] 12.8$\\mu$m, [FeI] 24$\\mu$m, [SI] 25$\\mu$m, [FeII] 26$\\mu$m, [SiII] 35 $\\mu$m, [OI] 63$\\mu$m and pure rotational lines of H$_2$, H$_2$O and CO can be quite strong and are good indicators of the presence and distribution of gas in disks. We apply our models to the disk around the nearby young star, TW Hya, and find good agreement between our model calculations and observations. We also predict strong emission lines from the TW Hya disk that are likely to be detected by future facilities. A comparison of CO observations with our models suggests that the gas disk around TW Hya may be truncated to $\\sim 120 $ AU, compared to its dust disk of 174 AU. We speculate that photoevaporation due to the strong stellar FUV field from TW Hya is responsible for the gas disk truncation.

Uma Gorti; David Hollenbach

2008-04-21

334

High spatial resolution mid-infrared observations of the low-mass young star TW Hya  

E-print Network

We want to improve knowledge of the structure of the inner few AU of the circumstellar disk around the nearby T Tauri star TW Hya. Earlier studies have suggested the existence of a large inner hole, possibly caused by interactions with a growing protoplanet. We used interferometric observations in the N-band obtained with the MIDI instrument on the Very Large Telescope Interferometer, together with 10 micron spectra recorded by the infrared satellite Spitzer. The fact that we were able to determine N-band correlated fluxes and visibilities for this comparatively faint source shows that MIR interferometry can be applied to a large number of low-mass young stellar objects. The MIR spectra obtained with Spitzer reveal emission lines from HI (6-5), HI (7-6), and [Ne II] and show that over 90% of the dust we see in this wavelength regime is amorphous. According to the correlated flux measured with MIDI, most of the crystalline material is in the inner, unresolved part of the disk, about 1 AU in radius. The visibilities exclude the existence of a very large (3-4 AU radius) inner hole in the circumstellar disk of TW Hya, which was required in earlier models. We propose instead a geometry of the inner disk where an inner hole still exists, but at a much reduced radius, with the transition from zero to full disk height between 0.5 and 0.8 AU, and with an optically thin distribution of dust inside. Such a model can comply with SED and MIR visibilities, as well as with visibility and extended emission observed in the NIR at 2 micron. If a massive planet was the reason for this inner hole, as has been speculated, its orbit would have to be closer to the star than 0.3 AU. Alternatively, we may be witnessing the end of the accretion phase and an early phase of an inward-out dispersal of the circumstellar disk.

Th. Ratzka; Ch. Leinert; Th. Henning; J. Bouwman; C. P. Dullemond; W. Jaffe

2007-07-02

335

The First X-shooter Observations of Jets from Young Stars  

NASA Astrophysics Data System (ADS)

We present the first pilot study of jets from young stars conducted with X-shooter, on the ESO/Very Large Telescope. As it offers simultaneous, high-quality spectra in the range 300-2500 nm, X-shooter is uniquely important for spectral diagnostics in jet studies. We chose to probe the accretion/ejection mechanisms at low stellar masses examining two targets with well-resolved continuous jets lying on the plane of the sky: ESO-HA 574 in Chameleon I and Par-Lup3-4 in Lupus III. The mass of the latter is close to the sub-stellar boundary (M sstarf = 0.13 M sun). A large number of emission lines probing regions of different excitation are identified, position-velocity diagrams are presented, and mass outflow/accretion rates are estimated. Comparison between the two objects is striking. ESO-HA 574 is a weakly accreting star for which we estimate a mass accretion rate of log (\\dot{M}_{acc}) = -10.8 +/- 0.5 (in M sun yr-1), yet it drives a powerful jet with \\dot{M}_{out} ~ 1.5-2.7 × 10-9 M sun yr-1. These values can be reconciled with a magneto-centrifugal jet acceleration mechanism assuming that the presence of the edge-on disk severely depresses the luminosity of the accretion tracers. In comparison, Par-Lup3-4, with stronger mass accretion (log (\\dot{M}_{acc}) = -9.1 +/- 0.4 M sun yr-1), drives a low-excitation jet with about \\dot{M}_{out} ~ 3.2 × 10-10 M sun yr-1 in both lobes. Despite the low stellar mass, \\dot{M}_{out}/\\dot{M}_{acc} for Par-Lup3-4 is at the upper limit of the range usually measured for young objects, but still compatible with a steady magneto-centrifugal wind scenario if all uncertainties are considered. Based on Observations collected with X-shooter at the Very Large Telescope on Cerro Paranal (Chile), operated by the European Southern Observatory (ESO). Program ID: 085.C-0238(A).

Bacciotti, F.; Whelan, E. T.; Alcalá, J. M.; Nisini, B.; Podio, L.; Randich, S.; Stelzer, B.; Cupani, G.

2011-08-01

336

Effects of Turbulence on Cosmic Ray Propagation in Protostars and Young Star/Disk Systems  

NASA Astrophysics Data System (ADS)

The magnetic fields associated with young stellar objects are expected to have an hour-glass geometry, i.e., the magnetic field lines are pinched as they thread the equatorial plane surrounding the forming star but merge smoothly onto a background field at large distances. With this field configuration, incoming cosmic rays experience both a funneling effect that acts to enhance the flux impinging on the circumstellar disk and a magnetic mirroring effect that acts to reduce that flux. To leading order, these effects nearly cancel out for simple underlying magnetic field structures. However, the environments surrounding young stellar objects are expected to be highly turbulent. This paper shows how the presence of magnetic field fluctuations affects the process of magnetic mirroring, and thereby changes the flux of cosmic rays striking circumstellar disks. Turbulence has two principle effects: (1) the (single) location of the magnetic mirror point found in the absence of turbulence is replaced with a wide distribution of values. (2) The median of the mirror point distribution moves outward for sufficiently large fluctuation amplitudes (roughly when ?B/B 0 > 0.2 at the location of the turbulence-free mirror point); the distribution becomes significantly non-Gaussian in this regime as well. These results may have significant consequences for the ionization fraction of the disk, which in turn dictates the efficiency with which disk material can accrete onto the central object. A similar reduction in cosmic ray flux can occur during the earlier protostellar stages; the decrease in ionization can help alleviate the magnetic braking problem that inhibits disk formation.

Fatuzzo, Marco; Adams, Fred C.

2014-05-01

337

Constraining globular cluster formation through studies of young massive clusters - IV. Testing the fast rotating massive star scenario  

NASA Astrophysics Data System (ADS)

One of the leading models for the formation of multiple stellar populations within globular clusters is the `fast rotating massive star' (FRMS) scenario, where the ejecta of rapidly rotating massive stars is mixed with primordial material left over from the star formation process, to form a second generation of stars within the decretion discs of the high-mass stars. A requirement of this model, at least in its current form, is that young massive (i.e. proto-globular) clusters are not able to eject the unused gas and dust from the star formation process from the cluster for 20-30 Myr after the formation of the first generation of stars, i.e. the cluster remains embedded within the gas cloud in which it forms. Here, we test this prediction by performing a literature search for young massive clusters in nearby galaxies, which have ages less than 20 Myr that are not embedded. We report that a number of such clusters exist, with masses near or significantly above 106 M?, with ages between a few Myr and ˜15 Myr, suggesting that even high-mass clusters are able to clear any natal gas within them within a few Myr after formation. Additionally, one cluster, Cluster 23 in ESO 338-IG04, has a metallicity below that of some Galactic globular clusters that have been found to host multiple stellar populations, mitigating any potential effect of differences in metallicity in the comparison. The clusters reported here are in contradiction to the expectations of the FRMS scenario, at least in its current form.

Bastian, N.; Hollyhead, K.; Cabrera-Ziri, I.

2014-11-01

338

Magnetic activity and differential rotation in the very young star KIC 8429280  

NASA Astrophysics Data System (ADS)

Aims: We present a spectroscopic and photometric analysis of the rapid rotator KIC 8429280, discovered by ourselves as a very young star and observed by the NASA Kepler mission, designed to determine its activity level, spot distribution, and differential rotation. Methods: We use ground-based data, such as high-resolution spectroscopy and multicolor broad-band photometry, to derive stellar parameters (vsini, spectral type, Teff, log g, and [Fe/H]), and we adopt a spectral subtraction technique to highlight the strong chromospheric emission in the cores of hydrogen H? and Ca ii H&K and infrared triplet (IRT) lines. We then fit a robust spot model to the high-precision Kepler photometry spanning 138 days. Model selection and parameter estimation is performed in a Bayesian manner using a Markov chain Monte Carlo method. Results: We find that KIC 8429280 is a cool (K2 V) star with an age of about 50 Myr, based on its lithium content, that has passed its T Tau phase and is spinning up approaching the ZAMS on its radiative track. Its high level of chromospheric activity is clearly indicated by the strong radiative losses in Ca ii H&K and IRT, H?, and H? lines. Furthermore, its Balmer decrement and the flux ratio of Ca ii IRT lines imply that these lines are mainly formed in optically-thick regions similar to solar plages. The analysis of the Kepler data uncovers evidence of at least seven enduring spots. Since the star's inclination is rather high - nearly 70° - the assignment of the spots to either the northern or southern hemisphere is not unambiguous. We find at least three solutions with nearly the same level of residuals. Even in the case of seven spots, the fit is far from being perfect. Owing to the exceptional precision of the Kepler photometry, it is not possible to reach the noise floor without strongly enhancing the degrees of freedom and, consequently, the non-uniqueness of the solution. The distribution of the active regions is such that the spots are located around three latitude belts, i.e. around the star's equator and around ± (50°-60°), with the high-latitude spots rotating slower than the low-latitude ones. The equator-to-pole differential rotation d? ? 0.27 rad d-1 is at variance with some recent mean-field models of differential rotation in rapidly rotating main-sequence stars, which predict a much smaller latitudinal shear. Our results are consistent with the scenario of a higher differential rotation, which changes along the magnetic cycle, as proposed by other models. Based on public Kepler data, on observations made with the Italian Telescopio Nazionale Galileo operated on the island of La Palma by the Fundación Galileo Galilei of INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque del los Muchachos of the Instituto de Astrofisica de Canarias, and on observations collected at the Catania Astrophysical Observatory (Italy).

Frasca, A.; Fröhlich, H.-E.; Bonanno, A.; Catanzaro, G.; Biazzo, K.; Molenda-?akowicz, J.

2011-08-01

339

THE IMPORTANCE OF NEBULAR CONTINUUM AND LINE EMISSION IN OBSERVATIONS OF YOUNG MASSIVE STAR CLUSTERS  

SciTech Connect

In this spectroscopic study of infant massive star clusters, we find that continuum emission from ionized gas rivals the stellar luminosity at optical wavelengths. In addition, we find that nebular line emission is significant in many commonly used broadband Hubble Space Telescope (HST) filters including the F814W I-band, the F555W V-band, and the F435W B-band. Two young massive clusters (YMCs) in the nearby starburst galaxy NGC 4449 were targeted for follow-up spectroscopic observations after Reines et al. discovered an F814W I-band excess in their photometric study of radio-detected clusters in the galaxy. The spectra were obtained with the Dual Imaging Spectrograph (DIS) on the 3.5 m Apache Point Observatory (APO) telescope and have a spectral range of approx3800-9800 A. We supplement these data with HST and Sloan Digital Sky Survey photometry of the clusters. By comparing our data to the Starburst99 and GALEV evolutionary synthesis models, we find that nebular continuum emission competes with the stellar light in our observations and that the relative contribution from the nebular continuum is largest in the U- and I-bands, where the Balmer (3646 A) and Paschen jumps (8207 A) are located. The spectra also exhibit strong line emission including the [S III] lambdalambda9069, 9532 lines in the HST F814W I-band. We find that the combination of nebular continuum and line emission can account for the F814W I-band excess previously found by Reines et al. In an effort to provide a benchmark for estimating the impact of ionized gas emission on photometric observations of young massive stellar populations, we compute the relative contributions of the stellar continuum, nebular continuum, and emission lines to the total observed flux of a 3 Myr old cluster through various HST filter/instrument combinations, including filters in the Wide Field Camera 3. We urge caution when comparing observations of YMCs to evolutionary synthesis models since nebular continuum and line emission can have a large impact on magnitudes and colors of young (approx<5 Myr) clusters, significantly affecting inferred properties such as ages, masses and extinctions.

Reines, Amy E.; Nidever, David L.; Whelan, David G. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Johnson, Kelsey E., E-mail: areines@virginia.ed [Adjunct at National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903, USA. (United States)

2010-01-01

340

Accretion shocks in young stars: the role of local absorption on the X-ray emission  

NASA Astrophysics Data System (ADS)

We analyze the X-ray emission from accretion shocks formed where the infalling material impact the surface of young stars. Several aspects in observations and in models of accretion are still debated: the density vs temperature structure of the shocked plasma is opposite of what expected from simple accretion shock models and the X-ray luminosity detected from post-shock plasma is below the predicted value. To address these open issues we performed numerical simulations describing the impact of an accretion stream onto the stellar surface (exploring different configurations of the magnetic field) and taken into account the local absorption due to the surrounding medium. We investigated the effects of absorption for different viewing angles and wavelengths. From the model results we synthesize the X-ray emission from the accretion shock and perform density and temperature diagnostics on the synthetic spectra. By comparing our results with the observations, we find that the X-ray fluxes detected are lower than expected because of the local absorption. The emerging spectra suggest higher density for higher temperature as derived from the observations, proving that a detailed model accounting for a realistic treatment of the local absorption is needed to interpret the observations of X-ray emitting accretion shocks.

Bonito, R.; Argiroffi, C.; Orlando, S.; Miceli, M.

2014-07-01

341

UV excess measures of accretion onto young very low-mass stars and brown dwarfs  

E-print Network

Low-resolution spectra from 3000-9000 AA of young low-mass stars and brown dwarfs were obtained with LRIS on Keck I. The excess UV and optical emission arising in the Balmer and Paschen continua yields mass accretion rates ranging from 2e-12 to 1e-8 Mo/yr. These results are compared with {\\it HST}/STIS spectra of roughly solar-mass accretors with accretion rates that range from 2e-10 to 5e-8 Mo/yr. The weak photospheric emission from M-dwarfs at <4000 A leads to a higher contrast between the accretion and photospheric emission relative to higher-mass counterparts. The mass accretion rates measured here are systematically 4-7 times larger than those from H-alpha emission line profiles, with a difference that is consistent with but unlikely to be explained by the uncertainty in both methods. The accretion luminosity correlates well with many line luminosities, including high Balmer and many He I lines. Correlations of the accretion rate with H-alpha 10% width and line fluxes show a large amount of scatter. Our results and previous accretion rate measurements suggest that accretion rate is proportional to M^(1.87+/-0.26) for accretors in the Taurus Molecular Cloud.

Gregory J. Herczeg; Lynne A. Hillenbrand

2008-01-23

342

High spatial resolution mid-infrared observations of the low-mass young star TW Hya  

E-print Network

We want to improve knowledge of the structure of the inner few AU of the circumstellar disk around the nearby T Tauri star TW Hya. Earlier studies have suggested the existence of a large inner hole, possibly caused by interactions with a growing protoplanet. We used interferometric observations in the N-band obtained with the MIDI instrument on the Very Large Telescope Interferometer, together with 10 micron spectra recorded by the infrared satellite Spitzer. The fact that we were able to determine N-band correlated fluxes and visibilities for this comparatively faint source shows that MIR interferometry can be applied to a large number of low-mass young stellar objects. The MIR spectra obtained with Spitzer reveal emission lines from HI (6-5), HI (7-6), and [Ne II] and show that over 90% of the dust we see in this wavelength regime is amorphous. According to the correlated flux measured with MIDI, most of the crystalline material is in the inner, unresolved part of the disk, about 1 AU in radius. The visibil...

Ratzka, T; Henning, T; Bouwman, J; Dullemond, C P; Jaffe, W

2007-01-01

343

Refining the asteroseismic model for the young delta Scuti star HD 144277 using HARPS spectroscopy  

E-print Network

HD 144277 was previously discovered by MOST space photometry to be a young and hot delta Scuti star showing regular groups of pulsation frequencies. The first asteroseismic models required lower than solar metallicity to fit the observed frequency range based on a purely photometric analysis. High-resolution, high S/N spectroscopic data obtained with the HARPS spectrograph were used to determine the fundamental parameters and chemical abundances of HD 144277. These values were put into context alongside the results from asteroseismic models. The effective temperature, Teff, of HD 144277 was determined as 8640(+300)(-100) K, log g is 4.14 +/- 0.15 and the projected rotational velocity, vsini, is 62.0 +/- 2.0 km/s. As the vsini value is significantly larger than previously assumed, we refined the first asteroseimic model accordingly. The overall metallicity Z was determined to be 0.011 where the light elements He, C, O, Na, and S show solar chemical composition, but the heavier elements are significantly undera...

Zwintz, Konstanze; Lenz, Patrick; Pamyatnykh, Alosha; Fossati, Luca; Sitnova, T; Breger, Michel; Poretti, Ennio; Rainer, Monica; Hareter, Markus; Mantegazza, Luciano

2014-01-01

344

The Impact of Metallicity and Dynamics on the Evolution of Young Star Clusters  

NASA Astrophysics Data System (ADS)

The early evolution of a dense Young Star Cluster (YSC) depends on the intricate connection between stellar evolution and dynamical processes. Thus, N-body simulations of YSCs must account for both aspects. We discuss N-body simulations of YSCs with three different metallicities (Z=0.01, 0.1 and 1 Zsun), including metallicity-dependent stellar evolution recipes and metallicity-dependent prescriptions for stellar winds and remnant formation. We show that mass-loss by stellar winds influences the reversal of core collapse. In particular, the post-collapse expansion of the core is faster in metal-rich YSCs than in metal-poor YSCs, because the former lose more mass (through stellar winds) than the latter. As a consequence, the half-mass radius expands more in metal-poor YSCs. We also discuss how these findings depend on the total mass and on the virial radius of the YSC. These results give us a clue to understand the early evolution of YSCs with different metallicity.

Mapelli, M.; Trani, A. A.; Bressan, A.

2014-09-01

345

Bruck 88: a young star cluster with an old age resemblance in the outskirts of the Small Magellanic Cloud  

NASA Astrophysics Data System (ADS)

We present spectroscopic and photometric results for the Small Magellanic Cloud (SMC) cluster Bruck 88. From the comparison of the cluster integrated spectrum with template cluster spectra, we found that the Milky Way globular cluster template spectra are the ones which best resemble it. However, the extracted cluster colour-magnitude diagram reveals that Bruck 88 is a young cluster (log(t) = 8.1 ± 0.1). The derived cluster age is compatible with the presence of a bright red giant (BRG) star located ˜2.6 arcsec in the sky from the cluster centre. We serendipitously observed HW 33, a star cluster located ?3 arcmin to the south-east from Bruck 88. We obtained for the cluster the same age than Bruck 88 and surprisingly, a BRG star located within the cluster radius also appears to be compatible with the cluster age. We estimated the MK type of the BRG star in the Bruck 88 field to be in the range G9 II/Ib-K1 III. By combining the spectrum of a star within this MK type range with a 100-150 Myr template cluster integrated spectrum, we found that a proportion 85/15 in the sense BRG/template results in a spectrum which best resembles that of Bruck 88. This result confirms that a BRG star dominates the cluster integrated spectrum, so that it causes the globular cluster appearance of its integrated light.

Piatti, Andrés E.

2014-12-01

346

CLOSE COMPANIONS TO YOUNG STARS. I. A LARGE SPECTROSCOPIC SURVEY IN CHAMAELEON I AND TAURUS-AURIGA  

SciTech Connect

We present the results of a multiplicity survey of 212 T Tauri stars in the Chamaeleon I and Taurus-Auriga star-forming regions, based on high-resolution spectra from the Magellan Clay 6.5 m telescope. From these data, we achieved a typical radial velocity (RV) precision of {approx}80 m s{sup -1} with slower rotators yielding better precision, in general. For 174 of these stars, we obtained multi-epoch data with sufficient time baselines to identify binaries based on RV variations. We identified eight close binaries and four close triples, of which three and two, respectively, are new discoveries. The spectroscopic multiplicity fractions we find for Chamaeleon I (7%) and Taurus-Auriga (6%) are similar to each other, and to the results of field star surveys in the same mass and period regime. However, unlike the results from imaging surveys, the frequency of systems with close companions in our sample is not seen to depend on primary mass. Additionally, we do not find a strong correlation between accretion and close multiplicity. This implies that close companions are not likely the main source of the accretion shut down observed in weak-lined T Tauri stars. Our results also suggest that sufficient RV precision can be achieved for at least a subset of slowly rotating young stars to search for hot Jupiter planets.

Nguyen, Duy Cuong; Brandeker, Alexis; Van Kerkwijk, Marten H.; Jayawardhana, Ray, E-mail: nguyen@astro.utoronto.ca, E-mail: mhvk@astro.utoronto.ca, E-mail: rayjay@astro.utoronto.ca, E-mail: dcnguyen@pas.rochester.edu, E-mail: duy.nguyen@astro.su.se, E-mail: alexis@astro.su.se [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada)

2012-02-01

347

Dynamic Young Stars and their Disks: A Temporal View of NGC 2264 with Spitzer and CoRoT  

NASA Astrophysics Data System (ADS)

Variability is a signature feature of young stars. Among the well known light curve phenomena are periodic variations attributed to surface spots and irregular changes associated with accretion or circumstellar disk material. While decades of photometric monitoring have provided a framework for classifying young star variability, we still know surprisingly little about its underlying mechanisms and connections to the surrounding disks. In the past few years, dedicated photometric monitoring campaigns from the ground and space have revolutionized our view of young stars in the time domain. We present a selection of optical and infrared time series from several recent campaigns, highlighting the Coordinated Synoptic Investigation of NGC 2264 ("CSI 2264")- a joint30-day effort with the Spitzer, CoRoT, and MOST telescopes. The extraordinary photometric precision, high cadence, and long time baseline of these observations is now enabling correlation of variability properties at very different wavelengths, corresponding to locations from the stellar surface to the inner 0.1 AU of the disk. We present some results of the CSI 2264 program, including new classes of optical/infrared behavior. Further efforts to tie observed variability features to physical models will provide insights into the inner disk environment at a time when planet formation may be underway. Based on data from the Spitzer and CoRoT missions. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA-s RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain.

Cody, Ann Marie; Stauffer, John; Bouvier, Jèrôme

2014-01-01

348

The embedded young stars in the Taurus-Auriga molecular cloud. I - Models for spectral energy distributions  

NASA Technical Reports Server (NTRS)

We describe radiative transfer calculations of infalling, dusty envelopes surrounding pre-main-sequence stars and use these models to derive physical properties for a sample of 21 heavily reddened young stars in the Taurus-Auriga molecular cloud. The density distributions needed to match the FIR peaks in the spectral energy distributions of these embedded sources suggest mass infall rates similar to those predicted for simple thermally supported clouds with temperatures about 10 K. Unless the dust opacities are badly in error, our models require substantial departures from spherical symmetry in the envelopes of all sources. These flattened envelopes may be produced by a combination of rotation and cavities excavated by bipolar flows. The rotating infall models of Terebey et al. (1984) models indicate a centrifugal radius of about 70 AU for many objects if rotation is the only important physical effect, and this radius is reasonably consistent with typical estimates for the sizes of circumstellar disks around T Tauri stars.

Kenyon, Scott J.; Calvet, Nuria; Hartmann, Lee

1993-01-01

349

Star formation history of CMa R1: I. Wide-field X-ray study of the young stellar population  

E-print Network

The CMa R1 star-forming region contains several compact clusters as well as many young early-B stars. It is associated with a well-known bright rimmed nebula, the nature of which is unclear (fossil HII region or supernova remnant). To help elucidate the nature of the nebula, our goal was to reconstruct the star-formation history of the CMa R1 region, including the previously unknown older, fainter low-mass stellar population, using X-rays. We analyzed images obtained with the ROSAT satellite, covering ~5 sq. deg. Complementary VRI photometry was performed with the Gemini South telescope. Colour-magnitude and colour-colour diagrams were used in conjunction with pre-main sequence evolutionary tracks to derive the masses and ages of the X-ray sources. The ROSAT images show two distinct clusters. One is associated with the known optical clusters near Z CMa, to which ~40 members are added. The other, which we name the "GU CMa" cluster, is new, and contains ~60 members. The ROSAT sources are young stars with masses...

Gregorio-Hetem, J; Rodrigues, C V; Marciotto, E; Preibisch, T; Zinnecker, H

2009-01-01

350

Near-IR integral field spectroscopy of ionizing stars and young stellar objects on the borders of HII regions  

E-print Network

We present near-IR SINFONI observations of three Galactic HII regions: RVW79, RCW82 and RCW120. We identify the ionizing stars of each region: they are early to late O stars, close to the main sequence. We derive their stellar and wind properties using atmosphere models computed with the code CMFGEN. The cluster ionizing RCW~79 formed 2.3+/-0.5 Myr ago. Similar ages are estimated, albeit with a larger uncertainty, for the ionizing stars of the other two regions. In RCW79 the mechanical wind luminosity represents only 0.1% of the ionizing luminosity, questioning the influence of stellar winds on the dynamics of the the HII region. The young stellar objects show four main types of spectral features: H2 emission, Br gamma emission, CO bandheads emission and CO bandheads absorption. These features are typical of young stellar objects surrounded by disks and/or envelopes. The radial velocities of most YSOs are consistent with that of the ionized gas, firmly establishing that star formation is taking place on the b...

Martins, F; Deharveng, L; Zavagno, A; Bouret, J -C

2009-01-01

351

Kepler-63b: A Giant Planet in a Polar Orbit around a Young Sun-like Star  

NASA Astrophysics Data System (ADS)

We present the discovery and characterization of a giant planet orbiting the young Sun-like star Kepler-63 (KOI-63, m Kp = 11.6, T eff = 5576 K, M sstarf = 0.98 M ?). The planet transits every 9.43 days, with apparent depth variations and brightening anomalies caused by large starspots. The planet's radius is 6.1 ± 0.2 R ?, based on the transit light curve and the estimated stellar parameters. The planet's mass could not be measured with the existing radial-velocity data, due to the high level of stellar activity, but if we assume a circular orbit, then we can place a rough upper bound of 120 M ? (3?). The host star has a high obliquity (? = 104°), based on the Rossiter-McLaughlin effect and an analysis of starspot-crossing events. This result is valuable because almost all previous obliquity measurements are for stars with more massive planets and shorter-period orbits. In addition, the polar orbit of the planet combined with an analysis of spot-crossing events reveals a large and persistent polar starspot. Such spots have previously been inferred using Doppler tomography, and predicted in simulations of magnetic activity of young Sun-like stars.

Sanchis-Ojeda, Roberto; Winn, Joshua N.; Marcy, Geoffrey W.; Howard, Andrew W.; Isaacson, Howard; Johnson, John Asher; Torres, Guillermo; Albrecht, Simon; Campante, Tiago L.; Chaplin, William J.; Davies, Guy R.; Lund, Mikkel N.; Carter, Joshua A.; Dawson, Rebekah I.; Buchhave, Lars A.; Everett, Mark E.; Fischer, Debra A.; Geary, John C.; Gilliland, Ronald L.; Horch, Elliott P.; Howell, Steve B.; Latham, David W.

2013-09-01

352

KEPLER-63b: A GIANT PLANET IN A POLAR ORBIT AROUND A YOUNG SUN-LIKE STAR  

SciTech Connect

We present the discovery and characterization of a giant planet orbiting the young Sun-like star Kepler-63 (KOI-63, m{sub Kp} = 11.6, T{sub eff} = 5576 K, M{sub *} = 0.98 M{sub ?}). The planet transits every 9.43 days, with apparent depth variations and brightening anomalies caused by large starspots. The planet's radius is 6.1 ± 0.2 R{sub ?}, based on the transit light curve and the estimated stellar parameters. The planet's mass could not be measured with the existing radial-velocity data, due to the high level of stellar activity, but if we assume a circular orbit, then we can place a rough upper bound of 120 M{sub ?} (3?). The host star has a high obliquity (? = 104°), based on the Rossiter-McLaughlin effect and an analysis of starspot-crossing events. This result is valuable because almost all previous obliquity measurements are for stars with more massive planets and shorter-period orbits. In addition, the polar orbit of the planet combined with an analysis of spot-crossing events reveals a large and persistent polar starspot. Such spots have previously been inferred using Doppler tomography, and predicted in simulations of magnetic activity of young Sun-like stars.

Sanchis-Ojeda, Roberto; Winn, Joshua N.; Albrecht, Simon [Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Marcy, Geoffrey W.; Isaacson, Howard [Astronomy Department, University of California, Berkeley, CA 94720 (United States); Howard, Andrew W. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Johnson, John Asher [Department of Astronomy, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Torres, Guillermo; Carter, Joshua A.; Dawson, Rebekah I.; Geary, John C. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Campante, Tiago L.; Chaplin, William J.; Davies, Guy R. [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Lund, Mikkel N. [Stellar Astrophysics Centre (SAC), Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Buchhave, Lars A. [Niels Bohr Institute, University of Copenhagen, Juliane Maries vej 30, DK-2100 Copenhagen (Denmark); Everett, Mark E. [National Optical Astronomy Observatory, 950 N. Cherry Ave, Tucson, AZ 85719 (United States); Fischer, Debra A. [Astronomy Department, Yale University, New Haven, CT (United States); Gilliland, Ronald L. [Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Horch, Elliott P. [Southern Connecticut State University, New Haven, CT 06515 (United States); and others

2013-09-20

353

Can the structure of an explosive caldera affect eruptive behaviour?  

Microsoft Academic Search

Explosive caldera volcanoes cause catastrophic events at the Earth's surface, yet we know little about how their internal structures evolve with time, and whether this can affect both differentiation and eruptive behaviour. Distinguishing how structural evolution impacts upon eruption behaviour and periodicity is challenging because the resolution of eruption frequencies can be difficult at ancient exhumed calderas, whereas at young

C. P. Willcox; M. Branney; G. Carrasco-Nuñez; D. Barford

2010-01-01

354

Rotational Velocities for B0-B3 Stars in Seven Young Clusters: Further Study of the Relationship between Rotation Speed and Density in Star-Forming Regions  

NASA Astrophysics Data System (ADS)

We present the results of a study aimed at assessing the differences in the distribution of rotation speeds N(vsini) among young (1-15 Myr) B stars spanning a range of masses 6 Msolar>1 Msolar pc-3) ensembles that will survive as rich, bound stellar clusters for ages well in excess of 108 yr. Our results demonstrate (1) that independent of environment, the rotation rates for stars in this mass range do not change by more than 0.1 dex over ages t~1 to ~15 Myr; and (2) that stars formed in high-density regions lack the cohort of slow rotators that dominate the low-density regions and young field stars. We suggest that the differences in N(vsini) between low- and high-density regions may reflect a combination of initial conditions and environmental effects: (1) the higher turbulent speeds that characterize molecular gas in high-density, cluster-forming regions; and (2) the stronger UV radiation fields and high stellar densities that characterize such regions. Higher turbulent speeds may lead to higher time-averaged accretion rates during the stellar assembly phase. In the context of stellar angular momentum regulation via ``disk-locking,'' higher accretion rates lead to both higher initial angular momenta and evolution-driven increases in surface rotation rates as stars contract from the birth line to the zero-age main sequence (ZAMS). Stronger UV radiation fields and higher densities may lead to shorter disk lifetimes in cluster-forming regions. If so, B stars formed in dense clusters are more likely to be ``released'' from their disks early during their pre-main-sequence lifetimes and evolve into rapid rotators as they conserve angular momentum and spin up in response to contraction. By contrast, the majority of their brethren in low-density, association-forming regions can retain their disks for much or all of their pre-main-sequence lifetimes, are ``locked'' by their disks to rotate at constant angular speed, and lose angular momentum as they contract toward the ZAMS, and thus arrive on the ZAMS as relatively slowly rotating stars.

Wolff, S. C.; Strom, S. E.; Dror, D.; Venn, K.

2007-03-01

355

Gas surface density, star formation rate surface density, and the maximum mass of young star clusters in a disk galaxy. I. The flocculent galaxy M33  

E-print Network

We analyze the relationship between maximum cluster mass, M_max, and surface densities of total gas (Sigma_gas), molecular gas (Sigma_H2) and star formation rate (Sigma_SFR) in the flocculent galaxy M33, using published gas data and a catalog of more than 600 young star clusters in its disk. By comparing the radial distributions of gas and most massive cluster masses, we find that M_max is proportional to Sigma_gas^4.7, M_max is proportional Sigma_H2^1.3, and M_max is proportional to Sigma_SFR^1.0. We rule out that these correlations result from the size of sample; hence, the change of the maximum cluster mass must be due to physical causes.

Gonzalez-Lopezlira, Rosa A; Kroupa, Pavel

2012-01-01

356

GAS SURFACE DENSITY, STAR FORMATION RATE SURFACE DENSITY, AND THE MAXIMUM MASS OF YOUNG STAR CLUSTERS IN A DISK GALAXY. I. THE FLOCCULENT GALAXY M 33  

SciTech Connect

We analyze the relationship between maximum cluster mass M{sub max} and surface densities of total gas ({Sigma}{sub gas}), molecular gas ({Sigma}{sub H{sub 2}}), and star formation rate ({Sigma}{sub SFR}) in the flocculent galaxy M 33, using published gas data and a catalog of more than 600 young star clusters in its disk. By comparing the radial distributions of gas and most massive cluster masses, we find that M{sub max}{proportional_to}{Sigma}{sup 4.7{+-}0.4}{sub gas}, M{sub max}{proportional_to}{Sigma}{sup 1.3{+-}0.1}{sub H{sub 2}}, and M{sub max}{proportional_to}{Sigma}{sup 1.0{+-}0.1}{sub SFR}. We rule out that these correlations result from the size of the sample; hence, the change of the maximum cluster mass must be due to physical causes.

Gonzalez-Lopezlira, Rosa A.; Pflamm-Altenburg, Jan; Kroupa, Pavel, E-mail: r.gonzalez@crya.unam.mx [Argelander Institut fuer Astronomie, Universitaet Bonn, Auf dem Huegel 71, D-53121 Bonn (Germany)

2012-12-20

357

Star formation history of Canis Major R1. I. Wide-Field X-ray study of the young stellar population  

Microsoft Academic Search

Aims: The CMa R1 star-forming region contains several compact clusters as well as many young early-B stars. It is associated with a well-known bright rimmed nebula, the nature of which is unclear (fossil HII region or supernova remnant). To help elucidate the nature of the nebula, our goal was to reconstruct the star-formation history of the CMa R1 region, including

J. Gregorio-Hetem; T. Montmerle; C. V. Rodrigues; E. Marciotto; T. Preibisch; H. Zinnecker

2009-01-01

358

Rotating molecular outflows: the young T Tauri star in CB 26  

NASA Astrophysics Data System (ADS)

Context: The disk-outflow connection is thought to play a key role in extracting excess angular momentum from a forming proto-star. Although jet rotation has been observed in a few objects, no rotation of molecular outflows has been unambiguously reported so far. Aims: We report new millimeter-interferometric observations of the edge-on T Tauri star - disk system in the isolated Bok globule CB 26. The aim of these observations was to study the disk-outflow relation in this 1 Myr old low-mass young stellar object. Methods: The IRAM PdBI array was used to observe 12CO(2-1) at 1.3 mm in two configurations, resulting in spectral line maps with 1.5´´ resolution. We use an empirical parameterized steady-state outflow model combined with 2-D line radiative transfer calculations and ?^2-minimization in parameter space to derive a best-fit model and constrain parameters of the outflow. Results: The data reveal a previously undiscovered collimated bipolar molecular outflow of total length ?2000 AU, escaping perpendicular to the plane of the disk. We find peculiar kinematic signatures that suggest that the outflow is rotating with the same orientation as the disk. However, we could not ultimately exclude jet precession or two misaligned flows as possible origins of the observed peculiar velocity field. There is indirect indication that the embedded driving source is a binary system, which, together with the youth of the source, could provide a clue to the observed kinematic features of the outflow. Conclusions: CB 26 is so far the most promising source in which to study the rotation of a molecular outflow. Assuming that the outflow is rotating, we compute and compare masses, mass flux, angular momenta, and angular momentum flux of the disk and outflow and derive disk dispersal timescales of 0.5 ldots 1 Myr, comparable to the age of the system. Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain). Also based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC). A complete set of channel maps is available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/494/147.

Launhardt, R.; Pavlyuchenkov, Ya.; Gueth, F.; Chen, X.; Dutrey, A.; Guilloteau, S.; Henning, Th.; Piétu, V.; Schreyer, K.; Semenov, D.

2009-01-01

359

Magnetic Cycles in a Convective Dynamo Simulation of a Young Solar-type Star  

NASA Astrophysics Data System (ADS)

Young solar-type stars rotate rapidly and many are magnetically active. Some appear to undergo magnetic cycles similar to the 22 yr solar activity cycle. We conduct simulations of dynamo action in rapidly rotating suns with the three-dimensional magnetohydrodynamic anelastic spherical harmonic (ASH) code to explore dynamo action achieved in the convective envelope of a solar-type star rotating at five times the current solar rotation rate. We find that dynamo action builds substantial organized global-scale magnetic fields in the midst of the convection zone. Striking magnetic wreaths span the convection zone and coexist with the turbulent convection. A surprising feature of this wreath-building dynamo is its rich time dependence. The dynamo exhibits cyclic activity and undergoes quasi-periodic polarity reversals where both the global-scale poloidal and toroidal fields change in sense on a roughly 1500 day timescale. These magnetic activity patterns emerge spontaneously from the turbulent flow and are more organized temporally and spatially than those realized in our previous simulations of the solar dynamo. We assess in detail the competing processes of magnetic field creation and destruction within our simulations that contribute to the global-scale reversals. We find that the mean toroidal fields are built primarily through an ?-effect, while the mean poloidal fields are built by turbulent correlations which are not well represented by a simple ?-effect. During a reversal the magnetic wreaths propagate toward the polar regions, and this appears to arise from a poleward propagating dynamo wave. As the magnetic fields wax and wane in strength and flip in polarity, the primary response in the convective flows involves the axisymmetric differential rotation which varies on similar timescales. Bands of relatively fast and slow fluid propagate toward the poles on timescales of roughly 500 days and are associated with the magnetic structures that propagate in the same fashion. In the Sun, similar patterns are observed in the poleward branch of the torsional oscillations, and these may represent poleward propagating magnetic fields deep below the solar surface.

Brown, Benjamin P.; Miesch, Mark S.; Browning, Matthew K.; Brun, Allan Sacha; Toomre, Juri

2011-04-01

360

MAGNETIC CYCLES IN A CONVECTIVE DYNAMO SIMULATION OF A YOUNG SOLAR-TYPE STAR  

SciTech Connect

Young solar-type stars rotate rapidly and many are magnetically active. Some appear to undergo magnetic cycles similar to the 22 yr solar activity cycle. We conduct simulations of dynamo action in rapidly rotating suns with the three-dimensional magnetohydrodynamic anelastic spherical harmonic (ASH) code to explore dynamo action achieved in the convective envelope of a solar-type star rotating at five times the current solar rotation rate. We find that dynamo action builds substantial organized global-scale magnetic fields in the midst of the convection zone. Striking magnetic wreaths span the convection zone and coexist with the turbulent convection. A surprising feature of this wreath-building dynamo is its rich time dependence. The dynamo exhibits cyclic activity and undergoes quasi-periodic polarity reversals where both the global-scale poloidal and toroidal fields change in sense on a roughly 1500 day timescale. These magnetic activity patterns emerge spontaneously from the turbulent flow and are more organized temporally and spatially than those realized in our previous simulations of the solar dynamo. We assess in detail the competing processes of magnetic field creation and destruction within our simulations that contribute to the global-scale reversals. We find that the mean toroidal fields are built primarily through an {Omega}-effect, while the mean poloidal fields are built by turbulent correlations which are not well represented by a simple {alpha}-effect. During a reversal the magnetic wreaths propagate toward the polar regions, and this appears to arise from a poleward propagating dynamo wave. As the magnetic fields wax and wane in strength and flip in polarity, the primary response in the convective flows involves the axisymmetric differential rotation which varies on similar timescales. Bands of relatively fast and slow fluid propagate toward the poles on timescales of roughly 500 days and are associated with the magnetic structures that propagate in the same fashion. In the Sun, similar patterns are observed in the poleward branch of the torsional oscillations, and these may represent poleward propagating magnetic fields deep below the solar surface.

Brown, Benjamin P. [Department of Astronomy, University of Wisconsin, Madison, WI 53706-1582 (United States); Miesch, Mark S. [High Altitude Observatory, NCAR, Boulder, CO 80307-3000 (United States); Browning, Matthew K. [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S3H8 (Canada); Brun, Allan Sacha [Laboratoire AIM Paris-Saclay, CEA/Irfu Universite Paris-Diderot CNRS/INSU, 91191 Gif-sur-Yvette Cedex (France); Toomre, Juri, E-mail: bpbrown@astro.wisc.edu [JILA and Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309-0440 (United States)

2011-04-10

361

Near-infrared Variability among Young Stellar Objects in the Star Formation Region Cygnus OB7  

NASA Astrophysics Data System (ADS)

We present an analysis of near-infrared time-series photometry in J, H, and K bands for about 100 epochs of a 1° × 1° region of the Lynds 1003/1004 dark cloud in the Cygnus OB7 region. Augmented by data from the Wide-field Infrared Survey Explorer, we identify 96 candidate disk bearing young stellar objects (YSOs) in the region. Of these, 30 are clearly Class I or earlier. Using the Wide-Field Imaging Camera on the United Kingdom Infrared Telescope, we were able to obtain photometry over three observing seasons, with photometric uncertainty better than 0.05 mag down to J ? 17. We study detailed light curves and color trajectories of ~50 of the YSOs in the monitored field. We investigate the variability and periodicity of the YSOs and find the data are consistent with all YSOs being variable in these wavelengths on timescales of a few years. We divide the variability into four observational classes: (1) stars with periodic variability stable over long timescales, (2) variables which exhibit short-lived cyclic behavior, (3) long-duration variables, and (4) stochastic variables. Some YSO variability defies simple classification. We can explain much of the observed variability as being due to dynamic and rotational changes in the disk, including an asymmetric or changing blocking fraction, changes to the inner disk hole size, as well as changes to the accretion rate. Overall, we find that the Class I:Class II ratio of the cluster is consistent with an age of <1 Myr, with at least one individual, wildly varying source ~100, 000 yr old. We have also discovered a Class II eclipsing binary system with a period of 17.87 days.

Wolk, Scott J.; Rice, Thomas S.; Aspin, Colin

2013-08-01

362

A 3-5$?$m VLT spectroscopic survey of embedded young low mass stars II; OCN$^-$  

E-print Network

The 4.62$\\mu$m (2164.5 cm$^{-1}$) `XCN' band has been detected in the $M$-band spectra of 34 deeply embedded young stellar objects (YSO's), observed with high signal-to-noise and high spectral resolution with the VLT-ISAAC spectrometer, providing the first opportunity to study the solid OCN$^-$ abundance toward a large number of low-mass YSO's. It is shown unequivocally that at least two components, centred at 2165.7 cm$^{-1}$ (FWHM = 26 cm$^{-1}$) and 2175.4 cm$^{-1}$ (FWHM = 15 cm$^{-1}$), underlie the XCN band. Only the 2165.7-component can be ascribed to OCN$^-$, embedded in a strongly hydrogen-bonding, and possibly thermally annealed, ice environment based on laboratory OCN$^-$ spectra. In order to correct for the contribution of the 2175.4-component to the XCN band, a phenomenological decomposition into the 2165.7- and the 2175.4-components is used to fit the full band profile and derive the OCN$^-$ abundance for each line-of-sight. The same analysis is performed for 5 high-mass YSO's taken from the ISO-SWS data archive. Inferred OCN$^-$ abundances are $\\leq$ 0.85 % toward low-mass YSO's and $\\leq$ 1 % toward high-mass YSO's, except for W33 A. Abundances are found to vary by at least a factor of 10--20 and large source-to-source abundance variations are observed within the same star-forming cloud complex on scales down to 400 AU, indicating that the OCN$^-$ formation mechanism is sensitive to local conditions. The inferred abundances allow quantitatively for photochemical formation of OCN$^-$, but the large abundance variations are not easily explained in this scenario unless local radiation sources or special geometries are invoked. Surface chemistry should therefore be considered as an alternative formation mechanism.

F. A. van Broekhuizen; K. M. Pontoppidan; H. J. Fraser; E. F. van Dishoeck

2005-08-25

363

Spectroscopic confirmation of very low-mass stars and brown dwarf candidates in nearby, young moving groups  

NASA Astrophysics Data System (ADS)

Extending the current census of young nearby associations toward lower masses is essential to study the IMF at a few Myr down to substellar masses and understand the evolution and atmospheres of young brown dwarfs. Based on the proper motions and photometric properties of a large sample of red stars derived from a correlation of 2MASS with WISE, we identified 190 highly probable late-type (> M5) members of the Beta Pictoris and TW Hydrae moving groups and Tucana-Horologium association, as well as 6 other young associations. As the youth (i.e. low surface gravity) of such objects should be apparent from the shape of their near-infrared spectrum as well as some atomic lines (e.g. KI doublets), we propose to use OSIRIS to obtain near-infrared spectra and confirm the membership of 75 candidates only visible in the southern hemisphere. This program will unveil a significant population of young brown dwarfs, down to the planetary mass regime, in close-by young moving groups, providing high-quality template spectra as benchmarks for evolutionary models.

Gagne, Jonathan; Doyon, Rene; Lafreniere, David; Malo, Lison; Artigau, Etienne

2013-02-01

364

THE GEMINI NICI PLANET-FINDING CAMPAIGN: DISCOVERY OF A MULTIPLE SYSTEM ORBITING THE YOUNG A STAR HD 1160  

SciTech Connect

We report the discovery of two low-mass companions to the young A0V star HD 1160 at projected separations of 81 {+-} 5 AU (HD 1160 B) and 533 {+-} 25 AU (HD 1160 C) by the Gemini NICI Planet-Finding Campaign. Very Large Telescope images of the system taken over a decade for the purpose of using HD 1160 A as a photometric calibrator confirm that both companions are physically associated. By comparing the system to members of young moving groups and open clusters with well-established ages, we estimate an age of 50{sup +50}{sub -40} Myr for HD 1160 ABC. While the UVW motion of the system does not match any known moving group, the small magnitude of the space velocity is consistent with youth. Near-IR spectroscopy shows HD 1160 C to be an M3.5 {+-} 0.5 star with an estimated mass of 0.22{sup +0.03}{sub -0.04} M{sub Sun }, while NIR photometry of HD 1160 B suggests a brown dwarf with a mass of 33{sup +12}{sub -9} M{sub Jup}. The very small mass ratio (0.014) between the A and B components of the system is rare for A star binaries, and would represent a planetary-mass companion were HD 1160 A to be slightly less massive than the Sun.

Nielsen, Eric L.; Liu, Michael C.; Wahhaj, Zahed; Bowler, Brendan; Kraus, Adam; Chun, Mark; Ftaclas, Christ [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Biller, Beth A. [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, 69117 Heidelberg (Germany); Hayward, Thomas L. [Gemini Observatory, Southern Operations Center, c/o AURA, Casilla 603, La Serena (Chile); Boss, Alan [Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road, N.W., Washington, DC 20015 (United States); Shkolnik, Evgenya L. [Lowell Observatory, 1400 West Mars Road, Flagstaff, AZ 86001 (United States); Tecza, Matthias; Clarke, Fraser [Department of Astronomy, University of Oxford, DWB, Keble Road, Oxford OX1 3RH (United Kingdom); Close, Laird M.; Hartung, Markus; Males, Jared R.; Skemer, Andrew J. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Reid, I. Neill [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Alencar, Silvia H. P. [Departamento de Fisica, ICEx, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, 30270-901, Belo Horizonte, MG (Brazil); Burrows, Adam [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); and others

2012-05-01

365

YOUNG STARS NEAR EARTH: THE OCTANS-NEAR ASSOCIATION AND CASTOR MOVING GROUP  

SciTech Connect

All cataloged stellar moving groups and associations with ages ?100 Myr and within 100 pc of Earth have Galactic space motions (UVW) situated in a 'good box' with dimensions ?20 km s{sup –1} on a side. Torres et al. defined the Octans Association as a group of 15 stars with age '20 Myr?' and located ?140 pc from Earth, but with average V space velocity –3.6 km s{sup –1} that is well outside of the good box. We present a list of 14 Hipparcos star systems within 100 pc of Earth that we call {sup O}ctans-Near{sup ;} these systems have UVW similar to those of the much more distant Octans Association. The Octans-Near stars have apparent ages between about 30 and 100 Myr and their relationship to the Octans Association stars is unclear. Six additional star systems have UVW similar to those of Octans-Near stars and likely ages ?200 Myr. These six systems include the late-type binary star EQ Peg—6.2 pc from Earth with likely age ?100 Myr and thus likely to be the nearest known pre-main sequence star system. The UVW of stars in a previously proposed ?200 Myr old Castor moving group are not too dissimilar from the UVW of Octans-Near stars. However, stars in the Castor group—if it exists at all—are mostly substantially older than 200 Myr and thus generally can readily be distinguished from the much younger Octans-Near stars.

Zuckerman, B.; Vican, Laura [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Song, Inseok [Department of Physics and Astronomy, University of Georgia, Athens, GA 30602-2451 (United States); Schneider, Adam, E-mail: ben@astro.ucla.edu, E-mail: lvican@ucla.edu, E-mail: song@uga.edu, E-mail: Adam.Schneider@Utoledo.edu [Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606 (United States)

2013-11-20

366

Dynamics of stellar black holes in young star clusters with different metallicities - I. Implications for X-ray binaries  

E-print Network

We present N-body simulations of intermediate-mass (3000-4000 Msun) young star clusters (SCs) with three different metallicities (Z=0.01, 0.1 and 1 Zsun), including metal-dependent stellar evolution recipes and binary evolution. Following recent theoretical models of wind mass loss and core collapse supernovae, we assume that the mass of the stellar remnants depends on the metallicity of the progenitor stars. In particular, massive metal-poor stars (Z=25 Msun) through direct collapse. We find that three-body encounters, and especially dynamical exchanges, dominate the evolution of the MSBHs formed in our simulations. In SCs with Z=0.01 and 0.1 Zsun, about 75 per cent of simulated MSBHs form from single stars and become members of binaries through dynamical exchanges in the first 100 Myr of the SC life. This is a factor of >~3 more efficient than in the case of low-mass (power wind-accreting (10-20 per cent) and Roche lobe overflow ...

Mapelli, M; Ripamonti, E; Bressan, A

2012-01-01

367

Constraints on eruption processes and source conditions of explosive caldera-forming events using volcanogenic tsunamis: insights from the Krakatau and Kikai eruptions  

Microsoft Academic Search

Caldera-forming eruptions are catastrophic volcanic events that pose one of the great natural hazards on earth. The 1883 eruption of Krakatau in Indonesia (VEI 6) and the 7.3 ka Kikai eruption (VEI 7) of Japan are the representative of young marine caldera-forming eruptions. Although these eruptions must have significantly and devastatingly affected the development of coastal human activities and environments

F. Maeno; F. Imamura

2010-01-01

368

POPULATION SYNTHESIS OF YOUNG ISOLATED NEUTRON STARS: THE EFFECT OF FALLBACK DISK ACCRETION AND MAGNETIC FIELD EVOLUTION  

SciTech Connect

The spin evolution of isolated neutron stars (NSs) is dominated by their magnetic fields. The measured braking indices of young NSs show that the spin-down mechanism due to magnetic dipole radiation with constant magnetic fields is inadequate. Assuming that the NS magnetic field is buried by supernova fallback matter and re-emerges after accretion stops, we carry out a Monte Carlo simulation of the evolution of young NSs, and show that most of the pulsars have braking indices ranging from –1 to 3. The results are compatible with the observational data of NSs associated with supernova remnants. They also suggest that the initial spin periods of NSs might occupy a relatively wide range.

Fu, Lei; Li, Xiang-Dong, E-mail: lixd@nju.edu.cn [Department of Astronomy, Nanjing University, Nanjing 210093 (China)

2013-10-01

369

Age-Related Observations of Low Mass Pre-Main and Young Main Sequence Stars (Invited Review)  

E-print Network

This overview summarizes the age dating methods available for young sub-solar mass stars. Pre-main sequence age diagnostics include the Hertzsprung-Russell (HR) diagram, spectroscopic surface gravity indicators, and lithium depletion; asteroseismology is also showing recent promise. Near and beyond the zero-age main sequence, rotation period or vsini and activity (coronal and chromospheric) diagnostics along with lithium depletion serve as age proxies. Other authors in this volume present more detail in each of the aforementioned areas. Herein, I focus on pre-main sequence HR diagrams and address the questions: Do empirical young cluster isochrones match theoretical isochrones? Do isochrones predict stellar ages consistent with those derived via other independent techniques? Do the observed apparent luminosity spreads at constant effective temperature correspond to true age spreads? While definitive answers to these questions are not provided, some methods of progression are outlined.

Lynne A. Hillenbrand

2008-12-06

370

Young stars between the Magellanic Clouds. II - an association on the far-west side of the LMC halo  

NASA Astrophysics Data System (ADS)

This paper presents CCD B,V photometry of a group of blue stars located in the southwest LMC halo, 6.4 deg from its optical center. This association, barely 100 million years old, is the last of a string of young stellar aggregates extending from the wing of the SMC to the LMC halo. Located at distance of (V-Mv)0 = 18.7, it must lie in the far side of the LMC halo. Its CMD contrasts strongly with the one of the intermediate-age population of the LMC halo, seen in adjacent frames, which appears to be older than about 0.8 Gyrs.

Demers, Serge; Grondin, Luc; Irwin, M. J.; Kunkel, W. E.

1991-03-01

371

An Icy Kuiper-Belt Around the Young Solar-Type Star HD 181327  

NASA Technical Reports Server (NTRS)

HD 181327 is a young Main Sequence F5/F6 V star belonging to the Beta Pictoris moving group (age approx 12 Myr). It harbors an optically thin belt of circumstellar material at approx90 AU, presumed to result from collisions in a populat.ion of unseen planetesimals. Aims. We aim to study the dust properties in the belt in great details, and to constrain the gas-to-dust ratio. Methods. We obtained far-IR photometric observations of HD 181327 with the PACS instrument onboard the Herschel Space Observatory, complemented by new 3.2 nun observations carried with the ATCA array. The geometry of the belt is constrained with newly reduced HST /NICMOS scattered light images that break the degeneracy between the disk geometry and the dust properties. We then use the radiative transfer code GRaTer to compute a large grid of dust models, and we apply a Bayesian inference method to identify the grain models that best reproduce the SED. We attempt to detect the oxygen and ionized carbon fine-structure lines with Herschel/PACS spectroscopy, providing observables to our photochemical code ProDiMo. Results. The HST observations confirm that the dust is confined in a narrow belt. The continuum is detected with Herschel/PACS completing nicely the SED in the far-infrared. The disk is marginally resolved with both PACS and ATCA. A medium integration of the gas spectral lines only provides upper limits on the [OI] and [CII] line fluxes. We show that the HD 181327 dust disk consists of micron-sized grains of porous amorphous silicates and carbonaceous material surrounded by an import.ant layer of ice for a total dust mass of approx 0.05 stellar Mass. We discuss evidences that the grains consists of fluffy aggregates. The upper limits on the gas atomic lines do not provide unambiguous constraints: only if the PAH abundance is high, the gas mass must be lower than approx 17 Stellar Mass Conclusions. Despite the weak constraints on the gas disk, the age of HD 181327 and the properties of the dust disk suggest that it has passed the stage of gaseous planets formation. The dust reveals a population of icy planetesimals, similar to the primitive Edgeworth-Kuiper Belt, that may be a source for the future delivery of water and volatiles onto forming terrestrial planets.

Lebreton, J.; Augereau, J.-C.; Thi, W.-F.; Roberge, A.; Donaldson, J.; Schneider, G.; Maddison, S. T.; Menard, F.; Riviere-Marichalar, P.; Mathews, G. S.; Kamp, I.; Pinte, C.; Dent, W. R. F.; Barrado, D.; Duchene, G.; Gonzalez, J.-F.; Grady, C. A.; Meeus, G.; Pantin, E.; Williams, J. P.; Woitke, P.

2011-01-01