These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Transforming growth factor-? signalling controls human breast cancer metastasis in a zebrafish xenograft model  

PubMed Central

Introduction The transforming growth factor beta (TGF-?) signalling pathway is known to control human breast cancer invasion and metastasis. We demonstrate that the zebrafish xenograft assay is a robust and dependable animal model for examining the role of pharmacological modulators and genetic perturbation of TGF-? signalling in human breast tumour cells. Methods We injected cancer cells into the embryonic circulation (duct of cuvier) and examined their invasion and metastasis into the avascular collagenous tail. Various aspects of the TGF-? signalling pathway were blocked by chemical inhibition, small interfering RNA (siRNA), or small hairpin RNA (shRNA). Analysis was conducted using fluorescent microscopy. Results Breast cancer cells with different levels of malignancy, according to in vitro and in vivo mouse studies, demonstrated invasive and metastatic properties within the embryonic zebrafish model that nicely correlated with their differential tumourigenicity in mouse models. Interestingly, MCF10A M2 and M4 cells invaded into the caudal hematopoietic tissue and were visible as a cluster of cells, whereas MDA MB 231 cells invaded into the tail fin and were visible as individual cells. Pharmacological inhibition with TGF-? receptor kinase inhibitors or tumour specific Smad4 knockdown disturbed invasion and metastasis in the zebrafish xenograft model and closely mimicked the results we obtained with these cells in a mouse metastasis model. Inhibition of matrix metallo proteinases, which are induced by TGF-? in breast cancer cells, blocked invasion and metastasis of breast cancer cells. Conclusions The zebrafish-embryonic breast cancer xenograft model is applicable for the mechanistic understanding, screening and development of anti-TGF-? drugs for the treatment of metastatic breast cancer in a timely and cost-effective manner. PMID:24196484

2013-01-01

2

Modeling Neurodegeneration in Zebrafish  

Microsoft Academic Search

The zebrafish, Danio rerio, has been established as an excellent vertebrate model for the study of developmental biology and gene function. It also\\u000a has proven to be a valuable model to study human diseases. Here, we reviewed recent publications using zebrafish to study\\u000a the pathology of human neurodegenerative diseases including Parkinson’s, Huntington’s, and Alzheimer’s. These studies indicate\\u000a that zebrafish genes

Yanwei Xi; Sandra Noble; Marc Ekker

2011-01-01

3

Mouse Xenograft Model for Mesothelioma  

Cancer.gov

The National Cancer Institute is seeking parties interested in collaborative research to co-develop, evaluate, or commercialize a new mouse model for monoclonal antibodies and immunoconjugates that target malignant mesotheliomas.

4

Hooked! Modeling human disease in zebrafish  

PubMed Central

Zebrafish have been widely used as a model system for studying developmental processes, but in the last decade, they have also emerged as a valuable system for modeling human disease. The development and function of zebrafish organs are strikingly similar to those of humans, and the ease of creating mutant or transgenic fish has facilitated the generation of disease models. Here, we highlight the use of zebrafish for defining disease pathways and for discovering new therapies. PMID:22751109

Santoriello, Cristina; Zon, Leonard I.

2012-01-01

5

Zebrafish as a model for human osteosarcoma.  

PubMed

For various reasons involving biological comparativeness, expansive technological possibilities, accelerated experimental speed, and competitive costs, zebrafish has become a comprehensive model for cancer research. Hence, zebrafish embryos and full-grown fish have been instrumental for studies of leukemia, melanoma, pancreatic cancer, bone tumors, and other malignancies. Although because of its similarities to human osteogenesis zebrafish appears to be an appealing model to investigate osteosarcoma, only a few osteosarcoma specific studies have been accomplished yet. Here, we review interesting related and unrelated reports of which the findings might be extrapolated to osteosarcoma. More importantly, rational but yet unexplored applications of zebrafish are debated to expand the window of opportunities for future establishment of osteosarcoma models. Accordingly technological advances of zebrafish based cancer research, such as robotic high-throughput multicolor injection systems and advanced imaging methods are discussed. Furthermore, various use of zebrafish embryos for screening drug regimens by combinations of chemotherapy, novel drug deliverers, and immune system modulators are suggested. Concerning the etiology, the high degree of genetic similarity between zebrafish and human cancers indicates that affected regions are evolutionarily conserved. Therefore, zebrafish as a swift model system that allows for the investigation of multiple candidate gene-defects is presented. PMID:24924177

Mohseny, A B; Hogendoorn, P C W

2014-01-01

6

A zebrafish model of hyperammonemia.  

PubMed

Hyperammonemia is the principal consequence of urea cycle defects and liver failure, and the exposure of the brain to elevated ammonia concentrations leads to a wide range of neuro-cognitive deficits, intellectual disabilities, coma and death. Current treatments focus almost exclusively on either reducing ammonia levels through the activation of alternative pathways for ammonia disposal or on liver transplantation. Ammonia is toxic to most fish and its pathophysiology appears to be similar to that in mammals. Since hyperammonemia can be induced in fish simply by immersing them in water with elevated concentration of ammonia, we sought to develop a zebrafish (Danio rerio) model of hyperammonemia. When exposed to 3mM ammonium acetate (NH4Ac), 50% of 4-day old (dpf) fish died within 3hours and 4mM NH4Ac was 100% lethal. We used 4dpf zebrafish exposed to 4mM NH4Ac to test whether the glutamine synthetase inhibitor methionine sulfoximine (MSO) and/or NMDA receptor antagonists MK-801, memantine and ketamine, which are known to protect the mammalian brain from hyperammonemia, prolong survival of hyperammonemic fish. MSO, MK-801, memantine and ketamine all prolonged the lives of the ammonia-treated fish. Treatment with the combination of MSO and an NMDA receptor antagonist was more effective than either drug alone. These results suggest that zebrafish can be used to screen for ammonia-neuroprotective agents. If successful, drugs that are discovered in this screen could complement current treatment approaches to improve the outcome of patients with hyperammonemia. PMID:25069822

Feldman, B; Tuchman, M; Caldovic, L

2014-01-01

7

Zebrafish models of cerebrovascular disease.  

PubMed

Perturbations in cerebral blood flow and abnormalities in blood vessel structure are the hallmarks of cerebrovascular disease. While there are many genetic and environmental factors that affect these entities through a heterogeneous group of disease processes, the ultimate final pathologic insult in humans is defined as a stroke, or damage to brain parenchyma. In the case of ischemic stroke, blood fails to reach its target destination whereas in hemorrhagic stroke, extravasation of blood occurs outside of the blood vessel lumen, resulting in direct damage to brain parenchyma. As these acute events can be neurologically devastating, if not fatal, development of novel therapeutics are urgently needed. The zebrafish (Danio rerio) is an attractive model for the study of cerebrovascular disease because of its morphological and physiological similarity to human cerebral vasculature, its ability to be genetically manipulated, and its fecundity allowing for large-scale, phenotype-based screens. PMID:24517974

Walcott, Brian P; Peterson, Randall T

2014-04-01

8

[Research progress on human acute leukemia xenograft mouse models].  

PubMed

The methods for modeling human acute leukemia in mice include xenotransplantation of human leukemia cells, retroviral transduction/transplantation, transgenesis, chemical mutagenesis and insertional mutagenesis. Establishing human acute leukemia mouse models through xenograft is an important way to study acute leukemia. This review focuses on the newest progress of studies on human acute leukemia xenograft mouse models in the regards of the immunodeficiency mouse, preconditioning, cytokines, cell transplantation, the evaluation and application of model. PMID:24763042

Guo, Yan-Ting; Li, Juan; Ouyang, Jian

2014-04-01

9

Transgenic zebrafish model of neurodegeneration.  

PubMed

In Alzheimer's disease (AD), the microtubule-associated protein, tau, is compromised in its normal association with microtubules and forms into paired helical filaments (PHF) that are the hallmark cytoskeletal pathology of the disease. Several posttranslational modifications of tau including phosphorylation have been implicated in AD pathogenesis. In addition, and importantly, mutations in the genes encoding human tau have recently been implicated in a variety of hereditary dementias, collectively termed frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17). This has rekindled interest in the importance of tau in neurodegenerative diseases (cf. Vogel [1998] Science 280:1524-1525; Goedert et al. [1998] Neuron 21:955-958; D'Souza et al. [1999] PNAS 96:5598-5603). Despite significant progress in the field of tau biology and neurodegenerative diseases, several important issues remain unresolved. The early functional consequences of tau alterations in living neurons is incompletely understood, and it is not clear how tau in neurodegenerative diseases becomes redistributed from its normal concentration in neuronal axons to pathological inclusions in neuronal soma known as neurofibrillary tangles (NFT). One of the reasons for these gaps in knowledge is the relative paucity of model systems to study these processes. We have developed a transgenic model system to study the functional consequences and trafficking patterns in zebrafish neurons of human tau either mutated on sites associated with hereditary dementias or altered at select posttranslational modification sites. The overall guiding hypothesis is that the model allows dissection of a hierarchy of events relevant to potential mechanisms of neurodegenerative diseases related to critical early stages in development of disease. We showed that a FTDP-17 mutant form of human tau expressed in zebrafish neurons produced a cytoskeletal disruption that closely resembled the NFT in human disease. This model system will prove useful in the study of other mutant taus in vertebrate neurons in vivo, and the approaches developed here will have broad usefulness in the study of functional consequences and potential genetic analyses of introducing into living vertebrate neurons other molecules involved in the pathogenesis of neurodegenerative diseases. PMID:12444595

Tomasiewicz, Henry G; Flaherty, Denise B; Soria, J P; Wood, John G

2002-12-15

10

Gaining translational momentum: More zebrafish models for neuroscience research.  

PubMed

Zebrafish (Danio rerio) are rapidly becoming a popular model organism in translational neuroscience and biological psychiatry research. Here we discuss conceptual, practical and other related aspects of using zebrafish in this field ("from tank to bedside"), and critically evaluate both advantages and limitations of zebrafish models of human brain disorders. We emphasize the need to more actively develop zebrafish models for neuroscience research focusing on complex traits. PMID:24593944

Kalueff, Allan V; Echevarria, David J; Stewart, Adam Michael

2014-12-01

11

Zebrafish model for human long QT syndrome  

PubMed Central

Long QT syndrome (LQTS) is a disorder of ventricular repolarization that predisposes affected individuals to lethal cardiac arrhythmias. To date, an appropriate animal model of inherited LQTS does not exist. The zebrafish is a powerful vertebrate model used to dissect molecular pathways of cardiovascular development and disease. Because fundamental electrical properties of the zebrafish heart are remarkably similar to those of the human heart, the zebrafish may be an appropriate model for studying human inherited arrhythmias. Here we describe the molecular, cellular, and electrophysiological basis of a zebrafish mutant characterized by ventricular asystole. Genetic mapping and direct sequencing identify the affected gene as kcnh2, which encodes the channel responsible for the rapidly activating delayed rectifier K+ current (IKr). We show that complete loss of functional IKr in embryonic hearts leads to ventricular cell membrane depolarization, inability to generate action potentials (APs), and disrupted calcium release. A small hyperpolarizing current restores spontaneous APs, implying wild-type function of other ionic currents critical for AP generation. Heterozygous fish manifest overt cellular and electrocardiographic evidence for delayed ventricular repolarization. Our findings provide insight into the pathogenesis of homozygous kcnh2 mutations and expand the use of zebrafish mutants as a model system to study human arrhythmias. PMID:17592134

Arnaout, Rima; Ferrer, Tania; Huisken, Jan; Spitzer, Kenneth; Stainier, Didier Y. R.; Tristani-Firouzi, Martin; Chi, Neil C.

2007-01-01

12

Antiangiogenic cancer drug using the zebrafish model.  

PubMed

The process of de novo vessel formation, called angiogenesis, is essential for tumor progression and spreading. Targeting of molecular pathways involved in such tumor angiogenetic processes by using specific drugs or inhibitors is important for developing new anticancer therapies. Drug discovery remains to be the main focus for biomedical research and represents the essence of antiangiogenesis cancer research. To pursue these molecular and pharmacological goals, researchers need to use animal models that facilitate the elucidation of tumor angiogenesis mechanisms and the testing of antiangiogenic therapies. The past few years have seen the zebrafish system emerge as a valid model organism to study developmental angiogenesis and, more recently, as an alternative vertebrate model for cancer research. In this review, we will discuss why the zebrafish model system has the advantage of being a vertebrate model equipped with easy and powerful transgenesis as well as imaging tools to investigate not only physiological angiogenesis but also tumor angiogenesis. We will also highlight the potential of zebrafish for identifying antitumor angiogenesis drugs to block tumor development and progression. We foresee the zebrafish model as an important system that can possibly complement well-established mouse models in cancer research to generate novel insights into the molecular mechanism of the tumor angiogenesis. PMID:24903092

Santoro, Massimo M

2014-09-01

13

Zebrafish models to study drug abuse-related phenotypes.  

PubMed

Mounting evidence implicates the zebrafish (Danio rerio) as a promising model species for reward and addiction research. Modeling drug abuse-related behavior in both adult and larval zebrafish produced a wealth of clinically translatable data, also demonstrating their sensitivity to various drugs of abuse and the ability to develop tolerance. Several studies have also applied withdrawal paradigms to model the adverse effects of drug abuse in zebrafish. In this review, we summarize recent findings of a wide spectrum of zebrafish drug abuse-related behavioral and physiological phenotypes, discuss the existing challenges, and outline potential future directions of research in this field. PMID:21615264

Stewart, Adam; Wong, Keith; Cachat, Jonathan; Gaikwad, Siddharth; Kyzar, Evan; Wu, Nadine; Hart, Peter; Piet, Valerie; Utterback, Eli; Elegante, Marco; Tien, David; Kalueff, Allan V

2011-01-01

14

Xenograft Model for Identifying Chemotherapeutic Agents against Papillomaviruses  

PubMed Central

The report describes the establishment and characterization of a mouse xenograft transplantation model for the study of papillomavirus infection of bovine skin. Calf scrotal skin was inoculated with bovine papillomavirus type 2 before grafting it to the dorsum of severe combined immunodeficient mice. The grafted skin contained epidermis, dermis, and a thin layer of fat. After 5 months the induced warts not only showed histological features of papillomavirus infections but also tested positive for viral DNA and papillomavirus capsid antigen. The formation of infectious virions was demonstrated by inoculation of new transplants with crude extract from the induced warts as well as in a cell culture focus assay. Topical application of bromovinyl-2?-deoxyuridine led to a reduction in viral DNA content in the developing wart. This small-animal xenograft model should be useful for characterizing antiviral compounds and providing an understanding of the regulation of papillomavirus infections. PMID:11257010

Pawellek, A.; Hewlett, G.; Kreuter, J.; Rubsamen-Waigmann, H.; Weber, O.

2001-01-01

15

Zebrafish as model organisms for studying drug induced liver injury  

PubMed Central

Drug induced liver injury (DILI) is a major challenge in clinical medicine and drug development. New models are needed for predicting which potential therapeutic compounds will cause DILI in humans, and new markers and mediators of DILI still need to be identified. This review will highlight the strengths and weaknesses of using zebrafish as a high throughput in vivo model for studying DILI. Although the zebrafish liver architecture is different to the mammalian liver, the main physiological processes remain similar. Zebrafish metabolize drugs using similar pathways as humans; they possess a wide range of cytochrome P450 enzymes enabling metabolic reactions including hydroxylation, conjugation, oxidation, demethylation and de-ethylation. Following exposure to a range of liver toxic drugs, the zebrafish liver develops histological patterns of injury comparable to mammals and liver injury biomarkers can be quantified in the zebrafish circulation. The zebrafish immune system is similar to mammals, but the zebrafish inflammatory response to DILI is not yet defined. To quantify DILI in zebrafish a wide variety of methods can be used including: visual assessment, quantification of serum enzymes and experimental serum biomarkers and scoring histopathology. With further development, the zebrafish may be a model that complements rodents and may have value for the discovery of new disease pathways and translational biomarkers. PMID:24773296

Vliegenthart, A D B; Tucker, C S; Del Pozo, J; Dear, J W

2014-01-01

16

Adult zebrafish as a model organism for behavioural genetics  

PubMed Central

Recent research has demonstrated the suitability of adult zebrafish to model some aspects of complex behaviour. Studies of reward behaviour, learning and memory, aggression, anxiety and sleep strongly suggest that conserved regulatory processes underlie behaviour in zebrafish and mammals. The isolation and molecular analysis of zebrafish behavioural mutants is now starting, allowing the identification of novel behavioural control genes. As a result of this, studies of adult zebrafish are now helping to uncover the genetic pathways and neural circuits that control vertebrate behaviour. PMID:20678210

2010-01-01

17

Modeling anxiety using adult zebrafish: A conceptual review  

PubMed Central

Zebrafish (Danio rerio) are rapidly emerging as a useful animal model in neurobehavioral research. Mounting evidence shows the suitability of zebrafish to model various aspects of anxiety-related states. Here, we evaluate established and novel approaches to uncover the molecular substrates, genetic pathways and neural circuits of anxiety using adult zebrafish. Experimental approaches to modeling anxiety in zebrafish include novelty-based paradigms, pharmacological and genetic manipulations, as well as innovative video-tracking, 3D-reconstructions and bioinformatics-based searchable databases and omics-based tools. Complementing traditional rodent models of anxiety, we provide a conceptual framework for the wider application of zebrafish and other aquatic models in anxiety research. PMID:21843537

Stewart, Adam; Gaikwad, Siddharth; Kyzar, Evan; Green, Jeremy; Roth, Andrew; Kalueff, Allan V.

2011-01-01

18

A bioenergetic model for zebrafish Danio rerio (Hamilton)  

USGS Publications Warehouse

A bioenergetics model was developed from observed consumption, respiration and growth rates for zebrafish Danio rerio across a range (18-32?? C) of water temperatures, and evaluated with a 50 day laboratory trial at 28?? C. No significant bias in variable estimates was found during the validation trial; namely, predicted zebrafish mass generally agreed with observed mass. ?? 2008 The Authors.

Chizinski, C.J.; Sharma, B.; Pope, K.L.; Patino, R.

2008-01-01

19

Zebrafish models for translational neuroscience research: from tank to bedside.  

PubMed

The zebrafish (Danio rerio) is emerging as a new important species for studying mechanisms of brain function and dysfunction. Focusing on selected central nervous system (CNS) disorders (brain cancer, epilepsy, and anxiety) and using them as examples, we discuss the value of zebrafish models in translational neuroscience. We further evaluate the contribution of zebrafish to neuroimaging, circuit level, and drug discovery research. Outlining the role of zebrafish in modeling a wide range of human brain disorders, we also summarize recent applications and existing challenges in this field. Finally, we emphasize the potential of zebrafish models in behavioral phenomics and high-throughput genetic/small molecule screening, which is critical for CNS drug discovery and identifying novel candidate genes. PMID:24726051

Stewart, Adam Michael; Braubach, Oliver; Spitsbergen, Jan; Gerlai, Robert; Kalueff, Allan V

2014-05-01

20

montalcino, a Zebrafish Model for Variegate Porphyria  

PubMed Central

Objective Inherited or acquired mutations in the heme biosynthetic pathway lead to a debilitating class of diseases collectively known as porphyrias, with symptoms that can include anemia, cutaneous photosensitivity, and neurovisceral dysfunction. In a genetic screen for hematopoietic mutants, we isolated a zebrafish mutant, montalcino (mno), which displays hypochromic anemia and porphyria. The objective of this study was to identify the defective gene and characterize the phenotype of the zebrafish mutant. Methods Genetic linkage analysis was utilized to identify the region harboring the mno mutation. Candidate gene analysis together with RT-PCR was utilized to identify the genetic mutation, which was confirmed via allele specific oligo hybridizations. Whole mount in situ hybridizations and 0-dianisidine staining were used to characterize the phenotype of the mno mutant. mRNA and morpholino microinjections were performed to phenocopy and/or rescue the mutant phenotype. Results Homozygous mno mutant embryos have a defect in the protoporphyrinogen oxidase (ppox) gene, which encodes the enzyme that catalyzes the oxidation of protoporphyrinogen. Homozygous mutant embryos are deficient in hemoglobin, and by 36 hpf are visibly anemic and porphyric. The hypochromic anemia of mno embryos was partially rescued by human ppox, providing evidence for the conservation of function between human and zebrafish ppox. Conclusion In humans, mutations in ppox result in variegate porphyria. At present, effective treatment for acute attacks requires the administration intravenous hemin and/or glucose. Thus, mno represents a powerful model for investigation, and a tool for future screens aimed at identifying chemical modifiers of variegate porphyria. PMID:18550261

Dooley, Kimberly A.; Fraenkel, Paula G.; Langer, Nathaniel B.; Schmid, Bettina; Davidson, Alan J.; Weber, Gerhard; Chiang, Ken; Foott, Helen; Dwyer, Caitlin; Wingert, Rebecca A.; Zhou, Yi; Paw, Barry H.; Zon, Leonard I.

2008-01-01

21

Adult Zebrafish model of streptococcal infection  

PubMed Central

Streptococcal pathogens cause a wide array of clinical syndromes in humans, including invasive systemic infections resulting in high mortality rates. Many of these pathogens are human specific, and therefore difficult to analyze in vivo using typical animal models, as these models rarely replicate what is observed in human infections. This unit describes the use of the zebrafish (Danio rerio) as an animal model for streptococcal infection to analyze multiple disease states. This model closely mimics the necrotizing fasciitis/myositis pathology observed in humans from a Streptococcus pyogenes infection. The use of a zoonotic pathogen, Streptococcus iniae, which replicates systemic infections caused by many streptococcal pathogens, including dissemination to the brain, is also described. Included protocols describe both intraperitoneal and intramuscular infections, as well as methods for histological and quantitative measurements of infection. PMID:19412913

Phelps, Hilary A.; Runft, Donna L.

2009-01-01

22

Zebrafish models for assessing developmental and reproductive toxicity.  

PubMed

The zebrafish is increasingly used as a vertebrate animal model for in vivo drug discovery and for assessing chemical toxicity and safety. Numerous studies have confirmed that zebrafish and mammals are similar in their physiology, development, metabolism and pathways, and that zebrafish responses to toxic substances are highly predictive of mammalian responses. Developmental and reproductive toxicity assessments are an important part of new drug safety profiling. A significant number of drug candidates have failed in preclinical tests due to their adverse effect on development and reproductivity. Compared to conventional mammal testing, zebrafish testing for assessing developmental and reproductive toxicity offers several compelling experimental advantages, including transparency of embryo and larva, higher throughput, shorter test period, lower cost, smaller amount of compound required, easier manipulation and direct compound delivery. Toxicity and safety assessments using zebrafish have also been accepted by the FDA and EMEA for investigative new drug (IND) approval. PMID:24503215

He, Jian-Hui; Gao, Ji-Min; Huang, Chang-Jiang; Li, Chun-Qi

2014-01-01

23

Teratogenic Potential of Antiepileptic Drugs in the Zebrafish Model  

PubMed Central

The zebrafish model is an attractive candidate for screening of developmental toxicity during early drug development. Antiepileptic drugs (AEDs) arouse concern for the risk of teratogenicity, but the data are limited. In this study, we evaluated the teratogenic potential of seven AEDs (carbamazepine (CBZ), ethosuximide (ETX), valproic acid (VPN), lamotrigine (LMT), lacosamide (LCM), levetiracetam (LVT), and topiramate (TPM)) in the zebrafish model. Zebrafish embryos were exposed to AEDs from initiation of gastrula (5.25 hours post-fertilization (hpf)) to termination of hatching (72?hpf) which mimic the mammalian teratogenic experimental design. The lethality and teratogenic index (TI) of AEDs were determined and the TI values of each drug were compared with the US FDA human pregnancy categories. Zebrafish model was useful screening model for teratogenic potential of antiepilepsy drugs and was in concordance with in vivo mammalian data and human clinical data. PMID:24324971

Lee, Sung Hak; Kang, Jung Won; Lin, Tao; Lee, Jae Eun; Jin, Dong Il

2013-01-01

24

Teratogenic potential of antiepileptic drugs in the zebrafish model.  

PubMed

The zebrafish model is an attractive candidate for screening of developmental toxicity during early drug development. Antiepileptic drugs (AEDs) arouse concern for the risk of teratogenicity, but the data are limited. In this study, we evaluated the teratogenic potential of seven AEDs (carbamazepine (CBZ), ethosuximide (ETX), valproic acid (VPN), lamotrigine (LMT), lacosamide (LCM), levetiracetam (LVT), and topiramate (TPM)) in the zebrafish model. Zebrafish embryos were exposed to AEDs from initiation of gastrula (5.25 hours post-fertilization (hpf)) to termination of hatching (72?hpf) which mimic the mammalian teratogenic experimental design. The lethality and teratogenic index (TI) of AEDs were determined and the TI values of each drug were compared with the US FDA human pregnancy categories. Zebrafish model was useful screening model for teratogenic potential of antiepilepsy drugs and was in concordance with in vivo mammalian data and human clinical data. PMID:24324971

Lee, Sung Hak; Kang, Jung Won; Lin, Tao; Lee, Jae Eun; Jin, Dong Il

2013-01-01

25

A Human Lung Xenograft Mouse Model of Nipah Virus Infection  

PubMed Central

Nipah virus (NiV) is a member of the genus Henipavirus (family Paramyxoviridae) that causes severe and often lethal respiratory illness and encephalitis in humans with high mortality rates (up to 92%). NiV can cause Acute Lung Injury (ALI) in humans, and human-to-human transmission has been observed in recent outbreaks of NiV. While the exact route of transmission to humans is not known, we have previously shown that NiV can efficiently infect human respiratory epithelial cells. The molecular mechanisms of NiV-associated ALI in the human respiratory tract are unknown. Thus, there is an urgent need for models of henipavirus infection of the human respiratory tract to study the pathogenesis and understand the host responses. Here, we describe a novel human lung xenograft model in mice to study the pathogenesis of NiV. Following transplantation, human fetal lung xenografts rapidly graft and develop mature structures of adult lungs including cartilage, vascular vessels, ciliated pseudostratified columnar epithelium, and primitive “air” spaces filled with mucus and lined by cuboidal to flat epithelium. Following infection, NiV grows to high titers (107 TCID50/gram lung tissue) as early as 3 days post infection (pi). NiV targets both the endothelium as well as respiratory epithelium in the human lung tissues, and results in syncytia formation. NiV infection in the human lung results in the production of several cytokines and chemokines including IL-6, IP-10, eotaxin, G-CSF and GM-CSF on days 5 and 7 pi. In conclusion, this study demonstrates that NiV can replicate to high titers in a novel in vivo model of the human respiratory tract, resulting in a robust inflammatory response, which is known to be associated with ALI. This model will facilitate progress in the fundamental understanding of henipavirus pathogenesis and virus-host interactions; it will also provide biologically relevant models for other respiratory viruses. PMID:24699832

Borisevich, Viktoriya; Goez, Yenny; Rockx, Barry

2014-01-01

26

The zebrafish as a model for complex tissue regeneration  

PubMed Central

For centuries, philosophers and scientists have been fascinated by the principles and implications of regeneration in lower vertebrate species. Two features have made zebrafish an informative model system for determining mechanisms of regenerative events. First, they are highly regenerative, able to regrow amputated fins, as well as a lesioned brain, retina, spinal cord, heart, and other tissues. Second, they are amenable to both forward and reverse genetic approaches, with a research toolset regularly updated by an expanding community of zebrafish researchers. Zebrafish studies have helped identify new mechanistic underpinnings of regeneration in multiple tissues, and in some cases have served as a guide for contemplating regenerative strategies in mammals. Here, we review the recent history of zebrafish as a genetic model system for understanding how and why tissue regeneration occurs. PMID:23927865

Gemberling, Matthew; Bailey, Travis J.; Hyde, David R.; Poss, Kenneth D.

2013-01-01

27

Zebrafish as a model system to study toxicology.  

PubMed

Monitoring and assessing the effects of contaminants in the aquatic eco-environment is critical in protecting human health and the environment. The zebrafish has been widely used as a prominent model organism in different fields because of its small size, low cost, diverse adaptability, short breeding cycle, high fecundity, and transparent embryos. Recent studies have demonstrated that zebrafish sensitivity can aid in monitoring environmental contaminants, especially with the application of transgenic technology in this area. The present review provides a brief overview of recent studies on wild-type and transgenic zebrafish as a model system to monitor toxic heavy metals, endocrine disruptors, and organic pollutants for toxicology. The authors address the new direction of developing high-throughput detection of genetically modified transparent zebrafish to open a new window for monitoring environmental pollutants. PMID:24307630

Dai, Yu-Jie; Jia, Yong-Fang; Chen, Na; Bian, Wan-Ping; Li, Qin-Kai; Ma, Yan-Bo; Chen, Yan-Ling; Pei, De-Sheng

2014-01-01

28

The zebrafish as a model system for glucocorticoid receptor research.  

PubMed

Glucocorticoids regulate a plethora of physiological processes, and are widely used clinically as anti-inflammatory drugs. Their effects are mediated by the glucocorticoid receptor (GR), a ligand-activated transcription factor. Currently, zebrafish embryos are being developed into a model system for GR research, since they are easy to manipulate genetically and their phenotype can easily be visualized because of their transparent bodies. In addition, the zebrafish GR gene shows a relatively high level of similarity with its human equivalent. First, both the zebrafish and the human genome contain only a single gene encoding the GR. In all other fish species studied thus far, two GR genes have been found. Second, the zebrafish contains a C-terminal GR splice variant with high similarity to the human GRbeta, which has been shown to be a dominant-negative inhibitor of the canonical GRalpha and may be involved in glucocorticoid resistance. Thus, zebrafish embryos are potentially a useful model system for glucocorticoid receptor research, but currently only a limited number of tools is available. In this review, we discuss which tools are available and which need to be developed, in order to exploit the full potential of the zebrafish as a model system for GR research. PMID:19168143

Schaaf, M J M; Chatzopoulou, A; Spaink, H P

2009-05-01

29

The emerging use of zebrafish to model metabolic disease  

PubMed Central

The zebrafish research community is celebrating! The zebrafish genome has recently been sequenced, the Zebrafish Mutation Project (launched by the Wellcome Trust Sanger Institute) has published the results of its first large-scale ethylnitrosourea (ENU) mutagenesis screen, and a host of new techniques, such as the genome editing technologies TALEN and CRISPR-Cas, are enabling specific mutations to be created in model organisms and investigated in vivo. The zebrafish truly seems to be coming of age. These powerful resources invoke the question of whether zebrafish can be increasingly used to model human disease, particularly common, chronic diseases of metabolism such as obesity and type 2 diabetes. In recent years, there has been considerable success, mainly from genomic approaches, in identifying genetic variants that are associated with these conditions in humans; however, mechanistic insights into the role of implicated disease loci are lacking. In this Review, we highlight some of the advantages and disadvantages of zebrafish to address the organism’s utility as a model system for human metabolic diseases. PMID:24046387

Seth, Asha; Stemple, Derek L.; Barroso, Inês

2013-01-01

30

Zebrafish as a model for the study of neutrophil biology.  

PubMed

To understand inflammation and immunity, we need to understand the biology of the neutrophil. Whereas these cells can readily be extracted from peripheral blood, their short lifespan makes genetic manipulations impractical. Murine knockout models have been highly informative, and new imaging techniques are allowing neutrophils to be seen during inflammation in vivo for the first time. However, there is a place for a new model of neutrophil biology, which readily permits imaging of individual neutrophils during inflammation in vivo, combined with the ease of genetic and chemical manipulation. The zebrafish has long been the model of choice for the developmental biology community, and the availability of genomic resources and tools for gene manipulation makes this an attractive model. Zebrafish innate immunity shares many features with mammalian systems, including neutrophils with morphological, biochemical, and functional features, also shared with mammalian neutrophils. Transgenic zebrafish with neutrophils specifically labeled with fluorescent proteins have been generated, and this advance has led to the adoption of zebrafish, alongside existing models, by a number of groups around the world. The use of these models has underpinned a number of key advances in the field, including the identification of a tissue gradient of hydrogen peroxide for neutrophil recruitment following tissue injury and direct evidence for reverse migration as a regulatable mechanism of inflammation resolution. In this review, we discuss the importance of zebrafish models in neutrophil biology and describe how the understanding of neutrophil biology has been advanced by the use of these models. PMID:23463724

Henry, Katherine M; Loynes, Catherine A; Whyte, Moira K B; Renshaw, Stephen A

2013-10-01

31

Zebrafish as a developmental model organism for pediatric research.  

PubMed

Zebrafish has many advantages as a model of human pediatric research. Given the physical and ethical problems with performing experiments on human patients, biomedical research has focused on using model organisms to study biologic processes conserved between humans and lower vertebrates. The most common model organisms are small mammals, usually rats and mice. Although these models have significant advantages, they are also expensive to maintain, difficult to manipulate embryonically, and limited for large-scale genetic studies. The zebrafish model nicely complements these deficiencies in mammalian experimental models. The low cost, small size, and external development of zebrafish make it an excellent model for vertebrate development biology. Techniques for large-scale genome mutagenesis and gene mapping, transgenesis, protein overexpression or knockdown, cell transplantation and chimeric embryo analysis, and chemical screens have immeasurably increased the power of this model organism. It is now possible to rapidly determine the developmental function of a gene of interest in vivo, and then identify genetic and chemical modifiers of the processes involved. Discoveries made in zebrafish can be further validated in mammals. With novel technologies being regularly developed, the zebrafish is poised to significantly improve our understanding of vertebrate development under normal and pathologic conditions. PMID:18679162

Veldman, Matthew B; Lin, Shuo

2008-11-01

32

A human lung xenograft mouse model of Nipah virus infection.  

PubMed

Nipah virus (NiV) is a member of the genus Henipavirus (family Paramyxoviridae) that causes severe and often lethal respiratory illness and encephalitis in humans with high mortality rates (up to 92%). NiV can cause Acute Lung Injury (ALI) in humans, and human-to-human transmission has been observed in recent outbreaks of NiV. While the exact route of transmission to humans is not known, we have previously shown that NiV can efficiently infect human respiratory epithelial cells. The molecular mechanisms of NiV-associated ALI in the human respiratory tract are unknown. Thus, there is an urgent need for models of henipavirus infection of the human respiratory tract to study the pathogenesis and understand the host responses. Here, we describe a novel human lung xenograft model in mice to study the pathogenesis of NiV. Following transplantation, human fetal lung xenografts rapidly graft and develop mature structures of adult lungs including cartilage, vascular vessels, ciliated pseudostratified columnar epithelium, and primitive "air" spaces filled with mucus and lined by cuboidal to flat epithelium. Following infection, NiV grows to high titers (10(7) TCID50/gram lung tissue) as early as 3 days post infection (pi). NiV targets both the endothelium as well as respiratory epithelium in the human lung tissues, and results in syncytia formation. NiV infection in the human lung results in the production of several cytokines and chemokines including IL-6, IP-10, eotaxin, G-CSF and GM-CSF on days 5 and 7 pi. In conclusion, this study demonstrates that NiV can replicate to high titers in a novel in vivo model of the human respiratory tract, resulting in a robust inflammatory response, which is known to be associated with ALI. This model will facilitate progress in the fundamental understanding of henipavirus pathogenesis and virus-host interactions; it will also provide biologically relevant models for other respiratory viruses. PMID:24699832

Valbuena, Gustavo; Halliday, Hailey; Borisevich, Viktoriya; Goez, Yenny; Rockx, Barry

2014-04-01

33

Modelling of tumour growth and cytotoxic effect of docetaxel in xenografts.  

PubMed

One of the major sources of information on physiological and pathophysiological effects in pre-clinical oncology studies is the xenografted tumour animal model. However, measurement of tumour volume over time potentially masks a range of biological changes that the xenograft is undergoing. In this paper a mechanistic model of tumour growth in xenografts is presented that can be used to investigate the mode of drug action with respect to phenotypic changes. The model encapsulates key histological biomarkers and spatial constraints. The unknown model parameters are first shown to be uniquely identifiable from the proposed experimental studies, and then estimated from the resulting data using the anti-cancer agent docetaxel. PMID:23948442

Evans, Neil D; Dimelow, Richard J; Yates, James W T

2014-05-01

34

Patient-Derived Xenograft Models in Gynecological Malignancies  

PubMed Central

OVERVIEW In the era of targeted therapies, patients with gynecological malignancies have not yet been major beneficiaries of this new class of agents. This may reflect the fact that the main tumor types, ovarian, uterine and cervical cancers, are a highly heterogeneous group of cancers, with variable response to standard chemotherapies. This is also likely due to poor model development in which to study the diversity of these cancers. Cancer-derived cell lines fail to adequately recapitulate molecular hallmarks of specific cancer subsets and complex microenvironments, which may be critical for sensitivity to targeted therapies. Patient derived xenografts (PDX), using fresh human tumor without prior in vitro culture, combined with whole genome expression, gene copy number and sequencing analyses, could dramatically aid novel therapy development in gynecological malignancies. Gynecological tumors can be engrafted in immunodeficient mice with a high rate of success and within a reasonable time frame. The resulting PDX accurately recapitulate the patient’s tumour in histological, molecular and in vivo treatment response characteristics. Orthotopic PDX develop complications relevant for the clinic, such as ascites and bowel obstruction, providing opportunities for understanding the biology of these clinical problems. Thus, PDX have great promise for delivering improved understanding of gynecological malignancies, serve as better models for designing novel therapies and clinical trials and could underpin individualized, directed therapy for patients from whom PDX models have been established. PMID:24857111

Scott, Clare L.; Mackay, Helen J; Haluska, Paul

2014-01-01

35

Modeling tuberculous meningitis in zebrafish using Mycobacterium marinum  

PubMed Central

Tuberculous meningitis (TBM) is one of the most severe extrapulmonary manifestations of tuberculosis, with a high morbidity and mortality. Characteristic pathological features of TBM are Rich foci, i.e. brain- and spinal-cord-specific granulomas formed after hematogenous spread of pulmonary tuberculosis. Little is known about the early pathogenesis of TBM and the role of Rich foci. We have adapted the zebrafish model of Mycobacterium marinum infection (zebrafish–M. marinum model) to study TBM. First, we analyzed whether TBM occurs in adult zebrafish and showed that intraperitoneal infection resulted in granuloma formation in the meninges in 20% of the cases, with occasional brain parenchyma involvement. In zebrafish embryos, bacterial infiltration and clustering of infected phagocytes was observed after infection at three different inoculation sites: parenchyma, hindbrain ventricle and caudal vein. Infection via the bloodstream resulted in the formation of early granulomas in brain tissue in 70% of the cases. In these zebrafish embryos, infiltrates were located in the proximity of blood vessels. Interestingly, no differences were observed when embryos were infected before or after early formation of the blood-brain barrier (BBB), indicating that bacteria are able to cross this barrier with relatively high efficiency. In agreement with this observation, infected zebrafish larvae also showed infiltration of the brain tissue. Upon infection of embryos with an M. marinum ESX-1 mutant, only small clusters and scattered isolated phagocytes with high bacterial loads were present in the brain tissue. In conclusion, our adapted zebrafish–M. marinum infection model for studying granuloma formation in the brain will allow for the detailed analysis of both bacterial and host factors involved in TBM. It will help solve longstanding questions on the role of Rich foci and potentially contribute to the development of better diagnostic tools and therapeutics. PMID:24997190

van Leeuwen, Lisanne M.; van der Kuip, Martijn; Youssef, Sameh A.; de Bruin, Alain; Bitter, Wilbert; van Furth, A. Marceline; van der Sar, Astrid M.

2014-01-01

36

Zebrafish as a model system for mitochondrial biology and diseases.  

PubMed

Animal models for studying human disease are essential to the continuing evolution of medicine. Rodent models are attractive for the obvious similarities in development and genetic makeup compared with humans, but have cost and technical limitations. The zebrafish (Danio rerio) represents an ideal alternative vertebrate model of human disease because of its high conservation of genetic information and physiological processes, inexpensive maintenance, and optical clarity facilitating direct observation. This review highlights recent advances in understanding genetic disease states associated with the dynamic organelle, the mitochondrion, using the zebrafish. Mitochondrial diseases that have been replicated in the zebrafish include those affecting the nervous and cardiovascular systems, as well as red blood cell function. Gene silencing techniques, including morpholino knockdown and transcription activator-like (TAL)-effector endonucleases, have been exploited to demonstrate how loss of function can induce human disease-like states in zebrafish. Moreover, modeling mitochondrial diseases has been facilitated greatly by the creation of transgenic fish with fluorescently labeled mitochondria for in vivo visualization of these structures. In addition, behavioral assays have been developed to examine changes in motor activity and sensory responses, particularly in larval stages. Zebrafish are poised to advance our understanding of the pathogenesis of human mitochondrial diseases beyond the current state of knowledge and provide a key tool in the development of novel therapeutic approaches to treat these conditions. PMID:24055494

Steele, Shelby L; Prykhozhij, Sergey V; Berman, Jason N

2014-02-01

37

Aquatic blues: Modeling depression and antidepressant action in zebrafish.  

PubMed

Depression is a serious psychiatric condition affecting millions of patients worldwide. Unipolar depression is characterized by low mood, anhedonia, social withdrawal and other severely debilitating psychiatric symptoms. Bipolar disorder manifests in alternating depressed mood and 'hyperactive' manic/hypomanic states. Animal experimental models are an invaluable tool for research into the pathogenesis of bipolar/unipolar depression, and for the development of potential treatments. Due to their high throughput value, genetic tractability, low cost and quick reproductive cycle, zebrafish (Danio rerio) have emerged as a promising new model species for studying brain disorders. Here, we discuss the developing utility of zebrafish for studying depression disorders, and outline future areas of research in this field. We argue that zebrafish represent a useful model organism for studying depression and its behavioral, genetic and physiological mechanisms, as well as for anti-depressant drug discovery. PMID:24657522

Nguyen, Michael; Stewart, Adam Michael; Kalueff, Allan V

2014-12-01

38

Graph Theoretical Model of a Sensorimotor Connectome in Zebrafish  

Microsoft Academic Search

Mapping the detailed connectivity patterns (connectomes) of neural circuits is a central goal of neuroscience. The best quantitative approach to analyzing connectome data is still unclear but graph theory has been used with success. We present a graph theoretical model of the posterior lateral line sensorimotor pathway in zebrafish. The model includes 2,616 neurons and 167,114 synaptic connections. Model neurons

Michael Stobb; Joshua M. Peterson; Borbala Mazzag; Ethan Gahtan

2012-01-01

39

Zebrafish as a Model System to Screen Radiation Modifiers  

PubMed Central

Zebrafish (Danio rerio) is a bona fide vertebrate model system for understanding human diseases. It allows the transparent visualization of the effects of ionizing radiation and the convenient testing of potential radioprotectors with morpholino-modified oligonucleotides (MO) knockdown. Furthermore, various reverse and forward genetic methods are feasible to decipher novel genetic modifiers of radioprotection. Examined in the review are the radioprotective effects of the proposed radiomodifiers Nanoparticle DF-1 (C-Sixty, Inc., Houston, TX) and Amifostine (WR-2721, Ethyol), the DNA repair proteins Ku80 and ATM, as well as the transplanted hematopoietic stem cells in irradiated zebrafish. The presence of any of these sufficiently rescued the radiation-induced damages in zebrafish, while its absence resulted in mutagenic phenotypes as well as an elevation of time- and dose-dependent radiation-induced apoptosis. Radiosensitizers Flavopiridol and AG1478, both of which block progression into the radioresistant S phase of the cell cycle, have also been examined in zebrafish. Zebrafish has indeed become a favorite model system to test for radiation modifiers that can potentially be used for radiotherapeutic purposes in humans. PMID:19412436

Hwang, Misun; Yong, Cha; Moretti, Luigi; Lu, Bo

2007-01-01

40

Distinct phenotypes in zebrafish models of human startle disease?  

PubMed Central

Startle disease is an inherited neurological disorder that causes affected individuals to suffer noise- or touch-induced non-epileptic seizures, excessive muscle stiffness and neonatal apnea episodes. Mutations known to cause startle disease have been identified in glycine receptor subunit (GLRA1 and GLRB) and glycine transporter (SLC6A5) genes, which serve essential functions at glycinergic synapses. Despite the significant successes in identifying startle disease mutations, many idiopathic cases remain unresolved. Exome sequencing in these individuals will identify new candidate genes. To validate these candidate disease genes, zebrafish is an ideal choice due to rapid knockdown strategies, accessible embryonic stages, and stereotyped behaviors. The only existing zebrafish model of startle disease, bandoneon (beo), harbors point mutations in glrbb (one of two zebrafish orthologs of human GLRB) that cause compromised glycinergic transmission and touch-induced bilateral muscle contractions. In order to further develop zebrafish as a model for startle disease, we sought to identify common phenotypic outcomes of knocking down zebrafish orthologs of two known startle disease genes, GLRA1 and GLRB, using splice site-targeted morpholinos. Although both morphants were expected to result in phenotypes similar to the zebrafish beo mutant, our direct comparison demonstrated that while both glra1 and glrbb morphants exhibited embryonic spasticity, only glrbb morphants exhibited bilateral contractions characteristic of beo mutants. Likewise, zebrafish over-expressing a dominant startle disease mutation (GlyR ?1R271Q) exhibited spasticity but not bilateral contractions. Since GlyR ?b can interact with GlyR ? subunits 2–4 in addition to GlyR ?1, loss of the GlyR ?b subunit may produce more severe phenotypes by affecting multiple GlyR subtypes. Indeed, immunohistochemistry of glra1 morphants suggests that in zebrafish, alternate GlyR ? subunits can compensate for the loss of the GlyR ?1 subunit. To address the potential for interplay among GlyR subunits during development, we quantified the expression time-course for genes known to be critical to glycinergic synapse function. We found that GlyR ?2, ?3 and ?4a are expressed in the correct temporal pattern and could compensate for the loss of the GlyR ?1 subunit. Based on our findings, future studies that aim to model candidate startle disease genes in zebrafish should include measures of spasticity and synaptic development. PMID:24029548

Ganser, Lisa R.; Yan, Qing; James, Victoria M.; Kozol, Robert; Topf, Maya; Harvey, Robert J.; Dallman, Julia E.

2013-01-01

41

Graph Theoretical Model of a Sensorimotor Connectome in Zebrafish  

PubMed Central

Mapping the detailed connectivity patterns (connectomes) of neural circuits is a central goal of neuroscience. The best quantitative approach to analyzing connectome data is still unclear but graph theory has been used with success. We present a graph theoretical model of the posterior lateral line sensorimotor pathway in zebrafish. The model includes 2,616 neurons and 167,114 synaptic connections. Model neurons represent known cell types in zebrafish larvae, and connections were set stochastically following rules based on biological literature. Thus, our model is a uniquely detailed computational representation of a vertebrate connectome. The connectome has low overall connection density, with 2.45% of all possible connections, a value within the physiological range. We used graph theoretical tools to compare the zebrafish connectome graph to small-world, random and structured random graphs of the same size. For each type of graph, 100 randomly generated instantiations were considered. Degree distribution (the number of connections per neuron) varied more in the zebrafish graph than in same size graphs with less biological detail. There was high local clustering and a short average path length between nodes, implying a small-world structure similar to other neural connectomes and complex networks. The graph was found not to be scale-free, in agreement with some other neural connectomes. An experimental lesion was performed that targeted three model brain neurons, including the Mauthner neuron, known to control fast escape turns. The lesion decreased the number of short paths between sensory and motor neurons analogous to the behavioral effects of the same lesion in zebrafish. This model is expandable and can be used to organize and interpret a growing database of information on the zebrafish connectome. PMID:22624008

Stobb, Michael; Peterson, Joshua M.; Mazzag, Borbala; Gahtan, Ethan

2012-01-01

42

Zebrafish: A Model System to Study Heritable Skin Diseases  

PubMed Central

Heritable skin diseases represent a broad spectrum of clinical manifestations due to mutations in ~500 different genes. A number of model systems have been developed to advance our understanding of the pathomechanisms of genodermatoses. Zebrafish (Danio rerio), a freshwater vertebrate, has a well-characterized genome, the expression of which can be easily manipulated. The larvae develop rapidly, with all major organs having developed by 5–6 days post fertilization, including the skin, consisting of the epidermis comprising two cell layers and separated from the dermal collagenous matrix by a basement membrane. This perspective highlights the morphologic and ultrastructural features of zebrafish skin, in the context of cutaneous gene expression. These observations suggest that zebrafish provides a useful model system to study molecular aspects of skin development, as well as the pathogenesis and treatment of select heritable skin diseases. PMID:21191402

Li, Qiaoli; Frank, Michael; Thisse, Christine; Thisse, Bernard; Uitto, Jouni

2012-01-01

43

Zebrafish (Danio rerio) embryos as a model for testing proteratogens.  

PubMed

Zebrafish embryos have been shown to be a useful model for the detection of direct acting teratogens. This communication presents a protocol for a 3-day in vitro zebrafish embryo teratogenicity assay and describes results obtained for 10 proteratogens: 2-acetylaminofluorene, benzo[a]pyrene, aflatoxin B(1), carbamazepine, phenytoin, trimethadione, cyclophosphamide, ifosfamide, tegafur and thio-TEPA. The selection of the test substances accounts for differences in structure, origin, metabolism and water solubility. Apart from 2-acetylaminofluorene, which mainly produces lethal effects, all proteratogens tested were teratogenic in zebrafish embryos exposed for 3 days. The test substances and/or the substance class produced characteristic patterns of fingerprint endpoints. Several substances produced effects that could be identified already at 1 dpf (days post fertilization), whereas the effects of others could only be identified unambiguously after hatching at ? 3 dpf. The LC?? and EC?? values were used to calculate the teratogenicity index (TI) for the different substances, and the EC?? values were related to human plasma concentrations. Results lead to the conclusion that zebrafish embryos are able to activate proteratogenic substances without addition of an exogenous metabolic activation system. Moreover, the teratogenic effects were observed at concentrations relevant to human exposure data. Along with other findings, our results indicate that zebrafish embryos are a useful alternative method for traditional teratogenicity testing with mammalian species. PMID:21237239

Weigt, Stefan; Huebler, Nicole; Strecker, Ruben; Braunbeck, Thomas; Broschard, Thomas H

2011-03-15

44

Modeling Stress and Anxiety in Zebrafish Jonathan M. Cachat, Peter R. Canavello, Marco F. Elegante,  

E-print Network

Chapter 3 Modeling Stress and Anxiety in Zebrafish Jonathan M. Cachat, Peter R. Canavello, Marco F stress and anxiety-related behav- iors. Zebrafish neuroendocrine responses are robust, and correlate withdrawal. In addition, varying levels of baseline anxiety can be observed in different strains of zebrafish

Kalueff, Allan V.

45

A new model to study visual attention in zebrafish.  

PubMed

The major part of cognitive tasks applied to zebrafish has not fully assessed their attentional ability, a process by which the nervous system learns, organizes sensory input and generates coordinated behaviour. In an attempt to maximize the value of zebrafish as an animal model of cognition, we tested the possibility to apply a modified version of novel object recognition test named virtual object recognition test (VORT) using 2D geometrical shapes (square, triangle, circle, cross, etc.) on two iPod 3.5-inch widescreen displays, located on two opposite walls of the water tank. Each fish was subjected to a familiarization trial (T1), and after different time delays (from 5min to 96h) to a novel shape recognition trial (T2). A progressive decrease, across time, of memory performance, in terms of mean discrimination index and mean exploration time, was shown. The predictive validity was tested using cholinergic drugs. Nicotine (0.02mg/kg intraperitoneally, IP) significantly increased, while scopolamine (0.025mg/kg IP) and mecamylamine decreased, mean discrimination index. Zebrafish discriminated different movements (vertical, horizontal, oblique) and the discrimination index increased significantly when moving poorly discriminated shapes were presented, thus increasing visual attention. Taken together these findings demonstrate that VORT is a viable, fast and useful model to evaluate sustained attention in zebrafish and for predicting the efficacy of pharmacotherapies for cognitive disorders. PMID:24681194

Braida, Daniela; Ponzoni, Luisa; Martucci, Roberta; Sala, Mariaelvina

2014-12-01

46

Genetically Engineered Cancer Models, But Not Xenografts, Faithfully Predict Anticancer Drug Exposure in Melanoma Tumors  

PubMed Central

Background. Rodent studies are a vital step in the development of novel anticancer therapeutics and are used in pharmacokinetic (PK), toxicology, and efficacy studies. Traditionally, anticancer drug development has relied on xenograft implantation of human cancer cell lines in immunocompromised mice for efficacy screening of a candidate compound. The usefulness of xenograft models for efficacy testing, however, has been questioned, whereas genetically engineered mouse models (GEMMs) and orthotopic syngeneic transplants (OSTs) may offer some advantages for efficacy assessment. A critical factor influencing the predictability of rodent tumor models is drug PKs, but a comprehensive comparison of plasma and tumor PK parameters among xenograft models, OSTs, GEMMs, and human patients has not been performed. Methods. In this work, we evaluated the plasma and tumor dispositions of an antimelanoma agent, carboplatin, in patients with cutaneous melanoma compared with four different murine melanoma models (one GEMM, one human cell line xenograft, and two OSTs). Results. Using microdialysis to sample carboplatin tumor disposition, we found that OSTs and xenografts were poor predictors of drug exposure in human tumors, whereas the GEMM model exhibited PK parameters similar to those seen in human tumors. Conclusions. The tumor PKs of carboplatin in a GEMM of melanoma more closely resembles the tumor disposition in patients with melanoma than transplanted tumor models. GEMMs show promise in becoming an improved prediction model for intratumoral PKs and response in patients with solid tumors. PMID:22993143

Combest, Austin J.; Roberts, Patrick J.; Dillon, Patrick M.; Sandison, Katie; Hanna, Suzan K.; Ross, Charlene; Habibi, Sohrab; Zamboni, Beth; Muller, Markus; Brunner, Martin; Sharpless, Norman E.

2012-01-01

47

Establishment and characterization of a murine xenograft model of appendiceal mucinous adenocarcinoma  

PubMed Central

We describe the clinical, pathologic and molecular characteristics of a xenograft model of metastatic mucinous appendiceal adenocarcinoma. Tumours from patients with mucinous appendiceal neoplasms were implanted in nude mice and observed for evidence of intraperitoneal tumour growth. Morphologic and immunohistochemical features, temporal growth characteristics relative to controls, and loss of heterozygosity (LOH) at multiple chromosomal alleles were assessed in a successfully engrafted tumour. Two of seventeen implanted tumours successfully engrafted and only one mucinous adenocarcinoma propagated throughout the course of the study. The successful xenograft is morphologically similar to the original tumour, produces abundant extracellular mucin and exhibits non-invasive growth on peritoneal surfaces. The temporal growth characteristics of the xenograft tumour relative to controls reveal that tumour burden can be followed indirectly by measuring the weight or abdominal girth of engrafted animals. The cytokeratin, mucin core protein, CDX2, Ki-67 and p53 expression patterns are identical in the xenograft and resected tumour and are consistent with the expected pattern of protein expression for mucinous adenocarcinoma of the appendix. LOH was found in 1 of 10 informative chromosomal loci (chromosome 10p23) in xenograft tumour cells. Although we were unable to engraft a low-grade appendiceal mucinous neoplasm, the engrafted adenocarcinoma will be useful for future evaluation of novel therapeutic strategies directed at mucinous appendiceal adenocarcinoma and evaluation of strategies for treating widespread, bulky, mucinous peritoneal surface neoplasms. Xenograft tumour enrichment can facilitate molecular studies of appendiceal epithelial neoplasia. PMID:20586814

Mavanur, Arun A; Parimi, Vamsi; O'Malley, Mark; Nikiforova, Marina; Bartlett, David L; Davison, Jon M

2010-01-01

48

Zebrafish as animal model for aquaculture nutrition research  

PubMed Central

The aquaculture industry continues to promote the diversification of ingredients used in aquafeed in order to achieve a more sustainable aquaculture production system. The evaluation of large numbers of diets in aquaculture species is costly and requires time-consuming trials in some species. In contrast, zebrafish (Danio rerio) can solve these drawbacks as an experimental model, and represents an ideal organism to carry out preliminary evaluation of diets. In addition, zebrafish has a sequenced genome allowing the efficient utilization of new technologies, such as RNA-sequencing and genotyping platforms to study the molecular mechanisms that underlie the organism’s response to nutrients. Also, biotechnological tools like transgenic lines with fluorescently labeled neutrophils that allow the evaluation of the immune response in vivo, are readily available in this species. Thus, zebrafish provides an attractive platform for testing many ingredients to select those with the highest potential of success in aquaculture. In this perspective article aspects related to diet evaluation in which zebrafish can make important contributions to nutritional genomics and nutritional immunity are discussed. PMID:25309575

Ulloa, Pilar E.; Medrano, Juan F.; Feijoo, Carmen G.

2014-01-01

49

A Synthetic dl-Nordihydroguaiaretic acid (Nordy), Inhibits Angiogenesis, Invasion and Proliferation of Glioma Stem Cells within a Zebrafish Xenotransplantation Model  

PubMed Central

The zebrafish (Danio rerio) and their transparent embryos represent a promising model system in cancer research. Compared with other vertebrate model systems, we had previously shown that the zebrafish model provides many advantages over mouse or chicken models to study tumor invasion, angiogenesis, and tumorigenesis. In this study, we systematically investigated the biological features of glioma stem cells (GSCs) in a zebrafish model, such as tumor angiogenesis, invasion, and proliferation. We demonstrated that several verified anti-angiogenic agents inhibited angiogenesis that was induced by xenografted-GSCs. We next evaluated the effects of a synthetic dl-nordihydroguaiaretic acid compound (dl-NDGA or “Nordy”), which revealed anti-tumor activity against human GSCs in vitro by establishing parameters through studying its ability to suppress angiogenesis, tumor invasion, and proliferation. Furthermore, our results indicated that Nordy might inhibit GSCs invasion and proliferation through regulation of the arachidonate 5-lipoxygenase (Alox-5) pathway. Moreover, the combination of Nordy and a VEGF inhibitor exhibited an enhanced ability to suppress angiogenesis that was induced by GSCs. By contrast, even following treatment with 50 µM Nordy, there was no discernible effect on zebrafish embryonic development. Together, these results suggested efficacy and safety of using Nordy in vivo, and further demonstrated that this model should be suitable for studying GSCs and anti-GSC drug evaluation. PMID:24454929

Yu, Shicang; Xu, Chuan; Chen, Guilai; Gu, Ai; Li, Tingting; Cui, Youhong; Zhang, Xia; Bian, Xiuwu

2014-01-01

50

A synthetic dl-nordihydroguaiaretic acid (Nordy), inhibits angiogenesis, invasion and proliferation of glioma stem cells within a zebrafish xenotransplantation model.  

PubMed

The zebrafish (Danio rerio) and their transparent embryos represent a promising model system in cancer research. Compared with other vertebrate model systems, we had previously shown that the zebrafish model provides many advantages over mouse or chicken models to study tumor invasion, angiogenesis, and tumorigenesis. In this study, we systematically investigated the biological features of glioma stem cells (GSCs) in a zebrafish model, such as tumor angiogenesis, invasion, and proliferation. We demonstrated that several verified anti-angiogenic agents inhibited angiogenesis that was induced by xenografted-GSCs. We next evaluated the effects of a synthetic dl-nordihydroguaiaretic acid compound (dl-NDGA or "Nordy"), which revealed anti-tumor activity against human GSCs in vitro by establishing parameters through studying its ability to suppress angiogenesis, tumor invasion, and proliferation. Furthermore, our results indicated that Nordy might inhibit GSCs invasion and proliferation through regulation of the arachidonate 5-lipoxygenase (Alox-5) pathway. Moreover, the combination of Nordy and a VEGF inhibitor exhibited an enhanced ability to suppress angiogenesis that was induced by GSCs. By contrast, even following treatment with 50 µM Nordy, there was no discernible effect on zebrafish embryonic development. Together, these results suggested efficacy and safety of using Nordy in vivo, and further demonstrated that this model should be suitable for studying GSCs and anti-GSC drug evaluation. PMID:24454929

Yang, Xiaojun; Cui, Wei; Yu, Shicang; Xu, Chuan; Chen, Guilai; Gu, Ai; Li, Tingting; Cui, Youhong; Zhang, Xia; Bian, Xiuwu

2014-01-01

51

The Developing Utility of Zebrafish Models for Cognitive Enhancers Research  

PubMed Central

Whereas cognitive impairment is a common symptom in multiple brain disorders, predictive and high-throughput animal models of cognition and behavior are becoming increasingly important in the field of translational neuroscience research. In particular, reliable models of the cognitive deficits characteristic of numerous neurobehavioral disorders such as Alzheimer’s disease and schizophrenia have become a significant focus of investigation. While rodents have traditionally been used to study cognitive phenotypes, zebrafish (Danio rerio) are gaining popularity as an excellent model to complement current translational neuroscience research. Here we discuss recent advances in pharmacological and genetic approaches using zebrafish models to study cognitive impairments and to discover novel cognitive enhancers and neuroprotective mechanisms. PMID:23449968

Stewart, Adam Michael; Kalueff, Allan V

2012-01-01

52

Embryonic Senescence and Laminopathies in a Progeroid Zebrafish Model  

Microsoft Academic Search

BackgroundMutations that disrupt the conversion of prelamin A to mature lamin A cause the rare genetic disorder Hutchinson-Gilford progeria syndrome and a group of laminopathies. Our understanding of how A-type lamins function in vivo during early vertebrate development through aging remains limited, and would benefit from a suitable experimental model. The zebrafish has proven to be a tractable model organism

Eriko Koshimizu; Shintaro Imamura; Jie Qi; Jamal Toure; Delgado M. Valdez; Christopher E. Carr; Jun-Ichi Hanai; Shuji Kishi; Alfred Lewin

2011-01-01

53

Debio 0932, a new oral hsp90 inhibitor, alleviates psoriasis in a xenograft transplantation model.  

PubMed

Debio 0932 is a novel oral heat shock protein 90 (Hsp90) inhibitor developed for anti-cancer therapy. Surprising-ly, during the first clinical trial, one psoriasis patient experienced complete remission of his skin manifestation. However, a possible therapeutic utility of Hsp90 in psoriasis has not previously been reported. The objective of the present study was to explore the ability of Debio 0932 to alleviate psoriasis in a preclinical model. A psoriasis xenograft transplantation model was employed where skin from 5 psoriasis patients was transplanted onto immunodeficient mice (8 xenografts per donor). Debio 0932 was administered perorally daily for 3 weeks and resulted in significant clinical alleviation of psoriasis by day 11 and reduced epidermal thickness evaluated post-treatment. Alleviation of psoriasis in the psoriasis xenograft transplantation model, which may be due to Hsp90's involvement in signalling pathways that are up-regulated in psoriasis, substantiates a potential role of Debio 0932 in psoriasis treatment. PMID:24604074

Stenderup, Karin; Rosada, Cecilia; Gavillet, Bruno; Vuagniaux, Grégoire; Dam, Tomas Norman

2014-10-23

54

Zebrafish: an in vivo model for nano EHS studies  

PubMed Central

To assure a responsible and sustainable growth of nanotechnology, the environmental health and safety (EHS) aspect of engineered nanomaterials and nano-related products needs to be addressed at a rate commensurate with the expansion of nanotechnology. Zebrafish has been demonstrated as a correlative in vivo vertebrate model for such task, and the current advances of using zebrafish for nano EHS studies are summarized here. In addition to morphological and histopathological observations, the accessibility of gene manipulation would greatly empower such a model for detailed mechanistic studies of any nanoparticles of interest. The potential for establishing high-throughput screening platforms to facilitate the nano EHS studies is highlighted, and a discussion is presented on how toxicogenomics approaches represent a future direction to guide the identification of toxicity pathways. PMID:23208995

Zhao, Yan; Nel, Andre E.; Lin, Shuo

2014-01-01

55

Anticancer effect of silibinin on the xenograft model using MDA-MB-468 breast cancer cells  

PubMed Central

Purpose The aim of this study is to know whether silibinin has an anticancer effect on triple negative breast cancer xenograft model using MDA-MB-468 cells. Methods To establish the xenograft model, we injected the MDA-MB-468 cells into female Balb/c-nude mice. After establishing a xenograft model, oral silibinin was administered to the tested mice in the way of 200 mg/kg for 45 days. The difference of mean tumor volume between silibinin fed mice and control mice was analyzed. The epidermal growth factor receptor (EGFR) phosphorylation in MDA-MB-468 cells was analyzed by Western blotting. The expression of VEGF, COX-2, and MMP-9 genes in tumor tissue was analyzed by real-time polymerase chain reaction (PCR). Results In the xenograft model using MDA-MB-468 cells, we found that oral administration of silibinin significantly suppressed the tumor volume (silibinin treated mice vs. control mice; 230.3 ± 61.6 mm3 vs. 435.7 ± 93.5 mm3, P < 0.001). The phosphorylation of EGFR in MDA-MB-468 cells was inhibited by treatment with 50 µg/mL of silibinin. In real time-PCR analysis of tumor tissue obtained from sacrificed mice, the gene expression of MMP-9, VEGF, and COX-2 was 51.8%-80% smaller in silibinin group than that of control group and we can also verify the similar result using Western blotting analysis. Conclusion We verified that silibinin had anticancer effect on xenograft model of MDA-MB-468 cells in the way of preventing the phosphorylation of EGFR and eventually suppressed the production of COX-2, VEGF, and MMP-9 expression. Finally, the tumor volume of xenograft models was decreased after administration of Silibinin.

Kim, Sang Min; Lee, Jeong Eon; Park, Kyoung Sik; Nam, Seok Jin

2014-01-01

56

Continuous Local Delivery of Interferon-? Stabilizes Tumor Vasculature in an Orthotopic Glioblastoma Xenograft Resection Model  

PubMed Central

Background High-grade glioblastomas have immature, leaky tumor blood vessels that impede the efficacy of adjuvant therapy. We assessed the ability of human interferon-beta (hIFN-?) delivered locally via gene transfer to effect vascular stabilization in an orthotopic glioblastoma xenograft resection model. Methods Xenografts were established by injecting three grade IV glioblastoma cell lines (GBM6-luc, MT330-luc, and SJG2-luc) into the cerebral cortex of nude rats. Tumors underwent subtotal resection, and then had gel foam containing an adeno-associated virus vector encoding either hIFN-? or green fluorescence protein (GFP, control) placed in the resection cavity. The primary end point was stabilization of tumor vasculature, as evidenced by CD34, ?SMA, and CA IX staining. Overall survival was a secondary endpoint. Results hIFN-? treatment altered the tumor vasculature of GBM6-luc and SJG2-luc xenografts, decreasing the density of endothelial cells, stabilizing vessels with pericytes, and decreasing tumor hypoxia. The mean survival for rats with these tumors was not significantly improved, however. In rats with MT330-luc xenografts, hIFN-? resulted in tumor regression, with a 6-month survival of 55% (INF-? group) and 9% (control group). Conclusion The use of AAV hIFN-? in our orthotopic glioblastoma resection model stabilized tumor vasculature, and dramatically improved survival in rats with MT330 xenografts. PMID:21878236

Denbo, Jason W.; Williams, Regan F.; Orr, W. Shannon; Sims, Thomas L.; Ng, Catherine Y.; Zhou, Junfang; Spence, Yunyu; Morton, Christopher L.; Nathwani, Amit C.; Duntsch, Christopher; Pfeffer, Lawrence M.; Davidoff, Andrew M.

2011-01-01

57

Restoration of renal function in zebrafish models of ciliopathies  

Microsoft Academic Search

The ciliopathies are a class of rare human genetic disease whose aetioligies lie in defective primary cilia. Typical ciliopathies\\u000a include Bardet–Biedl syndrome (BBS), nephronophthisis (NPHP), Jeune, Joubert, oro-facial-digital (OFD1) and Meckel (MKS) syndromes.\\u000a All ciliopathies have the common denominator of renal disease, often including tubular cysts. In this study, we have modelled\\u000a a range of ciliopathies in zebrafish and shown

Jonathan L. Tobin; Philip L. Beales

2008-01-01

58

Zebrafish as a model to study live mucus physiology.  

PubMed

Dysfunctional mucus barriers can result in important pulmonary and gastrointestinal conditions, but model systems to study the underlying causes are largely missing. We identified and characterized five mucin homologues in zebrafish, and demonstrated a strategy for fluorescence labeling of one selected mucin. These tools can be used for in vivo experiments and in pharmacological and genetic screens to study the dynamics and mechanisms of mucosal physiology. PMID:25323747

Jevtov, Irena; Samuelsson, Tore; Yao, Grace; Amsterdam, Adam; Ribbeck, Katharina

2014-01-01

59

Zebrafish as a model to study live mucus physiology  

PubMed Central

Dysfunctional mucus barriers can result in important pulmonary and gastrointestinal conditions, but model systems to study the underlying causes are largely missing. We identified and characterized five mucin homologues in zebrafish, and demonstrated a strategy for fluorescence labeling of one selected mucin. These tools can be used for in vivo experiments and in pharmacological and genetic screens to study the dynamics and mechanisms of mucosal physiology. PMID:25323747

Jevtov, Irena; Samuelsson, Tore; Yao, Grace; Amsterdam, Adam; Ribbeck, Katharina

2014-01-01

60

Zebrafish as a novel vertebrate model to dissect enterococcal pathogenesis.  

PubMed

Enterococcus faecalis is an opportunistic pathogen responsible for a wide range of life-threatening nosocomial infections, such as septicemia, peritonitis, and endocarditis. E. faecalis infections are associated with a high mortality and substantial health care costs and cause therapeutic problems due to the intrinsic resistance of this bacterium to antibiotics. Several factors contributing to E. faecalis virulence have been identified. Due to the variety of infections caused by this organism, numerous animal models have been used to mimic E. faecalis infections, but none of them is considered ideal for monitoring pathogenesis. Here, we studied for the first time E. faecalis pathogenesis in zebrafish larvae. Using model strains, chosen isogenic mutants, and fluorescent derivatives expressing green fluorescent protein (GFP), we analyzed both lethality and bacterial dissemination in infected larvae. Genetically engineered immunocompromised zebrafish allowed the identification of two critical steps for successful establishment of disease: (i) host phagocytosis evasion mediated by the Epa rhamnopolysaccharide and (ii) tissue damage mediated by the quorum-sensing Fsr regulon. Our results reveal that the zebrafish is a novel, powerful model for studying E. faecalis pathogenesis, enabling us to dissect the mechanism of enterococcal virulence. PMID:24002065

Prajsnar, Tomasz K; Renshaw, Stephen A; Ogryzko, Nikolay V; Foster, Simon J; Serror, Pascale; Mesnage, Stéphane

2013-11-01

61

Toxicity of silver nanoparticles in zebrafish models  

NASA Astrophysics Data System (ADS)

This study was initiated to enhance our insight on the health and environmental impact of silver nanoparticles (Ag-np). Using starch and bovine serum albumin (BSA) as capping agents, silver nanoparticles were synthesized to study their deleterious effects and distribution pattern in zebrafish embryos (Danio rerio). Toxicological endpoints like mortality, hatching, pericardial edema and heart rate were recorded. A concentration-dependent increase in mortality and hatching delay was observed in Ag-np treated embryos. Additionally, nanoparticle treatments resulted in concentration-dependent toxicity, typified by phenotypes that had abnormal body axes, twisted notochord, slow blood flow, pericardial edema and cardiac arrhythmia. Ag+ ions and stabilizing agents showed no significant defects in developing embryos. Transmission electron microscopy (TEM) of the embryos demonstrated that nanoparticles were distributed in the brain, heart, yolk and blood of embryos as evident from the electron-dispersive x-ray analysis (EDS). Furthermore, the acridine orange staining showed an increased apoptosis in Ag-np treated embryos. These results suggest that silver nanoparticles induce a dose-dependent toxicity in embryos, which hinders normal development.

Asharani, P. V.; Lian Wu, Yi; Gong, Zhiyuan; Valiyaveettil, Suresh

2008-06-01

62

The National Institutes of Health and the growth of the zebrafish as an experimental model organism.  

PubMed

The National Institutes of Health (NIH), an agency in the Department of Health and Human Services (DHHS), is a strong advocate of zebrafish and other animal model systems for biomedical and behavior research. In part because of strong funding support from NIH, zebrafish research is now providing fundamental insights into physiology, behavior, and the mechanisms of human disease. Over the past few years, the NIH has established a research infrastructure for the zebrafish community that includes genomic resources and tools for genetic analysis in this system. In addition, the NIH supports community resources such as the Zebrafish International Resource Center (ZIRC) and the Zebrafish Information Network (ZFIN). With the importance of zebrafish research now well-established, NIH will continue to fund a broad array of investigator-initiated studies that focus on issues critical to human health using this model system. PMID:18248222

Henken, Deborah B; Rasooly, Rebekah S; Javois, Lorette; Hewitt, A Tyl

2004-01-01

63

Genomic editing opens new avenues for zebrafish as a model for neurodegeneration.  

PubMed

Zebrafish has become a popular model organism to study human diseases. We will highlight the advantages and limitations of zebrafish as a model organism to study neurodegenerative diseases and introduce zinc finger nucleases, transcription activator-like effector nucleases, and the recently established clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated system for genome editing. The efficiency of the novel genome editing tools now greatly facilitates knock-out and, importantly, also makes knock-in approaches feasible in zebrafish. Genome editing in zebrafish avoids unspecific phenotypes caused by off-target effects and toxicity as frequently seen in conventional knock-down approaches. PMID:24117801

Schmid, Bettina; Haass, Christian

2013-11-01

64

Zebrafish as model organisms for studying drug-induced liver injury.  

PubMed

Drug-induced liver injury (DILI) is a major challenge in clinical medicine and drug development. New models are needed for predicting which potential therapeutic compounds will cause DILI in humans, and new markers and mediators of DILI still need to be identified. This review highlights the strengths and weaknesses of using zebrafish as a high-throughput in vivo model for studying DILI. Although the zebrafish liver architecture is different from that of the mammalian liver, the main physiological processes remain similar. Zebrafish metabolize drugs using similar pathways to those in humans; they possess a wide range of cytochrome P450 enzymes that enable metabolic reactions including hydroxylation, conjugation, oxidation, demethylation and de-ethylation. Following exposure to a range of hepatotoxic drugs, the zebrafish liver develops histological patterns of injury comparable to those of mammalian liver, and biomarkers for liver injury can be quantified in the zebrafish circulation. The zebrafish immune system is similar to that of mammals, but the zebrafish inflammatory response to DILI is not yet defined. In order to quantify DILI in zebrafish, a wide variety of methods can be used, including visual assessment, quantification of serum enzymes and experimental serum biomarkers and scoring of histopathology. With further development, the zebrafish may be a model that complements rodents and may have value for the discovery of new disease pathways and translational biomarkers. PMID:24773296

Vliegenthart, A D Bastiaan; Tucker, Carl S; Del Pozo, Jorge; Dear, James W

2014-12-01

65

Chemically induced intestinal damage models in zebrafish larvae.  

PubMed

Several intestinal damage models have been developed using zebrafish, with the aim of recapitulating aspects of human inflammatory bowel disease (IBD). These experimentally induced inflammation models have utilized immersion exposure to an array of colitogenic agents (including live bacteria, bacterial products, and chemicals) to induce varying severity of inflammation. This technical report describes methods used to generate two chemically induced intestinal damage models using either dextran sodium sulfate (DSS) or trinitrobenzene sulfonic acid (TNBS). Methods to monitor intestinal damage and inflammatory processes, and chemical-genetic methods to manipulate the host response to injury are also described. PMID:23448252

Oehlers, Stefan H; Flores, Maria Vega; Hall, Christopher J; Okuda, Kazuhide S; Sison, John Oliver; Crosier, Kathryn E; Crosier, Philip S

2013-06-01

66

Pharmacological modulation of anxiety-like phenotypes in adult zebrafish behavioral models.  

PubMed

Zebrafish (Danio rerio) are becoming increasingly popular in neurobehavioral research. Here, we summarize recent data on behavioral responses of adult zebrafish to a wide spectrum of putative anxiolytic and anxiogenic agents. Using the novel tank test as a sensitive and efficient behavioral assay, zebrafish anxiety-like behavior can be bi-directionally modulated by drugs affecting the gamma-aminobutyric acid, monoaminergic, cholinergic, glutamatergic and opioidergic systems. Complementing human and rodent data, zebrafish drug-evoked phenotypes obtained in this test support this species as a useful model for neurobehavioral and psychopharmacological research. PMID:21122812

Stewart, Adam; Wu, Nadine; Cachat, Jonathan; Hart, Peter; Gaikwad, Siddharth; Wong, Keith; Utterback, Eli; Gilder, Thomas; Kyzar, Evan; Newman, Alan; Carlos, Dillon; Chang, Katie; Hook, Molly; Rhymes, Catherine; Caffery, Michael; Greenberg, Mitchell; Zadina, James; Kalueff, Allan V

2011-08-01

67

Efficacy of Weekly Docetaxel and Bevacizumab in Mesenchymal Chondrosarcoma: A New Theranostic Method Combining Xenografted Biopsies with a Mathematical Model  

Microsoft Academic Search

The paucity of clinical treatment data on rare tumors, such as mesenchymal chondrosarcoma (MCS), emphasizes the need in theranostic tools for these diseases. We put forward and validated a new theranostic method, combining tumor xenografts and mathematical models, and used it to suggest an improved treatment schedule for a particular MCS patient. Growth curves and gene expression analysis of xenografts,

Boris Gorelik; Irit Ziv; Revital Shohat; Michael Wick; W. David Hankins; David Sidransky; Zvia Agur

2008-01-01

68

A two-scale model for correlation between B cell VDJ usage in zebrafish  

NASA Astrophysics Data System (ADS)

The zebrafish (Danio rerio) is one of the model animals for study of immunology. The dynamics of the adaptive immune system in zebrafish is similar to that in higher animals. In this work, we built a two-scale model to simulate the dynamics of B cells in primary and secondary immune reactions in zebrafish and to explain the reported correlation between VDJ usage of B cell repertoires in distinct zebrafish. The first scale of the model consists of a generalized NK model to simulate the B cell maturation process in the 10-day primary immune response. The second scale uses a delay ordinary differential equation system to model the immune responses in the 6-month lifespan of zebrafish. The generalized NK model shows that mature B cells specific to one antigen mostly possess a single VDJ recombination. The probability that mature B cells in two zebrafish have the same VDJ recombination increases with the B cell population size or the B cell selection intensity and decreases with the B cell hypermutation rate. The ODE model shows a distribution of correlation in the VDJ usage of the B cell repertoires in two six-month-old zebrafish that is highly similar to that from experiment. This work presents a simple theory to explain the experimentally observed correlation in VDJ usage of distinct zebrafish B cell repertoires after an immune response.

Pan, Keyao; Deem, Michael

2011-03-01

69

Toward developmental models of psychiatric disorders in zebrafish  

PubMed Central

Psychiatric disorders are a diverse set of diseases that affect all aspects of mental function including social interaction, thinking, feeling, and mood. Although psychiatric disorders place a large economic burden on society, the drugs available to treat them are often palliative with variable efficacy and intolerable side-effects. The development of novel drugs has been hindered by a lack of knowledge about the etiology of these diseases. It is thus necessary to further investigate psychiatric disorders using a combination of human molecular genetics, gene-by-environment studies, in vitro pharmacological and biochemistry experiments, animal models, and investigation of the non-biological basis of these diseases, such as environmental effects. Many psychiatric disorders, including autism spectrum disorder, attention-deficit/hyperactivity disorder, mental retardation, and schizophrenia can be triggered by alterations to neural development. The zebrafish is a popular model for developmental biology that is increasingly used to study human disease. Recent work has extended this approach to examine psychiatric disorders as well. However, since psychiatric disorders affect complex mental functions that might be human specific, it is not possible to fully model them in fish. In this review, I will propose that the suitability of zebrafish for developmental studies, and the genetic tools available to manipulate them, provide a powerful model to study the roles of genes that are linked to psychiatric disorders during neural development. The relative speed and ease of conducting experiments in zebrafish can be used to address two areas of future research: the contribution of environmental factors to disease onset, and screening for novel therapeutic compounds. PMID:23637652

Norton, William H. J.

2013-01-01

70

MOLECULAR REPRODUCTION AND DEVELOPMENT Zebrafish Mutants as Models for Congenital  

E-print Network

in Humans JEFFREY M. GROSS1 * AND BRIAN D. PERKINS2 ** 1 Section of Molecular Cell and Developmental Biology and Fadool, 2005). Development and Anatomy of the Zebrafish Eye Eye development in zebrafish begins., 2007), and zebrafish possess many stereo- typical anterior segment structures. The anatomy

Gross, Jeff

71

Patient-derived tumour xenografts as models for oncology drug development  

PubMed Central

Progress in oncology drug development has been hampered by a lack of preclinical models that reliably predict clinical activity of novel compounds in cancer patients. In an effort to address these shortcomings, there has been a recent increase in the use of patient-derived tumour xenografts (PDTX) engrafted into immune-compromised rodents such as athymic nude or NOD/SCID mice for preclinical modelling. Numerous tumour-specific PDTX models have been established and, importantly, they are biologically stable when passaged in mice in terms of global gene-expression patterns, mutational status, metastatic potential, drug responsiveness and tumour architecture. These characteristics might provide significant improvements over standard cell-line xenograft models. This Review will discuss specific PDTX disease examples illustrating an overview of the opportunities and limitations of these models in cancer drug development, and describe concepts regarding predictive biomarker development and future applications. PMID:22508028

Tentler, John J.; Tan, Aik Choon; Weekes, Colin D.; Jimeno, Antonio; Leong, Stephen; Pitts, Todd M.; Arcaroli, John J.; Messersmith, Wells A.; Eckhardt, S. Gail

2014-01-01

72

Zebrafish as a model to study cardiac development and human cardiac disease  

Microsoft Academic Search

Over the last decade, the zebrafish has entered the field of cardiovascular research as a new model organism. This is largely due to a number of highly successful small- and large-scale forward genetic screens, which have led to the identification of zebrafish mutants with cardiovascular defects. Genetic mapping and identification of the affected genes have resulted in novel insights into

J. Bakkers

2011-01-01

73

A multi-scale model for correlation in B cell VDJ usage of zebrafish.  

PubMed

The zebrafish (Danio rerio) is one of the model animals used for the study of immunology because the dynamics in the adaptive immune system of zebrafish are similar to that in higher animals. In this work, we built a multi-scale model to simulate the dynamics of B cells in the primary and secondary immune responses of zebrafish. We use this model to explain the reported correlation between VDJ usage of B cell repertoires in individual zebrafish. We use a delay ordinary differential equation (ODE) system to model the immune responses in the 6-month lifespan of a zebrafish. This mean field theory gives the number of high-affinity B cells as a function of time during an infection. The sequences of those B cells are then taken from a distribution calculated by a 'microscopic' random energy model. This generalized NK model shows that mature B cells specific to one antigen largely possess a single VDJ recombination. The model allows first-principle calculation of the probability, p, that two zebrafish responding to the same antigen will select the same VDJ recombination. This probability p increases with the B cell population size and the B cell selection intensity. The probability p decreases with the B cell hypermutation rate. The multi-scale model predicts correlations in the immune system of the zebrafish that are highly similar to that from experiment. PMID:21832808

Pan, Keyao; Deem, Michael W

2011-10-01

74

A multi-scale model for correlation in B cell VDJ usage of zebrafish  

NASA Astrophysics Data System (ADS)

The zebrafish (Danio rerio) is one of the model animals used for the study of immunology because the dynamics in the adaptive immune system of zebrafish are similar to that in higher animals. In this work, we built a multi-scale model to simulate the dynamics of B cells in the primary and secondary immune responses of zebrafish. We use this model to explain the reported correlation between VDJ usage of B cell repertoires in individual zebrafish. We use a delay ordinary differential equation (ODE) system to model the immune responses in the 6-month lifespan of a zebrafish. This mean field theory gives the number of high-affinity B cells as a function of time during an infection. The sequences of those B cells are then taken from a distribution calculated by a 'microscopic' random energy model. This generalized NK model shows that mature B cells specific to one antigen largely possess a single VDJ recombination. The model allows first-principle calculation of the probability, p, that two zebrafish responding to the same antigen will select the same VDJ recombination. This probability p increases with the B cell population size and the B cell selection intensity. The probability p decreases with the B cell hypermutation rate. The multi-scale model predicts correlations in the immune system of the zebrafish that are highly similar to that from experiment.

Pan, Keyao; Deem, Michael W.

2011-10-01

75

Hematein, a casein kinase II inhibitor, inhibits lung cancer tumor growth in a murine xenograft model  

PubMed Central

Casein kinase II (CK2) inhibitors suppress cancer cell growth. In this study, we examined the inhibitory effects of a novel CK2 inhibitor, hematein, on tumor growth in a murine xenograft model. We found that in lung cancer cells, hematein inhibited cancer cell growth, Akt/PKB Ser129 phosphorylation, the Wnt/TCF pathway and increased apoptosis. In a murine xenograft model of lung cancer, hematein inhibited tumor growth without significant toxicity to the mice tested. Molecular docking showed that hematein binds to CK2? in durable binding sites. Collectively, our results suggest that hematein is an allosteric inhibitor of protein kinase CK2 and has antitumor activity to lung cancer. PMID:24008396

HUNG, MING-SZU; XU, ZHIDONG; CHEN, YU; SMITH, EMMANUEL; MAO, JIAN-HUA; HSIEH, DAVID; LIN, YU-CHING; YANG, CHENG-TA; JABLONS, DAVID M.; YOU, LIANG

2013-01-01

76

The T61 human breast cancer xenograft: An experimental model of estrogen therapy of breast cancer  

Microsoft Academic Search

Summary Endocrine therapy is one of the principal treatment modalities of breast cancer, both in an adjuvant setting and in advanced disease. The T61 breast cancer xenograft described here provides an experimental model of the effects of estrogen treatment at a molecular level. T61 is an estrogen receptor positive tumor which was originally derived from a T1N0M0 invasive ductal cancer

Nils Briinner I; Mogens Spang-Thomsen; Kevin Cullen

1996-01-01

77

The Visual System of Zebrafish and its Use to Model Human Ocular Diseases  

PubMed Central

Free swimming zebrafish larvae depend mainly on their sense of vision to evade predation and to catch prey. Hence there is strong selective pressure on the fast maturation of visual function and indeed the visual system already supports a number of visually-driven behaviors in the newly hatched larvae. The ability to exploit the genetic and embryonic accessibility of the zebrafish in combination with a behavioral assessment of visual system function has made the zebrafish a popular model to study vision and its diseases. Here, we review the anatomy, physiology and development of the zebrafish eye as the basis to relate the contributions of the zebrafish to our understanding of human ocular diseases. PMID:21595048

Gestri, Gaia; Link, Brian A; Neuhauss, Stephan CF

2011-01-01

78

The effect of surgically induced ischaemia on gene expression in a colorectal cancer xenograft model  

PubMed Central

Delays in tissue fixation following tumour vascular clamping and extirpation may adversely affect subsequent protein and mRNA analysis. This study investigated the effect of surgically induced ischaemia in a xenograft model of a colorectal cancer on the expression of a range of prognostic, predictive, and hypoxic markers, with a particular emphasis on thymidylate synthase. Vascular occlusion of human tumour xenografts by D-shaped metal clamps permitted defined periods of tumour ischaemia. Alterations in protein expression were measured by immunohistochemistry and spectral imaging, and changes in mRNA were measured by reverse transcriptase–polymerase chain reaction. Thymidylate synthase expression decreased following vascular occlusion, and this correlated with cyclin A expression. A similar reduction in dihydropyrimidine dehydrogenase was also seen. There were significant changes in the expression of several hypoxic markers, with carbonic anhydrase-9 showing the greatest response. Gene transcriptional levels were also noted to change following tumour clamping. In this xenograft model, surgically induced tumour ischaemia considerably altered the gene expression profiles of several prognostic and hypoxic markers, suggesting that the degree of tumour ischaemia should be minimised prior to tissue fixation. PMID:16404365

Atkin, G; Daley, F M; Bourne, S; Glynne-Jones, R; Northover, J; Wilson, G D

2006-01-01

79

ProstaCaid inhibits tumor growth in a xenograft model of human prostate cancer.  

PubMed

We have recently demonstrated that the dietary supplement ProstaCaid (PC) inhibits growth and invasive behavior of PC-3 human prostate cancer cells in vitro. In the present study, we evaluated toxicity and whether PC suppresses growth of prostate cancer in a xenograft model of human prostate cancer cells implanted in mice. Here, we show that an oral administration of PC (100, 200 and 400 mg/kg) did not affect body weight or activity of liver enzymes (ALT, AST) and did not show any sign of toxicity in liver, spleen, kidney, lung and heart tissues in mice. In addition, PC treatment resulted in the inhibition of tumor volumes (1024.6 ± 378.6 vs. 749.3 ± 234.3, P<0.001) in a xenograft model of prostate cancer with human hormone refractory (independent) PC-3 prostate cancer cells. Moreover, qRT-PCR analysis demonstrated significant upregulation of expression of CDKN1A (p21) and inhibition of expression of IGF2, NR2F2 and PLAU (uPA) genes by an oral administration of PC in prostate cancer xenografts. Our study demonstrates that the concentrations of the dietary supplement ProstaCaid tested did not show signs of toxicity, and its oral application has significant anticancer activity in vivo and can be considered as an alternative treatment for prostate cancer patients. PMID:22293856

Jiang, Jiahua; Loganathan, Jagadish; Eliaz, Isaac; Terry, Colin; Sandusky, George E; Sliva, Daniel

2012-05-01

80

The anti-Fn14 antibody BIIB036 inhibits tumor growth in xenografts and patient derived primary tumor models and enhances efficacy of chemotherapeutic agents in multiple xenograft models.  

PubMed

Agonistic antibodies targeting Fn14, the receptor for TWEAK, have demonstrated anti-tumor activity in xenograft models. Herein, we further explore the therapeutic potential of the humanized anti-Fn14 agonistic antibody, BIIB036, as a single agent and in combination with standard of care cancer therapeutics. Pharmacokinetic studies of BIIB036 in tumor-bearing mice revealed a half-life of approximately three days suggesting twice a week dosing would be necessary to maintain efficacy. However, in multiple xenograft models, BIIB036 treatment resulted in extended tumor growth inhibition up to 40-50 d following cessation of dosing, suggesting that frequent administration of BIIB036 may not be necessary to maintain prolonged anti-tumor activity. Subsequent xenograft studies revealed that maximal efficacy was achieved with BIIB036 dosing once every two weeks, by either intraperitoneal or subcutaneous administration. Xenograft tumors that were initially treated with BIBI036 and then re-grew up to 1000 mm³ following cessation of the first cycle of treatment remained sensitive to a second cycle of treatment. BIIB036 was also evaluated in patient derived primary colon tumor models, where efficacy compared favorably with a standard of care agent. Lastly, BIIB036 enhanced the efficacy of several standard of care chemotherapeutics, including paclitaxel in MDA-MBA-231 breast tumor xenografts, paclitaxel or carboplatin in HOP62 non-small cell lung xenografts, and 5-FU in NCI-N87 gastric xenografts, with no overlapping toxicities. These studies thus establish BIIB036 as a promising therapeutic agent with durable anti-tumor activity in human xenografts as well as patient derived primary tumor models, and enhanced activity and tolerability in combination with standard of care chemotherapeutics. Taken together, the data presented herein suggest that BIIB036 warrants evaluation in the clinic. PMID:22669574

Michaelson, Jennifer S; Kelly, Rebecca; Yang, Lu; Zhang, Xiamei; Wortham, Kathleen; Joseph, Ingrid B J K

2012-07-01

81

A zebrafish (Danio rerio) model of infectious spleen and kidney necrosis virus (ISKNV) infection  

SciTech Connect

Zebrafish is a model animal for studies of genetics, development, toxicology, oncology, and immunology. In this study, infectious spleen and kidney necrosis virus (ISKNV) was used to establish an infection in zebrafish, and the experimental conditions were established and characterized. Mortality of adult zebrafish infected with ISKNV by intraperitoneal (i.p.) injection exceeded 60%. ISKNV can be passed stably in zebrafish for over ten passages. The ailing zebrafish displayed petechial hemorrhaging and scale protrusion. Histological analysis of moribund fish revealed necrosis of tissue and enlarged cells in kidney and spleen. The real-time RT-PCR analysis of mRNA level confirmed that ISKNV was replicated in zebrafish. Immunohistochemistry and immunofluorescence analyses further confirmed the presence of ISKNV-infected cells in almost all organs of the infected fish. Electron microscope analyses showed that the ISKNV particle was present in the infected tissues. The establishment of zebrafish infection model of ISKNV can offer a valuable tool for studying the interactions between ISKNV and its host.

Xu Xiaopeng; Zhang Lichun; Weng Shaoping; Huang Zhijian; Lu Jing; Lan Dongming [State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen (Zhongshan) University, Guangzhou, 510275 (China); Zhong Xuejun [Guangzhou Kingmed Center for Clinical Laboratory, Guangzhou (China); Yu Xiaoqiang [Division of Cell Biology and Biophysics, School of Biological Science, University of Missouri-Kansas City, Kansas City (United States); Xu Anlong [State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen (Zhongshan) University, Guangzhou, 510275 (China)], E-mail: lssxal@mail.sysu.edu.cn; He Jianguo [State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen (Zhongshan) University, Guangzhou, 510275 (China)], E-mail: lsshjg@mail.sysu.edu.cn

2008-06-20

82

Zebrafish cardiac injury and regeneration models: A Noninvasive and invasive in vivo model of cardiac regeneration  

PubMed Central

Summary Despite current treatment regimens, heart failure still remains one of the leading causes of morbidity and mortality in the world due to failure to adequately replace lost ventricular myocardium from ischemia-induced infarct. Although adult mammalian ventricular cardiomyocytes have a limited capacity to divide, this proliferation is insufficient to overcome the significant loss of myocardium from ventricular injury. However, lower vertebrates, such as the zebrafish and newt, have the remarkable capacity to fully regenerate their hearts after severe injury. Thus, there is great interest in studying these animal model systems to discover new regenerative approaches that might be applied to injured mammalian hearts. To this end, the zebrafish has been utilized more recently to gain additional mechanistic insight into cardiac regeneration because of its genetic tractability. Here, we describe two cardiac injury methods, a mechanical and a genetic injury model, for studying cardiac regeneration in the zebrafish. PMID:24029953

Dickover, Michael S.; Zhang, Ruilin; Han, Peidong; Chi, Neil C.

2014-01-01

83

A renewable tissue resource of phenotypically stable, biologically and ethnically diverse, patient-derived human breast cancer xenograft models.  

PubMed

Breast cancer research is hampered by difficulties in obtaining and studying primary human breast tissue, and by the lack of in vivo preclinical models that reflect patient tumor biology accurately. To overcome these limitations, we propagated a cohort of human breast tumors grown in the epithelium-free mammary fat pad of severe combined immunodeficient (SCID)/Beige and nonobese diabetic (NOD)/SCID/IL-2?-receptor null (NSG) mice under a series of transplant conditions. Both models yielded stably transplantable xenografts at comparably high rates (?21% and ?19%, respectively). Of the conditions tested, xenograft take rate was highest in the presence of a low-dose estradiol pellet. Overall, 32 stably transplantable xenograft lines were established, representing 25 unique patients. Most tumors yielding xenografts were "triple-negative" [estrogen receptor (ER)-progesterone receptor (PR)-HER2+; n = 19]. However, we established lines from 3 ER-PR-HER2+ tumors, one ER+PR-HER2-, one ER+PR+HER2-, and one "triple-positive" (ER+PR+HER2+) tumor. Serially passaged xenografts show biologic consistency with the tumor of origin, are phenotypically stable across multiple transplant generations at the histologic, transcriptomic, proteomic, and genomic levels, and show comparable treatment responses as those observed clinically. Xenografts representing 12 patients, including 2 ER+ lines, showed metastasis to the mouse lung. These models thus serve as a renewable, quality-controlled tissue resource for preclinical studies investigating treatment response and metastasis. PMID:23737486

Zhang, Xiaomei; Claerhout, Sofie; Prat, Aleix; Dobrolecki, Lacey E; Petrovic, Ivana; Lai, Qing; Landis, Melissa D; Wiechmann, Lisa; Schiff, Rachel; Giuliano, Mario; Wong, Helen; Fuqua, Suzanne W; Contreras, Alejandro; Gutierrez, Carolina; Huang, Jian; Mao, Sufeng; Pavlick, Anne C; Froehlich, Amber M; Wu, Meng-Fen; Tsimelzon, Anna; Hilsenbeck, Susan G; Chen, Edward S; Zuloaga, Pavel; Shaw, Chad A; Rimawi, Mothaffar F; Perou, Charles M; Mills, Gordon B; Chang, Jenny C; Lewis, Michael T

2013-08-01

84

A Renewable Tissue Resource of Phenotypically Stable, Biologically and Ethnically Diverse, Patient-derived Human Breast Cancer Xenograft (PDX) Models  

PubMed Central

Breast cancer research is hampered by difficulties in obtaining and studying primary human breast tissue, and by the lack of in vivo preclinical models that reflect patient tumor biology accurately. To overcome these limitations, we propagated a cohort of human breast tumors grown in the epithelium-free mammary fat pad of SCID/Beige and NOD/SCID/IL2?-receptor null (NSG) mice, under a series of transplant conditions. Both models yielded stably transplantable xenografts at comparably high rates (~21% and ~19%, respectively). Of the conditions tested, xenograft take rate was highest in the presence of a low-dose estradiol pellet. Overall, 32 stably transplantable xenograft lines were established, representing 25 unique patients. Most tumors yielding xenografts were “triple-negative” (ER-PR-HER2+) (n=19). However, we established lines from three ER-PR-HER2+ tumors, one ER+PR-HER2?, one ER+PR+HER2? and one “triple-positive” (ER+PR+HER2+) tumor. Serially passaged xenografts show biological consistency with the tumor of origin, are phenotypically stable across multiple transplant generations at the histologic, transcriptomic, proteomic, and genomic levels, and show comparable treatment responses as those observed clinically. Xenografts representing 12 patients, including two ER+ lines, showed metastasis to the mouse lung. These models thus serve as a renewable, quality-controlled tissue resource for preclinical studies investigating treatment response and metastasis. PMID:23737486

Zhang, Xiaomei; Claerhout, Sofie; Pratt, Aleix; Dobrolecki, Lacey E.; Petrovic, Ivana; Lai, Qing; Landis, Melissa D.; Wiechmann, Lisa; Schiff, Rachel; Giuliano, Mario; Wong, Helen; Fuqua, Suzanne W.; Contreras, Alejandro; Gutierrez, Carolina; Huang, Jian; Mao, Sufeng; Pavlick, Anne C.; Froehlich, Amber M.; Wu, Meng-Fen; Tsimelzon, Anna; Hilsenbeck, Susan G.; Chen, Edward S.; Zuloaga, Pavel; Shaw, Chad A.; Rimawi, Mothaffar F.; Perou, Charles M.; Mills, Gordon B.; Chang, Jenny C.; Lewis, Michael T.

2013-01-01

85

Effect of Various Antiepileptic Drugs in Zebrafish PTZ-Seizure Model.  

PubMed

Recently zebrafish larvae have emerged as a high-throughput model for screening pharmacological activities. The present study was undertaken to investigate the effect of established anticonvulsants, such as valproic acid, carbamazepine, gabapentin, diazepam, lacosamide and pregabalin against pentylenetetrazole (6 mM) seizures in adult zebrafish. Different phases of seizures (increase swim activity, rapid whirlpool-like circling swim behaviour and brief clonus-like seizures leading to loss of posture) were elicited in zebrafish on exposure for 15 min to 6 mM pentylenetetrazole. The exposure of zebrafish to an increasing concentration of the anticonvulsants alongside 6 mM pentylenetetrazole showed concentration-dependent elevation of seizure latency against pentylenetetrazole-induced seizures except for pregabalin, which failed to produce any anticonvulsant activity in zebrafish. Moreover the proconvulsant activity of caffeine was also evaluated using suboptimal concentration (4 mM) of pentylenetetrazole in adult zebrafish. Decrease in seizure latency of different phases of seizures was observed with increasing concentration of caffeine compared with its respective control group. In view of the above findings, the results of the present study suggested that adult zebrafish produce the expected anticonvulsive and proconvulsive effects and could potentially be used as a screen in future epilepsy research. PMID:24843189

Gupta, P; Khobragade, S B; Shingatgeri, V M

2014-03-01

86

Robotic injection of zebrafish embryos for high-throughput screening in disease models.  

PubMed

The increasing use of zebrafish larvae for biomedical research applications is resulting in versatile models for a variety of human diseases. These models exploit the optical transparency of zebrafish larvae and the availability of a large genetic tool box. Here we present detailed protocols for the robotic injection of zebrafish embryos at very high accuracy with a speed of up to 2000 embryos per hour. These protocols are benchmarked for several applications: (1) the injection of DNA for obtaining transgenic animals, (2) the injection of antisense morpholinos that can be used for gene knock-down, (3) the injection of microbes for studying infectious disease, and (4) the injection of human cancer cells as a model for tumor progression. We show examples of how the injected embryos can be screened at high-throughput level using fluorescence analysis. Our methods open up new avenues for the use of zebrafish larvae for large compound screens in the search for new medicines. PMID:23769806

Spaink, Herman P; Cui, Chao; Wiweger, Malgorzata I; Jansen, Hans J; Veneman, Wouter J; Marín-Juez, Rubén; de Sonneville, Jan; Ordas, Anita; Torraca, Vincenzo; van der Ent, Wietske; Leenders, William P; Meijer, Annemarie H; Snaar-Jagalska, B Ewa; Dirks, Ron P

2013-08-15

87

Hepatocellular carcinoma xenograft supports HCV replication: A mouse model for evaluating antivirals  

PubMed Central

AIM: To develop a hepatocellular carcinoma (HCC) xenograft model for studying hepatitis C virus (HCV) replication in a mice, and antiviral treatment. METHODS: We developed a stable S3-green fluorescence protein (GFP) cell line that replicated the GFP-tagged HCV sub-genomic RNA derived from a highly efficient JFH1 virus. S3-GFP replicon cell line was injected subcutaneously into ?-irradiated SCID mice. We showed that the S3-GFP replicon cell line formed human HCC xenografts in SCID mice. Cells were isolated from subcutaneous tumors and then serially passaged multiple times in SCID mice by culturing in growth medium supplemented with G-418. The mouse-adapted S3-GFP replicon cells were implanted subcutaneously and also into the liver of SCID mice via intrasplenic infusion to study the replication of HCV in the HCC xenografts. The tumor model was validated for antiviral testing after intraperitoneal injection of interferon-? (IFN-?). RESULTS: A highly tumorigenic S3-GFP replicon cell line was developed that formed subcutaneous tumors within 2 wk and diffuse liver metastasis within 4 wk in SCID mice. Replication of HCV in the subcutaneous and liver tumors was confirmed by cell colony assay, detection of the viral RNA by ribonuclease protection assay and real-time quantitative reverse transcription polymerase chain reaction. High-level replication of HCV sub-genomic RNA in the tumor could be visualized by GFP expression using fluorescence microscopy. IFN-? cleared HCV RNA replication in the subcutaneous tumors within 2 wk and 4 wk in the liver tumor model. CONCLUSION: A non-infectious mouse model allows us to study replication of HCV in subcutaneous and metastatic liver tumors. Clearance of HCV by IFN-? supports use of this model to test other anti-HCV drugs. PMID:21253388

Hazari, Sidhartha; Hefler, Henry J; Chandra, Partha K; Poat, Bret; Gunduz, Feyza; Ooms, Tara; Wu, Tong; Balart, Luis A; Dash, Srikanta

2011-01-01

88

Antiangiogenic effects of pazopanib in xenograft hepatocellular carcinoma models: evaluation by quantitative contrast-enhanced ultrasonography  

PubMed Central

Background Antiangiogenesis is a promising therapy for advanced hepatocellular carcinoma (HCC), but the effects are difficult to be evaluated. Pazopanib (GW786034B) is a pan-vascular endothelial growth factor receptor inhibitor, the antitumor effects or antiangiogenic effects haven't been investigated in HCC. Methods In vitro direct effects of pazopanib on human HCC cell lines and endothelial cells were evaluated. In vivo antitumor effects were evaluated in three xenograft nude mice models. In the subcutaneous HCCLM3 model, intratumoral blood perfusion was detected by contrast-enhanced ultrasonography (CEUS), and serial quantitative parameters were profiled from the time-intensity curves of ultrasonograms. Results In vitro proliferation of various HCC cell lines were not inhibited by pazopanib. Pazopanib inhibited migration and invasion and induced apoptosis significantly in two HCC cell lines, HCCLM3 and PLC/PRF/5. Proliferation, migration, and tubule formation of human umbilical vein endothelial cells were inhibited by pazopanib in a dose-dependent manner. In vivo tumor growth was significantly inhibited by pazopanib in HCCLM3, HepG2, and PLC/PRF/5 xenograft models. Various intratumoral perfusion parameters changed over time, and the signal intensity was significantly impaired in the treated tumors before the treatment efficacy on tumor size could be observed. Mean transit time of the contrast media in hotspot areas of the tumors was reversely correlated with intratumoral microvessel density. Conclusions Antitumor effects of pazopanib in HCC xenografts may owe to its antiangiogenic effects, and the in vivo antiangiogenic effects could be evaluated by quantitative CEUS. PMID:21251271

2011-01-01

89

Parkin Is Protective against Proteotoxic Stress in a Transgenic Zebrafish Model  

PubMed Central

Background Mutations in the gene encoding the E3 ubiquitin ligase parkin (PARK2) are responsible for the majority of autosomal recessive parkinsonism. Similarly to other knockout mouse models of PD-associated genes, parkin knockout mice do not show a substantial neuropathological or behavioral phenotype, while loss of parkin in Drosophila melanogaster leads to a severe phenotype, including reduced lifespan, apoptotic flight muscle degeneration and male sterility. In order to study the function of parkin in more detail and to address possible differences in its role in different species, we chose Danio rerio as a different vertebrate model system. Methodology/Principal Findings We first cloned zebrafish parkin to compare its biochemical and functional aspects with that of human parkin. By using an antisense knockdown strategy we generated a zebrafish model of parkin deficiency (knockdown efficiency between 50% and 60%) and found that the transient knockdown of parkin does not cause morphological or behavioral alterations. Specifically, we did not observe a loss of dopaminergic neurons in parkin-deficient zebrafish. In addition, we established transgenic zebrafish lines stably expressing parkin by using a Gal4/UAS-based bidirectional expression system. While parkin-deficient zebrafish are more vulnerable to proteotoxicity, increased parkin expression protected transgenic zebrafish from cell death induced by proteotoxic stress. Conclusions/Significance Similarly to human parkin, zebrafish parkin is a stress-responsive protein which protects cells from stress-induced cell death. Our transgenic zebrafish model is a novel tool to characterize the protective capacity of parkin in vivo. PMID:20689587

Paquet, Dominik; van Bebber, Frauke; Haass, Christian; Tatzelt, Jörg; Schmid, Bettina; Winklhofer, Konstanze F.

2010-01-01

90

Clinical, Molecular and Genetic Validation of a Murine Orthotopic Xenograft Model of Pancreatic Adenocarcinoma Using Fresh Human Specimens  

PubMed Central

Background Relevant preclinical models that recapitulate the key features of human pancreatic ductal adenocarcinoma (PDAC) are needed in order to provide biologically tractable models to probe disease progression and therapeutic responses and ultimately improve patient outcomes for this disease. Here, we describe the establishment and clinical, pathological, molecular and genetic validation of a murine, orthotopic xenograft model of PDAC. Methods Human PDACs were resected and orthotopically implanted and propagated in immunocompromised mice. Patient survival was correlated with xenograft growth and metastatic rate in mice. Human and mouse tumor pathology were compared. Tumors were analyzed for genetic mutations, gene expression, receptor tyrosine kinase activation, and cytokine expression. Results Fifteen human PDACs were propagated orthotopically in mice. Xenograft-bearing mice developed peritoneal and liver metastases. Time to tumor growth and metastatic efficiency in mice each correlated with patient survival. Tumor architecture, nuclear grade and stromal content were similar in patient and xenografted tumors. Propagated tumors closely exhibited the genetic and molecular features known to characterize pancreatic cancer (e.g. high rate of KRAS, P53, SMAD4 mutation and EGFR activation). The correlation coefficient of gene expression between patient tumors and xenografts propagated through multiple generations was 93 to 99%. Analysis of gene expression demonstrated distinct differences between xenografts from fresh patient tumors versus commercially available PDAC cell lines. Conclusions The orthotopic xenograft model derived from fresh human PDACs closely recapitulates the clinical, pathologic, genetic and molecular aspects of human disease. This model has resulted in the identification of rational therapeutic strategies to be tested in clinical trials and will permit additional therapeutic approaches and identification of biomarkers of response to therapy. PMID:24204737

Adair, Sara J.; Stelow, Edward B.; Borgman, Cheryl A.; Lowrey, Bryce T.; Xin, Wenjun; Blais, Edik M.; Lee, Jae K.; Papin, Jason A.; Parsons, J. Thomas; Bauer, Todd W.

2013-01-01

91

Zebrafish as a novel model to assess Na+/K(+)-ATPase-related neurological disorders.  

PubMed

Modeling neurological disorders using zebrafish increases rapidly as this model system allows easy access to all developmental stages and imaging of pathological processes. A surprising degree of functional conservation has been demonstrated between human genes implicated in neurodegenerative diseases and their zebrafish orthologues. Zebrafish offers rapid high throughput screening of therapeutic compounds and live imaging of pathogenic mechanisms in vivo. Several recent zebrafish studies functionally assessed the role of the sodium-potassium pump (Na(+)/K(+)-ATPase). The Na(+)/K(+)-ATPase maintains the electrochemical gradients across the plasma membrane, essential for e.g. signaling, secondary active transport, glutamate re-uptake and neuron excitability in animal cells. Na(+)/K(+)-ATPase mutations are associated with neurological disorders, where mutations in the Na(+)/K(+)-ATPase ?2 and ?3 isoforms cause Familial hemiplegic migraine type 2 (FHM2) and Rapid-onset dystonia-parkinsonism (RDP)/Alternating hemiplegic childhood (AHC), respectively. In zebrafish, knock-down of Na(+)/K(+)-ATPase isoforms included skeletal and heart muscle defects, impaired embryonic motility, depolarized Rohon-beard neurons and abrupt brain ventricle development. In this review, we discuss zebrafish as a model to assess Na(+)/K(+)-ATPase isoform functions. Furthermore, studies investigating proteomic changes in both ?2- and ?3-isoform deficient embryos and their potential connections to the Na(+)/K(+)-ATPase functions will be discussed. PMID:24091024

Do?anli, Canan; Oxvig, Claus; Lykke-Hartmann, Karin

2013-12-01

92

Microbial fingerprinting detects intestinal microbiota dysbiosis in Zebrafish models with chemically-induced enterocolitis  

PubMed Central

Background Inflammatory bowel disease (IBD) involves a breakdown in interactions between the host immune response and the resident commensal microbiota. Recent studies have suggested gut physiology and pathology relevant to human IBD can be rapidly modeled in zebrafish larvae. The aim of this study was to investigate the dysbiosis of intestinal microbiota in zebrafish models with IBD-like enterocolitis using culture-independent techniques. Results IBD-like enterocolitis was induced by exposing larval zebrafish to trinitrobenzenesulfonic acid (TNBS). Pathology was assessed by histology and immunofluorescence. Changes in intestinal microbiota were evaluated by denaturing gradient gel electrophoresis (DGGE) and the predominant bacterial composition was determined with DNA sequencing and BLAST and confirmed by real-time polymerase chain reaction. Larval zebrafish exposed to TNBS displayed intestinal-fold architecture disruption and inflammation reminiscent of human IBD. In this study, we defined a reduced biodiversity of gut bacterial community in TNBS-induced coliitis. The intestinal microbiota dysbiosis in zebrafish larvae with IBD-like colitis was characterized by an increased proportion of Proteobacteria (especially Burkholderia) and a decreased of Firmicutes(Lactobacillus group), which were significantly correlated with enterocolitis severity(Pearson correlation p < 0.01). Conclusions This is the first description of intestinal microbiota dysbiosis in zebrafish IBD-like models, and these changes correlate with TNBS-induced enterocolitis. Prevention or reversal of this dysbiosis may be a viable option for reducing the incidence and severity of human IBD. PMID:24325678

2013-01-01

93

Large-Scale Assessment of the Zebrafish Embryo as a Possible Predictive Model in Toxicity Testing  

PubMed Central

Background In the drug discovery pipeline, safety pharmacology is a major issue. The zebrafish has been proposed as a model that can bridge the gap in this field between cell assays (which are cost-effective, but low in data content) and rodent assays (which are high in data content, but less cost-efficient). However, zebrafish assays are only likely to be useful if they can be shown to have high predictive power. We examined this issue by assaying 60 water-soluble compounds representing a range of chemical classes and toxicological mechanisms. Methodology/Principal Findings Over 20,000 wild-type zebrafish embryos (including controls) were cultured individually in defined buffer in 96-well plates. Embryos were exposed for a 96 hour period starting at 24 hours post fertilization. A logarithmic concentration series was used for range-finding, followed by a narrower geometric series for LC50 determination. Zebrafish embryo LC50 (log mmol/L), and published data on rodent LD50 (log mmol/kg), were found to be strongly correlated (using Kendall's rank correlation tau and Pearson's product-moment correlation). The slope of the regression line for the full set of compounds was 0.73403. However, we found that the slope was strongly influenced by compound class. Thus, while most compounds had a similar toxicity level in both species, some compounds were markedly more toxic in zebrafish than in rodents, or vice versa. Conclusions For the substances examined here, in aggregate, the zebrafish embryo model has good predictivity for toxicity in rodents. However, the correlation between zebrafish and rodent toxicity varies considerably between individual compounds and compound class. We discuss the strengths and limitations of the zebrafish model in light of these findings. PMID:21738604

Ali, Shaukat; van Mil, Harald G. J.; Richardson, Michael K.

2011-01-01

94

The chick chorioallantoic membrane as an in vivo xenograft model for Burkitt lymphoma  

PubMed Central

Background Burkitt lymphoma (BL) is an aggressive malignancy that arises from B-cells and belongs to the group of Non-Hodgkin lymphomas (NHL). Due to the lack of appropriate in vivo models NHL research is mainly performed in vitro. Here, we studied the use of the chick chorioallantoic membrane (CAM) for the generation of human BL xenograft tumors, which we compared with known characteristics of the human disease. Methods In order to generate experimental BL tumors, we inoculated human BL2B95 and BL2-GFP cells on the CAM. BL2B95 xenograft-tumors were grown for seven days and subsequently analyzed with transmission electron and immunofluorescence microscopy, as well as histological staining approaches. BL2-GFP cells were studied at regular intervals up to seven days, and their metastatic behavior was visualized with intravital immunofluorescence techniques. Results Xenografted BL2B95 cells formed solid tumors in the CAM model with a Ki67-index greater than 90%, preservation of typical tumor markers (CD10, CD19, CD20), a ‘starry sky’ morphology, production of agyrophilic fibers in the stroma, formation of blood and lymphatic vessels and lymphogenic dissemination of BL2B95 to distant sites. We identified macrophages, lymphocytes and heterophilic granulocytes (chick homolog of neutrophils) as the most abundant immune cells in the experimental tumors. BL2-GFP cells could be traced in real-time during their distribution in the CAM, and the first signs for their dissemination were visible after 2-3 days. Conclusions We show that xenografted BL2B95 cells generate tumors in the CAM with a high degree of cellular, molecular and proliferative concord with the human disease, supporting the application of the CAM model for NHL research with a focus on tumor-stroma interactions. Additionally we report that BL2-GFP cells, grafted on the CAM of ex ovo cultured chick embryos, provide a powerful tool to study lymphogenic dissemination in real-time. PMID:24884418

2014-01-01

95

A transgenic zebrafish model of targeted oocyte ablation and de novo oogenesis.  

PubMed

We describe here a novel transgenic zebrafish, Tg(zpc:G4VP16/UAS:nfsB-mCherry) that effectively demonstrates the targeted oocyte ablation in the adult zebrafish ovary. This transgenic line expresses bacterial nitroreductase enzyme (nfsB) under the control of the oocyte-specific zona pellucida C (zpc) gene promoter. Adult transgenic females exposed to the prodrug metronidazole demonstrated near-complete ablation of growing oocytes, resulting in ovarian degeneration and complete cessation of reproductive function. Within 4 weeks of prodrug removal, treated fish demonstrated complete anatomical regeneration of the ovary and, within 7 weeks, ovarian function (fertility) was fully restored. Together, these results demonstrate functional renewal of the oocyte pool in the adult zebrafish ovary. Accordingly, this transgenic zebrafish model system provides a novel means to investigate ovarian growth dynamics in a genetically tractable vertebrate, and may be useful for evaluating signaling interactions that regulate gonadal development processes such as de novo oogenesis. PMID:21761478

White, Yvonne A R; Woods, Dori C; Wood, Antony W

2011-08-01

96

An adult zebrafish model for Laribacter hongkongensis infection: Koch's postulates fulfilled  

PubMed Central

Laribacter hongkongensis is a gram-negative emerging bacterium associated with invasive bacteremic infections in patients with liver disease and fish-borne community-acquired gastroenteritis and traveler's diarrhea. Although the complete genome of L. hongkongensis has been sequenced, no animal model is available for further study of its pathogenicity mechanisms. In this study, we showed that adult zebrafish infected with L. hongkongensis by immersion following dermal abrasion or intraperitoneal injection suffered mortality in a dose-dependent manner, with lethal dose 50 (LD50) of 2.1×104 and 1.9×104?colony-forming units (CFU)/mL, respectively. All mortalities occurred in the first four days post-infection. Zebrafish that died showed characteristic clinicopathological features: swimming near water surface, marked lethargy and sidestroke; abdominal hemorrhage, ulcers and marked swelling with ascites; and hydropic degeneration and necrosis of hepatocytes around central vein and inflammatory cells infiltration. L. hongkongensis was recovered from the ascitic fluid and tissues of zebrafish that died. Of the 30 zebrafish infected with 2.1×104?CFU/mL (LD50) L. hongkongensis isolated from dead zebrafish using the immersion following dermal abrasion method, 18 (60%) died. All zebrafish that died also showed the characteristic clinical and pathological features. Histopathological studies also showed dilation of hepatic central vein and hydropic degeneration. L. hongkongensis was isolated from the zebrafish that died. The Koch's postulates for L. hongkongensis as an infectious agent have been fulfilled. This highly reproducible and effective zebrafish model is of crucial importance for future studies on virulence factors for L. hongkongensis infection.

Xie, Jun; He, Jia-Bei; Shi, Jia-Wei; Xiao, Qiang; Li, Ling; Woo, Patrick CY

2014-01-01

97

AML cells are differentially sensitive to chemotherapy treatment in a human xenograft model  

PubMed Central

As acute myeloid leukemia (AML) xenograft models improve, the potential for using them to evaluate novel therapeutic strategies becomes more appealing. Currently, there is little information on using standard chemotherapy regimens in AML xenografts. Here we have characterized the immunodeficient mouse response to combined Ara-C (cytarabine) and doxorubicin treatment. We observed significant toxicity associated with doxorubicin that required optimization of the route of injection as well as the maximum-tolerated dose for immunodeficient strains. Mice treated with an optimized 5-day induction protocol showed transient weight loss, short-term reduction of peripheral blood cell and platelet counts, and slight anemia. Considerable cytotoxicity was observed in the bone marrow (BM), with primitive LSK cells having a significant survival advantage relative to more mature cells, consistent with the idea of chemotherapy targeting actively growing cells. Treated leukemic mice demonstrated reduced disease burden and increased survival, demonstrating efficacy. AML cells showed significantly increased sensitivity to doxorubicin-containing therapy compared with murine BM cells. Although early treatment could result in some cures, mice with significant leukemia grafts were not cured by using induction therapy alone. Overall, the data show that this model system is useful for the evaluation of novel chemotherapies in combination with standard induction therapy. PMID:23349390

Wunderlich, Mark; Mizukawa, Benjamin; Chou, Fu-Sheng; Sexton, Christina; Shrestha, Mahesh; Saunthararajah, Yogen; Mulloy, James C.

2013-01-01

98

Predictive Markers of Efficacy for an Angiopoietin-2 Targeting Therapeutic in Xenograft Models  

PubMed Central

The clinical efficacy of anti-angiogenic therapies has been difficult to predict, and biomarkers that can predict responsiveness are sorely needed in this era of personalized medicine. CVX-060 is an angiopoietin-2 (Ang2) targeting therapeutic, consisting of two peptides that bind Ang2 with high affinity and specificity, covalently fused to a scaffold antibody. In order to optimize the use of this compound in the clinic the construction of a predictive model is described, based on the efficacy of CVX-060 in 13 cell line and 2 patient-derived xenograft models. Pretreatment size tumors from each of the models were profiled for the levels of 27 protein markers of angiogenesis, SNP haplotype in 5 angiogenesis genes, and somatic mutation status for 11 genes implicated in tumor growth and/or vascularization. CVX-060 efficacy was determined as tumor growth inhibition (TGI%) at termination of each study. A predictive statistical model was constructed based on the correlation of these efficacy data with the marker profiles, and the model was subsequently tested by prospective analysis in 11 additional models. The results reveal a range of CVX-060 efficacy in xenograft models of diverse tissue types (0-64% TGI, median = 27%) and define a subset of 3 proteins (Ang1, EGF, Emmprin), the levels of which may be predictive of TGI by Ang2 blockade. The direction of the associations is such that better efficacy correlates with high levels of target and low levels of compensatory/antagonizing molecules. This effort has revealed a set of candidate predictive markers for CVX-060 efficacy that will be further evaluated in ongoing clinical trials. PMID:24244628

Triana-Baltzer, Gallen; Pavlicek, Adam; Goulart, Ariadne; Huang, Hanhua; Pirie-Shepherd, Steven; Levin, Nancy

2013-01-01

99

Assessment of the convulsant liability of antidepressants using zebrafish and mouse seizure models.  

PubMed

In the past, antidepressants have been thought to possess proconvulsant properties. This assumption remains controversial, however, because anticonvulsant effects have been attributed to certain antidepressants. To date, it remains unclear which antidepressants can be used for the treatment of patients with epilepsy with depression. The present study was designed to determine the anticonvulsant and/or proconvulsant effects of three antidepressants (citalopram, reboxetine, bupropion) against pilocarpine- and pentylenetetrazole-induced acute seizures in larval zebrafish and mice. In zebrafish, all antidepressants were anticonvulsant in the pentylenetetrazole model. In addition, citalopram was anticonvulsant in the zebrafish pilocarpine model, whereas reboxetine and bupropion were without significant effect. In mice all three antidepressants increased some thresholds for pentylenetetrazole-induced convulsive-like behaviors at varying doses, whereas thresholds for pilocarpine-induced convulsive-like behaviors were generally lowered, particularly at the highest doses tested. In general we conclude that the convulsant liability of antidepressants is model and concentration dependent. PMID:21962757

Vermoesen, Katia; Serruys, Ann-Sophie K; Loyens, Ellen; Afrikanova, Tatiana; Massie, Ann; Schallier, Anneleen; Michotte, Yvette; Crawford, Alexander D; Esguerra, Camila V; de Witte, Peter A M; Smolders, Ilse; Clinckers, Ralph

2011-11-01

100

Protective effect of fucoidan against AAPH-induced oxidative stress in zebrafish model.  

PubMed

Fucoidan, extracted from Ecklonia cava, has been extensively studied because of its wide biological activities. However, antioxidative activities have not been yet examined. Therefore we evaluated in vitro and in vivo studies on antioxidative activities of E. cava fucoidan (ECF). ECF exhibited more prominent effects in peroxyl radical scavenging activity, compared to the other scavenging activities. Thus, ECF was further evaluated for its protective ability against 2,2'-azobis dihydrochloride induced oxidative stress in Vero cells and ECF strongly reduced the AAPH-induced oxidative damage through scavenging intracellular reactive oxygen species. Furthermore, we evaluated protective effect of ECF against AAPH-induced oxidative stress in zebrafish model. ECF significantly reduced ROS generation, lipid peroxidation and cell death in zebrafish model. These findings indicate that ECF has antioxidant activities in vitro Vero cells and in vivo zebrafish model, even though ECF is not a polyphenol or flavonoid compound and does not contain benzene rings or conjugated structures. PMID:24507271

Kim, Eun-A; Lee, Seung-Hong; Ko, Chang-ik; Cha, Seon-Heui; Kang, Min-Cheol; Kang, Sung-Myung; Ko, Seok-Chun; Lee, Won-Woo; Ko, Ju-Young; Lee, Ji-Hyeok; Kang, Nalae; Oh, Jae-Young; Ahn, Ginnae; Jee, Young Heun; Jeon, You-Jin

2014-02-15

101

The developing zebrafish (Danio rerio): a vertebrate model for high-throughput screening of chemical libraries.  

PubMed

The zebrafish, Danio rerio, a small, tropical freshwater species native to Pakistan and India, has become a National Institutes of Health-sanctioned model organism and, due to its many advantages as an experimental vertebrate, it has garnered intense interest from the world's scientific community. Some have labeled the zebrafish, the "vertebrate Drosophila," due to its genetic tractability, small size, low cost, and rapid development. The transparency of the embryo, external development, and the many hundreds of mutant and transgenic lines available add to the allure. Now it appears, the zebrafish can be used for high-throughput screening (HTS) of drug libraries in the discovery process of promising new therapeutics. In this review, various types of screening methods are briefly outlined, as are a variety of screens for different disease models, to highlight the range of zebrafish HTS possibilities. High-content screening (HCS) has been available for cell-based screens for some time and, very recently, HCS is being adapted for the zebrafish. This will allow analysis, at high resolution, of drug effects on whole vertebrates; thus, whole body effects as well as those on specific organs and tissues may be determined. PMID:21932435

Lessman, Charles A

2011-09-01

102

Limb Regeneration is Impaired in an Adult Zebrafish Model of Diabetes Mellitus  

PubMed Central

The zebrafish (Danio Rerio) is an established model organism for the study of developmental processes, human disease and tissue regeneration. We report that limb regeneration is severely impaired in our newly developed adult zebrafish model of type I diabetes. Intraperitoneal streptozocin injection of adult, wild type zebrafish results in a sustained hyperglycemic state as determined by elevated fasting blood glucose values and increased glycation of serum protein. Serum insulin levels are also decreased and pancreas immunohistochemisty revealed a lesser amount of insulin signal in hyperglycemic fish. Additionally, the diabetic complications of retinal thinning and glomerular basement membrane thickening (early signs of retinopathy and nephropathy) resulting from the hyperglycemic state were evident in streptozocin injected fish at three weeks. Most significantly, limb regeneration, following caudal fin amputation, is severely impaired in diabetic zebrafish. Nonspecific toxic effects outside the pancreas were not found to contribute to impaired limb regeneration. This experimental system using adult zebrafish facilitates a broad spectrum of genetic and molecular approaches to study regeneration in the diabetic background. PMID:20840523

Olsen, Ansgar S.; Sarras, Michael P.; Intine, Robert V.

2010-01-01

103

ZFIN, the Zebrafish Model Organism Database: increased support for mutants and transgenics  

PubMed Central

ZFIN, the Zebrafish Model Organism Database (http://zfin.org), is the central resource for zebrafish genetic, genomic, phenotypic and developmental data. ZFIN curators manually curate and integrate comprehensive data involving zebrafish genes, mutants, transgenics, phenotypes, genotypes, gene expressions, morpholinos, antibodies, anatomical structures and publications. Integrated views of these data, as well as data gathered through collaborations and data exchanges, are provided through a wide selection of web-based search forms. Among the vertebrate model organisms, zebrafish are uniquely well suited for rapid and targeted generation of mutant lines. The recent rapid production of mutants and transgenic zebrafish is making management of data associated with these resources particularly important to the research community. Here, we describe recent enhancements to ZFIN aimed at improving our support for mutant and transgenic lines, including (i) enhanced mutant/transgenic search functionality; (ii) more expressive phenotype curation methods; (iii) new downloads files and archival data access; (iv) incorporation of new data loads from laboratories undertaking large-scale generation of mutant or transgenic lines and (v) new GBrowse tracks for transgenic insertions, genes with antibodies and morpholinos. PMID:23074187

Howe, Douglas G.; Bradford, Yvonne M.; Conlin, Tom; Eagle, Anne E.; Fashena, David; Frazer, Ken; Knight, Jonathan; Mani, Prita; Martin, Ryan; Moxon, Sierra A. Taylor; Paddock, Holly; Pich, Christian; Ramachandran, Sridhar; Ruef, Barbara J.; Ruzicka, Leyla; Schaper, Kevin; Shao, Xiang; Singer, Amy; Sprunger, Brock; Van Slyke, Ceri E.; Westerfield, Monte

2013-01-01

104

The role of the DNA damage response in zebrafish and cellular models of Diamond Blackfan anemia  

PubMed Central

Ribosomal biogenesis involves the processing of pre-ribosomal RNA. A deficiency of some ribosomal proteins (RPs) impairs processing and causes Diamond Blackfan anemia (DBA), which is associated with anemia, congenital malformations and cancer. p53 mediates many features of DBA, but the mechanism of p53 activation remains unclear. Another hallmark of DBA is the upregulation of adenosine deaminase (ADA), indicating changes in nucleotide metabolism. In RP-deficient zebrafish, we found activation of both nucleotide catabolism and biosynthesis, which is consistent with the need to break and replace the faulty ribosomal RNA. We also found upregulation of deoxynucleotide triphosphate (dNTP) synthesis – a typical response to replication stress and DNA damage. Both RP-deficient zebrafish and human hematopoietic cells showed activation of the ATR/ATM-CHK1/CHK2/p53 pathway. Other features of RP deficiency included an imbalanced dNTP pool, ATP depletion and AMPK activation. Replication stress and DNA damage in cultured cells in non-DBA models can be decreased by exogenous nucleosides. Therefore, we treated RP-deficient zebrafish embryos with exogenous nucleosides and observed decreased activation of p53 and AMPK, reduced apoptosis, and rescue of hematopoiesis. Our data suggest that the DNA damage response contributes to p53 activation in cellular and zebrafish models of DBA. Furthermore, the rescue of RP-deficient zebrafish with exogenous nucleosides suggests that nucleoside supplements could be beneficial in the treatment of DBA. PMID:24812435

Danilova, Nadia; Bibikova, Elena; Covey, Todd M.; Nathanson, David; Dimitrova, Elizabeth; Konto, Yoan; Lindgren, Anne; Glader, Bertil; Radu, Caius G.; Sakamoto, Kathleen M.; Lin, Shuo

2014-01-01

105

Dietary Strontium Increases Bone Mineral Density in Intact Zebrafish (Danio rerio): A Potential Model System for Bone Research  

PubMed Central

Abstract Zebrafish (Danio rerio) skeletal bone possesses properties similar to human bone, which suggests that they may be used as a model to study mineralization characteristics of the human Haversian system, as well as human bone diseases. One prerequisite for the use of zebrafish as an alternative osteoporotic bone model is to determine whether their bone displays functional plasticity similar to that observed in other bone models. Strontium citrate was supplemented into a laboratory-prepared diet (45% crude protein) to produce dietary strontium levels of 0%, 0.63%, 1.26%, 1.89%, and 2.43% and fed ad libitum twice daily for 12 weeks to 28-day-old intact zebrafish. Length was determined at 4-week intervals, and both weight and length were recorded at 12 weeks. At 12 weeks, seven zebrafish from each dietary level were analyzed for total bone mineral density by microcomputed tomography. Dietary strontium citrate supplementation significantly (p?zebrafish whole-body and spinal column bone mineral density. In addition, trace amounts of strontium were incorporated into the scale matrix in those zebrafish that consumed strontium-supplemented diets. These findings suggest that zebrafish bone displays plasticity similar to that reported for other bone models (i.e., rat, mouse, and monkey) that received supplements of strontium compounds and zebrafish should be viewed as an increasingly valuable bone model. PMID:20874492

Padgett-Vasquez, Steve; Garris, Heath W.; Nagy, Tim R.; D'Abramo, Louis R.; Watts, Stephen A.

2010-01-01

106

Dietary strontium increases bone mineral density in intact zebrafish (Danio rerio): a potential model system for bone research.  

PubMed

Zebrafish (Danio rerio) skeletal bone possesses properties similar to human bone, which suggests that they may be used as a model to study mineralization characteristics of the human Haversian system, as well as human bone diseases. One prerequisite for the use of zebrafish as an alternative osteoporotic bone model is to determine whether their bone displays functional plasticity similar to that observed in other bone models. Strontium citrate was supplemented into a laboratory-prepared diet (45% crude protein) to produce dietary strontium levels of 0%, 0.63%, 1.26%, 1.89%, and 2.43% and fed ad libitum twice daily for 12 weeks to 28-day-old intact zebrafish. Length was determined at 4-week intervals, and both weight and length were recorded at 12 weeks. At 12 weeks, seven zebrafish from each dietary level were analyzed for total bone mineral density by microcomputed tomography. Dietary strontium citrate supplementation significantly (p?zebrafish whole-body and spinal column bone mineral density. In addition, trace amounts of strontium were incorporated into the scale matrix in those zebrafish that consumed strontium-supplemented diets. These findings suggest that zebrafish bone displays plasticity similar to that reported for other bone models (i.e., rat, mouse, and monkey) that received supplements of strontium compounds and zebrafish should be viewed as an increasingly valuable bone model. PMID:20874492

Siccardi, Anthony J; Padgett-Vasquez, Steve; Garris, Heath W; Nagy, Tim R; D'Abramo, Louis R; Watts, Stephen A

2010-09-01

107

Treatment of malignant effusion by oncolytic virotherapy in an experimental subcutaneous xenograft model of lung cancer  

PubMed Central

Background Malignant pleural effusion (MPE) is associated with advanced stages of lung cancer and is mainly dependent on invasion of the pleura and expression of vascular endothelial growth factor (VEGF) by cancer cells. As MPE indicates an incurable disease with limited palliative treatment options and poor outcome, there is an urgent need for new and efficient treatment options. Methods In this study, we used subcutaneously generated PC14PE6 lung adenocarcinoma xenografts in athymic mice that developed subcutaneous malignant effusions (ME) which mimic pleural effusions of the orthotopic model. Using this approach monitoring of therapeutic intervention was facilitated by direct observation of subcutaneous ME formation without the need of sacrificing mice or special imaging equipment as in case of MPE. Further, we tested oncolytic virotherapy using Vaccinia virus as a novel treatment modality against ME in this subcutaneous PC14PE6 xenograft model of advanced lung adenocarcinoma. Results We demonstrated significant therapeutic efficacy of Vaccinia virus treatment of both advanced lung adenocarcinoma and tumor-associated ME. We attribute the efficacy to the virus-mediated reduction of tumor cell-derived VEGF levels in tumors, decreased invasion of tumor cells into the peritumoral tissue, and to viral infection of the blood vessel-invading tumor cells. Moreover, we showed that the use of oncolytic Vaccinia virus encoding for a single-chain antibody (scAb) against VEGF (GLAF-1) significantly enhanced mono-therapy of oncolytic treatment. Conclusions Here, we demonstrate for the first time that oncolytic virotherapy using tumor-specific Vaccinia virus represents a novel and promising treatment modality for therapy of ME associated with advanced lung cancer. PMID:23635329

2013-01-01

108

Zebrafish models in cardiac development and congenital heart birth defects  

PubMed Central

The zebrafish has become an ideal vertebrate animal system for investigating cardiac development due to its genetic tractability, external fertilization, early optical clarity and ability to survive without a functional cardiovascular system during development. In particular, recent advances in imaging techniques and the creation of zebrafish transgenics now permit the in vivo analysis of the dynamic cellular events that transpire during cardiac morphogenesis. As a result, the combination of these salient features provides detailed insight as to how specific genes may influence cardiac development at the cellular level. In this review, we will highlight how the zebrafish has been utilized to elucidate not only the underlying mechanisms of cardiac development and human congenital heart diseases (CHDs), but also potential pathways that may modulate cardiac regeneration. Thus, we have organized this review based on the major categories of CHDs – structural heart, functional heart, and vascular/great vessel defects, and will conclude with how the zebrafish may be further used to contribute to our understanding of specific human CHDs in the future. PMID:22704690

Tu, Shu; Chi, Neil C.

2014-01-01

109

REVIEW Zebrafish as a Model Vertebrate for Investigating Chemical Toxicity  

Microsoft Academic Search

Zebrafish have been used predominantly in developmental biology and molecular genetics, but their value in toxicology as well as drug discovery has been recognized. To evaluate the toxicity of a chemical, it is essential to identify the endpoints of toxicity and their dose-response relationships, elucidate the mechanisms of toxicity, and determine the toxicodynamics of the chemical. In addition to detailed

Adrian J. Hill; Hiroki Teraoka; Warren Heideman; Richard E. Peterson

110

Oncolytic HSV and Erlotinib Inhibit Tumor Growth and Angiogenesis in a Novel Malignant Peripheral Nerve Sheath Tumor Xenograft Model  

Microsoft Academic Search

Malignant peripheral nerve sheath tumors (MPNSTs), driven in part by hyperactive Ras and epidermal growth factor receptor (EGFR) signaling, are often incurable. Testing of therapeutics for MPNST has been hampered by lack of adequate xenograft models. We previously documented that human MPNST cells are permissive for lytic infection by oncolytic herpes simplex viruses (oHSV). Herein we developed and characterized a

Yonatan Y Mahller; Sachin S Vaikunth; Mark A Currier; Shyra J Miller; Maria C Ripberger; Ya-Hsuan Hsu; Ruty Mehrian-Shai; Margaret H Collins; Timothy M Crombleholme; Nancy Ratner; Timothy P Cripe

2007-01-01

111

[Zebrafish--useful model for pharmacodynamics and toxicity screening of traditional Chinese medicine].  

PubMed

Zebrafish has been an important model for developmental and genetic studies. In the past ten years, it has also been widely used for environmental toxicity monitoring, additive effect and toxicity of many chemical materials including heavy metals, pesticides, halogenated aromatic hydrocarbon compounds and other carcinogens. Zebrafish is increasingly used in drug screening and toxicological studies in recent years with the advantage of high-throughput handling. It is a useful model of choice for in vivo pharmacodynamic screening and toxicity investigation of Chinese medicine and it has a wide application prospect in the field of new herbal-drug research. PMID:20209941

Liang, Aihua

2009-11-01

112

A Zebrafish Model of Human Barth Syndrome Reveals the Essential Role of Tafazzin in Cardiac Development and Function  

Microsoft Academic Search

Barth syndrome is an X-linked disorder characterized by cardiomyopathy, skeletal myopathy, neutropenia, organic aciduria, and growth retardation caused by mutations in tafazzin. The sequence similarity of tafazzin to acyltransferases suggests a role in mitochondrial phospholipid metabolism. To study the role of tafazzin in heart function and development, we created a knockdown zebrafish model. Zebrafish tafazzin mRNA is first evident at

Zaza Khuchua; Zou Yue; Lorene Batts; Arnold W. Strauss

2010-01-01

113

Developmental nephrotoxicity of aristolochic acid in a zebrafish model  

SciTech Connect

Aristolochic acid (AA) is a component of Aristolochia plant extracts which is used as a treatment for different pathologies and their toxicological effects have not been sufficiently studied. The aim of this study was to evaluate AA-induced nephrotoxicity in zebrafish embryos. After soaking zebrafish embryos in AA, the embryos displayed malformed kidney phenotypes, such as curved, cystic pronephric tubes, pronephric ducts, and cases of atrophic glomeruli. The percentages of embryos with malformed kidney phenotypes increased as the exposure dosages of AA increased. Furthermore, AA-treated embryos exhibited significantly reduced glomerular filtration rates (GFRs) in comparison with mock-control littermates (mock-control: 100 ± 2.24% vs. 10 ppm AA treatment for 3–5 h: 71.48 ± 18.84% ? 39.41 ± 15.88%), indicating that AA treatment not only caused morphological kidney changes but also induced renal failure. In addition to kidney malformations, AA-treated zebrafish embryos also exhibited deformed hearts, swollen pericardiums, impaired blood circulation and the accumulation(s) of red blood cells. Whole-mount in situ hybridization studies using cmlc2 and wt1b as riboprobes indicated that the kidney is more sensitive than the heart to AA damage. Real-time PCR showed that AA can up-regulate the expression of proinflammatory genes like TNF?, cox2 and mpo. These results support the following conclusions: (1) AA-induced renal failure is mediated by inflammation, which causes circulation dysfunction followed by serious heart malformation; and (2) the kidney is more sensitive than the heart to AA injury. -- Highlights: ? Zebrafish were used to evaluate aristolochic acid (AA)-induced nephrotoxicity. ? AA-treated zebrafish embryos exhibited deformed heart as well as malformed kidney. ? Kidney is more sensitive to AA injury than the heart.

Ding, Yu-Ju; Chen, Yau-Hung, E-mail: yauhung@mail.tku.edu.tw

2012-05-15

114

Generation and validation of a zebrafish model of EAST (epilepsy, ataxia, sensorineural deafness and tubulopathy) syndrome  

PubMed Central

SUMMARY Recessive mutations in KCNJ10, which encodes an inwardly rectifying potassium channel, were recently identified as the cause of EAST syndrome, a severe and disabling multi-organ disorder consisting of epilepsy, ataxia, sensorineural deafness and tubulopathy that becomes clinically apparent with seizures in infancy. A Kcnj10 knockout mouse shows postnatal mortality and is therefore not suitable for drug discovery. Because zebrafish are ideal for in vivo screening for potential therapeutics, we tested whether kcnj10 knockdown in zebrafish would fill this need. We cloned zebrafish kcnj10 and demonstrated that its function is equivalent to that of human KCNJ10. We next injected splice- and translation-blocking kcnj10 antisense morpholino oligonucleotides and reproduced the cardinal symptoms of EAST syndrome – ataxia, epilepsy and renal tubular defects. Several of these phenotypes could be assayed in an automated manner. We could rescue the morphant phenotype with complementary RNA (cRNA) encoding human wild-type KCNJ10, but not with cRNA encoding a KCNJ10 mutation identified in individuals with EAST syndrome. Our results suggest that zebrafish will be a valuable tool to screen for compounds that are potentially therapeutic for EAST syndrome or its individual symptoms. Knockdown of kcnj10 represents the first zebrafish model of a salt-losing tubulopathy, which has relevance for blood pressure control. PMID:23471908

Mahmood, Fahad; Mozere, Monika; Zdebik, Anselm A.; Stanescu, Horia C.; Tobin, Jonathan; Beales, Philip L.; Kleta, Robert; Bockenhauer, Detlef; Russell, Claire

2013-01-01

115

Modelling Delta-Notch perturbations during zebrafish somitogenesis Philip J. Murray a,n  

E-print Network

Parks Road, Oxford OX1 3QU, UK a r t i c l e i n f o Article history: Received 13 June 2012 Received: Somitogenesis Delta-Notch signalling Zebrafish Salt and pepper Clock and wavefront model Mathematical model a b formation of somites and the formation of `salt and pepper' patterns of gene expression upon disruption

Maini, Philip K.

116

The State of the Art of the Zebrafish Model for Toxicology and Toxicologic Pathology Research--Advantages and Current Limitations  

PubMed Central

The zebrafish (Danio rerio) is now the pre-eminent vertebrate model system for clarification of the roles of specific genes and signaling pathways in development. The zebrafish genome will be completely sequenced within the next 1–2 years. Together with the substantial historical database regarding basic developmental biology, toxicology, and gene transfer, the rich foundation of molecular genetic and genomic data makes zebrafish a powerful model system for clarifying mechanisms in toxicity. In contrast to the highly advanced knowledge base on molecular developmental genetics in zebrafish, our database regarding infectious and noninfectious diseases and pathologic lesions in zebrafish lags far behind the information available on most other domestic mammalian and avian species, particularly rodents. Currently, minimal data are available regarding spontaneous neoplasm rates or spontaneous aging lesions in any of the commonly used wild-type or mutant lines of zebrafish. Therefore, to fully utilize the potential of zebrafish as an animal model for understanding human development, disease, and toxicology we must greatly advance our knowledge on zebrafish diseases and pathology. PMID:12597434

Spitsbergen, Jan M.; Kent, Michael L.

2007-01-01

117

The zebrafish as an in vivo model system for glucocorticoid resistance.  

PubMed

Glucocorticoids regulate a wide range of systems in vertebrate organisms, and their effects are mediated by the glucocorticoid receptor (GR). The responsiveness to glucocorticoids differs largely between individuals. Resistance to glucocorticoids is an important medical problem, since it limits the efficacy of glucocorticoids when they are used to treat immune-related diseases like asthma and rheumatoid arthritis. Glucocorticoid resistance also contributes to the pathogenesis of other diseases, like major depression because of the decreased negative feedback on the hypothalamic pituitary adrenal axis. In this review, we present the zebrafish as an excellent in vivo model system to study glucocorticoid resistance. First, the zebrafish is the only non-primate animal model in which a beta-isoform of GR occurs, which is a splice variant with dominant-negative activity. Zebrafish are easily genetically modified, so the expression of GRbeta can be varied, creating an in vivo model for GRbeta-induced glucocorticoid resistance. Second, by performing a forward-genetic screen using the glucocorticoid-induced decrease in POMC expression in the pituitary gland as a readout, several zebrafish mutants have been obtained which appear to be resistant to glucocorticoid treatment. We present here two types of in vivo models for studying glucocorticoid resistance, that will be used to study the molecular mechanism of glucocorticoid signaling and resistance. Finally these models will be used to screen for small molecules that can alleviate glucocorticoid resistance. PMID:20493895

Schoonheim, Peter J; Chatzopoulou, Antonia; Schaaf, Marcel J M

2010-12-01

118

Xenografting as a Tool to Preserve Endangered Species: Outcomes and Challenges in Model Systems  

PubMed Central

The use of testis tissue xenografting as a valuable tool to rescue endangered and genetically valuable individuals that die young or otherwise fail to produce sperm has been the subject of much interest. Although the technique has been successfully applied to a wide variety of species, little is known about what determines the outcome. Furthermore, to improve the applicability of xenografting, new methods to preserve and transport testis tissue from valuable animals are emerging. However, one major issue remains: the application of xenografting implies the development of subsequent ART techniques to produce offspring from the recovered material. This paper focuses on these three aspects of testis tissue xenografting as a tool for rescuing endangered and valuable genetic pools. PMID:20885939

Mota, Paula C.; Ramalho-Santos, Joao; Schlatt, Stefan

2011-01-01

119

Stromal cell-derived factor-1 and hematopoietic cell homing in an adult zebrafish model of hematopoietic cell transplantation  

PubMed Central

In mammals, stromal cell–derived factor-1 (SDF-1) promotes hematopoietic cell mobilization and migration. Although the zebrafish, Danio rerio, is an emerging model for studying hematopoietic cell transplantation (HCT), the role of SDF-1 in the adult zebrafish has yet to be determined. We sought to characterize sdf-1 expression and function in the adult zebrafish in the context of HCT. In situ hybridization of adult zebrafish organs shows sdf-1 expression in kidney tubules, gills, and skin. Radiation up-regulates sdf-1 expression in kidney to nearly 4-fold after 40 Gy. Assays indicate that zebrafish hematopoietic cells migrate toward sdf-1, with a migration ratio approaching 1.5 in vitro. A sdf-1a:DsRed2 transgenic zebrafish allows in vivo detection of sdf-1a expression in the adult zebrafish. Matings with transgenic reporters localized sdf-1a expression to the putative hematopoietic cell niche in proximal and distal renal tubules and collecting ducts. Importantly, transplant of hematopoietic cells into myelosuppressed recipients indicated migration of hematopoietic cells to sdf-1a–expressing sites in the kidney and skin. We conclude that sdf-1 expression and function in the adult zebrafish have important similarities to mammals, and this sdf-1 transgenic vertebrate will be useful in characterizing the hematopoietic cell niche and its interactions with hematopoietic cells. PMID:21622651

Glass, Tiffany J.; Patrinostro, Xiaobai; Tolar, Jakub; Bowman, Teresa V.; Zon, Leonard I.; Blazar, Bruce R.

2011-01-01

120

REVIEW Zebrafish in Context: Uses of a Laboratory Model in Comparative Studies  

Microsoft Academic Search

With the recent interest in the reintegration of evolutionary and developmental biology has come a growing need for understanding the phylogenetic relations and degree of generality of the model organisms upon which we rely so heavily. In vertebrate biology the zebrafish Danio rerio has become a paradigmatic system for studies at levels of organization from molecular to interspecific. Studies of

Brian D. Metscher; Per Erik Ahlberg

121

A zebrafish model of chordoma initiated by notochord-driven expression of HRASV12  

PubMed Central

Chordoma is a malignant tumor thought to arise from remnants of the embryonic notochord, with its origin in the bones of the axial skeleton. Surgical resection is the standard treatment, usually in combination with radiation therapy, but neither chemotherapeutic nor targeted therapeutic approaches have demonstrated success. No animal model and only few chordoma cell lines are available for preclinical drug testing, and, although no druggable genetic drivers have been identified, activation of EGFR and downstream AKT-PI3K pathways have been described. Here, we report a zebrafish model of chordoma, based on stable transgene-driven expression of HRASV12 in notochord cells during development. Extensive intra-notochordal tumor formation is evident within days of transgene expression, ultimately leading to larval death. The zebrafish tumors share characteristics of human chordoma as demonstrated by immunohistochemistry and electron microscopy. The mTORC1 inhibitor rapamycin, which has some demonstrated activity in a chordoma cell line, delays the onset of tumor formation in our zebrafish model, and improves survival of tumor-bearing fish. Consequently, the HRASV12-driven zebrafish model of chordoma could enable high-throughput screening of potential therapeutic agents for the treatment of this refractory cancer. PMID:24311731

Burger, Alexa; Vasilyev, Aleksandr; Tomar, Ritu; Selig, Martin K.; Nielsen, G. Petur; Peterson, Randall T.; Drummond, Iain A.; Haber, Daniel A.

2014-01-01

122

Intratumoral Heterogeneity of Breast Cancer Xenograft Models: Texture Analysis of Diffusion-Weighted MR Imaging  

PubMed Central

Objective To investigate whether there is a relationship between texture analysis parameters of apparent diffusion coefficient (ADC) maps and histopathologic features of MCF-7 and MDA-MB-231 xenograft models. Materials and Methods MCF-7 estradiol (+), MCF-7 estradiol (-), and MDA-MB-231 xenograft models were made with approval of the animal care committee. Twelve tumors of MCF-7 estradiol (+), 9 tumors of MCF-7 estradiol (-), and 6 tumors in MDA-MB-231 were included. Diffusion-weighted MR images were obtained on a 9.4-T system. An analysis of the first and second order texture analysis of ADC maps was performed. The texture analysis parameters and histopathologic features were compared among these groups by the analysis of variance test. Correlations between texture parameters and histopathologic features were analyzed. We also evaluated the intraobserver agreement in assessing the texture parameters. Results MCF-7 estradiol (+) showed a higher standard deviation, maximum, skewness, and kurtosis of ADC values than MCF-7 estradiol (-) and MDA-MB-231 (p < 0.01 for all). The contrast of the MCF-7 groups was higher than that of the MDA-MB-231 (p = 0.004). The correlation (COR) of the texture analysis of MCF-7 groups was lower than that of MDA-MB-231 (p < 0.001). The histopathologic analysis showed that Ki-67mean and Ki-67diff of MCF-7 estradiol (+) were higher than that of MCF-7 estradiol (-) or MDA-MB-231 (p < 0.05). The microvessel density (MVD)mean and MVDdiff of MDA-MB-231 were higher than those of MCF-7 groups (p < 0.001). A diffuse-multifocal necrosis was more frequently found in MDA-MB-231 (p < 0.001). The proportion of necrosis moderately correlated with the contrast (r = -0.438, p = 0.022) and strongly with COR (r = 0.540, p = 0.004). Standard deviation (r = 0.622, r = 0.437), skewness (r = 0.404, r = 0.484), and kurtosis (r = 0.408, r = 0.452) correlated with Ki-67mean and Ki-67diff (p < 0.05 for all). COR moderately correlated with Ki-67diff (r = -0.388, p = 0.045). Skewness (r = -0.643, r = -0.464), kurtosis (r = -0.581, r = -0.389), contrast (r = -0.473, r = -0.549) and COR (r = 0.588, r = 0.580) correlated with MVDmean and MVDdiff (p < 0.05 for all). Conclusion The texture analysis of ADC maps may help to determine the intratumoral spatial heterogeneity of necrosis patterns, amount of cellular proliferation and the vascularity in MCF-7 and MDA-MB-231 xenograft breast cancer models.

Yun, Bo La; Li, Mulan; Jang, Min Hye; Park, So Yeon; Kang, Ho Chul; Kim, Bohyoung; Song, In Chan; Moon, Woo Kyung

2014-01-01

123

Patient-Derived Xenograft Models to Improve Targeted Therapy in Epithelial Ovarian Cancer Treatment  

PubMed Central

Despite increasing evidence that precision therapy targeted to the molecular drivers of a cancer has the potential to improve clinical outcomes, high-grade epithelial ovarian cancer (OC) patients are currently treated without consideration of molecular phenotype, and predictive biomarkers that could better inform treatment remain unknown. Delivery of precision therapy requires improved integration of laboratory-based models and cutting-edge clinical research, with pre-clinical models predicting patient subsets that will benefit from a particular targeted therapeutic. Patient-derived xenografts (PDXs) are renewable tumor models engrafted in mice, generated from fresh human tumors without prior in vitro exposure. PDX models allow an invaluable assessment of tumor evolution and adaptive response to therapy. PDX models have been applied to pre-clinical drug testing and biomarker identification in a number of cancers including ovarian, pancreatic, breast, and prostate cancers. These models have been shown to be biologically stable and accurately reflect the patient tumor with regards to histopathology, gene expression, genetic mutations, and therapeutic response. However, pre-clinical analyses of molecularly annotated PDX models derived from high-grade serous ovarian cancer (HG-SOC) remain limited. In vivo response to conventional and/or targeted therapeutics has only been described for very small numbers of individual HG-SOC PDX in conjunction with sparse molecular annotation and patient outcome data. Recently, two consecutive panels of epithelial OC PDX correlate in vivo platinum response with molecular aberrations and source patient clinical outcomes. These studies underpin the value of PDX models to better direct chemotherapy and predict response to targeted therapy. Tumor heterogeneity, before and following treatment, as well as the importance of multiple molecular aberrations per individual tumor underscore some of the important issues addressed in PDX models. PMID:24363999

Scott, Clare L.; Becker, Marc A.; Haluska, Paul; Samimi, Goli

2013-01-01

124

Zebrafish models flex their muscles to shed light on muscular dystrophies  

PubMed Central

Muscular dystrophies are a group of genetic disorders that specifically affect skeletal muscle and are characterized by progressive muscle degeneration and weakening. To develop therapies and treatments for these diseases, a better understanding of the molecular basis of muscular dystrophies is required. Thus, identification of causative genes mutated in specific disorders and the study of relevant animal models are imperative. Zebrafish genetic models of human muscle disorders often closely resemble disease pathogenesis, and the optical clarity of zebrafish embryos and larvae enables visualization of dynamic molecular processes in vivo. As an adjunct tool, morpholino studies provide insight into the molecular function of genes and allow rapid assessment of candidate genes for human muscular dystrophies. This unique set of attributes makes the zebrafish model system particularly valuable for the study of muscle diseases. This review discusses how recent research using zebrafish has shed light on the pathological basis of muscular dystrophies, with particular focus on the muscle cell membrane and the linkage between the myofibre cytoskeleton and the extracellular matrix. PMID:23115202

Berger, Joachim; Currie, Peter D.

2012-01-01

125

Developmental Roles of D-bifunctional Protein-A Zebrafish Model of Peroxisome Dysfunction  

PubMed Central

The peroxisome is an intracellular organelle that responds dynamically to environmental changes. Various model organisms have been used to study the roles of peroxisomal proteins in maintaining cellular homeostasis. By taking advantage of the zebrafish model whose early stage of embryogenesis is dependent on yolk components, we examined the developmental roles of the D-bifunctional protein (Dbp), an essential enzyme in the peroxisomal ?-oxidation. The knockdown of dbp in zebrafish phenocopied clinical manifestations of its deficiency in human, including defective craniofacial morphogenesis, growth retardation, and abnormal neuronal development. Overexpression of murine Dbp rescued the morphological phenotypes induced by dbp knockdown, indicative of conserved roles of Dbp during zebrafish and mammalian development. Knockdown of dbp impaired normal development of blood, blood vessels, and most strikingly, endoderm-derived organs including the liver and pancreas - a phenotype not reported elsewhere in connection with peroxisome dysfunction. Taken together, our results demonstrate for the first time that zebrafish might be a useful model animal to study the role of peroxisomes during vertebrate development. PMID:24552713

Kim, Yong-Il; Bhandari, Sushil; Lee, Joon No; Yoo, Kyeong-Won; Kim, Se-Jin; Oh, Gi-Su; Kim, Hyung-Jin; Cho, Meyoung; Kwak, Jong-Young; So, Hong-Seob; Park, Raekil; Choe, Seong-Kyu

2014-01-01

126

Assessing teratogenic changes in a zebrafish model of fetal alcohol exposure.  

PubMed

Fetal alcohol syndrome (FAS) is a severe manifestation of embryonic exposure to ethanol. It presents with characteristic defects to the face and organs, including mental retardation due to disordered and damaged brain development. Fetal alcohol spectrum disorder (FASD) is a term used to cover a continuum of birth defects that occur due to maternal alcohol consumption, and occurs in approximately 4% of children born in the United States. With 50% of child-bearing age women reporting consumption of alcohol, and half of all pregnancies being unplanned, unintentional exposure is a continuing issue. In order to best understand the damage produced by ethanol, plus produce a model with which to test potential interventions, we developed a model of developmental ethanol exposure using the zebrafish embryo. Zebrafish are ideal for this kind of teratogen study. Each pair lays hundreds of eggs, which can then be collected without harming the adult fish. The zebrafish embryo is transparent and can be readily imaged with any number of stains. Analysis of these embryos after exposure to ethanol at different doses and times of duration and application shows that the gross developmental defects produced by ethanol are consistent with the human birth defect. Described here are the basic techniques used to study and manipulate the zebrafish FAS model. PMID:22453686

Loucks, Evyn; Ahlgren, Sara

2012-01-01

127

Imaging Tumor Variation in Response to Photodynamic Therapy in Pancreatic Cancer Xenograft Models  

SciTech Connect

Purpose: A treatment monitoring study investigated the differential effects of orthotopic pancreatic cancer models in response to interstitial photodynamic therapy (PDT), and the validity of using magnetic resonance imaging as a surrogate measure of response was assessed. Methods and Materials: Different orthotopic pancreatic cancer xenograft models (AsPC-1 and Panc-1) were used to represent the range of pathophysiology observed in human beings. Identical dose escalation studies (10, 20, and 40J/cm) using interstitial verteporfin PDT were performed, and magnetic resonance imaging with T2-weighted and T1-weighted contrast were used to monitor the total tumor volume and the vascular perfusion volume, respectively. Results: There was a significant amount of necrosis in the slower-growing Panc-1 tumor using high light dose, although complete necrosis was not observed. Lower doses were required for the same level of tumor kill in the faster-growing AsPC-1 cell line. Conclusions: The tumor growth rate and vascular pattern of the tumor affect the optimal PDT treatment regimen, with faster-growing tumors being relatively easier to treat. This highlights the fact that therapy in human beings shows a heterogeneous range of outcomes, and suggests a need for careful individualized treatment outcomes assessment in clinical work.

Samkoe, Kimberley S., E-mail: samkoe@dartmouth.ed [Thayer School of Engineering, Dartmouth College, Hanover, NH (United States); Chen, Alina [Thayer School of Engineering, Dartmouth College, Hanover, NH (United States); Rizvi, Imran [Thayer School of Engineering, Dartmouth College, Hanover, NH (United States); Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA (United States); O'Hara, Julia A. [Thayer School of Engineering, Dartmouth College, Hanover, NH (United States); Hoopes, P. Jack [Thayer School of Engineering, Dartmouth College, Hanover, NH (United States); Department of Surgery, Dartmouth Medical School, Hanover, NH (United States); Pereira, Stephen P. [Institute of Hepatology, University College London Medical School, London (United Kingdom); Hasan, Tayyaba [Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA (United States); Pogue, Brian W. [Thayer School of Engineering, Dartmouth College, Hanover, NH (United States); Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA (United States); Department of Surgery, Dartmouth Medical School, Hanover, NH (United States)

2010-01-15

128

Ampelopsin sodium exhibits antitumor effects against bladder carcinoma in orthotopic xenograft models.  

PubMed

The aim of this study was to establish xenograft models of tumor in mice bladder and evaluate the antitumor efficacy of ampelopsin sodium (Amp-Na). A total of 2×10 human bladder carcinoma EJ cells and murine sarcoma 180 cells were instilled into the bladder of BALB/c nu/nu mice and Swiss mice after preconditioning to establish the tumor model. Mice bearing orthotopic tumors were treated with Amp-Na by intravenous, intraperitoneal, or intravesical instillation. In addition, the pharmacokinetics property of Amp-Na was investigated in normal BALB/c mice. Our results showed that Amp-Na was excreted mainly through the urine, where it existed at a high concentration. Amp-Na significantly inhibited the proliferation of EJ and sarcoma 180 cells both in vivo and in vitro and this can be at least partially attributed to the cell cycle arrest induced by Amp-Na. This study suggests that the use of Amp-Na is an attractive chemotherapeutic modality for bladder cancer patients. PMID:22241170

Zhang, Baolai; Dong, Shuhong; Cen, Xiaobo; Wang, Xiao; Liu, Xia; Zhang, Hongxia; Zhao, Xin; Wu, Yongjie

2012-07-01

129

Selection and evaluation of clinically relevant AAV variants in a xenograft liver model.  

PubMed

Recombinant adeno-associated viral (rAAV) vectors have shown early promise in clinical trials. The therapeutic transgene cassette can be packaged in different AAV capsid pseudotypes, each having a unique transduction profile. At present, rAAV capsid serotype selection for a specific clinical trial is based on effectiveness in animal models. However, preclinical animal studies are not always predictive of human outcome. Here, in an attempt to further our understanding of these discrepancies, we used a chimaeric human-murine liver model to compare directly the relative efficiency of rAAV transduction in human versus mouse hepatocytes in vivo. As predicted from preclinical and clinical studies, rAAV2 vectors functionally transduced mouse and human hepatocytes at equivalent but relatively low levels. However, rAAV8 vectors, which are very effective in many animal models, transduced human hepatocytes rather poorly-approximately 20 times less efficiently than mouse hepatocytes. In light of the limitations of the rAAV vectors currently used in clinical studies, we used the same murine chimaeric liver model to perform serial selection using a human-specific replication-competent viral library composed of DNA-shuffled AAV capsids. One chimaeric capsid composed of five different parental AAV capsids was found to transduce human primary hepatocytes at high efficiency in vitro and in vivo, and provided species-selected transduction in primary liver, cultured cells and a hepatocellular carcinoma xenograft model. This vector is an ideal clinical candidate and a reagent for gene modification of human xenotransplants in mouse models of human diseases. More importantly, our results suggest that humanized murine models may represent a more precise approach for both selecting and evaluating clinically relevant rAAV serotypes for gene therapeutic applications. PMID:24390344

Lisowski, Leszek; Dane, Allison P; Chu, Kirk; Zhang, Yue; Cunningham, Sharon C; Wilson, Elizabeth M; Nygaard, Sean; Grompe, Markus; Alexander, Ian E; Kay, Mark A

2014-02-20

130

Modeling seizure-related behavioral and endocrine phenotypes in adult zebrafish.  

PubMed

Larval zebrafish (Danio rerio) have recently been suggested as a high-throughput experimental model of epilepsy-related pathogenetic states. Here we use adult zebrafish to study behavioral symptoms associated with drug-evoked seizures. Experimental epilepsy-like states were evoked in zebrafish by exposure for 20min to three chemoconvulsant drugs: caffeine (250mg/L; 1.3mM), pentylenetetrazole (1.5g/L; 11.0mM) and picrotoxin (100mg/L; 0.17mM). Fish behavior was analyzed using manual and video-tracking methods (Noldus Ethovision XT7). Compared to their respective controls, all three drug-treated groups showed robust seizure-like responses (hyperactivity bouts, spasms, circular and corkscrew swimming) accompanied by elevated whole-body cortisol levels (assessed by ELISA). In contrast, control fish did not display seizure-like behaviors and had significantly lower cortisol levels. Paralleling behavioral and endocrine phenotypes observed in clinical and rodent studies, our data implicates adult zebrafish as an emerging experimental model for epilepsy research. PMID:20547142

Wong, Keith; Stewart, Adam; Gilder, Thomas; Wu, Nadine; Frank, Kevin; Gaikwad, Siddharth; Suciu, Christopher; Dileo, John; Utterback, Eli; Chang, Katie; Grossman, Leah; Cachat, Jonathan; Kalueff, Allan V

2010-08-12

131

Nanoelectroablation of Human Pancreatic Carcinoma in a Murine Xenograft Model without Recurrence  

PubMed Central

We have identified an effective nanoelectroablation therapy for treating pancreatic carcinoma in a murine xenograft model. This therapy initiates apoptosis in a nonthermal manner by applying low energy electric pulses 100 ns long and 30 kV/cm in amplitude to the tumor. We first identified the minimum pulse number required for complete ablation by treating 30 tumors. We found that the minimum number of pulses required to ablate the tumor with a single treatment is between 250 and 500 pulses. We settled on a single application of either 500 or 1000 pulses to treat pancreatic carcinomas in 19 NIH-III mice. Seventeen of the 19 treated tumors exhibited complete regression without recurrence. Three mice died of unknown causes within 3 months after treatment but 16 lived for 270–302 days at which time we sacrificed them for histological analysis. In the 17 untreated controls, the tumor grew so large that we had to sacrifice all of them within 4 months. PMID:23001643

Nuccitelli, Richard; Huynh, Joanne; Lui, Kaying; Wood, Ryan; Kreis, Mark; Athos, Brian; Nuccitelli, Pamela

2012-01-01

132

Curcumin in combination with visible light inhibits tumor growth in a xenograft tumor model.  

PubMed

It is known that curcumin, a dietary pigment from the plant Curcuma longa, inhibits cell proliferation and induces apoptosis in different cell lines; however, the therapeutic benefit is hampered by very low absorption after transdermal or oral application. Recent studies from our laboratory have demonstrated that curcumin at low concentrations (0.2-1 microg/ml) offered the described effects only when applied with UVA or visible light. Nevertheless, the in vivo efficacy of this combination is lacking. In the present study, we used a xenograft tumor model with human epithelial carcinoma A431 cells to test the effect of curcumin and visible light on tumor growth. It was found that tumor growth was significantly inhibited in mice that were i.p. injected with curcumin and consecutively irradiated with visible light. Furthermore, immunohistochemistry showed a reduction of Ki 67 expression, indicating a decrease of cycling cells and induction of apoptotic bodies. The effect on apoptosis was further confirmed by Western blot analysis showing enhanced activation of caspases-9. Vice versa inhibition of extracellular regulated kinases (ERK) 1/2 and epidermal growth factor receptor (EGF-R) was observed which may aid inhibition of proliferation and induction of apoptosis. In summary, the present findings suggest a combination of curcumin and light as a new therapeutic concept to increase the efficacy of curcumin in the treatment of cancer. PMID:19035461

Dujic, Jadranka; Kippenberger, Stefan; Ramirez-Bosca, Ana; Diaz-Alperi, Joaquin; Bereiter-Hahn, Jürgen; Kaufmann, Roland; Bernd, August; Hofmann, Matthias

2009-03-15

133

TOPK inhibitor induces complete tumor regression in xenograft models of human cancer through inhibition of cytokinesis.  

PubMed

TOPK (T-lymphokine-activated killer cell-originated protein kinase) is highly and frequently transactivated in various cancer tissues, including lung and triple-negative breast cancers, and plays an indispensable role in the mitosis of cancer cells. We report the development of a potent TOPK inhibitor, OTS964 {(R)-9-(4-(1-(dimethylamino)propan-2-yl)phenyl)-8-hydroxy-6-methylthieno[2,3-c]quinolin-4(5H)-one}, which inhibits TOPK kinase activity with high affinity and selectivity. Similar to the knockdown effect of TOPK small interfering RNAs (siRNAs), this inhibitor causes a cytokinesis defect and the subsequent apoptosis of cancer cells in vitro as well as in xenograft models of human lung cancer. Although administration of the free compound induced hematopoietic adverse reactions (leukocytopenia associated with thrombocytosis), the drug delivered in a liposomal formulation effectively caused complete regression of transplanted tumors without showing any adverse reactions in mice. Our results suggest that the inhibition of TOPK activity may be a viable therapeutic option for the treatment of various human cancers. PMID:25338756

Matsuo, Yo; Park, Jae-Hyun; Miyamoto, Takashi; Yamamoto, Shinji; Hisada, Shoji; Alachkar, Houda; Nakamura, Yusuke

2014-10-22

134

Cellular characterization of ultrasound-stimulated microbubble radiation enhancement in a prostate cancer xenograft model  

PubMed Central

Tumor radiation resistance poses a major obstacle in achieving an optimal outcome in radiation therapy. In the current study, we characterize a novel therapeutic approach that combines ultrasound-driven microbubbles with radiation to increase treatment responses in a prostate cancer xenograft model in mice. Tumor response to ultrasound-driven microbubbles and radiation was assessed 24 hours after treatment, which consisted of radiation treatments alone (2 Gy or 8 Gy) or ultrasound-stimulated microbubbles only, or a combination of radiation and ultrasound-stimulated microbubbles. Immunohistochemical analysis using in situ end labeling (ISEL) and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) revealed increased cell death within tumors exposed to combined treatments compared with untreated tumors or tumors exposed to radiation alone. Several biomarkers were investigated to evaluate cell proliferation (Ki67), blood leakage (factor VIII), angiogenesis (cluster of differentiation molecule CD31), ceramide-formation, angiogenesis signaling [vascular endothelial growth factor (VEGF)], oxygen limitation (prolyl hydroxylase PHD2) and DNA damage/repair (?H2AX). Results demonstrated reduced vascularity due to vascular disruption by ultrasound-stimulated microbubbles, increased ceramide production and increased DNA damage of tumor cells, despite decreased tumor oxygenation with significantly less proliferating cells in the combined treatments. This combined approach could be a feasible option as a novel enhancing approach in radiation therapy. PMID:24487407

Al-Mahrouki, Azza A.; Iradji, Sara; Tran, William Tyler; Czarnota, Gregory J.

2014-01-01

135

Captopril inhibits tumour growth in a xenograft model of human renal cell carcinoma.  

PubMed Central

The effect of captopril on tumour growth was examined in a xenograft model of human renal cell carcinoma (RCC). Inoculation of the human RCC cell line SN12K-1 (10(6) cells) under the left kidney capsule of severe combined immunodeficient (SCID) mice resulted in the growth of large tumours, with an increase in weight of the inoculated kidney of 3.69+/-1.63-fold (mean+/-s.d.) when compared with the contralateral normal kidney. In mice treated with captopril (19 mg kg(-1) day(-1) or 94 mg kg(-1) day(-1) administered in the drinking water), there was a significant dose-related reduction in tumour development; the tumour bearing kidneys weighed 1.9+/-0.42 and 1.55+/-0.42 times the normal kidneys, respectively (P< 0.05 compared with untreated animals). In vitro, captopril at clinically achievable doses (0.1-10 microM) had no significant effect on the incorporation of [3H]thymidine into SN12K-1 cells. Thus, this highly significant attenuation by captopril of in vivo tumour growth does not appear to be due to a direct effect on the proliferation of the tumour cells. Further studies are required to determine the mechanism of inhibition of tumour growth by captopril, in particular to evaluate the role of angiotensin II in this process. Images Figure 1 PMID:9528828

Hii, S. I.; Nicol, D. L.; Gotley, D. C.; Thompson, L. C.; Green, M. K.; Jonsson, J. R.

1998-01-01

136

NAD+ Biosynthesis Ameliorates a Zebrafish Model of Muscular Dystrophy  

PubMed Central

Muscular dystrophies are common, currently incurable diseases. A subset of dystrophies result from genetic disruptions in complexes that attach muscle fibers to their surrounding extracellular matrix microenvironment. Cell-matrix adhesions are exquisite sensors of physiological conditions and mediate responses that allow cells to adapt to changing conditions. Thus, one approach towards finding targets for future therapeutic applications is to identify cell adhesion pathways that mediate these dynamic, adaptive responses in vivo. We find that nicotinamide riboside kinase 2b-mediated NAD+ biosynthesis, which functions as a small molecule agonist of muscle fiber-extracellular matrix adhesion, corrects dystrophic phenotypes in zebrafish lacking either a primary component of the dystrophin-glycoprotein complex or integrin alpha7. Exogenous NAD+ or a vitamin precursor to NAD+ reduces muscle fiber degeneration and results in significantly faster escape responses in dystrophic embryos. Overexpression of paxillin, a cell adhesion protein downstream of NAD+ in this novel cell adhesion pathway, reduces muscle degeneration in zebrafish with intact integrin receptors but does not improve motility. Activation of this pathway significantly increases organization of laminin, a major component of the extracellular matrix basement membrane. Our results indicate that the primary protective effects of NAD+ result from changes to the basement membrane, as a wild-type basement membrane is sufficient to increase resilience of dystrophic muscle fibers to damage. The surprising result that NAD+ supplementation ameliorates dystrophy in dystrophin-glycoprotein complex– or integrin alpha7–deficient zebrafish suggests the existence of an additional laminin receptor complex that anchors muscle fibers to the basement membrane. We find that integrin alpha6 participates in this pathway, but either integrin alpha7 or the dystrophin-glycoprotein complex is required in conjunction with integrin alpha6 to reduce muscle degeneration. Taken together, these results define a novel cell adhesion pathway that may have future therapeutic relevance for a broad spectrum of muscular dystrophies. PMID:23109907

Goody, Michelle F.; Kelly, Meghan W.; Reynolds, Christine J.; Khalil, Andre; Crawford, Bryan D.; Henry, Clarissa A.

2012-01-01

137

A human cancer xenograft model utilizing normal pancreatic duct epithelial cells conditionally transformed with defined oncogenes.  

PubMed

Pancreatic ductal adenocarcinomas (PDACs) are considered to arise through neoplastic transformation of human pancreatic duct epithelial cells (HPDECs). In order to evaluate the biological significance of genetic and epigenetic alterations in PDACs, we isolated primary HPDECs and established an in vitro carcinogenesis model. Firstly, lentivirus-mediated transduction of KRAS(G12V), MYC and human papillomavirus 16 (HPV16) E6/E7 under the control of a tetracyclin-inducible promoter efficiently immortalized and transformed primary HPDECs, which gave rise to adenocarcinomas subcutaneously in an immune-deficient mouse xenograft model, depending on expression of the four genes. The tumors regressed promptly upon shutting-off the oncogenes, and the remaining tissues showed histological features corresponding to normal ductal structures with simple columnar epithelium. Reexpression of the oncogenes resulted in development of multiple PDACs through pancreatic intraepithelial neoplasia-like structures. We also succeeded in efficient immortalization of primary HPDECs with transduction of mutant CDK4, cyclin D1 and TERT. The cells maintained a normal diploid status and formed duct-like structures in a three-dimensional culture. In combination with p53 silencing, KRAS(G12V) alone was sufficient to fully transform the immortalized HPDECs, and MYC markedly accelerated the development of tumors. Our PDAC model supports critical roles of KRAS mutations, inactivation of the p53 and p16-pRB pathways, active telomerase and MYC expression in pancreatic carcinogenesis and thus recapitulates many features of human PDAC development. The present system with reversible control of oncogene expression enabled de novo development of PDAC from quasinormal human tissues preformed subcutaneously in mice and might be applicable to carcinogenesis models in many organ sites. PMID:24858378

Inagawa, Yuki; Yamada, Kenji; Yugawa, Takashi; Ohno, Shin-ichi; Hiraoka, Nobuyoshi; Esaki, Minoru; Shibata, Tatsuhiro; Aoki, Kazunori; Saya, Hideyuki; Kiyono, Tohru

2014-08-01

138

Ferumoxtran-10 enhancement in orthotopic xenograft models of human brain tumors: an indirect marker of tumor proliferation?  

Microsoft Academic Search

Purpose  Ferumoxtran-10 belongs to the Ultra Small Particles of Iron Oxide (USPIO) class of contrast agents and induces delayed tumor\\u000a enhancement in brain tumors, reflecting the trapping of iron oxide particles by the macrophages and activated microglia. The\\u000a aim of the study was to compare Ferumoxtran-10 contrast enhancement in four human high-grade glioma xenograft models (TCG2,\\u000a TCG3, TCG4, and U87) with

Stéphane Kremer; Sophie Pinel; Pierre-Olivier Védrine; Aude Bressenot; Philippe Robert; Serge Bracard; François Plénat

2007-01-01

139

An orthotopic xenograft model of intraneural NF1 MPNST suggests a potential association between steroid hormones and tumor cell proliferation  

Microsoft Academic Search

Malignant peripheral nerve sheath tumors (MPNST) are the most aggressive cancers associated with neurofibromatosis type 1 (NF1). Here we report a practical and reproducible model of intraneural NF1 MPNST, by orthotopic xenograft of an immortal human NF1 tumor-derived Schwann cell line into the sciatic nerves of female scid mice. Intraneural injection of the cell line sNF96.2 consistently produced MPNST-like tumors

George Q Perrin; Hua Li; Lauren Fishbein; Susanne A Thomson; Min S Hwang; Mark T Scarborough; Anthony T Yachnis; Margaret R Wallace; Thomas H Mareci; David Muir

2007-01-01

140

A tissue-engineered humanized xenograft model of human breast cancer metastasis to bone  

PubMed Central

ABSTRACT The skeleton is a preferred homing site for breast cancer metastasis. To date, treatment options for patients with bone metastases are mostly palliative and the disease is still incurable. Indeed, key mechanisms involved in breast cancer osteotropism are still only partially understood due to the lack of suitable animal models to mimic metastasis of human tumor cells to a human bone microenvironment. In the presented study, we investigate the use of a human tissue-engineered bone construct to develop a humanized xenograft model of breast cancer-induced bone metastasis in a murine host. Primary human osteoblastic cell-seeded melt electrospun scaffolds in combination with recombinant human bone morphogenetic protein 7 were implanted subcutaneously in non-obese diabetic/severe combined immunodeficient mice. The tissue-engineered constructs led to the formation of a morphologically intact ‘organ’ bone incorporating a high amount of mineralized tissue, live osteocytes and bone marrow spaces. The newly formed bone was largely humanized, as indicated by the incorporation of human bone cells and human-derived matrix proteins. After intracardiac injection, the dissemination of luciferase-expressing human breast cancer cell lines to the humanized bone ossicles was detected by bioluminescent imaging. Histological analysis revealed the presence of metastases with clear osteolysis in the newly formed bone. Thus, human tissue-engineered bone constructs can be applied efficiently as a target tissue for human breast cancer cells injected into the blood circulation and replicate the osteolytic phenotype associated with breast cancer-induced bone lesions. In conclusion, we have developed an appropriate model for investigation of species-specific mechanisms of human breast cancer-related bone metastasis in vivo. PMID:24713276

Thibaudeau, Laure; Taubenberger, Anna V.; Holzapfel, Boris M.; Quent, Verena M.; Fuehrmann, Tobias; Hesami, Parisa; Brown, Toby D.; Dalton, Paul D.; Power, Carl A.; Hollier, Brett G.; Hutmacher, Dietmar W.

2014-01-01

141

A Tale of Two Models: Mouse and Zebrafish as Complementary Models for Lymphatic Studies  

PubMed Central

Lymphatic vessels provide essential roles in maintaining fluid homeostasis and lipid absorption. Dysfunctions of the lymphatic vessels lead to debilitating pathological conditions, collectively known as lymphedema. In addition, lymphatic vessels are a critical moderator for the onset and progression of diverse human diseases including metastatic cancer and obesity. Despite their clinical importance, there is no currently effective pharmacological therapy to regulate functions of lymphatic vessels. Recent efforts to manipulate the Vascular Endothelial Growth Factor-C (VEGFC) pathway, which is arguably the most important signaling pathway regulating lymphatic endothelial cells, to alleviate lymphedema yielded largely mixed results, necessitating identification of new targetable signaling pathways for therapeutic intervention for lymphedema. Zebrafish, a relatively new model system to investigate lymphatic biology, appears to be an ideal model to identify novel therapeutic targets for lymphatic biology. In this review, we will provide an overview of our current understanding of the lymphatic vessels in vertebrates, and discuss zebrafish as a promising in vivo model to study lymphatic vessels. PMID:24854860

Kim, Jun-Dae; Jin, Suk-Won

2014-01-01

142

Combination of Vandetanib, Radiotherapy, and Irinotecan in the LoVo Human Colorectal Cancer Xenograft Model  

SciTech Connect

Purpose: The tumor growth kinetics of the human LoVo colorectal xenograft model was assessed in response to vandetanib, an orally available receptor tyrosine kinase inhibitor, radiotherapy (RT), or irinotecan (CPT-11), as single therapies and in combination. Methods and Materials: LoVo cells were injected subcutaneously into the right hind limb (5x10{sup 6} cells in 100muL phosphate-buffered saline) of athymic NCR NUM mice and tumors were grown to a volume of 200-300 mm{sup 3} before treatment. Vandetanib was administered at 50 mg/kg daily orally for 14 days starting on Day 1. RT was given as three fractions (3x3 Gy) on Days 1, 2, and 3. CPT-11 was given at 15 mg/kg intraperitoneally on Days 1 and 3. Tumor volumes were measured on a daily basis and calculated by measuring tumor diameters with digital calipers in two orthogonal dimensions. Results: All three single treatments (vandetanib, CPT-11, and radiation) significantly slowed LoVo colorectal tumor growth. Vandetanib significantly increased the antitumor effects of CPT-11 and radiation when given in combination with either of these treatments. These treatment combinations resulted in a slow tumor growth rate during the 2 weeks of vandetanib administration. The triple combination of vandetanib, CPT-11, and radiation produced the most marked improvement in response as observed by measurable shrinkage of tumors during the first week of treatment. Conclusions: The tumor growth delay kinetics observed in this study of the LoVo colorectal model suggest concurrent and sustained post-sequencing of vandetanib with cytotoxic therapy may be beneficial in tumors of this type.

Wachsberger, Phyllis, E-mail: Phyllis.wachsberger@jeffersonhospital.or [Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA (United States); Burd, Randy [Department of Nutritional Sciences, University of Arizona, Tucson, AZ (United States); Ryan, Anderson [AstraZeneca Pharmaceuticals, Alderley Park, Macclesfield (United Kingdom); Daskalakis, Constantine [Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA (United States); Dicker, Adam P. [Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA (United States)

2009-11-01

143

Early detection of antiangiogenic treatment responses in a mouse xenograft tumor model using quantitative perfusion MRI.  

PubMed

Angiogenesis plays a major role in tumor growth and metastasis, with tumor perfusion regarded as a marker for angiogenesis. To evaluate antiangiogenic treatment response in vivo, we investigated arterial spin labeling (ASL) magnetic resonance imaging (MRI) to measure tumor perfusion quantitatively. Chronic and 24-h acute treatment responses to bevacizumab were assessed by ASL and dynamic-contrast-enhanced (DCE) MRI in the A498 xenograft mouse model. After the MRI, tumor vasculature was assessed by CD34 staining. After 39 days of chronic treatment, tumor perfusion decreased to 44.8 ± 16.1 mL/100 g/min (P < 0.05), compared to 92.6 ± 42.9 mL/100 g/min in the control group. In the acute treatment study, tumor perfusion in the treated group decreased from 107.2 ± 32.7 to 73.7 ± 27.8 mL/100 g/min (P < 0.01; two-way analysis of variance), as well as compared with control group post dosing. A significant reduction in vessel density and vessel size was observed after the chronic treatment, while only vessel size was reduced 24 h after acute treatment. The tumor perfusion correlated with vessel size (r = 0.66; P < 0.005) after chronic, but not after acute treatment. The results from DCE-MRI also detected a significant change between treated and control groups in both chronic and acute treatment studies, but not between 0 and 24 h in the acute treatment group. These results indicate that tumor perfusion measured by MRI can detect early vascular responses to antiangiogenic treatment. With its noninvasive and quantitative nature, ASL MRI would be valuable for longitudinal assessment of tumor perfusion and in translation from animal models to human. PMID:24403176

Rajendran, Reshmi; Huang, Wei; Tang, Annie Mei Yee; Liang, Jie Ming; Choo, Stephanie; Reese, Torsten; Hentze, Hannes; van Boxtel, Susan; Cliffe, Adam; Rogers, Keith; Henry, Brian; Chuang, Kai Hsiang

2014-02-01

144

Zebrafish models in translational research: tipping the scales toward advancements in human health  

PubMed Central

Advances in genomics and next-generation sequencing have provided clinical researchers with unprecedented opportunities to understand the molecular basis of human genetic disorders. This abundance of information places new requirements on traditional disease models, which have the potential to be used to confirm newly identified pathogenic mutations and test the efficacy of emerging therapies. The unique attributes of zebrafish are being increasingly leveraged to create functional disease models, facilitate drug discovery, and provide critical scientific bases for the development of new clinical tools for the diagnosis and treatment of human disease. In this short review and the accompanying poster, we highlight a few illustrative examples of the applications of the zebrafish model to the study of human health and disease. PMID:24973743

Phillips, Jennifer B.; Westerfield, Monte

2014-01-01

145

A transgenic zebrafish liver tumor model with inducible Myc expression reveals conserved Myc signatures with mammalian liver tumors  

PubMed Central

SUMMARY Myc is a pleiotropic transcription factor that is involved in many cellular activities relevant to carcinogenesis, including hepatocarcinogenesis. The zebrafish has been increasingly used to model human diseases and it is particularly valuable in helping to identify common and conserved molecular mechanisms in vertebrates. Here we generated a liver tumor model in transgenic zebrafish by liver-specific expression of mouse Myc using a Tet-On system. Dosage-dependent induction of Myc expression specifically in the liver was observed in our Myc transgenic zebrafish, TO(Myc), and the elevated Myc expression caused liver hyperplasia, which progressed to hepatocellular adenoma and carcinoma with prolonged induction. Next generation sequencing-based transcriptomic analyses indicated that ribosome proteins were overwhelmingly upregulated in the Myc-induced liver tumors. Cross-species analyses showed that the zebrafish Myc model correlated well with Myc transgenic mouse models for liver cancers. The Myc-induced zebrafish liver tumors also possessed molecular signatures highly similar to human those of hepatocellular carcinoma. Finally, we found that a small Myc target gene set of 16 genes could be used to identify liver tumors due to Myc upregulation. Thus, our zebrafish model demonstrated the conserved role of Myc in promoting hepatocarcinogenesis in all vertebrate species. PMID:23038063

Li, Zhen; Zheng, Weiling; Wang, Zhengyuan; Zeng, Zhiqiang; Zhan, Huiqing; Li, Caixia; Zhou, Li; Yan, Chuan; Spitsbergen, Jan M.; Gong, Zhiyuan

2013-01-01

146

DMU-212 inhibits tumor growth in xenograft model of human ovarian cancer.  

PubMed

DMU-212 has been shown to evoke a mitochondrial apoptotic pathway in transformed fibroblasts and breast cancer. However, recently published data indicated the ability of DMU-212 to evoke apoptosis in both mitochondria- and receptor-mediated manner in two ovarian cancer cell lines, namely A-2780 and SKOV-3, which showed varied sensitivity to the compound tested. The pronounced cytotoxic effects of DMU-212 observed in A-2780 cells were related to the execution of extracellular apoptosis pathway and cell cycle arrest in G2/M phase. In view of the great anticancer potential of DMU-212 against A-2780 cell line, the aim of the current study was to assess antiproliferative activity of DMU-212 in xenograft model of ovarian cancer. To evaluate in vitro metabolic properties of cells that were to be injected into SCID mice, uptake and decline of DMU-212 in A-2780 ovarian cancer cell line was investigated. It was found that the concentration of the test compound in A-2780 cells was growing within first eight hours, and then the gradual decline was observed. A-2780 cells stably transfected with pcDNA3.1/Zeo(-)-Luc vector were subcutaneously inoculated into the right flanks of SCID mice. After seven days of the treatment with DMU-212 (50mg/kg b.w), tumor growth appeared to be suppressed in the animals treated with the compound tested. At day 14 of the experiment, tumor burden in mice treated with DMU-212 was significantly lower, as compared to untreated controls. Our findings suggest that DMU-212 might be considered as a potential anticancer agent used in ovarian cancer therapy. PMID:24768110

Piotrowska, Hanna; Myszkowski, Krzysztof; Abraszek, Joanna; Kwiatkowska-Borowczyk, Eliza; Amarowicz, Ryszard; Murias, Marek; Wierzchowski, Marcin; Jodynis-Liebert, Jadwiga

2014-05-01

147

Gamma Knife Surgery as Monotherapy with Clinically Relevant Doses Prolongs Survival in a Human GBM Xenograft Model  

PubMed Central

Object. Gamma knife surgery (GKS) may be used for recurring glioblastomas (GBMs). However, patients have then usually undergone multimodal treatment, which makes it difficult to specifically validate GKS independent of established treatments. Thus, we developed an experimental brain tumor model to assess the efficacy and radiotoxicity associated with GKS. Methods. GBM xenografts were implanted intracerebrally in nude rats, and engraftment was confirmed with MRI. The rats were allocated to GKS, with margin doses of 12?Gy or 18?Gy, or to no treatment. Survival time was recorded, tumor sections were examined, and radiotoxicity was evaluated in a behavioral open field test. Results. In the first series, survival from the time of implantation was 96 days in treated rats and 72 days in controls (P < 0.001). In a second experiment, survival was 72 days in the treatment group versus 54 days in controls (P < 0.006). Polynuclear macrophages and fibrosis was seen in groups subjected to GKS. Untreated rats with GBM xenografts displayed less mobility than GKS-treated animals in the open field test 4 weeks after treatment (P = 0.04). Conclusion. GKS administered with clinically relevant doses prolongs survival in rats harboring GBM xenografts, and the associated toxicity is mild. PMID:24312904

Sandvei Skeie, Bente; Wang, Jian; Heggdal, Jan Ingeman; Gr?nli, Janne; Sleire, Linda; Bragstad, Sidsel; Ganz, Jeremy C.; Chekenya, Martha; M?rk, Sverre; Pedersen, Paal-Henning; Enger, Per ?yvind

2013-01-01

148

Targeting JAK1/2 and mTOR in murine xenograft models of Ph-like acute lymphoblastic leukemia  

PubMed Central

CRLF2 rearrangements, JAK1/2 point mutations, and JAK2 fusion genes have been identified in Philadelphia chromosome (Ph)–like acute lymphoblastic leukemia (ALL), a recently described subtype of pediatric high-risk B-precursor ALL (B-ALL) which exhibits a gene expression profile similar to Ph-positive ALL and has a poor prognosis. Hyperactive JAK/STAT and PI3K/mammalian target of rapamycin (mTOR) signaling is common in this high-risk subset. We, therefore, investigated the efficacy of the JAK inhibitor ruxolitinib and the mTOR inhibitor rapamycin in xenograft models of 8 pediatric B-ALL cases with and without CRLF2 and JAK genomic lesions. Ruxolitinib treatment yielded significantly lower peripheral blast counts compared with vehicle (P < .05) in 6 of 8 human leukemia xenografts and lower splenic blast counts (P < .05) in 8 of 8 samples. Enhanced responses to ruxolitinib were observed in samples harboring JAK-activating lesions and higher levels of STAT5 phosphorylation. Rapamycin controlled leukemia burden in all 8 B-ALL samples. Survival analysis of 2 representative B-ALL xenografts demonstrated prolonged survival with rapamycin treatment compared with vehicle (P < .01). These data demonstrate preclinical in vivo efficacy of ruxolitinib and rapamycin in this high-risk B-ALL subtype, for which novel treatments are urgently needed, and highlight the therapeutic potential of targeted kinase inhibition in Ph-like ALL. PMID:22955920

Maude, Shannon L.; Tasian, Sarah K.; Vincent, Tiffaney; Hall, Junior W.; Sheen, Cecilia; Roberts, Kathryn G.; Seif, Alix E.; Barrett, David M.; Chen, I-Ming; Collins, J. Racquel; Mullighan, Charles G.; Hunger, Stephen P.; Harvey, Richard C.; Willman, Cheryl L.; Fridman, Jordan S.; Loh, Mignon L.; Grupp, Stephan A.

2012-01-01

149

Zebrafish as a model for understanding the evolution of the vertebrate immune system and human primary immunodeficiency.  

PubMed

Zebrafish is an important vertebrate model that provides the opportunity for the combination of genetic interrogation with advanced live imaging in the analysis of complex developmental and physiologic processes. Among the many advances that have been achieved using the zebrafish model, it has had a great impact on immunology. Here, I discuss recent work focusing on the genetic underpinnings of the development and function of lymphocytes in fish. Lymphocytes play critical roles in vertebrate-specific acquired immune systems of jawless and jawed fish. The unique opportunities afforded by the ability to carry out forward genetic screens and the rapidly evolving armamentarium of reverse genetics in fish usher in a new immunologic research that complements the traditional models of chicken and mouse. Recent work has greatly increased our understanding of the molecular components of the zebrafish immune system, identifying evolutionarily conserved and fish-specific functions of immune-related genes. Interestingly, some of the genes whose mutations underlie the phenotypes in immunodeficient zebrafish were also identified in immunodeficient human patients. In addition, because of the generally conserved structure and function of immune facilities, the zebrafish also provides a versatile model to examine the functional consequences of genetic variants in immune-relevant genes in the human population. Thus, I propose that genetic approaches using the zebrafish hold great potential for a better understanding of molecular mechanisms of human primary immunodeficiencies and the evolution of vertebrate immune systems. PMID:24824573

Iwanami, Norimasa

2014-08-01

150

Establishment of a rhabdomyosarcoma xenograft model in human-adapted mice.  

PubMed

The outcome of patients with advanced stage rhabdomyosarcoma (RMS) is still sobering. This outcome has not improved through conservative treatments. Therefore, novel treatment approaches such as immunotherapy need to be evaluated in human-adapted animal models. The aim of this study was to develop a humanized mouse model of childhood RMS as a basis for the study of immunotherapeutic approaches. Therefore, NOD/LtSz-scid IL2rgammanull-mice were used for all the experiments (n=19). The animals underwent sublethal irradiation on days 1 and 2 (1 x 300 cGy). After irradiation, the transplantation of human CD34+-cells (1,000,000 cells per animal i.v.) was carried out. Five animals served as the control and did not undergo stem cell transplantation. The engraftment of human cells was assessed in peripheral blood on days 21 and 55 by FACS analysis. Eight weeks after transplantation, the subcutaneous xenotransplantation of human alveolar and embryonal RMS cell lines was carried out. Tumor growth was monitored and tumors were resected 93 days after CD34+-transplantation. The tumor specimens were evaluated histologically. The successful engraftment of human cells with the establishment of a human immune system was observed in 12 out of 14 animals. B and T cells were mostly detected in the peripheral blood. There were only a few monocytes and almost no natural killer cells. The xenotransplantation of alveolar RMS resulting in subcutaneous tumor growth was feasible in 7 animals. The xenotransplantation of embryonal RMS was performed in 5 animals and led to tumor growth in 1 animal. A histological work up showed either alveolar or embryonal RMS cells with central necrosis. This is the first time a xenotransplantation model of human RMS has been developed in a humanized mouse model. The establishment of subcutaneous tumor xenografts was more effective in the alveolar subtype. This model offers a basic tool for further analyzing novel immunotherapeutic approaches in RMS, and could possibly be used in other solid pediatric tumors. PMID:20811690

Seitz, Guido; Pfeiffer, Matthias; Fuchs, Jörg; Warmann, Steven W; Leuschner, Ivo; Vokuhl, Christian; Lang, Peter; Handgretinger, Rupert; Armeanu-Ebinger, Sorin

2010-10-01

151

How mitochondrial dysfunction affects zebrafish development and cardiovascular function: an in vivo model for testing mitochondria-targeted drugs  

PubMed Central

Background and Purpose Mitochondria are a drug target in mitochondrial dysfunction diseases and in antiparasitic chemotherapy. While zebrafish is increasingly used as a biomedical model, its potential for mitochondrial research remains relatively unexplored. Here, we perform the first systematic analysis of how mitochondrial respiratory chain inhibitors affect zebrafish development and cardiovascular function, and assess multiple quinones, including ubiquinone mimetics idebenone and decylubiquinone, and the antimalarial atovaquone. Experimental Approach Zebrafish (Danio rerio) embryos were chronically and acutely exposed to mitochondrial inhibitors and quinone analogues. Concentration-response curves, developmental and cardiovascular phenotyping were performed together with sequence analysis of inhibitor-binding mitochondrial subunits in zebrafish versus mouse, human and parasites. Phenotype rescuing was assessed in co-exposure assays. Key Results Complex I and II inhibitors induced developmental abnormalities, but their submaximal toxicity was not additive, suggesting active alternative pathways for complex III feeding. Complex III inhibitors evoked a direct normal-to-dead transition. ATP synthase inhibition arrested gastrulation. Menadione induced hypochromic anaemia when transiently present following primitive erythropoiesis. Atovaquone was over 1000-fold less lethal in zebrafish than reported for Plasmodium falciparum, and its toxicity partly rescued by the ubiquinone precursor 4-hydroxybenzoate. Idebenone and decylubiquinone delayed rotenone- but not myxothiazol- or antimycin-evoked cardiac dysfunction. Conclusion and Implications This study characterizes pharmacologically induced mitochondrial dysfunction phenotypes in zebrafish, laying the foundation for comparison with future studies addressing mitochondrial dysfunction in this model organism. It has relevant implications for interpreting zebrafish disease models linked to complex I/II inhibition. Further, it evidences zebrafish's potential for in vivo efficacy or toxicity screening of ubiquinone analogues or antiparasitic mitochondria-targeted drugs. PMID:23758163

Pinho, Brigida R; Santos, Miguel M; Fonseca-Silva, Anabela; Valentao, Patricia; Andrade, Paula B; Oliveira, Jorge M A

2013-01-01

152

Establishing Zebrafish as a Novel Exercise Model: Swimming Economy, Swimming-Enhanced Growth and Muscle Growth Marker Gene Expression  

PubMed Central

Background Zebrafish has been largely accepted as a vertebrate multidisciplinary model but its usefulness as a model for exercise physiology has been hampered by the scarce knowledge on its swimming economy, optimal swimming speeds and cost of transport. Therefore, we have performed individual and group-wise swimming experiments to quantify swimming economy and to demonstrate the exercise effects on growth in adult zebrafish. Methodology/Principal Findings Individual zebrafish (n?=?10) were able to swim at a critical swimming speed (Ucrit) of 0.548±0.007 m s?1 or 18.0 standard body lengths (BL) s?1. The optimal swimming speed (Uopt) at which energetic efficiency is highest was 0.396±0.019 m s?1 (13.0 BL s?1) corresponding to 72.26±0.29% of Ucrit. The cost of transport at optimal swimming speed (COTopt) was 25.23±4.03 µmol g?1 m?1. A group-wise experiment was conducted with zebrafish (n?=?83) swimming at Uopt for 6 h day?1 for 5 days week?1 for 4 weeks vs. zebrafish (n?=?84) that rested during this period. Swimming zebrafish increased their total body length by 5.6% and body weight by 41.1% as compared to resting fish. For the first time, a highly significant exercise-induced growth is demonstrated in adult zebrafish. Expression analysis of a set of muscle growth marker genes revealed clear regulatory roles in relation to swimming-enhanced growth for genes such as growth hormone receptor b (ghrb), insulin-like growth factor 1 receptor a (igf1ra), troponin C (stnnc), slow myosin heavy chain 1 (smyhc1), troponin I2 (tnni2), myosin heavy polypeptide 2 (myhz2) and myostatin (mstnb). Conclusions/Significance From the results of our study we can conclude that zebrafish can be used as an exercise model for enhanced growth, with implications in basic, biomedical and applied sciences, such as aquaculture. PMID:21217817

Rovira, Mireia; Brittijn, Sebastiaan A.; Burgerhout, Erik; van den Thillart, Guido E. E. J. M.; Spaink, Herman P.; Planas, Josep V.

2010-01-01

153

Zebrafish as a new model for phenotype-based screening of melanogenic regulatory compounds.  

PubMed

Although many hypo-pigmenting agents are currently available, the demand for novel whitening agents is increasing, in part due to the weak effectiveness and unwanted side effects of currently available compounds. To screen for novel hypo-pigmenting agents, many methodologies such as cell culture and enzymatic assays are routinely used. However, these models have disadvantages in terms of physiological and economic relevance. In this study, we validated zebrafish as a whole-animal model for phenotype-based screening of melanogenic inhibitors or stimulators. We used both the well-known melanogenic inhibitors (1-phenyl-2-thiourea, arbutin, kojic acid, 2-mercaptobenzothiazole) and newly developed small molecule compounds (haginin, YT16i). All the tested compounds produced inhibitory effects on the pigmentation of zebrafish, most likely due to their inhibitory potential on tyrosinase activity. In simultaneous in vivo toxicity tests, a newly developed melanogenic inhibitor YT16i showed massive abnormalities in terms of deformed morphologies and cardiac function. Together, these results provide a rationale in screening and evaluating the putative melanogenic regulatory compounds. We suggest that the zebrafish system is a novel alternative to mammalian models, with several advantages including the rapidity, cost-effectiveness, and physiological relevance. PMID:17371438

Choi, Tae-Young; Kim, Jin-Hwa; Ko, Dong Han; Kim, Cheol-Hee; Hwang, Jae-Sung; Ahn, Soomi; Kim, Sun Yeou; Kim, Chang-Deok; Lee, Jeung-Hoon; Yoon, Tae-Jin

2007-04-01

154

Use of TSH?:EGFP transgenic zebrafish as a rapid in vivo model for assessing thyroid-disrupting chemicals  

SciTech Connect

Accumulating evidence indicates that a wide range of chemicals have the ability to interfere with the hypothalamic–pituitary–thyroid (HPT) axis. Novel endpoints should be evaluated in addition to existing methods in order to effectively assess the effects of these chemicals on the HPT axis. Thyroid-stimulating hormone subunit ? (TSH?) plays central regulatory roles in the HPT system. We identified the regulatory region that determines the expression level of zebrafish TSH? in the anterior pituitary. In the transgenic zebrafish with EGFP driven by the TSH? promoter, the similar responsive patterns between the expression levels of TSH?:EGFP and endogenous TSH? mRNA in the pituitary are observed following treatments with goitrogen chemicals and exogenous thyroid hormones (THs). These results suggest that the TSH?:EGFP transgenic reporter zebrafish may be a useful alternative in vivo model for the assessment of chemicals interfering with the HPT system. Highlights: ? The promoter of zebrafish TSH? gene has been identified. ? The stable TSH?:EGFP transgenic zebrafish reporter germline has been generated. ? The EGFP in the transgenic fish recapitulated the pattern of pituitary TSH? mRNA. ? The transgenic zebrafish may be an in vivo model for EDC assessment.

Ji, Cheng [Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei (China) [Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei (China); Graduate University of Chinese Academy of Sciences, Beijing (China); Jin, Xia; He, Jiangyan [Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei (China)] [Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei (China); Yin, Zhan, E-mail: zyin@ihb.ac.cn [Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei (China)] [Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei (China)

2012-07-15

155

Natural Variability of Kozak Sequences Correlates with Function in a Zebrafish Model  

PubMed Central

In eukaryotes, targeting the small ribosomal subunit to the mRNA transcript requires a Kozak sequence at the translation initiation site. Despite the critical importance of the Kozak sequence to regulation of gene expression, there have been no correlation studies between its natural variance and efficiency of translation. Combining bioinformatics analysis with molecular biology techniques, and using zebrafish as a test case, we identify Kozak sequences based on their natural variance and characterize their function in vivo. Our data reveal that while the canonical Kozak sequence is efficient, in zebrafish it is neither the most common nor the most efficient translation initiation sequence. Rather, the most frequent natural variation of the Kozak sequence is almost twice as efficient. We conclude that the canonical Kozak sequence is a poor predictor of translation efficiency in different model organisms. Furthermore, our results provide an experimental approach to testing and optimizing an important tool for molecular biology. PMID:25248153

Grzegorski, Steven J.; Chiari, Estelle F.; Robbins, Amy; Kish, Phillip E.; Kahana, Alon

2014-01-01

156

Macrophage-pathogen interactions in infectious diseases: new therapeutic insights from the zebrafish host model  

PubMed Central

Studying macrophage biology in the context of a whole living organism provides unique possibilities to understand the contribution of this extremely dynamic cell subset in the reaction to infections, and has revealed the relevance of cellular and molecular processes that are fundamental to the cell-mediated innate immune response. In particular, various recently established zebrafish infectious disease models are contributing substantially to our understanding of the mechanisms by which different pathogens interact with macrophages and evade host innate immunity. Transgenic zebrafish lines with fluorescently labeled macrophages and other leukocyte populations enable non-invasive imaging at the optically transparent early life stages. Furthermore, there is a continuously expanding availability of vital reporters for subcellular compartments and for probing activation of immune defense mechanisms. These are powerful tools to visualize the activity of phagocytic cells in real time and shed light on the intriguing paradoxical roles of these cells in both limiting infection and supporting the dissemination of intracellular pathogens. This Review will discuss how several bacterial and fungal infection models in zebrafish embryos have led to new insights into the dynamic molecular and cellular mechanisms at play when pathogens encounter host macrophages. We also describe how these insights are inspiring novel therapeutic strategies for infectious disease treatment. PMID:24973749

Torraca, Vincenzo; Masud, Samrah; Spaink, Herman P.; Meijer, Annemarie H.

2014-01-01

157

Anxiety, hyperactivity and stereotypy in a zebrafish model of fragile X syndrome and autism spectrum disorder.  

PubMed

Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and is caused by a loss of function of the fragile X mental retardation (fmr1) gene. Animal fmr1-knockout (KO) models are not only of interest for the study of FXS, but have also important implications for our understanding of autism spectrum disorder (ASD). Here we report the behavioral changes in fmr1-knockout zebrafish in an open field with two white and two transparent walls. The neophobic responses that in wild-type (WT) zebrafish normally occur during the first 5-10 min in an unfamiliar environment (such as freezing, hypo-activity and preferences for the bottom and opaque walls of the tank), were weakened in fmr1 mutants, suggesting a reduction of novelty-induced anxiety. The fmr1-KO zebrafish showed somewhat increased vertical activity beyond the 'neophobic phase', but no overall hyperactivity. The mutants demonstrated a clear habituation-independent preference for the transparent walls. Whether this was attributable to altered spatial information processing or to reduced avoidance of open spaces is discussed. Finally, since restrictive repetitive (or stereotypical) behaviors are frequently present in FXS and ASD patients, we analyzed relative turning angles, directional and preferential turning ratios and performed frequency-domain analysis. However, no indications of abnormal movement patterning were detected. The possible reasons for the absence of stereotypical behaviors are discussed in terms of behavioral endpoint selection and of eliciting conditions. Overall, our findings are consistent with those reported in fmr1-KO mice and suggest that further analysis of the fmr1-KO zebrafish model has potential to deepen our understanding of FXS and ASD. PMID:24681195

Kim, Lily; He, Lucy; Maaswinkel, Hans; Zhu, Liqun; Sirotkin, Howard; Weng, Wei

2014-12-01

158

Effect of carbon dioxide pneumoperitoneum on human renal cell carcinoma proliferation and metastasis in an orthotropic xenograft nude mouse model  

PubMed Central

Introduction This study aimed to explore the effect of carbon dioxide (CO2) pneumoperitoneum on tumor proliferation and metastasis in an orthotropic xenograft nude mice model of human renal cell carcinoma (RCC) and evaluate the safety of CO2 pneumoperitoneum laparoscopy for treating RCC. Material and methods RCC 786-0 cells were injected to establish an orthotropic xenograft model. Fifty nude mice were given orthotropic inoculations and randomized to five groups: group A (control); group B (CO2 pneumoperitoneum for 2 h); group C (CO2 pneumoperitoneum for 4 h); group D (CO2 pneumoperitoneum for 4 h and 24 h after waking); group E (CO2 pneumoperitoneum for 4 h and 48 h after waking). The proliferation status was observed in RCC specimens by immunohistochemical staining for Ki67. The protein levels of hypoxia-inducible factor-1? (HIF-1?) and vascular endothelial growth factor (VEGF) were examined by western blotting. Results All groups showed similar Ki67-positive staining in RCC samples (p > 0.05). The relative expression of HIF-1? and VEGF gradually increased in both group B and group C, as compared with group A, but only the difference between group C and group A reached statistical significance (p < 0.05). The protein levels of HIF-1? and VEGF decreased in both group D and group E, as compared with group B and group C; however, the differences between group D, group E, and group A did not reach statistical significance (p > 0.05). Conclusions In an orthotropic xenograft nude mice model of RCC, CO2 pneumoperitoneum has no effect on expression of the cellular proliferation marker Ki67. However, CO2 pneumoperitoneum rapidly induces transient expression of HIF-1? and VEGF. Thus, CO2 pneumoperitoneum laparoscopy may be a safe method for treating RCC.

Chen, Yuan-Zhuo; Xu, Yun-Fei

2014-01-01

159

Human proangiogenic circulating hematopoietic stem and progenitor cells promote tumor growth in an orthotopic melanoma xenograft model.  

PubMed

We previously identified a distinct population of human circulating hematopoietic stem and progenitor cells (CHSPCs; CD14(-)glyA(-)CD34(+)AC133(+/-)CD45(dim)CD31(+) cells) in the peripheral blood (PB) and bone marrow, and their frequency in the PB can correlate with disease state. The proangiogenic subset (pCHSPC) play a role in regulating tumor progression, for we previously demonstrated a statistically significant increase in C32 melanoma growth in NOD.Cg-Prkdc (scid) (NOD/SCID) injected with human pCHSPCs (p < 0.001). We now provide further evidence that pCHSPCs possess proangiogenic properties. In vitro bio-plex cytokine analyses and tube forming assays indicate that pCHSPCs secrete a proangiogenic profile and promote vessel formation respectively. We also developed a humanized bone marrow-melanoma orthotopic model to explore in vivo the biological significance of the pCHSPC population. Growth of melanoma xenografts increased more rapidly at 3-4 weeks post-tumor implantation in mice previously transplanted with human CD34(+) cells compared to control mice. Increases in pCHSPCs in PB correlated with increases in tumor growth. Additionally, to determine if we could prevent the appearance of pCHSPCs in the PB, mice with humanized bone marrow-melanoma xenografts were administered Interferon ?-2b, which is used clinically for treatment of melanoma. The mobilization of the pCHSPCs was decreased in the mice with the humanized bone marrow-melanoma xenografts. Taken together, these data indicate that pCHSPCs play a functional role in tumor growth. The novel in vivo model described here can be utilized to further validate pCHSPCs as a biomarker of tumor progression. The model can also be used to screen and optimize anticancer/anti-angiogenic therapies in a humanized system. PMID:23877751

Mund, Julie A; Shannon, Harlan; Sinn, Anthony L; Cai, Shanbao; Wang, Haiyan; Pradhan, Kamnesh R; Pollok, Karen E; Case, Jamie

2013-10-01

160

Identification of compounds with anti-convulsant properties in a zebrafish model of epileptic seizures  

PubMed Central

SUMMARY The availability of animal models of epileptic seizures provides opportunities to identify novel anticonvulsants for the treatment of people with epilepsy. We found that exposure of 2-day-old zebrafish embryos to the convulsant agent pentylenetetrazole (PTZ) rapidly induces the expression of synaptic-activity-regulated genes in the CNS, and elicited vigorous episodes of calcium (Ca2+) flux in muscle cells as well as intense locomotor activity. We then screened a library of ?2000 known bioactive small molecules and identified 46 compounds that suppressed PTZ-inducedtranscription of the synaptic-activity-regulated gene fos in 2-day-old (2 dpf) zebrafish embryos. Further analysis of a subset of these compounds, which included compounds with known and newly identified anticonvulsant properties, revealed that they exhibited concentration-dependent inhibition of both locomotor activity and PTZ-induced fos transcription, confirming their anticonvulsant characteristics. We conclude that this in situ hybridisation assay for fos transcription in the zebrafish embryonic CNS is a robust, high-throughput in vivo indicator of the neural response to convulsant treatment and lends itself well to chemical screening applications. Moreover, our results demonstrate that suppression of PTZ-induced fos expression provides a sensitive means of identifying compounds with anticonvulsant activities. PMID:22730455

Baxendale, Sarah; Holdsworth, Celia J.; Meza Santoscoy, Paola L.; Harrison, Michael R. M.; Fox, James; Parkin, Caroline A.; Ingham, Philip W.; Cunliffe, Vincent T.

2012-01-01

161

Using zebrafish as a model system for studying the transgenerational effects of dioxin.  

PubMed

2,3,7,8 Tetrachlorodibenzo-p-dioxin (TCDD) has been associated with many disease states in humans. A rising concern is that exposure early in life can lead to adult toxicity and toxicity in subsequent generations. Juvenile zebrafish exposed to TCDD (50 pg/ml in water; 1 h exposure) at 3 and 7 weeks post fertilization showed toxicity only later in adulthood. We have maintained the offspring of these exposed F? fish to determine whether we could find adverse affects in the next two generations of F? and F? offspring. TCDD exposure produced a significantly higher female:male ratio in all three generations. Scoliosis-like axial skeleton abnormalities, not normally observed in controls, were present in the F? and F? generations descended from the treated F? founders. Egg release and fertilization success were reduced in the TCDD lineage F? and F? generations. This reduction in fertility in the TCDD lineage F? generation could be attributed to alterations in the F? males. Using zebrafish as a model allowed the simultaneous maintenance of different generations with relatively small space and costs. The zebrafish showed clear signs of transgenerational responses persisting into generations never directly exposed to TCDD. PMID:24470537

Baker, Tracie R; Peterson, Richard E; Heideman, Warren

2014-04-01

162

Recent advances with a novel model organism: Alcohol tolerance and sensitization in zebrafish (Danio rerio).  

PubMed

Alcohol abuse and dependence are a rapidly growing problem with few treatment options available. The zebrafish has become a popular animal model for behavioral neuroscience. This species may be appropriate for investigating the effects of alcohol on the vertebrate brain. In the current review, we examine the literature by discussing how alcohol alters behavior in zebrafish and how it may affect biological correlates. We focus on two phenomena that are often examined in the context of alcohol-induced neuroplasticity. Alcohol tolerance (a progressive decrease in the effect of alcohol over time) is often observed following continuous (chronic) exposure to low concentrations of alcohol. Alcohol sensitization also called reverse tolerance (a progressive increase in the effect of alcohol over time) is often observed following repeated discrete exposures to higher concentrations of alcohol. These two phenomena may underlie the development and maintenance of alcohol addiction. The phenotypical characterization of these responses in zebrafish may be the first important steps in establishing this species as a tool for the analysis of the molecular and neurobiological mechanisms underlying human alcohol addiction. PMID:24593943

Tran, Steven; Gerlai, Robert

2014-12-01

163

Zebrafish eleutheroembryos provide a suitable vertebrate model for screening chemicals that impair thyroid hormone synthesis.  

PubMed

Thyroxine-immunofluorescence quantitative disruption test (TIQDT) was designed to provide a simple, rapid, alternative bioassay for assessing the potential of chemical pollutants and drugs to disrupt thyroid gland function. This study demonstrated that zebrafish eleutheroembryos provided a suitable vertebrate model, not only for screening the potential thyroid disrupting effect of molecules, but also for estimating the potential hazards associated with exposure to chemicals directly impairing thyroxine (T4) synthesis. Amitrole, potassium perchlorate, potassium thiocyanate, methimazole (MMI), phloroglucinol, 6-propyl-2-thiouracil, ethylenethiourea, benzophenone-2, resorcinol, pyrazole, sulfamethoxazole, sodium bromide, mancozeb, and genistein were classified as thyroid gland function disruptors. Concordance between TIQDT on zebrafish and mammalian published data was very high and the physiological relevance of T4-intrafollicular content was clearly higher than regulation at the transcriptional level of tg or slc5a5. Moreover, concentration-response analysis provided information about the thyroid disrupting potency and hazard of selected positive compounds. Finally, the effect of perchlorate, but not MMI, was completely rescued by low-micromolar amounts of iodide. TIQDT performed on zebrafish eleutheroembryos is an alternative whole-organism screening assay that provides relevant information for environmental and human risk assessments. PMID:21800831

Thienpont, Benedicte; Tingaud-Sequeira, Angèle; Prats, Eva; Barata, Carlos; Babin, Patrick J; Raldúa, Demetrio

2011-09-01

164

Novel biocompatible intraperitoneal drug delivery system increases tolerability and therapeutic efficacy of paclitaxel in a human ovarian cancer xenograft model  

Microsoft Academic Search

Purpose  We compared the safety, toxicity, biocompatibility and anti-tumour efficacy of a novel chitosan-egg phosphatidylcholine (ePC)\\u000a implantable drug delivery system that provides controlled and sustained release of paclitaxel (PTXePC) versus commercial paclitaxel formulated in Cremophor EL (PTXCrEL).\\u000a \\u000a \\u000a \\u000a Methods  Toxicity studies were conducted in healthy CD-1 female mice, whereas efficacy studies were performed in the SKOV-3 xenograft\\u000a model of ovarian cancer. Treatments consisted

Vessela Vassileva; Justin Grant; Raquel De Souza; Christine Allen; Micheline Piquette-Miller

2007-01-01

165

Spotlight on zebrafish: translational impact.  

PubMed

In recent years, the zebrafish has emerged as an increasingly prominent model in biomedical research. To showcase the translational impact of the model across multiple disease areas, Disease Models & Mechanisms has compiled a Special Issue that includes thought-provoking reviews, original research reporting new and important insights into disease mechanisms, and novel resources that expand the zebrafish toolkit. This Editorial provides a summary of the issue's contents, highlighting the diversity of zebrafish disease models and their clinical applications. PMID:24973741

Patton, E Elizabeth; Dhillon, Paraminder; Amatruda, James F; Ramakrishnan, Lalita

2014-07-01

166

Spotlight on Zebrafish: Translational Impact  

PubMed Central

In recent years, the zebrafish has emerged as an increasingly prominent model in biomedical research. To showcase the translational impact of the model across multiple disease areas, Disease Models & Mechanisms has compiled a Special Issue that includes thought-provoking reviews, original research reporting new and important insights into disease mechanisms, and novel resources that expand the zebrafish toolkit. This Editorial provides a summary of the issue’s contents, highlighting the diversity of zebrafish disease models and their clinical applications. PMID:24973741

Patton, E. Elizabeth; Dhillon, Paraminder; Amatruda, James F.; Ramakrishnan, Lalita

2014-01-01

167

Zebrafish hatching  

NSDL National Science Digital Library

Zebrafish larvae from eggs cleaned of microorganisms sometimes need help hatching out of their chorionic sac. Here one can see that the microorganisms might soon rupture the sac so the zebrafish can swim free.

Mildred Hoover (Salem State College;Biology Department); Nancy Pelaez (Purdue University;Biological Sciences)

2008-07-19

168

Exploring alternative models of rostral-caudal patterning in the zebrafish neurectoderm with computer simulations.  

PubMed

The StarLogo and NetLogo programming environments allow developmental biologists to build computer models of cell-cell interactions in an epithelium and visualize emergent properties of hypothetical genetic regulatory networks operating in the cells. These environments were used to explore alternative models that show how a posteriorizing morphogen gradient might define gene-expression domains along the rostral-caudal axis in the zebrafish neurectoderm. The models illustrate how a hypothetical genetic network based on auto-activation and cross-repression could lead to establishment of discrete non-overlapping gene-expression domains. PMID:15261658

Chitnis, Ajay B; Itoh, Motoyuki

2004-08-01

169

MEDI3617, a human anti-angiopoietin 2 monoclonal antibody, inhibits angiogenesis and tumor growth in human tumor xenograft models.  

PubMed

Angiopoietin 2 (Ang2) is an important regulator of angiogenesis, blood vessel maturation and integrity of the vascular endothelium. The correlation between the dynamic expression of Ang2 in tumors with regions of high angiogenic activity and a poor prognosis in many tumor types makes Ang2 an ideal drug target. We have generated MEDI3617, a human anti-Ang2 monoclonal antibody that neutralizes Ang2 by preventing its binding to the Tie2 receptor in vitro, and inhibits angiogenesis and tumor growth in vivo. Treatment of mice with MEDI3617 resulted in inhibition of angiogenesis in several mouse models including: FGF2-induced angiogenesis in a basement extract plug model, tumor and retinal angiogenesis. In xenograft tumor models, treatment with MEDI3617 resulted in a reduction in tumor angiogenesis and an increase in tumor hypoxia. The administration of MEDI3617 as a single agent to mice bearing human tumor xenografts resulted in tumor growth inhibition against a broad spectrum of tumor types. Combining MEDI3617 with chemotherapy or bevacizumab resulted in a delay in tumor growth and no body weight loss was observed in the combination groups. These results, combined with pharmacodynamic studies, demonstrate that treatment of tumor-bearing mice with MEDI3617 significantly inhibited tumor growth as a single agent by blocking tumor angiogenesis. Together, these data show that MEDI3617 is a robust antiangiogenic agent and support the clinical evaluation and biomarker development of MEDI3617 in cancer patients. PMID:22327175

Leow, Ching Ching; Coffman, Karen; Inigo, Ivan; Breen, Shannon; Czapiga, Meggan; Soukharev, Serguei; Gingles, Neill; Peterson, Norman; Fazenbaker, Christine; Woods, Rob; Jallal, Bahija; Ricketts, Sally-Ann; Lavallee, Theresa; Coats, Steve; Chang, Yong

2012-05-01

170

Periostin mediates human adipose tissue-derived mesenchymal stem cell-stimulated tumor growth in a xenograft lung adenocarcinoma model.  

PubMed

Mesenchymal stem cells stimulate tumor growth in vivo through a lysophosphatidic acid (LPA)-dependent mechanism. However, the molecular mechanism by which mesenchymal stem cells stimulate tumorigenesis is largely elusive. In the present study, we demonstrate that conditioned medium from A549 human lung adenocarcinoma cells (A549 CM) induces expression of periostin, an extracellular matrix protein, in human adipose tissue-derived mesenchymal stem cells (hASCs). A549 CM-stimulated periostin expression was abrogated by pretreatment of hASCs with the LPA receptor 1 (LPA(1)) inhibitor Ki16425 or short hairpin RNA-mediated silencing of LPA(1), suggesting a key role of the LPA-LPA(1) signaling axis in A549 CM-stimulated periostin expression. Using a xenograft transplantation model of A549 cells, we demonstrated that co-injection of hASCs potentiated tumor growth of A549 cells in vivo and that co-transplanted hASCs expressed not only periostin but also ?-smooth muscle actin (?-SMA), a marker of carcinoma-associated fibroblasts. Small interfering RNA- or short hairpin RNA-mediated silencing of periostin resulted in blockade of LPA-induced ?-SMA expression in hASCs. In addition, silencing of periostin resulted in blockade of hASC-stimulated growth of A549 xenograft tumors and in vivo differentiation of transplanted hASCs to ?-SMA-positive carcinoma-associated fibroblasts. Conditioned medium derived from LPA-treated hASCs (LPA CM) potentiated proliferation and adhesion of A549 cells and short interfering RNA-mediated silencing or immunodepletion of periostin from LPA CM abrogated proliferation and adhesion of A549 cells. These results suggest a pivotal role for hASC-secreted periostin in growth of A549 xenograft tumors within the tumor microenvironment. PMID:21855581

Heo, Soon Chul; Lee, Kook One; Shin, Sang Hun; Kwon, Yang Woo; Kim, Young Mi; Lee, Chang Hun; Kim, Yeong Dae; Lee, Min Ki; Yoon, Man-Soo; Kim, Jae Ho

2011-12-01

171

Modeling anxiety using adult zebrafish: A conceptual review Adam Stewart, Siddharth Gaikwad, Evan Kyzar, Jeremy Green, Andrew Roth, Allan V. Kalueff*  

E-print Network

Review Modeling anxiety using adult zebrafish: A conceptual review Adam Stewart, Siddharth Gaikwad Anxiety Novelty-based paradigms Pharmacological and genetic manipulations Bioinformatics Omics-based tools in neurobehavioral research. Mounting evidence shows the suitability of zebrafish to model various aspects of anxiety

Kalueff, Allan V.

172

Developing zebrafish models relevant to PTSD and other trauma- and stressor-related disorders.  

PubMed

While post-traumatic stress disorder (PTSD) and other trauma- and stress-related disorders (TSRDs) represent a serious societal and public health concern, their pathogenesis is largely unknown. Given the clinical complexity of TSRD development and susceptibility, greater investigation into candidate biomarkers and specific genetic pathways implicated in both risk and resilience to trauma becomes critical. In line with this, numerous animal models have been extensively used to better understand the pathogenic mechanisms of PTSD and related TSRD. Here, we discuss the rapidly increasing potential of zebrafish as models of these disorders, and how their use may aid researchers in uncovering novel treatments and therapies in this field. PMID:25138994

Stewart, Adam Michael; Yang, Ester; Nguyen, Michael; Kalueff, Allan V

2014-12-01

173

Activin type IB receptor signaling in prostate cancer cells promotes lymph node metastasis in a xenograft model  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer ActRIB signaling induces Snail and S100A4 expressions in prostate cancer cells. Black-Right-Pointing-Pointer The prostate cancer cell lines expressing an active form of ActRIB were established. Black-Right-Pointing-Pointer ActRIB signaling promotes EMT and lymph node metastasis in xenograft model. -- Abstract: Activin, a member of the transforming growth factor-{beta} family, has been known to be a growth and differentiating factor. Despite its pluripotent effects, the roles of activin signaling in prostate cancer pathogenesis are still unclear. In this study, we established several cell lines that express a constitutive active form of activin type IB receptor (ActRIBCA) in human prostate cancer cells, ALVA41 (ALVA-ActRIBCA). There was no apparent change in the proliferation of ALVA-ActRIBCA cells in vitro; however, their migratory ability was significantly enhanced. In a xenograft model, histological analysis revealed that the expression of Snail, a cell-adhesion-suppressing transcription factor, was dramatically increased in ALVA-ActRIBCA tumors, indicating epithelial mesenchymal transition (EMT). Finally, mice bearing ALVA-ActRIBCA cells developed multiple lymph node metastases. In this study, we demonstrated that ActRIBCA signaling can promote cell migration in prostate cancer cells via a network of signaling molecules that work together to trigger the process of EMT, and thereby aid in the aggressiveness and progression of prostate cancers.

Nomura, Masatoshi, E-mail: nomura@med.kyushu-u.ac.jp [Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan)] [Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Tanaka, Kimitaka; Wang, Lixiang; Goto, Yutaka; Mukasa, Chizu; Ashida, Kenji; Takayanagi, Ryoichi [Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan)] [Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan)

2013-01-04

174

New insights into the pathogenesis of tuberculosis revealed by Mycobacterium marinum: the zebrafish model from the systems biology perspective.  

PubMed

Tuberculosis remains a worldwide health concern, largely due to the emergence of multi-drug-resistant (MDR) and extensive-drug-resistant (XDR) Mycobacterium tuberculosis co-infection with HIV. The exact mechanism of Mycobacterium virulence, pathogenesis, and persistence is not fully understood. The hallmark of tuberculosis, granulomas are promoted by Mycobacterium virulence factors, and they have long been considered a structural advantage to the host. However, this traditional view has been challenged recently, largely due to the evidence originating from the M. marinum-zebrafish model. As a genetically tractable model, zebrafish provide unprecedented opportunities to address the pathogenesis of tuberculosis from a systems biology perspective. The latest data from this model are summarized in this review, special attention is given to the shared pathway and network between zebrafish and humans. This research serves to deepen our understanding of this complex process and to promote the discovery of better countermeasures against tuberculosis. PMID:22181703

Deng, Wanyan; Tang, Xiemei; Hou, Manmei; Li, Chunmei; Xie, Jianping

2011-01-01

175

Stereotactic Intracranial Implantation and In vivo Bioluminescent Imaging of Tumor Xenografts in a Mouse Model System of Glioblastoma Multiforme  

PubMed Central

Glioblastoma multiforme (GBM) is a high-grade primary brain cancer with a median survival of only 14.6 months in humans despite standard tri-modality treatment consisting of surgical resection, post-operative radiation therapy and temozolomide chemotherapy 1. New therapeutic approaches are clearly needed to improve patient survival and quality of life. The development of more effective treatment strategies would be aided by animal models of GBM that recapitulate human disease yet allow serial imaging to monitor tumor growth and treatment response. In this paper, we describe our technique for the precise stereotactic implantation of bio-imageable GBM cancer cells into the brains of nude mice resulting in tumor xenografts that recapitulate key clinical features of GBM 2. This method yields tumors that are reproducible and are located in precise anatomic locations while allowing in vivo bioluminescent imaging to serially monitor intracranial xenograft growth and response to treatments 3-5. This method is also well-tolerated by the animals with low perioperative morbidity and mortality. PMID:23051742

Baumann, Brian C.; Dorsey, Jay F.; Benci, Joseph L.; Joh, Daniel Y.; Kao, Gary D.

2012-01-01

176

The Zebrafish Brain in Research and Teaching: A Simple in Vivo and in Vitro Model for the Study of Spontaneous Neural Activity  

ERIC Educational Resources Information Center

Recently, the zebrafish ("Danio rerio") has been established as a key animal model in neuroscience. Behavioral, genetic, and immunohistochemical techniques have been used to describe the connectivity of diverse neural circuits. However, few studies have used zebrafish to understand the function of cerebral structures or to study neural circuits.…

Vargas, R.; Johannesdottir, I. P.; Sigurgeirsson, B.; Porsteinsson, H.; Karlsson, K. AE.

2011-01-01

177

An inducible krasV12 transgenic zebrafish model for liver tumorigenesis and chemical drug screening  

PubMed Central

SUMMARY Because Ras signaling is frequently activated by major hepatocellular carcinoma etiological factors, a transgenic zebrafish constitutively expressing the krasV12 oncogene in the liver was previously generated by our laboratory. Although this model depicted and uncovered the conservation between zebrafish and human liver tumorigenesis, the low tumor incidence and early mortality limit its use for further studies of tumor progression and inhibition. Here, we employed a mifepristone-inducible transgenic system to achieve inducible krasV12 expression in the liver. The system consisted of two transgenic lines: the liver-driver line had a liver-specific fabp10 promoter to produce the LexPR chimeric transactivator, and the Ras-effector line contained a LexA-binding site to control EGFP-krasV12 expression. In double-transgenic zebrafish (driver-effector) embryos and adults, we demonstrated mifepristone-inducible EGFP-krasV12 expression in the liver. Robust and homogeneous liver tumors developed in 100% of double-transgenic fish after 1 month of induction and the tumors progressed from hyperplasia by 1 week post-treatment (wpt) to carcinoma by 4 wpt. Strikingly, liver tumorigenesis was found to be ‘addicted’ to Ras signaling for tumor maintenance, because mifepristone withdrawal led to tumor regression via cell death in transgenic fish. We further demonstrated the potential use of the transparent EGFP-krasV12 larvae in inhibitor treatments to suppress Ras-driven liver tumorigenesis by targeting its downstream effectors, including the Raf-MEK-ERK and PI3K-AKT-mTOR pathways. Collectively, this mifepristone-inducible and reversible krasV12 transgenic system offers a novel model for understanding hepatocarcinogenesis and a high-throughput screening platform for anti-cancer drugs. PMID:21903676

Nguyen, Anh Tuan; Emelyanov, Alexander; Koh, Chor Hui Vivien; Spitsbergen, Jan M.; Parinov, Serguei; Gong, Zhiyuan

2012-01-01

178

A zebrafish model of manganism reveals reversible and treatable symptoms that are independent of neurotoxicity  

PubMed Central

Manganese (manganese ion; referred to as Mn) is essential for neuronal function, yet it is toxic at high concentrations. Environmental and occupational exposure to high concentrations of Mn causes manganism, a well-defined movement disorder in humans, with symptoms resembling Parkinson’s disease (PD). However, manganism is distinct from PD and the neural basis of its pathology is poorly understood. To address this issue, we generated a zebrafish model of manganism by incubating larvae in rearing medium containing Mn. We find that Mn-treated zebrafish larvae exhibit specific postural and locomotor defects. Larvae begin to float on their sides, show a curved spine and swim in circles. We discovered that treatment with Mn causes postural defects by interfering with mechanotransduction at the neuromasts. Furthermore, we find that the circling locomotion could be caused by long-duration bursting in the motor neurons, which can lead to long-duration tail bends in the Mn-treated larvae. Mn-treated larvae also exhibited fewer startle movements. Additionally, we show that the intensity of tyrosine hydroxylase immunoreactivity is reversibly reduced after Mn-treatment. This led us to propose that reduced dopamine neuromodulation drives the changes in startle movements. To test this, when we supplied an external source of dopamine to Mn-treated larvae, the larvae exhibited a normal number of startle swims. Taken together, these results indicate that Mn interferes with neuronal function at the sensory, motor and modulatory levels, and open avenues for therapeutically targeted studies on the zebrafish model of manganism. PMID:25261567

Bakthavatsalam, Subha; Das Sharma, Shreya; Sonawane, Mahendra; Thirumalai, Vatsala; Datta, Ankona

2014-01-01

179

Natural killer cell lines preferentially kill clonogenic multiple myeloma cells and decrease myeloma engraftment in a bioluminescent xenograft mouse model  

PubMed Central

Background Novel therapies capable of targeting drug resistant clonogenic MM cells are required for more effective treatment of multiple myeloma. This study investigates the cytotoxicity of natural killer cell lines against bulk and clonogenic multiple myeloma and evaluates the tumor burden after NK cell therapy in a bioluminescent xenograft mouse model. Design and Methods The cytotoxicity of natural killer cell lines was evaluated against bulk multiple myeloma cell lines using chromium release and flow cytometry cytotoxicity assays. Selected activating receptors on natural killer cells were blocked to determine their role in multiple myeloma recognition. Growth inhibition of clonogenic multiple myeloma cells was assessed in a methylcellulose clonogenic assay in combination with secondary replating to evaluate the self-renewal of residual progenitors after natural killer cell treatment. A bioluminescent mouse model was developed using the human U266 cell line transduced to express green fluorescent protein and luciferase (U266eGFPluc) to monitor disease progression in vivo and assess bone marrow engraftment after intravenous NK-92 cell therapy. Results Three multiple myeloma cell lines were sensitive to NK-92 and KHYG-1 cytotoxicity mediated by NKp30, NKp46, NKG2D and DNAM-1 activating receptors. NK-92 and KHYG-1 demonstrated 2- to 3-fold greater inhibition of clonogenic multiple myeloma growth, compared with killing of the bulk tumor population. In addition, the residual colonies after treatment formed significantly fewer colonies compared to the control in a secondary replating for a cumulative clonogenic inhibition of 89–99% at the 20:1 effector to target ratio. Multiple myeloma tumor burden was reduced by NK-92 in a xenograft mouse model as measured by bioluminescence imaging and reduction in bone marrow engraftment of U266eGFPluc cells by flow cytometry. Conclusions This study demonstrates that NK-92 and KHYG-1 are capable of killing clonogenic and bulk multiple myeloma cells. In addition, multiple myeloma tumor burden in a xenograft mouse model was reduced by intravenous NK-92 cell therapy. Since multiple myeloma colony frequency correlates with survival, our observations have important clinical implications and suggest that clinical studies of NK cell lines to treat MM are warranted. PMID:22271890

Swift, Brenna E.; Williams, Brent A.; Kosaka, Yoko; Wang, Xing-Hua; Medin, Jeffrey A.; Viswanathan, Sowmya; Martinez-Lopez, Joaquin; Keating, Armand

2012-01-01

180

Inactivation of Myosin Binding Protein C Homolog in Zebrafish as a Model for Human Cardiac Hypertrophy and Diastolic Dysfunction  

PubMed Central

Background Sudden cardiac death due to malignant ventricular arrhythmia is a devastating manifestation of cardiac hypertrophy. Sarcomere protein myosin binding protein C is functionally related to cardiac diastolic function and hypertrophy. Zebrafish is a better model to study human electrophysiology and arrhythmia than rodents because of the electrophysiological characteristics similar to those of humans. Methods and Results We established a zebrafish model of cardiac hypertrophy and diastolic dysfunction by genetic knockdown of myosin binding protein C gene (mybpc3) and investigated the electrophysiological phenotypes in this model. We found expression of zebrafish mybpc3 restrictively in the heart and slow muscle, and mybpc3 gene was evolutionally conservative with sequence homology between zebrafish and human mybpc3 genes. Zebrafish with genetic knockdown of mybpc3 by morpholino showed ventricular hypertrophy with increased myocardial wall thickness and diastolic heart failure, manifesting as decreased ventricular diastolic relaxation velocity, pericardial effusion, and dilatation of the atrium. In terms of electrophysiological phenotypes, mybpc3 knockdown fish had a longer ventricular action potential duration and slower ventricular diastolic calcium reuptake, both of which are typical electrophysiological features in human cardiac hypertrophy and heart failure. Impaired calcium reuptake resulted in increased susceptibility to calcium transient alternans and action potential duration alternans, which have been proved to be central to the genesis of malignant ventricular fibrillation and a sensitive marker of sudden cardiac death. Conclusions mybpc3 knockdown in zebrafish recapitulated the morphological, mechanical, and electrophysiological phenotypes of human cardiac hypertrophy and diastolic heart failure. Our study also first demonstrated arrhythmogenic cardiac alternans in cardiac hypertrophy. PMID:24047589

Chen, Yau?Hung; Pai, Chiung?Wen; Huang, Shu?Wei; Chang, Sheng?Nan; Lin, Lian?Yu; Chiang, Fu?Tien; Lin, Jiunn?Lee; Hwang, Juey?Jen; Tsai, Chia?Ti

2013-01-01

181

Unique and potent effects of acute ibogaine on zebrafish: the developing utility of novel aquatic models for hallucinogenic drug research.  

PubMed

An indole alkaloid, ibogaine is the principal psychoactive component of the iboga plant, used by indigenous peoples in West Africa for centuries. Modulating multiple neurotransmitter systems, the drug is a potent hallucinogen in humans, although its psychotropic effects remain poorly understood. Expanding the range of model species is an important strategy for translational neuroscience research. Here we exposed adult zebrafish (Danio rerio) to 10 and 20mg/L of ibogaine, testing them in the novel tank, light-dark box, open field, mirror stimulation, social preference and shoaling tests. In the novel tank test, the zebrafish natural diving response (geotaxis) was reversed by ibogaine, inducing initial top swimming followed by bottom dwelling. Ibogaine also attenuated the innate preference for dark environments (scototaxis) in the light-dark box test. While it did not exert overt locomotor or thigmotaxic responses in the open field test, the drug altered spatiotemporal exploration of novel environment, inducing clear preference of some areas over others. Ibogaine also promoted 'mirror' exploration in the mirror stimulation test, disrupted group cohesion in the shoaling test, and evoked strong coloration responses due to melanophore aggregation, but did not alter brain c-fos expression or whole-body cortisol levels. Overall, our results support the complex pharmacological profile of ibogaine and its high sensitivity in zebrafish models, dose-dependently affecting multiple behavioral domains. While future investigations in zebrafish may help elucidate the mechanisms underlying these unique behavioral effects, our study strongly supports the developing utility of aquatic models in hallucinogenic drug research. High sensitivity of three-dimensional phenotyping approaches applied here to behavioral effects of ibogaine in zebrafish provides further evidence of how 3D reconstructions of zebrafish swimming paths may be useful for high-throughput pharmacological screening. PMID:22974549

Cachat, Jonathan; Kyzar, Evan J; Collins, Christopher; Gaikwad, Siddharth; Green, Jeremy; Roth, Andrew; El-Ounsi, Mohamed; Davis, Ari; Pham, Mimi; Landsman, Samuel; Stewart, Adam Michael; Kalueff, Allan V

2013-01-01

182

Antitumor activity of motesanib alone and in combination with cisplatin or docetaxel in multiple human non-small-cell lung cancer xenograft models  

PubMed Central

Background Non–small-cell lung cancer (NSCLC) is categorized into various histologic subtypes that play an important role in prognosis and treatment outcome. We investigated the antitumor activity of motesanib, a selective antagonist of vascular endothelial growth factor receptors (VEGFR) 1, 2, and 3, platelet-derived growth factor receptor, and Kit, alone and combined with chemotherapy in five human NSCLC xenograft models (A549, Calu-6, NCI-H358, NCI-H1299, and NCI-H1650) containing diverse genetic mutations. Results Motesanib as a single agent dose-dependently inhibited tumor xenograft growth compared with vehicle in all five of the models (P?xenografts compared with either single agent alone (P?xenografts compared with either single agent alone (P?xenografts, motesanib with and without cisplatin significantly decreased tumor blood vessel area (P?xenograft models containing diverse genetic mutations, and that it had enhanced activity when combined with cisplatin or docetaxel. These effects appeared to be mediated primarily by antiangiogenic mechanisms. PMID:22992329

2012-01-01

183

Defining Hepatic Dysfunction Parameters in Two Models of Fatty Liver Disease in Zebrafish Larvae  

PubMed Central

Abstract Fatty liver disease in humans can progress from steatosis to hepatocellular injury, fibrosis, cirrhosis, and liver failure. We developed a series of straightforward assays to determine whether zebrafish larvae with either tunicamycin- or ethanol-induced steatosis develop hepatic dysfunction. We found altered expression of genes involved in acute phase response and hepatic function, and impaired hepatocyte secretion and disruption of canaliculi in both models, but glycogen deficiency in hepatocytes and dilation of hepatic vasculature occurred only in ethanol-treated larvae. Hepatic stellate cells (HSCs) become activated during liver injury and HSC numbers increased in both models. Whether the excess lipids in hepatocytes are a direct cause of hepatocyte dysfunction in fatty liver disease has not been defined. We prevented ethanol-induced steatosis by blocking activation of the sterol response element binding proteins (Srebps) using gonzombtps1 mutants and scap morphants and found that hepatocyte dysfunction persisted even in the absence of lipid accumulation. This suggests that lipotoxicity is not the primary cause of hepatic injury in these models of fatty liver disease. This study provides a panel of parameters to assess liver disease that can be easily applied to zebrafish mutants, transgenics, and for drug screening in which liver function is an important consideration. PMID:23697887

Howarth, Deanna L.; Yin, Chunyue; Yeh, Karen

2013-01-01

184

Zebrafish erythropoiesis and the utility of fish as models of anemia  

PubMed Central

Erythrocytes contain oxygen-carrying hemoglobin to all body cells. Impairments in the generation of erythrocytes, a process known as erythropoiesis, or in hemoglobin synthesis alter cell function because of decreased oxygen supply and lead to anemic diseases. Thus, understanding how erythropoiesis is regulated during embryogenesis and adulthood is important to develop novel therapies for anemia. The zebrafish, Danio rerio, provides a powerful model for such study. Their small size and the ability to generate a large number of embryos enable large-scale analysis, and their transparency facilitates the visualization of erythroid cell migration. Importantly, the high conservation of hematopoietic genes among vertebrates and the ability to successfully transplant hematopoietic cells into fish have enabled the establishment of models of human anemic diseases in fish. In this review, we summarize the current progress in our understanding of erythropoiesis on the basis of zebrafish studies and highlight fish models of human anemias. These analyses could enable the discovery of novel drugs as future therapies. PMID:23257067

2012-01-01

185

A transgenic zebrafish model expressing KIT-D816V recapitulates features of aggressive systemic mastocytosis.  

PubMed

Systemic mastocytosis (SM) is a rare myeloproliferative disease without curative therapy. Despite clinical variability, the majority of patients harbour a KIT-D816V mutation, but efforts to inhibit mutant KIT with tyrosine kinase inhibitors have been unsatisfactory, indicating a need for new preclinical approaches to identify alternative targets and novel therapies in this disease. Murine models to date have been limited and do not fully recapitulate the most aggressive forms of SM. We describe the generation of a transgenic zebrafish model expressing the human KIT-D816V mutation. Adult fish demonstrate a myeloproliferative disease phenotype, including features of aggressive SM in haematopoeitic tissues and high expression levels of endopeptidases, consistent with SM patients. Transgenic embryos demonstrate a cell-cycle phenotype with corresponding expression changes in genes associated with DNA maintenance and repair, such as reduced dnmt1. In addition, epcam was consistently downregulated in both transgenic adults and embryos. Decreased embryonic epcam expression was associated with reduced neuromast numbers, providing a robust in vivo phenotypic readout for chemical screening in KIT-D816V-induced disease. This study represents the first zebrafish model of a mast cell disease with an aggressive adult phenotype and embryonic markers that could be exploited to screen for novel agents in SM. PMID:24989799

Balci, Tugce B; Prykhozhij, Sergey V; Teh, Evelyn M; Da'as, Sahar I; McBride, Eileen; Liwski, Robert; Chute, Ian C; Leger, Daniel; Lewis, Stephen M; Berman, Jason N

2014-10-01

186

Zebrafish and conditioned place preference: A translational model of drug reward.  

PubMed

Addiction and substance abuse are found ubiquitously throughout human society. In the United States, these disorders are responsible for amassing hundreds of billions of dollars in annual costs associated with healthcare, crime and lost productivity. Efficacious treatments remain few in number, the development of which will be facilitated by comprehension of environmental, genetic, pharmacological and neurobiological mechanisms implicated in the pathogenesis of addiction. Animal models such as the zebrafish (Danio rerio) have gained momentum within various domains of translational research, and as a model of complex brain disorders (e.g., drug abuse). Behavioral quantification within the conditioned place preference (CPP) paradigm serves as a measure of the rewarding qualities of a given substance. If the animal develops an increase in preference for the drug paired environment, it is inferred that the drug has positive-reinforcing properties. This paper discusses the utility of the zebrafish model in conjunction with the CPP paradigm and reports CPP behavior following acute exposure to 0.0%, 0.25%, 0.50%, and 1.00% alcohol, and 0mg/L, 50mg/L, 100mg/L and 150mg/L caffeine. PMID:24887295

Collier, Adam D; Khan, Kanza M; Caramillo, Erika M; Mohn, Richard S; Echevarria, David J

2014-12-01

187

Binding Difference of Fipronil with GABAARs in Fruitfly and Zebrafish: Insights from Homology Modeling, Docking, and Molecular Dynamics Simulation Studies.  

PubMed

Fipronil, which targets GABAA receptors (GABAARs), is the first phenylpyrazole insecticide widely used in crop protection and public hygiene. However, its high toxicity on fishes greatly limited its applications. In the present study, a series of computational methods including homology modeling, docking, and molecular dynamics simulation studies were integrated to explore the binding difference of fipronil with GABAARs from fruitfly and zebrafish systems. It was found that, in the zebrafish system, the H-bond between 6'Thr and fipronil exerted key effects on the recognition of fipronil, which was absent in the fruitfly system. On the other hand, in the fruitfly system, strong electrostatic interaction between 2'Ala and fipronil was favorable to the binding of fipronil but detrimental to the binding in the zebrafish system. These findings marked the binding difference of fipronil with different GABAARs, which might be helpful in designing selective insecticides against pests instead of fishes. PMID:25302733

Zheng, Nan; Cheng, Jiagao; Zhang, Wei; Li, Weihua; Shao, Xusheng; Xu, Zhiping; Xu, Xiaoyong; Li, Zhong

2014-11-01

188

The genetic heterogeneity and mutational burden of engineered melanomas in zebrafish models  

PubMed Central

Background Melanoma is the most deadly form of skin cancer. Expression of oncogenic BRAF or NRAS, which are frequently mutated in human melanomas, promote the formation of nevi but are not sufficient for tumorigenesis. Even with germline mutated p53, these engineered melanomas present with variable onset and pathology, implicating additional somatic mutations in a multi-hit tumorigenic process. Results To decipher the genetics of these melanomas, we sequence the protein coding exons of 53 primary melanomas generated from several BRAFV600E or NRASQ61K driven transgenic zebrafish lines. We find that engineered zebrafish melanomas show an overall low mutation burden, which has a strong, inverse association with the number of initiating germline drivers. Although tumors reveal distinct mutation spectrums, they show mostly C?>?T transitions without UV light exposure, and enrichment of mutations in melanogenesis, p53 and MAPK signaling. Importantly, a recurrent amplification occurring with pre-configured drivers BRAFV600E and p53-/- suggests a novel path of BRAF cooperativity through the protein kinase A pathway. Conclusion This is the first analysis of a melanoma mutational landscape in the absence of UV light, where tumors manifest with remarkably low mutation burden and high heterogeneity. Genotype specific amplification of protein kinase A in cooperation with BRAF and p53 mutation suggests the involvement of melanogenesis in these tumors. This work is important for defining the spectrum of events in BRAF or NRAS driven melanoma in the absence of UV light, and for informed exploitation of models such as transgenic zebrafish to better understand mechanisms leading to human melanoma formation. PMID:24148783

2013-01-01

189

Altered chondrocyte differentiation and extracellular matrix homeostasis in a zebrafish model for mucolipidosis II.  

PubMed

Mucolipidosis II (ML-II) is a pediatric disorder caused by defects in the biosynthesis of mannose 6-phosphate, the carbohydrate recognition signal responsible for targeting certain acid hydrolases to lysosomes. The mechanisms underlying the developmental defects of ML-II are largely unknown due in part to the lack of suitable animal models. To overcome these limitations, we developed a model for ML-II in zebrafish by inhibiting the expression of N-acetylglucosamine-1-phosphotransferase, the enzyme that initiates mannose 6-phosphate biosynthesis. Morphant embryos manifest craniofacial defects, impaired motility, and abnormal otolith and pectoral fin development. Decreased mannose phosphorylation of several lysosomal glycosidases was observed in morphant lysates, consistent with the reduction in phosphotransferase activity. Investigation of the craniofacial defects in the morphants uncovered striking changes in the timing and localization of both type II collagen and Sox9 expression, suggestive of an accelerated chondrocyte differentiation program. Accumulation of type II collagen was also noted within misshapen cartilage elements at later stages of development. Furthermore, we observed abnormal matrix formation and calcium deposition in morphant otoliths. Collectively, these data provide new insight into the developmental pathology of ML-II and suggest that altered production and/or homeostasis of extracellular matrix proteins are integral to the disease process. These findings highlight the potential of the zebrafish system in studying lysosomal disease pathogenesis. PMID:19834066

Flanagan-Steet, Heather; Sias, Christina; Steet, Richard

2009-11-01

190

Polymethoxy-1-alkenes from Aphanizomenon ovalisporum Inhibit Vertebrate Development in the Zebrafish (Danio rerio) Embryo Model  

PubMed Central

Cyanobacteria are recognized producers of a wide array of toxic or otherwise bioactive secondary metabolites. The present study utilized the zebrafish (Danio rerio) embryo as an aquatic animal model of vertebrate development to identify, purify and characterize lipophilic inhibitors of development (i.e., developmental toxins) from an isolate of the freshwater cyanobacterial species, Aphanizomenon ovalisporum.Bioassay-guided fractionation led to the purification, and subsequent chemical characterization, of an apparent homologous series of isotactic polymethoxy-1-alkenes (1–6), including three congeners (4–6) previously identified from the strain, and two variants previously identified from other species (2 and 3), as well as one apparently novel member of the series (1). Five of the PMAs in the series (1–5) were purified in sufficient quantity for comparative toxicological characterization, and toxicity in the zebrafish embryo model was found to generally correlate with relative chain length and/or methoxylation. Moreover, exposure of embryos to a combination of variants indicates an apparent synergistic interaction between the congeners. Although PMAs have been identified previously in cyanobacteria, this is the first report of their apparent toxicity. These results, along with the previously reported presence of the PMAs from several cyanobacterial species, suggest a possibly widespread distribution of the PMAs as toxic secondary metabolites and warrants further chemical and toxicological investigation. PMID:23170087

Jaja-Chimedza, Asha; Gantar, Miroslav; Gibbs, Patrick D. L.; Schmale, Michael C.; Berry, John P.

2012-01-01

191

Chemical synthesis, NMR analysis and evaluation on a cancer xenograft model (HL-60) of the aminosteroid derivative RM-133.  

PubMed

The aminosteroid derivative RM-133 has been reported to be a promising pro-apoptotic agent showing activity on various cancer cell lines. Following the development of solid-phase synthesis that generated a series of libraries of aminosteroid derivatives, we now report the development of a convenient liquid phase chemical synthesis of RM-133, the most promising candidate, in order to obtain sufficient quantities to proceed with the first preclinical assays. A simple and convergent six-step synthesis was designed and allowed the preparation of a gram-quantity scale of RM-133. This aminosteroid derivative was also fully characterized by NMR experiments which revealed an interesting mixture of conformers. Finally, the in vivo potency of RM-133 was evaluated on a xenograft model in nude mice with HL-60 tumors, which has resulted in the blocking of tumor progression by 57%. PMID:24486462

Maltais, René; Hospital, Audrey; Delhomme, Audrey; Roy, Jenny; Poirier, Donald

2014-04-01

192

Local Delivery of Cannabinoid-Loaded Microparticles Inhibits Tumor Growth in a Murine Xenograft Model of Glioblastoma Multiforme  

PubMed Central

Cannabinoids, the active components of marijuana and their derivatives, are currently investigated due to their potential therapeutic application for the management of many different diseases, including cancer. Specifically, ?9-Tetrahydrocannabinol (THC) and Cannabidiol (CBD) – the two major ingredients of marijuana – have been shown to inhibit tumor growth in a number of animal models of cancer, including glioma. Although there are several pharmaceutical preparations that permit the oral administration of THC or its analogue nabilone or the oromucosal delivery of a THC- and CBD-enriched cannabis extract, the systemic administration of cannabinoids has several limitations in part derived from the high lipophilicity exhibited by these compounds. In this work we analyzed CBD- and THC-loaded poly-?-caprolactone microparticles as an alternative delivery system for long-term cannabinoid administration in a murine xenograft model of glioma. In vitro characterization of THC- and CBD-loaded microparticles showed that this method of microencapsulation facilitates a sustained release of the two cannabinoids for several days. Local administration of THC-, CBD- or a mixture (1?1 w:w) of THC- and CBD-loaded microparticles every 5 days to mice bearing glioma xenografts reduced tumour growth with the same efficacy than a daily local administration of the equivalent amount of those cannabinoids in solution. Moreover, treatment with cannabinoid-loaded microparticles enhanced apoptosis and decreased cell proliferation and angiogenesis in these tumours. Our findings support that THC- and CBD-loaded microparticles could be used as an alternative method of cannabinoid delivery in anticancer therapies. PMID:23349970

Gil-Alegre, Maria Esther; Torres, Sofia; Garcia-Taboada, Elena; Aberturas, Maria del Rosario; Molpeceres, Jesus

2013-01-01

193

Heritable T Cell Malignancy Models Established in a Zebrafish Phenotypic Screen  

PubMed Central

T cell neoplasias are common in pediatric oncology, and include acute lymphoblastic leukemia (T-ALL) and lymphoblastic lymphoma (T-LBL). These cancers have worse prognoses than their B cell counterparts, and their treatments carry significant morbidity. While many pediatric malignancies have characteristic translocations, most T lymphocyte-derived diseases lack cytogenetic hallmarks. Lacking these informative lesions, insight into their molecular pathogenesis is less complete. Although dysregulation of the NOTCH1 pathway occurs in a substantial fraction of cases, many other genetic lesions of T cell malignancy have not yet been determined. To address this deficiency, we pioneered a phenotype-driven forward-genetic screen in zebrafish (Danio rerio). Using transgenic fish with T lymphocyte-specific expression of enhanced green fluorescent protein (EGFP), we performed chemical mutagenesis, screened animals for GFP+ tumors, and identified multiple lines with a heritable predisposition to T cell malignancy. In each line, patterns of infiltration and morphologic appearance resembled human T-ALL and T-LBL. T cell receptor analyses confirmed their clonality. Malignancies were transplantable and contained leukemia-initiating cells (LIC), like their human correlates. In summary, we have identified multiple zebrafish mutants that recapitulate human T cell neoplasia and show heritable transmission. These vertebrate models provide new genetic platforms for the study of these important human cancers. PMID:19516274

Frazer, J. Kimble; Meeker, Nathan; Rudner, Lynnie; Bradley, Diana F.; Smith, Alexandra C. H.; Demarest, Bradley; Joshi, Deepa; Locke, Erin E.; Hutchinson, Sarah A.; Tripp, Sheryl; Perkins, Sherrie L.; Trede, Nikolaus S.

2009-01-01

194

Prey capture in zebrafish larvae serves as a model to study cognitive functions.  

PubMed

Prey capture in zebrafish larvae is an innate behavior which can be observed as early as 4~days postfertilization, the day when they start to swim. This simple behavior apparently involves several neural processes including visual perception, recognition, decision-making, and motor control, and, therefore, serves as a good model system to study cognitive functions underlying natural behaviors in vertebrates. Recent progresses in imaging techniques provided us with a unique opportunity to image neuronal activity in the brain of an intact fish in real-time while the fish perceives a natural prey, paramecium. By expanding this approach, it would be possible to image entire brain areas at a single-cell resolution in real-time during prey capture, and identify neuronal circuits important for cognitive functions. Further, activation or inhibition of those neuronal circuits with recently developed optogenetic tools or neurotoxins should shed light on their roles. Thus, we will be able to explore the prey capture in zebrafish larvae more thoroughly at cellular levels, which should establish a basis of understanding of the cognitive function in vertebrates. PMID:23781176

Muto, Akira; Kawakami, Koichi

2013-01-01

195

Targeting Tumor Vasculature Endothelial Cells and Tumor Cells for Immunotherapy of Human Melanoma in a Mouse Xenograft Model  

NASA Astrophysics Data System (ADS)

An immunotherapy treatment for cancer that targets both the tumor vasculature and tumor cells has shown promising results in a severe combined immunodeficient mouse xenograft model of human melanoma. The treatment involves systemic delivery of an immunoconjugate molecule composed of a tumor-targeting domain conjugated to the Fc effector domain of human IgG1. The effector domain induces a cytolytic immune response against the targeted cells by natural killer cells and complement. Two types of targeting domains were used. One targeting domain is a human single-chain Fv molecule that binds to a chondroitin sulfate proteoglycan expressed on the surface of most human melanoma cells. Another targeting domain is factor VII (fVII), a zymogen that binds with high specificity and affinity to the transmembrane receptor tissue factor (TF) to initiate the blood coagulation cascade. TF is expressed by endothelial cells lining the tumor vasculature but not the normal vasculature, and also by many types of tumor cells including melanoma. Because the binding of a fVII immunoconjugate to TF might cause disseminated intravascular coagulation, the active site of fVII was mutated to inhibit coagulation without affecting the affinity for TF. The immunoconjugates were encoded as secreted molecules in a replication-defective adenovirus vector, which was injected into the tail vein of severe combined immunodeficient mice. The results demonstrate that a mutated fVII immunoconjugate, administered separately or together with a single-chain Fv immunoconjugate that binds to the tumor cells, can inhibit the growth or cause regression of an established human tumor xenograft. This procedure could be effective in treating a broad spectrum of human solid tumors that express TF on vascular endothelial cells and tumor cells.

Hu, Zhiwei; Sun, Ying; Garen, Alan

1999-07-01

196

Targeting tumor vasculature endothelial cells and tumor cells for immunotherapy of human melanoma in a mouse xenograft model.  

PubMed

An immunotherapy treatment for cancer that targets both the tumor vasculature and tumor cells has shown promising results in a severe combined immunodeficient mouse xenograft model of human melanoma. The treatment involves systemic delivery of an immunoconjugate molecule composed of a tumor-targeting domain conjugated to the Fc effector domain of human IgG1. The effector domain induces a cytolytic immune response against the targeted cells by natural killer cells and complement. Two types of targeting domains were used. One targeting domain is a human single-chain Fv molecule that binds to a chondroitin sulfate proteoglycan expressed on the surface of most human melanoma cells. Another targeting domain is factor VII (fVII), a zymogen that binds with high specificity and affinity to the transmembrane receptor tissue factor (TF) to initiate the blood coagulation cascade. TF is expressed by endothelial cells lining the tumor vasculature but not the normal vasculature, and also by many types of tumor cells including melanoma. Because the binding of a fVII immunoconjugate to TF might cause disseminated intravascular coagulation, the active site of fVII was mutated to inhibit coagulation without affecting the affinity for TF. The immunoconjugates were encoded as secreted molecules in a replication-defective adenovirus vector, which was injected into the tail vein of severe combined immunodeficient mice. The results demonstrate that a mutated fVII immunoconjugate, administered separately or together with a single-chain Fv immunoconjugate that binds to the tumor cells, can inhibit the growth or cause regression of an established human tumor xenograft. This procedure could be effective in treating a broad spectrum of human solid tumors that express TF on vascular endothelial cells and tumor cells. PMID:10393965

Hu, Z; Sun, Y; Garen, A

1999-07-01

197

Ginsenoside Rh2 induces Bcl-2 family proteins-mediated apoptosis in vitro and in xenografts in vivo models.  

PubMed

The cancer chemoprevention effects of ginseng saponins have been demonstrated against a variety of experimental tumors; however, their molecular mechanisms in vitro and in in vivo models are not well studied. This study was undertaken to gain insights into the molecular mechanisms of ginsenoside Rh2 (Rh2)-induced cell death in human breast cancer cell lines as well as in in vivo xenografts. Rh2 treatment significantly inhibited viability of both MCF-7 and MDA-MB-231 human breast cells in a concentration-dependent manner, which correlated with mitochondria-mediated apoptosis. Rh2-induced apoptosis was accompanied by the down-regulation of antiapoptotic proteins Bcl-2, Bcl-xL, and Mcl-1. It also caused induction of the proapoptotic members Bak, Bax, and Bim leading to mitochondrial translocation of Bax and activation of caspases. Moreover, Rh2-induced apoptosis was partially, yet significantly protected by transient transfection of MCF-7 cells with Bax- and Bak-targeted siRNAs. Oral gavage of 5?mg Rh2/kg of mouse (three times a week) significantly caused apoptosis of MDA-MB-231 xenografts. An increase in Bax and Bak and a decrease in Bcl-2 and Bcl-xL transcript levels, in accordance with their protein expression, were observed in tumor tissue. Tumors from Rh2-treated mice exhibited a markedly higher count of apoptotic bodies and reduced proliferation index compared with control tumors. Our data suggest that Rh2 used in traditional oriental medicine for the treatment of various ailments, may be an attractive agent for the treatment and/or prevention of human breast cancers. PMID:21080338

Choi, Sunga; Oh, Jun-Young; Kim, Soo-Jin

2011-01-01

198

WaveCNV: allele-specific copy number alterations in primary tumors and xenograft models from next-generation sequencing  

PubMed Central

Motivation: Copy number variations (CNVs) are a major source of genomic variability and are especially significant in cancer. Until recently microarray technologies have been used to characterize CNVs in genomes. However, advances in next-generation sequencing technology offer significant opportunities to deduce copy number directly from genome sequencing data. Unfortunately cancer genomes differ from normal genomes in several aspects that make them far less amenable to copy number detection. For example, cancer genomes are often aneuploid and an admixture of diploid/non-tumor cell fractions. Also patient-derived xenograft models can be laden with mouse contamination that strongly affects accurate assignment of copy number. Hence, there is a need to develop analytical tools that can take into account cancer-specific parameters for detecting CNVs directly from genome sequencing data. Results: We have developed WaveCNV, a software package to identify copy number alterations by detecting breakpoints of CNVs using translation-invariant discrete wavelet transforms and assign digitized copy numbers to each event using next-generation sequencing data. We also assign alleles specifying the chromosomal ratio following duplication/loss. We verified copy number calls using both microarray (correlation coefficient 0.97) and quantitative polymerase chain reaction (correlation coefficient 0.94) and found them to be highly concordant. We demonstrate its utility in pancreatic primary and xenograft sequencing data. Availability and implementation: Source code and executables are available at https://github.com/WaveCNV. The segmentation algorithm is implemented in MATLAB, and copy number assignment is implemented Perl. Contact: lakshmi.muthuswamy@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24192544

Holt, Carson; Losic, Bojan; Pai, Deepa; Zhao, Zhen; Trinh, Quang; Syam, Sujata; Arshadi, Niloofar; Jang, Gun Ho; Ali, Johar; Beck, Tim; McPherson, John; Muthuswamy, Lakshmi B.

2014-01-01

199

Knockdown of Bicaudal C in Zebrafish (Danio rerio) Causes Cystic Kidneys: A Nonmammalian Model of Polycystic Kidney Disease  

PubMed Central

Polycystic kidney disease (PKD) is one of the leading causes of end-stage renal disease in humans and is characterized by progressive cyst formation, renal enlargement, and abnormal tubular development. Currently, there is no cure for PKD. Although a number of PKD genes have been identified, their precise role in cystogenesis remains unclear. In the jcpk mouse model of PKD, mutations in the bicaudal C gene (Bicc1) are responsible for the cystic phenotype; however, the function of Bicc1 is unknown. In this study, we establish an alternative, nonmammalian zebrafish model to study the role of Bicc1 in PKD pathogenesis. Antisense morpholinos were used to evaluate loss of Bicc1 function in zebrafish. The resulting morphants were examined histologically for kidney cysts and structural abnormalities. Immunostaining and fluorescent dye injection were used to evaluate pronephric cilia and kidney morphogenesis. Knockdown of zebrafish Bicc1 expression resulted in the formation of kidney cysts; however, defects in kidney structure or pronephric cilia were not observed. Importantly, expression of mouse Bicc1 rescues the cystic phenotype of the morphants. These results demonstrate that the function of Bicc1 in the kidney is evolutionarily conserved, thus supporting the use of zebrafish as an alternative in vivo model to study the role of mammalian Bicc1 in renal cyst formation. PMID:20412683

Bouvrette, Denise J; Sittaramane, Vinoth; Heidel, Jerry R; Chandrasekhar, Anand; Bryda, Elizabeth C

2010-01-01

200

A Novel Zebrafish Model to Provide Mechanistic Insights into the Inflammatory Events in Carrageenan-Induced Abdominal Edema  

PubMed Central

A suitable small animal model may help in the screening and evaluation of new drugs, especially those from natural products, which can be administered at lower dosages, fulfilling an urgent worldwide need. In this study, we explore whether zebrafish could be a model organism for carrageenan-induced abdominal edema. The research results showed that intraperitoneal (i.p.) administration of 1.5% ?-carrageenan in a volume of 20 µL significantly increased abdominal edema in adult zebrafish. Levels of the proinflammatory proteins tumor necrosis factor-? (TNF-?) and inducible nitric oxide synthase (iNOS) were increased in carrageenan-injected adult zebrafish during the development of abdominal edema. An associated enhancement was also observed in the leukocyte marker, myeloperoxidase (MPO). To support these results, we further observed that i.p. methylprednisolone (MP; 1 µg), a positive control, significantly inhibited carrageenan-induced inflammation 24 h after carrageenan administration. Furthermore, i.p. pretreatment with either an anti-TNF-? antibody (1?5 dilution in a volume of 20 µL) or the iNOS-selective inhibitor aminoguanidine (AG; 1 µg) inhibited carrageenan-induced abdominal edema in adult zebrafish. This new animal model is uncomplicated, easy to develop, and involves a straightforward inducement of inflammatory edema for the evaluation of small volumes of drugs or test compounds. PMID:25141004

Huang, Shi-Ying; Feng, Chien-Wei; Hung, Han-Chun; Chakraborty, Chiranjib; Chen, Chun-Hong; Chen, Wu-Fu; Jean, Yen-Hsuan; Wang, Hui-Min David; Sung, Chun-Sung; Sun, Yu-Min; Wu, Chang-Yi; Liu, Wangta; Hsiao, Chung-Der; Wen, Zhi-Hong

2014-01-01

201

Towards a comprehensive eye model for zebrafish retinal imaging using full range spectral domain optical coherence tomography  

NASA Astrophysics Data System (ADS)

In regenerative medicine, the zebrafish is a prominent animal model for studying degeneration and regeneration processes, e.g. of photoreceptor cells in the retina. By means of optical coherence tomography (OCT), these studies can be conducted over weeks using the same individual and hence reducing the variability of the results. To allow an improvement of zebrafish retinal OCT imaging by suitable optics, we developed a zebrafish eye model using geometrical data obtained by in vivo dispersion encoded full range OCT as well as a dispersion comprising gradient index (GRIN) lens model based on refractive index data found in the literature. Using non-sequential ray tracing, the focal length of the spherical GRIN lens (diameter of 0.96 mm) was determined to be 1.22 mm at 800 nm wavelength giving a Matheissen's ratio (ratio of focal length to radius of the lens) of 2.54, which fits well into the range between 2.19 and 2.82, found for various fish lenses. Additionally, a mean refractive index of 1.64 at 800 nm could be retrieved for the lens to yield the same focal position as found for the GRIN condition. With the aid of the zebrafish eye model, the optics of the OCT scanner head were adjusted to provide high-resolution retinal images with a field of view of 30° x 30°. The introduced model therefore provides the basis for improved retinal imaging with OCT and can be further used to study the image formation within the zebrafish eye.

Gaertner, Maria; Weber, Anke; Cimalla, Peter; Köttig, Felix; Brand, Michael; Koch, Edmund

2014-03-01

202

From Omics to Drug Metabolism and High Content Screen of Natural Product in Zebrafish: A New Model for Discovery of Neuroactive Compound  

PubMed Central

The zebrafish (Danio rerio) has recently become a common model in the fields of genetics, environmental science, toxicology, and especially drug screening. Zebrafish has emerged as a biomedically relevant model for in vivo high content drug screening and the simultaneous determination of multiple efficacy parameters, including behaviour, selectivity, and toxicity in the content of the whole organism. A zebrafish behavioural assay has been demonstrated as a novel, rapid, and high-throughput approach to the discovery of neuroactive, psychoactive, and memory-modulating compounds. Recent studies found a functional similarity of drug metabolism systems in zebrafish and mammals, providing a clue with why some compounds are active in zebrafish in vivo but not in vitro, as well as providing grounds for the rationales supporting the use of a zebrafish screen to identify prodrugs. Here, we discuss the advantages of the zebrafish model for evaluating drug metabolism and the mode of pharmacological action with the emerging omics approaches. Why this model is suitable for identifying lead compounds from natural products for therapy of disorders with multifactorial etiopathogenesis and imbalance of angiogenesis, such as Parkinson's disease, epilepsy, cardiotoxicity, cerebral hemorrhage, dyslipidemia, and hyperlipidemia, is addressed. PMID:22919414

Hung, Ming Wai; Zhang, Zai Jun; Li, Shang; Lei, Benson; Yuan, Shuai; Cui, Guo Zhen; Man Hoi, Pui; Chan, Kelvin; Lee, Simon Ming Yuen

2012-01-01

203

Mutation of zebrafish dihydrolipoamide branched-chain transacylase E2 results in motor dysfunction and models maple syrup urine disease.  

PubMed

Analysis of zebrafish mutants that demonstrate abnormal locomotive behavior can elucidate the molecular requirements for neural network function and provide new models of human disease. Here, we show that zebrafish quetschkommode (que) mutant larvae exhibit a progressive locomotor defect that culminates in unusual nose-to-tail compressions and an inability to swim. Correspondingly, extracellular peripheral nerve recordings show that que mutants demonstrate abnormal locomotor output to the axial muscles used for swimming. Using positional cloning and candidate gene analysis, we reveal that a point mutation disrupts the gene encoding dihydrolipoamide branched-chain transacylase E2 (Dbt), a component of a mitochondrial enzyme complex, to generate the que phenotype. In humans, mutation of the DBT gene causes maple syrup urine disease (MSUD), a disorder of branched-chain amino acid metabolism that can result in mental retardation, severe dystonia, profound neurological damage and death. que mutants harbor abnormal amino acid levels, similar to MSUD patients and consistent with an error in branched-chain amino acid metabolism. que mutants also contain markedly reduced levels of the neurotransmitter glutamate within the brain and spinal cord, which probably contributes to their abnormal spinal cord locomotor output and aberrant motility behavior, a trait that probably represents severe dystonia in larval zebrafish. Taken together, these data illustrate how defects in branched-chain amino acid metabolism can disrupt nervous system development and/or function, and establish zebrafish que mutants as a model to better understand MSUD. PMID:22046030

Friedrich, Timo; Lambert, Aaron M; Masino, Mark A; Downes, Gerald B

2012-03-01

204

A zebrafish model of human Barth syndrome reveals the essential role of tafazzin in cardiac development and function.  

PubMed

Barth syndrome is an X-linked disorder characterized by cardiomyopathy, skeletal myopathy, neutropenia, organic aciduria, and growth retardation caused by mutations in tafazzin. The sequence similarity of tafazzin to acyltransferases suggests a role in mitochondrial phospholipid metabolism. To study the role of tafazzin in heart function and development, we created a knockdown zebrafish model. Zebrafish tafazzin mRNA is first evident at 7 hours post-fertilization (hpf). At 10 and 24 hpf, tafazzin mRNA is ubiquitous, with highest levels in the head. By 51 hpf, expression becomes cardiac restricted. The tafazzin knockdown created by antisense morpholino yolk injection resulted in dose-dependent lethality, severe developmental and growth retardation, marked bradycardia and pericardial effusions, and generalized edema, signs that resemble human Barth syndrome heart failure. This knockdown phenotype was rescued by concomitant injection of normal tafazzin mRNA. Abnormal cardiac development, with a linear, nonlooped heart, and hypomorphic tail and eye development proves that tafazzin is essential for overall zebrafish development, especially of the heart. The tafazzin knockdown zebrafish provides an animal model similar to Barth syndrome to analyze the severity of human mutants and to test potential treatments. PMID:16794186

Khuchua, Zaza; Yue, Zou; Batts, Lorene; Strauss, Arnold W

2006-07-21

205

Mutation of zebrafish dihydrolipoamide branched-chain transacylase E2 results in motor dysfunction and models maple syrup urine disease  

PubMed Central

SUMMARY Analysis of zebrafish mutants that demonstrate abnormal locomotive behavior can elucidate the molecular requirements for neural network function and provide new models of human disease. Here, we show that zebrafish quetschkommode (que) mutant larvae exhibit a progressive locomotor defect that culminates in unusual nose-to-tail compressions and an inability to swim. Correspondingly, extracellular peripheral nerve recordings show that que mutants demonstrate abnormal locomotor output to the axial muscles used for swimming. Using positional cloning and candidate gene analysis, we reveal that a point mutation disrupts the gene encoding dihydrolipoamide branched-chain transacylase E2 (Dbt), a component of a mitochondrial enzyme complex, to generate the que phenotype. In humans, mutation of the DBT gene causes maple syrup urine disease (MSUD), a disorder of branched-chain amino acid metabolism that can result in mental retardation, severe dystonia, profound neurological damage and death. que mutants harbor abnormal amino acid levels, similar to MSUD patients and consistent with an error in branched-chain amino acid metabolism. que mutants also contain markedly reduced levels of the neurotransmitter glutamate within the brain and spinal cord, which probably contributes to their abnormal spinal cord locomotor output and aberrant motility behavior, a trait that probably represents severe dystonia in larval zebrafish. Taken together, these data illustrate how defects in branched-chain amino acid metabolism can disrupt nervous system development and/or function, and establish zebrafish que mutants as a model to better understand MSUD. PMID:22046030

Friedrich, Timo; Lambert, Aaron M.; Masino, Mark A.; Downes, Gerald B.

2012-01-01

206

Hydrogel-based 3D model of patient-derived prostate xenograft tumors suitable for drug screening.  

PubMed

The lack of effective therapies for bone metastatic prostate cancer (PCa) underscores the need for accurate models of the disease to enable the discovery of new therapeutic targets and to test drug sensitivities of individual tumors. To this end, the patient-derived xenograft (PDX) PCa model using immunocompromised mice was established to model the disease with greater fidelity than is possible with currently employed cell lines grown on tissue culture plastic. However, poorly adherent PDX tumor cells exhibit low viability in standard culture, making it difficult to manipulate these cells for subsequent controlled mechanistic studies. To overcome this challenge, we encapsulated PDX tumor cells within a three-dimensional hyaluronan-based hydrogel and demonstrated that the hydrogel maintains PDX cell viability with continued native androgen receptor expression. Furthermore, a differential sensitivity to docetaxel, a chemotherapeutic drug, was observed as compared to a traditional PCa cell line. These findings underscore the potential impact of this novel 3D PDX PCa model as a diagnostic platform for rapid drug evaluation and ultimately push personalized medicine toward clinical reality. PMID:24779589

Fong, Eliza L S; Martinez, Mariane; Yang, Jun; Mikos, Antonios G; Navone, Nora M; Harrington, Daniel A; Farach-Carson, Mary C

2014-07-01

207

Quantitative phenotyping-based in vivo chemical screening in a zebrafish model of leukemia stem cell xenotransplantation.  

PubMed

Zebrafish-based chemical screening has recently emerged as a rapid and efficient method to identify important compounds that modulate specific biological processes and to test the therapeutic efficacy in disease models, including cancer. In leukemia, the ablation of leukemia stem cells (LSCs) is necessary to permanently eradicate the leukemia cell population. However, because of the very small number of LSCs in leukemia cell populations, their use in xenotransplantation studies (in vivo) and the difficulties in functionally and pathophysiologically replicating clinical conditions in cell culture experiments (in vitro), the progress of drug discovery for LSC inhibitors has been painfully slow. In this study, we developed a novel phenotype-based in vivo screening method using LSCs xenotransplanted into zebrafish. Aldehyde dehydrogenase-positive (ALDH+) cells were purified from chronic myelogenous leukemia K562 cells tagged with a fluorescent protein (Kusabira-orange) and then implanted in young zebrafish at 48 hours post-fertilization. Twenty-four hours after transplantation, the animals were treated with one of eight different therapeutic agents (imatinib, dasatinib, parthenolide, TDZD-8, arsenic trioxide, niclosamide, salinomycin, and thioridazine). Cancer cell proliferation, and cell migration were determined by high-content imaging. Of the eight compounds that were tested, all except imatinib and dasatinib selectively inhibited ALDH+ cell proliferation in zebrafish. In addition, these anti-LSC agents suppressed tumor cell migration in LSC-xenotransplants. Our approach offers a simple, rapid, and reliable in vivo screening system that facilitates the phenotype-driven discovery of drugs effective in suppressing LSCs. PMID:24454867

Zhang, Beibei; Shimada, Yasuhito; Kuroyanagi, Junya; Umemoto, Noriko; Nishimura, Yuhei; Tanaka, Toshio

2014-01-01

208

Quantitative Phenotyping-Based In Vivo Chemical Screening in a Zebrafish Model of Leukemia Stem Cell Xenotransplantation  

PubMed Central

Zebrafish-based chemical screening has recently emerged as a rapid and efficient method to identify important compounds that modulate specific biological processes and to test the therapeutic efficacy in disease models, including cancer. In leukemia, the ablation of leukemia stem cells (LSCs) is necessary to permanently eradicate the leukemia cell population. However, because of the very small number of LSCs in leukemia cell populations, their use in xenotransplantation studies (in vivo) and the difficulties in functionally and pathophysiologically replicating clinical conditions in cell culture experiments (in vitro), the progress of drug discovery for LSC inhibitors has been painfully slow. In this study, we developed a novel phenotype-based in vivo screening method using LSCs xenotransplanted into zebrafish. Aldehyde dehydrogenase-positive (ALDH+) cells were purified from chronic myelogenous leukemia K562 cells tagged with a fluorescent protein (Kusabira-orange) and then implanted in young zebrafish at 48 hours post-fertilization. Twenty-four hours after transplantation, the animals were treated with one of eight different therapeutic agents (imatinib, dasatinib, parthenolide, TDZD-8, arsenic trioxide, niclosamide, salinomycin, and thioridazine). Cancer cell proliferation, and cell migration were determined by high-content imaging. Of the eight compounds that were tested, all except imatinib and dasatinib selectively inhibited ALDH+ cell proliferation in zebrafish. In addition, these anti-LSC agents suppressed tumor cell migration in LSC-xenotransplants. Our approach offers a simple, rapid, and reliable in vivo screening system that facilitates the phenotype-driven discovery of drugs effective in suppressing LSCs. PMID:24454867

Zhang, Beibei; Shimada, Yasuhito; Kuroyanagi, Junya; Umemoto, Noriko; Nishimura, Yuhei; Tanaka, Toshio

2014-01-01

209

Pharmacological modulation of anxiety-like phenotypes in adult zebrafish behavioral models  

E-print Network

for anxiety research, we will evaluate their responses to a wide spectrum of psychotropic drugs, paralleling November 2010 Accepted 23 November 2010 Available online xxxx Keywords: Anxiety Anxiolytic drugs Anxiogenic drugs Novelty-based paradigms Novel tank test Zebrafish Zebrafish (Danio rerio) are becoming

Kalueff, Allan V.

210

Pharmacological modulation of anxiety-like phenotypes in adult zebrafish behavioral models  

E-print Network

for anxiety research, we will evaluate their responses to a wide spectrum of psychotropic drugs, paralleling drugs Anxiogenic drugs Novelty-based paradigms Novel tank test Zebrafish Zebrafish (Danio rerio-directionally modulated by drugs affecting the gamma-aminobutyric acid, monoaminergic, cholinergic, glutamatergic

Kalueff, Allan V.

211

Transient Exposure to Ethanol during Zebrafish Embryogenesis Results in Defects in Neuronal Differentiation: An Alternative Model System to Study FASD  

PubMed Central

Background The exposure of the human embryo to ethanol results in a spectrum of disorders involving multiple organ systems, including the impairment of the development of the central nervous system (CNS). In spite of the importance for human health, the molecular basis of prenatal ethanol exposure remains poorly understood, mainly to the difficulty of sample collection. Zebrafish is now emerging as a powerful organism for the modeling and the study of human diseases. In this work, we have assessed the sensitivity of specific subsets of neurons to ethanol exposure during embryogenesis and we have visualized the sensitive embryonic developmental periods for specific neuronal groups by the use of different transgenic zebrafish lines. Methodology/Principal Findings In order to evaluate the teratogenic effects of acute ethanol exposure, we exposed zebrafish embryos to ethanol in a given time window and analyzed the effects in neurogenesis, neuronal differentiation and brain patterning. Zebrafish larvae exposed to ethanol displayed small eyes and/or a reduction of the body length, phenotypical features similar to the observed in children with prenatal exposure to ethanol. When neuronal populations were analyzed, we observed a clear reduction in the number of differentiated neurons in the spinal cord upon ethanol exposure. There was a decrease in the population of sensory neurons mainly due to a decrease in cell proliferation and subsequent apoptosis during neuronal differentiation, with no effect in motoneuron specification. Conclusion Our investigation highlights that transient exposure to ethanol during early embryonic development affects neuronal differentiation although does not result in defects in early neurogenesis. These results establish the use of zebrafish embryos as an alternative research model to elucidate the molecular mechanism(s) of ethanol-induced developmental toxicity at very early stages of embryonic development. PMID:25383948

Joya, Xavier; Garcia-Algar, Oscar; Vall, Oriol; Pujades, Cristina

2014-01-01

212

The search for evolutionary developmental origins of aging in zebrafish: a novel intersection of developmental and senescence biology in the zebrafish model system.  

PubMed

Senescence may be considered the antithesis of early development, but yet there may be factors and mechanisms in common between these two phenomena during the process of aging. We investigated whether any relationship exists between the regulatory mechanisms that function in early development and in senescence using the zebrafish (Danio rerio), a small freshwater fish and a useful model animal for genetic studies. We conducted experiments to isolate zebrafish mutants expressing an apparent senescence phenotype during embryogenesis (embryonic senescence). Some of the genes we thereby identified had already been associated with cellular senescence and chronological aging in other organisms, but many had not yet been linked to these processes. Complete loss-of-function of developmentally essential genes induce embryonic (or larval) lethality, whereas it seems like their partial loss-of-function (i.e., decrease-of-function by heterozygote or hypomorphic mutations) still remains sufficient to go through the early developmental process because of its adaptive plasticity or rather heterozygote advantage. However, in some cases, such partial loss-of-function of genes compromise normal homeostasis due to haploinsufficiency later in adult life having many environmental stress challenges. By contrast, any heterozygote-advantageous genes might gain a certain benefit(s) (much more fitness) by such partial loss-of-function later in life. Physiological senescence may evolutionarily arise from both genetic and epigenetic drifts as well as from losing adaptive developmental plasticity in face of stress signals from the external environment that interacts with functions of multiple genes rather than effects of only a single gene mutation or defect. Previously uncharacterized developmental genes may thus mediate the aging process and play a pivotal role in senescence. Moreover, unexpected senescence-related genes might also be involved in the early developmental process and regulation. We wish to ascertain whether we can identify such genes promptly in a comprehensive manner. The ease of manipulation using the zebrafish system allows us to conduct an exhaustive exploration of novel genes and small molecular compounds that can be linked to the senescence phenotype and thereby facilitates searching for the evolutionary and developmental origins of aging in vertebrates. PMID:21932432

Kishi, Shuji

2011-09-01

213

A novel AMPK activator reduces glucose uptake and inhibits tumor progression in a mouse xenograft model of colorectal cancer.  

PubMed

The anticancer activity of a novel pure 1,4-Diaryl-2-azetidinone (1), endowed with a higher solubility than the well known Combretastatin A4, is tested in mice. We previously reported that Compound (1) showed specific antiproliferative activity against duodenal and colon cancer cells, inducing activation of AMP-activated protein kinase and apoptosis. Here we estimate that the maximum tolerated dose in a mouse model is 40 mg/kg; the drug is well tolerated both in single dose and in repeated administration schedules. The drug displays a significant antitumor activity and a tumor growth delay when administered at the MTD both in single and fractionated i.v. administration in a mouse xenograft model of colorectal cancer. Arrest of tumor growth and relapse after drug suspension are parallel to modification in glucose demand as shown by PET studies with [(18)?F] FDG. These data strongly support Compound (1) as a promising molecule for in vivo treatment of colorectal cancer. PMID:25134489

Valtorta, Silvia; Nicolini, Gabriella; Tripodi, Farida; Meregalli, Cristina; Cavaletti, Guido; Avezza, Federica; Crippa, Luca; Bertoli, Gloria; Sanvito, Francesca; Fusi, Paola; Pagliarin, Roberto; Orsini, Fulvia; Moresco, Rosa Maria; Coccetti, Paola

2014-12-01

214

Melanoma patient-derived xenografts accurately model the disease and develop fast enough to guide treatment decisions.  

PubMed

The development of novel therapies against melanoma would benefit from individualized tumor models to ensure the rapid and accurate identification of biomarkers of therapy response. Previous studies have suggested that patient-derived xenografts (PDXes) could be useful. However, the utility of PDXes in guiding real-time treatment decisions has only been reported in anecdotal forms. Here tumor biopsies from patients with stage III and IV metastatic malignant melanoma were transplanted into immunocompromised mice to generate PDXes. 23/26 melanoma biopsies generated serially transplantable PDX models, and their histology, mutation status and expression profile resembled their corresponding patient biopsy. The potential treatment for one patient was revealed by an in vitro drug screen and treating PDXes with the MEK inhibitor trametinib. In another patient, the BRAF mutation predicted the response of both the patient and its corresponding PDXes to MAPK-targeted therapy. Importantly, in this unselected group of patients, the time from biopsy for generation of PDXes until death was significantly longer than the time required to reach the treatment phase of the PDXes. Thus, it could be clinically meaningful to use this type of platform for melanoma patients as a pre-selection tool in clinical trials. PMID:25228592

Einarsdottir, Berglind O; Bagge, Roger Olofsson; Bhadury, Joydeep; Jespersen, Henrik; Mattsson, Jan; Nilsson, Lisa M; Truvé, Katarina; López, Marcela Dávila; Naredi, Peter; Nilsson, Ola; Stierner, Ulrika; Ny, Lars; Nilsson, Jonas A

2014-10-30

215

Using heterogeneity of the patient-derived xenograft model to identify the chemoresistant population in ovarian cancer  

PubMed Central

A cornerstone of preclinical cancer research has been the use of clonal cell lines. However, this resource has underperformed in its ability to effectively identify novel therapeutics and evaluate the heterogeneity in a patient's tumor. The patient-derived xenograft (PDX) model retains the heterogeneity of patient tumors, allowing a means to not only examine efficacy of a therapy, but also basic tenets of cancer biology in response to treatment. Herein we describe the development and characterization of an ovarian-PDX model in order to study the development of chemoresistance. We demonstrate that PDX tumors are not simply composed of tumor-initiating cells, but recapitulate the original tumor's heterogeneity, oncogene expression profiles, and clinical response to chemotherapy. Combined carboplatin/paclitaxel treatment of PDX tumors enriches the cancer stem cell populations, but persistent tumors are not entirely composed of these populations. RNA-Seq analysis of six pair of treated PDX tumors compared to untreated tumors demonstrates a consistently contrasting genetic profile after therapy, suggesting similar, but few, pathways are mediating chemoresistance. Pathways and genes identified by this methodology represent novel approaches to targeting the chemoresistant population in ovarian cancer PMID:25209969

Dobbin, Zachary C.; Katre, Ashwini A.; Steg, Adam D.; Erickson, Britt K.; Shah, Monjri M.; Alvarez, Ronald D.; Conner, Michael G.; Schneider, David; Chen, Dongquan; Landen, Charles N.

2014-01-01

216

Evaluation of zebrafish brain development using optical coherence tomography.  

PubMed

The zebrafish is a well-established model system used to study and understand various human biological processes. The present study used OCT to investigate growth of the adult zebrafish brain. Twenty zebrafish were studied, using their standard lengths as indicators of their age. Zebrafish brain aging was evaluated by analyzing signal attenuation rates and texture features in regions of interest (ROIs). Optical scattering originates from light interaction with biological structures. During development, the zebrafish brain gains cells. Signal attenuation rate, therefore, increases with increasing zebrafish brain age. This study's analyses of texture features could not identify aging in zebrafish brain. These results, therefore, indicated that the OCT signal attenuation rate can indicate zebrafish brain aging, and its analysis provides a more effective means of observing zebrafish brain aging than texture features analysis. Using OCT system could further increase the technique's potential for recognition and monitoring of zebrafish brain development. PMID:22961725

Lin, Yu-Sheng; Chu, Chin-Chou; Tsui, Po-Hsiang; Chang, Chien-Cheng

2013-09-01

217

Suppression and Activation of the Malignant Phenotype by Extracellular Matrix in Xenograft Models of Bladder Cancer: A Model for Tumor Cell "Dormancy"  

PubMed Central

A major problem in cancer research is the lack of a tractable model for delayed metastasis. Herein we show that cancer cells suppressed by SISgel, a gel-forming normal ECM material derived from Small Intestine Submucosa (SIS), in flank xenografts show properties of suppression and re-activation that are very similar to normal delayed metastasis and suggest these suppressed cells can serve as a novel model for developing therapeutics to target micrometastases or suppressed cancer cells. Co-injection with SISgel suppressed the malignant phenotype of highly invasive J82 bladder cancer cells and highly metastatic JB-V bladder cancer cells in nude mouse flank xenografts. Cells could remain viable up to 120 days without forming tumors and appeared much more highly differentiated and less atypical than tumors from cells co-injected with Matrigel. In 40% of SISgel xenografts, growth resumed in the malignant phenotype after a period of suppression or dormancy for at least 30 days and was more likely with implantation of 3 million or more cells. Ordinary Type I collagen did not suppress malignant growth, and tumors developed about as well with collagen as with Matrigel. A clear signal in gene expression over different cell lines was not seen by transcriptome microarray analysis, but in contrast, Reverse Phase Protein Analysis of 250 proteins across 4 cell lines identified Integrin Linked Kinase (ILK) signaling that was functionally confirmed by an ILK inhibitor. We suggest that cancer cells suppressed on SISgel could serve as a model for dormancy and re-awakening to allow for the identification of therapeutic targets for treating micrometastases. PMID:23717563

Hurst, Robert E.; Hauser, Paul J.; Kyker, Kimberly D.; Heinlen, Jonathan E.; Hodde, Jason P.; Hiles, Michael C.; Kosanke, Stanley D.; Dozmorov, Mikhail; Ihnat, Michael A.

2013-01-01

218

Pdgfra protects against ethanol-induced craniofacial defects in a zebrafish model of FASD.  

PubMed

Human birth defects are highly variable and this phenotypic variability can be influenced by both the environment and genetics. However, the synergistic interactions between these two variables are not well understood. Fetal alcohol spectrum disorders (FASD) is the umbrella term used to describe the wide range of deleterious outcomes following prenatal alcohol exposure. Although FASD are caused by prenatal ethanol exposure, FASD are thought to be genetically modulated, although the genes regulating sensitivity to ethanol teratogenesis are largely unknown. To identify potential ethanol-sensitive genes, we tested five known craniofacial mutants for ethanol sensitivity: cyp26b1, gata3, pdgfra, smad5 and smoothened. We found that only platelet-derived growth factor receptor alpha (pdgfra) interacted with ethanol during zebrafish craniofacial development. Analysis of the PDGF family in a human FASD genome-wide dataset links PDGFRA to craniofacial phenotypes in FASD, prompting a mechanistic understanding of this interaction. In zebrafish, untreated pdgfra mutants have cleft palate due to defective neural crest cell migration, whereas pdgfra heterozygotes develop normally. Ethanol-exposed pdgfra mutants have profound craniofacial defects that include the loss of the palatal skeleton and hypoplasia of the pharyngeal skeleton. Furthermore, ethanol treatment revealed latent haploinsufficiency, causing palatal defects in ?62% of pdgfra heterozygotes. Neural crest apoptosis partially underlies these ethanol-induced defects in pdgfra mutants, demonstrating a protective role for Pdgfra. This protective role is mediated by the PI3K/mTOR pathway. Collectively, our results suggest a model where combined genetic and environmental inhibition of PI3K/mTOR signaling leads to variability within FASD. PMID:23861062

McCarthy, Neil; Wetherill, Leah; Lovely, C Ben; Swartz, Mary E; Foroud, Tatiana M; Eberhart, Johann K

2013-08-01

219

Pdgfra protects against ethanol-induced craniofacial defects in a zebrafish model of FASD  

PubMed Central

Human birth defects are highly variable and this phenotypic variability can be influenced by both the environment and genetics. However, the synergistic interactions between these two variables are not well understood. Fetal alcohol spectrum disorders (FASD) is the umbrella term used to describe the wide range of deleterious outcomes following prenatal alcohol exposure. Although FASD are caused by prenatal ethanol exposure, FASD are thought to be genetically modulated, although the genes regulating sensitivity to ethanol teratogenesis are largely unknown. To identify potential ethanol-sensitive genes, we tested five known craniofacial mutants for ethanol sensitivity: cyp26b1, gata3, pdgfra, smad5 and smoothened. We found that only platelet-derived growth factor receptor alpha (pdgfra) interacted with ethanol during zebrafish craniofacial development. Analysis of the PDGF family in a human FASD genome-wide dataset links PDGFRA to craniofacial phenotypes in FASD, prompting a mechanistic understanding of this interaction. In zebrafish, untreated pdgfra mutants have cleft palate due to defective neural crest cell migration, whereas pdgfra heterozygotes develop normally. Ethanol-exposed pdgfra mutants have profound craniofacial defects that include the loss of the palatal skeleton and hypoplasia of the pharyngeal skeleton. Furthermore, ethanol treatment revealed latent haploinsufficiency, causing palatal defects in ?62% of pdgfra heterozygotes. Neural crest apoptosis partially underlies these ethanol-induced defects in pdgfra mutants, demonstrating a protective role for Pdgfra. This protective role is mediated by the PI3K/mTOR pathway. Collectively, our results suggest a model where combined genetic and environmental inhibition of PI3K/mTOR signaling leads to variability within FASD. PMID:23861062

McCarthy, Neil; Wetherill, Leah; Lovely, C. Ben; Swartz, Mary E.; Foroud, Tatiana M.; Eberhart, Johann K.

2013-01-01

220

The zebrafish as a novel animal model to study the molecular mechanisms of mechano-electrical feedback in the heart  

PubMed Central

Altered mechanical loading of the heart leads to hypertrophy, decompensated heart failure and fatal arrhythmias. However, the molecular mechanisms that link mechanical and electrical dysfunction remain poorly understood. Growing evidence suggest that ventricular electrical remodeling (VER) is a process that can be induced by altered mechanical stress, creating persistent electrophysiological changes that predispose the heart to life-threatening arrhythmias. While VER is clearly a physiological property of the human heart, as evidenced by “T wave memory”, it is also thought to occur in a variety of pathological states associated with altered ventricular activation such as bundle branch block, myocardial infarction, and cardiac pacing. Animal models that are currently being used for investigating stretch-induced VER have significant limitations. The zebrafish has recently emerged as an attractive animal model for studying cardiovascular disease and could overcome some of these limitations. Owing to its extensively sequenced genome, high conservation of gene function, and the comprehensive genetic resources that are available in this model, the zebrafish may provide new insights into the molecular mechanisms that drive detrimental electrical remodeling in response to stretch. Here, we have established a zebrafish model to study mechano-electrical feedback in the heart, which combines efficient genetic manipulation with high-precision stretch and high-resolution electrophysiology. In this model, only ninety minutes of ventricular stretch caused VER and recapitulated key features of VER found previously in the mammalian heart. Our data suggest that the zebrafish model is a powerful platform for investigating the molecular mechanisms underlying mechano-electrical feedback and VER in the heart. PMID:22835662

Werdich, Andreas A; Brzezinski, Anna; Jeyaraj, Darwin; Ficker, Eckhard; Wan, Xiaoping; McDermott, Brian M; Sabeh, M Khaled; MacRae, Calum A; Rosenbaum, David S

2013-01-01

221

Survivin-targeting Artificial MicroRNAs Mediated by Adenovirus Suppress Tumor Activity in Cancer Cells and Xenograft Models.  

PubMed

Survivin is highly expressed in most human tumors and fetal tissue, and absent in terminally differentiated cells. It promotes tumor cell proliferation by negatively regulating cell apoptosis and facilitating cell division. Survivin's selective expression pattern suggests that it might be a suitable target for cancer therapy, which would promote death of transformed but not normal cells. This was tested using artificial microRNAs (amiRNAs) targeting survivin. After screening, two effective amiRNAs, which knocked down survivin expression, were identified and cloned into a replication-defective adenoviral vector. Tumor cells infected with the recombinant vector downregulated expression of survivin and underwent apoptotic cell death. Further studies showed that apoptosis was associated with increases in caspase 3 and cleaved Poly (ADP-ribose) polymerase, and activation of the p53 signaling pathway. Furthermore, amiRNA treatment caused blockade of mitosis and cell cycle arrest at the G2/M phase. In vivo, survivin-targeting amiRNAs expressed by adenoviral vectors effectively delayed growth of hepatocellular and cervical carcinomas in mouse xenograft models. These results indicate that silencing of survivin by amiRNA has potential for treatment of cancer. PMID:25368912

Chi, Yudan; Wang, Xiang; Yang, Yong; Zhang, Chao; Ertl, Hildegund C J; Zhou, Dongming

2014-01-01

222

Anti-Cancer Effect of Ginsenoside F2 against Glioblastoma Multiforme in Xenograft Model in SD Rats.  

PubMed

The glioblastoma multiforme (GBM) is the most common malignant brain tumor in adults. Despite combination treatments of radiation and chemotherapy, the survival periods are very short. Therefore, this study was conducted to assess the potential of ginsenoside F2 (F2) to treat GBM. In in vitro experiments with glioblastoma cells U373MG, F2 showed the cytotoxic effect with IC50 of 50 ?g/mL through apoptosis, confirmed by DNA condensation and fragmentation. The cell population of cell cycle sub-G1 as indicative of apoptosis was also increased. In xenograft model in SD rats, F2 at dosage of 35 mg/kg weight was intravenously injected every two days. This reduced the tumor growth in magnetic resonance imaging images. The immunohistochemistry revealed that the anticancer activity might be mediated through inhibition of proliferation judged by Ki67 and apoptosis induced by activation of caspase-3 and -8. And the lowered expression of CD31 showed the reduction in blood vessel densities. The expression of matrix metalloproteinase-9 for invasion of cancer was also inhibited. The cell populations with cancer stem cell markers of CD133 and nestin were reduced. The results of this study suggested that F2 could be a new potential chemotherapeutic drug for GBM treatment by inhibiting the growth and invasion of cancer. PMID:23717108

Shin, Ji Yon; Lee, Jung Min; Shin, Heon Sub; Park, Sang Yong; Yang, Jung Eun; Cho, Somi Kim; Yi, Tae-Hoo

2012-01-01

223

Anti-Cancer Effect of Ginsenoside F2 against Glioblastoma Multiforme in Xenograft Model in SD Rats  

PubMed Central

The glioblastoma multiforme (GBM) is the most common malignant brain tumor in adults. Despite combination treatments of radiation and chemotherapy, the survival periods are very short. Therefore, this study was conducted to assess the potential of ginsenoside F2 (F2) to treat GBM. In in vitro experiments with glioblastoma cells U373MG, F2 showed the cytotoxic effect with IC50 of 50 ?g/mL through apoptosis, confirmed by DNA condensation and fragmentation. The cell population of cell cycle sub-G1 as indicative of apoptosis was also increased. In xenograft model in SD rats, F2 at dosage of 35 mg/kg weight was intravenously injected every two days. This reduced the tumor growth in magnetic resonance imaging images. The immunohistochemistry revealed that the anticancer activity might be mediated through inhibition of proliferation judged by Ki67 and apoptosis induced by activation of caspase-3 and -8. And the lowered expression of CD31 showed the reduction in blood vessel densities. The expression of matrix metalloproteinase-9 for invasion of cancer was also inhibited. The cell populations with cancer stem cell markers of CD133 and nestin were reduced. The results of this study suggested that F2 could be a new potential chemotherapeutic drug for GBM treatment by inhibiting the growth and invasion of cancer. PMID:23717108

Shin, Ji Yon; Lee, Jung Min; Shin, Heon Sub; Park, Sang Yong; Yang, Jung Eun; Cho, Somi Kim; Yi, Tae-Hoo

2012-01-01

224

Antitumor activity of [Pt(O,O'-acac)(?-acac)(DMS)] in mouse xenograft model of breast cancer  

PubMed Central

The higher and selective cytotoxicity of [Pt(O,O?-acac)(?-acac)(DMS)] toward cancer cell in both immortalized cell lines and in breast cancer cells in primary cultures, stimulated a pre-clinical study so as to evaluate its therapeutic potential in vivo. The efficacy of [Pt(O,O?-acac)(?-acac)(DMS)] was assessed using a xenograft model of breast cancer developed by injection of MCF-7 cells in the flank of BALB/c nude mice. Treatment of solid tumor-bearing mice with [Pt(O,O?-acac)(?-acac)(DMS)] induced up to 50% reduction of tumor mass compared with an average 10% inhibition recorded in cisplatin-treated animals. Thus, chemotherapy with [Pt(O,O?-acac)(?-acac)(DMS)] was much more effective than cisplatin. We also demonstrated enhanced in vivo pharmacokinetics, biodistribution and tolerability of [Pt(O,O?-acac)(?-acac)(DMS)] when compared with cisplatin administered in Wistar rats. Pharmacokinetics studies with [Pt(O,O?-acac)(?-acac)(DMS)] revealed prolonged Pt persistence in systemic blood circulation and decreased nefrotoxicity and hepatotoxicity, major target sites of cisplatin toxicity. Overall, [Pt(O,O?-acac)(?-acac)(DMS)] turned out to be extremely promising in terms of greater in vivo anticancer activity, reduced nephrotoxicity and acute toxicity compared with cisplatin. PMID:24457958

Muscella, A; Vetrugno, C; Migoni, D; Biagioni, F; Fanizzi, F P; Fornai, F; De Pascali, S A; Marsigliante, S

2014-01-01

225

Chronic Anti-inflammatory Drug Therapy Inhibits Gel-Forming Mucin Production in a Murine Xenograft Model of Human Pseudomyxoma Peritonei  

PubMed Central

Background Intraperitoneal accumulation of mucinous ascites in pseudomyxoma peritonei (PMP) promotes an inflammatory/fibrotic reaction that progresses to bowel obstruction and eventual patient demise. Cytokines and inflammation-associated transcription factor binding sites, such as glucocorticoid response elements and COX-2, regulate secretory mucin, specifically MUC2, production. We hypothesized that anti-inflammatory drugs targeting inflammation-associated pathways may reduce mucin production and subsequent disease morbidity in PMP. Methods The effects of dexamethasone and Celebrex were assessed in mucin-secreting human colon cancer LS174T cells in vitro and murine xenograft models of LS174T and human appendiceal PMP in vivo by serial parametric measurements, MUC2 transcripts via real-time RT-PCR, and MUC2 protein expression via immunofluorescence assays. Results Dexamethasone significantly inhibited basal MUC2 mRNA levels in LS174T cells, inhibited mucinous tumor accumulation in an intraperitoneal PMP xenograft model, and prolonged survival in a subcutaneous LS174T xenograft model. Celebrex significantly inhibited sodium butyrate-stimulated MUC2 mRNA levels in LS174T cells and demonstrated a statistically nonsignificant trend toward reduced mucinous tumor growth and prolonged survival in the xenograft models. MUC2 protein analysis by immunofluorescence demonstrated a dual effect of dexamethasone on mucin production and tumor cell count. Conclusions Inflammatory mediators are known to regulate mucin production and may promote overexpression of MUC2 by neoplastic cells with goblet cell phenotype in PMP. Anti-inflammatory drugs, dexamethasone and Celebrex, could inhibit extracellular mucin production in PMP by targeting inflammatory cascades and, therefore, may decrease compressive symptoms, increase the disease-free interval, and reduce the extent or frequency of morbid cytoreductive surgeries. PMID:22302271

Choudry, Haroon Asif; Mavanur, Arun; O'Malley, Mark E.; Zeh, Herbert J.; Guo, Z. Sheng; Bartlett, David L.

2014-01-01

226

Increased mitochondrial activity in a novel IDH1-R132H mutant human oligodendroglioma xenograft model: in situ detection of 2-HG and ?-KG  

PubMed Central

Background Point mutations in genes encoding NADP+-dependent isocitrate dehydrogenases (especially IDH1) are common in lower grade diffuse gliomas and secondary glioblastomas and occur early during tumor development. The contribution of these mutations to gliomagenesis is not completely understood and research is hampered by the lack of relevant tumor models. We previously described the development of the patient-derived high-grade oligodendroglioma xenograft model E478 that carries the commonly occurring IDH1-R132H mutation. We here report on the analyses of E478 xenografts at the genetic, histologic and metabolic level. Results LC-MS and in situ mass spectrometric imaging by LESA-nano ESI-FTICR revealed high levels of the proposed oncometabolite D-2-hydroxyglutarate (D-2HG), the product of enzymatic conversion of ?-ketoglutarate (?-KG) by IDH1-R132H, in the tumor but not in surrounding brain parenchyma. ?-KG levels and total NADP+-dependent IDH activity were similar in IDH1-mutant and -wildtype xenografts, demonstrating that IDH1-mutated cancer cells maintain ?-KG levels. Interestingly, IDH1-mutant tumor cells in vivo present with high densities of mitochondria and increased levels of mitochondrial activity as compared to IDH1-wildtype xenografts. It is not yet clear whether this altered mitochondrial activity is a driver or a consequence of tumorigenesis. Conclusions The oligodendroglioma model presented here is a valuable model for further functional elucidation of the effects of IDH1 mutations on tumor metabolism and may aid in the rational development of novel therapeutic strategies for the large subgroup of gliomas carrying IDH1 mutations. PMID:24252742

2013-01-01

227

Comparison of effects of anti-angiogenic agents in the zebrafish efficacy-toxicity model for translational anti-angiogenic drug discovery  

PubMed Central

Background Anti-angiogenic therapy in certain cancers has been associated with improved control of tumor growth and metastasis. Development of anti-angiogenic agents has, however, been saddled with higher attrition rate due to suboptimal efficacy, narrow therapeutic windows, or development of organ-specific toxicities. The aim of this study was to evaluate the translational ability of the zebrafish efficacy–toxicity model to stratify anti-angiogenic agents based on efficacy, therapeutic windows, and off-target effects to streamline the compound selection process in anti-angiogenic discovery. Methods The embryonic model of zebrafish was employed for studying angiogenesis and toxicity. The zebrafish were treated with anti-angiogenic compounds to evaluate their effects on angiogenesis and zebrafish-toxicity parameters. Angiogenesis was measured by scoring the development of subintestinal vessels. Toxicity was evaluated by calculating the median lethal concentration, the lowest observed effect concentration, and gross morphological changes. Results of efficacy and toxicity were used to predict the therapeutic window. Results In alignment with the clinical outcomes, the zebrafish assays demonstrated that vascular endothelial growth factor receptor (VEGFR) inhibitors are the most potent anti-angiogenic agents, followed by multikinase inhibitors and inhibitors of endothelial cell proliferation. The toxicity assays reported cardiac phenotype in zebrafish treated with VEGFR inhibitors and multikinase inhibitors with VEGFR activity suggestive of cardiotoxic potential of these compounds. Several other pathological features were reported for multikinase inhibitors suggestive of off-target effects. The predicted therapeutic window was translational with the clinical trial outcomes of the anti-angiogenic agents. The zebrafish efficacy–toxicity approach could stratify anti-angiogenic agents based on the mechanism of action and delineate chemical structure-driven biological activity of anti-angiogenic compounds. Conclusion The zebrafish efficacy–toxicity approach can be used as a predictive model for translational anti-angiogenic drug discovery to streamline compound selection, resulting in safer and efficacious anti-angiogenic agents entering the clinics. PMID:25170251

Chimote, Geetanjali; Sreenivasan, Jayasree; Pawar, Nilambari; Subramanian, Jyothi; Sivaramakrishnan, Hariharan; Sharma, Somesh

2014-01-01

228

Anticonvulsant activity of bisabolene sesquiterpenoids of Curcuma longa in zebrafish and mouse seizure models.  

PubMed

Turmeric, obtained from the rhizomes of Curcuma longa, is used in South Asia as a traditional medicine for the treatment of epilepsy. To date, in vivo studies on the anticonvulsant activity of turmeric have focused on its principal curcuminoid, curcumin. However, poor absorption and rapid metabolism have limited the therapeutic application of curcumin in humans. To explore the therapeutic potential of turmeric for epilepsy further, we analyzed its anticonvulsant activity in a larval zebrafish seizure assay. Initial experiments revealed that the anticonvulsant activity of turmeric in zebrafish larvae cannot be explained solely by the effects of curcumin. Zebrafish bioassay-guided fractionation of turmeric identified bisabolene sesquiterpenoids as additional anticonvulsants that inhibit PTZ-induced seizures in both zebrafish and mice. Here, we present the first report of the anticonvulsant properties of bisabolene sesquiterpenoids and provide evidence which warrants further investigation toward the mechanistic understanding of their neuromodulatory activity. PMID:22483646

Orellana-Paucar, Adriana Monserrath; Serruys, Ann-Sophie K; Afrikanova, Tatiana; Maes, Jan; De Borggraeve, Wim; Alen, Jo; León-Tamariz, Fabián; Wilches-Arizábala, Isabel María; Crawford, Alexander D; de Witte, Peter A M; Esguerra, Camila V

2012-05-01

229

Microgavage of zebrafish larvae.  

PubMed

The zebrafish has emerged as a powerful model organism for studying intestinal development(1-5), physiology(6-11), disease(12-16), and host-microbe interactions(17-25). Experimental approaches for studying intestinal biology often require the in vivo introduction of selected materials into the lumen of the intestine. In the larval zebrafish model, this is typically accomplished by immersing fish in a solution of the selected material, or by injection through the abdominal wall. Using the immersion method, it is difficult to accurately monitor or control the route or timing of material delivery to the intestine. For this reason, immersion exposure can cause unintended toxicity and other effects on extraintestinal tissues, limiting the potential range of material amounts that can be delivered into the intestine. Also, the amount of material ingested during immersion exposure can vary significantly between individual larvae(26). Although these problems are not encountered during direct injection through the abdominal wall, proper injection is difficult and causes tissue damage which could influence experimental results. We introduce a method for microgavage of zebrafish larvae. The goal of this method is to provide a safe, effective, and consistent way to deliver material directly to the lumen of the anterior intestine in larval zebrafish with controlled timing. Microgavage utilizes standard embryo microinjection and stereomicroscopy equipment common to most laboratories that perform zebrafish research. Once fish are properly positioned in methylcellulose, gavage can be performed quickly at a rate of approximately 7-10 fish/ min, and post-gavage survival approaches 100% depending on the gavaged material. We also show that microgavage can permit loading of the intestinal lumen with high concentrations of materials that are lethal to fish when exposed by immersion. To demonstrate the utility of this method, we present a fluorescent dextran microgavage assay that can be used to quantify transit from the intestinal lumen to extraintestinal spaces. This test can be used to verify proper execution of the microgavage procedure, and also provides a novel zebrafish assay to examine intestinal epithelial barrier integrity under different experimental conditions (e.g. genetic manipulation, drug treatment, or exposure to environmental factors). Furthermore, we show how gavage can be used to evaluate intestinal motility by gavaging fluorescent microspheres and monitoring their subsequent transit. Microgavage can be applied to deliver diverse materials such as live microorganisms, secreted microbial factors/toxins, pharmacological agents, and physiological probes. With these capabilities, the larval zebrafish microgavage method has the potential to enhance a broad range of research fields using the zebrafish model system. PMID:23463135

Cocchiaro, Jordan L; Rawls, John F

2013-01-01

230

Zebrafish Models for Ectopic Mineralization Disorders: Practical Issues from Morpholino Design to Post-Injection Observations  

PubMed Central

Zebrafish (ZF, Danio rerio) has emerged as an important and popular model species to study different human diseases. Key regulators of skeletal development and calcium metabolism are highly conserved between mammals and ZF. The corresponding orthologs share significant sequence similarities and an overlap in expression patterns when compared to mammals, making ZF a potential model for the study of mineralization-related disorders and soft tissue mineralization. To characterize the function of early mineralization-related genes in ZF, these genes can be knocked down by injecting morpholinos into early stage embryos. Validation of the morpholino needs to be performed and the concern of aspecific effects can be addressed by applying one or more independent techniques to knock down the gene of interest. Post-injection assessment of early mineralization defects can be done using general light microscopy, calcein staining, Alizarin red staining, Alizarin red-Alcian blue double staining, and by the use of transgenic lines. Examination of general molecular defects can be done by performing protein and gene expression analysis, and more specific processes can be explored by investigating ectopic mineralization-related mechanisms such as apoptosis and mitochondrial dysfunction. In this paper, we will discuss all details about the aforementioned techniques; shared knowledge will be very useful for the future investigation of ZF models for ectopic mineralization disorders and to understand the underlying pathways involved in soft tissue calcification. PMID:23760765

Hosen, Mohammad Jakir; Vanakker, Olivier M.; Willaert, Andy; Huysseune, Ann; Coucke, Paul; De Paepe, Anne

2013-01-01

231

Imaging Mitogen-Activated Protein Kinase Function in Xenograft Models of Prostate Cancer  

Microsoft Academic Search

Mitogen-activated protein kinases (MAPK) play important roles in malignancy. The ability to detect and quantitate MAPKs in live animal models of cancer will facilitate an understanding of disease progression. We have developed a gene expression-based imaging system that detects and quantifies MAPK activity in prostate cancer tumors implanted into severe combined immunodeficient mice. The imaging technology uses a modified version

Romyla Ilagan; Jill Pottratz; Kim Le; Liqun Zhang; Steven G. Wong; Raul Ayala; Meera Iyer; Lily Wu; Sanjiv S. Gambhir; Michael Carey

2006-01-01

232

Evaluation of the NOD/SCID xenograft model for glucocorticoid-regulated gene expression in childhood B-cell precursor acute lymphoblastic leukemia  

PubMed Central

Background Glucocorticoids such as prednisolone and dexamethasone are critical drugs used in multi-agent chemotherapy protocols used to treat acute lymphoblastic leukemia (ALL), and response to glucocorticoids is highly predictive of outcome. The NOD/SCID xenograft mouse model of ALL is a clinically relevant model in which the mice develop a systemic leukemia which retains the fundamental biological characteristics of the original disease. Here we report a study evaluating the NOD/SCID xenograft mouse model to investigate glucocorticoid-induced gene expression. Cells from a glucocorticoid-sensitive xenograft derived from a child with B-cell precursor ALL were inoculated into NOD/SCID mice. When highly engrafted the mice were randomized into groups of 4 to receive dexamethasone 15 mg/kg by intraperitoneal injection or vehicle control. Leukemia cells were harvested from mice spleens at 0, 8, 24 or 48 hours thereafter, and gene expression analyzed on Illumina WG-6_V3 chips, comparing all groups to time 0 hours. Results The 8 hour dexamethasone-treated timepoint had the highest number of significantly differentially expressed genes, with fewer observed at the 24 and 48 hour timepoints, and with minimal changes seen across the time-matched controls. When compared to publicly available datasets of glucocorticoid-induced gene expression from an in vitro cell line study and from an in vivo study of patients with ALL, at the level of pathways, expression changes in the 8 hour xenograft samples showed a similar response to patients treated with glucocorticoids. Replicate analysis revealed that at the 8 hour timepoint, a dataset with high signal and differential expression, using data from 3 replicates instead of 4 resulted in excellent recovery scores of > 0.9. However at other timepoints with less signal very poor recovery scores were obtained with 3 replicates. Conclusions The NOD/SCID xenograft mouse model provides a reproducible experimental system in which to investigate clinically-relevant mechanisms of drug-induced gene regulation in ALL; the 8 hour timepoint provides the highest number of significantly differentially expressed genes; time-matched controls are redundant and excellent recovery scores can be obtained with 3 replicates. PMID:22093874

2011-01-01

233

Surveillance of spontaneous breast cancer metastasis by TRAIL-expressing CD34? cells in a xenograft model.  

PubMed

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), delivered as a membrane-bound molecule expressed on the surface of adenovirus-transduced CD34(+) cells (CD34-TRAIL(+)), was analyzed for its apoptotic activity in vitro on 12 breast cancer cell lines representing estrogen receptor-positive, HER2(+) and triple-negative (TN) subtypes and for its effect on tumor growth, vascularization, necrosis, and lung metastasis incidence in NOD/SCID mice xenografted with the TN breast cancer line MDA-MB-231. Mesenchymal TN cell lines, which are the richest in putative tumor stem cells among the different breast cancer cell subtypes, were the most susceptible to apoptosis induced by CD34-TRAIL(+) cells. Indeed, tumor cell "stemness", assessed based on the proportion of CD44(+)/CD24(-/low) cells, was significantly correlated with susceptibility to TRAIL. Moreover, in vitro cytotoxicity experiments showed that CD34-TRAIL(+) cells selectively targeted CD44(+)/CD24(-/low) cells. Although in vivo treatment with CD34-TRAIL(+) cells did not lead to tumor growth inhibition, treated mice revealed significantly larger areas of necrosis associated with damage of tumor vasculature than did control mice. Moreover, lungs from MDA-MD-231 tumor-bearing mice were completely free of metastases at 12 days after the last injection of CD34-TRAIL(+) cells, whereas metastases were present in all control mouse lungs. An anti-metastatic effect of CD34-TRAIL(+) cells was also observed in a model of experimental lung metastases. The correlation between in vitro susceptibility to membrane-bound TRAIL and tumor stem cell content, together with CD34-TRAIL(+) cell-induced inhibition of the metastatic process, points to the selective targeting of cancer stem cells by CD34-armed cells and the potential value of such cells in eradicating tumor stem cells before the onset of overt metastases. PMID:23053664

Rossini, Anna; Giussani, Marta; Giacomini, Arianna; Guarnotta, Carla; Tagliabue, Elda; Balsari, Andrea

2012-11-01

234

Multicolor Fluorescent Intravital Live Microscopy (FILM) for Surgical Tumor Resection in a Mouse Xenograft Model  

PubMed Central

Background Complete surgical resection of neoplasia remains one of the most efficient tumor therapies. However, malignant cell clusters are often left behind during surgery due to the inability to visualize and differentiate them against host tissue. Here we establish the feasibility of multicolor fluorescent intravital live microscopy (FILM) where multiple cellular and/or unique tissue compartments are stained simultaneously and imaged in real time. Methodology/Principal Findings Theoretical simulations of imaging probe localization were carried out for three agents with specificity for cancer cells, stromal host response, or vascular perfusion. This transport analysis gave insight into the probe pharmacokinetics and tissue distribution, facilitating the experimental design and allowing predictions to be made about the localization of the probes in other animal models and in the clinic. The imaging probes were administered systemically at optimal time points based on the simulations, and the multicolor FILM images obtained in vivo were then compared to conventional pathological sections. Our data show the feasibility of real time in vivo pathology at cellular resolution and molecular specificity with excellent agreement between intravital and traditional in vitro immunohistochemistry. Conclusions/Significance Multicolor FILM is an accurate method for identifying malignant tissue and cells in vivo. The imaging probes distributed in a manner similar to predictions based on transport principles, and these models can be used to design future probes and experiments. FILM can provide critical real time feedback and should be a useful tool for more effective and complete cancer resection. PMID:19956597

Thurber, Greg M.; Figueiredo, Jose L.; Weissleder, Ralph

2009-01-01

235

Hypoxically preconditioned human peripheral blood mononuclear cells improve blood flow in hindlimb ischemia xenograft model  

PubMed Central

Transplantation of peripheral blood mononuclear cells (PBMNCs) is a promising therapeutic approach for the treatment of hindlimb ischemia. However, insufficient angiogenesis in ischemic hindlimb after cell transplantation reduces the importance and practicality of this approach. Previously, we demonstrated using mouse models that hypoxic preconditioning augmented the cellular functions of rodent PBMNCs, such as increased cell adhesion capacity and accelerated neovascularization in ischemic hindlimb. To test the clinical application of this therapeutic strategy in this study, we investigated whether the protocol of hypoxic preconditioning, which was established in a condition of 2% O2 for 24 h, can be made available for human PBMNCs (hPBMNCs). In addition, we grafted preconditioned hPBMNCs in a hindlimb ischemia mouse model. Hypoxic preconditioning enhanced cell adhesion capacity and oxidative stress resistance in hPBMNCs. We also observed an up-regulation of platelet endothelial cell adhesion molecule-1 (PECAM-1) in hPBMNCs by hypoxic preconditioning. Furthermore, preconditioned hPBMNCs significantly recovered limb blood flow in ischemic mice after transplantation. These results indicate that our established preconditioning protocol is available for hPBMNCs to effectively reinforce multiple cellular functions. Taken together with our series of study, we believe that this simple but powerful therapeutic strategy will be helpful in curing patients with severe hindlimb ischemia.

Kudo, Tomoaki; Kubo, Masayuki; Katsura, Shunsaku; Nishimoto, Arata; Ueno, Koji; Samura, Makoto; Fujii, Yasuhiko; Hosoyama, Tohru; Hamano, Kimikazu

2014-01-01

236

Uptake of verteporfin by orthotopic xenograft pancreas models with different levels of aggression  

NASA Astrophysics Data System (ADS)

Pancreatic cancer is an aggressive disease with a poor prognosis, usually treated with chemoradiation therapy. Interstitial photodynamic therapy is a potentially effective adjuvant treatment that is under development. In the current study, two orthotopic pancreatic cancer models (AsPC-1 and Panc-1), have been characterized with respect to growth rates, morphology and liposomal drug (Verteporfin) uptake and distribution in SCID mice. Fluorescence of Verteporfin was measured in liver and tumor in vivo using a PDT fluorescence dosimeter with measurements taken before and up to one hour after tail vein injection. Fluorescence reached a plateau by about 15 minutes and did not decrease over the first hour. At time points from 15 minutes to 24 hrs, the internal organs (kidney, spleen, pancreas, tumor, muscle, lung, liver, and skin were excised and scanned on a Typhoon imager. The ratio of fluorescence in tumor versus normal tissues was analyzed with image processing, calculated at each time point and compared to in vivo results. Tissue distribution of Verteporfin in relation to functional vasculature marked by DiOc7 was carried out on frozen sections. Final analysis will result in determination of the ideal time point to administer light to achieve maximum tumor destruction while preserving normal tissue.

O'Hara, Julia; Samkoe, Kimberley S.; Chen, Alina; Hoopes, P. Jack; Rizvi, Imran; Hasan, Tayyaba; Pogue, Brian W.

2009-06-01

237

Combined magnetic resonance, fluorescence, and histology imaging strategy in a human breast tumor xenograft model  

PubMed Central

Applications of molecular imaging in cancer and other diseases frequently require combining in vivo imaging modalities, such as magnetic resonance and optical imaging, with ex vivo optical, fluorescence, histology, and immunohistochemical (IHC) imaging, to investigate and relate molecular and biological processes to imaging parameters within the same region of interest. We have developed a multimodal image reconstruction and fusion framework that accurately combines in vivo magnetic resonance imaging (MRI) and magnetic resonance spectroscopic imaging (MRSI), ex vivo brightfield and fluorescence microscopic imaging, and ex vivo histology imaging. Ex vivo brightfield microscopic imaging was used as an intermediate modality to facilitate the ultimate link between ex vivo histology and in vivo MRI/MRSI. Tissue sectioning necessary for optical and histology imaging required generation of a three-dimensional (3D) reconstruction module for 2D ex vivo optical and histology imaging data. We developed an external fiducial marker based 3D reconstruction method, which was able to fuse optical brightfield and fluorescence with histology imaging data. Registration of 3D tumor shape was pursued to combine in vivo MRI/MRSI and ex vivo optical brightfield and fluorescence imaging data. This registration strategy was applied to in vivo MRI/MRSI, ex vivo optical brightfield/fluorescence, as well as histology imaging data sets obtained from human breast tumor models. 3D human breast tumor data sets were successfully reconstructed and fused with this platform. PMID:22945331

Jiang, Lu; Greenwood, Tiffany R.; Amstalden van Hove, Erika R.; Chughtai, Kamila; Raman, Venu; Winnard, Paul T.; Heeren, Ron; Artemov, Dmitri; Glunde, Kristine

2014-01-01

238

Rargb regulates organ laterality in a zebrafish model of right atrial isomerism.  

PubMed

Developmental signals determine organ morphology and position during embryogenesis. To discover novel modifiers of liver development, we performed a chemical genetic screen in zebrafish and identified retinoic acid as a positive regulator of hepatogenesis. Knockdown of the four RA receptors revealed that all receptors affect liver formation, however specific receptors exert differential effects. Rargb knockdown results in bilateral livers but does not impact organ size, revealing a unique role for Rargb in conferring left-right positional information. Bilateral populations of hepatoblasts are detectable in rargb morphants, indicating Rargb acts during hepatic specification to position the liver, and primitive endoderm is competent to form liver on both sides. Hearts remain at the midline and gut looping is perturbed in rargb morphants, suggesting Rargb affects lateral plate mesoderm migration. Overexpression of Bmp during somitogenesis similarly results in bilateral livers and midline hearts, and inhibition of Bmp signaling rescues the rargb morphant phenotype, indicating Rargb functions upstream of Bmp to regulate organ sidedness. Loss of rargb causes biliary and organ laterality defects as well as asplenia, paralleling symptoms of the human condition right atrial isomerism. Our findings uncover a novel role for RA in regulating organ laterality and provide an animal model of one form of human heterotaxia. PMID:22982668

Garnaas, Maija K; Cutting, Claire C; Meyers, Alison; Kelsey, Peter B; Harris, James M; North, Trista E; Goessling, Wolfram

2012-12-15

239

Rargb regulates organ laterality in a zebrafish model of right atrial isomerism  

PubMed Central

Developmental signals determine organ morphology and position during embryogenesis. To discover novel modifiers of liver development, we performed a chemical genetic screen in zebrafish and identified retinoic acid as a positive regulator of hepatogenesis. Knockdown of the four RA receptors revealed that all receptors affect liver formation, however specific receptors exert differential effects. Rargb knockdown results in bilateral livers but does not impact organ size, revealing a unique role for Rargb in conferring left–right positional information. Bilateral populations of hepatoblasts are detectable in rargb morphants, indicating Rargb acts during hepatic specification to position the liver, and primitive endoderm is competent to form liver on both sides. Hearts remain at the midline and gut looping is perturbed in rargb morphants, suggesting Rargb affects lateral plate mesoderm migration. Overexpression of Bmp during somitogenesis similarly results in bilateral livers and midline hearts, and inhibition of Bmp signaling rescues the rargb morphant phenotype, indicating Rargb functions upstream of Bmp to regulate organ sidedness. Loss of rargb causes biliary and organ laterality defects as well as asplenia, paralleling symptoms of the human condition right atrial isomerism. Our findings uncover a novel role for RA in regulating organ laterality and provide an animal model of one form of human heterotaxia. PMID:22982668

Garnaas, Maija K.; Cutting, Claire C.; Meyers, Alison; Kelsey, Peter B.; Harris, James M.; North, Trista E.; Goessling, Wolfram

2013-01-01

240

snow white, a zebrafish model of Hermansky-Pudlak Syndrome type 5.  

PubMed

Hermansky-Pudlak Syndrome (HPS) is a set of genetically heterogeneous diseases caused by mutations in one of nine known HPS genes. HPS patients display oculocutaneous hypopigmentation and bleeding diathesis and, depending on the disease subtype, pulmonary fibrosis, congenital nystagmus, reduced visual acuity, and platelet aggregation deficiency. Mouse models for all known HPS subtypes have contributed greatly to our understanding of the disease, but many of the molecular and cellular mechanisms underlying HPS remain unknown. Here, we characterize ocular defects in the zebrafish (Danio rerio) mutant snow white (snw), which possesses a recessive, missense mutation in hps5 (hps5I76N). Melanosome biogenesis is disrupted in snw/hps5 mutants, resulting in hypopigmentation, a significant decrease in the number, size, and maturity of melanosomes, and the presence of ectopic multi-melanosome clusters throughout the mutant retina and choroid. snw/hps5I76N is the first Hps5 mutation identified within the N-terminal WD40 repeat protein-protein binding domain. Through in vitro coexpression assays, we demonstrate that Hps5I76N retains the ability to bind its protein complex partners, Hps3 and Hps6. Furthermore, while Hps5 and Hps6 stabilize each other's expression, this stabilization is disrupted by Hps5I76N. The snw/hps5I76N mutant provides a valuable resource for structure-function analyses of Hps5 and enables further elucidation of the molecular and cellular mechanisms underlying HPS. PMID:23893484

Daly, Christina M S; Willer, Jason; Gregg, Ronald; Gross, Jeffrey M

2013-10-01

241

Microcephaly models in the developing zebrafish retinal neuroepithelium point to an underlying defect in metaphase progression  

PubMed Central

Autosomal recessive primary microcephaly (MCPH) is a congenital disorder characterized by significantly reduced brain size and mental retardation. Nine genes are currently known to be associated with the condition, all of which encode centrosomal or spindle pole proteins. MCPH is associated with a reduction in proliferation of neural progenitors during fetal development. The cellular mechanisms underlying the proliferation defect, however, are not fully understood. The zebrafish retinal neuroepithelium provides an ideal system to investigate this question. Mutant or morpholino-mediated knockdown of three known MCPH genes (stil, aspm and wdr62) and a fourth centrosomal gene, odf2, which is linked to several MCPH proteins, results in a marked reduction in head and eye size. Imaging studies reveal a dramatic rise in the fraction of proliferating cells in mitosis in all cases, and time-lapse microscopy points to a failure of progression through prometaphase. There was also increased apoptosis in all the MCPH models but this appears to be secondary to the mitotic defect as we frequently saw mitotically arrested cells disappear, and knocking down p53 apoptosis did not rescue the mitotic phenotype, either in whole retinas or clones. PMID:24153002

Novorol, Claire; Burkhardt, Janina; Wood, Kirstin J.; Iqbal, Anila; Roque, Claudio; Coutts, Nicola; Almeida, Alexandra D.; He, Jie; Wilkinson, Christopher J.; Harris, William A.

2013-01-01

242

Systemic splicing factor deficiency causes tissue-specific defects: a zebrafish model for retinitis pigmentosa.  

PubMed

Retinitis pigmentosa (RP) is a common hereditary eye disease that causes blindness due to a progressive loss of photoreceptors in the retina. RP can be elicited by mutations that affect the tri-snRNP subunit of the pre-mRNA splicing machinery, but how defects in this essential macromolecular complex transform into a photoreceptor-specific phenotype is unknown. We have modeled the disease in zebrafish by silencing the RP-associated splicing factor Prpf31 and observed detrimental effects on visual function and photoreceptor morphology. Despite reducing the level of a constitutive splicing factor, no general defects in gene expression were found. Instead, retinal genes were selectively affected, providing the first in vivo link between mutations in splicing factors and the RP phenotype. Silencing of Prpf4, a splicing factor hitherto unrelated to RP, evoked the same defects in vision, photoreceptor morphology and retinal gene expression. Hence, various routes affecting the tri-snRNP can elicit tissue-specific gene expression defects and lead to the RP phenotype. PMID:21051334

Linder, Bastian; Dill, Holger; Hirmer, Anja; Brocher, Jan; Lee, Gek Ping; Mathavan, Sinnakaruppan; Bolz, Hanno Jörn; Winkler, Christoph; Laggerbauer, Bernhard; Fischer, Utz

2011-01-15

243

Establishment of patient-derived non-small cell lung cancer xenograft models with genetic aberrations within EGFR, KRAS and FGFR1: useful tools for preclinical studies of targeted therapies  

PubMed Central

Background Patient-derived tumor xenograft models have been established and increasingly used for preclinical studies of targeted therapies in recent years. However, patient-derived non-small cell lung cancer (NSCLC) xenograft mouse models are relatively few in number and are limited in their degree of genetic characterization and validation. In this study, we aimed to establish a variety of patient-derived NSCLC models and characterize these for common genetic aberrations to provide more informative models for preclinical drug efficacy testing. Methods NSCLC tissues from thirty-one patients were collected and implanted into immunodeficient mice. Established xenograft models were characterized for common genetic aberrations, including detection of gene mutations within EGFR and KRAS, and genetic amplification of FGFR1 and cMET. Finally, gefitinib anti-tumor efficacy was tested in these patient-derived NSCLC xenograft models. Results Ten passable patient-derived NSCLC xenograft models were established by implantation of NSCLC specimens of thirty-one patients into immunodeficient mice. Genetic aberrations were detected in six of the models, including one model with an EGFR activating mutation (Exon19 Del), one model with KRAS mutation, one model with both KRAS mutation and cMET gene amplification, and three models with FGFR1 amplification. Anti-tumor efficacy studies using gefitinib demonstrated that the EGFR activating mutation model had superior sensitivity and that the KRAS mutation models were resistant to gefitinib. The range of gefitinib responses in the patient-derived NSCLC xenograft models were consistent with the results reported from clinical trials. Furthermore, we observed that patient-derived NSCLC models with FGFR1 gene amplification were insensitive to gefitinib treatment. Conclusions Ten patient-derived NSCLC xenograft models were established containing a variety of genetic aberrations including EGFR activating mutation, KRAS mutation, and FGFR1 and cMET amplification. Gefitinib anti-tumor efficacy in these patient-derived NSCLC xenografts containing EGFR and KRAS mutation was consistent with the reported results from previous clinical trials. Thus, data from our panel of patient-derived NSCLC xenograft models confirms the utility of these models in furthering our understanding of this disease and aiding the development of personalized therapies for NSCLC patients. PMID:23842453

2013-01-01

244

Zebrafish: a model animal for analyzing the impact of environmental pollutants on muscle and brain mitochondrial bioenergetics.  

PubMed

Mercury, anthropogenic release of uranium (U), and nanoparticles constitute hazardous environmental pollutants able to accumulate along the aquatic food chain with severe risk for animal and human health. The impact of such pollutants on living organisms has been up to now approached by classical toxicology in which huge doses of toxic compounds, environmentally irrelevant, are displayed through routes that never occur in the lifespan of organisms (for instance injecting a bolus of mercury to an animal although the main route is through prey and fish eating). We wanted to address the effect of such pollutants on the muscle and brain mitochondrial bioenergetics under realistic conditions, at unprecedented low doses, using an aquatic model animal, the zebrafish Danio rerio. We developed an original method to measure brain mitochondrial respiration: a single brain was put in 1.5 mL conical tube containing a respiratory buffer. Brains were gently homogenized by 13 strokes with a conical plastic pestle, and the homogenates were immediately used for respiration measurements. Skinned muscle fibers were prepared by saponin permeabilization. Zebrafish were contaminated with food containing 13 ?g of methylmercury (MeHg)/g, an environmentally relevant dose. In permeabilized muscle fibers, we observed a strong inhibition of both state 3 mitochondrial respiration and cytochrome c oxidase activity after 49 days of MeHg exposure. We measured a dramatic decrease in the rate of ATP release by skinned muscle fibers. Contrarily to muscles, brain mitochondrial respiration was not modified by MeHg exposure although brain accumulated twice as much MeHg than muscles. When zebrafish were exposed to 30 ?g/L of waterborne U, the basal mitochondrial respiratory control ratio was decreased in muscles after 28 days of exposure. This was due to an increase of the inner mitochondrial membrane permeability. The impact of a daily ration of food containing gold nanoparticles of two sizes (12 and 50 nm) was investigated at a very low dose for 60 days (40 ng gold/fish/day). Mitochondrial dysfunctions appeared in brain and muscle for both tested sizes. In conclusion, at low environmental doses, dietary or waterborne heavy metals impinged on zebrafish tissue mitochondrial respiration. Due to its incredible simplicity avoiding tedious and time-consuming mitochondria isolation, our one-pot method allowing brain respiratory analysis should give colleagues the incentive to use zebrafish brain as a model in bioenergetics. This article is part of a Directed Issue entitled: Bioenergetic dysfunction, adaptation and therapy. PMID:22842533

Bourdineaud, Jean-Paul; Rossignol, R; Brèthes, D

2013-01-01

245

Optimized cell transplantation using adult rag2 mutant zebrafish.  

PubMed

Cell transplantation into adult zebrafish has lagged behind mouse models owing to the lack of immunocompromised strains. Here we have created rag2(E450fs) mutant zebrafish that have reduced numbers of functional T and B cells but are viable and fecund. Mutant fish engraft muscle, blood stem cells and various cancers. rag2(E450fs) mutant zebrafish are the first immunocompromised zebrafish model that permits robust, long-term engraftment of multiple tissues and cancer. PMID:25042784

Tang, Qin; Abdelfattah, Nouran S; Blackburn, Jessica S; Moore, John C; Martinez, Sarah A; Moore, Finola E; Lobbardi, Riadh; Tenente, Inês M; Ignatius, Myron S; Berman, Jason N; Liwski, Robert S; Houvras, Yariv; Langenau, David M

2014-08-01

246

Inhalation Delivery and Anti-tumor Activity of Celecoxib in Human Orthotopic Non-Small Cell Lung Cancer Xenograft Model  

PubMed Central

Purpose To determine the in vivo anti-tumor effect of aerosolized Celecoxib (Cxb) in combination with i.v Docetaxel (Doc) and compare the anti-tumor effect with oral Cxb combined with i.v Doc in human orthotopic non-small cell lung cancer (NSCLC) xenograft model. Materials and Methods Female Nu/Nu mice were implanted with orthotopic tumors by injecting A549 cells into the lung parenchyma. Seven day after tumor implantation the mice were treated with aerosolized Cxb (30 min exposure/day, 5 mg/ml solution) + i.v Doc (10 mg/kg) and the effect was compared with oral Cxb (150 mg/kg/day) + i.v Doc (10 mg/kg), for 28 days. Small-animal nose only inhalation chamber (CH Technologies, Westwood, NJ) was utilized for aerosol exposure. Therapeutic activity of Cxb (aerosol/oral) + Doc was estimated by differences in lung weight, tumor area and animal body weight. Lung tumor samples isolated from mice were analyzed for (a) PGE2 levels by enzyme immunoassay (EIA) (b) expression of Fas and Factor VIII by immunohistochemistry (c) IL-8 expression using EIA kits and (d) mRNA expression for caspase-3 by Real-Time PCR. Results Mice treated with Cxb (aerosol/oral) + Doc showed significant reduction (P < 0.001) in lung weight and tumor area as compared to Cxb or Doc treatments. Cxb (aerosol/oral) + Doc showed increased apoptosis mediated via increased Fas and caspase-3 (P < 0.001) expression as compared to untreated control. Further, the combination treatment showed antiangiogenic effect as demonstrated by reduced expression of Factor VIII, IL-8 (P < 0.001) and PGE2 (P < 0.001) in lung tumors as compared to untreated control. Aerosolized Cxb at a significantly lower therapeutic dose (4.56 mg/kg/day) demonstrated comparable anti-tumor efficacy to orally administered Cxb (150 mg/kg/day). Conclusion Cxb was formulated and effectively delivered via aerosolization to treat orthotopic lung tumors in combination with i.v Doc. Cxb when administered by aerosol produced same therapeutic effect as oral Cxb, but at lower therapeutic dose and thus shows promise for the treatment of lung cancer. PMID:16902813

Fulzele, Suniket V.; Chatterjee, Abhijit; Shaik, Madhu Sudhan; Jackson, Tanise; Singh, Mandip

2010-01-01

247

Genetic variation in the zebrafish  

PubMed Central

Although zebrafish was introduced as a laboratory model organism several decades ago and now serves as a primary model for developmental biology, there is only limited data on its genetic variation. An establishment of a dense polymorphism map becomes a requirement for effective linkage analysis and cloning approaches in zebrafish. By comparing ESTs to whole-genome shotgun data, we predicted >50,000 high-quality candidate SNPs covering the zebrafish genome with average resolution of 41 kbp. We experimentally validated ?65% of a randomly sampled subset by genotyping 16 samples from seven commonly used zebrafish strains. The analysis reveals very high nucleotide diversity between zebrafish isolates. Even with the limited number of samples that we genotyped, zebrafish isolates revealed considerable interstrain variation, ranging from 7% (inbred) to 37% (wild-derived) of polymorphic sites being heterozygous. The increased proportion of polymorphic over monomorphic sites results in five times more frequent observation of a three allelic variant compared with human or mouse. Phylogenetic analysis shows that comparisons between even the least divergent strains used in our analysis may provide one informative marker approximately every 500 nucleotides. Furthermore, the number of haplotypes per locus is relatively large, reflecting independent establishment of the different lines from wild isolates. Finally, our results suggest the presence of prominent C-to-U and A-to-I RNA editing events in zebrafish. Overall, the levels and organization of genetic variation between and within commonly used zebrafish strains are markedly different from other laboratory model organisms, which may affect experimental design and interpretation. PMID:16533913

Guryev, Victor; Koudijs, Marco J.; Berezikov, Eugene; Johnson, Stephen L.; Plasterk, Ronald H.A.; van Eeden, Fredericus J.M.; Cuppen, Edwin

2006-01-01

248

Combined Bcl-2/mTOR Inhibition Leads to Enhanced Radiosensitization via Induction of Apoptosis and Autophagy in Non-Small-Cell Lung Tumor Xenograft Model  

PubMed Central

Purpose Radiotherapy has a central role in the treatment of non-small-cell lung cancer. Effectiveness of this modality, however, is often limited as resistance results from defects in cell death. Experimental Design We investigated whether simultaneous upregulation of apoptosis, via Bcl-2 inhibitor ABT-737, and autophagy, via mTOR inhibitor rapamycin, can be used to enhance radiosensitivity of H460 cells in vitro and growth delay in a xenograft model. Results In vitro studies confirmed that ABT-737 and rapamycin induce apoptosis and autophagy, respectively. ABT-737 induced cleaved caspase-3, a marker of apoptosis, and rapamycin correlated with an increase in punctate localization of GFP-LC3, characteristic of autophagy. The combination ABT-737/rapamycin markedly enhanced sensitivity of H460 cells to radiation (DER=2.47, p=0.002) in clonogenic assay. In addition, the combination ABT-737/rapamycin/radiation showed a dramatic tumor growth delay in a mouse xenograft model. In vivo immunohistochemistry staining showed that combination therapy yielded over a 100% increase in caspase-3 activity (apoptosis) and a 6-fold decrease in p62 protein level (indicative of autophagic flux) as compared to radiation alone control group. Moreover, cell proliferation (Ki67 staining) was reduced by 77% (p=0.001) and vascular density (vWF staining) by 67.5% (p=0.09) compared to radiation alone. Additional in vitro studies in human umbilical endothelial cells indicated that combined therapy also significantly decrease tubule formation. Conclusion These results suggest that concurrent induction of apoptosis and autophagy enhances radiation therapy both in vitro and in lung cancer xenograft models. Further investigations are warranted to assess the clinical potential of such strategy in lung cancer patients. PMID:19773376

Kim, Kwang Woon; Moretti, Luigi; Mitchell, Lauren Rhea; Jung, Dae Kwang; Lu, Bo

2009-01-01

249

Patient-Derived Xenografts of Non Small Cell Lung Cancer: Resurgence of an Old Model for Investigation of Modern Concepts of Tailored Therapy and Cancer Stem Cells  

PubMed Central

Current chemotherapy regimens have unsatisfactory results in most advanced solid tumors. It is therefore imperative to devise novel therapeutic strategies and to optimize selection of patients, identifying early those who could benefit from available treatments. Mouse models are the most valuable tool for preclinical evaluation of novel therapeutic strategies in cancer and, among them, patient-derived xenografts models (PDX) have made a recent comeback in popularity. These models, obtained by direct implants of tissue fragments in immunocompromised mice, have great potential in drug development studies because they faithfully reproduce the patient's original tumor for both immunohistochemical markers and genetic alterations as well as in terms of response to common therapeutics They also maintain the original tumor heterogeneity, allowing studies of specific cellular subpopulations, including their modulation after drug treatment. Moreover PDXs maintain at least some aspects of the human microenvironment for weeks with the complete substitution with murine stroma occurring only after 2-3 passages in mouse and represent therefore a promising model for studies of tumor-microenvironment interaction. This review summarizes our present knowledge on mouse preclinical cancer models, with a particular attention on patient-derived xenografts of non small cell lung cancer and their relevance for preclinical and biological studies. PMID:22547927

Moro, Massimo; Bertolini, Giulia; Tortoreto, Monica; Pastorino, Ugo; Sozzi, Gabriella; Roz, Luca

2012-01-01

250

Axon degeneration and PGC-1?-mediated protection in a zebrafish model of ?-synuclein toxicity.  

PubMed

?-synuclein (aSyn) expression is implicated in neurodegenerative processes, including Parkinson's disease (PD) and dementia with Lewy bodies (DLB). In animal models of these diseases, axon pathology often precedes cell death, raising the question of whether aSyn has compartment-specific toxic effects that could require early and/or independent therapeutic intervention. The relevance of axonal pathology to degeneration can only be addressed through longitudinal, in vivo monitoring of different neuronal compartments. With current imaging methods, dopaminergic neurons do not readily lend themselves to such a task in any vertebrate system. We therefore expressed human wild-type aSyn in zebrafish peripheral sensory neurons, which project elaborate superficial axons that can be continuously imaged in vivo. Axonal outgrowth was normal in these neurons but, by 2 days post-fertilization (dpf), many aSyn-expressing axons became dystrophic, with focal varicosities or diffuse beading. Approximately 20% of aSyn-expressing cells died by 3 dpf. Time-lapse imaging revealed that focal axonal swelling, but not overt fragmentation, usually preceded cell death. Co-expressing aSyn with a mitochondrial reporter revealed deficits in mitochondrial transport and morphology even when axons appeared overtly normal. The axon-protective protein Wallerian degeneration slow (WldS) delayed axon degeneration but not cell death caused by aSyn. By contrast, the transcriptional coactivator PGC-1?, which has roles in the regulation of mitochondrial biogenesis and reactive-oxygen-species detoxification, abrogated aSyn toxicity in both the axon and the cell body. The rapid onset of axonal pathology in this system, and the relatively moderate degree of cell death, provide a new model for the study of aSyn toxicity and protection. Moreover, the accessibility of peripheral sensory axons will allow effects of aSyn to be studied in different neuronal compartments and might have utility in screening for novel disease-modifying compounds. PMID:24626988

O'Donnell, Kelley C; Lulla, Aaron; Stahl, Mark C; Wheat, Nickolas D; Bronstein, Jeff M; Sagasti, Alvaro

2014-05-01

251

Cooperation of Mtmr8 with PI3K Regulates Actin Filament Modeling and Muscle Development in Zebrafish  

PubMed Central

Background It has been shown that mutations in at least four myotubularin family genes (MTM1, MTMR1, 2 and 13) are causative for human neuromuscular disorders. However, the pathway and regulative mechanism remain unknown. Methodology/Principal Findings Here, we reported a new role for Mtmr8 in neuromuscular development of zebrafish. Firstly, we cloned and characterized zebrafish Mtmr8, and revealed the expression pattern predominantly in the eye field and somites during early somitogenesis. Using morpholino knockdown, then, we observed that loss-of-function of Mtmr8 led to defects in somitogenesis. Subsequently, the possible underlying mechanism and signal pathway were examined. We first checked the Akt phosphorylation, and observed an increase of Akt phosphorylation in the morphant embryos. Furthermore, we studied the PH/G domain function within Mtmr8. Although the PH/G domain deletion by itself did not result in embryonic defect, addition of PI3K inhibitor LY294002 did give a defective phenotype in the PH/G deletion morphants, indicating that the PH/G domain was essential for Mtmr8's function. Moreover, we investigated the cooperation of Mtmr8 with PI3K in actin filament modeling and muscle development, and found that both Mtmr8-MO1 and Mtmr8-MO2+LY294002 led to the disorganization of the actin cytoskeleton. In addition, we revealed a possible participation of Mtmr8 in the Hedgehog pathway, and cell transplantation experiments showed that Mtmr8 worked in a non-cell autonomous manner in actin modeling. Conclusion/Significance The above data indicate that a conserved functional cooperation of Mtmr8 with PI3K regulates actin filament modeling and muscle development in zebrafish, and reveal a possible participation of Mtmr8 in the Hedgehog pathway. Therefore, this work provides a new clue to study the physiological function of MTM family members. PMID:19325702

Mei, Jie; Li, Zhi; Gui, Jian-Fang

2009-01-01

252

Castration induces up-regulation of intratumoral androgen biosynthesis and androgen receptor expression in an orthotopic VCaP human prostate cancer xenograft model.  

PubMed

Androgens are key factors involved in the development and progression of prostate cancer (PCa), and PCa growth can be suppressed by androgen deprivation therapy. In a considerable proportion of men receiving androgen deprivation therapy, however, PCa progresses to castration-resistant PCa (CRPC), making the development of efficient therapies challenging. We used an orthotopic VCaP human PCa xenograft model to study cellular and molecular changes in tumors after androgen deprivation therapy (castration). Tumor growth was monitored through weekly serum prostate-specific antigen measurements, and mice with recurrent tumors after castration were randomized to treatment groups. Serum prostate-specific antigen concentrations showed significant correlation with tumor volume. Castration-resistant tumors retained concentrations of intratumoral androgen (androstenedione, testosterone, and 5?-dihydrotestosterone) at levels similar to tumors growing in intact hosts. Accordingly, castration induced up-regulation of enzymes involved in androgen synthesis (CYP17A1, AKR1C3, and HSD17B6), as well as expression of full-length androgen receptor (AR) and AR splice variants (AR-V1 and AR-V7). Furthermore, AR target gene expression was maintained in castration-resistant xenografts. The AR antagonists enzalutamide (MDV3100) and ARN-509 suppressed PSA production of castration-resistant tumors, confirming the androgen dependency of these tumors. Taken together, the findings demonstrate that our VCaP xenograft model exhibits the key characteristics of clinical CRPC and thus provides a valuable tool for identifying druggable targets and for testing therapeutic strategies targeting AR signaling in CRPC. PMID:24949550

Knuuttila, Matias; Yatkin, Emrah; Kallio, Jenny; Savolainen, Saija; Laajala, Teemu D; Aittokallio, Tero; Oksala, Riikka; Häkkinen, Merja; Keski-Rahkonen, Pekka; Auriola, Seppo; Poutanen, Matti; Mäkelä, Sari

2014-08-01

253

Zebrafish dracula encodes ferrochelatase and its mutation provides a model for erythropoietic protoporphyria  

Microsoft Academic Search

Exposure to light precipitates the symptoms of several genetic disorders that affect both skin and internal organs. It is presumed that damage to non-cutaneous organs is initiated indirectly by light, but this is difficult to study in mammals. Zebrafish have an essentially transparent periderm for the first days of development. In a previous large-scale genetic screen we isolated a mutation,

Sarah Childs; Brant M. Weinstein; Manzoor-Ali P. K. Mohideen; Susan Donohue; Herbert Bonkovsky; Mark C. Fishman

2000-01-01

254

Honokiol Crosses BBB and BCSFB, and Inhibits Brain Tumor Growth in Rat 9L Intracerebral Gliosarcoma Model and Human U251 Xenograft Glioma Model  

PubMed Central

Background Gliosarcoma is one of the most common malignant brain tumors, and anti-angiogenesis is a promising approach for the treatment of gliosarcoma. However, chemotherapy is obstructed by the physical obstacle formed by the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB). Honokiol has been known to possess potent activities in the central nervous system diseases, and anti-angiogenic and anti-tumor properties. Here, we hypothesized that honokiol could cross the BBB and BCSFB for the treatment of gliosarcoma. Methodologies We first evaluated the abilities of honokiol to cross the BBB and BCSFB by measuring the penetration of honokiol into brain and blood-cerebrospinal fluid, and compared the honokiol amount taken up by brain with that by other tissues. Then we investigated the effect of honokiol on the growth inhibition of rat 9L gliosarcoma cells and human U251 glioma cells in vitro. Finally we established rat 9L intracerebral gliosarcoma model in Fisher 344 rats and human U251 xenograft glioma model in nude mice to investigate the anti-tumor activity. Principal Findings We showed for the first time that honokiol could effectively cross BBB and BCSFB. The ratios of brain/plasma concentration were respectively 1.29, 2.54, 2.56 and 2.72 at 5, 30, 60 and 120 min. And about 10% of honokiol in plasma crossed BCSFB into cerebrospinal fluid (CSF). In vitro, honokiol produced dose-dependent inhibition of the growth of rat 9L gliosarcoma cells and human U251 glioma cells with IC50 of 15.61 µg/mL and 16.38 µg/mL, respectively. In vivo, treatment with 20 mg/kg body weight of honokiol (honokiol was given twice per week for 3 weeks by intravenous injection) resulted in significant reduction of tumor volume (112.70±10.16 mm3) compared with vehicle group (238.63±19.69 mm3, P?=?0.000), with 52.77% inhibiting rate in rat 9L intracerebral gliosarcoma model, and (1450.83±348.36 mm3) compared with vehicle group (2914.17±780.52 mm3, P?=?0.002), with 50.21% inhibiting rate in human U251 xenograft glioma model. Honokiol also significantly improved the survival over vehicle group in the two models (P<0.05). Conclusions/Significance This study provided the first evidence that honokiol could effectively cross BBB and BCSFB and inhibit brain tumor growth in rat 9L intracerebral gliosarcoma model and human U251 xenograft glioma model. It suggested a significant strategy for offering a potential new therapy for the treatment of gliosarcoma. PMID:21559510

Zhang, Xiaoyan; Deng, Linyu; Zheng, Hao; Deng, Chongyang; Wen, Jiaolin; Wang, Ning; Peng, Cheng; Zhao, Xia; Wei, Yuquan; Chen, Lijuan

2011-01-01

255

VEGF-D-induced draining lymphatic enlargement and tumor lymphangiogenesis promote lymph node metastasis in a xenograft model of ovarian carcinoma  

PubMed Central

Background Vascular endothelial growth factor (VEGF)-D has been shown to promote lymph node metastasis in several cancers. Although generally overexpressed in ovarian carcinoma, its role in nodal dissemination of this cancer is unclear. To clarify the role of VEGF-D and the underlying molecular mechanisms, we investigated the function of VEGF-D using a mouse xenograft model of ovarian cancer. Methods Human ovarian serous adenocarcinoma SKOV3 cells were transfected with VEGF-D recombinant plasmid DNA, or with control vectors. The cells were injected subcutaneously into the footpads of nude mice. Tumor growth was evaluated weekly. Draining lymphatics were observed grossly with Evan’s blue lymphangiography. Tumoral lymphatics were delineated with both Evan’s blue and LYVE-1 immunostaining. Tumor metastases to lymph nodes were evaluated by H&E and CA125/CD40 staining. Expression of VEGF-D in primary tumors and levels of CA125 in involved lymph nodes were examined by immunohistochemistry. Tumor cell apoptosis was analyzed by Hoechst dyeing. Results Mice bearing VEGF-D overexpressing xenografts showed a significantly higher rate of lymph node metastasis and markedly greater tumor volume compared with the controls. The functional lymphatic vessels were denser and enlarged in marginal and central tumor portions. Additionally, higher CA125 expression was observed in the involved lymph nodes. Mice bearing VEGF-D overexpressing xenografts also exhibited a markedly lower apoptotic index compared with the controls. Conclusions Our data demonstrate the important role of VEGF-D in promoting lymph node metastasis by increasing tumor lymphangiogenesis, stimulating draining lymphatic vessel formation, and enhancing tumor invasiveness. Our findings show that VEGF-D can be a promising therapeutic target for ovarian cancer. PMID:24502459

2014-01-01

256

MOLECULAR CLONING, BACULOVIRUS EXPRESSION, AND TISSUE DISTRIBUTION OF THE ZEBRAFISH ALDEHYDE DEHYDROGENASE 2  

E-print Network

MOLECULAR CLONING, BACULOVIRUS EXPRESSION, AND TISSUE DISTRIBUTION OF THE ZEBRAFISH ALDEHYDE zebrafish (Danio rerio) as a model for ethanol metabolism by cloning, expressing, and characterizing the zebrafish ALDH2. The zebrafish ALDH2 cDNA was cloned and found to be 1892 bp in length and encoding

Tullos, Desiree

257

Phenethyl isothiocyanate inhibits proliferation and induces apoptosis in pancreatic cancer cells in vitro and in a MIAPaca2 xenograft animal model.  

PubMed

Pancreatic cancer is often diagnosed at an advanced stage and it has a poor prognosis that points to an increased need to develop effective chemoprevention strategies for this disease. We examined the ability of phenethyl isothiocyanate (PEITC), a naturally occurring isothiocyanate found in cruciferous vegetables, to inhibit the growth of pancreatic cancer cells in vitro and in a MIAPaca2 xenograft animal model. Exposure to PEITC inhibited pancreatic cancer cell growth in a dose-dependent manner, with an IC50 of approximately 7 ?mol/L. PEITC treatment induced G2/M phase cell cycle arrest, downregulated the antiapoptotic proteins Bcl-2 and Bcl-XL, upregulated the proapoptotic protein Bak, and suppressed Notch 1 and 2 levels. In addition, treatment with PEITC induced cleavage of poly-(ADP-ribose) polymerase and led to increased cytoplasmic histone-associated DNA fragmentation and subdiploid (apoptotic) fraction in pancreatic cancer cells. Oral administration of PEITC suppressed the growth of pancreatic cancer cells in a MIAPaca2 xenograft animal model. Our data show that PEITC exerts its inhibitory effect on pancreatic cancer cells through several mechanisms, including G2/M phase cell cycle arrest and induction of apoptosis, and supports further investigation of PEITC as a chemopreventive agent for pancreatic cancer. PMID:24195616

Stan, Silvia D; Singh, Shivendra V; Whitcomb, David C; Brand, Randall E

2014-01-01

258

Decorin Protein Core Affects the Global Gene Expression Profile of the Tumor Microenvironment in a Triple-Negative Orthotopic Breast Carcinoma Xenograft Model  

PubMed Central

Decorin, a member of the small leucine-rich proteoglycan gene family, exists and functions wholly within the tumor microenvironment to suppress tumorigenesis by directly targeting and antagonizing multiple receptor tyrosine kinases, such as the EGFR and Met. This leads to potent and sustained signal attenuation, growth arrest, and angiostasis. We thus sought to evaluate the tumoricidal benefits of systemic decorin on a triple-negative orthotopic breast carcinoma xenograft model. To this end, we employed a novel high-density mixed expression array capable of differentiating and simultaneously measuring gene signatures of both Mus musculus (stromal) and Homo sapiens (epithelial) tissue origins. We found that decorin protein core modulated the differential expression of 374 genes within the stromal compartment of the tumor xenograft. Further, our top gene ontology classes strongly suggests an unexpected and preferential role for decorin protein core to inhibit genes necessary for immunomodulatory responses while simultaneously inducing expression of those possessing cellular adhesion and tumor suppressive gene properties. Rigorous verification of the top scoring candidates led to the discovery of three genes heretofore unlinked to malignant breast cancer that were reproducibly found to be induced in several models of tumor stroma. Collectively, our data provide highly novel and unexpected stromal gene signatures as a direct function of systemic administration of decorin protein core and reveals a fundamental basis of action for decorin to modulate the tumor stroma as a biological mechanism for the ascribed anti-tumorigenic properties. PMID:23029096

Owens, Rick T.; Iniguez, Leonardo A.; Purkins, George; Vadigepalli, Rajanikanth; Evans, Barry; Schaefer, Liliana; Peiper, Stephen C.; Wang, Zi-Xuan; Iozzo, Renato V.

2012-01-01

259

Anti-CD45 pretargeted radioimmunotherapy using bismuth-213: high rates of complete remission and long-term survival in a mouse myeloid leukemia xenograft model  

PubMed Central

Pretargeted radioimmunotherapy (PRIT) using an anti-CD45 antibody (Ab)–streptavidin (SA) conjugate and DOTA-biotin labeled with ?-emitting radionuclides has been explored as a strategy to decrease relapse and toxicity. ?-emitting radionuclides exhibit high cytotoxicity coupled with a short path length, potentially increasing the therapeutic index and making them an attractive alternative to ?-emitting radionuclides for patients with acute myeloid leukemia. Accordingly, we have used 213Bi in mice with human leukemia xenografts. Results demonstrated excellent localization of 213Bi-DOTA-biotin to tumors with minimal uptake into normal organs. After 10 minutes, 4.5% ± 1.1% of the injected dose of 213Bi was delivered per gram of tumor. ?-imaging demonstrated uniform radionuclide distribution within tumor tissue 45 minutes after 213Bi-DOTA-biotin injection. Radiation absorbed doses were similar to those observed using a ?-emitting radionuclide (90Y) in the same model. We conducted therapy experiments in a xenograft model using a single-dose of 213Bi-DOTA-biotin given 24 hours after anti-CD45 Ab-SA conjugate. Among mice treated with anti-CD45 Ab-SA conjugate followed by 800 ?Ci of 213Bi- or 90Y-DOTA-biotin, 80% and 20%, respectively, survived leukemia-free for more than 100 days with minimal toxicity. These data suggest that anti-CD45 PRIT using an ?-emitting radionuclide may be highly effective and minimally toxic for treatment of acute myeloid leukemia. PMID:21613259

Kenoyer, Aimee L.; Bäck, Tom; Hamlin, Donald K.; Wilbur, D. Scott; Fisher, Darrell R.; Park, Steven I.; Frayo, Shani; Axtman, Amanda; Orgun, Nural; Orozco, Johnnie; Shenoi, Jaideep; Lin, Yukang; Gopal, Ajay K.; Green, Damian J.; Appelbaum, Frederick R.; Press, Oliver W.

2011-01-01

260

Knockdown of fbxl10/kdm2bb rescues chd7 morphant phenotype in a zebrafish model of CHARGE syndrome  

PubMed Central

CHARGE syndrome is a sporadic autosomal-dominant genetic disorder characterized by a complex array of birth defects so named for its cardinal features of ocular coloboma, heart defects, choanal atresia, growth retardation, genital abnormalities, and ear abnormalities. Approximately two-thirds of individuals clinically diagnosed with CHARGE syndrome have heterozygous loss-of-function mutations in the gene encoding chromodomain helicase DNA-binding protein 7 (CHD7), an ATP-dependent chromatin remodeler. To examine the role of Chd7 in development, a zebrafish model was generated through morpholino (MO)-mediated targeting of the zebrafish chd7 transcript. High doses of chd7 MO induce lethality early in embryonic development. However, low dose-injected embryos are viable, and by 4 days post-fertilization, morphant fish display multiple defects in organ systems analogous to those affected in humans with CHARGE syndrome. The chd7 morphants show elevated expression of several potent cell-cycle inhibitors including ink4ab (p16/p15), p21 and p27, accompanied by reduced cell proliferation. We also show that Chd7 is required for proper organization of neural crest-derived craniofacial cartilage structures. Strikingly, MO-mediated knockdown of the jumonji domain-containing histone demethylase fbxl10/kdm2bb, a repressor of ribosomal RNA (rRNA) genes, rescues cell proliferation and cartilage defects in chd7 morphant embryos and can lead to complete rescue of the CHARGE syndrome phenotype. These results indicate that CHARGE-like phenotypes in zebrafish can be mitigated through modulation of fbxl10 levels and implicate FBXL10 as a possible therapeutic target in CHARGE syndrome. PMID:23920116

Balow, Stephanie A.; Pierce, Lain X.; Zentner, Gabriel E.; Conrad, Patricia A.; Davis, Stephani; Sabaawy, Hatem E.; McDermott, Brian M.; Scacheri, Peter C.

2013-01-01

261

Assessment of hematopoietic failure due to Rpl11 deficiency in a zebrafish model of Diamond-Blackfan anemia by deep sequencing  

PubMed Central

Background Diamond–Blackfan anemia is a rare congenital red blood cell dysplasia that develops soon after birth. RPL11 mutations account for approximately 4.8% of human DBA cases with defective hematopoietic phenotypes. However, the mechanisms by which RPL11 regulates hematopoiesis in DBA remain elusive. In this study, we analyzed the transcriptome using deep sequencing data from an Rpl11-deficient zebrafish model to identify Rpl11-mediated hematopoietic failure and investigate the underlying mechanisms. Results We characterized hematological defects in Rpl11-deficient zebrafish embryos by identifying affected hematological genes, hematopoiesis-associated pathways, and regulatory networks. We found that hemoglobin biosynthetic and hematological defects in Rpl11-deficient zebrafish were related to dysregulation of iron metabolism-related genes, including tfa, tfr1b, alas2 and slc25a37, which are involved in heme and hemoglobin biosynthesis. In addition, we found reduced expression of the hematopoietic stem cells (HSC) marker cmyb and HSC transcription factors tal1 and hoxb4a in Rpl11-deficient zebrafish embryos, indicating that the hematopoietic defects may be related to impaired HSC formation, differentiation, and proliferation. However, Rpl11 deficiency did not affect the development of other blood cell lineages such as granulocytes and myelocytes. Conclusion We identified hematopoietic failure of Rpl11-deficient zebrafish embryos using transcriptome deep sequencing and elucidated potential underlying mechanisms. The present analyses demonstrate that Rpl11-deficient zebrafish may serve as a model of DBA and may provide insights into the pathogenesis of mutant RPL11-mediated human DBA disease. PMID:24341334

2013-01-01

262

Toxicity assessments of chalcone and some synthetic chalcone analogues in a zebrafish model.  

PubMed

The aim of this study was to investigate the in vivo toxicities of some novel synthetic chalcones. Chalcone and four chalcone analogues 1a-d were evaluated using zebrafish embryos following antibody staining to visualize their morphological changes and muscle fiber alignment. Results showed that embryos treated with 3'-hydroxychalcone (compound 1b) displayed a high percentage of muscle defects (96.6%), especially myofibril misalignment. Ultrastructural analysis revealed that compound 1b-treated embryos displayed many muscle defect phenotypes, including breakage and collapse of myofibrils, reduced cell numbers, and disorganized thick (myosin) and thin (actin) filaments. Taken together, our results provide in vivo evidence of the myotoxic effects of the synthesized chalcone analogues on developing zebrafish embryos. PMID:24402197

Lee, Ya-Ting; Fong, Tsorng-Harn; Chen, Hui-Min; Chang, Chao-Yuan; Wang, Yun-Hsin; Chern, Ching-Yuh; Chen, Yau-Hung

2014-01-01

263

GH overexpression causes muscle hypertrophy independent from local IGF-I in a zebrafish transgenic model  

Microsoft Academic Search

The aim of the present study was to analyse the morphology of white skeletal muscle in males and females from the GH-transgenic\\u000a zebrafish (Danio rerio) lineage F0104, comparing the expression of genes related to the somatotrophic axis and myogenesis. Histological analysis\\u000a demonstrated that transgenic fish presented enhanced muscle hypertrophy when compared to non-transgenic fish, with transgenic\\u000a females being more hypertrophic

Rafael Y. Kuradomi; Márcio A. Figueiredo; Carlos F. C. Lanes; Carlos E. da Rosa; Daniela V. Almeida; Rodrigo Maggioni; Maeli D. P. Silva; Luis F. Marins

2011-01-01

264

GH overexpression causes muscle hypertrophy independent from local IGF-I in a zebrafish transgenic model.  

PubMed

The aim of the present study was to analyse the morphology of white skeletal muscle in males and females from the GH-transgenic zebrafish (Danio rerio) lineage F0104, comparing the expression of genes related to the somatotrophic axis and myogenesis. Histological analysis demonstrated that transgenic fish presented enhanced muscle hypertrophy when compared to non-transgenic fish, with transgenic females being more hypertrophic than transgenic males. The expression of genes related to muscle growth revealed that transgenic hypertrophy is independent from local induction of insulin-like growth factor 1 gene (igf1). In addition, transgenic males exhibited significant induction of myogenin gene (myog) expression, indicating that myog may mediate hypertrophic growth in zebrafish males overexpressing GH. Induction of the ?-actin gene (acta1) in males, independently from transgenesis, also was observed. There were no significant differences in total protein content from the muscle. Our results show that muscle hypertrophy is independent from muscle igf1, and is likely to be a direct effect of excess circulating GH and/or IGF1 in this transgenic zebrafish lineage. PMID:20640508

Kuradomi, Rafael Y; Figueiredo, Márcio A; Lanes, Carlos F C; da Rosa, Carlos E; Almeida, Daniela V; Maggioni, Rodrigo; Silva, Maeli D P; Marins, Luis F

2011-06-01

265

Abstract--In this study, we describe the utility of the zebrafish model of in-vivo blood vessel formation as a tool for  

E-print Network

of the zebrafish as a model for human diseases and drug discovery, together with differences with other animal vertebrate animals, supplying oxygen and essential nutrients to every tissue and organ. Early stages and this pollutant is posing danger to humans by intake of affected fish, ground water exposed to toxins, etc

266

Zebrafish as a genetic model in biological and behavioral gerontology: where development meets aging in vertebrates--a mini-review.  

PubMed

Understanding the molecular mechanisms of aging in vertebrates is a major challenge of modern biology and biomedical science. This is due, in part, to the complexity of the aging process and its multifactorial nature, the paucity of animal models that lend themselves to unbiased high-throughput screening for aging phenotypes, and the difficulty of predicting such phenotypes at an early age. We suggest that the zebrafish genetic model offers a unique opportunity to fill in this gap and contributes to advances in biological and behavioral gerontology. Our recent studies demonstrated that this diurnal vertebrate with gradual senescence is an excellent model in which to study age-dependent changes in musculoskeletal and eye morphology, endocrine factors, gene expression, circadian clock, sleep and cognitive functions. Importantly, we have also found that the presence of a senescence-associated biomarker ('senescence-associated beta-galactosidase') can be documented during early zebrafish development and is predictive of premature aging phenotypes later in adult life. The availability of mutant 'genotypes' with identified aging 'phenotypes' in zebrafish, in combination with a wealth of information about zebrafish development and genetics, and the existence of multiple mutant and transgenic lines, should significantly facilitate the use of this outstanding vertebrate model in deciphering the mechanisms of aging, and in developing preventive and therapeutic strategies to prolong the productive life span ('health span') in humans. PMID:19654474

Kishi, Shuji; Slack, Barbara E; Uchiyama, Junzo; Zhdanova, Irina V

2009-01-01

267

Lenvatinib, an angiogenesis inhibitor targeting VEGFR/FGFR, shows broad antitumor activity in human tumor xenograft models associated with microvessel density and pericyte coverage  

PubMed Central

Background Lenvatinib is an oral inhibitor of multiple receptor tyrosine kinases (RTKs) targeting vascular endothelial growth factor receptor (VEGFR1-3), fibroblast growth factor receptor (FGFR1-4), platelet growth factor receptor ? (PDGFR ?), RET and KIT. Antiangiogenesis activity of lenvatinib in VEGF- and FGF-driven angiogenesis models in both in vitro and in vivo was determined. Roles of tumor vasculature (microvessel density (MVD) and pericyte coverage) as biomarkers for lenvatinib were also examined in this study. Method We evaluated antiangiogenesis activity of lenvatinib against VEGF- and FGF-driven proliferation and tube formation of HUVECs in vitro. Effects of lenvatinib on in vivo angiogenesis, which was enhanced by overexpressed VEGF or FGF in human pancreatic cancer KP-1 cells, were examined in the mouse dorsal air sac assay. We determined antitumor activity of lenvatinib in a broad panel of human tumor xenograft models to test if vascular score, which consisted of high MVD and low pericyte coverage, was associated with sensitivity to lenvatinib treatment. Vascular score was also analyzed using human tumor specimens with 18 different types of human primary tumors. Result Lenvatinib inhibited VEGF- and FGF-driven proliferation and tube formation of HUVECs in vitro. In vivo angiogenesis induced by overexpressed VEGF (KP-1/VEGF transfectants) or FGF (KP-1/FGF transfectants) was significantly suppressed with oral treatments of lenvatinib. Lenvatinib showed significant antitumor activity in KP-1/VEGF and five 5 of 7 different types of human tumor xenograft models at between 1 to 100?mg/kg. We divided 19 human tumor xenograft models into lenvatinib-sensitive (tumor-shrinkage) and relatively resistant (slow-growth) subgroups based on sensitivity to lenvatinib treatments at 100?mg/kg. IHC analysis showed that vascular score was significantly higher in sensitive subgroup than relatively resistant subgroup (p?

2014-01-01

268

Immunological Characterization of Human Vaginal Xenografts in Immunocompromised Mice  

PubMed Central

A small animal model for the in vivo study of human immunodeficiency virus-1 and other fastidious infectious agents in human host target tissues is critical for the advancement of therapeutic and preventative strategies. Our laboratory has developed a human vaginal xenograft model that histologically recapitulates features of the human vaginal epithelial barrier. Vaginal xenografts were surgically implanted into C.B.-Igh-1b/IcrTac-Prkdcscid (SCID) and NOD/LtSz-scid/scid (NOD/SCID) mice, with and without human peripheral blood mononuclear cell reconstitution. Immunohistochemical staining of vaginal xenografts demonstrated that in the SCID strain healed vaginal xenografts did not retain intrinsic human immune cells at baseline levels, whereas the NOD/SCID strain supported retention of intrinsic human immune cell populations within the xenografts for at least 2 months after engraftment. In peripheral blood mononuclear cell-reconstituted NOD/SCID mice with vaginal xenografts, flow cytometric analyses detected human immune cell populations in the peripheral blood and immunohistochemical methods detected infiltration of human CD45+ cells in the mouse spleens and vaginal xenografts for at least 2 months after reconstitution. This optimized NOD/SCID human vaginal xenograft model may provide a unique small animal in vivo system for the study of human immunodeficiency virus-1 transmission and infection. PMID:11733382

Kish, Tina M.; Budgeon, Lynn R.; Welsh, Patricia A.; Howett, Mary K.

2001-01-01

269

Abundance of the Quorum-Sensing Factor Ax21 in Four Strains of Stenotrophomonas maltophilia Correlates with Mortality Rate in a New Zebrafish Model of Infection  

PubMed Central

Stenotrophomonas maltophilia is a Gram-negative pathogen with emerging nosocomial incidence. Little is known about its pathogenesis and the genomic diversity exhibited by clinical isolates complicates the study of pathogenicity and virulence factors. Here, we present a strategy to identify such factors in new clinical isolates of S. maltophilia, incorporating an adult-zebrafish model of S. maltophilia infection to evaluate relative virulence coupled to 2D difference gel electrophoresis to explore underlying differences in protein expression. In this study we report upon three recent clinical isolates and use the collection strain ATCC13637 as a reference. The adult-zebrafish model shows discrimination capacity, i.e. from very low to very high mortality rates, with clinical symptoms very similar to those observed in natural S. maltophilia infections in fish. Strain virulence correlates with resistance to human serum, in agreement with previous studies in mouse and rat and therefore supporting zebrafish as a replacement model. Despite its clinical origin, the collection strain ATCC13637 showed obvious signs of attenuation in zebrafish, with null mortality. Multilocus-sequence-typing analysis revealed that the most virulent strains, UV74 and M30, exhibit the strongest genetic similitude. Differential proteomic analysis led to the identification of 38 proteins with significantly different abundance in the three clinical strains relative to the reference strain. Orthologs of several of these proteins have been already reported to have a role in pathogenesis, virulence or resistance mechanisms thus supporting our strategy. Proof of concept is further provided by protein Ax21, whose abundance is shown here to be directly proportional to mortality in the zebrafish infection model. Indeed, recent studies have demonstrated that this protein is a quorum-sensing-related virulence factor. PMID:23840626

Yero, Daniel; Mongiardini, Elias; Torrent, Gerard; Huedo, Pol; Martinez, Paula; Roher, Nerea; Mackenzie, Simon; Gibert, Isidre; Daura, Xavier

2013-01-01

270

Functional Ginger Extracts from Supercritical Fluid Carbon Dioxide Extraction via In Vitro and In Vivo Assays: Antioxidation, Antimicroorganism, and Mice Xenografts Models  

PubMed Central

Supercritical fluid carbon dioxide extraction technology was developed to gain the active components from a Taiwan native plant, Zingiber officinale (ginger). We studied the biological effects of ginger extracts via multiple assays and demonstrated the biofunctions in each platform. Investigations of ginger extracts indicated antioxidative properties in dose-dependant manners on radical scavenging activities, reducing powers and metal chelating powers. We found that ginger extracts processed moderate scavenging values, middle metal chelating levels, and slight ferric reducing powers. The antibacterial susceptibility of ginger extracts on Staphylococcus aureus, Streptococcus sobrinus, S. mutans, and Escherichia coli was determined with the broth microdilution method technique. The ginger extracts had operative antimicroorganism potentials against both Gram-positive and Gram-negative bacteria. We further discovered the strong inhibitions of ginger extracts on lethal carcinogenic melanoma through in vivo xenograft model. To sum up, the data confirmed the possible applications as medical cosmetology agents, pharmaceutical antibiotics, and food supplements. PMID:23983624

Lee, Chih-Chen; Chiou, Li-Yu; Wang, Jheng-Yang; Chou, Sin-You; Lan, John Chi-Wei; Huang, Tsi-Shu; Huang, Kuo-Chuan

2013-01-01

271

A New Zebrafish Model of Oro-Intestinal Pathogen Colonization Reveals a Key Role for Adhesion in Protection by Probiotic Bacteria  

PubMed Central

The beneficial contribution of commensal bacteria to host health and homeostasis led to the concept that exogenous non-pathogenic bacteria called probiotics could be used to limit disease caused by pathogens. However, despite recent progress using gnotobiotic mammal and invertebrate models, mechanisms underlying protection afforded by commensal and probiotic bacteria against pathogens remain poorly understood. Here we developed a zebrafish model of controlled co-infection in which germ-free zebrafish raised on axenic living protozoa enabled the study of interactions between host and commensal and pathogenic bacteria. We screened enteric fish pathogens and identified Edwardsiella ictaluri as a virulent strain inducing a strong inflammatory response and rapid mortality in zebrafish larvae infected by the natural oro-intestinal route. Using mortality induced by infection as a phenotypic read-out, we pre-colonized zebrafish larvae with 37 potential probiotic bacterial strains and screened for survival upon E. ictaluri infection. We identified 3 robustly protective strains, including Vibrio parahaemolyticus and 2 Escherichia coli strains. We showed that the observed protective effect of E. coli was not correlated with a reduced host inflammatory response, nor with the release of biocidal molecules by protective bacteria, but rather with the presence of specific adhesion factors such as F pili that promote the emergence of probiotic bacteria in zebrafish larvae. Our study therefore provides new insights into the molecular events underlying the probiotic effect and constitutes a potentially high-throughput in vivo approach to the study of the molecular basis of pathogen exclusion in a relevant model of vertebrate oro-intestinal infection. PMID:22911651

Begaud, Evelyne; Herbomel, Philippe; Levraud, Jean-Pierre; Ghigo, Jean-Marc

2012-01-01

272

RESEARCH ARTICLE Open Access Patient-derived xenografts of triple-negative breast  

E-print Network

of patient-derived xenograft models covering a spectrum of TNBC subtypes was generated that histologically-derived xenografts representing multiple TNBC subtypes and use them to test preclinical drug efficacy of two m xenografts were compared by histology, immunohistochemistry, array comparative genomic hybridization (a

Matin, A.C.

273

Biodistribution and Safety Assessment of Bladder Cancer Specific Recombinant Oncolytic Adenovirus in Subcutaneous Xenografts Tumor Model in Nude Mice  

PubMed Central

Background The previous works about safety evaluation for constructed bladder tissue specific adenovirus are poorly documented. Thus, we investigated the biodistribution and body toxicity of bladder specific oncolytic adenovirus Ad-PSCAE-UPII-E1A (APU-E1A) and Ad-PSCAE-UPII-E1A-AR (APU-E1A-AR), providing meaningful information prior to embarking on human clinical trials. Materials and Method Conditionally replicate recombinant adenovirus (CRADs) APU-E1A, APU-EIA-AR were constructed with bladder tissue specific Uroplakin II (UP II) promoter to induce the expression of Ad5E1A gene and E1A-AR fusing gene, and PSCAE was inserted at upstream of promoter to enhance the function of promoter. Based on the cytopathic and anti-tumor effect of bladder cancer, these CRADs were intratumorally injected into subcutaneous xenografts tumor in nude mice. We then determined the toxicity through general health and behavioral assessment, hepatic and hematological toxicity evaluation, macroscopic and microscopic postmortem analyses. The spread of the transgene E1A of adenovirus was detected with RT-PCR and Western blot. Virus replication and distribution were examined with APU-LUC administration and Luciferase Assay. Results General assessment and body weight of the animals did not reveal any alteration in general behavior. The hematological alterations of groups which were injected with 5×108 pfu or higher dose (5×109 pfu) of APU-E1A and APU-E1A-AR showed no difference in comparison with PBS group, and only slight increased transaminases in contrast to PBS group at 5×109 pfu of APU-E1A and APU-E1A-AR were observed. E1A transgene did not disseminate to organs outside of xenograft tumor. Virus replication was not detected in other organs beside tumor according to Luciferase Assay. Conclusions Our study showed that recombinant adenovirus APU-E1A-AR and APU-E1A appear safe with 5×107 pfu and 5×108 pfu intratumorally injection in mice, without any discernable effects on general health and behavior. PMID:22384806

Wang, Fang; Wang, Zhiping; Tian, Hongwei; Qi, Meijiao; Zhai, Zhenxing; Li, Shuwen; Li, Renju; Zhang, Hongjuan; Wang, Wenyun; Fu, Shenjun; Lu, Jianzhong; Rodriguez, Ronald; Guo, Yinglu; Zhou, Liqun

2012-01-01

274

Poly(ethylene glycol)-block-poly(?-caprolactone) micelles for combination drug delivery: evaluation of paclitaxel, cyclopamine and gossypol in intraperitoneal xenograft models of ovarian cancer.  

PubMed

Ovarian cancer is the most lethal gynecological malignancy, characterized by a high rate of chemoresistance. Current treatment strategies for ovarian cancer focus on novel drug combinations of cytotoxic agents and molecular targeted agents or novel drug delivery strategies that often involve intraperitoneal (IP) injection. Poly(ethylene glycol)-block-poly(?-caprolactone) (PEG-b-PCL) micelles were loaded with paclitaxel (cytotoxic agent), cyclopamine (hedgehog inhibitor), and gossypol (Bcl-2 inhibitor). After physicochemical studies focusing on combination drug solubilization, 3-drug PEG-b-PCL micelles were evaluated in vitro in 2-D and 3-D cell culture and in vivo in xenograft models of ovarian cancer, tracking bioluminescence signals from ES-2 and SKOV3 human ovarian cancer cell lines after IP injection. 3-Drug PEG-b-PCL micelles were not significantly more potent in 2-D cell culture in comparison to paclitaxel; however, they disaggregated ES-2 tumor spheroids, whereas single drugs or 2-drug combinations only slowed growth of ES-2 tumor spheroids or had no noticeable effects. In ES-2 and SKOV3 xenograft models, 3-drug PEG-b-PCL micelles had significantly less tumor burden than paclitaxel based on bioluminescence imaging, 3'-deoxy-3'-(18)F-fluorothymidine ((18)F-FLT) PET imaging, and overall survival. (18)F-FLT-PET images clearly showed that 3-drug PEG-b-PCL micelles dramatically reduce tumor volumes over paclitaxel and vehicle controls. In summary, PEG-b-PCL micelles enable the IP combination drug delivery of paclitaxel, cyclopamine and gossypol, resulting in tumor growth inhibition and prolonged survival over paclitaxel alone. These results validate a novel treatment strategy for ovarian cancer based on drug combinations of cytotoxic agents and molecular targeted agents, delivered concurrently by a nanoscale drug delivery system, e.g. PEG-b-PCL micelles. PMID:23246471

Cho, Hyunah; Lai, Tsz Chung; Kwon, Glen S

2013-02-28

275

Multi-organ Abnormalities and mTORC1 Activation in Zebrafish Model of Multiple Acyl-CoA Dehydrogenase Deficiency  

PubMed Central

Multiple Acyl-CoA Dehydrogenase Deficiency (MADD) is a severe mitochondrial disorder featuring multi-organ dysfunction. Mutations in either the ETFA, ETFB, and ETFDH genes can cause MADD but very little is known about disease specific mechanisms due to a paucity of animal models. We report a novel zebrafish mutant dark xavier (dxavu463) that has an inactivating mutation in the etfa gene. dxavu463 recapitulates numerous pathological and biochemical features seen in patients with MADD including brain, liver, and kidney disease. Similar to children with MADD, homozygote mutant dxavu463 zebrafish have a spectrum of phenotypes ranging from moderate to severe. Interestingly, excessive maternal feeding significantly exacerbated the phenotype. Homozygous mutant dxavu463 zebrafish have swollen and hyperplastic neural progenitor cells, hepatocytes and kidney tubule cells as well as elevations in triacylglycerol, cerebroside sulfate and cholesterol levels. Their mitochondria were also greatly enlarged, lacked normal cristae, and were dysfunctional. We also found increased signaling of the mechanistic target of rapamycin complex 1 (mTORC1) with enlarged cell size and proliferation. Treatment with rapamycin partially reversed these abnormalities. Our results indicate that etfa gene function is remarkably conserved in zebrafish as compared to humans with highly similar pathological, biochemical abnormalities to those reported in children with MADD. Altered mTORC1 signaling and maternal nutritional status may play critical roles in MADD disease progression and suggest novel treatment approaches that may ameliorate disease severity. PMID:23785301

Kim, Seok-Hyung; Scott, Sarah A.; Bennett, Michael J.; Carson, Robert P.; Fessel, Joshua; Brown, H. Alex; Ess, Kevin C.

2013-01-01

276

Low-dose mistletoe lectin-I reduces melanoma growth and spread in a scid mouse xenograft model  

PubMed Central

This study investigates the effects of mistletoe lectin-I (ML-I) on melanoma growth and spread in vivo. The human melanoma cell line MV3 was xenografted into severe combined immunodeficient mice and vehicle solution or purified ML-I was administered at 30, 150 and 500?ng per kg body weight (20 mice per group) daily. After 19 days, mice were killed, primary tumours (PTs) and lungs were dissected out, and tumour weights, number of lung metastases (LMs), number of tumour-infiltrating dendritic cells (DCs), and apoptosis rates in the melanoma cells and in the DCs were assessed. A 35% reduction of PT weight (P=0.03) and a 55% decrease in number of LMs (P=0.016) were evident for low-dose ML-I (30?ng?kg?1) treatment but not for higher doses. Mistletoe lectin-I increased apoptosis rates in the melanoma cells of PTs at all doses, while no induction of apoptosis was noted in the LMs. Low-dose ML-I significantly increased the number of DCs infiltrating the PTs (P<0.0001) and protected DCs against apoptosis, while higher doses induced apoptosis in the DCs (P<0.01). Our results demonstrate that low-dose ML-I reduced melanoma growth and number of metastases in vivo, primarily due to immunomodulatory effects. PMID:18026191

Thies, A; Dautel, P; Meyer, A; Pfuller, U; Schumacher, U

2007-01-01

277

HIF-1? regulated tongue squamous cell carcinoma cell growth via regulating VEGF expression in a xenograft model  

PubMed Central

Objective We aimed to study the mechanism of hypoxia-inducible factor 1 alpha (HIF-1?) regulating the cell proliferation of tongue squamous cell carcinoma (TSCC) via vascular endothelial growth factor (VEGF). Methods We used RNA interference (RNAi) technique, transfected chemically synthesized siRNA against HIF-1? into CAL-27 cells, and detected the expression of HIF-1? and VEGF by real time-PCR and Western blotting in order to find out if HIF-1? regulated the expression of VEGF. A xenograft experiment was carried out to observe the role of HIF-1? on the tumor growth of tongue squamous cell carcinoma. Results HIF-1? and VEGF mRNA expression was significantly downregulated 36 and 48 h after transfection (P<0.05); the protein expression of HIF-1? and VEGF was also significantly suppressed by siRNA against HIF-1?. Furthermore, intratumoraly injection of HIF-1? targeting siRNA suppressed tumor growth in nude mice. Conclusions HIF-1? regulated VEGF expression, and they may contribute to TSCC cell tumor growth.

Liang, Jun; Liang, Lizhong; Shen, Yun; Ouyang, Kexiong

2014-01-01

278

A Humanized Anti-VEGF Rabbit Monoclonal Antibody Inhibits Angiogenesis and Blocks Tumor Growth in Xenograft Models  

PubMed Central

Rabbit antibodies have been widely used in research and diagnostics due to their high antigen specificity and affinity. Though these properties are also highly desirable for therapeutic applications, rabbit antibodies have remained untapped for human disease therapy. To evaluate the therapeutic potential of rabbit monoclonal antibodies (RabMAbs), we generated a panel of neutralizing RabMAbs against human vascular endothelial growth factor-A (VEGF). These neutralizing RabMAbs are specific to VEGF and do not cross-react to other members of the VEGF protein family. Guided by sequence and lineage analysis of a panel of neutralizing RabMAbs, we humanized the lead candidate by substituting non-critical residues with human residues within both the frameworks and the CDR regions. We showed that the humanized RabMAb retained its parental biological properties and showed potent inhibition of the growth of H460 lung carcinoma and A673 rhabdomyosarcoma xenografts in mice. These studies provide proof of principle for the feasibility of developing humanized RabMAbs as therapeutics. PMID:20140208

Zhang, Yongke; Yu, Qiu; Lee, Jonathan; Li, Mingzhen; Song, Jialiang; Chen, Jungang; Dai, Jihong; Couto, Fernando Jose Rebelo Do; An, Zhiqiang; Zhu, Weimin; Yu, Guo-Liang

2010-01-01

279

Antibody Directed against Human YKL-40 Increases Tumor Volume in a Human Melanoma Xenograft Model in Scid Mice  

PubMed Central

Induced overexpression of the secretory protein YKL-40 promotes tumor growth in xenograft experiments. We investigated if targeting YKL-40 with a monoclonal antibody could inhibit tumor growth. YKL-40 expressing human melanoma cells (LOX) were injected subcutenously in Balb/c scid mice. Animals were treated with intraperitoneal injections of anti-YKL-40, isoptype control or PBS. Non-YKL-40 expressing human pancreatic carcinoma cell line PaCa 5061 served as additional control. MR imaging was used for evaluation of tumor growth. Two days after the first injections of anti-YKL-40, tumor volume had increased significantly compared with controls, whereas no effects were observed for control tumors from PaCa 5061 cells lacking YKL-40 expression. After 18 days, mean tumor size of the mice receiving repeated anti-YKL-40 injections was 1.82 g, >4 times higher than mean tumor size of the controls (0.42 g). The effect of anti-YKL-40 on the increase of tumor volume started within hours after injection and was dose dependent. Intratumoral hemorrhage was observed in the treated animals. The strong effect on tumor size indicates important roles for YKL-40 in melanoma growth and argues for a careful evaluation of antibody therapy directed against YKL-40. PMID:24752554

Salamon, Johannes; Hoffmann, Tatjana; Elies, Eva; Peldschus, Kersten; Johansen, Julia S.; Luers, Georg; Schumacher, Udo; Wicklein, Daniel

2014-01-01

280

Biodistribution and pharmacokinetics of a telodendrimer micellar paclitaxel nanoformulation in a mouse xenograft model of ovarian cancer  

PubMed Central

Background A multifunctional telodendrimer-based micelle system was characterized for delivery of imaging and chemotherapy agents to mouse tumor xenografts. Previous optical imaging studies demonstrated qualitatively that these classes of nanoparticles, called nanomicelles, preferentially accumulate at tumor sites in mice. The research reported herein describes the detailed quantitative imaging and biodistribution profiling of nanomicelles loaded with a cargo of paclitaxel. Methods The telodendrimer was covalently labeled with 125I and the nanomicelles were loaded with 14C-paclitaxel, which allowed measurement of pharmacokinetics and biodistribution in the mice using microSPECT/CT imaging and liquid scintillation counting, respectively. Results The radio imaging data showed preferential accumulation of nanomicelles at the tumor site along with a slower clearance rate than paclitaxel formulated in Cremophor EL (Taxol®). Liquid scintillation counting confirmed that 14C-labeled paclitaxel sequestered in nanomicelles had increased uptake by tumor tissue and slower pharmacokinetics than Taxol. Conclusion Overall, the results indicate that nanomicelle-formulated paclitaxel is a potentially superior formulation compared with Taxol in terms of water solubility, pharmacokinetics, and tumor accumulation, and may be clinically useful for both tumor imaging and improved chemotherapy applications. PMID:22605931

Xiao, Wenwu; Luo, Juntao; Jain, Teesta; Riggs, John W; Tseng, Harry P; Henderson, Paul T; Cherry, Simon R; Rowland, Douglas; Lam, Kit S

2012-01-01

281

Zebrafish in hematology: sushi or science?  

PubMed Central

After a decade of the “modern era” of zebrafish hematology research, what have been their major contributions to hematology and what challenges does the model face? This review argues that, in hematology, zebrafish have demonstrated their suitability, are proving their utility, have supplied timely and novel discoveries, and are poised for further significant contributions. It presents an overview of the anatomy, physiology, and genetics of zebrafish hematopoiesis underpinning their use in hematology research. Whereas reverse genetic techniques enable functional studies of particular genes of interest, forward genetics remains zebrafish's particular strength. Mutants with diverse and interesting hematopoietic defects are emerging from multiple genetic screens. Some mutants model hereditary blood diseases, occasionally leading to disease genes first; others provide insights into developmental hematology. Models of malignant hematologic disorders provide tools for drug-target and pharmaceutics discovery. Numerous transgenic zebrafish with fluorescently marked blood cells enable live-cell imaging of inflammatory responses and host-pathogen interactions previously inaccessible to direct observation in vivo, revealing unexpected aspects of leukocyte behavior. Zebrafish disease models almost uniquely provide a basis for efficient whole animal chemical library screens for new therapeutics. Despite some limitations and challenges, their successes and discovery potential mean that zebrafish are here to stay in hematology research. PMID:18182572

Carradice, Duncan

2008-01-01

282

A zebrafish model of PINK1 deficiency reveals key pathway dysfunction including HIF signaling.  

PubMed

The PTEN induced putative kinase 1 (PINK1) gene is mutated in patients with hereditary early onset Parkinson's disease (PD). The targets of PINK1 and the mechanisms in PD are still not fully understood. Here, we carried out a high-throughput and unbiased microarray study to identify novel functions and pathways for PINK1. In larval zebrafish, the function of pink1 was inhibited using splice-site morpholino oligonucleotides and the samples were hybridized on a two-color gene expression array. We found 177 significantly altered genes in pink1 morphants compared with the uninjected wildtype controls (log fold change values from -1.6 to +0.9). The five most prominent pathways based on critical biological processes and key toxicological responses were hypoxia-inducible factor (HIF) signaling, TGF-? signaling, mitochondrial dysfunction, RAR activation, and biogenesis of mitochondria. Furthermore, we verified that potentially important genes such as hif1?, catalase, SOD3, and atp1a2a were downregulated in pink1 morphants, whereas genes such as fech, pax2a, and notch1a were upregulated. Some of these genes have been found to play important roles in HIF signaling pathways. The pink1 morphants were found to have heart dysfunction, increased erythropoiesis, increased expression of vascular endothelial growth factors, and increased ROS. Our findings suggest that a lack of pink1 in zebrafish alters many vital and critical pathways in addition to the HIF signaling pathway. PMID:23454196

Priyadarshini, M; Tuimala, J; Chen, Y C; Panula, P

2013-06-01

283

Nature of Tumor Control by Permanently and Transiently Modified GD2 Chimeric Antigen Receptor T Cells in Xenograft Models of Neuroblastoma.  

PubMed

Chimeric antigen receptor (CAR) therapy has begun to demonstrate success as a novel treatment modality for hematologic malignancies. The success observed thus far has been with T cells permanently engineered to express chimeric receptors. T cells engineered using RNA electroporation represent an alternative with the potential for similar efficacy and greater safety when initially targeting novel antigens. Neuroblastoma is a common pediatric solid tumor with the potential to be targeted using immunotherapy. We performed xenograft studies in NSG mice in which we assessed the efficacy of both permanently modified and transiently modified CAR T cells directed against the neuroblastoma antigen GD2 in both local and disseminated disease models. Disease response was monitored by tumor volume measurement and histologic examination, as well as in vivo bioluminescence. RNA-modified GD2 CAR T cells mediated rapid tumor destruction when delivered locally. A single infusion of lentivirally modified GD2 CAR T cells resulted in long-term control of disseminated disease. Multiple infusions of RNA GD2 CAR T cells slowed the progression of disseminated disease and improved survival, but did not result in long-term disease control. Histologic examination revealed that the transiently modified cells were unable to significantly penetrate the tumor environment when delivered systemically, despite multiple infusions of CAR T cells. Thus, we demonstrate that RNA-modified GD2 CAR T cells can mediate effective antitumor responses in vivo, and permanently modified cells are able to control disseminated neuroblastoma in xenograft mice. Lack of long-term disease control by RNA-engineered cells resulted from an inability to penetrate the tumor microenvironment. Cancer Immunol Res; 2(11); 1059-70. ©2014 AACR. PMID:25104548

Singh, Nathan; Liu, Xiaojun; Hulitt, Jessica; Jiang, Shuguang; June, Carl H; Grupp, Stephan A; Barrett, David M; Zhao, Yangbing

2014-11-01

284

Thymoquinone Inhibits Tumor Growth and Induces Apoptosis in a Breast Cancer Xenograft Mouse Model: The Role of p38 MAPK and ROS  

PubMed Central

Due to narrow therapeutic window of cancer therapeutic agents and the development of resistance against these agents, there is a need to discover novel agents to treat breast cancer. The antitumor activities of thymoquinone (TQ), a compound isolated from Nigella sativa oil, were investigated in breast carcinoma in vitro and in vivo. Cell responses after TQ treatment were assessed by using different assays including MTT assay, annexin V-propidium iodide staining, Mitosox staining and Western blot. The antitumor effect was studied by breast tumor xenograft mouse model, and the tumor tissues were examined by histology and immunohistochemistry. The level of anti-oxidant enzymes/molecules in mouse liver tissues was measured by commercial kits. Here, we show that TQ induced p38 phosphorylation and ROS production in breast cancer cells. These inductions were found to be responsible for TQ’s anti-proliferative and pro-apoptotic effects. Moreover, TQ-induced ROS production regulated p38 phosphorylation but not vice versa. TQ treatment was found to suppress the tumor growth and this effect was further enhanced by combination with doxorubicin. TQ also inhibited the protein expression of anti-apoptotic genes, such as XIAP, survivin, Bcl-xL and Bcl-2, in breast cancer cells and breast tumor xenograft. Reduced Ki67 and increased TUNEL staining were observed in TQ-treated tumors. TQ was also found to increase the level of catalase, superoxide dismutase and glutathione in mouse liver tissues. Overall, our results demonstrated that the anti-proliferative and pro-apoptotic effects of TQ in breast cancer are mediated through p38 phosphorylation via ROS generation. PMID:24098377

Woo, Chern Chiuh; Hsu, Annie; Kumar, Alan Prem; Sethi, Gautam; Tan, Kwong Huat Benny

2013-01-01

285

Increased intratumoral fluorothymidine uptake levels following multikinase inhibitor sorafenib treatment in a human renal cell carcinoma xenograft model  

PubMed Central

An early identification of the tumor response to sorafenib treatment is indispensable for selecting optimal personalized treatment strategies. However, at present, no reliable predictors are clinically available. 18F-fluorothymidine (18F-FLT) positron emission tomography (PET) is used to assess tumor proliferation, since the FLT uptake level reflects thymidine kinase-1 (TK-1) activity. Thus, the present study determined whether FLT was able to evaluate the early tumor response to sorafenib treatment in a human renal cell carcinoma (RCC; A498) xenograft in comparison with the tumor proliferation marker, Ki-67. Mice bearing A498 tumors were assigned to the control and sorafenib-treated groups and the tumor volume was measured every day. [Methyl-3H(N)]-3?-fluoro-3?-deoxythymidine (3H-FLT) was injected 2 h prior to the sacrifice of the mice on days three and seven following the treatment. 3H-FLT autoradiography (ARG) and Ki-67 immunohistochemistry (IHC) were performed using adjacent tumor sections. In the visual assessment, the intratumoral 3H-FLT uptake level diffusely increased following the treatment, while no significant changes were observed in Ki-67 IHC. The intratumoral 3H-FLT uptake levels significantly increased by 2.7- and 2.6-fold on days three and seven following the treatment, while the tumor volume and Ki-67 index did not significantly change. Thus, an increased FLT uptake level was demonstrated following the treatment, which may indicate the suppression of thymidylate synthase (TS) and the compensatory upregulation of TK-1 activity by sorafenib. PMID:24137387

MURAKAMI, MASAHIRO; ZHAO, SONGJI; ZHAO, YAN; YU, WENWEN; FATEMA, CHOWDHURY NUSRAT; NISHIJIMA, KEN-ICHI; YAMASAKI, MASAHIRO; TAKIGUCHI, MITSUYOSHI; TAMAKI, NAGARA; KUGE, YUJI

2013-01-01

286

Characterization and assessment of the sensitivity and resistance of a newly established human gastrointestinal stromal tumour xenograft model to treatment with tyrosine kinase inhibitors  

PubMed Central

Background Acquired resistance to tyrosine kinase inhibitors (TKIs) in gastrointestinal stromal tumours (GISTs) is most commonly caused by secondary KIT or PDGFRA mutations. In this study we characterize a newly established GIST xenograft model, UZLX-GIST9, and evaluate the in vivo response of the model to standard TKIs (imatinib, sunitinib, and regorafenib). Methods Tumour fragments from a metastatic lesion of a GIST patient clinically progressing after treatment with imatinib, sunitinib and regorafenib were engrafted in a nude, immunodeficient mouse. Upon sequential passaging from mouse to mouse, tumour fragments were collected for histopathological and molecular characterization. The sensitivity of the model to treatment with TKIs was evaluated in 28 mice [passage 2 (n?=?8), passage 4 (n?=?20), 41 tumours]. Mice were grouped as follows: control (untreated), imatinib (50 mg/kg/BID), imatinib (100 mg/kg/BID), sunitinib (40 mg/kg/QD), and regorafenib (30 mg/kg/QD). After three weeks of oral treatment, tumours were collected for subsequent analysis. The efficacy of treatment was assessed by tumour volume, histopathology and Western immunoblotting. Results UZLX-GIST9 maintains the same typical morphological features and immunohistochemical characteristics as the original patient biopsy and expresses CD117 and DOG1. The KIT mutational profile (p.P577del + W557LfsX5+ D820G) remains the same as the original tissue sample originating from an intraspinal metastatic site. Three week treatment with different TKIs showed that the model is resistant to imatinib. Sunitinib induces tumour growth delay and regorafenib reduces the tumour burden by 30% as compared to control animals. While none of the TKIs had a significant effect on cell proliferation or cell survival, a remarkable increase of necrosis and significant reduction of microvessel density was observed under sunitinib and regorafenib. Western immunoblotting showed a mild reduction in KIT and AKT activation only in regorafenib treated tumours. Conclusions We established a novel human GIST xenograft, UZLX-GIST9, harbouring KIT exon 11 and 17 mutations and maintaining the pheno-and genotype of the original tumour. UZLX-GIST9 shows different levels of response to standard TKIs. This model will help to study TKI resistance and to explore novel treatment approaches for patients with TKI-resistant GIST. PMID:25132955

2014-01-01

287

Navigation by environmental geometry: the use of zebrafish as a model  

PubMed Central

SUMMARY Sensitivity to environmental shape in spatial navigation has been found, at both behavioural and neural levels, in virtually every species tested, starting early in development. Moreover, evidence that genetic deletions can cause selective deficits in such navigation behaviours suggests a genetic basis to navigation by environmental geometry. Nevertheless, the geometric computations underlying navigation have not been specified in any species. The present study teases apart the geometric components within the traditionally used rectangular enclosure and finds that zebrafish selectively represent distance and directional relationships between extended boundary surfaces. Similar behavioural results in geometric navigation tasks with human children provide prima facie evidence for similar underlying cognitive computations and open new doors for probing the genetic foundations that give rise to these computations. PMID:23788708

Lee, Sang Ah; Vallortigara, Giorgio; Flore, Michele; Spelke, Elizabeth S.; Sovrano, Valeria A.

2013-01-01

288

Zebrafish as a model for investigating developmental lead (Pb) neurotoxicity as a risk factor in adult neurodegenerative disease: a mini-review.  

PubMed

Lead (Pb) exposure has long been recognized to cause neurological alterations in both adults and children. While most of the studies in adults are related to higher dose exposure, epidemiological studies indicate cognitive decline and neurobehavioral alterations in children associated with lower dose environmental Pb exposure (a blood Pb level of 10?g/dL and below). Recent animal studies also now report that an early-life Pb exposure results in pathological hallmarks of Alzheimer's disease later in life. While previous studies evaluating higher Pb exposures in adult animal models and higher occupational Pb exposures in humans have suggested a link between higher dose Pb exposure during adulthood and neurodegenerative disease, these newer studies now indicate a link between an early-life Pb exposure and adult neurodegenerative disease. These studies are supporting the "fetal/developmental origin of adult disease" hypothesis and present a new challenge in our understanding of Pb neurotoxicity. There is a need to expand research in this area and additional model systems are needed. The zebrafish presents as a complementary vertebrate model system with numerous strengths including high genetic homology. Several zebrafish genes orthologous to human genes associated with neurodegenerative diseases including Alzheimer's and Parkinson's diseases are identified and this model is starting to be applied in neurodegenerative disease research. Moreover, the zebrafish is being used in developmental Pb neurotoxicity studies to define genetic mechanisms of toxicity and associated neurobehavioral alterations. While these studies are in their infancy, the genetic and functional conservation of genes associated with neurodegenerative diseases and application in developmental Pb neurotoxicity studies supports the potential for this in vivo model to further investigate the link between developmental Pb exposure and adult neurodegenerative disease pathogenesis. In this review, the major factors influencing the pathogenesis of neurodegenerative diseases, Pb neurotoxicity, the developmental origin of adult disease paradigm, and the zebrafish as a model system to investigate the developmental origin of low-dose Pb-induced neurodegenerative diseases is discussed. PMID:24698670

Lee, Jinyoung; Freeman, Jennifer L

2014-07-01

289

Aromatase Inhibitors and Xenograft Studies  

PubMed Central

Aromatase inhibitors (AIs) have become the front-line choice for treatment of ER+ breast cancer. Nevertheless, although patients are responsive initially, they may acquire resistance and become unresponsive to further treatment. In addition, approximately 25% of breast cancers do not express the estrogen receptor (ER?) and consequently, are innately resistant to endocrine therapy. We have investigated the mechanisms associated with this lack of treatment response using xenograft models. We found that in cells and tumors that acquired resistance to the AI letrozole therapy, expression of the ER was reduced whereas growth factor signally was enhanced, including a marked increase in HER2 expression. Treatment with trastuzumab (HER2 antibody) resulted in a significant down-regulation of HER2 and p-MAPK as well as restoration of ER? expression. Thus, when trastuzumab was added to letrozole treatment at the time of tumor progression, there was significantly prolonged tumor suppression compared to trastuzumab or letrozole alone. This suggests that inhibition of both HER2 and ER? signaling pathways are required for overcoming resistance and restoring treatment sensitivity. ER negative tumors are innately resistant to endocrine therapy. Repression of the ER? has been found to be due to epigenetic modifications such as increased methylation and histone deacetylation. We found that entinostat (ENT), a histone deacetylase inhibitor (HDACi), activated not only expression of ER? but also aromatase in MDA-MB-231 ER-negative breast cancer cells, resulting in their ability to respond to estrogen and letrozole. Treatment with ENT in combination with letrozole significantly reduced tumor growth rate in xenografts compared to control tumors (p <0.001). ENT plus letrozole treatment also prevented the colonization and growth of MDA-MB-231 cells in the lung with a significant reduction (p<0.03) in both visible and microscopic foci. These results provide a strong indication for possible use of AIs in combination with HDAC inhibitors for the treatment of ER-negative breast cancer. PMID:21420993

Chumsri, Saranya; Sabnis, Gauri J; Howes, Timothy; Brodie, Angela MH

2011-01-01

290

Automated measurement of zebrafish larval movement  

PubMed Central

Abstract The zebrafish is a powerful vertebrate model that is readily amenable to genetic, pharmacological and environmental manipulations to elucidate the molecular and cellular basis of movement and behaviour. We report software enabling automated analysis of zebrafish movement from video recordings captured with cameras ranging from a basic camcorder to more specialized equipment. The software, which is provided as open-source MATLAB functions, can be freely modified and distributed, and is compatible with multiwell plates under a wide range of experimental conditions. Automated measurement of zebrafish movement using this technique will be useful for multiple applications in neuroscience, pharmacology and neuropsychiatry. PMID:21646414

Cario, Clinton L; Farrell, Thomas C; Milanese, Chiara; Burton, Edward A

2011-01-01

291

Rapamycin enhances docetaxel-induced cytotoxicity in a androgen-independent prostate cancer xenograft model by survivin downregulation  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Rapamycin (RPM) enhances the susceptibility of PC3 cells to docetaxel. Black-Right-Pointing-Pointer Low-dosage of docetaxel (DTX) did not reduce survivin expression levels in PC3 cells. Black-Right-Pointing-Pointer Combination treatment of RPM with DTX suppressed the expression of surviving. Black-Right-Pointing-Pointer SiRNA against survivin enhanced the susceptibility of PC3 cells to DTX. Black-Right-Pointing-Pointer RPM and DTX cotreatment inhibited PC3 cell growth and decreased surviving in vivo. -- Abstract: Background: Docetaxel is a first-line treatment choice in castration-resistant prostate cancer (CRPC). However, the management of CRPC remains an important challenge in oncology. There have been many reports on the effects of rapamycin, which is an inhibitor of the mammalian target of rapamycin (mTOR), in the treatment of carcinogenesis. We assessed the cytotoxic effects of the combination treatment of docetaxel and rapamycin in prostate cancer cells. Furthermore, we examined the relationship between these treatments and survivin, which is a member of the inhibitory apoptosis family. Methods: Prostate cancer cells were cultured and treated with docetaxel and rapamycin. The effects on proliferation were evaluated with the MTS assay. In addition, we evaluated the effect on proliferation of the combination treatment induced knockdown of survivin expression by small interfering RNA transfection and docetaxel. Protein expression levels were assayed using western blotting. PC3 cells and xenograft growth in nude mice were used to evaluate the in vivo efficacy of docetaxel and its combination with rapamycin. Results: In vitro and in vivo, the combination of rapamycin with docetaxel resulted in a greater inhibition of proliferation than treatment with rapamycin or docetaxel alone. In addition, in vitro and in vivo, rapamycin decreased basal surviving levels, and cotreatment with docetaxel further decreased these levels. Transfection siRNA against survivin enhanced the cytotoxicity of docetaxel in PC3 cells. Conclusion: The rapamycin-dependent enhancement of the cytotoxic effects of docetaxel was associated with the downregulation of survivin expression. Our results suggest that the combination of docetaxel and rapamycin is a candidate for the improved treatment of advanced prostate cancer.

Morikawa, Yasuyuki, E-mail: yasu-m@med.gunma-u.ac.jp [Department of Urology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maeabshi, Gunma 3718511 (Japan)] [Department of Urology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maeabshi, Gunma 3718511 (Japan); Koike, Hidekazu; Sekine, Yoshitaka; Matsui, Hiroshi; Shibata, Yasuhiro; Ito, Kazuto; Suzuki, Kazuhiro [Department of Urology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maeabshi, Gunma 3718511 (Japan)] [Department of Urology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maeabshi, Gunma 3718511 (Japan)

2012-03-16

292

Longitudinal evaluation of the metabolic response of a tumor xenograft model to single fraction radiation therapy using magnetic resonance spectroscopy  

NASA Astrophysics Data System (ADS)

Proton magnetic resonance spectroscopy (MRS) was used to evaluate the metabolic profile of human glioblastoma multiform brain tumors grown as xenografts in nude mice before, and at multiple time points after single fraction radiation therapy. Tumors were grown over the thigh in 16 mice in this study, of which 5 served as untreated controls and 11 had their tumors treated to 800?cGy with 200?kVp x-rays. Spectra were acquired within 24?h pre-treatment, and then at 3, 7 and 14?d post-treatment using a 9.4?T animal magnetic resonance (MR) system. For the untreated control tumors, spectra (1-2 per mouse) were acquired at different stages of tumor growth. Spectra were obtained with the PRESS pulse sequence using a 3? × ?3 × 3?mm3 voxel. Analysis was performed with the LCModel software platform. Six metabolites were profiled for this analysis: alanine (Ala), myo-inositol (Ins), taurine (Tau), creatine and phosphocreatine (Cr + PCr), glutamine and glutamate (Glu + Gln), and total choline (glycerophosphocholine + phosphocholine) (GPC + PCh). For the treated cohort, most metabolite/water concentration ratios were found to decrease in the short term at 3 and 7?d post-treatment, followed by an increase at 14?d post-treatment toward pre-treatment values. The lowest concentrations were observed at 7?d post-treatment, with magnitudes (relative to pre-treatment concentration ratios) of: 0.42? ± ?24.6% (Ala), 0.43? ± ?15.3% (Ins), 0.68? ± ?27.9% (Tau), 0.52? ± ?14.6% (GPC+PCh), 0.49? ± ?21.0% (Cr + PCr) and 0.78? ± ?24.5% (Glu + Gln). Control animals did not demonstrate any significant correlation between tumor volume and metabolite concentration, indicating that the observed kinetics were the result of the therapeutic intervention. We have demonstrated the feasibility of using MRS to follow multiple metabolic markers over time for the purpose of evaluating therapeutic response of tumors to radiation therapy. This study provides supporting evidence that metabolite/water concentration ratios have the potential to be used as biomarkers for the assessment of the response to therapy.

Tessier, A. G.; Yahya, A.; Larocque, M. P.; Fallone, B. G.; Syme, A.

2014-09-01

293

Frankincense essential oil prepared from hydrodistillation of Boswellia sacra gum resins induces human pancreatic cancer cell death in cultures and in a xenograft murine model  

PubMed Central

Background Regardless of the availability of therapeutic options, the overall 5-year survival for patients diagnosed with pancreatic cancer remains less than 5%. Gum resins from Boswellia species, also known as frankincense, have been used as a major ingredient in Ayurvedic and Chinese medicine to treat a variety of health-related conditions. Both frankincense chemical extracts and essential oil prepared from Boswellia species gum resins exhibit anti-neoplastic activity, and have been investigated as potential anti-cancer agents. The goals of this study are to identify optimal condition for preparing frankincense essential oil that possesses potent anti-tumor activity, and to evaluate the activity in both cultured human pancreatic cancer cells and a xenograft mouse cancer model. Methods Boswellia sacra gum resins were hydrodistilled at 78°C; and essential oil distillate fractions were collected at different durations (Fraction I at 0–2 h, Fraction II at 8–10 h, and Fraction III at 11–12 h). Hydrodistillation of the second half of gum resins was performed at 100°C; and distillate was collected at 11–12 h (Fraction IV). Chemical compositions were identified by gas chromatography–mass spectrometry (GC-MS); and total boswellic acids contents were quantified by high-performance liquid chromatography (HPLC). Frankincense essential oil-modulated pancreatic tumor cell viability and cytotoxicity were determined by colorimetric assays. Levels of apoptotic markers, signaling molecules, and cell cycle regulators expression were characterized by Western blot analysis. A heterotopic (subcutaneous) human pancreatic cancer xenograft nude mouse model was used to evaluate anti-tumor capability of Fraction IV frankincense essential oil in vivo. Frankincense essential oil-induced tumor cytostatic and cytotoxic activities in animals were assessed by immunohistochemistry. Results Longer duration and higher temperature hydrodistillation produced more abundant high molecular weight compounds, including boswellic acids, in frankincense essential oil fraactions. Human pancreatic cancer cells were sensitive to Fractions III and IV (containing higher molecular weight compounds) treatment with suppressed cell viability and increased cell death. Essential oil activated the caspase-dependent apoptotic pathway, induced a rapid and transient activation of Akt and Erk1/2, and suppressed levels of cyclin D1 cdk4 expression in cultured pancreatic cancer cells. In addition, Boswellia sacra essential oil Fraction IV exhibited anti-proliferative and pro-apoptotic activities against pancreatic tumors in the heterotopic xenograft mouse model. Conclusion All fractions of frankincense essential oil from Boswellia sacra are capable of suppressing viability and inducing apoptosis of a panel of human pancreatic cancer cell lines. Potency of essential oil-suppressed tumor cell viability may be associated with the greater abundance of high molecular weight compounds in Fractions III and IV. Although chemical component(s) responsible for tumor cell cytotoxicity remains undefined, crude essential oil prepared from hydrodistillation of Boswellia sacra gum resins might be a useful alternative therapeutic agent for treating patients with pancreatic adenocarcinoma, an aggressive cancer with poor prognosis. PMID:23237355

2012-01-01

294

Defects of protein production in erythroid cells revealed in a zebrafish Diamond-Blackfan anemia model for mutation in RPS19  

PubMed Central

Diamond–Blackfan anemia (DBA) is a rare congenital red cell aplasia that classically presents during early infancy in DBA patients. Approximately, 25% of patients carry a mutation in the ribosomal protein (RP) S19 gene; mutations in RPS24, RPS17, RPL35A, RPL11, and RPL5 have been reported. How ribosome protein deficiency causes defects specifically to red blood cells in DBA has not been well elucidated. To genetically model the predominant ribosome defect in DBA, we generated an rps19 null mutant through the use of TALEN-mediated gene targeting in zebrafish. Molecular characterization of this mutant line demonstrated that rps19 deficiency reproduced the erythroid defects of DBA, including a lack of mature red blood cells and p53 activation. Notably, we found that rps19 mutants' production of globin proteins was significantly inhibited; however, globin transcript level was either increased or unaffected in rps19 mutant embryos. This dissociation of RNA/protein levels of globin genes was confirmed in another zebrafish DBA model with defects in rpl11. Using transgenic zebrafish with specific expression of mCherry in erythroid cells, we showed that protein production in erythroid cells was decreased when either rps19 or rpl11 was mutated. L-Leucine treatment alleviated the defects of protein production in erythroid cells and partially rescued the anemic phenotype in both rps19 and rpl11 mutants. Analysis of this model suggests that the decreased protein production in erythroid cells likely contributes to the blood-specific phenotype of DBA. Furthermore, the newly generated rps19 zebrafish mutant should serve as a useful animal model to study DBA. Our in vivo findings may provide clues for the future therapy strategy for DBA. PMID:25058426

Zhang, Y; Ear, J; Yang, Z; Morimoto, K; Zhang, B; Lin, S

2014-01-01

295

A vertebrate model for the study of lipid binding/transfer protein function: conservation of OSBP-related proteins between zebrafish and human.  

PubMed

Oxysterol-binding protein (OSBP) and OSBP-related (ORP) or OSBP-like (OSBPL) proteins constitute a family of lipid-binding/transfer proteins (LTPs) present in eukaryotes from yeast to man. The mechanisms of ORP function have remained incompletely understood. However, several ORPs are present at membrane contact sites and act as either lipid transporters or sensors that control lipid metabolism, cell signaling, and vesicle transport. Zebrafish, Danio rerio, has gained increasing popularity as a model organism in developmental biology, human disease, toxicology, and drug discovery. However, LTPs in the fish are thus far unexplored. In this article we report a series of bioinformatic analyses showing that the OSBPL gene family is highly conserved between the fish and human. The OSBPL subfamily structure is markedly similar between the two organisms, and all 12 human genes have orthologs, designated osbpl and located on 11 chromosomes in D. rerio. Interestingly, osbpl2 and osbpl3 are present as two closely related homologs (a and b), due to gene duplication events in the teleost lineage. Moreover, the domain structures of the distinct ORP proteins are almost identical between zebrafish and man, and molecular modeling in the present study suggests that ORD liganding by phosphatidylinositol-4-phosphate (PI4P) is a feature conserved between yeast Osh3p, human ORP3, and zebrafish Osbpl3. The present analysis identifies D. rerio as an attractive model to study the functions of ORPs in vertebrate development and metabolism. PMID:24326072

Zhou, You; Wohlfahrt, Gerd; Paavola, Jere; Olkkonen, Vesa M

2014-04-11

296

Multifactorial Origins of Heart and Gut Defects in nipbl-Deficient Zebrafish, a Model of Cornelia de Lange Syndrome  

Microsoft Academic Search

nipbl-deficient zebrafish provide evidence that heart and gut defects in Cornelia de Lange Syndrome are caused by combined effects of multiple gene expression changes that occur during early embryonic development.

Akihiko Muto; Anne L. Calof; Arthur D. Lander; Thomas F. Schilling

2011-01-01

297

Enhanced antitumor activity and mechanism of biodegradable polymeric micelles-encapsulated chetomin in both transgenic zebrafish and mouse models  

NASA Astrophysics Data System (ADS)

Chetomin is a promising molecule with anti-tumor activities in the epipolythiodioxopiperazine family of fungal secondary metabolites; however, strong hydrophobicity has limited its further applications. In this work, chetomin was encapsulated into polymeric micelles to obtain an aqueous formulation, and the chetomin loaded micelles (Che-M) exhibited small particle size and high encapsulation efficiency. When the concentration of copolymer was higher than the critical gelation concentration, the Che-M could form a thermosensitive hydrogel (Che-H), which was free-flowing sol at ambient temperature and converted into a non-flowing gel at body temperature. The molecular modeling study has indicated that chetomin interacted with PCL as a core, which was embraced by PEG as a shell. Che-M showed equal cytotoxicity with free chetomin, but the apoptosis inducing effects of Che-M were more significant. Besides, Che-M could increase the GSSG level, decrease the GSH level, and increase the ROS in CT26 cells. Furthermore, stronger inhibitory effects of Che-M were observed on embryonic angiogenesis, tumor-induced angiogenesis and tumor growth in transgenic zebrafish models. In addition, Che-M was effective in inhibiting tumor growth and prolonging survival in a subcutaneous CT26 tumor model. In a colorectal peritoneal carcinomatosis model, both Che-M and Che-H showed excellent therapeutic effects, but Che-H was more effective. In conclusion, Che-M and Che-H may serve as candidates for cancer therapy.

Wu, Qinjie; Li, Guoyou; Deng, Senyi; Ouyang, Liang; Li, Ling; Liu, Lei; Luo, Na; Song, Xiangrong; He, Gu; Gong, Changyang; Wei, Yuquan

2014-09-01

298

Enhanced antitumor activity and mechanism of biodegradable polymeric micelles-encapsulated chetomin in both transgenic zebrafish and mouse models.  

PubMed

Chetomin is a promising molecule with anti-tumor activities in the epipolythiodioxopiperazine family of fungal secondary metabolites; however, strong hydrophobicity has limited its further applications. In this work, chetomin was encapsulated into polymeric micelles to obtain an aqueous formulation, and the chetomin loaded micelles (Che-M) exhibited small particle size and high encapsulation efficiency. When the concentration of copolymer was higher than the critical gelation concentration, the Che-M could form a thermosensitive hydrogel (Che-H), which was free-flowing sol at ambient temperature and converted into a non-flowing gel at body temperature. The molecular modeling study has indicated that chetomin interacted with PCL as a core, which was embraced by PEG as a shell. Che-M showed equal cytotoxicity with free chetomin, but the apoptosis inducing effects of Che-M were more significant. Besides, Che-M could increase the GSSG level, decrease the GSH level, and increase the ROS in CT26 cells. Furthermore, stronger inhibitory effects of Che-M were observed on embryonic angiogenesis, tumor-induced angiogenesis and tumor growth in transgenic zebrafish models. In addition, Che-M was effective in inhibiting tumor growth and prolonging survival in a subcutaneous CT26 tumor model. In a colorectal peritoneal carcinomatosis model, both Che-M and Che-H showed excellent therapeutic effects, but Che-H was more effective. In conclusion, Che-M and Che-H may serve as candidates for cancer therapy. PMID:25175172

Wu, Qinjie; Li, Guoyou; Deng, Senyi; Ouyang, Liang; Li, Ling; Liu, Lei; Luo, Na; Song, Xiangrong; He, Gu; Gong, Changyang; Wei, Yuquan

2014-10-21

299

Zebrafish as a Model Organism for the Identification and Characterization of Drugs and Genes Affecting p53 Signaling  

Microsoft Academic Search

p53 and its main negative regulator, Mdm2, are key players in mammalian cancer development. Activation of the transcription factor p53 through DNA damage or other stresses can result in cell cycle arrest, apoptosis, or both [1, 2]. Because of the absence of characterized p53 signaling in zebrafish (Danio rerio), we have studied the roles of Mdm2 and p53 in zebrafish

Ulrike Langheinrich; Elisabeth Hennen; Gordon Stott; Gabi Vacun

2002-01-01

300

Histocompatibility and Hematopoietic Transplantation in the Zebrafish  

PubMed Central

The zebrafish has proven to be an excellent model for human disease, particularly hematopoietic diseases, since these fish make similar types of blood cells as humans and other mammals. The genetic program that regulates the development and differentiation of hematopoietic cells is highly conserved. Hematopoietic stem cells (HSCs) are the source of all the blood cells needed by an organism during its lifetime. Identifying an HSC requires a functional assay, namely, a transplantation assay consisting of multilineage engraftment of a recipient and subsequent serial transplant recipients. In the past decade, several types of hematopoietic transplant assays have been developed in the zebrafish. An understanding of the major histocompatibility complex (MHC) genes in the zebrafish has lagged behind transplantation experiments, limiting the ability to perform unbiased competitive transplantation assays. This paper summarizes the different hematopoietic transplantation experiments performed in the zebrafish, both with and without immunologic matching, and discusses future directions for this powerful experimental model of human blood diseases. PMID:22778744

de Jong, Jill L. O.; Zon, Leonard I.

2012-01-01

301

Arsenic trioxide inhibits viability of pancreatic cancer stem cells in culture and in a xenograft model via binding to SHH-Gli  

PubMed Central

Objective Overexpression of the sonic hedgehog (SHH) signaling pathway is an essential characteristic of pancreatic cancer stem cells (PCSCs) and arsenic trioxide (ATO) is described as a SHH inhibitor. This study evaluates whether ATO has the potential to inhibit viability of PCSCs via binding to SHH-Gli proteins. Methods Cell counting kit-8 and flow cytometry were used for analyzing apoptosis in cells in vitro. The animal model was an athymic nude mouse model bearing subcutaneous xenografts of SW1990 pancreatic cancer cells. The terminal deoxynucleotidyl transferase dUTP nick end labeling assay and immunohistochemistry were used for tumor tissue analysis. The interaction between Gli1 and ATO was examined by a confocal system and an ultraviolet absorption spectrum assay. Results ATO induced apoptosis in pancreatic cancer cells, especially CD24+CD44+ cells in vitro. Combination treatment of ATO and low dose gemcitabine inhibited tumor growth by 60.9% (P = 0.004), and decreased the expression of CD24, CD44, and aldehyde dehydrogenase 1 family, member A1 significantly in vivo. ATO changed the structure of the recombinant Gli1 zinc finger peptides in a cell-free condition and the binding action of ATO to recombinant Gli1 was observed in cultured pancreatic cancer cells. Conclusion ATO may have the potential to inhibit viability of PCSCs via binding to SHH-Gli proteins in vitro and in vivo. PMID:23990729

Han, Jin-bin; Sang, Feng; Chang, Jin-jia; Hua, Yong-qiang; Shi, Wei-dong; Tang, Li-hua; Liu, Lu-ming

2013-01-01

302

Using zebrafish models to explore genetic and epigenetic impacts on evolutionary developmental origins of aging.  

PubMed

Can we reset, reprogram, rejuvenate, or reverse the organismal aging process? Certain genetic manipulations could at least reset and reprogram epigenetic dynamics beyond phenotypic plasticity and elasticity in cells, which can be manipulated further into organisms. However, in a whole complex aging organism, how can we rejuvenate intrinsic resources and infrastructures in an intact and noninvasive manner? The incidence of diseases increases exponentially with age, accompanied by progressive deteriorations of physiological functions in organisms. Aging-associated diseases are sporadic but essentially inevitable complications arising from senescence. Senescence is often considered the antithesis of early development, but yet there may be factors and mechanisms in common between these 2 phenomena to rejuvenate over the dynamic process of aging. The association between early development and late-onset disease with advancing age is thought to come from a consequence of developmental plasticity, the phenomenon by which one genotype can give rise to a range of physiologically and/or morphologically adaptive states based on diverse epigenotypes in response to intrinsic or extrinsic environmental cues and genetic perturbations. We hypothesized that the future aging process can be predictive based on adaptivity during the early developmental period. Modulating the thresholds and windows of plasticity and its robustness by molecular genetic and chemical epigenetic approaches, we have successfully conducted experiments to isolate zebrafish mutants expressing apparently altered senescence phenotypes during their embryonic and/or larval stages ("embryonic/larval senescence"). Subsequently, at least some of these mutant animals were found to show a shortened life span, whereas others would be expected to live longer into adulthood. We anticipate that previously uncharacterized developmental genes may mediate the aging process and play a pivotal role in senescence. On the other hand, unexpected senescence-related genes might also be involved in the early developmental process and its regulation. The ease of manipulation using the zebrafish system allows us to conduct an exhaustive exploration of novel genes, genotypes, and epigenotypes that can be linked to the senescence phenotype, which facilitates searching for the evolutionary and developmental origins of aging in vertebrates. PMID:24239812

Kishi, Shuji

2014-02-01

303

Co-activation of hedgehog and AKT pathways promote tumorigenesis in zebrafish  

Microsoft Academic Search

The zebrafish has become an important model for cancer research. Several cancer models have been established by transgenic expression of human or mouse oncogenes in zebrafish. Since it is amenable to efficient transgenesis, zebrafish have immense potential to be used for studying interaction of oncogenes and pathways at the organismal level. Using the Gal4VP16-UAS binary transgenic expression approach, we established

Bensheng Ju; Jan Spitsbergen; Christopher J Eden; Michael R Taylor; Wenbiao Chen

2009-01-01

304

Zebrafish dracula encodes ferrochelatase and its mutation provides a model for erythropoietic protoporphyria.  

PubMed

Exposure to light precipitates the symptoms of several genetic disorders that affect both skin and internal organs. It is presumed that damage to non-cutaneous organs is initiated indirectly by light, but this is difficult to study in mammals. Zebrafish have an essentially transparent periderm for the first days of development. In a previous large-scale genetic screen we isolated a mutation, dracula (drc), which manifested as a light-dependent lysis of red blood cells [1]. We report here that protoporphyrin IX accumulates in the mutant embryos, suggesting a deficiency in the activity of ferrochelatase, the terminal enzyme in the pathway for heme biosynthesis. We find that homozygous drc(m248) mutant embryos have a G-->T transversion at a splice donor site in the ferrochelatase gene, creating a premature stop codon. The mutant phenotype, which shows light-dependent hemolysis and liver disease, is similar to that seen in humans with erythropoietic protoporphyria, a disorder of ferrochelatase. PMID:10985389

Childs, S; Weinstein, B M; Mohideen, M A; Donohue, S; Bonkovsky, H; Fishman, M C

2000-08-24

305

Mycobacteria Counteract a TLR-Mediated Nitrosative Defense Mechanism in a Zebrafish Infection Model  

PubMed Central

Pulmonary tuberculosis (TB), caused by the intracellular bacterial pathogen Mycobacterium tuberculosis (Mtb), is a major world health problem. The production of reactive nitrogen species (RNS) is a potent cytostatic and cytotoxic defense mechanism against intracellular pathogens. Nevertheless, the protective role of RNS during Mtb infection remains controversial. Here we use an anti-nitrotyrosine antibody as a readout to study nitration output by the zebrafish host during early mycobacterial pathogenesis. We found that recognition of Mycobacterium marinum, a close relative of Mtb, was sufficient to induce a nitrosative defense mechanism in a manner dependent on MyD88, the central adaptor protein in Toll like receptor (TLR) mediated pathogen recognition. However, this host response was attenuated by mycobacteria via a virulence mechanism independent of the well-characterized RD1 virulence locus. Our results indicate a mechanism of pathogenic mycobacteria to circumvent host defense in vivo. Shifting the balance of host-pathogen interactions in favor of the host by targeting this virulence mechanism may help to alleviate the problem of infection with Mtb strains that are resistant to multiple drug treatments. PMID:24967596

van Hensbergen, Vincent; Schutz, Esther; Redd, Michael J.; Murayama, Emi; Spaink, Herman P.; Meijer, Annemarie H.

2014-01-01

306

Larval Zebrafish Model for FDA-Approved Drug Repositioning for Tobacco Dependence Treatment  

PubMed Central

Cigarette smoking remains the most preventable cause of death and excess health care costs in the United States, and is a leading cause of death among alcoholics. Long-term tobacco abstinence rates are low, and pharmacotherapeutic options are limited. Repositioning medications approved by the U.S. Food and Drug Administration (FDA) may efficiently provide clinicians with new treatment options. We developed a drug-repositioning paradigm using larval zebrafish locomotion and established predictive clinical validity using FDA-approved smoking cessation therapeutics. We evaluated 39 physician-vetted medications for nicotine-induced locomotor activation blockade. We further evaluated candidate medications for altered ethanol response, as well as in combination with varenicline for nicotine-response attenuation. Six medications specifically inhibited the nicotine response. Among this set, apomorphine and topiramate blocked both nicotine and ethanol responses. Both positively interact with varenicline in the Bliss Independence test, indicating potential synergistic interactions suggesting these are candidates for translation into Phase II clinical trials for smoking cessation. PMID:24658307

Cousin, Margot A.; Ebbert, Jon O.; Wiinamaki, Amanda R.; Urban, Mark D.; Argue, David P.; Ekker, Stephen C.; Klee, Eric W.

2014-01-01

307

Development of a Preclinical Orthotopic Xenograft Model of Ewing Sarcoma and Other Human Malignant Bone Disease Using Advanced In Vivo Imaging  

PubMed Central

Ewing sarcoma and osteosarcoma represent the two most common primary bone tumours in childhood and adolescence, with bone metastases being the most adverse prognostic factor. In prostate cancer, osseous metastasis poses a major clinical challenge. We developed a preclinical orthotopic model of Ewing sarcoma, reflecting the biology of the tumour-bone interactions in human disease and allowing in vivo monitoring of disease progression, and compared this with models of osteosarcoma and prostate carcinoma. Human tumour cell lines were transplanted into non-obese diabetic/severe combined immunodeficient (NSG) and Rag2?/?/?c?/? mice by intrafemoral injection. For Ewing sarcoma, minimal cell numbers (1000–5000) injected in small volumes were able to induce orthotopic tumour growth. Tumour progression was studied using positron emission tomography, computed tomography, magnetic resonance imaging and bioluminescent imaging. Tumours and their interactions with bones were examined by histology. Each tumour induced bone destruction and outgrowth of extramedullary tumour masses, together with characteristic changes in bone that were well visualised by computed tomography, which correlated with post-mortem histology. Ewing sarcoma and, to a lesser extent, osteosarcoma cells induced prominent reactive new bone formation. Osteosarcoma cells produced osteoid and mineralised “malignant” bone within the tumour mass itself. Injection of prostate carcinoma cells led to osteoclast-driven osteolytic lesions. Bioluminescent imaging of Ewing sarcoma xenografts allowed easy and rapid monitoring of tumour growth and detection of tumour dissemination to lungs, liver and bone. Magnetic resonance imaging proved useful for monitoring soft tissue tumour growth and volume. Positron emission tomography proved to be of limited use in this model. Overall, we have developed an orthotopic in vivo model for Ewing sarcoma and other primary and secondary human bone malignancies, which resemble the human disease. We have shown the utility of small animal bioimaging for tracking disease progression, making this model a useful assay for preclinical drug testing. PMID:24409320

Batey, Michael A.; Almeida, Gilberto S.; Wilson, Ian; Dildey, Petra; Sharma, Abhishek; Blair, Helen; Hide, I. Geoff; Heidenreich, Olaf; Vormoor, Josef; Maxwell, Ross J.; Bacon, Chris M.

2014-01-01

308

Robust and cost effective expansion of human regulatory T cells highly functional in a xenograft model of graft-versus-host disease.  

PubMed

The low frequency of naturally occurring regulatory T cells (nTregs) in peripheral blood and the suboptimal protocols available for their ex vivo expansion limit the development of clinical trials based on the adoptive transfer of these cells. We have, therefore, generated a simplified, robust and cost-effective platform for the large-scale expansion of nTregs using a gas permeable static culture flask (G-Rex) in compliance with Good Manufacturing Practice. More than 10(9) putative Tregs co-expressing CD25 and CD4 molecules (92 ± 5%) and FoxP3 (69 ± 19%) were obtained within 21 days of culture. Expanded Tregs showed potent regulatory activity in vitro (80 ± 13% inhibition of CD8(+) cell division) and in vivo (suppression or delay of graft-versus-host disease in a xenograft mouse model) indicating that the cost-effective and simplified production of nTregs we propose will facilitate the implementation of clinical trials based on their adoptive transfer. PMID:23242592

Chakraborty, Rikhia; Mahendravada, Aruna; Perna, Serena K; Rooney, Cliona M; Heslop, Helen E; Vera, Juan F; Savoldo, Barbara; Dotti, Gianpietro

2013-04-01

309

Ultrasound Targeted Apoptosis Imaging in Monitoring Early Tumor Response of Trastuzumab in a Murine Tumor Xenograft Model of Her-2–Positive Breast Cancer11  

PubMed Central

OBJECTIVE: Our study aimed to monitor the trastuzumab therapy response of murine tumor xenograft model with human epidermal growth factor receptor 2 (Her-2)–positive breast cancer using ultrasound targeted apoptosis imaging. METHODS: We prepared targeted apoptosis ultrasound probes by nanobubble (NB) binding with Annexin V. In vitro, we investigated the binding rate of NB–Annexin V with breast cancer apoptotic cells after the trastuzumab treatment. In vivo, tumor-bearing mice underwent ultrasound targeted imaging over 7 days. After imaging was completed, the tumors were excised to determine Her-2 and caspase-3 expression by immunohistochemistry (IHC). The correlation between parameters of imaging and histologic results was then analyzed. RESULTS: For seeking the ability of targeted NB binding with apoptotic tumor cells (Her-2 positive), we found that binding rate in the treatment group was higher than that of the control group in vitro (P = .001). There were no differences of tumor sizes in all groups over the treatment process in vivo (P = .98). However, when using ultrasound imaging to visualize tumors by targeted NB in vivo, we observed that the mean and peak intensities from NBs gradually increased in the treatment group after trastuzumab therapy (P = .001). Furthermore, these two parameters were significantly associated with caspase-3 expression of tumor excised samples (P = .0001). CONCLUSION: Ultrasound targeted apoptosis imaging can be a non-invasive technique to evaluate the early breast tumor response to trastuzumab therapy. PMID:24685547

Wei, Xi; Li, Ying; Zhang, Sheng; Gao, Xiujun; Luo, Yi; Gao, Ming

2014-01-01

310

Combination of the c-Met Inhibitor Tivantinib and Zoledronic Acid Prevents Tumor Bone Engraftment and Inhibits Progression of Established Bone Metastases in a Breast Xenograft Model  

PubMed Central

Bone is the most common metastatic site for breast cancer. There is a significant need to understand the molecular mechanisms controlling the engraftment and growth of tumor cells in bone and to discover novel effective therapeutic strategies. The aim of this study was to assess the effects of tivantinib and Zoledronic Acid (ZA) in combination in a breast xenograft model of bone metastases. Cancer cells were intracardially implanted into immunodeficient mice and the effects of drugs alone or in combination on bone metastasis were evaluated by in vivo non-invasive optical and micro-CT imaging technologies. Drugs were administered either before (preventive regimen) or after (therapeutic regimen) bone metastases were detectable. In the preventive regimen, the combination of tivantinib plus ZA was much more effective than single agents in delaying bone metastatic tumor growth. When administered in the therapeutic schedule, the combination delayed metastatic progression and was effective in improving survival. These effects were not ascribed to a direct cytotoxic effect of the combined therapy on breast cancer cells in vitro. The results of this study provide the rationale for the design of new combinatorial strategies with tivantinib and ZA for the treatment of breast cancer bone metastases. PMID:24260160

Previdi, Sara; Scolari, Federica; Chila, Rosaria; Ricci, Francesca; Abbadessa, Giovanni; Broggini, Massimo

2013-01-01

311

Selective small molecule Stat3 inhibitor reduces breast cancer tumor-initiating cells and improves recurrence free survival in a human-xenograft model.  

PubMed

Metastasis and disease relapse are hypothesized to result from tumor initiating cells (TICs). Previously, we have defined a CD44+/CD24-/low mammosphere-forming tumorigenic 493-gene signature in breast cancer. Stat3 was identified as a critical node in self-renewal based on an ongoing lentiviral shRNA screen being conducted in two breast cancer cell lines SUM159 and BT549. In corroborating work, targeting the SH2 domain of Stat3 with a novel small molecule decreased the percentage of cells expressing TIC markers (CD44+/CD24-/low and ALDH+) and mammosphere formation in p-Stat3 overexpressing human breast cancer xenografts in SCID-beige mice. Importantly, we observed a four-fold improvement in the 30-day recurrence-free survival relative to docetaxel alone with the addition of the Stat3 inhibitor in the chemoresistant tumor model. Thus, these findings provide a strong impetus for the development of selective Stat3 inhibitors in order to improve survival in patients with p-Stat3 overexpressing tumors. PMID:22879872

Dave, Bhuvanesh; Landis, Melissa D; Tweardy, David J; Chang, Jenny C; Dobrolecki, Lacey E; Wu, Meng-Fen; Zhang, Xiaomei; Westbrook, Thomas F; Hilsenbeck, Susan G; Liu, Dan; Lewis, Michael T

2012-01-01

312

Selective Small Molecule Stat3 Inhibitor Reduces Breast Cancer Tumor-Initiating Cells and Improves Recurrence Free Survival in a Human-Xenograft Model  

PubMed Central

Metastasis and disease relapse are hypothesized to result from tumor initiating cells (TICs). Previously, we have defined a CD44+/CD24?/low mammosphere-forming tumorigenic 493-gene signature in breast cancer. Stat3 was identified as a critical node in self-renewal based on an ongoing lentiviral shRNA screen being conducted in two breast cancer cell lines SUM159 and BT549. In corroborating work, targeting the SH2 domain of Stat3 with a novel small molecule decreased the percentage of cells expressing TIC markers (CD44+/CD24?/low and ALDH+) and mammosphere formation in p-Stat3 overexpressing human breast cancer xenografts in SCID-beige mice. Importantly, we observed a four-fold improvement in the 30-day recurrence-free survival relative to docetaxel alone with the addition of the Stat3 inhibitor in the chemoresistant tumor model. Thus, these findings provide a strong impetus for the development of selective Stat3 inhibitors in order to improve survival in patients with p-Stat3 overexpressing tumors. PMID:22879872

Dave, Bhuvanesh; Landis, Melissa D.; Dobrolecki, Lacey E.; Wu, Meng-Fen; Zhang, Xiaomei; Westbrook, Thomas F.; Hilsenbeck, Susan G.; Liu, Dan; Lewis, Michael T.; Tweardy, David J.; Chang, Jenny C.

2012-01-01

313

C7a, a Biphosphinic Cyclopalladated Compound, Efficiently Controls the Development of a Patient-Derived Xenograft Model of Adult T Cell Leukemia/Lymphoma  

PubMed Central

Adult T-cell leukemia/lymphoma (ATLL) is a highly aggressive disease that occurs in individuals infected with the human T lymphotropic virus type 1 (HTLV-1). Patients with aggressive ATLL have a poor prognosis because the leukemic cells are resistant to conventional chemotherapy. We have investigated the therapeutic efficacy of a biphosphinic cyclopalladated complex {Pd2 [S(?)C2, N-dmpa]2 (?-dppe)Cl2}, termed C7a, in a patient-derived xenograft model of ATLL, and investigated the mechanism of C7a action in HTLV-1-positive and negative transformed T cell lines in vitro. In vivo survival studies in immunocompromised mice inoculated with human RV-ATL cells and intraperitoneally treated with C7a led to significantly increased survival of the treated mice. We investigated the mechanism of C7a activity in vitro and found that it induced mitochondrial release of cytochrome c, caspase activation, nuclear condensation and DNA degradation. These results suggest that C7a triggers apoptotic cell death in both HTLV-1 infected and uninfected human transformed T-cell lines. Significantly, C7a was not cytotoxic to peripheral blood mononuclear cells (PBMC) from healthy donors and HTLV-1-infected individuals. C7a inhibited more than 60% of the ex vivo spontaneous proliferation of PBMC from HTLV-1-infected individuals. These results support a potential therapeutic role for C7a in both ATLL and HTLV-1-negative T-cell lymphomas. PMID:21994769

Guimaraes-Correa, Ana B.; Crawford, Lindsey B.; Figueiredo, Carlos R.; Gimenes, Karina P.; Pinto, Lorena A.; Rios Grassi, Maria Fernanda; Feuer, Gerold; Travassos, Luiz R.; Caires, Antonio C.F.; Rodrigues, Elaine G.; Marriott, Susan J.

2011-01-01

314

Efficacy and toxicity of a CD22-targeted antibody-saporin conjugate in a xenograft model of non-Hodgkin’s lymphoma  

PubMed Central

Antibody drug conjugates (ADCs) can deliver potent drugs to cancer cells by employing the specificity of monoclonal antibodies (mAbs). ADCs have demonstrated significant anticancer activity and, in 2011, brentuximab vedotin has been approved by the FDA for the treatment of Hodgkin's and anaplastic large cell lymphomas. CD22 is an ideal target for ADC against B-cell malignancies because of its lineage-specific expression and rapid internalization upon antibody binding. In this study, we evaluated the anti-CD22 mAb HB22.7 as a vehicle for the targeted delivery of the potent toxin saporin (SAP). In vitro, HB22.7-SAP was cytotoxic against a panel of non-Hodgkin's lymphoma (NHL) cell lines representing the most common types of the disease. Moreover, in a xenograft model of NHL, HB22.7-SAP significantly inhibited the growth of established lesions and completely prevented tumor development when treatment was initiated within 24 h from tumor-cell inoculation. HB22.7-SAP had no significant in vivo toxicity. In conclusion, HB22.7 constitutes a potential platform for CD22-targeted ADCs. PMID:23264893

Kato, Jason; O’Donnell, Robert T.; Abuhay, Mastewal; Tuscano, Joseph M.

2012-01-01

315

Zebrafish models for dyskeratosis congenita reveal critical roles of p53 activation contributing to hematopoietic defects through RNA processing.  

PubMed

Dyskeratosis congenita (DC) is a rare bone marrow failure syndrome in which hematopoietic defects are the main cause of mortality. The most studied gene responsible for DC pathogenesis is DKC1 while mutations in several other genes encoding components of the H/ACA RNP telomerase complex, which is involved in ribosomal RNA(rRNA) processing and telomere maintenance, have also been implicated. GAR1/nola1 is one of the four core proteins of the H/ACA RNP complex. Through comparative analysis of morpholino oligonucleotide induced knockdown of dkc1 and a retrovirus insertion induced mutation of GAR1/nola1 in zebrafish, we demonstrate that hematopoietic defects are specifically recapitulated in these models and that these defects are significantly reduced in a p53 null mutant background. We further show that changes in telomerase activity are undetectable at the early stages of DC pathogenesis but rRNA processing is clearly defective. Our data therefore support a model that deficiency in dkc1 and nola1 in the H/ACA RNP complex likely contributes to the hematopoietic phenotype through p53 activation associated with rRNA processing defects rather than telomerase deficiency during the initial stage of DC pathogenesis. PMID:22299032

Zhang, Ying; Morimoto, Kenji; Danilova, Nadia; Zhang, Bo; Lin, Shuo

2012-01-01

316

Biodegradable polymeric micelle-encapsulated quercetin suppresses tumor growth and metastasis in both transgenic zebrafish and mouse models  

NASA Astrophysics Data System (ADS)

Quercetin (Que) loaded polymeric micelles were prepared to obtain an aqueous formulation of Que with enhanced anti-tumor and anti-metastasis activities. A simple solid dispersion method was used, and the obtained Que micelles had a small particle size (about 31 nm), high drug loading, and high encapsulation efficiency. Que micelles showed improved cellular uptake, an enhanced apoptosis induction effect, and stronger inhibitory effects on proliferation, migration, and invasion of 4T1 cells than free Que. The enhanced in vitro antiangiogenesis effects of Que micelles were proved by the results that Que micelles significantly suppressed proliferation, migration, invasion, and tube formation of human umbilical vein endothelial cells (HUVECs). Subsequently, transgenic zebrafish models were employed to investigate anti-tumor and anti-metastasis effects of Que micelles, in which stronger inhibitory effects of Que micelles were observed on embryonic angiogenesis, tumor-induced angiogenesis, tumor growth, and tumor metastasis. Furthermore, in a subcutaneous 4T1 tumor model, Que micelles were more effective in suppressing tumor growth and spontaneous pulmonary metastasis, and prolonging the survival of tumor-bearing mice. Besides, immunohistochemical and immunofluorescent assays suggested that tumors in the Que micelle-treated group showed more apoptosis, fewer microvessels, and fewer proliferation-positive cells. In conclusion, Que micelles, which are synthesized as an aqueous formulation of Que, possess enhanced anti-tumor and anti-metastasis activity, which can serve as potential candidates for cancer therapy.

Wu, Qinjie; Deng, Senyi; Li, Ling; Sun, Lu; Yang, Xi; Liu, Xinyu; Liu, Lei; Qian, Zhiyong; Wei, Yuquan; Gong, Changyang

2013-11-01

317

Functional modeling in zebrafish demonstrates that the atrial-fibrillation-associated gene GREM2 regulates cardiac laterality, cardiomyocyte differentiation and atrial rhythm  

PubMed Central

SUMMARY Atrial fibrillation (AF) is the most common cardiac arrhythmia and carries a significant risk of stroke and heart failure. The molecular etiologies of AF are poorly understood, leaving patients with limited therapeutic options. AF has been recognized as an inherited disease in almost 30% of patient cases. However, few genetic loci have been identified and the mechanisms linking genetic variants to AF susceptibility remain unclear. By sequencing 193 probands with lone AF, we identified a Q76E variant within the coding sequence of the bone morphogenetic protein (BMP) antagonist gremlin-2 (GREM2) that increases its inhibitory activity. Functional modeling in zebrafish revealed that, through regulation of BMP signaling, GREM2 is required for cardiac laterality and atrial differentiation during embryonic development. GREM2 overactivity results in slower cardiac contraction rates in zebrafish, and induction of previously identified AF candidate genes encoding connexin-40, sarcolipin and atrial natriuretic peptide in differentiated mouse embryonic stem cells. By live heart imaging in zebrafish overexpressing wild-type or variant GREM2, we found abnormal contraction velocity specifically in atrial cardiomyocytes. These results implicate, for the first time, regulators of BMP signaling in human AF, providing mechanistic insights into the pathogenesis of the disease and identifying potential new therapeutic targets. PMID:23223679

Muller, Iris I.; Melville, David B.; Tanwar, Vineeta; Rybski, Witold M.; Mukherjee, Amrita; Shoemaker, M. Benjamin; Wang, Wan-Der; Schoenhard, John A.; Roden, Dan M.; Darbar, Dawood; Knapik, Ela W.; Hatzopoulos, Antonis K.

2013-01-01

318

Multifactorial origins of heart and gut defects in nipbl-deficient zebrafish, a model of Cornelia de Lange Syndrome.  

PubMed

Cornelia de Lange Syndrome (CdLS) is the founding member of a class of multi-organ system birth defect syndromes termed cohesinopathies, named for the chromatin-associated protein complex cohesin, which mediates sister chromatid cohesion. Most cases of CdLS are caused by haploinsufficiency for Nipped-B-like (Nipbl), a highly conserved protein that facilitates cohesin loading. Consistent with recent evidence implicating cohesin and Nipbl in transcriptional regulation, both CdLS cell lines and tissues of Nipbl-deficient mice show changes in the expression of hundreds of genes. Nearly all such changes are modest, however--usually less than 1.5-fold--raising the intriguing possibility that, in CdLS, severe developmental defects result from the collective action of many otherwise innocuous perturbations. As a step toward testing this hypothesis, we developed a model of nipbl-deficiency in zebrafish, an organism in which we can quantitatively investigate the combinatorial effects of gene expression changes. After characterizing the structure and embryonic expression of the two zebrafish nipbl genes, we showed that morpholino knockdown of these genes produces a spectrum of specific heart and gut/visceral organ defects with similarities to those in CdLS. Analysis of nipbl morphants further revealed that, as early as gastrulation, expression of genes involved in endodermal differentiation (sox32, sox17, foxa2, and gata5) and left-right patterning (spaw, lefty2, and dnah9) is altered. Experimental manipulation of the levels of several such genes--using RNA injection or morpholino knockdown--implicated both additive and synergistic interactions in causing observed developmental defects. These findings support the view that birth defects in CdLS arise from collective effects of quantitative changes in gene expression. Interestingly, both the phenotypes and gene expression changes in nipbl morphants differed from those in mutants or morphants for genes encoding cohesin subunits, suggesting that the transcriptional functions of Nipbl cannot be ascribed simply to its role in cohesin loading. PMID:22039349

Muto, Akihiko; Calof, Anne L; Lander, Arthur D; Schilling, Thomas F

2011-10-01

319

Severe combined immunodeficiency mouse-psoriatic human skin xenograft model: a modern tool connecting bench to bedside.  

PubMed

Psoriasis is a multifactorial chronic inflammatory disease. Research into the pathogenesis of this disease is hindered by the lack of a proper animal model. Over the past two decades, many scientists were involved in the development of animal models that nearly mirror the immunopathogenesis of psoriasis. One such model, which has opened doors to the study of molecular complexities of psoriasis as well as its treatment, is the severe combined immunodeficiency (SCID) mouse-human skin chimera model. This model not only mirrors the clinical and histopathological features of psoriasis but also help in the study of cell proliferation, angiogenesis, function of T cells, neurogenic inflammation and cytokines involved in inflammatory reactions. In this article, we have reviewed the prospects and the limitations of the SCID mouse model of psoriasis. PMID:24823397

Kundu-Raychaudhuri, Smriti; Datta-Mitra, Ananya; Abria, Christine J; Peters, John; Raychaudhuri, Siba P

2014-01-01

320

Pharmacologic Inhibition of MLK3 Kinase Activity Blocks the In Vitro Migratory Capacity of Breast Cancer Cells but Has No Effect on Breast Cancer Brain Metastasis in a Mouse Xenograft Model  

PubMed Central

Brain metastasis of breast cancer is an important clinical problem, with few therapeutic options and a poor prognosis. Recent data have implicated mixed lineage kinase 3 (MLK3) in controlling the in vitro migratory capacity of breast cancer cells, as well as the metastasis of MDA-MB-231 breast cancer cells from the mammary fat pad to distant lymph nodes in a mouse xenograft model. We therefore set out to test whether MLK3 plays a role in brain metastasis of breast cancer cells. To address this question, we used a novel, brain penetrant, MLK3 inhibitor, URMC099. URMC099 efficiently inhibited the migration of breast cancer cells in an in vitro cell monolayer wounding assay, and an in vitro transwell migration assay, but had no effect on in vitro cell growth. We also tested the effect of URMC099 on tumor formation in a mouse xenograft model of breast cancer brain metastasis. This analysis showed that URMC099 had no effect on the either the frequency or size of breast cancer brain metastases. We conclude that pharmacologic inhibition of MLK3 by URMC099 can reduce the in vitro migratory capacity of breast cancer cells, but that it has no effect on either the frequency or size of breast cancer brain metastases, in a mouse xenograft model. PMID:25264786

Rhoo, Kun Hyoe; Granger, Megan; Sur, Joynita; Feng, Changyong; Gelbard, Harris A.; Dewhurst, Stephen; Polesskaya, Oksana

2014-01-01

321

Zebrafish screen identifies novel compound with selective toxicity against leukemia  

PubMed Central

To detect targeted antileukemia agents we have designed a novel, high-content in vivo screen using genetically engineered, T-cell reporting zebrafish. We exploited the developmental similarities between normal and malignant T lymphoblasts to screen a small molecule library for activity against immature T cells with a simple visual readout in zebrafish larvae. After screening 26 400 molecules, we identified Lenaldekar (LDK), a compound that eliminates immature T cells in developing zebrafish without affecting the cell cycle in other cell types. LDK is well tolerated in vertebrates and induces long-term remission in adult zebrafish with cMYC-induced T-cell acute lymphoblastic leukemia (T-ALL). LDK causes dephosphorylation of members of the PI3 kinase/AKT/mTOR pathway and delays sensitive cells in late mitosis. Among human cancers, LDK selectively affects survival of hematopoietic malignancy lines and primary leukemias, including therapy-refractory B-ALL and chronic myelogenous leukemia samples, and inhibits growth of human T-ALL xenografts. This work demonstrates the utility of our method using zebrafish for antineoplastic candidate drug identification and suggests a new approach for targeted leukemia therapy. Although our efforts focused on leukemia therapy, this screening approach has broad implications as it can be translated to other cancer types involving malignant degeneration of developmentally arrested cells. PMID:22490804

Ridges, Suzanne; Heaton, Will L.; Joshi, Deepa; Choi, Henry; Eiring, Anna; Batchelor, Lance; Choudhry, Priya; Manos, Elizabeth J.; Sofla, Hossein; Sanati, Ali; Welborn, Seth; Agarwal, Archana; Spangrude, Gerald J.; Miles, Rodney R.; Cox, James E.; Frazer, J. Kimble; Deininger, Michael; Balan, Kaveri; Sigman, Matthew; Muschen, Markus; Perova, Tatiana; Johnson, Radia; Montpellier, Bertrand; Guidos, Cynthia J.; Jones, David A.

2012-01-01

322

Anti-CCR7 therapy exerts a potent anti-tumor activity in a xenograft model of human mantle cell lymphoma  

PubMed Central

Background The chemokine receptor CCR7 mediates lymphoid dissemination of many cancers, including lymphomas and epithelial carcinomas, thus representing an attractive therapeutic target. Previous results have highlighted the potential of the anti-CCR7 monoclonal antibodies to inhibit migration in transwell assays. The present study aimed to evaluate the in vivo therapeutic efficacy of an anti-CCR7 antibody in a xenografted human mantle cell lymphoma model. Methods NOD/SCID mice were either subcutaneously or intravenously inoculated with Granta-519 cells, a human cell line derived from a leukemic mantle cell lymphoma. The anti-CCR7 mAb treatment (3 × 200 ?g) was started on day 2 or 7 to target lymphoma cells in either a peri-implantation or a post-implantation stage, respectively. Results The anti-CCR7 therapy significantly delayed the tumor appearance and also reduced the volumes of tumors in the subcutaneous model. Moreover, an increased number of apoptotic tumor cells was detected in mice treated with the anti-CCR7 mAb compared to the untreated animals. In addition, significantly reduced number of Granta-519 cells migrated from subcutaneous tumors to distant lymphoid organs, such as bone marrow and spleen in the anti-CCR7 treated mice. In the intravenous models, the anti-CCR7 mAb drastically increased survival of the mice. Accordingly, dissemination and infiltration of tumor cells in lymphoid and non-lymphoid organs, including lungs and central nervous system, was almost abrogated. Conclusions The anti-CCR7 mAb exerts a potent anti-tumor activity and might represent an interesting therapeutic alternative to conventional therapies. PMID:24305507

2013-01-01

323

Modelling of human Wiskott-Aldrich syndrome protein mutants in zebrafish larvae using in vivo live imaging  

PubMed Central

Summary Wiskott–Aldrich syndrome (WAS) and X-linked neutropenia (XLN) are immunodeficiencies in which the function of several haematopoietic cell lineages is perturbed as a result of mutations in the actin regulator WASp. From in vitro cell biology experiments, and biochemical and structural approaches, we know much about the functional domains of WASp and how WASp might regulate the dynamic actin cytoskeleton downstream of activators such as Cdc42, but in vivo experiments are much more challenging. In patients, there is a correlation between clinical disease and genotype, with severe reductions in WASp expression or function associating with complex multilineage immunodeficiency, whereas specific mutations that cause constitutive activation of WASp result in congenital neutropenia. Here, we take advantage of the genetic tractability and translucency of zebrafish larvae to first characterise how a null mutant in zfWASp influences the behaviour of neutrophils and macrophages in response to tissue damage and to clearance of infections. We then use this mutant background to study how leukocyte lineage-specific transgenic replacement with human WASp variants (including normal wild type and point mutations that either fail to bind Cdc42 or cannot be phosphorylated, and a constitutively active mutant equivalent to that seen in XLN patients) alter the capacity for generation of neutrophils, their chemotactic response to wounds and the phagocytic clearance capacity of macrophages. This model provides a unique insight into WASp-related immunodeficiency at both a cellular and whole organism level. PMID:23868979

Jones, Rebecca A.; Feng, Yi; Worth, Austen J.; Thrasher, Adrian J.; Burns, Siobhan O.; Martin, Paul

2013-01-01

324

Polygenic Sex Determination System in Zebrafish  

PubMed Central

Background Despite the popularity of zebrafish as a research model, its sex determination (SD) mechanism is still unknown. Most cytogenetic studies failed to find dimorphic sex chromosomes and no primary sex determining switch has been identified even though the assembly of zebrafish genome sequence is near to completion and a high resolution genetic map is available. Recent publications suggest that environmental factors within the natural range have minimal impact on sex ratios of zebrafish populations. The primary aim of this study is to find out more about how sex is determined in zebrafish. Methodology/Principal Findings Using classical breeding experiments, we found that sex ratios across families were wide ranging (4.8% to 97.3% males). On the other hand, repeated single pair crossings produced broods of very similar sex ratios, indicating that parental genotypes have a role in the sex ratio of the offspring. Variation among family sex ratios was reduced after selection for breeding pairs with predominantly male or female offspring, another indication that zebrafish sex is regulated genetically. Further examinations by a PCR-based “blind assay" and array comparative genomic hybridization both failed to find universal sex-linked differences between the male and female genomes. Together with the ability to increase the sex bias of lines by selective breeding, these data suggest that zebrafish is unlikely to utilize a chromosomal sex determination (CSD) system. Conclusions/Significance Taken together, our study suggests that zebrafish sex is genetically determined with limited, secondary influences from the environment. As we have not found any sign for CSD in the species, we propose that the zebrafish has a polygenic sex determination system. PMID:22506019

Liew, Woei Chang; Bartfai, Richard; Lim, Zijie; Sreenivasan, Rajini; Siegfried, Kellee R.; Orban, Laszlo

2012-01-01

325

Pharmacokinetic Modeling of an Induction Regimen for In Vivo Combined Testing of Novel Drugs against Pediatric Acute Lymphoblastic Leukemia Xenografts  

Microsoft Academic Search

Current regimens for induction therapy of pediatric acute lymphoblastic leukemia (ALL), or for re-induction post relapse, use a combination of vincristine (VCR), a glucocorticoid, and l-asparaginase (ASP) with or without an anthracycline. With cure rates now approximately 80%, robust pre-clinical models are necessary to prioritize active new drugs for clinical trials in relapsed\\/refractory patients, and the ability of these models

Barbara Szymanska; Urszula Wilczynska-Kalak; Min H. Kang; Natalia L. M. Liem; Hernan Carol; Ingrid Boehm; Daniel Groepper; C. Patrick Reynolds; Clinton F. Stewart; Richard B. Lock

2012-01-01

326

Long-term efficiency of mesenchymal stromal cell-mediated CD-MSC/5FC therapy in human melanoma xenograft model.  

PubMed

Mesenchymal stromal cells (MSC) can be exploited as cellular delivery vehicles for the enzymes converting non-toxic prodrugs to toxic substances. Because of their inherent chemoresistance, they exert potent bystander and antitumor effect. Here we show that the human adipose tissue-derived MSC expressing fusion yeast cytosine deaminase::uracil phosphoribosyltransferase (CD-MSC) in combination with 5-fluorocytosine (5FC) mediated a long-term tumor-free survival in the 83.3% of tumor-bearing animals. CD-MSC/5FC treatment induced cytotoxicity against model human melanoma cells EGFP-A375. Only 4% of the therapeutic CD-MSC cells eliminated >98.5% of the tumor cells in vitro. Long-term tumor-free survival was confirmed in 15 out of the 18 animals. However, repeatedly used CD-MSC/5FC therapeutic regimen generated more aggressive and metastatic variant of the melanoma cells EGFP-A375/Rel3. These cells derived from the refractory xenotransplants exhibited increased resistance to the CD-MSC/5FC treatment, altered cell adhesion, migration, tumorigenic and metastatic properties. However, long-term curative effect was achieved by the augmentation of the CD-MSC/5FC regimen along with the inhibition of c-Met/hepatocyte growth factor signaling axis in this aggressive melanoma derivative. In summary, the CD-MSC/5FC regimen can be regarded as a very effective antitumor approach to achieve long-term tumor-free survival as demonstrated on a mouse model of aggressive human melanoma xenografts. PMID:25056607

Kucerova, L; Skolekova, S; Demkova, L; Bohovic, R; Matuskova, M

2014-10-01

327

An automated predator avoidance task in zebrafish  

PubMed Central

Zebrafish are becoming increasingly popular in behavioral neuroscience as investigators have started to realize the benefits of sophisticated genetic tools specifically developed for this species along with the pharmacological tools already available for other laboratory model organisms. The zebrafish has been proposed as an in vivo tool for the analysis of vertebrate fear responses as well as human psychopathological conditions such as anxiety. We have been developing behavioral tasks for zebrafish that could be utilized for screening mutation or drug induced changes in fear responses. In this paper we present a modified version of a previously developed predator avoidance paradigm that now allows the induction and quantification of avoidance reactions that we previously could not elicit. Most importantly, in the current paradigm zebrafish are now shown to respond to the appearance of a moving image of a sympatric predator, the Indian leaf fish, by increasing their distance from the image, a robust reaction that is easy to quantify in an automated manner. Unexpectedly, however, another fear response, the “diving” response, was seen robustly only at the beginning of the test but not in response to the predator stimulus. We discuss the implications of these results and conclude that although zebrafish fear responses are complex and context dependent, the current paradigm is a significant step towards high throughput screening for alterations in fear responses of zebrafish. PMID:20674614

Ahmed, Omar; Seguin, Diane; Gerlai, Robert

2010-01-01

328

Total lymphoid irradiation and discordant cardiac xenografts  

SciTech Connect

Total lymphoid irradiation can prolong concordant cardiac xenografts. The effects of total lymphoid irradiation in a discordant xenograft model (guinea pig to rat) were studied with and without adjuvant pharmacologic immunosuppression. Inbred Lewis rats were randomly allocated to one of four groups. Group 1 (n = 6) served as a control group and rats received no immunosuppression. Group 2 (n = 5) received triple-drug therapy that consisted of intraperitoneal azathioprine (2 mg/kg), cyclosporine (20 mg/kg), and methylprednisolone (1 mg/kg) for 1 week before transplantation. Group 3 animals (n = 5) received 15 Gy of total lymphoid irradiation in 12 divided doses over a 3-week period. Group 4 (n = 6) received both triple-drug therapy and total lymphoid irradiation as described for groups 2 and 3. Complement-dependent cytotoxicity assay was performed to determine if a correlation between complement-dependent cytotoxicity and rejection-free interval existed. Rejection was defined as cessation of graft pulsation and was confirmed by histologic test results. Only groups 1 and 2 showed a difference in survival (group 1, 6.9 +/- 1.0 minutes; group 2, 14.2 +/- 2.7 minutes, p = 0.02). Although total lymphoid irradiation did decrease complement-dependent cytotoxicity, linear regression revealed no correlation between complement-dependent cytotoxicity and graft survival (coefficient of correlation, 0.30). Unlike concordant cardiac xenografts, total lymphoid irradiation with or without triple-drug therapy does not prolong graft survival.

Kaplan, E.; Dresdale, A.R.; Diehl, J.T.; Katzen, N.A.; Aronovitz, M.J.; Konstam, M.A.; Payne, D.D.; Cleveland, R.J. (Tufts Univ. School of Medicine, Boston, MA (USA))

1990-01-01

329

Evaluating human cancer cell metastasis in zebrafish  

PubMed Central

Background In vivo metastasis assays have traditionally been performed in mice, but the process is inefficient and costly. However, since zebrafish do not develop an adaptive immune system until 14 days post-fertilization, human cancer cells can survive and metastasize when transplanted into zebrafish larvae. Despite isolated reports, there has been no systematic evaluation of the robustness of this system to date. Methods Individual cell lines were stained with CM-Dil and injected into the perivitelline space of 2-day old zebrafish larvae. After 2-4 days fish were imaged using confocal microscopy and the number of metastatic cells was determined using Fiji software. Results To determine whether zebrafish can faithfully report metastatic potential in human cancer cells, we injected a series of cells with different metastatic potential into the perivitelline space of 2 day old embryos. Using cells from breast, prostate, colon and pancreas we demonstrated that the degree of cell metastasis in fish is proportional to their invasion potential in vitro. Highly metastatic cells such as MDA231, DU145, SW620 and ASPC-1 are seen in the vasculature and throughout the body of the fish after only 24–48 hours. Importantly, cells that are not invasive in vitro such as T47D, LNCaP and HT29 do not metastasize in fish. Inactivation of JAK1/2 in fibrosarcoma cells leads to loss of invasion in vitro and metastasis in vivo, and in zebrafish these cells show limited spread throughout the zebrafish body compared with the highly metastatic parental cells. Further, knockdown of WASF3 in DU145 cells which leads to loss of invasion in vitro and metastasis in vivo also results in suppression of metastasis in zebrafish. In a cancer progression model involving normal MCF10A breast epithelial cells, the degree of invasion/metastasis in vitro and in mice is mirrored in zebrafish. Using a modified version of Fiji software, it is possible to quantify individual metastatic cells in the transparent larvae to correlate with invasion potential. We also demonstrate, using lung cancers, that the zebrafish model can evaluate the metastatic ability of cancer cells isolated from primary tumors. Conclusions The zebrafish model described here offers a rapid, robust, and inexpensive means of evaluating the metastatic potential of human cancer cells. Using this model it is possible to critically evaluate whether genetic manipulation of signaling pathways affects metastasis and whether primary tumors contain metastatic cells. PMID:24089705

2013-01-01

330

Blockade of the ERK pathway enhances the therapeutic efficacy of the histone deacetylase inhibitor MS-275 in human tumor xenograft models.  

PubMed

The ERK pathway is up-regulated in various human cancers and represents a prime target for mechanism-based approaches to cancer treatment. Specific blockade of the ERK pathway alone induces mostly cytostatic rather than pro-apoptotic effects, however, resulting in a limited therapeutic efficacy of the ERK kinase (MEK) inhibitors. We previously showed that MEK inhibitors markedly enhance the ability of histone deacetylase (HDAC) inhibitors to induce apoptosis in tumor cells with constitutive ERK pathway activation in vitro. To evaluate the therapeutic efficacy of such drug combinations, we administered the MEK inhibitor PD184352 or AZD6244 together with the HDAC inhibitor MS-275 in nude mice harboring HT-29 or H1650 xenografts. Co-administration of the MEK inhibitor markedly sensitized the human xenografts to MS-275 cytotoxicity. A dose of MS-275 that alone showed only moderate cytotoxicity thus suppressed the growth of tumor xenografts almost completely as well as induced a marked reduction in tumor cellularity when administered with PD184352 or AZD6244. The combination of the two types of inhibitor also induced marked oxidative stress, which appeared to result in DNA damage and massive cell death, specifically in the tumor xenografts. The enhanced therapeutic efficacy of the drug combination was achieved by a relatively transient blockade of the ERK pathway. Administration of both MEK and HDAC inhibitors represents a promising chemotherapeutic strategy with improved safety for cancer patients. PMID:23501104

Sakamoto, Toshiaki; Ozaki, Kei-ichi; Fujio, Kohsuke; Kajikawa, Shu-hei; Uesato, Shin-ichi; Watanabe, Kazushi; Tanimura, Susumu; Koji, Takehiko; Kohno, Michiaki

2013-04-19

331

Primary resistance to cetuximab in a panel of patient-derived tumour xenograft models: Activation of MET as one mechanism for drug resistance  

Microsoft Academic Search

Cetuximab (Erbitux®) targets the epidermal growth factor receptor (EGFR) and is approved for treatment of colorectal and head and neck cancer. Despite wide expression of EGFR, only a subgroup of cancer patients responds to cetuximab therapy. In the present study we assessed the cetuximab response in vivo of 79 human patient-derived xenografts originating from five tumour histotypes. We analysed basic

Rebekka Krumbach; Julia Schüler; Michael Hofmann; Torsten Giesemann; Heinz-Herbert Fiebig; Thomas Beckers

2011-01-01

332

Studying the immune response to human viral infections using zebrafish.  

PubMed

Humans and viruses have a long co-evolutionary history. Viral illnesses have and will continue to shape human history: from smallpox, to influenza, to HIV, and beyond. Animal models of human viral illnesses are needed in order to generate safe and effective antiviral medicines, adjuvant therapies, and vaccines. These animal models must support the replication of human viruses, recapitulate aspects of human viral illnesses, and respond with conserved immune signaling cascades. The zebrafish is perhaps the simplest, most commonly used laboratory model organism in which innate and/or adaptive immunity can be studied. Herein, we will discuss the current zebrafish models of human viral illnesses and the insights they have provided. We will highlight advantages of early life stage zebrafish and the importance of innate immunity in human viral illnesses. We will also discuss viral characteristics to consider before infecting zebrafish with human viruses as well as predict other human viruses that may be able to infect zebrafish. PMID:24718256

Goody, Michelle F; Sullivan, Con; Kim, Carol H

2014-09-01

333

Lycium barbarum polysaccharides induce apoptosis in human prostate cancer cells and inhibits prostate cancer growth in a xenograft mouse model of human prostate cancer.  

PubMed

Lycium barbarum polysaccharides (LBPs) are important functional constituents in red-colored fruits of L. barbarum (Guo Qi Zi, a well-known traditional Chinese medicinal plant commonly known as Goji berry or wolfberry). The influence of LBP on human prostate cancer cells was systematically investigated in vitro and in vivo. The in vitro effects of LBP on two cell lines (PC-3 and DU-145) were examined by using trypan blue exclusion staining, single-cell gel electrophoresis, flow cytometry, terminal dUTP nick-end labeling assay, and immunohistochemical assay (assessment of Bcl-2 and Bax expression). The in vivo effect of LBP on PC-3 cells was assessed in the nude mouse xenograft tumor model. The in vitro results showed that LBP can dose- and time-dependently inhibit the growth of both PC-3 and DU-145 cells. LBP caused the breakage of DNA strands of PC-3 and DU-145 cells; the tail frequency and tail length were significantly higher than that of control cells. LBP also markedly induced PC-3 and DU-145 cell apoptosis, with the highest apoptosis rates at 41.5% and 35.5%, respectively. The ratio of Bcl-2/Bax protein expression following LBP treatments decreased significantly with a dose-effect relationship, which suggested that LBP can regulate the expression of Bcl-2 and Bax to induce apoptosis of PC-3 and DU-145 cells. The in vivo experimental results indicate that LBP might significantly inhibit PC-3 tumor growth in nude mice. Both the tumor volume and weight of the LBP treatment group were significantly lower than those of the control group. PMID:19735167

Luo, Qiong; Li, Zhuoneng; Yan, Jun; Zhu, Fan; Xu, Ruo-Jun; Cai, Yi-Zhong

2009-08-01

334

Therapeutic Effect of Human iPS-Cell-Derived Myeloid Cells Expressing IFN-? against Peritoneally Disseminated Cancer in Xenograft Models  

PubMed Central

We recently developed a method to generate myeloid cells with proliferation capacity from human iPS cells. iPS-ML (iPS-cell–derived myeloid/macrophage line), generated by introducing proliferation and anti-senescence factors into iPS-cell–derived myeloid cells, grew continuously in an M-CSF–dependent manner. A large number of cells exhibiting macrophage-like properties can be readily obtained by using this technology. In the current study, we evaluated the possible application of iPS-ML in anti-cancer therapy. We established a model of peritoneally disseminated gastric cancer by intraperitoneally injecting NUGC-4 human gastric cancer cells into SCID mice. When iPS-ML were injected intraperitoneally into the mice with pre-established peritoneal NUGC-4 tumors, iPS-ML massively accumulated and infiltrated into the tumor tissues. iPS-ML expressing IFN-? (iPS-ML/IFN-?) significantly inhibited the intra-peritoneal growth of NUGC-4 cancer. Furthermore, iPS-ML/IFN-? also inhibited the growth of human pancreatic cancer MIAPaCa-2 in a similar model. iPS-ML are therefore a promising treatment agent for peritoneally disseminated cancers, for which no standard treatment is currently available. PMID:23826321

Koba, Chihiro; Haruta, Miwa; Matsunaga, Yusuke; Matsumura, Keiko; Haga, Eriko; Sasaki, Yuko; Ikeda, Tokunori; Takamatsu, Koutaro; Nishimura, Yasuharu; Senju, Satoru

2013-01-01

335

Characterization of behavioral and endocrine effects of LSD on zebrafish  

Microsoft Academic Search

Lysergic acid diethylamide (LSD) is a potent hallucinogenic drug that strongly affects animal and human behavior. Although adult zebrafish (Danio rerio) are emerging as a promising neurobehavioral model, the effects of LSD on zebrafish have not been investigated previously. Several behavioral paradigms (the novel tank, observation cylinder, light–dark box, open field, T-maze, social preference and shoaling tests), as well as

Leah Grossman; Eli Utterback; Adam Stewart; Siddharth Gaikwad; Kyung Min Chung; Christopher Suciu; Keith Wong; Marco Elegante; Salem Elkhayat; Julia Tan; Thomas Gilder; Nadine Wu; John DiLeo; Jonathan Cachat; Allan V. Kalueff

2010-01-01

336

Method for Somatic Cell Nuclear Transfer in Zebrafish  

Microsoft Academic Search

Somatic cell nuclear transfer (SCNT) has been a well-known technique for decades and widely applied to generate identical animals, including ones with genetic alterations. The system has been demonstrated successfully in zebrafish. The elaborated requirements of SCNT, however, limit reproducibility of the established model to a few groups in zebrafish research community. In this chapter, we meticulously outline each step

Kannika Siripattarapravat; Jose B. Cibelli

2011-01-01

337

Comparison of multiple bolus and continuous injections of 131I-labeled CC49 for therapy in a colon cancer xenograft model.  

PubMed

One of the problems in achieving cures with radioimmunotherapy is that hematological toxicity limits the quantity of radiolabeled monoclonal antibody (MAb) that can be administered. The MAb CC49 binds with high affinity to the TAG-72 antigen expressed in many human adenocarcinomas. We investigated tumor growth inhibition, survival, and tumor and bone marrow dosimetry after multiple bolus injections or continuous infusion of 131I-labeled CC49 MAb in a human colon cancer xenograft model to determine which method of administration results in the highest therapeutic ratio. Groups of athymic nude mice bearing established s.c. LS174T human colon cancer xenografts received three i.p. bolus injections (3X) of 131I-labeled CC49 (3X, days 0, 3, and 7) or were implanted i.p. with mini-osmotic pumps delivering 131I-labeled CC49 over 7 days. The total radionuclide doses administered were broken down into low-dose (< or = 450 microCi), medium-dose (450-800 microCi), and high-dose (> 800 microCi) groups. At the medium-dose level, the bolus-therapy animals did not have a significantly longer survival time but did have a significantly longer time-to-tumor doubling than the pump-therapy animals. The median survival for medium-dose bolus and pump therapy was 157 and 105 days, respectively, and the median time-to-tumor doubling was at least 114 and 77 days, respectively. At the low-dose level, the bolus-therapy animals had a significantly longer survival time but not a significantly longer time-to-tumor doubling than the pump-therapy animals. The median survival for low-dose bolus and pump therapy was 95.5 and 59 days, respectively, and the median time-to-tumor doubling was 73 and 38 days, respectively. The high-bolus dose was toxic. A comparison of the overall survival rate of pump therapy versus bolus therapy, excluding high-dose, resulted in the bolus-therapy animals having a longer survival time and a longer time-to-tumor doubling than the pump-therapy animals. Serial section autoradiography was used to reconstruct tumor activity density distributions over time. Average dose values calculated from total uptake data for 900 microCi administered activity yielded 158 Gy (3X) and 141 Gy (pump). Average three-dimensional doses using the radial histograms to calculate the absorbed fractions were 139 Gy and 123 Gy, respectively. This calculation includes energy loss external to the tumor. With cell proliferation parameters set to single fraction 60Co recurrence results, the effective dose (D(eff)) for local control was 11 Gy and 9 Gy, respectively. Three bolus injections resulted in a more uniform dose rate over a longer period, resulting in a calculated 19% improvement in D(eff) compared with pump administration. Dose to bone marrow was calculated assuming an activity concentration in bone marrow of 0.24 times the concentration in blood and an absorbed fraction of 0.63. For the 900-microCi 131I-labeled CC49 injected activity, pump administration resulted in an 80% higher calculated D(eff) to bone marrow compared with 3X bolus injection. These results demonstrate that 3X bolus injections were clearly superior to pump administration in terms of survival, tumor growth inhibition, tumor absorbed dose, and bone marrow dose. PMID:10541357

Buchsbaum, D J; Khazaeli, M B; Mayo, M S; Roberson, P L

1999-10-01

338

Cryo-image Analysis of Tumor Cell Migration, Invasion, and Dispersal in a Mouse Xenograft Model of Human Glioblastoma Multiforme  

PubMed Central

Purpose The goals of this study were to create cryo-imaging methods to quantify characteristics (size, dispersal, and blood vessel density) of mouse orthotopic models of glioblastoma multiforme (GBM) and to enable studies of tumor biology, targeted imaging agents, and theranostic nanoparticles. Procedures Green fluorescent protein-labeled, human glioma LN-229 cells were implanted into mouse brain. At 20–38 days, cryo-imaging gave whole brain, 4-GB, 3D microscopic images of bright field anatomy, including vasculature, and fluorescent tumor. Image analysis/visualization methods were developed. Results Vessel visualization and segmentation methods successfully enabled analyses. The main tumor mass volume, the number of dispersed clusters, the number of cells/cluster, and the percent dispersed volume all increase with age of the tumor. Histograms of dispersal distance give a mean and median of 63 and 56 ?m, respectively, averaged over all brains. Dispersal distance tends to increase with age of the tumors. Dispersal tends to occur along blood vessels. Blood vessel density did not appear to increase in and around the tumor with this cell line. Conclusion Cryo-imaging and software allow, for the first time, 3D, whole brain, microscopic characterization of a tumor from a particular cell line. LN-229 exhibits considerable dispersal along blood vessels, a characteristic of human tumors that limits treatment success. PMID:22125093

Qutaish, Mohammed Q.; Sullivant, Kristin E.; Burden-Gulley, Susan M.; Lu, Hong; Roy, Debashish; Wang, Jing; Basilion, James P.; Brady-Kalnay, Susann M.; Wilson, David L.

2012-01-01

339

In vivo sampling of Verteporfin uptake in pancreas cancer xenograft models: comparison of surface, oral, and interstitial measurements  

NASA Astrophysics Data System (ADS)

Photodynamic therapy (PDT) mediated with Verteporfin is being investigated as a pancreatic cancer treatment in the cases for non-surgical candidates. Tissue response to PDT is based on a number of parameters including photosensitizer (PS) dose, light dose and time interval between light application and PS injection. In this study, PS uptake and distribution in animal leg muscle, oral cavity tissues, pancreas and tumor was measured in vivo using light-induced fluorescence spectroscopy (LIFS) via an Aurora Optics Inc. PDT fluorescence dosimeter. An orthotopic pancreatic cancer model (AsPC-1) was implanted in SCID mice and treated with the PS. Probe measurements were made using a surface probe and an interstitial needle probe before and up to one hour after intravenous tail vein injection of the PS. The study demonstrated that it is possible to correlate in-vivo LIFS measurements of the PS uptake in the pancreas with measurements taken from the oral cavity indicating that light dosimetry of PDT of the pancreas can be ascertained from the LIFS measurements in the oral cavity. These results emphasize the importance of light dosimetry in improving the therapeutic outcome of PDT through light dose adaptation to the relative in situ tissue PS concentration.

Isabelle, Martin; O'Hara, Julia A.; Samkoe, Kimberley S.; Hoopes, P. Jack; Mosse, Sandy; Pereira, Stephen; Hasan, Tayyaba; Pogue, Brian W.

2010-02-01

340

Anti-tumor activity of fenretinide complexed with human serum albumin in lung cancer xenograft mouse model  

PubMed Central

Sufficient knowledge regarding cellular and molecular basis of lung cancer progression and metastasis would help in the development of novel and effective strategies for the treatment of lung cancer. 4HPR is a synthetic retinoid with potential anti-tumor activity but is still limited because of its poor bioavailability. The use of albumin as a complexing agent for a hydrophobic drug is expected to improve the water solubility and consequently their bioavailability.This study investigated the antitumor activity of a novel complex between albumin and 4-HPR in a mouse model of human lung cancer and focuses on role and mechanism of Cav-1 mainly involved in regulating cancer and Acsvl3 mainly connected with tumor growth. Their expressions were assayed by immunohistochemistry and qRT-PCR, to demonstrate the reduction of the tumor growth following the drug treatment. Our results showed a high antitumor activity of 4HPR-HSA by reduction of the volume of tumor mass and the presence of a high level of apoptotic cell by TUNEL assay. The downregulation of Cav-1 and Acsvl3 suggested a reduction of tumor growth. In conclusion, we demonstrated the great potential of 4HPR-HSA in the treatment of lung cancer. More data about the mechanism of drug delivery the 4HPR-HSA are necessary. PMID:25015569

Teti, Gabriella; Salvatore, Viviana; Focaroli, Stefano; Tesei, Anna; Pignatta, Sara; Falconi, Mirella

2014-01-01

341

Zebrafish (Danio rerio) are becoming a popular model in behavioral neuroscience. Their behavior is robustly observed and easily quantified,  

E-print Network

immediately. Following behavioral analysis in the Novel Tank (NT), physiological endpoints (i.e. cortisol cortisol assessment. Repeated Ethanol & Morphine withdrawal: After 1 week of chronic treatment, zebrafish to behavioral testing. Cortisol extraction: Performed using a human salivary cortisol assay kit (Salimetrics LLC

Kalueff, Allan V.

342

Brain and gonadal aromatase as potential targets of endocrine disrupting chemicals in a model species, the zebrafish (Danio rerio).  

E-print Network

the effect of estradiol (E2) and androstatrienedione (ATD), a steroidal aromatase inhibitor. We showed was predominant. Moreover, aromatase activities (AA) were higher in brain than in ovary. In adult zebrafish, E2 treatment had no effect on aromatase expression/activity in brain, whereas at larval stage, E2 strongly

Boyer, Edmond

343

Stressing Zebrafish for Behavioral Genetics  

PubMed Central

Synopsis The stress response is a normal reaction to a real or perceived threat. However, stress response systems that are overwhelmed or out of balance can increase both the incidence and severity of diseases including addiction and mood and anxiety disorders. Using an animal model with both genetic diversity and large family size can help discover the specific genetic and environmental contributions to these behavioral diseases. The stress response has been studied extensively in teleosts because of their importance in food production. The zebrafish (Danio rerio) is a major model organism with a strong record for use in developmental biology, genetic screening, and genomic studies. More recently, the stress response of larval and adult zebrafish has been documented. High-throughput automated tracking systems make possible behavioral readouts of the stress response in zebrafish. This non-invasive measure of the stress response can be combined with mutagenesis methods to dissect the genes involved in complex stress response behaviors in vertebrates. Understanding the genetic and epigenetic basis for the stress response in vertebrates will help to develop advanced screening and therapies for stress-aggravated diseases like addiction and mood and anxiety disorders. PMID:21615261

Clark, Karl J.; Boczek, Nicole J.; Ekker, Stephen C.

2012-01-01

344

Mutant Prpf31 causes pre-mRNA splicing defects and rod photoreceptor cell degeneration in a zebrafish model for Retinitis pigmentosa  

Microsoft Academic Search

Background  Retinitis pigmentosa (RP) is an inherited eye disease characterized by the progressive degeneration of rod photoreceptor cells.\\u000a Mutations in pre-mRNA splicing factors including PRPF31 have been identified as cause for RP, raising the question how mutations\\u000a in general factors lead to tissue specific defects.\\u000a \\u000a \\u000a \\u000a \\u000a Results  We have recently shown that the zebrafish serves as an excellent model allowing the recapitulation of

Jun Yin; Jan Brocher; Utz Fischer; Christoph Winkler

2011-01-01

345

IL-1? and reactive oxygen species differentially regulate neutrophil directional migration and Basal random motility in a zebrafish injury-induced inflammation model.  

PubMed

During inflammation, the proper inflammatory infiltration of neutrophils is crucial for the host to fight against infections and remove damaged cells and detrimental substances. IL-1? and NADPH oxidase-mediated reactive oxygen species (ROS) have been implicated to play important roles in this process. However, the cellular and molecular basis underlying the actions of IL-1? and ROS and their relationship during inflammatory response remains undefined. In this study, we use the zebrafish model to investigate these issues. We find that, similar to that of NADPH oxidase-mediated ROS signaling, the Il-1?-Myd88 pathway is required for the recruitment of neutrophils, but not macrophages, to the injury-induced inflammatory site, whereas it is dispensable for bacterial-induced inflammation. Interestingly, the Il-1?-Myd88 pathway is independent of NADPH oxidase-mediated ROS signaling and critical for the directional migration, but not the basal random movement, of neutrophils. In contrast, the NADPH oxidase-mediated ROS signaling is required for both basal random movement and directional migration of neutrophils. We further document that ectopic expression of Il-1? in zebrafish induces an inflammatory disorder, which can be suppressed by anti-inflammatory treatment. Our findings reveal that the Il-1?-Myd88 axis and NADPH oxidase-mediated ROS signaling are two independent pathways that differentially regulate neutrophil migration during sterile inflammation. In addition, Il-1? overexpressing Tg(hsp70:(m)il-1?_eGFP;lyz:DsRed2)hkz10t;nz50 transgenic zebrafish provides a useful animal model for the study of chronic inflammatory disorder and for anti-inflammatory drug discovery. PMID:24835391

Yan, Bo; Han, Peidong; Pan, Lifeng; Lu, Wei; Xiong, Jingwei; Zhang, Mingjie; Zhang, Wenqing; Li, Li; Wen, Zilong

2014-06-15

346

Characterization of behavioral and endocrine effects of LSD on zebrafish.  

PubMed

Lysergic acid diethylamide (LSD) is a potent hallucinogenic drug that strongly affects animal and human behavior. Although adult zebrafish (Danio rerio) are emerging as a promising neurobehavioral model, the effects of LSD on zebrafish have not been investigated previously. Several behavioral paradigms (the novel tank, observation cylinder, light-dark box, open field, T-maze, social preference and shoaling tests), as well as modern video-tracking tools and whole-body cortisol assay were used to characterize the effects of acute LSD in zebrafish. While lower doses (5-100 microg/L) did not affect zebrafish behavior, 250 microg/L LSD increased top dwelling and reduced freezing in the novel tank and observation cylinder tests, also affecting spatiotemporal patterns of activity (as assessed by 3D reconstruction of zebrafish traces and ethograms). LSD evoked mild thigmotaxis in the open field test, increased light behavior in the light-dark test, reduced the number of arm entries and freezing in the T-maze and social preference test, without affecting social preference. In contrast, LSD affected zebrafish shoaling (increasing the inter-fish distance in a group), and elevated whole-body cortisol levels. Overall, our findings show sensitivity of zebrafish to LSD action, and support the use of zebrafish models to study hallucinogenic drugs of abuse. PMID:20561961

Grossman, Leah; Utterback, Eli; Stewart, Adam; Gaikwad, Siddharth; Chung, Kyung Min; Suciu, Christopher; Wong, Keith; Elegante, Marco; Elkhayat, Salem; Tan, Julia; Gilder, Thomas; Wu, Nadine; Dileo, John; Cachat, Jonathan; Kalueff, Allan V

2010-12-25

347

Mapping the zebrafish brain methylome using reduced representation bisulfite sequencing  

PubMed Central

Reduced representation bisulfite sequencing (RRBS) has been used to profile DNA methylation patterns in mammalian genomes such as human, mouse and rat. The methylome of the zebrafish, an important animal model, has not yet been characterized at base-pair resolution using RRBS. Therefore, we evaluated the technique of RRBS in this model organism by generating four single-nucleotide resolution DNA methylomes of adult zebrafish brain. We performed several simulations to show the distribution of fragments and enrichment of CpGs in different in silico reduced representation genomes of zebrafish. Four RRBS brain libraries generated 98 million sequenced reads and had higher frequencies of multiple mapping than equivalent human RRBS libraries. The zebrafish methylome indicates there is higher global DNA methylation in the zebrafish genome compared with its equivalent human methylome. This observation was confirmed by RRBS of zebrafish liver. High coverage CpG dinucleotides are enriched in CpG island shores more than in the CpG island core. We found that 45% of the mapped CpGs reside in gene bodies, and 7% in gene promoters. This analysis provides a roadmap for generating reproducible base-pair level methylomes for zebrafish using RRBS and our results provide the first evidence that RRBS is a suitable technique for global methylation analysis in zebrafish. PMID:23975027

Chatterjee, Aniruddha; Ozaki, Yuichi; Stockwell, Peter A; Horsfield, Julia A; Morison, Ian M; Nakagawa, Shinichi

2013-01-01

348

Co-Treatment with Panitumumab and Trastuzumab Augments Response to the MEK Inhibitor Trametinib in a Patient-Derived Xenograft Model of Pancreatic Cancer1  

PubMed Central

Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations and epidermal growth factor receptor (EGFR) family signaling are drivers of tumorigenesis in pancreatic ductal adenocarcinoma (PDAC). Previous studies have demonstrated that combinatorial treatment of PDAC xenografts with the mitogen-activated protein kinase–extracellular-signal-regulated kinase (ERK) kinase1/2 (MEK1/2) inhibitor trametinib and the dual EGFR/human epidermal growth factor receptor 2 (HER2) inhibitor lapatinib provided more effective inhibition than either treatment alone. In this study, we have used the therapeutic antibodies, panitumumab (specific for EGFR) and trastuzumab (specific for HER2), to probe the role of EGFR and HER2 signaling in the proliferation of patient-derived xenograft (PDX) tumors. We show that dual anti-EGFR and anti-HER2 therapy significantly augmented the growth inhibitory effects of the MEK1/2 inhibitor trametinib in three different PDX tumors. While significant growth inhibition was observed in both KRAS mutant xenograft groups receiving trametinib and dual antibody therapy (tumors 366 and 608), tumor regression was observed in the KRAS wild-type xenografts (tumor 738) treated in the same manner. Dual antibody therapy in conjunction with trametinib was equally or more effective at inhibiting tumor growth and with lower apparent toxicity than trametinib plus lapatinib. Together, these studies provide further support for a role for EGFR and HER2 in pancreatic cancer proliferation and underscore the importance of therapeutic intervention in both the KRAS–rapidly accelerated fibrosarcoma kinase (RAF)–MEK–ERK and EGFR-HER2 pathways to achieve maximal therapeutic efficacy in patients. PMID:25117978

Lindberg, James M.; Newhook, Timothy E.; Adair, Sara J.; Walters, Dustin M.; Kim, Alison J.; Stelow, Edward B.; Parsons, J. Thomas; Bauer, Todd W.

2014-01-01

349

Dysregulated expression of androgen-responsive and nonresponsive genes in the androgen-independent prostate cancer xenograft model, CWR22-R  

Microsoft Academic Search

Treatment of metastatic prostate cancer with androgen-ablation often elicits dramatic tumor regressions, but the response is rarely complete, making clinical recurrence inevitable with time. To gain insight into therapy-related progression, changes in gene expression that occurred following androgen-deprivation of an androgen-dependent prostate tumor xenograft, CWR22, and the emergence of an androgen-independent tu- mor, CWR22-R, were monitored using microarray analysis. Androgen-

Lukas C. Amler; David B. Agus; Carrie LeDuc; Lisa Sapinoso; William D. Fox; Suzanne Kern; Dori Lee; Vivian Wang; Maurice Leysens; Brian Higgins; Jason Martin; William Herald; Nicholas Dracopoli; Carlos Cordon-Cardo; Howard I. Scher; Garret M. Hampton

2000-01-01

350

Dissection of vertebrate hematopoiesis using zebrafish thrombopoietin.  

PubMed

In nonmammalian vertebrates, the functional units of hemostasis are thrombocytes. Thrombocytes are thought to arise from bipotent thrombocytic/erythroid progenitors (TEPs). TEPs have been experimentally demonstrated in avian models of hematopoiesis, and mammals possess functional equivalents known as megakaryocyte/erythroid progenitors (MEPs). However, the presence of TEPs in teleosts has only been speculated. To identify and prospectively isolate TEPs, we identified, cloned, and generated recombinant zebrafish thrombopoietin (Tpo). Tpo mRNA expanded itga2b:GFP(+) (cd41:GFP(+)) thrombocytes as well as hematopoietic stem and progenitor cells (HSPCs) in the zebrafish embryo. Utilizing Tpo in clonal methylcellulose assays, we describe for the first time the prospective isolation and characterization of TEPs from transgenic zebrafish. Combinatorial use of zebrafish Tpo, erythropoietin, and granulocyte colony stimulating factor (Gcsf) allowed the investigation of HSPCs responsible for erythro-, myelo-, and thrombo-poietic differentiation. Utilizing these assays allowed the visualization and differentiation of hematopoietic progenitors ex vivo in real-time with time-lapse and high-throughput microscopy, allowing analyses of their clonogenic and proliferative capacity. These studies indicate that the functional role of Tpo in the differentiation of thrombocytes from HSPCs is well conserved among vertebrate organisms, positing the zebrafish as an excellent model to investigate diseases caused by dysregulated erythro- and thrombo-poietic differentiation. PMID:24869937

Svoboda, Ond?ej; Stachura, David L; Macho?ová, Olga; Pajer, Petr; Brynda, Ji?í; Zon, Leonard I; Traver, David; Bart?n?k, Petr

2014-07-10

351

Regeneration of the Pancreas in Adult Zebrafish  

PubMed Central

OBJECTIVE Regenerating organs in diverse biological systems have provided clues to processes that can be harnessed to repair damaged tissue. Adult mammalian ?-cells have a limited capacity to regenerate, resulting in diabetes and lifelong reliance on insulin. Zebrafish have been used as a model for the regeneration of many organs. We demonstrate the regeneration of adult zebrafish pancreatic ?-cells. This nonmammalian model can be used to define pathways for islet-cell regeneration in humans. RESEARCH DESIGN AND METHODS Adult transgenic zebrafish were injected with a single high dose of streptozotocin or metronidazole and anesthetized at 3, 7, or 14 days or pancreatectomized. Blood glucose measurements were determined and gut sections were analyzed using specific endocrine, exocrine, and duct cell markers as well as markers for dividing cells. RESULTS Zebrafish recovered rapidly without the need for insulin injections, and normoglycemia was attained within 2 weeks. Although few proliferating cells were present in vehicles, ablation caused islet destruction and a striking increase of proliferating cells, some of which were Pdx1 positive. Dividing cells were primarily associated with affected islets and ducts but, with the exception of surgical partial pancreatectomy, were not extensively ?-cells. CONCLUSIONS The ability of the zebrafish to regenerate a functional pancreas using chemical, genetic, and surgical approaches enabled us to identify patterns of cell proliferation in islets and ducts. Further study of the origin and contribution of proliferating cells in reestablishing islet function could provide strategies for treating human diseases. PMID:19491207

Moss, Jennifer B.; Koustubhan, Punita; Greenman, Melanie; Parsons, Michael J.; Walter, Ingrid; Moss, Larry G.

2009-01-01

352

Regular Care and Maintenance of a Zebrafish (Danio rerio) Laboratory: An Introduction  

PubMed Central

This protocol describes regular care and maintenance of a zebrafish laboratory. Zebrafish are now gaining popularity in genetics, pharmacological and behavioural research. As a vertebrate, zebrafish share considerable genetic sequence similarity with humans and are being used as an animal model for various human disease conditions. The advantages of zebrafish in comparison to other common vertebrate models include high fecundity, low maintenance cost, transparent embryos, and rapid development. Due to the spur of interest in zebrafish research, the need to establish and maintain a productive zebrafish housing facility is also increasing. Although literature is available for the maintenance of a zebrafish laboratory, a concise video protocol is lacking. This video illustrates the protocol for regular housing, feeding, breeding and raising of zebrafish larvae. This process will help researchers to understand the natural behaviour and optimal conditions of zebrafish husbandry and hence troubleshoot experimental issues that originate from the fish husbandry conditions. This protocol will be of immense help to researchers planning to establish a zebrafish laboratory, and also to graduate students who are intending to use zebrafish as an animal model. PMID:23183629

Martin-Iverson, Mathew T.; Mondal, Alinda; Ong, Daniel; Rainey-Smith, Stephanie; Taddei, Kevin; Lardelli, Michael; Groth, David M.; Verdile, Giuseppe; Martins, Ralph N.

2012-01-01

353