Science.gov

Sample records for zeolite modification copper

  1. Copper-containing zeolite catalysts

    DOEpatents

    Price, Geoffrey L.; Kanazirev, Vladislav

    1996-01-01

    A catalyst useful in the conversion of nitrogen oxides or in the synthesis of nitriles or imines from amines, formed by preparing an intimate mechanical mixture of a copper (II)-containing species, such as CuO or CuCl.sub.2, or elemental copper, with a zeolite having a pore mouth comprising 10 oxygen atoms, such as ZSM-5, converting the elemental copper or copper (II) to copper (I), and driving the copper (I) into the zeolite.

  2. Copper-containing zeolite catalysts

    DOEpatents

    Price, G.L.; Kanazirev, V.

    1996-12-10

    A catalyst useful in the conversion of nitrogen oxides or in the synthesis of nitriles or imines from amines, is formed by preparing an intimate mechanical mixture of a copper (II)-containing species, such as CuO or CuCl{sub 2}, or elemental copper, with a zeolite having a pore mouth comprising 10 oxygen atoms, such as ZSM-5, converting the elemental copper or copper (II) to copper (I), and driving the copper (I) into the zeolite.

  3. Kinetics and thermodynamics of copper ions removal from wastewater by use of zeolite.

    PubMed

    Panayotova, M I

    2001-01-01

    Natural Bulgarian zeolite was tested for its ability to remove Cu2+ from model wastewater. Influence of process variables was investigated. It was found that the optimum wastewater to zeolite ratio is 100:1 and the optimum pH value of water to be treated is 5.5 to 7.5. Zeolite with finer particles shows a higher uptake capacity. The simultaneous presence of Ca2+ and Mg2+ in concentrations similar to their concentrations in Bulgarian natural water does not significantly influence the uptake of Cu2+. Zeolite modification by treating it with NaCl, CH3COONa and NaOH increases its uptake ability. Copper ions are strongly immobilized by modified zeolite and secondary pollution of water caused by its contact with preloaded zeolite is very low (1.5-2.5% of Cu2+ preliminary immobilized have been released back into acidified water). Contacting with 2 mol dm(-3) NaCl can easily regenerate loaded zeolite; best results were obtained for zeolite modified with NaCl. Requirements of Bulgarian standards for industrial wastewater can be met by a one-stage process for an initial Cu2+ concentration of 10 mg dm(-3), and by a two stage process for an initial Cu2+ concentration of 50 mg dm(-3). Uptake of Cu2+ by zeolite from neutral wastewater has proved to be as effective as Cu2+ removal by precipitation of copper hydroxide. The process of Cu2+ uptake by natural zeolite is best described by the kinetic equation for adsorption. This fact, together with the correlation found between the Cu2+ uptake and the amount of Na+, Ca2+ and K+ released into solution by zeolite shows that the ion exchange sorption plays the basic role in Cu2+ uptake by natural zeolite. The value obtained for the apparent activation energy (26.112 kJ mol(-1) implies that the process can be easily carried out with a satisfactory rate. The uptake equilibrium is best described by the Langmuir adsorption isotherm, with Langmuir constants KL= 6.4 x 10(-2) dm3 mg(-1) and M = 6.74 mg g(-1). The apparent equilibrium constant

  4. Copper cation removal in an electrokinetic cell containing zeolite.

    PubMed

    Elsayed-Ali, Omar H; Abdel-Fattah, Tarek; Elsayed-Ali, Hani E

    2011-01-30

    Zeolites are used in environmental remediation of soil or water to immobilize or remove toxic materials by cation exchange. An experiment was conducted to test the use a low electric field to direct the toxic cations towards the zeolite. An electrokinetic cell was constructed using carbon electrodes. Synthetic Linde Type A (LTA) zeolite was placed in the cell. Copper(II) chloride dissolved in water was used as a contaminant. The Cu(2+) concentration was measured for ten hours with and without an applied electric field. The removal of the Cu(2+) ions was accelerated by the applied field in the first two hours. For longer time, the electric field did not improve the removal rate of the Cu(2+) ions. The presence of zeolite and applied electric field complicates the chemistry near the cathode and causes precipitation of Cu(2+) ions as copper oxide on the surface of the zeolite. With increased electric field the zeolite farther away from the cathode had little cation exchange due to the higher drift velocity of the Cu(2+) ions. The results also show that, in the LTA Zeolite A pellets, the cation exchange of Cu is limited to a shell of several tens of micrometers. PMID:21109348

  5. The stability of copper oxo species in zeolite frameworks

    DOE PAGESBeta

    Vilella, Laia; Studt, Felix

    2016-03-07

    Cu-exchanged zeolites are promising heterogeneous catalysts, as they provide a confined environment to carry out highly selective reactions. Furthermore, the knowledge of how the zeolite framework and the location of Al atoms therein affect the adsorption of copper species is still not well understood. In this work, DFT was used to investigate the adsorption of potential Cu oxo active species suggested in the literature [Cu(η2-O2), Cu(µ-O)Cu, and Cu2O2] into zeolites with different pore sizes and shapes (AFI, CHA, TON, MOR, and MFI). The calculations revealed that both monomeric and dimeric Cu oxo species bind strongly to the O atoms ofmore » the lattice. For the monometallic species similar adsorption energies are obtained with the different zeolite frameworks, whereas an optimum Al–Al distance is required for the dimeric species.« less

  6. Copper removal using bio-inspired polydopamine coated natural zeolites.

    PubMed

    Yu, Yang; Shapter, Joseph G; Popelka-Filcoff, Rachel; Bennett, John W; Ellis, Amanda V

    2014-05-30

    Herein, for the first time, natural clinoptilolite-rich zeolite powders modified with a bio-inspired adhesive, polydopamine (PDA), have been systematically studied as an adsorbent for copper cations (Cu(II)) from aqueous solution. Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA) revealed successful grafting of PDA onto the zeolite surface. The effects of pH (2-5.5), PDA treatment time (3-24h), contact time (0 to 24h) and initial Cu(II) ion concentrations (1 to 500mgdm(-3)) on the adsorption of Cu(II) ions were studied using atomic absorption spectroscopy (AAS) and neutron activation analysis (NAA). The adsorption behavior was fitted to a Langmuir isotherm and shown to follow a pseudo-second-order reaction model. The maximum adsorption capacities of Cu(II) were shown to be 14.93mgg(-1) for pristine natural zeolite and 28.58mgg(-1) for PDA treated zeolite powders. This impressive 91.4% increase in Cu(II) ion adsorption capacity is attributed to the chelating ability of the PDA on the zeolite surface. Furthermore studies of recyclability using NAA showed that over 50% of the adsorbed copper could be removed in mild concentrations (0.01M or 0.1M) of either acid or base. PMID:24731937

  7. Effect of hierarchical porosity and phosphorus modification on the catalytic properties of zeolite Y

    NASA Astrophysics Data System (ADS)

    Li, Wenlin; Zheng, Jinyu; Luo, Yibin; Da, Zhijian

    2016-09-01

    The zeolite Y is considered as a leading catalyst for FCC industry. The acidity and porosity modification play important roles in determining the final catalytic properties of zeolite Y. The alkaline treatment of zeolite Y by dealumination and alkaline treatment with NaOH and NaOH&TBPH was investigated. The zeolites were characterized by X-ray diffraction, low-temperature adsorption of nitrogen, transmission electron microscope, NMR, NH3-TPD and IR study of acidity. Accordingly, the hierarchical porosity and acidity property were discussed systematically. Finally, the catalytic performance of the zeolites Y was evaluated in the cracking of 1,3,5-TIPB. It was found that desilication with NaOH&TBPH ensured the more uniform intracrystalline mesoporosity with higher microporosity, while preserving higher B/L ratio and moderate Brønsted acidities resulting in catalysts with the most appropriated acidity and then with better catalytic performance.

  8. Isothermal Cyclic Conversion of Methane into Methanol over Copper-Exchanged Zeolite at Low Temperature.

    PubMed

    Tomkins, Patrick; Mansouri, Ali; Bozbag, Selmi E; Krumeich, Frank; Park, Min Bum; Alayon, Evalyn Mae C; Ranocchiari, Marco; van Bokhoven, Jeroen A

    2016-04-25

    Direct partial oxidation of methane into methanol is a cornerstone of catalysis. The stepped conversion of methane into methanol currently involves activation at high temperature and reaction with methane at decreased temperature, which limits applicability of the technique. The first implementation of copper-containing zeolites in the production of methanol directly from methane is reported, using molecular oxygen under isothermal conditions at 200 °C. Copper-exchanged zeolite is activated with oxygen, reacts with methane, and is subsequently extracted with steam in a repeated cyclic process. Methanol yield increases with methane pressure, enabling reactivity with less reactive oxidized copper species. It is possible to produce methanol over catalysts that were inactive in prior state of the art systems. Characterization of the activated catalyst at low temperature revealed that the active sites are small clusters of copper, and not necessarily di- or tricopper sites, indicating that catalysts can be designed with greater flexibility than formerly proposed. PMID:27010863

  9. Catalytic Oxidation of Methane into Methanol over Copper-Exchanged Zeolites with Oxygen at Low Temperature.

    PubMed

    Narsimhan, Karthik; Iyoki, Kenta; Dinh, Kimberly; Román-Leshkov, Yuriy

    2016-06-22

    The direct catalytic conversion of methane to liquid oxygenated compounds, such as methanol or dimethyl ether, at low temperature using molecular oxygen is a grand challenge in C-H activation that has never been met with synthetic, heterogeneous catalysts. We report the first demonstration of direct, catalytic oxidation of methane into methanol with molecular oxygen over copper-exchanged zeolites at low reaction temperatures (483-498 K). Reaction kinetics studies show sustained catalytic activity and high selectivity for a variety of commercially available zeolite topologies under mild conditions (e.g., 483 K and atmospheric pressure). Transient and steady state measurements with isotopically labeled molecules confirm catalytic turnover. The catalytic rates and apparent activation energies are affected by the zeolite topology, with caged-based zeolites (e.g., Cu-SSZ-13) showing the highest rates. Although the reaction rates are low, the discovery of catalytic sites in copper-exchanged zeolites will accelerate the development of strategies to directly oxidize methane into methanol under mild conditions. PMID:27413787

  10. Catalytic Oxidation of Methane into Methanol over Copper-Exchanged Zeolites with Oxygen at Low Temperature

    PubMed Central

    2016-01-01

    The direct catalytic conversion of methane to liquid oxygenated compounds, such as methanol or dimethyl ether, at low temperature using molecular oxygen is a grand challenge in C–H activation that has never been met with synthetic, heterogeneous catalysts. We report the first demonstration of direct, catalytic oxidation of methane into methanol with molecular oxygen over copper-exchanged zeolites at low reaction temperatures (483–498 K). Reaction kinetics studies show sustained catalytic activity and high selectivity for a variety of commercially available zeolite topologies under mild conditions (e.g., 483 K and atmospheric pressure). Transient and steady state measurements with isotopically labeled molecules confirm catalytic turnover. The catalytic rates and apparent activation energies are affected by the zeolite topology, with caged-based zeolites (e.g., Cu-SSZ-13) showing the highest rates. Although the reaction rates are low, the discovery of catalytic sites in copper-exchanged zeolites will accelerate the development of strategies to directly oxidize methane into methanol under mild conditions. PMID:27413787

  11. A facile top-down protocol for postsynthesis modification of hierarchical aluminum-rich MFI zeolites.

    PubMed

    Yu, Lili; Huang, Shengjun; Miao, Shu; Chen, Fucun; Zhang, Shuang; Liu, Zhenni; Xie, Sujuan; Xu, Longya

    2015-01-12

    High aluminum content constitutes a major hurdle for the postsynthesis modification of hierarchical zeolites. A facile protocol comprising fluorination and sequential alkaline treatment is presented for the postsynthesis modification of hierarchical Al-rich MFI zeolites. By virtue of this protocol, uniform intracrystalline mesoporosity is introduced in an Al-rich MFI zeolite (Si/Al = 14.3). The obtained hierarchical zeolites exhibit a significant mesopore size distribution, centered around 6 nm, and show improved conversions in catalytic cracking of bulky aromatic molecules. The fundamental implications of the fluorination-alkaline treatment protocol are related to the formation of F-bearing tetrahedral aluminum species in the antecedent fluorination step, which alleviates the resistance of Al sites to the alkaline medium and causes Al-F complexation for regulated hydrolysis of the Al species during the alkaline treatment process. This top-down protocol and the derived mechanistic understandings are expected to be applied in the synthesis of hierarchical Al-rich zeolites with other framework topologies. PMID:25399674

  12. [Preparation of honeycombed monolithic zeolite and hydrophobic modification with SiCl4].

    PubMed

    Wang, Xi-Qin; Li, Kai; Wei, Bing; Luan, Zhi-Qiang

    2011-12-01

    A kind of hydrophobic zeolitic monolith were prepared by mixing HY/ZSM-5, additives and water, followed by processes of extrusion and drying, and then hydrophobic modification with SiCl4. The structures and properties of the adsorbent were examined by nitrogen adsorption and desorption measurement, XRD, and benzene adsorption experiment. The results show that those adsorbents possess hierarchical pore structures and excellent hydrophobicity. PMID:22468534

  13. Surface modification of ultra thin PES-zeolite using thermal annealing to increase flux and rejection of produced water treatment

    NASA Astrophysics Data System (ADS)

    Kusworo, T. D.; Widayat, Pradini, A. W.; Armeli, Y. P.

    2015-12-01

    Membrane technology is an alternative of water treatment based on filtration that is being developed. Surface Modification using heat treatment has been investigated to improve the performance of ultra thin PES-Zeolite nanocomposite membrane for produced water treatment from Pertamina Balongan. Two types of membranes with surface modification and without modification were prepared to study the effect of surface modification on its permeation properties. Asymmetric ultra thin PES-Zeolite nanocomposite membrane for produced water treatment was casted using the dry/wet phase inversion technique from dope solutions containing polyethersulfone, N-methyl-2-pyrrolidone (NMP) as a solvent and zeolite as a filler. Experimental results showed that the heat treatment at near glass transition temperature was increase the rejection of COD, Turbidity and ion Ca2+. The better adherence of zeolite particles in the polymer matrix combined with formation of charge transfer complexes (CTCs) and cross-linking might be the main factors to enhance the percent of rejection. Field emission scanning electron microscopy (FESEM) micrographs showed that the selective layer and the substructure of PES-zeolite membrane became denser and more compact after the heat treatment. The FESEM micrographs also showed that the heat treatment was increased the adherence of zeolite particle and polymer. Membranes treated at 180 °C for 15 seconds indicated increase the rejection and small decrease in flux for produced water treatment..

  14. Surface modification of ultra thin PES-zeolite using thermal annealing to increase flux and rejection of produced water treatment

    SciTech Connect

    Kusworo, T. D. Widayat,; Pradini, A. W.; Armeli, Y. P.

    2015-12-29

    Membrane technology is an alternative of water treatment based on filtration that is being developed. Surface Modification using heat treatment has been investigated to improve the performance of ultra thin PES-Zeolite nanocomposite membrane for produced water treatment from Pertamina Balongan. Two types of membranes with surface modification and without modification were prepared to study the effect of surface modification on its permeation properties. Asymmetric ultra thin PES-Zeolite nanocomposite membrane for produced water treatment was casted using the dry/wet phase inversion technique from dope solutions containing polyethersulfone, N-methyl-2-pyrrolidone (NMP) as a solvent and zeolite as a filler. Experimental results showed that the heat treatment at near glass transition temperature was increase the rejection of COD, Turbidity and ion Ca{sup 2+}. The better adherence of zeolite particles in the polymer matrix combined with formation of charge transfer complexes (CTCs) and cross-linking might be the main factors to enhance the percent of rejection. Field emission scanning electron microscopy (FESEM) micrographs showed that the selective layer and the substructure of PES-zeolite membrane became denser and more compact after the heat treatment. The FESEM micrographs also showed that the heat treatment was increased the adherence of zeolite particle and polymer. Membranes treated at 180 °C for 15 seconds indicated increase the rejection and small decrease in flux for produced water treatment.

  15. Internal surface modification of zeolite MFI particles and membranes for gas separation

    NASA Astrophysics Data System (ADS)

    Kassaee, Mohamad H.

    Zeolites are a well-known class of crystalline oxide materials with tunable compositions and nanoporous structures, and have been used extensively in catalysis, adsorption, and ion exchange. The zeolite MFI is one of the well-studied zeolites because it has a pore size and structure suitable for separation or chemical conversion of many industrially important molecules. I synthesized MFI membranes with [h0h] out-of-plane orientation on α-alumina supports. The membranes were modified by the same procedures as used for MFI particles and with 1-butanol, 3-amino-1-propanol, 2-[(2-aminoethyl)amino]ethanol, and benzenemethanol. The existence of functional groups in the pores of the zeolite was confirmed by PA-FTIR measurements. Permeation measurements of H2, N2, CO2, CH 4, and SF6, were performed at room temperature before and after modification. Permeation of n-butane, and i-butane were measured before and after modification with 1-butanol. For all of the studied gases, gas permeances decreased by 1-2 orders of magnitude compared to bare MFI membranes for modified membranes. This is a strong indication that the organic species in the MFI framework are interacting with or blocking the gas molecule transport through the MFI pores. The CO2/CH 4 permeation selectivity was close to the Knudsen selectivity (0.6) for the membranes before modification. CO2/CH4 selectivity increased for MFI/benzenemethanol modified membrane (1.0), whereas it decreased for the MFI/2-[(2-aminoethyl)amino]ethanol modified membrane (0.5). MFI/benzenemethanol crystals were shown to have a highest sorption capacity for CH4, whereas, MFI/2-[(2-aminoethyl)amino]ethanol crystals were shown to have a highest sorption capacity for CO2 over all other studied molecules Higher sorption of CH4 in MFI/benzenemethanol and higher sorption of CO2 in MFI/2-[(2-aminoethyl)amino]ethanol and their strong binding to the modified membrane are likely the reasons for observing higher and lower CO2/CH4 permeation

  16. Stable copper-zeolite filter media for bacteria removal in stormwater.

    PubMed

    Li, Ya L; McCarthy, David T; Deletic, Ana

    2014-05-30

    Cu(2+)-exchanged zeolite (ZCu) as antibacterial media shows great potential for bacteria removal from stormwater, but its stability in high salinity water needs attention. In this study, stable antibacterial media were developed by modifying ZCu through calcination and in situ Cu(OH)2 coating. Their stability and Escherichia coli removal efficiency along with impact of salinity were examined in gravity-fed columns. While copper leaching from ZCu was 20mg/L in test water of salinity 250μS/cm, it was reduced by over 97% through Cu(OH)2 coating and/or calcination. ZCu coated with Cu(OH)2 followed by heat treatment at 180°C (ZCuCuO180) exhibited more consistent E. coli removal (1.7-2.7 log) than ZCu (1.2-3.3 log) in test water of varied salinity but constant contact time 22min. ZCu calcined at 400°C (ZCu400) effectively inactivated removed bacteria during 24h drying period. In the presence of native microbial communities, new sand filters, particularly those having ZCu400 at the top to inactivate bacteria during drying periods and ZCuCuO180 midway to capture and inactivate microbes during wet events, provided the best bacterial removal (1.7 log, contact time 9min). Copper leaching from this design was 9μg/L, well below long-term irrigation standard of 200μg/L. PMID:24747698

  17. Tailoring the Transport Properties of Zeolitic Imidazolate Frameworks by Post-Synthetic Thermal Modification.

    PubMed

    Zhang, Chen; Koros, William J

    2015-10-28

    Understanding how to control transport properties of zeolitic imidazolate frameworks (ZIFs) is critical to extend ZIF-based membranes and adsorbents to a wide spectrum of gas and vapor separations. In this work, we report a facile post-synthetic thermal modification (PSTM) technique to tailor ZIFs' transport properties by balancing diffusivity and diffusion selectivity. With controllable dissociation of framework methyl groups from a precursor ZIF (ZIF-8), we have prepared thermally modified ZIFs showing substantially increased n-butane diffusivity and attractive n/iso-butane diffusion selectivity. Hybrid ZIF/polymer mixed-matrix membranes formed using these thermally modified ZIFs are expected to deliver attractive butane isomer separation performance. Membranes based on such materials can potentially be used to retrofit refinery alkylation units for producing premium gasoline blending stocks. PMID:26451850

  18. Speciation of copper-humic acid in zeolite Y during extraction with a RTIL

    NASA Astrophysics Data System (ADS)

    Huang, Hsin-Liang; Jyun Chen, Yan

    2010-07-01

    Chemical structure of copper chelated with humic acid (Cu-HA) in the micro-pores of zeolite Y (to simulate micropores in copper contaminated soils) and extracted with a room temperature ionic liquid (RTIL) ([C 4mim][PF 6], 1-butyl-3-methylimidazolium hexafluorophosphate) has been studied by X-ray absorption (near edge structure (XANES) and Fourier transformed extended X-ray absorption fine structure (EXAFS)) spectroscopy. At the temperature of 298 K, within 30 min, about 84% of Cu-HA in Y can be extracted by the RTIL. The XANES spectra reveal that a small amount of Cu(II)-HA (7%), adsorbed Cu(II) ( Cu(ads)2+) (5%) and Cu[mim]42+ (4%), which are not extracted, are found in Y. In the copper extracted RTIL, 75% of Cu(II)-HA in Y are converted to Cu[mim]42+ during extraction. About 17% of Cu(II)-HA is also found in the RTIL. Therefore, at least three reaction paths may be involved in the extraction process: (1) extraction of Cu(II)-HA in the RTIL, (2) Cu 2+ (formed from dissociation of Cu(II)-HA in the RTIL) adsorbed on Y, and (3) inter-conversion of Cu(II)-HA to Cu[mim]42+ in the RTIL. The refined EXAFS data indicate that the Cu-O bond distance in the Y and RTIL phases is 1.94 Å with an average coordination number (CN) of 3.4. Note that Cu[mim]42+ in the RTIL processes a Cu-N bond distance of 1.96 Å and a CN of 4.1.

  19. Enhanced photocatalytic activity of supported TiO2 by selective surface modification of zeolite Y

    NASA Astrophysics Data System (ADS)

    Guesh, Kiros; Márquez-Álvarez, Carlos; Chebude, Yonas; Díaz, Isabel

    2016-08-01

    Zeolite Y was treated using ammonium acetate and ammonium fluoride sequentially. As a consequence the aluminum from the surface was selectively removed. Then, loading with TiO2 (20 wt%) led to a final photocatalyst. The samples were characterized by X-ray diffraction (XRD), elemental analysis (ICP-OES), N2 adsorption, diffuse reflectance UV-vis spectroscopy (DRS), photoluminescence spectroscopy (PL), and X-ray photoelectron spectroscopy (XPS). It was found that 50% of the Al atoms were removed from the surface of the zeolite without affecting the framework structure. The TiO2/treated zeolite sample yielded 92% photocatalytic degradation of 10 ppm methyl orange (MO), a model pollutant, while the TiO2/parent zeolite converted only 7.6%. The mass normalized turnover rate (TORm) of the treated zeolite loaded with TiO2 was about 12 times higher than that of the parent zeolite loaded with the same amount of TiO2 precursor. This higher photocatalytic activity of the TiO2 supported on treated zeolite can be attributed to a more efficient interaction of the TiO2 with the zeolite leading to higher adsorption capacity. Reusability of the photocatalysts was assessed by performing three consecutive reaction cycles that showed no significant loss of photocatalytic activity.

  20. Optimizing anti-coking abilities of zeolites by ethylene diamine tetraacetie acid modification on catalytic fast pyrolysis of corn stalk

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Zhong, Zhaoping; Song, Zuwei; Ding, Kuan; Chen, Paul; Ruan, Roger

    2015-12-01

    In order to minimize coke yield during biomass catalytic fast pyrolysis (CFP) process, ethylene diamine tetraacetie acid (EDTA) chemical modification method is carried out to selectively remove the external framework aluminum of HZSM-5 catalyst. X-ray diffraction (XRD), nitrogen (N2)-adsorption and ammonia-temperature programmed desorption (NH3-TPD) techniques are employed to investigate the porosity and acidity characteristics of original and modified HZSM-5 samples. Py-GC/MS and thermo-gravimetric analyzer (TGA) experiments are further conducted to explore the catalytic effect of modified HZSM-5 samples on biomass CFP and to verify the positive effect on coke reduction. Results show that EDTA treatment does not damage the crystal structure of HZSM-5 zeolites, but leads to a slight increase of pore volume and pore size. Meanwhile, the elimination of the strong acid peak indicates the dealumination of outer surface of HZSM-5 zeolites. Treatment time of 2 h (labeled EDTA-2H) is optimal for acid removal and hydrocarbon formation. Among all modified catalysts, EDTA-2H performs the best for deacidification and can obviously increase the yields of positive chemical compositions in pyrolysis products. Besides, EDTA modification can improve the anti-coking properties of HZSM-5 zeolites, and EDTA-2H gives rise to the lowest coke yield.

  1. Ag-Promoted ZrBEA Zeolites Obtained by Post-Synthetic Modification for Conversion of Ethanol to Butadiene.

    PubMed

    Sushkevich, Vitaly L; Ivanova, Irina I

    2016-08-23

    1,3-Butadiene was synthesized from ethanol using zirconium-containing zeolite beta (ZrBEA) catalysts doped with 1 wt % silver. The Zr was planted using post-synthesis modification by dealumination of the parent zeolite followed by treatment with ZrOCl2 in a DMSO solution. FTIR and NMR spectroscopy were used to investigate the planting process by preparing materials with different Si/Al ratios and crystal sizes. The results showed preferential grafting of Zr to the terminal silanols present on the external surface of the zeolite crystals instead of incorporation of Zr into silanol nests. The grafting yielded highly accessible Zr(OSi)3 OH open sites with high Lewis acidity, as confirmed by FTIR spectroscopy of adsorbed CO. These sites are shown to be extremely active for the conversion of ethanol to butadiene. Ag/ZrBEA catalysts prepared using the post-synthesis method showed significant advantages compared with Ag/ZrBEA catalysts synthesized using a conventional hydrothermal procedure. The best catalyst performance in terms of butadiene formation rate (3 μmol g(-1)  s(-1) ) was observed over Ag/Zr(3.5)BEA(75) (containing 3.5 wt % Zr), which had the smallest crystal size and the highest content of Zr open sites of the prepared catalysts. PMID:27467567

  2. Unveiling the adsorption mechanism of zeolitic imidazolate framework-8 with high efficiency for removal of copper ions from aqueous solutions.

    PubMed

    Zhang, Yujie; Xie, Zhiqiang; Wang, Zhuqing; Feng, Xuhui; Wang, Ying; Wu, Aiguo

    2016-08-01

    Among the heavy metal ions, copper(ii) can cause eye and liver damage at high uptake. The existence of copper ions (Cu(2+)) even with an ultralow concentration of less than 0.1 μg g(-1) can be toxic to living organisms. Thus, it is highly desirable to develop efficient adsorbents to remove Cu(2+) from aqueous solutions. In this work, without any surface functionalization or pretreatment, a water-stable zeolitic imidazolate framework (ZIF-8) synthesized at room temperature is directly used as a highly efficient adsorbent for removal of copper ions from aqueous solutions. To experimentally unveil the adsorption mechanism of Cu(2+) by using ZIF-8, we explore various effects from a series of important factors, such as pH value, contact time, temperature and initial Cu(2+) concentration. As a result, ZIF-8 nanocrystals demonstrate an unexpected high adsorption capacity of Cu(2+) and high removal efficiency for both high and low concentrations of Cu(2+) from water. Moreover, ZIF-8 nanocrystals possess fast kinetics for removing Cu(2+) with the adsorption time of less than 30 min. In addition, the pH of the solution ranging from 3 to 6 shows little effect on the adsorption of Cu(2+) by ZIF-8. The adsorption mechanism is proposed for the first time and systematically verified by various characterization techniques, such as TEM, FTIR, XPS, XRD and SEM. PMID:27396854

  3. Modification of surface properties of copper-refractory metal alloys

    DOEpatents

    Verhoeven, John D.; Gibson, Edwin D.

    1993-10-12

    The surface properties of copper-refractory metal (CU-RF) alloy bodies are modified by heat treatments which cause the refractory metal to form a coating on the exterior surfaces of the alloy body. The alloys have a copper matrix with particles or dendrites of the refractory metal dispersed therein, which may be niobium, vanadium, tantalum, chromium, molybdenum, or tungsten. The surface properties of the bodies are changed from those of copper to that of the refractory metal.

  4. Ion distribution in copper exchanged zeolites by using Si-29 spin lattice relaxation analysis.

    PubMed

    Palamara, Joseph; Seidel, Karsten; Moini, Ahmad; Prasad, Subramanian

    2016-06-01

    Transition metal-containing zeolites, particularly those with smaller pore size, have found extensive application in the selective catalytic reduction (SCR) of environmental pollutants containing nitrogen oxides. We report these zeolites have dramatically faster silicon-29 (Si-29) spin lattice relaxation times (T1) compared to their sodium-containing counterparts. Paramagnetic doping allows one to acquire Si-29 MAS spectra in the order of tens of seconds without significantly affecting the spectral resolution. Moreover, relaxation times depend on the method of preparation and the next-nearest neighbor silicon Qn(mAl) sites, where n=4 and m=0-4, respectively. A clear trend is noted between the effectiveness of Cu exchange and the Si-29 NMR relaxation times. It is anticipated that the availability of this tool, and the enhanced understanding of the nature of the active sites, will provide the means for designing improved SCR catalysts. PMID:27055207

  5. Ion distribution in copper exchanged zeolites by using Si-29 spin lattice relaxation analysis

    NASA Astrophysics Data System (ADS)

    Palamara, Joseph; Seidel, Karsten; Moini, Ahmad; Prasad, Subramanian

    2016-06-01

    Transition metal-containing zeolites, particularly those with smaller pore size, have found extensive application in the selective catalytic reduction (SCR) of environmental pollutants containing nitrogen oxides. We report these zeolites have dramatically faster silicon-29 (Si-29) spin lattice relaxation times (T1) compared to their sodium-containing counterparts. Paramagnetic doping allows one to acquire Si-29 MAS spectra in the order of tens of seconds without significantly affecting the spectral resolution. Moreover, relaxation times depend on the method of preparation and the next-nearest neighbor silicon Qn(mAl) sites, where n = 4 and m = 0-4, respectively. A clear trend is noted between the effectiveness of Cu exchange and the Si-29 NMR relaxation times. It is anticipated that the availability of this tool, and the enhanced understanding of the nature of the active sites, will provide the means for designing improved SCR catalysts.

  6. Copper stabilization by zeolite synthesis in polluted soils treated with coal fly ash.

    PubMed

    Terzano, Roberto; Spagnuolo, Matteo; Medici, Luca; Vekemans, Bart; Vincze, Laszlo; Janssens, Koen; Ruggiero, Pacifico

    2005-08-15

    This study deals with the process of zeolite formation in an agricultural soil artificially polluted by high amounts of Cu (15 mg of Cu/g of soil dry weight) and treated with fused coal fly ash at 30 and 60 degrees C and how this process affects the mobility and availability of the metal. As a consequence of the treatment, the amount of dissolved Cu, and thus its mobility, was strongly reduced, and the percentage of the metal stabilized in the solid phase increased over time, reaching values of 30% at 30 degrees C and 40% at 60 degrees C. The physicochemical phenomena responsible for Cu stabilization in the solid phase have been evaluated by EDTA sequential extractions and synchrotron radiation based X-ray microanalytical techniques. These techniques were used for the visualization of the spatial distribution and the speciation of Cu in and/or on the neo-formed zeolite particles. In particular, micro XRF (X-ray fluorescence) tomography showed direct evidence that Cu can be entrapped as clusters inside the porous zeolitic structures while mu-XANES (X-ray absorption near edge structure) spectroscopy determinations revealed Cu to be present mainly as Cu(ll) hydroxide and Cu(ll) oxide. The reported results could be useful as a basic knowledge for planning new technologies for the on site physicochemical stabilization of heavy metals in heavily polluted soils. PMID:16173593

  7. Copper stabilization by zeolite synthesis in polluted soils treated with coal fly ash

    SciTech Connect

    Roberto Terzano; Matteo Spagnuolo; Luca Medici; Bart Vekemans; Laszlo Vincze; Koen Janssens; Pacifico Ruggiero

    2005-08-15

    This paper reports on the process of zeolite formation in an agricultural soil artificially polluted by high amounts of Cu (15 mg of Cu/g of soil dry weight) and treated with fused coal fly ash at 30 and 60 C and how this process affects the mobility and availability of the metal. As a consequence of the treatment, the amount of dissolved Cu, and thus its mobility, was strongly reduced, and the percentage of the metal stabilized in the solid phase increased over time, reaching values of 30% at 30{sup o}C and 40% at 60{sup o}C. The physicochemical phenomena responsible for Cu stabilization in the solid phase have been evaluated by EDTA sequential extractions and synchrotron radiation based X-ray microanalytical techniques. These techniques were used for the visualization of the spatial distribution and the speciation of Cu in and/or on the neo-formed zeolite particles. In particular, micro XRF (X-ray fluorescence) tomography showed direct evidence that Cu can be entrapped as clusters inside the porous zeolitic structures while -{mu}XANES (X-ray absorption near edge structure) spectroscopy determinations revealed Cu to be present mainly as Cu(II) hydroxide and Cu(II) oxide. The reported results could be useful as a basic knowledge for planning new technologies for the on-site physicochemical stabilization of heavy metals in heavily polluted soils. 32 refs., 5 figs.

  8. DDR-type zeolite membrane synthesis, modification and gas permeation studies

    DOE PAGESBeta

    Yang, Shaowei; Cao, Zishu; Arvanitis, Antonios; Sun, Xinhui; Xu, Zhi; Dong, Junhang

    2016-01-22

    DDR-type zeolite membrane was synthesized on porous α-alumina substrate by hydrothermal treatment of a ball-milled Sigmal-1 crystal seed layer in an aluminum-free precursor solution containing 1-Adamantylamine as the structure directing agent (SDA). The as-synthesized DDR zeolite membranes were defect-free but the supported zeolite layers were susceptible to crack development during the subsequent high-temperature SDA removal process. The cracks were effectively eliminated by the liquid phase chemical deposition method using tetramethoxysilane as the precursor for silica deposits. The modified membrane was extensively studied for H2, He, O2, N2, CO2, CH4, and i-C4H10 pure gas permeation and CO2/CH4 mixture separation. At 297more » K and 2-bar feed gas pressure, the membrane achieved a CO2/CH4 separation factor of ~92 for a feed containing 90% CO2, which decreased to 62 for a feed containing 10% CO2 with the CO2 permeance virtually unchanged at ~1.8×10–7 mol/m• sup>2 s • Pa regardless of the feed composition. It also exhibited an O2/N2 permselectivity of 1.8 at 297 K. Furthermore, the gas permeation behaviors of the current aluminum-containing DDR type zeolite membrane are generally in good agreement with the findings in both experimental and theoretical studies on the pure-silica DDR membranes in recent literature.« less

  9. Modification of medical metals by ion implantation of copper

    NASA Astrophysics Data System (ADS)

    Wan, Y. Z.; Xiong, G. Y.; Liang, H.; Raman, S.; He, F.; Huang, Y.

    2007-10-01

    The effect of copper ion implantation on the antibacterial activity, wear performance and corrosion resistance of medical metals including 317 L of stainless steels, pure titanium, and Ti-Al-Nb alloy was studied in this work. The specimens were implanted with copper ions using a MEVVA source ion implanter with ion doses ranging from 0.5 × 10 17 to 4 × 10 17 ions/cm 2 at an energy of 80 keV. The antibacterial effect, wear rate, and inflexion potential were measured as a function of ion dose. The results obtained indicate that copper ion implantation improves the antibacterial effect and wear behaviour for all the three medical materials studied. However, corrosion resistance decreases after ion implantation of copper. Experimental results indicate that the antibacterial property and corrosion resistance should be balanced for medical titanium materials. The marked deteriorated corrosion resistance of 317 L suggests that copper implantation may not be an effective method of improving its antibacterial activity.

  10. Modification of commercial NaY zeolite to give high water diffusivity and adsorb a large amount of water.

    PubMed

    Katoh, Masahiro; Kimura, Michisato; Sugino, Mao; Horikawa, Toshihide; Nakagawa, Keizo; Sugiyama, Shigeru

    2015-10-01

    By using NaY zeolites as desiccant materials, commercial NaY zeolite was alkali treated with 1 M NaOH aqueous solution and then Mg(2+) ion-exchanged by 0.5 M Mg(NO3)2 aqueous solution. Alkali treatment (AT) of NaY zeolite removed silicon atoms selectivity from the framework of Y-type zeolite and enhanced water diffusivity of Y-type zeolite. On the other hand, Mg(2+) ion-exchange of NaY zeolite increased the amount of water adsorbed. Prepared Y-AT-Mg zeolite had both water adsorption velocity and a large difference of water adsorbed amount between adsorption at 30 °C and desorption at 100 °C. PMID:26072446

  11. Surface modification of an epoxy resin with polyamines and polydopamine: Adhesion toward electroless deposited copper

    NASA Astrophysics Data System (ADS)

    Schaubroeck, David; Mader, Lothar; Dubruel, Peter; Vanfleteren, Jan

    2015-10-01

    In this paper the influence of the epoxy roughness, surface modifications and ELD (electroless copper deposition) temperatures on the adhesive strength of the copper is studied. Good adhesion at low roughness values is targeted due to their applicability in high density electronic circuits. Roughened epoxy surfaces are modified with adsorbed polyamines, polydopamine and polyamines grafted to polydopamine. Next the, adhesive strength of ELD copper is determined with peel strength measurements and the interphases are examined with SEM (scanning electron microscopy). Polydopamine and polyamines grafted to polydopamine can lead to increased adhesive strength at lower roughness values compared to the non-modified samples at specific plating temperatures.

  12. Local ammonia storage and ammonia inhibition in a monolithic copper-beta zeolite SCR catalyst

    SciTech Connect

    Auvray, Xavier P; Partridge Jr, William P; Choi, Jae-Soon; Pihl, Josh A; Yezerets, Alex; Kamasamudram, Krishna; Currier, Neal; Olsson, Louise

    2012-01-01

    Selective catalytic reduction of NO with NH{sub 3} was studied on a Cu-beta zeolite catalyst, with specific focus on the distributed NH{sub 3} capacity utilization and inhibition. In addition, several other relevant catalyst parameter distributions were quantified including the SCR zone, or catalyst region where SCR occurs, and NO and NH{sub 3} oxidation. We show that the full NH{sub 3} capacity (100% coverage) is used within the SCR zone for a range of temperatures. By corollary, unused NH{sub 3} capacity exists downstream of the SCR zone. Consequently, the unused capacity relative to the total capacity is indicative of the portion of the catalyst unused for SCR. Dynamic NH{sub 3} inhibition distributions, which create local transient conversion inflections, are measured. Dynamic inhibition is observed where the gas phase NH{sub 3} and NO concentrations are high, driving rapid NH{sub 3} coverage buildup and SCR. Accordingly, we observe dynamic inhibition at low temperatures and in hydrothermally aged states, but predict its existence very near the catalyst front in higher conversion conditions where we did not specifically monitor its impact. While this paper addresses some general distributed SCR performance parameters including Oxidation and SCR zone, our major new contributions are associated with the NH{sub 3} capacity saturation within the SCR zone and dynamic inhibition distributions and the associated observations. These new insights are relevant to developing accurate models, designs and control strategies for automotive SCR catalyst applications.

  13. Surface modification of an epoxy resin with polyamines and polydopamine: The effect on the initial electroless copper deposition

    NASA Astrophysics Data System (ADS)

    Schaubroeck, David; Mader, Lothar; De Geyter, Nathalie; Morent, Rino; Dubruel, Peter; Vanfleteren, Jan

    2014-06-01

    This paper describes the influence of polydopamine and polyamine surface modifications of an etched epoxy cresol novolak (ECN) resin on the initial electroless copper deposition. Three different strategies to introduce polyamines on a surface in aqueous environment are applied: via polyethyleneimine adsorption (PEI), via polydopamine and via polyamines grafted to polydopamine. Next, the influence of these surface modifications on the catalytic palladium activation is investigated through X-ray photoelectron spectroscopy (XPS) analysis. Finally, the initial electroless copper deposition on modified epoxy surfaces is evaluated using SEM and Energy Dispersive Spectroscopy (EDS). Grafted polyamines on polydopamine surface modifications result in a large increase of the initial deposited copper.

  14. Surface Modification of Boron-Doped Diamond with Microcrystalline Copper Phthalocyanine: Oxygen Reduction Catalysis.

    PubMed

    Gan, Patrick; Foord, John S; Compton, Richard G

    2015-10-01

    Surface modification of boron-doped diamond (BDD) with copper phthalocyanine was achieved using a simple and convenient dropcast deposition, giving rise to a microcrystalline structure. Both unmodified and modified BDD electrodes of different surface terminations (namely hydrogen and oxygen) were compared via the electrochemical reduction of oxygen in aqueous solution. A significant lowering of the cathodic overpotential by about 500 mV was observed after modification of hydrogen-terminated (hydrophobic) diamond, while no voltammetric peak was seen on modified oxidised (hydrophilic) diamond, signifying greater interaction between copper phthalocyanine and the hydrogen-terminated BDD. Oxygen reduction was found to undergo a two-electron process on the modified hydrogen-terminated diamond, which was shown to be also active for the reduction of hydrogen peroxide. The lack of a further conversion of the peroxide was attributed to its rapid diffusion away from the triple phase boundary at which the reaction is expected to exclusively occur. PMID:26491640

  15. Surface Modification of Boron-Doped Diamond with Microcrystalline Copper Phthalocyanine: Oxygen Reduction Catalysis

    PubMed Central

    Gan, Patrick; Foord, John S; Compton, Richard G

    2015-01-01

    Surface modification of boron-doped diamond (BDD) with copper phthalocyanine was achieved using a simple and convenient dropcast deposition, giving rise to a microcrystalline structure. Both unmodified and modified BDD electrodes of different surface terminations (namely hydrogen and oxygen) were compared via the electrochemical reduction of oxygen in aqueous solution. A significant lowering of the cathodic overpotential by about 500 mV was observed after modification of hydrogen-terminated (hydrophobic) diamond, while no voltammetric peak was seen on modified oxidised (hydrophilic) diamond, signifying greater interaction between copper phthalocyanine and the hydrogen-terminated BDD. Oxygen reduction was found to undergo a two-electron process on the modified hydrogen-terminated diamond, which was shown to be also active for the reduction of hydrogen peroxide. The lack of a further conversion of the peroxide was attributed to its rapid diffusion away from the triple phase boundary at which the reaction is expected to exclusively occur. PMID:26491640

  16. High-adhesion Cu patterns fabricated by nanosecond laser modification and electroless copper plating

    NASA Astrophysics Data System (ADS)

    Lv, Ming; Liu, Jianguo; Zeng, Xiaoyan; Du, Qifeng; Ai, Jun

    2015-10-01

    Adhesion strength is a crucial factor for the performance and reliability of metallic patterns on insulator substrates. In this study, we present an efficient technique for selective metallization of alumina ceramic with high adhesion strength by using nanosecond laser modification and electroless copper plating. Specifically, a 355 nm Nd:YVO4 ultraviolet (UV) laser was employed not only to decompose palladium chloride film locally for catalyzing the electroless reaction, but also to modify the ceramic surface directly using its high fluence. An orthogonal experiment was undertaken to study the effects of processing parameters including laser fluence, scanning speed and scanning line interval on adhesion strength. The adhesion strength was measured by pulling a metallic wire soldered into the copper coating perpendicular to the substrate using a pull tester. The results have shown that a strong adhesion between the copper coating and the alumina ceramic, higher than the tensile strength of tin-lead solder was obtained. Surface and interface characteristics were investigated to understand that, whose results have shown that the high-aspect-ratio microstructures formed by the laser modification is the major reason for the improvement of adhesion.

  17. Structural modifications of alumina implanted with zirconium, copper, and titanium ions

    NASA Astrophysics Data System (ADS)

    Bigarré, J.; Fayeulle, S.; Tréheux, D.; Moncoffre, N.

    1997-10-01

    Microstructural modifications (amorphization, lattice deformation, phase transformations) in alumina induced by implantation of zirconium, copper, or titanium ions and by postimplantation thermal annealings were studied using grazing incidence x-ray diffraction. It was shown that the amount of lattice deformation and the type of damage resulting in the lattice depend on the ion implanted. When zirconium was implanted, the alumina lattice was highly deformed. Amorphization was observed when a high ion dose was implanted. Copper implantation led to the formation of gamma alumina. With titanium ions, very high strain was created and delta alumina was formed. After postimplantation annealings, lattices returned to their equilibrium state through crystallization of alpha alumina and precipitation of oxides of the implanted species (ZrO2, CuO and CuAl2O4, and TiO2).

  18. Disilane-modified mordenite zeolites

    SciTech Connect

    Yan, Y.; Vansant, E.F. )

    1990-03-22

    The effective pore size of H-mordenite zeolite can be decreased by implantation of disilyl compounds. Chemisorption of disilane at high temperature results in denser packing of the implanted entities on the external surface. This in turn enhances the pore narrowing effect. After hydrolysis-dehydration, the external surface of the disilanated zeolite can be reactivated by partial rehydration; thus a successive modification of the zeolite surface is possible.

  19. Selective deposition of conductive copper films on glass surfaces using femtosecond laser surface modification and electroless plating

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Liao, Yang; Zeng, Huidan; Zhou, Zenghui; Sun, Haiyi; Song, Juan; Wang, Xinshun; Cheng, Ya; Xu, Zhizhan; Sugioka, Koji; Midorikawa, Katsumi

    2008-03-01

    In this paper, selective deposition of conductive copper films on glass surfaces is demonstrated with the assistance of femtosecond laser surface modification followed by electroless plating. Irradiation of femtosecond laser makes it possible to selectively deposit copper films in the irradiated area on glass surfaces coated with silver nitrate films. The influence of the laser direct writing parameters and the electroless plating process on the formation of copper films is discussed. Meanwhile, the electric properties of copper films are investigated, which confirms that copper films are conductive. A tentative mechanism of the selective deposition process is also proposed. In addition, the potential application of this technique for integrating electrical and thermal functions into microdevices is discussed.

  20. Copper(I)-Y Zeolite-Catalyzed Regio- and Stereoselective [2 + 2 + 2] Cyclotrimerization Cascade: An Atom- and Step-Economical Synthesis of Pyrimido[1,6-a]quinoline.

    PubMed

    Ramanathan, Devenderan; Pitchumani, Kasi

    2015-10-16

    An elegant copper(I)-Y zeolite-catalyzed tandem process, involving ketenimine-based termolecular [2 + 2 + 2]/[NC + CC + NC] cycloaddition, using sulfonyl azide, alkyne, and quinoline, to prepare pyrimido[1,6-a]quinolines is reported. In this straightforward, highly atom- and step-economical protocol, copper(I) promotes for azide-alkyne [3 + 2] cycloaddition which is followed by ring-rearrangement/ketenimine formation/regio- and stereoselective [2 + 2 + 2] termolecular cycloaddition and dehydrogenation cascade to yield selectively the E-isomer of pyrimido[1,6-a]quinoline. PMID:26390020

  1. On the enantioselectivity of aziridination of styrene catalysed by copper triflate and copper-exchanged zeolite Y: consequences of the phase behaviour of enantiomeric mixtures of N-arene-sulfonyl-2-phenylaziridines.

    PubMed

    Jeffs, Laura; Arquier, Damien; Kariuki, Benson; Bethell, Donald; Page, Philip C Bulman; Hutchings, Graham J

    2011-02-21

    By synthesising S-2-phenyl-N-(4-nitrophenyl)aziridine from S-phenylglycinol, it has been demonstrated that the aziridination of styrene by [N-(4-nitrobenzenesulfonyl)imino]phenyliodinane (nosyliminophenyliodinane, PhINNs) in the presence of S,S-2,2'-isopropylidene-bis(4-phenyl-2-oxazoline), catalysed by copper(II) triflate in CH(3)CN solution or heterogeneously by CuHY, has predominantly an R-configuration. The enantioselectivity of the aziridination of styrene by [N-arenesulfonylimino]-phenyliodinanes catalysed by copper-exchanged zeolite Y (CuHY), in conjunction with a chiral bis-oxazoline ligand, has been re-examined. In the case of PhINNs, it is shown that the product mixture of enantiomeric aziridines, on treatment with hexane, gives rise to a solid phase of low enantiomeric excess (ee) and a solution phase of high ee. Separation of the solid phase and recrystallisation afforded a true racemate (racemic compound), which has been confirmed by X-ray crystallography. The aziridine obtained from the solution phase could be recrystallised to produce the pure enantiomer originally in excess. A consequence of the new findings is that previous reports on the enantioselectivity of copper-catalysed aziridination, both in heterogeneous and homogeneous conditions, should be regarded with caution if the analytical procedure involved HPLC with injection of the enantiomeric mixture in a hexane-rich solvent. Such a method has been used in previous work from this laboratory, but has also been used elsewhere, following the procedure developed by Evans and co-workers when the (homogeneous) copper-catalysed aziridination by PhINTs was first discovered. Evidently, the change of substituent in the benzenesulfonyl group reduces the solubility in hexane, affording a solution phase of enhanced ee. PMID:21186395

  2. Position-dependent performance of copper phthalocyanine based field-effect transistors by gold nanoparticles modification.

    PubMed

    Luo, Xiao; Li, Yao; Lv, Wenli; Zhao, Feiyu; Sun, Lei; Peng, Yingquan; Wen, Zhanwei; Zhong, Junkang; Zhang, Jianping

    2015-01-21

    A facile fabrication and characteristics of copper phthalocyanine (CuPc)-based organic field-effect transistor (OFET) using the gold nanoparticles (Au NPs) modification is reported, thereby achieving highly improved performance. The effect of Au NPs located at three different positions, that is, at the SiO2/CuPc interface (device B), embedding in the middle of CuPc layer (device C), and on the top of CuPc layer (device D), is investigated, and the results show that device D has the best performance. Compared with the device without Au NPs (reference device A), device D displays an improvement of field-effect mobility (μ(sat)) from 1.65 × 10(-3) to 5.51 × 10(-3) cm(2) V(-1) s(-1), and threshold voltage decreases from -23.24 to -16.12 V. Therefore, a strategy for the performance improvement of the CuPc-based OFET with large field-effect mobility and saturation drain current is developed, on the basis of the concept of nanoscale Au modification. The model of an additional electron transport channel formation by FET operation at the Au NPs/CuPc interface is therefore proposed to explain the observed performance improvement. Optimum CuPc thickness is confirmed to be about 50 nm in the present study. The device-to-device uniformity and time stability are discussed for future application. PMID:25548878

  3. Thermal behavior of natural zeolites

    SciTech Connect

    Bish, D.L.

    1993-09-01

    Thermal behavior of natural zeolites impacts their application and identification and varies significantly from zeolite to zeolite. Zeolites evolve H{sub 2}0 upon heating, but recent data show that distinct ``types`` of water (e.g., loosely bound or tightly bound zeolitic water) do not exist. Rather water is bound primarily to extra-framework cations with a continuum of energies, giving rise to pseudocontinuous loss of water accompanied by a dynamic interaction between remaining H{sub 2}0 molecules and extra-framework cations. These interactions in the channels of zeolites give rise to dehydration dependent on the extra-framework cation, in addition to temperature and water vapor pressure. The dehydration reaction and the extra-framework cation also affect the thermal expansion/contraction. Most zeolites undergo dehydration-induced contractions that may be anisotropic, although minor thermal expansion can be seen with some zeolites. Such contractions can be partially or completely irreversible if they involve modifications of the tetrahedral framework and/or if rehydration is sluggish. Thermally induced structural modifications are also driven initially by dehydration and the concomitant contraction and migration of extra-framework cations. Contraction is accommodated by rotations of structural units and tetrahedral cation-oxygen linkages may break. Thermal reactions that involve breaking of tetrahedral cation-oxygen bonds markedly irreversible and may be kinetically limited, producing large differences between short- and long-term heating.

  4. Two-dimensional zeolite-like network in the new caesium copper aluminate Cs2CuAl4O8.

    PubMed

    Shvanskaya, Larisa; Yakubovich, Olga; Massa, Werner; Vasiliev, Alexander

    2015-10-01

    Monoclinic dicaesium copper tetraaluminate, Cs2CuAl4O8, space group P2(1)/c, a = 8.4551 (7), b = 10.012 (1), c = 17.073 (2) Å, β = 101.643 (9)°, Z = 6, was obtained by high-temperature crystallization from a phosphate flux. Its microporous crystal structure presents the first example of double layers built from [AlO4] tetrahedra combined in 4-, 6- and 8-rings, topologically similar to those found in the ATT-type zeolites and isostructural minerals armstrongite, davanite and dalyite. These layers show a rare arrangement of three [AlO4] tetrahedra sharing one oxygen vertex. The aluminate slabs are further linked by chains of edge-sharing [CuO4] square planes to form a mixed anionic three-dimensional framework with Cs(+) cations in channels and cavities. An unusually short Cu···Cs distance of 3.166 Å is ascribed to the strong Jahn-Teller effect of Cu(2+). The magnetic subsystem demonstrates properties of an alternating antiferromagnetic chain with a gap in the spectrum of magnetic excitations. PMID:26428399

  5. Sorption Kinetics Of Selected Heavy Metals Adsorption To Natural And Fe(III) Modified Zeolite Tuff Containing Clinoptilolite Mineral

    NASA Astrophysics Data System (ADS)

    Sirotiak, Maroš; Lipovský, Marek; Bartošová, Alica

    2015-06-01

    In the research described in this paper, studied was sorption capacity of natural and ferric modification of zeolite tuff containing mineral clinoptilolite from the Nižný Hrabovec deposit to remove potentially toxic metals (ionic forms of chromium, nickel, copper and aluminium) from their water solutions. We reported that the Fe (III) zeolite has an enhanced ability to sorption of Cu (II), and a slight improvement occurs in the case of Cr (VI) and Ni (II). On the other hand, the deterioration was observed in the case of Al (III) adsorption.

  6. COPPER

    EPA Science Inventory

    The report is a review of current knowledge of the distribution of copper in the environment and living things. Metabolism and the effects of copper in the biosphere are also considered. Copper compounds are common and widely distributed in nature. They are also extensively mined...

  7. Erosion and Modifications of Tungsten-Coated Carbon and Copper Under High Heat Flux

    NASA Astrophysics Data System (ADS)

    Liu, Xiang; S, Tamura; K, Tokunaga; N, Yoshida; Zhang, Fu; Xu, Zeng-yu; Ge, Chang-chun; N, Noda

    2003-08-01

    Tungsten-coated carbon and copper was prepared by vacuum plasma spraying (VPS) and inert gas plasma spraying (IPS), respectively. W/CFC (Tungsten/Carbon Fiber-Enhanced material) coating has a diffusion barrier that consists of W and Re multi-layers pre-deposited by physical vapor deposition on carbon fiber-enhanced materials, while W/Cu coating has a graded transition interface. Different grain growth processes of tungsten coatings under stable and transient heat loads were observed, their experimental results indicated that the recrystallizing temperature of VPS-W coating was about 1400 °C and a recrystallized columnar layer of about 30 μm thickness was formed by cyclic heat loads of 4 ms pulse duration. Erosion and modifications of W/CFC and W/Cu coatings under high heat load, such as microstructure changes of interface, surface plastic deformations and cracks, were investigated, and the erosion mechanism (erosion products) of these two kinds of tungsten coatings under high heat flux was also studied.

  8. Different effects of thiol and nonthiol ace inhibitors on copper-induced lipid and protein oxidative modification.

    PubMed

    Fernandes, A C; Filipe, P M; Freitas, J P; Manso, C F

    1996-01-01

    Differences among angiotensin-converting enzyme inhibitors (ACEI) in scavenging reactive oxygen species were described and mainly attributed to the presence or absence of a thiol group. Plasma constituents and red cells are known targets for oxidative damage. Transition metals, like copper, are well known catalizers of free radical generation. In the present study we compared the abilities of captopril (a thiol ACEI), enalaprilat, and lisinopril (two nonthiol ACEI) for inhibiting copper-induced thiobarbituric acid reactive substances (TBARS) formation and fluorescence generation in whole human plasma and low-density lipoprotein. The effects of those ACEI on copper/hydrogen peroxide-induced fluorescence development and electrophoretic mobility modification in albumin and on copper-induced TBARS formation and hemolysis in human red cells were also compared. Captopril was more effective than the two nonthiol ACEI in inhibiting plasma and LDL lipid peroxidation, but it was ineffective in inhibiting the albumin oxidative modification that was moderately inhibited by enalaprilat and lisinopril. On the contrary, the inhibitory effects of the three ACEI on copper-induced lipid peroxidation and hemolysis in red cell suspensions were more uniform. This as yet unreported red cell protective effect may deserve pharmacological evaluation. Our results show that captopril is a more effective antioxidant than the nonthiol ACEI in some systems. However, the nonthiol ACEI also have the ability to partially protect some targets against oxidative damage. These observations suggest that the presence of a thiol group in the ACEI structure is not the only determinant for the antioxidant properties. PMID:8904291

  9. Determining copper and lead binding in Larrea tridentata through chemical modification and X-ray absorption spectroscopy

    SciTech Connect

    Polette, L.; Gardea-Torresdey, J.L.; Chianelli, R.; Pickering, I.J.; George, G.N.

    1997-12-31

    Metal contamination in soils has become a widespread problem. Emerging technologies, such as phytoremediation, may offer low cost cleanup methods. The authors have identified a desert plant, Larrea tridentata (creosote bush), which naturally grows and uptakes copper and lead from a contaminated area near a smelting operation. They determined, through chemical modification of carboxyl groups with methanol, that these functional groups may be responsible for a portion of copper(II) binding. In contrast, lead binding was minimally affected by modification of carboxyl groups. X-ray absorption spectroscopy studies conducted at Stanford Synchrotron Radiation Laboratory (SSRL) further support copper binding to oxygen-coordinated ligands and also imply that the binding is not solely due to phytochelatins. The EXAFS data indicate the presence of both Cu-O and Cu-S back scatters, no short Cu-Cu interactions, but with significant Cu-Cu back scattering at 3.7 {angstrom} (unlike phytochelatins with predominantly Cu-S coordination and short Cu-Cu interactions at 2.7 {angstrom}). Cu EXAFS of roots and leaves also vary depending on the level of heavy metal contamination in the environment from which the various creosote samples were obtained. In contrast, Pb XANES data of roots and leaves of creosote collected from different contaminated sites indicate no difference in valence states or ligand coordination.

  10. Dialkyl pyridinedicarboxylates` extraction ability toward copper(II) from chloride solutions and its modification with alcohols

    SciTech Connect

    Bogacki, M.B.; Jakubiak, A.; Szymanowski, J.; Cote, G.

    1997-03-01

    Dipentyl pyridinedicarboxylates (denoted hereafter as L) with different positions of the ester groups were synthesized and used for copper(II) extraction from chloride solutions containing up to 10 mol/L Cl{sup {minus}}. The effect of decanol addition on copper extraction was studied. A molecular modeling technique was used to estimate the structures of extractants, copper complexes, and associates with alcohol. It was found that the ability of pyridinecarboxylates to extract copper depends on the aqueous phase composition and the position of the ester groups in the pyridine ring. All the investigated compounds except dipentyl pyridine-2,6-dicarboxylate extract copper(II) by formation of CuCl{sub 2}L{sub 2} complexes. Dipentyl pyridine-2,6-dicarboxylate forms another type of complex, probably CuCl{sub 2}L. However, this compound is not suitable for copper extraction as its copper complex precipitates. Dipentyl pyridine-3,5-dicarboxylate was found to be the most suitable extractant among the various compounds listed. Finally it is shown that the possibilities to modify the extraction ability of pyridinecarboxylates with a hydrophobic alcohol such as decanol are relatively weak. Some enhancement was, however, observed when 20% of decanol was added to the organic phase containing dipentyl pyridine-3,5-dicarboxylate.

  11. Design and modification of zeolite capsule catalyst, a confined reaction field, and its application in one-step isoparaffin synthesis from syngas

    SciTech Connect

    Guohui Yang; Jingjiang He; Yi Zhang; Yoshiharu Yoneyama; Yisheng Tan; Yizhuo Han; Tharapong Vitidsant; Noritatsu Tsubaki

    2008-05-15

    Four kinds of zeolite capsule catalyst with different crystallization conditions were prepared and utilized for the middle isoparaffin direct synthesis via Fischer-Tropsch synthesis (FTS) reaction. Characterization results exhibited that these capsule catalysts had a compact, integral H-ZSM-5 shell. In FTS reactions on these zeolite capsule catalysts, hydrocarbons of C11+ were totally suppressed, accompanied by a sharp anti-Anderson-Schultz-Flory (ASF) law product distribution. The selectivity of light isoparaffin was improved obviously, but with the increase of the olefin's selectivity. Two-stage isoparaffin synthesis reaction, using the combination of zeolite capsule catalyst with hydrogenation catalyst of Pd/SiO{sub 2} in a single reactor as dual-bed catalyst, was also conducted for converting the residual olefins produced by the single zeolite capsule catalyst. Dependent on the palladium role of hydrogenation and hydrogen spillover, almost all the olefins effused from the first stage of zeolite capsule catalyst were hydrogenated, mostly converted to isoparaffin. The selectivity of isoparaffin in the final products was increased markedly as expected. 10 refs., 7 figs., 2 tabs.

  12. Modification of the surface layers of copper by a diffuse discharge in atmospheric pressure air

    NASA Astrophysics Data System (ADS)

    Shulepov, Mikhail A.; Erofeev, Mikhail V.; Oskomov, Konstantin V.; Tarasenko, Victor F.

    2015-12-01

    The paper presents the results of examination of copper samples exposed to a diffuse discharge initiated by a runaway electron beam in air under normal pressure. The changes in the chemical composition of the surface layers of copper caused by the action of the discharge were investigated. It has been found that the oxygen and carbon concentrations in the surface layers depend on the number of discharge pulses. The study was aimed at finding possible ways of using this type of discharge in research and industry.

  13. Copper

    Integrated Risk Information System (IRIS)

    Copper ; CASRN 7440 - 50 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects )

  14. Copper(i)-Y zeolite catalyzed N-sulfonylketenimine mediated annulation of hydroxynaphthoquinones: syntheses of naphtho[2,1-b]furan-2,5-diones and benzo[de]chromene-2,6-diones.

    PubMed

    Ramanathan, Devenderan; Namitharan, Kayambu; Pitchumani, Kasi

    2016-06-28

    An efficient one pot synthesis for the construction of novel naphtho[2,1-b]furan-2,5-diones and benzo[de]chromene-2,6-diones using copper(i)-Y zeolite catalyzed reaction of N-sulfonylketenimine with 2-hydroxy-1,4-naphthoquinone and 5-hydroxy-1,4-naphthoquinone followed by the elimination of p-toluenesulfonamide is reported. The intermediate N-sulfonylketenimine, generated by (3+2) cycloaddition/ring-opening reaction/retro-Wolff rearrangement, cascade, and annulation, promotes the reaction involving the inter- and intramolecular nucleophilic addition/dehydration followed by hydrolysis and elimination of p-toluenesulfonamide to afford the target products in good yield. PMID:27305854

  15. Design and fabrication of zeolite macro- and micromembranes

    NASA Astrophysics Data System (ADS)

    Chau, Lik Hang Joseph

    2001-07-01

    The chemical nature of the support surface influences zeolite nucleation, crystal growth and elm adhesion. It had been demonstrated that chemical modification of support surface can significantly alter the zeolite film and has a good potential for large-scale applications for zeolite membrane production. The incorporation of titanium and vanadium metal ions into the structural framework of MFI zeolite imparts the material with catalytic properties. The effects of silica and metal (i.e., Ti and V) content, template concentration and temperature on the zeolite membrane growth and morphology were investigated. Single-gas permeation experiments were conducted for noble gases (He and Ar), inorganic gases (H2, N2, SF6) and hydrocarbons (methane, n-C4, i-C4) to determine the separation performance of these membranes. Using a new fabrication method based on microelectronic fabrication and zeolite thin film technologies, complex microchannel geometry and network (<5 mum), as well as zeolite arrays (<10 mum) were successfully fabricated onto highly orientated supported zeolite films. The zeolite micropatterns were stable even after repeated thermal cycling between 303 K and 873 K for prolonged periods of time. This work also demonstrates that zeolites (i.e., Sil-1, ZSM-5 and TS-1) can be employed as catalyst, membrane or structural materials in miniature chemical devices. Traditional semiconductor fabrication technology was employed in micromachining the device architecture. Four strategies for the manufacture of zeolite catalytic microreactors were discussed: zeolite powder coating, uniform zeolite film growth, localized zeolite growth, and etching of zeolite-silicon composite film growth inhibitors. Silicalite-1 was also prepared as free-standing membrane for zeolite membrane microseparators.

  16. Systematic analysis and modification of embedded-atom potentials: case study of copper

    NASA Astrophysics Data System (ADS)

    Jalkanen, Jari; Müser, Martin H.

    2015-10-01

    In this study, we evaluate the functionals of different embedded-atom methods (EAM) by fitting their free parameters to ab-initio results for copper. Our emphasis lies on testing the transferability of the potentials between systems which vary in their spatial dimension and geometry. The model structures encompass zero-dimensional clusters, one-dimensional chains, two-dimensional tilings, and three-dimensional bulk systems. To avoid having to mimic charge transfer, which is outside the scope of conventional EAM potentials, we focus on structures, in which all atoms are symmetrically equivalent. We find that the simple, four-parameter Gupta EAM potential is overall satisfactory. Adding complexity to it decreases the errors on our set of structures only by marginal amounts, unless EAM is modified to depend also on density gradients, higher-order derivatives, or related terms. All tested conventional EAM functions reveal similar problems: the binding energy of closed-packed systems is overestimated in comparison to open or planar geometries, and structures with small coordination tend to be too rigid. These deficiencies can be fixed in terms of a systematically modified embedded-atom method (SMEAM), which reproduces DFT results on bond lengths, binding energies, and stiffnesses or bulk moduli by typically O(1%), O(5%), and O(15%) accuracy, respectively. SMEAM also predicts the radial distribution function of liquid copper quite accurately. Yet, it does not overcome the difficulty to reproduce the elastic tensor elements of a hypothetical diamond lattice.

  17. Quantifying defects in zeolites and zeolite membranes

    NASA Astrophysics Data System (ADS)

    Hammond, Karl Daniel

    Zeolites are crystalline aluminosilicates that are frequently used as catalysts to transform chemical feedstocks into more useful materials in a size- or shape-selective fashion; they are one of the earliest forms of nanotechnology. Zeolites can also be used, especially in the form of zeolite membranes (layers of zeolite on a support), to separate mixtures based on the size of the molecules. Recent advances have also created the possibility of using zeolites as alkaline catalysts, in addition to their traditional applications as acid catalysts and catalytic supports. Transport and catalysis in zeolites are greatly affected by physical and chemical defects. Such defects can be undesirable (in the case of zeolite membranes), or desirable (in the case of nitrogen-doped alkaline zeolites). Studying zeolites at the relevant length scales requires indirect experimental methods such as vapor adsorption or atomic-scale modeling such as electronic structure calculations. This dissertation explores both experimental and theoretical characterization of zeolites and zeolite membranes. Physical defects, important in membrane permeation, are studied using physical adsorption experiments and models of membrane transport. The results indicate that zeolite membranes can be modeled as a zeolite powder on top of a support---a "supported powder," so to speak---for the purposes of adsorption. Mesoporosity that might be expected based on permeation and confocal microscopy measurements is not observed. Chemical defects---substitutions of nitrogen for oxygen---are studied using quantum mechanical models that predict spectroscopic properties. These models provide a method for simulating the 29Si NMR spectra of nitrogendefected zeolites. They also demonstrate that nitrogen substitutes into the zeolite framework (not just on the surface) under the proper reaction conditions. The results of these studies will be valuable to experimentalists and theorists alike in our efforts to understand the

  18. An improved performance of copper phthalocyanine OFETs with channel and source/drain contact modifications

    NASA Astrophysics Data System (ADS)

    Huanqin, Dang; Xiaoming, Wu; Xiaowei, Sun; Runqiu, Zou; Ruochuan, Zhang; Shougen, Yin

    2015-10-01

    We report an effective method to improve the performance of p-type copper phthalocyanine (CuPc) based organic field-effect transistors (OFETs) by employing a thin para-quaterphenyl (p-4p) film and simultaneously applying V2O5 to the source/drain regions. The p-4p layer was inserted between the insulating layer and the active layer, and V2O5 layer was added between CuPc and Al in the source-drain (S/D) area. As a result, the field-effect saturation mobility and on/off current ratio of the optimized device were improved to 5 × 10-2 cm2/(V·s) and 104, respectively. We believe that because p-4p could induce CuPc to form a highly oriented and continuous film, this resulted in the better injection and transport of the carriers. Moreover, by introducing the V2O5 electrode's modified layers, the height of the carrier injection barrier could be effectively tuned and the contact resistance could be reduced. Project supported by the National Natural Science Foundation of China (No. 60676051), the National High Technology Research and Development Program of China (No. 2013A A014201), the Scientific Developing Foundation of Tianjin Education Commission (No. 2011ZD02), the Key Science and Technology Support Program of Tianjin (No. 14ZCZDGX00006), and the Foundation of Key Discipline of Material Physics and Chemistry of Tianjin.

  19. Relative importance of calcium and magnesium in hardness-based modification of copper toxicity

    SciTech Connect

    Welsh, P.G.; Lipton, J.; Chapman, G.A.; Podrabsky, T.L.

    2000-06-01

    Because of the relationship between water hardness and the toxicity of many metals, total hardness is used as a model parameter to calculate ambient water quality criteria for copper and other metals. However, the relative contribution of the Ca and Mg components of total hardness as modifiers of metals toxicity is not considered in the water quality criteria. Acute Cu toxicity was measured in rainbow trout (Oncorhynchus mykiss) and chinook salmon (O. tshawytscha) swim-up fry in laboratory waters that were formulated to have similar total hardness and alkalinity but different Ca and Mg concentrations. Experiments were performed at nominal total hardness values of 40 and 90 mg/L (as CaCO{sub 3}). In four paired toxicity tests, acute Cu toxicity was significantly lower, i.e., 96-h LC50s were higher, in laboratory waters containing proportionately more Ca (Ca:Mg molar ratios of 1.5--5.2) than in waters containing less Ca (Ca:Mg molar ratios of 0.2--0.8). the relative increase in the 96-h Cu LC50 at higher Ca concentrations, but similar total hardness concentrations, was between 29 and 86% when the low Ca treatment was similar to American Society for Testing and Materials laboratory water. Failure to account for differences in Ca when matching or adjusting for total hardness thus exerts an important influence on the prediction of metal toxicity. These differences must be addressed in water-effect ratio testing in which paired tests with laboratory and site waters are conducted.

  20. Copper-induced modifications in early symbiotic signaling factors of Ensifer (Sinorhizobium)-Medicago interactions.

    PubMed

    Sharaff, Murali; Archana, G

    2016-09-01

    Cu is an essential micronutrient required during nitrogen fixation, but above threshold concentrations it becomes toxic. The present study was aimed at studying the effect of high Cu concentrations on the early plant-microbe interactions between Ensifer (Sinorhizobium) meliloti 1021, a symbiotic diazotrophic bacterium belonging to α-Proteobacteria, and its plant host Medicago truncatula. E. meliloti exhibited pleomorphism with elongated and branched growth at 100 µM Cu which brought about 50 % reduction in growth. Early symbiotic signaling factors like exopolysaccharides and lipopolysaccharides levels and biofilm formation were adversely affected at sublethal levels of Cu. Cu stress resulted in over-expression of proteins such as GroEL (60 kDa chaperonin) and WrbA (NAD(P)H dehydrogenase). E. meliloti was unable to show efficient attachment on the roots of M. truncatula at 3 µM Cu, which corresponds to 50 % growth inhibitory levels for the plant, indicating that plant root surface modifications may also contribute to adverse effect of Cu on early plant-microbe interactions during nodulation. PMID:27207673

  1. Modification research on in wall of capillary copper tube with Norland optical adhesive 68 in a double stereo PCR microfluidic chip.

    PubMed

    Wu, J; Wang, F J; Wang, C Y; Yu, K X; Ma, Y; Chen, T; Li, Y H; Zheng, Y

    2015-01-01

    In this study, a Norland optical adhesive 68 (NOA68) film, approximately 2.2 μm thick, was manufactured using ultraviolet solidified NOA68 in apparatus manufacturing film on the inwall of a capillary copper pipe, developed in our laboratory. The roughness of the inwall of capillary copper pipe was improved from Ra = 0.766 to 0.204 μm and the contact angle was improved from approximately 96° to 55°, increasing hydrophilicity. Polymerase chain reaction experiments indicated that the ratio of work pressure in the microfluidic chip before modification to that after modification was 2.71/1, indicating that the extension efficiency increased. Our results provide a basis for the construction of a microform chip based on function integration. PMID:26535674

  2. ZEOLITES: EFFECTIVE WATER PURIFIERS

    EPA Science Inventory

    Zeolites are known for their adsorption, ion exchange and catalytic properties. Various natural zeolites are used as odor and moisture adsorbents and water softeners. Due to their acidic nature, synthetic zeolites are commonly employed as solid acid catalysts in petrochemical ind...

  3. Zeolite catalysis: technology

    SciTech Connect

    Heinemann, H.

    1980-07-01

    Zeolites have been used as catalysts in industry since the early nineteen sixties. The great majority of commercial applications employ one of three zeolite types: zeolite Y; Mordenite; ZSM-5. By far the largest use of zeolites is in catalytic cracking, and to a lesser extent in hydrocracking. This paper reviews the rapid development of zeolite catalysis and its application in industries such as: the production of gasoline by catalytic cracking of petroleum; isomerization of C/sub 5/ and C/sub 6/ paraffin hydrocarbons; alkylation of aromatics with olefins; xylene isomerization; and conversion of methanol to gasoline.

  4. Methods of using structures including catalytic materials disposed within porous zeolite materials to synthesize hydrocarbons

    DOEpatents

    Rollins, Harry W.; Petkovic, Lucia M.; Ginosar, Daniel M.

    2011-02-01

    Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.

  5. Mechanochemical approach for selective deactivation of external surface acidity of ZSM-5 zeolite catalyst.

    PubMed

    Inagaki, Satoshi; Sato, Koki; Hayashi, Shunsuke; Tatami, Junichi; Kubota, Yoshihiro; Wakihara, Toru

    2015-03-01

    The acid sites associated with the external surface of zeolite particles are responsible for undesirable consecutive reactions, such as isomerization, alkylation, and oligomerization, resulting in a lower selectivity to a target product; therefore, the selective modification (deactivation) of the external surface of zeolite particles has been an important issue in zeolite science. Here, a new method for surface deactivation of zeolite catalyst was tested via a mechanochemical approach using powder composer. Postsynthetic mechanochemical treatment of ZSM-5 zeolite causes a selective deactivation of catalytically active sites existing only on the external surface, as a potentially useful catalyst for highly selective production of p-xylene. PMID:25654542

  6. A theoretical study of nitric oxide adsorption and dissociation on copper-exchanged zeolites SSZ-13 and SAPO-34: the impact of framework acid-base properties.

    PubMed

    Uzunova, Ellie L; Mikosch, Hans

    2016-04-28

    The adsorption of nitric oxide as dinitrosyls and the deNOx proton-mediated reaction mechanism are assessed using electronic structure methods and transition state theory. Dinitrosyls bind to copper cations either via a N-atom or via an O-atom, with N-binding being more stable. In their ground states, dinitrosyls reach a planar configuration with the metal cation. The two nitric oxide molecules are kept together in O-bonded dinitrosyls by the N-N bond and the adsorption complex obtains a cyclic planar structure, while N-bonded dinitrosyls have out-of-plane conformations with low energy barriers. An asymmetric structure ZCu(ON)(NO) with one N-bonded nitrosyl and the other O-bonded is of the lowest stability. The cyclic hyponitrite ZCu(ON)2 adsorption complex undergoes O-N bond breaking upon protonation of one oxygen atom and this lowers the energy barrier of the first reaction step of nitric oxide dissociation to yield N2O and a hydroxylated copper site ZCu(OH) by 45 kJ mol(-1) for Cu-SAPO-34 and by 46 kJ mol(-1) for Cu-SSZ-13. The more stable N-bonded dinitrosyl ZCu(NO)2 provides less favorable reaction which passes through the asymmetric ZCu(ON)(NO) intermediate structure. Brønsted acid sites facilitate the reversal of one nitrosyl group. The role of proton transfer from a Brønsted acid site to dinitrosyls is not limited to the initial step of facilitating the N-O bond cleavage, but it also contributes to the stabilization of intermediate oxygen species formed at the copper site as hydroxide ZCu(OH) and hydroperoxide, ZCuOOH. Without protonation, the unstable ZCuO intermediate causes structural deformation with strongly lengthened T-O bonds in the framework. The rate determining step is N2O decomposition to N2 and O2, whether starting with a ZCu(NO)2 or a ZCu(ON)2 adsorption complex, and Cu-SSZ-13 has a clear advantage with an energy barrier of 195 kJ mol(-1)vs. 265 kJ mol(-1) for Cu-SAPO-34. In the final step the Brønsted acid site is restored by proton

  7. Modifications of laccase activities of copper efflux oxidase, CueO by synergistic mutations in the first and second coordination spheres of the type I copper center.

    PubMed

    Kataoka, Kunishige; Kogi, Hiroki; Tsujimura, Seiya; Sakurai, Takeshi

    2013-02-15

    The redox potential of type I copper in the Escherichia coli multicopper oxidase CueO was shifted in the positive or negative direction as a result of the single, double, and triple mutations in the first and second coordination spheres: the formation of the NH···S(-)(Cys500 ligand) hydrogen bond, the breakdown of the NH(His443 ligand)···O(-)(Asp439) hydrogen bond, and the substitution of the Met510 ligand for the non-coordinating Leu or coordinating Gln. Laccase activities of CueO were maximally enhanced 140-fold by virtue of the synergistic effect of mild mutations at and at around the ligand groups to type I copper. PMID:23337502

  8. Beryllosilicate frameworks and zeolites.

    PubMed

    Armstrong, Jennifer A; Weller, Mark T

    2010-11-10

    Using inspiration derived from studying naturally occurring minerals, a series of framework beryllosilicates have been synthesized under hydrothermal conditions. These include two new zeolite topologies, a unique layered beryllosilicate, and beryllosilicate analogues of numerous aluminosilicate zeolites. Materials with the structure of the rare zeolite mineral nabesite have been synthesized for the first time, including both sodium and potassium derivatives. The structural chemistry of these beryllosilicates frameworks is discussed with reference to the networks of linked tetrahedra, which include the first instance of pentagonal, two-dimensional Cairo-tiling of silicate tetrahedra in one of the new zeolite topologies, their porosity, and their thermal stability. PMID:20949941

  9. The removal of heavy metals from aqueous solution using natural Jordanian zeolite

    NASA Astrophysics Data System (ADS)

    Taamneh, Yazan; Sharadqah, Suhail

    2016-02-01

    In this article, the adsorption process of cadmium and copper using natural Jordanian (NJ) zeolite as adsorbent has been experimentally estimated. The samples of NJ zeolite were obtained from Al Mafraq discrete, north east of Jordan. The influence of the bulk concentration (C o), contact time (t) and different adsorbent masses (m) of NJ zeolite on the removal of heavy metal were evaluated. These variables had a considerable function in promoting the sorption process of heavy metal using the NJ zeolite. The initial concentration of heavy metals in the stock solution was extended between 80 and 600 mg/L. The batch adsorption method was employed to investigate the adsorption process. The experimental data were correlated using Freundlich and Langmuir empirical formula. The ability of NJ zeolite to eliminate cadmium and copper was estimated according to Langmuir isotherm empirical formula and found 25.9 and 14.3 mg/g for cadmium and copper, respectively. The kinetics of adsorption of cadmium and copper have been analyzed and correlated by first-order and second-order reaction model. It was noticed that adsorption of cadmium and copper was better correlated with pseudo-second-order kinetic model. The results presented that NJ zeolite is practical adsorbent for removing cadmium and copper ion metal.

  10. Removal of metal cations from water using zeolites

    SciTech Connect

    Zamzow, M.J.; Murphy, J.E. )

    1992-11-01

    Zeolites from abundant natural deposits were investigated by the Bureau of Mines for efficiently cleaning up mining industry wastewaters. Twenty-four zeolite samples were analyzed by x-ray diffraction and inductively coupled plasma. These included clinoptilolite, mordenite, chabazite, erionite, and phillipsite. Bulk densities of a sized fraction ([minus]40, +65 mesh) varied from 0.48 to 0.93 g/ml. Attrition losses ranged from 1 to 18% during an hour-long shake test. The 24 zeolites and an ion-exchange resin were tested for the uptake of Cd, Cu, and Zn. Of the natural zeolites, phillipsite proved to be the most efficient, while the mordenites had the lowest uptakes. Sodium was the most effective exchangeable ion for exchange of heavy metals. Wastewater from an abandoned copper mine in Nevada was used to test the effectiveness of clinoptilolite for treating a multi-ion wastewater. The metal ions Fe[sup 3+], Cu[sup 2+], and Zn[sup 2+] in the copper mine wastewater were removed to below drinking water standards, but Mn[sup 2+] and Ni[sup 2+] were not. Calcium and NH[sub 4][sup +] interfered with the uptake of heavy metals. Adsorbed heavy metals were eluted from zeolites with a 3% NaCl solution. Heavy metals were concentrated in the eluates up to 30-fold relative to the waste solution. Anions were not adsorbed by the zeolites.

  11. Application of diffuse discharges of atmospheric pressure formed by runaway electrons for modification of copper and stainless steel surface

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.; Shulepov, M. A.; Erofeev, M. V.

    2015-12-01

    The results of studies devoted to the influence of a runaway electron pre-ionized diffuse discharge (REP DD) formed in air and nitrogen at atmospheric pressure on the surface of copper and stainless steel are presented. Nanosecond high-voltage pulses were used to obtain REP DD in different gases at high pressures in a chamber with a flat anode and a cathode possessing a small radius of curvature. This mode of discharge was implemented owing to the generation of runaway electrons and X-rays. The conditions under which the surface of copper and stainless steel was cleaned from carbon and oxidized are described.

  12. Application of diffuse discharges of atmospheric pressure formed by runaway electrons for modification of copper and stainless steel surface

    SciTech Connect

    Tarasenko, V. F. Shulepov, M. A.; Erofeev, M. V.

    2015-12-15

    The results of studies devoted to the influence of a runaway electron pre-ionized diffuse discharge (REP DD) formed in air and nitrogen at atmospheric pressure on the surface of copper and stainless steel are presented. Nanosecond high-voltage pulses were used to obtain REP DD in different gases at high pressures in a chamber with a flat anode and a cathode possessing a small radius of curvature. This mode of discharge was implemented owing to the generation of runaway electrons and X-rays. The conditions under which the surface of copper and stainless steel was cleaned from carbon and oxidized are described.

  13. Nano- and microsized zeolites as a perspective material for potentiometric biosensors creation.

    PubMed

    Soldatkin, Oleksandr O; Shelyakina, Margaryta K; Arkhypova, Valentyna N; Soy, Esin; Kirdeciler, Salih Kaan; Ozansoy Kasap, Berna; Lagarde, Florence; Jaffrezic-Renault, Nicole; Akata Kurç, Burcu; Soldatkin, Alexei P; Dzyadevych, Sergei V

    2015-01-01

    A number of potentiometric biosensors based on coimmobilization of enzymes with different types of zeolite on pH-ion-sensitive field-effect transistor (ISFET) have been developed. Their working characteristics have been determined and compared. It was shown that clinoptilolite and zeolite Beta polymorph A (BEA) are more promising for creating biosensors than zeolite A. Changing the concentration of zeolite BEA in membranes, it is possible to extend the biosensor linear measurement range. The two-layer method of deposition of the enzyme with clinoptilolite was found to provide a significant increase in the biosensor sensitivity to substrates, whereas thermal modification of the zeolite BEA crystals can improve analytical characteristics of potentiometric biosensors for detection of toxic substances. These results show that it is possible to regulate the ISFET characteristics for different enzyme-based biosensors by tailoring the electrode surfaces via different zeolites. This makes zeolites strong candidates for integration into biosensors as ISFET modifiers. PMID:25852356

  14. Oxidative regeneration of toluene-saturated natural zeolite by gaseous ozone: the influence of zeolite chemical surface characteristics.

    PubMed

    Alejandro, Serguei; Valdés, Héctor; Manéro, Marie-Hélène; Zaror, Claudio A

    2014-06-15

    In this study, the effect of zeolite chemical surface characteristics on the oxidative regeneration of toluene saturated-zeolite samples is investigated. A Chilean natural zeolite (53% clinoptilolite, 40% mordenite and 7% quartz) was chemically modified by acid treatment with hydrochloric acid and by ion-exchange with ammonium sulphate. Thermal pre-treatments at 623 and 823K were applied and six zeolite samples with different chemical surface characteristics were generated. Chemical modification of natural zeolite followed by thermal out-gassing allows distinguishing the role of acidic surface sites on the regeneration of exhausted zeolites. An increase in Brønsted acid sites on zeolite surface is observed as a result of ammonium-exchange treatment followed by thermal treatment at 623K, thus increasing the adsorption capacity toward toluene. High ozone consumption could be associated to a high content of Lewis acid sites, since these could decompose ozone into atomic active oxygen species. Then, surface oxidation reactions could take part among adsorbed toluene at Brønsted acid sites and surface atomic oxygen species, reducing the amount of adsorbed toluene after the regenerative oxidation with ozone. Experimental results show that the presence of adsorbed oxidation by-products has a negative impact on the recovery of zeolite adsorption capacity. PMID:24794812

  15. Studies of anions sorption on natural zeolites.

    PubMed

    Barczyk, K; Mozgawa, W; Król, M

    2014-12-10

    This work presents results of FT-IR spectroscopic studies of anions-chromate, phosphate and arsenate - sorbed from aqueous solutions (different concentrations of anions) on zeolites. The sorption has been conducted on natural zeolites from different structural groups, i.e. chabazite, mordenite, ferrierite and clinoptilolite. The Na-forms of sorbents were exchanged with hexadecyltrimethylammonium cations (HDTMA(+)) and organo-zeolites were obtained. External cation exchange capacities (ECEC) of organo-zeolites were measured. Their values are 17mmol/100g for chabazite, 4mmol/100g for mordenite and ferrierite and 10mmol/100g for clinoptilolite. The used initial inputs of HDTMA correspond to 100% and 200% ECEC of the minerals. Organo-modificated sorbents were subsequently used for immobilization of mentioned anions. It was proven that aforementioned anions' sorption causes changes in IR spectra of the HDTMA-zeolites. These alterations are dependent on the kind of anions that were sorbed. In all cases, variations are due to bands corresponding to the characteristic Si-O(Si,Al) vibrations (occurring in alumino- and silicooxygen tetrahedra building spatial framework of zeolites). Alkylammonium surfactant vibrations have also been observed. Systematic changes in the spectra connected with the anion concentration in the initial solution have been revealed. The amounts of sorbed CrO4(2-), AsO4(3-) and PO4(3-) ions were calculated from the difference between their concentrations in solutions before (initial concentration) and after (equilibrium concentration) sorption experiments. Concentrations of anions were determined by spectrophotometric method. PMID:25002191

  16. An innovative zinc oxide-coated zeolite adsorbent for removal of humic acid

    EPA Science Inventory

    Zinc oxide (ZnO)-coated zeolite adsorbents were developed by both nitric acid modification and Zn(NO3)2•6H2O functionalization of zeolite. The developed adsorbents were used for the removal of humic acid (HA) from aqueous solutions. The adsorption capacity of the adsorbents ...

  17. An innovative zinc oxide-coated zeolite adsorbent for removal of humic acid

    EPA Science Inventory

    Zinc oxide (ZnO)-coated zeolite adsorbents were developed by both nitric acid modification and Zn(NO3)2•6H2O functionalization of zeolite. The developed adsorbents were used for the removal of humic acid (HA) from aqueous solutions. The adsorption capacity of the adsorbents at 21...

  18. Zeolites: Exploring Molecular Channels

    SciTech Connect

    Arslan, Ilke; Derewinski, Mirek

    2015-05-22

    Synthetic zeolites contain microscopic channels, sort of like a sponge. They have many uses, such as helping laundry detergent lather, absorbing liquid in kitty litter, and as catalysts to produce fuel. Of the hundreds of types of zeolites, only about 15 are used for catalysis. PNNL catalysis scientists Ilke Arslan and Mirek Derewinksi are studying these zeolites to understand what make them special. By exploring the mystery of these microscopic channels, their fundamental findings will help design better catalysts for applications such as biofuel production.

  19. Diagram of Zeolite Crystals

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Center for Advanced Microgravity Materials Processing (CAMMP) in Cambridge, MA, a NASA-sponsored Commercial Space Center, is working to improve zeolite materials for storing hydrogen fuel. CAMMP is also applying zeolites to detergents, optical cables, gas and vapor detection for environmental monitoring and control, and chemical production techniques that significantly reduce by-products that are hazardous to the environment. Depicted here is one of the many here complex geometric shapes which make them highly absorbent. Zeolite experiments have also been conducted aboard the International Space Station

  20. ZEOLITE CHARACTERIZATION TESTING

    SciTech Connect

    Jacobs, W; Herbert Nigg, H

    2007-09-13

    The Savannah River Site isolates tritium from its process streams for eventual recycling. This is done by catalyzing the formation of tritiated water (from process streams) and then sorbing that water on a 3A zeolite (molsieve) bed. The tritium is recovered by regenerating the saturated bed into a Mg-based water cracking unit. The process described has been in use for about 15 years. Recently chloride stress corrosion cracking (SCC) was noted in the system piping. This has resulted in the need to replace the corroded piping and associated molecular sieve beds. The source of chlorine has been debated and one possible source is the zeolite itself. Since new materials are being purchased for recently fabricated beds, a more comprehensive analysis protocol for characterizing zeolite has been developed. Tests on archived samples indicate the potential for mobile chloride species to be generated in the zeolite beds.

  1. Composite zeolite membranes

    DOEpatents

    Nenoff, Tina M.; Thoma, Steven G.; Ashley, Carol S.; Reed, Scott T.

    2002-01-01

    A new class of composite zeolite membranes and synthesis techniques therefor has been invented. These membranes are essentially defect-free, and exhibit large levels of transmembrane flux and of chemical and isotopic selectivity.

  2. Lithium modified zeolite synthesis for conversion of biodiesel-derived glycerol to polyglycerol

    SciTech Connect

    Ayoub, Muhammad; Abdullah, Ahmad Zuhairi; Inayat, Abrar

    2014-10-24

    Basic zeolite has received significant attention in the catalysis community. These zeolites modified with alkaline are the potential replacement for existing zeolite catalysts due to its unique features with added advantages. The present paper covers the preparation of lithium modified zeolite Y (Li-ZeY) and its activity for solvent free conversion of biodiesel-derived glycerol to polyglycerol via etherification process. The modified zeolite was well characterized by X-ray diffraction (XRD), Scanning Electron Microscope (SEM) and Nitrogen Adsorption. The SEM images showed that there was no change in morphology of modified zeolite structure after lithium modification. XRD patterns showed that the structure of zeolite was sustained after lithium modification. The surface properties of parent and modified zeolite was also observed N{sub 2} adsortion-desorption technique and found some changes in surface area and pore size. In addition, the basic strength of prepared materials was measured by Hammet indicators and found that basic strength of Li-ZeY was highly improved. This modified zeolite was found highly thermal stable and active heterogamous basic catalyst for conversion of solvent free glycerol to polyglycerol. This reaction was conducted at different temperatures and 260 °C was found most active temperature for this process for reaction time from 6 to 12 h over this basic catalyst in the absence of solvent.

  3. Lithium modified zeolite synthesis for conversion of biodiesel-derived glycerol to polyglycerol

    NASA Astrophysics Data System (ADS)

    Ayoub, Muhammad; Abdullah, Ahmad Zuhairi; Inayat, Abrar

    2014-10-01

    Basic zeolite has received significant attention in the catalysis community. These zeolites modified with alkaline are the potential replacement for existing zeolite catalysts due to its unique features with added advantages. The present paper covers the preparation of lithium modified zeolite Y (Li-ZeY) and its activity for solvent free conversion of biodiesel-derived glycerol to polyglycerol via etherification process. The modified zeolite was well characterized by X-ray diffraction (XRD), Scanning Electron Microscope (SEM) and Nitrogen Adsorption. The SEM images showed that there was no change in morphology of modified zeolite structure after lithium modification. XRD patterns showed that the structure of zeolite was sustained after lithium modification. The surface properties of parent and modified zeolite was also observed N2 adsortion-desorption technique and found some changes in surface area and pore size. In addition, the basic strength of prepared materials was measured by Hammet indicators and found that basic strength of Li-ZeY was highly improved. This modified zeolite was found highly thermal stable and active heterogamous basic catalyst for conversion of solvent free glycerol to polyglycerol. This reaction was conducted at different temperatures and 260 °C was found most active temperature for this process for reaction time from 6 to 12 h over this basic catalyst in the absence of solvent.

  4. Characterization of lead sorption by the natural and Fe(III)-modified zeolite

    NASA Astrophysics Data System (ADS)

    Kragović, Milan; Daković, Aleksandra; Marković, Marija; Krstić, Jugoslav; Gatta, G. Diego; Rotiroti, Nicola

    2013-10-01

    The influence of contact time, temperature and particle size on lead sorption by the natural and Fe(III)-modified zeolites was investigated. Characterization of the natural and Fe(III)-modified zeolite before and after lead sorption was performed by determination of textural properties, by scanning electron microscopy and X-ray spectroscopy in energy-dispersive mode (SEM-EDS), transmission electron microscopy (TEM) and X-ray powder diffraction (XRPD) analysis. Lead sorption kinetics at 303-333 K, best represented by the pseudo-second order model and activation energy (13.5 and 8.5 kJ/mol for the natural and Fe(III)-modified zeolite respectively) confirmed an activated chemical sorption. Desorption experiments indicated that lead was irreversibly sorbed on both zeolites. XRPD, TEM and SEM results showed that modification of the natural zeolite with Fe(III) ions did not change its crystal structure and iron is mainly located at the zeolite surface, likely in form of amorphous iron oxy-hydroxides. Specific surface area significantly increases after modification of the natural zeolite with Fe(III) ions (from 30.2 for the natural to 52.5 m2/g for Fe(III)-modified zeolite). Characterization of both lead saturated sorbents suggested that besides ion exchange, lead is both chemisorbed and precipitated at their surfaces, and presence of amorphous iron in Fe(III)-modified zeolite favors sorption of lead.

  5. Regenerative Cu/La zeolite supported desulfurizing sorbents

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E. (Inventor); Sharma, Pramod K. (Inventor)

    1991-01-01

    Efficient, regenerable sorbents for removal of H2S from fluid hydrocarbons such as diesel fuel at moderate condition comprise a porous, high surface area aluminosilicate support, suitably a synthetic zeolite, and most preferably a zeolite having a free lattice opening of at least 6 Angstroms containing from 0.1 to 0.5 moles of copper ions, lanthanum ions or their mixtures. The sorbent removes sulfur from the hydrocarbon fuel in high efficiency and can be repetitively regenerated without loss of activity.

  6. Effect of surface stresses and morphology modification on cupric oxide nanowire growth in the thermal oxidation of copper

    NASA Astrophysics Data System (ADS)

    Mema, Rediola

    Exerting in-plane tensile surface stress or modifying the morphology of the metal surface by forcibly propelling a stream of abrasive material into the surface (sandblasting) enhances nanowire growth by increasing the density of nanowires in the case of tensile stress, and increasing the density and length of nanowires in the case of sandblasting. This improved nanowire growth is attributed to the decreased size of the oxide grains and as a result, the increased number of grain boundaries in the underlying oxide layers, thus resulting in a facilitated outward diffusion of Cu ions for enhanced nanowire growth. These two very simple methods offer easy and inexpensive ways to generate dense, ultra-long CuO nanowires with larger aspect ratios, as well as shed more light on the growth mechanism of nanowires in the thermal oxidation of copper, which has been greatly debated thus far.

  7. Preparation of functionalized zeolitic frameworks

    DOEpatents

    Yaghi, Omar M.; Hayashi, Hideki; Banerjee, Rahul; Park, Kyo Sung; Wang, Bo; Cote, Adrien P.

    2014-08-19

    The disclosure provides zeolitic frameworks for gas separation, gas storage, catalysis and sensors. More particularly the disclosure provides zeolitic frameworks (ZIFs). The ZIF of the disclosure comprises any number of transition metals or a homogenous transition metal composition.

  8. Preparation of functionalized zeolitic frameworks

    DOEpatents

    Yaghi, Omar M; Hayashi, Hideki; Banerjee, Rahul; Park, Kyo Sung; Wang, Bo; Cote, Adrien P

    2012-11-20

    The disclosure provides zeolitic frameworks for gas separation, gas storage, catalysis and sensors. More particularly the disclosure provides zeolitic frameworks (ZIFs). The ZIF of the disclosure comprises any number of transition metals or a homogenous transition metal composition.

  9. Preparation of functionalized zeolitic frameworks

    DOEpatents

    Yaghi, Omar M; Furukawa, Hiroyasu; Wang, Bo

    2013-07-09

    The disclosure provides zeolitic frameworks for gas separation, gas storage, catalysis and sensors. More particularly the disclosure provides zeolitic frameworks (ZIFs). The ZIF of the disclosure comprises any number of transition metals or a homogenous transition metal composition.

  10. Study of zeolite influence on analytical characteristics of urea biosensor based on ion-selective field-effect transistors

    PubMed Central

    2014-01-01

    A possibility of the creation of potentiometric biosensor by adsorption of enzyme urease on zeolite was investigated. Several variants of zeolites (nano beta, calcinated nano beta, silicalite, and nano L) were chosen for experiments. The surface of pH-sensitive field-effect transistors was modified with particles of zeolites, and then the enzyme was adsorbed. As a control, we used the method of enzyme immobilization in glutaraldehyde vapour (without zeolites). It was shown that all used zeolites can serve as adsorbents (with different effectiveness). The biosensors obtained by urease adsorption on zeolites were characterized by good analytical parameters (signal reproducibility, linear range, detection limit and the minimal drift factor of a baseline). In this work, it was shown that modification of the surface of pH-sensitive field-effect transistors with zeolites can improve some characteristics of biosensors. PMID:24636423

  11. Study of zeolite influence on analytical characteristics of urea biosensor based on ion-selective field-effect transistors

    NASA Astrophysics Data System (ADS)

    Shelyakina, Margaryta K.; Soldatkin, Oleksandr O.; Arkhypova, Valentyna M.; Kasap, Berna O.; Akata, Burcu; Dzyadevych, Sergei V.

    2014-03-01

    A possibility of the creation of potentiometric biosensor by adsorption of enzyme urease on zeolite was investigated. Several variants of zeolites (nano beta, calcinated nano beta, silicalite, and nano L) were chosen for experiments. The surface of pH-sensitive field-effect transistors was modified with particles of zeolites, and then the enzyme was adsorbed. As a control, we used the method of enzyme immobilization in glutaraldehyde vapour (without zeolites). It was shown that all used zeolites can serve as adsorbents (with different effectiveness). The biosensors obtained by urease adsorption on zeolites were characterized by good analytical parameters (signal reproducibility, linear range, detection limit and the minimal drift factor of a baseline). In this work, it was shown that modification of the surface of pH-sensitive field-effect transistors with zeolites can improve some characteristics of biosensors.

  12. Rapid synthesis of beta zeolites

    SciTech Connect

    Fan, Wei; Chang, Chun -Chih; Dornath, Paul; Wang, Zhuopeng

    2015-08-18

    The invention provides methods for rapidly synthesizing heteroatom containing zeolites including Sn-Beta, Si-Beta, Ti-Beta, Zr-Beta and Fe-Beta. The methods for synthesizing heteroatom zeolites include using well-crystalline zeolite crystals as seeds and using a fluoride-free, caustic medium in a seeded dry-gel conversion method. The Beta zeolite catalysts made by the methods of the invention catalyze both isomerization and dehydration reactions.

  13. The removal of bacteria by modified natural zeolites.

    PubMed

    Milán, Z; de Las Pozas, C; Cruz, M; Borja, R; Sánchez, E; Ilangovan, K; Espinosa, Y; Luna, B

    2001-01-01

    The removal effect of natural and modified zeolites containing different heavy metals (Ni2+, Zn2+, Fe3+ and Cu2+) on pure cultures of Escherichia coli and Staphylococcus aureus in a solid medium was evaluated in this work. These experiments were carried out in a continuous mode treating municipal wastewater. Faecal coliform species and Pseudomonas aeruginosa were identified. The rate constants of heavy metal lixiviation were determined using a first order kinetic model. The removal effect of modified natural zeolites in both a solid medium and in continuous mode showed an increased elimination of the bacterial population. The results established a decreasing order of the removal effect as follows: Cu2+ > Fe3+ > Zn2+ > Ni2+. The best performance of columns was obtained for inlet bacterial concentrations below 10(6) cells/100 ml. Most of the identified bacterial species were affected by copper modified zeolites, although Serratia marcescens presented the highest sensitivity and Klebsiella pneumoniae the greatest resistance. PMID:11501306

  14. Structural and functional modifications of the major light-harvesting complex II in cadmium- or copper-treated Secale cereale.

    PubMed

    Janik, Ewa; Maksymiec, Waldemar; Mazur, Radoslaw; Garstka, Maciej; Gruszecki, Wieslaw I

    2010-08-01

    The effects of 50 microM cadmium (Cd) or copper (Cu) ions on the supramolecular conformation of the light-harvesting pigment-protein complex of PSII (LHCII) isolated from rye seedlings were studied. It was found that the action of these two metal ions on the LHCII structure and organization is dissimilar. The Fourier transform infrared (FTIR) measurements indicated inhibition or stimulation of formation of parallel beta-structures and aggregates in the presence of Cd or Cu ions, respectively. The Chl a fluorescence excitation spectra of LHCII extracted from Cd-treated plants showed that the decreased aggregation of complexes was correlated with a decline in efficiency of quenching of excitation energy. From the results of mass spectrometry, changes in LHCII aggregation in the presence of Cd ions might be based on decreases in the molecular mass of Lhcb1 and Lhcb2 proteins. An increase in the content of LHCII aggregates under Cu ion excess was associated with changes in the LHCII xanthophyll pigment pool. In the complexes isolated from Cu-treated plants, all-trans violaxanthin and 9'-cis neoxanthin content declined and the simultaneous appearance of the fraction of 9-cis violaxanthin was observed. 9-cis violaxanthin formation under Cu ion excess might facilitate LHCII inter-trimer interaction and, therefore, aggregation of complexes. RLS (resonance light scattering) spectra indicated that the excitonic interaction between Chl molecules and between Chls and xanthophylls was responsible for the effective dissipation of excitation energy in LHCII isolated from Cu-treated plants. Also, changes in singlet excitation energy transfer between carotenoids and Chls under the action of heavy metals were observed. PMID:20627948

  15. The influence of zeolitic water on the rate of butadiene dimerization

    SciTech Connect

    1995-02-01

    Zeolites find widespread usage as catalysts for a variety of chemical transformations. Frequently, the catalytically active agent is a transition metal ion located at an exchange site in contact with the zeolitic surface. Although the extraframework cation positions and relative populations can often be determined by spectroscopic methods, the influence of cation sitting and adsorbed reactant induced migration under reaction conditions is less well understood. This note describes the role which water exerts on the activity of copper-exchanged zeolite Y for the dimerization of butadiene to 4-vinylcyclohexene (4-VCH). 12 refs., 1 fig., 1 tab.

  16. An innovative zinc oxide-coated zeolite adsorbent for removal of humic acid.

    PubMed

    Wang, Lingling; Han, Changseok; Nadagouda, Mallikarjuna N; Dionysiou, Dionysios D

    2016-08-01

    Zinc oxide (ZnO)-coated zeolite adsorbents were developed by both nitric acid modification and Zn(NO3)2·6H2O functionalization of zeolite 4A. The developed adsorbents were used for the removal of humic acid (HA) from aqueous solutions. The synthesized materials were characterized by porosimetry analysis, scanning electron microscopy, X-Ray diffraction analysis, and high resolution transmission electron microscopy. The maximum adsorption capacity of the adsorbents at 21±1°C was about 60mgCg(-1). The results showed that the positive charge density of ZnO-coated zeolite adsorbents was proportional to the amount of ZnO coated on zeolite and thus, ZnO-coated zeolite adsorbents exhibited a greater affinity for negatively charged ions. Furthermore, the adsorption capacity of ZnO-coated zeolite adsorbents increased markedly after acid modification. Adsorption experiments demonstrated ZnO-coated zeolite adsorbents possessed high adsorption capacity to remove HA from aqueous solutions mainly due to strong electrostatic interactions between negative functional groups of HA and the positive charges of ZnO-coated zeolite adsorbents. PMID:27135170

  17. Modification of algae with zinc, copper and silver ions for usage as natural composite for antibacterial applications.

    PubMed

    Mahltig, B; Soltmann, U; Haase, H

    2013-03-01

    Nanometer sized metal particles are used in many applications as antimicrobial materials. However in public discussion nanoparticular materials are a matter of concern due to potential health risks. Hence there is a certain demand for alternative antimicrobial acting materials. For this, the aim of this work is to realize an antimicrobial active material based on the release of metal ions from a natural depot. By this, the use of elemental metal particles or metal oxide particles in nanometer or micrometer scale is avoided. As natural depot four different algae materials (gained from Ascophyllum nodosum, Fucus vesicolosus, Spirulina platensis and Nannochloropsis) are used and loaded by bioabsorption with metal ions Ag(+), Cu(2+) and Zn(2+). The amount of metal bound by biosorption differs strongly in the range of 0.8 to 5.4 mg/g and depends on type of investigated algae material and type of metal ion. For most samples a smaller release of biosorbed Ag(+) and Cu(2+) is observed compared to a strong release of Zn(2+). The antibacterial activity of the prepared composites is investigated with Escherichia coli. Algae material without biosorbed metal has only a small effect on E. coli. Also by modification of algae with Zn(2+) only a small antibacterial property can be observed. Only with biosorption of Ag(+), the algae materials gain a strong bactericidal effect, even in case of a small amount of released silver ions. These silver modified algae materials can be used as highly effective bactericidal composites which may be used in future applications for the production of antimicrobial textiles, papers or polymer materials. PMID:25427514

  18. Zeolite exposure and associated pneumoconiosis

    SciTech Connect

    Casey, K.R.; Shigeoka, J.W.; Rom, W.N.; Moatamed, F.

    1985-06-01

    Naturally occurring zeolite minerals are aluminum silicates widespread in the earth's crust. Several of these minerals have fibrous forms and have been implicated as a possible cause of benign and malignant diseases of the lung and pleura in Turkey. This report describes a patient, living in an area of Nevada rich in zeolites, who presented with idiopathic pleural thickening and pulmonary fibrosis associated with extensive pulmonary deposition of zeolites.

  19. Novel modified zeolites for energy-efficient hydrocarbon separations.

    SciTech Connect

    Arruebo, Manuel; Dong, Junhang; Anderson, Thomas (Burns and McDonnell, Kansas City, MO); Gu, Xuehong; Gray, Gary (Goodyear Chemical Company, Akron, OH); Bennett, Ron (Goodyear Chemical Company, Akron, OH); Nenoff, Tina Maria; Kartin, Mutlu; Johnson, Kaylynn (Goodyear Chemical Company, Akron, OH); Falconer, John; Noble, Richard

    2006-11-01

    We present synthesis, characterization and testing results of our applied research project, which focuses on the effects of surface and skeletal modification of zeolites for significant enhancements in current hydrocarbon (HC) separations. Zeolites are commonly used by the chemical and petroleum industries as catalysts and ion-exchangers. They have high potential for separations owing to their unique pore structures and adsorption properties and their thermal, mechanical and chemical properties. Because of zeolites separation properties, low cost, and robustness in industrial process, they are natural choice for use as industrial adsorbents. This is a multidisciplinary effort to research, design, develop, engineer, and test new and improved materials for the separation of branched vs. linear organic molecules found in commercially important HC streams via adsorption based separations. The focus of this project was the surface and framework modification of the commercially available zeolites, while tuning the adsorption properties and the selectivities of the bulk and membrane separations. In particular, we are interested with our partners at Goodyear Chemical, on how to apply the modified zeolites to feedstock isoprene purification. For the characterization and the property measurements of the new and improved materials powder X-ray diffraction (PXRD), Residual Gas Analyzer-Mass Spectroscopy (RGA-MS), Electron Microscopy (SEM/EDAX), temperature programmed desorption (TPD) and surface area techniques were utilized. In-situ carbonization of MFI zeolite membranes allowed for the maximum separation of isoprene from n-pentane, with a 4.1% enrichment of the binary stream with n-pentane. In four component streams, a modified MFI membrane had high selectivities for n-pentane and 1-3-pentadiene over isoprene but virtually no separation for the 2-methyl-2-butene/isoprene pair.

  20. Modified methods of zeolite and its application of ammonia removal for residential area wastewater treatment

    NASA Astrophysics Data System (ADS)

    Zuo, Jinlong

    2010-11-01

    With the rapid development of urbanization in China, lots of residential area wastewater was directly discharged into the rivers or lakes, which led to eutrophication and the increasing pollution of the water environment. In order to improve ammonia removal capability from the residential area wastewater, zeolite was modified in this paper. Some results for virgin zeolite were revealed by SEM and X ray diffraction. The best results could be attained by combined modification with orthogonal experiment. The adsorption capacity of modified zeolite could be reach mean value of 137.14 meq/100 g, which was 1.8 times than virgin zeolite. The results of bench scale experiments showed that the data in the experiments were in line with Langmuir isotherms for ammonium ion absorbed onto modified zeolite. Moreover, it demonstrated that the biofilm which attached on the surface of modified zeolite only modified the surface feature of modified zeolite, while ion-exchange and diffusion procedure were not affected. So the zeolite was suggested as a suitable material for adsorbing ammonia of residential area wastewater.

  1. Improved zeolitic isocracking catalysts

    SciTech Connect

    Dahlberg, A.J.; Habib, M.M.; Moore, R.O.; Law, D.V.; Convery, L.J.

    1995-09-01

    Chevron Research Company introduced the first low pressure, low temperature catalytic hydrocracking process--ISOCRACKING--in 1959. Within the last four years, Chevron has developed and commercialized three new zeolitic ISOCRACKING catalysts. ICR 209 is Chevron`s latest noble metal ISOCRACKING catalyst. It offers improved liquid yield stability, longer life, and superior polynuclear aromatics control compared to its predecessor. ICR 209`s high hydrogenation activity generates the highest yields of superior quality jet fuel of any zeolitic ISOCRACKING catalyst. The second new ISOCRACKING catalyst, ICR 208, is a base metal catalyst which combines high liquid selectivity and high light naphtha octane in hydrocrackers operating for maximum naphtha production. ICR 210 is another new base metal catalyst which offers higher liquid yields and longer life than ICR 208 by virtue of a higher hydrogenation-to-acidity ratio. Both ICR 208 and ICR 210 have been formulated to provide higher liquid yield throughout the cycle and longer cycle length than conventional base metal/zeolite catalysts. This paper will discuss the pilot plant and commercial performances of these new ISOCRACKING catalysts.

  2. A reliable and reproducible method for the lipase assay in an AOT/isooctane reversed micellar system: modification of the copper-soap colorimetric method.

    PubMed

    Kwon, Chang Woo; Park, Kyung-Min; Choi, Seung Jun; Chang, Pahn-Shick

    2015-09-01

    The copper-soap method, which is based on the absorbance of a fatty acid-copper complex at 715 nm, is a widely used colorimetric assay to determine the lipase activity in reversed micellar system. However, the absorbance of the bis(2-ethylhexyl) sodium sulfosuccinate (AOT)-copper complex prevents the use of an AOT/isooctane reversed micellar system. An extraction step was added to the original procedure to remove AOT and eliminate interference from the AOT-copper complex. Among the solvents tested, acetonitrile was determined to be the most suitable because it allows for the generation of a reproducible calibration curve with oleic acid that is independent of the AOT concentrations. Based on the validation data, the modified method, which does not experience interference from the AOT-copper complex, could be a useful method with enhanced accuracy and reproducibility for the lipase assay. PMID:25842332

  3. Zeolite vitrification demonstration program: characterization of radioactive vitrified zeolite materials

    SciTech Connect

    Barner, J O; Daniel, J L; Marshall, R K

    1984-01-01

    The leach behavior of radioactive vitrified zeolite material was studied as part of the Three Mile Island (TMI) Zeolite Vitrification Program conducted by Pacific Northwest Laboratory (PNL). Experimental procedures, test results, and discussions of the results are presented. The leach behavior of material from three canisters of vitrified zeolite is discussed in terms of the normalized weight loss of the glass-formers and the normalized activity loss of the fission products cesium and strontium. The leach behavior of the radioactive vitrified zeolite material is also compared to the leach behavior of MCC 76-68 reference glass. The effects of changes in the surface microstructure of the vitrified zeolite that occurred during leaching are also presented. 3 references, 23 figures, 10 tables.

  4. Effect of zeolite on toxicity of ammonia in freshwater sediments: Implications for toxicity identification evaluation procedures

    SciTech Connect

    Besser, J.M.; Ingersoll, C.G.; Leonard, E.N.; Mount, D.R.

    1998-11-01

    Techniques for reducing ammonia toxicity in freshwater sediments were investigated as part of a project to develop toxicity identification and evaluation (TIE) procedures for whole sediments. Although ammonia is a natural constituent of freshwater sediments, pollution can lead to ammonia concentrations that are toxic to benthic invertebrates, and ammonia can also contribute to the toxicity of sediments that contain more persistent contaminants. The authors investigated the use of amendments of a natural zeolite mineral, clinoptilolite, to reduce concentrations of ammonia in sediment pore water. Zeolites have been widely used for removal of ammonia in water treatment and in aqueous TIE procedures. The addition of granulated zeolite to ammonia-spiked sediments reduced pore-water ammonia concentrations and reduced ammonia toxicity to invertebrates. Amendments of 20% zeolite (v/v) reduced ammonia concentrations in pore water by {ge}70% in spiked sediments with ammonia concentrations typical of contaminated freshwater sediments. Zeolite amendments reduced toxicity of ammonia-spiked sediments to three taxa of benthic invertebrates (Hyalella azteca, Lumbriculus variegatus, and Chironomus tentans), despite their widely differing sensitivity to ammonia toxicity. In contrast, zeolite amendments did not reduce acute toxicity of sediments containing high concentrations of cadmium or copper or reduce concentrations of these metals in pore waters. These studies suggest that zeolite amendments, used in conjunction with toxicity tests with sensitive taxa such as H. azteca, may be an effective technique for selective reduction of ammonia toxicity in freshwater sediments.

  5. Effect of zeolite on toxicity of ammonia in freshwater sediments: Implications for toxicity identification evaluation procedures

    USGS Publications Warehouse

    Besser, J.M.; Ingersoll, C.G.; Leonard, E.N.; Mount, D.R.

    1998-01-01

    Techniques for reducing ammonia toxicity in freshwater sediments were investigated as part of a project to develop toxicity identification and evaluation (TIE) procedures for whole sediments. Although ammonia is a natural constituent of freshwater sediments, pollution can lead to ammonia concentrations that are toxic to benthic invertebrates, and ammonia can also contribute to the toxicity of sediments that contain more persistent contaminants. We investigated the use of amendments of a natural zeolite mineral, clinoptilolite, to reduce concentrations of ammonia in sediment pore water. Zeolites have been widely used for removal of ammonia in water treatment and in aqueous TIE procedures. The addition of granulated zeolite to ammonia-spiked sediments reduced pore-water ammonia concentrations and reduced ammonia toxicity to invertebrates. Amendments of 20% zeolite (v/v) reduced ammonia concentrations in pore water by ???70% in spiked sediments with ammonia concentrations typical of contaminated freshwater sediments. Zeolite amendments reduced toxicity of ammonia-spiked sediments to three taxa of benthic invertebrates (Hyalella azteca, Lumbriculus variegatus, and Chironomus tentans), despite their widely differing sensitivity to ammonia toxicity. In contrast, zeolite amendments did not reduce acute toxicity of sediments containing high concentrations of cadmium or copper or reduce concentrations of these metals in pore waters. These studies suggest that zeolite amendments, used in conjunction with toxicity tests with sensitive taxa such as H. azteca, may be an effective technique for selective reduction of ammonia toxicity in freshwater sediments.

  6. Metallo-hydrazone complexes immobilized in zeolite Y: Synthesis, identification and acid violet-1 degradation

    NASA Astrophysics Data System (ADS)

    Ahmed, Ayman H.; Thabet, M. S.

    2011-12-01

    Copper(II), cobalt(II) and nickel(II) complexes of hydrazone ligand (SAPH) derived from salicylaldehyde and phenylhydrazine have been encapsulated in zeolite-Y super cages via ship-in-a-bottle synthesis. Detailed characterization of the intrazeolitic complexes were performed by elemental analysis, spectral (FT-IR, UV-Vis.) studies, magnetic measurements and X-ray diffraction. Furthers, surface texture and thermal analysis (TG, DTG, DTA) have provided further evidence for successful immobilization of the metal complexes inside zeolite Y. Investigation of the stereochemistry of these incorporated chelates pointed out that, SAPH ligand is capable to coordinate with the central metal through the (C dbnd N), phenolic (OH) and (NH) groups forming polynuclear structures. The involvement of zeolite oxygen in coordination was postulated in the hybrid materials. The intrazeolitic copper, cobalt and nickel-SAPH complexes have distorted tetrahedral, octahedral and square-pyramidal configurations, respectively. The zeolite encapsulated complexes are thermally stable up to 800 °C except Cu(II) sample which is thermally stable up to midpoint 428 °C. The assessment of the catalytic activity was performed by the use of the photo-degradation of acid violet-1 dye as a probe reaction in presence of H 2O 2 as an oxidant. Decolorization of acid violet-1 dye was examined under the same conditions whereas the unpromoted zeolite and Cu II, Co II, Ni II-hydrazone complexes supported on zeolite showed 13% and 76%, 53%, 43% color removal, respectively. The results revealed that, the zeolite encapsulated Cu(II) complex generally exhibited better catalytic efficiency (76%) compared with other investigated zeolite encapsulated metal-hydrazone samples.

  7. Adamantanes from petroleum, with zeolites

    SciTech Connect

    Rollmann, L.D.; Green, L.A.; Bradway, R.A.

    1995-12-31

    Experiments with zeolite Beta and zeolite {Upsilon} demonstrate that adamantane and methyl adamantanes can be isolated very effectively from modern refinery streams by mild hydrocracking over Pt- and Pd-containing large pore zeolites. Yield depends importantly on individual refinery crude source and process configuration. Heavy crudes and refineries with conventional hydrocracking and FCC feed hydrotreater facilities are particularly desirable, and an ideal feed for adamantane isolation in such a situation is the 150{degrees}-250{degrees}C fraction of the hydrocracker (HDC) recycle stream. When Pt- or Pd-containing zeolite Beta was used with such a stream, temperatures of some 250{degrees}C and pressures below 3.5 mPa (500 psig) sufficed to remove selectively well over 90% of the non-adamantane hydrocarbon, with little conversion of adamantanes. High selectivity for adamantanes is attributed in large part to size-selective exclusion of these molecules from the pores of zeolite Beta.

  8. Sorption of Cu(II) Ions on Chitosan-Zeolite X Composites: Impact of Gelling and Drying Conditions.

    PubMed

    Djelad, Amal; Morsli, Amine; Robitzer, Mike; Bengueddach, Abdelkader; di Renzo, Francesco; Quignard, Françoise

    2016-01-01

    Chitosan-zeolite Na-X composite beads with open porosity and different zeolite contents were prepared by an encapsulation method. Preparation conditions had to be optimised in order to stabilize the zeolite network during the polysaccharide gelling process. Composites and pure reference components were characterized using X-ray diffraction (XRD); scanning electron microscopy (SEM); N₂ adsorption-desorption; and thermogravimetric analysis (TG). Cu(II) sorption was investigated at pH 6. The choice of drying method used for the storage of the adsorbent severely affects the textural properties of the composite and the copper sorption effectiveness. The copper sorption capacity of chitosan hydrogel is about 190 mg·g(-1). More than 70% of this capacity is retained when the polysaccharide is stored as an aerogel after supercrititcal CO₂ drying, but nearly 90% of the capacity is lost after evaporative drying to a xerogel. Textural data and Cu(II) sorption data indicate that the properties of the zeolite-polysaccharide composites are not just the sum of the properties of the individual components. Whereas a chitosan coating impairs the accessibility of the microporosity of the zeolite; the presence of the zeolite improves the stability of the dispersion of chitosan upon supercritical drying and increases the affinity of the composites for Cu(II) cations. Chitosan-zeolite aerogels present Cu(II) sorption properties. PMID:26797593

  9. Modification of surface layers of copper under the action of the volumetric discharge initiated by an avalanche electron beam in nitrogen and CO2 at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Shulepov, M. A.; Akhmadeev, Yu. Kh.; Tarasenko, V. F.; Kolubaeva, Yu. A.; Krysina, O. V.; Kostyrya, I. D.

    2011-05-01

    The results of experimental investigations of the action of the volumetric discharge initiated by an avalanche electron beam on the surface of copper specimens are presented. The volumetric (diffuse) discharge in nitrogen and CO2 at atmospheric pressure was initiated by applying high voltage pulses of nanosecond duration to a tubular foil cathode. It has been found that the treatment of a copper surface by this type of discharge increases the hardness of the surface layer due to oxidation.

  10. Oxygen and hydrogen isotope geochemistry of zeolites

    NASA Technical Reports Server (NTRS)

    Karlsson, Haraldur R.; Clayton, Robert N.

    1990-01-01

    Oxygen and hydrogen isotope ratios for natural samples of the zeolites analcime, chabazite, clinoptilolite, laumontite, mordenite, and natrolite have been obtained. The zeolite samples were classified into sedimentary, hydrothermal, and igneous groups. The ratios for each species of zeolite are reported. The results are used to discuss the origin of channel water, the role of zeolites in water-rock interaction, and the possibility that a calibrated zeolite could be used as a low-temperature geothermometer.

  11. Properties and applications of zeolites.

    PubMed

    Rhodes, Christopher J

    2010-01-01

    Zeolites are aluminosilicate solids bearing a negatively charged honeycomb framework of micropores into which molecules may be adsorbed for environmental decontamination, and to catalyse chemical reactions. They are central to green-chemistry since the necessity for organic solvents is minimised. Proton-exchanged (H) zeolites are extensively employed in the petrochemical industry for cracking crude oil fractions into fuels and chemical feedstocks for other industrial processes. Due to their ability to perform cation-exchange, in which the cations that are originally present to counterbalance the framework negative charge may be exchanged out of the zeolite by cations present in aqueous solution, zeolites are useful as industrial water-softeners, in the removal of radioactive Cs+ and Sr2+ cations from liquid nuclear waste and in the removal of toxic heavy metal cations from groundwaters and run-off waters. Surfactant-modified zeolites (SMZ) find particular application in the co-removal of both toxic anions and organic pollutants. Toxic anions such as arsenite, arsenate, chromate, cyanide and radioactive iodide can also be removed by adsorption into zeolites that have been previously loaded with co-precipitating metal cations such as Ag+ and Pb2+ which form practically insoluble complexes that are contained within the zeolite matrix. PMID:21047018

  12. Removal of radionuclides using zeolites

    SciTech Connect

    Reddy, R.G.; Cai, Z.

    1996-10-01

    Adsorption of uranium(VI) from aqueous solutions on natural zeolites, i.e., chabazite, clinoptilolite, erionite and mordenite, was investigated. The influence of time and pH of the solution were studied. The results showed that uranium(VI) species are strongly adsorbed on the zeolites between pH 6 to 9. The amount of uranium adsorption is strongly dependent on pH and, to some extent, on the type of zeolites. For pH {ge} 6 and at 25 C, more than 92% of uranium from solution was removed in 10 minutes. Adsorption mechanism of uranium is discussed.

  13. The effect of positioning cations on acidity and stability of the framework structure of Y zeolite.

    PubMed

    Deng, Changshun; Zhang, Junji; Dong, Lihui; Huang, Meina; Bin Li; Jin, Guangzhou; Gao, Junbin; Zhang, Feiyue; Fan, Minguang; Zhang, Luoming; Gong, Yanjun

    2016-01-01

    The investigation on the modification of NaY zeolite on LaHY and AEHY (AE refers Ca and Sr and the molar ratio of Ca and Sr is 1:1) zeolites was proformed by XRD, N2-physisorption (BET), XRF, XPS, NH3-TPD, Py-IR, hydrothermal stability, and catalytic cracking test. These results indicate that HY zeolite with ultra low content Na can be obtained from NaY zeolite through four exchange four calcination method. The positioning capability of La(3+) in sodalite cage is much better than that of AE(2+) and about 12 La(3+) can be well coordinated in sodalite cages of one unit cell of Y zeolite. Appropriate acid amount and strength favor the formation of propylene and La(3+) is more suitable for the catalytic cracking of cyclohexane than that of AE(2+). Our results not only elaborate the variation of the strong and weak acid sites as well as the Brönsted and Lewis acid sites with the change of exchanged ion content but also explore the influence of hydrothermal aging of LaHY and AEHY zeolites and find the optimum ion exchange content for the most reserved acid sites. At last, the coordination state and stabilization of ion exchanged Y zeolites were discussed in detail. PMID:26987306

  14. The effect of positioning cations on acidity and stability of the framework structure of Y zeolite

    NASA Astrophysics Data System (ADS)

    Deng, Changshun; Zhang, Junji; Dong, Lihui; Huang, Meina; Bin Li; Jin, Guangzhou; Gao, Junbin; Zhang, Feiyue; Fan, Minguang; Zhang, Luoming; Gong, Yanjun

    2016-03-01

    The investigation on the modification of NaY zeolite on LaHY and AEHY (AE refers Ca and Sr and the molar ratio of Ca and Sr is 1:1) zeolites was proformed by XRD, N2-physisorption (BET), XRF, XPS, NH3-TPD, Py-IR, hydrothermal stability, and catalytic cracking test. These results indicate that HY zeolite with ultra low content Na can be obtained from NaY zeolite through four exchange four calcination method. The positioning capability of La3+ in sodalite cage is much better than that of AE2+ and about 12 La3+ can be well coordinated in sodalite cages of one unit cell of Y zeolite. Appropriate acid amount and strength favor the formation of propylene and La3+ is more suitable for the catalytic cracking of cyclohexane than that of AE2+. Our results not only elaborate the variation of the strong and weak acid sites as well as the Brönsted and Lewis acid sites with the change of exchanged ion content but also explore the influence of hydrothermal aging of LaHY and AEHY zeolites and find the optimum ion exchange content for the most reserved acid sites. At last, the coordination state and stabilization of ion exchanged Y zeolites were discussed in detail.

  15. Potential of sustainable hierarchical zeolites in the valorization of α-pinene.

    PubMed

    Nuttens, Nicolas; Verboekend, Danny; Deneyer, Aron; Van Aelst, Joost; Sels, Bert F

    2015-04-13

    In the valorization of α-pinene, which is an important biomass intermediate derived from turpentine oil, hierarchical (mesoporous) zeolites represent a superior class of catalysts. Hierarchical USY, ZSM-5, and beta zeolites have been prepared, characterized, and catalytically evaluated, with the aim of combining the highest catalytic performance with the most sustainable synthetic protocol. These zeolites are prepared by alkaline treatment in aqueous solutions of NH4 OH, NaOH, diethylamine, and NaOH complemented with tetrapropylammonium bromide. The hierarchical USY zeolite is the most attractive catalyst of the tested series, and is able to combine an overall organic-free synthesis with an up to sixfold activity enhancement and comparable selectivity over the conventional USY zeolite. This superior performance relates to a threefold greater activity than that of the commercial standard, namely, H2 SO4 /TiO2 . Correlation of the obtained benefits to the amount of solid lost during the postsynthetic modifications highlights that the highest activity gains are obtained with minor leaching. Furthermore, a highly zeolitic character, as determined by bulk XRD, is beneficial, but not crucial, in the conversion of α-pinene. The alkaline treatments not only result in a higher overall activity, but also a more functional external surface area, attaining up to four times the pinene conversions per square nanometer. The efficiency of the hierarchical USY zeolite is concomitantly demonstrated in the conversion of limonene and turpentine oil, which emphasizes its industrial potential. PMID:25736719

  16. The effect of positioning cations on acidity and stability of the framework structure of Y zeolite

    PubMed Central

    Deng, Changshun; Zhang, Junji; Dong, Lihui; Huang, Meina; Bin Li; Jin, Guangzhou; Gao, Junbin; Zhang, Feiyue; Fan, Minguang; Zhang, Luoming; Gong, Yanjun

    2016-01-01

    The investigation on the modification of NaY zeolite on LaHY and AEHY (AE refers Ca and Sr and the molar ratio of Ca and Sr is 1:1) zeolites was proformed by XRD, N2-physisorption (BET), XRF, XPS, NH3-TPD, Py-IR, hydrothermal stability, and catalytic cracking test. These results indicate that HY zeolite with ultra low content Na can be obtained from NaY zeolite through four exchange four calcination method. The positioning capability of La3+ in sodalite cage is much better than that of AE2+ and about 12 La3+ can be well coordinated in sodalite cages of one unit cell of Y zeolite. Appropriate acid amount and strength favor the formation of propylene and La3+ is more suitable for the catalytic cracking of cyclohexane than that of AE2+. Our results not only elaborate the variation of the strong and weak acid sites as well as the Brönsted and Lewis acid sites with the change of exchanged ion content but also explore the influence of hydrothermal aging of LaHY and AEHY zeolites and find the optimum ion exchange content for the most reserved acid sites. At last, the coordination state and stabilization of ion exchanged Y zeolites were discussed in detail. PMID:26987306

  17. Utilizing copper(I) catalyzed azide-alkyne Huisgen 1,3-dipolar cycloaddition for the surface modification of colloidal particles with electroactive and emissive moieties

    NASA Astrophysics Data System (ADS)

    Rungta, Parul

    The development of charge-transporting and fluorescing colloidal particles that can be directly printed into electroluminescent devices may result in a broad impact on the use of electrical energy for illumination. The objective of this work was to design and synthesize electroactive & fluorescing colloidal particles; establish their optical, electronic, and thermodynamic properties; and transition them into a device format for potential applications. The original intended application of this work was to build "better" colloidally-based organic light emitting devices (OLEDs) by creating functional particles with superior electrical and optical performance relative to commercially available technologies, but through the course of the research, the particles that were developed were found to be better suited for medical applications. Nonetheless, the global objective envisioned at the onset of this research was consistent with its final outcomes. The research tasks pursued to accomplish this global objective included: (1) The design and synthesis of electroactive moieties and their conversion into organic light emitting devices; An electron-transporting monomer was synthesized that was structurally & energetically similar to the small molecule 2-biphenyl-4-yl-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (tBu-PBD). The monomer was copolymerized with 2-(9H-carbazol-9-yl)ethyl 2-methylacrylate (CE) and the resulting copolymer was utilized in OLEDs which employed fluorescent coumarin 6 (C6) or phosphorescent tris(2-phenylpyridine)iridium(III) [Ir(ppy)3] emitters. The copolymer devices exhibited a mean luminance of ca. 400 and 3,552 cd/m2 with the C6 and Ir(ppy)3 emitters, that were stable with thermal aging at temperatures ranging from 23°C to 130°C. Comparable poly(9-vinyl-9H-carbazole)/tBu-PBD blend devices exhibited more pronounced variations in performance with thermal aging. (2) The surface-modification of colloids with electroactive & fluorescing moieties via "click

  18. Enhanced Activity of Nanocrystalline Zeolites for Selective Catalytic Reduction of NOx

    SciTech Connect

    Sarah C. Larson; Vicki H. Grassian

    2006-12-31

    Nanocrystalline zeolites with discrete crystal sizes of less than 100 nm have different properties relative to zeolites with larger crystal sizes. Nanocrystalline zeolites have improved mass transfer properties and very large internal and external surface areas that can be exploited for many different applications. The additional external surface active sites and the improved mass transfer properties of nanocrystalline zeolites offer significant advantages for selective catalytic reduction (SCR) catalysis with ammonia as a reductant in coal-fired power plants relative to current zeolite based SCR catalysts. Nanocrystalline NaY was synthesized with a crystal size of 15-20 nm and was thoroughly characterized using x-ray diffraction, electron paramagnetic resonance spectroscopy, nitrogen adsorption isotherms and Fourier Transform Infrared (FT-IR) spectroscopy. Copper ions were exchanged into nanocrystalline NaY to increase the catalytic activity. The reactions of nitrogen dioxides (NO{sub x}) and ammonia (NH{sub 3}) on nanocrystalline NaY and CuY were investigated using FT-IR spectroscopy. Significant conversion of NO{sub 2} was observed at room temperature in the presence of NH{sub 3} as monitored by FT-IR spectroscopy. Copper-exchanged nanocrystalline NaY was more active for NO{sub 2} reduction with NH{sub 3} relative to nanocrystalline NaY.

  19. Mesostructured zeolites: bridging the gap between zeolites and MCM-41.

    PubMed

    Prasomsri, Teerawit; Jiao, Wenqian; Weng, Steve Z; Garcia Martinez, Javier

    2015-05-28

    Surfactant-templating is one of the most versatile and useful techniques to implement mesoporous systems into solid materials. Various strategies based on various interactions between surfactants and solid precursors have been explored to produce new structures. Zeolites are invaluable as size- and shape-selective solid acid catalysts. Nevertheless, their micropores impose limitations on the mass transport of bulky feed and/or product molecules. Many studies have attempted to address this by utilizing surfactant-assisting technology to alleviate the diffusion constraints. However, most efforts have failed due to micro/mesopore phase separation. Recently, a new technique combining the uses of cationic surfactants and mild basic solutions was introduced to synthesise mesostructured zeolites. These materials sustain the unique characteristics of zeolites (i.e., strong acidity, crystallinity, microporosity, and hydrothermal stability), including tunable mesopore sizes and degrees of mesoporosity. The mesostructured zeolites are now commercially available through Rive Technology, and show superior performance in VGO cracking. This feature article provides an overview of recent explorations in the introduction of mesoporosity into zeolites using surfactant-templating techniques. Various porous materials, preparation methods, physical and catalytic properties of mesostructured zeolites will be discussed. PMID:25866848

  20. Sorption of uranium(6+) and neptunium(5+) by surfactant-modified natural zeolites

    SciTech Connect

    Prikryl, J.D.; Pabalan, R.T.

    1999-07-01

    Experiments were conducted to determine the ability of surfactant-modification to enhance the ability of natural zeolites to sorb U(6+) and Np(5+). Natural zeolite material, comprised mainly of clinoptilolite and treated with the cationic surfactant hexadecyltrimethylammonium-bromide (HDTMA), was reacted with U(6+) and Np(5+) solutions open to the atmosphere and having a range of radionuclide concentration, pH, and NaCl concentration. The results indicate surfactant-modification of the zeolite enhances its ability to sorb U(6+), particularly at pHs greater than six where U(6+) sorption on unmodified zeolite is typically low due to formation of anionic U(6+) aqueous carbonate complexes. In contrast, there is little enhancement of Np(5+) sorption onto surfactant-modified zeolite. The presence of chloride anions in solution makes surfactant-modification less effective. The enhanced sorption of U(6+) is interpreted to be due to anion exchange with counterions on the external portion of a surfactant bilayer or admicelles.

  1. Probing zeolite syntheses to determine natural occurances of zeolites

    NASA Astrophysics Data System (ADS)

    Chen, H.; Song, S.; Fang, J.

    2003-12-01

    In this study, zeolites were synthesized from different glasses to probe the occurrence of zeolites in nature. The experiments were carried out with synthetic glass systems of Na2O.Al2O3.nSiO2, CaO.Al2O3.nSiO2, xNa2O.(1-x)CaO.Al2O3.nSiO2 and xNa2O.(1-x)K2O.Al2O3.6SiO2 in alkaline solutions of NaOH, KOH, Na2CO3, NH4OH, NaOH (+) NaCl and NaOH (+) KOH at temperatures ranging from 110›J to 210›J and with autogeneous pressures in the autoclaves. Synthetic products were examined by an X-ray powder diffractometer, a scanning electron microscopy with an energy dispersive spectrometer, and an electron microprobe. The minerals synthesized included zeolites, i.e., thomsonite, gismondine, amicite, garronite, gobbinsite, analcime, phillipsite, merlinoite, chabazite and mordenite; artificial synthetic zeolites, and feldspars. Chemical analyses indicated that the composition of synthetic zeolites is profoundly influenced by the composition of the initial glasses, especially the SiO2/Al2O3 ratios and cations. On the other hand, the influence of Na+ and K+ have over the formation of zeolites in solution, other ions, such as CO32- were involved in the preventing of the formation of Ca-zeolites. Comparing the experimental results with natural occurrences suggests that thomsonite, gismondine and amicite are usually found in ultrabasic and basic rocks; garronite and gobbinsite in basic to intermediate rocks; analcime, phillipsite, and chabazite in basic to acid rocks; merlinoite in high-potassium rocks; and mordenite in acid rocks. In addition, Ca-zeolites including thomsonite, gismondine and garronite are favored in fresh water environments, and alkali zeolites including gobbinsite, phillipsite, and analcime are most abundant in saline lake and deep sea conditions.

  2. Utilizing copper(I) catalyzed azide-alkyne Huisgen 1,3-dipolar cycloaddition for the surface modification of colloidal particles with electroactive and emissive moieties

    NASA Astrophysics Data System (ADS)

    Rungta, Parul

    The development of charge-transporting and fluorescing colloidal particles that can be directly printed into electroluminescent devices may result in a broad impact on the use of electrical energy for illumination. The objective of this work was to design and synthesize electroactive & fluorescing colloidal particles; establish their optical, electronic, and thermodynamic properties; and transition them into a device format for potential applications. The original intended application of this work was to build "better" colloidally-based organic light emitting devices (OLEDs) by creating functional particles with superior electrical and optical performance relative to commercially available technologies, but through the course of the research, the particles that were developed were found to be better suited for medical applications. Nonetheless, the global objective envisioned at the onset of this research was consistent with its final outcomes. The research tasks pursued to accomplish this global objective included: (1) The design and synthesis of electroactive moieties and their conversion into organic light emitting devices; An electron-transporting monomer was synthesized that was structurally & energetically similar to the small molecule 2-biphenyl-4-yl-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (tBu-PBD). The monomer was copolymerized with 2-(9H-carbazol-9-yl)ethyl 2-methylacrylate (CE) and the resulting copolymer was utilized in OLEDs which employed fluorescent coumarin 6 (C6) or phosphorescent tris(2-phenylpyridine)iridium(III) [Ir(ppy)3] emitters. The copolymer devices exhibited a mean luminance of ca. 400 and 3,552 cd/m2 with the C6 and Ir(ppy)3 emitters, that were stable with thermal aging at temperatures ranging from 23°C to 130°C. Comparable poly(9-vinyl-9H-carbazole)/tBu-PBD blend devices exhibited more pronounced variations in performance with thermal aging. (2) The surface-modification of colloids with electroactive & fluorescing moieties via "click

  3. Distinct oxidative cleavage and modification of bovine [Cu- Zn]-SOD by an ascorbic acid/Cu(II) system: Identification of novel copper binding site on SOD molecule.

    PubMed

    Uehara, Hiroshi; Luo, Shen; Aryal, Baikuntha; Levine, Rodney L; Rao, V Ashutosh

    2016-05-01

    We investigated the combined effect of ascorbate and copper [Asc/Cu(II)] on the integrity of bovine [Cu-Zn]-superoxide dismutase (bSOD1) as a model system to study the metal catalyzed oxidation (MCO) and fragmentation of proteins. We found Asc/Cu(II) mediates specific cleavage of bSOD1 and generates 12.5 and 3.2kDa fragments in addition to oxidation/carbonylation of the protein. The effect of other tested transition metals, a metal chelator, and hydrogen peroxide on the cleavage and oxidation indicated that binding of copper to a previously unknown site on SOD1 is responsible for the Asc/Cu(II) specific cleavage and oxidation. We utilized tandem mass spectrometry to identify the specific cleavage sites of Asc/Cu(II)-treated bSOD1. Analyses of tryptic- and AspN-peptides have demonstrated the cleavage to occur at Gly31 with peptide bond breakage with Thr30 and Ser32 through diamide and α-amidation pathways, respectively. The three-dimensional structure of bSOD1 reveals the imidazole ring of His19 localized within 5Å from the α-carbon of Gly31 providing a structural basis that copper ion, most likely coordinated by His19, catalyzes the specific cleavage reaction. PMID:26872685

  4. Study on dioxygen reduction by mutational modifications of the hydrogen bond network leading from bulk water to the trinuclear copper center in bilirubin oxidase

    SciTech Connect

    Morishita, Hirotoshi; Kurita, Daisuke; Kataoka, Kunishige; Sakurai, Takeshi

    2014-07-18

    Highlights: • Proton transport pathway in bilirubin oxidase was mutated. • Two intermediates in the dioxygen reduction steps were trapped and characterized. • A specific glutamate for dioxygen reduction by multicopper oxidases was identified. - Abstract: The hydrogen bond network leading from bulk water to the trinuclear copper center in bilirubin oxidase is constructed with Glu463 and water molecules to transport protons for the four-electron reduction of dioxygen. Substitutions of Glu463 with Gln or Ala were attributed to virtually complete loss or significant reduction in enzymatic activities due to an inhibition of the proton transfer steps to dioxygen. The single turnover reaction of the Glu463Gln mutant afforded the highly magnetically interacted intermediate II (native intermediate) with a broad g = 1.96 electron paramagnetic resonance signal detectable at cryogenic temperatures. Reactions of the double mutants, Cys457Ser/Glu463Gln and Cys457Ser/Glu463Ala afforded the intermediate I (peroxide intermediate) because the type I copper center to donate the fourth electron to dioxygen was vacant in addition to the interference of proton transport due to the mutation at Glu463. The intermediate I gave no electron paramagnetic resonance signal, but the type II copper signal became detectable with the decay of the intermediate I. Structural and functional similarities between multicopper oxidases are discussed based on the present mutation at Glu463 in bilirubin oxidase.

  5. Influence of starting zeolite on synthesis of RUT type zeolite by interzeolite conversion method

    NASA Astrophysics Data System (ADS)

    Itakura, Masaya; Ota, Kai; Shibata, Shohei; Inoue, Takayuki; Ide, Yusuke; Sadakane, Masahiro; Sano, Tsuneji

    2011-01-01

    In this study, hydrothermal conversions of *BEA and FAU type zeolites using various structure-directing agents were carried out. Highly crystalline and pure RUT type zeolites were obtained from both zeolites in the presence of tetramethylammonium hydroxide. There were no major differences between the characteristics of the RUT type zeolites obtained from the two starting zeolites. However, the Si/Al ratio and the crystallization rate of the RUT type zeolites were strongly dependent on both the framework structure and the Si/Al ratio of the starting zeolite. That is, the crystallization rate of the RUT type zeolite from the *BEA type zeolite did not depend on the Si/Al ratio of the starting *BEA type zeolite, whereas the crystallization rate of the RUT type zeolite from the FAU type zeolite was dependent on the Si/Al ratio of the starting FAU type zeolite. This suggests that the chemical structure and the concentration of locally ordered aluminosilicate species produced by the decomposition/dissolution of the starting zeolite can be altered by changing the framework structure of the zeolite.

  6. Reclaiming silver from silver zeolite

    SciTech Connect

    Reimann, G.A.

    1991-10-01

    Silver zeolite is used to capture radioiodines from air cleaning systems in some nuclear facilities at the Idaho National Engineering Laboratory. It may become radioactively contaminated and/or poisoned by hydrocarbon vapors, which diminishes its capacity for iodine. Silver zeolite contains up to 38 wt% silver. A pyrometallurgical process was developed to reclaim the silver before disposing of the unserviceable zeolite as a radioactive waste. A flux was formulated to convert the refractory aluminosilicate zeolite structure into a low-melting fluid slag, with Na[sub 2]O added as NAOH instead of Na[sub 2]CO[sub 3] to avoid severe foaming due to CO[sub 2] evolution. A propane-fired furnace was built to smelt 45 kg charges at 1300C in a carbon-bonded silicon carbide crucible. A total of 218 kg (7000 tr oz) of silver was reclaimed from 1050 kg of unserviceable zeolite. Silver recoveries of 97% were achieved, and the radioisotopes were fixed as stable silicates in a vitreous slag that was disposed of as a low level waste. Recovered silver was refined using oxygen and cast into 100 tr oz bars assaying 99.8+% silver and showing no radioactive contamination.

  7. Reclaiming silver from silver zeolite

    SciTech Connect

    Reimann, G.A.

    1991-10-01

    Silver zeolite is used to capture radioiodines from air cleaning systems in some nuclear facilities at the Idaho National Engineering Laboratory. It may become radioactively contaminated and/or poisoned by hydrocarbon vapors, which diminishes its capacity for iodine. Silver zeolite contains up to 38 wt% silver. A pyrometallurgical process was developed to reclaim the silver before disposing of the unserviceable zeolite as a radioactive waste. A flux was formulated to convert the refractory aluminosilicate zeolite structure into a low-melting fluid slag, with Na{sub 2}O added as NAOH instead of Na{sub 2}CO{sub 3} to avoid severe foaming due to CO{sub 2} evolution. A propane-fired furnace was built to smelt 45 kg charges at 1300C in a carbon-bonded silicon carbide crucible. A total of 218 kg (7000 tr oz) of silver was reclaimed from 1050 kg of unserviceable zeolite. Silver recoveries of 97% were achieved, and the radioisotopes were fixed as stable silicates in a vitreous slag that was disposed of as a low level waste. Recovered silver was refined using oxygen and cast into 100 tr oz bars assaying 99.8+% silver and showing no radioactive contamination.

  8. Zeolite synthesis: an energetic perspective.

    PubMed

    Zwijnenburg, Martijn A; Bromley, Stefan T

    2010-11-21

    Taking |D(H(2)O)(x)|[AlSiO(4)] based materials (where D is Li, Na, K, Rb or Cs) as an archetypal aluminosilicate system, we use accurate density functional theory calculations to demonstrate how the substitution of silicon cations in silica, with pairs of aluminium and (alkali metal) cations, changes the energetic ordering of different competing structure-types. For large alkali metal cations we further show that the formation of porous aluminosilicate structures, the so-called zeolites, is energetically favored. These findings unequivocally demonstrate that zeolites can be energetic preferred reaction products, rather than being kinetically determined, and that the size of the (hydrated) cations in the pore, be it inorganic or organic, is critical for directing zeolite synthesis. PMID:20938518

  9. Studies of zeolite-based artificial photosynthetic systems

    NASA Astrophysics Data System (ADS)

    Zhang, Haoyu

    used as a model system. A MV2+-loaded zeolite was treated with disilazane reagents under ambient conditions and the grafting of siloxy functionality on the zeolite was confirmed by infrared, NMR spectroscopy and elemental analysis. Surface modification of MV2+-loaded zeolites encapsulated the guest molecules in the zeolite cages and release of MV2+ by ion-exchange with sodium ions was studied. The total amount of MV2+ released was dependent on the concentration of Na+ in solution, and was similar for the derivatized and underivatized samples. In the absence of surface modification, equilibration occurred within 20 minutes, whereas with surface modification, the equilibration time was extended to 7 days. These kinetics are reflected in the effective diffusion coefficients (D) of MV2+, with D = 1.2 x 10-15 cm 2 s-1 for derivatized zeolite Y and D = 0.2 -1.1 x 10-7 cm2 s-1 for the underivatized sample. (Abstract shortened by UMI.)

  10. Gas-phase adsorption in dealuminated natural clinoptilolite and liquid-phase adsorption in commercial DAY zeolite and modified ammonium Y zeolite

    NASA Astrophysics Data System (ADS)

    Costa Hernandez, Alba Nydia

    The adsorption of Carbon Dioxide (CO2) is a very important tool for the material characterization. On the other hand, in separation and recovery technology, the adsorption of the CO2 is important to reduce the concentration of this gas considered as one of the greenhouse gases. Natural zeolites, particularly clinoptilolite, are widely applied to eliminate some pollutants from the environment. One of the goals of this research is to study the structure, composition and morphology of one natural clinoptilolite dealuminated with ammonium hexafluorosilicate (AHFi) and with orthophosphoric acid (H3PO4). Each modified sample was characterized using X-ray Diffraction (XRD), Carbon Dioxide adsorption at 0° C, Thermogravimetric Analysis (TGA), and Scanning Electron Microscopy with Energy Dispersive X-Ray Analysis (SEM-EDAX). In addition, the surface chemistry of the modified clinoptilolites was analyzed with Diffuse Reflectance Fourier Transform Infrared Spectroscopy (DRIFTS). The adsorption measurements were also used to study of the interaction of CO2 molecule within the adsorption space of these modified clinoptilolites. It was concluded that one of the modified clinoptilolites, (CSW-HFSi-0.1M), showed a great quality as adsorbent and as catalytic comparable to commercial synthetic zeolites. As far as we know, the modification of clinoptilolite with HFSi to improve their adsorption properties had not been previously attempted. In the second part of this dissertation, the dynamic adsorption of three isomers of nitrophenols using as adsorbent a commercial DAY zeolite was investigated. Also, the dynamic adsorption of methanol in a less hydrophobic zeolite, Ammonium Y Zeolite was investigated. The obtained breakthrough curves showed that the commercial DAY zeolite could be a suitable adsorbent to the liquid-phase adsorption of the phenolic compounds. Notwithstanding the modified ammonium Y zeolite had a low Si/Al ratio (less hydrophobic) than commercial DAY zeolite; this

  11. Metal immobilization in soils using synthetic zeolites.

    PubMed

    Oste, Leonard A; Lexmond, Theo M; Van Riemsdijk, Willem H

    2002-01-01

    In situ immobilization of heavy metals in contaminated soils is a technique to improve soil quality. Synthetic zeolites are potentially useful additives to bind heavy metals. This study selected the most effective zeolite in cadmium and zinc binding out of six synthetic zeolites (mordenite-type, faujasite-type, zeolite X, zeolite P, and two zeolites A) and one natural zeolite (clinoptilolite). Zeolite A appeared to have the highest binding capacity between pH 5 and 6.5 and was stable above pH 5.5. The second objective of this study was to investigate the effects of zeolite addition on the dissolved organic matter (DOM) concentration. Since zeolites increase soil pH and bind Ca, their application might lead to dispersion of organic matter. In a batch experiment, the DOM concentration increased by a factor of 5 when the pH increased from 6 to 8 as a result of zeolite A addition. A strong increase in DOM was also found in the leachate of soil columns, particularly in the beginning of the experiment. This resulted in higher metal leaching caused by metal-DOM complexes. In contrast, the free ionic concentration of Cd and Zn strongly decreased after the addition of zeolites, which might explain the reduction in metal uptake observed in plant growth experiments. Pretreatment of zeolites with acid (to prevent a pH increase) or Ca (to coagulate organic matter) suppressed the dispersion of organic matter, but also decreased the metal binding capacity of the zeolites due to competition of protons or Ca. PMID:12026084

  12. Synthesis and testing of nanosized zeolite Y

    NASA Astrophysics Data System (ADS)

    Karami, Davood

    This work focuses on the synthesis and testing of nanosized zeolite Y. The synthesis formulations of faujasite-type structure of zeolite Y prepared in nanosized form are described. The synthetic zeolite Y is the most widely employed for the preparation of fluid catalytic cracking (FCC) catalysts. The synthesis of zeolite Y is very complicated process. The mean particle size of zeolite Y is 1800 nm. The major challenge of this work involved reducing this average particle size to less than 500 nm. The preliminary experiments were conducted to obtain the pure zeolite Y using the soluble silicates as a silica source. This was achieved by applying the experimental design approach to study the effects of many parameters. The ageing time turned out to be the most significant variable affecting product purity. Based on the preliminary results, a detailed investigation was carried out to determine the effects of silica-alumina precursor preparations on zeolite Y synthesis. Aluminosilicate precursors were prepared by gelling and precipitation of soluble silicate. The as-prepared precursors were used for the hydrothermal synthesis of zeolite Y. The procedure of the precipitation of soluble silicate yielded pure zeolite Y at the conventional synthesis conditions. The extent of purity of zeolite Y depends on the surface areas of aluminosilicate precursors. A novel approach to zeolite Y synthesis was employed for the preparation of the pure nanosized zeolite Y. This was achieved by applying the method of impregnation of precipitated silica. This novel method of impregnation for zeolite Y preparation allows eliminating the vigorous agitation step required for the preparation of a homogeneous silica solution, thereby simplifying the synthesis of zeolite Y in one single vessel. In case of the synthesis of nanosized zeolite Y, the effect of varying the organic templates on the formation of nanosized particles of zeolite Y was investigated, while all other reaction parameters were

  13. Modification of the charge transport properties of the copper phthalocyanine/poly(vinyl alcohol) interface using cationic or anionic surfactant for field-effect transistor performance enhancement

    NASA Astrophysics Data System (ADS)

    Jastrombek, Diana; Nawaz, Ali; Koehler, Marlus; Meruvia, Michelle S.; Hümmelgen, Ivo A.

    2015-08-01

    We report on the performance enhancement of organic field-effect transistors prepared using cross-linked poly(vinyl alcohol) as gate dielectric and copper phthalocyanine as channel semiconductor through gate dielectric surface treatment. The gate dielectric surface was treated using either a cationic surfactant, hexadecyltrimethylammonium bromide (CTAB), or an anionic surfactant, sodium dodecyl sulfate (SDS). We determined the charge-carrier field-effect mobility ( μ FET) in these transistors as a function of the effective channel thickness in the channel bottleneck, near to the transistor source. When compared to the untreated devices, in the devices treated with CTAB or SDS, the channel formation occurs at lower gate voltage and the carrier mobility in the thinnest channel region, corresponding to the immediate vicinity of the insulator/semiconductor interface, is significantly higher. The surfactant treatment leads to a tenfold increase in μ FET and significant enhancement in capacitance, on/off current ratio and transconductance of the transistor.

  14. Hydrogen Selective Exfoliated Zeolite Membranes

    SciTech Connect

    Tsapatsis, Michael; Daoutidis, Prodromos; Elyassi, Bahman; Lima, Fernando; Iyer, Aparna; Agrawal, Kumar; Sabnis, Sanket

    2015-04-06

    The objective of this project was to develop and evaluate an innovative membrane technology at process conditions that would be representative of Integrated Gasification Combined Cycle (IGCC) advanced power generation with pre-combustion capture of carbon dioxide (CO2). This research focused on hydrogen (H2)-selective zeolite membranes that could be utilized to separate conditioned syngas into H2-rich and CO2-rich components. Both experiments and process design and optimization calculations were performed to evaluate the concept of ultra-thin membranes made from zeolites nanosheets. In this work, efforts in the laboratory were made to tackle two fundamental challenges in application of zeolite membranes in harsh industrial environments, namely, membrane thickness and membrane stability. Conventional zeolite membranes have thicknesses in the micron range, limiting their performance. In this research, we developed a method for fabrication of ultimately thin zeolite membranes based on zeolite nanosheets. A range of layered zeolites (MWW, RWR, NSI structure types) suitable for hydrogen separation was successfully exfoliated to their constituent nanosheets. Further, membranes were made from one of these zeolites, MWW, to demonstrate the potential of this group of materials. Moreover, long-term steam stability of these zeolites (up to 6 months) was investigated in high concentrations of steam (35 mol% and 95 mole%), high pressure (10 barg), and high temperatures (350 °C and 600 °C) relevant to conditions of water-gas-shift and steam methane reforming reactions. It was found that certain nanosheets are stable, and that stability depends on the concentration of structural defects. Additionally, models that represent a water-gas-shift (WGS) membrane reactor equipped with the zeolite membrane were developed for systems studies. These studies had the aim of analyzing the effect of the membrane reactor integration into IGCC plants

  15. New insights into alkylammonium-functionalized clinoptilolite and Na-P1 zeolite: Structural and textural features

    NASA Astrophysics Data System (ADS)

    Muir, Barbara; Matusik, Jakub; Bajda, Tomasz

    2016-01-01

    The area of zeolites' application could be expanded by utilizing their surfaces. Zeolites are frequently modified to increase their hydrophobicity and to generate the negative charge of the surface. The main objective of the study was to investigate and compare the features of natural clinoptilolite and synthetic zeolite Na-P1 modified by selected surfactants involving quaternary ammonium salts. The FTIR study indicates that with increasing carbon chain length in the surfactant attached to the zeolites surface the molecules adopt a more disordered structure. FTIR was also used to determine the efficiency of surface modification. Thermal analysis revealed that the presence of surfactant results in additional exothermic effects associated with the breaking of electrostatic bonds between zeolites and surfactants. The mass losses are in line with ECEC and CHN data. The textural study indicates that the synthetic zeolite Na-P1 has better sorption properties than natural clinoptilolite. The modification process always reduces the SBET and porosity of the material. With an increasing carbon chain length of surfactants all the texture parameters decrease.

  16. UTILITY OF ZEOLITES IN HAZARDOUS METAL REMOVAL FROM WATER

    EPA Science Inventory

    Zeolites are well known for their ion exchange, adsorption and acid catalysis properties. Different inorganic pollutants have been removed from water at room temperature by using synthetic zeolites. Zeolite Faujasite Y has been used to remove inorganic pollutants including arseni...

  17. The influence of using Jordanian natural zeolite on the adsorption, physical, and mechanical properties of geopolymers products.

    PubMed

    Yousef, Rushdi Ibrahim; El-Eswed, Bassam; Alshaaer, Mazen; Khalili, Fawwaz; Khoury, Hani

    2009-06-15

    Geopolymers consist of an amorphous, three-dimensional structure resulting from the polymerization of aluminosilicate monomers that result from dissolution of kaolin in an alkaline solution at temperatures around 80 degrees C. One potential use of geopolymers is as Portland cement replacement. It will be of great importance to provide a geopolymer with suitable mechanical properties for the purpose of water storage and high adsorption capacity towards pollutants. The aim of this work is to investigate the effect of using Jordanian zeolitic tuff as filler on the mechanical performance and on the adsorption capacity of the geopolymers products. Jordanian zeolitic tuff is inexpensive and is known to have high adsorption capacity. The results confirmed that this natural zeolitic tuff can be used as a filler of stable geopolymers with high mechanical properties and high adsorption capacity towards methylene blue and Cu(II) ions. The XRD measurements showed that the phillipsite peaks (major mineral constituent of Jordanian zeolite) were disappeared upon geopolymerization. The zeolite-based geopolymers revealed high compressive strength compared to reference geopolymers that employ sand as filler. Adsorption experiments showed that among different geopolymers prepared, the zeolite-based geopolymers have the highest adsorption capacity towards methylene blue and copper(II) ions. PMID:19036505

  18. Modifications on the hydrogen bond network by mutations of Escherichia coli copper efflux oxidase affect the process of proton transfer to dioxygen leading to alterations of enzymatic activities

    SciTech Connect

    Kajikawa, Takao; Kataoka, Kunishige; Sakurai, Takeshi

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer Proton transfer pathway to dioxygen in CueO was identified. Black-Right-Pointing-Pointer Glu506 is the key amino acid to transport proton. Black-Right-Pointing-Pointer The Ala mutation at Glu506 formed a compensatory proton transfer pathway. Black-Right-Pointing-Pointer The Ile mutation at Glu506 shut down the hydrogen bond network. -- Abstract: CueO has a branched hydrogen bond network leading from the exterior of the protein molecule to the trinuclear copper center. This network transports protons in the four-electron reduction of dioxygen. We replaced the acidic Glu506 and Asp507 residues with the charged and uncharged amino acid residues. Peculiar changes in the enzyme activity of the mutants relative to the native enzyme indicate that an acidic amino acid residue at position 506 is essential for effective proton transport. The Ala mutation resulted in the formation of a compensatory hydrogen bond network with one or two extra water molecules. On the other hand, the Ile mutation resulted in the complete shutdown of the hydrogen bond network leading to loss of enzymatic activities of CueO. In contrast, the hydrogen bond network without the proton transport function was constructed by the Gln mutation. These results exerted on the hydrogen bond network in CueO are discussed in comparison with proton transfers in cytochrome oxidase.

  19. Synthesis of highly selective zeolite topology molecular sieve for adsorption of benzene gas

    NASA Astrophysics Data System (ADS)

    Wei, Lin; Chen, Yunlin; Zhang, Baoping; Zu, Zhinan

    2013-02-01

    Shangdong fly ash (SFA), Fangshan fly ash (FFA) and Heilongjiang fly ash (HFA) were selected as the raw materials to be used for synthesis of highly selective zeolite topology molecular sieve. Twice foaming method was studied in terms of synthetic zeolite. The experimental products were characterized by means of X-ray fluorescence (XRF), scanning electron microscope (SEM), X-ray diffraction (XRD), and automated surface area & pore size analyser. The results indicated that 10 M NaOH was chosen as modification experiment condition to process SFA. Crystallization temperature and time were 140 °C and 8 h, respectively. Zeolite topology molecular sieve was prepared with Si/Al molar ratio of 7.9, and its adsorption ratio of benzene gas was up to 66.51%.

  20. Copper transport.

    PubMed

    Linder, M C; Wooten, L; Cerveza, P; Cotton, S; Shulze, R; Lomeli, N

    1998-05-01

    In adult humans, the net absorption of dietary copper is approximately 1 mg/d. Dietary copper joins some 4-5 mg of endogenous copper flowing into the gastrointestinal tract through various digestive juices. Most of this copper returns to the circulation and to the tissues (including liver) that formed them. Much lower amounts of copper flow into and out of other major parts of the body (including heart, skeletal muscle, and brain). Newly absorbed copper is transported to body tissues in two phases, borne primarily by plasma protein carriers (albumin, transcuprein, and ceruloplasmin). In the first phase, copper goes from the intestine to the liver and kidney; in the second phase, copper usually goes from the liver (and perhaps also the kidney) to other organs. Ceruloplasmin plays a role in this second phase. Alternatively, liver copper can also exit via the bile, and in a form that is less easily reabsorbed. Copper is also present in and transported by other body fluids, including those bathing the brain and central nervous system and surrounding the fetus in the amniotic sac. Ceruloplasmin is present in these fluids and may also be involved in copper transport there. The concentrations of copper and ceruloplasmin in milk vary with lactational stage. Parallel changes occur in ceruloplasmin messenger RNA expression in the mammary gland (as determined in pigs). Copper in milk ceruloplasmin appears to be particularly available for absorption, at least in rats. PMID:9587137

  1. Increased thermal conductivity monolithic zeolite structures

    DOEpatents

    Klett, James; Klett, Lynn; Kaufman, Jonathan

    2008-11-25

    A monolith comprises a zeolite, a thermally conductive carbon, and a binder. The zeolite is included in the form of beads, pellets, powders and mixtures thereof. The thermally conductive carbon can be carbon nano-fibers, diamond or graphite which provide thermal conductivities in excess of about 100 W/mK to more than 1,000 W/mK. A method of preparing a zeolite monolith includes the steps of mixing a zeolite dispersion in an aqueous colloidal silica binder with a dispersion of carbon nano-fibers in water followed by dehydration and curing of the binder is given.

  2. Synthesis of ‘unfeasible’ zeolites

    NASA Astrophysics Data System (ADS)

    Mazur, Michal; Wheatley, Paul S.; Navarro, Marta; Roth, Wieslaw J.; Položij, Miroslav; Mayoral, Alvaro; Eliášová, Pavla; Nachtigall, Petr; Čejka, Jiří; Morris, Russell E.

    2016-01-01

    Zeolites are porous aluminosilicate materials that have found applications in many different technologies. However, although simulations suggest that there are millions of possible zeolite topologies, only a little over 200 zeolite frameworks of all compositions are currently known, of which about 50 are pure silica materials. This is known as the zeolite conundrum—why have so few of all the possible structures been made? Several criteria have been formulated to explain why most zeolites are unfeasible synthesis targets. Here we demonstrate the synthesis of two such ‘unfeasible’ zeolites, IPC-9 and IPC-10, through the assembly-disassembly-organization-reassembly mechanism. These new high-silica zeolites have rare characteristics, such as windows that comprise odd-membered rings. Their synthesis opens up the possibility of preparing other zeolites that have not been accessible by traditional solvothermal synthetic methods. We envisage that these findings may lead to a step change in the number and types of zeolites available for future applications.

  3. Phosphorus promotion and poisoning in zeolite-based materials: synthesis, characterisation and catalysis.

    PubMed

    van der Bij, Hendrik E; Weckhuysen, Bert M

    2015-10-21

    Phosphorus and microporous aluminosilicates, better known as zeolites, have a unique but poorly understood relationship. For example, phosphatation of the industrially important zeolite H-ZSM-5 is a well-known, relatively inexpensive and seemingly straightforward post-synthetic modification applied by the chemical industry not only to alter its hydrothermal stability and acidity, but also to increase its selectivity towards light olefins in hydrocarbon catalysis. On the other hand, phosphorus poisoning of zeolite-based catalysts, which are used for removing nitrogen oxides from exhaust fuels, poses a problem for their use in diesel engine catalysts. Despite the wide impact of phosphorus-zeolite chemistry, the exact physicochemical processes that take place require a more profound understanding. This review article provides the reader with a comprehensive and state-of-the-art overview of the academic literature, from the first reports in the late 1970s until the most recent studies. In the first part an in-depth analysis is undertaken, which will reveal universal physicochemical and structural effects of phosphorus-zeolite chemistry on the framework structure, accessibility, and strength of acid sites. The second part discusses the hydrothermal stability of zeolites and clarifies the promotional role that phosphorus plays. The third part of the review paper links the structural and physicochemical effects of phosphorus on zeolite materials with their catalytic performance in a variety of catalytic processes, including alkylation of aromatics, catalytic cracking, methanol-to-hydrocarbon processing, dehydration of bioalcohol, and ammonia selective catalytic reduction (SCR) of NOx. Based on these insights, we discuss potential applications and important directions for further research. PMID:26051875

  4. Phosphorus promotion and poisoning in zeolite-based materials: synthesis, characterisation and catalysis

    PubMed Central

    van der Bij, Hendrik E.

    2015-01-01

    Phosphorus and microporous aluminosilicates, better known as zeolites, have a unique but poorly understood relationship. For example, phosphatation of the industrially important zeolite H-ZSM-5 is a well-known, relatively inexpensive and seemingly straightforward post-synthetic modification applied by the chemical industry not only to alter its hydrothermal stability and acidity, but also to increase its selectivity towards light olefins in hydrocarbon catalysis. On the other hand, phosphorus poisoning of zeolite-based catalysts, which are used for removing nitrogen oxides from exhaust fuels, poses a problem for their use in diesel engine catalysts. Despite the wide impact of phosphorus–zeolite chemistry, the exact physicochemical processes that take place require a more profound understanding. This review article provides the reader with a comprehensive and state-of-the-art overview of the academic literature, from the first reports in the late 1970s until the most recent studies. In the first part an in-depth analysis is undertaken, which will reveal universal physicochemical and structural effects of phosphorus–zeolite chemistry on the framework structure, accessibility, and strength of acid sites. The second part discusses the hydrothermal stability of zeolites and clarifies the promotional role that phosphorus plays. The third part of the review paper links the structural and physicochemical effects of phosphorus on zeolite materials with their catalytic performance in a variety of catalytic processes, including alkylation of aromatics, catalytic cracking, methanol-to-hydrocarbon processing, dehydration of bioalcohol, and ammonia selective catalytic reduction (SCR) of NOx. Based on these insights, we discuss potential applications and important directions for further research. PMID:26051875

  5. Amine-functionalized, silver-exchanged zeolite NaY: Preparation, characterization and antibacterial activity

    NASA Astrophysics Data System (ADS)

    Hanim, Siti Aishah Mohd; Malek, Nik Ahmad Nizam Nik; Ibrahim, Zaharah

    2016-01-01

    Amine-functionalized, silver-exchanged zeolite NaY (ZSA) were prepared with three different concentrations of 3-aminopropyltriethoxysilane (APTES) (0.01, 0.20 and 0.40 M) and four different concentrations of silver ions (25%, 50%, 100% and 200% from zeolite cation exchange capacity (CEC)). The samples were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX), surface area analysis, thermogravimetric analysis (TGA) and zeta potential (ZP) analysis. The FTIR results indicated that the zeolite was functionalized by APTES and that the intensity of the peaks corresponding to APTES increased as the concentration of APTES used was increased. The antibacterial activities of the silver-exchanged zeolite NaY (ZS) and ZSA were studied against Escherichia coli ATCC11229 and Staphylococcus aureus ATCC6538 using the disc diffusion technique (DDT) and minimum inhibitory concentration (MIC). The antibacterial activity of ZSA increased with the increase in APTES on ZS, and E. coli was more susceptible towards the sample compared to S. aureus. The FESEM micrographs of the bacteria after contact with the ZSA suggested different mechanisms of bacterial death for these two bacteria due to exposure to the studied sample. The functionalization of ZS with APTES improved the antibacterial activity of the silver-zeolite, depending on the concentration of silver ions and APTES used during modification.

  6. Zeolites Remove Sulfur From Fuels

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E.; Sharma, Pramod K.

    1991-01-01

    Zeolites remove substantial amounts of sulfur compounds from diesel fuel under relatively mild conditions - atmospheric pressure below 300 degrees C. Extracts up to 60 percent of sulfur content of high-sulfur fuel. Applicable to petroleum refineries, natural-gas processors, electric powerplants, and chemical-processing plants. Method simpler and uses considerably lower pressure than current industrial method, hydro-desulfurization. Yields cleaner emissions from combustion of petroleum fuels, and protects catalysts from poisoning by sulfur.

  7. Zeolite-like liquid crystals

    PubMed Central

    Poppe, Silvio; Lehmann, Anne; Scholte, Alexander; Prehm, Marko; Zeng, Xiangbing; Ungar, Goran; Tschierske, Carsten

    2015-01-01

    Zeolites represent inorganic solid-state materials with porous structures of fascinating complexity. Recently, significant progress was made by reticular synthesis of related organic solid-state materials, such as metal-organic or covalent organic frameworks. Herein we go a step further and report the first example of a fluid honeycomb mimicking a zeolitic framework. In this unique self-assembled liquid crystalline structure, transverse-lying π-conjugated rod-like molecules form pentagonal channels, encircling larger octagonal channels, a structural motif also found in some zeolites. Additional bundles of coaxial molecules penetrate the centres of the larger channels, unreachable by chains attached to the honeycomb framework. This creates a unique fluid hybrid structure combining positive and negative anisotropies, providing the potential for tuning the directionality of anisotropic optical, electrical and magnetic properties. This work also demonstrates a new approach to complex soft-matter self-assembly, by using frustration between space filling and the entropic penalty of chain extension. PMID:26486751

  8. Zeolite-like liquid crystals

    NASA Astrophysics Data System (ADS)

    Poppe, Silvio; Lehmann, Anne; Scholte, Alexander; Prehm, Marko; Zeng, Xiangbing; Ungar, Goran; Tschierske, Carsten

    2015-10-01

    Zeolites represent inorganic solid-state materials with porous structures of fascinating complexity. Recently, significant progress was made by reticular synthesis of related organic solid-state materials, such as metal-organic or covalent organic frameworks. Herein we go a step further and report the first example of a fluid honeycomb mimicking a zeolitic framework. In this unique self-assembled liquid crystalline structure, transverse-lying π-conjugated rod-like molecules form pentagonal channels, encircling larger octagonal channels, a structural motif also found in some zeolites. Additional bundles of coaxial molecules penetrate the centres of the larger channels, unreachable by chains attached to the honeycomb framework. This creates a unique fluid hybrid structure combining positive and negative anisotropies, providing the potential for tuning the directionality of anisotropic optical, electrical and magnetic properties. This work also demonstrates a new approach to complex soft-matter self-assembly, by using frustration between space filling and the entropic penalty of chain extension.

  9. Zeolite-like liquid crystals.

    PubMed

    Poppe, Silvio; Lehmann, Anne; Scholte, Alexander; Prehm, Marko; Zeng, Xiangbing; Ungar, Goran; Tschierske, Carsten

    2015-01-01

    Zeolites represent inorganic solid-state materials with porous structures of fascinating complexity. Recently, significant progress was made by reticular synthesis of related organic solid-state materials, such as metal-organic or covalent organic frameworks. Herein we go a step further and report the first example of a fluid honeycomb mimicking a zeolitic framework. In this unique self-assembled liquid crystalline structure, transverse-lying π-conjugated rod-like molecules form pentagonal channels, encircling larger octagonal channels, a structural motif also found in some zeolites. Additional bundles of coaxial molecules penetrate the centres of the larger channels, unreachable by chains attached to the honeycomb framework. This creates a unique fluid hybrid structure combining positive and negative anisotropies, providing the potential for tuning the directionality of anisotropic optical, electrical and magnetic properties. This work also demonstrates a new approach to complex soft-matter self-assembly, by using frustration between space filling and the entropic penalty of chain extension. PMID:26486751

  10. Treating Coalbed Natural Gas Produced Water for Beneficial Use By MFI Zeolite Membranes

    SciTech Connect

    Robert Lee; Liangxiong Li

    2008-03-31

    membranes and optimize operating conditions to enhance water flux and ion rejection, and (3) to perform long-term RO operation on tubular membranes to study membrane stability and to collect experimental data necessary for reliable evaluations of technical and economic feasibilities. Our completed research has resulted in deep understanding of the ion and organic separation mechanism by zeolite membranes. A two-step hydrothermal crystallization process resulted in a highly efficient membrane with good reproducibility. The zeolite membranes synthesized therein has an overall surface area of {approx}0.3 m{sup 2}. Multichannel vessels were designed and machined for holding the tubular zeolite membrane for water purification. A zeolite membrane RO demonstration with zeolite membranes fabricated on commercial alpha-alumina support was established in the laboratory. Good test results were obtained for both actual produced water samples and simulated samples. An overall 96.9% ion rejection and 2.23 kg/m{sup 2}.h water flux was achieved in the demonstration. In addition, a post-synthesis modification method using Al{sup 3+}-oligomers was developed for repairing the undesirable nano-scale intercrystalline pores. Considerable enhancement in ion rejection was achieved. This new method of zeolite membrane modification is particularly useful for enhancing the efficiency of ion separation from aqueous solutions because the modification does not need high temperature operation and may be carried out online during the RO operation. A long-term separation test for actual CBM produced water has indicated that the zeolite membranes show excellent ion separation and extraordinary stability at high pressure and produced water environment.

  11. Enhanced reduction of chromate and PCE by pelletized surfactant-modified zeolite/zerovalent iron

    SciTech Connect

    Li, Z.; Jones, H.K.; Bowman, R.S.; Helferich, R.

    1999-12-01

    The current research focuses on enhanced removal of chromate and perchloroethylene from contaminated water by a combination of a reduction material (represented by zerovalent iron, ZVI) and a sorption material (represented by surfactant-modified zeolite, SMZ). Natural zeolite and ZVI were homogenized and pelletized to maintain favorable hydraulic properties while minimizing material segregation due to bulk density differences. The zeolite/ZVI pellets were modified with the cationic surfactant hexadecyltrimethylammonium bromide to increase contaminant sorption and, thus, the contaminant concentration on the solid surface. Results of chromate sorption/reduction indicate that the chromate sorption capacity of pelletized SMZ/ZVI is at least 1 order of magnitude higher than that of zeolite/ZVI pellets. Compared to SMZ pellets, the chromate removal capacity of SMZ/ZVI pellets in a 24-h period is about 80% higher, due to the combined effects o sorption by SMZ and reduction by ZVI. The chromate and PCE degradation rates with and without surfactant modification were determined separately. The pseudo-first-order reduction constant increased by a factor of 3 for PCE and by a factor of 9 for chromate following surfactant modification. The enhanced contaminant reduction capacity of SMZ/ZVI pellets may lead to a decrease in the amount of material required to achieve a given level of contaminant removal.

  12. Visible emission from Ag+ exchanged SOD zeolites

    NASA Astrophysics Data System (ADS)

    Lin, H.; Imakita, K.; Fujii, M.; Prokof'ev, V. Yu.; Gordina, N. E.; Saïd, B.; Galarneau, A.

    2015-09-01

    Broad visible emissions dominant at green or red have been observed for the thermally-treated Ag+ exchanged SOD zeolites, determined by the Ag+ loading contents and the excitation wavelengths. Contrary to the notable reversible green/red dominant emission evolution in the Ag+ exchanged LTA zeolites upon hydration/dehydration in air (or water vapor)/vacuum, emission spectra of the Ag+ exchanged SOD zeolites are insensitive to the environmental change. This is most probably due to the difficult H2O permeation in SOD zeolites in comparison with LTA zeolites. By combining the environment dependent emission spectra of the Ag+ exchanged LTA and SOD zeolites, we proposed the following emission mechanisms for Ag+ exchanged LTA and SOD zeolites: the green emission is due to the transition from ligand-to-metal (framework O2- --> Ag+) charge transfer state to the ground state and the red emission is due to the transition from the metal-metal (Ag+-Ag+) charge transfer state to the ground state. The insensitive environment dependent emission characteristics of Ag+ exchanged SOD zeolites may have potential applications as robust phosphors.

  13. Cracking process with catalyst of combined zeolites

    SciTech Connect

    Gladrow, E. M.; Winter, W. E.

    1981-09-01

    A hydrocarbon cracking catalyst comprises an ultrastable y-type crystalline zeolite, a small pore crystalline zeolite such as mordenite, an inorganic oxide matrix and, optionally, a porous inert component. The cracking catalyst has a high activity and selectivity for the production of high octane naphtha fractions from higher boiling point hydrocarbonaceous oils. Catalytic cracking processes utilizing the catalyst are also provided.

  14. UTILITY OF ZEOLITES IN ARSENIC REMOVAL FROM WATER

    EPA Science Inventory

    Zeolites are well known for their ion exchange and adsorption properties. So far the cation exchanger properties of zeolites have been extensively studied and utilized. The anion exchanger properties of zeolites are less studied. Zeolite Faujasite Y has been used to remove arseni...

  15. Synthesis, characterization and catalytic activity of indium substituted nanocrystalline Mobil Five (MFI) zeolite

    SciTech Connect

    Shah, Kishor Kr.; Nandi, Mithun; Talukdar, Anup K.

    2015-06-15

    Highlights: • In situ modification of the MFI zeolite by incorporation of indium. • The samples were characterized by XRD, FTIR, TGA, UV–vis (DRS), SAA, EDX and SEM. • The incorporation of indium was confirmed by XRD, FT-IR, UV–vis (DRS), EDX and TGA. • Hydroxylation of phenol reaction was studied on the synthesized catalysts. - Abstract: A series of indium doped Mobil Five (MFI) zeolite were synthesized hydrothermally with silicon to aluminium and indium molar ratio of 100 and with aluminium to indium molar ratios of 1:1, 2:1 and 3:1. The MFI zeolite phase was identified by XRD and FT-IR analysis. In XRD analysis the prominent peaks were observed at 2θ values of around 6.5° and 23° with a few additional shoulder peaks in case of all the indium incorporated samples suggesting formation of pure phase of the MFI zeolite. All the samples under the present investigation were found to exhibit high crystallinity (∼92%). The crystallite sizes of the samples were found to vary from about 49 to 55 nm. IR results confirmed the formation of MFI zeolite in all cases showing distinct absorbance bands near 1080, 790, 540, 450 and 990 cm{sup −1}. TG analysis of In-MFI zeolites showed mass losses in three different steps which are attributed to the loss due to adsorbed water molecules and the two types TPA{sup +} cations. Further, the UV–vis (DRS) studies reflected the position of the indium metal in the zeolite framework. Surface area analysis of the synthesized samples was carried out to characterize the synthesized samples The analysis showed that the specific surface area ranged from ∼357 to ∼361 m{sup 2} g{sup −1} and the pore volume of the synthesized samples ranged from 0.177 to 0.182 cm{sup 3} g{sup −1}. The scanning electron microscopy studies showed the structure of the samples to be rectangular and twinned rectangular shaped. The EDX analysis was carried out for confirmation of Si, Al and In in zeolite frame work. The catalytic activities of

  16. Evaluation of zeolite-sand mixtures as reactive materials protecting groundwater at waste disposal sites.

    PubMed

    Joanna, Fronczyk; Kazimierz, Garbulewski

    2013-09-01

    To recognize properties of a mixture of Vistula sand (medium sand acc. to USCS) with Slovak zeolite as reactive materials suitable for permeable reactive barriers proposed for protection of groundwater environment in vicinity of old landfills comprehensive laboratory investigations were performed. The present study investigates the removal of contaminants specific for landfill leachates onto zeolite-sand mixtures containing 20%, 50% and 80% of zeolite (ZS20, ZS50 and ZS80). Taking into account the results of batch tests it was concluded that the Langmuir isotherm best fitted the data. It was observed that the presence of ammonium, calcium and magnesium decreases the removal efficiency of copper by 32%. Column tests of contaminant migration through the attenuation zone of the reactive materials were interpreted using the software package CXTFIT, which solves a one-dimensional advection-dispersion equation. Column test results also indicate the strong influence of the presence of interfering substances on copper immobilisation; dynamic sorption capacities decrees twofold. Throughout the landfill leachate flow through ZS80 sample, a constant reduction of NH4+ (at 100%), K+ (at 93%) and Fe(total) (at an average of 86%) were observed. There was no reduction in chemical oxygen demand and biochemical oxygen demand. PMID:24520718

  17. Energy and materials flows in the copper industry

    SciTech Connect

    Gaines, L.L.

    1980-12-01

    The copper industry comprises both the primary copper industry, which produces 99.9%-pure copper from copper ore, and the secondary copper industry, which salvages and recycles copper-containing scrap metal to extract pure copper or copper alloys. The United States uses about 2 million tons of copper annually, 60% of it for electrical applications. Demand is expected to increase less than 4% annually for the next 20 years. The primary copper industry is concentrated in the Southwest; Arizona produced 66% of the 1979 total ore output. Primary production uses about 170 x 10/sup 12/ Btu total energy annually (about 100 x 10/sup 6/ Btu/ton pure copper produced from ore). Mining and milling use about 60% of the total consumption, because low-grade ore (0.6% copper) is now being mined. Most copper is extracted by smelting sulfide ores, with concomitant production of sulfur dioxide. Clean air regulations will require smelters to reduce sulfur emissions, necessitating smelting process modifications that could also save 20 x 10/sup 12/ Btu (10 x 10/sup 6/ Btu/ton of copper) in smelting energy. Energy use in secondary copper production averages 20 x 10/sup 6/ Btu/ton of copper. If all copper products were recycled, instead of the 30% now salvaged, the energy conservation potential would be about one-half the total energy consumption of the primary copper industry.

  18. Polymerized nanotube structures new zeolites?

    NASA Astrophysics Data System (ADS)

    Chernozatonskii, Leonid A.

    1998-11-01

    Polymers of single-wall carbon nanotubes - possible new zeolites - are modeled by molecular mechanics (MM2 calculation method). The polymerization at issue occurs by bonding of 6 sp 3 atomic pairs in each nanotube unit cell with similar atomic pairs located on 6 neighboring tubes like 2+2 cycloaddition in a rhombic two-dimensional C 60 polymer. It is shown these bonding in armchair ( n, n) SWNT ropes ( n=6, 8, 10, 12) changes positive radial curvature of tube segments to a negative one.

  19. Flexibility mechanisms in ideal zeolite frameworks.

    PubMed

    Treacy, M M J; Dawson, C J; Kapko, V; Rivin, I

    2014-02-13

    Zeolites are microporous crystalline aluminosilicate materials whose atomic structures can be usefully modelled in purely mechanical terms as stress-free periodic trusses constructed from rigid corner-connected SiO4 and AlO4 tetrahedra. When modelled this way, all of the known synthesized zeolite frameworks exhibit a range of densities, known as the flexibility window, over which they satisfy the framework mechanical constraints. Within the flexibility window internal stresses are accommodated by force-free coordinated rotations of the tetrahedra about their apices (oxygen atoms). We use rigidity theory to explore the folding mechanisms within the flexibility window, and derive an expression for the configurational entropic density throughout the flexibility window. By comparison with the structures of pure silica zeolite materials, we conclude that configurational entropy associated with the flexibility modes is not a dominant thermodynamic term in most bulk zeolite crystals. Nevertheless, the presence of a flexibility window in an idealized hypothetical tetrahedral framework may be thermodynamically important at the nucleation stage of zeolite formation, suggesting that flexibility is a strong indicator that the topology is realizable as a zeolite. Only a small fraction of the vast number of hypothetical zeolites that are known exhibit flexibility. The absence of a flexibility window may explain why so few hypothetical frameworks are realized in nature. PMID:24379426

  20. Zeolites: Can they be synthesized by design

    SciTech Connect

    Davis, M.E. )

    1994-09-01

    Zeolites and zeolite-like molecular sieves are crystalline oxides that have high surface-to-volume ratios and are able to recognize, discriminate, and organize molecules with differences of < 1 [angstrom]. The close connection between the atomic structure and macroscopic properties of these materials has led to uses in molecular recognition. For example, zeolites and zeolite-like molecular sieves can reveal marvelous molecular recognition specificity and sensitivity that can be applied to catalysis, separations technology, and chemical sensing. Additionally, they can serve as hosts to organize guest atoms and molecules that endow composite materials with optoelectric and electrochemical properties. Because of the high level of structural control necessary to create high-performance materials with zeolites or zeolite-like molecular sieves, the design and synthesis of these solids with specific architectures and properties are highly desired. Although this lofty goal is still elusive, advances have been made to allow the serious consideration of designing molecular sieves. Here, the author covers two aspects of this ongoing effort. First, he discusses the feasibility of designing pore architectures through the use of organic structure-directing agents. Second, he explores the possibility of creating zeolites through ''Lego chemistry.''

  1. The role of zeolite in the Fischer-Tropsch synthesis over cobalt-zeolite catalysts

    NASA Astrophysics Data System (ADS)

    Sineva, L. V.; Asalieva, E. Yu; Mordkovich, V. Z.

    2015-11-01

    The review deals with the specifics of the Fischer-Tropsch synthesis for the one-stage syncrude production from CO and H2 in the presence of cobalt-zeolite catalytic systems. Different types of bifunctional catalysts (hybrid, composite) combining a Fischer-Tropsch catalyst and zeolite are reviewed. Special attention focuses on the mechanisms of transformations of hydrocarbons produced in the Fischer-Tropsch process on zeolite acid sites under the synthesis conditions. The bibliography includes 142 references.

  2. Emission control through Cu-exchanged X-zeolite catalysts: Experimental studies and theoretical modeling

    SciTech Connect

    Bhattacharyya, S.; Das, R.K.

    2000-01-01

    Catalysts based on X-zeolite have been developed by exchanging its Na{sup +} ion with Copper ions and its effectiveness in reducing NO{sub x} in an actual SI engine exhaust has been tested. Unlike noble metals, the doped X-zeolite catalysts, studied here, exhibit significant NO{sub x} reduction for a wide {lambda} range and exhibit a slow rate of decrease with increase in {lambda} ratio. Back pressure developed across the catalyst bed was found to be well-affordable and power loss due to back pressure is only minimal. During 30 hours of testing of the catalyst, no significant deactivation was observed. Additionally a mathematical model has been developed to predict the performance of the catalyst and to validate that against experimental results. Results predicted by the mathematical model agree well with the experimental results and absolute average deviation of experimental conversion efficiency is found to be less than 5% of the predicted value.

  3. Pulsed laser deposition of zeolitic membranes

    SciTech Connect

    Peachey, N.M.; Dye, R.C.; Ries, P.D.

    1995-02-01

    The pulsed laser deposition of zeolites to form zeolitic thin films is described. Films were grown using both mordenite and faujasite targets and were deposited on various substrates. The optimal films were obtained when the target and substrate were separated by 5 cm. These films are comprised of small crystallites embedded in an amorphous matrix. Transmission electron microscopy reveals that the amorphous material is largely porous and that the pores appear to be close to the same size as the parent zeolite. Zeolotic thin films are of interest for sensor, gas separation, and catalytic applications.

  4. Ammonia removal from wastewaters using natural Australian zeolite. 1: Characterization of the zeolite

    SciTech Connect

    Cooney, E.L.; Booker, N.A.; Shallcross, D.C.; Stevens, G.W.

    1999-09-01

    This study considered the potential of a natural Australian zeolite, clinoptilolite, to remove ammonium from water. Ammonium-exchange capacity and rates of adsorption are critical to the assessment of the feasibility of the zeolite for application to continuous wastewater treatment. A laboratory study was undertaken, using pure solutions, to investigate the equilibria and kinetic characteristics of ammonium exchange in the zeolite. Binary equilibrium experiments provided information on the adsorption characteristics of the zeolite in terms of ammonia capacity at varying solution concentrations. These experiments also revealed that the highest ammonium removal efficiency was achieved when the zeolite`s exchange sites were converted to the sodium form. Multicomponent equilibrium experiments were carried out to determine the effects of competing cations on the ammonium-exchange capacity of the zeolite. The laboratory study indicated the zeolite`s selectivity for ammonium ions over other cations typically present in sewage (calcium, magnesium, and potassium), and provided information relevant to the design and operation of a continuous process.

  5. Dispersion strengthened copper

    DOEpatents

    Sheinberg, Haskell; Meek, Thomas T.; Blake, Rodger D.

    1990-01-01

    A composition of matter comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide, and a method for making this composition of matter.

  6. Dispersion strengthened copper

    DOEpatents

    Sheinberg, Haskell; Meek, Thomas T.; Blake, Rodger D.

    1989-01-01

    A composition of matter comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide, and a method for making this composition of matter.

  7. Copper Metallochaperones

    PubMed Central

    Robinson, Nigel J.; Winge, Dennis R.

    2014-01-01

    The current state of knowledge on how copper metallochaperones support the maturation of cuproproteins is reviewed. Copper is needed within mitochondria to supply the CuA and intramembrane CuB sites of cytochrome oxidase, within the trans-Golgi network to supply secreted cuproproteins and within the cytosol to supply superoxide dismutase 1 (Sod1). Subpopulations of copper-zinc superoxide dismutase also localize to mitochondria, the secretory system, the nucleus and, in plants, the chloroplast, which also requires copper for plastocyanin. Prokaryotic cuproproteins are found in the cell membrane and in the periplasm of gram-negative bacteria. Cu(I) and Cu(II) form tight complexes with organic molecules and drive redox chemistry, which unrestrained would be destructive. Copper metallochaperones assist copper in reaching vital destinations without inflicting damage or becoming trapped in adventitious binding sites. Copper ions are specifically released from copper metallochaperones upon contact with their cognate cuproproteins and metal transfer is thought to proceed by ligand substitution. PMID:20205585

  8. Synthesis and characterization of nitrogen substituted zeolites

    NASA Astrophysics Data System (ADS)

    Dogan, Fulya

    The interest in basic solid materials, particularly for basic zeolites has considerably increased in the last two decades because of their potential use in catalysis and separation. Basic zeolites have most often been obtained by ion-exchange or impregnation with alkali metal cations or grafting of organic bases onto zeolite pore walls. Such materials often suffer from instability and/or pore blockage, because none of these approaches places basic sites directly into the zeolite framework. Recently zeolitic materials have been made with some of the bridging oxygen atoms in Si--O--Si and/or Si--O--Al linkages replaced by NH groups, i.e. by substitution of framework oxygen by nitrogen. As a result, the basic strength of the framework increases due to the lower electronegativity of nitrogen with respect to oxygen. In this study, solid base catalysts are obtained by nitrogen substitution of the faujasite type of zeolites under ammonia flow at high temperatures. The efficiency of the reaction is tested by using zeolites with different aluminum contents and extraframework cations and varying the reaction conditions such as ammonia flow rate, reaction temperature and duration. The characterization studies show that high levels of nitrogen substitution can be achieved while maintaining porosity, particularly for NaY and low-aluminum HY zeolites, without a significant loss in the crystallinity. 27Al and 29 Si MAS NMR experiments performed on the nitrogen substituted zeolites show dealumination of the framework and preferential substitution for Si--OH--Al sites at the early stages of the reaction (temperatures at 750--800 °C). No preference is seen for reactions performed at higher temperatures and longer reaction times (e.g., 850 °C and 48 h). X-ray PDF analysis performed on the modified zeolites show that the Si-N distance in the 1st shell is longer than Si-O bond distance and Si-Si/Al bond distance of the Si-O/N-Si/Al linkage decreases, as an indication of a decrease in

  9. Thermodynamic modeling of natural zeolite stability

    SciTech Connect

    Chipera, S.J.; Bish, D.L.

    1997-06-01

    Zeolites occur in a variety of geologic environments and are used in numerous agricultural, commercial, and environmental applications. It is desirable to understand their stability both to predict future stability and to evaluate the geochemical conditions resulting in their formation. The use of estimated thermodynamic data for measured zeolite compositions allows thermodynamic modeling of stability relationships among zeolites in different geologic environments (diagenetic, saline and alkaline lakes, acid rock hydrothermal, basic rock, deep sea sediments). This modeling shows that the relative cation abundances in both the aqueous and solid phases, the aqueous silica activity, and temperature are important factors in determining the stable zeolite species. Siliceous zeolites (e.g., clinoptilolite, mordenite, erionite) present in saline and alkaline lakes or diagenetic deposits formed at elevated silica activities. Aluminous zeolites (e.g., natrolite, mesolite/scolecite, thomsonite) formed in basic rocks in association with reduced silica activities. Likewise, phillipsite formation is favored by reduced aqueous silica activities. The presence of erionite, chabazite, and phillipsite are indicative of environments with elevated potassium concentrations. Elevated temperature, calcic water conditions, and reduced silica activity help to enhance the laumontite and wairakite stability fields. Analcime stability increases with increased temperature and aqueous Na concentration, and/or with decreased silica activity.

  10. The zeolite deposits of Greece

    USGS Publications Warehouse

    Stamatakis, M.G.; Hall, A.; Hein, J.R.

    1996-01-01

    Zeolites are present in altered pyroclastic rocks at many localities in Greece, and large deposits of potential economic interest are present in three areas: (1) the Evros region of the province of Thrace in the north-eastern part of the Greek mainland; (2) the islands of Kimolos and Poliegos in the western Aegean; and (3) the island of Samos in the eastern Aegean Sea. The deposits in Thrace are of Eocene-Oligocene age and are rich in heulandite and/or clinoptilolite. Those of Kimolos and Poliegos are mainly Quaternary and are rich in mordenite. Those of Samos are Miocene, and are rich in clinoptilolite and/or analcime. The deposits in Thrace are believed to have formed in an open hydrological system by the action of meteoric water, and those of the western Aegean islands in a similar way but under conditions of high heat flow, whereas the deposits in Samos were formed in a saline-alkaline lake.

  11. Luminescent host–guest materials of electrostatically adsorbed Eu{sup 3+}(tta){sub 3}-tpyIL on zeolite L crystals

    SciTech Connect

    Li, Peng; Wang, Dongyue; Liang, Dong; Zhang, Li; Zhang, Shuming; Wang, Yige

    2014-07-01

    Graphical abstract: Luminescent host–guest materials exhibiting tunable emission colors by changing the excitation wavelength are obtained by surface modification of terbium(III) bipyridine-loaded zeolite L crystals with the ionic europium(III) complexes. - Highlights: • Luminescent ionic europium(III) complex was synthesized. • Outer surface of zeolite L was modified by electrostatic adsorption of the ionic complex. • Luminescent host–guest material with tunable emission color was obtained. - Abstract: The surface modification of zeolite L crystals with lanthanide complexes was achieved by electrostatic adsorption of ionic europium(III) complexes that are prepared by the reaction of tris(2-thenoyltrifluoroacetonate) europium(III) dehydrate with an organic salt containing terpyridine moieties on the negative charge-bearing surfaces of zeolite L crystals. Luminescent host–guest materials exhibiting tunable emission colors by changing the excitation wavelength are obtained by surface modification of terbium(III) bipyridine-loaded zeolite L crystals with the ionic europium(III) complexes.

  12. Zeolite-based SCR catalysts and their use in diesel engine emission treatment

    DOEpatents

    Narula, Chaitanya K.; Yang, Xiaofan

    2016-08-02

    A catalyst comprising a zeolite loaded with copper ions and at least one trivalent metal ion other than Al.sup.+3, wherein the catalyst decreases NO.sub.x emissions in diesel exhaust. The trivalent metal ions are selected from, for example, trivalent transition metal ions, trivalent main group metal ions, and/or trivalent lanthanide metal ions. In particular embodiments, the catalysts are selected from Cu--Fe-ZSM5, Cu--La-ZSM-5, Fe--Cu--La-ZSM5, Cu--Sc-ZSM-5, and Cu--In-ZSM5. The catalysts are placed on refractory support materials and incorporated into catalytic converters.

  13. Zeolite-based SCR catalysts and their use in diesel engine emission treatment

    SciTech Connect

    Narula, Chaitanya K; Yang, Xiaofan

    2015-03-24

    A catalyst comprising a zeolite loaded with copper ions and at least one trivalent metal ion other than Al.sup.+3, wherein the catalyst decreases NO.sub.x emissions in diesel exhaust. The trivalent metal ions are selected from, for example, trivalent transition metal ions, trivalent main group metal ions, and/or trivalent lanthanide metal ions. In particular embodiments, the catalysts are selected from Cu--Fe-ZSM5, Cu--La-ZSM-5, Fe--Cu--La-ZSM5, Cu--Sc-ZSM-5, and Cu--In-ZSM5. The catalysts are placed on refractory support materials and incorporated into catalytic converters.

  14. Tailoring the structure of hierarchically porous zeolite beta through modified orientated attachment growth in a dry gel system.

    PubMed

    Chen, Jiao; Hua, Weiming; Xiao, Yu; Huo, Qisheng; Zhu, Kake; Zhou, Xinggui

    2014-11-01

    The crystallization of zeolite beta in a dry gel system is found to follow the orientated attachment growth route, escorted with a temporal morphology change from bulky gel, through aggregation of the particulate to large zeolitic crystals. Modification of the precrystallized gel with organosilanes can be used to tune the morphology of the ultimate beta. When hexadecyltrimethoxysilane (HTS) is employed to modify precrystallized gel, a resumed secondary growth produces a hybrid mesocrystal of agglomerated nanozeolites. Combustive removal of organics leads to the formation of hierarchically porous zeolite beta of 100 to 160 nm, composed of nanocrystal building units ranging from 20 to 40 nm, with a noticeable micropore volume of 0.19 mL g(-1) and a meso/macropore size between 5 and 80 nm. Conversely, when 1,8-bis(triethoxysilyl)octane (BTO) is utilized to modify the same precrystallized gel, assemblages of discrete beta nanozeolite of around 35 nm are generated. These assemblages construct a hierarchical zeolite beta with a micropore volume of 0.20 mL g(-1) and auxiliary pores ranging from 5 to 100 nm. Both organosilanes bring about well-connected hierarchical pore networks. HTS has little effect on the Brønsted/Lewis acidity, whereas BTO causes a substantial reduction of strong Brønsted acid sites. The hierarchical beta zeolite-supported Pt catalyst exhibits improved catalytic performance for the hydroisomerization of n-heptane. PMID:25233842

  15. The adsorption and mass-transfer process of cationic red X-GRL dye on natural zeolite.

    PubMed

    Tian, Jingjing; Guan, Junfang; Gao, Huimin; Wen, Yafei; Ren, Zijie

    2016-01-01

    The adsorption behavior of natural zeolite was studied in order to determine the adsorption capacity and mass-transfer process of cationic red X-GRL (C(18)H(21)BrN(6)) onto the adsorbent. The adsorption tests to determine both the uptake capacity and the mass-transfer process at equilibrium were performed under batch conditions, which showed rapid uptake in general for the initial 5 min, corresponding to 92% total removal. The equilibrium adsorption capacity value (q(e,cal)) in pseudo-second-order kinetics was 13.51 mg/g at 293 K and the whole adsorption process was governed by physical adsorption with an endothermic, endothermic spontaneous nature. Adsorption tests indicated that the zeolite has great potential as an alternative low-cost material in the treatment of X-GRL drainage. However, the mass-transfer process to determine the rate-controlling steps showed that both film diffusion and pore diffusion were important in controlling the adsorption rate. The adsorption process was governed by film diffusion while pore diffusion was poor because the X-GRL molecules could not penetrate into the zeolite easily. The X-GRL molecules were only adsorbed on the external surface of the zeolite. Hence, to improve the adsorption capacity of natural zeolite further, modification to expand its micropores is necessary. PMID:27148713

  16. 11. EASTERN END OF ZEOLITE BUILDING. NOTE DIAL TO LEFT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. EASTERN END OF ZEOLITE BUILDING. NOTE DIAL TO LEFT OF CLOCK GAUGING TOTAL ZEOLITE INFLUENT IN MILLIONS OF GALLONS PER DAY. - F. E. Weymouth Filtration Plant, 700 North Moreno Avenue, La Verne, Los Angeles County, CA

  17. Monitoring early zeolite formation via in situ electrochemical impedance spectroscopy.

    PubMed

    Brabants, G; Lieben, S; Breynaert, E; Reichel, E K; Taulelle, F; Martens, J A; Jakoby, B; Kirschhock, C E A

    2016-04-01

    Hitherto zeolite formation has not been fully understood. Although electrochemical impedance spectroscopy has proven to be a versatile tool for characterizing ionic solutions, it was never used for monitoring zeolite growth. We show here that EIS can quantitatively monitor zeolite formation, especially during crucial early steps where other methods fall short. PMID:27020096

  18. Molecular simulations and experimental studies of zeolites

    NASA Astrophysics Data System (ADS)

    Moloy, Eric C.

    Zeolites are microporous aluminosilicate tetrahedral framework materials that have symmetric cages and channels with open-diameters between 0.2 and 2.0 nm. Zeolites are used extensively in the petrochemical industries for both their microporosity and their catalytic properties. The role of water is paramount to the formation, structure, and stability of these materials. Zeolites frequently have extra-framework cations, and as a result, are important ion-exchange materials. Zeolites also play important roles as molecular sieves and catalysts. For all that is known about zeolites, much remains a mystery. How, for example, can the well established metastability of these structures be explained? What is the role of water with respect to the formation, stabilization, and dynamical properties? This dissertation addresses these questions mainly from a modeling perspective, but also with some experimental work as well. The first discussion addresses a special class of zeolites: pure-silica zeolites. Experimental enthalpy of formation data are combined with molecular modeling to address zeolitic metastability. Molecular modeling is used to calculate internal surface areas, and a linear relationship between formation enthalpy and internal surface areas is clearly established, producing an internal surface energy of approximately 93 mJ/m2. Nitrate bearing sodalite and cancrinite have formed under the caustic chemical conditions of some nuclear waste processing centers in the United States. These phases have fouled expensive process equipment, and are the primary constituents of the resilient heels in the bottom of storage tanks. Molecular modeling, including molecular mechanics, molecular dynamics, and density functional theory, is used to simulate these materials with respect to structure and dynamical properties. Some new, very interesting results are extracted from the simulation of anhydrous Na6[Si6Al 6O24] sodalite---most importantly, the identification of two distinct

  19. Italian zeolitized rocks of technological interest

    NASA Astrophysics Data System (ADS)

    de'Gennaro, M.; Langella, A.

    1996-09-01

    Large areas of Italian territory are covered by thick and widespread deposits of zeolite-bearing volcaniclastic products. The main zeolites are phillipsite and chabazite spread over the whole peninsula, and clinoptilolite recorded only in Sardinia. A trachytic to phonolitic glassy precursor accounts for the formation of the former zeolites characterized by low Si/Al ratios (?3.00), while clinoptilolite is related to more acidic volcanism. The genesis of most of these zeolitized deposits is linked to pyroclastic flow emplacement mechanisms characterized by quite high temperatures and by the presence of abundant fluids. The main utilization of these materials has been and still is as dimension stones in the building industry. Currently, limited amounts are also employed in animal farming (dietary supplement, pet litter and manure deodorizer) and in agriculture as soil improvement and slow-release fertilizers. New fields of application have been proposed for these products on account of their easy availability, very low cost, their high-grade zeolites (50 70%), and good technological features such as high cation exchange capacities and adsorption properties.

  20. Zeolites as catalysts in oil refining.

    PubMed

    Primo, Ana; Garcia, Hermenegildo

    2014-11-21

    Oil is nowadays the main energy source and this prevalent position most probably will continue in the next decades. This situation is largely due to the degree of maturity that has been achieved in oil refining and petrochemistry as a consequence of the large effort in research and innovation. The remarkable efficiency of oil refining is largely based on the use of zeolites as catalysts. The use of zeolites as catalysts in refining and petrochemistry has been considered as one of the major accomplishments in the chemistry of the XXth century. In this tutorial review, the introductory part describes the main features of zeolites in connection with their use as solid acids. The main body of the review describes important refining processes in which zeolites are used including light naphtha isomerization, olefin alkylation, reforming, cracking and hydrocracking. The final section contains our view on future developments in the field such as the increase in the quality of the transportation fuels and the coprocessing of increasing percentage of biofuels together with oil streams. This review is intended to provide the rudiments of zeolite science applied to refining catalysis. PMID:24671148

  1. Low-temperature synthesis of zeolite from perlite waste — Part II: characteristics of the products

    NASA Astrophysics Data System (ADS)

    Król, Magdalena; Morawska, Justyna; Mozgawa, Włodzimierz; Pichór, Waldemar

    2014-12-01

    The paper investigates the properties of sodium zeolites synthesized using the hydrothermal method under autogenous pressure at low temperature with NaOH solutions of varying concentrations. During this modification, zeolites X, Na-P1 and hydroxysodalite were synthesized. The synthesis parameters, and thus, phase composition of resulting samples, significantly affected the specific surface area (SSA) and cation exchange capacity (CEC). SSA increased from 2.9 m2/g to a maximum of 501.2 m2/g, while CEC rose from 16 meq/100 g to a maximum of 500 meq/100 g. The best properties for use as a sorbent were obtained for perlite waste modified with 4.0 M NaOH at 70 °C or 80 °C.

  2. Hydrogen Purification Using Natural Zeolite Membranes

    NASA Technical Reports Server (NTRS)

    DelValle, William

    2003-01-01

    The School of Science at Universidad del Turabo (UT) have a long-lasting investigation plan to study the hydrogen cleaning and purification technologies. We proposed a research project for the synthesis, phase analysis and porosity characterization of zeolite based ceramic perm-selective membranes for hydrogen cleaning to support NASA's commitment to achieving a broad-based research capability focusing on aerospace-related issues. The present study will focus on technology transfer by utilizing inorganic membranes for production of ultra-clean hydrogen for application in combustion. We tested three different natural zeolite membranes (different particle size at different temperatures and time of exposure). Our results show that the membranes exposured at 900 C for 1Hr has the most higher permeation capacity, indicated that our zeolite membranes has the capacity to permeate hydrogen.

  3. Behavior modification.

    PubMed

    Pelham, W E; Fabiano, G A

    2000-07-01

    Attention deficit/hyperactivity disorder (ADHD) is a chronic and substantially impairing disorder. This means that treatment must also be chronic and substantial. Behavior Modification, and in many cases, the combination of behavior modification and stimulant medication, is a valid, useful treatment for reducing the pervasive impairment experienced by children with ADHD. Based on the research evidence reviewed, behavior modification should be the first line of treatment for children with ADHD. PMID:10944662

  4. Simultaneous determination of arsenic, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, molybdenum, nickel, selenium, and zinc in fertilizers by microwave acid digestion and inductively coupled plasma-optical emission spectrometry detection: single-laboratory validation of a modification and extension of AOAC 2006.03.

    PubMed

    Webb, Sharon; Bartos, James; Boles, Rhonda; Hasty, Elaine; Thuotte, Ethel; Thiex, Nancy J

    2014-01-01

    A single-laboratory validation study was conducted for the simultaneous determination of arsenic, cadmium, calcium, cobalt, copper, chromium, iron, lead, magnesium, manganese, molybdenum, nickel, selenium, and zinc in all major types of commercial fertilizer products by microwave digestion and inductively coupled plasma-optical emission spectroscopy analysis. This validation study proposes an extension and modification of AOAC 2006.03. The extension is the inclusion of calcium, copper, iron, magnesium, manganese, and zinc, and the modification is incorporation of hydrochloric acid in the digestion system. This dual acid digestion utilizes both hydrochloric and nitric acids in a 3 to 9 mL volume ratio/100 mL. In addition to 15 of the 30 original validation materials used in the 2006.03 collaborative study, National Institute of Standards and Technology Standard Reference Material 695 and Magruder 2009-06 were incorporated as accuracy materials. The main benefits of this proposed method are a significant increase in laboratory efficiency when compared to the use of both AOAC Methods 965.09 and 2006.03 to achieve the same objective and an enhanced recovery of several metals. PMID:25051614

  5. An Effective Secondary Electron Emission Suppression Treatment For Copper MDC

    NASA Technical Reports Server (NTRS)

    Curren, Arthur N.; Long, Kenwyn J.; Jensen, Kenneth A.; Roman, Robert F.

    1993-01-01

    Untreated oxygen-free, high-conductivity (OFHC) copper, commonly used for MDC electrodes, exhibits relatively high secondary electron emission characteristics. This paper describes a specialized ion-bombardment procedure for texturing copper surfaces which sharply reduces the emission properties relative to untreated copper. The resulting surface is a particle-free, robust, uniformly highly-textured all-metal structure. The use of this process requires no modifications to copper machining, brazing, or other MDC normal fabrication procedures. The flight TWT for a planned NASA deep space probe, the Cassini Mission, will incorporate copper MDC electrodes treated with the method described here.

  6. The effects of surface modification on the speciation of metal ions intercalated into aluminosilicates

    SciTech Connect

    Wasserman, S.R.; Giaquinta, D.M.; Yuchs, S.E.; Soderholm, L.

    1996-12-31

    Microporous aluminosilicates, including clay minerals and zeolites, are ion-exchange materials. In their most common forms, they have the ability to incorporate cationic species within their matrices. Because of this property, microporous aluminosilicates have been proposed as storage media for hazardous waste. In this paper the authors use X-ray absorption spectroscopy (XAS) to examine the structure of cations held within smectite clay minerals and to determine how modification of the surface of the clay using an organic monolayer affects the coordination of the stored cation. The effects of hydrothermal and thermal processing on the coordination of the ions contained within these systems are also investigated. The presence of the monolayer changes the surface of the clay from hydrophilic to hydrophobic. It inhibits the interlayer ions from exchanging freely into environmental water and reduces the leach rate of cations out of the clay by approximately a factor of 20. Significant changes are observed when these coated samples are treated under hydrothermal and thermal conditions. Reductions of uranium (VI), in the form of uranyl, and cupric ions occur. In addition, the uranium aggregates, forming small particles that appear similar to UO{sub 2}. Comparable conglomeration occurs with lead cations and with the reduced copper species.

  7. Towards liquid fuels from biosyngas: effect of zeolite structure in hierarchical-zeolite-supported cobalt catalysts.

    PubMed

    Sartipi, Sina; Alberts, Margje; Meijerink, Mark J; Keller, Tobias C; Pérez-Ramírez, Javier; Gascon, Jorge; Kapteijn, Freek

    2013-09-01

    Wax on, wax off: Bifunctional cobalt-based catalysts on zeolite supports are applied for the valorization of biosyngas through Fischer-Tropsch chemistry. By using these catalysts, waxes can be hydrocracked to shorter-chain hydrocarbons, increasing the selectivity towards the C5 -C11 (gasoline) fraction. The zeolite topology and the amount and strength of acid sites are key parameters to maximize the performance of these bifunctional catalysts, steering Fischer-Tropsch product selectivity towards liquid hydrocarbons. PMID:23765635

  8. Copper cyanide

    Integrated Risk Information System (IRIS)

    Copper cyanide ; CASRN 544 - 92 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  9. Fly ash zeolite catalyst support for Fischer-Tropsch synthesis

    NASA Astrophysics Data System (ADS)

    Campen, Adam

    This dissertation research aimed at evaluating a fly ash zeolite (FAZ) catalyst support for use in heterogeneous catalytic processes. Gas phase Fischer-Tropsch Synthesis (FTS) over a fixed-bed of the prepared catalyst/FAZ support was identified as an appropriate process for evaluation, by comparison with commercial catalyst supports (silica, alumina, and 13X). Fly ash, obtained from the Wabash River Generating Station, was first characterized using XRD, SEM/EDS, particle size, and nitrogen sorption techniques. Then, a parametric study of a two-step alkali fusion/hydrothermal treatment process for converting fly ash to zeolite frameworks was performed by varying the alkali fusion agent, agent:flyash ratio, fusion temperature, fused ash/water solution, aging time, and crystallization time. The optimal conditions for each were determined to be NaOH, 1.4 g NaOH: 1 g fly ash, 550 °C, 200 g/L, 12 hours, and 48 hours. This robust process was applied to the fly ash to obtain a faujasitic zeolite structure with increased crystallinity (40 %) and surface area (434 m2/g). Following the modification of fly ash to FAZ, ion exchange of H+ for Na+ and cobalt incipient wetness impregnation were used to prepare a FTS catalyst. FTS was performed on the catalysts at 250--300 °C, 300 psi, and with a syngas ratio H2:CO = 2. The HFAZ catalyst support loaded with 11 wt% cobalt resulted in a 75 % carbon selectivity for C5 -- C18 hydrocarbons, while methane and carbon dioxide were limited to 13 and 1 %, respectively. Catalyst characterization was performed by XRD, N2 sorption, TPR, and oxygen pulse titration to provide insight to the behavior of each catalyst. Overall, the HFAZ compared well with silica and 13X supports, and far exceeded the performance of the alumina support under the tested conditions. The successful completion of this research could add value to an underutilized waste product of coal combustion, in the form of catalyst supports in heterogeneous catalytic processes.

  10. Catalytic Fast Pyrolysis of Cellulose Using Nano Zeolite and Zeolite/Matrix Catalysts in a GC/Micro-Pyrolyzer.

    PubMed

    Lee, Kyong-Hwan

    2016-05-01

    Cellulose, as a model compound of biomass, was catalyzed over zeolite (HY,.HZSM-5) and zeolite/matrix (HY/Clay, HM/Clay) in a GC/micro-pyrolyzer at 500 degrees C, to produce the valuable products. The catalysts used were pure zeolite and zeolite/matrix including 20 wt% matrix content, which were prepared into different particle sizes (average size; 0.1 mm, 1.6 mm) to study the effect of the particle size of the catalyst for the distribution of product yields. Catalytic pyrolysis had much more volatile products as light components and less content of sugars than pyrolysis only. This phenomenon was strongly influenced by the particle size of the catalyst in catalytic fast pyrolysis. Also, in zeolite and zeolite/matrix catalysts the zeolite type gave the dominant impact on the distribution of product yields. PMID:27483802

  11. MERCURY SEPARATION FROM POLLUTANT WATER USING ZEOLITES

    EPA Science Inventory

    Arsenic is known to be a hazardous contaminant in drinking water that causes arsenical dermatitis and skin cancer. In the present work, the potential use of a variety of synthetic zeolites for removal of arsenic from water has been examined at room temperature. Experiments have...

  12. Zeolite 5A Catalyzed Etherification of Diphenylmethanol

    ERIC Educational Resources Information Center

    Cooke, Jason; Henderson, Eric J.; Lightbody, Owen C.

    2009-01-01

    An experiment for the synthetic undergraduate laboratory is described in which zeolite 5A catalyzes the room temperature dehydration of diphenylmethanol, (C[subscript 6]H[subscript 5])[subscript 2]CHOH, producing 1,1,1',1'-tetraphenyldimethyl ether, (C[subscript 6]H[subscript 5])[subscript 2]CHOCH(C[subscript 6]H[subscript 5])[subscript 2]. The…

  13. Silver clusters and chemistry in zeolites

    SciTech Connect

    Sun, T.; Seff, K. . Dept. of Chemistry)

    1994-06-01

    The spectroscopic work done on silver clusters trapped in solid noble gas matrices at low temperature has been extensively reviewed by Ozin, and Henglein has done the same for photochemical studies of colloidal silver particles in solution. This article will review the chemistry of silver in zeolite hosts, including the synthesis and structures of silver clusters. 127 refs.

  14. Multicomponent liquid ion exchange with chabazite zeolites

    SciTech Connect

    Robinson, S.M.; Arnold, W.D. Jr.; Byers, C.W.

    1993-10-01

    In spite of the increasing commercial use of zeolites for binary and multicomponent sorption, the understanding of the basic mass-transfer processes associated with multicomponent zeolite ion-exchange systems is quite limited. This study was undertaken to evaluate Na-Ca-Mg-Cs-Sr ion exchange from an aqueous solution using a chabazite zeolite. Mass-transfer coefficients and equilibrium equations were determined from experimental batch-reactor data for single and multicomponent systems. The Langmuir isotherm was used to represent the equilibrium relationship for binary systems, and a modified Dubinin-Polyani model was used for the multicomponent systems. The experimental data indicate that diffusion through the microporous zeolite crystals is the primary diffusional resistance. Macropore diffusion also significantly contributes to the mass-transfer resistance. Various mass-transfer models were compared to the experimental data to determine mass-transfer coefficients. Effective diffusivities were obtained which accurately predicted experimental data using a variety of models. Only the model which accounts for micropore and macropore diffusion occurring in series accurately predicted multicomponent data using single-component diffusivities. Liquid and surface diffusion both contribute to macropore diffusion. Surface and micropore diffusivities were determined to be concentration dependent.

  15. Dispersion enhanced metal/zeolite catalysts

    DOEpatents

    Sachtler, Wolfgang M. H.; Tzou, Ming-Shin; Jiang, Hui-Jong

    1987-01-01

    Dispersion stabilized zeolite supported metal catalysts are provided as bimetallic catalyst combinations. The catalyst metal is in a reduced zero valent form while the dispersion stabilizer metal is in an unreduced ionic form. Representative catalysts are prepared from platinum or nickel as the catalyst metal and iron or chromium dispersion stabilizer.

  16. Dispersion enhanced metal/zeolite catalysts

    DOEpatents

    Sachtler, W.M.H.; Tzou, M.S.; Jiang, H.J.

    1987-03-31

    Dispersion stabilized zeolite supported metal catalysts are provided as bimetallic catalyst combinations. The catalyst metal is in a reduced zero valent form while the dispersion stabilizer metal is in an unreduced ionic form. Representative catalysts are prepared from platinum or nickel as the catalyst metal and iron or chromium dispersion stabilizer.

  17. Chemical interactions in multimetal/zeolite catalysts

    SciTech Connect

    Sachtler, W.M.H.

    1992-02-07

    Mechanistic explanations have been found for the migration of atoms and ions through the zeolite channels leading to specific distribution of ions and the metal clusters. In this report, we summarize the state of understanding attained on a number of topics in the area of mono- and multimetal/zeolite systems, to which our recent research has made significant contributions. The following topics are discussed: (1) Formation of isolated metal atoms in sodalite cages; (2) differences of metal/zeolite systems prepared by ion reduction in channels or via isolated atoms; (3) rejuvenation of Pd/NaY and Pd/HY catalysts by oxidative redispersion of the metal; (4) formation of mono- or bimetal particles in zeolites by programmed reductive decomposition of volatile metal complexes; (5) cation-cation interaction as a cause of enhanced reducibility; (6) formation of palladium carbonyl clusters in supercages; (7) enhanced catalytic activity of metal particle-proton complexes for hydrocarbon conversion reactions; (8) stereoselectivity of catalytic reactions due to geometric constraints of particles in cages.

  18. Zeolite Nanoparticles for Selective Sorption of Plasma Proteins

    PubMed Central

    Rahimi, M.; Ng, E.-P.; Bakhtiari, K.; Vinciguerra, M.; Ahmad, H. Ali; Awala, H.; Mintova, S.; Daghighi, M.; Bakhshandeh Rostami, F.; de Vries, M.; Motazacker, M. M.; Peppelenbosch, M. P.; Mahmoudi, M.; Rezaee, F.

    2015-01-01

    The affinity of zeolite nanoparticles (diameter of 8–12 nm) possessing high surface area and high pore volume towards human plasma proteins has been investigated. The protein composition (corona) of zeolite nanoparticles has been shown to be more dependent on the plasma protein concentrations and the type of zeolites than zeolite nanoparticles concentration. The number of proteins present in the corona of zeolite nanoparticles at 100% plasma (in vivo state) is less than with 10% plasma exposure. This could be due to a competition between the proteins to occupy the corona of the zeolite nanoparticles. Moreover, a high selective adsorption for apolipoprotein C-III (APOC-III) and fibrinogen on the zeolite nanoparticles at high plasma concentration (100%) was observed. While the zeolite nanoparticles exposed to low plasma concentration (10%) exhibited a high selective adsorption for immunoglobulin gamma (i.e. IGHG1, IGHG2 and IGHG4) proteins. The zeolite nanoparticles can potentially be used for selectively capture of APOC-III in order to reduce the activation of lipoprotein lipase inhibition during hypertriglyceridemia treatment. The zeolite nanoparticles can be adapted to hemophilic patients (hemophilia A (F-VIII deficient) and hemophilia B (F-IX deficient)) with a risk of bleeding, and thus might be potentially used in combination with the existing therapy. PMID:26616161

  19. Energetics of sodium-calcium exchanged zeolite A.

    PubMed

    Sun, H; Wu, D; Guo, X; Shen, B; Navrotsky, A

    2015-05-01

    A series of calcium-exchanged zeolite A samples with different degrees of exchange were prepared. They were characterized by powder X-ray diffraction (XRD) and differential scanning calorimetry (DSC). High temperature oxide melt drop solution calorimetry measured the formation enthalpies of hydrated zeolites CaNa-A from constituent oxides. The water content is a linear function of the degree of exchange, ranging from 20.54% for Na-A to 23.77% for 97.9% CaNa-A. The enthalpies of formation (from oxides) at 25 °C are -74.50 ± 1.21 kJ mol(-1) TO2 for hydrated zeolite Na-A and -30.79 ± 1.64 kJ mol(-1) TO2 for hydrated zeolite 97.9% CaNa-A. Dehydration enthalpies obtained from differential scanning calorimetry are 32.0 kJ mol(-1) H2O for hydrated zeolite Na-A and 20.5 kJ mol(-1) H2O for hydrated zeolite 97.9% CaNa-A. Enthalpies of formation of Ca-exchanged zeolites A are less exothermic than for zeolite Na-A. A linear relationship between the formation enthalpy and the extent of calcium substitution was observed. The energetic effect of Ca-exchange on zeolite A is discussed with an emphasis on the complex interactions between the zeolite framework, cations, and water. PMID:25827491

  20. Conversion of Ethanol to Hydrocarbons on Hierarchical HZSM-5 Zeolites

    SciTech Connect

    Ramasamy, Karthikeyan K.; Zhang, He; Sun, Junming; Wang, Yong

    2014-02-22

    This study reports synthesis, characterization, and catalytic activity of the nano-size hierarchical HZSM-5 zeolite with high mesoporosity produced via a solvent evaporation procedure. Further, this study compares hierarchical zeolites with conventional HZSM-5 zeolite with similar Si/Al ratios for the ethanol-to-hydrocarbon conversion process. The catalytic performance of the hierarchical and conventional zeolites was evaluated using a fixed-bed reactor at 360 °C, 300 psig, and a weight hourly space velocity of 7.9 h-1. For the low Si/Al ratio zeolite (~40), the catalytic life-time for the hierarchical HZSM-5 was approximately 2 times greater than the conventional HZSM-5 despite its coking amount deposited 1.6 times higher than conventional HZSM-5. For the high Si/Al ratio zeolite (~140), the catalytic life-time for the hierarchical zeolite was approximately 5 times greater than the conventional zeolite and the amount of coking deposited was 2.1 times higher. Correlation was observed between catalyst life time, porosity, and the crystal size of the zeolite. The nano-size hierarchical HZSM-5 zeolites containing mesoporosity demonstrated improved catalyst life-time compared to the conventional catalyst due to faster removal of products, shorter diffusion path length, and the migration of the coke deposits to the external surface from the pore structure.

  1. Zeolite Nanoparticles for Selective Sorption of Plasma Proteins.

    PubMed

    Rahimi, M; Ng, E-P; Bakhtiari, K; Vinciguerra, M; Ali Ahmad, H; Awala, H; Mintova, S; Daghighi, M; Bakhshandeh Rostami, F; de Vries, M; Motazacker, M M; Peppelenbosch, M P; Mahmoudi, M; Rezaee, F

    2015-01-01

    The affinity of zeolite nanoparticles (diameter of 8-12 nm) possessing high surface area and high pore volume towards human plasma proteins has been investigated. The protein composition (corona) of zeolite nanoparticles has been shown to be more dependent on the plasma protein concentrations and the type of zeolites than zeolite nanoparticles concentration. The number of proteins present in the corona of zeolite nanoparticles at 100% plasma (in vivo state) is less than with 10% plasma exposure. This could be due to a competition between the proteins to occupy the corona of the zeolite nanoparticles. Moreover, a high selective adsorption for apolipoprotein C-III (APOC-III) and fibrinogen on the zeolite nanoparticles at high plasma concentration (100%) was observed. While the zeolite nanoparticles exposed to low plasma concentration (10%) exhibited a high selective adsorption for immunoglobulin gamma (i.e. IGHG1, IGHG2 and IGHG4) proteins. The zeolite nanoparticles can potentially be used for selectively capture of APOC-III in order to reduce the activation of lipoprotein lipase inhibition during hypertriglyceridemia treatment. The zeolite nanoparticles can be adapted to hemophilic patients (hemophilia A (F-VIII deficient) and hemophilia B (F-IX deficient)) with a risk of bleeding, and thus might be potentially used in combination with the existing therapy. PMID:26616161

  2. Zeolite Nanoparticles for Selective Sorption of Plasma Proteins

    NASA Astrophysics Data System (ADS)

    Rahimi, M.; Ng, E.-P.; Bakhtiari, K.; Vinciguerra, M.; Ahmad, H. Ali; Awala, H.; Mintova, S.; Daghighi, M.; Bakhshandeh Rostami, F.; de Vries, M.; Motazacker, M. M.; Peppelenbosch, M. P.; Mahmoudi, M.; Rezaee, F.

    2015-11-01

    The affinity of zeolite nanoparticles (diameter of 8-12 nm) possessing high surface area and high pore volume towards human plasma proteins has been investigated. The protein composition (corona) of zeolite nanoparticles has been shown to be more dependent on the plasma protein concentrations and the type of zeolites than zeolite nanoparticles concentration. The number of proteins present in the corona of zeolite nanoparticles at 100% plasma (in vivo state) is less than with 10% plasma exposure. This could be due to a competition between the proteins to occupy the corona of the zeolite nanoparticles. Moreover, a high selective adsorption for apolipoprotein C-III (APOC-III) and fibrinogen on the zeolite nanoparticles at high plasma concentration (100%) was observed. While the zeolite nanoparticles exposed to low plasma concentration (10%) exhibited a high selective adsorption for immunoglobulin gamma (i.e. IGHG1, IGHG2 and IGHG4) proteins. The zeolite nanoparticles can potentially be used for selectively capture of APOC-III in order to reduce the activation of lipoprotein lipase inhibition during hypertriglyceridemia treatment. The zeolite nanoparticles can be adapted to hemophilic patients (hemophilia A (F-VIII deficient) and hemophilia B (F-IX deficient)) with a risk of bleeding, and thus might be potentially used in combination with the existing therapy.

  3. Mechanisms of CPB Modified Zeolite on Mercury Adsorption in Simulated Wastewater.

    PubMed

    Liu, Jiang; Huang, Hui; Huang, Rong; Zhang, Jinzhong; Hao, Shuoshuo; Shen, Yuanyuan; Chen, Hong

    2016-06-01

    A systematic study was carried out to analyze the effects of mercury(II) adsorption by surface modified zeolite (SMZ) and adsorption mechanism. Cetylpyridinium bromide (CPB) was used to prepare SMZ. The characterization methods by means of powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR), scanning electron microscope (SEM) showed that both the surface and internal zeolite were covered with CPB molecules, but the main binding sites were surface. Results showed that the organic carbon and cation exchange capacity of the SMZ were 7.76 times and 4.22 times higher than those of natural zeolite (NZ), respectively. Zeta potentials before and after modification were measured at -7.80 mV and -30.27 mV, respectively. Moreover, the saturation adsorptive capacity of SMZ was 16.35 times higher than NZ in mercury-containing wastewater. The possible mechanisms of mercury elimination were surface adsorption, hydrophobic interaction, ion exchange, electricity neutralization. The adsorption process was affected little by competitive ions. PMID:26811296

  4. MCM-41 impregnated with A zeolite precursor: Synthesis, characterization and tetracycline antibiotics removal from aqueous solution

    PubMed Central

    Liu, Minmin; Hou, Li-an; Yu, Shuili; Xi, Beidou; Zhao, Ying; Xia, Xunfeng

    2013-01-01

    In this paper, the MCM-41 has been modified by impregnation with zeolite A to prepare a kind of new adsorbent. The adsorption of TC from aqueous solutions onto modified MCM-41 has been studied. It was discovered that the adsorption capability of zeolite A modified MCM-41 (A-MCM-41) increased dramatically after modification. The modified MCM-41 was characterized by X-ray diffraction (XRD), nitrogen adsorption–desorption, Fourier Transform Infrared (FTIR) analysis, Transmission electron microscopy (TEM) images, and 29Si and 27Al Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) spectra. The modified MCM-41 structure was still retained after impregnated with zeolite A but the surface area and pore diameter decreased due to pore blockage. The adsorption of TC on modified MCM-41 was discussed regarding various parameters such as pH, initial TC concentration, and the reaction time. The pH effects on TC adsorption indicated that the adsorbents had better adsorption performances in acidic and neutral conditions. The adsorption isotherms were fitted well by the Langmuir model. The adsorption kinetics was well described by both pseudo-second order equation and the intra-particle diffusion model. The adsorption behavior in a fixed-bed column system followed Thomas model. The adsorption behavior of TC was the chemical adsorption with an ion exchange process and electrostatic adsorption. PMID:24976787

  5. CO2 SEPARATIONS USING ZEOLITE MEMBRANES

    SciTech Connect

    Richard D. Noble; John L. Falconer

    2001-06-30

    Zeolite and other inorganic molecular sieve membranes have shown potential for separations based on molecular size and shape because of their small pore sized, typically less than 1 nm, and their narrow pore size distribution. The high thermal and chemical stability of these inorganic crystals make them ideal materials for use in high temperature applications such as catalytic membrane reactors. Most of the progress with zeolite membranes has been with MFI zeolites prepared on porous disks and tubes. The MFI zeolite is a medium pore size structure having nearly circular pores with diameters between .53 and .56 nm. Separation experiments through MFI membranes indicate that competitive adsorption separates light gas mixtures. Light gas selectivities are typically small, however, owing to small differences in adsorption strengths and their small sizes relative to the MFI pore opening. Furthermore, competitive adsorption does not work well at high temperature where zeolite membranes are stable and have potential application. Separation by differences in size has a greater potential to work at high temperature than competitive adsorption, but pores smaller than those in MFI zeolites are required. Therefore, some studies focused on the synthesis of a small, 8-membered-pore structures such as zeolite A (0.41-nm pore diameter) and SAPO-34, a chabazite (about .4-nm pore diameter with about 1.4 nm cages) analog. The small pore size of the zeolite A and SAPO-34 structures made the separation of smaller molecules by differences in size possible. Zeolite MFI and SAPO-34 membranes were prepared on the inside surface of porous alumina tubes by hydrothermal synthesis, and single gas and binary mixture permeances were measured to characterize the membrane's performance. A mathematical diffusion model was developed to determine the relative quantities of zeolite and non-zeolite pores in different membranes by modeling the permeation date of CO{sub 2}. This model expresses the total

  6. UTILITY OF ZEOLITES IN REMOVAL OF INORGANIC AND ORGANIC WATER POLLUTANTS

    EPA Science Inventory

    Zeolites are well known for their ion exchange, adsorption and acid catalysis properties. Different inorganic and organic pollutants have been removed from water at room temperature using various zeolites. Synthetic zeolite Faujasite Y has been used to remove inorganic pollutants...

  7. Home Modification

    MedlinePlus

    ... it is important to consider certain safety modifications. Adaptations such as those in the following list can ... The importance of a Consumer Perspective in Home Adaptation of Alzheimer’s Households” (Chapter 6 pp 91-112) ...

  8. In situ DRIFTS-MS studies on the oxidation of adsorbed NH3 by NOx over a Cu-SSZ-13 zeolite

    SciTech Connect

    Zhu, Haiyang; Kwak, Ja Hun; Peden, Charles HF; Szanyi, Janos

    2013-04-30

    DRIFT spectroscopy combined with mass spectrometry was used to investigate the oxidation of adsorbed ammonia by NO2, NO+O2 and NO2+O2 on a copper ion exchanged SSZ 13 (Cu-SSZ-13) zeolite. Compared with both NO2 and NO, the adsorption of ammonia is much stronger on the Cu-SSZ-13 zeolite. Two adsorbed ammonia species were found over the Cu-SSZ-13 zeolite studied here; notably ammonia on Brönsted acid sites (proton) and ammonia on Lewis acid sites (copper ions). These adsorbed ammonia species present different activity profiles and selectivity to N2 during NH3 oxidation. The results obtained suggest that ammonia adsorbed onto copper ions in Cu-SSZ-13 are more active at low temperatures than proton-adsorbed NH3, and give rise to a higher selectivity to N2. The formation of N2O is associated primarily with the reaction of NOx with proton-adsorbed NH3 via the formation and subsequent thermal decomposition of NH4NO3. Financial support was provided by the US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Portions of this work were performed in the Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL). The EMSL is a national scientific user facility supported by the US DOE, Office of Biological and Environmental Research. PNNL is a multi-program national laboratory operated for the US DOE by Battelle.

  9. Novel multi-component hybrids through double luminescent lanthanide unit functionalized zeolite L and titania.

    PubMed

    Chen, Lei; Yan, Bing

    2015-12-01

    Zeolite L (ZL) is functionalized with inside-outside double modification paths (gas disperse ("ship in bottle") and covalently grafting) with two kinds of luminescent lanthanide species (Tb(3+) complex of acetylacetone (AA), lanthanide polyoxometalate (NaLnW10O36·32H2O, abbreviated as LnW10, Ln=Eu, Tb)) to prepare the hybrid materials. The prepared hybrids show the red and green luminescence, which provides a useful path to obtain multi-component lanthanide hybrids. PMID:26125989

  10. Dispersion strengthened copper

    DOEpatents

    Sheinberg, H.; Meek, T.T.; Blake, R.D.

    1990-01-09

    A composition of matter is described which is comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide. A method for making this composition of matter is also described. This invention relates to the art of powder metallurgy and, more particularly, it relates to dispersion strengthened metals.

  11. COPPER AND BRAIN FUNCTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing evidence shows that brain development and function are impaired when the brain is deprived of copper either through dietary copper deficiency or through genetic defects in copper transport. A number of copper-dependent enzymes whose activities are lowered by copper deprivation form the ba...

  12. Ubiquitin modifications

    PubMed Central

    Swatek, Kirby N; Komander, David

    2016-01-01

    Protein ubiquitination is a dynamic multifaceted post-translational modification involved in nearly all aspects of eukaryotic biology. Once attached to a substrate, the 76-amino acid protein ubiquitin is subjected to further modifications, creating a multitude of distinct signals with distinct cellular outcomes, referred to as the 'ubiquitin code'. Ubiquitin can be ubiquitinated on seven lysine (Lys) residues or on the N-terminus, leading to polyubiquitin chains that can encompass complex topologies. Alternatively or in addition, ubiquitin Lys residues can be modified by ubiquitin-like molecules (such as SUMO or NEDD8). Finally, ubiquitin can also be acetylated on Lys, or phosphorylated on Ser, Thr or Tyr residues, and each modification has the potential to dramatically alter the signaling outcome. While the number of distinctly modified ubiquitin species in cells is mind-boggling, much progress has been made to characterize the roles of distinct ubiquitin modifications, and many enzymes and receptors have been identified that create, recognize or remove these ubiquitin modifications. We here provide an overview of the various ubiquitin modifications present in cells, and highlight recent progress on ubiquitin chain biology. We then discuss the recent findings in the field of ubiquitin acetylation and phosphorylation, with a focus on Ser65-phosphorylation and its role in mitophagy and Parkin activation. PMID:27012465

  13. Synthesis strategies in the search for hierarchical zeolites.

    PubMed

    Serrano, D P; Escola, J M; Pizarro, P

    2013-05-01

    Great interest has arisen in the past years in the development of hierarchical zeolites, having at least two levels of porosities. Hierarchical zeolites show an enhanced accessibility, leading to improved catalytic activity in reactions suffering from steric and/or diffusional limitations. Moreover, the secondary porosity offers an ideal space for the deposition of additional active phases and for functionalization with organic moieties. However, the secondary surface represents a discontinuity of the crystalline framework, with a low connectivity and a high concentration of silanols. Consequently, hierarchical zeolites exhibit a less "zeolitic behaviour" than conventional ones in terms of acidity, hydrophobic/hydrophilic character, confinement effects, shape-selectivity and hydrothermal stability. Nevertheless, this secondary surface is far from being amorphous, which provides hierarchical zeolites with a set of novel features. A wide variety of innovative strategies have been developed for generating a secondary porosity in zeolites. In the present review, the different synthetic routes leading to hierarchical zeolites have been classified into five categories: removal of framework atoms, surfactant-assisted procedures, hard-templating, zeolitization of preformed solids and organosilane-based methods. Significant advances have been achieved recently in several of these alternatives. These include desilication, due to its versatility, dual templating with polyquaternary ammonium surfactants and framework reorganization by treatment with surfactant-containing basic solutions. In the last two cases, the materials so prepared show both mesoscopic ordering and zeolitic lattice planes. Likewise, interesting results have been obtained with the incorporation of different types of organosilanes into the zeolite crystallization gels, taking advantage of their high affinity for silicate and aluminosilicate species. Crystallization of organofunctionalized species favours the

  14. Chemical Interactions in Multimetal/Zeolite Catalysts

    SciTech Connect

    Sachtler, Wolfgang M. H.

    2004-04-16

    This two-year project has led to a significant improvement in the fundamental understanding of the catalytic action of zeolite-supported redox catalysts. It turned out to be essential that we could combine four strategies for the preparation of catalysts containing transition metal (TM) ions in zeolite cavities: (1) ion exchange from aqueous solution; (2) chemical vapor deposition (CVD) of a volatile halide onto a zeolite in its acidic form; (3) solid state ion exchange; and (4) hydrothermal synthesis of a zeolite having TM ions in its lattice, followed by a treatment transporting these ions to ''guest positions''. Technique (2) enables us to position more TM ions into cavities than permitted by the conventional technique (1).viz one positive charge per Al centered tetrahedron in the zeolite lattice. The additional charge is compensated by ligands to the TM ions, for instance in oxo-ions such as (GaO){sup +} or dinuclear [Cu-O-Cu]{sup 2+}. While technique (3) is preferred over CVD where volatile halides are not available, technique (4) leads to rather isolated ''ex lattice'' oxo-ions. Such oxo-ions tend to be mono-nuclear, in contrast to technique (2) which preferentially creates dinuclear oxo-ions of the same TM element. A favorable element for the present research was that the PI is also actively engaged in a project on the reduction of nitrogen oxides, sponsored by EMSI program of the National Science Foundation and the US Department of Energy, Office of Science. This combination created a unique opportunity to test and analyze catalysts for the one step oxidation of benzene to phenol and compare them with catalysts for the reduction of nitrogen oxides, using hydrocarbons as the reductant. In both projects catalysts have been used which contain Fe ions or oxo-ions in the cavities the zeolite MFI, often called ZSM-5. With Fe as the TM-element and MFI as the host zeolite we found that catalysts with high Fe content, prepared by technique (2) were optimal for the

  15. Bioinspired conical copper wire with gradient wettability for continuous and efficient fog collection.

    PubMed

    Ju, Jie; Xiao, Kai; Yao, Xi; Bai, Hao; Jiang, Lei

    2013-11-01

    Inspired by the efficient fog collection on cactus spines, conical copper wires with gradient wettability are fabricated through gradient electrochemical corrosion and subsequent gradient chemical modification. These dual-gradient copper wires' fog-collection ability is demonstrated to be higher than that of conical copper wires with pure hydrophobic surfaces or pure hydrophilic surfaces, and the underlying mechanism is also analyzed. PMID:24038211

  16. Density of mechanisms within the flexibility window of zeolites.

    PubMed

    Kapko, V; Dawson, C; Rivin, I; Treacy, M M J

    2011-10-14

    By treating idealized zeolite frameworks as periodic mechanical trusses, we show that the number of flexible folding mechanisms in zeolite frameworks is strongly peaked at the minimum density end of their flexibility window. 25 of the 197 known zeolite frameworks exhibit an extensive flexibility, where the number of unique mechanisms increases linearly with the volume when long wavelength mechanisms are included. Extensively flexible frameworks therefore have a maximum in configurational entropy, as large crystals, at their lowest density. Most real zeolites do not exhibit extensive flexibility, suggesting that surface and edge mechanisms are important, likely during the nucleation and growth stage. The prevalence of flexibility in real zeolites suggests that, in addition to low framework energy, it is an important criterion when searching large databases of hypothetical zeolites for potentially useful realizable structures. PMID:22107389

  17. Zeolite and swine inoculum effect on poultry manure biomethanation

    NASA Astrophysics Data System (ADS)

    Kougias, P. G.; Fotidis, I. A.; Zaganas, I. D.; Kotsopoulos, T. A.; Martzopoulos, G. G.

    2013-03-01

    Poultry manure is an ammonia-rich substrate that inhibits methanogenesis, causing severe problems to the anaerobic digestion process. In this study, the effect of different natural zeolite concentrations on the mesophilic anaerobic digestion of poultry waste inoculated with well-digested swine manure was investigated. A significant increase in methane production was observed in treatments where zeolite was added, compared to the treatment without zeolite.Methane production in the treatment with 10 g dm-3 of natural zeolite was found to be 109.75% higher compared to the treatment without zeolite addition. The results appear to be influenced by the addition of zeolite, which reduces ammonia toxicity in anaerobic digestion and by the ammonia-tolerant swine inoculum.

  18. Preparation of Robust, Thin Zeolite Membrane Sheet for Molecular Separation

    SciTech Connect

    Liu, Wei; Zhang, Jian; Canfield, Nathan L.; Saraf, Laxmikant V.

    2011-10-19

    This paper reports a feasibility study on the preparation of zeolite membrane films on a thin, porous metal support sheet (50-{micro}m thick). Zeolite sodium A (NaA) and silicalite zeolite frameworks are chosen to represent synthesis of respective hydrophilic-type and hydrophobic-type zeolite membranes on this new support. It is found that a dense, continuous inter-grown zeolite crystal layer at a thickness less than 2 {micro}m can be directly deposited on such a support by using direct and secondary growth techniques. The resulting membrane shows excellent adhesion on the metal sheet. Molecular-sieving functions of the prepared membranes are characterized with ethanol/water separation, CO2 separation, and air dehumidification. The results show great potential to make flexible metal-foil-like zeolite membranes for a range of energy conversion and environmental applications.

  19. Atomic sites and stability of Cs+ captured within zeolitic nanocavities

    PubMed Central

    Yoshida, Kaname; Toyoura, Kazuaki; Matsunaga, Katsuyuki; Nakahira, Atsushi; Kurata, Hiroki; Ikuhara, Yumi H.; Sasaki, Yukichi

    2013-01-01

    Zeolites have potential application as ion-exchangers, catalysts and molecular sieves. Zeolites are once again drawing attention in Japan as stable adsorbents and solidification materials of fission products, such as 137Cs+ from damaged nuclear-power plants. Although there is a long history of scientific studies on the crystal structures and ion-exchange properties of zeolites for practical application, there are still open questions, at the atomic-level, on the physical and chemical origins of selective ion-exchange abilities of different cations and detailed atomic structures of exchanged cations inside the nanoscale cavities of zeolites. Here, the precise locations of Cs+ ions captured within A-type zeolite were analyzed using high-resolution electron microscopy. Together with theoretical calculations, the stable positions of absorbed Cs+ ions in the nanocavities are identified, and the bonding environment within the zeolitic framework is revealed to be a key factor that influences the locations of absorbed cations. PMID:23949184

  20. Interaction of Microwaves with Synthetic Type A Zeolite Containing Water

    NASA Astrophysics Data System (ADS)

    Tanaka, Masahiro; Takayama, Sadatsugu; Sano, Saburo

    2013-11-01

    A synthetic honeycomb type A zeolite adsorbent was regenerated through microwave irradiation in a single-mode cavity microwave at 2.46 GHz. The regeneration mechanism was investigated by comparing the heating properties, thermogravimetric properties, and dielectric properties of the synthetic zeolite samples. The hydrated zeolite sample was easily heated to over 200 °C, although a difference in the impedance matching frequency of only 0.01 GHz sharply reduced the maximum heating and increased the regeneration time. The adsorbed water in the hydrated zeolite initially acted as a heating agent by absorbing microwave energy, because the dielectric loss factor of water is higher than that of synthetic zeolite around 2.45 GHz. From 50 to 250 °C, the zeolite itself also absorbed microwave energy.

  1. Cation locations and dislocations in zeolites

    NASA Astrophysics Data System (ADS)

    Smith, Luis James

    The focus of this dissertation is the extra-framework cation sites in a particular structural family of zeolites, chabazite. Cation sites play a particularly important role in the application of these sieves for ion exchange, gas separation, catalysis, and, when the cation is a proton, acid catalysis. Structural characterization is commonly performed through the use of powder diffraction and Rietveld analysis of powder diffraction data. Use of high-resolution nuclear magnetic resonance, in the study of the local order of the various constituent nuclei of zeolites, complements well the long-range order information produced by diffraction. Recent developments in solid state NMR techniques allow for increased study of disorder in zeolites particularly when such phenomena test the detection limits of diffraction. These two powerful characterization techniques, powder diffraction and NMR, offer many insights into the complex interaction of cations with the zeolite framework. The acids site locations in SSZ-13, a high silica chabazite, and SAPO-34, a silicoaluminophosphate with the chabazite structure, were determined. The structure of SAPO-34 upon selective hydration was also determined. The insensitivity of X-rays to hydrogen was avoided through deuteration of the acid zeolites and neutron powder diffraction methods. Protons at inequivalent positions were found to have different acid strengths in both SSZ-13 and SAPO-34. Other light elements are incorporated into zeolites in the form of extra-framework cations, among these are lithium, sodium, and calcium. Not amenable by X-ray powder diffraction methods, the positions of such light cations in fully ion-exchanged versions of synthetic chabazite were determined through neutron powder diffraction methods. The study of more complex binary cation systems were conducted. Powder diffraction and solid state NMR methods (MAS, MQMAS) were used to examine cation site preferences and dislocations in these mixed-akali chabazites

  2. Ionic Liquid assisted Synthesis of Zeolite-TON

    PubMed Central

    Tian, Yuyang; McPherson, Matthew J; Wheatley, Paul S; Morris, Russell E

    2014-01-01

    An ionic liquid assisted strategy for the synthesis of zeolitic material is reported. This strategy is a solid state synthetic method and the ionic liquid is employed as structure directing agent. A TON-type zeolite, which contains one-dimensional 10-member-ring, is successfully synthesized with the assistance of the ionic liquid, 1-ethyl-3-methylimidazolium bromide. This finding improves our understanding about the challenge of ionothermally synthesizing siliceous and aluminosilicate zeolites. PMID:26213423

  3. Peculiarities of the dielectric response of natural zeolite composites prepared by using zeolite and silicon powders

    NASA Astrophysics Data System (ADS)

    Ozturk Koc, S.; Orbukh, V. I.; Eyvazova, G. M.; Lebedeva, N. N.; Salamov, B. G.

    2016-03-01

    We present the real and imaginary part of the dielectric permittivity of natural zeolite composites prepared by using zeolite and silicon powders. The dielectric response (DR) dependences on the frequency (3-300 GHz) of electric field and different Si concentrations (5-33%) are non-monotonic and a maximum peak is observed. This peak position is practically independent on the frequency and its maximum is observed in zeolite composites which included 9% of the Si-powder. Also the maximum peak is decreased by about an order of magnitude when frequency increases from 500 Hz to 5 kHz. Addition of the conductive Si-particles to zeolite-powder leads to two opposite effects. Firstly, the movement of electrons in the Si-particles provides increase of DR. Secondly, cations which leaving from zeolite pores can be neutralized by the particles of Si in the intercrystalline-space. Such a peculiar mechanism for recombination of Si electrons and cations from pores leads to a reduction of DR for large silicon concentrations. Due to the fact that the contribution of free carriers in the decreasing of the DR as the frequency increases, it is consistent with the suggestion that the maximum peak decreases with increasing frequency.

  4. Comparing gas separation performance between all known zeolites and their zeolitic imidazolate framework counterparts.

    PubMed

    Gómez-Álvarez, Paula; Hamad, Said; Haranczyk, Maciej; Ruiz-Salvador, A Rabdel; Calero, Sofia

    2016-01-01

    To find optimal porous materials for adsorption-based separations is a challenging task due to the extremely large number of possible pore topologies and compositions. New porous material classes such as Metal Organic Frameworks (MOFs) are emerging, and hope to replace traditionally used materials such as zeolites. Computational screening offers relatively fast searching for candidate structures as well as side-by-side comparisons between material families. This work is pioneering at examining the families comprised by the experimentally known zeolites and their respective Zeolitic Imidazolate Framework (ZIF) counterparts in the context of a number of environmental and industrial separations involving carbon dioxide, nitrogen, methane, oxygen, and argon. Additionally, unlike related published work, here all the targeted structures have been previously relaxed through energy minimization. On the first level of characterization, we considered a detailed pore characterization, identifying 24 zeolites as promising candidates for gas separation based on adsorbate sizes. The second level involved interatomic potential-based calculations to assess the adsorption performance of the materials. We found no correlation in the values of heat of adsorption between zeolites and ZIFs sharing the same topology. A number of structures were identified as potential experimental targets for CO2/N2, and CO2/CH4 affinity-based separations. PMID:26600432

  5. Method for the recovery of silver from silver zeolite

    SciTech Connect

    Reimann, George A.

    1986-01-01

    High purity silver is recovered from silver exchanged zeolite used to capture radioactive iodine from nuclear reactor and nuclear fuel reprocessing environments. The silver exchanged zeolite is heated with slag formers to melt and fluidize the zeolite and release the silver, the radioactivity removing with the slag. The silver containing metallic impurities is remelted and treated with oxygen and a flux to remove the metal impurities. About 98% of the silver in the silver exchanged zeolite having a purity of 99% or better is recoverable by the method.

  6. Natural zeolites in diet or litter of broilers.

    PubMed

    Schneider, A F; Almeida, D S De; Yuri, F M; Zimmermann, O F; Gerber, M W; Gewehr, C E

    2016-04-01

    This study aims to analyse the influence of adding natural zeolites (clinoptilolite) to the diet or litter of broilers and their effects on growth performance, carcass yield and litter quality. Three consecutive flocks of broilers were raised on the same sawdust litter, from d 1 to d 42 of age, and distributed in three treatments (control with no added zeolites, addition of 5 g/kg zeolite to diet and addition of 100 g/kg zeolites to litter). The addition of zeolites to the diet or litter did not affect growth performance or carcass yield. The addition of zeolites to the diet did not influence moisture content of the litter, ammonia volatilisation was reduced only in the first flock and pH of litter was reduced in the second and third flock. However, the addition of zeolites to the litter reduced moisture content, litter pH and ammonia volatilisation in all flocks analysed. The addition of 5 g/kg zeolite to the diet in three consecutive flocks was not effective in maintaining litter quality, whereas the addition of 100 g/kg natural zeolites to sawdust litter reduced litter moisture and ammonia volatilisation in three consecutive flocks raised on the same litter. PMID:26879673

  7. Zeolite shape selectivity in the uptake of uranium from solutions

    SciTech Connect

    Ingram, C.W.; Szostak, R.; Cleare, K.

    1996-12-31

    Various synthetic zeolites (KL, LZY, 13X, and mordenite), as well as a natural zeolite (clinoptilolite) were evaluated for the uptake of uranium from solution. Mordenite, LZY and KL were most effective for uranium uptake. The relative effectiveness of the zeolites was a function of their pore dimensions, chemical compositions and cation concentration. Mordenite showed superior performance to a clay-soil for uranium uptake. With time, initially sorbed uranium later re-dissolve from the clay, but remained anchored in the matrix of the zeolite. Mordenite therefore demonstrated potential for use as an in situ trap for preventing uranium migration in soils.

  8. Method for the recovery of silver from silver zeolite

    DOEpatents

    Reimann, G.A.

    1985-03-05

    High purity silver is recovered from silver exchanged zeolite used to capture radioactive iodine from nuclear reactor and nuclear fuel reprocessing environments. The silver exchanged zeolite is heated with slag formers to melt and fluidize the zeolite and release the silver, the radioactivity removing with the slag. The silver containing metallic impurities is remelted and treated with oxygen and a flux to remove the metal impurities. About 98% of the silver in the silver exchanged zeolite having a purity of 99% or better is recoverable by the method.

  9. Zeolite Crystal Growth in Microgravity and on Earth

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Center for Advanced Microgravity Materials Processing (CAMMP), a NASA-sponsored Research Partnership Center, is working to improve zeolite materials for storing hydrogen fuel. CAMMP is also applying zeolites to detergents, optical cables, gas and vapor detection for environmental monitoring and control, and chemical production techniques that significantly reduce by-products that are hazardous to the environment. Shown here are zeolite crystals (top) grown in a ground control experiment and grown in microgravity on the USML-2 mission (bottom). Zeolite experiments have also been conducted aboard the International Space Station.

  10. Dry method for recycling iodine-loaded silver zeolite

    DOEpatents

    Thomas, Thomas R.; Staples, Bruce A.; Murphy, Llewellyn P.

    1978-05-09

    Fission product iodine is removed from a waste gas stream and stored by passing the gas stream through a bed of silver-exchanged zeolite until the zeolite is loaded with iodine, passing dry hydrogen gas through the bed to remove the iodine and regenerate the bed, and passing the hydrogen stream containing the hydrogen iodide thus formed through a lead-exchanged zeolite which adsorbs the radioactive iodine from the gas stream and permanently storing the lead-exchanged zeolite loaded with radioactive iodine.

  11. Pf/Zeolite Catalyst for Tritium Stripping

    SciTech Connect

    Hsu, R.H.

    2001-03-26

    This report described promising hydrogen (protium and tritium) stripping results obtained with a Pd/zeolite catalyst at ambient temperature. Preliminary results show 90-99+ percent tritium stripping efficiency may be obtained, with even better performance expected as bed configuration and operating conditions are optimized. These results suggest that portable units with single beds of the Pd/zeolite catalyst may be utilized as ''catalytic absorbers'' to clean up both tritium gas and tritiated water. A cart-mounted prototype stripper utilizing this catalyst has been constructed for testing. This portable stripper has potential applications in maintenance-type jobs such as tritium line breaks. This catalyst can also potentially be utilized in an emergency stripper for the Replacement Tritium Facility.

  12. Olefins from methanol by modified zeolites

    SciTech Connect

    Inui, T.; Takegami, Y.

    1982-11-01

    Compares the effects of modified catalysts (ZSM-34 and ZSM-5 class zeolites) on methanol conversion to olefins (MTO) with regard to olefin selectivity and cost. Presents tables with prices of olefins in the US and Japan; comparison of methanol-cracking with naphtha cracking; methanol conversion data for Type-1, Type-II and reference catalysts; hydrocarbon distribution from MTO processes; and speculative economics for MTO processes of Concept-1 and 2. Diagrams the proposed MTO process scheme. Scanning electron micrographs of the zeolite catalysts are shown. Graphs indicate the change of ethylene prices in the US since 1978 and forecast ethylene prices in several countries. Concludes that the prices of ethylene for both MTO processes examined compare favorably with products of conventional processes.

  13. One-step brazing process to join CFC composites to copper and copper alloy

    NASA Astrophysics Data System (ADS)

    Salvo, Milena; Casalegno, Valentina; Rizzo, Stefano; Smeacetto, Federico; Ferraris, Monica; Merola, Mario

    2008-02-01

    The aim of this work is to develop a new single-step brazing technique to join carbon fibre reinforced carbon composite (CFC) to pure copper (Cu) and copper alloy (CuCrZr) for nuclear fusion applications. In order to increase the wettability of CFC by a copper-based brazing alloy containing no active metal, the composite surface was modified by direct reaction with chromium, which forms a carbide layer and allows a large reduction of the contact angle. After the CFC surface modification, the commercial Gemco ® alloy (Cu/Ge) was successfully used to braze CFC to pure copper and pure copper to CuCrZr by the same heat treatment. The shear strength of the CFC/Cu joints measured by single lap shear tests at room temperature was (34 ± 4) MPa, comparable to the values obtained by other joining processes and higher than the intrinsic CFC shear strength.

  14. A polyhedral oligomeric silsesquioxane functionalized copper trimesate.

    PubMed

    Sanil, E S; Cho, Kyung-Ho; Hong, Do-Young; Lee, Ji Sun; Lee, Su-Kyung; Ryu, Sam Gon; Lee, Hae Wan; Chang, Jong-San; Hwang, Young Kyu

    2015-05-18

    A metal-organic framework (MOF), copper trimesate (Cu3(BTC)2), was selectively functionalized with aminopropylisooctyl polyhedral oligomeric silsesquioxane (O-POSS) to make the external surface of Cu3(BTC)2 hydrophobic and thereby enhance the stability of the material against humidity. POSS modification was also successfully applied to other MOFs such as MOF-74 and MIL-100. PMID:25813878

  15. Low-temperature synthesis of zeolite from perlite waste — Part I: review of methods and phase compositions of resulting products

    NASA Astrophysics Data System (ADS)

    Król, Magdalena; Morawska, Justyna; Mozgawa, Włodzimierz; Pichór, Waldemar

    2014-09-01

    In this paper a review of the recent studies on the synthesis of zeolites from expanded perlite under hydrothermal conditions is presented. Attention is paid to possible outcomes of synthesis from low cost glass material, such as perlite. The study also investigates the phase composition of zeolitic materials obtained by modification of by-product derived from an expanded perlite production process. The synthesis was made using the hydrothermal method with sodium hydroxide under autogenous pressure at a temperature below 100 °C for 1 to 72 h. It was possible to obtain a zeolitic material at a temperature as low as 60 °C using 4.0 M NaOH. The X-ray diffraction pattern showed the biggest peak intensity of zeolite X with 4.0 M NaOH at the temperature of 70 °C. During synthesis at higher temperature zeolite Na-P1 (with 3.0 M NaOH at 90 °C) and hydroxysodalite (with 5.0 M NaOH at 90 °C) were obtained.

  16. Mechanism of Mineral Phase Reconstruction for Improving the Beneficiation of Copper and Iron from Copper Slag

    NASA Astrophysics Data System (ADS)

    Guo, Zhengqi; Zhu, Deqing; Pan, Jan; Zhang, Feng

    2016-08-01

    To maximize the recovery of iron and copper from copper slag, the modification process by adding a compound additive (a mixture of hematite, pyrite and manganous oxide) and optimizing the cooling of the slag was studied. The phase reconstruction mechanism of the slag modification process was revealed by thermodynamic calculations, x-ray diffraction, optical microscopy and scanning electron microscopy. The results show that the synergy between the burnt lime and the compound additive promotes the generation of target minerals, such as magnetite and copper matte. In addition, the multifunctional compound additive is able to improve the fluidity of the molten slag, which facilitates the coalescence and growth of fine particles of the target minerals. As a result, the percentage of iron distributed in the form of magnetite increased from 32.9% to 65.1%, and that of the copper exiting in the form of metallic copper and copper sulfide simultaneously increased from 80.0% to 90.3%. Meanwhile, the grains of the target minerals in the modified slag grew markedly to a mean size of over 50 μm after slow cooling. Ultimately, the beneficiation efficiency of copper and iron was improved because of the ease with which the target minerals could be liberated.

  17. Solar energy storage by natural zeolites: I. Dehydration of zeolitic tuff

    SciTech Connect

    Nastro, A.; Aiello, R.; Colella, C.; Conte, M.; Fittipaldi, F.

    1980-12-01

    In the perspective of a possible utilization of natural zeolites in the solar energy exploitation as materials suitable for heat storage, the behaviours of chabazitic and phillipsitic tuffs in the isothermal dehydration have been studied, evaluating the influence of temperature, heating rate and cationic form of the zeolite on the water desorption process. The possibility of achieving an almost complete desorption at temperatures of 200/250/sup 0/C in times of the order of two hours or less has been emphasized and indications on the heat amount storable by a chabazitic tuff in its original cationic form have been at last given.

  18. Zeolite thin films: from computer chips to space stations.

    PubMed

    Lew, Christopher M; Cai, Rui; Yan, Yushan

    2010-02-16

    Zeolites are a class of crystalline oxides that have uniform and molecular-sized pores (3-12 A in diameter). Although natural zeolites were first discovered in 1756, significant commercial development did not begin until the 1950s when synthetic zeolites with high purity and controlled chemical composition became available. Since then, major commercial applications of zeolites have been limited to catalysis, adsorption, and ion exchange, all using zeolites in powder form. Although researchers have widely investigated zeolite thin films within the last 15 years, most of these studies were motivated by the potential application of these materials as separation membranes and membrane reactors. In the last decade, we have recognized and demonstrated that zeolite thin films can have new, diverse, and economically significant applications that others had not previously considered. In this Account, we highlight our work on the development of zeolite thin films as low-dielectric constant (low-k) insulators for future generation computer chips, environmentally benign corrosion-resistant coatings for aerospace alloys, and hydrophilic and microbiocidal coatings for gravity-independent water separation in space stations. Although these three applications might not seem directly related, they all rely on the ability to fine-tune important macroscopic properties of zeolites by changing their ratio of silicon to aluminum. For example, pure-silica zeolites (PSZs, Si/Al = infinity) are hydrophobic, acid stable, and have no ion exchange capacity, while low-silica zeolites (LSZs, Si/Al < 2) are hydrophilic, acid soluble, and have a high ion exchange capacity. These new thin films also take advantage of some unique properties of zeolites that have not been exploited before, such as a higher elastic modulus, hardness, and heat conductivity than those of amorphous porous silicas, and microbiocidal capabilities derived from their ion exchange capacities. Finally, we briefly discuss our

  19. Effect of NaX zeolite-modified graphite felts on hexavalent chromium removal in biocathode microbial fuel cells.

    PubMed

    Wu, Xiayuan; Tong, Fei; Yong, Xiaoyu; Zhou, Jun; Zhang, Lixiong; Jia, Honghua; Wei, Ping

    2016-05-01

    Two kinds of NaX zeolite-modified graphite felts were used as biocathode electrodes in hexavalent chromium (Cr(VI))-reducing microbial fuel cells (MFCs). The one was fabricated through direct modification, and the other one processed by HNO3 pretreatment of graphite felt before modification. The results showed that two NaX zeolite-modified graphite felts are excellent bio-electrode materials for MFCs, and that a large NaX loading mass, obtained by HNO3 pretreatment (the HNO3-NaX electrode), leads to a superior performance. The HNO3-NaX electrode significantly improved the electricity generation and Cr(VI) removal of the MFC. The maximum Cr(VI) removal rate increased to 10.39±0.28 mg/L h, which was 8.2 times higher than that of the unmodified control. The improvement was ascribed to the strong affinity that NaX zeolite particles, present in large number on the graphite felt, have for microorganisms and Cr(VI) ions. PMID:26852205

  20. Fabrication of 3D copper oxide structure by holographic lithography for photoelectrochemical electrodes.

    PubMed

    Jin, Woo-Min; Kang, Ji-Hwan; Moon, Jun Hyuk

    2010-11-01

    We fabricated three-dimensional copper oxide structure by holographic lithography and electroless deposition. A five-beam interference pattern defined a woodpile structure of SU-8. The surface modification of SU-8 structure was achieved by multilayer coating of polyelectrolyte, which is critical for activating the surface for the reduction of copper. Copper was deposited onto the surface of the structure by electroless deposition, and subsequent calcinations removed the SU-8 structure and simultaneously oxidized the copper into copper oxide. The porous copper oxide structure was used as a photoelectrochemical electrode. Because of the highly porous structure, our structure showed higher photocurrent efficiency. PMID:21062017

  1. In Situ SAXS/WAXS of Zeolite Microwave Synthesis: NaY, NaA, and Beta Zeolites

    SciTech Connect

    Panzarella,B.; Tompsett, G.; Conner, W.; Jones, K.

    2007-01-01

    A custom waveguide apparatus is constructed to study the microwave synthesis of zeolites by in situ small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS). The WR-284 waveguide is used to heat precursor solutions using microwaves at a frequency of 2.45 GHz. The reaction vessels are designed to include sections of thin-walled glass, which permit X-rays to pass through the precursor solutions with minimal attenuation. Slots were machined into the waveguide to provide windows for X-ray energy to enter and scatter from solutions during microwave heating. The synthesis of zeolites with conventional heating is also studied using X-ray scattering in the same reactor. SAXS studies show that the crystallization of beta zeolite and NaY zeolite is preceded by a reorganization of nanosized particles in their precursor solutions or gels. The evolution of these particles during the nucleation and crystallization stages of zeolite formation depends on the properties of the precursor solution. The synthesis of NaA and NaX zeolites and sodalite from a single zeolite precursor is studied by microwave and conventional heating. Microwave heating shifts the selectivity of this synthesis in favor of NaA and NaX over sodalite; conventional heating leads to the formation of sodalite for synthesis from the same precursor. The use of microwave heating also led to a more rapid onset of NaA zeolite product crystallization compared to conventional heating. Pulsed and continuous microwave heating are compared for zeolite synthesis. The resulting rates of formation of the zeolite products, and the relative amounts of the products determined from the WAXS spectra, are similar when either pulsed or continuous microwave heating is applied in the reactor while maintaining the same synthesis temperature. The consequences of these results in terms of zeolite synthesis are discussed.

  2. Characterization and antibacterial activity of silver exchanged regenerated NaY zeolite from surfactant-modified NaY zeolite.

    PubMed

    Salim, Mashitah Mad; Malek, Nik Ahmad Nizam Nik

    2016-02-01

    The antibacterial activity of regenerated NaY zeolite (thermal treatment from cetyltrimethyl ammonium bromide (CTAB)-modified NaY zeolite and pretreatment with Na ions) loaded with silver ions were examined using the broth dilution minimum inhibitory concentration (MIC) method against Escherichia coli (E. coli ATCC 11229) and Staphylococcus aureus (S. aureus ATCC 6538). X-ray diffraction (XRD), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and chemical elemental analyses were used to characterize the regenerated NaY and AgY zeolites. The XRD patterns indicated that the calcination and addition of silver ions on regenerated NaY zeolite did not affect the structure of the regenerated NaY zeolite as the characteristic peaks of the NaY zeolite were retained, and no new peaks were observed. The regenerated AgY zeolite showed good antibacterial activity against both bacteria strains in distilled water, and the antibacterial activity of the samples increased with increasing Ag loaded on the regenerated AgY zeolite; the regenerated AgY zeolite was more effective against E. coli than S. aureus. However, the antibacterial activity of the regenerated AgY was not effective in saline solution for both bacteria. The study showed that CTAB-modified NaY zeolite materials could be regenerated to NaY zeolite using thermal treatment (550°C, 5h) and this material has excellent performance as an antibacterial agent after silver ions loading. PMID:26652350

  3. Vitrification of copper flotation waste.

    PubMed

    Karamanov, Alexander; Aloisi, Mirko; Pelino, Mario

    2007-02-01

    The vitrification of an hazardous iron-rich waste (W), arising from slag flotation of copper production, was studied. Two glasses, containing 30wt% W were melted for 30min at 1400 degrees C. The first batch, labeled WSZ, was obtained by mixing W, blast furnace slag (S) and zeolite tuff (Z), whereas the second, labeled WG, was prepared by mixing W, glass cullet (G), sand and limestone. The glass frits showed high chemical durability, measured by the TCLP test. The crystallization of the glasses was evaluated by DTA. The crystal phases formed were identified by XRD resulting to be pyroxene and wollastonite solid solutions, magnetite and hematite. The morphology of the glass-ceramics was observed by optical and scanning electron microscopy. WSZ composition showed a high rate of bulk crystallization and resulted to be suitable for producing glass-ceramics by a short crystallization heat-treatment. WG composition showed a low crystallization rate and good sinterability; glass-ceramics were obtained by sinter-crystallization of the glass frit. PMID:17064848

  4. A zeolite ion exchange membrane for redox flow batteries.

    PubMed

    Xu, Zhi; Michos, Ioannis; Wang, Xuerui; Yang, Ruidong; Gu, Xuehong; Dong, Junhang

    2014-03-01

    The zeolite-T membrane was discovered to have high proton permselectivity against vanadium ions and exhibit low electrical resistance in acidic electrolyte solutions because of its enormous proton concentration and small thickness. The zeolite membrane was demonstrated to be an efficient ion exchange membrane in vanadium redox flow batteries. PMID:24396857

  5. FUNDAMENTALS AND APPLICATIONS OF PERVAPORATION THROUGH ZEOLITE MEMBRANES

    EPA Science Inventory

    Zeolite membranes are well suited for separating liquid-phase mixtures by pervaporation because of their molecular-sized pores and their hydrophilic/hydrophobic nature, and the first commercial application of zeolite membranes has been for dehydrating organics [1]. Because of ...

  6. Selective thermal and photooxidation of hydrocarbons in zeolites by oxygen

    DOEpatents

    Frei, Heinz; Blatter, Fritz; Sun, Hai

    2001-01-01

    A process for a combined selective thermal oxidation and photooxidation of hydrocarbons adsorbed onto zeolite matrices. A highly combined selective thermal oxidation and photooxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls in solvent free zeolites under dark thermal conditions or under irradiation with visible light. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts.

  7. Selective thermal and photooxidation of hydrocarbons in zeolites by oxygen

    DOEpatents

    Frei, Heinz; Blatter, Fritz; Sun, Hai

    1999-01-01

    A process for selective thermal oxidation or photooxidation of hydrocarbons adsorbed onto zeolite matrices. A highly selective thermal oxidation and photooxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls in solvent free zeolites under dark thermal conditions or under irradiation with visible light. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts.

  8. Selective thermal and photooxidation of hydrocarbons in zeolites by oxygen

    DOEpatents

    Frei, H.; Blatter, F.; Sun, H.

    1999-06-22

    A process is described for selective thermal oxidation or photooxidation of hydrocarbons adsorbed onto zeolite matrices. A highly selective thermal oxidation and photooxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls in solvent free zeolites under dark thermal conditions or under irradiation with visible light. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts. 19 figs.

  9. Selective thermal oxidation of hydrocarbons in zeolites by oxygen

    DOEpatents

    Frei, Heinz; Blatter, Fritz; Sun, Hai

    2000-01-01

    A process for selective thermal oxidation of hydrocarbons adsorbed onto zeolite matrices. A highly selective thermal oxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls is carried out in solvent free zeolites under dark thermal conditions. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts.

  10. Ion exchange in a zeolite-molten chloride system

    SciTech Connect

    Woodman, R.H.; Pereira, C.

    1997-07-01

    Electrometallurgical treatment of spent nuclear fuel results in a secondary waste stream of radioactive fission products dissolved in chloride salt. Disposal plans include a waste form that can incorporate chloride forms featuring one or more zeolites consolidated with sintered glass. A candidate method for incorporating fission products in the zeolites is passing the contaminated salt over a zeolite column for ion exchange. To date, the molten chloride ion-exchange properties of four zeolites have been investigated for this process: zeolite A, IE95{reg_sign}, clinoptilolite, and mordenite. Of these, zeolite A has been the most promising. Treating zeolite 4A, the sodium form of zeolite A , with the solvent salt for the waste stream-lithium-potassium chloride of eutectic melting composition, is expected to provide a material with favorable ion-exchange properties for the treatment of the waste salt. The authors constructed a pilot-plant system for the ion-exchange column. Initial results indicate that there is a direct relationship between the two operating variable of interest, temperature, and initial sodium concentration. Also, the mass ratio has been about 3--5 to bring the sodium concentration of the effluent below 1 mol%.