Science.gov

Sample records for zeolite modification copper

  1. Copper-containing zeolite catalysts

    DOEpatents

    Price, Geoffrey L.; Kanazirev, Vladislav

    1996-01-01

    A catalyst useful in the conversion of nitrogen oxides or in the synthesis of nitriles or imines from amines, formed by preparing an intimate mechanical mixture of a copper (II)-containing species, such as CuO or CuCl.sub.2, or elemental copper, with a zeolite having a pore mouth comprising 10 oxygen atoms, such as ZSM-5, converting the elemental copper or copper (II) to copper (I), and driving the copper (I) into the zeolite.

  2. Copper-containing zeolite catalysts

    DOEpatents

    Price, G.L.; Kanazirev, V.

    1996-12-10

    A catalyst useful in the conversion of nitrogen oxides or in the synthesis of nitriles or imines from amines, is formed by preparing an intimate mechanical mixture of a copper (II)-containing species, such as CuO or CuCl{sub 2}, or elemental copper, with a zeolite having a pore mouth comprising 10 oxygen atoms, such as ZSM-5, converting the elemental copper or copper (II) to copper (I), and driving the copper (I) into the zeolite.

  3. Chiral modification of copper exchanged zeolite-Y with cinchonidine and its application in the asymmetric Henry reaction.

    PubMed

    Deka, Jogesh; Satyanarayana, L; Karunakar, G V; Bhattacharyya, Pradip Kr; Bania, Kusum K

    2015-12-28

    Chirally modified Cu(2+) exchanged zeolite-Y was synthesized by direct adsorption of cinchonidine under ambient conditions. The chirally modified materials were characterized using various spectrochemical and physicochemical techniques viz. BET, FTIR, MAS ((1)H and (13)C NMR), XPS, SEM, cyclic voltammetry and PXRD. Characteristic peaks of cinchonidine observed in the supported materials confirmed the adsorption of cinchonidine and its coordination with the Cu(2+) active site on copper exchanged zeolite-Y. (13)C SSNMR and XPS analysis however confirmed for the half encapsulation process, only the quinoline ring of cinchonidine gets coordinated to the internal metal sites via the N atom while the quinuclidine moiety extends out of the host surface. Cinchonidine supported Cu(2+)-Y zeolites were found to exhibit good catalytic performance in the asymmetric Henry reaction. (1)H SSNMR studies also confirmed the protonation of the N atom of the quinuclidine ring during the course of the Henry reaction. Heterogeneous chiral catalysts were effective for up to two consecutive cycles. Leaching of cinchonidine after the second cycle was found to have a negative result in the catalytic performance. PMID:26579982

  4. Copper-Exchanged Zeolite L Traps Oxygen

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K.; Seshan, Panchalam K.

    1991-01-01

    Brief series of simple chemical treatments found to enhance ability of zeolite to remove oxygen from mixture of gases. Thermally stable up to 700 degrees C and has high specific surface area which provides high capacity for adsorption of gases. To increase ability to adsorb oxygen selectively, copper added by ion exchange, and copper-exchanged zeolite reduced with hydrogen. As result, copper dispersed atomically on inner surfaces of zeolite, making it highly reactive to oxygen, even at room temperature. Reactivity to oxygen even greater at higher temperatures.

  5. Electrical properties of the zeolite composites prepared by using zeolite and copper powders

    NASA Astrophysics Data System (ADS)

    Orbukh, V. I.; Lebedeva, N. N.; Ozturk, S.; Salamov, B. G.

    2013-02-01

    We present the electrical characterization of a zeolite plate and its composites prepared by using zeolite and copper powders. The experimentally obtained electronic and ionic conductivities and their interactions are discussed. It is established that electrical properties of the powder of natural zeolite which included 10% of the metallic Cu powder is fundamentally changed. However, the non-steady state decaying current in a pure zeolite powder is replaced with the steady state current, strongly dependent on the gas pressure. It is assumed that there is the gas discharge ignition in the nanopores of zeolite, initiated by electrons emission from Cu metal particles.

  6. Optical appearance of copper clusters and nanoparticles in zeolites

    NASA Astrophysics Data System (ADS)

    Petranovskii, Vitalii P.; Gurin, Valerij S.; Machorro, Roberto; Abbaspur, Alireza

    2004-08-01

    Copper incorporation into zeolites by the ion-exchange from Cu(II) solutions followed by different heat treatments results in a production of a number of species. Redistribution among different sites after dehydration, spontaneous and forced reduction, cluster and particle aggregation, etc. can occur, and a final copper state depends on type of zeolite, SiO2/Al2O3 molar ratio and processing conditions. Various species where observed: copper ions Cu2+ and Cu+, small particles and clusters Cun. We concentrate on the appearance of small copper clusters feasible in zeolites with size of cavities those match the cluster size. The clusters were simulated with ab initio quantum chemical calculations in the range of sizes 5 < n < 10 those are probable within zeolites cavities. Experimental data available on optical absorption of the reduced copper in the three types of zeolites can argue on the occurrence of the clusters stabilized within channels under mild reduction conditions while the larger copper nanoparticles appear under the harder reduction. The model calculation proposes some few-atomic copper clusters (Cun) as the candidates to fit the zeolite cavities with correspondence of the calculated absorption bands with the experimental spectra.

  7. Effect of zeolite type upon properties of copper nanoparticles and the clusters produced within them

    NASA Astrophysics Data System (ADS)

    Petranovskii, Vitalii P.; Gurin, Valerij S.; Bogdanchikova, Nina E.; Phatanasri, Suphot; Praserthdam, Piyasan

    2002-06-01

    Copper nanoparticles were produced within the protonated and alkaline forms of several zeolites by the hydrogen reduction of corresponding Cu-exchanged forms. Variation of zeolite structure, reduction temperature and acidity of zeolites were the main factors influencing metal reducibility and appearance of copper reduced forms. They were detected by means of optical absorption using diffuse reflectance spectroscopy technique. The effect of zeolite type upon the plasmon resonance band associated with the reduced copper clusters was investigated experimentally and discussed with eh Mie theory simulation results. The type of this spectral appearance is associated with size of copper nanoparticles formed as the result of reduction and secondary aggregation and dielectric properties of zeolite micro crystals being a matrix for the nanoparticle stabilization.

  8. Formation of Catalytically Active Copper Nanoparticles in Natural Zeolites for Complete Oxidation of Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Petranovskii, V. P.; Pestryakov, A. N.; Kazantseva, L. K.; Castillon Barraza, F. F.; Faras, M. H.

    Copper catalysts for complete oxidation of hydrocarbons supported on natural zeolites of different structure and origin were prepared by ion-exchange procedure. The catalytic experiments demonstrate that the temperature of beginning of hydrocarbons conversion is in the range of 170-300 C, depending on the composition of the catalyst. The complete conversion can be observed for both zeolites, depending (probably) on Si/Al ratio of the zeolite matrix. Different states of the copper have been identified by the methods of UV-VIS and XPS spectroscopies and TPR by hydrogen. Whereas no changes in XRD and 27Al MAS NMR was observed under condition of catalytic runs, that supports conclusion about stability of bulk material, XPS spectroscopy reveals significant altering in surface composition under different treatments due to appearance of complicated nano-species of copper, which are responsible for catalytic activity.

  9. Isothermal Cyclic Conversion of Methane into Methanol over Copper-Exchanged Zeolite at Low Temperature.

    PubMed

    Tomkins, Patrick; Mansouri, Ali; Bozbag, Selmi E; Krumeich, Frank; Park, Min Bum; Alayon, Evalyn Mae C; Ranocchiari, Marco; van Bokhoven, Jeroen A

    2016-04-25

    Direct partial oxidation of methane into methanol is a cornerstone of catalysis. The stepped conversion of methane into methanol currently involves activation at high temperature and reaction with methane at decreased temperature, which limits applicability of the technique. The first implementation of copper-containing zeolites in the production of methanol directly from methane is reported, using molecular oxygen under isothermal conditions at 200 °C. Copper-exchanged zeolite is activated with oxygen, reacts with methane, and is subsequently extracted with steam in a repeated cyclic process. Methanol yield increases with methane pressure, enabling reactivity with less reactive oxidized copper species. It is possible to produce methanol over catalysts that were inactive in prior state of the art systems. Characterization of the activated catalyst at low temperature revealed that the active sites are small clusters of copper, and not necessarily di- or tricopper sites, indicating that catalysts can be designed with greater flexibility than formerly proposed. PMID:27010863

  10. Conversion of methane to methanol on copper-containing small-pore zeolites and zeotypes.

    PubMed

    Wulfers, M J; Teketel, S; Ipek, B; Lobo, R F

    2015-03-14

    This communication reports the discovery of several small-pore Cu-zeolites and zeotypes that produce methanol from methane and water vapor, and produce more methanol per copper atom than Cu-ZSM-5 and Cu-mordenite. The new materials include Cu-SSZ-13, Cu-SSZ-16, Cu-SSZ-39, and Cu-SAPO-34. PMID:25679753

  11. Improving the ammonium ion uptake onto natural zeolite by using an integrated modification process.

    PubMed

    Liang, Zhu; Ni, Jinren

    2009-07-15

    Detailed investigation on the development of physical and chemical properties of a natural calcium-rich zeolite modified by an integrated process, as well as the relation between the development and ammonium ion uptake (AIU), was conducted. This process consisted of pretreatment (grinding and sieving), sodium salt modification and calcination. Both pretreatment and salt modification largely increased BET surface area, total pore volume and average pore diameter of the raw zeolite. Individual calcination at temperature above 150 degrees C caused framework collapse, losses of partial clinoptilolite and production of X-ray amorphous material, resulting in pore blockage and the decreases in pore volume and BET surface area. However, the introduction of sodium ion enhanced the heat resistance of the raw material from 150 to 400 degrees C, and Na(+) ion treatment followed by calcination could effectively improved pore and surface properties of zeolite, thus leading to the significant enhancement in ammonium ion exchange and adsorption capabilities. PMID:19135300

  12. A facile top-down protocol for postsynthesis modification of hierarchical aluminum-rich MFI zeolites.

    PubMed

    Yu, Lili; Huang, Shengjun; Miao, Shu; Chen, Fucun; Zhang, Shuang; Liu, Zhenni; Xie, Sujuan; Xu, Longya

    2015-01-12

    High aluminum content constitutes a major hurdle for the postsynthesis modification of hierarchical zeolites. A facile protocol comprising fluorination and sequential alkaline treatment is presented for the postsynthesis modification of hierarchical Al-rich MFI zeolites. By virtue of this protocol, uniform intracrystalline mesoporosity is introduced in an Al-rich MFI zeolite (Si/Al = 14.3). The obtained hierarchical zeolites exhibit a significant mesopore size distribution, centered around 6 nm, and show improved conversions in catalytic cracking of bulky aromatic molecules. The fundamental implications of the fluorination-alkaline treatment protocol are related to the formation of F-bearing tetrahedral aluminum species in the antecedent fluorination step, which alleviates the resistance of Al sites to the alkaline medium and causes Al-F complexation for regulated hydrolysis of the Al species during the alkaline treatment process. This top-down protocol and the derived mechanistic understandings are expected to be applied in the synthesis of hierarchical Al-rich zeolites with other framework topologies. PMID:25399674

  13. laser-induced luminescence in reduced copper-exchanged Y zeolite

    NASA Astrophysics Data System (ADS)

    Deson, J.; Lalo, C.; Gédéon, A.; Vasseur, F.; Fraissard, J.

    1996-08-01

    Copper-exchanged sodium Y zeolite exhibit broad-band emission under 240 nm laser photoexcitation. A kinetic study of the decay of the luminescence spectrum reveals three components with contributions which depend on the thermal pretreatment of the sample, dehydration or reduction in hydrogen. Identification of two of the emitting centres as Cu + sites indicates that autoreduction accompanies dehydration. Prolonged reduction in hydrogen diminishes the concentration of these species.

  14. Plasmon resonance of copper nanoparticles within zeolites: the effect of matrix composition and agglomeration temperature

    NASA Astrophysics Data System (ADS)

    Petranovskii, Vitalii P.; Gurin, Valerij S.; Tamariz Flores, Jose V.

    2001-07-01

    Small copper particles within zeolite (mordenite) matrix produced by copper ion reduction were studied. Variation of SiO2/Al2O3 molar ratio of mordenite does not change crystal structure, but results in different ionic properties. A change of SiO2/Al2O3 ratio leads to transformation of the plasmon resonance from a classical peak to a shoulder in the same wavelength range. These features were simulated by the Mie theory, and calculations outlined additional absorption bands those consistent with the experiment.

  15. Zeolites

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Zeolites are crystalline aluminosilicates that have complex framework structures. However, there are several features of zeolite crystals that make unequivocal structure determinations difficult. The acquisition of reliable structural information on zeolites is greatly facilitated by the availability of high-quality specimens. For structure determinations by conventional diffraction techniques, large single-crystal specimens are essential. Alternatively, structural determinations by powder profile refinement methods relax the constraints on crystal size, but still require materials with a high degree of crystalline perfection. Studies conducted at CAMMP (Center for Advanced Microgravity Materials Processing) have demonstrated that microgravity processing can produce larger crystal sizes and fewer structural defects relative to terrestrial crystal growth. Principal Investigator: Dr. Albert Sacco

  16. Surface modification of ultra thin PES-zeolite using thermal annealing to increase flux and rejection of produced water treatment

    NASA Astrophysics Data System (ADS)

    Kusworo, T. D.; Widayat, Pradini, A. W.; Armeli, Y. P.

    2015-12-01

    Membrane technology is an alternative of water treatment based on filtration that is being developed. Surface Modification using heat treatment has been investigated to improve the performance of ultra thin PES-Zeolite nanocomposite membrane for produced water treatment from Pertamina Balongan. Two types of membranes with surface modification and without modification were prepared to study the effect of surface modification on its permeation properties. Asymmetric ultra thin PES-Zeolite nanocomposite membrane for produced water treatment was casted using the dry/wet phase inversion technique from dope solutions containing polyethersulfone, N-methyl-2-pyrrolidone (NMP) as a solvent and zeolite as a filler. Experimental results showed that the heat treatment at near glass transition temperature was increase the rejection of COD, Turbidity and ion Ca2+. The better adherence of zeolite particles in the polymer matrix combined with formation of charge transfer complexes (CTCs) and cross-linking might be the main factors to enhance the percent of rejection. Field emission scanning electron microscopy (FESEM) micrographs showed that the selective layer and the substructure of PES-zeolite membrane became denser and more compact after the heat treatment. The FESEM micrographs also showed that the heat treatment was increased the adherence of zeolite particle and polymer. Membranes treated at 180 °C for 15 seconds indicated increase the rejection and small decrease in flux for produced water treatment..

  17. Valence state alternation of copper species doped in HY zeolite as revealed by paramagnetic relaxation enhancement NMR spectroscopy.

    PubMed

    Zhou, Lei; Li, Shenhui; Li, Jing; Wang, Qiang; Deng, Feng

    2016-01-01

    Paramagnetic relaxation enhancement (PRE) solid-state NMR (ssNMR) was used to monitor the valence state alternation of copper species doped in HY zeolite during catalytic reaction processes. The combination of PRE ssNMR and in-situ NMR spectroscopy facilitates the detection of copper species as well as the monitoring of evolution from reactants, intermediates to products in heterogeneously catalyzed processes, which is of great importance for elucidating the detailed catalytic reaction mechanism. PMID:26970200

  18. Stable copper-zeolite filter media for bacteria removal in stormwater.

    PubMed

    Li, Ya L; McCarthy, David T; Deletic, Ana

    2014-05-30

    Cu(2+)-exchanged zeolite (ZCu) as antibacterial media shows great potential for bacteria removal from stormwater, but its stability in high salinity water needs attention. In this study, stable antibacterial media were developed by modifying ZCu through calcination and in situ Cu(OH)2 coating. Their stability and Escherichia coli removal efficiency along with impact of salinity were examined in gravity-fed columns. While copper leaching from ZCu was 20mg/L in test water of salinity 250μS/cm, it was reduced by over 97% through Cu(OH)2 coating and/or calcination. ZCu coated with Cu(OH)2 followed by heat treatment at 180°C (ZCuCuO180) exhibited more consistent E. coli removal (1.7-2.7 log) than ZCu (1.2-3.3 log) in test water of varied salinity but constant contact time 22min. ZCu calcined at 400°C (ZCu400) effectively inactivated removed bacteria during 24h drying period. In the presence of native microbial communities, new sand filters, particularly those having ZCu400 at the top to inactivate bacteria during drying periods and ZCuCuO180 midway to capture and inactivate microbes during wet events, provided the best bacterial removal (1.7 log, contact time 9min). Copper leaching from this design was 9μg/L, well below long-term irrigation standard of 200μg/L. PMID:24747698

  19. Tailoring the Transport Properties of Zeolitic Imidazolate Frameworks by Post-Synthetic Thermal Modification.

    PubMed

    Zhang, Chen; Koros, William J

    2015-10-28

    Understanding how to control transport properties of zeolitic imidazolate frameworks (ZIFs) is critical to extend ZIF-based membranes and adsorbents to a wide spectrum of gas and vapor separations. In this work, we report a facile post-synthetic thermal modification (PSTM) technique to tailor ZIFs' transport properties by balancing diffusivity and diffusion selectivity. With controllable dissociation of framework methyl groups from a precursor ZIF (ZIF-8), we have prepared thermally modified ZIFs showing substantially increased n-butane diffusivity and attractive n/iso-butane diffusion selectivity. Hybrid ZIF/polymer mixed-matrix membranes formed using these thermally modified ZIFs are expected to deliver attractive butane isomer separation performance. Membranes based on such materials can potentially be used to retrofit refinery alkylation units for producing premium gasoline blending stocks. PMID:26451850

  20. Optimizing anti-coking abilities of zeolites by ethylene diamine tetraacetie acid modification on catalytic fast pyrolysis of corn stalk

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Zhong, Zhaoping; Song, Zuwei; Ding, Kuan; Chen, Paul; Ruan, Roger

    2015-12-01

    In order to minimize coke yield during biomass catalytic fast pyrolysis (CFP) process, ethylene diamine tetraacetie acid (EDTA) chemical modification method is carried out to selectively remove the external framework aluminum of HZSM-5 catalyst. X-ray diffraction (XRD), nitrogen (N2)-adsorption and ammonia-temperature programmed desorption (NH3-TPD) techniques are employed to investigate the porosity and acidity characteristics of original and modified HZSM-5 samples. Py-GC/MS and thermo-gravimetric analyzer (TGA) experiments are further conducted to explore the catalytic effect of modified HZSM-5 samples on biomass CFP and to verify the positive effect on coke reduction. Results show that EDTA treatment does not damage the crystal structure of HZSM-5 zeolites, but leads to a slight increase of pore volume and pore size. Meanwhile, the elimination of the strong acid peak indicates the dealumination of outer surface of HZSM-5 zeolites. Treatment time of 2 h (labeled EDTA-2H) is optimal for acid removal and hydrocarbon formation. Among all modified catalysts, EDTA-2H performs the best for deacidification and can obviously increase the yields of positive chemical compositions in pyrolysis products. Besides, EDTA modification can improve the anti-coking properties of HZSM-5 zeolites, and EDTA-2H gives rise to the lowest coke yield.

  1. Corrosion resistance properties of superhydrophobic copper surfaces fabricated by one-step electrochemical modification process

    NASA Astrophysics Data System (ADS)

    Huang, Ying; Sarkar, D. K.; Gallant, Danick; Chen, X.-Grant

    2013-10-01

    Superhydrophobic copper surfaces have been prepared by a one-step electrochemical modification process in an ethanolic stearic acid solution. In this work, the corrosion properties of hydrophobic copper surface and superhydrophobic copper surfaces were analyzed by means of electrochemical analyses and compared with that of as-received bare copper substrate. The decrease of corrosion current density (icorr) as well as the increase of polarization resistance (Rp) obtained from potentiodynamic polarization curves revealed that the superhydrophobic film on the copper surfaces improved the corrosion resistance performance of the copper substrate.

  2. Antimicrobial properties of zeolite-X and zeolite-A ion-exchanged with silver, copper, and zinc against a broad range of microorganisms.

    PubMed

    Demirci, Selami; Ustaoğlu, Zeynep; Yılmazer, Gonca Altın; Sahin, Fikrettin; Baç, Nurcan

    2014-02-01

    Zeolites are nanoporous alumina silicates composed of silicon, aluminum, and oxygen in a framework with cations, water within pores. Their cation contents can be exchanged with monovalent or divalent ions. In the present study, the antimicrobial (antibacterial, anticandidal, and antifungal) properties of zeolite type X and A, with different Al/Si ratio, ion exchanged with Ag(+), Zn(2+), and Cu(2+) ions were investigated individually. The study presents the synthesis and manufacture of four different zeolite types characterized by scanning electron microscopy and X-ray diffraction. The ion loading capacity of the zeolites was examined and compared with the antimicrobial characteristics against a broad range of microorganisms including bacteria, yeast, and mold. It was observed that Ag(+) ion-loaded zeolites exhibited more antibacterial activity with respect to other metal ion-embedded zeolite samples. The results clearly support that various synthetic zeolites can be ion exchanged with Ag(+), Zn(2+), and Cu(2+) ions to acquire antimicrobial properties or ion-releasing characteristics to provide prolonged or stronger activity. The current study suggested that zeolite formulations could be combined with various materials used in manufacturing medical devices, surfaces, textiles, or household items where antimicrobial properties are required. PMID:24242073

  3. Ion distribution in copper exchanged zeolites by using Si-29 spin lattice relaxation analysis.

    PubMed

    Palamara, Joseph; Seidel, Karsten; Moini, Ahmad; Prasad, Subramanian

    2016-06-01

    Transition metal-containing zeolites, particularly those with smaller pore size, have found extensive application in the selective catalytic reduction (SCR) of environmental pollutants containing nitrogen oxides. We report these zeolites have dramatically faster silicon-29 (Si-29) spin lattice relaxation times (T1) compared to their sodium-containing counterparts. Paramagnetic doping allows one to acquire Si-29 MAS spectra in the order of tens of seconds without significantly affecting the spectral resolution. Moreover, relaxation times depend on the method of preparation and the next-nearest neighbor silicon Qn(mAl) sites, where n=4 and m=0-4, respectively. A clear trend is noted between the effectiveness of Cu exchange and the Si-29 NMR relaxation times. It is anticipated that the availability of this tool, and the enhanced understanding of the nature of the active sites, will provide the means for designing improved SCR catalysts. PMID:27055207

  4. Copper stabilization by zeolite synthesis in polluted soils treated with coal fly ash

    SciTech Connect

    Roberto Terzano; Matteo Spagnuolo; Luca Medici; Bart Vekemans; Laszlo Vincze; Koen Janssens; Pacifico Ruggiero

    2005-08-15

    This paper reports on the process of zeolite formation in an agricultural soil artificially polluted by high amounts of Cu (15 mg of Cu/g of soil dry weight) and treated with fused coal fly ash at 30 and 60 C and how this process affects the mobility and availability of the metal. As a consequence of the treatment, the amount of dissolved Cu, and thus its mobility, was strongly reduced, and the percentage of the metal stabilized in the solid phase increased over time, reaching values of 30% at 30{sup o}C and 40% at 60{sup o}C. The physicochemical phenomena responsible for Cu stabilization in the solid phase have been evaluated by EDTA sequential extractions and synchrotron radiation based X-ray microanalytical techniques. These techniques were used for the visualization of the spatial distribution and the speciation of Cu in and/or on the neo-formed zeolite particles. In particular, micro XRF (X-ray fluorescence) tomography showed direct evidence that Cu can be entrapped as clusters inside the porous zeolitic structures while -{mu}XANES (X-ray absorption near edge structure) spectroscopy determinations revealed Cu to be present mainly as Cu(II) hydroxide and Cu(II) oxide. The reported results could be useful as a basic knowledge for planning new technologies for the on-site physicochemical stabilization of heavy metals in heavily polluted soils. 32 refs., 5 figs.

  5. DDR-type zeolite membrane synthesis, modification and gas permeation studies

    DOE PAGESBeta

    Yang, Shaowei; Cao, Zishu; Arvanitis, Antonios; Sun, Xinhui; Xu, Zhi; Dong, Junhang

    2016-01-22

    DDR-type zeolite membrane was synthesized on porous α-alumina substrate by hydrothermal treatment of a ball-milled Sigmal-1 crystal seed layer in an aluminum-free precursor solution containing 1-Adamantylamine as the structure directing agent (SDA). The as-synthesized DDR zeolite membranes were defect-free but the supported zeolite layers were susceptible to crack development during the subsequent high-temperature SDA removal process. The cracks were effectively eliminated by the liquid phase chemical deposition method using tetramethoxysilane as the precursor for silica deposits. The modified membrane was extensively studied for H2, He, O2, N2, CO2, CH4, and i-C4H10 pure gas permeation and CO2/CH4 mixture separation. At 297more » K and 2-bar feed gas pressure, the membrane achieved a CO2/CH4 separation factor of ~92 for a feed containing 90% CO2, which decreased to 62 for a feed containing 10% CO2 with the CO2 permeance virtually unchanged at ~1.8×10–7 mol/m• sup>2 s • Pa regardless of the feed composition. It also exhibited an O2/N2 permselectivity of 1.8 at 297 K. Furthermore, the gas permeation behaviors of the current aluminum-containing DDR type zeolite membrane are generally in good agreement with the findings in both experimental and theoretical studies on the pure-silica DDR membranes in recent literature.« less

  6. Modification of surface properties of copper-refractory metal alloys

    DOEpatents

    Verhoeven, John D.; Gibson, Edwin D.

    1993-10-12

    The surface properties of copper-refractory metal (CU-RF) alloy bodies are modified by heat treatments which cause the refractory metal to form a coating on the exterior surfaces of the alloy body. The alloys have a copper matrix with particles or dendrites of the refractory metal dispersed therein, which may be niobium, vanadium, tantalum, chromium, molybdenum, or tungsten. The surface properties of the bodies are changed from those of copper to that of the refractory metal.

  7. Natrolite zeolite supported copper nanoparticles as an efficient heterogeneous catalyst for the 1,3-diploar cycloaddition and cyanation of aryl iodides under ligand-free conditions.

    PubMed

    Nasrollahzadeh, Mahmoud; Sajadi, S Mohammad; Rostami-Vartooni, Akbar; Khalaj, Mehdi

    2015-09-01

    In this paper, we report the preparation of Natrolite zeolite supported copper nanoparticles as a heterogeneous catalyst for 1,3-diploar cycloaddition and synthesis aryl nitriles from aryl iodides under ligand-free conditions. The catalyst was characterized using XRD, SEM, TEM, EDS and TG-DTA. The experimental procedure is simple, the products are formed in high yields and the catalyst can be recycled and reused several times without any significant loss of catalytic activity. PMID:25988488

  8. Modification of medical metals by ion implantation of copper

    NASA Astrophysics Data System (ADS)

    Wan, Y. Z.; Xiong, G. Y.; Liang, H.; Raman, S.; He, F.; Huang, Y.

    2007-10-01

    The effect of copper ion implantation on the antibacterial activity, wear performance and corrosion resistance of medical metals including 317 L of stainless steels, pure titanium, and Ti-Al-Nb alloy was studied in this work. The specimens were implanted with copper ions using a MEVVA source ion implanter with ion doses ranging from 0.5 × 10 17 to 4 × 10 17 ions/cm 2 at an energy of 80 keV. The antibacterial effect, wear rate, and inflexion potential were measured as a function of ion dose. The results obtained indicate that copper ion implantation improves the antibacterial effect and wear behaviour for all the three medical materials studied. However, corrosion resistance decreases after ion implantation of copper. Experimental results indicate that the antibacterial property and corrosion resistance should be balanced for medical titanium materials. The marked deteriorated corrosion resistance of 317 L suggests that copper implantation may not be an effective method of improving its antibacterial activity.

  9. Local ammonia storage and ammonia inhibition in a monolithic copper-beta zeolite SCR catalyst

    SciTech Connect

    Auvray, Xavier P; Partridge Jr, William P; Choi, Jae-Soon; Pihl, Josh A; Yezerets, Alex; Kamasamudram, Krishna; Currier, Neal; Olsson, Louise

    2012-01-01

    Selective catalytic reduction of NO with NH{sub 3} was studied on a Cu-beta zeolite catalyst, with specific focus on the distributed NH{sub 3} capacity utilization and inhibition. In addition, several other relevant catalyst parameter distributions were quantified including the SCR zone, or catalyst region where SCR occurs, and NO and NH{sub 3} oxidation. We show that the full NH{sub 3} capacity (100% coverage) is used within the SCR zone for a range of temperatures. By corollary, unused NH{sub 3} capacity exists downstream of the SCR zone. Consequently, the unused capacity relative to the total capacity is indicative of the portion of the catalyst unused for SCR. Dynamic NH{sub 3} inhibition distributions, which create local transient conversion inflections, are measured. Dynamic inhibition is observed where the gas phase NH{sub 3} and NO concentrations are high, driving rapid NH{sub 3} coverage buildup and SCR. Accordingly, we observe dynamic inhibition at low temperatures and in hydrothermally aged states, but predict its existence very near the catalyst front in higher conversion conditions where we did not specifically monitor its impact. While this paper addresses some general distributed SCR performance parameters including Oxidation and SCR zone, our major new contributions are associated with the NH{sub 3} capacity saturation within the SCR zone and dynamic inhibition distributions and the associated observations. These new insights are relevant to developing accurate models, designs and control strategies for automotive SCR catalyst applications.

  10. Simultaneous SO{sub 2}/NO{sub x} abatement using zeolite-supported copper. Progress report, October 1, 1995--September 30, 1996

    SciTech Connect

    Mitchell, M.B.; White, M.G.

    1996-12-31

    The bulk of the results from this project, besides being found in the research reports, are in the form of two theses presented for advanced degrees by two different students at two different institutions. Francis E. Porbeni is a Master`s Degree student in Chemistry at Clark Atlanta University and has prepared his Master`s Thesis entitled Simultaneous SO{sub 2} Oxidation and NO Decomposition over Copper Oxide on {gamma}-Alumina Catalysts: An Infrared Diffuse Reflectance Study. Sumit Rao, a Ph.D. student in Chemical Engineering at the Georgia Institute of Technology has defended his thesis entitled Role of Copper Ensemble Size in Silica and Zeolite Supported Catalysts for Nitric Oxide Decomposition. These two documents, which will be forwarded when final copies are available, provide the details of the bulk of the research accomplished over the duration of this project. These two documents are summarized, and other results from the project are given.

  11. Surface modification of an epoxy resin with polyamines and polydopamine: The effect on the initial electroless copper deposition

    NASA Astrophysics Data System (ADS)

    Schaubroeck, David; Mader, Lothar; De Geyter, Nathalie; Morent, Rino; Dubruel, Peter; Vanfleteren, Jan

    2014-06-01

    This paper describes the influence of polydopamine and polyamine surface modifications of an etched epoxy cresol novolak (ECN) resin on the initial electroless copper deposition. Three different strategies to introduce polyamines on a surface in aqueous environment are applied: via polyethyleneimine adsorption (PEI), via polydopamine and via polyamines grafted to polydopamine. Next, the influence of these surface modifications on the catalytic palladium activation is investigated through X-ray photoelectron spectroscopy (XPS) analysis. Finally, the initial electroless copper deposition on modified epoxy surfaces is evaluated using SEM and Energy Dispersive Spectroscopy (EDS). Grafted polyamines on polydopamine surface modifications result in a large increase of the initial deposited copper.

  12. Surface Modification of Boron-Doped Diamond with Microcrystalline Copper Phthalocyanine: Oxygen Reduction Catalysis

    PubMed Central

    Gan, Patrick; Foord, John S; Compton, Richard G

    2015-01-01

    Surface modification of boron-doped diamond (BDD) with copper phthalocyanine was achieved using a simple and convenient dropcast deposition, giving rise to a microcrystalline structure. Both unmodified and modified BDD electrodes of different surface terminations (namely hydrogen and oxygen) were compared via the electrochemical reduction of oxygen in aqueous solution. A significant lowering of the cathodic overpotential by about 500 mV was observed after modification of hydrogen-terminated (hydrophobic) diamond, while no voltammetric peak was seen on modified oxidised (hydrophilic) diamond, signifying greater interaction between copper phthalocyanine and the hydrogen-terminated BDD. Oxygen reduction was found to undergo a two-electron process on the modified hydrogen-terminated diamond, which was shown to be also active for the reduction of hydrogen peroxide. The lack of a further conversion of the peroxide was attributed to its rapid diffusion away from the triple phase boundary at which the reaction is expected to exclusively occur. PMID:26491640

  13. Surface modification of titanium using nanothin films of copper for biofouling control.

    PubMed

    Vishwakarma, Vinita; Manoharan, N; George, R P; Dash, S; Kamruddin, M; Tyagi, A K; Daya, R K

    2009-09-01

    Biofouling is one of the major impediment in the use of titanium, which is otherwise excellent material with respect to corrosion resistance and mechanical properties, for seawater-cooled condensers of power plants. The routine chlorination treatment and sponge ball cleaning may not be successful to keep the titanium condenser tube clean over a period extending to years. This brings into focus the relevance of surface modification of titanium to improve the antimicrobial properties, which can effectively supplement the present treatment programmes. In this study antimicrobial thin film of copper (Cu) is developed on titanium surfaces, as copper is known to be very toxic to microorganisms and effectively kills most of the microbes by blocking the respiratory enzyme system. The preparation of nanocrystalline thin films of copper on titanium surfaces was done by pulsed DC magnetron-sputtering technique. Then this thin film was characterized using Glancing Incidence X-ray Diffraction (GIXRD) and Atomic Force Microscopy (AFM). Antimicrobial properties of these specimens were evaluated by exposure studies in seawater. Results showed two order decrease in the bacterial density on copper coated surface and epifluorescence micrographs depicted very few fluorescing cells and no biofilm formation clearly demonstrating the superior antibacterial capability of this nanocrystalline copper thin film. PMID:19928248

  14. Disilane-modified mordenite zeolites

    SciTech Connect

    Yan, Y.; Vansant, E.F. )

    1990-03-22

    The effective pore size of H-mordenite zeolite can be decreased by implantation of disilyl compounds. Chemisorption of disilane at high temperature results in denser packing of the implanted entities on the external surface. This in turn enhances the pore narrowing effect. After hydrolysis-dehydration, the external surface of the disilanated zeolite can be reactivated by partial rehydration; thus a successive modification of the zeolite surface is possible.

  15. High-adhesion Cu patterns fabricated by nanosecond laser modification and electroless copper plating

    NASA Astrophysics Data System (ADS)

    Lv, Ming; Liu, Jianguo; Zeng, Xiaoyan; Du, Qifeng; Ai, Jun

    2015-10-01

    Adhesion strength is a crucial factor for the performance and reliability of metallic patterns on insulator substrates. In this study, we present an efficient technique for selective metallization of alumina ceramic with high adhesion strength by using nanosecond laser modification and electroless copper plating. Specifically, a 355 nm Nd:YVO4 ultraviolet (UV) laser was employed not only to decompose palladium chloride film locally for catalyzing the electroless reaction, but also to modify the ceramic surface directly using its high fluence. An orthogonal experiment was undertaken to study the effects of processing parameters including laser fluence, scanning speed and scanning line interval on adhesion strength. The adhesion strength was measured by pulling a metallic wire soldered into the copper coating perpendicular to the substrate using a pull tester. The results have shown that a strong adhesion between the copper coating and the alumina ceramic, higher than the tensile strength of tin-lead solder was obtained. Surface and interface characteristics were investigated to understand that, whose results have shown that the high-aspect-ratio microstructures formed by the laser modification is the major reason for the improvement of adhesion.

  16. Simultaneous SO{sub 2}/NO{sub x} abatement using zeolite-supported copper. Progress report, October 1, 1992--December 31, 1992

    SciTech Connect

    Mitchell, M.B.; White, M.G.

    1994-09-01

    The proposed research seeks to advance/improve current flue gas cleanup catalyst technology by modifying promising copper-exchanged zeolite NO decomposition catalysts which reduce NO to elemental nitrogen and oxygen in the absence of an added reducing gas. The authors believe that this approach has great potential. Copper on alumina has been investigated by the Pittsburgh Energy Technology Center (PETC) as a NO{sub x}/SO{sub 2} abatement catalyst. Copper on alumina acts as a sorbent for SO{sub 2}, forming a surface sulfate upon adsorption in an oxygen-containing atmosphere, and as a catalyst for selective catalytic reduction (SCR) of NO{sub x} using ammonia; both CuO and CuSO{sub 4} on the surfaces of these materials are active SCR catalysts. SO{sub 2} adsorption in the PETC studies was carried out at 673K, a temperature well within the range for active NO decomposition by the Cu-ZSM-5 catalyst. The authors believe that by beginning with a material which decomposes NO without needing an added reducing gas, they will be able to design a catalyst which will act as a regenerable NO{sub x}/SO{sub 2} abatement catalyst which does not need ammonia to accomplish NO{sub x} reduction, and which will accomplish SO{sub 2} abatement by adsorption, similar to the copper on alumina catalyst. Coupled with a SO{sub 2} oxidation catalyst, this successful system will be able to remove both NO{sub x} and SO{sub 2} from flue gases with no added reducing agent and no waste.

  17. Ion-beam-induced modifications in the structural and electrical properties of copper oxide selenite nanowires

    NASA Astrophysics Data System (ADS)

    Rana, Pallavi; Chauhan, R. P.

    2015-04-01

    Irradiation with swift heavy ions (SHIs) with energy in the MeV range is a unique tool for engineering the properties of materials. In this context, the objective of the present work is to study the conduction of charge carriers in pre- and post-ion-irradiated semiconducting nanowires. Copper oxide selenite nanowires were synthesized using a template-assisted electrodeposition technique from an aqueous solution of 0.8 M CuSO4·5H2O and 8 mM SeO2. The synthesized nanowires were observed to have a monoclinic structure with linear I-V characteristics (IVC). The effect of irradiation with 160 MeV Ni+12 ions on the properties of the copper oxide selenite nanowires was investigated for fluences varying from 1011 to 1013 ions/cm2. XRD spectra confirmed no change in the phase of the swift-heavy-ion-irradiated nanowires, but a modification in the orientation of the planes was observed that depended on the ion fluence. The electrical resistivity of the semiconducting nanowires also varied with the ion fluence. Simultaneous irradiation-induced modifications to the electro-chemical potential gradient and the granular properties of the material may have been the origin of the alteration in the structural and electrical properties of the nanowires.

  18. Two-dimensional zeolite-like network in the new caesium copper aluminate Cs2CuAl4O8.

    PubMed

    Shvanskaya, Larisa; Yakubovich, Olga; Massa, Werner; Vasiliev, Alexander

    2015-10-01

    Monoclinic dicaesium copper tetraaluminate, Cs2CuAl4O8, space group P2(1)/c, a = 8.4551 (7), b = 10.012 (1), c = 17.073 (2) Å, β = 101.643 (9)°, Z = 6, was obtained by high-temperature crystallization from a phosphate flux. Its microporous crystal structure presents the first example of double layers built from [AlO4] tetrahedra combined in 4-, 6- and 8-rings, topologically similar to those found in the ATT-type zeolites and isostructural minerals armstrongite, davanite and dalyite. These layers show a rare arrangement of three [AlO4] tetrahedra sharing one oxygen vertex. The aluminate slabs are further linked by chains of edge-sharing [CuO4] square planes to form a mixed anionic three-dimensional framework with Cs(+) cations in channels and cavities. An unusually short Cu···Cs distance of 3.166 Å is ascribed to the strong Jahn-Teller effect of Cu(2+). The magnetic subsystem demonstrates properties of an alternating antiferromagnetic chain with a gap in the spectrum of magnetic excitations. PMID:26428399

  19. Sorption Kinetics Of Selected Heavy Metals Adsorption To Natural And Fe(III) Modified Zeolite Tuff Containing Clinoptilolite Mineral

    NASA Astrophysics Data System (ADS)

    Sirotiak, Maroš; Lipovský, Marek; Bartošová, Alica

    2015-06-01

    In the research described in this paper, studied was sorption capacity of natural and ferric modification of zeolite tuff containing mineral clinoptilolite from the Nižný Hrabovec deposit to remove potentially toxic metals (ionic forms of chromium, nickel, copper and aluminium) from their water solutions. We reported that the Fe (III) zeolite has an enhanced ability to sorption of Cu (II), and a slight improvement occurs in the case of Cr (VI) and Ni (II). On the other hand, the deterioration was observed in the case of Al (III) adsorption.

  20. Can Dynamics Be Responsible for the Complex Multipeak Infrared Spectra of NO Adsorbed to Copper(II) Sites in Zeolites?

    PubMed

    Göltl, Florian; Sautet, Philippe; Hermans, Ive

    2015-06-26

    Copper-exchanged SSZ-13 is a very efficient material in the selective catalytic reduction of NO(x) using ammonia (deNO(x)-SCR) and characterizing the underlying distribution of copper sites in the material is of prime importance to understand its activity. The IR spectrum of NO adsorbed to divalent copper sites are modeled using ab initio molecular dynamics simulations. For most sites, complex multi-peak spectra induced by the thermal motion of the cation as well as the adsorbate are found. A finite temperature spectrum for a specific catalyst was constructed, which shows excellent agreement with previously reported data. Additionally these findings allow active and inactive species in deNO(x)-SCR to be identified. To the best of our knowledge, this is the first time such complex spectra for single molecules adsorbed to single active centers have been reported in heterogeneous catalysis, and we expect similar effects to be important in a large number of systems with mobile active centers. PMID:25966680

  1. Copper(II) thiosemicarbazonate molecular modifications modulate apoptotic and oxidative effects on U937 cell line.

    PubMed

    Bisceglie, Franco; Pinelli, Silvana; Alinovi, Rossella; Tarasconi, Pieralberto; Buschini, Annamaria; Mussi, Francesca; Mutti, Antonio; Pelosi, Giorgio

    2012-11-01

    To improve the solubility in aqueous media of bis(citronellalthiosemicarbazonato)copper(II) [Cu(S-tcitr)(2)], a compound that is effective in inhibiting cell growth of U937 cell line, the ligand was modified adding an ethylmorpholine group. [Cu(S-tcitr)(2)] and [Cu(Etmorph-S-tcitr)(2)] cytotoxic effects are compared using as a model U937 cells. [Cu(Etmorph-S-tcitr)(2)] results more effective in cell growth inhibition (IC(50:) 2.3 vs 14.8 μM). Apoptosis in [Cu(Etmorph-S-tcitr)(2)] treated cells was apparent after 8h, with increased caspase activities, and these effects were not observed for [Cu(S-tcitr)(2)]. During the exposure to [Cu(Etmorph-S-tcitr)(2)], ROS (reactive oxygen species) and TBARS (Thiobarbituric acid reactive substances) significantly increased, coupled with reduced glutathione (GSH) levels and significant activation of superoxide dismutase (SOD). These intracellular scavengers seem to limit the early ROS and TBARS increases in U937 cells exposed to [Cu(S-tcitr)(2)]. Both complexes interacted in vitro with naked DNA: UV-visible and CD titration reveal that they can induce DNA structure modifications in a distinct way. Furthermore, the complexes induced DNA damage on U937 cells at concentrations higher than IC(50). The mechanisms of action and the effects of these two complexes are remarkably different even though they have the same coordination geometry around copper(II) and differ only for the presence of the ethylmorpholine group. PMID:23063788

  2. COPPER

    EPA Science Inventory

    The report is a review of current knowledge of the distribution of copper in the environment and living things. Metabolism and the effects of copper in the biosphere are also considered. Copper compounds are common and widely distributed in nature. They are also extensively mined...

  3. Inactivation of high and low pathogenic avian influenza virus H5 subtypes by copper ions incorporated in zeolite-textile materials.

    PubMed

    Imai, Kunitoshi; Ogawa, Haruko; Bui, Vuong Nghia; Inoue, Hiroshi; Fukuda, Jiro; Ohba, Masayoshi; Yamamoto, Yu; Nakamura, Kikuyasu

    2012-02-01

    The effect of cotton textiles containing Cu(2+) held by zeolites (CuZeo-textile) on the inactivation of H5 subtype viruses was examined. Allantoic fluid (AF) containing a virus (AF virus) (0.1 ml) was applied to the textile (33-cm), and incubated for a specific period at ambient temperature. After each incubation, 0.9 ml of culture medium was added followed by squeezing to recover the virus into the medium. The recovered virus was titrated using Madin-Darby canine kidney (MDCK) cells or 10-day-old embryonated chicken eggs. The highly pathogenic H5N1 and the low pathogenic H5N3 viruses were inactivated on the CuZeo-textile, even after short incubation. The titer of A/chicken/Yamaguchi/7/04 (H5N1) in MDCK cells and in eggs declined by >5.0 log(10) and 5.0 log(10), respectively, in 30 s. The titer of A/whooper swan/Hokkaido/1/08 (H5N1) in MDCK cells declined by 2.3 and 3.5 in 1 and 5 min, respectively. When A/whistling swan/Shimane/499/83 (H5N3) was treated on the CuZeo-textile for 10 min, the titer declined by >5.0 log(10) in MDCK cells and by >3.5 log(10) in eggs. In contrast, no decrease in the titers was observed on cotton textiles containing zeolites alone (Zeo-textile). Neither cytopathic effects nor NP antigens were detected in MDCK cells inoculated with the H5N1 virus treated on the CuZeo-textile. The viral genes (H5, N1, M, and NP) were amplified from the virus treated on the CuZeo-textile by RT-PCR. The hemagglutinating activity of the CuZeo-textile treated virus was unaffected, indicating that virus-receptor interactions were maintained. Electron microscopic analysis revealed a small number of particles with morphological abnormalities in the H5N3 virus samples recovered immediately from the CuZeo-textile, while no particles were detectable in the 10-min treated sample, suggesting the rapid destruction of virions by the Cu(2+) in the CuZeo-textile. The loss of infectivity of H5 viruses could, therefore, be due to the destruction of virions by Cu(2+). Interestingly, CuCl(2) treatment (500 and 5000 ?M) did not have an antiviral effect on the AF viruses (H5N1 and H5N3) even after 48 h of incubation, although the titer of the purified H5N3 virus treated with CuCl(2) declined greatly. The antiviral effect was inhibited by adding the AF to the purified H5N3 virus prior to the CuCl(2) treatment. The known antibacterial/antifungal activities of copper suggest that the CuZeo-textile can be applied at a high level of hygiene in both animals and humans. PMID:22179064

  4. Determining copper and lead binding in Larrea tridentata through chemical modification and X-ray absorption spectroscopy

    SciTech Connect

    Polette, L.; Gardea-Torresdey, J.L.; Chianelli, R.; Pickering, I.J.; George, G.N.

    1997-12-31

    Metal contamination in soils has become a widespread problem. Emerging technologies, such as phytoremediation, may offer low cost cleanup methods. The authors have identified a desert plant, Larrea tridentata (creosote bush), which naturally grows and uptakes copper and lead from a contaminated area near a smelting operation. They determined, through chemical modification of carboxyl groups with methanol, that these functional groups may be responsible for a portion of copper(II) binding. In contrast, lead binding was minimally affected by modification of carboxyl groups. X-ray absorption spectroscopy studies conducted at Stanford Synchrotron Radiation Laboratory (SSRL) further support copper binding to oxygen-coordinated ligands and also imply that the binding is not solely due to phytochelatins. The EXAFS data indicate the presence of both Cu-O and Cu-S back scatters, no short Cu-Cu interactions, but with significant Cu-Cu back scattering at 3.7 {angstrom} (unlike phytochelatins with predominantly Cu-S coordination and short Cu-Cu interactions at 2.7 {angstrom}). Cu EXAFS of roots and leaves also vary depending on the level of heavy metal contamination in the environment from which the various creosote samples were obtained. In contrast, Pb XANES data of roots and leaves of creosote collected from different contaminated sites indicate no difference in valence states or ligand coordination.

  5. Dialkyl pyridinedicarboxylates` extraction ability toward copper(II) from chloride solutions and its modification with alcohols

    SciTech Connect

    Bogacki, M.B.; Jakubiak, A.; Szymanowski, J.; Cote, G.

    1997-03-01

    Dipentyl pyridinedicarboxylates (denoted hereafter as L) with different positions of the ester groups were synthesized and used for copper(II) extraction from chloride solutions containing up to 10 mol/L Cl{sup {minus}}. The effect of decanol addition on copper extraction was studied. A molecular modeling technique was used to estimate the structures of extractants, copper complexes, and associates with alcohol. It was found that the ability of pyridinecarboxylates to extract copper depends on the aqueous phase composition and the position of the ester groups in the pyridine ring. All the investigated compounds except dipentyl pyridine-2,6-dicarboxylate extract copper(II) by formation of CuCl{sub 2}L{sub 2} complexes. Dipentyl pyridine-2,6-dicarboxylate forms another type of complex, probably CuCl{sub 2}L. However, this compound is not suitable for copper extraction as its copper complex precipitates. Dipentyl pyridine-3,5-dicarboxylate was found to be the most suitable extractant among the various compounds listed. Finally it is shown that the possibilities to modify the extraction ability of pyridinecarboxylates with a hydrophobic alcohol such as decanol are relatively weak. Some enhancement was, however, observed when 20% of decanol was added to the organic phase containing dipentyl pyridine-3,5-dicarboxylate.

  6. Simultaneous SO{sub 2}/NO{sub x} abatement using zeolite-supported copper. Progress report, April 1--June 30, 1995

    SciTech Connect

    Mitchell, M.B.; White, M.G.

    1995-12-31

    Several catalysts for NO decomposition have been reported in the literature to include the following: Cu/ZSM-5; Cu/Zeolite-Y; Cu/mordenite; Cu/{beta} zeolite; Cu/alumina; and Cu/silica which have been studied less than Cu/ZSM-5. The catalytic properties for NO conversion are found to be different on these samples with the ZSM-5 supported catalysts showing the highest activity in a dry environment free from sulfur oxides. One of the goals of this study is to have a better fundamental understanding on the different roles of Cu and the support in the catalytic reaction. The authors use stable, cationic metal complexes in non-aqueous solvents as sources of the Cu ions in producing model catalysts for which the fate of the source molecule is known and is controlled during the ion exchange/impregnation. Molecular models of these systems can be used to identify the possible configurations of the metal complexes within the zeolite support. The authors compare the performance of the model catalysts to one prepared by aqueous impregnation of ZSM-5 zeolite. The performance of the dinuclear metal complex on silica is compared to the same complex in ZSM-5 and Y-zeolites.

  7. Design and modification of zeolite capsule catalyst, a confined reaction field, and its application in one-step isoparaffin synthesis from syngas

    SciTech Connect

    Guohui Yang; Jingjiang He; Yi Zhang; Yoshiharu Yoneyama; Yisheng Tan; Yizhuo Han; Tharapong Vitidsant; Noritatsu Tsubaki

    2008-05-15

    Four kinds of zeolite capsule catalyst with different crystallization conditions were prepared and utilized for the middle isoparaffin direct synthesis via Fischer-Tropsch synthesis (FTS) reaction. Characterization results exhibited that these capsule catalysts had a compact, integral H-ZSM-5 shell. In FTS reactions on these zeolite capsule catalysts, hydrocarbons of C11+ were totally suppressed, accompanied by a sharp anti-Anderson-Schultz-Flory (ASF) law product distribution. The selectivity of light isoparaffin was improved obviously, but with the increase of the olefin's selectivity. Two-stage isoparaffin synthesis reaction, using the combination of zeolite capsule catalyst with hydrogenation catalyst of Pd/SiO{sub 2} in a single reactor as dual-bed catalyst, was also conducted for converting the residual olefins produced by the single zeolite capsule catalyst. Dependent on the palladium role of hydrogenation and hydrogen spillover, almost all the olefins effused from the first stage of zeolite capsule catalyst were hydrogenated, mostly converted to isoparaffin. The selectivity of isoparaffin in the final products was increased markedly as expected. 10 refs., 7 figs., 2 tabs.

  8. Modification of soil microbial activity and several hydrolases in a forest soil artificially contaminated with copper

    NASA Astrophysics Data System (ADS)

    Bellas, Rosa; Leirs, M? Carmen; Gil-Sotres, Fernando; Trasar-Cepeda, Carmen

    2010-05-01

    Soils have long been exposed to the adverse effects of human activities, which negatively affect soil biological activity. As a result of their functions and ubiquitous presence microorganisms can serve as environmental indicators of soil pollution. Some features of soil microorganisms, such as the microbial biomass size, respiration rate, and enzyme activity are often used as bioindicators of the ecotoxicity of heavy metals. Although copper is essential for microorganisms, excessive concentrations have a negative influence on processes mediated by microorganisms. In this study we measured the response of some microbial indicators to Cu pollution in a forest soil, with the aim of evaluating their potential for predicting Cu contamination. Samples of an Ah horizon from a forest soil under oakwood vegetation (Quercus robur L.) were contaminated in the laboratory with copper added at different doses (0, 120, 360, 1080 and 3240 mg kg-1) as CuCl22H2O. The soil samples were kept for 7 days at 25 C and at a moisture content corresponding to the water holding capacity, and thereafter were analysed for carbon and nitrogen mineralization capacity, microbial biomass C, seed germination and root elongation tests, and for urease, phosphomonoesterase, catalase and -glucosidase activities. In addition, carbon mineralization kinetics were studied, by plotting the log of residual C against incubation time, and the metabolic coefficient, qCO2, was estimated. Both organic carbon and nitrogen mineralization were lower in polluted samples, with the greatest decrease observed in the sample contaminated with 1080 mg kg-1. In all samples carbon mineralization followed first order kinetics; the C mineralization constant was lower in contaminated than in uncontaminated samples and, in general, decreased with increasing doses of copper. Moreover, it appears that copper contamination not only reduced the N mineralization capacity, but also modified the N mineralization process, since in the contaminated samples all of the inorganic nitrogen was present as ammonium, probably because of inhibition of nitrification. There was a marked decrease in biomass-C with addition of copper, and the decrease was more acute at intermediate doses (average decrease, 73%). Despite the decreases in microbial biomass and mineralized C, the value of qCO2 increased after the addition of copper. Urease activity was strongly affected by the presence of copper and the decrease was proportional to the dose; the activity at the highest dose was only 96% of that in the uncontaminated sample. Phosphomonoesterase activity was also affected by addition of copper; the reduction in activity was less than for urease and the greatest reduction was observed for the dose of 1080 mg kg-1 of copper. Catalase activity was affected by the contamination, but no clear trend was observed in relation to the dose of copper. -glucosidase was scarcely modified by the contamination but an increase in activity was observed at the highest dose of copper. Seed germination was not affected by copper contamination, since it only showed a clear decrease for the sample contaminated with the highest dose of copper, while root elongation decreased sharply with doses higher than 120 mg kg-1 of copper. The combined germination-elongation index followed a similar pattern to that of root elongation. For all investigated properties showing a reduction of more than 50%, the response to copper contamination was fitted to a sigmoidal dose-response model, in order to estimate the ED50 values. The ED50 values were calculated for microbial biomass, urease, root elongation and germination-elongation index, and similar values were obtained, ranging from 340 to 405 mg kg-1 Cu. The ED50 values may therefore provide a good estimation of soil deterioration.

  9. Copper

    Integrated Risk Information System (IRIS)

    Copper ; CASRN 7440 - 50 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects )

  10. Simultaneous SO{sub 2}/NO{sub x} abatement using zeolite-supported copper. Progress report, October 1--December 31, 1993

    SciTech Connect

    Mitchell, M.B.; White, M.G.

    1994-12-31

    A flow reactor is being constructed at Georgia Tech for the NO decomposition reaction. The reactor is partially complete with the construction of a flow meter/controller system and a temperature controller system in place now. The stainless steel reactor tube and the furnace have been fabricated and fit to the sub-assembly containing the temperature control devices. The reactor sampling system is under fabrication. The authors plan to purchase a GC-MS to determine the composition of the exit gas. They have used Raman spectroscopy to characterize Zeolite A, a cobalt ethylenediamine complex, Co(en){sub 3}Cl{sub 3}, and Zeolite A impregnated with the cobalt complex. The Raman spectra from 1,700--100 cm{sup {minus}1} are shown.

  11. Kinetics of zeolite dealumination in steam

    SciTech Connect

    Hughes, C.D.; Labouriau, A.; Crawford, S.N.; Romero, R.; Quirin, J.; Earl, W.L.

    1998-08-01

    Zeolite dealumination is a well known phenomenon that contributes to the deactivation or activation of catalysts in several different applications. The most obvious effect is in acid catalysis where dealumination under reaction conditions removes the Broensted sites, thus deactivating the catalyst. The authors are interested in the use of cation exchanged zeolites as selective reduction catalysts for removal of NO{sub x} from exhaust streams, particularly from automotive exhaust. In this case, copper exchanged ZSM-5 has been shown to be an effective catalyst for the generic reaction of NO{sub x} with hydrocarbons. However, high temperature and steam in combustion exhaust causes dealumination and consequent migration of copper out of the zeolite structure resulting in rapid deactivation of the catalyst. Dealumination of zeolites has been reported by many authors in uncountable papers and cannot be reviewed here. However, to the authors` knowledge there are no reports on the kinetics of dealumination under varying conditions of temperature and steam. By measuring the kinetics of dealumination with different zeolites and exchange cations they expect to develop working models of the dealumination process that will allow control of zeolite deactivation. This manuscript is a description of the basic techniques used and a progress report on the very beginning of this study.

  12. 2'-Deoxyuridine conjugated with a reactive monobenzocyclooctyne as a DNA building block for copper-free click-type postsynthetic modification of DNA.

    PubMed

    Stubinitzky, Claudia; Cserép, Gergely B; Bätzner, Effi; Kele, Péter; Wagenknecht, Hans-Achim

    2014-10-01

    The carboxymethylmonobenzocyclooctyne group attached to the 5-position of a 2'-deoxyuridine in DNA allows rapid and efficient copper-free postsynthetic modification as demonstrated with a far-red emitting fluorescent azide probe. Upon labeling strong fluorescence intensity enhancement is observed. PMID:25112953

  13. Systematic analysis and modification of embedded-atom potentials: case study of copper

    NASA Astrophysics Data System (ADS)

    Jalkanen, Jari; Müser, Martin H.

    2015-10-01

    In this study, we evaluate the functionals of different embedded-atom methods (EAM) by fitting their free parameters to ab-initio results for copper. Our emphasis lies on testing the transferability of the potentials between systems which vary in their spatial dimension and geometry. The model structures encompass zero-dimensional clusters, one-dimensional chains, two-dimensional tilings, and three-dimensional bulk systems. To avoid having to mimic charge transfer, which is outside the scope of conventional EAM potentials, we focus on structures, in which all atoms are symmetrically equivalent. We find that the simple, four-parameter Gupta EAM potential is overall satisfactory. Adding complexity to it decreases the errors on our set of structures only by marginal amounts, unless EAM is modified to depend also on density gradients, higher-order derivatives, or related terms. All tested conventional EAM functions reveal similar problems: the binding energy of closed-packed systems is overestimated in comparison to open or planar geometries, and structures with small coordination tend to be too rigid. These deficiencies can be fixed in terms of a systematically modified embedded-atom method (SMEAM), which reproduces DFT results on bond lengths, binding energies, and stiffnesses or bulk moduli by typically O(1%), O(5%), and O(15%) accuracy, respectively. SMEAM also predicts the radial distribution function of liquid copper quite accurately. Yet, it does not overcome the difficulty to reproduce the elastic tensor elements of a hypothetical diamond lattice.

  14. Simultaneous SO{sub 2}/NO{sub x} abatement using zeolite-supported copper. Progress report, October 1, 1993--September 30, 1994

    SciTech Connect

    Mitchell, M.B.; White, M.G.

    1994-12-31

    The goals of this project have evolved from an investigation of ways of preparing Li and Hall`s Cu-ZSM-5 catalyst using new methods to yield a more robust catalyst, into an investigation of modified Cu-ZSM-5 catalysts for the simultaneous reduction of NO and oxidation of SO{sub 2}. This was not a conscious effort or decision on the part of the investigators, but resulted from a natural evolution of the project. The authors have developed a zeolite synthesis and characterization capability in the group and have prepared impregnated test materials for the investigation of different catalyst precursors. They have prepared different vanadium-impregnated aluminas, for evaluation of the impregnation method, and have succeeded in reproducing the results of Li and Hall`s Cu-ZSM-5 catalyst. This report reviews the progress during the first three quarters of the year, and includes progress from the last quarter. Results are discussed for the Raman spectroscopy of precursors; infrared spectroscopy of vanadium-impregnated alumina; zeolite overlayer on cordierite; reactivity of Cu-ZSM-5; and impregnation of vanadyl acetylacetonate on alumina.

  15. An improved performance of copper phthalocyanine OFETs with channel and source/drain contact modifications

    NASA Astrophysics Data System (ADS)

    Huanqin, Dang; Xiaoming, Wu; Xiaowei, Sun; Runqiu, Zou; Ruochuan, Zhang; Shougen, Yin

    2015-10-01

    We report an effective method to improve the performance of p-type copper phthalocyanine (CuPc) based organic field-effect transistors (OFETs) by employing a thin para-quaterphenyl (p-4p) film and simultaneously applying V2O5 to the source/drain regions. The p-4p layer was inserted between the insulating layer and the active layer, and V2O5 layer was added between CuPc and Al in the source-drain (S/D) area. As a result, the field-effect saturation mobility and on/off current ratio of the optimized device were improved to 5 × 10-2 cm2/(V·s) and 104, respectively. We believe that because p-4p could induce CuPc to form a highly oriented and continuous film, this resulted in the better injection and transport of the carriers. Moreover, by introducing the V2O5 electrode's modified layers, the height of the carrier injection barrier could be effectively tuned and the contact resistance could be reduced. Project supported by the National Natural Science Foundation of China (No. 60676051), the National High Technology Research and Development Program of China (No. 2013A A014201), the Scientific Developing Foundation of Tianjin Education Commission (No. 2011ZD02), the Key Science and Technology Support Program of Tianjin (No. 14ZCZDGX00006), and the Foundation of Key Discipline of Material Physics and Chemistry of Tianjin.

  16. Modification research on in wall of capillary copper tube with Norland optical adhesive 68 in a double stereo PCR microfluidic chip.

    PubMed

    Wu, J; Wang, F J; Wang, C Y; Yu, K X; Ma, Y; Chen, T; Li, Y H; Zheng, Y

    2015-01-01

    In this study, a Norland optical adhesive 68 (NOA68) film, approximately 2.2 ?m thick, was manufactured using ultraviolet solidified NOA68 in apparatus manufacturing film on the inwall of a capillary copper pipe, developed in our laboratory. The roughness of the inwall of capillary copper pipe was improved from Ra = 0.766 to 0.204 ?m and the contact angle was improved from approximately 96 to 55, increasing hydrophilicity. Polymerase chain reaction experiments indicated that the ratio of work pressure in the microfluidic chip before modification to that after modification was 2.71/1, indicating that the extension efficiency increased. Our results provide a basis for the construction of a microform chip based on function integration. PMID:26535674

  17. ZEOLITES: EFFECTIVE WATER PURIFIERS

    EPA Science Inventory

    Zeolites are known for their adsorption, ion exchange and catalytic properties. Various natural zeolites are used as odor and moisture adsorbents and water softeners. Due to their acidic nature, synthetic zeolites are commonly employed as solid acid catalysts in petrochemical ind...

  18. Metal Oxide/Zeolite Combination Absorbs H2S

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E.; Sharma, Pramod K.

    1989-01-01

    Mixed copper and molybdenum oxides supported in pores of zeolite found to remove H2S from mixture of gases rich in hydrogen and steam, at temperatures from 256 to 538 degree C. Absorber of H2S needed to clean up gas streams from fuel processors that incorporate high-temperature steam reformers or hydrodesulfurizing units. Zeolites chosen as supporting materials because of their high porosity, rigidity, alumina content, and variety of both composition and form.

  19. Interfacial studies of bimetallic corrosion in copper/ruthenium systems and silicon surface modification with organic and organometallic chemistry

    NASA Astrophysics Data System (ADS)

    Nalla, Praveen Reddy

    To form Cu interconnects, dual-damascene techniques like chemical mechanical planarization (CMP) and post-CMP became inevitable for removing the "overburden" Cu and for planarizing the wafer surface. During the CMP processing, Cu interconnects and barrier metal layers experience different electrochemical interactions depending on the slurry composition, pH, and ohmic contact with adjacent metal layers that would set corrosion process. Ruthenium as a replacement of existing diffusion barrier layer will require extensive investigation to eliminate or control the corrosion process during CMP and post CMP. Bimetallic corrosion process was investigated in the ammonium citrate (a complexing agent of Cu in CMP solutions) using micro test patterns and potentiodynamic measurements. The enhanced bimetallic corrosion of copper observed is due to noble behavior of the ruthenium metal. Cu formed Cu(II)-amine and Cu(Il)citrate complexes in alkaline and acidic solutions and a corrosion mechanism has been proposed. The currently used metallization process (PVD, CVD and ALD) require ultra-high vacuum and are expensive. A novel method of Si surface metallization process is discussed that can be achieved at room temperature and does not require ultra-high vacuum. Ruthenation of Si surface through strong Si-Ru covalent bond formation is demonstrated using different ruthenium carbonyl compounds. RBS analysis accounted for monolayer to sub-monolayer coverage of Si surface. Interaction of other metal carbonyl (like Fe, Re, and Rh) is also discussed. The silicon (111) surface modifications with vinyl terminated organic compounds were investigated to form self-assembled monolayers (SAMs) and there after these surfaces were further functionalized. Acrylonitrile and vinylbenzophenone were employed for these studies. Ketone group of vinylbenzophenone anchored to Si surface demonstrated reactivity with reducing and oxidizing agents.

  20. Methods of using structures including catalytic materials disposed within porous zeolite materials to synthesize hydrocarbons

    DOEpatents

    Rollins, Harry W.; Petkovic, Lucia M.; Ginosar, Daniel M.

    2011-02-01

    Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.

  1. Systems including catalysts in porous zeolite materials within a reactor for use in synthesizing hydrocarbons

    DOEpatents

    Rolllins, Harry W.; Petkovic, Lucia M.; Ginosar, Daniel M.

    2012-07-24

    Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.

  2. A theoretical study of nitric oxide adsorption and dissociation on copper-exchanged zeolites SSZ-13 and SAPO-34: the impact of framework acid-base properties.

    PubMed

    Uzunova, Ellie L; Mikosch, Hans

    2016-04-20

    The adsorption of nitric oxide as dinitrosyls and the deNOx proton-mediated reaction mechanism are assessed using electronic structure methods and transition state theory. Dinitrosyls bind to copper cations either via a N-atom or via an O-atom, with N-binding being more stable. In their ground states, dinitrosyls reach a planar configuration with the metal cation. The two nitric oxide molecules are kept together in O-bonded dinitrosyls by the N-N bond and the adsorption complex obtains a cyclic planar structure, while N-bonded dinitrosyls have out-of-plane conformations with low energy barriers. An asymmetric structure ZCu(ON)(NO) with one N-bonded nitrosyl and the other O-bonded is of the lowest stability. The cyclic hyponitrite ZCu(ON)2 adsorption complex undergoes O-N bond breaking upon protonation of one oxygen atom and this lowers the energy barrier of the first reaction step of nitric oxide dissociation to yield N2O and a hydroxylated copper site ZCu(OH) by 45 kJ mol(-1) for Cu-SAPO-34 and by 46 kJ mol(-1) for Cu-SSZ-13. The more stable N-bonded dinitrosyl ZCu(NO)2 provides less favorable reaction which passes through the asymmetric ZCu(ON)(NO) intermediate structure. Brønsted acid sites facilitate the reversal of one nitrosyl group. The role of proton transfer from a Brønsted acid site to dinitrosyls is not limited to the initial step of facilitating the N-O bond cleavage, but it also contributes to the stabilization of intermediate oxygen species formed at the copper site as hydroxide ZCu(OH) and hydroperoxide, ZCuOOH. Without protonation, the unstable ZCuO intermediate causes structural deformation with strongly lengthened T-O bonds in the framework. The rate determining step is N2O decomposition to N2 and O2, whether starting with a ZCu(NO)2 or a ZCu(ON)2 adsorption complex, and Cu-SSZ-13 has a clear advantage with an energy barrier of 195 kJ mol(-1)vs. 265 kJ mol(-1) for Cu-SAPO-34. In the final step the Brønsted acid site is restored by proton transfer from the hydroperoxide ZCuOOH to the framework and molecular oxygen is released. The overall energy barrier for the proton-assisted reaction of ZCu(ON)2 decomposition for Cu-SSZ-13 is by 48 kJ mol(-1) lower than the barrier of the proton-free pathway. PMID:27053488

  3. Synthesis of 'unfeasible' zeolites.

    PubMed

    Mazur, Michal; Wheatley, Paul S; Navarro, Marta; Roth, Wieslaw J; Položij, Miroslav; Mayoral, Alvaro; Eliášová, Pavla; Nachtigall, Petr; Čejka, Jiří; Morris, Russell E

    2016-01-01

    Zeolites are porous aluminosilicate materials that have found applications in many different technologies. However, although simulations suggest that there are millions of possible zeolite topologies, only a little over 200 zeolite frameworks of all compositions are currently known, of which about 50 are pure silica materials. This is known as the zeolite conundrum--why have so few of all the possible structures been made? Several criteria have been formulated to explain why most zeolites are unfeasible synthesis targets. Here we demonstrate the synthesis of two such 'unfeasible' zeolites, IPC-9 and IPC-10, through the assembly-disassembly-organization-reassembly mechanism. These new high-silica zeolites have rare characteristics, such as windows that comprise odd-membered rings. Their synthesis opens up the possibility of preparing other zeolites that have not been accessible by traditional solvothermal synthetic methods. We envisage that these findings may lead to a step change in the number and types of zeolites available for future applications. PMID:26673264

  4. Advanced NMR characterization of zeolite catalysts. Final technical report

    SciTech Connect

    Welsh, L.B.; Oldfield, E.

    1986-03-01

    The effort described in this report involved a joint industry-university program between the Signal Research Center, Inc., and the University of Illinois, designed to advance the state of knowledge of zeolite catalyst characterization technology for application to zeolite catalysts useful in coal liquefaction related processes. The program involved the application of new and improved high resolution solid state nuclear magnetic resonance (NRM) techniques to the characterization of zeolite catalysts and other related microporous materials. The NMR experiments were performed in the state-of-the-art NMR laboratory at the University of Illinois. In this report the first comprehensive investigation of /sup 17/O NMR of A and Y zeolites by means of static, MASS and VASS (variable angle sample spinning) NMR techniques is presented. The determination of the /sup 17/O isotropic chemical shifts, nuclear quadrupole coupling constants and electric field gradient tensor asymmetry parameters provides valuable supplementary information on zeolite structure. As an extension of the /sup 17/O NMR investigation of zeolites, results for gallosilicates and for several aluminophosphate materials have also been obtained. The work presented in this study demonstrates the ability of using /sup 17/O NMR to observe chemical changes in the oxygen environment of zeolites. This has important implications for the study of zeolite based catalysts. Chemical modifications of catalysts, such as framework substitutions or ion exchange which are commonly used to modify zeolite catalyst activity can be directly studied for their effect on the oxygen rich surface of the zeolite. It is also possible that this technique could be used to directly probe the interactions between the zeolite surface and reactant molecules. 29 refs., 14 figs., 7 tabs.

  5. The removal of heavy metals from aqueous solution using natural Jordanian zeolite

    NASA Astrophysics Data System (ADS)

    Taamneh, Yazan; Sharadqah, Suhail

    2016-02-01

    In this article, the adsorption process of cadmium and copper using natural Jordanian (NJ) zeolite as adsorbent has been experimentally estimated. The samples of NJ zeolite were obtained from Al Mafraq discrete, north east of Jordan. The influence of the bulk concentration (C o), contact time (t) and different adsorbent masses (m) of NJ zeolite on the removal of heavy metal were evaluated. These variables had a considerable function in promoting the sorption process of heavy metal using the NJ zeolite. The initial concentration of heavy metals in the stock solution was extended between 80 and 600 mg/L. The batch adsorption method was employed to investigate the adsorption process. The experimental data were correlated using Freundlich and Langmuir empirical formula. The ability of NJ zeolite to eliminate cadmium and copper was estimated according to Langmuir isotherm empirical formula and found 25.9 and 14.3 mg/g for cadmium and copper, respectively. The kinetics of adsorption of cadmium and copper have been analyzed and correlated by first-order and second-order reaction model. It was noticed that adsorption of cadmium and copper was better correlated with pseudo-second-order kinetic model. The results presented that NJ zeolite is practical adsorbent for removing cadmium and copper ion metal.

  6. Nano- and microsized zeolites as a perspective material for potentiometric biosensors creation.

    PubMed

    Soldatkin, Oleksandr O; Shelyakina, Margaryta K; Arkhypova, Valentyna N; Soy, Esin; Kirdeciler, Salih Kaan; Ozansoy Kasap, Berna; Lagarde, Florence; Jaffrezic-Renault, Nicole; Akata Kurç, Burcu; Soldatkin, Alexei P; Dzyadevych, Sergei V

    2015-01-01

    A number of potentiometric biosensors based on coimmobilization of enzymes with different types of zeolite on pH-ion-sensitive field-effect transistor (ISFET) have been developed. Their working characteristics have been determined and compared. It was shown that clinoptilolite and zeolite Beta polymorph A (BEA) are more promising for creating biosensors than zeolite A. Changing the concentration of zeolite BEA in membranes, it is possible to extend the biosensor linear measurement range. The two-layer method of deposition of the enzyme with clinoptilolite was found to provide a significant increase in the biosensor sensitivity to substrates, whereas thermal modification of the zeolite BEA crystals can improve analytical characteristics of potentiometric biosensors for detection of toxic substances. These results show that it is possible to regulate the ISFET characteristics for different enzyme-based biosensors by tailoring the electrode surfaces via different zeolites. This makes zeolites strong candidates for integration into biosensors as ISFET modifiers. PMID:25852356

  7. Oxidative regeneration of toluene-saturated natural zeolite by gaseous ozone: the influence of zeolite chemical surface characteristics.

    PubMed

    Alejandro, Serguei; Valdés, Héctor; Manéro, Marie-Hélène; Zaror, Claudio A

    2014-06-15

    In this study, the effect of zeolite chemical surface characteristics on the oxidative regeneration of toluene saturated-zeolite samples is investigated. A Chilean natural zeolite (53% clinoptilolite, 40% mordenite and 7% quartz) was chemically modified by acid treatment with hydrochloric acid and by ion-exchange with ammonium sulphate. Thermal pre-treatments at 623 and 823K were applied and six zeolite samples with different chemical surface characteristics were generated. Chemical modification of natural zeolite followed by thermal out-gassing allows distinguishing the role of acidic surface sites on the regeneration of exhausted zeolites. An increase in Brønsted acid sites on zeolite surface is observed as a result of ammonium-exchange treatment followed by thermal treatment at 623K, thus increasing the adsorption capacity toward toluene. High ozone consumption could be associated to a high content of Lewis acid sites, since these could decompose ozone into atomic active oxygen species. Then, surface oxidation reactions could take part among adsorbed toluene at Brønsted acid sites and surface atomic oxygen species, reducing the amount of adsorbed toluene after the regenerative oxidation with ozone. Experimental results show that the presence of adsorbed oxidation by-products has a negative impact on the recovery of zeolite adsorption capacity. PMID:24794812

  8. Application of diffuse discharges of atmospheric pressure formed by runaway electrons for modification of copper and stainless steel surface

    SciTech Connect

    Tarasenko, V. F. Shulepov, M. A.; Erofeev, M. V.

    2015-12-15

    The results of studies devoted to the influence of a runaway electron pre-ionized diffuse discharge (REP DD) formed in air and nitrogen at atmospheric pressure on the surface of copper and stainless steel are presented. Nanosecond high-voltage pulses were used to obtain REP DD in different gases at high pressures in a chamber with a flat anode and a cathode possessing a small radius of curvature. This mode of discharge was implemented owing to the generation of runaway electrons and X-rays. The conditions under which the surface of copper and stainless steel was cleaned from carbon and oxidized are described.

  9. Application of diffuse discharges of atmospheric pressure formed by runaway electrons for modification of copper and stainless steel surface

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.; Shulepov, M. A.; Erofeev, M. V.

    2015-12-01

    The results of studies devoted to the influence of a runaway electron pre-ionized diffuse discharge (REP DD) formed in air and nitrogen at atmospheric pressure on the surface of copper and stainless steel are presented. Nanosecond high-voltage pulses were used to obtain REP DD in different gases at high pressures in a chamber with a flat anode and a cathode possessing a small radius of curvature. This mode of discharge was implemented owing to the generation of runaway electrons and X-rays. The conditions under which the surface of copper and stainless steel was cleaned from carbon and oxidized are described.

  10. Influence of crystallite size on cation conductivity in faujasitic zeolites.

    PubMed

    Severance, Michael; Zheng, Yangong; Heck, Elizabeth; Dutta, Prabir K

    2013-12-19

    The influence of particle size on the ionic conductivity of ceramic materials is an active area of research, and novel effects are observed as particles approach the nanoscale in size. Zeolites are crystalline aluminosilicates with ion-exchangeable cations that are responsible for ionic conductivity at high temperatures. In this paper, we present systematic results for the first time of ionic conductivity in alkali metal ion-exchanged faujasitic zeolites with morphologies ranging from a zeolite membrane, micrometer-sized, submicrometer, and nanoparticles of zeolite. Using impedance spectroscopy in the range of 10 MHz to 0.1 Hz, we have obtained the activation energy (E(act)) of cation motion with these various morphologies in the temperature range of 525-625 °C. Overall, the E(act) decreases with Si/Al ratio. Surface modification of the zeolite particles was carried out with a silylating agent, which upon high temperature calcination should lead to the formation of a monolayer Si-O-Si film on the particle surface. This surface modification had minimal influence on the E(act) of micrometer-sized zeolites. However, E(act) increased rapidly as the zeolite particle approached the nanoscale. These observations led us to propose that, for the high-temperature, low-frequency (10(4)-10(5) Hz), long-range ionic conduction in zeolites, cation hopping across grain boundaries is relevant to ion transport, especially as the size of the crystallite approaches the nanoscale. Intergrain boundaries are more defective in the nanosized zeolite and contribute to the higher E(act). PMID:24041267

  11. Diagram of Zeolite Crystals

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Center for Advanced Microgravity Materials Processing (CAMMP) in Cambridge, MA, a NASA-sponsored Commercial Space Center, is working to improve zeolite materials for storing hydrogen fuel. CAMMP is also applying zeolites to detergents, optical cables, gas and vapor detection for environmental monitoring and control, and chemical production techniques that significantly reduce by-products that are hazardous to the environment. Depicted here is one of the many here complex geometric shapes which make them highly absorbent. Zeolite experiments have also been conducted aboard the International Space Station

  12. Zeolites: Exploring Molecular Channels

    SciTech Connect

    Arslan, Ilke; Derewinski, Mirek

    2015-05-22

    Synthetic zeolites contain microscopic channels, sort of like a sponge. They have many uses, such as helping laundry detergent lather, absorbing liquid in kitty litter, and as catalysts to produce fuel. Of the hundreds of types of zeolites, only about 15 are used for catalysis. PNNL catalysis scientists Ilke Arslan and Mirek Derewinksi are studying these zeolites to understand what make them special. By exploring the mystery of these microscopic channels, their fundamental findings will help design better catalysts for applications such as biofuel production.

  13. An innovative zinc oxide-coated zeolite adsorbent for removal of humic acid

    EPA Science Inventory

    Zinc oxide (ZnO)-coated zeolite adsorbents were developed by both nitric acid modification and Zn(NO3)2•6H2O functionalization of zeolite. The developed adsorbents were used for the removal of humic acid (HA) from aqueous solutions. The adsorption capacity of the adsorbents ...

  14. An innovative zinc oxide-coated zeolite adsorbent for removal of humic acid

    EPA Science Inventory

    Zinc oxide (ZnO)-coated zeolite adsorbents were developed by both nitric acid modification and Zn(NO3)2•6H2O functionalization of zeolite. The developed adsorbents were used for the removal of humic acid (HA) from aqueous solutions. The adsorption capacity of the adsorbents at 21...

  15. Composite zeolite membranes

    DOEpatents

    Nenoff, Tina M.; Thoma, Steven G.; Ashley, Carol S.; Reed, Scott T.

    2002-01-01

    A new class of composite zeolite membranes and synthesis techniques therefor has been invented. These membranes are essentially defect-free, and exhibit large levels of transmembrane flux and of chemical and isotopic selectivity.

  16. ZEOLITE CHARACTERIZATION TESTING

    SciTech Connect

    Jacobs, W; Herbert Nigg, H

    2007-09-13

    The Savannah River Site isolates tritium from its process streams for eventual recycling. This is done by catalyzing the formation of tritiated water (from process streams) and then sorbing that water on a 3A zeolite (molsieve) bed. The tritium is recovered by regenerating the saturated bed into a Mg-based water cracking unit. The process described has been in use for about 15 years. Recently chloride stress corrosion cracking (SCC) was noted in the system piping. This has resulted in the need to replace the corroded piping and associated molecular sieve beds. The source of chlorine has been debated and one possible source is the zeolite itself. Since new materials are being purchased for recently fabricated beds, a more comprehensive analysis protocol for characterizing zeolite has been developed. Tests on archived samples indicate the potential for mobile chloride species to be generated in the zeolite beds.

  17. Flexibility of zeolite frameworks

    NASA Astrophysics Data System (ADS)

    Kapko, Vitaliy; Treacy, Michael; Thorpe, Michael

    2009-03-01

    Zeolites are an important class of industrial catalysts because of their large internal surfaces and molecular-sieving properties. Recent geometric simulations (1) show that almost all of the known zeolites can exist without distortion of their tetrahedra within some range of densities, which we call the flexibility window. Within this window, the framework accommodates density changes by rotations about the shared tetrahedral corners. We argue that the presence of a flexibility window can be used as a topological criterion to select potential candidates for synthesis from millions of hypothetical structures. We also investigate the exceptions to the rule, as well as the shape of the flexibility window and the symmetric properties of zeolites inside it. (1) A. Sartbaeva, S.A. Wells, M.M.J. Treacy and M.F. Thorpe The flexibility window in zeolites, Nature Materials 5, 962-965 (2006); I. Rivin, commentary 931-932.

  18. Lithium modified zeolite synthesis for conversion of biodiesel-derived glycerol to polyglycerol

    SciTech Connect

    Ayoub, Muhammad; Abdullah, Ahmad Zuhairi; Inayat, Abrar

    2014-10-24

    Basic zeolite has received significant attention in the catalysis community. These zeolites modified with alkaline are the potential replacement for existing zeolite catalysts due to its unique features with added advantages. The present paper covers the preparation of lithium modified zeolite Y (Li-ZeY) and its activity for solvent free conversion of biodiesel-derived glycerol to polyglycerol via etherification process. The modified zeolite was well characterized by X-ray diffraction (XRD), Scanning Electron Microscope (SEM) and Nitrogen Adsorption. The SEM images showed that there was no change in morphology of modified zeolite structure after lithium modification. XRD patterns showed that the structure of zeolite was sustained after lithium modification. The surface properties of parent and modified zeolite was also observed N{sub 2} adsortion-desorption technique and found some changes in surface area and pore size. In addition, the basic strength of prepared materials was measured by Hammet indicators and found that basic strength of Li-ZeY was highly improved. This modified zeolite was found highly thermal stable and active heterogamous basic catalyst for conversion of solvent free glycerol to polyglycerol. This reaction was conducted at different temperatures and 260 °C was found most active temperature for this process for reaction time from 6 to 12 h over this basic catalyst in the absence of solvent.

  19. Lithium modified zeolite synthesis for conversion of biodiesel-derived glycerol to polyglycerol

    NASA Astrophysics Data System (ADS)

    Ayoub, Muhammad; Abdullah, Ahmad Zuhairi; Inayat, Abrar

    2014-10-01

    Basic zeolite has received significant attention in the catalysis community. These zeolites modified with alkaline are the potential replacement for existing zeolite catalysts due to its unique features with added advantages. The present paper covers the preparation of lithium modified zeolite Y (Li-ZeY) and its activity for solvent free conversion of biodiesel-derived glycerol to polyglycerol via etherification process. The modified zeolite was well characterized by X-ray diffraction (XRD), Scanning Electron Microscope (SEM) and Nitrogen Adsorption. The SEM images showed that there was no change in morphology of modified zeolite structure after lithium modification. XRD patterns showed that the structure of zeolite was sustained after lithium modification. The surface properties of parent and modified zeolite was also observed N2 adsortion-desorption technique and found some changes in surface area and pore size. In addition, the basic strength of prepared materials was measured by Hammet indicators and found that basic strength of Li-ZeY was highly improved. This modified zeolite was found highly thermal stable and active heterogamous basic catalyst for conversion of solvent free glycerol to polyglycerol. This reaction was conducted at different temperatures and 260 °C was found most active temperature for this process for reaction time from 6 to 12 h over this basic catalyst in the absence of solvent.

  20. Regenerative Cu/La zeolite supported desulfurizing sorbents

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E. (Inventor); Sharma, Pramod K. (Inventor)

    1991-01-01

    Efficient, regenerable sorbents for removal of H2S from fluid hydrocarbons such as diesel fuel at moderate condition comprise a porous, high surface area aluminosilicate support, suitably a synthetic zeolite, and most preferably a zeolite having a free lattice opening of at least 6 Angstroms containing from 0.1 to 0.5 moles of copper ions, lanthanum ions or their mixtures. The sorbent removes sulfur from the hydrocarbon fuel in high efficiency and can be repetitively regenerated without loss of activity.

  1. Zeolite with trimodal porosity by desilication of zeolite nanocrystals aggregate

    SciTech Connect

    Wang Yuxin; Liu Kaituo; Graduate School of the Chinese Academy of Sciences, Beijing 100049 ; He Tao; Wu Jinhu; Fang Yunming

    2012-10-15

    Zeolite with trimodal porosity can be synthesized by desilication of zeolite nanocrystal aggregate. In the desilication process, the originally existed intercrystalline mesopores of zeolite nanocrystal aggregate were enlarged into large mesopore, and the new small intracrystalline mesopore channel was created, thus the Zeolite with trimodal porosity was formed. The structure of resulted zeolite, both on aggregate and mesopore level can be fine tuned by the desilication degree. - Graphical abstract: The Si from the edges and boundary of nanocrystals was first removed resulted the surface roughness and enlarges of the originally existed intercrystalline mesopores. As the degree of alkali-treatment increasing, the Si species inside zeolite nanocrystals was also removed, leading to further enlarges the intercrystalline mesopores and the formation of small intracrystalline mesopores. In case the alkali-treatment is serve enough to completely dissolve the bridges between zeolite nanocrystals, zeolite nanocrystals were exfoliated from the aggregate. Highlights: Black-Right-Pointing-Pointer Zeolite with trimodal porosity by desilication of zeolite nanocrystals aggregate. Black-Right-Pointing-Pointer The original intercrystalline mesopores were enlarged into large mesopore. Black-Right-Pointing-Pointer The new intracrystalline mesopores were created as the inside Si extracted out. Black-Right-Pointing-Pointer The aggregate structure, crystallinity and acidity of parent zeolite remained. Black-Right-Pointing-Pointer Desilication is start on the edges then in the inner part of zeolite.

  2. Preparation of functionalized zeolitic frameworks

    DOEpatents

    Yaghi, Omar M; Furukawa, Hiroyasu; Wang, Bo

    2013-07-09

    The disclosure provides zeolitic frameworks for gas separation, gas storage, catalysis and sensors. More particularly the disclosure provides zeolitic frameworks (ZIFs). The ZIF of the disclosure comprises any number of transition metals or a homogenous transition metal composition.

  3. Preparation of functionalized zeolitic frameworks

    DOEpatents

    Yaghi, Omar M.; Hayashi, Hideki; Banerjee, Rahul; Park, Kyo Sung; Wang, Bo; Cote, Adrien P.

    2014-08-19

    The disclosure provides zeolitic frameworks for gas separation, gas storage, catalysis and sensors. More particularly the disclosure provides zeolitic frameworks (ZIFs). The ZIF of the disclosure comprises any number of transition metals or a homogenous transition metal composition.

  4. Preparation of functionalized zeolitic frameworks

    DOEpatents

    Yaghi, Omar M; Hayashi, Hideki; Banerjee, Rahul; Park, Kyo Sung; Wang, Bo; Cote, Adrien P

    2012-11-20

    The disclosure provides zeolitic frameworks for gas separation, gas storage, catalysis and sensors. More particularly the disclosure provides zeolitic frameworks (ZIFs). The ZIF of the disclosure comprises any number of transition metals or a homogenous transition metal composition.

  5. Rapid synthesis of beta zeolites

    DOEpatents

    Fan, Wei; Chang, Chun -Chih; Dornath, Paul; Wang, Zhuopeng

    2015-08-18

    The invention provides methods for rapidly synthesizing heteroatom containing zeolites including Sn-Beta, Si-Beta, Ti-Beta, Zr-Beta and Fe-Beta. The methods for synthesizing heteroatom zeolites include using well-crystalline zeolite crystals as seeds and using a fluoride-free, caustic medium in a seeded dry-gel conversion method. The Beta zeolite catalysts made by the methods of the invention catalyze both isomerization and dehydration reactions.

  6. Study of zeolite influence on analytical characteristics of urea biosensor based on ion-selective field-effect transistors

    PubMed Central

    2014-01-01

    A possibility of the creation of potentiometric biosensor by adsorption of enzyme urease on zeolite was investigated. Several variants of zeolites (nano beta, calcinated nano beta, silicalite, and nano L) were chosen for experiments. The surface of pH-sensitive field-effect transistors was modified with particles of zeolites, and then the enzyme was adsorbed. As a control, we used the method of enzyme immobilization in glutaraldehyde vapour (without zeolites). It was shown that all used zeolites can serve as adsorbents (with different effectiveness). The biosensors obtained by urease adsorption on zeolites were characterized by good analytical parameters (signal reproducibility, linear range, detection limit and the minimal drift factor of a baseline). In this work, it was shown that modification of the surface of pH-sensitive field-effect transistors with zeolites can improve some characteristics of biosensors. PMID:24636423

  7. Zeolite-Dye Microlasers

    NASA Astrophysics Data System (ADS)

    Vietze, U.; Krauß, O.; Laeri, F.; Ihlein, G.; Schüth, F.; Limburg, B.; Abraham, M.

    1998-11-01

    We present a new class of micro lasers based on nanoporous molecular sieve host-guest systems. Organic dye guest molecules of 1-ethyl-4-[4-( p-dimethylaminophenyl)-1,3-butadienyl]-pyridinium Perchlorat were inserted into the 0.73-nm-wide channel pores of a zeolite AlPO 4-5 host. The zeolitic microcrystal compounds were hydrothermally synthesized according to a particular host-guest chemical process. The dye molecules are found not only to be aligned along the host channel axis, but to be oriented as well. Single mode laser emission at 687 nm was obtained from a whispering gallery mode oscillating in a 8-μm-diameter monolithic microresonator, in which the field is confined by total internal reflection at the natural hexagonal boundaries inside the zeolitic microcrystals.

  8. The removal of bacteria by modified natural zeolites.

    PubMed

    Milán, Z; de Las Pozas, C; Cruz, M; Borja, R; Sánchez, E; Ilangovan, K; Espinosa, Y; Luna, B

    2001-01-01

    The removal effect of natural and modified zeolites containing different heavy metals (Ni2+, Zn2+, Fe3+ and Cu2+) on pure cultures of Escherichia coli and Staphylococcus aureus in a solid medium was evaluated in this work. These experiments were carried out in a continuous mode treating municipal wastewater. Faecal coliform species and Pseudomonas aeruginosa were identified. The rate constants of heavy metal lixiviation were determined using a first order kinetic model. The removal effect of modified natural zeolites in both a solid medium and in continuous mode showed an increased elimination of the bacterial population. The results established a decreasing order of the removal effect as follows: Cu2+ > Fe3+ > Zn2+ > Ni2+. The best performance of columns was obtained for inlet bacterial concentrations below 10(6) cells/100 ml. Most of the identified bacterial species were affected by copper modified zeolites, although Serratia marcescens presented the highest sensitivity and Klebsiella pneumoniae the greatest resistance. PMID:11501306

  9. The influence of zeolitic water on the rate of butadiene dimerization

    SciTech Connect

    1995-02-01

    Zeolites find widespread usage as catalysts for a variety of chemical transformations. Frequently, the catalytically active agent is a transition metal ion located at an exchange site in contact with the zeolitic surface. Although the extraframework cation positions and relative populations can often be determined by spectroscopic methods, the influence of cation sitting and adsorbed reactant induced migration under reaction conditions is less well understood. This note describes the role which water exerts on the activity of copper-exchanged zeolite Y for the dimerization of butadiene to 4-vinylcyclohexene (4-VCH). 12 refs., 1 fig., 1 tab.

  10. An innovative zinc oxide-coated zeolite adsorbent for removal of humic acid.

    PubMed

    Wang, Lingling; Han, Changseok; Nadagouda, Mallikarjuna N; Dionysiou, Dionysios D

    2016-08-01

    Zinc oxide (ZnO)-coated zeolite adsorbents were developed by both nitric acid modification and Zn(NO3)2·6H2O functionalization of zeolite 4A. The developed adsorbents were used for the removal of humic acid (HA) from aqueous solutions. The synthesized materials were characterized by porosimetry analysis, scanning electron microscopy, X-Ray diffraction analysis, and high resolution transmission electron microscopy. The maximum adsorption capacity of the adsorbents at 21±1°C was about 60mgCg(-1). The results showed that the positive charge density of ZnO-coated zeolite adsorbents was proportional to the amount of ZnO coated on zeolite and thus, ZnO-coated zeolite adsorbents exhibited a greater affinity for negatively charged ions. Furthermore, the adsorption capacity of ZnO-coated zeolite adsorbents increased markedly after acid modification. Adsorption experiments demonstrated ZnO-coated zeolite adsorbents possessed high adsorption capacity to remove HA from aqueous solutions mainly due to strong electrostatic interactions between negative functional groups of HA and the positive charges of ZnO-coated zeolite adsorbents. PMID:27135170

  11. Structural and functional modifications of the major light-harvesting complex II in cadmium- or copper-treated Secale cereale.

    PubMed

    Janik, Ewa; Maksymiec, Waldemar; Mazur, Radoslaw; Garstka, Maciej; Gruszecki, Wieslaw I

    2010-08-01

    The effects of 50 microM cadmium (Cd) or copper (Cu) ions on the supramolecular conformation of the light-harvesting pigment-protein complex of PSII (LHCII) isolated from rye seedlings were studied. It was found that the action of these two metal ions on the LHCII structure and organization is dissimilar. The Fourier transform infrared (FTIR) measurements indicated inhibition or stimulation of formation of parallel beta-structures and aggregates in the presence of Cd or Cu ions, respectively. The Chl a fluorescence excitation spectra of LHCII extracted from Cd-treated plants showed that the decreased aggregation of complexes was correlated with a decline in efficiency of quenching of excitation energy. From the results of mass spectrometry, changes in LHCII aggregation in the presence of Cd ions might be based on decreases in the molecular mass of Lhcb1 and Lhcb2 proteins. An increase in the content of LHCII aggregates under Cu ion excess was associated with changes in the LHCII xanthophyll pigment pool. In the complexes isolated from Cu-treated plants, all-trans violaxanthin and 9'-cis neoxanthin content declined and the simultaneous appearance of the fraction of 9-cis violaxanthin was observed. 9-cis violaxanthin formation under Cu ion excess might facilitate LHCII inter-trimer interaction and, therefore, aggregation of complexes. RLS (resonance light scattering) spectra indicated that the excitonic interaction between Chl molecules and between Chls and xanthophylls was responsible for the effective dissipation of excitation energy in LHCII isolated from Cu-treated plants. Also, changes in singlet excitation energy transfer between carotenoids and Chls under the action of heavy metals were observed. PMID:20627948

  12. Process for the exchange of crystalline zeolites

    SciTech Connect

    Lim, J.; Brady, M.; Humphries, A.

    1984-07-10

    This invention relates to exchanging the sodium contained in a crystalline zeolite by partially removing sodium by exchange with another cation, partially drying the exchanged zeolite and re-exchanging the dried zeolite.

  13. Modification of algae with zinc, copper and silver ions for usage as natural composite for antibacterial applications.

    PubMed

    Mahltig, B; Soltmann, U; Haase, H

    2013-03-01

    Nanometer sized metal particles are used in many applications as antimicrobial materials. However in public discussion nanoparticular materials are a matter of concern due to potential health risks. Hence there is a certain demand for alternative antimicrobial acting materials. For this, the aim of this work is to realize an antimicrobial active material based on the release of metal ions from a natural depot. By this, the use of elemental metal particles or metal oxide particles in nanometer or micrometer scale is avoided. As natural depot four different algae materials (gained from Ascophyllum nodosum, Fucus vesicolosus, Spirulina platensis and Nannochloropsis) are used and loaded by bioabsorption with metal ions Ag(+), Cu(2+) and Zn(2+). The amount of metal bound by biosorption differs strongly in the range of 0.8 to 5.4 mg/g and depends on type of investigated algae material and type of metal ion. For most samples a smaller release of biosorbed Ag(+) and Cu(2+) is observed compared to a strong release of Zn(2+). The antibacterial activity of the prepared composites is investigated with Escherichia coli. Algae material without biosorbed metal has only a small effect on E. coli. Also by modification of algae with Zn(2+) only a small antibacterial property can be observed. Only with biosorption of Ag(+), the algae materials gain a strong bactericidal effect, even in case of a small amount of released silver ions. These silver modified algae materials can be used as highly effective bactericidal composites which may be used in future applications for the production of antimicrobial textiles, papers or polymer materials. PMID:25427514

  14. Zeolite crystal growth in space

    NASA Technical Reports Server (NTRS)

    Sacco, Albert, Jr.; Thompson, Robert W.; Dixon, Anthony G.

    1991-01-01

    The growth of large, uniform zeolite crystals in high yield in space can have a major impact on the chemical process industry. Large zeolite crystals will be used to improve basic understanding of adsorption and catalytic mechanisms, and to make zeolite membranes. To grow large zeolites in microgravity, it is necessary to control the nucleation event and fluid motion, and to enhance nutrient transfer. Data is presented that suggests nucleation can be controlled using chemical compounds (e.g., Triethanolamine, for zeolite A), while not adversely effecting growth rate. A three-zone furnace has been designed to perform multiple syntheses concurrently. The operating range of the furnace is 295 K to 473 K. Teflon-lined autoclaves (10 ml liquid volume) have been designed to minimize contamination, reduce wall nucleation, and control mixing of pre-gel solutions on orbit. Zeolite synthesis experiments will be performed on USML-1 in 1992.

  15. Novel modified zeolites for energy-efficient hydrocarbon separations.

    SciTech Connect

    Arruebo, Manuel; Dong, Junhang; Anderson, Thomas (Burns and McDonnell, Kansas City, MO); Gu, Xuehong; Gray, Gary (Goodyear Chemical Company, Akron, OH); Bennett, Ron (Goodyear Chemical Company, Akron, OH); Nenoff, Tina Maria; Kartin, Mutlu; Johnson, Kaylynn (Goodyear Chemical Company, Akron, OH); Falconer, John; Noble, Richard

    2006-11-01

    We present synthesis, characterization and testing results of our applied research project, which focuses on the effects of surface and skeletal modification of zeolites for significant enhancements in current hydrocarbon (HC) separations. Zeolites are commonly used by the chemical and petroleum industries as catalysts and ion-exchangers. They have high potential for separations owing to their unique pore structures and adsorption properties and their thermal, mechanical and chemical properties. Because of zeolites separation properties, low cost, and robustness in industrial process, they are natural choice for use as industrial adsorbents. This is a multidisciplinary effort to research, design, develop, engineer, and test new and improved materials for the separation of branched vs. linear organic molecules found in commercially important HC streams via adsorption based separations. The focus of this project was the surface and framework modification of the commercially available zeolites, while tuning the adsorption properties and the selectivities of the bulk and membrane separations. In particular, we are interested with our partners at Goodyear Chemical, on how to apply the modified zeolites to feedstock isoprene purification. For the characterization and the property measurements of the new and improved materials powder X-ray diffraction (PXRD), Residual Gas Analyzer-Mass Spectroscopy (RGA-MS), Electron Microscopy (SEM/EDAX), temperature programmed desorption (TPD) and surface area techniques were utilized. In-situ carbonization of MFI zeolite membranes allowed for the maximum separation of isoprene from n-pentane, with a 4.1% enrichment of the binary stream with n-pentane. In four component streams, a modified MFI membrane had high selectivities for n-pentane and 1-3-pentadiene over isoprene but virtually no separation for the 2-methyl-2-butene/isoprene pair.

  16. Effect of zeolite on toxicity of ammonia in freshwater sediments: Implications for toxicity identification evaluation procedures

    SciTech Connect

    Besser, J.M.; Ingersoll, C.G.; Leonard, E.N.; Mount, D.R.

    1998-11-01

    Techniques for reducing ammonia toxicity in freshwater sediments were investigated as part of a project to develop toxicity identification and evaluation (TIE) procedures for whole sediments. Although ammonia is a natural constituent of freshwater sediments, pollution can lead to ammonia concentrations that are toxic to benthic invertebrates, and ammonia can also contribute to the toxicity of sediments that contain more persistent contaminants. The authors investigated the use of amendments of a natural zeolite mineral, clinoptilolite, to reduce concentrations of ammonia in sediment pore water. Zeolites have been widely used for removal of ammonia in water treatment and in aqueous TIE procedures. The addition of granulated zeolite to ammonia-spiked sediments reduced pore-water ammonia concentrations and reduced ammonia toxicity to invertebrates. Amendments of 20% zeolite (v/v) reduced ammonia concentrations in pore water by {ge}70% in spiked sediments with ammonia concentrations typical of contaminated freshwater sediments. Zeolite amendments reduced toxicity of ammonia-spiked sediments to three taxa of benthic invertebrates (Hyalella azteca, Lumbriculus variegatus, and Chironomus tentans), despite their widely differing sensitivity to ammonia toxicity. In contrast, zeolite amendments did not reduce acute toxicity of sediments containing high concentrations of cadmium or copper or reduce concentrations of these metals in pore waters. These studies suggest that zeolite amendments, used in conjunction with toxicity tests with sensitive taxa such as H. azteca, may be an effective technique for selective reduction of ammonia toxicity in freshwater sediments.

  17. Effect of zeolite on toxicity of ammonia in freshwater sediments: Implications for toxicity identification evaluation procedures

    USGS Publications Warehouse

    Besser, J.M.; Ingersoll, C.G.; Leonard, E.N.; Mount, D.R.

    1998-01-01

    Techniques for reducing ammonia toxicity in freshwater sediments were investigated as part of a project to develop toxicity identification and evaluation (TIE) procedures for whole sediments. Although ammonia is a natural constituent of freshwater sediments, pollution can lead to ammonia concentrations that are toxic to benthic invertebrates, and ammonia can also contribute to the toxicity of sediments that contain more persistent contaminants. We investigated the use of amendments of a natural zeolite mineral, clinoptilolite, to reduce concentrations of ammonia in sediment pore water. Zeolites have been widely used for removal of ammonia in water treatment and in aqueous TIE procedures. The addition of granulated zeolite to ammonia-spiked sediments reduced pore-water ammonia concentrations and reduced ammonia toxicity to invertebrates. Amendments of 20% zeolite (v/v) reduced ammonia concentrations in pore water by ???70% in spiked sediments with ammonia concentrations typical of contaminated freshwater sediments. Zeolite amendments reduced toxicity of ammonia-spiked sediments to three taxa of benthic invertebrates (Hyalella azteca, Lumbriculus variegatus, and Chironomus tentans), despite their widely differing sensitivity to ammonia toxicity. In contrast, zeolite amendments did not reduce acute toxicity of sediments containing high concentrations of cadmium or copper or reduce concentrations of these metals in pore waters. These studies suggest that zeolite amendments, used in conjunction with toxicity tests with sensitive taxa such as H. azteca, may be an effective technique for selective reduction of ammonia toxicity in freshwater sediments.

  18. Preparation of zeolites in space

    NASA Astrophysics Data System (ADS)

    Stöcker, Michael; Akporiaye, Duncan; Andersen, Arnfinn G.; Lillerud, Karl Petter; Seip, Knut L.; Røneid, Turid

    The synthesis of the zeolite offretite under microgravity conditions is planned during the EURECA-1 mission in 1991. The main experimental goal is the preparation of large single crystals with a perfect structure. Zeolites are of special interest with respect to heterogenous catalysis and adsorbents in connection with several industrial processes.

  19. Adamantanes from petroleum, with zeolites

    SciTech Connect

    Rollmann, L.D.; Green, L.A.; Bradway, R.A.

    1995-12-31

    Experiments with zeolite Beta and zeolite {Upsilon} demonstrate that adamantane and methyl adamantanes can be isolated very effectively from modern refinery streams by mild hydrocracking over Pt- and Pd-containing large pore zeolites. Yield depends importantly on individual refinery crude source and process configuration. Heavy crudes and refineries with conventional hydrocracking and FCC feed hydrotreater facilities are particularly desirable, and an ideal feed for adamantane isolation in such a situation is the 150{degrees}-250{degrees}C fraction of the hydrocracker (HDC) recycle stream. When Pt- or Pd-containing zeolite Beta was used with such a stream, temperatures of some 250{degrees}C and pressures below 3.5 mPa (500 psig) sufficed to remove selectively well over 90% of the non-adamantane hydrocarbon, with little conversion of adamantanes. High selectivity for adamantanes is attributed in large part to size-selective exclusion of these molecules from the pores of zeolite Beta.

  20. A reliable and reproducible method for the lipase assay in an AOT/isooctane reversed micellar system: modification of the copper-soap colorimetric method.

    PubMed

    Kwon, Chang Woo; Park, Kyung-Min; Choi, Seung Jun; Chang, Pahn-Shick

    2015-09-01

    The copper-soap method, which is based on the absorbance of a fatty acid-copper complex at 715 nm, is a widely used colorimetric assay to determine the lipase activity in reversed micellar system. However, the absorbance of the bis(2-ethylhexyl) sodium sulfosuccinate (AOT)-copper complex prevents the use of an AOT/isooctane reversed micellar system. An extraction step was added to the original procedure to remove AOT and eliminate interference from the AOT-copper complex. Among the solvents tested, acetonitrile was determined to be the most suitable because it allows for the generation of a reproducible calibration curve with oleic acid that is independent of the AOT concentrations. Based on the validation data, the modified method, which does not experience interference from the AOT-copper complex, could be a useful method with enhanced accuracy and reproducibility for the lipase assay. PMID:25842332

  1. Oxygen and hydrogen isotope geochemistry of zeolites

    NASA Technical Reports Server (NTRS)

    Karlsson, Haraldur R.; Clayton, Robert N.

    1990-01-01

    Oxygen and hydrogen isotope ratios for natural samples of the zeolites analcime, chabazite, clinoptilolite, laumontite, mordenite, and natrolite have been obtained. The zeolite samples were classified into sedimentary, hydrothermal, and igneous groups. The ratios for each species of zeolite are reported. The results are used to discuss the origin of channel water, the role of zeolites in water-rock interaction, and the possibility that a calibrated zeolite could be used as a low-temperature geothermometer.

  2. Sorption of Cu(II) Ions on Chitosan-Zeolite X Composites: Impact of Gelling and Drying Conditions.

    PubMed

    Djelad, Amal; Morsli, Amine; Robitzer, Mike; Bengueddach, Abdelkader; di Renzo, Francesco; Quignard, Françoise

    2016-01-01

    Chitosan-zeolite Na-X composite beads with open porosity and different zeolite contents were prepared by an encapsulation method. Preparation conditions had to be optimised in order to stabilize the zeolite network during the polysaccharide gelling process. Composites and pure reference components were characterized using X-ray diffraction (XRD); scanning electron microscopy (SEM); N₂ adsorption-desorption; and thermogravimetric analysis (TG). Cu(II) sorption was investigated at pH 6. The choice of drying method used for the storage of the adsorbent severely affects the textural properties of the composite and the copper sorption effectiveness. The copper sorption capacity of chitosan hydrogel is about 190 mg·g(-1). More than 70% of this capacity is retained when the polysaccharide is stored as an aerogel after supercrititcal CO₂ drying, but nearly 90% of the capacity is lost after evaporative drying to a xerogel. Textural data and Cu(II) sorption data indicate that the properties of the zeolite-polysaccharide composites are not just the sum of the properties of the individual components. Whereas a chitosan coating impairs the accessibility of the microporosity of the zeolite; the presence of the zeolite improves the stability of the dispersion of chitosan upon supercritical drying and increases the affinity of the composites for Cu(II) cations. Chitosan-zeolite aerogels present Cu(II) sorption properties. PMID:26797593

  3. Laser control of zeolite nucleation.

    PubMed

    Navarro, Marta; Mayoral, Alvaro; Mateo, Ester; Lahoz, Ruth; de la Fuente, Germán F; Coronas, Joaquín

    2012-02-01

    Precursor solutions for the synthesis of zeolites are irradiated by means of a Nd-YAG laser. These solutions are subsequently submitted to a hydrothermal treatment and the results analyzed by X-ray diffraction and electron microscopy. Laser irradiation promotes the formation of silica nanoparticles that nucleate into zeolite (silicalite-1), following a hydrothermal treatment. The average crystal size (in the 0.6-3.6 μm range) of the zeolite exponentially decreases as a function of laser irradiation time. In addition, a longer irradiation time results in a narrower crystal size distribution. PMID:22266775

  4. Modification of surface layers of copper under the action of the volumetric discharge initiated by an avalanche electron beam in nitrogen and CO2 at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Shulepov, M. A.; Akhmadeev, Yu. Kh.; Tarasenko, V. F.; Kolubaeva, Yu. A.; Krysina, O. V.; Kostyrya, I. D.

    2011-05-01

    The results of experimental investigations of the action of the volumetric discharge initiated by an avalanche electron beam on the surface of copper specimens are presented. The volumetric (diffuse) discharge in nitrogen and CO2 at atmospheric pressure was initiated by applying high voltage pulses of nanosecond duration to a tubular foil cathode. It has been found that the treatment of a copper surface by this type of discharge increases the hardness of the surface layer due to oxidation.

  5. Mesostructured zeolites: bridging the gap between zeolites and MCM-41.

    PubMed

    Prasomsri, Teerawit; Jiao, Wenqian; Weng, Steve Z; Garcia Martinez, Javier

    2015-05-28

    Surfactant-templating is one of the most versatile and useful techniques to implement mesoporous systems into solid materials. Various strategies based on various interactions between surfactants and solid precursors have been explored to produce new structures. Zeolites are invaluable as size- and shape-selective solid acid catalysts. Nevertheless, their micropores impose limitations on the mass transport of bulky feed and/or product molecules. Many studies have attempted to address this by utilizing surfactant-assisting technology to alleviate the diffusion constraints. However, most efforts have failed due to micro/mesopore phase separation. Recently, a new technique combining the uses of cationic surfactants and mild basic solutions was introduced to synthesise mesostructured zeolites. These materials sustain the unique characteristics of zeolites (i.e., strong acidity, crystallinity, microporosity, and hydrothermal stability), including tunable mesopore sizes and degrees of mesoporosity. The mesostructured zeolites are now commercially available through Rive Technology, and show superior performance in VGO cracking. This feature article provides an overview of recent explorations in the introduction of mesoporosity into zeolites using surfactant-templating techniques. Various porous materials, preparation methods, physical and catalytic properties of mesostructured zeolites will be discussed. PMID:25866848

  6. The effect of positioning cations on acidity and stability of the framework structure of Y zeolite

    PubMed Central

    Deng, Changshun; Zhang, Junji; Dong, Lihui; Huang, Meina; Bin Li; Jin, Guangzhou; Gao, Junbin; Zhang, Feiyue; Fan, Minguang; Zhang, Luoming; Gong, Yanjun

    2016-01-01

    The investigation on the modification of NaY zeolite on LaHY and AEHY (AE refers Ca and Sr and the molar ratio of Ca and Sr is 1:1) zeolites was proformed by XRD, N2-physisorption (BET), XRF, XPS, NH3-TPD, Py-IR, hydrothermal stability, and catalytic cracking test. These results indicate that HY zeolite with ultra low content Na can be obtained from NaY zeolite through four exchange four calcination method. The positioning capability of La3+ in sodalite cage is much better than that of AE2+ and about 12 La3+ can be well coordinated in sodalite cages of one unit cell of Y zeolite. Appropriate acid amount and strength favor the formation of propylene and La3+ is more suitable for the catalytic cracking of cyclohexane than that of AE2+. Our results not only elaborate the variation of the strong and weak acid sites as well as the Brönsted and Lewis acid sites with the change of exchanged ion content but also explore the influence of hydrothermal aging of LaHY and AEHY zeolites and find the optimum ion exchange content for the most reserved acid sites. At last, the coordination state and stabilization of ion exchanged Y zeolites were discussed in detail. PMID:26987306

  7. The effect of positioning cations on acidity and stability of the framework structure of Y zeolite.

    PubMed

    Deng, Changshun; Zhang, Junji; Dong, Lihui; Huang, Meina; Bin Li; Jin, Guangzhou; Gao, Junbin; Zhang, Feiyue; Fan, Minguang; Zhang, Luoming; Gong, Yanjun

    2016-01-01

    The investigation on the modification of NaY zeolite on LaHY and AEHY (AE refers Ca and Sr and the molar ratio of Ca and Sr is 1:1) zeolites was proformed by XRD, N2-physisorption (BET), XRF, XPS, NH3-TPD, Py-IR, hydrothermal stability, and catalytic cracking test. These results indicate that HY zeolite with ultra low content Na can be obtained from NaY zeolite through four exchange four calcination method. The positioning capability of La(3+) in sodalite cage is much better than that of AE(2+) and about 12 La(3+) can be well coordinated in sodalite cages of one unit cell of Y zeolite. Appropriate acid amount and strength favor the formation of propylene and La(3+) is more suitable for the catalytic cracking of cyclohexane than that of AE(2+). Our results not only elaborate the variation of the strong and weak acid sites as well as the Brönsted and Lewis acid sites with the change of exchanged ion content but also explore the influence of hydrothermal aging of LaHY and AEHY zeolites and find the optimum ion exchange content for the most reserved acid sites. At last, the coordination state and stabilization of ion exchanged Y zeolites were discussed in detail. PMID:26987306

  8. The effect of positioning cations on acidity and stability of the framework structure of Y zeolite

    NASA Astrophysics Data System (ADS)

    Deng, Changshun; Zhang, Junji; Dong, Lihui; Huang, Meina; Bin Li; Jin, Guangzhou; Gao, Junbin; Zhang, Feiyue; Fan, Minguang; Zhang, Luoming; Gong, Yanjun

    2016-03-01

    The investigation on the modification of NaY zeolite on LaHY and AEHY (AE refers Ca and Sr and the molar ratio of Ca and Sr is 1:1) zeolites was proformed by XRD, N2-physisorption (BET), XRF, XPS, NH3-TPD, Py-IR, hydrothermal stability, and catalytic cracking test. These results indicate that HY zeolite with ultra low content Na can be obtained from NaY zeolite through four exchange four calcination method. The positioning capability of La3+ in sodalite cage is much better than that of AE2+ and about 12 La3+ can be well coordinated in sodalite cages of one unit cell of Y zeolite. Appropriate acid amount and strength favor the formation of propylene and La3+ is more suitable for the catalytic cracking of cyclohexane than that of AE2+. Our results not only elaborate the variation of the strong and weak acid sites as well as the Brönsted and Lewis acid sites with the change of exchanged ion content but also explore the influence of hydrothermal aging of LaHY and AEHY zeolites and find the optimum ion exchange content for the most reserved acid sites. At last, the coordination state and stabilization of ion exchanged Y zeolites were discussed in detail.

  9. Enantioselective dehydration of butan-2-ol using zeolite Y modified with dithiane oxides

    SciTech Connect

    Feast, S.; Siddiqui, H.; Bethell, D.

    1997-04-15

    Modification of zeolite H-Y by dithiane oxides (2-R-1,3-dithiane 1-oxide; R = H, CH{sub 3}, C{sub 6}H{sub 5}) is shown to enhance significantly its activity for the acid catalyzed gas phase dehydration of butan-2-ol. The rate enhancement is observed for catalysts that are prepared by adding the dithiane oxide to the zeolite synthesis gel or by adsorption of the dithiane oxide onto commercial samples of zeolite H-Y. The origin of the rate enhancement is considered to result from a specific interaction between the dithiane oxide modifier with both the extra-framework and framework aluminum in the zeolite. Modification of zeolite H-Y with (R)-1,3-dithiane 1-oxide enhances the conversion of (S)-butan-2-ol compared to (R)-butan-2-ol in the temperature range 110-150{degrees}C when the two enantiomers are reacted separately. Modification with (S)-2-phenyl-1,3-dithiane 1-oxide gives a catalyst for which (R)-butan-2-ol is the most reactive of the two enantiomers. Reaction of racemic butan-2-ol over these chirally modified H-Y zeolites demonstrates that this modification procedure makes the zeolite enantiomerically discriminating and one enantiomer preferentially reacts, although both are present in the micropores under the reaction conditions. This effect is considered to be due to enantioselective rate enhancement, since, although the rate of dehydration of both enantiomers is enhanced in the chiral environment, the dehydration rate of one enantiomer is accelerated relative to the other. It is suggested that the effect is due to preferential adsorption at the chiral active site. 34 refs., 7 figs., 6 tabs.

  10. Hydrocracking process using zeolite beta

    SciTech Connect

    Angevine, P.J.; Mitchell, K.M.; Oleck, S.M.; Shih, S.S.

    1986-09-16

    A process is described for the hydrocracking and dewaxing of a petroleum fraction comprising waxy components boiling above 345/sup 0/C., which comprises passing the fraction over a hydrocracking catalyst comprising zeolite beta and a matrix material in the presence of hydrogen and under hydrocracking conditions, the proportion of zeolite beta in the hydrocracking catalyst increasing in the direction in which the fraction is passed.

  11. Tetraamminecopper(II) complex in zeolite Y. A Raman spectroscopic study

    SciTech Connect

    Dutta, P.K.; Zaykoski, R.E.

    1985-10-09

    This preliminary report indicates that, by careful manipulation of metal-zeolite complexes, it is possible to obtain bonding information by spontaneous Raman spectroscopy. The copper-amine was chosen for study because of the extensive EPR and electronic spectroscopic information on these complexes in zeolites. Also, these complexes are active intermediates in the catalytic oxidation of ammonia. It is important to point out that IR spectroscopy of these systems is not very valuable in the low-frequency region, where metal-ligand virations are expected. 17 references, 2 figures.

  12. Sorption of uranium(6+) and neptunium(5+) by surfactant-modified natural zeolites

    SciTech Connect

    Prikryl, J.D.; Pabalan, R.T.

    1999-07-01

    Experiments were conducted to determine the ability of surfactant-modification to enhance the ability of natural zeolites to sorb U(6+) and Np(5+). Natural zeolite material, comprised mainly of clinoptilolite and treated with the cationic surfactant hexadecyltrimethylammonium-bromide (HDTMA), was reacted with U(6+) and Np(5+) solutions open to the atmosphere and having a range of radionuclide concentration, pH, and NaCl concentration. The results indicate surfactant-modification of the zeolite enhances its ability to sorb U(6+), particularly at pHs greater than six where U(6+) sorption on unmodified zeolite is typically low due to formation of anionic U(6+) aqueous carbonate complexes. In contrast, there is little enhancement of Np(5+) sorption onto surfactant-modified zeolite. The presence of chloride anions in solution makes surfactant-modification less effective. The enhanced sorption of U(6+) is interpreted to be due to anion exchange with counterions on the external portion of a surfactant bilayer or admicelles.

  13. Reclaiming silver from silver zeolite

    SciTech Connect

    Reimann, G.A.

    1991-10-01

    Silver zeolite is used to capture radioiodines from air cleaning systems in some nuclear facilities at the Idaho National Engineering Laboratory. It may become radioactively contaminated and/or poisoned by hydrocarbon vapors, which diminishes its capacity for iodine. Silver zeolite contains up to 38 wt% silver. A pyrometallurgical process was developed to reclaim the silver before disposing of the unserviceable zeolite as a radioactive waste. A flux was formulated to convert the refractory aluminosilicate zeolite structure into a low-melting fluid slag, with Na{sub 2}O added as NAOH instead of Na{sub 2}CO{sub 3} to avoid severe foaming due to CO{sub 2} evolution. A propane-fired furnace was built to smelt 45 kg charges at 1300C in a carbon-bonded silicon carbide crucible. A total of 218 kg (7000 tr oz) of silver was reclaimed from 1050 kg of unserviceable zeolite. Silver recoveries of 97% were achieved, and the radioisotopes were fixed as stable silicates in a vitreous slag that was disposed of as a low level waste. Recovered silver was refined using oxygen and cast into 100 tr oz bars assaying 99.8+% silver and showing no radioactive contamination.

  14. Reclaiming silver from silver zeolite

    SciTech Connect

    Reimann, G.A.

    1991-10-01

    Silver zeolite is used to capture radioiodines from air cleaning systems in some nuclear facilities at the Idaho National Engineering Laboratory. It may become radioactively contaminated and/or poisoned by hydrocarbon vapors, which diminishes its capacity for iodine. Silver zeolite contains up to 38 wt% silver. A pyrometallurgical process was developed to reclaim the silver before disposing of the unserviceable zeolite as a radioactive waste. A flux was formulated to convert the refractory aluminosilicate zeolite structure into a low-melting fluid slag, with Na[sub 2]O added as NAOH instead of Na[sub 2]CO[sub 3] to avoid severe foaming due to CO[sub 2] evolution. A propane-fired furnace was built to smelt 45 kg charges at 1300C in a carbon-bonded silicon carbide crucible. A total of 218 kg (7000 tr oz) of silver was reclaimed from 1050 kg of unserviceable zeolite. Silver recoveries of 97% were achieved, and the radioisotopes were fixed as stable silicates in a vitreous slag that was disposed of as a low level waste. Recovered silver was refined using oxygen and cast into 100 tr oz bars assaying 99.8+% silver and showing no radioactive contamination.

  15. Utilizing copper(I) catalyzed azide-alkyne Huisgen 1,3-dipolar cycloaddition for the surface modification of colloidal particles with electroactive and emissive moieties

    NASA Astrophysics Data System (ADS)

    Rungta, Parul

    The development of charge-transporting and fluorescing colloidal particles that can be directly printed into electroluminescent devices may result in a broad impact on the use of electrical energy for illumination. The objective of this work was to design and synthesize electroactive & fluorescing colloidal particles; establish their optical, electronic, and thermodynamic properties; and transition them into a device format for potential applications. The original intended application of this work was to build "better" colloidally-based organic light emitting devices (OLEDs) by creating functional particles with superior electrical and optical performance relative to commercially available technologies, but through the course of the research, the particles that were developed were found to be better suited for medical applications. Nonetheless, the global objective envisioned at the onset of this research was consistent with its final outcomes. The research tasks pursued to accomplish this global objective included: (1) The design and synthesis of electroactive moieties and their conversion into organic light emitting devices; An electron-transporting monomer was synthesized that was structurally & energetically similar to the small molecule 2-biphenyl-4-yl-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (tBu-PBD). The monomer was copolymerized with 2-(9H-carbazol-9-yl)ethyl 2-methylacrylate (CE) and the resulting copolymer was utilized in OLEDs which employed fluorescent coumarin 6 (C6) or phosphorescent tris(2-phenylpyridine)iridium(III) [Ir(ppy)3] emitters. The copolymer devices exhibited a mean luminance of ca. 400 and 3,552 cd/m2 with the C6 and Ir(ppy)3 emitters, that were stable with thermal aging at temperatures ranging from 23°C to 130°C. Comparable poly(9-vinyl-9H-carbazole)/tBu-PBD blend devices exhibited more pronounced variations in performance with thermal aging. (2) The surface-modification of colloids with electroactive & fluorescing moieties via "click" chemistry; Aqueous-phase 83 nm poly(propargyl acrylate) (PA) nanoparticles were surface-functionalized with sparingly water soluble fluorescent moieties through a copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) (i.e., "click" transformation) to produce fluoroprobes with a large Stokes shift. For moieties which could not achieve extensive surface coverage on the particles utilizing a standard click transformation procedure, the presence of beta-cyclodextrin (beta-CD) during the transformation enhanced the grafting density onto the particles. For an oxadiazole containing molecule (AO), an azide-modified coumarin 6 (AD1) and a polyethylene glycol modified naphthalimide-based emitter (AD2), respectively, an 84%, 17% and 5% increase in the grafting densities were observed, when the transformation was performed in the presence of beta-CD. In contrast, a carbazolyl-containing moiety (AC) exhibited a slight retardation in the final grafting density when beta-CD was employed. Photoluminescence studies indicated that AC & AO when attached to the particles form an exciplex. An efficient energy transfer from the exciplex to the surface attached AD2 resulted in a total Stokes shift of 180 nm for the modified particles. (3) The synthesis and characterization of near-infrared (NIR) emitting particles for potential applications in cancer therapy. PA particles were surface modified through the "click" transformation of an azide-terminated indocyanine green (azICG), an NIR emitter, and poly(ethylene glycol) (azPEG) chains of various molecular weights. The placement of azICG onto the surface of the particles allowed for the chromophores to complex with bovine serum albumin (BSA) when dispersed in PBS that resulted in an enhancement of the dye emission. In addition, the inclusion of azPEG with the chromophores onto the particle surface resulted in a synergistic nine-fold enhancement of the fluorescence intensity, with azPEGs of increasing molecular weight amplifying the response. Preliminary photodynamic therapy (PDT) studies with human liver carcinoma cells (HepG2) combined with the modified particles indicated that a minor exposure of 780 nm radiation resulted in a statistically significant reduction in cell growth.

  16. Study on dioxygen reduction by mutational modifications of the hydrogen bond network leading from bulk water to the trinuclear copper center in bilirubin oxidase

    SciTech Connect

    Morishita, Hirotoshi; Kurita, Daisuke; Kataoka, Kunishige; Sakurai, Takeshi

    2014-07-18

    Highlights: • Proton transport pathway in bilirubin oxidase was mutated. • Two intermediates in the dioxygen reduction steps were trapped and characterized. • A specific glutamate for dioxygen reduction by multicopper oxidases was identified. - Abstract: The hydrogen bond network leading from bulk water to the trinuclear copper center in bilirubin oxidase is constructed with Glu463 and water molecules to transport protons for the four-electron reduction of dioxygen. Substitutions of Glu463 with Gln or Ala were attributed to virtually complete loss or significant reduction in enzymatic activities due to an inhibition of the proton transfer steps to dioxygen. The single turnover reaction of the Glu463Gln mutant afforded the highly magnetically interacted intermediate II (native intermediate) with a broad g = 1.96 electron paramagnetic resonance signal detectable at cryogenic temperatures. Reactions of the double mutants, Cys457Ser/Glu463Gln and Cys457Ser/Glu463Ala afforded the intermediate I (peroxide intermediate) because the type I copper center to donate the fourth electron to dioxygen was vacant in addition to the interference of proton transport due to the mutation at Glu463. The intermediate I gave no electron paramagnetic resonance signal, but the type II copper signal became detectable with the decay of the intermediate I. Structural and functional similarities between multicopper oxidases are discussed based on the present mutation at Glu463 in bilirubin oxidase.

  17. Distinct oxidative cleavage and modification of bovine [Cu- Zn]-SOD by an ascorbic acid/Cu(II) system: Identification of novel copper binding site on SOD molecule.

    PubMed

    Uehara, Hiroshi; Luo, Shen; Aryal, Baikuntha; Levine, Rodney L; Rao, V Ashutosh

    2016-05-01

    We investigated the combined effect of ascorbate and copper [Asc/Cu(II)] on the integrity of bovine [Cu-Zn]-superoxide dismutase (bSOD1) as a model system to study the metal catalyzed oxidation (MCO) and fragmentation of proteins. We found Asc/Cu(II) mediates specific cleavage of bSOD1 and generates 12.5 and 3.2kDa fragments in addition to oxidation/carbonylation of the protein. The effect of other tested transition metals, a metal chelator, and hydrogen peroxide on the cleavage and oxidation indicated that binding of copper to a previously unknown site on SOD1 is responsible for the Asc/Cu(II) specific cleavage and oxidation. We utilized tandem mass spectrometry to identify the specific cleavage sites of Asc/Cu(II)-treated bSOD1. Analyses of tryptic- and AspN-peptides have demonstrated the cleavage to occur at Gly31 with peptide bond breakage with Thr30 and Ser32 through diamide and α-amidation pathways, respectively. The three-dimensional structure of bSOD1 reveals the imidazole ring of His19 localized within 5Å from the α-carbon of Gly31 providing a structural basis that copper ion, most likely coordinated by His19, catalyzes the specific cleavage reaction. PMID:26872685

  18. Studies of zeolite-based artificial photosynthetic systems

    NASA Astrophysics Data System (ADS)

    Zhang, Haoyu

    Two ruthenium polypyridyl compounds of structural formula [(bpy) 2RuL]2+ (RuL) and [(bpy)2RuLDQ]4+ (RuLDQ) (where bpy = bipyridine, L = trans-1,2-bis-4-(4'-methyl)-2,2'-bipyridyl) ethane, LDQ = 1-[4-(4'-methyl)-2,2'-bipyridyl)]-2-[4-(4'-N,N'-tetramethylene-2,2'-bipyridinium)] ethene) were synthesized and purified. From pH titrations, it was found that the Ru complex was a stronger base (pKa* = 6) in the excited state than in the ground state (pKa = 4). Photolysis of the RuL complex in solutions at pH 7 and 12 led to formation of species with increased emission quantum yields, ˜55 nm blue-shift of the emission maximum to 625 nm and disappearance of the absorption band at 330 nm, the latter arising from the olefinic bond of the L ligand. Photoproducts formed at neutral pH have been analyzed. It was found that the major product was a dimer of RuL, dimerizing around the double bond. Photoreactions did not occur in the dark or in the aprotic solvent acetonitrile. We proposed that a Ru(III) radical intermediate was formed by photoinduced excited-state electron and proton transfer, which initiated the dimerization. The radical intermediate also underwent photochemical degradative reductions. Below pH 4, the emission quenching was proposed to arise via protonation of the monoprotonated RuLH + followed by electron transfer to the viologen-type moiety created by protonation. The products of photodegradation at pH > 12 were different from those of pH 7, but the mechanism of the degradation at pH > 12 was not elucidated. RuLDQ was stable under visible irradiation. We examined nanocrystalline zeolite as a host for light absorbing sensitizers (electron donors) and electron acceptors. Nanocrystalline zeolite Y (NanoY) with uniform particle size, pure phase was prepared. NanoY was obtained by periodically removing nanocrystals from the mother liquor and recycling the unused reagents. The nanoparicles were characterized by XRD and TEM. Optically clear colloidal solutions of NanoY were obtained. The Ru complexes were anchored on the surface of zeolites via ion-exchange or "ship-in-bottle" synthesis. The spectroscopic properties of the NanoY-entrapped species including methyl viologen (MV2+), RuL were measured via transmission techniques. The zeolite-encapsulated species were found to have red-shift absorption and emission bands and longer MLCT life times. By incorporating both donors Ru complexes and acceptors MV2+ in NanoY, electron transfer kinetics was examined. LFP study showed a slower back-electron-transfer rate as compared to forward electron transfer. Photochemically generated long-lived charge separation is the key step in processes that aim for conversion of solar energy into chemical energy. We incorporated RuL complex on the surface of a pinhole-free zeolite membrane by quaternization of L and surrounded with intrazeolitic bipyridinium ions (N,N'-trimethyl-2,2'-bipyridinium ion, 3DQ2+). Visible-light irradiation of the Ru complex side of the membrane in the presence of a sacrificial electron donor led to formation of PVS-· on the other side. Pore-blocking disilazane-based chemistry allows for Na+ to migrate through the membrane to maintain charge balance, while keeping the 3DQ2+ entrapped in the zeolite. These results provided encouragement that the zeolite membrane based architecture has the necessary features for not only incorporating molecular assemblies with long-lived charge separation but also for ready exploitation of the spatially separated charges to store visible light energy in chemical species. The pore-narrowing strategy applied under mild conditions can be used in control-release of active substances such as drug, pesticides, and herbicides. Methyl viologen (MV2+) was chosen as the guest molecule, since it is widely used as an herbicide and its release is of interest in agricultural applications. To explore the controlled-release capability of the surface-modified zeolite, MV2+-encapsulated zeolite Y particles were used as a model system. A MV2+-loaded zeolite was treated with disilazane reagents under ambient conditions and the grafting of siloxy functionality on the zeolite was confirmed by infrared, NMR spectroscopy and elemental analysis. Surface modification of MV2+-loaded zeolites encapsulated the guest molecules in the zeolite cages and release of MV2+ by ion-exchange with sodium ions was studied. The total amount of MV2+ released was dependent on the concentration of Na+ in solution, and was similar for the derivatized and underivatized samples. In the absence of surface modification, equilibration occurred within 20 minutes, whereas with surface modification, the equilibration time was extended to 7 days. These kinetics are reflected in the effective diffusion coefficients (D) of MV2+, with D = 1.2 x 10-15 cm 2 s-1 for derivatized zeolite Y and D = 0.2 -1.1 x 10-7 cm2 s-1 for the underivatized sample. (Abstract shortened by UMI.)

  19. Metal immobilization in soils using synthetic zeolites.

    PubMed

    Oste, Leonard A; Lexmond, Theo M; Van Riemsdijk, Willem H

    2002-01-01

    In situ immobilization of heavy metals in contaminated soils is a technique to improve soil quality. Synthetic zeolites are potentially useful additives to bind heavy metals. This study selected the most effective zeolite in cadmium and zinc binding out of six synthetic zeolites (mordenite-type, faujasite-type, zeolite X, zeolite P, and two zeolites A) and one natural zeolite (clinoptilolite). Zeolite A appeared to have the highest binding capacity between pH 5 and 6.5 and was stable above pH 5.5. The second objective of this study was to investigate the effects of zeolite addition on the dissolved organic matter (DOM) concentration. Since zeolites increase soil pH and bind Ca, their application might lead to dispersion of organic matter. In a batch experiment, the DOM concentration increased by a factor of 5 when the pH increased from 6 to 8 as a result of zeolite A addition. A strong increase in DOM was also found in the leachate of soil columns, particularly in the beginning of the experiment. This resulted in higher metal leaching caused by metal-DOM complexes. In contrast, the free ionic concentration of Cd and Zn strongly decreased after the addition of zeolites, which might explain the reduction in metal uptake observed in plant growth experiments. Pretreatment of zeolites with acid (to prevent a pH increase) or Ca (to coagulate organic matter) suppressed the dispersion of organic matter, but also decreased the metal binding capacity of the zeolites due to competition of protons or Ca. PMID:12026084

  20. Gas-phase adsorption in dealuminated natural clinoptilolite and liquid-phase adsorption in commercial DAY zeolite and modified ammonium Y zeolite

    NASA Astrophysics Data System (ADS)

    Costa Hernandez, Alba Nydia

    The adsorption of Carbon Dioxide (CO2) is a very important tool for the material characterization. On the other hand, in separation and recovery technology, the adsorption of the CO2 is important to reduce the concentration of this gas considered as one of the greenhouse gases. Natural zeolites, particularly clinoptilolite, are widely applied to eliminate some pollutants from the environment. One of the goals of this research is to study the structure, composition and morphology of one natural clinoptilolite dealuminated with ammonium hexafluorosilicate (AHFi) and with orthophosphoric acid (H3PO4). Each modified sample was characterized using X-ray Diffraction (XRD), Carbon Dioxide adsorption at 0° C, Thermogravimetric Analysis (TGA), and Scanning Electron Microscopy with Energy Dispersive X-Ray Analysis (SEM-EDAX). In addition, the surface chemistry of the modified clinoptilolites was analyzed with Diffuse Reflectance Fourier Transform Infrared Spectroscopy (DRIFTS). The adsorption measurements were also used to study of the interaction of CO2 molecule within the adsorption space of these modified clinoptilolites. It was concluded that one of the modified clinoptilolites, (CSW-HFSi-0.1M), showed a great quality as adsorbent and as catalytic comparable to commercial synthetic zeolites. As far as we know, the modification of clinoptilolite with HFSi to improve their adsorption properties had not been previously attempted. In the second part of this dissertation, the dynamic adsorption of three isomers of nitrophenols using as adsorbent a commercial DAY zeolite was investigated. Also, the dynamic adsorption of methanol in a less hydrophobic zeolite, Ammonium Y Zeolite was investigated. The obtained breakthrough curves showed that the commercial DAY zeolite could be a suitable adsorbent to the liquid-phase adsorption of the phenolic compounds. Notwithstanding the modified ammonium Y zeolite had a low Si/Al ratio (less hydrophobic) than commercial DAY zeolite; this modified zeolite was useful for the dynamic adsorption of polar compound such as methanol. The obtained results were consistent with those reported in other studies related with the use of zeolites in the removal of organic compounds from the liquid phase.

  1. Enhanced selectivity of zeolites by controlled carbon deposition

    SciTech Connect

    Nenoff, Tina M.; Thoma, Steven G.; Kartin, Mutlu

    2006-05-09

    A method for carbonizing a zeolite comprises depositing a carbon coating on the zeolite pores by flowing an inert carrier gas stream containing isoprene through a regenerated zeolite at elevated temperature. The carbonized zeolite is useful for the separation of light hydrocarbon mixtures due to size exclusion and the differential adsorption properties of the carbonized zeolite.

  2. Hydrogen Selective Exfoliated Zeolite Membranes

    SciTech Connect

    Tsapatsis, Michael; Daoutidis, Prodromos; Elyassi, Bahman; Lima, Fernando; Iyer, Aparna; Agrawal, Kumar; Sabnis, Sanket

    2015-04-06

    The objective of this project was to develop and evaluate an innovative membrane technology at process conditions that would be representative of Integrated Gasification Combined Cycle (IGCC) advanced power generation with pre-combustion capture of carbon dioxide (CO2). This research focused on hydrogen (H2)-selective zeolite membranes that could be utilized to separate conditioned syngas into H2-rich and CO2-rich components. Both experiments and process design and optimization calculations were performed to evaluate the concept of ultra-thin membranes made from zeolites nanosheets. In this work, efforts in the laboratory were made to tackle two fundamental challenges in application of zeolite membranes in harsh industrial environments, namely, membrane thickness and membrane stability. Conventional zeolite membranes have thicknesses in the micron range, limiting their performance. In this research, we developed a method for fabrication of ultimately thin zeolite membranes based on zeolite nanosheets. A range of layered zeolites (MWW, RWR, NSI structure types) suitable for hydrogen separation was successfully exfoliated to their constituent nanosheets. Further, membranes were made from one of these zeolites, MWW, to demonstrate the potential of this group of materials. Moreover, long-term steam stability of these zeolites (up to 6 months) was investigated in high concentrations of steam (35 mol% and 95 mole%), high pressure (10 barg), and high temperatures (350 °C and 600 °C) relevant to conditions of water-gas-shift and steam methane reforming reactions. It was found that certain nanosheets are stable, and that stability depends on the concentration of structural defects. Additionally, models that represent a water-gas-shift (WGS) membrane reactor equipped with the zeolite membrane were developed for systems studies. These studies had the aim of analyzing the effect of the membrane reactor integration into IGCC plants in terms of performance and economic aspects of the plants. Specifically, simulation and design optimization studies were performed using the developed stand-alone membrane reactor models to identify the membrane selectivity and permeance characteristics necessary to achieve desired targets of CO2 capture and H2 recovery, as well as guide the selection of the optimal reactor design that minimizes the membrane cost as a function of its surface area required. The isothermal membrane reactor model was also integrated into IGCC system models using both the MATLAB and Aspen software platforms and techno-economic analyses of the integrated plants have been carried out to evaluate the feasibility of replacing current technologies for pre-combustion capture by the proposed novel approach in terms of satisfying stream constraints and achieving the DOE target goal of 90% CO2 capture. The results of the performed analyses based on present value of annuity calculations showed break even costs for the membrane reactor within the feasible range for membrane fabrication. However, the predicted membrane performance used in these simulations exceeded the performance achieved experimentally. Therefore, further work is required to improve membrane performance.

  3. Modification, adsorption, and geochemistry processes on altered minerals and amorphous phases on the nanometer scale: examples from copper mining refuse, Touro, Spain.

    PubMed

    Civeira, Matheus; Oliveira, Marcos L S; Hower, James C; Agudelo-Castañeda, Dayana M; Taffarel, Silvio R; Ramos, Claudete G; Kautzmann, Rubens M; Silva, Luis F O

    2016-04-01

    The sulfide oxidation and precipitation of Al-Fe-secondary minerals associated with abandoned acid mine drainage (AMD) from the abandoned copper mine waste pile at Touro, Spain, has been studied by sequential extraction (SE) combined with several techniques with the intent of understanding the role of these processes play in the natural attenuation of hazardous element contaminants in the AMD. In addition, the fragile nature of nanominerals and ultrafine particle (UFP) assemblages from contaminated sediment systems from the abandoned copper mine required novel techniques and experimental approaches. The investigation of the geochemistry of complex nanominerals and UFP assemblages was a prerequisite to accurately assess the environmental and human health risks of contaminants and cost-effective chemical and biogeological remediation strategies. Particular emphasis was placed on the study and characterization of the complex mixed nanominerals and UFP containing potentially toxic elements. Nanometer-sized phases in sediments were characterized using energy-dispersive X-ray spectrometer (EDS), field-emission scanning electron microscope (FE-SEM), and high-resolution transmission electron microscopy (HR-TEM) images. The identification of the geochemical and mineralogical composition of AMD in Touro, as well as the different formation mechanisms proposed, complement the existing literature on secondary mineral assemblages and provide new emphasis to increase the understanding of extreme environments. The results also demonstrated that variations in the geochemical fractionation of hazardous elements in AMD were more influenced by the secondary mineral proportion and by AMD pH. PMID:26635221

  4. UTILITY OF ZEOLITES IN HAZARDOUS METAL REMOVAL FROM WATER

    EPA Science Inventory

    Zeolites are well known for their ion exchange, adsorption and acid catalysis properties. Different inorganic pollutants have been removed from water at room temperature by using synthetic zeolites. Zeolite Faujasite Y has been used to remove inorganic pollutants including arseni...

  5. New insights into alkylammonium-functionalized clinoptilolite and Na-P1 zeolite: Structural and textural features

    NASA Astrophysics Data System (ADS)

    Muir, Barbara; Matusik, Jakub; Bajda, Tomasz

    2016-01-01

    The area of zeolites' application could be expanded by utilizing their surfaces. Zeolites are frequently modified to increase their hydrophobicity and to generate the negative charge of the surface. The main objective of the study was to investigate and compare the features of natural clinoptilolite and synthetic zeolite Na-P1 modified by selected surfactants involving quaternary ammonium salts. The FTIR study indicates that with increasing carbon chain length in the surfactant attached to the zeolites surface the molecules adopt a more disordered structure. FTIR was also used to determine the efficiency of surface modification. Thermal analysis revealed that the presence of surfactant results in additional exothermic effects associated with the breaking of electrostatic bonds between zeolites and surfactants. The mass losses are in line with ECEC and CHN data. The textural study indicates that the synthetic zeolite Na-P1 has better sorption properties than natural clinoptilolite. The modification process always reduces the SBET and porosity of the material. With an increasing carbon chain length of surfactants all the texture parameters decrease.

  6. Spin probes of chemistry in zeolites

    SciTech Connect

    Werst, D.W.; Trifunac, A.D.

    1997-09-01

    Electron spin resonance (EPR) studies in zeolites are reviewed in which radiolysis was used to ionize the zeolite lattice, create reactive intermediates, spin label reaction products and to provide a window onto chemistry and transport of adsorbates and matrix control of chemistry. The review examines reactions of radical cations and the influence of the geometry constraints inside the zeolite, explores how zeolite model systems can be used to learn about energy and charge transfer in solids and illustrates the use of radiolysis and EPR for in situ spectroscopic studies of solid-acid catalysis. The various spin probes created inside the zeolite pores report on properties of the zeolites as well as shed light on radiolytic processes.

  7. The influence of using Jordanian natural zeolite on the adsorption, physical, and mechanical properties of geopolymers products.

    PubMed

    Yousef, Rushdi Ibrahim; El-Eswed, Bassam; Alshaaer, Mazen; Khalili, Fawwaz; Khoury, Hani

    2009-06-15

    Geopolymers consist of an amorphous, three-dimensional structure resulting from the polymerization of aluminosilicate monomers that result from dissolution of kaolin in an alkaline solution at temperatures around 80 degrees C. One potential use of geopolymers is as Portland cement replacement. It will be of great importance to provide a geopolymer with suitable mechanical properties for the purpose of water storage and high adsorption capacity towards pollutants. The aim of this work is to investigate the effect of using Jordanian zeolitic tuff as filler on the mechanical performance and on the adsorption capacity of the geopolymers products. Jordanian zeolitic tuff is inexpensive and is known to have high adsorption capacity. The results confirmed that this natural zeolitic tuff can be used as a filler of stable geopolymers with high mechanical properties and high adsorption capacity towards methylene blue and Cu(II) ions. The XRD measurements showed that the phillipsite peaks (major mineral constituent of Jordanian zeolite) were disappeared upon geopolymerization. The zeolite-based geopolymers revealed high compressive strength compared to reference geopolymers that employ sand as filler. Adsorption experiments showed that among different geopolymers prepared, the zeolite-based geopolymers have the highest adsorption capacity towards methylene blue and copper(II) ions. PMID:19036505

  8. Modification of the charge transport properties of the copper phthalocyanine/poly(vinyl alcohol) interface using cationic or anionic surfactant for field-effect transistor performance enhancement

    NASA Astrophysics Data System (ADS)

    Jastrombek, Diana; Nawaz, Ali; Koehler, Marlus; Meruvia, Michelle S.; Hümmelgen, Ivo A.

    2015-08-01

    We report on the performance enhancement of organic field-effect transistors prepared using cross-linked poly(vinyl alcohol) as gate dielectric and copper phthalocyanine as channel semiconductor through gate dielectric surface treatment. The gate dielectric surface was treated using either a cationic surfactant, hexadecyltrimethylammonium bromide (CTAB), or an anionic surfactant, sodium dodecyl sulfate (SDS). We determined the charge-carrier field-effect mobility ( μ FET) in these transistors as a function of the effective channel thickness in the channel bottleneck, near to the transistor source. When compared to the untreated devices, in the devices treated with CTAB or SDS, the channel formation occurs at lower gate voltage and the carrier mobility in the thinnest channel region, corresponding to the immediate vicinity of the insulator/semiconductor interface, is significantly higher. The surfactant treatment leads to a tenfold increase in μ FET and significant enhancement in capacitance, on/off current ratio and transconductance of the transistor.

  9. Synthesis of ‘unfeasible’ zeolites

    NASA Astrophysics Data System (ADS)

    Mazur, Michal; Wheatley, Paul S.; Navarro, Marta; Roth, Wieslaw J.; Položij, Miroslav; Mayoral, Alvaro; Eliášová, Pavla; Nachtigall, Petr; Čejka, Jiří; Morris, Russell E.

    2016-01-01

    Zeolites are porous aluminosilicate materials that have found applications in many different technologies. However, although simulations suggest that there are millions of possible zeolite topologies, only a little over 200 zeolite frameworks of all compositions are currently known, of which about 50 are pure silica materials. This is known as the zeolite conundrum—why have so few of all the possible structures been made? Several criteria have been formulated to explain why most zeolites are unfeasible synthesis targets. Here we demonstrate the synthesis of two such ‘unfeasible’ zeolites, IPC-9 and IPC-10, through the assembly-disassembly-organization-reassembly mechanism. These new high-silica zeolites have rare characteristics, such as windows that comprise odd-membered rings. Their synthesis opens up the possibility of preparing other zeolites that have not been accessible by traditional solvothermal synthetic methods. We envisage that these findings may lead to a step change in the number and types of zeolites available for future applications.

  10. Increased thermal conductivity monolithic zeolite structures

    DOEpatents

    Klett, James; Klett, Lynn; Kaufman, Jonathan

    2008-11-25

    A monolith comprises a zeolite, a thermally conductive carbon, and a binder. The zeolite is included in the form of beads, pellets, powders and mixtures thereof. The thermally conductive carbon can be carbon nano-fibers, diamond or graphite which provide thermal conductivities in excess of about 100 W/mK to more than 1,000 W/mK. A method of preparing a zeolite monolith includes the steps of mixing a zeolite dispersion in an aqueous colloidal silica binder with a dispersion of carbon nano-fibers in water followed by dehydration and curing of the binder is given.

  11. Synthesis of highly selective zeolite topology molecular sieve for adsorption of benzene gas

    NASA Astrophysics Data System (ADS)

    Wei, Lin; Chen, Yunlin; Zhang, Baoping; Zu, Zhinan

    2013-02-01

    Shangdong fly ash (SFA), Fangshan fly ash (FFA) and Heilongjiang fly ash (HFA) were selected as the raw materials to be used for synthesis of highly selective zeolite topology molecular sieve. Twice foaming method was studied in terms of synthetic zeolite. The experimental products were characterized by means of X-ray fluorescence (XRF), scanning electron microscope (SEM), X-ray diffraction (XRD), and automated surface area & pore size analyser. The results indicated that 10 M NaOH was chosen as modification experiment condition to process SFA. Crystallization temperature and time were 140 °C and 8 h, respectively. Zeolite topology molecular sieve was prepared with Si/Al molar ratio of 7.9, and its adsorption ratio of benzene gas was up to 66.51%.

  12. A novel concept for photovoltaic cells: clusters of titanium dioxide encapsulated within zeolites as photoactive semiconductors.

    PubMed

    Alvaro, Mercedes; Carbonell, Esther; Atienzar, Pedro; García, Hermenegildo

    2006-09-11

    Discrete clusters of TiO(2) (of only a few titanium atoms) are prepared within the internal micropore space of zeolite Y (4.8 wt % Ti loading) and characterized by Raman spectroscopy (rutile- and anatase-like structures), electron microscopy combined with elemental analyses (coincident Si and Ti spatial distribution), and X-ray diffraction (minor zeolite crystallinity decrease). The parent TiO(2)@Y sample is modified either by adsorption of acid-organic compounds (benzoic and 4-aminobenzoic acids or catechol) or by nitrogen doping. After modification, the optical UV/Vis spectrum of the parent TiO(2)@Y (onset of the absorption band at wavelengths <300 nm and bandgap of 4.2 eV) changes, and the appearance of new bands expanding to the visible region is observed. In contrast to the inactive zeolite Y matrix, all the zeolite-encapsulated TiO(2) species exhibit a photovoltaic response. The influence of the I(2)/I(3) (-) concentration in the electrolyte solution on the temporal profile of the photovoltage clearly shows that I(2)/I(3) (-) is also a suitable carrier for the positive charge in zeolite-based photovoltaic devices. The photocurrent response and the efficiency of the photovoltaic cell based on zeolite-encapsulated TiO(2) materials depend on the nature of the organic modifier and on the N-doping. The most efficient photovoltaic cell is that based on N-doped TiO(2)@Y, which exhibits a V(OC) (voltage at open circuit) of 270 mV, an I(SC) of 5.8 muA (current at short circuit), and a fill factor (FF) of 0.4. Although these values are low compared to current dye-sensitized TiO(2) solar cells, our findings could open up a promise for a stimulating research on the photovoltaic activity of zeolite-based host-guest solids. PMID:16921574

  13. Phosphorus promotion and poisoning in zeolite-based materials: synthesis, characterisation and catalysis.

    PubMed

    van der Bij, Hendrik E; Weckhuysen, Bert M

    2015-10-21

    Phosphorus and microporous aluminosilicates, better known as zeolites, have a unique but poorly understood relationship. For example, phosphatation of the industrially important zeolite H-ZSM-5 is a well-known, relatively inexpensive and seemingly straightforward post-synthetic modification applied by the chemical industry not only to alter its hydrothermal stability and acidity, but also to increase its selectivity towards light olefins in hydrocarbon catalysis. On the other hand, phosphorus poisoning of zeolite-based catalysts, which are used for removing nitrogen oxides from exhaust fuels, poses a problem for their use in diesel engine catalysts. Despite the wide impact of phosphorus-zeolite chemistry, the exact physicochemical processes that take place require a more profound understanding. This review article provides the reader with a comprehensive and state-of-the-art overview of the academic literature, from the first reports in the late 1970s until the most recent studies. In the first part an in-depth analysis is undertaken, which will reveal universal physicochemical and structural effects of phosphorus-zeolite chemistry on the framework structure, accessibility, and strength of acid sites. The second part discusses the hydrothermal stability of zeolites and clarifies the promotional role that phosphorus plays. The third part of the review paper links the structural and physicochemical effects of phosphorus on zeolite materials with their catalytic performance in a variety of catalytic processes, including alkylation of aromatics, catalytic cracking, methanol-to-hydrocarbon processing, dehydration of bioalcohol, and ammonia selective catalytic reduction (SCR) of NOx. Based on these insights, we discuss potential applications and important directions for further research. PMID:26051875

  14. Phosphorus promotion and poisoning in zeolite-based materials: synthesis, characterisation and catalysis

    PubMed Central

    van der Bij, Hendrik E.

    2015-01-01

    Phosphorus and microporous aluminosilicates, better known as zeolites, have a unique but poorly understood relationship. For example, phosphatation of the industrially important zeolite H-ZSM-5 is a well-known, relatively inexpensive and seemingly straightforward post-synthetic modification applied by the chemical industry not only to alter its hydrothermal stability and acidity, but also to increase its selectivity towards light olefins in hydrocarbon catalysis. On the other hand, phosphorus poisoning of zeolite-based catalysts, which are used for removing nitrogen oxides from exhaust fuels, poses a problem for their use in diesel engine catalysts. Despite the wide impact of phosphorus–zeolite chemistry, the exact physicochemical processes that take place require a more profound understanding. This review article provides the reader with a comprehensive and state-of-the-art overview of the academic literature, from the first reports in the late 1970s until the most recent studies. In the first part an in-depth analysis is undertaken, which will reveal universal physicochemical and structural effects of phosphorus–zeolite chemistry on the framework structure, accessibility, and strength of acid sites. The second part discusses the hydrothermal stability of zeolites and clarifies the promotional role that phosphorus plays. The third part of the review paper links the structural and physicochemical effects of phosphorus on zeolite materials with their catalytic performance in a variety of catalytic processes, including alkylation of aromatics, catalytic cracking, methanol-to-hydrocarbon processing, dehydration of bioalcohol, and ammonia selective catalytic reduction (SCR) of NOx. Based on these insights, we discuss potential applications and important directions for further research. PMID:26051875

  15. Zeolites Remove Sulfur From Fuels

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E.; Sharma, Pramod K.

    1991-01-01

    Zeolites remove substantial amounts of sulfur compounds from diesel fuel under relatively mild conditions - atmospheric pressure below 300 degrees C. Extracts up to 60 percent of sulfur content of high-sulfur fuel. Applicable to petroleum refineries, natural-gas processors, electric powerplants, and chemical-processing plants. Method simpler and uses considerably lower pressure than current industrial method, hydro-desulfurization. Yields cleaner emissions from combustion of petroleum fuels, and protects catalysts from poisoning by sulfur.

  16. Zeolite-like liquid crystals.

    PubMed

    Poppe, Silvio; Lehmann, Anne; Scholte, Alexander; Prehm, Marko; Zeng, Xiangbing; Ungar, Goran; Tschierske, Carsten

    2015-01-01

    Zeolites represent inorganic solid-state materials with porous structures of fascinating complexity. Recently, significant progress was made by reticular synthesis of related organic solid-state materials, such as metal-organic or covalent organic frameworks. Herein we go a step further and report the first example of a fluid honeycomb mimicking a zeolitic framework. In this unique self-assembled liquid crystalline structure, transverse-lying π-conjugated rod-like molecules form pentagonal channels, encircling larger octagonal channels, a structural motif also found in some zeolites. Additional bundles of coaxial molecules penetrate the centres of the larger channels, unreachable by chains attached to the honeycomb framework. This creates a unique fluid hybrid structure combining positive and negative anisotropies, providing the potential for tuning the directionality of anisotropic optical, electrical and magnetic properties. This work also demonstrates a new approach to complex soft-matter self-assembly, by using frustration between space filling and the entropic penalty of chain extension. PMID:26486751

  17. Zeolite-like liquid crystals

    PubMed Central

    Poppe, Silvio; Lehmann, Anne; Scholte, Alexander; Prehm, Marko; Zeng, Xiangbing; Ungar, Goran; Tschierske, Carsten

    2015-01-01

    Zeolites represent inorganic solid-state materials with porous structures of fascinating complexity. Recently, significant progress was made by reticular synthesis of related organic solid-state materials, such as metal-organic or covalent organic frameworks. Herein we go a step further and report the first example of a fluid honeycomb mimicking a zeolitic framework. In this unique self-assembled liquid crystalline structure, transverse-lying π-conjugated rod-like molecules form pentagonal channels, encircling larger octagonal channels, a structural motif also found in some zeolites. Additional bundles of coaxial molecules penetrate the centres of the larger channels, unreachable by chains attached to the honeycomb framework. This creates a unique fluid hybrid structure combining positive and negative anisotropies, providing the potential for tuning the directionality of anisotropic optical, electrical and magnetic properties. This work also demonstrates a new approach to complex soft-matter self-assembly, by using frustration between space filling and the entropic penalty of chain extension. PMID:26486751

  18. Amine-functionalized, silver-exchanged zeolite NaY: Preparation, characterization and antibacterial activity

    NASA Astrophysics Data System (ADS)

    Hanim, Siti Aishah Mohd; Malek, Nik Ahmad Nizam Nik; Ibrahim, Zaharah

    2016-01-01

    Amine-functionalized, silver-exchanged zeolite NaY (ZSA) were prepared with three different concentrations of 3-aminopropyltriethoxysilane (APTES) (0.01, 0.20 and 0.40 M) and four different concentrations of silver ions (25%, 50%, 100% and 200% from zeolite cation exchange capacity (CEC)). The samples were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX), surface area analysis, thermogravimetric analysis (TGA) and zeta potential (ZP) analysis. The FTIR results indicated that the zeolite was functionalized by APTES and that the intensity of the peaks corresponding to APTES increased as the concentration of APTES used was increased. The antibacterial activities of the silver-exchanged zeolite NaY (ZS) and ZSA were studied against Escherichia coli ATCC11229 and Staphylococcus aureus ATCC6538 using the disc diffusion technique (DDT) and minimum inhibitory concentration (MIC). The antibacterial activity of ZSA increased with the increase in APTES on ZS, and E. coli was more susceptible towards the sample compared to S. aureus. The FESEM micrographs of the bacteria after contact with the ZSA suggested different mechanisms of bacterial death for these two bacteria due to exposure to the studied sample. The functionalization of ZS with APTES improved the antibacterial activity of the silver-zeolite, depending on the concentration of silver ions and APTES used during modification.

  19. Modifications on the hydrogen bond network by mutations of Escherichia coli copper efflux oxidase affect the process of proton transfer to dioxygen leading to alterations of enzymatic activities

    SciTech Connect

    Kajikawa, Takao; Kataoka, Kunishige; Sakurai, Takeshi

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer Proton transfer pathway to dioxygen in CueO was identified. Black-Right-Pointing-Pointer Glu506 is the key amino acid to transport proton. Black-Right-Pointing-Pointer The Ala mutation at Glu506 formed a compensatory proton transfer pathway. Black-Right-Pointing-Pointer The Ile mutation at Glu506 shut down the hydrogen bond network. -- Abstract: CueO has a branched hydrogen bond network leading from the exterior of the protein molecule to the trinuclear copper center. This network transports protons in the four-electron reduction of dioxygen. We replaced the acidic Glu506 and Asp507 residues with the charged and uncharged amino acid residues. Peculiar changes in the enzyme activity of the mutants relative to the native enzyme indicate that an acidic amino acid residue at position 506 is essential for effective proton transport. The Ala mutation resulted in the formation of a compensatory hydrogen bond network with one or two extra water molecules. On the other hand, the Ile mutation resulted in the complete shutdown of the hydrogen bond network leading to loss of enzymatic activities of CueO. In contrast, the hydrogen bond network without the proton transport function was constructed by the Gln mutation. These results exerted on the hydrogen bond network in CueO are discussed in comparison with proton transfers in cytochrome oxidase.

  20. Factors affecting adsorption characteristics of Zn2+ on two natural zeolites.

    PubMed

    Oren, Ali Hakan; Kaya, Abidin

    2006-04-17

    Mining-related and industrial wastes are primary sources of heavy metal contamination in soils and groundwater. The limitation of such waste in drinking water needs to meet government requirements in order to safeguard human health and environment. Zinc, one of the most preponderant pollutants, is difficult to remove from wastewater rather than other heavy metals (i.e. lead, copper and cadmium). This paper investigates Zn2+ adsorption characteristics of two natural zeolites found in the regions of Gordes and Bigadic, in western Turkey. The results show that the Zn2+ adsorption behavior of both zeolites is highly dependent on the pH. Adsorption dependence on lower pH values (pH<4) is explained by the dissolution of crystal structure and the competition of the zinc ions with the H+. Between pH 4 and 6, the basic mechanism is the ion exchange process. The results also showed that decrease in grain size does not increase the adsorption capacity of zeolite from Gordes, yet it increases that of zeolite from Bigadic about 23%. The results also reveal that an increase in the initial concentration of Zn2+ in the system causes an increase in the adsorption capacity to a degree, then it becomes more constant at higher concentrations. With this, the removal efficiency of Gordes zeolite is two times higher than that of Bigadic zeolite. Results show that an increase in slurry concentration results in a lower uptake of Zn2+. In the final part of the paper, we compared the experimental data with the Langmuir and Freundlich isotherms. The results show that there is a good fit between the experimental data and empirical isotherms. PMID:16266781

  1. Treating Coalbed Natural Gas Produced Water for Beneficial Use By MFI Zeolite Membranes

    SciTech Connect

    Robert Lee; Liangxiong Li

    2008-03-31

    Desalination of brines produced from oil and gas fields is an attractive option for providing potable water in arid regions. Recent field-testing of subsurface sequestration of carbon dioxide for climate management purposes provides new motivation for optimizing efficacy of oilfield brine desalination: as subsurface reservoirs become used for storing CO{sub 2}, the displaced brines must be managed somehow. However, oilfield brine desalination is not economical at this time because of high costs of synthesizing membranes and the need for sophisticated pretreatments to reduce initial high TDS and to prevent serious fouling of membranes. In addition to these barriers, oil/gas field brines typically contain high concentrations of multivalent counter cations (eg. Ca{sup 2+} and SO{sub 4}{sup 2-}) that can reduce efficacy of reverse osmosis (RO). Development of inorganic membranes with typical characteristics of high strength and stability provide a valuable option to clean produced water for beneficial uses. Zeolite membranes have a well-defined subnanometer pore structure and extreme chemical and mechanical stability, thus showing promising applicability in produced water purification. For example, the MFI-type zeolite membranes with uniform pore size of {approx}0.56 nm can separate ions from aqueous solution through a mechanism of size exclusion and electrostatic repulsion (Donnan exclusion). Such a combination allows zeolite membranes to be unique in separation of both organics and electrolytes from aqueous solutions by a reverse osmosis process, which is of great interest for difficult separations, such as oil-containing produced water purification. The objectives of the project 'Treating Coalbed Natural Gas Produced Water for Beneficial Use by MFI Zeolite Membranes' are: (1) to conduct extensive fundamental investigations and understand the mechanism of the RO process on zeolite membranes and factors determining the membrane performance, (2) to improve the membranes and optimize operating conditions to enhance water flux and ion rejection, and (3) to perform long-term RO operation on tubular membranes to study membrane stability and to collect experimental data necessary for reliable evaluations of technical and economic feasibilities. Our completed research has resulted in deep understanding of the ion and organic separation mechanism by zeolite membranes. A two-step hydrothermal crystallization process resulted in a highly efficient membrane with good reproducibility. The zeolite membranes synthesized therein has an overall surface area of {approx}0.3 m{sup 2}. Multichannel vessels were designed and machined for holding the tubular zeolite membrane for water purification. A zeolite membrane RO demonstration with zeolite membranes fabricated on commercial alpha-alumina support was established in the laboratory. Good test results were obtained for both actual produced water samples and simulated samples. An overall 96.9% ion rejection and 2.23 kg/m{sup 2}.h water flux was achieved in the demonstration. In addition, a post-synthesis modification method using Al{sup 3+}-oligomers was developed for repairing the undesirable nano-scale intercrystalline pores. Considerable enhancement in ion rejection was achieved. This new method of zeolite membrane modification is particularly useful for enhancing the efficiency of ion separation from aqueous solutions because the modification does not need high temperature operation and may be carried out online during the RO operation. A long-term separation test for actual CBM produced water has indicated that the zeolite membranes show excellent ion separation and extraordinary stability at high pressure and produced water environment.

  2. SEQUESTERING MANURE N WITH SYNTHETIC ZEOLITES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Natural zeolites have a long and successful history of agricultural use in Japan and more recently in the U.S. However the price (often > $US500 Mg -1) limits their use in agriculture. Zeolites can be synthesized from fly ash by reaction with sodium hydroxide solutions and low temperature. The proje...

  3. Metal/zeolite catalysts of methane dehydroaromatization

    NASA Astrophysics Data System (ADS)

    Mamonov, N. A.; Fadeeva, E. V.; Grigoriev, D. A.; Mikhailov, M. N.; Kustov, Leonid M.; Alkhimov, S. A.

    2013-06-01

    Results of studying methane dehydroaromatization over metal/zeolite catalysts have been reviewed. Special attention has focused on molybdenum catalysts based on HZSM-5 zeolites. The effect of catalyst synthesis and reaction conditions on the catalytic properties of the systems has been scrutinized. Information on the mechanism of the process and the nature of active sites has been reported. The bibliography includes 137 references.

  4. Copper transport.

    PubMed

    Linder, M C; Wooten, L; Cerveza, P; Cotton, S; Shulze, R; Lomeli, N

    1998-05-01

    In adult humans, the net absorption of dietary copper is approximately 1 mg/d. Dietary copper joins some 4-5 mg of endogenous copper flowing into the gastrointestinal tract through various digestive juices. Most of this copper returns to the circulation and to the tissues (including liver) that formed them. Much lower amounts of copper flow into and out of other major parts of the body (including heart, skeletal muscle, and brain). Newly absorbed copper is transported to body tissues in two phases, borne primarily by plasma protein carriers (albumin, transcuprein, and ceruloplasmin). In the first phase, copper goes from the intestine to the liver and kidney; in the second phase, copper usually goes from the liver (and perhaps also the kidney) to other organs. Ceruloplasmin plays a role in this second phase. Alternatively, liver copper can also exit via the bile, and in a form that is less easily reabsorbed. Copper is also present in and transported by other body fluids, including those bathing the brain and central nervous system and surrounding the fetus in the amniotic sac. Ceruloplasmin is present in these fluids and may also be involved in copper transport there. The concentrations of copper and ceruloplasmin in milk vary with lactational stage. Parallel changes occur in ceruloplasmin messenger RNA expression in the mammary gland (as determined in pigs). Copper in milk ceruloplasmin appears to be particularly available for absorption, at least in rats. PMID:9587137

  5. Enhanced reduction of chromate and PCE by pelletized surfactant-modified zeolite/zerovalent iron

    SciTech Connect

    Li, Z.; Jones, H.K.; Bowman, R.S.; Helferich, R.

    1999-12-01

    The current research focuses on enhanced removal of chromate and perchloroethylene from contaminated water by a combination of a reduction material (represented by zerovalent iron, ZVI) and a sorption material (represented by surfactant-modified zeolite, SMZ). Natural zeolite and ZVI were homogenized and pelletized to maintain favorable hydraulic properties while minimizing material segregation due to bulk density differences. The zeolite/ZVI pellets were modified with the cationic surfactant hexadecyltrimethylammonium bromide to increase contaminant sorption and, thus, the contaminant concentration on the solid surface. Results of chromate sorption/reduction indicate that the chromate sorption capacity of pelletized SMZ/ZVI is at least 1 order of magnitude higher than that of zeolite/ZVI pellets. Compared to SMZ pellets, the chromate removal capacity of SMZ/ZVI pellets in a 24-h period is about 80% higher, due to the combined effects o sorption by SMZ and reduction by ZVI. The chromate and PCE degradation rates with and without surfactant modification were determined separately. The pseudo-first-order reduction constant increased by a factor of 3 for PCE and by a factor of 9 for chromate following surfactant modification. The enhanced contaminant reduction capacity of SMZ/ZVI pellets may lead to a decrease in the amount of material required to achieve a given level of contaminant removal.

  6. UTILITY OF ZEOLITES IN ARSENIC REMOVAL FROM WATER

    EPA Science Inventory

    Zeolites are well known for their ion exchange and adsorption properties. So far the cation exchanger properties of zeolites have been extensively studied and utilized. The anion exchanger properties of zeolites are less studied. Zeolite Faujasite Y has been used to remove arseni...

  7. Copper poisoning

    MedlinePlus

    ... of copper may cause: Abdominal pain Diarrhea Vomiting Yellow skin (jaundice) Touching large amounts of copper can ... mouth Muscle aches Nausea Pain Shock Vomiting Weakness Yellow eyes, yellow skin

  8. Optical response of Cu clusters in zeolite template.

    PubMed

    Lpez-Bastidas, Catalina; Petranovskii, Vitalii; Machorro, Roberto

    2012-06-01

    Optical properties of Cu clusters embedded in mordenite are studied experimentally and theoretically. In this work we discuss spectral features of the system at various reduction steps and compare then with the results of spectra obtained within a theoretical model. The model employed consists of Cu clusters embedded in a homogeneous matrix. A second model employed introduced further variation considering a three component system where air or water can be present. The macroscopic dielectric response of the system is obtained within the Maxwell Garnett approximation. In this approach the complex non-local in homogeneous dielectric response of the zeolite+copper system is replaced by an effective homogeneous dielectric function. Metallic clusters can occupy specific available cavities in the zeolite framework. The presence of clusters that are smaller than the cavities in which they reside can lead to an air-Cu or water-Cu interface which allows shifts in surface plasmon resonance energies. As observed experimentally the energy of the main resonance is seen to be insensitive to the filling fraction ratios and highly susceptible to the embedding matrix properties. Reflectance spectra have been obtained which can be explained within this model. PMID:22440728

  9. Synthesis, characterization and catalytic activity of indium substituted nanocrystalline Mobil Five (MFI) zeolite

    SciTech Connect

    Shah, Kishor Kr.; Nandi, Mithun; Talukdar, Anup K.

    2015-06-15

    Highlights: • In situ modification of the MFI zeolite by incorporation of indium. • The samples were characterized by XRD, FTIR, TGA, UV–vis (DRS), SAA, EDX and SEM. • The incorporation of indium was confirmed by XRD, FT-IR, UV–vis (DRS), EDX and TGA. • Hydroxylation of phenol reaction was studied on the synthesized catalysts. - Abstract: A series of indium doped Mobil Five (MFI) zeolite were synthesized hydrothermally with silicon to aluminium and indium molar ratio of 100 and with aluminium to indium molar ratios of 1:1, 2:1 and 3:1. The MFI zeolite phase was identified by XRD and FT-IR analysis. In XRD analysis the prominent peaks were observed at 2θ values of around 6.5° and 23° with a few additional shoulder peaks in case of all the indium incorporated samples suggesting formation of pure phase of the MFI zeolite. All the samples under the present investigation were found to exhibit high crystallinity (∼92%). The crystallite sizes of the samples were found to vary from about 49 to 55 nm. IR results confirmed the formation of MFI zeolite in all cases showing distinct absorbance bands near 1080, 790, 540, 450 and 990 cm{sup −1}. TG analysis of In-MFI zeolites showed mass losses in three different steps which are attributed to the loss due to adsorbed water molecules and the two types TPA{sup +} cations. Further, the UV–vis (DRS) studies reflected the position of the indium metal in the zeolite framework. Surface area analysis of the synthesized samples was carried out to characterize the synthesized samples The analysis showed that the specific surface area ranged from ∼357 to ∼361 m{sup 2} g{sup −1} and the pore volume of the synthesized samples ranged from 0.177 to 0.182 cm{sup 3} g{sup −1}. The scanning electron microscopy studies showed the structure of the samples to be rectangular and twinned rectangular shaped. The EDX analysis was carried out for confirmation of Si, Al and In in zeolite frame work. The catalytic activities of the synthesized samples were investigated with respect to hydroxylation of phenol, in which catechol and hydroquinone were found to be the major products. It is observed that under all reaction conditions catechol selectivity was higher than the hydroquinone selectivity. In-MFI zeolites were successfully synthesized and were used as an effective catalyst for the hydroxylation of phenol to synthesize catechol and hydroquinone as the major product.

  10. Catalytic activation of OKO zeolite with intersecting pores of 10- and 12-membered rings using atomic layer deposition of aluminium.

    PubMed

    Verheyen, E; Pulinthanathu Sree, S; Thomas, K; Dendooven, J; De Prins, M; Vanbutsele, G; Breynaert, E; Gilson, J-P; Kirschhock, C E A; Detavernier, C; Martens, J A

    2014-05-01

    Tetrahedral framework aluminium was introduced in all-silica zeolite -COK-14 using Atomic Layer Deposition (ALD) involving alternating exposure to trimethylaluminium and water vapour. The modification causes permanent conversion of the originally interrupted framework of -COK-14 to a fully connected OKO type framework, and generates catalytic activity in the acid catalysed hydrocarbon conversion reaction. PMID:24667934

  11. Zeolites on Mars: Prospects for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Gaffney, E. S.; Singer, R. B.; Kunkle, T. D.

    1985-01-01

    The Martian surface composition measured by Viking can be represented by several combinations of minerals incorporating major fractions of zeolites known to occur in altered mafic rocks and polar soils on Earth. The abundant occurrence of zeolites on Mars is consistent with what is known about both the physical and chemical environment of that planet. The laboratory reflectance spectra (0.65 to 2.55 microns) of a number of relatively pure zeolite minerals and some naturally occurring zeolite-clay soils were measured. All of the spectra measured are dominated by strong absorption near 1.4 and 1.9 microns and a steep reflectance drop longward of about 2.2 microns, all of which are due to abundant H2O. Weaker water overtone bands are also apparent, and in most cases there is spectral evidence for minor Fe(3+). In these features the zeolite spectra are similar to spectra of smectite clays which have abundant interlayer water. The most diagnostic difference between clay and zeolite spectra is the total absence in the zeolites of the weak structural OH absorption.

  12. Flexibility mechanisms in ideal zeolite frameworks.

    PubMed

    Treacy, M M J; Dawson, C J; Kapko, V; Rivin, I

    2014-02-13

    Zeolites are microporous crystalline aluminosilicate materials whose atomic structures can be usefully modelled in purely mechanical terms as stress-free periodic trusses constructed from rigid corner-connected SiO4 and AlO4 tetrahedra. When modelled this way, all of the known synthesized zeolite frameworks exhibit a range of densities, known as the flexibility window, over which they satisfy the framework mechanical constraints. Within the flexibility window internal stresses are accommodated by force-free coordinated rotations of the tetrahedra about their apices (oxygen atoms). We use rigidity theory to explore the folding mechanisms within the flexibility window, and derive an expression for the configurational entropic density throughout the flexibility window. By comparison with the structures of pure silica zeolite materials, we conclude that configurational entropy associated with the flexibility modes is not a dominant thermodynamic term in most bulk zeolite crystals. Nevertheless, the presence of a flexibility window in an idealized hypothetical tetrahedral framework may be thermodynamically important at the nucleation stage of zeolite formation, suggesting that flexibility is a strong indicator that the topology is realizable as a zeolite. Only a small fraction of the vast number of hypothetical zeolites that are known exhibit flexibility. The absence of a flexibility window may explain why so few hypothetical frameworks are realized in nature. PMID:24379426

  13. Water nanodroplets confined in zeolite pores.

    PubMed

    Coudert, François-Xavier; Cailliez, Fabien; Vuilleumier, Rodolphe; Fuchs, Alain H; Boutin, Anne

    2009-01-01

    We provide a comprehensive depiction of the behaviour of a nanodroplet of approximately equal to 20 water molecules confined in the pores of a series of 3D-connected isostructural zeolites with varying acidity, by means of molecular simulations. Both grand canonical Monte Carlo simulations using classical interatomic forcefields and first-principles Car-Parrinello molecular dynamics were used in order to characterise the behaviour of confined water by computing a range of properties, from thermodynamic quantities to electronic properties such as dipole moment, including structural and dynamical information. From the thermodynamic point of view, we have identified the all-silica zeolite as hydrophobic, and the cationic zeolites as hydrophilic; the condensation transition in the first case was demonstrated to be of first order. Furthermore, in-depth analysis of the dynamical and electronic properties of water showed that water in the hydrophobic zeolite behaves as a nanodroplet trying to close its hydrogen-bond network onto itself, with a few short-lived dangling OH groups, while water in hydrophilic zeolites "opens up" to form weak hydrogen bonds with the zeolite oxygen atoms. Finally, the dipole moment of confined water is studied and the contributions of water self-polarisation and the zeolite electric field are discussed. PMID:19227366

  14. The role of zeolite in the Fischer-Tropsch synthesis over cobalt-zeolite catalysts

    NASA Astrophysics Data System (ADS)

    Sineva, L. V.; Asalieva, E. Yu; Mordkovich, V. Z.

    2015-11-01

    The review deals with the specifics of the Fischer-Tropsch synthesis for the one-stage syncrude production from CO and H2 in the presence of cobalt-zeolite catalytic systems. Different types of bifunctional catalysts (hybrid, composite) combining a Fischer-Tropsch catalyst and zeolite are reviewed. Special attention focuses on the mechanisms of transformations of hydrocarbons produced in the Fischer-Tropsch process on zeolite acid sites under the synthesis conditions. The bibliography includes 142 references.

  15. Photoinduced electron transfer reactions in zeolite cages

    SciTech Connect

    Dutta, P.K.

    1992-01-01

    This report summarizes work in the two areas of zeolites and layered double hydroxides. Results of studies on structural aspects of Ru(bpy)[sub 3][sup 2+]-zeolite Y are summarized. Photoinduced electron transfer between entrapped Ru(bpy)[sub 3][sup 2+] and methylviologen (MV) in neighboring supercages was examined. Benzylviologen was also used. Since molecules larger than 13 [angstrom] cannot be accomodated in zeolite cages, the layered double metal hydroxides (LDH) LiAl[sub 2](OH)[sub 6][sup +]X[sup [minus

  16. Pulsed laser deposition of zeolitic membranes

    SciTech Connect

    Peachey, N.M.; Dye, R.C.; Ries, P.D.

    1995-02-01

    The pulsed laser deposition of zeolites to form zeolitic thin films is described. Films were grown using both mordenite and faujasite targets and were deposited on various substrates. The optimal films were obtained when the target and substrate were separated by 5 cm. These films are comprised of small crystallites embedded in an amorphous matrix. Transmission electron microscopy reveals that the amorphous material is largely porous and that the pores appear to be close to the same size as the parent zeolite. Zeolotic thin films are of interest for sensor, gas separation, and catalytic applications.

  17. Energy and materials flows in the copper industry

    SciTech Connect

    Gaines, L.L.

    1980-12-01

    The copper industry comprises both the primary copper industry, which produces 99.9%-pure copper from copper ore, and the secondary copper industry, which salvages and recycles copper-containing scrap metal to extract pure copper or copper alloys. The United States uses about 2 million tons of copper annually, 60% of it for electrical applications. Demand is expected to increase less than 4% annually for the next 20 years. The primary copper industry is concentrated in the Southwest; Arizona produced 66% of the 1979 total ore output. Primary production uses about 170 x 10/sup 12/ Btu total energy annually (about 100 x 10/sup 6/ Btu/ton pure copper produced from ore). Mining and milling use about 60% of the total consumption, because low-grade ore (0.6% copper) is now being mined. Most copper is extracted by smelting sulfide ores, with concomitant production of sulfur dioxide. Clean air regulations will require smelters to reduce sulfur emissions, necessitating smelting process modifications that could also save 20 x 10/sup 12/ Btu (10 x 10/sup 6/ Btu/ton of copper) in smelting energy. Energy use in secondary copper production averages 20 x 10/sup 6/ Btu/ton of copper. If all copper products were recycled, instead of the 30% now salvaged, the energy conservation potential would be about one-half the total energy consumption of the primary copper industry.

  18. Zeolite membranes fabricated by pulsed laser deposition

    SciTech Connect

    Peachey, N.M.; Espinoza, B.F.; Dye, R.C.

    1995-12-01

    The well-defined cavities of the zeolite cage provides an attractive structure around which a membrane can be constructed. However, the fabrication of useful thin film zeolite membranes has presented difficulties since these crystals are not readily formed into thin, defect-free materials. Recently, pulsed laser deposition (PLD) has been used to make thin film sensors. In this process, a laser beam is used to create a plume of particles having reactive edges or dangling bonds. These can then react on a support material to form porous zeolites embedded in a dense phase material. The use of differing wavelengths of laser light can provide a degree of control of the energy of the particles oblated from the target. These novel thin film zeolites provide a unique approach to the synthesis of separation membranes and sensors.

  19. Synthesis and characterization of nitrogen substituted zeolites

    NASA Astrophysics Data System (ADS)

    Dogan, Fulya

    The interest in basic solid materials, particularly for basic zeolites has considerably increased in the last two decades because of their potential use in catalysis and separation. Basic zeolites have most often been obtained by ion-exchange or impregnation with alkali metal cations or grafting of organic bases onto zeolite pore walls. Such materials often suffer from instability and/or pore blockage, because none of these approaches places basic sites directly into the zeolite framework. Recently zeolitic materials have been made with some of the bridging oxygen atoms in Si--O--Si and/or Si--O--Al linkages replaced by NH groups, i.e. by substitution of framework oxygen by nitrogen. As a result, the basic strength of the framework increases due to the lower electronegativity of nitrogen with respect to oxygen. In this study, solid base catalysts are obtained by nitrogen substitution of the faujasite type of zeolites under ammonia flow at high temperatures. The efficiency of the reaction is tested by using zeolites with different aluminum contents and extraframework cations and varying the reaction conditions such as ammonia flow rate, reaction temperature and duration. The characterization studies show that high levels of nitrogen substitution can be achieved while maintaining porosity, particularly for NaY and low-aluminum HY zeolites, without a significant loss in the crystallinity. 27Al and 29 Si MAS NMR experiments performed on the nitrogen substituted zeolites show dealumination of the framework and preferential substitution for Si--OH--Al sites at the early stages of the reaction (temperatures at 750--800 °C). No preference is seen for reactions performed at higher temperatures and longer reaction times (e.g., 850 °C and 48 h). X-ray PDF analysis performed on the modified zeolites show that the Si-N distance in the 1st shell is longer than Si-O bond distance and Si-Si/Al bond distance of the Si-O/N-Si/Al linkage decreases, as an indication of a decrease in bond angle. The basicity experiments performed on the zeolites show an increase basicity with increase of the nitrogen content.

  20. The zeolite deposits of Greece

    USGS Publications Warehouse

    Stamatakis, M.G.; Hall, A.; Hein, J.R.

    1996-01-01

    Zeolites are present in altered pyroclastic rocks at many localities in Greece, and large deposits of potential economic interest are present in three areas: (1) the Evros region of the province of Thrace in the north-eastern part of the Greek mainland; (2) the islands of Kimolos and Poliegos in the western Aegean; and (3) the island of Samos in the eastern Aegean Sea. The deposits in Thrace are of Eocene-Oligocene age and are rich in heulandite and/or clinoptilolite. Those of Kimolos and Poliegos are mainly Quaternary and are rich in mordenite. Those of Samos are Miocene, and are rich in clinoptilolite and/or analcime. The deposits in Thrace are believed to have formed in an open hydrological system by the action of meteoric water, and those of the western Aegean islands in a similar way but under conditions of high heat flow, whereas the deposits in Samos were formed in a saline-alkaline lake.

  1. Properties of glass-bonded zeolite monoliths

    SciTech Connect

    Lewis, M.A.; Fischer, D.F.; Murphy, C.D.

    1994-05-01

    It has been shown that mineral waste forms can be used to immobilize waste salt generated during the pyrochemical processing of spent fuel from the Integral Fast Reactor (IFR). Solid, leach resistant monoliths were formed by hot-pressing mixtures of salt-occluded zeolite A powders and glass frit at 990 K and 28 MPa. Additional samples have now been fabricated and tested. Normalized release rates for all elements, including iodide and chloride, were less than 1 g/m{sup 2}d in 28-day tests in deionized water and in brine at 363 K (90{degrees}C). Preliminary results indicate that these rates fall with time with both leachants and that the zeolite phase in the glass-bonded zeolite does not function as an ion exchanger. Some material properties were measured. The Poisson ratio and Young`s modulus were slightly smaller in glass-bonded zeolite than in borosilicate glass. Density depended on zeolite fraction. The glass-bonded zeolite represents a promising mineral waste form for IFR salt.

  2. Thermodynamic modeling of natural zeolite stability

    SciTech Connect

    Chipera, S.J.; Bish, D.L.

    1997-06-01

    Zeolites occur in a variety of geologic environments and are used in numerous agricultural, commercial, and environmental applications. It is desirable to understand their stability both to predict future stability and to evaluate the geochemical conditions resulting in their formation. The use of estimated thermodynamic data for measured zeolite compositions allows thermodynamic modeling of stability relationships among zeolites in different geologic environments (diagenetic, saline and alkaline lakes, acid rock hydrothermal, basic rock, deep sea sediments). This modeling shows that the relative cation abundances in both the aqueous and solid phases, the aqueous silica activity, and temperature are important factors in determining the stable zeolite species. Siliceous zeolites (e.g., clinoptilolite, mordenite, erionite) present in saline and alkaline lakes or diagenetic deposits formed at elevated silica activities. Aluminous zeolites (e.g., natrolite, mesolite/scolecite, thomsonite) formed in basic rocks in association with reduced silica activities. Likewise, phillipsite formation is favored by reduced aqueous silica activities. The presence of erionite, chabazite, and phillipsite are indicative of environments with elevated potassium concentrations. Elevated temperature, calcic water conditions, and reduced silica activity help to enhance the laumontite and wairakite stability fields. Analcime stability increases with increased temperature and aqueous Na concentration, and/or with decreased silica activity.

  3. Three Mile Island zeolite vitirification demonstration program

    SciTech Connect

    Siemens, D.H.; Knowlton, D.E.; Shupe, M.W.

    1981-06-01

    The cleanup of the high-activity-level water at Three Mile Island (TMI) provides an opportunity to further develop waste management technology. Approximately 790,000 gallons of high-activity-level water at TMI's Unit-2 Nuclear Power Station will be decontaminated at the site using the submerged demineralizer system (SDS). In the SDS process, the cesium and strontium in the water are sorbed onto zeolite that is contained within metal liners. The Department of Energy has asked the Pacific Northwest Laboratory (PNL) to take a portion of the zeolite from the SDS process and demonstrate, on a production scale, that this zeolite can be vitrified using the in-can melting process. This paper is a brief overview of the TMI zeolite vitrification program. The first section discusses the formulation of a glass suitable for immobilizing SDS zeolite. The following section describes a feed system that was developed to feed zeolite to the in-can melter. It also describes the in-can melting process and the government owned facilities in which the demonstrations will take place. Finally, the schedule for completing the program activities is outlined.

  4. Influence of zeolite crystal size on zeolite-polyamide thin film nanocomposite membranes.

    PubMed

    Lind, Mary L; Ghosh, Asim K; Jawor, Anna; Huang, Xiaofei; Hou, William; Yang, Yang; Hoek, Eric M V

    2009-09-01

    Zeolite-polyamide thin film nanocomposite membranes were coated onto polysulfone ultrafiltration membranes by interfacial polymerization of amine and acid chloride monomers in the presence of Linde type A zeolite nanocrystals. A matrix of three different interfacial polymerization chemistries and three different-sized zeolite crystals produced nanocomposite thin films with widely varying structure, morphology, charge, hydrophilicity, and separation performance (evaluated as reverse osmosis membranes). Pure polyamide film properties were tuned by changing polymerization chemistry, but addition of zeolite nanoparticles produced even greater changes in separation performance, surface chemistry, and film morphology. For fixed polymer chemistry, addition of zeolite nanoparticles formed more permeable, negatively charged, and thicker polyamide films. Smaller zeolites produced greater permeability enhancements, but larger zeolites produced more favorable surface properties; hence, nanoparticle size may be considered an additional "degree of freedom" in designing thin film nanocomposite reverse osmosis membranes. The data presented offer additional support for the hypothesis that zeolite crystals alter polyamide thin film structure when they are present during the interfacial polymerization reaction. PMID:19527039

  5. Zeolite LTA Nanoparticles Prepared by Laser-Induced Fracture of Zeolite Microcrystals.

    PubMed

    Nichols, William T; Kodaira, Tetsuya; Sasaki, Yukichi; Shimizu, Yoshiki; Sasaki, Takeshi; Koshizaki, Naoto

    2006-01-12

    Zeolite LTA nanoparticles are prepared by laser-induced fragmentation of zeolite LTA microparticles using a pulsed laser. Zeolite nanoparticle formation is attributed to absorption of the laser at impurities or defects within the zeolite microcrystal generating thermoelastic stress that mechanically fractures the microparticle into smaller nanoparticle fragments. Experimentally, it is found that nanoparticles have a wide size and morphology distribution. Large nanoparticles (>200 nm) are typically irregularly shaped crystals of zeolite LTA, whereas small nanoparticles (<50 nm) tend to be spherical, dense, and amorphous, indicative of destruction of the original LTA crystal structure. Results of the fragmentation versus laser parameters show that shorter laser wavelengths are more efficient at producing zeolite nanoparticles, which is explained based on a larger cross section for optical absorption in the zeolite crystal. Increasing the laser energy density irradiating the sample was found to be a trade-off between increasing the amount of fragmentation and increasing the amount of structural damage to the zeolite crystal. It is suggested that in the presence of strongly absorbing defects, plasma formation is induced resulting in dramatically higher temperatures. On the basis of these results it is suggested the optimal laser processing conditions are 355 nm and 10 mJ/pulse laser energy for our LTA samples. PMID:16471503

  6. Effect of different glasses in glass bonded zeolite

    SciTech Connect

    Lewis, M.A.; Ackerman, J.P.; Verma, S.

    1995-05-01

    A mineral waste form has been developed for chloride waste salt generated during the pyrochemical treatment of spent nuclear fuel. The waste form consists of salt-occluded zeolite powders bound within a glass matrix. The zeolite contains the salt and immobilizes the fission products. The zeolite powders are hot pressed to form a mechanically stable, durable glass bonded zeolite. Further development of glass bonded zeolite as a waste form requires an understanding of the interaction between the glass and the zeolite. Properties of the glass that enhance binding and durability of the glass bonded zeolite need to be identified. Three types of glass, boroaluminosilicate, soda-lime silicate, and high silica glasses, have a range of properties and are now being investigated. Each glass was hot pressed by itself and with an equal amount of zeolite. MCC-1 leach tests were run on both. Soda-lime silicate and high silica glasses did not give a durable glass bonded zeolite. Boroaluminosilicate glasses rich in alkaline earths did bind the zeolite and gave a durable glass bonded zeolite. Scanning electron micrographs suggest that the boroaluminosilicate glasses wetted the zeolite powders better than the other glasses. Development of the glass bonded zeolite as a waste form for chloride waste salt is continuing.

  7. Dispersion strengthened copper

    DOEpatents

    Sheinberg, Haskell; Meek, Thomas T.; Blake, Rodger D.

    1990-01-01

    A composition of matter comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide, and a method for making this composition of matter.

  8. Dispersion strengthened copper

    DOEpatents

    Sheinberg, Haskell; Meek, Thomas T.; Blake, Rodger D.

    1989-01-01

    A composition of matter comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide, and a method for making this composition of matter.

  9. Dispersion strengthened copper

    SciTech Connect

    Sheinberg, H.; Meek, T.T.; Blake, R.D.

    1988-12-05

    A composition of matter comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide, and a method for making this composition of matter.

  10. Copper Metallochaperones

    PubMed Central

    Robinson, Nigel J.; Winge, Dennis R.

    2014-01-01

    The current state of knowledge on how copper metallochaperones support the maturation of cuproproteins is reviewed. Copper is needed within mitochondria to supply the CuA and intramembrane CuB sites of cytochrome oxidase, within the trans-Golgi network to supply secreted cuproproteins and within the cytosol to supply superoxide dismutase 1 (Sod1). Subpopulations of copper-zinc superoxide dismutase also localize to mitochondria, the secretory system, the nucleus and, in plants, the chloroplast, which also requires copper for plastocyanin. Prokaryotic cuproproteins are found in the cell membrane and in the periplasm of gram-negative bacteria. Cu(I) and Cu(II) form tight complexes with organic molecules and drive redox chemistry, which unrestrained would be destructive. Copper metallochaperones assist copper in reaching vital destinations without inflicting damage or becoming trapped in adventitious binding sites. Copper ions are specifically released from copper metallochaperones upon contact with their cognate cuproproteins and metal transfer is thought to proceed by ligand substitution. PMID:20205585

  11. Multicomponent ion-exchange equilibria in chabazite zeolite

    SciTech Connect

    Robinson, S.M.; Arnold, W.D.; Byers, C.H.

    1990-01-01

    Efficient design ion-exchange columns, using Ionsiv IE-96 chabazite zeolite, for the decontamination of process wastewater that contains ppB levels of Sr-90 and Cs-137 requires a detailed study of binary and multicomponent ion-exchange equilibria. Experimental isotherms were acquired for Ca--Na, Mg--Na, Sr--Na, Cs--Na, Sr--Cs--Na, Ca--Mg--Na, Sr--Ca--Mg--Na, Cs--Ca--Mg--Na, and Sr--Cs--Ca--Mg--Na comparing batch and column experimental approaches. Binary isotherms obtained by the batch technique were most successfully fitted with a modification of the Dubinin-Polyani equilibrium model. Prediction of the multicomponent equilibria from binary data will require more sophisticated modeling. 15 refs., 5 figs., 3 tabs.

  12. Luminescent host–guest materials of electrostatically adsorbed Eu{sup 3+}(tta){sub 3}-tpyIL on zeolite L crystals

    SciTech Connect

    Li, Peng; Wang, Dongyue; Liang, Dong; Zhang, Li; Zhang, Shuming; Wang, Yige

    2014-07-01

    Graphical abstract: Luminescent host–guest materials exhibiting tunable emission colors by changing the excitation wavelength are obtained by surface modification of terbium(III) bipyridine-loaded zeolite L crystals with the ionic europium(III) complexes. - Highlights: • Luminescent ionic europium(III) complex was synthesized. • Outer surface of zeolite L was modified by electrostatic adsorption of the ionic complex. • Luminescent host–guest material with tunable emission color was obtained. - Abstract: The surface modification of zeolite L crystals with lanthanide complexes was achieved by electrostatic adsorption of ionic europium(III) complexes that are prepared by the reaction of tris(2-thenoyltrifluoroacetonate) europium(III) dehydrate with an organic salt containing terpyridine moieties on the negative charge-bearing surfaces of zeolite L crystals. Luminescent host–guest materials exhibiting tunable emission colors by changing the excitation wavelength are obtained by surface modification of terbium(III) bipyridine-loaded zeolite L crystals with the ionic europium(III) complexes.

  13. 11. EASTERN END OF ZEOLITE BUILDING. NOTE DIAL TO LEFT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. EASTERN END OF ZEOLITE BUILDING. NOTE DIAL TO LEFT OF CLOCK GAUGING TOTAL ZEOLITE INFLUENT IN MILLIONS OF GALLONS PER DAY. - F. E. Weymouth Filtration Plant, 700 North Moreno Avenue, La Verne, Los Angeles County, CA

  14. Preparation of environmentally friendly alkylglucoside surfactants using zeolites as catalysts

    SciTech Connect

    Corma, A.; Iborra, S.; Miquel, S.; Primo, J.

    1996-07-01

    Acid zeolites were evaluated for glycosidation activity of D-glucose and n-butanol. Zeolites with high Si/Al ratios such as faujasite and beta are the most suitable catalysts. 24 refs., 7 figs., 5 tabs.

  15. Zeolite-based SCR catalysts and their use in diesel engine emission treatment

    DOEpatents

    Narula, Chaitanya K; Yang, Xiaofan

    2015-03-24

    A catalyst comprising a zeolite loaded with copper ions and at least one trivalent metal ion other than Al.sup.+3, wherein the catalyst decreases NO.sub.x emissions in diesel exhaust. The trivalent metal ions are selected from, for example, trivalent transition metal ions, trivalent main group metal ions, and/or trivalent lanthanide metal ions. In particular embodiments, the catalysts are selected from Cu--Fe-ZSM5, Cu--La-ZSM-5, Fe--Cu--La-ZSM5, Cu--Sc-ZSM-5, and Cu--In-ZSM5. The catalysts are placed on refractory support materials and incorporated into catalytic converters.

  16. Monitoring early zeolite formation via in situ electrochemical impedance spectroscopy.

    PubMed

    Brabants, G; Lieben, S; Breynaert, E; Reichel, E K; Taulelle, F; Martens, J A; Jakoby, B; Kirschhock, C E A

    2016-04-01

    Hitherto zeolite formation has not been fully understood. Although electrochemical impedance spectroscopy has proven to be a versatile tool for characterizing ionic solutions, it was never used for monitoring zeolite growth. We show here that EIS can quantitatively monitor zeolite formation, especially during crucial early steps where other methods fall short. PMID:27020096

  17. Molecular simulations and experimental studies of zeolites

    NASA Astrophysics Data System (ADS)

    Moloy, Eric C.

    Zeolites are microporous aluminosilicate tetrahedral framework materials that have symmetric cages and channels with open-diameters between 0.2 and 2.0 nm. Zeolites are used extensively in the petrochemical industries for both their microporosity and their catalytic properties. The role of water is paramount to the formation, structure, and stability of these materials. Zeolites frequently have extra-framework cations, and as a result, are important ion-exchange materials. Zeolites also play important roles as molecular sieves and catalysts. For all that is known about zeolites, much remains a mystery. How, for example, can the well established metastability of these structures be explained? What is the role of water with respect to the formation, stabilization, and dynamical properties? This dissertation addresses these questions mainly from a modeling perspective, but also with some experimental work as well. The first discussion addresses a special class of zeolites: pure-silica zeolites. Experimental enthalpy of formation data are combined with molecular modeling to address zeolitic metastability. Molecular modeling is used to calculate internal surface areas, and a linear relationship between formation enthalpy and internal surface areas is clearly established, producing an internal surface energy of approximately 93 mJ/m2. Nitrate bearing sodalite and cancrinite have formed under the caustic chemical conditions of some nuclear waste processing centers in the United States. These phases have fouled expensive process equipment, and are the primary constituents of the resilient heels in the bottom of storage tanks. Molecular modeling, including molecular mechanics, molecular dynamics, and density functional theory, is used to simulate these materials with respect to structure and dynamical properties. Some new, very interesting results are extracted from the simulation of anhydrous Na6[Si6Al 6O24] sodalite---most importantly, the identification of two distinct oxygen sites (rather than one), and formation of a new supercell. New calorimetric measurements of enthalpy are used to examine the energetics of the hydrosodalite family of zeolites---specifically, formation enthalpies and hydration energies. Finally, force-field computational methods begin the examination of water in terms of energetics, structure, and radionuclide containment and diffusion.

  18. Zeolites as catalysts in oil refining.

    PubMed

    Primo, Ana; Garcia, Hermenegildo

    2014-11-21

    Oil is nowadays the main energy source and this prevalent position most probably will continue in the next decades. This situation is largely due to the degree of maturity that has been achieved in oil refining and petrochemistry as a consequence of the large effort in research and innovation. The remarkable efficiency of oil refining is largely based on the use of zeolites as catalysts. The use of zeolites as catalysts in refining and petrochemistry has been considered as one of the major accomplishments in the chemistry of the XXth century. In this tutorial review, the introductory part describes the main features of zeolites in connection with their use as solid acids. The main body of the review describes important refining processes in which zeolites are used including light naphtha isomerization, olefin alkylation, reforming, cracking and hydrocracking. The final section contains our view on future developments in the field such as the increase in the quality of the transportation fuels and the coprocessing of increasing percentage of biofuels together with oil streams. This review is intended to provide the rudiments of zeolite science applied to refining catalysis. PMID:24671148

  19. Italian zeolitized rocks of technological interest

    NASA Astrophysics Data System (ADS)

    de'Gennaro, M.; Langella, A.

    1996-09-01

    Large areas of Italian territory are covered by thick and widespread deposits of zeolite-bearing volcaniclastic products. The main zeolites are phillipsite and chabazite spread over the whole peninsula, and clinoptilolite recorded only in Sardinia. A trachytic to phonolitic glassy precursor accounts for the formation of the former zeolites characterized by low Si/Al ratios (?3.00), while clinoptilolite is related to more acidic volcanism. The genesis of most of these zeolitized deposits is linked to pyroclastic flow emplacement mechanisms characterized by quite high temperatures and by the presence of abundant fluids. The main utilization of these materials has been and still is as dimension stones in the building industry. Currently, limited amounts are also employed in animal farming (dietary supplement, pet litter and manure deodorizer) and in agriculture as soil improvement and slow-release fertilizers. New fields of application have been proposed for these products on account of their easy availability, very low cost, their high-grade zeolites (50 70%), and good technological features such as high cation exchange capacities and adsorption properties.

  20. Molecular recognition in cation-exchanged zeolites

    NASA Astrophysics Data System (ADS)

    Pidko, Evgeny A.; van Santen, Rutger A.

    The concepts of confinement- and molecular recognition-driven chemical reactivity of cation-exchanged zeolites is illustrated by our recent results from periodic and cluster density functional theory (DFT) calculations. The reactivity of alkali-earth- and alkaline-exchanged low-silica zeolites for selective photo-oxidation of alkenes with molecular oxygen and for N2O4 disproportionation is shown to be mainly due to the specific arrangement and the size of the cations in the zeolite cage. An attempt is made to separate the effects of basicity of the framework, the Lewis acidity of the extra-framework cations and the electrostatic field in the zeolite cage as well as its geometrical properties for the respective reactions. The importance of the favorable adsorption fashion of the reagents controlled by noncovalent interactions with the microporous matrix is shown. The role of the weak interactions with the zeolite walls and the factors, which determine the preference for a particular adsorption mode, are discussed by the example of light alkanes adsorption to Mg- and Ca-exchanged faujasites.

  1. Thin layer of Ni-modified 13X zeolite on glassy carbon support as an electrode material in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Mojović, Z.; Mentus, S.; Krstić, I.

    2007-09-01

    A new type of an electrode material, zeolite modified by the incorporation of Ni or NiO clusters into its cavities, was synthesized by multiple impregnation of zeolite 13X with a Ni-acetylacetonate solution followed by solvent evaporation and thermal degradation of the nickel compound. Samples with a Ni/13X mass ratio within the range 0.2-1.0 were synthesized. Modification by both Ni and NiO clusters, depending on whether the atmosphere was reducing (H2) or oxidizing (air), respectively, was used to finish the sample. After modification, the zeolite kept its original crystallographic structure, as proven by X-ray diffractommetry. The dimensions of the incorporated clusters were limited by the diameter of the zeolite cavities (reaching 1.3 nm). This material, homogenized with 10 wt % of nanodispersed carbon, was bonded in the form of a thin layer to a glassy carbon disc by means of Nafion and used as an electrode material in an aqueous 0.1 M NaOH solution. The cyclovoltammograms of this thin-layer electrode resemble those of a smooth nickel electrode in alkaline solutions.

  2. Low-temperature synthesis of zeolite from perlite waste — Part II: characteristics of the products

    NASA Astrophysics Data System (ADS)

    Król, Magdalena; Morawska, Justyna; Mozgawa, Włodzimierz; Pichór, Waldemar

    2014-12-01

    The paper investigates the properties of sodium zeolites synthesized using the hydrothermal method under autogenous pressure at low temperature with NaOH solutions of varying concentrations. During this modification, zeolites X, Na-P1 and hydroxysodalite were synthesized. The synthesis parameters, and thus, phase composition of resulting samples, significantly affected the specific surface area (SSA) and cation exchange capacity (CEC). SSA increased from 2.9 m2/g to a maximum of 501.2 m2/g, while CEC rose from 16 meq/100 g to a maximum of 500 meq/100 g. The best properties for use as a sorbent were obtained for perlite waste modified with 4.0 M NaOH at 70 °C or 80 °C.

  3. Copper Test

    MedlinePlus

    ... suspected, genetic testing may be performed to detect mutations in the ATP7B gene. However, these tests have limited availability and are usually performed in special reference or research laboratories. Rarely, a copper test may be used ...

  4. Hydrogen Purification Using Natural Zeolite Membranes

    NASA Technical Reports Server (NTRS)

    DelValle, William

    2003-01-01

    The School of Science at Universidad del Turabo (UT) have a long-lasting investigation plan to study the hydrogen cleaning and purification technologies. We proposed a research project for the synthesis, phase analysis and porosity characterization of zeolite based ceramic perm-selective membranes for hydrogen cleaning to support NASA's commitment to achieving a broad-based research capability focusing on aerospace-related issues. The present study will focus on technology transfer by utilizing inorganic membranes for production of ultra-clean hydrogen for application in combustion. We tested three different natural zeolite membranes (different particle size at different temperatures and time of exposure). Our results show that the membranes exposured at 900 C for 1Hr has the most higher permeation capacity, indicated that our zeolite membranes has the capacity to permeate hydrogen.

  5. Crystallization of zeolite A: a spectroscopic study

    SciTech Connect

    Dutta, P.K.; Shieh, D.C.

    1986-05-22

    The transformation of aluminosilicate gel to zeolite A was investigated by Raman spectroscopy, supported by x-ray diffraction and NMR measurements. The gel, even though amorphous, has a structure consisting of predominantly four-membered rings connected in a random fashion. It is considerably depolymerized, consisting of Si atoms with one and two nonbonded oxygen atoms. For the transformation of this gel to zeolite A to proceed, it is essential to have Al(OH)/sub 4//sup -/ species in solution. During the nucleation period, the gel reorganizes its structure by interaction with these Al(OH)/sub 4//sup -/ ions and forms nuclei of zeolite A. The crystallization curve obtained by Raman spectroscopy closely resembles that from x-ray diffraction.

  6. Growth of zeolite crystals in the microgravity environment of space

    NASA Technical Reports Server (NTRS)

    Sacco, A., Jr.; Sand, L. B.; Collette, D.; Dieselman, K.; Crowley, J.; Feitelberg, A.

    1986-01-01

    Zeolites are hydrated, crystalline aluminosilicates with alkali and alkaling earth metals substituted into cation vacancies. Typically zeolite crystals are 3 to 8 microns. Larger cyrstals are desirable. Large zeolite crystals were produced (100 to 200 microns); however, they have taken restrictively long times to grow. It was proposed if the rate of nucleation or in some other way the number of nuclei can be lowered, fewer, larger crystals will be formed. The microgravity environment of space may provide an ideal condition to achieve rapid growth of large zeolite crystals. The objective of the project is to establish if large zeolite crystals can be formed rapidly in space.

  7. Crystal engineering of zeolites with graphene

    NASA Astrophysics Data System (ADS)

    Gebhardt, Paul; Pattinson, Sebastian W.; Ren, Zhibin; Cooke, David J.; Elliott, James A.; Eder, Dominik

    2014-06-01

    Achieving control over the morphology of zeolite crystals at the nanoscale is crucial for enhancing their performance in diverse applications including catalysis, sensors and separation. The complexity and sensitivity of zeolite synthesis processes, however, often make such control both highly empirical and difficult to implement. We demonstrate that graphene can significantly alter the morphology of titanium silicalite (TS-1) particles, in particular being able to reduce their dimensions from several hundreds to less than 10 nm. Through electron microscopy and molecular mechanics simulations we propose a mechanism for this change based on the preferential interaction of specific TS-1 surfaces with benzyl-alcohol-mediated graphene. These findings suggest a facile new means of controlling the zeolite morphology and thereby also further demonstrate the potential of graphene in hybrid materials. Moreover, the generality of the mechanism points the way to a new avenue of research in using two-dimensional materials to engineer functional inorganic crystals.Achieving control over the morphology of zeolite crystals at the nanoscale is crucial for enhancing their performance in diverse applications including catalysis, sensors and separation. The complexity and sensitivity of zeolite synthesis processes, however, often make such control both highly empirical and difficult to implement. We demonstrate that graphene can significantly alter the morphology of titanium silicalite (TS-1) particles, in particular being able to reduce their dimensions from several hundreds to less than 10 nm. Through electron microscopy and molecular mechanics simulations we propose a mechanism for this change based on the preferential interaction of specific TS-1 surfaces with benzyl-alcohol-mediated graphene. These findings suggest a facile new means of controlling the zeolite morphology and thereby also further demonstrate the potential of graphene in hybrid materials. Moreover, the generality of the mechanism points the way to a new avenue of research in using two-dimensional materials to engineer functional inorganic crystals. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00320a

  8. A cationic cesium continuum in zeolite x.

    PubMed

    Sun, T; Seff, K; Heo, N H; Petranovskii, V P

    1993-01-22

    A cesium continuum that fills the channels and cavities of zeolite X has been prepared, and its structure has been determined by single-crystal x-ray crystallography. The three-dimensional continuum is cationic to balance the negative charge of the zeolite framework. Its valence electrons, only 0.3 per Cs(+) ion, are widely delocalized over 95 percent of the cesium ions in the crystal. The continuum has a unit cell formula of (Cs(122))(86+) and contains Cs(13) and Cs(14) clusters (one per supercage) arranged like the atoms in diamond, with one Cs(2) appendix (in the sodalite cavity) per cluster. PMID:17734168

  9. A Cationic Cesium Continuum in Zeolite X

    NASA Astrophysics Data System (ADS)

    Sun, Tao; Seff, Karl; Heo, Nam Ho; Petranovskii, Vitalli P.

    1993-01-01

    A cesium continuum that fills the channels and cavities of zeolite X has been prepared, and its structure has been determined by single-crystal x-ray crystallography. The three-dimensional continuum is cationic to balance the negative charge of the zeolite framework. Its valence electrons, only 0.3 per Cs^+ ion, are widely delocalized over 95 percent of the cesium ions in the crystal. The continuum has a unit cell formula of (Cs122)86+ and contains Cs13 and Cs14 clusters (one per supercage) arranged like the atoms in diamond, with one Cs_2 appendix (in the sodalite cavity) per cluster.

  10. Towards liquid fuels from biosyngas: effect of zeolite structure in hierarchical-zeolite-supported cobalt catalysts.

    PubMed

    Sartipi, Sina; Alberts, Margje; Meijerink, Mark J; Keller, Tobias C; Pérez-Ramírez, Javier; Gascon, Jorge; Kapteijn, Freek

    2013-09-01

    Wax on, wax off: Bifunctional cobalt-based catalysts on zeolite supports are applied for the valorization of biosyngas through Fischer-Tropsch chemistry. By using these catalysts, waxes can be hydrocracked to shorter-chain hydrocarbons, increasing the selectivity towards the C5 -C11 (gasoline) fraction. The zeolite topology and the amount and strength of acid sites are key parameters to maximize the performance of these bifunctional catalysts, steering Fischer-Tropsch product selectivity towards liquid hydrocarbons. PMID:23765635

  11. Fly ash zeolite catalyst support for Fischer-Tropsch synthesis

    NASA Astrophysics Data System (ADS)

    Campen, Adam

    This dissertation research aimed at evaluating a fly ash zeolite (FAZ) catalyst support for use in heterogeneous catalytic processes. Gas phase Fischer-Tropsch Synthesis (FTS) over a fixed-bed of the prepared catalyst/FAZ support was identified as an appropriate process for evaluation, by comparison with commercial catalyst supports (silica, alumina, and 13X). Fly ash, obtained from the Wabash River Generating Station, was first characterized using XRD, SEM/EDS, particle size, and nitrogen sorption techniques. Then, a parametric study of a two-step alkali fusion/hydrothermal treatment process for converting fly ash to zeolite frameworks was performed by varying the alkali fusion agent, agent:flyash ratio, fusion temperature, fused ash/water solution, aging time, and crystallization time. The optimal conditions for each were determined to be NaOH, 1.4 g NaOH: 1 g fly ash, 550 °C, 200 g/L, 12 hours, and 48 hours. This robust process was applied to the fly ash to obtain a faujasitic zeolite structure with increased crystallinity (40 %) and surface area (434 m2/g). Following the modification of fly ash to FAZ, ion exchange of H+ for Na+ and cobalt incipient wetness impregnation were used to prepare a FTS catalyst. FTS was performed on the catalysts at 250--300 °C, 300 psi, and with a syngas ratio H2:CO = 2. The HFAZ catalyst support loaded with 11 wt% cobalt resulted in a 75 % carbon selectivity for C5 -- C18 hydrocarbons, while methane and carbon dioxide were limited to 13 and 1 %, respectively. Catalyst characterization was performed by XRD, N2 sorption, TPR, and oxygen pulse titration to provide insight to the behavior of each catalyst. Overall, the HFAZ compared well with silica and 13X supports, and far exceeded the performance of the alumina support under the tested conditions. The successful completion of this research could add value to an underutilized waste product of coal combustion, in the form of catalyst supports in heterogeneous catalytic processes.

  12. Behavior modification.

    PubMed

    Pelham, W E; Fabiano, G A

    2000-07-01

    Attention deficit/hyperactivity disorder (ADHD) is a chronic and substantially impairing disorder. This means that treatment must also be chronic and substantial. Behavior Modification, and in many cases, the combination of behavior modification and stimulant medication, is a valid, useful treatment for reducing the pervasive impairment experienced by children with ADHD. Based on the research evidence reviewed, behavior modification should be the first line of treatment for children with ADHD. PMID:10944662

  13. Zeolite 5A Catalyzed Etherification of Diphenylmethanol

    ERIC Educational Resources Information Center

    Cooke, Jason; Henderson, Eric J.; Lightbody, Owen C.

    2009-01-01

    An experiment for the synthetic undergraduate laboratory is described in which zeolite 5A catalyzes the room temperature dehydration of diphenylmethanol, (C[subscript 6]H[subscript 5])[subscript 2]CHOH, producing 1,1,1',1'-tetraphenyldimethyl ether, (C[subscript 6]H[subscript 5])[subscript 2]CHOCH(C[subscript 6]H[subscript 5])[subscript 2]. The…

  14. ARSENIC SEPARATION FROM WATER USING ZEOLITES

    EPA Science Inventory

    Arsenic is known to be a hazardous contaminant in drinking water. The presence of arsenic in water supplies has been linked to arsenical dermatosis and skin cancer . Zeolites are well known for their ion exchange capacities. In the present work, the potential use of a variety of ...

  15. ARSENIC SEPARATION FROM WATER USING ZEOLITES: SYMPOSIUM

    EPA Science Inventory

    NRMRL-ADA-01134 Shevade, S, Ford*, R., and Puls*, R.W. "Arsenic Separation from Water Using Zeolites." In: 222nd ACS National Meeting, ACS Environmental Chemistry Division Symposia, Chicago, IL, 08/26-30/2001. 2001. 04/23/2001 This...

  16. Multicomponent liquid ion exchange with chabazite zeolites

    SciTech Connect

    Robinson, S.M.; Arnold, W.D. Jr.; Byers, C.W.

    1993-10-01

    In spite of the increasing commercial use of zeolites for binary and multicomponent sorption, the understanding of the basic mass-transfer processes associated with multicomponent zeolite ion-exchange systems is quite limited. This study was undertaken to evaluate Na-Ca-Mg-Cs-Sr ion exchange from an aqueous solution using a chabazite zeolite. Mass-transfer coefficients and equilibrium equations were determined from experimental batch-reactor data for single and multicomponent systems. The Langmuir isotherm was used to represent the equilibrium relationship for binary systems, and a modified Dubinin-Polyani model was used for the multicomponent systems. The experimental data indicate that diffusion through the microporous zeolite crystals is the primary diffusional resistance. Macropore diffusion also significantly contributes to the mass-transfer resistance. Various mass-transfer models were compared to the experimental data to determine mass-transfer coefficients. Effective diffusivities were obtained which accurately predicted experimental data using a variety of models. Only the model which accounts for micropore and macropore diffusion occurring in series accurately predicted multicomponent data using single-component diffusivities. Liquid and surface diffusion both contribute to macropore diffusion. Surface and micropore diffusivities were determined to be concentration dependent.

  17. Dispersion enhanced metal/zeolite catalysts

    DOEpatents

    Sachtler, Wolfgang M. H.; Tzou, Ming-Shin; Jiang, Hui-Jong

    1987-01-01

    Dispersion stabilized zeolite supported metal catalysts are provided as bimetallic catalyst combinations. The catalyst metal is in a reduced zero valent form while the dispersion stabilizer metal is in an unreduced ionic form. Representative catalysts are prepared from platinum or nickel as the catalyst metal and iron or chromium dispersion stabilizer.

  18. Dispersion enhanced metal/zeolite catalysts

    DOEpatents

    Sachtler, W.M.H.; Tzou, M.S.; Jiang, H.J.

    1987-03-31

    Dispersion stabilized zeolite supported metal catalysts are provided as bimetallic catalyst combinations. The catalyst metal is in a reduced zero valent form while the dispersion stabilizer metal is in an unreduced ionic form. Representative catalysts are prepared from platinum or nickel as the catalyst metal and iron or chromium dispersion stabilizer.

  19. MERCURY SEPARATION FROM POLLUTANT WATER USING ZEOLITES

    EPA Science Inventory

    Arsenic is known to be a hazardous contaminant in drinking water that causes arsenical dermatitis and skin cancer. In the present work, the potential use of a variety of synthetic zeolites for removal of arsenic from water has been examined at room temperature. Experiments have...

  20. Chemical interactions in multimetal/zeolite catalysts

    SciTech Connect

    Sachtler, W.M.H.

    1992-02-07

    Mechanistic explanations have been found for the migration of atoms and ions through the zeolite channels leading to specific distribution of ions and the metal clusters. In this report, we summarize the state of understanding attained on a number of topics in the area of mono- and multimetal/zeolite systems, to which our recent research has made significant contributions. The following topics are discussed: (1) Formation of isolated metal atoms in sodalite cages; (2) differences of metal/zeolite systems prepared by ion reduction in channels or via isolated atoms; (3) rejuvenation of Pd/NaY and Pd/HY catalysts by oxidative redispersion of the metal; (4) formation of mono- or bimetal particles in zeolites by programmed reductive decomposition of volatile metal complexes; (5) cation-cation interaction as a cause of enhanced reducibility; (6) formation of palladium carbonyl clusters in supercages; (7) enhanced catalytic activity of metal particle-proton complexes for hydrocarbon conversion reactions; (8) stereoselectivity of catalytic reactions due to geometric constraints of particles in cages.

  1. Simultaneous determination of arsenic, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, molybdenum, nickel, selenium, and zinc in fertilizers by microwave acid digestion and inductively coupled plasma-optical emission spectrometry detection: single-laboratory validation of a modification and extension of AOAC 2006.03.

    PubMed

    Webb, Sharon; Bartos, James; Boles, Rhonda; Hasty, Elaine; Thuotte, Ethel; Thiex, Nancy J

    2014-01-01

    A single-laboratory validation study was conducted for the simultaneous determination of arsenic, cadmium, calcium, cobalt, copper, chromium, iron, lead, magnesium, manganese, molybdenum, nickel, selenium, and zinc in all major types of commercial fertilizer products by microwave digestion and inductively coupled plasma-optical emission spectroscopy analysis. This validation study proposes an extension and modification of AOAC 2006.03. The extension is the inclusion of calcium, copper, iron, magnesium, manganese, and zinc, and the modification is incorporation of hydrochloric acid in the digestion system. This dual acid digestion utilizes both hydrochloric and nitric acids in a 3 to 9 mL volume ratio/100 mL. In addition to 15 of the 30 original validation materials used in the 2006.03 collaborative study, National Institute of Standards and Technology Standard Reference Material 695 and Magruder 2009-06 were incorporated as accuracy materials. The main benefits of this proposed method are a significant increase in laboratory efficiency when compared to the use of both AOAC Methods 965.09 and 2006.03 to achieve the same objective and an enhanced recovery of several metals. PMID:25051614

  2. Conversion of Ethanol to Hydrocarbons on Hierarchical HZSM-5 Zeolites

    SciTech Connect

    Ramasamy, Karthikeyan K.; Zhang, He; Sun, Junming; Wang, Yong

    2014-02-22

    This study reports synthesis, characterization, and catalytic activity of the nano-size hierarchical HZSM-5 zeolite with high mesoporosity produced via a solvent evaporation procedure. Further, this study compares hierarchical zeolites with conventional HZSM-5 zeolite with similar Si/Al ratios for the ethanol-to-hydrocarbon conversion process. The catalytic performance of the hierarchical and conventional zeolites was evaluated using a fixed-bed reactor at 360 °C, 300 psig, and a weight hourly space velocity of 7.9 h-1. For the low Si/Al ratio zeolite (~40), the catalytic life-time for the hierarchical HZSM-5 was approximately 2 times greater than the conventional HZSM-5 despite its coking amount deposited 1.6 times higher than conventional HZSM-5. For the high Si/Al ratio zeolite (~140), the catalytic life-time for the hierarchical zeolite was approximately 5 times greater than the conventional zeolite and the amount of coking deposited was 2.1 times higher. Correlation was observed between catalyst life time, porosity, and the crystal size of the zeolite. The nano-size hierarchical HZSM-5 zeolites containing mesoporosity demonstrated improved catalyst life-time compared to the conventional catalyst due to faster removal of products, shorter diffusion path length, and the migration of the coke deposits to the external surface from the pore structure.

  3. Zeolite Nanoparticles for Selective Sorption of Plasma Proteins

    PubMed Central

    Rahimi, M.; Ng, E.-P.; Bakhtiari, K.; Vinciguerra, M.; Ahmad, H. Ali; Awala, H.; Mintova, S.; Daghighi, M.; Bakhshandeh Rostami, F.; de Vries, M.; Motazacker, M. M.; Peppelenbosch, M. P.; Mahmoudi, M.; Rezaee, F.

    2015-01-01

    The affinity of zeolite nanoparticles (diameter of 8–12 nm) possessing high surface area and high pore volume towards human plasma proteins has been investigated. The protein composition (corona) of zeolite nanoparticles has been shown to be more dependent on the plasma protein concentrations and the type of zeolites than zeolite nanoparticles concentration. The number of proteins present in the corona of zeolite nanoparticles at 100% plasma (in vivo state) is less than with 10% plasma exposure. This could be due to a competition between the proteins to occupy the corona of the zeolite nanoparticles. Moreover, a high selective adsorption for apolipoprotein C-III (APOC-III) and fibrinogen on the zeolite nanoparticles at high plasma concentration (100%) was observed. While the zeolite nanoparticles exposed to low plasma concentration (10%) exhibited a high selective adsorption for immunoglobulin gamma (i.e. IGHG1, IGHG2 and IGHG4) proteins. The zeolite nanoparticles can potentially be used for selectively capture of APOC-III in order to reduce the activation of lipoprotein lipase inhibition during hypertriglyceridemia treatment. The zeolite nanoparticles can be adapted to hemophilic patients (hemophilia A (F-VIII deficient) and hemophilia B (F-IX deficient)) with a risk of bleeding, and thus might be potentially used in combination with the existing therapy. PMID:26616161

  4. Energetics of sodium-calcium exchanged zeolite A.

    PubMed

    Sun, H; Wu, D; Guo, X; Shen, B; Navrotsky, A

    2015-05-01

    A series of calcium-exchanged zeolite A samples with different degrees of exchange were prepared. They were characterized by powder X-ray diffraction (XRD) and differential scanning calorimetry (DSC). High temperature oxide melt drop solution calorimetry measured the formation enthalpies of hydrated zeolites CaNa-A from constituent oxides. The water content is a linear function of the degree of exchange, ranging from 20.54% for Na-A to 23.77% for 97.9% CaNa-A. The enthalpies of formation (from oxides) at 25 C are -74.50 1.21 kJ mol(-1) TO2 for hydrated zeolite Na-A and -30.79 1.64 kJ mol(-1) TO2 for hydrated zeolite 97.9% CaNa-A. Dehydration enthalpies obtained from differential scanning calorimetry are 32.0 kJ mol(-1) H2O for hydrated zeolite Na-A and 20.5 kJ mol(-1) H2O for hydrated zeolite 97.9% CaNa-A. Enthalpies of formation of Ca-exchanged zeolites A are less exothermic than for zeolite Na-A. A linear relationship between the formation enthalpy and the extent of calcium substitution was observed. The energetic effect of Ca-exchange on zeolite A is discussed with an emphasis on the complex interactions between the zeolite framework, cations, and water. PMID:25827491

  5. Zeolite Nanoparticles for Selective Sorption of Plasma Proteins

    NASA Astrophysics Data System (ADS)

    Rahimi, M.; Ng, E.-P.; Bakhtiari, K.; Vinciguerra, M.; Ahmad, H. Ali; Awala, H.; Mintova, S.; Daghighi, M.; Bakhshandeh Rostami, F.; de Vries, M.; Motazacker, M. M.; Peppelenbosch, M. P.; Mahmoudi, M.; Rezaee, F.

    2015-11-01

    The affinity of zeolite nanoparticles (diameter of 8-12 nm) possessing high surface area and high pore volume towards human plasma proteins has been investigated. The protein composition (corona) of zeolite nanoparticles has been shown to be more dependent on the plasma protein concentrations and the type of zeolites than zeolite nanoparticles concentration. The number of proteins present in the corona of zeolite nanoparticles at 100% plasma (in vivo state) is less than with 10% plasma exposure. This could be due to a competition between the proteins to occupy the corona of the zeolite nanoparticles. Moreover, a high selective adsorption for apolipoprotein C-III (APOC-III) and fibrinogen on the zeolite nanoparticles at high plasma concentration (100%) was observed. While the zeolite nanoparticles exposed to low plasma concentration (10%) exhibited a high selective adsorption for immunoglobulin gamma (i.e. IGHG1, IGHG2 and IGHG4) proteins. The zeolite nanoparticles can potentially be used for selectively capture of APOC-III in order to reduce the activation of lipoprotein lipase inhibition during hypertriglyceridemia treatment. The zeolite nanoparticles can be adapted to hemophilic patients (hemophilia A (F-VIII deficient) and hemophilia B (F-IX deficient)) with a risk of bleeding, and thus might be potentially used in combination with the existing therapy.

  6. CO2 SEPARATIONS USING ZEOLITE MEMBRANES

    SciTech Connect

    Richard D. Noble; John L. Falconer

    2001-06-30

    Zeolite and other inorganic molecular sieve membranes have shown potential for separations based on molecular size and shape because of their small pore sized, typically less than 1 nm, and their narrow pore size distribution. The high thermal and chemical stability of these inorganic crystals make them ideal materials for use in high temperature applications such as catalytic membrane reactors. Most of the progress with zeolite membranes has been with MFI zeolites prepared on porous disks and tubes. The MFI zeolite is a medium pore size structure having nearly circular pores with diameters between .53 and .56 nm. Separation experiments through MFI membranes indicate that competitive adsorption separates light gas mixtures. Light gas selectivities are typically small, however, owing to small differences in adsorption strengths and their small sizes relative to the MFI pore opening. Furthermore, competitive adsorption does not work well at high temperature where zeolite membranes are stable and have potential application. Separation by differences in size has a greater potential to work at high temperature than competitive adsorption, but pores smaller than those in MFI zeolites are required. Therefore, some studies focused on the synthesis of a small, 8-membered-pore structures such as zeolite A (0.41-nm pore diameter) and SAPO-34, a chabazite (about .4-nm pore diameter with about 1.4 nm cages) analog. The small pore size of the zeolite A and SAPO-34 structures made the separation of smaller molecules by differences in size possible. Zeolite MFI and SAPO-34 membranes were prepared on the inside surface of porous alumina tubes by hydrothermal synthesis, and single gas and binary mixture permeances were measured to characterize the membrane's performance. A mathematical diffusion model was developed to determine the relative quantities of zeolite and non-zeolite pores in different membranes by modeling the permeation date of CO{sub 2}. This model expresses the total flux through the membrane as the sum of surface diffusion through zeolite pores and viscous flow and Knudsen diffusion through non-zeolite pores. As predicted by the model, the permeance of CO{sub 2} decrease with increasing pressure at constant pressure drop for membranes with few non-zeolite pores, but the permeance increased through viscous flow pores and was constant through pores allowing Knudsen diffusion. Membranes having more non-zeolite pores had lower CO{sub 2}/CH{sub 4} selectivities. The SAPO-34 membranes were characterized for light gas separation applications, and the separation mechanisms were identified. Single gas permeances of CO{sub 2}, N{sub 2}, and CH{sub 4} decreased with increasing kinetic diameter. For the best membrane at 300K, the He and H{sub 2} permeances were less than that of CO{sub 2}, because He, H{sub 2} and CO{sub 2} were small compared to the SAPO-34 pore, and differences in the heat of adsorption determined the permeance order. The small component permeated the fastest in CO{sub 2}/CH{sub 4}, CO{sub 2}/N{sub 2}, N{sub 2}/CH{sub 4}, H{sub 2}/CH{sub 4}, and H{sub 2}/N{sub 2} mixtures between 300 and 470 K. For H{sub 2}/CO{sub 2} mixtures, which were separated by competitive adsorption at room temperature, the larger component permeated faster below 400K. The room temperature CO{sub 2}/CH{sub 4} selectivity was 36 and decreased with temperature. The H{sub 2}/CH{sub 4} mixture selectivity was 8 and constant with temperature up to 480 K. Calcination, slow temperature cycles, and exposure to water vapor had no permanent effect on membrane performance, but temperature changes of approximately 30 K/min decreased the membrane's effectiveness. The effects of humidity on gas permeation were studied with SAPO-34 membranes of different qualities. Membranes with high CO{sub 2}/CH{sub 4} selectivities (greater than 20) were stable in water vapor under controlled conditions, but degradation was seen for some membranes. The degradation opened non-SAPO-34 pores that were larger than SAPO-34 pores as shown by the IC{sub 4}H{sub 10} permeance, CO{sub 2}/CH{sub 4} selectivity, and CO{sub 2} flux pressure dependence. In SAPO-34 pores, water apparently adsorbed and increased the gas permeances. Thus, the effect of water on gas permeation is a useful indicator of the membrane quality.

  7. An Effective Secondary Electron Emission Suppression Treatment For Copper MDC

    NASA Technical Reports Server (NTRS)

    Curren, Arthur N.; Long, Kenwyn J.; Jensen, Kenneth A.; Roman, Robert F.

    1993-01-01

    Untreated oxygen-free, high-conductivity (OFHC) copper, commonly used for MDC electrodes, exhibits relatively high secondary electron emission characteristics. This paper describes a specialized ion-bombardment procedure for texturing copper surfaces which sharply reduces the emission properties relative to untreated copper. The resulting surface is a particle-free, robust, uniformly highly-textured all-metal structure. The use of this process requires no modifications to copper machining, brazing, or other MDC normal fabrication procedures. The flight TWT for a planned NASA deep space probe, the Cassini Mission, will incorporate copper MDC electrodes treated with the method described here.

  8. UTILITY OF ZEOLITES IN REMOVAL OF INORGANIC AND ORGANIC WATER POLLUTANTS

    EPA Science Inventory

    Zeolites are well known for their ion exchange, adsorption and acid catalysis properties. Different inorganic and organic pollutants have been removed from water at room temperature using various zeolites. Synthetic zeolite Faujasite Y has been used to remove inorganic pollutants...

  9. Mechanisms of CPB Modified Zeolite on Mercury Adsorption in Simulated Wastewater.

    PubMed

    Liu, Jiang; Huang, Hui; Huang, Rong; Zhang, Jinzhong; Hao, Shuoshuo; Shen, Yuanyuan; Chen, Hong

    2016-06-01

    A systematic study was carried out to analyze the effects of mercury(II) adsorption by surface modified zeolite (SMZ) and adsorption mechanism. Cetylpyridinium bromide (CPB) was used to prepare SMZ. The characterization methods by means of powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR), scanning electron microscope (SEM) showed that both the surface and internal zeolite were covered with CPB molecules, but the main binding sites were surface. Results showed that the organic carbon and cation exchange capacity of the SMZ were 7.76 times and 4.22 times higher than those of natural zeolite (NZ), respectively. Zeta potentials before and after modification were measured at -7.80 mV and -30.27 mV, respectively. Moreover, the saturation adsorptive capacity of SMZ was 16.35 times higher than NZ in mercury-containing wastewater. The possible mechanisms of mercury elimination were surface adsorption, hydrophobic interaction, ion exchange, electricity neutralization. The adsorption process was affected little by competitive ions. PMID:26811296

  10. Copper cyanide

    Integrated Risk Information System (IRIS)

    Copper cyanide ; CASRN 544 - 92 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  11. Novel multi-component hybrids through double luminescent lanthanide unit functionalized zeolite L and titania.

    PubMed

    Chen, Lei; Yan, Bing

    2015-12-01

    Zeolite L (ZL) is functionalized with inside-outside double modification paths (gas disperse ("ship in bottle") and covalently grafting) with two kinds of luminescent lanthanide species (Tb(3+) complex of acetylacetone (AA), lanthanide polyoxometalate (NaLnW10O3632H2O, abbreviated as LnW10, Ln=Eu, Tb)) to prepare the hybrid materials. The prepared hybrids show the red and green luminescence, which provides a useful path to obtain multi-component lanthanide hybrids. PMID:26125989

  12. Zeolite catalysis in conversion of cellulosics. Annual report

    SciTech Connect

    Tsao, G.T.

    1994-02-01

    The authors have studied the kinetics of oxylose/xylulose isomerization in significant detail over a variety of zeolites and obtained the pseudo-first order reaction rate constants. The authors have found that HY zeolite is still the best material and zeolites are more selective than homogeneous acid catalysts where decomposition of the sugar compounds is much faster. They have completed, as described in the Year 2 Work Plan, the study of cellobiose hydrolysis with an ion exchange resin. The kinetics of the solid-catalyzed reaction is qualitatively similar to that for catalysis by homogeneous acids. The planned program of NMR studies has revealed the dynamics of sugar molecules within the zeolite cavities. Two chemisorbed and a physisorbed state have been identified in HY zeolite. A new state, accounting for as much as a half of the sugar, has been found in ZSM-5 zeolite.

  13. Preparation of Robust, Thin Zeolite Membrane Sheet for Molecular Separation

    SciTech Connect

    Liu, Wei; Zhang, Jian; Canfield, Nathan L.; Saraf, Laxmikant V.

    2011-10-19

    This paper reports a feasibility study on the preparation of zeolite membrane films on a thin, porous metal support sheet (50-{micro}m thick). Zeolite sodium A (NaA) and silicalite zeolite frameworks are chosen to represent synthesis of respective hydrophilic-type and hydrophobic-type zeolite membranes on this new support. It is found that a dense, continuous inter-grown zeolite crystal layer at a thickness less than 2 {micro}m can be directly deposited on such a support by using direct and secondary growth techniques. The resulting membrane shows excellent adhesion on the metal sheet. Molecular-sieving functions of the prepared membranes are characterized with ethanol/water separation, CO2 separation, and air dehumidification. The results show great potential to make flexible metal-foil-like zeolite membranes for a range of energy conversion and environmental applications.

  14. Atomic sites and stability of Cs+ captured within zeolitic nanocavities

    PubMed Central

    Yoshida, Kaname; Toyoura, Kazuaki; Matsunaga, Katsuyuki; Nakahira, Atsushi; Kurata, Hiroki; Ikuhara, Yumi H.; Sasaki, Yukichi

    2013-01-01

    Zeolites have potential application as ion-exchangers, catalysts and molecular sieves. Zeolites are once again drawing attention in Japan as stable adsorbents and solidification materials of fission products, such as 137Cs+ from damaged nuclear-power plants. Although there is a long history of scientific studies on the crystal structures and ion-exchange properties of zeolites for practical application, there are still open questions, at the atomic-level, on the physical and chemical origins of selective ion-exchange abilities of different cations and detailed atomic structures of exchanged cations inside the nanoscale cavities of zeolites. Here, the precise locations of Cs+ ions captured within A-type zeolite were analyzed using high-resolution electron microscopy. Together with theoretical calculations, the stable positions of absorbed Cs+ ions in the nanocavities are identified, and the bonding environment within the zeolitic framework is revealed to be a key factor that influences the locations of absorbed cations. PMID:23949184

  15. Density of mechanisms within the flexibility window of zeolites.

    PubMed

    Kapko, V; Dawson, C; Rivin, I; Treacy, M M J

    2011-10-14

    By treating idealized zeolite frameworks as periodic mechanical trusses, we show that the number of flexible folding mechanisms in zeolite frameworks is strongly peaked at the minimum density end of their flexibility window. 25 of the 197 known zeolite frameworks exhibit an extensive flexibility, where the number of unique mechanisms increases linearly with the volume when long wavelength mechanisms are included. Extensively flexible frameworks therefore have a maximum in configurational entropy, as large crystals, at their lowest density. Most real zeolites do not exhibit extensive flexibility, suggesting that surface and edge mechanisms are important, likely during the nucleation and growth stage. The prevalence of flexibility in real zeolites suggests that, in addition to low framework energy, it is an important criterion when searching large databases of hypothetical zeolites for potentially useful realizable structures. PMID:22107389

  16. Zeolite and swine inoculum effect on poultry manure biomethanation

    NASA Astrophysics Data System (ADS)

    Kougias, P. G.; Fotidis, I. A.; Zaganas, I. D.; Kotsopoulos, T. A.; Martzopoulos, G. G.

    2013-03-01

    Poultry manure is an ammonia-rich substrate that inhibits methanogenesis, causing severe problems to the anaerobic digestion process. In this study, the effect of different natural zeolite concentrations on the mesophilic anaerobic digestion of poultry waste inoculated with well-digested swine manure was investigated. A significant increase in methane production was observed in treatments where zeolite was added, compared to the treatment without zeolite.Methane production in the treatment with 10 g dm-3 of natural zeolite was found to be 109.75% higher compared to the treatment without zeolite addition. The results appear to be influenced by the addition of zeolite, which reduces ammonia toxicity in anaerobic digestion and by the ammonia-tolerant swine inoculum.

  17. In situ DRIFTS-MS studies on the oxidation of adsorbed NH3 by NOx over a Cu-SSZ-13 zeolite

    SciTech Connect

    Zhu, Haiyang; Kwak, Ja Hun; Peden, Charles HF; Szanyi, Janos

    2013-04-30

    DRIFT spectroscopy combined with mass spectrometry was used to investigate the oxidation of adsorbed ammonia by NO2, NO+O2 and NO2+O2 on a copper ion exchanged SSZ 13 (Cu-SSZ-13) zeolite. Compared with both NO2 and NO, the adsorption of ammonia is much stronger on the Cu-SSZ-13 zeolite. Two adsorbed ammonia species were found over the Cu-SSZ-13 zeolite studied here; notably ammonia on Brönsted acid sites (proton) and ammonia on Lewis acid sites (copper ions). These adsorbed ammonia species present different activity profiles and selectivity to N2 during NH3 oxidation. The results obtained suggest that ammonia adsorbed onto copper ions in Cu-SSZ-13 are more active at low temperatures than proton-adsorbed NH3, and give rise to a higher selectivity to N2. The formation of N2O is associated primarily with the reaction of NOx with proton-adsorbed NH3 via the formation and subsequent thermal decomposition of NH4NO3. Financial support was provided by the US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Portions of this work were performed in the Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL). The EMSL is a national scientific user facility supported by the US DOE, Office of Biological and Environmental Research. PNNL is a multi-program national laboratory operated for the US DOE by Battelle.

  18. Cation locations and dislocations in zeolites

    NASA Astrophysics Data System (ADS)

    Smith, Luis James

    The focus of this dissertation is the extra-framework cation sites in a particular structural family of zeolites, chabazite. Cation sites play a particularly important role in the application of these sieves for ion exchange, gas separation, catalysis, and, when the cation is a proton, acid catalysis. Structural characterization is commonly performed through the use of powder diffraction and Rietveld analysis of powder diffraction data. Use of high-resolution nuclear magnetic resonance, in the study of the local order of the various constituent nuclei of zeolites, complements well the long-range order information produced by diffraction. Recent developments in solid state NMR techniques allow for increased study of disorder in zeolites particularly when such phenomena test the detection limits of diffraction. These two powerful characterization techniques, powder diffraction and NMR, offer many insights into the complex interaction of cations with the zeolite framework. The acids site locations in SSZ-13, a high silica chabazite, and SAPO-34, a silicoaluminophosphate with the chabazite structure, were determined. The structure of SAPO-34 upon selective hydration was also determined. The insensitivity of X-rays to hydrogen was avoided through deuteration of the acid zeolites and neutron powder diffraction methods. Protons at inequivalent positions were found to have different acid strengths in both SSZ-13 and SAPO-34. Other light elements are incorporated into zeolites in the form of extra-framework cations, among these are lithium, sodium, and calcium. Not amenable by X-ray powder diffraction methods, the positions of such light cations in fully ion-exchanged versions of synthetic chabazite were determined through neutron powder diffraction methods. The study of more complex binary cation systems were conducted. Powder diffraction and solid state NMR methods (MAS, MQMAS) were used to examine cation site preferences and dislocations in these mixed-akali chabazites. Lithium cations were found to prefer high-symmetry positions in the six-ring windows of the framework. Sodium cations preferred positions in the eight-ring window when not hindered by the presence of other cations in the supercage.

  19. Large zeolites - Why and how to grow in space

    NASA Technical Reports Server (NTRS)

    Sacco, Albert, Jr.

    1991-01-01

    The growth of zeolite crystals which are considered to be the most valuable catalytic and adsorbent materials of the chemical processing industry are discussed. It is proposed to use triethanolamine as a nucleation control agent to control the time release of Al in a zeolite A solution and to increase the average and maximum crystal size by 25-50 times. Large zeolites could be utilized to make membranes for reactors/separators which will substantially increase their efficiency.

  20. Raman spectroscopic study of the synthesis of zeolite Y

    SciTech Connect

    Dutta, P.K.; Shieh, D.C.; Puri, M.

    1987-04-23

    The formation of zeolite Y from colloidal silica and soluble silicate species was investigated by Raman spectroscopy. The role of aging of the reactant mixture was studied. During the nucleation period, the solid amorphous phase consists of predominantly six-membered aluminosilicate rings, which act as building blocks for the formation of zeolite Y. It is essential to have polymeric, highly condensed silicate units as a reactant if zeolite Y crystallization is to take place.

  1. Zeolite (clinoptilolite) as feed additive to reduce manure mineral content.

    PubMed

    Leung, S; Barrington, S; Wan, Y; Zhao, X; El-Husseini, B

    2007-12-01

    Clinoptilolite (a species of zeolite) as grower hog feed additive can potentially improve nutrient ingestion and lower manure nutrient levels. A first objective was to establish the optimal particle size of the zeolite powder, as a fine size increases the adsorption surface while a coarse size can facilitate handling. The second objective tested the effect of feeding zeolite on manure nutrient levels. For the first objective, three zeolite powders (250-500 microm; 50-250 microm, and 50-500 microm) were exposed to an NH(4)(+) solution under a pH of either 7.0 or 2.0. The resulting solutions were tested for cation exchange. A commercial zeolite was also tested for the pH of 2.0 to evaluate zeolite stability. At 0%, 5% and 10% humidity, the same three particle size powders were subjected to shear tests to determine the zeolite's angle of friction. For the second objective using metabolic cages, female hogs were subjected to one of four rations (a control and three with zeolite) while collecting and analyzing their manures. For the first objective, the coarse particle zeolite performed best, adsorbing 158 and 123 Cmol(+)/kg of NH(4)(+) under neutral and acid pH, respectively, and releasing an equivalent amount of minerals only under neutral pH. The commercial zeolite with less clinoptilolite released more Al, Fe, Cu and Pb, showing less stability. The high internal angle of friction of zeolite did not vary with particle size and moisture, indicating funnel flow under gravity. For the second objective, hogs fed a zeolite diet produced manure with 15% and 22% less N and P, respectively, and demonstrated a better feed conversion, although not statistically significant (P>0.05). These results show that there is some potential in using high quality clinoptilolite in the ration of grower hogs. PMID:16905313

  2. Comparing gas separation performance between all known zeolites and their zeolitic imidazolate framework counterparts.

    PubMed

    Gómez-Álvarez, Paula; Hamad, Said; Haranczyk, Maciej; Ruiz-Salvador, A Rabdel; Calero, Sofia

    2015-12-14

    To find optimal porous materials for adsorption-based separations is a challenging task due to the extremely large number of possible pore topologies and compositions. New porous material classes such as Metal Organic Frameworks (MOFs) are emerging, and hope to replace traditionally used materials such as zeolites. Computational screening offers relatively fast searching for candidate structures as well as side-by-side comparisons between material families. This work is pioneering at examining the families comprised by the experimentally known zeolites and their respective Zeolitic Imidazolate Framework (ZIF) counterparts in the context of a number of environmental and industrial separations involving carbon dioxide, nitrogen, methane, oxygen, and argon. Additionally, unlike related published work, here all the targeted structures have been previously relaxed through energy minimization. On the first level of characterization, we considered a detailed pore characterization, identifying 24 zeolites as promising candidates for gas separation based on adsorbate sizes. The second level involved interatomic potential-based calculations to assess the adsorption performance of the materials. We found no correlation in the values of heat of adsorption between zeolites and ZIFs sharing the same topology. A number of structures were identified as potential experimental targets for CO2/N2, and CO2/CH4 affinity-based separations. PMID:26600432

  3. Peculiarities of the dielectric response of natural zeolite composites prepared by using zeolite and silicon powders

    NASA Astrophysics Data System (ADS)

    Ozturk Koc, S.; Orbukh, V. I.; Eyvazova, G. M.; Lebedeva, N. N.; Salamov, B. G.

    2016-03-01

    We present the real and imaginary part of the dielectric permittivity of natural zeolite composites prepared by using zeolite and silicon powders. The dielectric response (DR) dependences on the frequency (3-300 GHz) of electric field and different Si concentrations (5-33%) are non-monotonic and a maximum peak is observed. This peak position is practically independent on the frequency and its maximum is observed in zeolite composites which included 9% of the Si-powder. Also the maximum peak is decreased by about an order of magnitude when frequency increases from 500 Hz to 5 kHz. Addition of the conductive Si-particles to zeolite-powder leads to two opposite effects. Firstly, the movement of electrons in the Si-particles provides increase of DR. Secondly, cations which leaving from zeolite pores can be neutralized by the particles of Si in the intercrystalline-space. Such a peculiar mechanism for recombination of Si electrons and cations from pores leads to a reduction of DR for large silicon concentrations. Due to the fact that the contribution of free carriers in the decreasing of the DR as the frequency increases, it is consistent with the suggestion that the maximum peak decreases with increasing frequency.

  4. Rapid crystallization of faujasitic zeolites: mechanism and application to zeolite membrane growth on polymer supports.

    PubMed

    Severance, Michael; Wang, Bo; Ramasubramanian, Kartik; Zhao, Lin; Ho, W S Winston; Dutta, Prabir K

    2014-06-17

    Zeolites are microporous, crystalline aluminosilicates with the framework made up of T-O-T (T = Si, Al) bonds and enclosed cages and channels of molecular dimensions. Influencing and manipulating the nucleation and growth characteristics of zeolites can lead to novel frameworks and morphologies, as well as decreased crystallization time. In this study, we show that manipulating the supersaturation during synthesis of zeolite X/Y (FAU) via dehydration led to extensive nucleation. Controlled addition of water to this nucleated state promotes the transport of nutrients, with a 4-fold increase in the rate of crystal growth, as compared to conventional hydrothermal process. Structural signature of the nucleated state was obtained by electron microscopy, NMR, and Raman spectroscopy. This extensively intermediate nucleated state was isolated and used as the starting material for zeolite membrane synthesis on porous polymer supports, with membrane formation occurring within an hour. With this time frame for growth, it becomes practical to fabricate zeolite/polymer membranes using roll-to-roll technology, thus making possible new commercial applications. PMID:24758695

  5. Method for the recovery of silver from silver zeolite

    DOEpatents

    Reimann, G.A.

    1985-03-05

    High purity silver is recovered from silver exchanged zeolite used to capture radioactive iodine from nuclear reactor and nuclear fuel reprocessing environments. The silver exchanged zeolite is heated with slag formers to melt and fluidize the zeolite and release the silver, the radioactivity removing with the slag. The silver containing metallic impurities is remelted and treated with oxygen and a flux to remove the metal impurities. About 98% of the silver in the silver exchanged zeolite having a purity of 99% or better is recoverable by the method.

  6. Method for the recovery of silver from silver zeolite

    DOEpatents

    Reimann, George A.

    1986-01-01

    High purity silver is recovered from silver exchanged zeolite used to capture radioactive iodine from nuclear reactor and nuclear fuel reprocessing environments. The silver exchanged zeolite is heated with slag formers to melt and fluidize the zeolite and release the silver, the radioactivity removing with the slag. The silver containing metallic impurities is remelted and treated with oxygen and a flux to remove the metal impurities. About 98% of the silver in the silver exchanged zeolite having a purity of 99% or better is recoverable by the method.

  7. Dry method for recycling iodine-loaded silver zeolite

    DOEpatents

    Thomas, Thomas R.; Staples, Bruce A.; Murphy, Llewellyn P.

    1978-05-09

    Fission product iodine is removed from a waste gas stream and stored by passing the gas stream through a bed of silver-exchanged zeolite until the zeolite is loaded with iodine, passing dry hydrogen gas through the bed to remove the iodine and regenerate the bed, and passing the hydrogen stream containing the hydrogen iodide thus formed through a lead-exchanged zeolite which adsorbs the radioactive iodine from the gas stream and permanently storing the lead-exchanged zeolite loaded with radioactive iodine.

  8. Zeolite Crystal Growth in Microgravity and on Earth

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Center for Advanced Microgravity Materials Processing (CAMMP), a NASA-sponsored Research Partnership Center, is working to improve zeolite materials for storing hydrogen fuel. CAMMP is also applying zeolites to detergents, optical cables, gas and vapor detection for environmental monitoring and control, and chemical production techniques that significantly reduce by-products that are hazardous to the environment. Shown here are zeolite crystals (top) grown in a ground control experiment and grown in microgravity on the USML-2 mission (bottom). Zeolite experiments have also been conducted aboard the International Space Station.

  9. Natural zeolites in diet or litter of broilers.

    PubMed

    Schneider, A F; Almeida, D S De; Yuri, F M; Zimmermann, O F; Gerber, M W; Gewehr, C E

    2016-04-01

    This study aims to analyse the influence of adding natural zeolites (clinoptilolite) to the diet or litter of broilers and their effects on growth performance, carcass yield and litter quality. Three consecutive flocks of broilers were raised on the same sawdust litter, from d 1 to d 42 of age, and distributed in three treatments (control with no added zeolites, addition of 5 g/kg zeolite to diet and addition of 100 g/kg zeolites to litter). The addition of zeolites to the diet or litter did not affect growth performance or carcass yield. The addition of zeolites to the diet did not influence moisture content of the litter, ammonia volatilisation was reduced only in the first flock and pH of litter was reduced in the second and third flock. However, the addition of zeolites to the litter reduced moisture content, litter pH and ammonia volatilisation in all flocks analysed. The addition of 5 g/kg zeolite to the diet in three consecutive flocks was not effective in maintaining litter quality, whereas the addition of 100 g/kg natural zeolites to sawdust litter reduced litter moisture and ammonia volatilisation in three consecutive flocks raised on the same litter. PMID:26879673

  10. Ubiquitin modifications.

    PubMed

    Swatek, Kirby N; Komander, David

    2016-04-01

    Protein ubiquitination is a dynamic multifaceted post-translational modification involved in nearly all aspects of eukaryotic biology. Once attached to a substrate, the 76-amino acid protein ubiquitin is subjected to further modifications, creating a multitude of distinct signals with distinct cellular outcomes, referred to as the 'ubiquitin code'. Ubiquitin can be ubiquitinated on seven lysine (Lys) residues or on the N-terminus, leading to polyubiquitin chains that can encompass complex topologies. Alternatively or in addition, ubiquitin Lys residues can be modified by ubiquitin-like molecules (such as SUMO or NEDD8). Finally, ubiquitin can also be acetylated on Lys, or phosphorylated on Ser, Thr or Tyr residues, and each modification has the potential to dramatically alter the signaling outcome. While the number of distinctly modified ubiquitin species in cells is mind-boggling, much progress has been made to characterize the roles of distinct ubiquitin modifications, and many enzymes and receptors have been identified that create, recognize or remove these ubiquitin modifications. We here provide an overview of the various ubiquitin modifications present in cells, and highlight recent progress on ubiquitin chain biology. We then discuss the recent findings in the field of ubiquitin acetylation and phosphorylation, with a focus on Ser65-phosphorylation and its role in mitophagy and Parkin activation. PMID:27012465

  11. Ubiquitin modifications

    PubMed Central

    Swatek, Kirby N; Komander, David

    2016-01-01

    Protein ubiquitination is a dynamic multifaceted post-translational modification involved in nearly all aspects of eukaryotic biology. Once attached to a substrate, the 76-amino acid protein ubiquitin is subjected to further modifications, creating a multitude of distinct signals with distinct cellular outcomes, referred to as the 'ubiquitin code'. Ubiquitin can be ubiquitinated on seven lysine (Lys) residues or on the N-terminus, leading to polyubiquitin chains that can encompass complex topologies. Alternatively or in addition, ubiquitin Lys residues can be modified by ubiquitin-like molecules (such as SUMO or NEDD8). Finally, ubiquitin can also be acetylated on Lys, or phosphorylated on Ser, Thr or Tyr residues, and each modification has the potential to dramatically alter the signaling outcome. While the number of distinctly modified ubiquitin species in cells is mind-boggling, much progress has been made to characterize the roles of distinct ubiquitin modifications, and many enzymes and receptors have been identified that create, recognize or remove these ubiquitin modifications. We here provide an overview of the various ubiquitin modifications present in cells, and highlight recent progress on ubiquitin chain biology. We then discuss the recent findings in the field of ubiquitin acetylation and phosphorylation, with a focus on Ser65-phosphorylation and its role in mitophagy and Parkin activation. PMID:27012465

  12. Pf/Zeolite Catalyst for Tritium Stripping

    SciTech Connect

    Hsu, R.H.

    2001-03-26

    This report described promising hydrogen (protium and tritium) stripping results obtained with a Pd/zeolite catalyst at ambient temperature. Preliminary results show 90-99+ percent tritium stripping efficiency may be obtained, with even better performance expected as bed configuration and operating conditions are optimized. These results suggest that portable units with single beds of the Pd/zeolite catalyst may be utilized as ''catalytic absorbers'' to clean up both tritium gas and tritiated water. A cart-mounted prototype stripper utilizing this catalyst has been constructed for testing. This portable stripper has potential applications in maintenance-type jobs such as tritium line breaks. This catalyst can also potentially be utilized in an emergency stripper for the Replacement Tritium Facility.

  13. Copper peroxide

    NASA Technical Reports Server (NTRS)

    Moser, L.

    1988-01-01

    A number of oxidizing agents, including chlorine, bromine, ozone and other peroxides, were allowed to act on copper solutions with the intention of forming copper peroxide. The only successful agent appears to be hydrogen peroxide. It must be used in a neutral 50 to 30 percent solution at a temperature near zero. Other methods described in the literature apparently do not work. The excess of hydrogen must be quickly sucked out of the brown precipitate, which it is best to wash with alcohol and ether. The product, crystalline under a microscope, can be analyzed only approximately. It approaches the formula CuO2H2O. In alkaline solution it appears to act catalytically in causing the decomposition of other peroxides, so that Na2O2 cannot be used to prepare it. On the addition of acids the H2O2 is regenerated. The dry substance decomposes much more slowly than the moist but is not very stable.

  14. Delaminated zeolites: Combining the benefits of zeolites and mesoporous materials for catalytic uses

    SciTech Connect

    Corma, A.; Fornes, V.; Martinez-Triguero, J.; Pergher, S.B.

    1999-08-15

    The delamination of the layered precursor of the MCM-22 zeolite (MWW structure) affords monolayers of a crystalline aluminosilicate with more than 700 m{sup 2}/g of a well defined external surface formed by cups of 0.7 x 0.7 nm. In this layered structure the circular 10-member-ring microporous system is preserved. The resultant material presents the strong acidity and stability characteristic of the zeolites but, at the same time, offers the high accessibility to large molecules characteristic of the amorphous aluminosilicates. The cracking behavior during the process of small and large molecules has been compared with that of the zeolite MCM-22 and pillared laminar precursor MCM-36.

  15. Hydrocarbon zeolite catalyst employed in hydrocracking process

    SciTech Connect

    Ward, J.W.

    1987-05-12

    A hydrocracking process is described which comprises contacting a hydrocarbon feedstock under hydrocracking conditions with hydrogen in the presence of a catalyst comprising at least one hydrogenation component, a crystalline aluminosilicate zeolite having catalytic activity for cracking hydrocarbons, and a dispersion of silica-alumina in a matrix consisting essentially of alumina, wherein the catalyst comprises particles in the shape of a three-leaf clover.

  16. Anchoring strategies for bimetallic species in zeolites

    SciTech Connect

    Bein, T.

    1993-03-01

    We explore a new approach by introducing heterobinuclear organometallic compounds for linking catalytic functions to zeolite frameworks. With two different metals present, the complexes are being anchored to the support via one oxophilic metal, ligand exchange and catalytic reactions may proceed at the second metal center. Anchoring chemistry, thermal stability and reactivity of Me[sub 3]SnMn(CO)[sub 5] in zeolite NaY and acid forms of zeolite Y was studied with X-ray absorption spectroscopy (Sn, Mn edge EXAFS) and in-situ FTIR/TPD-MS techniques. Subsequently, the tin-cobalt complex Me[sub 3]SnCo(CO)[sub 4] has been a focus of detailed synthetic and spectroscopic studies. The reactivity of tricarbonyl (cyclopentadienyl) (trimethylstannyl) molybdenum in new mesoporous hosts has been explored. A recent development is the design of vanadium oxo species in different micro- and mesoporous hosts. These are of great interest for the selective reduction of nitrogen oxides by ammonia, and selective oxidation of different hydrocarbons, such as xylenes, olefines and alkanes. Combination analytical techniques used to probe local structural changes at the molecular level, include EXAFS (Extended X-Ray Absorption Fine Structure) spectroscopy utilizing synchrotron radiation, in situ FT-IR coupled to thermodesorption/MS, UV-NIR, and CCD Raman.

  17. COPPER AND BRAIN FUNCTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing evidence shows that brain development and function are impaired when the brain is deprived of copper either through dietary copper deficiency or through genetic defects in copper transport. A number of copper-dependent enzymes whose activities are lowered by copper deprivation form the ba...

  18. Dispersion strengthened copper

    DOEpatents

    Sheinberg, H.; Meek, T.T.; Blake, R.D.

    1990-01-09

    A composition of matter is described which is comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide. A method for making this composition of matter is also described. This invention relates to the art of powder metallurgy and, more particularly, it relates to dispersion strengthened metals.

  19. New antiaxillary odour deodorant made with antimicrobial Ag-zeolite (silver-exchanged zeolite).

    PubMed

    Nakane, T; Gomyo, H; Sasaki, I; Kimoto, Y; Hanzawa, N; Teshima, Y; Namba, T

    2006-08-01

    The causative substances for axillary osmidrosis, which are often found in apocrine sweat, are the decomposed/denatured products of short-chain fatty acid and other biological metabolite compounds produced by axillary-resident bacteria. Conventional underarm deodorants suppress the process of odour production mostly by the following mechanism: (1) suppression of perspiration, (2) reduction in numbers of resident bacteria, (3) deodorization and (4) masking. The most important and effective method to reduce odour is to suppress the growth of resident bacteria with antimicrobials, which have several drawbacks, especially in their safety aspect. To solve these problems, we focused on Ag-zeolite (silver-exchanged zeolite) that hold stable Ag, an inorganic bactericidal agent, in its structure, and therefore, poses less risk in safety. Its bactericidal effect on skin-resident bacteria was found to be excellent and comparable with that of triclosan, a most frequently used organic antimicrobial in this product category. The dose-response study of Ag-zeolite powder spray (0-40 w/w%) using 39 volunteers revealed that 5-40 w/w% Ag-zeolite could show a sufficient antimicrobial effect against skin-resident bacteria. The comparison study using 0.2 w/w% triclosan as the control and 10 w/w% Ag-zeolite indicated that: (1) one application of the powder spray containing 10 w/w% Ag-zeolite could show a sufficient antimicrobial effect against the resident bacteria and its effect continued for 24 h, (2) a powder spray containing 0.2 w/w% triclosan was unable to show a sufficient antimicrobial effect, and (3) no adverse event was observed. These studies show that Ag-zeolite has a superior antimicrobial ability that is rarely found in conventional antimicrobials used in deodorant products and a strong antiaxillary odour deodorant ability because of its long-lasting effect. During clinical study, patch tests with humans and other clinical studies of this product showed no adverse events related to the treatment with the Ag-zeolite product. PMID:18489270

  20. Zeolite thin films: from computer chips to space stations.

    PubMed

    Lew, Christopher M; Cai, Rui; Yan, Yushan

    2010-02-16

    Zeolites are a class of crystalline oxides that have uniform and molecular-sized pores (3-12 A in diameter). Although natural zeolites were first discovered in 1756, significant commercial development did not begin until the 1950s when synthetic zeolites with high purity and controlled chemical composition became available. Since then, major commercial applications of zeolites have been limited to catalysis, adsorption, and ion exchange, all using zeolites in powder form. Although researchers have widely investigated zeolite thin films within the last 15 years, most of these studies were motivated by the potential application of these materials as separation membranes and membrane reactors. In the last decade, we have recognized and demonstrated that zeolite thin films can have new, diverse, and economically significant applications that others had not previously considered. In this Account, we highlight our work on the development of zeolite thin films as low-dielectric constant (low-k) insulators for future generation computer chips, environmentally benign corrosion-resistant coatings for aerospace alloys, and hydrophilic and microbiocidal coatings for gravity-independent water separation in space stations. Although these three applications might not seem directly related, they all rely on the ability to fine-tune important macroscopic properties of zeolites by changing their ratio of silicon to aluminum. For example, pure-silica zeolites (PSZs, Si/Al = infinity) are hydrophobic, acid stable, and have no ion exchange capacity, while low-silica zeolites (LSZs, Si/Al < 2) are hydrophilic, acid soluble, and have a high ion exchange capacity. These new thin films also take advantage of some unique properties of zeolites that have not been exploited before, such as a higher elastic modulus, hardness, and heat conductivity than those of amorphous porous silicas, and microbiocidal capabilities derived from their ion exchange capacities. Finally, we briefly discuss our more recent work on polycrystalline zeolite thin films as promising biocompatible coatings and environmentally benign wear-resistant and antifouling coatings. When zeolites are incorporated into polymer thin films in the form of nanocrystals, we also show that the resultant composite membranes can significantly improve the performance of reverse osmosis membranes for sea water desalination and proton exchange membrane fuel cells. These diverse applications of zeolites have the potential to initiate new industries while revolutionizing existing ones with a potential economic impact that could extend into the hundreds of billions of dollars. We have licensed several of these inventions to companies with millions of dollars invested in their commercial development. We expect that other related technologies will be licensed in the near future. PMID:20158246

  1. Effect of NaX zeolite-modified graphite felts on hexavalent chromium removal in biocathode microbial fuel cells.

    PubMed

    Wu, Xiayuan; Tong, Fei; Yong, Xiaoyu; Zhou, Jun; Zhang, Lixiong; Jia, Honghua; Wei, Ping

    2016-05-01

    Two kinds of NaX zeolite-modified graphite felts were used as biocathode electrodes in hexavalent chromium (Cr(VI))-reducing microbial fuel cells (MFCs). The one was fabricated through direct modification, and the other one processed by HNO3 pretreatment of graphite felt before modification. The results showed that two NaX zeolite-modified graphite felts are excellent bio-electrode materials for MFCs, and that a large NaX loading mass, obtained by HNO3 pretreatment (the HNO3-NaX electrode), leads to a superior performance. The HNO3-NaX electrode significantly improved the electricity generation and Cr(VI) removal of the MFC. The maximum Cr(VI) removal rate increased to 10.39±0.28mg/Lh, which was 8.2 times higher than that of the unmodified control. The improvement was ascribed to the strong affinity that NaX zeolite particles, present in large number on the graphite felt, have for microorganisms and Cr(VI) ions. PMID:26852205

  2. [Lifestyle modifications].

    PubMed

    Kawano, Yuhei

    2015-11-01

    Lifestyle modifications are important in the prevention and treatment of hypertension. The Japanese Society of Hypertension Guidelines for the Management of Hypertension (JSH2014) recommend salt reduction (< 6 g/day), increased intake of vegetables/fruit and fish (fish oil), reduced intake of cholesterol and saturated fatty acids, weight loss (body mass index < 25kg/m2), exercise (≥ 30 min/day), reduction of alcohol intake (≤ 20-30 mL/day in men, ≤ 10-20 mL/day in women as ethanol), and quitting smoking. These lifestyle modifications are capable of reducing blood pressure and ameliorating other cardiovascular risk factors. However, the reduction in blood pressure is mild to moderate and the adherence to lifestyle modifications has been still suboptimal. PMID:26619658

  3. Characterization and antibacterial activity of silver exchanged regenerated NaY zeolite from surfactant-modified NaY zeolite.

    PubMed

    Salim, Mashitah Mad; Malek, Nik Ahmad Nizam Nik

    2016-02-01

    The antibacterial activity of regenerated NaY zeolite (thermal treatment from cetyltrimethyl ammonium bromide (CTAB)-modified NaY zeolite and pretreatment with Na ions) loaded with silver ions were examined using the broth dilution minimum inhibitory concentration (MIC) method against Escherichia coli (E. coli ATCC 11229) and Staphylococcus aureus (S. aureus ATCC 6538). X-ray diffraction (XRD), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and chemical elemental analyses were used to characterize the regenerated NaY and AgY zeolites. The XRD patterns indicated that the calcination and addition of silver ions on regenerated NaY zeolite did not affect the structure of the regenerated NaY zeolite as the characteristic peaks of the NaY zeolite were retained, and no new peaks were observed. The regenerated AgY zeolite showed good antibacterial activity against both bacteria strains in distilled water, and the antibacterial activity of the samples increased with increasing Ag loaded on the regenerated AgY zeolite; the regenerated AgY zeolite was more effective against E. coli than S. aureus. However, the antibacterial activity of the regenerated AgY was not effective in saline solution for both bacteria. The study showed that CTAB-modified NaY zeolite materials could be regenerated to NaY zeolite using thermal treatment (550°C, 5h) and this material has excellent performance as an antibacterial agent after silver ions loading. PMID:26652350

  4. Selective thermal and photooxidation of hydrocarbons in zeolites by oxygen

    DOEpatents

    Frei, H.; Blatter, F.; Sun, H.

    1999-06-22

    A process is described for selective thermal oxidation or photooxidation of hydrocarbons adsorbed onto zeolite matrices. A highly selective thermal oxidation and photooxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls in solvent free zeolites under dark thermal conditions or under irradiation with visible light. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts. 19 figs.

  5. Selective thermal and photooxidation of hydrocarbons in zeolites by oxygen

    DOEpatents

    Frei, Heinz; Blatter, Fritz; Sun, Hai

    2001-01-01

    A process for a combined selective thermal oxidation and photooxidation of hydrocarbons adsorbed onto zeolite matrices. A highly combined selective thermal oxidation and photooxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls in solvent free zeolites under dark thermal conditions or under irradiation with visible light. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts.

  6. Selective thermal and photooxidation of hydrocarbons in zeolites by oxygen

    DOEpatents

    Frei, Heinz; Blatter, Fritz; Sun, Hai

    1999-01-01

    A process for selective thermal oxidation or photooxidation of hydrocarbons adsorbed onto zeolite matrices. A highly selective thermal oxidation and photooxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls in solvent free zeolites under dark thermal conditions or under irradiation with visible light. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts.

  7. Selective thermal oxidation of hydrocarbons in zeolites by oxygen

    DOEpatents

    Frei, Heinz; Blatter, Fritz; Sun, Hai

    2000-01-01

    A process for selective thermal oxidation of hydrocarbons adsorbed onto zeolite matrices. A highly selective thermal oxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls is carried out in solvent free zeolites under dark thermal conditions. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts.

  8. Crewmember working on the mid deck Zeolite Crystal Growth experiment.

    NASA Technical Reports Server (NTRS)

    1992-01-01

    View showing Payload Specialist Bonnie Dunbar, in the mid deck, conducting the Zeolite Crystal Growth (ZCG) Experiment in the mid deck stowage locker work area. View shows assembly of zeolite sample in the metal autoclave cylinders prior to insertion into the furnace.

  9. CATION CONTROLLED SINGLET OXYGEN MEDIATED OXIDATION OF OLEFINS WITHIN ZEOLITES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxidation of trialkyl olefins has been performed within zeolites employing thionin as the singlet oxygen sensitizer. Unusual selectivity in favor of secondary hydroperoxides is observed within zeolites. In light of the fact that in solution such a selectivity is never observed the selectivity report...

  10. Zeolites in the Pine Ridge Indian Reservation, South Dakota

    USGS Publications Warehouse

    Raymond, William H.; Bush, Alfred L.; Gude, Arthur J., 3rd

    1982-01-01

    Zeolites of possible commercial value occur in the Brule Formation of Oligocene age and the Sharps Formation (Harksen, 1961) of Miocene age which crop out in a wide area in the northern part of the Pine Ridge Indian Reservation. The thickness of the zeolite-bearing Interval and the extent of areas within the Interval which contain significant amounts of zeolites are far greater than was expected prior to this investigation. The shape of the zeolite-bearing Interval is tabular and the dimensions of Its exposure are roughly 10 ml x 200 mi x 150 ft (16 km x 160 km x 45 m) thick. Within the study area, there are tracts in which the zeolite resource potential is significant (see pl. 2). This report is intended to inform the Oglala Sioux Tribe of some of the most promising zeolite occurrences. Initial steps can then be taken by the Tribe toward possible development of the resources, should they wish to do so. The data contained herein identify areas of high zeolite potential, but are not adequate to establish economic value for the deposits. If development is recommended by the tribal government, we suggest that the tribal government contact companies involved in research and production of natural zeolites and provide them with the data in this report.

  11. Ion exchange in a zeolite-molten chloride system

    SciTech Connect

    Woodman, R.H.; Pereira, C.

    1997-07-01

    Electrometallurgical treatment of spent nuclear fuel results in a secondary waste stream of radioactive fission products dissolved in chloride salt. Disposal plans include a waste form that can incorporate chloride forms featuring one or more zeolites consolidated with sintered glass. A candidate method for incorporating fission products in the zeolites is passing the contaminated salt over a zeolite column for ion exchange. To date, the molten chloride ion-exchange properties of four zeolites have been investigated for this process: zeolite A, IE95{reg_sign}, clinoptilolite, and mordenite. Of these, zeolite A has been the most promising. Treating zeolite 4A, the sodium form of zeolite A , with the solvent salt for the waste stream-lithium-potassium chloride of eutectic melting composition, is expected to provide a material with favorable ion-exchange properties for the treatment of the waste salt. The authors constructed a pilot-plant system for the ion-exchange column. Initial results indicate that there is a direct relationship between the two operating variable of interest, temperature, and initial sodium concentration. Also, the mass ratio has been about 3--5 to bring the sodium concentration of the effluent below 1 mol%.

  12. FUNDAMENTALS AND APPLICATIONS OF PERVAPORATION THROUGH ZEOLITE MEMBRANES

    EPA Science Inventory

    Zeolite membranes are well suited for separating liquid-phase mixtures by pervaporation because of their molecular-sized pores and their hydrophilic/hydrophobic nature, and the first commercial application of zeolite membranes has been for dehydrating organics [1]. Because of ...

  13. Antibacterial activity of heavy metal-loaded natural zeolite.

    PubMed

    Hrenovic, Jasna; Milenkovic, Jelena; Ivankovic, Tomislav; Rajic, Nevenka

    2012-01-30

    The antibacterial activity of natural zeolitized tuffs containing 2.60wt.% Cu(2+), 1.47 Zn(2+) or 0.52 Ni(2+) were tested. Antibacterial activities of the zeolites against Escherichia coli and Staphylococcus aureus were tested after 1h and 24h of exposure to 1g of the zeolite in 100mL of three different media, namely Luria Bertani, synthetic wastewater and secondary effluent wastewater. The antibacterial activities of the zeolites in Luria Bertani medium were significantly lower than those in the other media and negatively correlated with the chemical oxygen demand of the media. The Ni-loaded zeolite showed high leaching of Ni(2+) (3.44-9.13wt.% of the Ni(2+) loaded) and weak antibacterial activity in the effluent water. Since Cu-loaded zeolite did not leach Cu(2+) and the leaching of Zn(2+) from Zn-loaded zeolite was low (1.07-1.61wt.% of the Zn(2+) loaded), the strong antibacterial activity classified the Cu- and Zn-loaded zeolite as promising antibacterial materials for disinfection of secondary effluent water. PMID:22178285

  14. A zeolite ion exchange membrane for redox flow batteries.

    PubMed

    Xu, Zhi; Michos, Ioannis; Wang, Xuerui; Yang, Ruidong; Gu, Xuehong; Dong, Junhang

    2014-03-01

    The zeolite-T membrane was discovered to have high proton permselectivity against vanadium ions and exhibit low electrical resistance in acidic electrolyte solutions because of its enormous proton concentration and small thickness. The zeolite membrane was demonstrated to be an efficient ion exchange membrane in vanadium redox flow batteries. PMID:24396857

  15. Ni(2+)-zeolite/ferrosphere and Ni(2+)-silica/ferrosphere beads for magnetic affinity separation of histidine-tagged proteins.

    PubMed

    Vereshchagina, T A; Fedorchak, M A; Sharonova, O M; Fomenko, E V; Shishkina, N N; Zhizhaev, A M; Kudryavtsev, A N; Frank, L A; Anshits, A G

    2016-01-19

    Magnetic Ni(2+)-zeolite/ferrosphere and Ni(2+)-silica/ferrosphere beads (Ni-ferrosphere beads - NFB) of a core-shell structure were synthesized starting from coal fly ash ferrospheres having diameters in the range of 0.063-0.050 mm. The strategy of NFB fabrication is an oriented chemical modification of the outer surface preserving the magnetic core of parent beads with the formation of micro-mesoporous coverings. Two routes of ferrosphere modification were realized, such as (i) hydrothermal treatment in an alkaline medium resulting in a NaP zeolite layer and (ii) synthesis of micro-mesoporous silica on the glass surface using conventional methods. Immobilization of Ni(2+) ions in the siliceous porous shell of the magnetic beads was carried out via (i) the ion exchange of Na(+) for Ni(2+) in the zeolite layer or (ii) deposition of NiO clusters in the zeolite and silica pores. The final NFB were tested for affinity in magnetic separation of the histidine-tagged green fluorescent protein (GFP) directly from a cell lysate. Results pointed to the high affinity of the magnetic beads towards the protein in the presence of 10 mM EDTA. The sorption capacity of the ferrosphere-based Ni-beads with respect to GFP was in the range 1.5-5.7 mg cm(-3). PMID:26688000

  16. Modified zeolite-based catalyst for effective extinction hydrocracking

    SciTech Connect

    Yan, T.Y. )

    1989-10-01

    The shape selectivity of zeolites makes them generally ineffective for extinction hydrocracking of polycyclic aromatic feeds. To overcome this problem, the zeolite can be modified with an amorphous cracking component to form a composite catalyst. This composite catalyst will be effective for extinction hydrocracking and retain the superior performance characteristics of a zeolite catalyst at the same time because the zeolite and the amorphous components of the catalyst operate complementarily. To illustrate this principle, NiW/REX-NiW/SiO/sub 2/Al/sub 2/O/sub 3/ composite catalyst was tested in the pilot plant. It was active, low in aging rate, resistant to nitrogen poisoning and high in selectivities for naphthas. The aged catalyst could be oxidatively regenerated to fully recover the activity and the product selectivities. This composite catalyst was superior to both individual (zeolite and amorphous) components for extinction hydrocracking. Catalysts similar to this have been used commercially for many years.

  17. Selectivity of zeolite catalysts of hydrocracking of paraffin hydrocarbons

    SciTech Connect

    Shakun, A.N.; Il'icheva, L.F.; Nikitina, N.L.; Nefedov, B.K.; Konoval'chikov, L.D.; Alekseeva, T.V.

    1988-09-20

    The selectivity of catalysts of hydrocracking based on three types of zeolites: HKE, HM, and HTsVM was studied in comparable conditions and it was found that in rigorous conditions of conducting the process (longer contact time, deeper conversion of the normal paraffin), the contribution of nonselective hydrocracking which takes place on the external crystalline surface of the zeolites becomes marked on all of the catalysts. Incorporation of a hydrogenating component in the zeolite-containing catalyst results in an increase in nonselective hydrocracking on the external crystalline surface of the zeolites, and addition of significant amounts of molybdenum oxide also results in a decrease in the total conversion of the n-paraffin. The contribution of nonselective hydrocracking decreases with an increase in the intracrystalline activity of the zeolite.

  18. Fly ash based zeolitic pigments for application in anticorrosive paints

    NASA Astrophysics Data System (ADS)

    Shaw, Ruchi; Tiwari, Sangeeta

    2016-04-01

    The purpose of this work is to evaluate the utilization of waste fly ash in anticorrosive paints. Zeolite NaY was synthesized from waste fly ash and subsequently modified by exchanging its nominal cation Na+ with Mg2+ and Ca2+ ions. The metal ion exchanged zeolite was then used as anticorrosive zeolitic pigments in paints. The prepared zeolite NaY was characterized using X-Ray diffraction technique and Scanning electron microscopy. The size, shape and density of the prepared fly ash based pigments were determined by various techniques. The paints were prepared by using fly ash based zeolitic pigments in epoxy resin and the percentages of pigments used in paints were 2% and 5%. These paints were applied to the mild steel panels and the anticorrosive properties of the pigments were assessed by the electrochemical spectroscopy technique (EIS).

  19. A pair distribution function analysis of zeolite beta

    SciTech Connect

    Martinez-Inesta, M.M.; Peral, I.; Proffen, T.; Lobo, R.F.

    2010-07-20

    We describe the structural refinement of zeolite beta using the local structure obtained with the pair distribution function (PDF) method. A high quality synchrotron and two neutron scattering datasets were obtained on two samples of siliceous zeolite beta. The two polytypes that make up zeolite beta have the same local structure; therefore refinement of the two structures was possible using the same experimental PDF. Optimized structures of polytypes A and B were used to refine the structures using the program PDFfit. Refinements using only the synchrotron or the neutron datasets gave results inconsistent with each other but a cyclic refinement with the two datasets gave a good fit to both PDFs. The results show that the PDF method is a viable technique to analyze the local structure of disordered zeolites. However, given the complexity of most zeolite frameworks, the use of both X-ray and neutron radiation and high-resolution patterns is essential to obtain reliable refinements.

  20. Mineral resource of the month: natural and synthetic zeolites

    USGS Publications Warehouse

    Virta, R.

    2008-01-01

    Robert Virta, mineral commodity specialist for the U.S. Geological Survey, prepared the following information about the zeolite industry. Volcanic rocks containing natural zeolites — hydrated aluminosilicate minerals that contain alkaline and alkaline-earth metals — have been mined worldwide for more than 1,000 years for use as cements and building stone. For centuries, people thought natural zeolites occurred only in small amounts inside cavities of volcanic rock. But in the 1950s and early 1960s, large zeolite deposits were discovered in volcanic tuffs in the western United States and in marine tuffs in Italy and Japan. And since then, similar deposits have been found around the world, from Hungary to Cuba to New Zealand. The discovery of these larger deposits made commercial mining of natural zeolite possible.

  1. Synthesis and catalytic applications of combined zeolitic/mesoporous materials

    PubMed Central

    Vernimmen, Jarian; Cool, Pegie

    2011-01-01

    Summary In the last decade, research concerning nanoporous siliceous materials has been focused on mesoporous materials with intrinsic zeolitic features. These materials are thought to be superior, because they are able to combine (i) the enhanced diffusion and accessibility for larger molecules and viscous fluids typical of mesoporous materials with (ii) the remarkable stability, catalytic activity and selectivity of zeolites. This review gives an overview of the state of the art concerning combined zeolitic/mesoporous materials. Focus is put on the synthesis and the applications of the combined zeolitic/mesoporous materials. The different synthesis approaches and formation mechanisms leading to these materials are comprehensively discussed and compared. Moreover, Ti-containing nanoporous materials as redox catalysts are discussed to illustrate a potential implementation of combined zeolitic/mesoporous materials. PMID:22259762

  2. Health implications of natural fibrous zeolites for the Intermountain west

    SciTech Connect

    Rom, W.N.; Casey, K.R.; Parry, W.T.; Mjaatvedt, C.H.; Moatamed, F.

    1983-02-01

    Fibrous zeolites have recently been implicated in an endemic outbreak of malignant pleural mesothelioma in several villages in Cappadocia in central Turkey. The possible association between fibrous zeolites and mesothelioma and the potential biological activity of fibrous erionite from the United States are reviewed. The zeolite minerals comprise a group of over forty hydrated aluminum silicates. More than 300 probable deposits of various natural zeolites are located in 25 states in the United States. Reserves of perhaps 10 trillion tons are present in the western United States; about 120 million tons are deposited near the surface. Several zeolites, including erionite and mordenite, may occur with a fibrous habit. Fibrous erionite is found in several well-defined deposits in Arizona, Nevada, Oregon, and Utah, where it occurs as thin, pure beds within sedimentary tuff sequences, or as outcrops in desert valleys of the Intermountain region. (JMT)

  3. Potential and actual uses of zeolites in crop protection.

    PubMed

    De Smedt, Caroline; Someus, Edward; Spanoghe, Pieter

    2015-10-01

    In this review, it is demonstrated that zeolites have a potential to be used as crop protection agents. Similarly to kaolin, zeolites can be applied as particle films against pests and diseases. Their honeycomb framework, together with their carbon dioxide sorption capacity and their heat stress reduction capacity, makes them suitable as a leaf coating product. Furthermore, their water sorption capacity and their smaller particle sizes make them effective against fungal diseases and insect pests. Finally, these properties also ensure that zeolites can act as carriers of different active substances, which makes it possible to use zeolites for slow-release applications. Based on the literature, a general overview is provided of the different basic properties of zeolites as promising products in crop protection. PMID:25727795

  4. Computational characterization of zeolite porous networks: an automated approach.

    PubMed

    First, Eric L; Gounaris, Chrysanthos E; Wei, James; Floudas, Christodoulos A

    2011-10-14

    An automated method has been developed to fully characterize the three-dimensional structure of zeolite porous networks. The proposed optimization-based approach starts with the crystallographic coordinates of a structure and identifies all portals, channels, and cages in a unit cell, as well as their connectivity. We apply our algorithms to known zeolites, hypothetical zeolites, and zeolite-like structures and use the characterizations to calculate important quantities such as pore size distribution, accessible volume, surface area, and largest cavity and pore limiting diameters. We aggregate this data over many framework types to gain insights about zeolite selectivity. Finally, we develop a continuous-time Markov chain model to estimate the probability of occupancy of adsorption sites throughout the porous network. ZEOMICS, an online database of structure characterizations and web tool for the automated approach is freely available to the scientific community (http://helios.princeton.edu/zeomics/). PMID:21881655

  5. Zeolites in Eocene basaltic pillow lavas of the Siletz River Volcanics, Central Coast Range, Oregon.

    USGS Publications Warehouse

    Keith, T.E.C.; Staples, L.W.

    1985-01-01

    Zeolites and associated minerals occur in a tholeiitic basaltic pillow lava sequence. Although the zeolite assemblages are similar to those found in other major zeolite occurrences in basaltic pillow lavas, regional zoning of the zeolite assemblages is not apparent. The formation of the different assemblages is discussed.-D.F.B.

  6. Formation of superacid centers in the structure of zeolite ZSM-5

    NASA Astrophysics Data System (ADS)

    Kitaev, L. E.; Kolesnikova, E. E.; Biryukova, E. N.; Kolesnichenko, N. V.; Khadzhiev, S. N.

    2013-04-01

    The structural changes and acid characteristics of the zeolite ZSM-5 modified with titanium and sulfur were studied. The modifier components were chemically bonded to the zeolite structure. The acid characteristics of zeolite changed and superacid centers appeared. A physicochemical study showed that treatment of zeolite with titanium tetrachloride and sulfuryl chloride did not change its structure and molecular-sieve properties.

  7. Raman spectroscopic studies of zeolite framework. Hydrated Zeolite A and the influence of cations

    SciTech Connect

    Dutta, P.K.; Del Barco, B.

    1985-05-09

    Raman spectra of hydrated zeolite A completely exchanged with Li/sup +/, Na/sup +/, K/sup +/, Tl/sup +/, and NH/sub 4//sup +/ ions are reported in this paper. The emphasis has been on the high-frequency region between 300 and 1200 cm/sup -1/, where the intramolecular modes of the aluminosilicate framework are expected. The Raman bands cluster in three regions of the spectrum: (a) 300-500 cm/sup -1/, assigned to T-O deformation modes; (b) 650-750 cm/sup -1/, assigned to Al-O stretching vibrations; and (c) 900-1100 cm/sup -1/, assigned to Si-O stretching motions. The Raman spectra of the ion-exchanged zeolites suggest that Li/sup +/ distorts the zeolite framework, whereas in Na/sup +/-, K/sup +/-, and Tl/sup +/-A, the zeolite structure remains unchanged. In NH/sub 4/-A, there is strong spectroscopic evidence for H-bond formation between the cation and the lattice oxygens. 31 references, 2 figures, 1 table.

  8. Probing zeolites with organic molecules: Supercages of X and Y zeolites are superpolar

    SciTech Connect

    Uppili, S.; Thomas, K.J.; Crompton, E.M.; Ramamurthy, V.

    2000-01-11

    Supercages of Li{sup +}- and Na{sup +}-exchanged X and Y zeolites are much more polar than even water. The extent of polarity depends on the nature and the number of cations present within a supercage. The polarity of Li{sup +}- and Na{sup +}-exchanged X and Y zeolites decreases in the presence of water. In presence of water the contribution of cations toward polarity is much smaller than water itself. In this study polarity has been monitored with organic probe molecules, Nile red, pyrene 1-carboxaldehyde and coumarin-500. A connection between polarity and electric field within a cage has also been established. Since the supercages are much more polar than all organic solvents, they can be characterized as superpolar. Because of this one may be able to achieve excited-state switching of carbonyl compounds within a zeolite while such may not be possible in organic solvents. The n{pi}*-{pi}{pi}* state switching of acetophenones is easily achieved within a zeolite while such does not occur in polar solvent methanol-ethanol mixture.

  9. Influence of NaA Zeolite Crystal Expansion/Contraction on Zeolite Membrane Separations

    SciTech Connect

    Sorenson, Stephanie G; Payzant, E Andrew; Gibbons, Will T; Soydas, Belma; Kita, Hidetoshi; Noble, Richard D; Falconer, John L.

    2011-01-01

    In-situ powder XRD measurements showed that the NaA zeolite unit cell contracts and expands upon adsorption, and these changes in zeolite crystal size correlate with permeation changes through NaA zeolite membranes. These membranes had high pervaporation selectivities, even though gas permeation was mainly through defects, as indicated by Knudsen selectivities for gases. At 300 K and a thermodynamic activity of 0.03, water contracted the NaA crystals by 0.22 vol%, and this contraction increased the helium flux through two NaA membranes by approximately 80%. Crystal contraction also increased the fluxes of i-butane during vapor permeation and i-propanol (IPA) during pervaporation (~ 0.03 wt% water). At activities above 0.07, water expanded NaA crystals and correspondingly decreased the membrane fluxes of helium, i-butane, and IPA. Similarly, methanol contracted NaA crystals by 0.05 vol% at an activity of 0.02, and this contraction slightly increased the helium and i-butane fluxes through a NaA membrane. Above an activity of 0.06, methanol expanded the crystals, and the fluxes of helium and i-butane through a NaA membrane decreased. The adsorbate-induced changes explain some pervaporation behavior reported by others, and they indicate that crystal expansion and contraction may increase or decrease zeolite NaA membrane selectivity by changing the defect sizes.

  10. One-step brazing process to join CFC composites to copper and copper alloy

    NASA Astrophysics Data System (ADS)

    Salvo, Milena; Casalegno, Valentina; Rizzo, Stefano; Smeacetto, Federico; Ferraris, Monica; Merola, Mario

    2008-02-01

    The aim of this work is to develop a new single-step brazing technique to join carbon fibre reinforced carbon composite (CFC) to pure copper (Cu) and copper alloy (CuCrZr) for nuclear fusion applications. In order to increase the wettability of CFC by a copper-based brazing alloy containing no active metal, the composite surface was modified by direct reaction with chromium, which forms a carbide layer and allows a large reduction of the contact angle. After the CFC surface modification, the commercial Gemco ® alloy (Cu/Ge) was successfully used to braze CFC to pure copper and pure copper to CuCrZr by the same heat treatment. The shear strength of the CFC/Cu joints measured by single lap shear tests at room temperature was (34 ± 4) MPa, comparable to the values obtained by other joining processes and higher than the intrinsic CFC shear strength.

  11. A polyhedral oligomeric silsesquioxane functionalized copper trimesate.

    PubMed

    Sanil, E S; Cho, Kyung-Ho; Hong, Do-Young; Lee, Ji Sun; Lee, Su-Kyung; Ryu, Sam Gon; Lee, Hae Wan; Chang, Jong-San; Hwang, Young Kyu

    2015-05-18

    A metal-organic framework (MOF), copper trimesate (Cu3(BTC)2), was selectively functionalized with aminopropylisooctyl polyhedral oligomeric silsesquioxane (O-POSS) to make the external surface of Cu3(BTC)2 hydrophobic and thereby enhance the stability of the material against humidity. POSS modification was also successfully applied to other MOFs such as MOF-74 and MIL-100. PMID:25813878

  12. Applying hexagonal nanostructured zeolite particles for acetone removal.

    PubMed

    Lin, Yu-Chih; Bai, Hsunling; Chang, Chung-Liang

    2005-06-01

    This study examines the performance of a new adsorbent, hexagonal nanostructured zeolite particles (HNZP) for acetone adsorption and compares the results with that of commercial mobil synthetic zeolite-5 (ZSM-5) type zeolite. The HNZP is a pure siliceous adsorbent with different values of pore diameter and surface area being adjustable by the manufacturing condition. The results indicate that a slight increase in the average pore diameter (d) of HNZP from 2 to 2.5 nm leads to an increase in the acetone adsorption capacity, although its surface area is decreased, in which case (d = 2.5 nm) the adsorption capacity of fresh HNZP is better than that of ZSM-5 zeolite. Even for the fresh HNZP (d = 2 nm) of which the adsorption capacity is less than that of the ZSM-5 zeolite at relative humidity (RH) of 0%, its adsorption capacity is not deteriorated after repeated regeneration, but the adsorption capacity of regenerated ZSM-5 zeolite decays markedly. Thus, after only one regeneration, the adsorption capacity of HNZP (d = 2 nm) becomes better than that of the ZSM-5 zeolite. The decrease in the adsorption capacity of regenerated ZSM-5 zeolite might be because of its aluminum content that catalyzes the acetone into coke and, thus, blocks the adsorption sites. Furthermore, result on the moisture effect shows that because the pure siliceous HNZP was more hydrophobic than the ZSM-5 zeolite, the acetone adsorption efficiency of fresh HNZP (d = 2 nm) is better than that of ZSM-5 zeolite at RH = 50%. PMID:16022421

  13. Photophysical properties of pyrene in zeolites: Adsorption and distribution of pyrene molecules on the surfaces of zeolite L and mordenite

    SciTech Connect

    Liu, Xinsheng; Thomas, J.K.

    1994-12-01

    Adsorption of pyrene on the surfaces of zeolites L and mordenite is investigated using photophysical techniques. Although the internal surfaces of both zeolites are polar, their external surfaces may not be the same. A difference is observed for mordenite. No pyrene excimers can be produced in mordenite, while excimers are readily formed in zeolite L. Due to structural constraints, 30-35% of pyrene adsorbed in mordenite cannot be quenched by O{sub 2}. Rotational movement of pyrene molecules in mordenite is also restricted by the zeolite structure. Laser photolysis produces pyrene cation and anion radicals, the former having a larger yield than the latter in both zeolites. 31 refs., 5 figs., 2 tabs.

  14. [Zeolite catalysis in conversion of cellulosics

    SciTech Connect

    Tsao, G.T.

    1992-01-01

    To transform biomass into fermentable substrate for yeast, we are using zeolites instead of enzymes to catalyze the two bottleneck reactions in biomass conversion, xylose isomerization and ceuobiose hydrolysis. The experimental results on these reactions carried out over various zeolites and other catalysts are presented herein. The advantages and disadvantages of using these catalysts over enzymes are also discussed. Heterogeneous solid catalysts other than zeolites has been employed for cellobiose-to-glucose hydrolysis. The size and shape selectivity that makes zeoutes unique for some reactions can add diffusional hindrance. We have spent some time screening various known solid acidic catalysts. We report that a class of cationic ion exchange resins in the acidified form (e.g. Amberlite) has worked well as an acidic catalyst in hydrolyzing cellobiose to glucose. Our experimental results, together with those obtained from a homogeneous acid catalyst (e.g. sulfuric acid) for comparison are provided. Having succeeded in finding an alternative solid acid catalyst for hydrolysis, we explored other solid resin or other homogeneous but non-enzyme catalyst to carry out the xylose-to-xylulose isomerization. A fairly extensive search has been made. We explored the use of sodium aluminates in the homogeneous phase isomerization of glucose to fructose and obtained a very high conversion of glucose to fructose with the final mixture containing 85% of fructose instead of the common 45%. Fructose apparently complexes with aluminates, and its equilibrium concentration is shifted to considerably higher values than permitted by simple glucose/fructose equilibrium. We have recently found a number of catalysts capable of promoting isomerization between aldoses and ketoses. One solid resin, known as polyvinyl pyridine (PVP), is able to convert xylose to xylulose at a pH below 7. Our usage of alternative isomerization catalysts, including PVP, are described.

  15. [Zeolite catalysis in conversion of cellulosics

    SciTech Connect

    Tsao, G.T.

    1992-12-31

    To transform biomass into fermentable substrate for yeast, we are using zeolites instead of enzymes to catalyze the two bottleneck reactions in biomass conversion, xylose isomerization and ceuobiose hydrolysis. The experimental results on these reactions carried out over various zeolites and other catalysts are presented herein. The advantages and disadvantages of using these catalysts over enzymes are also discussed. Heterogeneous solid catalysts other than zeolites has been employed for cellobiose-to-glucose hydrolysis. The size and shape selectivity that makes zeoutes unique for some reactions can add diffusional hindrance. We have spent some time screening various known solid acidic catalysts. We report that a class of cationic ion exchange resins in the acidified form (e.g. Amberlite) has worked well as an acidic catalyst in hydrolyzing cellobiose to glucose. Our experimental results, together with those obtained from a homogeneous acid catalyst (e.g. sulfuric acid) for comparison are provided. Having succeeded in finding an alternative solid acid catalyst for hydrolysis, we explored other solid resin or other homogeneous but non-enzyme catalyst to carry out the xylose-to-xylulose isomerization. A fairly extensive search has been made. We explored the use of sodium aluminates in the homogeneous phase isomerization of glucose to fructose and obtained a very high conversion of glucose to fructose with the final mixture containing 85% of fructose instead of the common 45%. Fructose apparently complexes with aluminates, and its equilibrium concentration is shifted to considerably higher values than permitted by simple glucose/fructose equilibrium. We have recently found a number of catalysts capable of promoting isomerization between aldoses and ketoses. One solid resin, known as polyvinyl pyridine (PVP), is able to convert xylose to xylulose at a pH below 7. Our usage of alternative isomerization catalysts, including PVP, are described.

  16. Mechanism of methanol conversion over zeolite

    SciTech Connect

    Ono, Y.

    1983-01-01

    Details of the reaction mechanisms of conversions of methanol to various alkanes and alkenes were investigated. A discussion of the autocatalytic phenomena of the conversion of methanol over ZSM-5 zeolite was included. The temperature dependence and acidity aspects of the reaction rate were discussed. Also the use of Nafion-H and heteropolyacids as catalysts of conversion was also included. A detailed description of the self-condensation of methyl iodine over Ag/sub 3/PW/sub 12/O/sub 40/ was given. The distribution of hydrocarbon products on the reaction at various temperatures, reaction times, and molar ratios of reactants was given in tabular form.

  17. Growth of large zeolite crystals in space

    NASA Technical Reports Server (NTRS)

    Sacco, A., Jr.; Dixon, A.; Thompson, R.; Scott, G.; Ditr, J.

    1988-01-01

    Synthesis studies performed using close analogs of triethanolamine (TEA) have shown that all three hydroxyl groups and the amine group in this molecule are necessary to provide nucleation suppression. Studies using C-13 nuclear magnetic resonance (NMR) revealed that the hydroxyl ions and the amine group are involved in the formation of an aluminum complex. It was also shown that silicate species fo not interact this way with TEA in an alkaline solution. These results suggest that successful aluminum complexation leads to nucleation in zeolite-A crystallization.

  18. Structural analysis of hierarchically organized zeolites

    PubMed Central

    Mitchell, Sharon; Pinar, Ana B.; Kenvin, Jeffrey; Crivelli, Paolo; Kärger, Jörg; Pérez-Ramírez, Javier

    2015-01-01

    Advances in materials synthesis bring about many opportunities for technological applications, but are often accompanied by unprecedented complexity. This is clearly illustrated by the case of hierarchically organized zeolite catalysts, a class of crystalline microporous solids that has been revolutionized by the engineering of multilevel pore architectures, which combine unique chemical functionality with efficient molecular transport. Three key attributes, the crystal, the pore and the active site structure, can be expected to dominate the design process. This review examines the adequacy of the palette of techniques applied to characterize these distinguishing features and their catalytic impact. PMID:26482337

  19. Structural analysis of hierarchically organized zeolites

    NASA Astrophysics Data System (ADS)

    Mitchell, Sharon; Pinar, Ana B.; Kenvin, Jeffrey; Crivelli, Paolo; Kärger, Jörg; Pérez-Ramírez, Javier

    2015-10-01

    Advances in materials synthesis bring about many opportunities for technological applications, but are often accompanied by unprecedented complexity. This is clearly illustrated by the case of hierarchically organized zeolite catalysts, a class of crystalline microporous solids that has been revolutionized by the engineering of multilevel pore architectures, which combine unique chemical functionality with efficient molecular transport. Three key attributes, the crystal, the pore and the active site structure, can be expected to dominate the design process. This review examines the adequacy of the palette of techniques applied to characterize these distinguishing features and their catalytic impact.

  20. Electron trapping in polar-solvated zeolites.

    PubMed

    Ellison, Eric H

    2005-11-01

    Of current interest in our laboratory is the nature of photoinduced processes in the cavities of zeolites completely submerged in polar solvents, or polar-solvated zeolites (PSZ). The present study addresses the nature of electron trapping in PSZ with emphasis on the zeolites NaX and NaY. Free electrons were generated by two-photon, pulsed-laser excitation of either pyrene or naphthalene included in zeolite cavities. Trapped electrons were monitored by diffuse transmittance, transient absorption spectroscopy at visible wavelengths. In anhydrous alcohols, electron trapping by Na(4)(4+) ion clusters was observed in both NaX and NaY. The resulting trapped electrons decayed over the course of tens of milliseconds. No evidence for alcohol-solvated electrons was found. More varied results were observed in solvents containing water. In NaX submerged in CH(3)OH containing 5% or higher water, species having microsecond lifetimes characteristic of solvated electrons were observed. By contrast, a 2 h exposure of NaY to 95/5 CH(3)OH/H(2)O had no effect on electron trapping relative to anhydrous CH(3)OH. The difference between NaX and NaY was explained by how fast water migrates into the sodalite cage. Prolonged exposure to water at room temperature or exposure to water at elevated temperatures was necessary to place water in the sodalite cages of NaY and deactivate Na(4)(4+) as an electron trap. Additional studies in NaY revealed that solvent clusters eventually become lower energy traps than Na(4)(4+) as the water content in methanol increases. In acetonitrile-water mixtures, electron trapping by Na(4)(4+) was eliminated and no equivalent species characteristic of solvated electrons in methanol-water mixtures was observed. This result was explained by the formation of low energy solvated electrons which cannot be observed in the visible region of the spectrum. Measurements of the rate of O(2) quenching in anhydrous solvents revealed rate constants for the quenching of ion cluster trapped electrons that were 2-4 times higher than that for pyrene triplets. In NaX, the rate constant in methanol was 10(4) times smaller than that in cyclohexane, showing greater inhibition of O(2) reactivity in the medium of PSZ. The results of this study point out the conditions under which Na(4)(4+) is active as an electron trap in PSZ and that water must be present in the sodalite cage to produce solvated electrons in the supercage. PMID:16853643

  1. Zeolite-sorbate interactions from Raman spectroscopy

    SciTech Connect

    Buckley, R.G. ); Deckman, H.W.; Witzke, H.; McHenry, J.A. )

    1990-11-01

    Raman spectroscopy has been used as a direct structural probe to study sorbate-framework interactions for water sorption into the zeolite potassium-ZK5. Equilibrium adsorbate-induced deformations of intertetrahedral angles are quantitatively measured and analyzed in terms of a structural isotherm for each counterion site. All of the structural changes result from the first molecules sorbed. Kinetic studies of the structural deformation are used to determine a diffusion coefficient for the water molecules deforming the six-membered ring site of {approximately} 10{sup {minus}12} cm{sup 2} s{sup {minus}1}.

  2. Zeolitic imidazolate framework as formaldehyde gas sensor.

    PubMed

    Chen, Er-Xia; Yang, Hui; Zhang, Jian

    2014-06-01

    Traditional semiconducting metal oxide-based gas sensors are always limited on low surface areas and high operating temperatures. Considering the high surface area and high stability of zeolitic imidazolate framework (ZIF), ZIF-67 (surface area of 1832.2 m(2) g(-1)) was first employed as a promising formaldehyde gas sensor at a low operating temperature (150 °C), and the gas sensor could detect formaldehyde as low as 5 ppm. This work develops a new promising application approach for porous metal-organic frameworks. PMID:24813234

  3. Zeolite/methanol: The adsorption heat pump

    NASA Astrophysics Data System (ADS)

    Haerkoenen, Martti

    1988-02-01

    This work deals with adsorption heat pump processes. The adsorption process was studied both theoretically and experimentally. Experiments were carried out using different types of synthetic zeolites as an adsorbent and methanol vapor as an adsorbate. Adsorption equilibrium curves were determined, heat of adsorption was measured calorimetrically and sorption kinetics was studied. The pump process was tested experimentally using the pairs 5A/CH(sub 3)OH, 13X/CH(sub 3)OH and 5A/H(sub 2)O. In order to study the effect of various parameters on the process, a simple numerical simulation model was developed and tested.

  4. Hydrogen storage in Chabazite zeolite frameworks.

    PubMed

    Regli, Laura; Zecchina, Adriano; Vitillo, Jenny G; Cocina, Donato; Spoto, Giuseppe; Lamberti, Carlo; Lillerud, Karl P; Olsbye, Unni; Bordiga, Silvia

    2005-09-01

    We have recently highlighted that H-SSZ-13, a highly siliceous zeolite (Si/Al = 11.6) with a chabazitic framework, is the most efficient zeolitic material for hydrogen storage [A. Zecchina, S. Bordiga, J. G. Vitillo, G. Ricchiardi, C. Lamberti, G. Spoto, M. Bjørgen and K. P. Lillerud, J. Am. Chem. Soc., 2005, 127, 6361]. The aim of this new study is thus to clarify both the role played by the acidic strength and by the density of the polarizing centers hosted in the same framework topology in the increase of the adsorptive capabilities of the chabazitic materials towards H2. To achieve this goal, the volumetric experiments of H2 uptake (performed at 77 K) and the transmission IR experiment of H2 adsorption at 15 K have been performed on H-SSZ-13, H-SAPO-34 (the isostructural silico-aluminophosphate material with the same Brønsted site density) and H-CHA (the standard chabazite zeolite: Si/Al = 2.1) materials. We have found that a H2 uptake improvement has been obtained by increasing the acidic strength of the Brønsted sites (moving from H-SAPO-34 to H-SSZ-13). Conversely, the important increase of the Brønsted sites density (moving from H-SSZ-13 to H-CHA) has played a negative role. This unexpected behavior has been explained as follows. The additional Brønsted sites are in mutual interaction via H-bonds inside the small cages of the chabazitic framework and for most of them the energetic cost needed to displace the adjacent OH ligand is higher than the adsorption enthalpy of the OH...H2 adduct. From our work it can be concluded that proton exchanged chabazitic frameworks represent, among zeolites, the most efficient materials for hydrogen storage. We have shown that a proper balance between available space (volume accessible to hydrogen), high contact surface, and specific interaction with strong and isolated polarizing centers are the necessary characteristics requested to design better materials for molecular H2 storage. PMID:16240032

  5. Fabrication of 3D copper oxide structure by holographic lithography for photoelectrochemical electrodes.

    PubMed

    Jin, Woo-Min; Kang, Ji-Hwan; Moon, Jun Hyuk

    2010-11-01

    We fabricated three-dimensional copper oxide structure by holographic lithography and electroless deposition. A five-beam interference pattern defined a woodpile structure of SU-8. The surface modification of SU-8 structure was achieved by multilayer coating of polyelectrolyte, which is critical for activating the surface for the reduction of copper. Copper was deposited onto the surface of the structure by electroless deposition, and subsequent calcinations removed the SU-8 structure and simultaneously oxidized the copper into copper oxide. The porous copper oxide structure was used as a photoelectrochemical electrode. Because of the highly porous structure, our structure showed higher photocurrent efficiency. PMID:21062017

  6. Design and characterization of chitosan/zeolite composite films--Effect of zeolite type and zeolite dose on the film properties.

    PubMed

    Barbosa, Gustavo P; Debone, Henrique S; Severino, Patrícia; Souto, Eliana B; da Silva, Classius F

    2016-03-01

    Chitosan films can be used as wound dressings for the treatment of chronic wounds and severe burns. The antimicrobial properties of these films may be enhanced by the addition of silver. Despite the antimicrobial activity of silver, several studies have reported the cytotoxicity as a factor limiting its biomedical applications. This problem may, however, be circumvented by the provision of sustained release of silver. Silver zeolites can be used as drug delivery platforms to extend the release of silver. The objective of this study was to evaluate the addition of clinoptilolite and A-type zeolites in chitosan films. Sodium zeolites were initially subjected to ion-exchange in a batch reactor. Films were prepared by casting technique using a 2% w/w chitosan solution and two zeolite doses (0.1 or 0.2% w/w). Films were characterized by thermal analysis, color analysis, scanning electron microscopy, X-ray diffraction, and water vapor permeation. The results showed that films present potential for application as dressing. The water vapor permeability is one of the main properties in wound dressings, the best results were obtained for A-type zeolite/chitosan films, which presented a brief reduction of this property in relation to zeolite-free chitosan film. On the other hand, the films containing clinoptilolite showed lower water vapor permeation, which may be also explained by the best distribution of the particles into the polymer which also promoted greater thermal resistance. PMID:26706528

  7. PDV modifications.

    SciTech Connect

    Dolan, Daniel H., III

    2010-09-01

    External modifications can transform a conventional photonic doppler velocimetry (PDV) system to other useful configurations - Non-standard probes and Frequency-conversion measurements. This approach is easier than supporting every conceivable measurement in the core PDV design. Circulator specifications may be important - -30 dB isolation (common) probably not be enough, -50 dB isolation is available, and some bench testing may be needed.

  8. Copper and Copper Proteins in Parkinson's Disease

    PubMed Central

    Rivera-Mancia, Susana; Diaz-Ruiz, Araceli; Tristan-Lopez, Luis; Rios, Camilo

    2014-01-01

    Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson's disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson's disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson's disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson's disease and that a mutation in ATP7B could be associated with Parkinson's disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology. PMID:24672633

  9. Zeolite Crystal Growth (ZCG) Flight on USML-2

    NASA Technical Reports Server (NTRS)

    Sacco, Albert, Jr.; Bac, Nurcan; Warzywoda, Juliusz; Guray, Ipek; Marceau, Michelle; Sacco, Teran L.; Whalen, Leah M.

    1997-01-01

    The extensive use of zeolites and their impact on the world's economy has resulted in many efforts to characterize their structure, and improve the knowledge base for nucleation and growth of these crystals. The zeolite crystal growth (ZCG) experiment on USML-2 aimed to enhance the understanding of nucleation and growth of zeolite crystals, while attempting to provide a means of controlling the defect concentration in microgravity. Zeolites A, X, Beta, and Silicalite were grown during the 16 day - USML-2 mission. The solutions where the nucleation event was controlled yielded larger and more uniform crystals of better morphology and purity than their terrestrial/control counterparts. The external surfaces of zeolite A, X, and Silicalite crystals grown in microgravity were smoother (lower surface roughness) than their terrestrial controls. Catalytic studies with zeolite Beta indicate that crystals grown in space exhibit a lower number of Lewis acid sites located in micropores. This suggests fewer structural defects for crystals grown in microgravity. Transmission electron micrographs (TEM) of zeolite Beta crystals also show that crystals grown in microgravity were free of line defects while terrestrial/controls had substantial defects.

  10. Synthetic zeolites as a new tool for drug delivery.

    PubMed

    Rimoli, Maria G; Rabaioli, Maria R; Melisi, Daniela; Curcio, Annalisa; Mondello, Sandro; Mirabelli, Rosella; Abignente, Enrico

    2008-10-01

    Synthetic zeolites were studied in order to investigate their ability to encapsulate and to release drugs. In particular, a zeolite X and a zeolitic product obtained from a cocrystallization of zeolite X and zeolite A were examined. These materials were characterized by chemical analyses (ICP-AES), X-ray diffraction, nitrogen adsorption isotherm, scanning electron microscopy, laser diffraction, and infrared spectroscopy. Since ketoprofen was chosen as a model drug for the formulation of controlled-release dosage forms, it was encapsulated into these two types of synthetic zeolites by a soaking procedure. Drug-loaded matrices were then characterized for entrapped drug amount and thermogravimetric behavior. In both types of activated zeolites, the total amount of ketoprofen (800 mg) was encapsulated in 2 g of matrix. By using HPLC measurements, ketoprofen release studies were done at different pH conditions so as to mimick gastrointestinal fluids. The absence of release in acid conditions and a double phased release, at two different pH values (5 and 6.8), suggest that after activation these materials offer good potential for a modified release delivery system of ketoprofen. PMID:18085645

  11. Distribution of metal and adsorbed guest species in zeolites

    SciTech Connect

    Chmelka, B.F.

    1989-12-01

    Because of their high internal surface areas and molecular-size cavity dimensions, zeolites are used widely as catalysts, shape- selective supports, or adsorbents in a variety of important chemical processes. For metal-catalyzed reactions, active metal species must be dispersed to sites within the zeolite pores that are accessible to diffusing reactant molecules. The distribution of the metal, together with transport and adsorption of reactant molecules in zeolite powders, are crucial to ultimate catalyst performance. The nature of the metal or adsorbed guest distribution is known, however, to be dramatically dependent upon preparatory conditions. Our objective is to understand, at the molecular level, how preparatory treatments influence the distribution of guest species in zeolites, in order that macroscopic adsorption and reaction properties of these materials may be better understood. The sensitivity of xenon to its adsorption environment makes {sup 129}Xe NMR spectroscopy an important diagnostic probe of metal clustering and adsorbate distribution processes in zeolites. The utility of {sup 129}Xe NMR depends on the mobility of the xenon atoms within the zeolite-guest system, together with the length scale of the sample heterogeneity being studied. In large pore zeolites containing dispersed guest species, such as Pt--NaY, {sup 129}Xe NMR is insensitive to fine structural details at room temperature.

  12. Electron transfer reactions within zeolites: Radical cation from benzonorbornadiene

    SciTech Connect

    Pitchumani, K.; Ramamurthy, V.; Corbin, D.R.

    1996-08-28

    Zeolites are being used as solid acid catalysts in a number of commercial processes. Occasionally zeolites are also reported to perform as electron transfer agents. Recently, we observed that radical cations of certain olefins and thiophene oligomers can be generated spontaneously within ZSM-5 zeolites. We noticed that these radical cations generated from diphenyl polyenes and thiophene oligomers were remarkably stable (at room temperature) within ZSM-5 and can be characterized spectroscopically at leisure. We have initiated a program on electron transfer processes within large pore zeolites. The basis of this approach is that once a cation radical is generated within a large pore zeolite, it will have sufficient room to undergo a molecular transformation. Our aim is to identify a condition under which electron transfer can be routinely and reliably carried out within large pore zeolites such as faujasites. To our great surprise, when benzonorbornadiene A and a number of olefins were included in divalent cation exchanged faujasites. they were transformed into products very quickly (<15 min). This observation allowed us to explore the use of zeolites as oxidants. Results of our studies on benzonorbornadiene are presented in this communication. 16 refs., 1 fig.

  13. Disorders of copper transport.

    PubMed

    Cox, D W

    1999-01-01

    Copper is an essential component of a number of important enzymes. Efficient systems have developed for providing sufficient copper for essential functions, while eliminating excess to avoid tissue toxicity. Copper transport is disrupted in two human diseases: Wilson disease and Menkes disease. Both have defects in copper transporting membrane proteins. Many other proteins are involved in copper transport. Some of these proteins have been identified through a study of the similar copper pathway in yeast. This suggests other copper transport diseases are yet to be discovered. Molecular diagnosis holds promise for reliable diagnosis of patients. Testing of flanking markers is a reliable way to detect presymptomatic sibs of a definite patient. PMID:10746345

  14. Synthesis, characterization and reactivity of transition-metal-containing zeolites

    SciTech Connect

    Rossin, J.A.

    1986-01-01

    Transition metal containing zeolites (zeolite A and ZSM-5) were prepared by addition of various transition metal containing substrates to zeolite synthesis gels. Crystal growth data were recorded in order to determine the influence of the transition metal species on the rate of crystal growth. X-ray diffraction, oxygen adsorption, FTIR and SEM were utilized to evaluate crystal purity. X-ray photoelectron spectroscopy (XPS), chemical analysis and electron microprobe analysis were performed in order to ascertain the position (intrazeolitic versus surface) and homogeneity of the transition metal. It was concluded that intrazeolitic transition metals are produced by the novel procedure presented in this work. 1-Hexane hydroformylation by rhodium zeolite A showed intrazeolitic rhodium to migrate to the external surface of the zeolite. However, in the presence of a solution and surface rhodium poison, intrazeolitic rhodium was found to hydroformylate 1-hexene exclusively to heptanal. Ruthenium containing zeolite A was evaluated under CO-hydrogenation conditions. No migration of intrazeolitic ruthenium to the external surface of the zeolite was observed over the course of the reaction. The product distribution obtained for this catalyst did not follow a log normal behavior. Also, loss of zeolite crystallinity was observed following the reaction. Cobalt ZSM-5 was evaluated under CO-hydrogenation conditions. No migration of cobalt to the external surface of the zeolite occurred. XPS analysis of the catalyst following various stages of the reaction indicated that intrazeolitic cobalt was not reduced to the zero valent state. Consequently, the non-zero valent cobalt was not capable of hydrogenating carbon monoxide.

  15. Quantitatively Probing the Al Distribution in Zeolites

    SciTech Connect

    Vjunov, Aleksei; Fulton, John L.; Huthwelker, Thomas; Pin, Sonia; Mei, Donghai; Schenter, Gregory K.; Govind, Niranjan; Camaioni, Donald M.; Hu, Jian Z.; Lercher, Johannes A.

    2014-06-11

    The degree of substitution of Si4+ by Al3+ in the oxygen-terminated tetrahedra (Al T-sites) of zeolites determines the concentration of ion-exchange and Brønsted acid sites. As the location of the tetrahedra and the associated subtle variations in bond angles influence the acid strength, quantitative information about Al T-sites in the framework is critical to rationalize catalytic properties and to design new catalysts. A quantitative analysis is reported that uses a combination of extended X-ray absorption fine structure (EXAFS) analysis and 27Al MAS NMR spectroscopy supported by DFT-based molecular dynamics simulations. To discriminate individual Al atoms, sets of ab initio EXAFS spectra for various T-sites are generated from DFT-based molecular dynamics simulations allowing quantitative treatment of the EXAFS single- and multiple-photoelectron scattering processes out to 3-4 atom shells surrounding the Al absorption center. It is observed that identical zeolite types show dramatically different Al-distributions. A preference of Al for T-sites that are part of one or more 4-member rings in the framework over those T-sites that are part of only 5- and 6-member rings in the HBEA150 sample has been determined from a combination of these methods. This work was supported by the U. S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences.

  16. Direct vibrational energy transfer in zeolites

    NASA Astrophysics Data System (ADS)

    Brugmans, Marco J. P.; Bakker, Huib J.; Lagendijk, Ad

    1996-01-01

    With two-color picosecond infrared laser spectroscopy the dynamics of O-H and O-D stretch vibrations in zeolites are investigated. Zeolites appear to be good model systems to study transfer of vibrational energy in a solid. For the O-D vibrations, transient spectral holes are burnt in the inhomogeneously broadened absorption bands by saturating the absorption with a strong pump pulse. From the spectral hole widths the homogeneous absorption linewidths are obtained. The excited population lifetimes are determined using a time-resolved pump-probe technique, and in combination with the homogeneous linewidth the pure dephasing time is revealed as well. For high concentrations of O-H oscillators the vibrational stretch excitations are found to diffuse spectrally through the inhomogeneous absorption band. This spectral diffusion process is explained by direct site-to-site transfer of the excitations due to dipole-dipole coupling (Förster transfer). The dependences of the transient spectral signals on oscillator concentration and the results of one-color polarization resolved experiments confirm this explanation. The spectral transients are satisfactorily described by simulations in which the site-to-site transfer by dipole-dipole coupling is taken into account.

  17. Gallium Zeolites for Light Paraffin Aromatization

    SciTech Connect

    Price, G.L.; Dooley, K.M.

    1999-02-10

    The primary original goal of this project was to investigate the active state of gallium-containing MFI catalysts for light paraffin aromatization, in particular the state of gallium in the active material. Our original hypothesis was that the most active and selective materials were those which contained gallium zeolitic cations, and that previously reported conditions for the activation of gallium-containing catalysts served to create these active centers. We believed that in high silica materials such as MFI, ion-exchange is most effectively accomplished with metals in their 1+ oxidation state, both because of the sparsity of the anionic ion-exchange sites associated with the zeolite, and because the large hydration shells associated with aqueous 3+ cations hinder transport. Metals such as Ga which commonly exist in higher oxidation states need to be reduced to promote ion-exchange and this is the reason that reduction of gallium-containing catalysts for light paraffin aromatization often yields a dramatic enhancement in catalytic activity. We have effectively combined reduction with ion-exchange and we term this combined process ''reductive solid-state ion-exchange''. Our hypothesis has largely been proven true, and a number of the papers we have published directly address this hypothesis.

  18. Catalytic pyrolysis using UZM-44 aluminosilicate zeolite

    SciTech Connect

    Nicholas, Christopher P; Boldingh, Edwin P

    2014-04-29

    A new family of aluminosilicate zeolites designated UZM-44 has been synthesized. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.k+T.sub.tAl.sub.1-xE.sub.xSi.sub.yO.sub.z where "n" is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, "m" is the mole ratio of M to (Al+E), "k" is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-44 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  19. Catalytic pyrolysis using UZM-44 aluminosilicate zeolite

    SciTech Connect

    Nicholas, Christopher P; Boldingh, Edwin P

    2013-12-17

    A new family of aluminosilicate zeolites designated UZM-44 has been synthesized. These zeolites are represented by the empirical formula Na.sub.nM.sub.m.sup.k+T.sub.tAl.sub.1-xE.sub.xSi.sub.yO.sub.z where "n" is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, "m" is the mole ratio of M to (Al+E), "k" is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-44 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  20. Method of preparing sodalite from chloride salt occluded zeolite

    DOEpatents

    Lewis, Michele A. (Naperville, IL); Pereira, Candido (Lisle, IL)

    1997-01-01

    A method for immobilizing waste chloride salts containing radionuclides and hazardous nuclear material for permanent disposal starting with a substantially dry zeolite and sufficient glass to form leach resistant sodalite with occluded radionuclides and hazardous nuclear material. The zeolite and glass are heated to a temperature up to about 1000.degree. K. to convert the zeolite to sodalite and thereafter maintained at a pressure and temperature sufficient to form a sodalite product near theoretical density. Pressure is used on the formed sodalite to produce the required density.

  1. Zeolite crystal growth in space - What has been learned

    NASA Technical Reports Server (NTRS)

    Sacco, A., Jr.; Thompson, R. W.; Dixon, A. G.

    1993-01-01

    Three zeolite crystal growth experiments developed at WPI have been performed in space in last twelve months. One experiment, GAS-1, illustrated that to grow large, crystallographically uniform crystals in space, the precursor solutions should be mixed in microgravity. Another experiment evaluated the optimum mixing protocol for solutions that chemically interact ('gel') on contact. These results were utilized in setting the protocol for mixing nineteen zeolite solutions that were then processed and yielded zeolites A, X and mordenite. All solutions in which the nucleation event was influenced produced larger, more 'uniform' crystals than did identical solutions processed on earth.

  2. Radiation effects on a zeolite ion exchanger and a pollucite

    SciTech Connect

    Komarneni, S.; Palau, G.L.; Pillay, K.K.S.

    1983-01-01

    Cation exchange capacity and selective Cs and Sr ion sorption measurements were found to be too insensitive to detect radiation effects on irradiated Ionsiv-IE-95 zeolite. However, leaching the zeolite while under ..gamma..-irradiation caused a modest increase in the desorption of exchangeable ions. Gamma-irradiation and subsequent leaching of a natural pollucite also slightly enhanced the leachability of this material. The increased desorption of ions from the zeolite and the enhanced leachability of the pollucite are apparently caused by a decrease in pH due to the generation of acidic species during irradiation.

  3. Method of preparing sodalite from chloride salt occluded zeolite

    DOEpatents

    Lewis, M.A.; Pereira, C.

    1997-03-18

    A method is described for immobilizing waste chloride salts containing radionuclides and hazardous nuclear material for permanent disposal starting with a substantially dry zeolite and sufficient glass to form leach resistant sodalite with occluded radionuclides and hazardous nuclear material. The zeolite and glass are heated to a temperature up to about 1000 K to convert the zeolite to sodalite and thereafter maintained at a pressure and temperature sufficient to form a sodalite product near theoretical density. Pressure is used on the formed sodalite to produce the required density.

  4. Electrical Characteristics of Mesoporous Pure-Silica-Zeolite Film

    NASA Astrophysics Data System (ADS)

    Seo, Toshiki; Yoshino, Takenobu; Cho, Yoshinori; Hata, Nobuhiro; Kikkawa, Takamaro

    2007-09-01

    The dependence of the electrical characteristics of hydrothermally crystallized pure-silica-zeolite films on the water concentration in the precursor was investigated. Zeolite was crystallized in a silica-zeolite composite film after spin-coating the precursor, which was composed of tetraethylorthosilicate, tetrabutylammonium hydroxide, ethylalcohol, and deionized (DI) water, followed by calcinations at 400 °C. The results of Fourier-transform infrared (FT-IR) spectroscopy indicated that the number of Si-OH and O-H bonds decreased with an increase in the water concentration in the precursor. The dielectric constant of the film decreased with an increase in water concentration, while the leakage current increased.

  5. Accelerated crystallization of zeolites via hydroxyl free radicals.

    PubMed

    Feng, Guodong; Cheng, Peng; Yan, Wenfu; Boronat, Mercedes; Li, Xu; Su, Ji-Hu; Wang, Jianyu; Li, Yi; Corma, Avelino; Xu, Ruren; Yu, Jihong

    2016-03-11

    In the hydrothermal crystallization of zeolites from basic media, hydroxide ions (OH(-)) catalyze the depolymerization of the aluminosilicate gel by breaking the Si,Al-O-Si,Al bonds and catalyze the polymerization of the aluminosilicate anions around the hydrated cation species by remaking the Si,Al-O-Si,Al bonds. We report that hydroxyl free radicals (•OH) are involved in the zeolite crystallization under hydrothermal conditions. The crystallization processes of zeolites-such as Na-A, Na-X, NaZ-21, and silicalite-1-can be accelerated with hydroxyl free radicals generated by ultraviolet irradiation or Fenton's reagent. PMID:26965626

  6. Hierarchical zeolites from class F coal fly ash

    NASA Astrophysics Data System (ADS)

    Chitta, Pallavi

    Fly ash, a coal combustion byproduct is classified as types class C and class F. Class C fly ash is traditionally recycled for concrete applications and Class F fly ash often disposed in landfills. Class F poses an environmental hazard due to disposal and leaching of heavy metals into ground water and is important to be recycled in order to mitigate the environmental challenges. A major recycling option is to reuse the fly ash as a low-cost raw material for the production of crystalline zeolites, which serve as catalysts, detergents and adsorbents in the chemical industry. Most of the prior literature of fly ash conversion to zeolites does not focus on creating high zeolite surface area zeolites specifically with hierarchical pore structure, which are very important properties in developing a heterogeneous catalyst for catalysis applications. This research work aids in the development of an economical process for the synthesis of high surface area hierarchical zeolites from class F coal fly ash. In this work, synthesis of zeolites from fly ash using classic hydrothermal treatment approach and fusion pretreatment approach were examined. The fusion pretreatment method led to higher extent of dissolution of silica from quartz and mullite phases, which in turn led to higher surface area and pore size of the zeolite. A qualitative kinetic model developed here attributes the difference in silica content to Si/Al ratio of the beginning fraction of fly ash. At near ambient crystallization temperatures and longer crystallization times, the zeolite formed is a hierarchical faujasite with high surface area of at least 360 m2/g. This work enables the large scale recycling of class F coal fly ash to produce zeolites and mitigate environmental concerns. Design of experiments was used to predict surface area and pore sizes of zeolites - thus obviating the need for intense experimentation. The hierarchical zeolite catalyst supports tested for CO2 conversion, yielded hydrocarbons up to C9, a performance attesting the hierarchal pore structure. The preliminary techno-economic feasibility assessment demonstrates a net energy saving of 75% and cost saving of 63% compared to the commercial zeolite manufacturing process.

  7. Alkylation of phenol with methanol on high-silica zeolites

    SciTech Connect

    Agaev, A.A.; Tagrev, D.B.

    1986-06-01

    This paper presents results obtained in a study of alkylation of phenol with methanol on high-silica zeolites of the TsVM type. The results of the study of alklation at different temperatures show that at relatively low temperatures the predominant reaction product on HTsVM zeolite is anisole, the yield of which reaches 45.7-65.7%. Rise of temperature influences the isomeric composition of cresols, favoring formation of the meta isomer. It is shown that Pd cations have a beneficial effect on the activity and selectivity of zeolite catalysts inthis reaction.

  8. Mimicking high-silica zeolites: highly stable germanium- and tin-rich zeolite-type chalcogenides.

    PubMed

    Lin, Qipu; Bu, Xianhui; Mao, Chengyu; Zhao, Xiang; Sasan, Koroush; Feng, Pingyun

    2015-05-20

    High-silica zeolites, as exemplified by ZSM-5, with excellent chemical and thermal stability, have generated a revolution in industrial catalysis. In contrast, prior to this work, high-silica-zeolite-like chalcogenides based on germanium/tin remained unknown, even after decades of research. Here six crystalline high-germanium or high-tin zeolite-type sulfides and selenides with four different topologies are reported. Their unprecedented framework compositions give these materials much improved thermal and chemical stability with high surface area (Langmuir surface area of 782 m(2)/g(-1)) comparable to or better than zeolites. Among them, highly stable CPM-120-ZnGeS allows for ion exchange with diverse metal or complex cations, resulting in fine-tuning in porosity, fast ion conductivity, and photoelectric response. Being among the most porous crystalline chalcogenides, CPM-120-ZnGeS (exchanged with Cs(+) ions) also shows reversible adsorption with high capacity and affinity for CO2 (98 and 73 cm(3) g(-1) at 273 and 298 K, respectively, isosteric heat of adsorption = 40.05 kJ mol(-1)). Moreover, CPM-120-ZnGeS could also function as a robust photocatalyst for water reduction to generate H2. The overall activity of H2 production from water, in the presence of Na2S-Na2SO3 as a hole scavenger, was 200 ?mol h(-1)/(0.10 g). Such catalytic activity remained undiminished under illumination by UV light for as long as measured (200 h), demonstrating excellent resistance to photocorrosion even under intense UV radiation. PMID:25950820

  9. Molecular Chemistry in a Zeolite: Genesis of a Zeolite Y-Supported Ruthenium Complex Catalyst

    SciTech Connect

    Ogino, I.; Gates, B.C.

    2009-05-22

    Dealuminated zeolite Y was used as a crystalline support for a mononuclear ruthenium complex synthesized from cis-Ru(acac){sub 2}(C{sub 2}H{sub 4}){sub 2}. Infrared (IR) and extended X-ray absorption fine structure spectra indicated that the surface species were mononuclear ruthenium complexes, Ru(acac)(C{sub 2}H{sub 4}){sub 2}{sup 2+}, tightly bonded to the surface by two Ru-O bonds at Al{sup 3+} sites of the zeolite. The maximum loading of the anchored ruthenium complexes was one complex per two Al{sup 3+} sites; at higher loadings, some of the cis-Ru(acac){sub 2}(C{sub 2}H{sub 4}){sub 2} was physisorbed. In the presence of ethylene and H{sub 2}, the surface-bound species entered into a catalytic cycle for ethylene dimerization and operated stably. IR data showed that at the start of the catalytic reaction, the acac ligand of the Ru(acac)(C{sub 2}H{sub 4}){sub 2}{sup 2+} species was dissociated and captured by an Al{sup 3+} site. Ethylene dimerization proceeded 600 times faster with a cofeed of ethylene and H{sub 2} than without H{sub 2}. These results provide evidence of the importance of the cooperation of the Al{sup 3+} sites in the zeolite and the H{sub 2} in the feed for the genesis of the catalytically active species. The results presented here demonstrate the usefulness of dealuminated zeolite Y as a nearly uniform support that allows precise synthesis of supported catalysts and detailed elucidation of their structures.

  10. Isobutane/2-butene alkylation on ultrastable Y zeolites: Influence of zeolite unit cell size

    SciTech Connect

    Corma, A.; Martinez, A.; Martinez, C. )

    1994-03-01

    The alkylation reaction of isobutane with trans-2-butene has been carried out on a series of steam-dealuminated Y zeolites with unit cell sizes ranging from 2.450 to 2.426 nm. A fixed-bed reactor connected to an automatized multiloop sampling system allowed differential product analysis from very short (1 min or less) to longer times on stream. A maximum in the initial 2-butene conversion was found on samples with unit cell sizes between 2.435 and 2.450 nm. However, the TMP/DMH ratio, i.e., the alkylation-to-oligomerization ratio, continuously increased with zeolite unit cell size. The concentration of reactants in the pores, the strength distribution of Bronsted acid sites, and the extent of hydrogen transfer reactions, which in turn depend on the framework Si/Al ratio of a given zeolite, were seen to affect activity and product distribution of the catalysts. Finally, the influence of these factors on the aging characteristics of the samples was also discussed. 17 refs., 7 figs., 4 tabs.

  11. 12. INTERIOR OF BUILDING 2, ORIGINAL ZEOLITE PLANT, AT WEYMOUTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. INTERIOR OF BUILDING 2, ORIGINAL ZEOLITE PLANT, AT WEYMOUTH LOOKING WEST TO FOUNTAIN. STAIRWAY RUNS DOWN TO FILTRATION BAYS. - F. E. Weymouth Filtration Plant, 700 North Moreno Avenue, La Verne, Los Angeles County, CA

  12. Influence of the cluster formation on the zeolite crystal lattice

    NASA Astrophysics Data System (ADS)

    Barnakov, Yurii A.; Mitypov, Bair B.; Petranovskii, Vitalii P.; Poborchii, Vladimir V.; Kasuya, Atsuo; Peralez Perez, Oskar J.

    1999-06-01

    Clusters of CdS were prepared inside the framework voids of zeolites NaX and chabazite by multistage ion exchange chemical reaction. It was observed that each stage of reaction affects the structure of zeolites crystals. Aluminum atoms change their coordination state at the first stage because of hydrolytic decomposition of some Al-O tetrahedral bonds. Partially reversible relaxation of aluminum atoms of zeolite framework occurs during the second stage of chemical reaction. This spontaneous transition of the coordination number of aluminum atoms took place without changing of their positions of framework atoms. Such kind of the interaction between framework atoms of alumosilicates and doping ions, which are precursors of the clusters in the zeolite hosts, give indirect information about mechanism of the `ship-in-the-bottle' synthesis of semiconductor materials.

  13. Zeolite - A Natural Filter Material for Lead Polluted Water

    NASA Astrophysics Data System (ADS)

    Neamţu, Corina Ioana; Pică, Elena Maria; Rusu, Tiberiu

    2014-11-01

    Reducing the concentration of lead ions in a wastewater using zeolite has proven to be a successful water treatement method, all over the world. Putting the two media (solid and liquid) in contact in static conditions had good results regarding the concentration of the filtered solution, the pH and the electric conductivity, depending on the values of certain parameters such as the amount of the zeolite, volume of the solution or interaction time. The present study highlights the zeolite ability to retain the lead ions from a solution, in dynamic interaction conditions between the two environments, in a short interaction time. The results confirmed the effectiveness of ion exchange water treatment method in the conditions set, emphasizing once again the properties of the filter material - the zeolite

  14. Comparative study of the removal of coke from protonic zeolites

    SciTech Connect

    Gnep, N.S.; Roger, P.; Magnoux, P.; Guisnet, M.

    1993-12-31

    The transformation of methanol was carried out at 400{degrees}C on four protonic zeolites: USHY (framework Si/Al ratio equal to 5), HZSM5 (Si/Al = 45), two mordenites HMOR (Si/Al = 7.5) and HMORDA (Si/Al = 80) prepared by dealumination of HMOR through hydrothermal and acid treatments. The composition of coke determined through the method developed in the authors` laboratory depended slightly on the zeolite. The amount of coke removed for the zeolites through oxidative treatment was determined as function of the temperature and for various coke contents. The rate of coke removal depended slightly on the coke content and on the coke composition by very much on the zeolite. In particular the coke of HMORDA and of HZSM5 was eliminated at high temperature only.

  15. CO2 capture using zeolite 13X prepared from bentonite

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Park, Dong-Wha; Ahn, Wha-Seung

    2014-02-01

    Zeolite 13X was prepared using bentonite as the raw material by alkaline fusion followed by a hydrothermal treatment without adding any extra silica or alumina sources. The prepared zeolite 13X was characterized by X-ray powder diffraction, N2-adsorption-desorption measurements, and scanning electron microscopy. The CO2 capture performance of the prepared zeolite 13X was examined under both static and flow conditions. The prepared zeolite 13X showed a high BET surface area of 688 m2/g with a high micropore volume (0.30 cm3/g), and exhibited high CO2 capture capacity (211 mg/g) and selectivity to N2 (CO2/N2 = 37) at 25 °C and 1 bar. In addition, the material showed fast adsorption kinetics, and stable CO2 adsorption-desorption recycling performance at both 25 and 200 °C.

  16. Iba of Zeolites Exchanged with Lithium for Co2 Retention

    NASA Astrophysics Data System (ADS)

    Andrade, E.; Alfaro, S.; Valenzuela, M. A.; Solis, C.; Zaval, E. P.; Rocha, M. F.; Cruz, J.; Pfeiffer, H.; Bosch, P.; Contreras, C.; Baptiste, J.

    2009-03-01

    A great concern on the global climatic change, partially due to industry CO2 expelled to the atmosphere, has motivated the search of new materials able to retain this gas. Clays, perovskites, zeolites and membranes have been utilized to trap the CO2. Zeolites are widely used as molecular sieves in different industrial processes related to gas purification or gas separation. Synthetic zeolites exchanged with lithium were prepared as potential material for CO2 retention. A NRA method using the 7Li (p,α)4He was performed in order to measure the the Li contents. With SEM-EDS the atomic concentrations of elements as C, Na, Si, Al, K, Ca, Fe, etc. were determined. Zeolites were also characterized by XRD.

  17. Studies on zeolites: Molecular mechanics, framework stability, and crystal growth

    NASA Astrophysics Data System (ADS)

    Devosburchart, Erik

    Molecular mechanics, framework stability, and crystal growth of zeolites and aluminophosphates, are studied. Both materials belong to the class of molecular sieves, which are important in the industry as ion exchangers, catalysts and adsorbents. The faujasite structure is discussed with respect to the distribution of aluminum atoms and acid sites. Ordered growths between the zeolites X and A are described. Molecular mechanics of MFI type zeolites are studied for: effect of p-xylene adsorption in the zeolite structure; isomorphous substitution by aluminum; the monoclinic orthorhombic phase transition; energetics of crystal growth directing agents; alpha/beta quartz transition. Summation methods for the nonbonded interactions are compared. A consistent molecular mechanics force field for aluminophosphates was developed. A general discussion and conclusion is given covering optimization of force field, parameter set, and computer code.

  18. Comparative study of CO{sub 2} capture by carbon nanotubes, activated carbons, and zeolites

    SciTech Connect

    Chungsying Lu; Hsunling Bai; Bilen Wu; Fengsheng Su; Jyh Feng Hwang

    2008-09-15

    Carbon nanotubes (CNTs), granular activated carbon (GAC), and zeolites were modified by 3-aminopropyl-triethoxysilane (APTS) and were selected as adsorbents to study their physicochemical properties and adsorption behaviors of CO{sub 2} from gas streams. The surface nature of these adsorbents was changed after the modification, which make them adsorb more CO{sub 2} gases. Under the same conditions, the modified CNTs possess the greatest adsorption capacity of CO{sub 2}, followed by the modified zeolites and then the modified GAC. The mechanism of CO{sub 2} adsorption on these adsorbents appears mainly attributable to physical force, which makes regeneration of spent adsorbents at a relatively low temperature become feasible. The APTS-modified CNTs show good performance of CO{sub 2} adsorption as compared to many types of modified carbon and silica adsorbents reported in the literature. This suggests that the APTS-modified CNTs are efficient CO{sub 2} adsorbents and that they possess potential applications for CO{sub 2} capture from gas streams. 27 refs., 11 figs., 3 tabs.

  19. Commander Bowersox Tends to Zeolite Crystal Samples Aboard Space Station

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Expedition Six Commander Ken Bowersox spins Zeolite Crystal Growth sample tubes to eliminate bubbles that could affect crystal formation in preparation of a 15 day experiment aboard the International Space Station (ISS). Zeolites are hard as rock, yet are able to absorb liquids and gases like a sponge. By using the ISS microgravity environment to grow better, larger crystals, NASA and its commercial partners hope to improve petroleum manufacturing and other processes.

  20. Nanosized zeolites as a perspective material for conductometric biosensors creation

    NASA Astrophysics Data System (ADS)

    Kucherenko, Ivan; Soldatkin, Oleksandr; Kasap, Berna Ozansoy; Kirdeciler, Salih Kaan; Kurc, Burcu Akata; Jaffrezic-Renault, Nicole; Soldatkin, Alexei; Lagarde, Florence; Dzyadevych, Sergei

    2015-05-01

    In this work, the method of enzyme adsorption on different zeolites and mesoporous silica spheres (MSS) was investigated for the creation of conductometric biosensors. The conductometric transducers consisted of gold interdigitated electrodes were placed on the ceramic support. The transducers were modified with zeolites and MSS, and then the enzymes were adsorbed on the transducer surface. Different methods of zeolite attachment to the transducer surface were used; drop coating with heating to 200°C turned out to be the best one. Nanozeolites beta and L, zeolite L, MSS, and silicalite-1 (80 to 450 nm) were tested as the adsorbents for enzyme urease. The biosensors with all tested particles except zeolite L had good analytical characteristics. Silicalite-1 (450 nm) was also used for adsorption of glucose oxidase, acetylcholinesterase, and butyrylcholinesterase. The glucose and acetylcholine biosensors were successfully created, whereas butyrylcholinesterase was not adsorbed on silicalite-1. The enzyme adsorption on zeolites and MSS is simple, quick, well reproducible, does not require use of toxic compounds, and therefore can be recommended for the development of biosensors when these advantages are especially important.

  1. Inhibition of palm oil oxidation by zeolite nanocrystals.

    PubMed

    Tan, Kok-Hou; Awala, Hussein; Mukti, Rino R; Wong, Ka-Lun; Rigaud, Baptiste; Ling, Tau Chuan; Aleksandrov, Hristiyan A; Koleva, Iskra Z; Vayssilov, Georgi N; Mintova, Svetlana; Ng, Eng-Poh

    2015-05-13

    The efficiency of zeolite X nanocrystals (FAU-type framework structure) containing different extra-framework cations (Li(+), Na(+), K(+), and Ca(2+)) in slowing the thermal oxidation of palm oil is reported. The oxidation study of palm oil is conducted in the presence of zeolite nanocrystals (0.5 wt %) at 150 °C. Several characterization techniques such as visual analysis, colorimetry, rheometry, total acid number (TAN), FT-IR spectroscopy, (1)H NMR spectroscopy, and Karl Fischer analyses are applied to follow the oxidative evolution of the oil. It was found that zeolite nanocrystals decelerate the oxidation of palm oil through stabilization of hydroperoxides, which are the primary oxidation product, and concurrently via adsorption of the secondary oxidation products (alcohols, aldehydes, ketones, carboxylic acids, and esters). In addition to the experimental results, periodic density functional theory (DFT) calculations are performed to elucidate further the oxidation process of the palm oil in the presence of zeolite nanocrystals. The DFT calculations show that the metal complexes formed with peroxides are more stable than the complexes with alkenes with the same ions. The peroxides captured in the zeolite X nanocrystals consequently decelerate further oxidation toward formation of acids. Unlike the monovalent alkali metal cations in the zeolite X nanocrystals (K(+), Na(+), and Li(+)), Ca(2+) reduced the acidity of the oil by neutralizing the acidic carboxylate compounds to COO(-)(Ca(2+))1/2 species. PMID:25897618

  2. Characterization of Chemical Properties, Unit Cell Parameters and Particle Size Distribution of Three Zeolite Reference Materials: RM 8850 - Zeolite Y, RM 8851 - Zeolite A and RM 8852 - Ammonium ZSM-5 Zeolite

    SciTech Connect

    Turner,S.; Sieber, J.; Vetter, T.; Zeisler, R.; Marlow, A.; Moreno-Ramirez, M.; Davis, M.; Kennedy, G.; Borghard, W.; et al

    2008-01-01

    Zeolites have important industrial applications including use as catalysts, molecular sieves and ion exchange materials. In this study, three zeolite materials have been characterized by the National Institute of Standards and Technology (NIST) as reference materials (RMs): zeolite Y (RM 8850), zeolite A (RM 8851) and ZSM-5 zeolite (RM 8852). They have been characterized by a variety of chemical and physical measurement methods: X-ray fluorescence (XRF), gravimetry, instrumental neutron activation analysis (INAA), nuclear magnetic resonance (NMR), calorimetry, synchrotron X-ray diffraction, neutron diffraction, laser light extinction, laser light scattering, electric sensing zone, X-ray sedimentation, scanning transmission electron microscopy (STEM), scanning electron microscopy (SEM) and optical microscopy. The chemical homogeneity of the materials has been characterized. Reference values are given for the major components (major elements, loss on ignition [LOI] and loss on fusion [LOF]), trace elements and Si/Al and Na/Al ratios. Information values are given for enthalpies of formation, unit cell parameters, particle size distributions, refractive indices and variation of mass with variation in relative humidity (RH). Comparisons are made to literature unit cell parameters. The RMs are expected to provide a basis for intercomparison studies of these zeolite materials.

  3. Nanocellulose-Zeolite Composite Films for Odor Elimination.

    PubMed

    Keshavarzi, Neda; Mashayekhy Rad, Farshid; Mace, Amber; Ansari, Farhan; Akhtar, Farid; Nilsson, Ulrika; Berglund, Lars; Bergström, Lennart

    2015-07-01

    Free standing and strong odor-removing composite films of cellulose nanofibrils (CNF) with a high content of nanoporous zeolite adsorbents have been colloidally processed. Thermogravimetric desorption analysis (TGA) and infrared spectroscopy combined with computational simulations showed that commercially available silicalite-1 and ZSM-5 have a high affinity and uptake of volatile odors like ethanethiol and propanethiol, also in the presence of water. The simulations showed that propanethiol has a higher affinity, up to 16%, to the two zeolites compared with ethanethiol. Highly flexible and strong free-standing zeolite-CNF films with an adsorbent loading of 89 w/w% have been produced by Ca-induced gelation and vacuum filtration. The CNF-network controls the strength of the composite films and 100 μm thick zeolite-CNF films with a CNF content of less than 10 vol % displayed a tensile strength approaching 10 MPa. Headspace solid phase microextraction (SPME) coupled to gas chromatography-mass spectroscopy (GC/MS) analysis showed that the CNF-zeolite films can eliminate the volatile thiol-based odors to concentrations below the detection ability of the human olfactory system. Odor removing zeolite-cellulose nanofibril films could enable improved transport and storage of fruits and vegetables rich in odors, for example, onion and the tasty but foul-smelling South-East Asian Durian fruit. PMID:26061093

  4. Role of ammonium fluoride in crystallization process of beta zeolite

    NASA Astrophysics Data System (ADS)

    Jon, Hery; Oumi, Yasunori; Itabashi, Keiji; Sano, Tsuneji

    2007-09-01

    The addition of Na + cations to the starting gel prepared using NH 4F significantly prolonged the crystallization time of beta zeolite. However, in the case of pure silica beta zeolite an addition of more NH 4F reduced the crystallization time by one-half. From 29Si MAS NMR measurements, the signal attributed to pentacoordinated silicon was found to be more pronounced for pure silica beta zeolite in the presence of Na + cations even in the solid phase with low crystallinity, as compared to that in the absence of Na + cations. Considering the results of theoretical calculation, because of more energetically stable state of Na +[SiO 4/2F] - species, it could be presumed that Na +[SiO 4/2F] - species might exist in pure silica beta zeolite. Furthermore, as confirmed by 19F MAS NMR measurements tetraethylammonium fluoride (TEAF) species were enclathrated intact in solid phase during the initial crystallization stage. This suggests that TEAF species are required for the formation of beta zeolite framework, in other words, as "SDA" which conditions the formation of kinetically favored phase, i.e., beta zeolite. Moreover, since part of TEA + cations is replaced by sodium cations, forming Na +[SiO 4/2F] - species, the amount of TEA +[SiO 4/2F] - species involved in either nucleation or crystal growth decreases and thus the crystallization time becomes longer.

  5. An analysis of commerical zeolite catalysts by multinuclear NMR

    SciTech Connect

    Flanagan, L.

    1990-09-21

    This work involves studying two commercial hydrocracking catalysts by solid state multinuclear NMR silicon 29 and aluminum 27 with the goal of developing a method of determining the fraction zeolite in the catalysts. The zeolite fraction is known to be one of the faujasite zeolites type X or Y. The clay matrix of the catalyst is assumed to be kaolinite. Fresh, air-exposed commercial hydrocracking catalysts were provided by Phillips Petroleum. Sample 33351-86 was known to be a physical mixture of a Y zeolite and a clay matrix. The other catalyst, 33351-20, was composed of a faujasite zeolite grown within a clay matrix. Both were suspected of being about 20 wt % zeolite. Nothing is known about the state of pretreatment or cation exchange. A portion of each catalyst was calcined in a porcelain crucible in air at 500{degree}C for two hours with a hour heating ramp preceding and a two hour cooling ramp following calcination. 64 refs., 21 figs., 8 tabs.

  6. Probing the dynamics of instability in zeolitic materials

    NASA Astrophysics Data System (ADS)

    Greaves, Neville; Meneau, Florian

    2004-08-01

    Zeolites collapse under modest pressure or temperature, their microporous structures transforming into glasses of conventional density. Using in situ synchrotron radiation diffraction methods we show how pressure and temperature-induced amorphization are equivalent processes and that these are mirrored by changes in the local structure of charge compensating cations. Evidence for a low density amorphous phase and a high density amorphous phase present during zeolite collapse emerges from small angle scattering experiments. Combining powder diffraction with increasing temperature or pressure, we find that the thermobaric characteristics for zeolite collapse have negative d T/d P slopes, consistent with increasing density during amorphization. However, this is not confined to a single melting curve but, instead, the regime extends over a significant region of T-P space. Moreover, zeolite amorphization involves depressurization and cavitation effects which can be used to set empirical boundaries for the stability of the low density amorphous phase. Within the region of zeolite instability the pressure or temperature of amorphization is found to be governed by the rate at which the stress is introduced—the more rapid this is, the higher the pressure or temperature the zeolite structure survives to. The temperature dependence of the rate of collapse is Arrhenian, suggesting that the initial low density amorphous phase has the characteristics of a superstrong liquid in contrast to the fragility of a conventionally melt quenched glass. Possibilities for creating 'perfect glasses' from the collapse of microporous crystals are discussed.

  7. Uniformly microsized luminescent materials obtained through a solid state reaction of WO{sub 3} with Ln{sup 3+}-exchanged zeolite L at 700 °C

    SciTech Connect

    Wang, Yige; Fang, Yi; Zhang, Wenjun; Zhang, Li; Chen, Yuhuan; Yu, Xiaoyan

    2013-06-01

    Graphical abstract: We have reported the modification of Ln3+/ZL microcrystals by the tungstate-oxygen species via a solid state reaction of WO{sub 3} and Ln{sup 3+}-exchanged zeolite L at 700 °C. Highlights: ► Luminescent materials were obtained from zeolite L crystals. ► The materials show characteristic luminescence of Eu{sup 3+} and Tb{sup 3+} ions. ► The framework of zeolite L crystals has been kept during the annealing process. ► Energy transfer from tungstate-oxygen species to lanthanide was confirmed. - Abstract: In this work, we report the uniformly microsized luminescent materials prepared by a solid state reaction of WO{sub 3} and Ln{sup 3+}-exchanged zeolite L at 700 °C. The obtained materials were investigated by SEM, XRD and photoluminescence spectroscopy. The influence of tungstate-oxygen species on the morphology and luminescence of the materials were discussed in detail. Energy transfer from the tungstate-oxygen species to Eu{sup 3+} and Tb{sup 3+} ions have been demonstrated by the photoluminescence spectra, implying the loading of tungstate-oxygen species into the nanochannels of the crystals and the close proximity of which to Eu{sup 3+} ions.

  8. Copper in diet

    MedlinePlus

    Oysters and other shellfish , whole grains, beans, nuts, potatoes, and organ meats (kidneys, liver) are good sources of copper. Dark leafy greens, dried fruits such as prunes, cocoa, black pepper, and yeast are also sources of copper in the diet.

  9. Quantitative proteomic profiling of the Escherichia coli response to metallic copper surfaces.

    PubMed

    Nandakumar, Renu; Espirito Santo, Christophe; Madayiputhiya, Nandakumar; Grass, Gregor

    2011-06-01

    Metallic copper surfaces have strong antimicrobial properties and kill bacteria, such as Escherichia coli, within minutes in a process called contact killing. These bacteria are exposed to acute copper stress under dry conditions which is different from chronic copper stress in growing liquid cultures. Currently, the physiological changes of E. coli during the acute contact killing process are largely unknown. Here, a label-free, quantitative proteomic approach was employed to identify the differential proteome profiles of E. coli cells after sub-lethal and lethal exposure to dry metallic copper. Of the 509 proteins identified, 110 proteins were differentially expressed after sub-lethal exposure, whereas 136 proteins had significant differences in their abundance levels after lethal exposure to copper compared to unexposed cells. A total of 210 proteins were identified only in copper-responsive proteomes. Copper surface stress coincided with increased abundance of proteins involved in secondary metabolite biosynthesis, transport and catabolism, including efflux proteins and multidrug resistance proteins. Proteins involved in translation, ribosomal structure and biogenesis functions were down-regulated after contact to metallic copper. The set of changes invoked by copper surface-exposure was diverse without a clear connection to copper ion stress but was different from that caused by exposure to stainless steel. Oxidative posttranslational modifications of proteins were observed in cells exposed to copper but also from stainless steel surfaces. However, proteins from copper stressed cells exhibited a higher degree of oxidative proline and threonine modifications. PMID:21384090

  10. On copper peroxide

    NASA Technical Reports Server (NTRS)

    Moser, L.

    1988-01-01

    The action of hydrogen superoxide on copper salts in alcoholic solutions is studied. The action of hydrogen peroxide on copper hydroxide in alcoholic suspensions, and the action of ethereal hydrogen peroxide on copper hydroxide are discussed. It is concluded that using the procedure proposed excludes almost entirely the harmful effect of hydrolysis.

  11. Demystifying Controlling Copper Corrosion

    EPA Science Inventory

    The LCR systematically misses the highest health and corrosion risk sites for copper. Additionally, there are growing concerns for WWTP copper in sludges and discharge levels. There are many corrosion control differences between copper and lead. This talk explains the sometimes c...

  12. Copper-tantalum alloy

    DOEpatents

    Schmidt, Frederick A.; Verhoeven, John D.; Gibson, Edwin D.

    1986-07-15

    A tantalum-copper alloy can be made by preparing a consumable electrode consisting of an elongated copper billet containing at least two spaced apart tantalum rods extending longitudinally the length of the billet. The electrode is placed in a dc arc furnace and melted under conditions which co-melt the copper and tantalum to form the alloy.

  13. In-situ x-ray absorption study of copper films in ground watersolutions

    SciTech Connect

    Kvashnina, K.O.; Butorin, S.M.; Modin, A.; Soroka, I.; Marcellini, M.; Nordgren, J.; Guo, J.-H.; Werme, L.

    2007-10-29

    This study illustrates how the damage from copper corrosion can be reduced by modifying the chemistry of the copper surface environment. The surface modification of oxidized copper films induced by chemical reaction with Cl{sup -} and HCO{sub 3}{sup -} in aqueous solutions was monitored by in situ X-ray absorption spectroscopy. The results show that corrosion of copper can be significantly reduced by adding even a small amount of sodium bicarbonate. The studied copper films corroded quickly in chloride solutions, whereas the same solution containing 1.1 mM HCO{sub 3}{sup -} prevented or slowed down the corrosion processes.

  14. Novel granular materials with microcrystalline active surfaces: waste water treatment applications of zeolite/vermiculite composites.

    PubMed

    Johnson, Christopher D; Worrall, Fred

    2007-05-01

    The application of zeolites as adsorbents for waste water management is limited by the facts that only synthetic zeolites have sufficient capacity and only natural zeolites can be manufactured in practical sizes for application, i.e. synthetic zeolites have too small a grain size to be used and natural zeolites have low adsorption capacities. This study seeks to resolve this problem by the manufacture of synthetic zeolites upon an expanded lamella matrix (vermiculite). The synthesized composite was tested to show whether it combined the useful properties of both natural and synthetic zeolites. The study compared: hydraulic conductivity, adsorption capacity and rate of attainment of equilibrium of the synthetic composite in comparison to both a natural and a synthetic zeolite. The results demonstrate that the vermiculite-based composite shows the same hydraulic properties as a natural clinoptilolite with similar grain size (2-5mm), however, the rate of adsorption and maximum coverage were improved by a factor of 4. PMID:17360021

  15. Preparation of zeolite NaA for CO2 capture from nickel laterite residue

    NASA Astrophysics Data System (ADS)

    Du, Tao; Liu, Li-ying; Xiao, Penny; Che, Shuai; Wang, He-ming

    2014-08-01

    Zeolite NaA was successfully prepared from nickel laterite residue for the first time via a fusion-hydrothermal procedure. The structure and morphology of the as-synthesized zeolite NaA were characterized with a range of experimental techniques, such as X-ray diffraction, scanning electronic microscopy, and infrared spectroscopy. It was revealed that the structures of the produced zeolites were dependent on the molar ratios of the reactants and hydrothermal reaction conditions, so the synthesis conditions were optimized to obtain pure zeolite NaA. Adsorption of nitrogen and carbon dioxide on the prepared zeolite NaA was also measured and analyzed. The results showed that zeolite NaA could be prepared with reasonable purity, it had physicochemical properties comparable with zeolite NaA made from other methods, and it had excellent gas adsorption properties, thus demonstrating that zeolite NaA could be prepared from nickel laterite residue.

  16. Synthesis of mesoporous zeolite single crystals with cheap porogens

    SciTech Connect

    Tao Haixiang; Li Changlin; Ren Jiawen; Wang Yanqin; Lu Guanzhong

    2011-07-15

    Mesoporous zeolite (silicalite-1, ZSM-5, TS-1) single crystals have been successfully synthesized by adding soluble starch or sodium carboxymethyl cellulose (CMC) to a conventional zeolite synthesis system. The obtained samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen sorption analysis, {sup 27}Al magic angle spinning nuclear magnetic resonance ({sup 27}Al MAS NMR), temperature-programmed desorption of ammonia (NH{sub 3}-TPD) and ultraviolet-visible spectroscopy (UV-vis). The SEM images clearly show that all zeolite crystals possess the similar morphology with particle size of about 300 nm, the TEM images reveal that irregular intracrystal pores are randomly distributed in the whole crystal. {sup 27}Al MAS NMR spectra indicate that nearly all of the Al atoms are in tetrahedral co-ordination in ZSM-5, UV-vis spectra confirm that nearly all of titanium atoms are incorporated into the framework of TS-1. The catalytic activity of meso-ZSM-5 in acetalization of cyclohexanone and meso-TS-1 in hydroxylation of phenol was also studied. The synthesis method reported in this paper is cost-effective and environmental friendly, can be easily expended to prepare other hierarchical structured zeolites. - Graphical abstract: Mesoporous zeolite single crystals were synthesized by using cheap porogens as template. Highlights: > Mesoporous zeolite (silicalite-1, ZSM-5, TS-1) single crystals were synthesized. > Soluble starch or sodium carboxymethyl cellulose (CMC) was used as porogens. > The mesoporous zeolites had connected mesopores although closed pores existed. > Higher catalytic activities were obtained.

  17. Following the movement of Cu ions in a SSZ-13 zeolite during dehydration, reduction and adsorption: a combined in situ TP-XRD, XANES/DRIFTS study

    SciTech Connect

    Kwak, Ja Hun; Varga, Tamas; Peden, Charles HF; Gao, Feng; Hanson, Jonathan C.; Szanyi, Janos

    2014-05-05

    Cu-SSZ-13 has been shown to possess high activity and superior N2 formation selectivity in the selective catalytic reduction of NOx under oxygen rich conditions. Here, a combination of synchrotron-based (XRD and XANES) and vibrational (DRIFTS) spectroscopy tools have been used to follow the changes in the location and coordination environment of copper ions in a Cu-SSZ-13 zeolite during calcinations, reduction with CO, and adsorption of CO and H2O. XANES spectra collected during these procedures provides critical information not only on the variation in the oxidation state of the copper species in the zeolite structure, but also on the changes in the coordination environment around these ions as they interact with the framework, and with different adsorbates (H2O and CO). Time-resolved XRD data indicate the movement of copper ions and the consequent variation of the unit cell parameters during dehydration. DRIFT spectra provide information about the adsorbed species present in the zeolite, as well as the oxidation states of and coordination environment around the copper ions. A careful analysis of the asymmetric T-O-T vibrations of the CHA framework perturbed by copper ions in different coordination environments proved to be especially informative. The results of this study will aid the identification of the location, coordination and oxidation states of copper ions obtained during in operando catalytic studies. Financial support was provided by the US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Part of this work (sample preparation) was performed in the Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL). The EMSL is a national scientific user facility supported by the US DOE, Office of Biological and Environmental Research. PNNL is a multi-program national laboratory operated for the US DOE by Battelle. All of the spectroscopy work reported here was carried out at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL). NSLS is a national scientific user facility supported by the US DOE.

  18. Zeolite fiber integrated microsensors for highly sensitive point detection of chemical agents

    NASA Astrophysics Data System (ADS)

    Liu, Ning; Hui, Juan; Dong, Junhang; Xiao, Hai

    2006-05-01

    A zeolite-fiber integrated chemical sensor was developed for in situ point detection of chemical warfare agents. The sensor was made by fine-polishing the MFI polycrystalline zeolite thin film synthesized on the endface of the single mode optical fiber. The sensor device operates by measuring the optical thickness changes of the zeolite thin film caused by the adsorption of analytes into the zeolite channels. The sensor was demonstrated for sensitive detection of toluene and dimethyl methylphosphonate (DMMP).

  19. ZEOLITE PERFORMANCE AS AN ANION EXCHANGER FOR ARSENIC SEQUESTRATION IN WATER

    EPA Science Inventory

    Zeolites are well known for their use in ion exchange and acid catalysis reactions. The use of zeolites in anion or ligand exchange reactions is less studied. The NH4+ form of zeolite Y (NY6, Faujasite) has been tested in this work to evaluate its performance for arsenic removal...

  20. Framework Stabilization of Si-Rich LTA Zeolite Prepared in Organic-Free Media

    SciTech Connect

    Conato, Marlon T.; Oleksiak, Matthew D.; McGrail, B. Peter; Motkuri, Radha K.; Rimer, Jeffrey D.

    2014-10-16

    Zeolite HOU-2 (LTA type) is prepared with the highest silica content (Si/Al = 2.1) reported for Na-LTA zeolites without the use of an organic structure-directing agent. The rational design of Si-rich zeolites has the potential to improve their thermal stability for applications in catalysis, gas storage, and selective separations.

  1. Properties of Zeolite A Obtained from Powdered Laundry Detergent: An Undergraduate Chemistry Experiment

    NASA Astrophysics Data System (ADS)

    Lindquist, David A.; Smoot, Alison L.

    1997-05-01

    Zeolites, crystalline porous aluminosilicates, are valued for their ability to absorb ions and molecules as well as function as catalysts. A number of laboratory experiments using zeolites filtered from a suspension of powdered laundry detergent are described. The various experiments illustrate the myriad uses of zeolites as desiccants, ion exchange materials, and catalysts.

  2. Micro/macroporous system: MFI-type zeolite crystals with embedded macropores.

    PubMed

    Machoke, Albert G; Beltrn, Ana M; Inayat, Alexandra; Winter, Benjamin; Weissenberger, Tobias; Kruse, Nadine; Gttel, Robert; Spiecker, Erdmann; Schwieger, Wilhelm

    2015-02-01

    Zeolite crystals with an embedded and interconnected macropore system are prepared by using mesoporous silica particles as a silica source and as a sacrificial macroporogen. These novel hierarchical zeolite crystals are expected to reduce diffusion limitations in all zeolite-catalyzed reactions, especially in the transformation of larger molecules like in the catalytic cracking of polymers and the conversion of biomass. PMID:25535114

  3. Zeolites in catalysis. (Latest citations from the EI Compendex plus database). Published Search

    SciTech Connect

    Not Available

    1993-08-01

    The bibliography contains citations concerning the preparation, properties, and activity of zeolites used as catalysts in chemical reactions and chemical apparatus. Topics include catalytic cracking, reduction, processing, and various catalytic effects of zeolites and zeolite-containing compounds for a wide variety of applications. (Contains 250 citations and includes a subject term index and title list.)

  4. Properties of Zeolite A Obtained from Powdered Laundry Detergent: An Undergraduate Experiment.

    ERIC Educational Resources Information Center

    Smoot, Alison L.; Lindquist, David A.

    1997-01-01

    Presents experiments that introduce students to the myriad properties of zeolites using the sodium form of zeolite A (Na-A) from laundry detergent. Experiments include extracting Na-A from detergent, water softening properties, desiccant properties, ion-exchange properties, and Zeolite HA as a dehydration catalyst. (JRH)

  5. Fabrication of zeolite/polymer multilayer composite membranes for carbon dioxide capture: Deposition of zeolite particles on polymer supports.

    PubMed

    Ramasubramanian, Kartik; Severance, Michael A; Dutta, Prabir K; Ho, W S Winston

    2015-08-15

    Membranes, due to their smaller footprint and potentially lower energy consumption than the amine process, offer a promising route for post-combustion CO2 capture. Zeolite Y based inorganic selective layers offer a favorable combination of CO2 permeance and CO2/N2 selectivity, membrane properties crucial to the economics. For economic viability on large scale, we propose to use flexible and scalable polymer supports for inorganic selective layers. The work described in this paper developed a detailed protocol for depositing thin zeolite Y seed layers on polymer supports, the first step in the synthesis of a polycrystalline zeolite Y membrane. We also studied the effects of support surface morphology (pore size and surface porosity) on the quality of deposition and identified favorable supports for the deposition. Two different zeolite Y particles with nominal sizes of 200 nm and 40 nm were investigated. To obtain a complete coverage of zeolite particles on the support surface with minimum defects and in a reproducible manner, a vacuum-assisted dip-coating technique was developed. Images obtained using both digital camera and optical microscope showed the presence of color patterns on the deposited surface which suggested that the coverage was complete. Electron microscopy revealed that the particle packing was dense with some drying cracks. Layer thickness with the larger zeolite Y particles was close to 1 μm while that with the smaller particles was reduced to less than 0.5 μm. In order to reduce drying cracks for layers with smaller zeolite Y particles, thickness was reduced by lowering the dispersion concentration. Transport measurement was used as an additional technique to characterize these layers. PMID:25950846

  6. SO2 REMOVAL FROM FLUE GASES USING UTILITY SYNTHESIZED ZEOLITES

    SciTech Connect

    MICHAEL GRUTZECK

    1998-10-31

    It is well known that natural and synthetic zeolites (molecular sieves) can adsorb gaseous SO2 from flue gas and do it more efficiently than lime based scrubbing materials. Unfortunately their cost ($500-$800 per ton) has deterred their use in this capacity. It is also known that zeolites are easy to synthesize from a variety of natural and man-made materials. The overall objective of the current work has been to evaluate the feasibility of having a utility synthesize its own zeolites, on-site, from fly ash and other recycled materials and then use these zeolites to adsorb SO2 from their flue gases. Work to date has shown that the efficiency of the capture process is related to the degree of crystallinity and the type of zeolite that forms in the samples. Normally, those samples cured at 150°C contained a greater proportion of zeolite and as such were more SO2 adsorptive than their low-temperature counterparts. However, in order for the project to be successful, on site synthesis must remain an option, i.e. _100°C synthesis. In light of this, the experimental focus now has two aspects. First, compositions of the starting materials are being altered by blending the current suite of fly ashes with other fly ashes, ground glass cullet and silica fume to promote the formation and growth of well crystallized and highly adsorptive zeolites. Second, greater degrees of reaction at significantly lower temperatures are being promote by ball milling the fly ash prior to use, by the use of more concentrated caustic solutions, and by the addition of zeolite seeds to the reactants. In all cases studies will focus on the effect of structure type and degree of conversion on SO2 adsorption. Future work will concentrate on the study of the effect of weathering on the suitability of converting fly ash into zeolites. This is an especially important study, considering the acres of fly ash now in storage throughout the country.

  7. SO2 REMOVAL FROM FLUE GASES USING UTILITY SYNTHESIZED ZEOLITES

    SciTech Connect

    Michael Grutzeck

    1999-04-30

    It is well known that natural and synthetic zeolites (molecular sieves) can adsorb gaseous SO{sub 2} from flue gas and do it more efficiently than lime based scrubbing materials. Unfortunately their cost ($500-$800 per ton) has deterred their use in this capacity. It is also known that zeolites are easy to synthesize from a variety of natural and man-made materials. The overall objective of the current work has been to evaluate the feasibility of having a utility synthesize its own zeolites, on-site, from fly ash and other recycled materials and then use these zeolites to adsorb SO{sub 2} from their flue gases. Work to date has shown that the efficiency of the capture process is related to the degree of crystallinity and the type of zeolite that forms in the samples. Normally, those samples cured at 150 C contained a greater proportion of zeolite and as such were more SO{sub 2} adsorptive than their low-temperature counterparts. However, in order for the project to be successful, on site synthesis must remain an option, i.e. 100 C synthesis. In light of this, the experimental focus now has two aspects. First, compositions of the starting materials are being altered by blending the current suite of fly ashes with ground glass cullet and silica fume to promote the formation and growth of well crystallized and highly adsorptive zeolites. Second, greater degrees of reaction at significantly lower temperatures are being promote by ball milling the fly ash prior to use, by the use of more concentrated caustic solutions, and by the addition of zeolite seeds to the reactants. In all cases studies will focus on the effect of structure type and degree of conversion on SO{sub 2} adsorption. Future work will concentrate on the study of the effect of weathering on the suitability of converting fly ash into zeolites. This is an especially important study, considering the acres of fly ash now in storage throughout the US.

  8. Impact protection behavior of a mordenite zeolite system

    NASA Astrophysics Data System (ADS)

    Xu, J.; Hu, R.; Chen, X.; Hu, D.

    2016-03-01

    By combining zeolite with water, a novel nanocomposite may exhibit extraordinary capability of energy absorption and impact mitigation. The multiple size of zeolite may lead to simultaneous yet different infiltration behaviors of water molecules, and thus multi-staged energy mitigation characteristics (which may benefit the scope of application). In this study, we investigate the dynamic infiltration behavior of water into mordenite zeolite (MOR) using molecular dynamics (MD) simulations. Thanks to its hydrophobicity and multi pore-sized structure, the MOR system has a decent energy mitigation performance upon high impact speed. Parametric studies are carried out to investigate the effects of various parameters, including the impact speed, mass, and water/zeolite ratio, on energy mitigating characteristics. The MOR/water mixture may perform better at a higher impact energy with higher MOR zeolite-water ratio. Upon unloading, the defiltration of water molecules is faster and more complete at higher impact speed. Results may guide the design and application of the energy mitigation nanosystem.

  9. Zeolites for the selective adsorption of sulfur hexafluoride.

    PubMed

    Matito-Martos, I; Álvarez-Ossorio, J; Gutiérrez-Sevillano, J J; Doblaré, M; Martin-Calvo, A; Calero, S

    2015-07-21

    Molecular simulations have been used to investigate at the molecular level the suitability of zeolites with different topology on the adsorption, diffusion and separation of a nitrogen-sulfur hexafluoride mixture containing the latter at low concentration. This mixture represents the best alternative for the sulfur hexafluoride in industry since it reduces the use of this powerful greenhouse gas. A variety of zeolites are tested with the aim to identify the best structure for the recycling of sulfur hexafluoride in order to avoid its emission to the atmosphere and to overcome the experimental difficulties of its handling. Even though all zeolites show preferential adsorption of sulfur hexafluoride, we identified local structural features that reduce the affinity for sulfur hexafluoride in zeolites such as MOR and EON, providing exclusive adsorption sites for nitrogen. Structures such as ASV and FER were initially considered as good candidates based on their adsorption features. However, they were further discarded based on their diffusion properties. Regarding operation conditions for separation, the range of pressure that spans from 3 × 10(2) to 3 × 10(3) kPa was identified as the optimal to obtain the highest adsorption loading and the largest SF6/N2 selectivity. Based on these findings, zeolites BEC, ITR, IWW, and SFG were selected as the most promising materials for this particular separation. PMID:26099734

  10. Risk assessment for the transportation of radioactive zeolite liners

    SciTech Connect

    Not Available

    1982-01-01

    The risk is estimated for the shipment of radioactive zeolite liners in support of the Zeolite Vitrification Demonstration Program currently underway at Pacific Northwest Laboratory under the sponsorship of the US Department of Energy. This program will establish the feasibility of zeolite vitrification as an effective means of immobilizing high-specific-activity wastes. In this risk assessment, it is assumed that two zeolite liners, each loaded around July 1, 1981 to 60,000 Ci, will be shipped by truck around January 1, 1982. However, to provide a measure of conservatism, each liner is assumed to initially hole 70,000 Ci, with the major radioisotopes as follow: /sup 90/Sr = 3000 Ci, /sup 134/Cs = 7000 Ci, /sup 137/Cs = 60,000 Ci. Should shipment take place with essentially no delay after initial loading (regardless of loading date), the shipment loading would be only 2.7% higher than that for the assumed six-month delay. This would negligibly affect the overall risk. As a result of this risk assessment, it is concluded that the transport of the radioactive zeolite liners from TMI to PNL by truck can be conducted at an insignificant level of risk to the public.

  11. Cadmium adsorption on vermiculite, zeolite and pumice: batch experimental studies.

    PubMed

    Panuccio, Maria Rosaria; Sorgonà, Agostino; Rizzo, Marcella; Cacco, Giovanni

    2009-01-01

    Batch experiments were performed to evaluate the combined effects of ionic activity, pH, and contact time on the cadmium sorption in three different minerals, vermiculite, zeolite, and pumice, commonly employed as substrata in nurseries and recently considered for their potential use in remediation methods. The extent of cadmium sorption was vermiculite>zeolite>pumice, as shown by the Langmuir and Freundlich parameters, and it was highly dependent on mineral characteristics. The percentage of cadmium sorption in zeolite and vermiculite did not depend on cadmium concentration, while in pumice this percentage was positively correlated to the initial cadmium concentration. At low cadmium concentrations (30-120 microM), the metal sorbed on zeolite was mainly present in the nonexchangeable form (70%) at levels much higher than those found for vermiculite and pumice. The primary variable responsible for determination of cadmium mobility in these minerals was confirmed to be pH. The ionic concentrations of Hoagland nutrient solution were significantly modified by both pH and mineral composition, while the presence of cadmium caused no changes. With vermiculite and zeolite, the time-course of cadmium sorption was related to mineral composition to a greater extent than to cadmium concentration. While with pumice, the percentage of cadmium sorbed after 6 weeks was lower than with the other two minerals, and it was inversely correlated to the initial cadmium concentration. PMID:18082309

  12. Advanced NMR characterization of zeolite catalysts

    NASA Astrophysics Data System (ADS)

    Welsh, L. B.

    1985-04-01

    The program discussed in this report is a two-year two-phase joint UOP-University of Illinois study of the application of improved high resolution solid state nuclear magnetic resonance (NMR) techniques to the characterization of zeolite catalysts. During the first phase of this program very pure, and in some cases isotopically enriched faujasites will be prepared and studied by magic angle sample spinning NMR (MASS NMR) and variable engine sample spinning NMR (VASS NMR) on 500 and 360 MHz (proton frequency) NMR spectrometers. The NMR techniques that will be emphasized are the measurement and analysis of the (17)O NMR properties, (27)Al NMR intensity quantitation, and (27)Al and (29)Si NMR relaxation rates. During the second phase of this program these NMR techniques will be used to study the effects of impurity concentration, dealumination treatments and cation exchange on the NMR properties of faujasites. The initial emphasis of this program during Phase I is on the preparation and measurement of the NMR properties of (17)O enriched Na-Y faujasties.

  13. Dynamics of water molecules in hydrated zeolites

    NASA Astrophysics Data System (ADS)

    Kamitakahara, William A.; Wada, Noboru

    2001-03-01

    Diffusive and vibrational motions of water molecules in zeolite LTA and faujasite have been studied by quasielastic and inelastic neutron scattering, using time-of-flight, backscattering, and filter-analyzer spectrometers. The quasielastic spectra show that, in comparison to bulk water, the molecular motions are much slower, so that the temperature scale for the motions is shifted approximately 80 K higher. Despite differing pore sizes, the diffusive behavior of water in LTA and faujasite is similar. At 15 K, the spectrum of librational modes for water in LTA at a high hydration level (20 percent H_2O by weight) is similar to that of bulk ice, but shifted downward in energy by about 10 meV (80 cm^ -1). It is broad, spanning a range from 50 to 120 meV. At a lower hydration level, a narrower spectrum is observed, peaked at 80 meV. Comparisons will be made to our previous neutron scattering data on water in another confined geometry system, i.e., water in a clay mineral.

  14. Catalytic pyrolysis using UZM-39 aluminosilicate zeolite

    SciTech Connect

    Nicholas, Christpher P; Boldingh, Edwin P

    2013-12-17

    A new family of coherently grown composites of TUN and IMF zeotypes has been synthesized and show to be effective catalysts for catalytic pyrolysis of biomass. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.n+R.sub.rQ.sub.qAl.sub1-xE.sub.xSi.sub.yO.s- ub.z where M represents zinc or a metal or metals from Group 1, Group 2, Group 3 or the lanthanide series of the periodic table, R is an A,.OMEGA.-dihalosubstituted paraffin such as 1,4-dibromobutane, Q is a neutral amine containing 5 or fewer carbon atoms such as 1-methylpyrrolidine and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-39 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hyrdocarbons into hydrocarbons removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  15. Catalytic pyrolysis using UZM-39 aluminosilicate zeolite

    SciTech Connect

    Nicholas, Christopher P; Boldingh, Edwin P

    2014-10-07

    A new family of coherently grown composites of TUN and IMF zeotypes has been synthesized and shown to be effective catalysts for catalytic pyrolysis of biomass. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.n+R.sub.rQ.sub.qAl.sub.1-xE.sub.xSi.sub.yO.s- ub.z where M represents zinc or a metal or metals from Group 1, Group 2, Group 3 or the lanthanide series of the periodic table, R is an A,.OMEGA.-dihalosubstituted paraffin such as 1,4-dibromobutane, Q is a neutral amine containing 5 or fewer carbon atoms such as 1-methylpyrrolidine and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-39 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  16. One-pot synthesis of hierarchical FeZSM-5 zeolites from natural aluminosilicates for selective catalytic reduction of NO by NH3

    PubMed Central

    Yue, Yuanyuan; Liu, Haiyan; Yuan, Pei; Yu, Chengzhong; Bao, Xiaojun

    2015-01-01

    Iron-modified ZSM-5 zeolites (FeZSM-5s) have been considered to be a promising catalyst system to reduce nitrogen oxide emissions, one of the most important global environmental issues, but their synthesis faces enormous economic and environmental challenges. Herein we report a cheap and green strategy to fabricate hierarchical FeZSM-5 zeolites from natural aluminosilicate minerals via a nanoscale depolymerization-reorganization method. Our strategy is featured by neither using any aluminum-, silicon-, or iron-containing inorganic chemical nor involving any mesoscale template and any post-synthetic modification. Compared with the conventional FeZSM-5 synthesized from inorganic chemicals with the similar Fe content, the resulting hierarchical FeZSM-5 with highly-dispersed iron species showed superior catalytic activity in the selective catalytic reduction of NO by NH3. PMID:25791958

  17. One-pot synthesis of hierarchical FeZSM-5 zeolites from natural aluminosilicates for selective catalytic reduction of NO by NH3

    NASA Astrophysics Data System (ADS)

    Yue, Yuanyuan; Liu, Haiyan; Yuan, Pei; Yu, Chengzhong; Bao, Xiaojun

    2015-03-01

    Iron-modified ZSM-5 zeolites (FeZSM-5s) have been considered to be a promising catalyst system to reduce nitrogen oxide emissions, one of the most important global environmental issues, but their synthesis faces enormous economic and environmental challenges. Herein we report a cheap and green strategy to fabricate hierarchical FeZSM-5 zeolites from natural aluminosilicate minerals via a nanoscale depolymerization-reorganization method. Our strategy is featured by neither using any aluminum-, silicon-, or iron-containing inorganic chemical nor involving any mesoscale template and any post-synthetic modification. Compared with the conventional FeZSM-5 synthesized from inorganic chemicals with the similar Fe content, the resulting hierarchical FeZSM-5 with highly-dispersed iron species showed superior catalytic activity in the selective catalytic reduction of NO by NH3.

  18. Wet gringing of zeolite in stirred media mill

    NASA Astrophysics Data System (ADS)

    Mucsi, G.; Bohács, K.

    2016-04-01

    In the present study the results of systematic experimental series are presented with the specific goal of optimizing the zeolite nanoparticles' production using a wet stirred media mill. The diameter of the grinding media as well as the rotor velocity were varied in the experiments. Particle size distribution and "outer" specific surface area of the ground samples were measured by a laser particle size analyser. Additionally, BET, XRD and FT-IR analyses were performed for the characterization of the "total" specific surface area as well as the crystalline and material structure, respectively. Based on the results of the laboratory experiments it was found that wet stirred media milling provided significant reductions in the particle size of zeolite. Furthermore, the crystallinity of the samples also decreased, so not only the physical but the mineralogical characteristics of zeolite can be controlled by stirred media milling.

  19. Coherent X-ray Diffraction Imaging of Zeolite Microcrystals

    SciTech Connect

    Cha, Wonsuk; Song, Sanghoon; Kim, Hyunjung; Jeong, Nak Cheon; Yoon, Kyung Byung; Harder, Ross; Robinson, Ian K.

    2009-04-19

    We measured coherent x-ray diffraction (CXD), an emerging technique to obtain three-dimensional internal and external images of crystals, on ZSM-5 zeolite microcrystals to get internal density distribution and to map deformation field of strain. The experiments were performed at the beamline 34-ID-C in Advanced Photon Source at Argonne National Laboratory in the US. The CXD patterns of ZSM-5 zeolite microcrystals with sizes of 2 {mu}m by monochromatic coherent x-rays with energy of 9 keV were obtained under continuously surrounding and Bragg conditions as a function of temperature. The oversampled diffraction patterns are inverted to obtain three-dimensional images of the shapes and internal strain fields of zeolite microcrystals using phase retrieval algorithms of error reduction and a hybrid input-output method. The internal density and strain distribution as a function of temperature are discussed.

  20. Loading and leakage of krypton immobilized in zeolites and glass

    SciTech Connect

    Christensen, A.B.; Del Debbio, J.A.; Knecht, D.A.; Tanner, J.E.

    1980-01-01

    Krypton-85 is formed in nuclear power reactors and remains trapped until the fuel is reprocessed. Federal regulations limit the release of /sup 85/Kr to the environment, requiring recovery and storage of 85% of the /sup 85/Kr produced in commercial light-water reactors after January 1, 1983. One of the long-term storage options involves encapsulating /sup 85/Kr in zeolites or glasses at high pressure and temperature. This paper presents experimental results for krypton encapsulation and leakage in sodalite, zeolite 5A, and Vycor Thristy glass. The results show that all three materials are feasible for /sup 85/Kr immobilization and long-term storage, although zeolite 5A and Thirsty Vycor are preferable due to lower leakage rates.

  1. Synthetic Zeolites and Other Microporous Oxide Molecular Sieves

    NASA Astrophysics Data System (ADS)

    Sherman, John D.

    1999-03-01

    Use of synthetic zeolites and other microporous oxides since 1950 has improved insulated windows, automobile air-conditioning, refrigerators, air brakes on trucks, laundry detergents, etc. Their large internal pore volumes, molecular-size pores, regularity of crystal structures, and the diverse framework chemical compositions allow "tailoring" of structure and properties. Thus, highly active and selective catalysts as well as adsorbents and ion exchangers with high capacities and selectivities were developed. In the petroleum refining and petrochemical industries, zeolites have made possible cheaper and lead-free gasoline, higher performance and lower-cost synthetic fibers and plastics, and many improvements in process efficiency and quality and in performance. Zeolites also help protect the environment by improving energy efficiency, reducing automobile exhaust and other emissions, cleaning up hazardous wastes (including the Three Mile Island nuclear power plant and other radioactive wastes), and, as specially tailored desiccants, facilitating the substitution of new refrigerants for the ozone-depleting chlorofluorocarbons banned by the Montreal Protocol.

  2. Optical spectra of noble metal nanoparticles supported on zeolites

    NASA Astrophysics Data System (ADS)

    Lpez Bastidas, Catalina; Smolentseva, Elena; Machorro, Roberto; Petranovskii, Vitalii

    2014-09-01

    Optical spectra of noble metal nano-particles supported on different types of zeolites are studied and compared. The absorbance spectra of Cu, Ag and Au nanoparticles supported on mordenite, ?-zeolite, Na/Y and H/Y zeolites respectively are reported. Spectra for pre-exchanged Au-Cu/Na/Y, Au-Ni/Na/Y and Au-Fe/Na/Y are also studied. A simple effective medium approach (Maxwell-Garnett) is used to obtain a theoretical complex effective dielectric function of the composite and to asses the sensibility of the plasmon resonance to the sample characteristics. The knowledge of these properties can hopefully be applied to the development of optical tools to monitor the synthetic path.

  3. The rheology of collapsing zeolites amorphized by temperature and pressure.

    PubMed

    Greaves, G N; Meneau, F; Sapelkin, A; Colyer, L M; ap Gwynn, I; Wade, S; Sankar, G

    2003-09-01

    Low-density zeolites collapse to the rigid amorphous state at temperatures that are well below the melting points of crystals of the same composition but of conventional density. Here we show, by using a range of experimental techniques, how the phenomenon of amorphization is time dependent, and how the dynamics of order-disorder transitions in zeolites under temperature and pressure are equivalent. As a result, thermobaric regions of instability can be charted, which are indicative of polyamorphism. Moreover, the boundaries of these zones depend on the rate at which temperature or pressure is ramped. By directly comparing the rheology of collapse with structural relaxation in equivalent melts, we conclude that zeolites amorphize like very strong liquids and, if compression occurs slowly, this is likely to lead to the synthesis of perfect glasses. PMID:12942072

  4. Direct Dual-Template Synthesis of MWW Zeolite Monolayers.

    PubMed

    Margarit, Vicente J; Martínez-Armero, Marta E; Navarro, M Teresa; Martínez, Cristina; Corma, Avelino

    2015-11-01

    A two-dimensional zeolite with the topology of MWW sheets has been obtained by direct synthesis with a combination of two organic structure-directing agents. The resultant material consists of approximately 70% single and double layers and displays a well-structured external surface area of about 300 m(2) g(-1). The delaminated zeolite prepared by means of this single-step synthetic route has a high delamination degree, and the structural integrity of the MWW layers is well preserved. The new zeolite material displayed excellent activity, selectivity, and stability when used as a catalyst for the alkylation of benzene with propylene and found to be superior to the catalysts that are currently used for producing cumene. PMID:26381669

  5. Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol

    PubMed Central

    Grundner, Sebastian; Markovits, Monica A.C.; Li, Guanna; Tromp, Moniek; Pidko, Evgeny A.; Hensen, Emiel J.M.; Jentys, Andreas; Sanchez-Sanchez, Maricruz; Lercher, Johannes A.

    2015-01-01

    Copper-exchanged zeolites with mordenite structure mimic the nuclearity and reactivity of active sites in particulate methane monooxygenase, which are enzymes able to selectively oxidize methane to methanol. Here we show that the mordenite micropores provide a perfect confined environment for the highly selective stabilization of trinuclear copper-oxo clusters that exhibit a high reactivity towards activation of carbon–hydrogen bonds in methane and its subsequent transformation to methanol. The similarity with the enzymatic systems is also implied from the similarity of the reversible rearrangements of the trinuclear clusters occurring during the selective transformations of methane along the reaction path towards methanol, in both the enzyme system and copper-exchanged mordenite. PMID:26109507

  6. Synthesis of copper nanostructures on silica-based particles for antimicrobial organic coatings

    NASA Astrophysics Data System (ADS)

    Palza, Humberto; Delgado, Katherine; Curotto, Nicolás

    2015-12-01

    Sol-gel based silica nanoparticles of 100 nm were used to interact with copper ions from the dissolution of CuCl2 allowing the synthesis of paratacamite (Cu2(OH)3Cl) nanocrystals of around 20 nm. The method produced well dispersed copper nanostructures directly supported on the surface of the SiO2 particles and was generalized by using a natural zeolite microparticle as support with similar results. These hybrid Cu based nanoparticles released copper ions when immersed in water explaining their antimicrobial behavior against Escherichia coli and Staphylococcus aureus as measured by the minimum inhibitory and minimum bactericidal concentrations (MIC and MBC). Noteworthy, when these nanostructured particles were mixed with an organic coating the resulting film eliminated until a 99% of both bacteria at concentrations as low as 0.01 wt%.

  7. Synthesis of chiral polymorph A-enriched zeolite Beta with an extremely concentrated fluoride route

    NASA Astrophysics Data System (ADS)

    Tong, Mingquan; Zhang, Daliang; Fan, Weibin; Xu, Jun; Zhu, Liangkui; Guo, Wen; Yan, Wenfu; Yu, Jihong; Qiu, Shilun; Wang, Jianguo; Deng, Feng; Xu, Ruren

    2015-06-01

    Chiral zeolitic materials with intrinsically chiral frameworks are highly desired because they can combine both shape selectivity and enantioselectivity. In the field of zeolite, the synthesis of chiral polymorph A of zeolite Beta or chiral polymorph A-enriched zeolite Beta is one of the biggest challenges. We demonstrate here a generalized extremely concentrated fluoride route for the synthesis of chiral polymorph A-enriched zeolite Beta in the presence of five achiral organic structure-directing agents. The polymorph A-enriched Ti-Beta shows a higher enantioselectivity for the asymmetric epoxidation of alkenes than the normal Ti-Beta.

  8. Selective sensing of alcohols in water influenced by chemically Zeolite coatings on optical fiber sensors

    NASA Astrophysics Data System (ADS)

    Nazari, Marziyeh; Hill, Matthew R.; Duke, Mikel; Sidiroglou, Fotios; Collins, Stephen F.

    2014-05-01

    The application of a MFI type zeolite coating on the end of an optical fiber is presented. Zeolite coatings were directly grown on the freshly cleaved endface of optical fibers. It was found that the produced integrated zeolite-fiber sensors exhibit specific chemical sensitivity towards certain chemicals. The molecular adsorption induced change of zeolite refractive index was studied to understand the sensing mechanisms of the developed sensor system. This work can lead to a new class of portable zeolite thin film enabled miniaturized fiber optic sensors.

  9. Synthesis of chiral polymorph A-enriched zeolite Beta with an extremely concentrated fluoride route

    PubMed Central

    Tong, Mingquan; Zhang, Daliang; Fan, Weibin; Xu, Jun; Zhu, Liangkui; Guo, Wen; Yan, Wenfu; Yu, Jihong; Qiu, Shilun; Wang, Jianguo; Deng, Feng; Xu, Ruren

    2015-01-01

    Chiral zeolitic materials with intrinsically chiral frameworks are highly desired because they can combine both shape selectivity and enantioselectivity. In the field of zeolite, the synthesis of chiral polymorph A of zeolite Beta or chiral polymorph A-enriched zeolite Beta is one of the biggest challenges. We demonstrate here a generalized extremely concentrated fluoride route for the synthesis of chiral polymorph A-enriched zeolite Beta in the presence of five achiral organic structure-directing agents. The polymorph A-enriched Ti-Beta shows a higher enantioselectivity for the asymmetric epoxidation of alkenes than the normal Ti-Beta. PMID:26096214

  10. Squaraines inside Zeolites: Preparation, Stability, and Photophysical Properties.

    PubMed

    Cano, María Luz; Cozens, Frances L.; Esteves, María A.; Márquez, Francisco; García, Hermenegildo

    1997-10-17

    A series of four symmetrical squaraines (ditoylyl, di-m-xylyl, dianisyl, and diresorcinyl) incorporated inside zeolites Y, mordenite, and ZSM-5 have been obtained by treating squaric acid and the corresponding arene in the presence of acid zeolites. Acid sites and high reaction temperatures (150 degrees C) were found to be crucial for the success of the preparation procedure. Surprisingly, this method failed for the preparation of the squaraine derived from N,N-dimethylaniline, which is known to be readily formed from squaric acid in homogeneous phase without a catalyst. The solid samples containing squaraines were characterized by diffuse reflectance and Raman spectroscopies and by thermogravimetry-differential scanning calorimetry. Among the hosts, mordenite was found to be the most general and convenient zeolite for the preparation of the squaraines, while in the other solids either the organic content adsorbed was comparatively smaller (ZSM-5) or some squaraines were not very stable (Y zeolite for ditolyl and dixylyl squaraines). The absorption spectra of the samples correspond to the J-aggregation state of the squaraines, except for some ZSM-5 samples, where simultaneous observation of the bands due to both monomers and aggregates occurs. Aggregation also changes with the water content of the samples. Treatment of the zeolite-bound diresorcinyl squaraine with basic aqueous solutions leads to remarkable variations in the diffuse reflectance and Raman spectra. These changes in the Raman spectrum of the diresorcinyl squaraine were found to be reversible by basic or acid washings. Laser flash photolysis using the 355- or 532-nm output of a Nd-YAG laser (<10 ns pulses; zeolite host. On the basis of the similarity of the UV-vis absorption spectra obtained in solution, these transients have been identified as the radical cation (HY) and the triplet excited state (HMor) of the incorporated squaraine. PMID:11671815

  11. Influence of Crystal Expansion/Contraction on Zeolite Membrane Permeation

    SciTech Connect

    Sorenson, Stephanie G; Payzant, E Andrew; Noble, Richard D; Falconer, John L.

    2010-01-01

    X-ray diffraction was used to measure the unit cell parameters of B-ZSM-5, SAPO-34, and NaA zeolite powders as a function of adsorbate loading at 303 K, and in one case, at elevated temperatures. Most adsorbates expanded the zeolite crystals below saturation loading at 303 K: n-hexane and SF6 in B-ZSM-5, methanol and CO2 in SAPO-34, and methanol in NaA zeolite. As the loadings increased, the crystals expanded more. Changes in the unit cell volumes of B-ZSM-5 and SAPO-34 zeolite powders correlated with changes in permeation through zeolite membranes defects. When the zeolite crystals expanded or contracted upon adsorption, the defect sizes decreased or increased. In B-ZSM-5 membranes, the fluxes through defects decreased dramatically when n-hexane or SF6 adsorbed. In contrast, i-butane adsorption at 303 K contracted B-ZSM-5 crystals at low loadings and expanded them at higher loadings. Correspondingly, the flux through B-ZSM-5 membrane defects increased at low i-butane loadings and decreased at high loading because the defects increased in size at low loading and decreased at high loadings. At 398 K and 473 K, n-hexane expanded the B-ZSM-5 unit cell more as the temperature increased from 303 to 473 K. The silicalite-1 and B-ZSM-5 unit cell volumes expanded similarly upon n-hexane adsorption at 303 K; boron substitution had little effect on volume expansion.

  12. Handling of Copper and Copper Oxide Nanoparticles by Astrocytes.

    PubMed

    Bulcke, Felix; Dringen, Ralf

    2016-02-01

    Copper is an essential trace element for many important cellular functions. However, excess of copper can impair cellular functions by copper-induced oxidative stress. In brain, astrocytes are considered to play a prominent role in the copper homeostasis. In this short review we summarise the current knowledge on the molecular mechanisms which are involved in the handling of copper by astrocytes. Cultured astrocytes efficiently take up copper ions predominantly by the copper transporter Ctr1 and the divalent metal transporter DMT1. In addition, copper oxide nanoparticles are rapidly accumulated by astrocytes via endocytosis. Cultured astrocytes tolerate moderate increases in intracellular copper contents very well. However, if a given threshold of cellular copper content is exceeded after exposure to copper, accelerated production of reactive oxygen species and compromised cell viability are observed. Upon exposure to sub-toxic concentrations of copper ions or copper oxide nanoparticles, astrocytes increase their copper storage capacity by upregulating the cellular contents of glutathione and metallothioneins. In addition, cultured astrocytes have the capacity to export copper ions which is likely to involve the copper ATPase 7A. The ability of astrocytes to efficiently accumulate, store and export copper ions suggests that astrocytes have a key role in the distribution of copper in brain. Impairment of this astrocytic function may be involved in diseases which are connected with disturbances in brain copper metabolism. PMID:26268441

  13. Zeolites replacing plant fossils in the Denver formation, Lakewood, Colorado.

    USGS Publications Warehouse

    Modreski, P.J.; Verbeek, E.R.; Grout, M.A.

    1984-01-01

    Well-developed crystals of heulandite and stilbite, within fossil wood, occur in sedimentary rocks in Lakewood, Jefferson County. The rocks belong to the Denver formation, a locally fossiliferous deposit of fluvial claystone, siltstone, sandstone and conglomerate, containing some volcanic mudflows (andesitic) of late Cretaceous to Palaeocene age. Altered volcanic glass released Na and Ca into the ground-water and subsequently zeolites were crystallized in the open spaces between grains and within fossil plant structures. Minor pyrite, quartz (jasper), calcite and apatite also occur as replacements of fossil wood. Similar zeolite occurrences in other areas are reviewed.-R.S.M.

  14. Solvent-free synthesis of zeolites from anhydrous starting raw solids.

    PubMed

    Wu, Qinming; Liu, Xiaolong; Zhu, Longfeng; Ding, Lihong; Gao, Pan; Wang, Xiong; Pan, Shuxiang; Bian, Chaoqun; Meng, Xiangju; Xu, Jun; Deng, Feng; Maurer, Stefan; Müller, Ulrich; Xiao, Feng-Shou

    2015-01-28

    Development of sustainable routes for synthesis of zeolites is very important because of wide applications of zeolites at large scale in the fields of catalysis, adsorption, and separation. Here we report a novel and generalized route for synthesis of zeolites in the presence of NH4F from grinding the anhydrous starting solid materials and heating at 140-240 °C. Accordingly, zeolites of MFI, BEA*, EUO, and TON structures have been successfully synthesized. The presence of F(-) drives the crystallization of these zeolites from amorphous phase. Compared with conventional hydrothermal synthesis, the synthesis in this work not only simplifies the synthesis process but also significantly enhances the zeolite yields. These features should be potentially of great importance for industrial production of zeolites at large scale in the future. PMID:25574592

  15. The use Na, Li, K cations for modification of ZSM-5 zewolite to control hydrocarbon cold-start emission

    SciTech Connect

    Golubeva V.; Rohatgi U.; Korableva, A.; Anischenko, O.; Kustov, L.; Nissenbaum, V; Viola, M.B.

    2012-08-29

    This paper addresses the problem of controlling hydrocarbon emissions from cold-start of engines by investigating the adsorbents which could adsorb the hydrocarbons at cold temperatures and hold them to 250-300 ?. The materials, that has been studied, are based on the modification of ZSM-5 (SiO{sub 2}/Al{sub 2}O{sub 3} = 35) zeolite with Li, K, Na cations. It has been shown that the introduction of Li, Na and K in an amount that is equivalent to the content of Al in zeolite results in occurrence of toluene temperature desorption peaks at high-temperatures. The toluene temperature desorption curves for 5%Li-ZSM-5 and 2.3%Na-ZSM-5 zeolites are identical and have peak toluene desorption rate between 200 to 400 ?. Upon analysis of toluene adsorption isotherms for 2.3%Na-ZSM-5 and 5%Li-ZSM-5, it was concluded that the toluene diffusion inside of the modified zeolites channels is extremely slow and the sorption capacity of 2.3%Na-ZSM-5 is higher than with 5%Li-ZSM-5. The 2.3%Na-ZSM-5 didn't change toluene temperature programmed desorption (TPD) rate of curve after the treatment in environment with 10% ?{sub 2}? at 750-800 ? for about 28 h. The 2.3%Na-ZSM-5 zeolite is very promising as adsorbent to control the cold-start hydrocarbon emissions.

  16. The growth of zeolites A, X and mordenite in space

    NASA Technical Reports Server (NTRS)

    Sacco, Albert, Jr.; Bac, N.; Coker, E. N.; Dixon, A. G.; Warzywoda, J.; Thompson, R. W.

    1994-01-01

    Zeolites are a class of crystalline aluminosilicate materials that form the backbone of the chemical process industry worldwide. They are used primarily as adsorbents and catalysts and support to a significant extent the positive balance of trade realized by the chemical industry in the United States (around $19 billion in 1991). The magnitude of their efforts can be appreciated when one realizes that since their introduction as 'cracking catalysts' in the early 1960's, they have saved the equivalent of 60 percent of the total oil production from Alaska's North Slope. Thus the performance of zeolite catalysts can have a profound effect on the U.S. economy. It is estimated that a 1 percent increase in yield of the gasoline fraction per barrel of oil would represent a savings of 22 million barrels of crude oil per year, representing a reduction of $400 million in the United States' balance of payments. Thus any activity that results in improvement in zeolite catalyst performance is of significant scientific and industrial interest. In addition, due to their 'stability,' uniformity, and, within limits, their 'engineerable' structures, zeolites are being tested as potential adsorbents to purify gases and liquids at the parts-per-billion levels needed in today's electronic, biomedical, and biotechnology industries and for the environment. Other exotic applications, such as host materials for quantum-confined semiconductor atomic arrays, are also being investigated. Because of the importance of this class of material, extensive efforts have been made to characterize their structures and to understand their nucleation and growth mechanisms, so as to be able to custom-make zeolites for a desired application. To date, both the nucleation mechanics and chemistry (such as what are the 'key' nutrients) are, as yet, still unknown for many, if not all, systems. The problem is compounded because there is usually a 'gel' phase present that is assumed to control the degree of supersaturation, and this gel undergoes a continuous 'polymerization' type reaction during nucleation and growth. Generally, for structure characterization and diffusion studies, which are useful in evaluating zeolites for improving yield in petroleum refining as well as for many of the proposed new applications (e.g., catalytic membranes, molecular electronics, chemical sensors) large zeolites (greater than 100 to 1000 times normal size) with minimum lattice defects are desired. Presently, the lack of understanding of zeolite nucleation and growth precludes the custom design of zeolites for these or other uses. It was hypothesized that the microgravity levels achieved in an orbiting spacecraft could help to isolate the possible effects of natural convection (which affects defect formation) and minimize sedimentation, which occurs since zeolites are twice as dense as the solution from which they are formed. This was expected to promote larger crystals by allowing growing crystals a longer residence time in a high-concentration nutrient field. Thus it was hypothesized that the microgravity environment of Earth orbit would allow the growth of large, more defect-free zeolite crystals in high yield.

  17. High adherence copper plating process

    DOEpatents

    Nignardot, Henry

    1993-01-01

    A process for applying copper to a substrate of aluminum or steel by electrodeposition and for preparing an aluminum or steel substrate for electrodeposition of copper. Practice of the invention provides good adhesion of the copper layer to the substrate.

  18. Improving the osteointegration of Ti6Al4V by zeolite MFI coating

    SciTech Connect

    Li, Yong; Jiao, Yilai; Li, Xiaokang; Guo, Zheng

    2015-05-01

    Osteointegration is crucial for success in orthopedic implantation. In recent decades, there have been numerous studies aiming to modify titanium alloys, which are the most widely used materials in orthopedics. Zeolites are solid aluminosilicates whose application in the biomedical field has recently been explored. To this end, MFI zeolites have been developed as titanium alloy coatings and tested in vitro. Nevertheless, the effect of the MFI coating of biomaterials in vivo has not yet been addressed. The aim of the present work is to evaluate the effects of MFI-coated Ti6Al4V implants in vitro and in vivo. After surface modification, the surface was investigated using field emission scanning electron microscopy (FE-SEM) and energy dispersive spectroscopy (EDS). No difference was observed regarding the proliferation of MC3T3-E1 cells on the Ti6Al4V (Ti) and MFI-coated Ti6Al4V (M−Ti) (p > 0.05). However, the attachment of MC3T3-E1 cells was found to be better in the M−Ti group. Additionally, ALP staining and activity assays and quantitative real-time RT-PCR indicated that MC3T3-E1 cells grown on the M−Ti displayed high levels of osteogenic differentiation markers. Moreover, Van-Gieson staining of histological sections demonstrated that the MFI coating on Ti6Al4V scaffolds significantly enhanced osteointegration and promoted bone regeneration after implantation in rabbit femoral condylar defects at 4 and 12 weeks. Therefore, this study provides a method for modifying Ti6Al4V to achieve improved osteointegration and osteogenesis. - Highlights: • Osteointegration is a crucial factor for orthopedic implants. • We coated MFI zeolite on Ti6Al4V substrates and investigated the effects in vitro and in vivo. • The MFI coating displayed good biocompatibility and promoted osteogenic differentiation in vitro. • The MFI coating promoted osteointegration and osteogenesis peri-implant in vivo.

  19. Improved Electroformed Structural Copper and Copper Alloys

    NASA Technical Reports Server (NTRS)

    Malone, G. A.; Hudson, W.; Babcock, B.; Edwards, R.

    1998-01-01

    Electroforming offers a superior means for fabricating internally cooled heat exchangers and structures subjected to thermal environments. Copper is deposited from many such applications because of the good thermal conductivity. It suffers from mediocre yield strength as a structural material and loses mechanical strength at intermediate temperatures. Mechanical properties similar to those of electroformed nickel are desired. Phase 1 examined innovative means to improve deposited copper structural performance. Yield strengths as high as 483 MPa (70 ksi) were obtained with useful ductility while retaining a high level of purity essential to good thermal conductivity. Phase 2 represents a program to explore new additive combinations in copper electrolytes to produce a more fine, equiaxed grain which can be thermally stabilized by other techniques such as alloying in modest degrees and dispersion strengthening. Evaluation of new technology - such as the codeposition of fullerness (diamond-like) particles were made to enhance thermal conductivity in low alloys. A test fire quality tube-bundle engine was fabricated using these copper property improvement concepts to show the superiority of the new coppers and fabrications methods over competitive technologies such as brazing and plasma deposition.

  20. Infrared spectroscopic examination of the interaction of urea with the naturally occurring zeolite clinoptilolite

    USGS Publications Warehouse

    Byler, D.M.; Gerasimowicz, W.V.; Stockette, V.M.; Eberl, D.D.

    1991-01-01

    Infrared spectroscopy has shown for the first time that the naturally occurring zeolite clinoptilolite can absorb urea, (NH2)2CO, under ambient conditions from either aqueous or ethanolic solutions. The two strongest NH stretching bands at 3441 and 3344 cm-1 in pure, solid urea shift to higher frequency (about 3504 and 3401 cm-1) after absorption. Two of the four urea bands in the 1800-1300 cm-1 range (at 1683 and 1467 cm-1) undergo marked downward shifts to about 1670 and 1445 cm-1. The other two bands show little change in frequency. The strong band at 1602 cm-1, however, diminishes in intensity to little more than an ill-defined shoulder on the 1626-cm-1 peak. When clinoptilolite is heated to 450 ??C and then treated with molten urea (ca. 140 ??C) for several minutes, and finally washed twice with ethanol to remove excess unreacted urea, further changes become apparent in the spectrum of the urea-treated clinoptilolite. The two NH stretching bands broaden without significant change in frequency. Two new bands appear in the midfrequency range at 1777 (weak) and 1719 (medium strong) cm-1. Of the four original midfrequency peaks, the one at 1602 cm-1 is now absent. Two others (1627 and 1440 cm-1) exhibit little change, while the fourth has broadened and shifted down to 1663 cm-1, where it appears as a shoulder on the band at 1627 cm-1. Both treatments clearly induce interaction between urea and the zeolite which seems to result in significant modifications in the nature of the hydrogen bonding of the substrate. ?? 1991.

  1. Copper Delivery by Metallochaperone Proteins

    SciTech Connect

    Rosenzweig, A.C.

    2010-03-08

    Copper is an essential element in all living organisms, serving as a cofactor for many important proteins and enzymes. Metallochaperone proteins deliver copper ions to specific physiological partners by direct protein-protein interactions. The Atx1-like chaperones transfer copper to intracellular copper transporters, and the CCS chaperones shuttle copper to copper,zinc superoxide dismutase. Crystallographic studies of these two copper chaperone families have provided insights into metal binding and target recognition by metallochaperones and have led to detailed molecular models for the copper transfer mechanism.

  2. Hydrocracking process employing a new zeolite, SSZ-16

    SciTech Connect

    Zones, S.I.

    1986-05-20

    A process is described for hydrocracking a hydrocarbonaceous feed under hydrocracking conditions, the improvement comprising contacting a hydrocarbonaceous feed with a catalyst composition comprising a zeolite having a mole ratio of an oxide selected from silicon oxide, germanium oxide, and mixtures thereof to an oxide selected from aluminum oxide, gallium oxide, and mixtures thereof greater than about 5:1.

  3. Biogas cleaning and upgrading with natural zeolites from tuffs.

    PubMed

    Paolini, Valerio; Petracchini, Francesco; Guerriero, Ettore; Bencini, Alessandro; Drigo, Serena

    2016-06-01

    CO2 adsorption on synthetic zeolites has become a consolidated approach for biogas upgrading to biomethane. As an alternative to synthetic zeolites, tuff waste from building industry was investigated in this study: indeed, this material is available at a low price and contains a high fraction of natural zeolites. A selective adsorption of CO2 and H2S towards CH4 was confirmed, allowing to obtain a high-purity biomethane (CO2 <2 g m(-3), i.e. 0.1%; H2S <1.5 mg m(-3)), suitable for injection in national grids or as vehicle fuel. The loading capacity was found to be 45 g kg(-1) and 40 mg kg(-1), for CO2 and H2S, respectively. Synthetic gas mixtures and real biogas samples were used, and no significant effects due to biogas impurities (e.g. humidity, dust, moisture, etc.) were observed. Thermal and vacuum regenerations were also optimized and confirmed to be possible, without significant variations in efficiency. Hence, natural zeolites from tuffs may successfully be used in a pressure/vacuum swing adsorption process. PMID:26563442

  4. ADSORPTION AND CATALYTIC DESTRUCTION OF TRICHLOROETHYLENE IN HYDROPHOBIC ZEOLITES

    EPA Science Inventory

    Several chromium exchanged ZSM-5 zeolites of varying SiO2/Al2O3 ratio were prepared and investigated for ambient (23 ?C) adsorption and subsequent oxidative destruction (250-400 ?C) of gaseous trichloroethylene (TCE, Cl2C=CHCl) in a humid air stream. With an increase in the SiO2...

  5. High-pressure alchemy on a small-pore zeolite

    NASA Astrophysics Data System (ADS)

    Lee, Y.

    2011-12-01

    While an ever-expanding variety of zeolites with a wide range of framework topology is available, it is desirable to have a way to tailor the chemistry of the zeolitic nanopores for a given framework topology via controlling both the coordination-inclusion chemistry and framework distortion/relaxation. This is, however, subjected to the ability of a zeolitic nanopore to allow the redistribution of cations-water assembly and/or insertion of foreign molecules into the pores and channels. Small-pore zeolites such as natrolite (Na16Al16Si24O80x16H2O), however, have been known to show very limited capacity for any changes in the confinement chemistry. We have recently shown that various cation-exchanged natrolites can be prepared under modest conditions from natural sodium natrolite and exhibit cation-dependent volume expansions by up to 18.5% via converting the elliptical channels into progressively circular ones. Here, we show that pressure can be used as a unique and clean tool to further manipulate the chemistry of the natrolite nanopores. Our recent crystallographic and spectroscopic studies of pressure-insertion of foreign molecules, trivalent-cation exchange under pressure, and pressure-induced inversion of cation-water coordination and pore geometry in various cation-exchanged natrolites will be presented.

  6. Association of Indigo with Zeolites for Improved Color Stabilization

    NASA Astrophysics Data System (ADS)

    Dejoie, Catherine; Martinetto, Pauline; Dooryhée, Eric; van Elslande, Elsa; Blanc, Sylvie; Bordat, Patrice; Brown, Ross; Porcher, Florence; Anne, Michel

    2010-10-01

    The durability of an organic colour and its resistance against external chemical agents and exposure to light can be significantly enhanced by hybridizing the natural dye with a mineral. In search for stable natural pigments, the present work focuses on the association of indigo blue with several zeolitic matrices (LTA zeolite, mordenite, MFI zeolite). The manufacturing of the hybrid pigment is tested under varying oxidising conditions, using Raman and UV-visible spectrometric techniques. Blending indigo with MFI is shown to yield the most stable composite in all of our artificial indigo pigments. In absence of defects and substituted cations such as aluminum in the framework of the MFI zeolite matrix, we show that matching the pore size with the dimensions of the guest indigo molecule is the key factor. The evidence for the high colour stability of indigo@MFI opens a new path for modeling the stability of indigo in various alumino-silicate substrates such as in the historical Maya Blue pigment.

  7. DIFFUSION MEASUREMENTS DURING PERVAPORATION THROUGH A ZEOLITE MEMBRANE

    EPA Science Inventory


    An isotopic-transient technique was used to directly measure diffusion times of H2O, methanol, ethanol, 2-propanol, and acetone in pure and binary mixture feeds transporting through a zeolite membrane under steady-state pervaporation conditions. Diffusivities can be determ...

  8. Bidisperse pore diffusion model for zeolite pressure swing adsorption

    SciTech Connect

    Doong, S.J.; Yang, R.T.

    1987-06-01

    The published theoretical models for pressure swing adsorption (PSA) are of either the equilibrium type, i.e., instantaneous equilibrium is assumed between the gas and adsorbed phases, or the diffusion type considering only a monodisperse pore structure. There is reason for doubt that either type of model is applicable to adsorption processes using zeolite sorbent, which has a bidisperse pore structure. Commercial zeolite sorbents contain crystals of the size 1-9 microns that are pelletized with a binder. Sorption is entirely within the crystals, which contain micropores, whereas the binder contains macropores with a negligible sorption capacity. This paper presents a general PSA model for zeolite sorbents. Both micropore and macropore diffusion are considered. The mathematical complexity of the pore diffusion equations for the two types of pores is reduced by assuming parabolic concentration profiles in both crystals and pellets. Thus the two partial differential equations are converted into ordinary differential equations containing only time derivatives, and the burden of integration along the radial distance is completely eliminated. The model is general enough to be applied to bulk, multicomponent separations using any PSA cycle. The specific separation discussed in this work is the bulk separation of a hydrogen methane mixture using 5A zeolite. The boundary conditions in the model depend on the PSA cycle.

  9. Characterization of natural zeolite clinoptilolite for sorption of contaminants

    NASA Astrophysics Data System (ADS)

    Xingu-Contreras, E.; García-Rosales, G.; García-Sosa, I.; Cabral-Prieto, A.; Solache-Ríos, M.

    2015-06-01

    The nanoparticles technology has received considerable attention for its potential applications in groundwater treatment for the removal of various pollutants as Cadmium. In this work, iron boride nanoparticles were synthesized in pure form and in presence of homo-ionized zeolite clinoptilolite, as support material. These materials were used for removing Cd (II) from aqueous solutions containing 10, 50, 100, 150, 200, 250, 300 and 400 mg/L. The characterization of these materials was made by using X-ray Diffraction, Scanning Electron Microscopy and Mössbauer Spectroscopy. Pure iron boride particles show a broad X-ray diffraction peak centered at 45∘ (2 𝜃), inferring the presence of nanocrystals of Fe2B as identified from Mössbauer Spectroscopy. The size of these Fe2B particles was within the range of 50 and 120 nm. The maximum sorption capacities for Cd (II) of iron boride particles and supported iron boride particles in homo-ionized zeolitic material were nearly 100 %. For homo-ionized zeolite and homo-ionized zeolite plus sodium borohydride was ≥ 95 %.

  10. Development of a prototype expert system for catalysis by zeolites

    NASA Astrophysics Data System (ADS)

    Prevoo, Hugues; Derouane, Eric G.; Vercauteren, Daniel P.

    1995-04-01

    A prototype Expert System (ES) that handles aromatic reactions catalyzed by zeolite frameworks is presented. This prototype ES is written in PROLOG using frame knowledge representation to transfer chemical information from the literature and expert minds to the Knowledge Base (KB). The knowledge base module of this ES is built around two specific but interrelated parts: an `empirical KB' and a `physicochemical KB'.

  11. Zeolitic imidazolate frameworks for kinetic separation of propane and propene

    DOEpatents

    Li, Jing; Li, Kunhao; Olson, David H.

    2014-08-05

    Zeolitic Imidazolate Frameworks (ZIFs) characterized by organic ligands consisting of imidazole ligands that are either essentially all 2-chloroimidazole ligands or essentially all 2-bromoimidazole ligands are disclosed. Methods for separating propane and propene with the ZIFs of the present invention, as well as other ZIFs, are also disclosed.

  12. Calibration analysis of zeolites by laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Horňáčková, M.; Grolmusová, Z.; Horňáček, M.; Rakovský, J.; Hudec, P.; Veis, P.

    2012-08-01

    Laser induced breakdown spectroscopy was used for calibration analysis of different types of microporous crystalline aluminosilicates with exactly ordered structure — zeolites. The LIBS plasma was generated using a Q-switched Nd:YAG laser operating at the wavelength of 532 nm and providing laser pulses of 4 ns duration. Plasma emission was analysed by echelle type emission spectrometer, providing wide spectral range 200-950 nm. The spectrometer was equipped with intensified CCD camera providing rapid spectral acquisition (gating time from 5 ns). The optimum experimental conditions (time delay, gate width and laser pulse energy) have been determined for reliable use of LIBS for quantitative analysis. Samples of different molar ratios of Si/Al were used to create the calibration curves. Calibration curves for different types of zeolites (mordenite, type Y and ZSM-5) were constructed. Molar ratios of Si/Al for samples used for calibration were determined by classical wet chemical analysis and were in the range 5.3-51.8 for mordenite, 2.3-12.8 for type Y and 14-600 for ZSM-5. Zeolites with these molar ratios of Si/Al are usually used as catalysts in alkylation reactions. Laser induced breakdown spectroscopy is a suitable method for analysis of molar ratio Si/Al in zeolites, because it is simple, fast, and does not require sample preparation compared with classical wet chemical analysis which are time consuming, require difficult sample preparation and manipulation with strong acids and bases.

  13. Synthesis of mesoporous zeolite single crystals with cheap porogens

    NASA Astrophysics Data System (ADS)

    Tao, Haixiang; Li, Changlin; Ren, Jiawen; Wang, Yanqin; Lu, Guanzhong

    2011-07-01

    Mesoporous zeolite (silicalite-1, ZSM-5, TS-1) single crystals have been successfully synthesized by adding soluble starch or sodium carboxymethyl cellulose (CMC) to a conventional zeolite synthesis system. The obtained samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen sorption analysis, 27Al magic angle spinning nuclear magnetic resonance ( 27Al MAS NMR), temperature-programmed desorption of ammonia (NH 3-TPD) and ultraviolet-visible spectroscopy (UV-vis). The SEM images clearly show that all zeolite crystals possess the similar morphology with particle size of about 300 nm, the TEM images reveal that irregular intracrystal pores are randomly distributed in the whole crystal. 27Al MAS NMR spectra indicate that nearly all of the Al atoms are in tetrahedral co-ordination in ZSM-5, UV-vis spectra confirm that nearly all of titanium atoms are incorporated into the framework of TS-1. The catalytic activity of meso-ZSM-5 in acetalization of cyclohexanone and meso-TS-1 in hydroxylation of phenol was also studied. The synthesis method reported in this paper is cost-effective and environmental friendly, can be easily expended to prepare other hierarchical structured zeolites.

  14. USE OF SYNTHETIC ZEOLITES FOR ARSENATE REMOVAL FROM POLLUTANT WATER

    EPA Science Inventory

    Arsenic is known to be a hazardous contaminant in drinking water that causes arsenical dermatitis and skin cancer. In the present work, the potential use of a variety of synthetic zeolites for removal of arsenic from water below the current and proposed EPA MCL has been examined...

  15. Zeolite formation from coal fly ash and its adsorption potential

    SciTech Connect

    Duangkamol Ruen-ngam; Doungmanee Rungsuk; Ronbanchob Apiratikul; Prasert Pavasant

    2009-10-15

    The possibility in converting coal fly ash (CFA) to zeolite was evaluated. CFA samples from the local power plant in Prachinburi province, Thailand, were collected during a 3-month time span to account for the inconsistency of the CFA quality, and it was evident that the deviation of the quality of the raw material did not have significant effects on the synthesis. The zeolite product was found to be type X. The most suitable weight ratio of sodium hydroxide (NaOH) to CFA was approximately 2.25, because this gave reasonably high zeolite yield with good cation exchange capacity (CEC). The silica (Si)-to-aluminum (Al) molar ratio of 4.06 yielded the highest crystallinity level for zeolite X at 79% with a CEC of 240 meq/100 g and a surface area of 325 m{sup 2}/g. Optimal crystallization temperature and time were 90{sup o}C and 4 hr, respectively, which gave the highest CEC of approximately 305 meq/100 g. Yields obtained from all experiments were in the range of 50-72%. 29 refs., 5 tabs., 7 figs.

  16. [Supplementation of swine feed rations with zeolite during cage rearing].

    PubMed

    Bartko, P; Chabada, J; Vrzgula, L; Solár, I; Blazovský, J

    1983-07-01

    The effect of the addition of zeolite to pig feed ration was studied in the cage rearing system under production conditions. Zeolite was mixed in the COS I and COS II feed mixtures directly in the feed plant, the mixing ratio being 100 kg feed mixture + 5 kg zeolite. The feed mixture was administered in granular form ad libitum. The test group had 648 weanlings and the control group 674 weanlings; the piglets, kept in two-story cages in four sections, were arranged so that the test group could be a mirror-like reflection of the control group. The trial lasted 45 days. The piglets given the fortified feed ration had daily weight gains higher by 0.017 kg and feed consumption lower by 0.234 kg per 1 kg of gain, as compared with the control animals. The costs of the feed ration required for producing a kilogram of gain were 8.55 Cz. crowns in the zeolite group and 9.422 crowns in the control group. PMID:6312666

  17. Selective photooxidation of hydrocarbons in zeolites by oxygen

    DOEpatents

    Frei, Heinz; Blatter, Fritz; Sun, Hai

    1998-01-01

    A selective photooxidation process for the conversion of hydrocarbon molecules to partially oxygenated derivatives, which comprises the steps of adsorbing a hydrocarbon and oxygen onto a dehydrated zeolite support matrix to form a hydrocarbon-oxygen contact pair, and subsequently exposing the hydrocarbon-oxygen contact pair to visible light, thereby forming a partially oxygenated derivative.

  18. Natural Zeolites and X-Ray Crystallography: Opportunities and Limitations.

    NASA Astrophysics Data System (ADS)

    Verbruggen, Mark G.

    1990-08-01

    Zeolites are porous Si,Al-silicates which find important applications in industry. They are used as ion exchangers, as molecular sieves and as catalysts. These inorganic compounds are found in natural deposits and are produced synthetically. Due to this open structure (with cages and channels), cations and (polar) molecules (e.g. water molecules) can freely move through the structure. The interaction between the framework and the cation/water molecules is weak. The aim of our experiments was to shed light on this peculiar framework cation/water molecule relationship in the case of natural zeolites. This requires a better understanding of the zeolite structure and the position of the cations/water molecules therein. X-ray diffraction is the most important technique used to study the structure of solids. This technique has been developed into a strong tool which enables us to get accurate structural data. In most cases, satisfactory results are obtained. The standard approach fails however to encompass all structural peculiarities one encounters in the case of zeolites. Si/Al-order/disorder phenomena, space group problems and cations/water molecules positioned on many different, low occupancy sites in the case and channels hamper our efforts to obtain an accurate structure model. Most refinements found in the literature strand upon these problems. We have tried out some fresh ideas with changing success.

  19. Graphene synthesis and characterization on copper

    NASA Astrophysics Data System (ADS)

    Mohsin, Ali

    Graphene, two dimensional sheet of carbon atoms has recently gained attention as some of its properties are promising for electronics applications e.g. higher mobility that translates to higher operating frequency for devices geared towards radio frequency applications. Excellent optical transmittance combined with its semi metallic behavior makes it an important material for transparent contacts in solar cells. To bring graphene to the production level, synthesis methods are needed for its growth on wafer scale. It has been shown that chemical vapor deposition (CVD) is one of the techniques that can potentially synthesize wafer scale graphene. Recently copper has gained popularity as an important substrate material for graphene growth due to its lower carbon solubility, which allows better control over number of graphene layers. Here we report optimization of graphene growth on copper foils with our home made atmospheric pressure chemical vapor deposition (APCVD) setup. Graphene growth on copper under APCVD was non self-limiting similar to other reports. It was found that apart from growth parameters surface texture plays a very important role in graphene growth. In fact, few layer and bilayer graphene were obtained on the regions where copper surface was not uniform, confirmed by Raman spectroscopy. To improve copper surface texture thin layer of copper film was evaporated by electron beam evaporation before the graphene growth process. After this modification, monolayer graphene was obtained on areas as large as 300 microm x 300 microm confirmed by Raman area maps. Graphene transfer procedure was also optimized so that graphene on metal surface could be transferred to insulating substrate.

  20. Zeolite in horizontal permeable reactive barriers for artificial groundwater recharge

    NASA Astrophysics Data System (ADS)

    Leal, María; Martínez-Hernández, Virtudes; Lillo, Javier; Meffe, Raffaella; de Bustamante, Irene

    2013-04-01

    The Spanish Water Reuse Royal Decree 1620/2007 considers groundwater recharge as a feasible use of reclaimed water. To achieve the water quality established in the above-mentioned legislation, a tertiary wastewater treatment is required. In this context, the infiltration of effluents generated by secondary wastewater treatments through a Horizontal Permeable Reactive Barrier (HPRB) may represent a suitable regeneration technology. Some nutrients (phosphate and ammonium) and some Pharmaceutical and Personal Care Products (PPCPs) are not fully removed in conventional wastewater treatment plants. To avoid groundwater contamination when effluents of wastewater treatments plants are used in artificial recharge activities, these contaminants have to be removed. Due to its sorption capacities, zeolite is among the most used reactive materials in Permeable Reactive Barrier (PRB). Therefore, the main goal of this study is to evaluate the zeolite retention effectiveness of nutrients and PPCPs occurring in treated wastewater. Batch sorption experiments using synthetic wastewater (SWW) and zeolite were performed. A 1:4 zeolite/SWW ratio was selected due to the high sorption capacity of the reactive material.The assays were carried out by triplicate. All the bottles containing the SWW-zeolite mixture were placed on a mechanical shaker during 24 hours at 140 rpm and 25 °C. Ammonium and phosphate, as main nutrients, and a group of PPCPs were selected as compounds to be tested during the experiments. Nutrients were analyzed by ion chromatography. For PPCPs determination, Solid Phase Extraction (SPE) was applied before their analysis by liquid chromatography-mass spectrometry time of flight (LC-MS/ TOF). The experimental data were fitted to linearized Langmuir and Freundlich isotherm equations to obtain sorption parameters. In general, Freundlich model shows a greater capability of reproducing experimental data. To our knowledge, sorption of the investigated compounds on zeolite has rarely been addressed and this holds true especially for PPCPs. Therefore, the obtained results will be useful for the design and characterization of those HPRBs in which zeolite will be employed to regenerate treated wastewater for artificial recharge activities.

  1. COPPER RESEARCH UPDATE

    EPA Science Inventory

    This presentation provides an update and overview of new research results and remaining research needs with respect to copper corrosion control issues. The topics to be covered include: occurrence of elevated copper release in systems that meet the Action Level; impact of water c...

  2. Structural modification of mordenite zeolite with Fe for the photo-degradation of EDTA.

    PubMed

    Emara, Mostafa M; Tourky, Amal S M; El-Moselhy, Medhat M

    2009-07-15

    Fe(2+) was incorporated inside mordenite through ion exchange technique in aqueous solution. The amount of Fe loading was 25-100 wt %, using FeSO(4).7H(2)O as precursor and Na-mordenite starting material Na-M. The Fe incorporated (Fe-M) thus prepared was characterized by XRD, FTIR and N(2) adsorption measurements. It was found that Fe mordenite retained the same structure as that for Na-mordenite which may indicate that Fe well dispersed into mordenite channels. BET indicated that Fe-M samples possessed higher surface area compared to the parent Na-M. Photocatalytic degradation of EDTA was carried out in presence of the prepared Fe-M catalysts. Effects of catalyst concentration and temperature were also studied. Thermodynamic parameters calculated for 50% Fe-M showed the highest catalytic activity toward EDTA degradation. PMID:19117676

  3. Oxidation resistant copper

    SciTech Connect

    Edelstein, A.S.; Kaatz, F.H.; Harris, V.G.

    1993-11-15

    Oxidation resistant particles composed of copper and at least one metal having a valence of +2 or +3 and having an intermediate lattice energy for the metal in its hydroxide form. The metal is selected from nickel, cobalt, iron, manganese, cadmium, zinc, tin, magnesium, calcium and chromium. In one embodiment, the phases of copper and at least one metal in the particles are separate and the concentration of the metal is greater near the surface of the particles than inwardly thereof. Process for making the oxidation resistant copper particles includes the steps of dissolving a copper salt and a salt of at least one of the metals in a suitable solvent or diluent; forming primary particles of copper and at least one metal in basic form by mixing a base and the salt solution; separating, washing and drying the primary particles; reducing the primary particles to metallic form; and heat treating the particles in metallic form at an elevated temperature.

  4. Exploitation of Unique Properties of Zeolites in the Development of Gas Sensors

    PubMed Central

    Zheng, Yangong; Li, Xiaogan; Dutta, Prabir K.

    2012-01-01

    The unique properties of microporous zeolites, including ion-exchange properties, adsorption, molecular sieving, catalysis, conductivity have been exploited in improving the performance of gas sensors. Zeolites have been employed as physical and chemical filters to improve the sensitivity and selectivity of gas sensors. In addition, direct interaction of gas molecules with the extraframework cations in the nanoconfined space of zeolites has been explored as a basis for developing new impedance-type gas/vapor sensors. In this review, we summarize how these properties of zeolites have been used to develop new sensing paradigms. There is a considerable breadth of transduction processes that have been used for zeolite incorporated sensors, including frequency measurements, optical and the entire gamut of electrochemical measurements. It is clear from the published literature that zeolites provide a route to enhance sensor performance, and it is expected that commercial manifestation of some of the approaches discussed here will take place. The future of zeolite-based sensors will continue to exploit its unique properties and use of other microporous frameworks, including metal organic frameworks. Zeolite composites with electronic materials, including metals will lead to new paradigms in sensing. Use of nano-sized zeolite crystals and zeolite membranes will enhance sensor properties and make possible new routes of miniaturized sensors. PMID:22666081

  5. Catalase-like activity studies of the manganese(II) adsorbed zeolites

    NASA Astrophysics Data System (ADS)

    Ćiçek, Ekrem; Dede, Bülent

    2013-12-01

    Preparation of manganese(II) adsorbed on zeolite 3A, 4A, 5A. AW-300, ammonium Y zeolite, organophilic, molecular sieve and catalase-like enzyme activity of manganese(II) adsorbed zeolites are reported herein. Firstly zeolites are activated at 873 K for two hours before contact manganese(II) ions. In order to observe amount of adsorption, filtration process applied for the solution. The pure zeolites and manganese(II) adsorbed zeolites were analysed by FT-IR. As a result according to the FT-IR spectra, the incorporation of manganese(II) cation into the zeolite structure causes changes in the spectra. These changes are expected particularly in the pseudolattice bands connected with the presence of alumino and silicooxygen tetrahedral rings in the zeolite structure. Furthermore, the catalytic activities of the Mn(II) adsorbed zeolites for the disproportionation of hydrogen peroxide were investigated in the presence of imidazole. The Mn(II) adsorbed zeolites display efficiency in the disproportion reactions of hydrogen peroxide, producing water and dioxygen in catalase-like activity.

  6. Exploitation of unique properties of zeolites in the development of gas sensors.

    PubMed

    Zheng, Yangong; Li, Xiaogan; Dutta, Prabir K

    2012-01-01

    The unique properties of microporous zeolites, including ion-exchange properties, adsorption, molecular sieving, catalysis, conductivity have been exploited in improving the performance of gas sensors. Zeolites have been employed as physical and chemical filters to improve the sensitivity and selectivity of gas sensors. In addition, direct interaction of gas molecules with the extraframework cations in the nanoconfined space of zeolites has been explored as a basis for developing new impedance-type gas/vapor sensors. In this review, we summarize how these properties of zeolites have been used to develop new sensing paradigms. There is a considerable breadth of transduction processes that have been used for zeolite incorporated sensors, including frequency measurements, optical and the entire gamut of electrochemical measurements. It is clear from the published literature that zeolites provide a route to enhance sensor performance, and it is expected that commercial manifestation of some of the approaches discussed here will take place. The future of zeolite-based sensors will continue to exploit its unique properties and use of other microporous frameworks, including metal organic frameworks. Zeolite composites with electronic materials, including metals will lead to new paradigms in sensing. Use of nano-sized zeolite crystals and zeolite membranes will enhance sensor properties and make possible new routes of miniaturized sensors. PMID:22666081

  7. Facile synthesis of hollow zeolite microspheres through dissolution–recrystallization procedure in the presence of organosilanes

    SciTech Connect

    Tao, Haixiang; Ren, Jiawen; Liu, Xiaohui; Wang, Yanqin; Lu, Guanzhong

    2013-04-15

    Hollow zeolite microspheres have been hydrothermally synthesized in the presence of organosilanes via a dissolution–recrystallization procedure. In the presence of organosilanes, zeolite particles with a core/shell structure formed at the first stage of hydrothermal treatment, then the core was consumed and recrystallized into zeolite framework to form the hollow structure during the second hydrothermal process. The influence of organosilanes was discussed, and a related dissolution–recrystallization mechanism was proposed. In addition, the hollow zeolite microspheres exhibited an obvious advantage in catalytic reactions compared to conventional ZSM-5 catalysts, such as in the alkylation of toluene with benzyl chloride. - Graphical abstract: Hollow zeolite spheres with aggregated zeolite nanocrystals were synthesized via a dissolution–recrystallization procedure in the presence of organosiline. Highlights: ► Hollow zeolite spheres with aggregated zeolite nanocrystals were synthesized via a dissolution–recrystallization procedure. ► Organosilane influences both the morphology and hollow structure of zeolite spheres. ► Hollow zeolite spheres showed an excellent catalytic performance in alkylation of toluene with benzyl chloride.

  8. Deactivation Mechanisms of Base Metal/Zeolite Urea Selective Catalytic Reduction Materials, and Development of Zeolite-Based Hydrocarbon Adsorber Materials

    SciTech Connect

    Kwak, Ja Hun; Lee, Jong H.; Kim, Do Heui; Li, Xiaohong S.; Tran, Diana N.; Peden, Charles HF

    2011-12-22

    This annual report describes recent progress on a collaborative project between scientists and engineers in the Institute for Integrated Catalysis at PNNL and at Ford Motor Company, involving investigations of laboratory- and engine-aged SCR catalysts, containing mainly base metal zeolites. These studies are leading to a better understanding of various aging factors that impact the long-term performance of SCR catalysts and improve the correlation between laboratory and engine aging, saving experimental time and cost. We are investigating SCR catalysts with reduced ammonia slip, increased low temperature activity, and increased product selectivity to N2. More recent recognition that high temperature performance, under regimes that sometimes cause deactivation, also needs to be improved is driving current work focused on catalyst materials modifications needed to achieve this enhanced performance. We are also studying materials effective for the temporary storage of HC species during the cold-start period. In particular, we examine the adsorption and desorption of various HC species produced during the combustion with different fuels (e.g., gasoline, E85, diesel) over potential HC adsorber materials, and measure the kinetic parameters to update Ford’s HC adsorption model.

  9. Mechanical durability of superhydrophobic and oleophobic copper meshes

    NASA Astrophysics Data System (ADS)

    Yin, Linting; Yang, Jin; Tang, Yongcai; Chen, Lin; Liu, Can; Tang, Hua; Li, Changsheng

    2014-10-01

    We developed a simple and inexpensive method to prepare the superhydrophobic and oleophobic copper meshes with rough structures fabrication and chemical modification. The achieved surfaces displayed liquid-repellent toward water and several organic liquids (such as hexadecane), which possessed much lower surface tension than that of water. Liquid repellency of the fabricated superhydrophobic copper mesh was demonstrated by visible experiment results and contact angle measurements. Even if the superhydrophobic copper mesh was rolled up, it still kept the superhydrophobicity. The mechanical durability was investigated by finger touch and mechanical abrasion tests. The results indicated that the copper mesh can maintain its superhydrophobicity against an abrasion length of 300 cm under a high pressure (77.2 kPa). The superhydrophobicity and oleophobicity, combined with mechanical durability, would promote the superhydrophobic surface to practical application in industry in the future.

  10. Bioaccessibility and Solubility of Copper in Copper-Treated Lumber

    EPA Science Inventory

    Micronized copper (MC)-treated lumber is a recent replacement for Chromated Copper Arsenate (CCA) and Ammonium Copper (AC)-treated lumbers; though little is known about the potential risk of copper (Cu) exposure from incidental ingestion of MC-treated wood. The bioaccessibility o...

  11. Methane emissions abatement by multi-ion-exchanged zeolite A prepared from both commercial-grade zeolite and coal fly ash

    SciTech Connect

    K.S. Hui; C.Y.H. Chao

    2008-10-01

    The performance of multimetal-(Cu, Cr, Zn, Ni, and Co)-ion-exchanged zeolite A prepared from both a commercial-grade sample and one produced from coal fly ash in methane emissions abatement was evaluated in this study. The ion-exchange process was used to load the metal ions in zeolite A samples. The methane conversion efficiency by the samples was studied under various parameters including the amount of metal loading (7.3-19.4 wt%), reaction temperature (25-500{sup o}C), space velocity (8400-41 900 h{sup -1}), and methane concentration (0.5-3.2 vol %). At 500{sup o}C, the original commercial-grade zeolite A catalyzed 3% of the methane only, whereas the addition of different percentages of metals in the sample enhanced the methane conversion efficiency by 40-85%. Greater methane conversion was observed by increasing the percentage of metals added to the zeolite even though the BET surface area of the zeolite consequently decreased. Higher percentage methane conversion over the multi-ion-exchanged samples was observed at lower space velocities indicating the importance of the mass diffusion of reactants and products in the zeolite. Compared to the multi-ion-exchanged zeolite A prepared from the commercial-grade zeolite, the one produced from coal fly ash demonstrated similar performances in methane emissions abatement, showing the potential use of this low cost recycled material in gaseous pollutant treatment. 25 refs., 3 figs., 2 tabs.

  12. Arsenic activities in molten copper and copper sulfide melts

    NASA Astrophysics Data System (ADS)

    Hino, M.; Toguri, J. M.

    1986-12-01

    In recent years, the concentration of the group Va elements such as arsenic, antimony, and bismuth has been increasing in copper concentrates. The elimination and recovery of these elements during the copper smelting process have presented serious problems. While the distribution of minor elements has been studied extensively, very little knowledge exists on the activities of these minor elements in copper mattes. Consequently, in this study the activities of arsenic were measured to determine activity coefficients of arsenic in the dilute solution region of molten copper, in Cu2S saturated copper, and in copper mattes equilibrated with copper at 1423 K by a mass spectrometric Knudsen effusion technique.

  13. Cysteine functionalized copper organosol: synthesis, characterization and catalytic application

    NASA Astrophysics Data System (ADS)

    Panigrahi, Sudipa; Kundu, Subrata; Basu, Soumen; Praharaj, Snigdhamayee; Jana, Subhra; Pande, Surojit; Ghosh, Sujit Kumar; Pal, Anjali; Pal, Tarasankar

    2006-11-01

    We herein report a facile one-pot synthesis, stabilization, redispersion and Cu-S interaction of L-cysteine and dodecanethiol (DDT) protected copper organosol in toluene from precursor copper stearate using sodium borohydride in toluene under a nitrogen atmosphere. Surface modification of the synthesized copper organosol with an amino acid L-cysteine and an alkanethiol (dodecanethiol, DDT) is accomplished by a thiolate bond between the used ligands and nanoparticle surface. The cysteine molecule binds the copper surface via a thiolate and amine linkage but not through electrostatic interaction with the carboxylate group due to the solvent polarity and dielectric medium. Fourier transform infrared (FTIR) analysis was performed to confirm the surface functionalization of the amino acid and DDT to the copper surface. Copper organosol has been characterized by optical spectroscopy (UV/vis), transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS) and x-ray diffraction (XRD). The as-synthesized particles are spherical in shape and exhibit a Mie scattering profile with an absorption maxima in the visible range. Copper nanoparticles capped by cysteine and/or DDT in non-aqueous media are found to represent an interesting catalytic approach for the synthesis of octylphenyl ether.

  14. Methanobactin and the Link between Copper and Bacterial Methane Oxidation.

    PubMed

    DiSpirito, Alan A; Semrau, Jeremy D; Murrell, J Colin; Gallagher, Warren H; Dennison, Christopher; Vuilleumier, Stéphane

    2016-06-01

    Methanobactins (mbs) are low-molecular-mass (<1,200 Da) copper-binding peptides, or chalkophores, produced by many methane-oxidizing bacteria (methanotrophs). These molecules exhibit similarities to certain iron-binding siderophores but are expressed and secreted in response to copper limitation. Structurally, mbs are characterized by a pair of heterocyclic rings with associated thioamide groups that form the copper coordination site. One of the rings is always an oxazolone and the second ring an oxazolone, an imidazolone, or a pyrazinedione moiety. The mb molecule originates from a peptide precursor that undergoes a series of posttranslational modifications, including (i) ring formation, (ii) cleavage of a leader peptide sequence, and (iii) in some cases, addition of a sulfate group. Functionally, mbs represent the extracellular component of a copper acquisition system. Consistent with this role in copper acquisition, mbs have a high affinity for copper ions. Following binding, mbs rapidly reduce Cu(2+) to Cu(1+). In addition to binding copper, mbs will bind most transition metals and near-transition metals and protect the host methanotroph as well as other bacteria from toxic metals. Several other physiological functions have been assigned to mbs, based primarily on their redox and metal-binding properties. In this review, we examine the current state of knowledge of this novel type of metal-binding peptide. We also explore its potential applications, how mbs may alter the bioavailability of multiple metals, and the many roles mbs may play in the physiology of methanotrophs. PMID:26984926

  15. COPPER CABLE RECYCLING TECHNOLOGY

    SciTech Connect

    Chelsea Hubbard

    2001-05-01

    The United States Department of Energy (DOE) continually seeks safer and more cost-effective technologies for use in deactivation and decommissioning (D&D) of nuclear facilities. The Deactivation and Decommissioning Focus Area (DDFA) of the DOE's Office of Science and Technology (OST) sponsors large-scale demonstration and deployment projects (LSDDPs). At these LSDDPs, developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to the DOE's projects and to others in the D&D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, and decreased costs of operation. The Idaho National Engineering and Environmental Laboratory (INEEL) generated a list of statements defining specific needs and problems where improved technology could be incorporated into ongoing D&D tasks. One such need is to reduce the volume of waste copper wire and cable generated by D&D. Deactivation and decommissioning activities of nuclear facilities generates hundreds of tons of contaminated copper cable, which are sent to radioactive waste disposal sites. The Copper Cable Recycling Technology separates the clean copper from contaminated insulation and dust materials in these cables. The recovered copper can then be reclaimed and, more importantly, landfill disposal volumes can be reduced. The existing baseline technology for disposing radioactively contaminated cables is to package the cables in wooden storage boxes and dispose of the cables in radioactive waste disposal sites. The Copper Cable Recycling Technology is applicable to facility decommissioning projects at many Department of Energy (DOE) nuclear facilities and commercial nuclear power plants undergoing decommissioning activities. The INEEL Copper Cable Recycling Technology Demonstration investigated the effectiveness and efficiency to recycle 13.5 tons of copper cable. To determine the effectiveness of separating out radioactive contamination, the copper cable was coated with a surrogate contaminant. The demonstration took place at the Bonneville County Technology Center in Idaho Falls, Idaho.

  16. Potential and challenges of zeolite chemistry in the catalytic conversion of biomass.

    PubMed

    Ennaert, Thijs; Van Aelst, Joost; Dijkmans, Jan; De Clercq, Rik; Schutyser, Wouter; Dusselier, Michiel; Verboekend, Danny; Sels, Bert F

    2016-02-01

    Increasing demand for sustainable chemicals and fuels has pushed academia and industry to search for alternative feedstocks replacing crude oil in traditional refineries. As a result, an immense academic attention has focused on the valorisation of biomass (components) and derived intermediates to generate valuable platform chemicals and fuels. Zeolite catalysis plays a distinct role in many of these biomass conversion routes. This contribution emphasizes the progress and potential in zeolite catalysed biomass conversions and relates these to concepts established in existing petrochemical processes. The application of zeolites, equipped with a variety of active sites, in Brønsted acid, Lewis acid, or multifunctional catalysed reactions is discussed and generalised to provide a comprehensive overview. In addition, the feedstock shift from crude oil to biomass involves new challenges in developing fields, like mesoporosity and pore interconnectivity of zeolites and stability of zeolites in liquid phase. Finally, the future challenges and perspectives of zeolites in the processing of biomass conversion are discussed. PMID:26691750

  17. Dispersible Exfoliated Zeolite Nanosheets and Their Application as a Selective Membrane

    SciTech Connect

    Varoon, Kumar; Zhang, Xueyi; Elyassi, Bahman; Brewer, Damien D.; Gettel, Melissa; Kumar, Sandeep; Lee, J. Alex; Maheshwari, Sundeep; Mittal, Anudha; Sung, Chun-Yi; Cococcioni, Matteo; Francis, Lorraine F.; McCormick, Alon V.; Mkhoyan, K. Andre; Tsapatsis, Michael

    2011-10-06

    Thin zeolite films are attractive for a wide range of applications, including molecular sieve membranes, catalytic membrane reactors, permeation barriers, and low-dielectric-constant materials. Synthesis of thin zeolite films using high-aspect-ratio zeolite nanosheets is desirable because of the packing and processing advantages of the nanosheets over isotropic zeolite nanoparticles. Attempts to obtain a dispersed suspension of zeolite nanosheets via exfoliation of their lamellar precursors have been hampered because of their structure deterioration and morphological damage (fragmentation, curling, and aggregation). We demonstrated the synthesis and structure determination of highly crystalline nanosheets of zeolite frameworks MWW and MFI. The purity and morphological integrity of these nanosheets allow them to pack well on porous supports, facilitating the fabrication of molecular sieve membranes.

  18. The Ameliorative Effect of Artificial Zeolite on Barley under Saline Conditions

    NASA Astrophysics Data System (ADS)

    Al-Busaidi, A.; Yamamoto, T.; Irshad, M.

    This investigation was aimed to evaluate the effects of zeolite in conjunction with seawater irrigation on barley (Hordeum vulgare L.) growth and salt composition of soil. A sand dune soil was amended with Ca-type zeolite at the rate of 1 and 5% and the seawater was diluted up to the electrical conductivity of 3 and 16 dS mG1. Present results showed that zeolite application significantly increased water holding capacity of the soil and accumulated more salts. The zeolite mixed soils improved plant growth compared to the un-amended control. Higher saline water significantly suppressed the growth of barley than the water with low salinity. The restricted plant growth due to the effects of specific ion or Na+/Ca2+ imbalance may be ameliorated using Ca-type zeolite. We may conclude that soil amendment with zeolite could alleviate the adverse effects of salts on plants following irrigation with higher saline water.

  19. Effects of Surface and Morphological Properties of Zeolite on Impedance Spectroscopy-Based Sensing Performance

    PubMed Central

    Zhang, Jianwei; Li, Xiaogan; White, Jeremy; Dutta, Prabir K.

    2012-01-01

    Measurement by impedance spectroscopy of the changes in intrazeolitic cation motion of pressed pellets of zeolite particles upon adsorption of dimethylmethylphosphonate (DMMP) provides a strategy for sensing DMMP, a commonly used simulant for highly toxic organophosphate nerve agents. In this work, two strategies for improving the impedance spectroscopy based sensing of DMMP on zeolites were investigated. The first one is the use of cerium oxide (CeO2) coated on the zeolite surface to neutralize acidic groups that may cause the decomposition of DMMP, and results in better sensor recovery. The second strategy was to explore the use of zeolite Y membrane. Compared to pressed pellets, the membranes have connected supercages of much longer length scales. The zeolite membranes resulted in higher sensitivity to DMMP, but recovery of the device was significantly slower as compared to pressed zeolite pellets. PMID:23201996

  20. Effects of ultrasonic treatment on zeolite NaA synthesized from by-product silica.

    PubMed

    Vaičiukynienė, Danutė; Kantautas, Aras; Vaitkevičius, Vitoldas; Jakevičius, Leonas; Rudžionis, Žymantas; Paškevičius, Mantas

    2015-11-01

    The synthesis of zeolite NaA from silica by-product was carried out in the presence of 20 kHz ultrasound at room temperature. Zeolites obtained in this type of synthesis were compared to zeolites obtained by performing conventional static syntheses under similar conditions. The sonication effects on zeolite NaA synthesis were characterized by phase identification, crystallinity etc. The effects of different parameters such as crystallization time and initial materials preparation methods on the crystallinity and morphology of the synthesized zeolites were investigated. The final products were characterized by XRD and FT-IR. It was possible to obtain crystalline zeolite NaA from by-product silica in the presence of ultrasound. PMID:26186874

  1. Behavior Modification is not...

    ERIC Educational Resources Information Center

    Tawney, James W.; And Others

    1973-01-01

    Identified are misconceptions of behavior modification procedures according to which behavior modification is connected mistakenly with noncontingent reinforcement, partial change of a teacher's behavior, decelerations of inappropriate behaviors only, dependency producing technology, teacher dominated activity, a single type of classroom…

  2. Fabricating Copper Nanotubes by Electrodeposition

    NASA Technical Reports Server (NTRS)

    Yang, E. H.; Ramsey, Christopher; Bae, Youngsam; Choi, Daniel

    2009-01-01

    Copper tubes having diameters between about 100 and about 200 nm have been fabricated by electrodeposition of copper into the pores of alumina nanopore membranes. Copper nanotubes are under consideration as alternatives to copper nanorods and nanowires for applications involving thermal and/or electrical contacts, wherein the greater specific areas of nanotubes could afford lower effective thermal and/or electrical resistivities. Heretofore, copper nanorods and nanowires have been fabricated by a combination of electrodeposition and a conventional expensive lithographic process. The present electrodeposition-based process for fabricating copper nanotubes costs less and enables production of copper nanotubes at greater rate.

  3. Silver confined within zeolite EMT nanoparticles: preparation and antibacterial properties

    NASA Astrophysics Data System (ADS)

    Dong, B.; Belkhair, S.; Zaarour, M.; Fisher, L.; Verran, J.; Tosheva, L.; Retoux, R.; Gilson, J.-P.; Mintova, S.

    2014-08-01

    The preparation of pure zeolite nanocrystals (EMT-type framework) and their silver ion-exchanged (Ag+-EMT) and reduced silver (Ag0-EMT) forms is reported. The template-free zeolite nanocrystals are stabilized in water suspensions and used directly for silver ion-exchange and subsequent chemical reduction under microwave irradiation. The high porosity, low Si/Al ratio, high concentration of sodium and ultrasmall crystal size of the EMT-type zeolite permitted the introduction of a high amount of silver using short ion-exchange times in the range of 2-6 h. The killing efficacy of pure EMT, Ag+-EMT and Ag0-EMT against Escherichia coli was studied semi-quantitatively. The antibacterial activity increased with increasing Ag content for both types of samples (Ag+-EMT and Ag0-EMT). The Ag0-EMT samples show slightly enhanced antimicrobial efficacy compared to that of Ag+-EMT, however, the differences are not substantial and the preparation of Ag nanoparticles is not viable considering the complexity of preparation steps.The preparation of pure zeolite nanocrystals (EMT-type framework) and their silver ion-exchanged (Ag+-EMT) and reduced silver (Ag0-EMT) forms is reported. The template-free zeolite nanocrystals are stabilized in water suspensions and used directly for silver ion-exchange and subsequent chemical reduction under microwave irradiation. The high porosity, low Si/Al ratio, high concentration of sodium and ultrasmall crystal size of the EMT-type zeolite permitted the introduction of a high amount of silver using short ion-exchange times in the range of 2-6 h. The killing efficacy of pure EMT, Ag+-EMT and Ag0-EMT against Escherichia coli was studied semi-quantitatively. The antibacterial activity increased with increasing Ag content for both types of samples (Ag+-EMT and Ag0-EMT). The Ag0-EMT samples show slightly enhanced antimicrobial efficacy compared to that of Ag+-EMT, however, the differences are not substantial and the preparation of Ag nanoparticles is not viable considering the complexity of preparation steps. Electronic supplementary information (ESI) available: Zeta potential data of Ag-EMT suspensions, pore-size distributions and antibacterial data for Ag-EMT 2 h samples. See DOI: 10.1039/c4nr03169e

  4. Synthesis and characterization of zeolites prepared from industrial fly ash.

    PubMed

    Franus, Wojciech; Wdowin, Magdalena; Franus, Małgorzata

    2014-09-01

    In this paper, we present the possibility of using fly ash to produce synthetic zeolites. The synthesis class F fly ash from the Stalowa Wola SA heat and power plant was subjected to 24 h hydrothermal reaction with sodium hydroxide. Depending on the reaction conditions, three types of synthetic zeolites were formed: Na-X (20 g fly ash, 0.5 dm(3) of 3 mol · dm(-3) NaOH, 75 °C), Na-P1 (20 g fly ash, 0.5 dm(3) of 3 mol · dm(-3) NaOH, 95 °C), and sodalite (20 g fly ash, 0.8 dm(3) of 5 mol · dm(-3) NaOH + 0.4 dm(3) of 3 mol · dm(-3) NaCl, 95 °C). As synthesized materials were characterized to obtain mineral composition (X-ray diffractometry, Scanning electron microscopy-energy dispersive spectrometry), adsorption properties (Brunauer-Emmett-Teller surface area, N2 isotherm adsorption/desorption), and ion exchange capacity. The most effective reaction for zeolite preparation was when sodalite was formed and the quantitative content of zeolite from X-ray diffractometry was 90 wt%, compared with 70 wt% for the Na-X and 75 wt% for the Na-P1. Residues from each synthesis reaction were the following: mullite, quartz, and the remains of amorphous aluminosilicate glass. The best zeolitic material as characterized by highest specific surface area was Na-X at almost 166 m(2) · g(-1), while for the Na-P1 and sodalite it was 71 and 33 m(2) · g(-1), respectively. The ion exchange capacity decreased in the following order: Na-X at 1.8 meq · g(-1), Na-P1 at 0.72 meq · g(-1), and sodalite at 0.56 meq · g(-1). The resulting zeolites are competitive for commercially available materials and are used as ion exchangers in industrial wastewater and soil decontamination. PMID:24838802

  5. Fiber ring laser interrogated zeolite-coated singlemode-multimode-singlemode structure for trace chemical detection.

    PubMed

    Lan, X; Huang, J; Han, Q; Wei, T; Gao, Z; Jiang, H; Dong, J; Xiao, H

    2012-06-01

    Zeolite thin films were synthesized on the claddingless multimode portion of a singlemode-multimode-singlemode (SMS) fiber structure to construct a chemical vapor sensor. The zeolite-coated SMS structure was inserted into a fiber ring amplifier to produce a laser line. Combining the strong molecular adsorption capability of the nanoporous zeolite and the high signal-to-noise ratio of the fiber laser, the device was demonstrated for chemical vapor sensing with a low detection limit. PMID:22660100

  6. Analysis Si/Al ratio in zeolites type FAU by laser induced breakdown spectroscopy (LIBS)

    NASA Astrophysics Data System (ADS)

    Contreras, W. A.; Cabanzo, R.; Mejía-Ospino, E.

    2011-01-01

    In this work, Laser Induced Breakdown Spectroscopy (LIBS) is used to determine the Si/Al ratio of Zeolite type Y. The catalytic activity of zeolite is strongly dependent of the Si/Al ratio. We have used Si lines in the spectral region between 245-265 nm to determine temperature of the plasma generated on pelletized sample of zeolite, and stoichiometry relation between Si and Al.

  7. Effective solidification/stabilisation of mercury-contaminated wastes using zeolites and chemically bonded phosphate ceramics.

    PubMed

    Zhang, Shaoqing; Zhang, Xinyan; Xiong, Ya; Wang, Guoping; Zheng, Na

    2015-02-01

    In this study, two kinds of zeolites materials (natural zeolite and thiol-functionalised zeolite) were added to the chemically bonded phosphate ceramic processes to treat mercury-contaminated wastes. Strong promotion effects of zeolites (natural zeolite and thiol-functionalised zeolite) on the stability of mercury in the wastes were obtained and these technologies showed promising advantages toward the traditional Portland cement process, i.e. using Portland cement as a solidification agent and natural or thiol-functionalised zeolite as a stabilisation agent. Not only is a high stabilisation efficiency (lowered the Toxicity Characteristic Leaching Procedure Hg by above 10%) obtained, but also a lower dosage of solidification (for thiol-functionalised zeolite as stabilisation agent, 0.5 g g(-1) and 0.7 g g(-1) for chemically bonded phosphate ceramic and Portland cement, respectively) and stabilisation agents (for natural zeolite as stabilisation agent, 0.35 g g(-1) and 0.4 g g(-1) for chemically bonded phosphate ceramic and Portland cement, respectively) were used compared with the Portland cement process. Treated by thiol-functionalised zeolite and chemically bonded phosphate ceramic under optimum parameters, the waste containing 1500 mg Hg kg(-1) passed the Toxicity Characteristic Leaching Procedure test. Moreover, stabilisation/solidification technology using natural zeolite and chemically bonded phosphate ceramic also passed the Toxicity Characteristic Leaching Procedure test (the mercury waste containing 625 mg Hg kg(-1)). Moreover, the presence of chloride and phosphate did not have a negative effect on the chemically bonded phosphate ceramic/thiol-functionalised zeolite treatment process; thus, showing potential for future application in treatment of 'difficult-to-manage' mercury-contaminated wastes or landfill disposal with high phosphate and chloride content. PMID:25568090

  8. Ammonium removal from high-strength aqueous solutions by Australian zeolite.

    PubMed

    Wijesinghe, D Thushari N; Dassanayake, Kithsiri B; Sommer, Sven G; Jayasinghe, Guttila Y; J Scales, Peter; Chen, Deli

    2016-07-01

    Removal of ammonium nitrogen (NH4(+)-N) particularly from sources which are highly rich in nitrogen is important for addressing environmental pollution. Zeolites, aluminosilicate minerals, are commonly used as commercial adsorbents and ion-exchange medium in number of commercial applications due to its high adsorption capacity of ammonium (NH4(+)). However, detailed investigations on NH4(+) adsorption and ion exchange capacities of Australian natural zeolites are rare, particularly under higher NH4(+) concentrations in the medium. Therefore, this study was conducted to determine NH4(+) adsorption characteristics of Australian natural zeolites at high NH4(+) concentrations with and without other chemical compounds in an aqueous solution. Results showed that initial NH4(+) concentration, temperature, reaction time, and pH of the solution had significant effects on NH4(+) adsorption capacity of zeolite. Increased retention time and temperature generally had a positive impact on adsorption. Freundlich model fitted well with adsorption process of Australian natural zeolites; however, Langmuir model had best fitted for the adsorption process of sodium (Na(+)) treated zeolites. NaCl treatment increased the NH4(+) adsorption capacity of Australian zeolites by 25% at 1000 mg-N, NH4(+) solution. The maximum adsorption capacity of both natural Australian zeolites and Na(+) treated zeolites were estimated as 9.48 and 11.83 mg-N/g, respectively, which is lower than many zeolites from other sources. Compared to the NH4(+) only medium, presence of other competitive ions and acetic acid in the medium (resembling composition in digested swine manure slurries) reduced NH4(+) removal of natural and Na(+) treated zeolites by 44% and 57%, respectively. This suggests detailed investigations are required to determine practically achievable NH4(+) -N removal potential of zeolites for applications in complex mediums such as animal manure slurries. PMID:27050255

  9. Targeting copper in cancer therapy: 'Copper That Cancer'.

    PubMed

    Denoyer, Delphine; Masaldan, Shashank; La Fontaine, Sharon; Cater, Michael A

    2015-11-01

    Copper is an essential micronutrient involved in fundamental life processes that are conserved throughout all forms of life. The ability of copper to catalyze oxidation-reduction (redox) reactions, which can inadvertently lead to the production of reactive oxygen species (ROS), necessitates the tight homeostatic regulation of copper within the body. Many cancer types exhibit increased intratumoral copper and/or altered systemic copper distribution. The realization that copper serves as a limiting factor for multiple aspects of tumor progression, including growth, angiogenesis and metastasis, has prompted the development of copper-specific chelators as therapies to inhibit these processes. Another therapeutic approach utilizes specific ionophores that deliver copper to cells to increase intracellular copper levels. The therapeutic window between normal and cancerous cells when intracellular copper is forcibly increased, is the premise for the development of copper-ionophores endowed with anticancer properties. Also under investigation is the use of copper to replace platinum in coordination complexes currently used as mainstream chemotherapies. In comparison to platinum-based drugs, these promising copper coordination complexes may be more potent anticancer agents, with reduced toxicity toward normal cells and they may potentially circumvent the chemoresistance associated with recurrent platinum treatment. In addition, cancerous cells can adapt their copper homeostatic mechanisms to acquire resistance to conventional platinum-based drugs and certain copper coordination complexes can re-sensitize cancer cells to these drugs. This review will outline the biological importance of copper and copper homeostasis in mammalian cells, followed by a discussion of our current understanding of copper dysregulation in cancer, and the recent therapeutic advances using copper coordination complexes as anticancer agents. PMID:26313539

  10. Synthesis and characterization of various zeolites and study of dynamic adsorption of dimethyl methyl phosphate over them

    SciTech Connect

    Khanday, Waheed Ahmad; Majid, Sheikh Abdul; Chandra Shekar, S.; Tomar, Radha

    2013-11-15

    Graphical abstract: Thermal desorption pattern of DMMP over various zeolites (a) 1st desorption and (b) 2nd desorption. - Highlights: • Synthesis of Zeolite-A, MCM-22, Zeolite-X and Erionite by hydrothermal method. • Zeolites were characterized by using XRD, FTIR, BET, NH{sub 3}-TPD, SEM and EDS techniques. • Dynamic adsorption of DMMP on zeolites was carried out using TPD plus chemisorption system. • Thermal desorption of DMMP on zeolites was carried using the same system. - Abstract: Zeolite-A, MCM-22, Zeolite-X and Erionite were synthesized successfully under hydrothermal conditions and were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Brunauer–Emmett–Teller (BET) surface area analysis and thermal programmed desorption (TPD). Dynamic adsorption of dimethyl methyl phosphate (DMMP) was carried out on these zeolites. Zeolite-X having high surface area among all four zeolites shows highest adsorption capacity followed by Erionite and MCM-22 where as Zeolite-A shows the least. For all zeolites adsorption was found to be high initially and it then decreases with increase in injected volume. Then desorption pattern was analyzed which shows two types of peaks, sharp peak representing desorption of physisorbed DMMP and a broad peak representing desorption of strongly chemisorbed DMMP.

  11. Volatility of copper

    SciTech Connect

    Palmer, D.A.; Simonson, J.M.; Joyce, D.B.

    1996-08-01

    The relevant aqueous thermodynamics of copper and its oxides are evaluated and summarized with emphasis on solubility, hydrolysis, and complexation. The solubilities of metallic copper, solid cuprous and cupric oxides in steam measured by Pocock and Stewart in 1963 are discussed and the latter data are fitted in the form of established empirical equations and compared to other existing results. No other sources of data were found for the solubility of copper and cupric oxide in steam and even these data are very limited. Discussion of corresponding available solubility data on both oxide phases in liquid water is given. The possible effects of complexing agents are considered. A brief discussion is provided of the role of surface adsorption in determining the fate of dissolved copper in the boiler. 37 refs., 5 figs., 3 tabs.

  12. Improved Catalysts for Heavy Oil Upgrading Based on Zeolite Y Nanoparticles Encapsulated Stable Nanoporous Host

    SciTech Connect

    Conrad Ingram; Mark Mitchell

    2007-09-30

    The objective of this project is to synthesize nanocrystals of highly acidic zeolite Y nanoclusters, encapsulate them within the channels of mesoporous (nanoporous) silicates or nanoporous organosilicates, and evaluate the 'zeolite Y/Nanoporous host' composites as catalysts for the upgrading of heavy petroleum feedstocks. In comparison to conventionally-used zeolite Y catalysts of micron size particles, the nanocrystals (< 100 nm particle size) which contain shorter path lengths, are expected to allow faster diffusion of large hydrocarbon substrates and the catalysis products within and out of the zeolite's channels and cages (<1 nm size). This is expected to significantly reduce deactivation of the catalyst and to prolong their period of reactivity. Encapsulating zeolite Y nanocrystals within the nanoporous materials is expected to protect its external surfaces and pore entrances from being blocked by large hydrocarbon substrates, since these substrates will initially be converted to small molecules by the nanoporous host (a catalyst in its own right). The project consisted of four major tasks as follows: (1) synthesis of the nanoparticles of zeolite Y (of various chemical compositions) using various techniques such as the addition of organic additives to conventional zeolite Y synthesis mixtures to suppress zeolite Y crystal growth; (2) synthesis of nanoporous silicate host materials of up to 30 nm pore diameter, using poly (alkylene oxide) copolymers which when removed will yield a mesoporous material; (3) synthesis of zeolite Y/Nanoporous Host composite materials as potential catalysts; and (4) evaluation of the catalyst for the upgrading of heavy petroleum feedstocks.

  13. Catalytic properties of decationated HTsVM and H-mordenite zeolites

    SciTech Connect

    Buisian, N.R.; Martynov, G.B.; Nikitina, G.I.; Zhemchugova, E.I.

    1986-06-01

    This paper compares the catalytic properties of decationated HTsVM zeolites and of H-mordenite in conversions of m-xylene and ethylbenzene under elevated hydrogen pressures, under conditions tending to improve the stability of operation of zeolite catalysts. For tests of catalytic activity, the zeolites were formed into granules 2 mm in diameter with gamma-alumina, which is inert in conversions of xylenes and ethylbenzene. In conversions of m-xylene and ethylbenzene under hydrogen pressure the amount of coke on the catalyst containing H-mordenite was double the amount on the catalyst containing HTsVM zeolite.

  14. First direct observation of reactive carbenes in the cavities of cation-exchanged Y zeolites.

    PubMed

    Moya-Barrios, Reinaldo; Cozens, Frances L

    2004-03-18

    [reaction: see text] Herein we report the first direct observation of reactive carbenes within the cavities of cation-exchanged Y zeolites. Chloro(phenyl)- and bromo(phenyl)carbenes were generated upon laser photolysis of 3-halo-3-phenyldiazirines incorporated within dry zeolites and the absolute reactivity of the carbenes was investigated as a function of counterbalancing cation and coincorporated quenchers in order to elucidate the behavior of these intermediates within zeolites. Product analysis performed upon thermolysis of the diazirine in Y zeolites yielded products that were identified as those derived from the carbene. PMID:15012055

  15. Fabrication of silver nanoparticles doped in the zeolite framework and antibacterial activity

    PubMed Central

    Shameli, Kamyar; Ahmad, Mansor Bin; Zargar, Mohsen; Yunus, Wan Md Zin Wan; Ibrahim, Nor Azowa

    2011-01-01

    Using the chemical reduction method, silver nanoparticles (Ag NPs) were effectively synthesized into the zeolite framework in the absence of any heat treatment. Zeolite, silver nitrate, and sodium borohydride were used as an inorganic solid support, a silver precursor, and a chemical reduction agent, respectively. Silver ions were introduced into the porous zeolite lattice by an ion-exchange path. After the reduction process, Ag NPs formed in the zeolite framework, with a mean diameter of about 2.12–3.11 nm. The most favorable experimental condition for the synthesis of Ag/zeolite nanocomposites (NCs) is described in terms of the initial concentration of AgNO3. The Ag/zeolite NCs were characterized by ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence, and Fourier transform infrared. The results show that Ag NPs form a spherical shape with uniform homogeneity in the particle size. The antibacterial activity of Ag NPs in zeolites was investigated against Gram-negative bacteria (ie, Escherichia coli and Shigella dysentriae) and Gram-positive bacteria (ie, Staphylococcus aureus and methicillin-resistant Staphylococcus aureus) by disk diffusion method using Mueller–Hinton agar at different sizes of Ag NPs. All of the synthesized Ag/zeolite NCs were found to have antibacterial activity. These results show that Ag NPs in the zeolite framework can be useful in different biological research and biomedical applications. PMID:21383858

  16. Mechanochromic luminescence of copper iodide clusters.

    PubMed

    Benito, Quentin; Maurin, Isabelle; Cheisson, Thibaut; Nocton, Gregory; Fargues, Alexandre; Garcia, Alain; Martineau, Charlotte; Gacoin, Thierry; Boilot, Jean-Pierre; Perruchas, Sandrine

    2015-04-01

    Luminescent mechanochromic materials are particularly appealing for the development of stimuli-responsive materials. Establishing the mechanism responsible for the mechanochromism is always an issue owing to the difficulty in characterizing the ground phase. Herein, the study of real crystalline polymorphs of a mechanochromic and thermochromic luminescent copper iodide cluster permits us to clearly establish the mechanism involved. The local disruption of the crystal packing induces changes in the cluster geometry and in particular the modification of the cuprophilic interactions, which consequently modify the emissive states. This study constitutes a step further toward the understanding of the mechanism involved in the mechanochromic luminescent properties of multimetallic coordination complexes. PMID:25755012

  17. Fabrication of superhydrophobic-superoleophilic copper mesh via thermal oxidation and its application in oil-water separation

    NASA Astrophysics Data System (ADS)

    Yanlong, Shi; Wu, Yang; Xiaojuan, Feng; Yongsheng, Wang; Guoren, Yue; Shuping, Jin

    2016-03-01

    A copper mesh with superhydrophobicity and superoleophilicity was fabricated via thermal oxidation and subsequent surface modification. After surface treatment, the copper mesh exhibited self-cleaning properties, striking loading capacities, and superior anticorrosion. In addition, the copper mesh could be used in a separator for separating oil from oily water with high efficiency. The presented approach may provide a promising strategy for the design and construction of superhydrophobic-superoleophilic materials which can be used for separating oil from oily water.

  18. Effect of metal on zeolite catalysts for extinction hydrocracking

    SciTech Connect

    Yan, T.Y. )

    1990-10-01

    This paper reports on the slow diffusivity of large molecules into the micropores which results in shape selectivity in the conversion of mixed feeds. The metals deposit on the zeolite, as the hydrogenation components further reduce this diffusivity through pore filling and pore mouth blocking, leading to ineffective catalysts for extinction hydrocracking. By using active metals at low loadings, these adverse effects can be minimized. To demonstrate this principle, experimental catalysts were compared. Unlike NiW/REX (REX = rare earth exchanged X-type zeolite), the experimental catalysts Pt and Pd on REX at 0.5 wt% levels were effective for the extinction hydrocracking of heavy gas oil blends. There was no heavy-end buildup in the recycle feed. The catalysts were active, low in aging rate, and high in selectivity for naphthas.

  19. Application of zeolites for radium removal from mine water.

    PubMed

    Chałupnik, Stanisław; Franus, Wojciech; Wysocka, Małgorzata; Gzyl, Grzegorz

    2013-11-01

    For removal of radium from saline waters in Upper Silesian mines, several methods of purification have been developed. The most efficient one is based on application of barium chloride, which was implemented in full technical scale in two Polish coal mines several years ago. Very good results of purification have been achieved-the removal efficiency exceeding 95% of the initial activity. Another possibility for the removal of different ions from salty waters and brines is the application of zeolites. We found that technique as a very promising method for removal of not only radium isotopes from mine waters but also other ions (barium, iron, manganese). Treatment of several various water samples has been done to assess the removal efficiency for natural radionuclides. Preliminary results show very good effects for radium isotopes as well as for barium ions. In the paper, a short description of laboratory results of the purification of mine waters with application of synthetic zeolites is presented. PMID:23881589

  20. Thermodynamics of nitrogen adsorption on the zeolite H-FER

    NASA Astrophysics Data System (ADS)

    Rodríguez Delgado, M.; Otero Areán, C.

    2007-04-01

    Adsorption (at a low temperature) of nitrogen on the protonic zeolite H-FER results in hydrogen bonding of the adsorbed N 2 molecules with the zeolite Si(OH)Al Brønsted acid groups. This hydrogen bonding interaction leads to activation, in the IR, of the fundamental N sbnd N stretching mode, which appears at 2331 cm -1. From the infrared spectra taken over a temperature range, while simultaneously recording integrated IR absorbance, temperature and nitrogen equilibrium pressure, the thermodynamics of the adsorption process was studied. The standard adsorption enthalpy and entropy resulted to be Δ H° = -20(±1) kJ mol -1 and Δ S° = -131(±10) J mol -1 K -1, respectively.

  1. GREEN CHEMISTRY. Shape-selective zeolite catalysis for bioplastics production.

    PubMed

    Dusselier, Michiel; Van Wouwe, Pieter; Dewaele, Annelies; Jacobs, Pierre A; Sels, Bert F

    2015-07-01

    Biodegradable and renewable polymers, such as polylactic acid, are benign alternatives for petrochemical-based plastics. Current production of polylactic acid via its key building block lactide, the cyclic dimer of lactic acid, is inefficient in terms of energy, time, and feedstock use. We present a direct zeolite-based catalytic process, which converts lactic acid into lactide. The shape-selective properties of zeolites are essential to attain record lactide yields, outperforming those of the current multistep process by avoiding both racemization and side-product formation. The highly productive process is strengthened by facile recovery and practical reactivation of the catalyst, which remains structurally fit during at least six consecutive reactions, and by the ease of solvent and side-product recycling. PMID:26138977

  2. NMR Studies of Quantum Rotors Confined in Zeolite

    NASA Astrophysics Data System (ADS)

    Ji, Yu; Hamida, J. A.; Sullivan, N. S.

    2010-02-01

    We report the results of NMR studies of methane trapped in zeolite at low temperatures. Samples were prepared to contain 1.0±0.2 molecules per α-sodalite cage of zeolite-13X. The NMR spin-spin and spin-lattice relaxation times were measured for 4< T<95 K to determine the rotational dynamics of the molecules and the dependence on the concentration of the A, T and E-molecular species. The results are discussed relative to recent Monte Carlo calculations that show that the molecules are localized but free to tumble in the large α-cages at low temperatures. At higher temperatures there is an effective melting of the translational degrees of freedom for the lattice formed by the centers of the supercages. A sharp definitive jump in the NMR spin-spin relaxation is seen at this “melting” transition.

  3. Template-free nanosized faujasite-type zeolites

    NASA Astrophysics Data System (ADS)

    Awala, Hussein; Gilson, Jean-Pierre; Retoux, Richard; Boullay, Philippe; Goupil, Jean-Michel; Valtchev, Valentin; Mintova, Svetlana

    2015-04-01

    Nanosized faujasite (FAU) crystals have great potential as catalysts or adsorbents to more efficiently process present and forthcoming synthetic and renewable feedstocks in oil refining, petrochemistry and fine chemistry. Here, we report the rational design of template-free nanosized FAU zeolites with exceptional properties, including extremely small crystallites (10-15 nm) with a narrow particle size distribution, high crystalline yields (above 80%), micropore volumes (0.30 cm3 g-1) comparable to their conventional counterparts (micrometre-sized crystals), Si/Al ratios adjustable between 1.1 and 2.1 (zeolites X or Y) and excellent thermal stability leading to superior catalytic performance in the dealkylation of a bulky molecule, 1,3,5-triisopropylbenzene, probing sites mostly located on the external surface of the nanosized crystals. Another important feature is their excellent colloidal stability, which facilitates a uniform dispersion on supports for applications in catalysis, sorption and thin-to-thick coatings.

  4. Template-free nanosized faujasite-type zeolites.

    PubMed

    Awala, Hussein; Gilson, Jean-Pierre; Retoux, Richard; Boullay, Philippe; Goupil, Jean-Michel; Valtchev, Valentin; Mintova, Svetlana

    2015-04-01

    Nanosized faujasite (FAU) crystals have great potential as catalysts or adsorbents to more efficiently process present and forthcoming synthetic and renewable feedstocks in oil refining, petrochemistry and fine chemistry. Here, we report the rational design of template-free nanosized FAU zeolites with exceptional properties, including extremely small crystallites (10-15 nm) with a narrow particle size distribution, high crystalline yields (above 80%), micropore volumes (0.30 cm(3) g(-1)) comparable to their conventional counterparts (micrometre-sized crystals), Si/Al ratios adjustable between 1.1 and 2.1 (zeolites X or Y) and excellent thermal stability leading to superior catalytic performance in the dealkylation of a bulky molecule, 1,3,5-triisopropylbenzene, probing sites mostly located on the external surface of the nanosized crystals. Another important feature is their excellent colloidal stability, which facilitates a uniform dispersion on supports for applications in catalysis, sorption and thin-to-thick coatings. PMID:25559425

  5. Modified Asphalt Binder with Natural Zeolite for Warm Mix Asphalt

    NASA Astrophysics Data System (ADS)

    Dubravský, Marián; Mandula, Ján

    2015-11-01

    In recent years, warm mix asphalt (WMA) is becoming more and more used in the asphalt industry. WMA provide a whole range of benefits, whether economic, environmental and ecological. Lower energy consumption and less pollution is the most advantages of this asphalt mixture. The paper deals with the addition of natural zeolite into the sub base asphalt layers, which is the essential constituent in the construction of the road. Measurement is focused on basic physic - mechanical properties declared according to the catalog data sheets. The aim of this article is to demonstrate the ability of addition the natural zeolite into the all asphalt layers of asphalt pavement. All asphalt mixtures were compared with reference asphalt mixture, which was prepared in reference temperature.

  6. Shape-selective zeolite catalysis for bioplastics production

    NASA Astrophysics Data System (ADS)

    Dusselier, Michiel; Van Wouwe, Pieter; Dewaele, Annelies; Jacobs, Pierre A.; Sels, Bert F.

    2015-07-01

    Biodegradable and renewable polymers, such as polylactic acid, are benign alternatives for petrochemical-based plastics. Current production of polylactic acid via its key building block lactide, the cyclic dimer of lactic acid, is inefficient in terms of energy, time, and feedstock use. We present a direct zeolite-based catalytic process, which converts lactic acid into lactide. The shape-selective properties of zeolites are essential to attain record lactide yields, outperforming those of the current multistep process by avoiding both racemization and side-product formation. The highly productive process is strengthened by facile recovery and practical reactivation of the catalyst, which remains structurally fit during at least six consecutive reactions, and by the ease of solvent and side-product recycling.

  7. Double rotation NMR studies of zeolites and aluminophosphate molecular sieves

    SciTech Connect

    Jelinek, R. |

    1993-07-01

    Goal is to study the organization and structures of guest atoms and molecules and their reactions on internal surfaces within pores of zeolites and aluminophosphate molecular sieves. {sup 27}Al and {sup 23}Na double rotation NMR (DOR) is used since it removes the anisotropic broadening in NMR spectra of quadrupolar nuclei, thus increasing resolution. This work concentrates on probing aluminum framework atoms in aluminophosphate molecular sieves and sodium extra framework cations in porous aluminosilicates. In aluminophosphates, ordering and electronic environments of the framework {sup 27}Al nuclei are modified upon adsorption of water molecules within the channels; a relation is sought between the sieve channel topology and the organization of adsorbed water, as well as the interaction between the Al nuclei and the water molecules. Extra framework Na{sup +} cations are directly involved in adsorption processes and reactions in zeolite cavities.

  8. Inelastic X-ray Scattering Studies of Zeolite Collapse

    SciTech Connect

    Greaves, G. Neville; Kargl, Florian; Ward, David; Holliman, Peter; Meneau, Florian

    2009-01-29

    In situ inelastic x-ray scattering (IXS) experiments have been used to probe heterogeneity and deformability in zeolte Y as this thermally collapses to a high density amorphous (HDA) aluminosilicate phase. The Landau-Placzek ratio R{sub LP} falls slowly as amorphisation advances, increasing in the later stages of collapse clearly showing how homogeneity improves non-linearly--behaviour linked closely with the decline in molar volume V{sub Molar}. The Brillouin frequency {omega}{sub Q} also decreases with amorphisation in a similar fashion, signifying a non-uniform decrease in the speed of sound v{sub l}. All of these changes with zeolite amorphisation infer formation of an intermediate low density amorphous (LDA) phase. This low entropy or 'perfect glass' has mechanical properties which are closer to the zeolite rather to the HDA glass--notably a very small value of Poisson's Ratio signifying unusually low resistance to deformation.

  9. Disruption of Bacterial Cells by a Synthetic Zeolite

    PubMed Central

    Wistreich, George; Lechtman, Max D.; Bartholomew, J. W.; Bils, R. F.

    1968-01-01

    The use of a synthetic zeolite (type 4A, Union Carbide Corp., Linde Div., New York, N.Y.) in a procedure for the preparation of pure cell wall fractions proved successful for many gram-positive, gram-negative, and acid-fast bacteria, as well as for some fungi. The technique, however, was found to be limited in effectiveness for Rhodospirillum rubrum, Gaffkya tetragena, and Sarcina lutea, and not applicable to preparations of heat killed microorganisms. The possible mechanisms of zeolite action, together with the effect of the disruptive procedure on the chemical composition of cell wall fragments, were investigated also. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:4877657

  10. Adsorption of methanol in zeolite, gallosilicate and SAPO catalysts

    NASA Astrophysics Data System (ADS)

    Limtrakul, Jumras

    1995-04-01

    Methanol adsorption in zeolite, gallosilicate and silicoaluminophosphate (SAPO) catalysts has been investigated within the framework of ab initio molecular orbital calculations. Full optimization of all cluster models and their complexes has been carried out at the DZP/SCF level of theory. Physisorbed methanol and methoxonium cation complexed to the framework catalyst are found for SAPO catalysts, the latter complexes are observed only at high coverages, while only hydrogen-bonded physisorbed methanol complexes are obtained for gallosilicates and zeolitic catalysts. The conversion energy of the hydrogen-bonded physisorbed structure, H 3SiOHAl(OH) 2OPH 3/[CH 3OH] 2 to the methoxonium structure, H 3SiOAl(OH) 2OPH 3]/[CH 3OH 2+][CH 3OH], is about 6.69 kcal/mol. Comparison with hydrogen halides and related complexes of methanol shows that protonated SAPO/methanol is a very strong acid.

  11. Acid centers and catalytic activity of high-silica zeolites

    SciTech Connect

    Chukin, G.O.; Khusid, B.L.; Lupina, M.I.; Zhdan, P.A.; Nefedov, B.K.

    1988-04-01

    The physicochemical properties of the H form of the high-silica zeolites TsVK-I, TsVK-XI, and TsVM have been studied and data on their catalytic properties in m-xylene isomerization reaction have been obtained by IRS and XPES. It was found that the zeolites have B and L acid centers localized on the outer and inner surfaces of their channels and that the number of B centers localized inside the channels and the selectivity of the reaction yielding p-xylene diminish in the order TsVK-I > TsVK-XI > TsVM. Heat and steam treatment increase the selectivity of p-xylene production on account of restriction of the acid centers on the outer surface.

  12. Copper tolerance and copper accumulation of herbaceous plants colonizing inactive California copper mines

    SciTech Connect

    Kruckeberg, A.L.; Wu, L. )

    1992-06-01

    Herbaceous plant species colonizing four copper mine waste sites in northern California were investigated for copper tolerance and copper accumulation. Copper tolerance was found in plant species colonizing soils with high concentrations of soil copper. Seven of the eight plant species tested were found at more than one copper mine. The mines are geographically isolated, which makes dispersal of seeds from one mine to another unlikely. Tolerance has probably evolved independently at each site. The nontolerant field control population of Vulpia microstachya displays significantly higher tolerance to copper at all copper concentration levels tested than the nontolerant Vulpia myrous population, and the degree of copper tolerance attained by V. microstachya at the two copper mines was much greater than that found in V. myrous. It suggests that even in these two closely related species, the innate tolerance in their nontolerant populations may reflect their potential for evolution of copper tolerance and their ability to initially colonize copper mine waste sites. The shoot tissue of the copper mine plants of Arenaria douglasii, Bromous mollis, and V. microstachya accumulated less copper than those plants of the same species from the field control sites when the two were grown in identical conditions in nutrient solution containing copper. The root tissue of these mine plants contain more copper than the roots of the nonmine plants. This result suggests that exclusion of copper from the shoots, in part by immobilization in the roots, may be a feature of copper tolerance. No difference in the tissue copper concentration was detected between tolerant and nontolerant plants of Lotus purshianus, Lupinus bicolor, and Trifolium pratense even though the root tissue had more copper than the leaves.

  13. Generalized statistical model for multicomponent adsorption equilibria on zeolites

    SciTech Connect

    Rota, R.; Gamba, G.; Paludetto, R.; Carra, S.; Morbidelli, M. )

    1988-05-01

    The statistical thermodynamic approach to multicomponent adsorption equilibria on zeolites has been extended to nonideal systems, through the correction of cross coefficients characterizing the interaction between unlike molecules. Estimation of the model parameters requires experimental binary equilibrium data. Comparisons with the classical model based on adsorbed solution theory are reported for three nonideal ternary systems. The two approaches provide comparable results in the simulation of binary and ternary adsorption equilibrium data at constant temperature and pressure.

  14. Laser-induced fluorescence of quinoline adsorbed on acidic zeolites

    NASA Astrophysics Data System (ADS)

    Lalo, C.; Deson, J.; Gédéon, A.; Fraissard, J.

    1997-11-01

    Laser-induced fluorescence spectra of quinoline adsorbed on different forms of acidic Y zeolite reveal interactions between the adsorbate and different polarizing sites in the supercages. Brønsted acid sites protonate quinoline whereas Lewis acid sites appear to give a charge-transfer complex whose fluorescence is strongly red-shifted compared to that of the quinolinium ion. An unstable hydrogen-bonded complex is formed with non-acidic silanol groups.

  15. Design of efficient zeolite sensor materials for n-hexane.

    PubMed

    Yang, Ping; Ye, Xingnan; Lau, Choiwan; Li, Zengxi; Liu, Xia; Lu, Jianzhong

    2007-02-15

    The effectiveness of several zeolite catalysts was investigated using the cataluminescence (CTL) gas sensor system. Trace amounts of n-hexane in air samples were detected by this method. This research establishes that the specific pore size of the zeolite offers designable environment for selective CTL reaction, and "Lewis-type" basic sites appear to contribute to the catalytic nature of the zeolite surface. By incorporating either Cs+ or K+, the velocity and luminescence intensity of these catalytic reactions increase while going from Na to Cs, according to the basic nature of this group of cations in the following order: Cs > K > Na. The proposed sensor shows high sensitivity and selectivity to n-hexane at a mild reaction temperature of 225 degrees C. Quantitative analysis was performed at a selected wavelength of 460 nm. The linear range of CTL intensity versus concentration of n-hexane was 0.776-23.28 microg/mL (R = 0.997, n = 7) on CsNaY, and 0.776-23.28 microg/mL (R = 0.998, n = 7) on CsNaX, with a detection limit of 0.155 microg/mL (signal-to-noise ratio 3). Interferences from foreign substances such as methanol, ethanol, 2-propanol, acetone, acetonitrile, chloroform, or dichlormethane and other alkanes, aromatics, and alkyl aromatics such as methane, n-pentane, 3-methylpentane, 3,3-dimethylpentane, methylbenzene, ethylbenzene, and sec-butylbenzene were very low or not detectable. Results of a series of GC and GC/MS experiments suggest that the possible mechanism of the reaction is the formation of an unstable transition structure with a four-member ring, and this ring most probably consists of an oxygen atom and a carbonium ion localized on the zeolite suface. PMID:17297941

  16. Adsorption of methane, ethane, and ethylene on zeolite

    SciTech Connect

    Berlier, K.; Olivier, M.G.; Jadot, R.

    1995-11-01

    Adsorption isotherms at 283 and 303 K of methane, ethane, and ethylene on zeolite G5 have been obtained. Measurements have been made at pressures up to 1,200 kPa using an automated apparatus based on the volumetric method. This study is linked to a modeling interest because of the structure simplicity of the adsorbate molecules and because of the known geometric structure of the adsorbent.

  17. Magic-angle-spinning NMR studies of zeolite SAPO-5

    NASA Astrophysics Data System (ADS)

    Freude, D.; Ernst, H.; Hunger, M.; Pfeifer, H.; Jahn, E.

    1988-01-01

    SAPO-5 was synthesized using triethylamine as template. Magic-angle-spinning (MAS) NMR of 1H, 27Al, 29Si and 31P was used to study the silicon incorporation into the framework and the nature of the Brønsted sites. 1H MAS NMR shows two types of bridging hydroxyl groups. 29Si MAS NMR indicates that silicon substitutes mostly for phosphorus and that there is a small amount of crystalline SiO 2 in the zeolite powder.

  18. Mesopore quality determines the lifetime of hierarchically structured zeolite catalysts

    NASA Astrophysics Data System (ADS)

    Milina, Maria; Mitchell, Sharon; Crivelli, Paolo; Cooke, David; Pérez-Ramírez, Javier

    2014-05-01

    Deactivation due to coking limits the lifetime of zeolite catalysts in the production of chemicals and fuels. Superior performance can be achieved through hierarchically structuring the zeolite porosity, yet no relation has been established between the mesopore architecture and the catalyst lifetime. Here we introduce a top-down demetallation strategy to locate mesopores in different regions of MFI-type crystals with identical bulk porous and acidic properties. In contrast, well-established bottom-up strategies as carbon templating and seed silanization fail to yield materials with matching characteristics. Advanced characterization tools capable of accurately discriminating the mesopore size, distribution and connectivity are applied to corroborate the concept of mesopore quality. Positron annihilation lifetime spectroscopy proves powerful to quantify the global connectivity of the intracrystalline pore network, which, as demonstrated in the conversions of methanol or of propanal to hydrocarbons, is closely linked to the lifetime of zeolite catalysts. The findings emphasize the need to aptly tailor hierarchical materials for maximal catalytic advantage.

  19. Hydrocracking process utilizing a catalyst having a reduced zeolite content

    SciTech Connect

    Abdo, S.F.

    1989-08-15

    This patent describes a process for refining hydrocarbon feedback containing organonitrogen components, organosulfur components or a mixture thereof. The process comprises: contacting the feedback with molecular hydrogen under hydrotreating conditions in the presence of a hydrotreating catalyst comprising a Group VIB metal component and a Group VIII metal component such that a subtantial proportion of the organonitrogen components, organosulfur components or mixture thereof is converted to ammonia, hydrogen sulfide or a mixture thereof; contacting substantially all of the effluent from the first step with molecular hydrogen in a first hydrocracking zone in the presence of a first hydrocracking catalyst comprising a zeolite and a hydrogeneration component to produce a hydrocracking product of substantially lower boiling point; separating the hydrocracking product into a higher boiling fraction and a lower boiling fraction; contacting the higher boiling fraction with molecular hydrogen in a second hydrocracking zone under hydrocracking conditions in an atmosphere which contains no more than about 200 ppmv ammonia and in the presence of a second hydrocracking catalyst to convert the higher boiling fraction into lower boiling products. The second hydrocracking catalysts comprises; a porous, inorganic refractory oxide component; and between about 40 weight percent and about 70 weight percent of a crystalline aluminosilicate Y zeolite having a silica-to-alumina mole ratio above about 6.0 intimately mixed with the refractory oxide component. The crystalline aluminosilicate Y zeolite having been ion-exchanged with Group VIII noble metal cations.

  20. Zeolites on Mars: Possible environmental indicators in soils and sediments

    NASA Technical Reports Server (NTRS)

    Ming, D. W.; Gooding, J. L.

    1988-01-01

    Weathering products should serve as indicators of weathering environments and may provide the best evidence of the nature of climate change on Mars. No direct mineralogical measurements of Martian regolith were performed by the Viking missions, but the biology and X-ray fluorescence experiments provided some information on the physiochemical properties of Martian regolith. Most post-Viking studies of candidate weathering products have emphasized phyllosilicates and Fe-oxides; zeolites are potentially important, but overlooked, candidate Martian minerals. Zeolites would be important on Mars for three different reasons. First, they are major sinks of atmospheric gases and, per unit mass, are stronger and more efficient sorbents than are phyllosilicates. Secondly, they can be virtually unique sorbents and shelters for organic compounds and possible catalysts for organic-based reactions. Finally, their exchangeable ions are good indicators of the chemical properties of solutions with which they have communicated. Accordingly, the search for information on past compositions of the Martian atmosphere and hydrosphere should find zeolites to be rich repositories.

  1. Synthetic zeolites and other microporous oxide molecular sieves.

    PubMed

    Sherman, J D

    1999-03-30

    Use of synthetic zeolites and other microporous oxides since 1950 has improved insulated windows, automobile air-conditioning, refrigerators, air brakes on trucks, laundry detergents, etc. Their large internal pore volumes, molecular-size pores, regularity of crystal structures, and the diverse framework chemical compositions allow "tailoring" of structure and properties. Thus, highly active and selective catalysts as well as adsorbents and ion exchangers with high capacities and selectivities were developed. In the petroleum refining and petrochemical industries, zeolites have made possible cheaper and lead-free gasoline, higher performance and lower-cost synthetic fibers and plastics, and many improvements in process efficiency and quality and in performance. Zeolites also help protect the environment by improving energy efficiency, reducing automobile exhaust and other emissions, cleaning up hazardous wastes (including the Three Mile Island nuclear power plant and other radioactive wastes), and, as specially tailored desiccants, facilitating the substitution of new refrigerants for the ozone-depleting chlorofluorocarbons banned by the Montreal Protocol. PMID:10097059

  2. Design of zeolite ion-exchange columns for wastewater treatment

    SciTech Connect

    Robinson, S.M.; Arnold, W.D.; Byers, C.H.

    1991-01-01

    Oak Ridge National Laboratory plans to use chabazite zeolites for decontamination of wastewater containing parts-per-billion levels of {sup 90}Sr and {sup 137}Cs. Treatability studies indicate that such zeolites can remove trace amounts of {sup 90}Sr and {sup 137}Cs from wastewater containing high concentrations of calcium and magnesium. These studies who that zeolite system efficiency is dependent on column design and operating conditions. Previous results with bench-scale, pilot-scale, and near-full-scale columns indicate that optimized design of full-scale columns could reduce the volume of spent solids generation by one-half. The data indicate that shortcut scale-up methods cannot be used to design columns to minimize secondary waste generation. Since the secondary waste generation rate is a primary influence on process cost effectiveness, a predictive mathematical model for column design is being developed. Equilibrium models and mass-transfer mechanisms are being experimentally determined for isothermal multicomponent ion exchange (Ca, Mg, Na, Cs, and Sr). Mathematical models of these data to determine the breakthrough curves for different column configurations and operating conditions will be used to optimize the final design of full-scale treatment plant. 32 refs., 6 figs., 3 tabs.

  3. Synthetic zeolites and other microporous oxide molecular sieves

    PubMed Central

    Sherman, John D.

    1999-01-01

    Use of synthetic zeolites and other microporous oxides since 1950 has improved insulated windows, automobile air-conditioning, refrigerators, air brakes on trucks, laundry detergents, etc. Their large internal pore volumes, molecular-size pores, regularity of crystal structures, and the diverse framework chemical compositions allow “tailoring” of structure and properties. Thus, highly active and selective catalysts as well as adsorbents and ion exchangers with high capacities and selectivities were developed. In the petroleum refining and petrochemical industries, zeolites have made possible cheaper and lead-free gasoline, higher performance and lower-cost synthetic fibers and plastics, and many improvements in process efficiency and quality and in performance. Zeolites also help protect the environment by improving energy efficiency, reducing automobile exhaust and other emissions, cleaning up hazardous wastes (including the Three Mile Island nuclear power plant and other radioactive wastes), and, as specially tailored desiccants, facilitating the substitution of new refrigerants for the ozone-depleting chlorofluorocarbons banned by the Montreal Protocol. PMID:10097059

  4. Solid State NMR Investigations of Zeolite - Intercalate Structures

    SciTech Connect

    Fyfe, Colin A.; Diaz, Anix; Brouwer, Darren H.; Lee, Joseph; Schneider, Celine M.; Scheffler, Franziska A.; Darton, Richard J.

    2006-07-24

    We will describe two topics in which structural information on complexes of zeolites is obtained from solid state NMR. In the first, recent work on the determination of the complete three-dimensional structures of the complexes of zeolites with organic sorbates will be briefly reported. The method has been optimized and the presentation of the results systematized. In the second topic, we will describe how solid state NMR can be used in the reverse sense to probe for the existence and structures of “nanocrystals” whose dimensions are too small to give proper Bragg scattering and which have been proposed to be the synthesis route for the formation of zeolite ZSM-5. In this study, the spectral parameters of “probe” template molecules are used as being diagnostic of whether the local environment of the framework has been formed. These are independent of the “crystal” dimensions and this general approach may be applicable to other similar “nano” systems.

  5. Anchoring strategies for bimetallic species in zeolites. Progress report

    SciTech Connect

    Bein, T.

    1993-03-01

    We explore a new approach by introducing heterobinuclear organometallic compounds for linking catalytic functions to zeolite frameworks. With two different metals present, the complexes are being anchored to the support via one oxophilic metal, ligand exchange and catalytic reactions may proceed at the second metal center. Anchoring chemistry, thermal stability and reactivity of Me{sub 3}SnMn(CO){sub 5} in zeolite NaY and acid forms of zeolite Y was studied with X-ray absorption spectroscopy (Sn, Mn edge EXAFS) and in-situ FTIR/TPD-MS techniques. Subsequently, the tin-cobalt complex Me{sub 3}SnCo(CO){sub 4} has been a focus of detailed synthetic and spectroscopic studies. The reactivity of tricarbonyl (cyclopentadienyl) (trimethylstannyl) molybdenum in new mesoporous hosts has been explored. A recent development is the design of vanadium oxo species in different micro- and mesoporous hosts. These are of great interest for the selective reduction of nitrogen oxides by ammonia, and selective oxidation of different hydrocarbons, such as xylenes, olefines and alkanes. Combination analytical techniques used to probe local structural changes at the molecular level, include EXAFS (Extended X-Ray Absorption Fine Structure) spectroscopy utilizing synchrotron radiation, in situ FT-IR coupled to thermodesorption/MS, UV-NIR, and CCD Raman.

  6. Correlations for Adsorption of Oxygenates onto Zeolites from Aqueous Solutions

    SciTech Connect

    Mallon, Elizabeth E.; Babineau, Ian J.; Kranz, Joshua I.; Guefrachi, Yasmine; Siepmann, J. Ilja; Bhan, Aditya; Tsapatsis, Michael

    2011-10-06

    Henrys constants (K{sub ads}) for adsorption of C? polyfunctional molecules onto zeolites from aqueous solutions at 278 K were obtained and compared with the octanolwater partition coefficients, K{sub ow}, which were calculated using the prevalent ClogP group contribution method. K{sub ads} increases linearly with K{sub ow} for these adsorbates on HZSM-5 (MFI), FAU, BEA, and ITQ-1 (MWW). K{sub ads} values for C?C? diol adsorption at 278 K are also linearly correlated with K{sub ow} regardless of interactions in the bulk phase as measured by the solution activity coefficient. Exceptions to the correlation established between K{sub ads} and K{sub ow} are the adsorption of 1,2,?-triols with carbon number greater than three on HZSM-5 and adsorption of all oxygenates studied on FER, which we postulate to be due to the effect of changing adsorption configuration with adsorbate/zeolite structure which cannot be captured by K{sub ow} alone. These results enable the prediction of separation selectivities of biomass-derived compounds on zeolite adsorbents.

  7. The safety of synthetic zeolites used in detergents.

    PubMed

    Fruijtier-Plloth, Claudia

    2009-01-01

    Synthetic zeolites are replacing phosphates as builders in laundry detergents; workers and consumers may, therefore, increasingly be exposed to these materials and it is important to assess their safety. This article puts mechanistic, toxicological and exposure data into context for a safety assessment. Zeolites are hygroscopic compounds with ion-exchanging properties. They may partially decompose under acidic conditions such as in the stomach releasing sodium ions, silicic acid and aluminum salts. The intact molecule is not bioavailable after oral intake or exposure through the dermal and inhalational routes. Under current conditions of manufacture and use, no systemic toxicity is to be expected from neither the intact molecule nor the degradation products; a significant effect on the bioavailability of other compounds is not likely. Zeolites may cause local irritation. It is, therefore, important to minimise occupational exposure. The co-operation of detergent manufacturers with the manufacturers of washing machines is necessary to find the right balance between environmental aspects such as energy and water savings and the occurrence of detergent residues on textiles due to insufficient rinsing. PMID:18563391

  8. Hydrodenitrogenation of quinoline with Y-type zeolite catalyst

    SciTech Connect

    Yu, C.

    1988-01-01

    Hydrodenitrogenation of hetero-nitrogen compounds in petroleum crudes and in synthetic liquids derived from oil shale and coal is studied by using quinoline as a model nitrogen containing compound and benzene as a diluent. Both the external and internal mass transfer rates in the Ni-W Y-type zeolite have been calculated in order to determine the possibility of diffusion limitations. Kinetic data were taken from a continuous-flow Berty-type reactor at 34 to 72 bars, 350 to 460 C, and hydrogen mol fraction from 25 to 90%. Hydrogenation of the solvent benzene is negligible unless the nitrogen reactant is highly denitrogenated. Catalyst deactivation and reactivation occurred during the experimental operations. A number of derivatives were found in the produce as a result of the high hydrogenation ability of Ni-W Y-type zeolite. Saturation of aromatic heterocyclics approached reaction equilibria quickly at certain reaction conditions. A Langmuir-Hinshelwood model was used to account for kinetic behavior, and the Redlich-Kwong EOS was used to consider nonideal gas behavior. A prediction algorithm based on the simplification of the HDN network reproduced the experimental data well. Reaction in the presence of high concentration hydrogen sulfide inhibits hydrogenation and causes a slight decrease in the overall quinoline HDN reaction rate. In comparing HDN reaction rates between the Ni-W Y-type zeolite catalyst and the commercial HDS3A alumina type catalyst, the former one shows higher denitrogenation activity at high hydrogen partial pressure conditions.

  9. Hierarchical Porous Zeolite Structures for Pressure Swing Adsorption Applications.

    PubMed

    Besser, Benjamin; Tajiri, Henrique Akira; Mikolajczyk, Gerd; Möllmer, Jens; Schumacher, Thomas C; Odenbach, Stefan; Gläser, Roger; Kroll, Stephen; Rezwan, Kurosch

    2016-02-10

    Porous adsorbents with hierarchical structured macropores ranging from 1 to 100 μm are prepared using a combination of freeze casting and additional sacrificial templating of polyurethane foams, with a zeolite 13X powder serving as adsorbent. The pore system of the prepared monoliths features micropores assigned to the zeolite 13X particle framework, interparticular pores of ∼1-2 μm, lamellar pores derived from freeze casting of ∼10 μm, and an interconnected pore network obtained from the sacrificial templates ranging from around 100 to 200 μm with a total porosity of 71%. Gas permeation measurements show an increase in intrinsic permeability by a factor of 14 for monoliths prepared with an additional sacrificial templated foam compared to monoliths solely providing freeze casting pores. Cyclic CO2 adsorption and desorption tests where pressure swings between 8 and 140 kPa reveal constant working capacities over multiple cycles. Furthermore, the monoliths feature a high volumetric working capacity of ∼1.34 mmol/cm(3) which is competitive to packed beds made of commercially available zeolite 13X beads (∼1.28 mmol/cm(3)). Combined with the faster CO2 uptake showing an adsorption of 50% within 5-8 s (beads ∼10 s), the monoliths show great potential for pressure swing adsorption applications, where high volumetric working capacities, fast uptakes, and low pressure drops are needed for a high system performance. PMID:26760054

  10. Core-shell strain structure of zeolite microcrystals

    NASA Astrophysics Data System (ADS)

    Cha, Wonsuk; Jeong, Nak Cheon; Song, Sanghoon; Park, Hyun-Jun; Thanh Pham, Tung Cao; Harder, Ross; Lim, Bobae; Xiong, Gang; Ahn, Docheon; McNulty, Ian; Kim, Jungho; Yoon, Kyung Byung; Robinson, Ian K.; Kim, Hyunjung

    2013-08-01

    Zeolites are crystalline aluminosilicate minerals featuring a network of 0.3-1.5-nm-wide pores, used in industry as catalysts for hydrocarbon interconversion, ion exchangers, molecular sieves and adsorbents. For improved applications, it is highly useful to study the distribution of internal local strains because they sensitively affect the rates of adsorption and diffusion of guest molecules within zeolites. Here, we report the observation of an unusual triangular deformation field distribution in ZSM-5 zeolites by coherent X-ray diffraction imaging, showing the presence of a strain within the crystal arising from the heterogeneous core-shell structure, which is supported by finite element model calculation and confirmed by fluorescence measurement. The shell is composed of H-ZSM-5 with intrinsic negative thermal expansion whereas the core exhibits a different thermal expansion behaviour due to the presence of organic template residues, which usually remain when the starting materials are insufficiently calcined. Engineering such strain effects could have a major impact on the design of future catalysts.

  11. Smart epoxy coating containing Ce-MCM-22 zeolites for corrosion protection of Mg-Li alloy

    NASA Astrophysics Data System (ADS)

    Wang, Yanli; Zhu, Yanhao; Li, Chao; Song, Dalei; Zhang, Tao; Zheng, Xinran; Yan, Yongde; Zhang, Meng; Wang, Jun; Shchukin, Dmitry G.

    2016-04-01

    The epoxy coatings containing MCM-22 and Ce-MCM-22 zeolites were prepared by coating method on the Mg-Li alloy surface. The influence of MCM-22 and Ce-MCM-22 zeolites on corrosion protection of the epoxy coating was studied. The epoxy coating containing Ce-MCM-22 zeolites showed high corrosion resistance. Artificial defects in the epoxy coating containing Ce-MCM-22 zeolites on the Mg-Li surface were produced by the needle punching. The results show that the epoxy coating containing Ce-MCM-22 zeolites exhibits self-healing corrosion inhibition capabilities. It is ascribed to the fact that the Ce3+ ions are released from MCM-22 zeolites based on ion exchange of zeolite in the corrosion process of the Mg-Li alloy substrate. MCM-22 zeolites as reservoirs provided a prolonged release of cerium ions.

  12. Influence of cracking of thiols on zeolite life during removal of Sulfur compounds from natural gas by adsorption

    SciTech Connect

    Kuzmenko, N.M.; Afasasev, Y.M.; Budkina, M.I.; Gerasimova, N.E.

    1986-03-10

    This paper studies the kinetics of coke deposition of NaX zeolite as the result of decomposition of ethanethiol and estimates the loss of the adsorption capacity of the zeolite due to coking. The decrease of the adsorption capacity as a function of the coke content (mass %) is shown in NaX zeolite. The zeolites were laboratory samples obtained under various conditions and zeolites taken from adsorbers in the plant for removing thiols from natural gas. The accumulation of coke in the zeolite as the result of decomposition of thiols at different temperatures is shown. It is shown that the rate of coke accumulation in the zeolite drops sharply with decrease of temperature, and the process virtually stops at 200 degrees. In order to lengthen the service life regeneration of the zeolite desorption should take place of most of the thiols at 200-220 degrees, followed by increase of the bed temperature to 300-320 degrees.

  13. Development of Zeolite Nonwoven for the Adsorption of Radioactive Cesium - 13288

    SciTech Connect

    Murao, Ayako; Nakai, Tomonori; Mimura, Hitoshi; Miura, Teruo; Aoyama, Yoshihito

    2013-07-01

    The zeolite nonwoven fabric produced by TDS (Totally Dry System) process has some advantages such as the control of zeolite content, flexibility, strength and water-resistant property depending on the purpose. Hence the zeolite nonwoven fabric is expected for the application in various fields of the decontamination of Cs-contaminated water. In this study, Cs adsorption properties of zeolite nonwoven fabrics were examined by batch experiments, and the radiation stability, thermal stability and chemical durability were evaluated. As for batch adsorption properties, relatively large uptake rate of Cs{sup +} was obtained; the uptake equilibrium attained within 20 min and the uptake (%) was above 95%. The differences in zeolite content had no effects on the Cs{sup +} uptake (%). The uptake (%) of Cs{sup +} in seawater was slightly lowered compared to that in the presence of HNO{sub 3}. The uptake (%) of Cs{sup +} in seawater was estimated to be above 90% after 2 h-shaking, indicating the considerable enhancement of uptake rate compared to the conventional granular zeolites. The uptake (%) of Cs{sup +} for the zeolite high content type was estimated to be above 99% by using {sup 137}Cs tracer. As for the comparison of sealing treatment, the uptake (%) for the zeolite sheet treated with edge sealing was larger than that with rapping treatment. The uptake (%) for the zeolite sheet (zeolite high content type) was estimated to be about 95%, which is independent of sealing treatment and NaOH concentration. As for the stability, the surface morphology and the structure of zeolite sheet were not altered by the treatment with acid and alkaline solutions under the experimental conditions. The zeolite sheets were also stable after {sup 60}Co-γ ray irradiation up to 7.01x10{sup 6} R. On the other hand, color change for both fiber and zeolite and the shrinkage of the fiber were observed after heat treatment at 150 deg. C for 2 h. Thus the considerable enhancement of adsorption properties was observed by using zeolite nonwoven fabrics compared to the conventional granular zeolites. (authors)

  14. Novel Zeolitic Imidazolate Framework/Polymer Membranes for Hydrogen Separations in Coal Processing

    SciTech Connect

    Musselman, Inga H.

    2013-01-31

    Nanoparticles of zeolitic imidazolate frameworks and other related hybrid materials were prepared by modifying published synthesis procedures by introducing bases, changing stoichiometric ratios, or adjusting reaction conditions. These materials were stable at temperatures >300 °C and were compatible with the polymer matrices used to prepare mixed-matrix membranes (MMMs). MMMs tested at 300 °C exhibited a >30 fold increase in permeability, compared to those measured at 35 °C, while maintaining H{sub 2}/CO{sub 2} selectivity. Measurements at high pressure (up to 30 atm) and high temperature (up to 300 °C) resulted in an increase in gas flux across the membrane with retention of selectivity. No variations in permeability were observed at high pressures at either 35 or 300 °C. CO{sub 2}-induced plasticization was not observed for Matrimid®, VTEC, and PBI polymers or their MMMs at 30 atm and 300 °C. Membrane surface modification by cross-linking with ethylenediamine resulted in an increase in H{sub 2}/CO{sub 2} selectivity at 35 °C. Spectrometric analysis showed that the cross-linking was effective to temperatures <150 °C. At higher temperatures, the cross-linked membranes exhibit a H2/CO2 selectivity similar to the uncrosslinked polymer.

  15. Fly ash from a Mexican mineral coal. II. Source of W zeolite and its effectiveness in arsenic (V) adsorption.

    PubMed

    Medina, Adriana; Gamero, Prócoro; Almanza, José Manuel; Vargas, Alfredo; Montoya, Ascención; Vargas, Gregorio; Izquierdo, María

    2010-09-15

    Coal-fired plants in Coahuila (Mexico) produce highly reactive fly ash (MFA), which is used in a one-step process as a raw material in producing zeolite. We explored two routes in the synthesis of zeolite: (a) direct MFA zeolitization, which resulted in the formation of W zeolite with KOH and analcime with NaOH and (b) a MFA fusion route, which resulted in the formation of zeolite W or chabazite with KOH and zeolite X or P with NaOH. No residual crystalline phases were present. When LiOH was employed, ABW zeolite with quartz and mullite were obtained. For both zeolitization routes, the nature of the alkali (KOH, NaOH, LiOH), the alkali/MFA ratio (0.23-1.46), and the crystallization temperature and time (90-175 degrees C; 8-24 h) were evaluated. Additionally, the effect of temperature and time on MFA fusion was studied. W zeolite was obtained by both zeolitization methods. The direct route is preferred because it is a straightforward method using soft reaction conditions that results in a high yield of low cost zeolites with large crystal agglomerates. It was demonstrated that aluminum modified W zeolite has the ability to remove 99% of the arsenic (V) from an aqueous solution of Na(2)HAsO(4).7H(2)O originally containing 740 ppb. PMID:20537461

  16. Synthesis, deposition and characterization of magnesium hydroxide nanostructures on zeolite 4A

    SciTech Connect

    Koh, Pei-Yoong; Yan, Jing; Ward, Jason; Koros, William J.; Teja, Amyn S.; Xu, Bo

    2011-03-15

    Research highlights: {yields} Reports a simple precipitation-growth method to produce nanostructures of Mg(OH){sub 2} on the surface of zeolite 4A. {yields} Able to control the growth of the nanostructures by manipulating the experimental procedure. {yields} Able to deposit Mg(OH){sub 2} onto specific sites namely bridging hydroxyl protons (SiOHAl) on the surface of zeolite 4A. -- Abstract: The precipitation and self-assembly of magnesium hydroxide Mg(OH){sub 2} nanopetals on dispersed zeolite 4A particles was investigated. Mg(OH){sub 2}/zeolite nanocomposites were produced from magnesium chloride solutions and characterized via X-ray powder diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), Fourier transform infrared analysis (FTIR), and solid state NMR. It was determined that Mg(OH){sub 2} interacted with bridging hydroxyl protons (SiOHAl) on the zeolite surface, but not with silanol or aluminol groups. NMR analysis showed that 13% of the tetrahedral Al sites on the zeolite were converted to octahedral Al. The zeolite structure and crystallinity remained intact after treatment, and no dealumination reactions were detected. This suggests that the deposition-precipitation process at ambient conditions is a facile method for controlling Mg(OH){sub 2} nanostructures on zeolites.

  17. Study of Molecular-Shape Selectivity of Zeolites by Gas Chromatography

    ERIC Educational Resources Information Center

    Chao, Pei-Yu; Chuang, Yao-Yuan; Ho, Grace Hsiuying; Chuang, Shiow-Huey; Tsai, Tseng-Chang; Lee, Chi-Young; Tsai, Shang-Tien; Huang, Jun-Fu

    2008-01-01

    A sorption experiment using a gas chromatograph is described that can help students understand the "molecular-shape selectivity" behavior of zeolites in the subnano regime. Hexane isomers are used as probe molecules to demonstrate the sorption phenomena. In the experiment, a zeolite adsorbs certain hexane isomers with molecular sizes smaller than…

  18. Composite 5A zeolite with ultrathin porous TiO2 coating for selective gas adsorption.

    PubMed

    Song, Zhuonan; Huang, Yi; Wang, Lei; Li, Shiguang; Yu, Miao

    2015-01-01

    A composite zeolite adsorbent was prepared by conformally depositing an ultrathin porous TiO2 coating on the external surface of the 5A zeolite by molecular layer deposition (MLD) and subsequent calcination. The composite adsorbent showed significantly improved ideal adsorption selectivity for CO2-CH4, CO2-N2 and propylene-propane. PMID:25406720

  19. Synthesis of Zeolites Using the ADOR (Assembly-Disassembly-Organization-Reassembly) Route.

    PubMed

    Wheatley, Paul S; Čejka, Jiří; Morris, Russell E

    2016-01-01

    Zeolites are an important class of materials that have wide ranging applications such as heterogeneous catalysts and adsorbents which are dependent on their framework topology. For new applications or improvements to existing ones, new zeolites with novel pore systems are desirable. We demonstrate a method for the synthesis of novel zeolites using the ADOR route. ADOR is an acronym for Assembly, Disassembly, Organization and Reassembly. This synthetic route takes advantage of the assembly of a relatively poorly stable that which can be selectively disassembled into a layered material. The resulting layered intermediate can then be organized in different manners by careful chemical manipulation and then reassembled into zeolites with new topologies. By carefully controlling the organization step of the synthetic pathway, new zeolites with never before seen topologies are capable of being synthesized. The structures of these new zeolites are confirmed using powder X-ray diffraction and further characterized by nitrogen adsorption and scanning electron microscopy. This new synthetic pathway for zeolites demonstrates its capability to produce novel frameworks that have never been prepared by traditional zeolite synthesis techniques. PMID:27078165

  20. Nanocrystalline SSZ-39 zeolite as an efficient catalyst for the methanol-to-olefin (MTO) process.

    PubMed

    Martín, Nuria; Li, Zhibin; Martínez-Triguero, Joaquín; Yu, Jihong; Moliner, Manuel; Corma, Avelino

    2016-04-26

    The synthesis of nanosized SSZ-39 zeolite has been achieved using a high silica FAU zeolite as the Si and Al source and tetraethylphosphonium (TEP) cations as OSDAs. The obtained SSZ-39 material shows a remarkably high catalyst lifetime compared to conventional SSZ-13 and SSZ-39 materials. PMID:26947336

  1. Facile synthesis of H-type zeolite shell on a silica substrate for tandem catalysis.

    PubMed

    Yang, Guohui; Wang, Ding; Yoneyama, Yoshiharu; Tan, Yisheng; Tsubaki, Noritatsu

    2012-01-30

    A new class of silica-based zeolite capsule catalyst was readily prepared employing a dual-layer method under close-to-neutral conditions. In a tandem catalysis process, the precisely controlled synthesis of dimethyl ether was realized. This new concept of H-type zeolite shell preparation and application represents a powerful approach for preparing high-performance, multifunctional catalysts. PMID:22179791

  2. Synthesis of Zeolites Using the ADOR (Assembly-Disassembly-Organization-Reassembly) Route

    PubMed Central

    Wheatley, Paul S.; Čejka, Jiří; Morris, Russell E.

    2016-01-01

    Zeolites are an important class of materials that have wide ranging applications such as heterogeneous catalysts and adsorbents which are dependent on their framework topology. For new applications or improvements to existing ones, new zeolites with novel pore systems are desirable. We demonstrate a method for the synthesis of novel zeolites using the ADOR route. ADOR is an acronym for Assembly, Disassembly, Organization and Reassembly. This synthetic route takes advantage of the assembly of a relatively poorly stable that which can be selectively disassembled into a layered material. The resulting layered intermediate can then be organized in different manners by careful chemical manipulation and then reassembled into zeolites with new topologies. By carefully controlling the organization step of the synthetic pathway, new zeolites with never before seen topologies are capable of being synthesized. The structures of these new zeolites are confirmed using powder X-ray diffraction and further characterized by nitrogen adsorption and scanning electron microscopy. This new synthetic pathway for zeolites demonstrates its capability to produce novel frameworks that have never been prepared by traditional zeolite synthesis techniques. PMID:27078165

  3. One-step synthesis of mesoporous pentasil zeolite with single-unit-cell lamellar structural features

    SciTech Connect

    Tsapstsis, Michael; Zhang, Xueyi

    2015-11-17

    A method for making a pentasil zeolite material includes forming an aqueous solution that includes a structure directing agent and a silica precursor; and heating the solution at a sufficient temperature and for sufficient time to form a pentasil zeolite material from the silica precursor, wherein the structure directing agent includes a quaternary phosphonium ion.

  4. Experiments for the Undergraduate Laboratory that Illustrate the Size-Exclusion Properties of Zeolite Molecular Sieves

    ERIC Educational Resources Information Center

    Cooke, Jason; Henderson, Eric J.

    2009-01-01

    Experiments are presented that demonstrate the size-exclusion properties of zeolites and reveal the reason for naming zeolites "molecular sieves". If an IR spectrometer is available, the adsorption or exclusion of alcohols of varying sizes from dichloromethane or chloroform solutions can be readily demonstrated by monitoring changes in the

  5. Acid dealuminated Y-zeolite and cracking process employing the same

    SciTech Connect

    Scherzer, J.

    1984-10-16

    A process is claimed for cracking hydrocarbons with a mixture of acid dealuminated, rare earth metal exchanged Y-zeolite having a SiO/sub 2//Al/sub 2/O/sub 3/ molar ratio of more than about 6 and not more than about 300, and non-dealuminated rare earth metal exchanged Y-zeolite and a matrix.

  6. Zeolite nanoparticles with immobilized metal ions: isolation and MALDI-TOF-MS/MS identification of phosphopeptides.

    PubMed

    Zhang, Yahong; Yu, Xijuan; Wang, Xiaoyan; Shan, Wei; Yang, Pengyuan; Tang, Yi

    2004-12-21

    Metal-ion-immobilized zeolite nanoparticles have been applied for the first time to isolate phosphopeptides from tryptic beta-casein digest; the phosphopeptides enriched on the modified zeolite nanoparticles could be effectively identified by MALDI-TOF-MS/MS. PMID:15599454

  7. Study of Molecular-Shape Selectivity of Zeolites by Gas Chromatography

    ERIC Educational Resources Information Center

    Chao, Pei-Yu; Chuang, Yao-Yuan; Ho, Grace Hsiuying; Chuang, Shiow-Huey; Tsai, Tseng-Chang; Lee, Chi-Young; Tsai, Shang-Tien; Huang, Jun-Fu

    2008-01-01

    A sorption experiment using a gas chromatograph is described that can help students understand the "molecular-shape selectivity" behavior of zeolites in the subnano regime. Hexane isomers are used as probe molecules to demonstrate the sorption phenomena. In the experiment, a zeolite adsorbs certain hexane isomers with molecular sizes smaller than

  8. A zeolite family with expanding structural complexity and embedded isoreticular structures

    NASA Astrophysics Data System (ADS)

    Guo, Peng; Shin, Jiho; Greenaway, Alex G.; Min, Jung Gi; Su, Jie; Choi, Hyun June; Liu, Leifeng; Cox, Paul A.; Hong, Suk Bong; Wright, Paul A.; Zou, Xiaodong

    2015-08-01

    The prediction and synthesis of new crystal structures enable the targeted preparation of materials with desired properties. Among porous solids, this has been achieved for metal-organic frameworks, but not for the more widely applicable zeolites, where new materials are usually discovered using exploratory synthesis. Although millions of hypothetical zeolite structures have been proposed, not enough is known about their synthesis mechanism to allow any given structure to be prepared. Here we present an approach that combines structure solution with structure prediction, and inspires the targeted synthesis of new super-complex zeolites. We used electron diffraction to identify a family of related structures and to discover the structural `coding' within them. This allowed us to determine the complex, and previously unknown, structure of zeolite ZSM-25 (ref. 8), which has the largest unit-cell volume of all known zeolites (91,554 cubic ångströms) and demonstrates selective CO2 adsorption. By extending our method, we were able to predict other members of a family of increasingly complex, but structurally related, zeolites and to synthesize two more-complex zeolites in the family, PST-20 and PST-25, with much larger cell volumes (166,988 and 275,178 cubic ångströms, respectively) and similar selective adsorption properties. Members of this family have the same symmetry, but an expanding unit cell, and are related by hitherto unrecognized structural principles; we call these family members embedded isoreticular zeolite structures.

  9. A mesostructured Y zeolite as a superior FCC catalyst--lab to refinery.

    PubMed

    Garca-Martnez, Javier; Li, Kunhao; Krishnaiah, Gautham

    2012-12-18

    A mesostructured Y zeolite was prepared by a surfactant-templated process at the commercial scale and tested in a refinery, showing superior hydrothermal stability and catalytic cracking selectivity, which demonstrates, for the first time, the promising future of mesoporous zeolites in large scale industrial applications. PMID:22945549

  10. Experiments for the Undergraduate Laboratory that Illustrate the Size-Exclusion Properties of Zeolite Molecular Sieves

    ERIC Educational Resources Information Center

    Cooke, Jason; Henderson, Eric J.

    2009-01-01

    Experiments are presented that demonstrate the size-exclusion properties of zeolites and reveal the reason for naming zeolites "molecular sieves". If an IR spectrometer is available, the adsorption or exclusion of alcohols of varying sizes from dichloromethane or chloroform solutions can be readily demonstrated by monitoring changes in the…

  11. Organic-free synthesis of layer-like FAU-type zeolites.

    PubMed

    Inayat, A; Schneider, C; Schwieger, W

    2015-01-01

    The formation of layer-like FAU-type zeolites was facilitated in the absence of any organic template. Instead, the addition of simple inorganic salts turned out to be an effective and easy to handle alternative to organic additives to induce morphological and even structural changes during zeolite crystallisation. PMID:25408332

  12. Synthetic Zeolites as Controlled-Release Delivery Systems for Anti-Inflammatory Drugs.

    PubMed

    Khodaverdi, Elham; Soleimani, Hossein Ali; Mohammadpour, Fatemeh; Hadizadeh, Farzin

    2016-06-01

    Scientists have always been trying to use artificial zeolites to make modified-release drug delivery systems in the gastrointestinal tract. An ideal carrier should have the capability to release the drug in the intestine, which is the main area of absorption. Zeolites are mineral aluminosilicate compounds with regular structure and huge porosity, which are available in natural and artificial forms. In this study, soaking, filtration and solvent evaporation methods were used to load the drugs after activation of the zeolites. Weight measurement, spectroscopy FTIR, thermogravimetry and scanning electronic microscope were used to determine drug loading on the systems. Finally, consideration of drug release was made in a simulated gastric fluid and a simulated intestinal fluid for all matrixes (zeolites containing drugs) and drugs without zeolites. Diclofenac sodium (D) and piroxicam (P) were used as the drug models, and zeolites X and Y as the carriers. Drug loading percentage showed that over 90% of drugs were loaded on zeolites. Dissolution tests in stomach pH environment showed that the control samples (drug without zeolite) released considerable amount of drugs (about 90%) within first 15 min when it was about 10-20% for the matrixes. These results are favorable as NSAIDs irritate the stomach wall and it is ideal not to release much drugs in the stomach. Furthermore, release rate of drugs from matrixes has shown slower rate in comparison with control samples in intestine pH environment. PMID:26705687

  13. Copper and copper-nickel alloys as zebra mussel antifoulants

    SciTech Connect

    Dormon, J.M.; Cottrell, C.M.; Allen, D.G.; Ackerman, J.D.; Spelt, J.K.

    1996-04-01

    Copper has been used in the marine environment for decades as cladding on ships and pipes to prevent biofouling by marine mussels (Mytilus edulis L.). This motivated the present investigation into the possibility of using copper to prevent biofouling in freshwater by both zebra mussels and quagga mussels (Dreissena polymorpha and D. bugensis collectively referred to as zebra mussels). Copper and copper alloy sheet proved to be highly effective in preventing biofouling by zebra mussels over a three-year period. Further studies were conducted with copper and copper-nickel mesh (lattice of expanded metal) and screen (woven wire with a smaller hole size), which reduced the amount of copper used. Copper screen was also found to be strongly biofouling-resistant with respect to zebra mussels, while copper mesh reduced zebra mussel biofouling in comparison to controls, but did not prevent it entirely. Preliminary investigations into the mechanism of copper antifouling, using galvanic couples, indicated that the release of copper ions from the surface of the exposed metal into the surrounding water is directly or indirectly responsible for the biofouling resistance of copper.

  14. Improved Efficiency for Partial Oxidation of Methane by Controlled Copper Deposition on Surface‐Modified ZSM‐5

    PubMed Central

    Sheppard, Thomas; Daly, Helen; Goguet, Alex

    2015-01-01

    Abstract The mono(μ‐oxo) dicopper cores present in the pores of Cu‐ZSM‐5 are active for the partial oxidation of methane to methanol. However, copper on the external surface reduces the ratio of active, selective sites to unselective sites. More efficient catalysts are obtained by controlling the copper deposition during synthesis. Herein, the external exchange sites of ZSM‐5 samples were passivated by bis(trimethylsilyl) trifluoroacetamide (BSTFA) followed by calcination, promoting selective deposition of intraporous copper during aqueous copper ion exchange. At an optimum level of 1–2 wt % SiO2, IR studies showed a 64 % relative reduction in external copper species and temperature‐programmed oxidation analysis showed an associated increase in the formation of methanol compared with unmodified Cu‐ZSM‐5 samples. It is, therefore, reported that the modified zeolites contained a significantly higher proportion of active, selective copper species than their unmodified counterparts with activity for partial methane oxidation to methanol. PMID:26925172

  15. Discovery of optimal zeolites for challenging separations and chemical transformations using predictive materials modeling

    NASA Astrophysics Data System (ADS)

    Bai, Peng; Jeon, Mi Young; Ren, Limin; Knight, Chris; Deem, Michael W.; Tsapatsis, Michael; Siepmann, J. Ilja

    2015-01-01

    Zeolites play numerous important roles in modern petroleum refineries and have the potential to advance the production of fuels and chemical feedstocks from renewable resources. The performance of a zeolite as separation medium and catalyst depends on its framework structure. To date, 213 framework types have been synthesized and >330,000 thermodynamically accessible zeolite structures have been predicted. Hence, identification of optimal zeolites for a given application from the large pool of candidate structures is attractive for accelerating the pace of materials discovery. Here we identify, through a large-scale, multi-step computational screening process, promising zeolite structures for two energy-related applications: the purification of ethanol from fermentation broths and the hydroisomerization of alkanes with 18-30 carbon atoms encountered in petroleum refining. These results demonstrate that predictive modelling and data-driven science can now be applied to solve some of the most challenging separation problems involving highly non-ideal mixtures and highly articulated compounds.

  16. Optical Properties of CdS and se Clusters in Zeolites

    NASA Astrophysics Data System (ADS)

    Arai, T.; Murai, M.; Ohmori, J.; Matsuishi, K.; Onari, S.

    We have studied the electronic and vibrational properties of CdS and Se clusters in zeolites by Raman scattering and photoluminescence measurements. CdS clusters were formed photochemically through the dissociation of S8 molecules in A and X types of Cd2+-exchanged zeolites by laser irradiation, while CdSe clusters were not successfully produced in the same manner. The 1LO mode of CdS at 300 cm-1 shifts to lower frequencies in the zeolites in comparison with that of bulk CdS, indicating the effect of phonon confinement. Se clusters incorporated into zeolites with different pore sizes (3A, 4A, 5A, and 13X) exhibit strong dependence of the structural phase stability and the structural unit on the geometrical constraints of zeolites.

  17. Synthesis and structure of zeolite ZSM-5: a Raman spectroscopic study

    SciTech Connect

    Dutta, P.K.; Puri, M.

    1987-07-30

    The Raman spectra of the solution and solid phases present during various stages of ZSM-5 synthesis were examined by monitoring the vibrations of the tetrapropylammonium ion. It was found that this cation is trapped into the amorphous solid phase at the earliest stages of the synthesis in the all-trans configuration. Upon crystallization of the zeolite, there is a forced change in the conformation of the trapped tetrapropylammonium cation, such that it can fit into the zig-zag zeolite channels. The Raman spectra of the aluminosilicate zeolite framework is also distinct from other zeolites, such as A, X, and Y, and exhibits a band at 385 cm/sup -1/ characteristic of the five-membered building units of this zeolite.

  18. Microwave-assisted regeneration of synthetic zeolite used in tritium removal systems

    SciTech Connect

    Tanaka, M.; Takayama, S.; Sano, S.

    2015-03-15

    The regeneration process using synthetic honeycomb type 5A zeolite under microwave irradiation was experimentally investigated using a single-mode cavity at 2.46 GHz. In order to investigate the effect of electromagnetic fields, inductive heating by a magnetic field was applied to synthetic zeolite containing water. Because the microwave energy absorbed in the sample was less than 15 W, the zeolite sample was only heated to a temperature of 71 C. degrees. Water desorption was observed based on the increased temperature of the zeolite sample and the thermogravimetric curve that indicated a single step phenomenon. As a result, the regeneration process of zeolite was not complete over a period of 6000 s. A comparison of dielectric heating by an electric field with inductive heating by a magnetic field showed that the regeneration process by microwave irradiation was particularly beneficial in dielectric heating. (authors)

  19. Synthesis of polymorph A-enriched beta zeolites in a HF-concentrated system.

    PubMed

    Zhang, Guanqun; Wang, Bingchun; Zhang, Weiping; Li, Mingrun; Tian, Zhijian

    2016-04-12

    Polymorph A-enriched beta zeolites were synthesized by employing high HF concentrations in the synthesis medium. The polymorphic compositions of the synthesized beta zeolites were determined by the complementary characterization methods (19)F NMR analysis and PXRD simulation. With a variety of SDAs, a high HF concentration (HF/SDA > 1.0) in the synthesis medium results in the A-rich feature (55-65% A) of beta zeolites, while a moderate HF concentration only results in typical beta zeolites. A systematic study on the synthesis conditions reveals the existence of a buffered system of H(+) and F(-) formed in the highly HF-concentrated medium. This buffer results in a small but continuous supply of F(-) during zeolite crystallization, in contrast to the conventional fluoride route where all F(-) are discharged all-at-once at the initial stage. PMID:26974286

  20. The development of a zeolite system for upgrade of the Process Waste Treatment Plant

    SciTech Connect

    Robinson, S.M.; Kent, T.E.; Arnold, W.D.; Parrott, J.R. Jr.

    1993-10-01

    Studies have been undertaken to design an efficient zeolite ion exchange system for use at the ORNL Process Waste Treatment Plant to remove cesium and strontium to meet discharge limits. This report focuses on two areas: (1) design of column hardware and pretreatment steps needed to eliminate column plugging and channeling and (2) development of equilibrium models for the wastewater system. Results indicate that zeolite columns do not plug as quickly when the wastewater equalization is performed in the new Bethel Valley Storage Tanks instead of the former equalization basin where suspended solids concentration is high. A down-flow column with spent zeolite was used successfully as a prefilter to prevent plugging of the zeolite columns being used to remove strontium and cesium. Equilibrium studies indicate that a Langmuir isotherm models binary zeolite equilibrium data while the modified Dubinin-Polyani model predicts multicomponent data.