Science.gov

Sample records for zero gravity

  1. Zero gravity liquid mixer

    NASA Technical Reports Server (NTRS)

    Booth, F. W.; Bruce, R. A. (Inventor)

    1973-01-01

    An apparatus for mixing liquids under conditions of zero gravity is disclosed. The apparatus is comprised of a closed reservoir for the liquids, with a means for maintaining a positive pressure on the liquids in the reservoir. A valved liquid supply line is connected to the reservoir for supplying the reservoir with the liquids to be mixed in the reservoir. The portion of the reservoir containing the liquids to be mixed is in communication with a pump which alternately causes a portion of the liquids to flow out of the pump and into the reservoir to mix the liquids. The fluids in the reservoir are in communication through a conduit with the pump which alternately causes a portion of the fluids to flow out of the pump and into the sphere. The conduit connecting the pump and sphere may contain a nozzle or other jet-forming structure such as a venturi for further mixing the fluids.

  2. Zero-gravity movement studies

    NASA Technical Reports Server (NTRS)

    Badler, N. I.; Fishwick, P.; Taft, N.; Agrawala, M.

    1985-01-01

    The use of computer graphics to simulate the movement of articulated animals and mechanisms has a number of uses ranging over many fields. Human motion simulation systems can be useful in education, medicine, anatomy, physiology, and dance. In biomechanics, computer displays help to understand and analyze performance. Simulations can be used to help understand the effect of external or internal forces. Similarly, zero-gravity simulation systems should provide a means of designing and exploring the capabilities of hypothetical zero-gravity situations before actually carrying out such actions. The advantage of using a simulation of the motion is that one can experiment with variations of a maneuver before attempting to teach it to an individual. The zero-gravity motion simulation problem can be divided into two broad areas: human movement and behavior in zero-gravity, and simulation of articulated mechanisms.

  3. Space truss zero gravity dynamics

    NASA Technical Reports Server (NTRS)

    Swanson, Andy

    1989-01-01

    The Structural Dynamics Branch of the Air Force Flight Dynamics Laboratory in cooperation with the Reduced Gravity Office of the NASA Lyndon B. Johnson Space Center (JSC) plans to perform zero-gravity dynamic tests of a 12-meter truss structure. This presentation describes the program and presents all results obtained to date.

  4. Zero-gravity cloud physics.

    NASA Technical Reports Server (NTRS)

    Hollinden, A. B.; Eaton, L. R.; Vaughan, W. W.

    1972-01-01

    The first results of an ongoing preliminary-concept and detailed-feasibility study of a zero-gravity earth-orbital cloud physics research facility are reviewed. Current planning and thinking are being shaped by two major conclusions of this study: (1) there is a strong requirement for and it is feasible to achieve important and significant research in a zero-gravity cloud physics facility; and (2) some very important experiments can be accomplished with 'off-the-shelf' type hardware by astronauts who have no cloud-physics background; the most complicated experiments may require sophisticated observation and motion subsystems and the astronaut may need graduate level cloud physics training; there is a large number of experiments whose complexity varies between these two extremes.

  5. Zero-gravity aerosol behavior

    NASA Technical Reports Server (NTRS)

    Edwards, H. W.

    1981-01-01

    The feasibility and scientific benefits of a zero gravity aerosol study in an orbiting laboratory were examined. A macroscopic model was devised to deal with the simultaneous effects of diffusion and coagulation of particles in the confined aerosol. An analytical solution was found by treating the particle coagulation and diffusion constants as ensemble parameters and employing a transformation of variables. The solution was used to carry out simulated zero gravity aerosol decay experiments in a compact cylindrical chamber. The results demonstrate that the limitations of physical space and time imposed by the orbital situation are not prohibitive in terms of observing the history of an aerosol confined under zero gravity conditions. While the absence of convective effects would be a definite benefit for the experiment, the mathematical complexity of the problem is not greatly reduced when the gravitational term drops out of the equation. Since the model does not deal directly with the evolution of the particle size distribution, it may be desirable to develop more detailed models before undertaking an orbital experiment.

  6. Modeling of zero gravity venting

    NASA Technical Reports Server (NTRS)

    Merte, H., Jr.

    1984-01-01

    The venting of cylindrical containers partially filled with initially saturated liquids was conducted under zero gravity conditions and compared with an analytical model which determined the effect of interfacial mass transfer on the ullage pressure response during venting. A model is proposed to improve the estimation of the interfacial mass transfer. Duhammel's superposition integral is incorporated in this analysis to approximate the transient temperature response of the interface, treating the liquid as a semiinfinite solid with conduction heat transfer. This approach to estimating interfacial mass transfer gives improved response when compared to previous models. The model still predicts a pressure decrease greater than those in the experiments reported.

  7. Tribology experiment in zero gravity

    NASA Technical Reports Server (NTRS)

    Pan, C. H. T.; Gause, R. L.; Whitaker, A. F.

    1984-01-01

    A tribology experiment in zero gravity was performed during the orbital flight of Spacelab 1 to study the motion of liquid lubricants over solid surfaces. The absence of a significant gravitational force facilitates studies of the motion of liquid lubricants over solid surfaces as controlled by interfacial and capillary forces. Observations were made of phenomena associated with the liquid on one solid surface and also with the liquid between a pair of closely spaced surfaces. Typical photographic records obtained on Spacelab 1 are described.

  8. Gravity and Zero Point Energy

    NASA Astrophysics Data System (ADS)

    Massie, U. W.

    When Planck introduced the 1/2 hv term to his 1911 black body equation he showed that there is a residual energy remaining at zero degree K after all thermal energy ceased. Other investigators, including Lamb, Casimir, and Dirac added to this information. Today zero point energy (ZPE) is accepted as an established condition. The purpose of this paper is to demonstrate that the density of the ZPE is given by the gravity constant (G) and the characteristics of its particles are revealed by the cosmic microwave background (CMB). Eddies of ZPE particles created by flow around mass bodies reduce the pressure normal to the eddy flow and are responsible for the force of gravity. Helium atoms resonate with ZPE particles at low temperature to produce superfluid helium. High velocity micro vortices of ZPE particles about a basic particle or particles are responsible for electromagnetic forces. The speed of light is the speed of the wave front in the ZPE and its value is a function of the temperature and density of the ZPE.

  9. Tribology Experiment in Zero Gravity

    NASA Technical Reports Server (NTRS)

    Pan, C. H. T.; Gause, R. L.; Whitaker, A. F.; Finckenor, M. M.

    2015-01-01

    A tribology experiment in zero gravity was performed during the orbital flight of Spacelab 1 to study the motion of liquid lubricants over solid surfaces. The absence of a significant gravitational force facilitates observation of such motions as controlled by interfacial and capillary forces. Two experimental configurations were used. One deals with the liquid on one solid surface, and the other with the liquid between a pair of closed spaced surfaces. Time sequence photographs of fluid motion on a solid surface yielded spreading rate data of several fluid-surface combinations. In general, a slow spreading process as governed by the tertiary junction can be distinguished from a more rapid process which is driven by surface tension controlled internal fluid pressure. Photographs were also taken through the transparent bushings of several experimental journal bearings. Morphology of incomplete fluid films and its fluctuation with time suggest the presence or absence of unsteady phenomena of the bearing-rotor system in various arrangements.

  10. Zero-gravity venting of three refrigerants

    NASA Technical Reports Server (NTRS)

    Labus, T. L.; Aydelott, J. C.; Amling, G. E.

    1974-01-01

    An experimental investigation of venting cylindrical containers partially filled with initially saturated liquids under zero-gravity conditions was conducted in the NASA Lewis Research Center 5-second zero-gravity facility. The effect of interfacial mass transfer on the ullage pressure response during venting was analytically determined, based on a conduction analysis applied to an infinitely planer (flat) liquid-vapor interface. This pressure response was compared with both the experimental results and an adiabatic decompression computation.

  11. Artificial gravity - A countermeasure for zero gravity

    NASA Technical Reports Server (NTRS)

    Nicogossian, A. E.; Mccormack, P. D.

    1987-01-01

    Current knowledge on artificial gravity is presented with emphasis placed on the unique characteristics of such an environment and their effects on crew performance and vehicle habitability. A parametric optimization of the vehicle size and operation is performed. The following set of 'optimum' parameter values is obtained: a cost of 15.8 billion dollars, a radius of 80 feet, a rotation rate of 4.8 rpm, and a g-value of 0.62. Consideration is also given to the problems of adaptation, retention of adaptation, and simultaneous adaptation to both nonrotating and rotating environments.

  12. Zero-gravity quantity gaging system

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Zero-Gravity Quantity Gaging System program is a technology development effort funded by NASA-LeRC and contracted by NASA-JSC to develop and evaluate zero-gravity quantity gaging system concepts suitable for application to large, on-orbit cryogenic oxygen and hydrogen tankage. The contract effective date was 28 May 1985. During performance of the program, 18 potential quantity gaging approaches were investigated for their merit and suitability for gaging two-phase cryogenic oxygen and hydrogen in zero-gravity conditions. These approaches were subjected to a comprehensive trade study and selection process, which found that the RF modal quantity gaging approach was the most suitable for both liquid oxygen and liquid hydrogen applications. This selection was made with NASA-JSC concurrence.

  13. Zero gravity tissue-culture laboratory

    NASA Technical Reports Server (NTRS)

    Cook, J. E.; Montgomery, P. O., Jr.; Paul, J. S.

    1972-01-01

    Hardware was developed for performing experiments to detect the effects that zero gravity may have on living human cells. The hardware is composed of a timelapse camera that photographs the activity of cell specimens and an experiment module in which a variety of living-cell experiments can be performed using interchangeable modules. The experiment is scheduled for the first manned Skylab mission.

  14. Containing Hair During Cutting In Zero Gravity

    NASA Technical Reports Server (NTRS)

    Haines, Richard F.

    1992-01-01

    Proposed device collects loose hair during barbering and shaving in zero gravity to prevent hair clippings from contaminating cabin of spacecraft. Folds for storage, opens into clear, bubblelike plastic dome surrounding user's head, tray fits around user's throat, and fanlike ring surrounds back of neck. Device fits snugly but comfortably around neck, preventing hair from escaping to outside. Flow of air into hose connected to suction pump removes hair from bubble as cut. Filter at end of hose collects hair.

  15. Zero Gravity Research Facility User's Guide

    NASA Technical Reports Server (NTRS)

    Thompson, Dennis M.

    1999-01-01

    The Zero Gravity Research Facility (ZGF) is operated by the Space Experiments Division of the NASA John H. Glenn Research Center (GRC) for investigators sponsored by the Microgravity Science and Applications Division of NASA Headquarters. This unique facility has been utilized by scientists and engineers for reduced gravity experimentation since 1966. The ZGF has provided fundamental scientific information, has been used as an important test facility in the space flight hardware design, development, and test process, and has also been a valuable source of data in the flight experiment definition process. The purpose of this document is to provide information and guidance to prospective researchers regarding the design, buildup, and testing of microgravity experiments.

  16. Thermal migration of bubbles in zero gravity

    SciTech Connect

    Esmaeeli, A.; Tryggvason, G.; Arpaci, V.

    1996-12-31

    Thermocapillary migration of two-dimensional, deformable, interacting bubbles toward an initially flat fluid interface in zero gravity is studied. The full Navier-Stokes equations and the thermal energy equation are solved for the fluids inside and outside the bubbles using a front tracking/finite difference method. The boundaries of the domain are taken to be periodic in the horizontal direction and wall-bounded in the vertical direction. The temperatures of the walls are fixed such that an upward temperature gradient is imposed. Interactions of coalescing bubbles with different initial conditions are investigated.

  17. Zero-gravity open-type urine receptacle

    NASA Technical Reports Server (NTRS)

    Girala, A. S.

    1972-01-01

    The development of the zero-gravity open-type urine receptacle used in the Apollo command module is described. This type receptacle eliminates the need for a cuff-type urine collector or for the penis to circumferentially contact the receptacle in order to urinate. This device may be used in a gravity environment, varying from zero gravity to earth gravity, such as may be experienced in a space station or space base.

  18. Damping performance of bean bag dampers in zero gravity environments

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Chen, Tianning; Wang, Xiaopeng

    2016-06-01

    Bean bag dampers (BBDs), developed from impact damping technology, have been widely applied in engineering field to attenuate the vibration of a structural system. The damping effect of a BBD on vibration control in ground gravity environments is good, but its performance in zero gravity environments is not clear, and there are few studies on it. Therefore, the damping effect of BBDs in zero gravity environments was investigated based on the discrete element method (DEM) in this paper. Firstly, a three-dimensional DEM model of a BBD was established, and the damping effects of the single degree of freedom (SDOF) systems with BBDs and non-obstructive particle dampers (NOPDs) in zero gravity environments were compared. Moreover, the influences of the diameter of the inner ball, the tightness of BBD, the vibration frequency of SDOF system and the gap between BBD and cavity on the vibration reduction effect of BBD in zero gravity environments were also studied, and the results were compared with the system with BBD in ground gravity environments. There are optimum ranges of the diameter of the inner ball, tightness and gap for BBD, and the effects of these parameters on the damping performances of BBD in gravity and zero gravity environments are similar in evolving trends, and the values are without big differences in the optimum ranges. Thereby the parameter selection in BBD design in zero gravity environments is similar to that in gravity environments. However, the diameter of BBD should be a slightly larger than the size of the cavity when the structures with BBD work in zero gravity environments. The BBD is supposed to be picked tightly when the vibration frequency is high, and the BBD has better to be picked more tightly in zero gravity environments. These results can be used as a guide in the design of BBDs in zero gravity environments.

  19. Marangoni bubble motion in zero gravity. [Lewis zero gravity drop tower

    NASA Technical Reports Server (NTRS)

    Thompson, R. L.; Dewitt, K. J.

    1979-01-01

    It was shown experimentally that the Marangoni phenomenon is a primary mechanism for the movement of a gas bubble in a nonisothermal liquid in a low gravity environment. A mathematical model consisting of the Navier-Stokes and thermal energy equations, together with the appropriate boundary conditions for both media, is presented. Parameter perturbation theory is used to solve this boundary value problem; the expansion parameter is the Marangoni number. The zeroth, first, and second order approximations for the velocity, temperature and pressure distributions in the liquid and in the bubble, and the deformation and terminal velocity of the bubble are determined. Experimental zero gravity data for a nitrogen bubble in ethylene glycol, ethanol, and silicone oil subjected to a linear temperature gradient were obtained using the NASA Lewis zero gravity drop tower. Comparison of the zeroth order analytical results for the bubble terminal velocity showed good agreement with the experimental measurements. The first and second order solutions for the bubble deformation and bubble terminal velocity are valid for liquids having Prandtl numbers on the order of one, but there is a lack of appropriate data to test the theory fully.

  20. Astronaut Edwin Aldrin during underwater zero-gravity training

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronaut Edwin Aldrin, pilot for the Gemini 12 space flight, practices egress procedures from mockup of his spacecraft during underwater zero-gravity training. He holds a telescoping hand rail in his left hand which he will use to move from the spacecraft to the Agena Target Docking vehicle (54937); Aldrin prepares to take a 'rest position' during underwater zero-gravity training. His feet are secured to a mockup of the adapter section of the spacecraft by a special foot plate (54938); Aldrin practices work tasks during underwater zero-gravity training. He is placing his feet into special foot plate in adapter section of the spacecraft (54939).

  1. Astronaut Edwin Aldrin during zero gravity ingress and egress training

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronaut Edwin E. Aldrin Jr., prime crew pilot of the Gemini 12 space flight, undergoes zero gravity ingress and egress training aboard an Air Force KC-135 aircraft. He practices using camera equipment.

  2. The response of single human cells to zero gravity

    NASA Technical Reports Server (NTRS)

    Montgomery, P. O., Jr.; Cook, J. E.; Reynolds, R. C.; Paul, J. S.; Hayflick, L.; Stock, D.; Schulz, W. W.; Kimzey, S. L.; Thirolf, R. G.; Rogers, T.

    1974-01-01

    The SO15 experiment was designed to extend observations of the effects of zero-gravity to living human cells during and subsequent to a 59-day flight on Skylab 3. A strain of diploid human embryonic lung cells, WI-38, was chosen for this purpose. The studies were concerned with observations designed to detect the effects of zero-gravity on cell growth rates and on cell structure as observed by light microscopy, transmission and scanning electron microscopy and histochemistry. Studies of the effects of zero-gravity on the cell function and the cell cycle were performed by time lapse motion picture photography and microspectrophotometry. Subsequent study of the returned living cells included karotyping, G- and C-banding, and analyses of the culture media used. Some of the living cells returned were banked by deep freeze techniques for possible future experiments.

  3. Combustion of solid carbon rods in zero and normal gravity

    NASA Technical Reports Server (NTRS)

    Spuckler, C. M.; Kohl, F. J.; Miller, R. A.; Stearns, C. A.; Dewitt, K. J.

    1979-01-01

    In order to investigate the mechanism of carbon combustion, spectroscopic carbon rods were resistance ignited and burned in an oxygen environment in normal and zero gravity. Direct mass spectrometric sampling was used in the normal gravity tests to obtain concentration profiles of CO2, CO, and O2 as a function of distance from the carbon surface. The experimental concentrations were compared to those predicted by a stagnant film model. Zero gravity droptower tests were conducted in order to assess the effect of convection on the normal gravity combustion process. The ratio of flame diameter to rod diameter as a function of time for oxygen pressures of 5, 10, 15, and 20 psia was obtained for three different diameter rods. It was found that this ratio was inversely proportional to both the oxygen pressure and the rod diameter.

  4. The International Heat Pipe Experiment. [ten experiments in zero gravity

    NASA Technical Reports Server (NTRS)

    Mcintosh, R.; Ollendorf, S.; Harwell, W.

    1975-01-01

    On October 4, 1974 the International Heat Pipe Experiment was launched aboard a Black Brant Sounding Rocket from White Sands, New Mexico. The flight provided six minutes of near zero gravity during which a total of ten separate heat pipe experiments were performed. The fifteen heat pipes which were tested represent some of the latest American and European technology. This flight provided the first reported zero gravity data on cryogenic and flat plate vapor chamber heat pipes. Additionally, valuable design and engineering data was obtained on several other heat pipe configurations. This paper will discuss the payload and four of the individual experiments.

  5. Passive zero-gravity leg restraint

    NASA Technical Reports Server (NTRS)

    Miller, Christopher R. (Inventor)

    1989-01-01

    A passive zero or microgravity leg restraint is described which includes a central support post with a top and a bottom. Extending from the central support post are a calf pad tab, to which calf pad is attached, and a foot pad tab, to which foot tab is attached. Also extending from central support post are knee pads. When the restraint is in use the user's legs are forced between pads by a user imposed scissors action of the legs. The user's body is then supported in a zero or microgravity neutral body posture by the leg restraint. The calf pad has semi-ridig elastic padding material covering structural stiffener. The foot pad has padding material and a structural stiffener. Knee pads have s structural tube stiffener at their core.

  6. Materials processing in zero gravity. [space manufacturing

    NASA Technical Reports Server (NTRS)

    Wuenscher, H. F.

    1973-01-01

    Manufacturing processes which are expected to show drastic changes in a space environment due to the absence of earth gravity are classified according to (1) buoyancy and thermal convection sensitive processes and (2) processes where molecular forces like cohesion and adhesion remain as the relatively strongest and hence controlling factors. Some specific process demonstration experiments carried out during the Apollo 14 mission and in the Skylab program are described. These include chemical separation by electrophoresis, the M551 metals melting experiment, the M552 exothermic brazing experiment, the M553 sphere forming experiment, the M554 composite casting experiment, and the M555 gallium arsenide crystal growth experiment.

  7. Glass fining experiments in zero gravity

    NASA Technical Reports Server (NTRS)

    Smith, H. D.

    1977-01-01

    Ground based experiments were conducted to demonstrate that thermal migration actually operated in glass melts. Thermal migration consistent with the theory was found in one experiment on a borax melt, i.e., there was an approximately linear relation between the bubble diameter and bubble velocity for a given temperature and temperature gradient. It also appeared that nearby bubbles were attracted to one another, which could greatly aid fining. Interpretation of these results was not possible because of complications arising from gravity, i.e., floating of the bubbles, circulation currents due to buoyancy-driven natural connection, and flow of the melt out from the cell.

  8. Solution growth of crystals in zero gravity

    NASA Technical Reports Server (NTRS)

    Lai, R. B.

    1982-01-01

    A series of experiments will be performed in which triglycine sulfate (TGS) crystals will be grown by a low-temperature solution growth technique in the microgravity environment of the orbital Spacelab. Triglycine sulfate (TGS) crystals will be grown in the Fluid Experiment System (FES) facility on Spacelab 3 by slowly extracting heat at a controlled rate through a seed crystal of TGS suspended on an insulated sting in a saturated solution of TGS. The FES rack assembly designed for SL-3 is shown in Figure I-1, and a detailed view of the test cell layout is presented in Figure I-2. Variations in the liquid density, solution concentration and temperature around the growing crystal will be studied using a variety of techniques, such as schlieren, shadowgraph, and interferometric measurements. Growth in Earth gravity will also be studied by the same optical techniques, and in both cases the resulting crystalline features will be compared and correlated with the growth conditions.

  9. Acceleration display system for aircraft zero-gravity research

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.

    1987-01-01

    The features, design, calibration, and testing of Lewis Research Center's acceleration display system for aircraft zero-gravity research are described. Specific circuit schematics and system specifications are included as well as representative data traces from flown trajectories. Other observations learned from developing and using this system are mentioned where appropriate. The system, now a permanent part of the Lewis Learjet zero-gravity program, provides legible, concise, and necessary guidance information enabling pilots to routinely fly accurate zero-gravity trajectories. Regular use of this system resulted in improvements of the Learjet zero-gravity flight techniques, including a technique to minimize later accelerations. Lewis Gates Learjet trajectory data show that accelerations can be reliably sustained within 0.01 g for 5 consecutive seconds, within 0.02 g for 7 consecutive seconds, and within 0.04 g for up to 20 second. Lewis followed the past practices of acceleration measurement, yet focussed on the acceleration displays. Refinements based on flight experience included evolving the ranges, resolutions, and frequency responses to fit the pilot and the Learjet responses.

  10. The response of single human cells to zero-gravity

    NASA Technical Reports Server (NTRS)

    Montgomery, P. O., Jr.; Cook, J. E.; Reynolds, R. C.; Paul, J. S.; Hayflick, L.; Stock, D.; Shulz, W. W.; Kimzey, S. L.; Thirolf, R. G.; Rogers, T.

    1977-01-01

    Microscopic and histochemical evaluations of human embrionic lung cells after exposure to zero-gravity are reported. Growth curves, DNA microspectrophotometry, phase microscopy, and ultrastructural studies of fixed cells revealed no effects on the cultures. Minor unexplained differences have been found in biochemical constituents of the samples.

  11. Zero-Gravity Fuel-Cell Product-Water Accumulator

    NASA Technical Reports Server (NTRS)

    Barrera, Thomas P.

    1989-01-01

    Assortment of documents describes simple, passive system that removes water formed from reaction of hydrogen and oxygen in proton-exchange-membrane fuel cell. Designed for use in zero gravity, system does not require any machinery or external source of power. Works by capillary action and differential pressure.

  12. Astronaut Edwin Aldrin during underwater zero-gravity training

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronaut Edwin Aldrin, pilot for the Gemini 12 space flight, assumes a rest position during underwater zero-gravity training. The underwater environment creates similar conditions to those found in space. He is secured to the adapter section of the spacecraft by special foot plates.

  13. Magnetic fluid readily controlled in zero gravity environment

    NASA Technical Reports Server (NTRS)

    Papell, S. S.

    1965-01-01

    Colloid composed of finely ground iron oxide in a fluid such as heptane, is controlled and directed magnetically in a zero gravity environment. It will not separate on standing for long periods or after exposure to magnetic or centrifugal forces. Because of its low density and low viscosity, it is easily pumped.

  14. 4He crystals in superfluid under zero gravity.

    PubMed

    Takahashi, Takuya; Nomura, Ryuji; Okuda, Yuichi

    2012-03-01

    The response of 4He crystals to the rapid reduction of gravity down to practically zero in a superfluid was investigated visually, utilizing the parabolic flight of a jet plane. At a high temperature of 1.6 K, the shape of 4He crystals in the bcc phase did not change with a reduction of gravity during a parabolic period of 20 s, due to the low crystallization rate. At lower temperatures, such as 0.63 K, where the crystallization rate is sufficiently high, the shape of 4He crystals in the hcp phase changed significantly, relaxing to a quasiequilibrium shape under zero gravity, where the c facet became enlarged and the a facet emerged on the surface. The crystal did not detach from the sample cell wall at any time because the adhesive force manifested as partial wetting to the wall was sufficiently strong. Some crystals removed from the wall by an acoustic wave pulse were found to float and drift in the superfluid for approximately 4.2 s under zero gravity, although most of them were quickly reattached to the wall. PMID:22587030

  15. Experiments on thermoacoustic convection heat transfer in gravity and zero-gravity environments

    NASA Technical Reports Server (NTRS)

    Parang, Masood; Salah-Eddine, Adel

    1987-01-01

    The results of an experimental study of thermoacoustic convection (TAC) heat transfer in gravity and zero-gravity environments are presented. The experimental apparatus consisted of a cylinder containing air as the compressible fluid. The enclosed air was heated electrically at the top surface which consisted of a thin high-resistance steel foil connected to a power source. Thermocouples were used to measure the transient temperature of the air on the axis of the cylinder and the heated surface in the both zero-gravity and gravity environments. The zero-gravity tests were performed in the Zero-Gravity Drop Tower Facility of NASA-Lewis Research Center. The experimental results were corrected for the error due to radiation absorption by the thermocouples. A conduction-only numerical heat transfer model was developed to compute the transient air temperature in the cylindrical geometry. The results were compared to the experimental data to determine the significance of the thermoacoustic convection heat transfer mechanism. It is observed that the rate of heat transfer to the air measured during the experiments is consistently higher than that obtained by the conduction-only solution indicating a significant presence of the TAC heat transfer. Further experiments are planned to measure directly (1) the radiative heat transfer contribution to the rise in the air temperature, and (2) the air pressure oscillations within the cylinder that are responsible for the convective heat transfer mode.

  16. Experimental Investigation of Laminar Gas Jet Diffusion Flames in Zero Gravity

    NASA Technical Reports Server (NTRS)

    Cochran, Thomas H.

    1972-01-01

    An experimental program was conducted to study the burning of laminar gas jet diffusion flames in a zero-gravity environment. The tests were conducted in a 2.2-Second-Zero-Gravity Facility and were a part of a continuing effort investigating the effects of gravity on basic combustion processes. The photographic results indicate that steady state gas jet diffusion flames existed in zero gravity but they were geometrically quite different than their normal-gravity counterparts. Methane-air flames were found to be approximately 50 percent longer and wider in zero gravity than in normal gravity.

  17. The response of single human cells to zero gravity

    NASA Technical Reports Server (NTRS)

    Montgomery, P. O., Jr.; Cook, J. E.; Reynolds, R. C.; Paul, J. S.; Hayflick, L.; Schulz, W. W.; Stock, D.; Kinzey, S.; Rogers, T.; Campbell, D.

    1975-01-01

    Twenty separate cultures of Wistar-38 human embryonic lung cells were exposed to a zero-gravity environment on Skylab for periods of time ranging from one to 59 days. Duplicate cultures were run concurrently as ground controls. Ten cultures were fixed on board the satellite during the first 12 days of flight. Growth curves, DNA microspectrophotometry, phase microscopy, and ultrastructural studies of the fixed cells revealed no effects of a zero-gravity environment on the ten cultures. Two cultures were photographed with phase time lapse cinematography during the first 27 days of flight. No differences were found in mitotic index, cell cycle, and migration between the flight and control cells. Eight cultures were returned to earth in an incubated state. Karyotyping and chromosome banding tests show no differences between the flight and control cells.

  18. Crew efficiency on first exposure to zero-gravity

    NASA Technical Reports Server (NTRS)

    Garriott, O. K.; Doerre, G. L.

    1977-01-01

    Activation task performance of Skylab crews showed improved efficiency as experience was gained in weightlessness living. During three activation intervals, less than 12 man-hours were lost due to reduced efficiency (including the effects of motion sensitivity) while almost 200 man-hours of productive work were delivered. Work rate improved for tasks in which simulation and training time were extensive and for tasks which allowed zero-gravity operations to be optimized.

  19. Development of a compact dilution refrigerator for zero gravity operation

    NASA Technical Reports Server (NTRS)

    Roach, Pat R.; Helvensteijn, Ben

    1990-01-01

    A compact dilution refrigerator design based on internal charcoal adsorption is being tested for operation in zero gravity. This refrigerator is self-contained with no external pumps or gas handling system and provides reliable operation since it has no moving parts. All operations are performed with heaters and are completely computer controlled. The refrigerator is capable of providing many hours of operation at very low temperature before the charcoal pumps must be recycled.

  20. Astronaut Edwin Aldrin during underwater zero-gravity training

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronaut Edwin Aldrin, pilot for the Gemini 12 space flight, practices work tasks in preparation for his extravehicular activity during the Gemini 12 flight. He works with a telescoping hand rail he will use to move from the spacecraft to the Agena Target Docking Vehicle (54934); Aldrin practices extravehicular work task during underwater zero-gravity training. He works on the docking collar of the Agena Target Docking Vehicle mockup using hand holds to secure himself to the vehicle (54935).

  1. Dynamics of superfluid helium in zero gravity. [Spacelab 2 investigation

    NASA Technical Reports Server (NTRS)

    Mason, P. V.

    1981-01-01

    The Spacelab 2 superfluid helium experiment was designed to: (1) examine the behavior of capillary waves and measure their velocity and dampling; (2) study the sloshing motion of bulk superfluid helium in near-zero gravity in order to determine its effects on sensors and attitude control systems for far infrared telescopes; and (3) determine the temperature distributions in the liquid and their correlation with bulk motion. The experiment system includes a helium cryostat with a sensor head and a microcomputer to provide electrical excitation and gather and transmit resultant responses to the experiment teams on the ground. Astronaut intervention is possible.

  2. Investigation of crystal growth from solutions. [in zero gravity environments

    NASA Technical Reports Server (NTRS)

    Miyagawa, I.

    1974-01-01

    The quality was investigated of a crystal of Rochelle salt grown from a solution placed in the zero-gravity environment of Skylab 4. The crystal has the following unique features: (1) the typical cavity is a long tube extending along the c-axis, the average length being 4mm, compared to 0.1mm that is the average size for earth-grown crystals; and (2) the crystal consists of several single crystals, the axes of which are parallel to each other. A preliminary measurement was made on the ferroelectric hysteresis curve of this Rochelle salt crystal.

  3. Muscle and the physiology of locomotion. [in zero gravity

    NASA Technical Reports Server (NTRS)

    Rambaut, P. C.; Nicogossian, A. E.; Pool, S. L.

    1983-01-01

    NASA's past, current, and planned research on muscle deterioration at zero gravity and development of countermeasures are reviewed; Soviet studies are discussed as well. A definition of muscle mass and strength regulation factors, and improved measurement methods of muscle atrophy are needed. Investigations of tissue growth factors and their receptors, endogenous and exogenous anabolic protein synthesis stimulation, and a potential neurotropic factor are among the projects in progress or planned. At present, vigorous physical exercise during spaceflight is recommended as the most effective countermeasure against skeletal muscle atrophy.

  4. Development of coatings to control electroosmosis in zero gravity electrophoresis

    NASA Technical Reports Server (NTRS)

    Krupnick, A. C.

    1974-01-01

    A major problem confronting the operation of free fluid electrophoresis in zero gravity is the control of electrokinetic phenomena and, in particular, electroosmosis. Due to the severity of counter flow as a result of electroosmosis, the electrical potential developed at the surface of shear must be maintained at near, or as close, to zero millivolts as possible. Based upon this investigation, it has been found that the amount of bound water or the degree of hydroxylation plays a major role in the control of this phenomenon. Based upon tests employing microcapillary electrophoresis, it has been found that gamma amino propyl trihydroxysilane produced a coating which provides the lowest potential (about 3.86 mV) at the surface of shear between the stationary and mobile layers.

  5. Zero-gravity cloud physics laboratory: Experiment program definition and preliminary laboratory concept studies

    NASA Technical Reports Server (NTRS)

    Eaton, L. R.; Greco, E. V.

    1973-01-01

    The experiment program definition and preliminary laboratory concept studies on the zero G cloud physics laboratory are reported. This program involves the definition and development of an atmospheric cloud physics laboratory and the selection and delineations of a set of candidate experiments that must utilize the unique environment of zero gravity or near zero gravity.

  6. Ocular Blood Flow Measured Noninvasively in Zero Gravity

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Manuel, Francis K.; Geiser, Martial; Moret, Fabrice; Messer, Russell K.; King, James F.; Suh, Kwang I.

    2003-01-01

    In spaceflight or a reduced-gravity environment, bodily fluids shift to the upper extremities of the body. The pressure inside the eye, or intraocular pressure, changes significantly. A significant number of astronauts report changes in visual acuity during orbital flight. To date this remains of unknown etiology. Could choroidal engorgement be the primary mechanism and a change in the curvature or shape of the cornea or lens be the secondary mechanism for this change in visual acuity? Perfused blood flow in the dense meshwork of capillaries of the choroidal tissue (see the preceding illustration) provides necessary nutrients to the outer layers of the retina (photoreceptors) to keep it healthy and maintain good vision. Unlike the vascular system, the choroid has no baroreceptors to autoregulate fluid shifts, so it can remain engorged, pushing the macula forward and causing a hyperopic (farsighted) shift of the eye. Experiments by researchers at the NASA Glenn Research Center could help answer this question and facilitate planning for long-duration missions. We are investigating the effects of zero gravity on the choroidal blood flow of volunteer subjects. This pilot project plans to determine if choroidal blood flow is autoregulated in a reduced-gravity environment.

  7. Cool flames at terrestrial, partial, and near-zero gravity

    SciTech Connect

    Foster, Michael; Pearlman, Howard

    2006-10-15

    Natural convection plays an important role in all terrestrial, Lunar, and Martian-based, unstirred, static reactor cool flame and low-temperature autoignitions, since the Rayleigh number (Ra) associated with the self-heating of the reaction exceeds the critical Ra (approximately 600) for onset of convection. At near-zero gravity, Ra<600 can be achieved and the effects of convection suppressed. To systematically vary the Ra without varying the mixture stoichiometry, reactor pressure, or vessel size, cool flames are studied experimentally in a closed, unstirred, static reactor subject to different gravitational accelerations (terrestrial, 1g; Martian, 0.38g; Lunar, 0.16g; and reduced gravity, {approx}10{sup -2}g). Representative results show the evolution of the visible light emission using an equimolar n-butane:oxygen premixture at temperatures ranging from 320 to 350? deg C (593-623 K) at subatmospheric pressures. For representative reduced-gravity, spherically propagating cool flames, the flame radius based on the peak light intensity is plotted as a function of time and the flame radius (and speed) is calculated from a polynomial fit to data. A skeletal chemical kinetic Gray-Yang model developed previously for a one-dimensional, reactive-diffusive system by Fairlie and co-workers is extended to a two-dimensional axisymmetric, spherical geometry. The coupled species, energy, and momentum equations are solved numerically and the spatio-temporal variations in the temperature profiles are presented. A qualitative comparison is made with the experimental results. (author)

  8. Zero-Gravity Vortex Vent and PVT Gaging System

    NASA Technical Reports Server (NTRS)

    Downey, M. G.; Trevathan, J. T.

    1989-01-01

    Space Station and satellite reservicing will require the ability to vent gas on orbit from liquid supply or storage tanks and to gage liquid quantity under microgravity conditions. In zero gravity, (zero-g) the vortex vent is capable of venting gas from a tank of liquid containing gas randomly distributed as bubbles. The concept uses a spinning impeller to create centrifugal force inside a vortex tube within a tank. This creates a gas pocket and forces the liquid through a venturi and back into the tank. Gas is then vented from the gas pocket through a liquid detector and then out through an exhaust port. If the liquid detector senses liquid in the vent line, the fluid is directed to the low-pressure port on the venturi and is returned to the tank. The advantages of this system is that it has no rotating seals and is compatible with most corrosive and cryogenic fluids. A prototype was designed and built at the NASA Johnson Space Center and flown on the KC-135 zero-g aircraft. During these test flights, where microgravity conditions are obtained for up to 30 sec, the prototype demonstrated that less than 0.10 percent of the volume of fluid vented was liquid when the tank was half full of liquid. The pressure volume temperature (PVT) gaging system is used in conjunction with the vortex vent to calculate the amount of liquid remaining in a tank under microgravity conditions. The PVT gaging system is used in conjunction with the vortex vent to gage liquid quantity in zero or low gravity. The system consists of a gas compressor, accumulator, and temperature and pressure instrumentation. To measure the liquid in a tank a small amount of gas is vented from the tank to the compressor and compressed into the accumulator. Pressure and temperature in the tank and accumulator are measured before and after the gas transfer occurs. Knowing the total volume of the tank, the volume of the accumulator, the volume of the intermediate lines, and initial and final pressures and

  9. Sediment-transport experiments in zero-gravity

    NASA Technical Reports Server (NTRS)

    Iversen, J. D.; Greeley, R.

    1986-01-01

    One of the important parameters in the analysis of sediment entrainment and transport is gravitational attraction. The availability of a laboratory in Earth orbit would afford an opportunity to conduct experiments in zero and variable gravity environments. Elimination of gravitational attraction as a factor in such experiments would enable other critical parameters (such as particle cohesion and aerodynamic forces) to be evaluated much more accurately. A Carousel Wind Tunnel (CWT) is proposed for use in conducting experiments concerning sediment particle entrainment and transport in a space station. In order to test the concept of this wind tunnel design a one third scale model CWT was constructed and calibrated. Experiments were conducted in the prototype to determine the feasibility of studying various aeolian processes and the results were compared with various numerical analysis. Several types of experiments appear to be feasible utilizing the proposed apparatus.

  10. Sediment-transport experiments in zero-gravity

    NASA Technical Reports Server (NTRS)

    Iversen, James D.; Greeley, Ronald

    1987-01-01

    One of the important parameters in the analysis of sediment entrainment and transport is gravitational attraction. The availability of a laboratory in earth orbit would afford an opportunity to conduct experiments in zero and variable gravity environments. Elimination of gravitational attraction as a factor in such experiments would enable other critical parameters (such as particle cohesion and aerodynamic forces) to be evaluated much more accurately. A Carousel Wind Tunnel (CWT) is proposed for use in conducting experiments concerning sediment particle entrainment and transport in a space station. In order to test the concept of this wind tunnel design a one third scale model CWT was constructed and calibrated. Experiments were conducted in the prototype to determine the feasibility of studying various aeolian processes and the results were compared with various numerical analysis. Several types of experiments appear to be feasible utilizing the proposed apparatus.

  11. Zero Gravity Cryogenic Vent System Concepts for Upper Stages

    NASA Technical Reports Server (NTRS)

    Flachbart, Robin H.; Holt, James B.; Hastings, Leon J.

    2001-01-01

    The capability to vent in zero gravity without resettling is a technology need that involves practically all uses of sub-critical cryogenics in space, and would extend cryogenic orbital transfer vehicle capabilities. However, the lack of definition regarding liquid/ullage orientation coupled with the somewhat random nature of the thermal stratification and resulting pressure rise rates, lead to significant technical challenges. Typically a zero gravity vent concept, termed a thermodynamic vent system (TVS), consists of a tank mixer to destratify the propellant, combined with a Joule-Thomson (J-T) valve to extract thermal energy from the propellant. Marshall Space Flight Center's (MSFC's) Multipurpose Hydrogen Test Bed (MHTB) was used to test both spray-bar and axial jet TVS concepts. The axial jet system consists of a recirculation pump heat exchanger unit. The spray-bar system consists of a recirculation pump, a parallel flow concentric tube heat exchanger, and a spray-bar positioned close to the longitudinal axis of the tank. The operation of both concepts is similar. In the mixing mode, the recirculation pump withdraws liquid from the tank and sprays it into the tank liquid, ullage, and exposed tank surfaces. When energy extraction is required, a small portion of the recirculated liquid is passed sequentially through the J-T expansion valve, the heat exchanger, and is vented overboard. The vented vapor cools the circulated bulk fluid, thereby removing thermal energy and reducing tank pressure. The pump operates alone, cycling on and off, to destratify the tank liquid and ullage until the liquid vapor pressure reaches the lower set point. At that point, the J-T valve begins to cycle on and off with the pump. Thus, for short duration missions, only the mixer may operate, thus minimizing or even eliminating boil-off losses.

  12. Zero Gravity Cryogenic Vent System Concepts for Upper Stages

    NASA Technical Reports Server (NTRS)

    Flachbart, Robin H.; Holt, James B.; Hastings, Leon J.

    1999-01-01

    The capability to vent in zero gravity without resettling is a technology need that involves practically all uses of sub-critical cryogenics in space. Venting without resettling would extend cryogenic orbital transfer vehicle capabilities. However, the lack of definition regarding liquid/ullage orientation coupled with the somewhat random nature of the thermal stratification and resulting pressure rise rates, lead to significant technical challenges. Typically a zero gravity vent concept, termed a thermodynamic vent system (TVS), consists of a tank mixer to destratify the propellant, combined with a Joule-Thomson (J-T) valve to extract thermal energy from the propellant. Marshall Space Flight Center's (MSFC's) Multipurpose Hydrogen Test Bed (MHTB) was used to test both spray bar and axial jet TVS concepts. The axial jet system consists of a recirculation pump heat exchanger unit. The spray bar system consists of a recirculation pump, a parallel flow concentric tube, heat exchanger, and a spray bar positioned close to the longitudinal axis of the tank. The operation of both concepts is similar. In the mixing mode, the recirculation pump withdraws liquid from the tank and sprays it into the tank liquid, ullage, and exposed tank surfaces. When energy is required. a small portion of the recirculated liquid is passed sequentially through the J-T expansion valve, the heat exchanger, and is vented overboard. The vented vapor cools the circulated bulk fluid, thereby removing thermal energy and reducing tank pressure. The pump operates alone, cycling on and off, to destratify the tank liquid and ullage until the liquid vapor pressure reaches the lower set point. At that point. the J-T valve begins to cycle on and off with the pump. Thus, for short duration missions, only the mixer may operate, thus minimizing or even eliminating, boil-off losses.

  13. Development of coatings to control electroosmosis in zero gravity electrophoresis

    NASA Technical Reports Server (NTRS)

    Krupnick, A. C.

    1974-01-01

    A major problem confronting the operation of free fluid electrophoresis in zero gravity is the control of electrokinetic phenomena and, in particular, electroosmosis. Due to the severity of counter flow, as a result of electroosmosis, the electrical potential developed at the surface of shear must be maintained at near, or as close to, zero millivolts as possible. Based upon this investigation, it has been found that the amount of bound water or the degree of hydroxylation plays a major role in the control of this phenomena. Of necessity, factors, such as adhesion, biocompatibility, protein adsorption, and insolubility were considered in this investigation because of the long buffer-coating exposure times required by present space operations. Based upon tests employing microcapillary electrophoresis, it has been found that gamma amino propyl trihydroxysilane produced a coating which provides the lowest potential (minus 3.86 mv) at the surface of shear between the stationary and mobile layers. This coating has been soaked in both borate and saline buffers, up to three months, in a pH range of 6.5 to 10 without deleterious effects or a change in its ability to control electrokinetic effects.

  14. Thermocapillary simulation of single bubble dynamics in zero gravity

    NASA Astrophysics Data System (ADS)

    Alhendal, Yousuf; Turan, Ali; Hollingsworth, Peter

    2013-07-01

    The lack of significant buoyancy effects in zero gravity conditions poses an issue with fluid transfer in a stagnant liquid. In this paper bubble movement in a stagnant liquid is analysed and presented numerically using a computational fluid dynamics (CFD) approach. The governing continuum conservation equations for two phase flow are solved using the commercial software package Ansys-Fluent v.13 and the Volume of Fluid (VOF) method is used to track the liquid/gas interface in 2D and 3D domains. The simulation results are in reasonable agreement with the earlier experimental observations, the VOF algorithm is found to be a valuable tool for studying the phenomena of gas-liquid interaction. The flow is driven via Marangoni influence induced by the temperature difference which in turn drives the bubble from the cold to the hot region. A range of thermal Reynolds (ReT) and Marangoni numbers (MaT) are selected for the numerical simulations, specifically ReT=13-658 and MaT=214-10,721 respectively. The results indicate that the inherent velocity of bubbles decreases with an increase of the Marangoni number, a result that is line with the results of previous space experiments (Kang et al., 2008) [1]. An expression for predicting the scaled velocity of bubble has been derived based on the data obtained in the present numerical study. Some three-dimensional simulations are also performed to compare and examine the results with two-dimensional simulations.

  15. Adiabatic demagnetization refrigerator for use in zero gravity

    NASA Technical Reports Server (NTRS)

    Dingus, Michael L.

    1988-01-01

    In this effort, a new design concept for an adiabatic demagnetization refrigerator (ADR) that is capable of operation in zero gravity has been developed. The design uses a vortex precooler to lower the initial temperature of magnetic salt from the initial space superfluid helium dewar of 1.8 K to 1.1 K. This reduces the required maximum magnetic field from 4 Tesla to 2 Tesla. The laboratory prototype vortex precooler reached a minimum temperature of 0.78 K, and had a cooling power of 1 mW at 1.1 K. A study was conducted to determine the dependence of vortex cooler performance on system element configuration. A superfluid filled capillary heat switch was used in the design. The laboratory prototype ADR reached a minimum temperature of 0.107 K, and maintained temperatures below 0.125 K for 90 minutes. Demagnetization was carried out from a maximum field of 2 T. A soft iron shield was developed that reduced the radial central field to 1 gauss at 0.25 meters.

  16. Modeling of zero gravity venting: Studies of two-phase heat transfer under reduced gravity

    NASA Technical Reports Server (NTRS)

    Merte, H., Jr.

    1986-01-01

    The objective is to predict the pressure response of a saturated liquid-vapor system when undergoing a venting or depressurization process in zero gravity at low vent rates. An experimental investigation of the venting of cylindrical containers partially filled with initially saturated liquids was previously conducted under zero-gravity conditions and compared with an analytical model which incorporated the effect of interfacial mass transfer on the ullage pressure response during venting. A new model is presented to improve the estimation of the interfacial mass transfer. Duhammel's superposition integral is incorporated to approximate the transient temperature response of the interface, treating the liquid as a semi-infinite solid with conduction heat transfer. Account is also taken of the condensation taking place within the bulk of a saturated vapor as isentropic expansion takes place. Computational results are presented for the venting of R-11 from a given vessel and initial state for five different venting rates over a period of three seconds, and compared to prior NASA experiments. An improvement in the prediction of the final pressure takes place, but is still considerably below the measurements.

  17. A helium-3/helium-4 dilution cryocooler for operation in zero gravity

    NASA Technical Reports Server (NTRS)

    Hendricks, John B.

    1988-01-01

    This research effort covered the development of He-3/He-4 dilution cryocooler cycles for use in zero gravity. The dilution cryocooler is currently the method of choice for producing temperatures below 0.3 Kelvin in the laboratory. However, the current dilution cryocooler depends on gravity for their operation, so some modification is required for zero gravity operation. In this effort, we have demonstrated, by analysis, that the zero gravity dilution cryocooler is feasible. We have developed a cycle that uses He-3 circulation, and an alternate cycle that uses superfluid He-4 circulation. The key elements of both cycles were demonstrated experimentally. The development of a true 'zero-gravity' dilution cryocooler is now possible, and should be undertaken in a follow-on effort.

  18. Vortex motion phase separator for zero gravity liquid transfer

    NASA Technical Reports Server (NTRS)

    Howard, Frank S. (Inventor); Fraser, Wilson M., Jr. (Inventor)

    1989-01-01

    A vortex motion phase separator is disclosed for transferring a liquid in a zero gravity environment while at the same time separating the liquid from vapors found within either the sender or the receiving tanks. The separator comprises a rigid sender tank having a circular cross-section and rigid receiver tank having a circular cross-section. A plurality of ducts connects the sender tank and the receiver tank. Disposed within the ducts connecting the receiver tank and the sender tank is a pump and a plurality of valves. The pump is powered by an electric motor and is adapted to draw either the liquid or a mixture of the liquid and the vapor from the sender tank. Initially, the mixture drawn from the sender tank is directed through a portion of the ductwork and back into the sender tank at a tangent to the inside surface of the sender tank, thereby creating a swirling vortex of the mixture within the sender tank. As the pumping action increases, the speed of the swirling action within the sender tank increases creating an increase in the centrifugal force operating on the mixture. The effect of the centrifugal force is to cause the heavier liquid to migrate to the inside surface of the sender tank and to separate from the vapor. When this separation reaches a predetermined degree, control means is activated to direct the liquid conveyed by the pump directly into the receiver tank. At the same time, the vapor within the receiver tank is directed from the receiver tank back into the sender tank. This flow continues until substantially all of the liquid is transferred from the sender tank to the receiver tank.

  19. Forced and natural convection in laminar-jet diffusion flames. [normal-gravity, inverted-gravity and zero-gravity flames

    NASA Technical Reports Server (NTRS)

    Haggard, J. B., Jr.

    1981-01-01

    An experimental investigation was conducted on methane, laminar-jet, diffusion flames with coaxial, forced-air flow to examine flame shapes in zero-gravity and in situations where buoyancy aids (normal-gravity flames) or hinders (inverted-gravity flames) the flow velocities. Fuel nozzles ranged in size from 0.051 to 0.305 cm inside radius, while the coaxial, convergent, air nozzle had a 1.4 cm inside radius at the fuel exit plane. Fuel flows ranged from 1.55 to 10.3 cu cm/sec and air flows from 0 to 597 cu cm/sec. A computer program developed under a previous government contract was used to calculate the characteristic dimensions of normal and zero-gravity flames only. The results include a comparison between the experimental data and the computed axial flame lengths for normal gravity and zero gravity which showed good agreement. Inverted-gravity flame width was correlated with the ratio of fuel nozzle radius to average fuel velocity. Flame extinguishment upon entry into weightlessness was studied, and it was found that relatively low forced-air velocities (approximately 10 cm/sec) are sufficient to sustain methane flame combustion in zero gravity. Flame color is also discussed.

  20. The solidification under zero gravity conditions of binary alloys exhibiting solid state immiscibility

    NASA Technical Reports Server (NTRS)

    Johnson, A. A.; Anantatmula, R. P.; Horylev, R. J.; Gupta, S. P.; Vatne, R. S.

    1975-01-01

    The solidification behavior of gold-silicon alloys containing up to 25 at. % silicon was studied, and a mathematical model of gravity segregation during solidification was developed. A background of knowledge is provided which can be used in the design of zero gravity solidification experiments to be carried out in the 300-ft drop tower, in Aerobee rockets and in future space missions. Such experiments are needed to develop the basic scientific knowledge required for the design of economically viable space manufacturing processes. Some preliminary zero gravity experiments were carried out on a gold-25 at. % silicon alloy using the drop tower facility.

  1. Assessment of geophysical flows for zero-gravity simulation

    NASA Technical Reports Server (NTRS)

    Winn, C. B.; Cox, A.; Srivatsangam, R.

    1976-01-01

    The results of research relating to the feasibility of using a low gravity environment to model geophysical flows are presented. Atmospheric and solid earth flows are considered. Possible experiments and their required apparatus are suggested.

  2. Comment on ``Gravity as a zero-point-fluctuation force''

    NASA Astrophysics Data System (ADS)

    Carlip, S.

    1993-04-01

    A paper by H. Puthoff [Phys. Rev. A 39, 2333 (1989)], which claims to derive Newtonian gravity from stochastic electrodynamics, contains a serious computational error. When the calculation is corrected, the resulting force is shown to be nongravitational and negligible.

  3. Feasibility study of a zero-gravity (orbital) atmospheric cloud physics experiments laboratory

    NASA Technical Reports Server (NTRS)

    Hollinden, A. B.; Eaton, L. R.

    1972-01-01

    A feasibility and concepts study for a zero-gravity (orbital) atmospheric cloud physics experiment laboratory is discussed. The primary objective was to define a set of cloud physics experiments which will benefit from the near zero-gravity environment of an orbiting spacecraft, identify merits of this environment relative to those of groundbased laboratory facilities, and identify conceptual approaches for the accomplishment of the experiments in an orbiting spacecraft. Solicitation, classification and review of cloud physics experiments for which the advantages of a near zero-gravity environment are evident are described. Identification of experiments for potential early flight opportunities is provided. Several significant accomplishments achieved during the course of this study are presented.

  4. Future utilization of space: Silverton Conference on material science and phase transformations in zero-gravity, summary of proceeding

    NASA Technical Reports Server (NTRS)

    Eisner, M. (Editor)

    1975-01-01

    The importance of zero gravity environment in the development and production of new and improved materials is considered along with the gravitational effects on phase changes or critical behavior in a variety of materials. Specific experiments discussed include: fine scale phase separation in zero gravity; glass formation in zero gravity; effects of gravitational perturbations on determination of critical exponents; and light scattering from long wave fluctuations in liquids in zero gravity. It is concluded that the space shuttle/spacelab system is applicable to various fields of interest.

  5. Middeck zero-gravity dynamics experiment - Comparison of ground and flight test data

    NASA Astrophysics Data System (ADS)

    Crawley, Edward F.; Barlow, Mark S.; van Schoor, Marthinus C.; Masters, Brett; Bicos, Andrew S.

    1992-08-01

    An analytic and experimental study of the changes in the modal parameters of space structural test articles from one- to zero-gravity is presented. Deployable, erectable, and rotary modules was assembled to form three one- and two-dimensional structures, in which variations in bracing wire and rotary joint preload could be introduced. The structures were modeled as if hanging from a suspension system in one gravity, and unconstrained, as if free floating in zero-gravity. The analysis is compared with ground experimental measurements, made on a spring/wire suspension system with a nominal plunge frequency of one Hertz, and with measurements made on the Shuttle middeck. The degree of change in linear modal parameters as well as the change in nonlinear nature of the response is examined. Trends in modal parameters are presented as a function of force amplitude, joint preload, and ambient gravity level.

  6. Middeck zero-gravity dynamics experiment - Comparison of ground and flight test data

    NASA Technical Reports Server (NTRS)

    Crawley, Edward F.; Barlow, Mark S.; Van Schoor, Marthinus C.; Masters, Brett; Bicos, Andrew S.

    1992-01-01

    An analytic and experimental study of the changes in the modal parameters of space structural test articles from one- to zero-gravity is presented. Deployable, erectable, and rotary modules was assembled to form three one- and two-dimensional structures, in which variations in bracing wire and rotary joint preload could be introduced. The structures were modeled as if hanging from a suspension system in one gravity, and unconstrained, as if free floating in zero-gravity. The analysis is compared with ground experimental measurements, made on a spring/wire suspension system with a nominal plunge frequency of one Hertz, and with measurements made on the Shuttle middeck. The degree of change in linear modal parameters as well as the change in nonlinear nature of the response is examined. Trends in modal parameters are presented as a function of force amplitude, joint preload, and ambient gravity level.

  7. Thermo-hydro-dynamic characteristics of a zero-gravity, spherical model of the troposphere

    NASA Technical Reports Server (NTRS)

    Srivatsangam, S.

    1976-01-01

    A model that exploits the radial inertia forces of a rotating fluid contained in a spherical annulus is described. The model would be flown in a satellite and experiments would be performed in very low or zero gravity. In such a model it would not be necessary to artificially simulate a radial gravity field. Thus small amounts of electrical energy would be sufficient to perform experiments. Since the only forces involved are thermo-hydro-dynamic ones, electromagnetic equations need not be considered.

  8. The International Heat Pipe Experiment. [Black Brant sounding rocket payload zero gravity experiment

    NASA Technical Reports Server (NTRS)

    Mcintosh, R.; Ollendorf, S.; Sherman, A.; Harwell, W.

    1976-01-01

    On October 4, 1974, the International Heat Pipe Experiment was launched aboard a Black Brant sounding rocket from White Sands, New Mexico. The flight provided six min of near zero gravity during which a total of ten separate heat pipe experiments was performed. The fifteen heat pipes tested represent some of the latest American and European technology. This flight provided the first reported zero gravity data on cryogenic and flat plate vapor chamber heat pipes. Additionally, valuable design and engineering data were obtained on several other heat pipe configurations. The payload and several of its experiments are discussed.

  9. Development of a large support surface for an air-bearing type zero-gravity simulator

    NASA Technical Reports Server (NTRS)

    Glover, K. E.

    1976-01-01

    The methods used in producing a large, flat surface to serve as the supporting surface for an air-bearing type zero-gravity simulator using low clearance, thrust-pad type air bearings are described. Major problems encountered in the use of self-leveled epoxy coatings in this surface are discussed and techniques are recommended which proved effective in overcoming these problems. Performance requirements of the zero-gravity simulator vehicle which were pertinent to the specification of the air-bearing support surface are also discussed.

  10. Solution Growth of Crystals in Zero-Gravity

    NASA Technical Reports Server (NTRS)

    Lal, R. B.; Kroes, R. L.

    1985-01-01

    In a low-g environment, buoyancy driven convection effects in solution crystal growth are greatly reduced and, thus, one can study diffusion mass transport which in 1-g is masked by convective phenomena. Crystals of triglycine sulfate (TGS) will be grown aboard the Spacelab 3 mission, using a specially developed Fluids Experiments System (FES). The objectives of the experiment are: (1) to develop a technique for solution crystal growth in a low-g environment, (2) to characterize the growth environment provided by an orbiting spacecraft and to determine the influence of the environment on the growth behavior, and (3) to determine how gravity in a low-gravity environment influences the properties of a resulting TGS crystal. Single crystals of TGS have been grown using conventional low-temperature solution crystal growth method and the growth process has been extensively characterized. Various physical properties of TGS solution have been measured. Also, a unique technique of growing solution growth crystals by extracting heat at a programmed rate from the crystal through a semi-insulating sting has been developed and tested in 1-g environment.

  11. Extracting Zero-Gravity Surface Figure of a Mirror

    NASA Technical Reports Server (NTRS)

    Bloemhof, Eric E.; Lam, Jonathan C.; Feria, Alfonso; Chang, Zensheu

    2011-01-01

    The technical innovation involves refinement of the classic optical technique of averaging surface measurements made in different orientations with respect to gravity, so the effects of gravity cancel in the averaged image. Particularly for large, thin mirrors subject to substantial deformation, the further requirement is that mount forces must also cancel when averaged over measurement orientations. The zerogravity surface figure of a mirror in a hexapod mount is obtained by analyzing the summation of mount forces in the frame of the optic as surface metrology is averaged over multiple clockings. This is illustrated with measurements taken from the Space Interferometry Mission (SIM) PT-Ml mirror for both twofold and threefold clocking. The positive results of these measurements and analyses indicate that, from this perspective, a lighter mirror could be used; that is, one might place less reliance on the damping effects of the elliptic partial differential equations that describe the propagation of forces through glass. The advantage over prior art is relaxing the need for an otherwise substantial thickness of glass that might be needed to ensure accurate metrology in the absence of a detailed understanding and analysis of the mount forces. The general insights developed here are new, and provide the basic design principles on which mirror mount geometry may be chosen.

  12. An Experimental Study of Boiling in Reduced and Zero Gravity Fields

    NASA Technical Reports Server (NTRS)

    Usiskin, C. M.; Siegel, R.

    1961-01-01

    A pool boiling apparatus was mounted on a counterweighted platform which could be dropped a distance of nine feet. By varying the size of the counterweight, the effective gravity field on the equipment was adjusted between zero and unity. A study of boiling burnout in water indicated that a variation in the critical heat flux according to the one quarter power of gravity was reasonable. A consideration of the transient burnout process was necessary in order to properly interpret the data. A photographic study of nucleate boiling showed how the velocity of freely rising vapor bubbles decreased as gravity was reduced. The bubble diameters at the time of breakoff from the heated surface were found to vary inversely as gravity to the 1/3.5 power. Motion pictures were taken to illustrate both nucleate and film boiling in the low gravity range.

  13. On Calculating the Zero-Gravity Surface Figure of a Mirror

    NASA Technical Reports Server (NTRS)

    Bloemhof, Eric E.

    2010-01-01

    An analysis of the classical method of calculating the zero-gravity surface figure of a mirror from surface-figure measurements in the presence of gravity has led to improved understanding of conditions under which the calculations are valid. In this method, one measures the surface figure in two or more gravity- reversed configurations, then calculates the zero-gravity surface figure as the average of the surface figures determined from these measurements. It is now understood that gravity reversal is not, by itself, sufficient to ensure validity of the calculations: It is also necessary to reverse mounting forces, for which purpose one must ensure that mountingfixture/ mirror contacts are located either at the same places or else sufficiently close to the same places in both gravity-reversed configurations. It is usually not practical to locate the contacts at the same places, raising the question of how close is sufficiently close. The criterion for sufficient closeness is embodied in the St. Venant principle, which, in the present context, translates to a requirement that the distance between corresponding gravity-reversed mounting positions be small in comparison to their distances to the optical surface of the mirror. The necessity of reversing mount forces is apparent in the behavior of the equations familiar from finite element analysis (FEA) that govern deformation of the mirror.

  14. Sediment-transport (wind) experiments in zero-gravity

    NASA Technical Reports Server (NTRS)

    Iverson, J.; Gillette, D.; Greeley, R.; Lee, J.; Mackinnon, I.; Marshall, J.; Nickling, W.; Werner, B.; White, B.; Williams, S.

    1986-01-01

    The carousel wind tunnel (CWT) can be a significant tool for the determination of the nature and magnitude of interparticlar forces at threshold of motion. By altering particle and drum surface electrical properties and/or by applying electric potential difference across the inner and outer drums, it should be possible to separate electrostatic effects from other forces of cohesion. Besides particle trajectory and bedform analyses, suggestions for research include particle aggregation in zero and subgravity environments, effect of suspension-saltation ratio on soil abrasion, and the effects of shear and shearfree turbulence on particle aggregation as applied to evolution of solar nebula.

  15. Study on processing immiscible materials in zero gravity

    NASA Technical Reports Server (NTRS)

    Reger, J. L.; Mendelson, R. A.

    1975-01-01

    An experimental investigation was conducted to evaluate mixing immiscible metal combinations under several process conditions. Under one-gravity, these included thermal processing, thermal plus electromagnetic mixing, and thermal plus acoustic mixing. The same process methods were applied during free fall on the MSFC drop tower facility. The design is included of drop tower apparatus to provide the electromagnetic and acoustic mixing equipment, and a thermal model was prepared to design the specimen and cooling procedure. Materials systems studied were Ca-La, Cd-Ga and Al-Bi; evaluation of the processed samples included the morphology and electronic property measurements. The morphology was developed using optical and scanning electron microscopy and microprobe analyses. Electronic property characterization of the superconducting transition temperatures were made using an impedance change-tuned coil method.

  16. Silverton Conference on Applications of the Zero Gravity Space Shuttle Environment to Problems in Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Eisner, M. (Editor)

    1974-01-01

    The possible utilization of the zero gravity resource for studies in a variety of fluid dynamics and fluid-dynamic related problems was investigated. A group of experiments are discussed and described in detail; these include experiments in the areas of geophysical fluid models, fluid dynamics, mass transfer processes, electrokinetic separation of large particles, and biophysical and physiological areas.

  17. Statistical support for the ATL program. [microbial growth in zero gravity

    NASA Technical Reports Server (NTRS)

    Hinkelmann, K.; Myers, R. H.

    1976-01-01

    Statistical experimental designs are presented for various numbers of organisms and agar solutions pertinent to the experiment, ""colony growth in zero gravity''. Missions lasting 7 and 30 days are considered. For the designs listed, the statistical analysis of the observations obtained on the space shuttle are outlined.

  18. Vacuum/Zero Net-Gravity Application for On-Orbit TPS Tile Repair

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.; Humes, Donald H.; Siochi, Emilie J.

    2004-01-01

    The Orbiter Columbia catastrophically failed during reentry February 1, 2003. All space Shuttle flights were suspended, including logistics support for the International Space Station. NASA LaRC s Structures and Materials Competency is performing characterizations of candidate materials for on-orbit repair of orbiter Thermal Protection System (TPS) tiles to support Return-to-Flight activities led by JSC. At least ten materials properties or attributes (adhesion to damage site, thermal protection, char/ash strength, thermal expansion, blistering, flaming, mixing ease, application in vacuum and zero gravity, cure time, shelf or storage life, and short-term outgassing and foaming) of candidate materials are of interest for on-orbit repair. This paper reports application in vacuum and zero net-gravity (for viscous flow repair materials). A description of the test apparatus and preliminary results of several candidate materials are presented. The filling of damage cavities is different for some candidate repair materials in combined vacuum and zero net-gravity than in either vacuum or zero net- gravity alone.

  19. Vacuum/Zero Net-Gravity Application for On-Orbit TPS Tile Repair

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.; Humes, Donald H.; Siochi, Emilie J.

    2004-01-01

    The Orbiter Columbia catastrophically failed during reentry February 1, 2003. All Space Shuttle flights were suspended, including logistics support for the International Space Station. NASA Langley Research Center s (LaRC) Structures and Materials Competency is performing characterizations of candidate materials for on-orbit repair of orbiter Thermal Protection System (TPS) tiles to support Return-to-Flight activities led by Johnson Space Center (JSC). At least ten materials properties or attributes (adhesion to damage site, thermal protection, char/ash strength, thermal expansion, blistering, flaming, mixing ease, application in vacuum and zero gravity, cure time, shelf or storage life, and short-term outgassing and foaming) of candidate materials are of interest for on-orbit repair. This paper reports application in vacuum and zero net-gravity (for viscous flow repair materials). A description of the test apparatus and preliminary results of several candidate materials are presented. The filling of damage cavities is different for some candidate repair materials in combined vacuum and zero net-gravity than in either vacuum or zero net-gravity alone.

  20. Investigation of crystal growth in zero gravity environment and investigation of metallic whiskers

    NASA Technical Reports Server (NTRS)

    Davis, J. H.; Lal, R. B.; Walter, H. U.; Castle, J. G., Jr.

    1972-01-01

    Theoretical and experimental work reported relates to the effects of near-zero gravity on growths of crystals and metallic whiskers during Skylab and Apollo flight experiments. Studies on growth and characterization of candidate materials for flight experiments cover indium-bismuth compounds, bismuth single crystals, gallium arsenide films and single crystals, and cadmium whiskers.

  1. Biomineralisation under zero gravity: A survey of past experience and theoretical considerations

    NASA Astrophysics Data System (ADS)

    Epple, M.; Slenzka, K.

    Biomineralisation denotes the utilisation of inorganic minerals by biological systems for different purposes like mechanical protection (shells), tools (teeth and spicules), internal stabilisation (bones), and gravity sensors (otoliths, statoliths). The main principles are now understood, i.e. the biological control over crystal nucleation, crystal growth, crystallisation in confined compartments, and incorporation of biomolecules (mostly proteins) into inorganic structures. It is a question of fundamental interest whether these processes that have been developed over millions of years under 1 g-gravity on earth are still working properly under zero gravitation. Biominerals like calcium carbonate, calcium phosphate, silica, and iron oxide have a high specific weight, and therefore the absence of gravity may well influence the biomineralisation process in a purely physico-chemical and mechanical way. Of course, biological signalling pathways should also depend on the gravitational force. Of immediate medical interest is the influence of gravity on bone formation that is commonly associated with osteoporosis. Further points are teeth development and pathological biomineralisation phenomena like atherosclerosis. The contributions will highlight past experiments from the literature about biomineralisation under zero-gravity and try to formulate principles for the influence of gravity on biomineralisation.

  2. Criticality in the slowed-down boiling crisis at zero gravity

    NASA Astrophysics Data System (ADS)

    Charignon, T.; Lloveras, P.; Chatain, D.; Truskinovsky, L.; Vives, E.; Beysens, D.; Nikolayev, V. S.

    2015-05-01

    Boiling crisis is a transition between nucleate and film boiling. It occurs at a threshold value of the heat flux from the heater called CHF (critical heat flux). Usually, boiling crisis studies are hindered by the high CHF and short transition duration (below 1 ms). Here we report on experiments in hydrogen near its liquid-vapor critical point, in which the CHF is low and the dynamics slow enough to be resolved. As under such conditions the surface tension is very small, the experiments are carried out in the reduced gravity to preserve the conventional bubble geometry. Weightlessness is created artificially in two-phase hydrogen by compensating gravity with magnetic forces. We were able to reveal the fractal structure of the contour of the percolating cluster of the dry areas at the heater that precedes the boiling crisis. We provide a direct statistical analysis of dry spot areas that confirms the boiling crisis at zero gravity as a scale-free phenomenon. It was observed that, in agreement with theoretical predictions, saturated boiling CHF tends to zero (within the precision of our thermal control system) in zero gravity, which suggests that the boiling crisis may be observed at any heat flux provided the experiment lasts long enough.

  3. Criticality in the slowed-down boiling crisis at zero gravity.

    PubMed

    Charignon, T; Lloveras, P; Chatain, D; Truskinovsky, L; Vives, E; Beysens, D; Nikolayev, V S

    2015-05-01

    Boiling crisis is a transition between nucleate and film boiling. It occurs at a threshold value of the heat flux from the heater called CHF (critical heat flux). Usually, boiling crisis studies are hindered by the high CHF and short transition duration (below 1 ms). Here we report on experiments in hydrogen near its liquid-vapor critical point, in which the CHF is low and the dynamics slow enough to be resolved. As under such conditions the surface tension is very small, the experiments are carried out in the reduced gravity to preserve the conventional bubble geometry. Weightlessness is created artificially in two-phase hydrogen by compensating gravity with magnetic forces. We were able to reveal the fractal structure of the contour of the percolating cluster of the dry areas at the heater that precedes the boiling crisis. We provide a direct statistical analysis of dry spot areas that confirms the boiling crisis at zero gravity as a scale-free phenomenon. It was observed that, in agreement with theoretical predictions, saturated boiling CHF tends to zero (within the precision of our thermal control system) in zero gravity, which suggests that the boiling crisis may be observed at any heat flux provided the experiment lasts long enough. PMID:26066249

  4. Some physiological effects of alternation between zero gravity and one gravity

    NASA Technical Reports Server (NTRS)

    Graybiel, A.

    1977-01-01

    The anatomy and physiology of the healthy vestibular system and the history of its study, maintenance of muskuloskeletal fitness under low-gravity conditions, tests of motion sickness, and data and techniques on testing subjects in a slow rotation room, are covered. Components of the inner ear labyrinth and their behavior in relation to equilibrium, gravity and inertial forces, motion sickness, and dizziness are discussed. Preventive medicine, the biologically effective force environment, weightlessness per se, activity in a weightless spacecraft, exercizing required to maintain musculoskeletal function, and ataxia problems are dealt with.

  5. Directed clustering in driven compartmentalized granular gas systems in zero gravity

    NASA Astrophysics Data System (ADS)

    Li, Y.; Hou, M.; Evesque, P.

    2011-12-01

    Clustering of shaken fluidized granular matter in connected compartments has been observed and studied in the laboratory. This clustering behavior in granular gas systems is related to the dissipative nature of granular system, and therefore shall not depend on gravity. This clustering phenomenon in compartmental configuration may provide a means for particle depletion and transportation in microgravity environment. In this work we propose different configurations for possible directed clustering in zero gravity. The related experiment has been planned for the Chinese satellite SJ-10.

  6. Separation of biogenic materials by electrophoresis under zero gravity (L-3)

    NASA Technical Reports Server (NTRS)

    Kuroda, Masao

    1993-01-01

    Electrophoresis separates electrically charged materials by imposing a voltage between electrodes. Though free-flow electrophoresis is used without carriers such as colloids to separate and purify biogenic materials including biogenic cells and proteins in blood, its resolving power and separation efficiency is very low on Earth due to sedimentation, flotation, and thermal convection caused by the specific gravity differences between separated materials and buffer solutions. The objective of this experiment is to make a comparative study of various electrophoresis conditions on the ground and in zero-gravity in order to ultimately develop a method for separating various important 'vial' components which are difficult to separate on the ground.

  7. Liquid jet impingement normal to a disk in zero gravity. Ph.D. Thesis Toledo Univ.

    NASA Technical Reports Server (NTRS)

    Labus, T. L.

    1977-01-01

    The free surface shapes of circular liquid jets impinging normal to sharp-edged disks in zero gravity are determined. Zero gravity drop tower experiments yielded three distinct flow patterns that were classified in terms of the relative effects of surface tension and inertial forces. An order of magnitude analysis was conducted that indicated regions where viscous forces were not significant in the computation of free surface shapes. The free surface analysis was simplified by transforming the governing potential flow equations and boundary conditions into the inverse plane, where the stream function and velocity potential became the coordinates. The resulting nonlinear equations were solved by standard finite difference methods, and comparisons were made with the experimental data for the inertia dominated regime.

  8. Zero-Gravity Atmospheric Cloud Physics Experiment Laboratory engineering concepts/design tradeoffs. Volume 1: Study results

    NASA Technical Reports Server (NTRS)

    Greco, R. V.; Eaton, L. R.; Wilkinson, H. C.

    1974-01-01

    The work is summarized which was accomplished from January 1974 to October 1974 for the Zero-Gravity Atmospheric Cloud Physics Laboratory. The definition and development of an atmospheric cloud physics laboratory and the selection and delineation of candidate experiments that require the unique environment of zero gravity or near zero gravity are reported. The experiment program and the laboratory concept for a Spacelab payload to perform cloud microphysics research are defined. This multimission laboratory is planned to be available to the entire scientific community to utilize in furthering the basic understanding of cloud microphysical processes and phenomenon, thereby contributing to improved weather prediction and ultimately to provide beneficial weather control and modification.

  9. Liquid jet impingement normal to a disk in zero gravity. Ph.D. Thesis - Toledo Univ.

    NASA Technical Reports Server (NTRS)

    Labus, T. L.

    1976-01-01

    An experimental and analytical investigation was conducted to determine the free surface shapes of circular liquid jets impinging normal to sharp-edged disks under both normal and zero gravity conditions. An order of magnitude analysis was conducted indicating regions where viscous forces were not significant when computing free surface shapes. The demarcation between the viscous and inviscid region was found to depend upon the flow Reynolds number and the ratio between the jet and disk radius.

  10. The study of single crystals for space processing and the effect of zero gravity

    NASA Technical Reports Server (NTRS)

    Lal, R. B.

    1975-01-01

    A study was undertaken to analyze different growth techniques affected by a space environment. Literature on crystal growth from melt, vapor phase and float zone was reviewed and the physical phenomena important for crystal growth in zero-gravity environment was analyzed. Recommendations for potential areas of crystal growth feasible for space missions are presented and a bibliography of articles in the area of crystal growth in general is listed.

  11. The Marshall Space Flight Center KC-135 zero gravity test program for FY 1982

    NASA Technical Reports Server (NTRS)

    Shurney, R. E. (Editor)

    1983-01-01

    During FY-82, researchers and experimenters from Marshall Space Flight Center (MSFC) conducted 11 separate investigations during 26.3 hr of testing aboard the KC-135 zero-gravity aircraft, based at Ellington Air force Base, Texas. Although this represented fewer hours than initially projected, all experiment and test objectives were met or exceeded. This Technical Memorandum compiles all results achieved by MSFC users during FY-82, a year considered to be highly productive.

  12. Keyhole and weld shapes for plasma arc welding under normal and zero gravity

    NASA Technical Reports Server (NTRS)

    Keanini, R. G.; Rubinsky, B.

    1990-01-01

    A first order study of the interfacial (keyhole) shape between a penetrating argon plasma arc jet and a stationary liquid metal weld pool is presented. The interface is determined using the Young-Laplace equation by assuming that the plasma jet behaves as a one-dimensional ideal gas flow and by neglecting flow within the weld pool. The solution for the keyhole shape allows an approximate determination of the liquid-solid metal phase boundary location based on the assumption that the liquid melt is a stagnant thermal boundary layer. Parametric studies examine the effect of plasma mass flow rate, initial plasma enthalpy, liquid metal surface tension, and jet shear on weldment shape under both normal and zero gravity. Among the more important findings of this study is that keyhole and weld geometries are minimally affected by gravity, suggesting that data gathered under gravity can be used in planning in-space welding.

  13. Zero Gravity Aircraft Testing of a Prototype Portable Fire Extinguisher for Use in Spacecraft

    NASA Astrophysics Data System (ADS)

    Butz, J.; Carriere, T.; Abbud-Madrid, A.; Easton, J.

    2012-01-01

    For the past five years ADA Technologies has been developing a portable fire extinguisher (PFE) for use in microgravity environments. This technology uses fine water mist (FWM) to effectively and efficiently extinguish fires representative of spacecraft hazards. Recently the FWM PFE was flown on a Zero-G (reduced gravity) aircraft to validate the performance of the technology in a microgravity environment. Test results demonstrated that droplet size distributions generated in the reduced gravity environment were in the same size range as data collected during normal gravity (1-g) discharges from the prototype PFE. Data taken in an obscured test configuration showed that the mist behind the obstacle was more dense in the low-g environment when compared to 1-g discharges. The mist behind the obstacle tended to smaller droplet sizes in both the low-g and 1-g test conditions.

  14. Internal model of gravity for hand interception: parametric adaptation to zero-gravity visual targets on Earth.

    PubMed

    Zago, Myrka; Lacquaniti, Francesco

    2005-08-01

    Internal model is a neural mechanism that mimics the dynamics of an object for sensory motor or cognitive functions. Recent research focuses on the issue of whether multiple internal models are learned and switched to cope with a variety of conditions, or single general models are adapted by tuning the parameters. Here we addressed this issue by investigating how the manual interception of a moving target changes with changes of the visual environment. In our paradigm, a virtual target moves vertically downward on a screen with different laws of motion. Subjects are asked to punch a hidden ball that arrives in synchrony with the visual target. By using several different protocols, we systematically found that subjects do not develop a new internal model appropriate for constant speed targets, but they use the default gravity model and reduce the central processing time. The results imply that adaptation to zero-gravity targets involves a compression of temporal processing through the cortical and subcortical regions interconnected with the vestibular cortex, which has previously been shown to be the site of storage of the internal model of gravity. PMID:15817649

  15. Equilibrium shape of 4He crystal under zero gravity below 200 mK

    PubMed Central

    Takahashi, Takuya; Ohuchi, Haruka; Nomura, Ryuji; Okuda, Yuichi

    2015-01-01

    Equilibrium crystal shape is the lowest energy crystal shape that is hardly realized in ordinary crystals because of their slow relaxation. 4He quantum crystals in a superfluid have been expected as unique exceptions that grow extremely fast at very low temperatures. However, on the ground, gravity considerably deforms the crystals and conceals the equilibrium crystal shape, and thus, gravity-free environment is needed to observe the equilibrium shape of 4He. We report the relaxation processes of macroscopic 4He crystals in a superfluid below 200 mK under zero gravity using a parabolic flight of a jet plane. When gravity was removed from a gravity-flattened 4He crystal, the crystal rapidly transformed into a shape with flat surfaces. Although the relaxation processes were highly dependent on the initial condition, the crystals relaxed to a nearly homothetic shape in the end, indicating that they were truly in an equilibrium shape minimizing the interfacial free energy. Thanks to the equilibrium shape, we were able to determine the Wulff’s origin and the size of the c-facet together with the vicinal surface profile next to the c-facet. The c-facet size was extremely small in the quantum crystals, and the facet-like flat surfaces were found to be the vicinal surfaces. At the same time, the interfacial free energy of the a-facet and s-facet was also obtained. PMID:26601315

  16. Equilibrium shape of (4)He crystal under zero gravity below 200 mK.

    PubMed

    Takahashi, Takuya; Ohuchi, Haruka; Nomura, Ryuji; Okuda, Yuichi

    2015-10-01

    Equilibrium crystal shape is the lowest energy crystal shape that is hardly realized in ordinary crystals because of their slow relaxation. (4)He quantum crystals in a superfluid have been expected as unique exceptions that grow extremely fast at very low temperatures. However, on the ground, gravity considerably deforms the crystals and conceals the equilibrium crystal shape, and thus, gravity-free environment is needed to observe the equilibrium shape of (4)He. We report the relaxation processes of macroscopic (4)He crystals in a superfluid below 200 mK under zero gravity using a parabolic flight of a jet plane. When gravity was removed from a gravity-flattened (4)He crystal, the crystal rapidly transformed into a shape with flat surfaces. Although the relaxation processes were highly dependent on the initial condition, the crystals relaxed to a nearly homothetic shape in the end, indicating that they were truly in an equilibrium shape minimizing the interfacial free energy. Thanks to the equilibrium shape, we were able to determine the Wulff's origin and the size of the c-facet together with the vicinal surface profile next to the c-facet. The c-facet size was extremely small in the quantum crystals, and the facet-like flat surfaces were found to be the vicinal surfaces. At the same time, the interfacial free energy of the a-facet and s-facet was also obtained. PMID:26601315

  17. The translaminar pressure gradient in sustained zero gravity, idiopathic intracranial hypertension, and glaucoma.

    PubMed

    Berdahl, John P; Yu, Dao Yi; Morgan, William H

    2012-12-01

    Papilledema has long been associated with elevated intracranial pressure. Classically, tumors, idiopathic intracranial hypertension, and obstructive hydrocephalus have led to an increase in intracranial pressure causing optic nerve head edema and observable optic nerve swelling. Recent reports describe astronauts returning from prolonged space flight on the International Space Station with papilledema (Mader et al., 2011) [1]. Papilledema has not been observed in shorter duration space flight. Other recent work has shown that the difference in intraocular pressure (IOP) and cerebrospinal fluid pressure (CSFp) may be very important in the pathogenesis of diseases of the optic nerve, especially glaucoma (Berdahl and Allingham, 2009; Berdahl, Allingham, et al., 2008; Berdahl et al., 2008; Ren et al., 2009; Ren et al., 2011) [2-6]. The difference in IOP and CSFp across the lamina cribrosa is known as the translaminar pressure difference (TLPD). We hypothesize that in zero gravity, CSF no longer pools in the caudal spinal column as it does in the upright position on earth. Instead, CSF diffuses throughout the subarachnoid space resulting in a moderate but persistently elevated cranial CSF pressure, including the region just posterior to the lamina cribrosa known as the optic nerve subarachnoid space (ONSAS). This small but chronically elevated CSFp could lead to papilledema when CSFp is greater than the IOP. If the TLPD is the cause of optic nerve head edema in astronauts subjected to prolonged zero gravity, raising IOP and/or orbital pressure may treat this condition and protect astronauts in future space travels from the effect of zero gravity on the optic nerve head. Additionally, the same TLPD concept may offer a deeper understanding of the pathogenesis and treatment options of idiopathic intracranial hypertension (IIH), glaucoma and other diseases of the optic nerve head. PMID:22981592

  18. STS-45 crewmembers during zero gravity activities onboard KC-135 NASA 930

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-45 Atlantis, Orbiter Vehicle (OV) 104, crewmembers and backup payload specialist participate in zero gravity activities onboard KC-135 NASA 930. The crewmembers, wearing flight suits, float and tumble around an inflated globe during the few seconds of microgravity created by parabolic flight. With his hand on the fuselage ceiling is Payload Specialist Dirk D. Frimout. Clockwise from his position are Mission Specialist (MS) C. Michael Foale, Pilot Brian Duffy, backup Payload Specialist Charles R. Chappell, MS and Payload Commander (PLC) Kathryn D. Sullivan (with eye glasses), Commander Charles F. Bolden, and Payload Specialist Byron K. Lichtenberg.

  19. Subject Load-Harness Interaction During Zero-Gravity Treadmill Exercise

    NASA Technical Reports Server (NTRS)

    McCrory, Jean L.; Baron, Heidi A.; Derr, Janice A.; Davis, Brian L.; Cavanagh, Peter R.

    1996-01-01

    When astronauts exercise on orbit, a subject load device (SLD) must be used to return the subject back to the supporting surface. The load in the SLD needs to be transferred the body by a harness which typically distributes this load between the pelvis and We shoulders. Through the use of a zero-gravity simulator, this research compared subject comfort and ground reaction forces during treadmill running at three levels of subject load (60%,80%, and 100% of body weight) in two harness designs ("shoulder only" and "waist "and shoulder ").

  20. Zero-Gravity Locomotion Simulators: New Ground-Based Analogs for Microgravity Exercise Simulation

    NASA Technical Reports Server (NTRS)

    Perusek, Gail P.; DeWitt, John K.; Cavanagh, Peter R.; Grodsinsky, Carlos M.; Gilkey, Kelly M.

    2007-01-01

    Maintaining health and fitness in crewmembers during space missions is essential for preserving performance for mission-critical tasks. NASA's Exercise Countermeasures Project (ECP) provides space exploration exercise hardware and monitoring requirements that lead to devices that are reliable, meet medical, vehicle, and habitat constraints, and use minimal vehicle and crew resources. ECP will also develop and validate efficient exercise prescriptions that minimize daily time needed for completion of exercise yet maximize performance for mission activities. In meeting these mission goals, NASA Glenn Research Center (Cleveland, OH, USA), in collaboration with the Cleveland Clinic (Cleveland, Ohio, USA), has developed a suite of zero-gravity locomotion simulators and associated technologies to address the need for ground-based test analog capability for simulating in-flight (microgravity) and surface (partial-gravity) exercise to advance the health and safety of astronaut crews and the next generation of space explorers. Various research areas can be explored. These include improving crew comfort during exercise, and understanding joint kinematics and muscle activation pattern differences relative to external loading mechanisms. In addition, exercise protocol and hardware optimization can be investigated, along with characterizing system dynamic response and the physiological demand associated with advanced exercise device concepts and performance of critical mission tasks for Exploration class missions. Three zero-gravity locomotion simulators are currently in use and the research focus for each will be presented. All of the devices are based on a supine subject suspension system, which simulates a reduced gravity environment by completely or partially offloading the weight of the exercising test subject s body. A platform for mounting treadmill is positioned perpendicularly to the test subject. The Cleveland Clinic Zero-g Locomotion Simulator (ZLS) utilizes a

  1. A Biomechanical Comparison of 1-G and Fully-Loaded Simulated Zero-Gravity Locomotion

    NASA Technical Reports Server (NTRS)

    McCrory, Jean L.

    1997-01-01

    Exercise will almost certainly play an integral part in minimizing the bone mineral loss and muscular atrophy that occur during spaceflight. It has been hypothesized that an effective exercise regimen can be developed to elicit loads on the lower extremities and require muscle actions which resemble those encountered on Earth. The Penn State Zero-Gravity Simulator (PSZS) is a device which suspends subjects horizontally from multiple latex cords, with each cord negating the weight of a limb segment. A treadmill mounted on the wall under the PSZS enables subjects to run in simulated 0G. Subjects wear a harness to which a number of springs, which provide a gravity replacement load, are connected. The opposite end of each spring is connected to the side of the treadmill. During exercise, astronauts currently wear a similar harness in which the spring tethering load pulls at both the waist and shoulders. Ground reaction forces, muscular activations, and joint angles of the left leg during overground, treadmill, and fully-loaded zero-gravity simulated (ZLS) locomotion were assessed in order to gain insight into the effectiveness of the exercise regimen used by NASA to prevent the muscular atrophy and bone demineralization which occur in weightlessness. There were three hypotheses to this research. It was hypothesized that there will be no differences in peak ground reaction forces and peak loading rates between overground gait and gait in the full body weight loaded conditions in the ZLS. A second hypothesis was that that there will be no differences in hip, knee, and ankle joint positions between walking or running overground, on a standard treadmill, and in full bodyweight loaded conditions in the ZLS. The third hypothesis was that the muscular activations, as a percentage of maximal voluntary contraction, will be similar between walking or running overground, on a standard treadmill, and in full body-weight loaded conditions in the ZLS.

  2. Assessment of zero gravity effects on space worker health and safety

    SciTech Connect

    Not Available

    1980-11-01

    One objective of the study is to assess the effects of all currently known deviations from normal of medical, physiological, and biochemical parameters which appear to be due to zero gravity (zero-g) environment and to acceleration and deceleration to be experienced, as outlined in the reference Solar Power Satellite (SPS) design, by space worker. Study results include identification of possible health or safety effects on space workers - either immediate or delayed - due to the zero gravity environment and acceleration and deceleration; estimation of the probability that an individual will be adversely affected; description of the possible consequence to work efficiently in persons adversely affected; and description of the possible/probable consequences to immediate and future health of individuals exposed to this environment. A research plan, which addresses the uncertainties in current knowledge regarding the health and safety hazards to exposed SPS space workers, is presented. Although most adverse affects experienced during space flight soon disappeared upon return to the Earth's environment, there remains a definite concern for the long-term effects to SPS space workers who might spend as much as half their time in space during a possible five-year career period. The proposed 90-day up/90 day down cycle, coupled with the fact that most of the effects of weightlessness may persist throughout the flight along with the realization that recovery may occupy much of the terrestrial stay, may keep the SPS workers in a deviant physical condition or state of flux for 60 to 100% of their five-year career. (JGB)

  3. Assessment of zero gravity effects on space worker health and safety

    NASA Technical Reports Server (NTRS)

    1980-01-01

    One objective of the study is to assess the effects of all currently known deviations from normal of medical, physiological, and biochemical parameters which appear to be due to zero gravity (zero-g) environment and to acceleration and deceleration to be experienced, as outlined in the references Solar Power Satellites (SPS) design, by space worker. Study results include identification of possible health or safety effects on space workers either immediate or delayed due to the zero gravity environment and acceleration and deceleration; estimation of the probability that an individual will be adversely affected; description of the possible consequence to work efficiency in persons adversely affected; and description of the possible/probable consequences to immediate and future health of individuals exposed to this environment. A research plan, which addresses the uncertainties in current knowledge regarding the health and safety hazards to exposed SPS space workers, is presented. Although most adverse affects experienced during space flight soon disappeared upon return to the Earth's environment, there remains a definite concern for the long-term effects to SPS space workers who might spend as much as half their time in space during a possible five year career period. The proposed 90 day up/90 day down cycle, coupled with the fact that most of the effects of weightlessness may persist throughout the flight along with the realization that recovery may occupy much of the terrestrial stay, may keep the SPS workers in a deviant physical condition or state of flux for 60 to 100% of their five year career.

  4. Estimating zero-strain states of very soft tissue under gravity loading using digital image correlation.

    PubMed

    Gao, Zhan; Desai, Jaydev P

    2010-04-01

    This paper presents several experimental techniques and concepts in the process of measuring mechanical properties of very soft tissue in an ex vivo tensile test. Gravitational body force on very soft tissue causes pre-compression and results in a non-uniform initial deformation. The global digital image correlation technique is used to measure the full-field deformation behavior of liver tissue in uniaxial tension testing. A maximum stretching band is observed in the incremental strain field when a region of tissue passes from compression and enters a state of tension. A new method for estimating the zero-strain state is proposed: the zero strain position is close to, but ahead of the position of the maximum stretching band, or in other words, the tangent of a nominal stress-stretch curve reaches minimum at lambda greater or similar 1. The approach, to identify zero strain by using maximum incremental strain, can be implemented in other types of image-based soft tissue analysis. The experimental results of 10 samples from seven porcine livers are presented and material parameters for the Ogden model fit are obtained. The finite element simulation based on the fitted model confirms the effect of gravity on the deformation of very soft tissue and validates our approach. PMID:20015676

  5. Testing of a Spray-Bar Zero Gravity Cryogenic Vent System for Upper Stages

    NASA Technical Reports Server (NTRS)

    Lak, Tibor; Flachbart, Robin; Nguyen, Han; Martin, James

    1999-01-01

    The capability to vent in zero gravity without resettling is a fundamental technology need that involves practically all uses of subcritical cryogenics in space. Venting without resettling would extend cryogenic orbital transfer vehicle capabilities. However, the lack of definition regarding liquid/ullage orientation coupled with the somewhat random nature of the thermal stratification and resulting pressure rise rates, lead to significant technical challenges. Typically a zero gravity vent concept, termed a thermodynamic vent system (TVS), consists of a tank mixer to destratify the propellant, combined with a Joule- Thomson (J-T) valve to extract then-nal energy from the propellant. In a cooperative effort, Marshall Space Flight Center's (MSFC's) Multipurpose Hydrogen Test Bed (N4HTB) was used to test a unique "spray bar" TVS system developed by Boeing. A schematic of this system is included in Figure 1. The system consists of a recirculation pump, a parallel flow concentric tube, heat exchanger, and a spray bar positioned close to the longitudinal axis of the tank. In the mixing mode, the recirculation pump withdraws liquid from the tank and sprays it radially into the tank liquid, ullage, and exposed tank surfaces. When energy extraction is required, a small portion of the recirculated liquid is passed sequentially through the J-T expansion valve, the spray bar heat exchanger element, and is vented overboard. The vented vapor cools the circulated bulk fluid, thereby removing thermal energy and reducing tank pressure. Figure 2 is a plot of ullage pressure (P4) and liquid vapor pressure (PSAI) versus time. The pump operates alone, cycling on and off, to destratify the tank liquid and ullage until the liquid vapor pressure reaches the lower set point. At that point, the J-T valve begins to cycle on and off with the pump. Thus, for short duration missions, only the mixer may operate, thus minimizing or even eliminating boil-off losses. The primary advantage of the

  6. Pressure drop in fully developed, turbulent, liquid-vapor annular flows in zero gravity

    NASA Technical Reports Server (NTRS)

    Sridhar, K. R.; Chao, B. T.; Soo, S. L.

    1992-01-01

    The prediction of frictional pressure drop in fully developed, turbulent, annular liquid-vapor flows in zero gravity using simulation experiments conducted on earth is described. The scheme extends the authors' earlier work on dispersed flows. The simulation experiments used two immiscible liquids of identical density, namely, water and n-butyl benzoate. Because of the lack of rigorous analytical models for turbulent, annular flows, the proposed scheme resorts to existing semiempirical correlations. Results based on two different correlations are presented and compared. Others may be used. It was shown that, for both dispersed and annular flow regimes, the predicted frictional pressure gradients in 0-g are lower than those in 1-g under otherwise identical conditions. The physical basis for this finding is given.

  7. Design, fabrication and acceptance testing of a zero gravity whole body shower

    NASA Technical Reports Server (NTRS)

    Schumacher, E. A.; Lenda, J. A.

    1974-01-01

    Recent research and development programs have established the ability of the zero gravity whole body shower to maintain a comfortable environment in which the crewman can safely cleanse and dry the body. The purpose of this program was to further advance the technology of whole body bathing and to demonstrate technological readiness including in-flight maintenance by component replacement for flight applications. Three task efforts of this program are discussed. Conceptual designs and system tradeoffs were accomplished in task 1. Task 2 involved the formulation of preliminary and final designs for the shower, while task 3 included the fabrication and test of the shower assembly. Particular attention is paid to the evaluation and correction of test anomalies during the final phase of the program.

  8. STS-42 closeup view shows SE 81-09 Convection in Zero Gravity experiment

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-42 closeup view shows Student Experiment 81-09 (SE 81-09), Convection in Zero Gravity experiment, with radial pattern caused by convection induced by heating an oil and aluminum powder mixture in the weightlessness of space. While the STS-42 crewmembers activated the Shuttle Student Involvement Program (SSIP) experiment on Discovery's, Orbiter Vehicle (OV) 103's, middeck, Scott Thomas, the student who designed the experiment, was able to observe the procedures via downlinked television (TV) in JSC's Mission Control Center (MCC). Thomas, now a physics doctoral student at the University of Texas, came up with the experiment while he participated in the SSIP as a student at Richland High School in Johnstown, Pennsylvia.

  9. Stratification calculations in a heated cryogenic oxygen storage tank at zero gravity

    NASA Technical Reports Server (NTRS)

    Shuttles, J. T.; Smith, G. L.

    1971-01-01

    A cylindrical one-dimensional model of the Apollo cyrogenic oxygen storage tank has been developed to study the effect of stratification in the tank. Zero gravity was assumed, and only the thermally induced motions were considered. The governing equations were derived from conservation laws and solved on a digital computer. Realistic thermodynamic and transport properties were used. Calculations were made for a wide range of conditions. The results show the fluid behavior to be dependent on the quantity in the tank or equivalently the bulk fluid temperature. For high quantities (low temperatures) the tank pressure rose rapidly with heat addition, the heater temperature remained low, and significant pressure drop potentials accrued. For low quantities the tank pressure rose more slowly with heat addition and the heater temperature became high. A high degree of stratification resulted for all conditions; however, the stratified region extended appreciably into the tank only for the lowest tank quantity.

  10. Human physiological problems in zero gravity - An attempt at understanding through systems analysis

    NASA Technical Reports Server (NTRS)

    White, R. J.; Croston, R. C.

    1974-01-01

    When the experimental situation is that of man exposed to a gravitationless environment for varying periods of time, the possible importance and value of a related modeling effort is readily apparent. One of the main objectives of the Skylab Program, with its missions of 28, 59, and 85 day duration concerned biomedical investigations of various types, and large amounts of relevant experimental data have been gathered and are in the process of being sorted and interpreted. In order to be of eventual usefulness in forming and testing consistent physiological hypotheses concerning the effect of zero gravity on man, a modeling effort was established in 1972 through the General Electric Company, Space Division, Houston, Texas. An account is given of some of the developments completed or in progress as part of this modeling effort. A long-term cardiovascular model and a large model of the systemic circulation are discussed.

  11. Myosin heavy chain expression in rodent skeletal muscle: effects of exposure to zero gravity

    NASA Technical Reports Server (NTRS)

    Haddad, F.; Herrick, R. E.; Adams, G. R.; Baldwin, K. M.

    1993-01-01

    This study ascertained the effects of 9 days of zero gravity on the relative (percentage of total) and calculated absolute (mg/muscle) content of isomyosin expressed in both antigravity and locomotor skeletal muscle of ground control (CON) and flight-exposed (FL) rats. Results showed that although there were no differences in body weight between FL and CON animals, a significant reduction in muscle mass occurred in the vastus intermedius (VI) (P < 0.05) but not in the vastus lateralis (VL) or the tibialis anterior. Both total muscle protein and myofibril protein content were not different between the muscle regions examined in the FL and CON groups. In the VI, there were trends for reductions in the relative content of type I and IIa myosin heavy chains (MHCs) that were offset by increases in the relative content of both type IIb and possibly type IIx MHC protein (P > 0.05). mRNA levels were consistent with this pattern (P < 0.05). The same pattern held true for the red region of the VL as examined at both the protein and mRNA level (P < 0.05). When the atrophy process was examined, there were net reductions in the absolute content of both type I and IIa MHCs that were offset by calculated increases in type IIb MHC in both VI and red VL. Collectively, these findings suggest that there are both absolute and relative changes occurring in MHC expression in the "red" regions of antigravity skeletal muscle during exposure to zero gravity that could affect muscle function.

  12. A zero-gravity instrument to study low velocity collisions of fragile particles at low temperatures

    NASA Astrophysics Data System (ADS)

    Salter, D. M.; Heißelmann, D.; Chaparro, G.; van der Wolk, G.; Reißaus, P.; Borst, A. G.; Dawson, R. W.; de Kuyper, E.; Drinkwater, G.; Gebauer, K.; Hutcheon, M.; Linnartz, H.; Molster, F. J.; Stoll, B.; van der Tuijn, P. C.; Fraser, H. J.; Blum, J.

    2009-07-01

    We discuss the design, operation, and performance of a vacuum setup constructed for use in zero (or reduced) gravity conditions to initiate collisions of fragile millimeter-sized particles at low velocity and temperature. Such particles are typically found in many astronomical settings and in regions of planet formation. The instrument has participated in four parabolic flight campaigns to date, operating for a total of 2.4 h in reduced-gravity conditions and successfully recording over 300 separate collisions of loosely packed dust aggregates and ice samples. The imparted particle velocities achieved range from 0.03 to 0.28 m s-1 and a high-speed, high-resolution camera captures the events at 107 frames/s from two viewing angles separated by either 48.8° or 60.0°. The particles can be stored inside the experiment vacuum chamber at temperatures of 80-300 K for several uninterrupted hours using a built-in thermal accumulation system. The copper structure allows cooling down to cryogenic temperatures before commencement of the experiments. Throughout the parabolic flight campaigns, add-ons and modifications have been made, illustrating the instrument flexibility in the study of small particle collisions.

  13. A zero-gravity instrument to study low velocity collisions of fragile particles at low temperatures.

    PubMed

    Salter, D M; Heisselmann, D; Chaparro, G; van der Wolk, G; Reissaus, P; Borst, A G; Dawson, R W; de Kuyper, E; Drinkwater, G; Gebauer, K; Hutcheon, M; Linnartz, H; Molster, F J; Stoll, B; van der Tuijn, P C; Fraser, H J; Blum, J

    2009-07-01

    We discuss the design, operation, and performance of a vacuum setup constructed for use in zero (or reduced) gravity conditions to initiate collisions of fragile millimeter-sized particles at low velocity and temperature. Such particles are typically found in many astronomical settings and in regions of planet formation. The instrument has participated in four parabolic flight campaigns to date, operating for a total of 2.4 h in reduced-gravity conditions and successfully recording over 300 separate collisions of loosely packed dust aggregates and ice samples. The imparted particle velocities achieved range from 0.03 to 0.28 m s(-1) and a high-speed, high-resolution camera captures the events at 107 frames/s from two viewing angles separated by either 48.8 degrees or 60.0 degrees. The particles can be stored inside the experiment vacuum chamber at temperatures of 80-300 K for several uninterrupted hours using a built-in thermal accumulation system. The copper structure allows cooling down to cryogenic temperatures before commencement of the experiments. Throughout the parabolic flight campaigns, add-ons and modifications have been made, illustrating the instrument flexibility in the study of small particle collisions. PMID:19655969

  14. Transient boiling heat transfer in saturated liquid nitrogen and F113 at standard and zero gravity

    NASA Technical Reports Server (NTRS)

    Oker, E.; Merte, H., Jr.

    1973-01-01

    Transient and steady state nucleate boiling in saturated LN2 and F113 at standard and near zero gravity conditions were investigated for the horizontal up, vertical and horizontal down orientations of the heating surface. Two distinct regimes of heat transfer mechanisms were observed during the interval from the step increase of power input to the onset of nucleate boiling: the conduction and convection dominated regimes. The time duration in each regime was considerably shorter with LN2 than with F113, and decreased as heat flux increased, as gravity was reduced, and as the orientation was changed from horizontal up to horizontal down. In transient boiling, boiling initiates at a single point following the step increase in power, and then spreads over the surface. The delay time for the inception of boiling at the first site, and the velocity of spread of boiling varies depending upon the heat flux, orientation, body force, surface roughness and liquid properties, and are a consequence of changes in boundary layer temperature levels associated with changes in natural convection. Following the step increase in power input, surface temperature overshoot and undershoot occur before the steady state boiling temperature level is established.

  15. Digital holographic microscopy long-term and real-time monitoring of cell division and changes under simulated zero gravity.

    PubMed

    Pan, Feng; Liu, Shuo; Wang, Zhe; Shang, Peng; Xiao, Wen

    2012-05-01

    The long-term and real-time monitoring the cell division and changes of osteoblasts under simulated zero gravity condition were succeed by combing a digital holographic microscopy (DHM) with a superconducting magnet (SM). The SM could generate different magnetic force fields in a cylindrical cavity, where the gravitational force of biological samples could be canceled at a special gravity position by a high magnetic force. Therefore the specimens were levitated and in a simulated zero gravity environment. The DHM was modified to fit with SM by using single mode optical fibers and a vertically-configured jig designed to hold specimens and integrate optical device in the magnet's bore. The results presented the first-phase images of living cells undergoing dynamic divisions and changes under simulated zero gravity environment for a period of 10 hours. The experiments demonstrated that the SM-compatible DHM setup could provide a highly efficient and versatile method for research on the effects of microgravity on biological samples. PMID:22565769

  16. Existence, stability, and nonlinear dynamics of detached Bridgman growth states under zero gravity

    NASA Astrophysics Data System (ADS)

    Yeckel, Andrew; Derby, Jeffrey J.

    2011-01-01

    A thermocapillary model is used to study the existence, stability, and nonlinear dynamics of detached melt crystal growth in a vertical Bridgman system under zero gravity conditions. The model incorporates time-dependent heat, mass, and momentum transport, and accounts for temperature-dependent surface tension effects at the menisci bounding the melt. The positions of the menisci and phase-change boundary are computed to satisfy the conservation laws rigorously. A rich bifurcation structure in gap width versus pressure difference is uncovered, demarcating conditions under which growth with a stable gap is feasible. Thermal effects shift the bifurcation diagram to a slightly different pressure range, but do not alter its general structure. Necking and freeze-off are shown to be two different manifestations of the same instability mechanism. Supercooling of melt at the meniscus and low thermal gradients in the melt ahead of the crystal-melt-gas triple phase line, either of which may be destabilizing, are both observed under some conditions. The role of wetting and growth angles in dynamic shape stability is clarified.

  17. Spray Bar Zero-Gravity Vent System for On-Orbit Liquid Hydrogen Storage

    NASA Technical Reports Server (NTRS)

    Hastings, L. J.; Flachbart, R. H.; Martin, J. J.; Hedayat, A.; Fazah, M.; Lak, T.; Nguyen, H.; Bailey, J. W.

    2003-01-01

    During zero-gravity orbital cryogenic propulsion operations, a thermodynamic vent system (TVS) concept is expected to maintain tank pressure control without propellant resettling. In this case, a longitudinal spray bar mixer system, coupled with a Joule-Thompson (J-T) valve and heat exchanger, was evaluated in a series of TVS tests using the 18 cu m multipurpose hydrogen test bed. Tests performed at fill levels of 90, 50, and 25 percent, coupled with heat tank leaks of about 20 and 50 W, successfully demonstrated tank pressure control within a 7-kPa band. Based on limited testing, the presence of helium constrained the energy exchange between the gaseous and liquid hydrogen (LH2) during the mixing cycles. A transient analytical model, formulated to characterize TVS performance, was used to correlate the test data. During self-pressurization cycles following tank lockup, the model predicted faster pressure rise rates than were measured; however, once the system entered the cyclic self-pressurization/mixing/venting operational mode, the modeled and measured data were quite similar. During a special test at the 25-percent fill level, the J-T valve was allowed to remain open and successfully reduced the bulk LH2 saturation pressure from 133 to 70 kPa in 188 min.

  18. Stress, temperature, heart rate, and hibernating factors in hamsters. [pathophysiological conditions resulting from exposure to zero gravity

    NASA Technical Reports Server (NTRS)

    Musacchia, X. J.

    1974-01-01

    Pathophysiological conditions resulting from prolonged exposure to zero gravity, cabin constraint, altered ambient environment, whether it be noise, vibrations, high temperatures, or combinations of such factors, are studied in laboratory animals and applied to manned space flight. Results and plans for further study are presented. Specific topics covered include: thermoregulation and its role in reflecting stress and adaptation to the gravity free environment and cabin confinement with its altered circadian forcings; renal function and its measurement in electrolyte distribution and blood flow dynamics; gastronintestinal function and an assessment of altered absorptive capacity in the intestinal mucosa; and catecholamine metabolism in terms of distribution and turnover rates in specific tissues.

  19. Binding of alpha-fetoprotein by immobilized monoclonal antibodies during episodes of zero-gravity obtained by parabolic flight

    NASA Technical Reports Server (NTRS)

    Spooner, Brian S.; Guikema, James A.; Barnes, Grady

    1990-01-01

    Alpha-fetoprotein (AFP), a single-chain polypeptide which is synthesized by the liver and yolk sac of the human fetus, provided a model ligand for assessing the effects of microgravity on ligand binding to surface-immobilized model receptor molecules. Monoclonal antibodies, used as receptors for AFP, were immobilized by covalent attachment to latex microparticles. Zero gravity environment was obtained by parabolic flight aboard NASA 930, a modified KC-135 aircraft. Buring the onset of an episode of zero gravity, ligand and receptor were mixed. Timed incubation (20 s) was terminated by centrifugation, the supernatant removed, and microparticies were assessed for bound AFP by immunochemical methods. The extent of binding was not influenced by microgravity, when compared with 1-G controls, which suggests that aberrant cellular activities observed in microgravity are not the simple expression of altered macromolecular interactions.

  20. A Study of Blood Flow and of Aggregation of Blood Cells Under Conditions of Zero Gravity: Its Relevance to the Occlusive Diseases and Cancer

    NASA Technical Reports Server (NTRS)

    Dintenfass, L.

    1985-01-01

    The objectives of this program are: (1) to determine whether the size of red cell aggregates, kinetics and morphology of these aggregates are influenced by near-zero gravity; (2) whether viscosity, especially at low shear rate, is afflicted by near-zero gravity (the latter preventing sedimentation of red cells); (3) whether the actual shape of red cells changes; and (4) whether blood samples obtained from different donors (normal and patients suffering from different disorders) react in the same manner to near-zero gravity.

  1. Substrate oxidation capacity in rodent skeletal muscle: effects of exposure to zero gravity

    NASA Technical Reports Server (NTRS)

    Baldwin, K. M.; Herrick, R. E.; McCue, S. A.

    1993-01-01

    A study was conducted, as part of the integrated National Aeronautics and Space Administration Space Life Sciences 1 mission flown in June of 1991, to ascertain the effects of 9 days of exposure to zero gravity on the capacity of rodent skeletal muscle fiber types to oxidize either [14C]pyruvate or [14C]palmitate under state 3 metabolic conditions, i.e., nonlimiting amounts of substrate and cofactors. In addition, activity levels of marker enzymes of the tricarboxylic acid cycle, malate shuttle, and beta-oxidation were measured. Results showed that significant differences in muscle weight occurred in both the predominantly slow vastus intermedius and predominantly fast vastus lateralis of flight vs. control groups (P < 0.05). Total protein content of the muscle samples was similar between groups. Both pyruvate oxidation capacity and the marker oxidative enzymes were not altered in the flight relative to control animals. However, the capacity to oxidize long-chain fatty acids was significantly reduced by 37% in both the high- and low-oxidative regions of the vastus muscle (P < 0.05). Although these findings of a selective reduction in fatty acid oxidation capacity in response to spaceflight are surprising, they are consistent with previous findings showing 1) an increased capacity to take up glucose and upregulate glucose transporter proteins and 2) a marked accumulation of triglycerides in the skeletal muscles of rats subjected to states of unloading. Thus, skeletal muscle of animals exposed to non-weight-bearing environments undergo subcellular transformations that may preferentially bias energy utilization to carbohydrates.

  2. Effects of zero gravity on myofibril content and isomyosin distribution in rodent skeletal muscle

    NASA Technical Reports Server (NTRS)

    Baldwin, K. M.; Herrick, R. E.; Ilyina-Kakueva, E.; Oganov, V. S.

    1990-01-01

    The purpose of this experiment was to investigate the effects of 12.5 days of zero gravity (0 g) exposure (Cosmos 1887 Biosputnik) on the enzymatic properties, protein content, and isomyosin distribution of the myofibril fraction of the slow-twitch vastus intermedius (VI) and the fast-twitch vastus lateralis (VL) muscles of adult male rats. Measurements were obtained on three experimental groups (n = 5 each group) designated as flight group (FG), vivarium control (VC), and synchronous control (SC). Body weight of the FG was significantly lower than that of the two control groups (P less than 0.05). Compared with the two control groups, VI weight was lower by 23% (P less than 0.10), whereas no such pattern was apparent for the VL muscle. Myofibril yields (mg protein/g muscle) in the VI were 35% lower in the FG than in controls (P less than 0.05), whereas no such pattern was apparent for the VL muscle. When myofibril yields were expressed on a muscle basis (mg/g x muscle weight), the loss of myofibril protein was more exaggerated and suggests that myofibril protein degradation is an early event in the muscle atrophy response to 0 g. Analysis of myosin isoforms indicated that slow myosin (Sm) was the primary isoform lost in the calculated degradation of total myosin. No evidence of loss of the fast isomyosins was apparent for either muscle following spaceflight. Myofibril ATPase activity of the VI was increased in the FG compared with controls, which is consistent with the observation of preferential Sm degradation. These data suggest that muscles containing a high percentage of slow-twitch fibers undergo greater degrees of myofibril protein degradation than muscles containing predominantly fast-twitch fibers in response to a relatively short period of 0 g exposure, and the primary target appears to be the Sm molecule.

  3. Equilibrium fluid interface behavior under low- and zero-gravity conditions

    NASA Technical Reports Server (NTRS)

    Concus, Paul; Finn, Robert

    1994-01-01

    We describe here some of our recent mathematical work, which forms a basis for the Interface Configuration Experiment scheduled for USML-2. The work relates to the design of apparatus that exploits microgravity conditions for accurate determination of contact angle. The underlying motivation for the procedures rests on a discontinuous dependence of the capillary free surface interface S on the contact angle gamma, in a cylindrical capillary tube whose section (base) omega contains a protruding corner with opening angle 2 alpha. Specifically, in a gravity-free environment, omega can be chosen so that, for all sufficiently large fluid volume, the height of S is uniquely determined as a (single-valued) function mu(x,y) entirely covering the base; the height mu is bounded over omega uniformly in gamma throughout the range absolute value of (gamma -(pion/2)) less than or equal to alpha, while for absolute value of (gamma - (pion/2)) greater than alpha fluid will necessarily move to the corner and uncover the base, rising to infinity (or falling to negative infinity) at the vertex, regardless of volume. We mention here only that procedures based on the phenomenon promise excellent accuracy when gamma is close pion/2 but may be subject to experimental error when gamma is close to zero (orpion), as the 'singular' part of the domain over which the fluid accumulates (or disappears) when a critical angle gamma theta is crossed then becomes very small and may be difficult to observe. We ignore the trivial case gamma is equal to pion/2 (planar free surface), to simplify the discussion.

  4. Processing yttrium-barium-copper oxide superconductor zero gravity using a double float zone surface

    SciTech Connect

    Pettit, D.R.; Peterson, D.E.; Kubat-Martin, K.A.; Petrovic, J.J.; Sheinberg, H.; Coulter, Y.; Day, D.E.

    1997-04-01

    The effects of processing YBa{sub 2}Cu{sub 3}O{sub x} (Y123) superconductor in the near-zero gravity (0g) environment provided by the NASA KC-135 airplane flying on parabolic trajectories were studied. A new sheet float zone furnace, designed for this study, enabled fast temperature ramps. Up to an 18-gram sample was processed with each parabola. Samples of Y123 were processed as bulk sheets, composites containing Ag and Pd, and films deposited on single crystal Si and MgO substrates. The 0g-processed samples were multi-phase yet retained a localized Y123 stoichiometry where a single ground-based (1g) oxygen anneal at temperatures of 800 C recovered nearly 100-volume percent superconducting Y123. The 1g processed control samples remained multi-phase after the same ground-based anneal with less than 45 volume percent as superconducting Y123. The superconducting transition temperature was 91 K for both 0g and 1g processed samples. A 29 wt.% Ag/Y123 composite had a transition temperature of 93 K. Melt texturing of bulk Y123 in 0g produced aligned grains about a factor of three larger than in analogous 1g samples. Transport critical current densities were at or below 18 A/cm{sup 2}, due to the formation of cracks caused by the rapid heating rates required by the short time at 0g. Y123 deposited on single crystal Si and MgO in 0g was 30 vol.% y123 without an anneal. A weak superconducting transition at 80 K on MgO showed that substrate interactions occurred.

  5. Thermocapillary migration of an isolated droplet and interaction of two droplets in zero gravity

    NASA Astrophysics Data System (ADS)

    Alhendal, Yousuf; Turan, Ali; Kalendar, Abdulrahim

    2016-09-01

    Fluid transfer within a stagnant liquid presents a significant challenge in zero-gravity conditions due to the lack of buoyancy effects. This challenge can be overcome by the utilisation of the Marangoni effect, or more specifically thermocapillary migration. The thermocapillary migration of droplets is driven by temperature gradients within the multiphase system which bring about a surface tension gradient driving the flow from the cold to the hot region. The migration speed of the droplet is significantly impacted by the heat transfer both inside the droplet and in its surroundings. This paper presents the analysis of drop movement in a stagnant liquid using computational fluid dynamics (CFD). The commercial software package Ansys-Fluent v.13 [1] is used to solve the governing continuum conservation equations for two-phase flow using the Volume of Fluid (VOF) method to track the liquid/liquid interface in 2D domain. This approach has been shown to be a valuable tool for studying the phenomena of liquid-liquid interaction. A strong agreement has been found with experimental observations conducted in microgravity. The inherent velocity of drops has been found to decrease with increasing Marangoni number. This finding is in line with the previous space experiments of Xie et al. (2005) [2] and in contrast to the numerical results of Ma (1999) [3] using the same liquid for the droplet and the host liquid. Data obtained in the present numerical study has been used to derive an expression predicting the scaled droplet velocity as a function of Marangoni number. A numerical study of the interaction of two spherical droplets undergoing thermocapillary migration in microgravity is also presented. The temperature thrust from the leading droplet towards the trailing droplet was found to disturb its migration velocity, but the trailing droplet was found to have no influence on the migration of the leading droplet.

  6. Rat head direction cell responses in zero-gravity parabolic flight.

    PubMed

    Taube, Jeffrey S; Stackman, Robert W; Calton, Jeffrey L; Oman, Charles M

    2004-11-01

    Astronauts working in zero-gravity (0-G) often experience visual reorientation illusions (VRIs). For example, when floating upside down, they commonly misperceive the spacecraft floor as a ceiling and have a reversed sense of direction. Previous studies have identified a population of neurons in the rat's brain that discharge as a function of the rat's head direction (HD) in a gravitationally horizontal plane and is dependent on an intact vestibular system. Our goal was to characterize HD cell discharge under conditions of acute weightlessness. Seven HD cells in the anterior dorsal thalamus were monitored from rats aboard an aircraft in 0-G parabolic flight. Unrestrained rats locomoted in a clear plexiglas rectangular chamber that had wire mesh covering the floor, ceiling, and one wall. The chamber and surrounding visual environment were relatively up-down symmetrical. Each HD cell was recorded across forty 20-s episodes of 0-G. All HD cells maintained a significant direction-specific discharge when the rat was on the chamber floor during the 0-G and also during the hypergravity pull-out periods. Three of five cells also showed direction-specific responses on the wall in 1-G. In contrast, direction-specific discharge was usually not maintained when the rat locomoted on the vertical wall or ceiling in 0-G. The loss of direction-specific firing was accompanied by an overall increase in background firing. However, while the rat was on the ceiling, some cells showed occasional bursts of firing when the rat's head was oriented in directions that were flipped relative to the long axis of symmetry of the chamber compared with the cell's preferred firing direction on the floor. This finding is consistent with what might be expected if the rat had experienced a VRI. These responses indicate that rats maintain a normal allocentric frame of reference in 0-G and 1-G when on the floor, but may lose their sense of directional heading when placed on a wall or ceiling during acute

  7. In-shoe force measurements from locomotion in simulated zero gravity during parabolic flight.

    PubMed

    McCrory, JL; Schwass, JP; Connell, RB; Cavanagh, PR

    1997-04-01

    INTRODUCTION:: No effective countermeasure for space-induced bone loss has yet been identified. It has been hypothesized that an effective exercise regimen would elicit loads on the lower extremity which resemble those encountered on Earth. Although a treadmill has been used on shuttle flights, the loads to which the lower extremity was exposed have not yet been quantified. It is believed that these loads are much less than the loads experienced in 1G. The purpose of this study was to determine the magnitude of lower extremity loading during tethered treadmill exercise in a 0G environment. METHODS:: Data were collected on five subjects (avg. ht. 177.3+/-10.1 cm, avg. mass 78.3+/-18.0 kg) onboard the KC-135, a NASA airplane used to simulate periods of zero gravity through parabolic flight. Subjects ambulated at 4 speeds: a walk (1.56m/sec), fast walk (2.0m/sec) slow jog (2.75m/sec), and jog (3.35m/sec) on the NASA treadmill operated in either a passive or motorized mode. Each subject wore a harness connected to the Subject Load Device (SLD) to tether them to the treadmill. The tension in the SLD was subjectively adjusted for comfort by each subject. Force data were collected at 60 Hz using Pedar insoles. The number of parabolas per subject was variable due to motion sickness and hardware problems. RESULTS:: Analysis of the insole data showed that the average SLD load was only 35.2% BW, although the values ranged from 20.1% to 56.6%. Maximum ground reaction force values increased with increasing speed and were not affected by treadmill mode. The impulse was higher during walking with the treadmill in the passive mode than in the active mode, but this difference diminished with increasing speed. Subjects tended to run on their forefeet, as shown from the extremely small heel impulse values. At higher speeds, heel contact was absent, while forefoot impulse became more pronounced. DISCUSSION:: All force values were lower than those reported from 1G studies, where

  8. Heart Rate and Blood Pressure Variability under Moon, Mars and Zero Gravity Conditions During Parabolic Flights

    NASA Astrophysics Data System (ADS)

    Aerts, Wouter; Joosen, Pieter; Widjaja, Devy; Varon, Carolina; Vandeput, Steven; Van Huffel, Sabine; Aubert, Andre E.

    2013-02-01

    Gravity changes during partial-G parabolic flights (0g -0.16g - 0.38g) lead to changes in modulation of the autonomic nervous system (ANS), studied via the heart rate variability (HRV) and blood pressure variability (BPV). HRV and BPV were assessed via classical time and frequency domain measures. Mean systolic and diastolic blood pressure show both increasing trends towards higher gravity levels. The parasympathetic and sympathetic modulation show both an increasing trend with decreasing gravity, although the modulation is sympathetic predominant during reduced gravity. For the mean heart rate, a non-monotonic relation was found, which can be explained by the increased influence of stress on the heart rate. This study shows that there is a relation between changes in gravity and modulations in the ANS. With this in mind, countermeasures can be developed to reduce postflight orthostatic intolerance.

  9. Effect of magnetically simulated zero-gravity and enhanced gravity on the walk of the common fruitfly.

    PubMed

    Hill, Richard J A; Larkin, Oliver J; Dijkstra, Camelia E; Manzano, Ana I; de Juan, Emilio; Davey, Michael R; Anthony, Paul; Eaves, Laurence; Medina, F Javier; Marco, Roberto; Herranz, Raul

    2012-07-01

    Understanding the effects of gravity on biological organisms is vital to the success of future space missions. Previous studies in Earth orbit have shown that the common fruitfly (Drosophila melanogaster) walks more quickly and more frequently in microgravity, compared with its motion on Earth. However, flight preparation procedures and forces endured on launch made it difficult to implement on the Earth's surface a control that exposed flies to the same sequence of major physical and environmental changes. To address the uncertainties concerning these behavioural anomalies, we have studied the walking paths of D. melanogaster in a pseudo-weightless environment (0g*) in our Earth-based laboratory. We used a strong magnetic field, produced by a superconducting solenoid, to induce a diamagnetic force on the flies that balanced the force of gravity. Simultaneously, two other groups of flies were exposed to a pseudo-hypergravity environment (2g*) and a normal gravity environment (1g*) within the spatially varying field. The flies had a larger mean speed in 0g* than in 1g*, and smaller in 2g*. The mean square distance travelled by the flies grew more rapidly with time in 0g* than in 1g*, and slower in 2g*. We observed no other clear effects of the magnetic field, up to 16.5 T, on the walks of the flies. We compare the effect of diamagnetically simulated weightlessness with that of weightlessness in an orbiting spacecraft, and identify the cause of the anomalous behaviour as the altered effective gravity. PMID:22219396

  10. Effect of magnetically simulated zero-gravity and enhanced gravity on the walk of the common fruitfly†

    PubMed Central

    Hill, Richard J. A.; Larkin, Oliver J.; Dijkstra, Camelia E.; Manzano, Ana I.; de Juan, Emilio; Davey, Michael R.; Anthony, Paul; Eaves, Laurence; Medina, F. Javier; Marco, Roberto; Herranz, Raul

    2012-01-01

    Understanding the effects of gravity on biological organisms is vital to the success of future space missions. Previous studies in Earth orbit have shown that the common fruitfly (Drosophila melanogaster) walks more quickly and more frequently in microgravity, compared with its motion on Earth. However, flight preparation procedures and forces endured on launch made it difficult to implement on the Earth's surface a control that exposed flies to the same sequence of major physical and environmental changes. To address the uncertainties concerning these behavioural anomalies, we have studied the walking paths of D. melanogaster in a pseudo-weightless environment (0g*) in our Earth-based laboratory. We used a strong magnetic field, produced by a superconducting solenoid, to induce a diamagnetic force on the flies that balanced the force of gravity. Simultaneously, two other groups of flies were exposed to a pseudo-hypergravity environment (2g*) and a normal gravity environment (1g*) within the spatially varying field. The flies had a larger mean speed in 0g* than in 1g*, and smaller in 2g*. The mean square distance travelled by the flies grew more rapidly with time in 0g* than in 1g*, and slower in 2g*. We observed no other clear effects of the magnetic field, up to 16.5 T, on the walks of the flies. We compare the effect of diamagnetically simulated weightlessness with that of weightlessness in an orbiting spacecraft, and identify the cause of the anomalous behaviour as the altered effective gravity. PMID:22219396

  11. Preliminary drop-tower experiments on liquid-interface geometry in partially filled containers at zero gravity

    NASA Technical Reports Server (NTRS)

    Smedley, G.

    1990-01-01

    Plexiglass containers with rounded trapezoidal cross sections were designed and built to test the validity of Concus and Finn's existence theorem (1974, 1983) for a bounded free liquid surface at zero gravity. Experiments were carried out at the NASA Lewis two-second drop tower. Dyed ethanol-water solutions and three immiscible liquid pairs, with one liquid dyed, were tested. High-speed movies were used to record the liquid motion. Liquid rose to the top of the smaller end of the containers when the contact angle was small enough, in agreement with the theory. Liquid interface motion demonstrated a strong dependence on physical properties, including surface roughness and contamination.

  12. A Human Factors Evaluation of a Methodology for Pressurized Crew Module Acceptability for Zero-Gravity Ingress of Spacecraft

    NASA Technical Reports Server (NTRS)

    Sanchez, Merri J.

    2000-01-01

    This project aimed to develop a methodology for evaluating performance and acceptability characteristics of the pressurized crew module volume suitability for zero-gravity (g) ingress of a spacecraft and to evaluate the operational acceptability of the NASA crew return vehicle (CRV) for zero-g ingress of astronaut crew, volume for crew tasks, and general crew module and seat layout. No standard or methodology has been established for evaluating volume acceptability in human spaceflight vehicles. Volume affects astronauts'ability to ingress and egress the vehicle, and to maneuver in and perform critical operational tasks inside the vehicle. Much research has been conducted on aircraft ingress, egress, and rescue in order to establish military and civil aircraft standards. However, due to the extremely limited number of human-rated spacecraft, this topic has been un-addressed. The NASA CRV was used for this study. The prototype vehicle can return a 7-member crew from the International Space Station in an emergency. The vehicle's internal arrangement must be designed to facilitate rapid zero-g ingress, zero-g maneuverability, ease of one-g egress and rescue, and ease of operational tasks in multiple acceleration environments. A full-scale crew module mockup was built and outfitted with representative adjustable seats, crew equipment, and a volumetrically equivalent hatch. Human factors testing was conducted in three acceleration environments using ground-based facilities and the KC-135 aircraft. Performance and acceptability measurements were collected. Data analysis was conducted using analysis of variance and nonparametric techniques.

  13. Simulation of the effects of microtubules in the cortical rotation of amphibian embryos in normal and zero gravity.

    PubMed

    Nouri, Comron; Tuszynski, Jack A; Wiebe, Mark W; Gordon, Richard

    2012-09-01

    This paper reports the results of computer modeling of microtubules that end up in the cortical region of a one-cell amphibian embryo, prior to the first cell division. Microtubules are modeled as initially randomly oriented semi-flexible rods, represented by several lines of point-masses interacting with one another like masses on springs with longitudinal and transverse stiffness. They are also considered to be space-filling rods floating in a viscous fluid (cytoplasm) experiencing drag forces and buoyancy from the fluid under a variable gravity field to test gravitational effects. Their randomly distributed interactions with the surrounding spherical container (the cell membrane) have a statistical nonzero average that creates a torque causing a rotational displacement between the cytoplasm and the rigid cortex. The simulation has been done for zero and normal gravity and it validates the observation that cortical rotation occurs in microgravity as well as on Earth. The speed of rotation depends on gravity, but is still substantial in microgravity. PMID:22677068

  14. Combustion of solid carbon rods in zero and normal gravity. Ph.D. Thesis - Toledo Univ., Ohio

    NASA Technical Reports Server (NTRS)

    Spuckler, C. M.

    1981-01-01

    In order to investigate the mechanism of carbon combustion and to assess the importance of gravitational induced convection on the process, zero and normal gravity experiments were conducted in which spectroscopic carbon rods were resistance ignitied and burned in dry oxygen environments. In the zero-gravity drop tower tests, a blue flame surrounded the rod, showing that a gas phase reaction in which carbon monoxide was oxidized to carbon dioxide was taking place. The ratio of flame diameter to rod diameter was obtained as a function of time. It was found that this ratio was inversely proportional to both the oxygen pressure and the rod diameter. In the normal gravity tests, direct mass spectrometric sampling was used to measure gas phase concentrations. The gas sampling probe was positioned near the circumference of a horizontally mounted 0.615 cm diameter carbon rod, either at the top or at angles of 45 deg to 90 deg from the top, and yielded concentration profiles of CO2, CO, and O2 as a function of distance from the surface. The mechanism controlling the combustion process was found to change from chemical process control at the 90 deg and 45 deg probe positions to mass transfer control at the 0 deg probe position at the top of the rod. Under the experimental conditions used, carbon combustion was characterized by two surface reactions, 2C + O2 yields 2CO and CO2 + C yields 2CO, and a gas phase reaction, 2CO + O2 yields 2CO2.

  15. The Dirac point electron in zero-gravity Kerr–Newman spacetime

    SciTech Connect

    Kiessling, M. K.-H.; Tahvildar-Zadeh, A. S.

    2015-04-15

    Dirac’s wave equation for a point electron in the topologically nontrivial maximal analytically extended electromagnetic Kerr–Newman spacetime is studied in a limit G → 0, where G is Newton’s constant of universal gravitation. The following results are obtained: the formal Dirac Hamiltonian on the static spacelike slices is essentially self-adjoint and the spectrum of the self-adjoint extension is symmetric about zero, featuring a continuum with a gap about zero that, under two smallness conditions, contains a point spectrum. The symmetry result extends to the Dirac operator on a generalization of the zero-G Kerr–Newman spacetime with different electric-monopole/magnetic-dipole-moment ratios.

  16. The Awful Truth About Zero-Gravity: Space Acceleration Measurement System; Orbital Acceleration Research Experiment

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Earth's gravity holds the Shuttle in orbit, as it does satellites and the Moon. The apparent weightlessness experienced by astronauts and experiments on the Shuttle is a balancing act, the result of free-fall, or continuously falling around Earth. An easy way to visualize what is happening is with a thought experiment that Sir Isaac Newton did in 1686. Newton envisioned a mountain extending above Earth's atmosphere so that friction with the air would be eliminated. He imagined a cannon atop the mountain and aimed parallel to the ground. Firing the cannon propels the cannonball forward. At the same time, Earth's gravity pulls the cannonball down to the surface and eventual impact. Newton visualized using enough powder to just balance gravity so the cannonball would circle the Earth. Like the cannonball, objects orbiting Earth are in continuous free-fall, and it appears that gravity has been eliminated. Yet, that appearance is deceiving. Activities aboard the Shuttle generate a range of accelerations that have effects similar to those of gravity. The crew works and exercises. The main data relay antenna quivers 17 times per second to prevent 'stiction,' where parts stick then release with a jerk. Cooling pumps, air fans, and other systems add vibration. And traces of Earth's atmosphere, even 200 miles up, drag on the Shuttle. While imperceptible to us, these vibrations can have a profound impact on the commercial research and scientific experiments aboard the Shuttle. Measuring these forces is necessary so that researchers and scientists can see what may have affected their experiments when analyzing data. On STS-107 this service is provided by the Space Acceleration Measurement System for Free Flyers (SAMS-FF) and the Orbital Acceleration Research Experiment (OARE). Precision data from these two instruments will help scientists analyze data from their experiments and eliminate outside influences from the phenomena they are studying during the mission.

  17. Estimating zero strain states of very soft tissue under gravity loading using digital image correlation⋆,⋆⋆,★

    PubMed Central

    Gao, Zhan; Desai, Jaydev P.

    2009-01-01

    This paper presents several experimental techniques and concepts in the process of measuring mechanical properties of very soft tissue in an ex vivo tensile test. Gravitational body force on very soft tissue causes pre-compression and results in a non-uniform initial deformation. The global Digital Image Correlation technique is used to measure the full field deformation behavior of liver tissue in uniaxial tension testing. A maximum stretching band is observed in the incremental strain field when a region of tissue passes from compression and enters a state of tension. A new method for estimating the zero strain state is proposed: the zero strain position is close to, but ahead of the position of the maximum stretching band, or in other words, the tangent of a nominal stress-stretch curve reaches minimum at λ ≳ 1. The approach, to identify zero strain by using maximum incremental strain, can be implemented in other types of image-based soft tissue analysis. The experimental results of ten samples from seven porcine livers are presented and material parameters for the Ogden model fit are obtained. The finite element simulation based on the fitted model confirms the effect of gravity on the deformation of very soft tissue and validates our approach. PMID:20015676

  18. A preliminary analysis of the data from experiment 77-13 and final report on glass fining experiments in zero gravity

    NASA Technical Reports Server (NTRS)

    Wilcox, W. R.; Subramanian, R. S.; Meyyappan, M.; Smith, H. D.; Mattox, D. M.; Partlow, D. P.

    1981-01-01

    Thermal fining, thermal migration of bubbles under reduced gravity conditions, and data to verify current theoretical models of bubble location and temperatures as a function of time are discussed. A sample, sodium borate glass, was tested during 5 to 6 minutes of zero gravity during rocket flight. The test cell contained a heater strip; thermocouples were in the sample. At present quantitative data are insufficient to confirm results of theoretical calculations.

  19. NSTA-NASA Shuttle Student Involvement Project. Experiment Results: Insect Flight Observation at Zero Gravity

    NASA Technical Reports Server (NTRS)

    Nelson, T. E.; Peterson, J. R.

    1982-01-01

    The flight responses of common houseflies, velvetbean caterpillar moths, and worker honeybees were observed and filmed for a period of about 25 minutes in a zero-g environment during the third flight of the Space Shuttle Vehicle (flight number STS-3; March 22-30, 1982). Twelve fly puparia, 24 adult moths, 24 moth pupae, and 14 adult bees were loaded into an insect flight box, which was then stowed aboard the Shuttle Orbiter, the night before the STS-3 launch at NASA's Kennedy Space Center (KSC). The main purpose of the experiment was to observe and compare the flight responses of the three species of insects, which have somewhat different flight control mechanisms, under zero-g conditions.

  20. Solidification under zero gravity: A Long Duration Exposure Facility (LDEF) experiment for an early space shuttle mission. [project planning

    NASA Technical Reports Server (NTRS)

    Bailey, J. A.

    1976-01-01

    Project planning for two series of simple experiments on the effect of zero gravity on the melting and freezing of metals and nonmetals is described. The experiments will be performed in the Long Duration Exposure Facility, and their purpose will be to study: (1) the general morphology of metals and nonmetals during solidification, (2) the location of ullage space (liquid-vapor interfaces), and (3) the magnitude of surface tension driven convection during solidification of metals and nonmetals. The preliminary design of the experiments is presented. Details of the investigative approach, experimental procedure, experimental hardware, data reduction and analysis, and anticipated results are given. In addition a work plan and cost analysis are provided.

  1. Manual control in space research on perceptual-motor functions under zero gravity conditions (L-10)

    NASA Technical Reports Server (NTRS)

    Tada, Akira

    1993-01-01

    Are human abilities to control vehicles and other machines the same in space as those on Earth? The L-10 Manual Control Experiment of the First Materials Processing Tests (FMPT) started from this question. Suppose a pilot has the task to align the head of a space vehicle toward a target. His actions are to look at the target, to determine the vehicle movement, and to operate the manipulator. If the activity of the nervous system were the same as on Earth, the movements, of the eye and hand would become excessive because the muscles do not have to oppose gravity. The timing and amount of movement must be arranged for appropriate actions. The sensation of motion would also be affected by the loss of gravity because the mechanism of the otolith, the major acceleration sensor, depends on gravity. The possible instability of the sensation of direction may cause mistakes in the direction of control of manipulator movement. Thus, the experimental data can be used for designing man-machine systems in space, as well as for investigation of physiological mechanisms. In this experiment, the direction of vehicle heading is expressed by a light spot on an array of light emitting diodes and the manipulator is of a finger stick type. As the light spot moves up and down, the Japanese Payload Specialist, and the subject, must move the manipulator forward and backward to keep the movement of the light spot within the neighborhood of the central point of the display. The position of the light spot is computed in such a manner that when the stick is kept at the neutral position, a motion whose acceleration is proportional to the angle of deflection is added to the movement of the light spot. The Operator Describing Function, which is an expression of human control characteristics, can be calculated from 2 minutes of raw data of the light spot position and stick deflection. The 2 minutes of operation is called a run, and 8 runs with resting periods composes a session. The on

  2. Numerical simulation of thermocapillary flow under zero and low gravity conditions

    NASA Technical Reports Server (NTRS)

    Alexander, J. I. D.; Cordier, H.; Zhang, Y.; Ouazzani, Jalil

    1993-01-01

    This paper discusses the numerical solution methods and results of steady and unsteady thermocapillary (surface-tension) and buoyancy driven flows in 2D cavities and liquid columns. The 2D cavity was assumed to be square with one free surface with a zero Capillary number (i.e., the free surface was constrained to be flat). A pseudospectral method was used to solve steady and unsteady surface tension-driven and mixed buoyancy-surface tension flows in a square cavity. For the liquid column a finite-difference scheme based on a Picard iteration was used to solve for the flow, temperature and free surface shape. The surface of the liquid column was allowed to deform and, as for the 2D cavity, the surface tension was assumed to depend on temperature.

  3. Zero-gravity cloud physics laboratory: Candidate experiments definition and preliminary concept studies

    NASA Technical Reports Server (NTRS)

    Eaton, L. R.; Greco, R. V.; Hollinden, A. B.

    1973-01-01

    The candidate definition studies on the zero-g cloud physics laboratory are covered. This laboratory will be an independent self-contained shuttle sortie payload. Several critical technology areas have been identified and studied to assure proper consideration in terms of engineering requirements for the final design. Areas include chambers, gas and particle generators, environmental controls, motion controls, change controls, observational techniques, and composition controls. This unique laboratory will allow studies to be performed without mechanical, aerodynamics, electrical, or other type techniques to support the object under study. This report also covers the candidate experiment definitions, chambers and experiment classes, laboratory concepts and plans, special supporting studies, early flight opportunities and payload planning data for overall shuttle payload requirements assessments.

  4. A zero-gravity demonstration of the collision and coalescence of water droplets

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Vaughan, O. H.; Smith, R. E.

    1974-01-01

    The mechanics of the collision and coalescence of liquid droplets is one of the main research areas in the fields of nuclear physics, astrophysics, meteorology and fluid mechanics. The crew members on the Skylab 3 and 4 missions were requested to perform demonstrations of the collision and coalescence of water droplets under the low gravity environment at orbital altitude. In Skylab 4 two water droplets with equal volumes, 30 cu cm each, were used. A dark colored droplet (contaminated with grape drink) moving with a velocity of 3.14 cm/sec collided with a stationary pink colored droplet (contaminated with strawberry drink) and coalescence occurred. Theoretical models are proposed to study the various stages of the collision-coalescence processes. Special considerations are concentrated in the investigation of the bounce-coalescence and coalescence-instability processes. The surface tension of the coalesced droplets was calculated to be 52 dynes/cm in perfect agreement with laboratory measurements made after the flight using a reproduction of the liquids.

  5. Mechanistic studies on reduced exercise performance and cardiac deconditioning with simulated zero gravity

    NASA Technical Reports Server (NTRS)

    Tipton, Charles M.

    1991-01-01

    The primary purpose of this research is to study the physiological mechanisms associated with the exercise performance of rats subjected to conditions of simulated weightlessness. A secondary purpose is to study related physiological changes associated with other systems. To facilitate these goals, a rodent suspension model was developed (Overton-Tipton) and a VO2 max testing procedure was perfected. Three methodological developments occurred during this past year deserving of mention. The first was the refinement of the tail suspension model so that (1) the heat dissipation functions of the caudal artery can be better utilized, and (2) the blood flow distribution to the tail would have less external constriction. The second was the development on a one-leg weight bearing model for use in simulated weightlessness studies concerned with change in muscle mass, muscle enzyme activity, and hind limb blood flow. The chemical body composition of 30 rats was determined and used to develop a prediction equation for percent fat using underwater weighing procedures to measure carcass specific gravity and to calculate body density, body fat, and fat free mass.

  6. Strategy For Implementing The UN "Zero-Gravity Instrument Project" To Promote Space Science Among School Children In Nigeria

    NASA Astrophysics Data System (ADS)

    Alabi, O.; Agbaje, G.; Akinyede, J.

    2015-12-01

    The United Nations "Zero Gravity Instrument Project" (ZGIP) is one of the activities coordinated under the Space Education Outreach Program (SEOP) of the African Regional Centre for Space Science and Technology Education in English (ARCSSTE-E) to popularize space science among pre-collegiate youths in Nigeria. The vision of ZGIP is to promote space education and research in microgravity. This paper will deliberate on the strategy used to implement the ZGIP to introduce school children to authentic scientific data and inquiry. The paper highlights how the students learned to collect scientific data in a laboratory environment, analyzed the data with specialized software, obtained results, interpreted and presented the results of their study in a standard format to the scientific community. About 100 school children, aged between 7 and 21 years, from ten public and private schools located in Osun State, Nigeria participated in the pilot phase of the ZGIP which commenced with a 1-day workshop in March 2014. During the inauguration workshop, the participants were introduced to the environment of outer space, with special emphasis on the concept of microgravity. They were also taught the basic principle of operation of the Clinostat, a Zero-Gravity Instrument donated to ARCSSTE-E by the United Nations Office for Outer Space Affairs (UN-OOSA), Vienna, under the Human Space Technology Initiative (UN-HSTI). At the end of the workshop, each school designed a project, and had a period of 1 week, on a planned time-table, to work in the laboratory of ARCSSTE-E where they utilized the clinostat to examine the germination of indigenous plant seeds in simulated microgravity conditions. The paper also documents the post-laboratory investigation activities, which included presentation of the results in a poster competition and an evaluation of the project. The enthusiasm displayed by the students, coupled with the favorable responses recorded during an oral interview conducted to

  7. Test Data Analysis of a Spray Bar Zero-Gravity Liquid Hydrogen Vent System for Upper Stages

    NASA Technical Reports Server (NTRS)

    Hedayat, A.; Bailey, J. W.; Hastings, L. J.; Flachbart, R. H.

    2003-01-01

    To support development of a zero-gravity pressure control capability for liquid hydrogen (LH2), a series of thermodynamic venting system (TVS) tests was conducted in 1996 and 1998 using the Marshall Space Flight Center (MSFC) multipurpose hydrogen test bed (MHTB). These tests were performed with ambient heat leaks =20 and 50 W for tank fill levels of 90%, 50%, and 25%. TVS performance testing revealed that the spray bar was highly effective in providing tank pressure control within a 7-kPa band (131-138 Wa), and complete destratification of the liquid and the ullage was achieved with all test conditions. Seven of the MHTB tests were correlated with the TVS performance analytical model. The tests were selected to encompass the range of tank fill levels, ambient heat leaks, operational modes, and ullage pressurants. The TVS model predicted ullage pressure and temperature and bulk liquid saturation pressure and temperature obtained from the TVS model were compared with the test data. During extended self-pressurization periods, following tank lockup, the model predicted faster pressure rise rates than were measured. However, once the system entered the cyclic mixing/venting operational mode, the modeled and measured data were quite similar.

  8. Automatic robotic arm operations and sampling in near zero gravity environment - functional tests results from Phobos-Grunt mission

    NASA Astrophysics Data System (ADS)

    Kozlova, Tatiana; Karol Seweryn, D..; Grygorczuk, Jerzy; Kozlov, Oleg

    sampling; (ii) technical characteristics of both devices, i.e. progress cycles of CHOMIK device in different materials and torque in the manipulator joints during sampling operations; (iii) confirmation of applicability of both devices to perform such type of tasks. The phases in operational scenario were prepared to meet mission and system requirements mainly connected with: (i) environment (near zero gravity, vacuum, dust), (ii) safety and (iii) to avoid common operation of both devices at the same time.

  9. Gravity

    NASA Astrophysics Data System (ADS)

    Poisson, Eric; Will, Clifford M.

    2014-05-01

    Preface; 1. Foundations of Newtonian gravity; 2. Structure of self-gravitating bodies; 3. Newtonian orbital dynamics; 4. Minkowski spacetime; 5. Curved spacetime; 6. Post-Minkowskian theory: formulation; 7. Post-Minkowskian theory: implementation; 8. Post-Newtonian theory: fundamentals; 9. Post-Newtonian theory: system of isolated bodies; 10. Post-Newtonian celestial mechanics, astrometry and navigation; 11. Gravitational waves; 12. Radiative losses and radiation reaction; 13. Alternative theories of gravity; References; Index.

  10. Experiment K-6-10. Effects of zero gravity on myofibril protein content and isomyosin distribution in rodent skeletal muscle

    NASA Technical Reports Server (NTRS)

    Baldwin, K.; Herrick, R.; Oganov, V.

    1990-01-01

    The purpose of this experiment was to investigate the effects of 12 days of zero gravity (0G) exposure (Cosmos 1887 Biosputnik) on the enzymatic properties, protein content, and isomyosin distribution of the myofibril fraction of the slow-twitch vastus intermedius (VI) and the fast-twitch vastus lateralis (VL) muscles of adult male rats. Measurements were obtained on three experimental groups (n=5 each group) designated as flight-group (FG), vivarium-control (VC), and synchronous-control (SC). Body weight of the FG was significantly lower than the two control groups (p less than 0.05). Compared to the two control groups, VI weight was lower by 23 percent (p less than 0.10); whereas no such reduction was observed for the VL muscle. Myofibril yields (mg protein/g of muscle) in the VI were 35 percent lower in the FG compared to the controls (p less than 0.05); whereas, no such pattern was apparent for the VL muscle. When myofibril yields were expressed on a muscle basis (mg/g x muscle weight), the loss of myofibril protein was more exaggerated and suggests that myofibril protein degradation is an early event in the muscle atrophy response to 0G. Analysis of myosin isoforms indicated that slow-myosin was the primary isoform lost in the calculated degradation of total myosin. No evidence of loss of the fast isomyosins was apparent for either muscle following space flight. Myofibril ATPase activity of the VI was increased in the FG compared to controls, which is consistent with the observation of preferential slow-myosin degradation. These data suggest that muscles containing a high percent of slow-twitch fibers undergo greater degrees of myofibril protein degradation than do muscles containing predominantly fast-twitch fibers in response to a relatively short period of 0G exposure, and the primary target appears to be the slow-myosin molecule.

  11. Quantitative determination of zero-gravity effects on electronic materials processing germanium crystal growth with simultaneous interface demarcation experiment MA-060, section 5

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Witt, A. F.; Lichtensteiger, M.; Herman, C. J.

    1982-01-01

    The crystal growth and segregation characteristics of a melt in a directional solidification configuration under near zero g conditions were investigated. The germanium (doped with gallium) system was selected because it was extensively studied on Earth and because it lends itself to a very detailed macroscopic and microscopic characterization. An extensive study was performed of the germanium crystals grown during the Apollo-Soyuz Test Project mission. It was found that single crystal growth was achieved and that the interface demarcation functioned successfully. On the basis of the results obtained to date, there is no indication that convection driven by thermal or surface tension gradients was present in the melt. The gallium segregation, in the absence of gravity, was found to be fundamentally different in its initial and its subsequent stages from that of the ground based tests. None of the existing theoretical models for growth and segregation can account for the observed segregation behavior in the absence of gravity.

  12. Out-reach in-space technology experiments program: Control of flexible robot manipulators in zero gravity, experiment definition phase

    NASA Technical Reports Server (NTRS)

    Phillips, Warren F.

    1989-01-01

    The results obtained show that it is possible to control light-weight robots with flexible links in a manner that produces good response time and does not induce unacceptable link vibrations. However, deflections induced by gravity cause large static position errors with such a control system. For this reason, it is not possible to use this control system for controlling motion in the direction of gravity. The control system does, on the other hand, have potential for use in space. However, in-space experiments will be needed to verify its applicability to robots moving in three dimensions.

  13. Analysis of gravity-induced particle motion and fluid perfusion flow in the NASA-designed rotating zero-head-space tissue culture vessel

    NASA Technical Reports Server (NTRS)

    Wolf, David A.; Schwarz, Ray P.

    1991-01-01

    The gravity induced motions, through the culture media, is calculated of living tissue segments cultured in the NASA rotating zero head space culture vessels. This is then compared with the media perfusion speed which is independent of gravity. The results may be interpreted as a change in the physical environment which will occur by operating the NASA tissue culture systems in actual microgravity (versus unit gravity). The equations governing particle motions which induce flows at the surface of tissues contain g terms. This allows calculation of the fluid flow speed, with respect to a cultured particle, as a function of the external gravitational field strength. The analysis is approached from a flow field perspective. Flow is proportional to the shear exerted on a structure which maintains position within the field. The equations are solved for the deviation of a particle from its original position in a circular streamline as a function of time. The radial deviation is important for defining the operating limits and dimensions of the vessel because of the finite radius at which particles necessarily intercept the wall. This analysis uses a rotating reference frame concept.

  14. Solidification under zero gravity: A Long Duration Exposure Facility (LDEF) experiment for an early space shuttle mission

    NASA Technical Reports Server (NTRS)

    Bailey, J. A.; Whitfield, J. K.

    1976-01-01

    The preliminary design of two series of simple experiments the objectives of which are to determine the effect of an absence of gravity on (1) the general morphology of the structure, (2) location of ullage space, and (3) magnitude of surface tension driven convection, during the solidification of several metallic and nonmetallic systems is described. Details of the investigative approach, experimental procedure, experimental hardware, data reduction and analysis, and anticipated results are given.

  15. Influence of slow rotation on the stability of a thermocapillary incompressible liquid flow in an infinite layer under zero-gravity conditions for small Prandtl number

    NASA Astrophysics Data System (ADS)

    Shvarts, Konstantin G.

    2012-06-01

    Instability of a thermocapillary flow arising in a rotating thin infinite liquid layer under zero-gravity conditions is investigated. Both boundaries of the layer are assumed to be plane and free and are subject to the tangential thermocapillary Marangoni force. A convective heat transfer at the boundaries is governed by Newton's law and the temperature of the fluid near the boundaries is a linear function of the coordinates. The axis of rotation is perpendicular to a liquid layer. The rotation is slow, which allows us to neglect the centrifugal force. The examined thermocapillary flow is described analytically, being an exact solution of the Navier-Stokes equations. According to the linear theory of stability the obtained neutral curves depict the dependence of the critical Marangoni number on the wave number at different values of the Taylor number for the small Prandtl number (Pr = 0.1). The behavior of the finite-amplitude perturbations beyond the stability threshold is studied numerically.

  16. A large motion zero-gravity suspension system for experimental simulation of orbital construction and deployment. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Straube, Timothy Milton

    1993-01-01

    The design and implementation of a vertical degree of freedom suspension system is described which provides a constant force off-load condition to counter gravity over large displacements. By accommodating motions up to one meter for structures weighing up to 100 pounds, the system is useful for experiments which simulate orbital construction events such as docking, multiple component assembly, or structural deployment. A unique aspect of this device is the combination of a large stroke passive off-load device augmented by electromotive torque actuated force feedback. The active force feedback has the effect of reducing break-away friction by a factor of twenty over the passive system alone. The thesis describes the development of the suspension hardware and the control algorithm. Experiments were performed to verify the suspensions system's effectiveness in providing a gravity off-load and simulating the motion of a structure in orbit. Additionally, a three dimensional system concept is presented as an extension of the one dimensional suspension system which was implemented.

  17. The Hubble diagram for a system within dark energy: the location of the zero-gravity radius and the global Hubble rate

    NASA Astrophysics Data System (ADS)

    Teerikorpi, P.; Chernin, A. D.

    2010-06-01

    Aims: Here we continue to discuss the principle of the local measurement of dark energy using the normalized Hubble diagram describing the environment of a system of galaxies. Methods: We calculate the present locus of test particles injected a fixed time ago (~the age of the universe), in the standard Λ cosmology and for different values of the system parameters (the model includes a central point mass M and a local dark energy density ρloc) and discuss the position of the zero-gravity distance Rv in the Hubble diagram. Results: Our main conclusion are: 1) when the local DE density ρloc is equal to the global DE density ρv, the outflow reaches the global Hubble rate at the distance R2 = (1+zv)Rv, where zv is the global zero-acceleration redshift (≈0.7 for the standard model). This is also the radius of the ideal Einstein-Straus vacuole, 2) for a wide range of the local-to-global dark energy ratio ρloc/ρv, the local flow reaches the known global rate (the Hubble constant) at a distance R2 ⪆ 1.5 × Rv. Hence, Rv will be between R2/2 and R2, giving upper and lower limits to ρloc/M. For the Local Group, this supports the view that the local density is near the global one.

  18. An example of branching in a variational problem. [shape of liquid suspended from wire in zero gravity

    NASA Technical Reports Server (NTRS)

    Darbro, W.

    1978-01-01

    In an experiment in space it was found that when a cubical frame was slowly withdrawn from a soap solution, the wire frame retained practically a full cube of liquid. Removed from the frame (by shaking), the faces of the cube became progressively more concave, until adjacent faces became tangential. In the present paper a mathematical model describing the shape a liquid takes due to its surface tension while suspended on a wire frame in zero-g is solved by use of Lagrange multipliers. It is shown how the configuration of soap films so bounded is dependent upon the volume of liquid trapped in the films. A special case of the solution is a soap film naturally formed on a cubical wire frame.

  19. Zero-gravity Mean Free Surface Curvature of a Confined Liquid in a Radially-Vaned Container

    NASA Technical Reports Server (NTRS)

    Chen, Yongkang; Callahan, Michael; Weislogel, Mark

    2013-01-01

    A variety of increasingly intricate container geometries are under consideration for the passive manipulation of liquids aboard spacecraft where the impact of gravity may be neglected. In this study we examine the mean curvature of a liquid volume confined within a radial array of disconnected vanes of infinite extent. This particular geometry possesses a number of desirable characteristics relevant to waste water treatment aboard spacecraft for life support. It is observed that under certain conditions the slender shape of the free surface approaches an asymptote, which can be predicted analytically using new hybrid boundary conditions proposed herein. This contribution represents possibly the final extension of what has been referred to as the method of de Lazzer et al. (1996). The method enables the integration of the Young-Laplace equation over a domain with its boundaries, including the wetted portion of the solid boundaries, symmetry planes, and circular arcs representing free surfaces at the center plane of the liquid body. Asymptotic solutions at several limits are obtained and the analysis is confirmed with numerical computations.

  20. Zero initial partial derivatives of satellite orbits with respect to force parameters nullify the mathematical basis of the numerical integration method for the determination of standard gravity models from space geodetic measurements

    NASA Astrophysics Data System (ADS)

    Xu, Peiliang

    2015-04-01

    Satellite orbits have been routinely used to produce models of the Earth's gravity field. The numerical integration method is most widely used by almost all major institutions to determine standard gravity models from space geodetic measurements. As a basic component of the method, the partial derivatives of a satellite orbit with respect to the force parameters to be determined, namely, the unknown harmonic coefficients of the gravitational model, have been first computed by setting the initial values of partial derivatives to zero. In this talk, we first design some simple mathematical examples to show that setting the initial values of partial derivatives to zero is generally erroneous mathematically. We then prove that it is prohibited physically. In other words, setting the initial values of partial derivatives to zero violates the physics of motion of celestial bodies. To conclude, the numerical integration method, as is widely used today by major institutions to produce standard satellite gravity models, is simply incorrect mathematically. As a direct consequence, further work is required to confirm whether the numerical integration method can still be used as a mathematical foundation to produce standard satellite gravity models. More details can be found in Xu (2009, Sci China Ser D-Earth Sci, 52, 562-566).

  1. Analysis of changes in leg volume parameters, and orthostatic tolerance in response to lower body negative pressure during 59 days exposure to zero gravity Skylab 3

    NASA Technical Reports Server (NTRS)

    Barnett, R. D.; Gowen, R. J.; Carroll, D. R.

    1975-01-01

    The cardiovascular responses of the Apollo crewmen associated with postflight evaluations indicate varying decrements of orthostatic tolerance. The postflight changes indicate a slightly diminished ability to the cardiovascular system to function effectively against gravity following exposure to weightlessness. The objective of the Skylab LBNP experiments (M092) was to provide information about the magnitude and time course of the cardiovascular changes associated with prolonged periods of exposure to weightlessness. This report details the equipment, signal processing and analysis of the leg volume data obtained from the M092 experiment of the Skylab 3 Mission.

  2. Monopole zeros

    NASA Astrophysics Data System (ADS)

    Sutcliffe, Paul M.

    1996-02-01

    Recently the existence of certain SU(2) BPS monopoles with the symmetries of the Platonic solids has been proved. Numerical results in an earlier paper suggest that one of these new monopoles, the tetrahedral 3-monopole, has a remarkable new property, in that the number of zeros of the Higgs field is greater than the topological charge (number of monopoles). As a consequence, zeros of the Higgs field exist (called anti-zeros) around which the local winding number has opposite sign to that of the total winding. In this letter we investigate the presence of anti-zeros for the other Platonic monopoles. Other aspects of anti-zeros are also discussed.

  3. Project Fog Drops 5. Task 1: A numerical model of advection fog. Task 2: Recommendations for simplified individual zero-gravity cloud physics experiments

    NASA Technical Reports Server (NTRS)

    Rogers, C. W.; Eadie, W. J.; Katz, U.; Kocmond, W. C.

    1975-01-01

    A two-dimensional numerical model was used to investigate the formation of marine advection fog. The model predicts the evolution of potential temperature, horizontal wind, water vapor content, and liquid water content in a vertical cross section of the atmosphere as determined by vertical turbulent transfer and horizontal advection, as well as radiative cooling and drop sedimentation. The model is designed to simulate the formation, development, or dissipation of advection fog in response to transfer of heat and moisture between the atmosphere and the surface as driven by advection over horizontal discontinuities in the surface temperature. Results from numerical simulations of advection fog formation are discussed with reference to observations of marine fog. A survey of candidate fog or cloud microphysics experiments which might be performed in the low gravity environment of a shuttle-type spacecraft in presented. Recommendations are given for relatively simple experiments which are relevent to fog modification problems.

  4. Analysis of changes in leg volume parameters, and orthostatic tolerance in response to lower body negative pressure during 28-days exposure to zero gravity Skylab 2

    NASA Technical Reports Server (NTRS)

    Barnett, R. D.; Gowen, R. J.; Carroll, D. R.

    1975-01-01

    The design of the leg volume measuring system employed for the M092 portion of the Skylab missions required the development of a system sensitive to large and small volume changes at the calf of the leg. These changes in volume were produced in response to the orthostatic stress of a Lower Body Negative Pressure Device (LBNPD) or by venous occlusion. The cardiovascular responses of the Apollo crewman associated with the postflight evaluations indicate varying decrements of orthostatic tolerance. The postflight changes indicate a slightly diminished ability of the cardiovascular system to function effectively against gravity following exposure to weightlessness. The objective of the Skylab LBNP experiments (M092) was to provide information about the magnitude and time course of the cardiovascular changes associated with prolonged periods of exposure to weightlessness. The equipment, signal processing, and analysis of the leg volume data obtained from the M092 experiment of the Skylab 2 Mission are described.

  5. Ground Zero.

    ERIC Educational Resources Information Center

    Vail, Kathleen

    1995-01-01

    In school systems with a zero-tolerance policy, principals must recommend that students who carry weapons on campus be expelled. Some critics say zero-tolerance policies do not allow enough room for exceptions. Describes the Gun-Free Schools Act. (MLF)

  6. Ground Zero.

    ERIC Educational Resources Information Center

    Lozada, Marlene

    1998-01-01

    Many public school districts have adopted a policy of zero tolerance toward drug use, weapon possession, and sexual harassment on school grounds. Although a study by the National Center for Education Statistics reported no evidence that zero tolerance policies have lowered school crime rates, prominent education groups favor them. (JOW)

  7. Absolute Zero.

    ERIC Educational Resources Information Center

    Jones, Rebecca

    1997-01-01

    So far the courts have supported most schools' zero-tolerance policies--even those banning toy weapons, over-the-counter drugs, and unseemly conduct. However, wide-ranging get-tough policies can draw criticism. Policy experts advise school boards to ask the community, decide what people want, allow some wiggle room, create an appeals process,…

  8. APOLLO 8: It's Christmas in zero gravity...

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Astronauts and ground control consider how Santa is going to gain access to the command module... From the film documentary 'APOLLO 8:'Debrief': part of a documentary series made in the early 70's on the APOLLO missions, and narrated by Burgess Meredith. (Actual date created is not known at this time) First manned Saturn V flight with Frank Borman, James A. Lovell, Jr.,and william A. Anders. First manned lunar orbit mission; provided a close-up look at the moon during 10 lunar orbits. Mission Duration 147hrs 0m 42s

  9. GAS-611 firefly in zero gravity

    NASA Technical Reports Server (NTRS)

    Williams, Tony

    1988-01-01

    The Get Away Special 611 (GAS-611) project will carry a small, self-contained biological experiment into a microgravity environment for a period of 120 hours. The payload will be a colony of Lampyridae (fireflies). The ability of this beetle to produce light with an efficiency of 98 pct will be evaluated in the micro-G environment. The chemical process that occurs could be assisted by the earth's gravitational pull and the very complex tracheae system found within this species of beetle. The effects of microgravity on mating and beetle larvae will also be studied.

  10. Electricity from Gravity

    NASA Astrophysics Data System (ADS)

    Masters, Roy

    2007-03-01

    Einstein's cosmological constant as gravity, will unify quantum mechanics to general relativity and link gravity to electromagnetism. Then, an electromagnetic vacuum engine driven by the force that spins, moves, and sustains mass at the subatomic level, will do free, what generators cannot. Flowing outward-bound sinusoidally from its source, this gravity force assumes a three-dimensional spherical universe. Lines of force intersect, spinning into gyroscopic particles and passes as time-present, with a compression gravity of space-time curvature continuum unifying all mass. The spaces between approaching masses suffer a decrease of right-angled vacuum energy, increasing external pressures, pushing them together. Ubiquitous gravity now interacts electromagnetically with mass. Gravity's ``heat energy'' operates below absolute zero and squeezes mass into thermonuclear ignition of stars. Creation needs a gravity field for the propagation of light that will make sense of its wave/particle behavior. Creation from a white hole recycles down through a black one, into new beginnings of galaxies. ``Vacuum energy'' will light cities and factories; faster than light spacecraft will raise silently from the ground utilizing the very gravity it defies, propelling us to the stars.

  11. Absolute Zero

    NASA Astrophysics Data System (ADS)

    Donnelly, Russell J.; Sheibley, D.; Belloni, M.; Stamper-Kurn, D.; Vinen, W. F.

    2006-12-01

    Absolute Zero is a two hour PBS special attempting to bring to the general public some of the advances made in 400 years of thermodynamics. It is based on the book “Absolute Zero and the Conquest of Cold” by Tom Shachtman. Absolute Zero will call long-overdue attention to the remarkable strides that have been made in low-temperature physics, a field that has produced 27 Nobel Prizes. It will explore the ongoing interplay between science and technology through historical examples including refrigerators, ice machines, frozen foods, liquid oxygen and nitrogen as well as much colder fluids such as liquid hydrogen and liquid helium. A website has been established to promote the series: www.absolutezerocampaign.org. It contains information on the series, aimed primarily at students at the middle school level. There is a wealth of material here and we hope interested teachers will draw their student’s attention to this website and its substantial contents, which have been carefully vetted for accuracy.

  12. Solidifying Cast Iron in Low Gravity

    NASA Technical Reports Server (NTRS)

    Hendrix, J. C.; Curreri, P. A.; Stefanescu, D. M.

    1986-01-01

    Report describes study of solidification of cast iron in low and normal gravity. Because flotation, sedimentation, and convection suppressed, alloys that solidify at nearly zero gravity have unusual and potentially useful characteristics. Study conducted in airplane that repeatedly flew along parabolic trajectories. Appears iron/carbon alloys made at low gravity have greater carbon content (as high as 5 to 10 percent) than those made of Earth gravity because carbon particles do not float to top of melt.

  13. Brane worlds in critical gravity

    NASA Astrophysics Data System (ADS)

    Chen, Feng-Wei; Liu, Yu-Xiao; Zhong, Yuan; Wang, Yong-Qiang; Wu, Shao-Feng

    2013-11-01

    Recently, Lü and Pope proposed critical gravities in [Phys. Rev. Lett. 106, 181302 (2011)]. In this paper we construct analytic brane solutions in critical gravity with matter. The Gibbons-Hawking surface term and junction condition are investigated, and the thin and thick brane solutions are obtained. All these branes are embedded in five-dimensional anti-de Sitter spacetimes. Our solutions are stable against scalar perturbations, and the zero modes of scalar perturbations cannot be localized on the branes.

  14. Gravity Waves

    Atmospheric Science Data Center

    2013-04-19

    article title:  Gravity Waves Ripple over Marine Stratocumulus Clouds ... Imaging SpectroRadiometer (MISR), a fingerprint-like gravity wave feature occurs over a deck of marine stratocumulus clouds. Similar ... that occur when a pebble is thrown into a still pond, such "gravity waves" sometimes appear when the relatively stable and stratified air ...

  15. Venus gravity

    NASA Technical Reports Server (NTRS)

    Reasenberg, Robert D.

    1993-01-01

    The anomalous gravity field of Venus shows high correlation with surface features revealed by radar. We extract gravity models from the Doppler tracking data from the Pioneer Venus Orbiter (PVO) by means of a two-step process. In the first step, we solve the nonlinear spacecraft state estimation problem using a Kalman filter-smoother. The Kalman filter was evaluated through simulations. This evaluation and some unusual features of the filter are discussed. In the second step, we perform a geophysical inversion using a linear Bayesian estimator. To allow an unbiased comparison between gravity and topography, we use a simulation technique to smooth and distort the radar topographic data so as to yield maps having the same characteristics as our gravity maps. The maps presented cover 2/3 of the surface of Venus and display the strong topography-gravity correlation previously reported. The topography-gravity scatter plots show two distinct trends.

  16. The Trouble with Zero

    ERIC Educational Resources Information Center

    Lewis, Robert

    2015-01-01

    The history of the number zero is an interesting one. In early times, zero was not used as a number at all, but instead was used as a place holder to indicate the position of hundreds and tens. This article briefly discusses the history of zero and challenges the thinking where divisions using zero are used.

  17. Cosmological perturbations in unimodular gravity

    SciTech Connect

    Gao, Caixia; Brandenberger, Robert H.; Cai, Yifu; Chen, Pisin E-mail: rhb@hep.physics.mcgill.ca E-mail: chen@slac.stanford.edu

    2014-09-01

    We study cosmological perturbation theory within the framework of unimodular gravity. We show that the Lagrangian constraint on the determinant of the metric required by unimodular gravity leads to an extra constraint on the gauge freedom of the metric perturbations. Although the main equation of motion for the gravitational potential remains the same, the shift variable, which is gauge artifact in General Relativity, cannot be set to zero in unimodular gravity. This non-vanishing shift variable affects the propagation of photons throughout the cosmological evolution and therefore modifies the Sachs-Wolfe relation between the relativistic gravitational potential and the microwave temperature anisotropies. However, for adiabatic fluctuations the difference between the result in General Relativity and unimodular gravity is suppressed on large angular scales. Thus, no strong constraints on the theory can be derived.

  18. Mars mission gravity profile simulation

    NASA Technical Reports Server (NTRS)

    Kuznetz, Lawrence H.

    1990-01-01

    A flight experiment designed to determine the need for artificial gravity for Mars mission architectures at earlier stages of the design process is proposed. The Soviet Mir space station, the NASA Space Shuttle, and the resources of NASA Ames Research Center would be used to duplicate in the terrestrial environment the complete Mars-mission gravity profile in order to assess the need for artificial gravity. All mission phases of 1 G would be on earth; all mission phases of zero or micro G would be in space aboard Mir; and all launch, ascent, orbit, deorbit, approach, departure, and descent G loads would be provided by actual spacecraft in operations that could be designed to simulate the actual G loads, while the Mars stay time would be simulated on earth or in a variable-gravity research facility in space. Methods of simulating activities on the Martian surface are outlined along with data monitoring, countermeasures, and launch site and vehicle selection criteria.

  19. Generalized Vaidya spacetime for cubic gravity

    NASA Astrophysics Data System (ADS)

    Ruan, Shan-Ming

    2016-03-01

    We present a kind of generalized Vaidya solution of a new cubic gravity in five dimensions whose field equations in spherically symmetric spacetime are always second order like the Lovelock gravity. We also study the thermodynamics of its spherically symmetric apparent horizon and get its entropy expression and generalized Misner-Sharp energy. Finally, we present the first law and second law hold in this gravity. Although all the results are analogous to those in Lovelock gravity, we in fact introduce the contribution of a new cubic term in five dimensions where the cubic Lovelock term is just zero.

  20. Keeping the Zero in Zero Discharge.

    ERIC Educational Resources Information Center

    Muldoon, Paul; Jackson, John

    1994-01-01

    This article focuses on Great Lakes pollution as it describes the evolution of the zero discharge concept, outlines the major areas of debate, and explores facets of a developing strategy to ensure the ultimate success of the zero discharge approach. (46 references) (LZ)

  1. Gravity investigations

    SciTech Connect

    Healey, D.L.

    1983-12-31

    A large density contrast exists between the Paleozoic rocks (including the rocks of Climax stock) and less dense, Tertiary volcanic rocks and alluvium. This density contrast ranges widely, and herein for interpretive purposes, is assumed to average 0.85 Mg/m{sup 3} (megagrams per cubic meter). The large density contrast makes the gravity method a useful tool with which to study the interface between these rock types. However, little or no density contrast is discernible between the sedimentary Paleozoic rocks that surround the Climax stock and the intrusive rocks of the stock itself. Therefore the gravity method can not be used to define the configuration of the stock. Gravity highs coincide with outcrops of the dense Paleozoic rocks, and gravity lows overlie less-dense Tertiary volcanic rocks and Quaternary alluvium. The positions of three major faults (Boundary, Yucca, and Butte faults) are defined by steep gravity gradients. West of the Climax stock, the Tippinip fault has juxtaposed Paleozoic rocks of similar density, and consequently, has no expression in the gravity data in that area. The gravity station spacing, across Oak Spring Butte, is not sufficient to adequately define any gravity expression of the Tippinip fault. 18 refs., 5 figs.

  2. Beyond Zero Based Budgeting.

    ERIC Educational Resources Information Center

    Ogden, Daniel M., Jr.

    1978-01-01

    Suggests that the most practical budgeting system for most managers is a formalized combination of incremental and zero-based analysis because little can be learned about most programs from an annual zero-based budget. (Author/IRT)

  3. Multiple zeros of polynomials

    NASA Technical Reports Server (NTRS)

    Wood, C. A.

    1974-01-01

    For polynomials of higher degree, iterative numerical methods must be used. Four iterative methods are presented for approximating the zeros of a polynomial using a digital computer. Newton's method and Muller's method are two well known iterative methods which are presented. They extract the zeros of a polynomial by generating a sequence of approximations converging to each zero. However, both of these methods are very unstable when used on a polynomial which has multiple zeros. That is, either they fail to converge to some or all of the zeros, or they converge to very bad approximations of the polynomial's zeros. This material introduces two new methods, the greatest common divisor (G.C.D.) method and the repeated greatest common divisor (repeated G.C.D.) method, which are superior methods for numerically approximating the zeros of a polynomial having multiple zeros. These methods were programmed in FORTRAN 4 and comparisons in time and accuracy are given.

  4. Gravity Currents

    NASA Astrophysics Data System (ADS)

    Simpson, John E.

    1997-03-01

    This book comprehensively describes all aspects of gravity flow, a physical process in the environment that is covered by many disciplines including meteorology, oceanography, the earth sciences and industrial processes. The first edition was very well received, and the author has brought the new edition completely up to date, with much new material. Simpson describes gravity currents with a variety of laboratory experiments, many from his own work. Gravity Currents is a valuable supplementary textbook for undergraduates and a reference work for research workers. The general reader will also find much of interest, since the author clearly describes the physics of flows involved without advanced mathematics, and with numerous photographs and illustrations.

  5. Gravity Currents

    NASA Astrophysics Data System (ADS)

    Simpson, John E.

    1999-11-01

    This book comprehensively describes all aspects of gravity flow, a physical process in the environment that is covered by many disciplines including meteorology, oceanography, the earth sciences and industrial processes. The first edition was very well received, and the author has brought the new edition completely up to date, with much new material. Simpson describes gravity currents with a variety of laboratory experiments, many from his own work. Gravity Currents is a valuable supplementary textbook for undergraduates and a reference work for research workers. The general reader will also find much of interest, since the author clearly describes the physics of flows involved without advanced mathematics, and with numerous photographs and illustrations.

  6. Zero Tolerance in Schools.

    ERIC Educational Resources Information Center

    Henault, Cherry

    2001-01-01

    Questions the effectiveness of the widespread use of zero-tolerance policies enacted by school boards to punish students who violate weapon and drug rules. Suggests that enforcement of zero-tolerance policies has not been equitable. Reviews proposal for alternative to zero tolerance. (PKP)

  7. Gravity brake

    DOEpatents

    Lujan, Richard E.

    2001-01-01

    A mechanical gravity brake that prevents hoisted loads within a shaft from free-falling when a loss of hoisting force occurs. A loss of hoist lifting force may occur in a number of situations, for example if a hoist cable were to break, the brakes were to fail on a winch, or the hoist mechanism itself were to fail. Under normal hoisting conditions, the gravity brake of the invention is subject to an upward lifting force from the hoist and a downward pulling force from a suspended load. If the lifting force should suddenly cease, the loss of differential forces on the gravity brake in free-fall is translated to extend a set of brakes against the walls of the shaft to stop the free fall descent of the gravity brake and attached load.

  8. Droplet burning at zero G

    NASA Technical Reports Server (NTRS)

    Williams, F. A.

    1978-01-01

    Questions of the importance and feasibility of performing experiments on droplet burning at zero gravity in Spacelab were studied. Information on the physics and chemistry of droplet combustion, with attention directed specifically to the chemical kinetics, heat and mass transfer, and fluid mechanics of the phenomena involved, are presented. The work was divided into three phases, the justification, the feasibility, and the conceptual development of a preliminary design. Results from the experiments performed revealed a few new facts concerning droplet burning, notably burning rates in excess of theoretical prediction and a phenomenon of flash extinction, both likely traceable to accumulation of carbon produced by gas-phase pyrolysis in the fuel-rich zone enclosed by the reaction surface. These experiments also showed that they were primarily due to timing difficulties.

  9. Improved Airborne Gravity Results Using New Relative Gravity Sensor Technology

    NASA Astrophysics Data System (ADS)

    Brady, N.

    2013-12-01

    Airborne gravity data has contributed greatly to our knowledge of subsurface geophysics particularly in rugged and otherwise inaccessible areas such as Antarctica. Reliable high quality GPS data has renewed interest in improving the accuracy of airborne gravity systems and recent improvements in the electronic control of the sensor have increased the accuracy and ability of the classic Lacoste and Romberg zero length spring gravity meters to operate in turbulent air conditions. Lacoste and Romberg type gravity meters provide increased sensitivity over other relative gravity meters by utilizing a mass attached to a horizontal beam which is balanced by a ';zero length spring'. This type of dynamic gravity sensor is capable of measuring gravity changes on the order of 0.05 milliGals in laboratory conditions but more commonly 0.7 to 1 milliGal in survey use. The sensor may have errors induced by the electronics used to read the beam position as well as noise induced by unwanted accelerations, commonly turbulence, which moves the beam away from its ideal balance position otherwise known as the reading line. The sensor relies on a measuring screw controlled by a computer which attempts to bring the beam back to the reading line position. The beam is also heavily damped so that it does not react to most unwanted high frequency accelerations. However this heavily damped system is slow to react, particularly in turns where there are very high Eotvos effects. New sensor technology utilizes magnetic damping of the beam coupled with an active feedback system which acts to effectively keep the beam locked at the reading line position. The feedback system operates over the entire range of the system so there is now no requirement for a measuring screw. The feedback system operates at very high speed so that even large turbulent events have minimal impact on data quality and very little, if any, survey line data is lost because of large beam displacement errors. Airborne testing

  10. Role of gravity in preparative electrophoresis

    NASA Technical Reports Server (NTRS)

    Bier, M.; Hinckley, J. O. N.; Smolka, A. J. K.; Binder, M. J.; Coxon, M.; Nee, T. W.; Scully, M. O.; Shih, H. S. T.; Snyder, R. S.

    1974-01-01

    Electrophoresis has contributed significantly to the methodology of biological sciences, and shows the potential for large scale fractionation of a wide range of medically important substances, including living cells. Gravity plays an important role in the electrophoretic process, and hence the importance of the NASA effort to develop a zero-gravity separation facility as part of its shuttle program. The current state of art in electrophoresis is reviewed with particular emphasis on the role of gravity and the possible use of istachophoresis. This technique utilizes a discontinuous buffer system, and appears to be the only high resolution electrophoretic technique currently available for separation of living cells.

  11. Gravity settling

    DOEpatents

    Davis, Hyman R.; Long, R. H.; Simone, A. A.

    1979-01-01

    Solids are separated from a liquid in a gravity settler provided with inclined solid intercepting surfaces to intercept the solid settling path to coalesce the solids and increase the settling rate. The intercepting surfaces are inverted V-shaped plates, each formed from first and second downwardly inclined upwardly curved intersecting conical sections having their apices at the vessel wall.

  12. Simulating Gravity

    ERIC Educational Resources Information Center

    Pipinos, Savas

    2010-01-01

    This article describes one classroom activity in which the author simulates the Newtonian gravity, and employs the Euclidean Geometry with the use of new technologies (NT). The prerequisites for this activity were some knowledge of the formulae for a particle free fall in Physics and most certainly, a good understanding of the notion of similarity…

  13. Zero-Based Budgeting.

    ERIC Educational Resources Information Center

    Wichowski, Chester

    1979-01-01

    The zero-based budgeting approach is designed to achieve the greatest benefit with the fewest undesirable consequences. Seven basic steps make up the zero-based decision-making process: (1) identifying program goals, (2) classifying goals, (3) identifying resources, (4) reviewing consequences, (5) developing decision packages, (6) implementing a…

  14. The Zero Program

    ERIC Educational Resources Information Center

    Roland, Erling; Midthassel, Unni Vere

    2012-01-01

    Zero is a schoolwide antibullying program developed by the Centre for Behavioural Research at the University of Stavanger, Norway. It is based on three main principles: a zero vision of bullying, collective commitment among all employees at the school using the program, and continuing work. Based on these principles, the program aims to reduce…

  15. Zero Energy Use School.

    ERIC Educational Resources Information Center

    Nelson, Brian, Ed.; And Others

    The economic and physical realities of an energy shortage have caused many educators to consider alternative sources of energy when constructing their schools. This book contains studies and designs by fifth-year architecture students concerning the proposed construction of a zero energy-use elementary school in Albany, Oregon. "Zero energy use"…

  16. Tolerating Zero Tolerance?

    ERIC Educational Resources Information Center

    Moore, Brian N.

    2010-01-01

    The concept of zero tolerance dates back to the mid-1990s when New Jersey was creating laws to address nuisance crimes in communities. The main goal of these neighborhood crime policies was to have zero tolerance for petty crime such as graffiti or littering so as to keep more serious crimes from occurring. Next came the war on drugs. In federal…

  17. Repeated measures with zeros.

    PubMed

    Berk, K N; Lachenbruch, P A

    2002-08-01

    Consider repeated measures data with many zeros. For the case with one grouping factor and one repeated measure, we examine several models, assuming that the nonzero data are roughly lognormal. One of the simplest approaches is to model the zeros as left-censored observations from the lognormal distribution. A random effect is assumed for subjects. The censored model makes a strong assumption about the relationship between the zeros and the nonzero values. To check on this, you can instead assume that some of the zeros are 'true' zeros and model them as Bernoulli. Then the other values are modeled with a censored lognormal. A logistic model is used for the Bernoulli p, the probability of a true nonzero. The fit of the pure left-censored lognormal can be assessed by testing the hypothesis that p is 1, as described by Moulton and Halsey. The model can also be simplified by omitting the censoring, leaving a logistic model for the zeros and a lognormal model for the nonzero values. This is approximately equivalent to modeling the zero and nonzero values separately, a two-part model. In contrast to the censored model, this model assumes only a slight relationship (a covariance component) between the occurrence of zeros and the size of the nonzero values. The models are compared in terms of an example with data from children's private speech. PMID:12197298

  18. Hamiltonian analysis of Einstein-Chern-Simons gravity

    NASA Astrophysics Data System (ADS)

    Avilés, L.; Salgado, P.

    2016-06-01

    In this work we consider the construction of the Hamiltonian action for the transgressions field theory. The subspace separation method for Chern-Simons Hamiltonian is built and used to find the Hamiltonian for five-dimensional Einstein-Chern-Simons gravity. It is then shown that the Hamiltonian for Einstein gravity arises in the limit where the scale parameter l approaches zero.

  19. Zero-mode waveguides

    DOEpatents

    Levene, Michael J.; Korlach, Jonas; Turner, Stephen W.; Craighead, Harold G.; Webb, Watt W.

    2007-02-20

    The present invention is directed to a method and an apparatus for analysis of an analyte. The method involves providing a zero-mode waveguide which includes a cladding surrounding a core where the cladding is configured to preclude propagation of electromagnetic energy of a frequency less than a cutoff frequency longitudinally through the core of the zero-mode waveguide. The analyte is positioned in the core of the zero-mode waveguide and is then subjected, in the core of the zero-mode waveguide, to activating electromagnetic radiation of a frequency less than the cut-off frequency under conditions effective to permit analysis of the analyte in an effective observation volume which is more compact than if the analysis were carried out in the absence of the zero-mode waveguide.

  20. Zero-G Condensing Heat Exchanger with Integral Disinfection

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A. (Inventor)

    2012-01-01

    The system that operates in a zero gravity environment and has an integral ozone generating capability is disclosed. The system contributes to the control of metabolic water vapors in the air, and also provided disinfection of any resulting condensate within the system, as well as disinfection of the air stream that flows throughout the disclosed system.

  1. Expanding Gravity

    NASA Astrophysics Data System (ADS)

    Aisenberg, Sol

    2005-04-01

    Newton's gravitational constant Gn and Laws of Gravity are based upon observations in our solar system. Mysteries appear when they are used far outside our solar system Apparently, Newton's gravitational constant can not be applied at large distances. Dark matter was needed to explain the observed flat rotational velocity curves of spiral galaxies (Rubin), and of groups of remote galaxies (Zwicky). Our expansion of Newton's gravitational constant Gn as a power series in distance r, is sufficient to explain these observations without using dark matter. This is different from the MOND theory of Milgrom involving acceleration. Also, our Expanded Gravitational Constant (EGC) can show the correct use of the red shift. In addition to the Doppler contribution, there are three other contributions and these depend only upon gravity. Thus, velocity observations only based on the red shift can not be used to support the concept of the expanding universe, the accelerating expansion, or dark energy. Our expanded gravity constant can predict and explain Olbers' paradox (dark sky), and the temperature of the CMB (cosmic microwave background). Thus, CMB may not support the big bang and inflation.

  2. Is nonrelativistic gravity possible?

    SciTech Connect

    Kocharyan, A. A.

    2009-07-15

    We study nonrelativistic gravity using the Hamiltonian formalism. For the dynamics of general relativity (relativistic gravity) the formalism is well known and called the Arnowitt-Deser-Misner (ADM) formalism. We show that if the lapse function is constrained correctly, then nonrelativistic gravity is described by a consistent Hamiltonian system. Surprisingly, nonrelativistic gravity can have solutions identical to relativistic gravity ones. In particular, (anti-)de Sitter black holes of Einstein gravity and IR limit of Horava gravity are locally identical.

  3. Starting From Ground Zero

    ERIC Educational Resources Information Center

    Fischer, William B.; Stauffer, Robert A.

    1978-01-01

    Erie County Community College (New York) has developed a zero-based program budgeting system to meet current fiscal problems and diminished resources. The system allocates resources on the basis of program effectiveness and market potential. (LH)

  4. Gravity and positional homeostasis of the cell

    NASA Astrophysics Data System (ADS)

    Nace, George W.

    Normally bilateralization takes place in the presence of the Earth's gravity which produces torque, shear, tension and compression acting upon the naked aggregates of cytoplasm in the zygote which is only stabilized by a weak cytoskeleton. In an initial examination of the effects of these quantities on development, an expression is derived to describe the tendency of torque to rotate the egg and reorganize its constituents. This expression yields the net torque resulting from buoyancy and gravity acting upon a dumbbell shaped cell with heavy and light masses at either end and ``floating'' in a medium. Using crude values for the variables, torques of 2.5 × 10-13 to 8.5 × 10-1 dyne-cm are found to act upon cells ranging from 6.4 μm to 31 mm (chicken egg). By way of comparison six microtubules can exert a torque of 5 × 10-9 dyne-cm. (1) Gravity imparts torque to cells; (2) torque is reduced to zero as gravity approaches zero; and (3) torque is sensitive to cell size and particulate distribution. Cells must expend energy to maintain positional homeostasis against gravity. Although not previously recognized, Skylab 3 results support this hypothesis: tissue cultures used 58% more glucose on Earth than in space. The implications for developmental biology, physiology, genetics, and evolution are considered. At the cellular and tissue level the concept of ``gravity receptors'' may be unnecessary.

  5. Cosmological perturbations in mimetic Horndeski gravity

    NASA Astrophysics Data System (ADS)

    Arroja, Frederico; Bartolo, Nicola; Karmakar, Purnendu; Matarrese, Sabino

    2016-04-01

    We study linear scalar perturbations around a flat FLRW background in mimetic Horndeski gravity. In the absence of matter, we show that the Newtonian potential satisfies a second-order differential equation with no spatial derivatives. This implies that the sound speed for scalar perturbations is exactly zero on this background. We also show that in mimetic G3 theories the sound speed is equally zero. We obtain the equation of motion for the comoving curvature perturbation (first order differential equation) and solve it to find that the comoving curvature perturbation is constant on all scales in mimetic Horndeski gravity. We find solutions for the Newtonian potential evolution equation in two simple models. Finally we show that the sound speed is zero on all backgrounds and therefore the system does not have any wave-like scalar degrees of freedom.

  6. Behavioral responses to partial-gravity conditions in rats.

    PubMed

    Zeredo, Jorge L; Toda, Kazuo; Matsuura, Masaaki; Kumei, Yasuhiro

    2012-11-01

    The effects of microgravity or hypergravity on living organisms have been studied extensively; however, thus far no studies have addressed the effects of "partial-gravity", that is, the low-gravity levels between the unit gravity (1G) on Earth and zero gravity (0 G) in space. The purpose of the present study was to examine behavioral responses in rats under partial-gravity conditions. Rat behavior was monitored by video cameras during parabolic flights. The flight trajectory was customized in order to generate graded levels of partial gravity. Gravity-dependent behavior patterns were observed in rats. In the conditions of 0.4 G through 0.2G, rats showed startle and crouching. Hindlimb stretching emerged at 0.15 G and was more frequently observed toward 0.01 G. Different thresholds may exist for emotional and balance/posture-related behaviors. PMID:23036524

  7. Teacher in Space Christa McAuliffe on the KC-135 for zero-G training

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Teacher in Space Christa McAuliffe on the KC-135 for zero-G training. McAuliffe, 51-L citizen observer/payload specialist, gets a preview of microgravity during a special flight aboard NASA's KC-135 'zero gravity' aircraft.

  8. Electrophoretic separation of human kidney cells at zero gravity

    NASA Technical Reports Server (NTRS)

    Barlow, G. H.; Lazer, S. L.; Rueter, A.; Allen, R. E.

    1977-01-01

    Electrophoretic isolation of cells results in a loss of resolution power caused by the sedimentation of the cells in the media. The results of an experiment to extract urokinase from human embryos during the Apollo Soyuz mission are presented and discussed.

  9. Neural-Thyroid Interaction on Skeletal Isomyosin in Zero Gravity

    NASA Technical Reports Server (NTRS)

    Baldwin, Kenneth M.

    2000-01-01

    The primary goal of the project was to develop a ground based model to first study the role of the nerve and of thyroid hormone (T3) in the regulation of body growth and skeletal muscle growth and differentiation in rodents. A primary objective was to test the hypothesis that normal weight bearing activity is essential for the development of antigravity, slow twitch skeletal muscle and the corresponding slow myosin heavy chain (MHC) gene; whereas, T3 was obligatory for general body and muscle growth and the establishment of fast MHC phenotype in typically fast locomoter muscles. These ground based experiments would provide both the efficacy and background for a spaceflight experiment (referred to as the Neurolab Mission) jointly sponsored by the NIH and NASA.

  10. A Zero-Gravity Cup for Drinking Beverages in Microgravity

    NASA Technical Reports Server (NTRS)

    Pettit, Donald R.; Weislogel, Mark; Concus, Paul; Finn, Robert

    2011-01-01

    To date, the method for astronauts to drink liquids in microgravity or weightless environments is to suck the liquid from a bag or pouch through a straw. A new beverage cup works in microgravity and allows astronauts to drink liquids from a cup in a manner consistent with that on Earth. The cup is capable of holding beverages with an angled channel running along the wall from the bottom to the lip. In microgravity, a beverage is placed into the cup using the galley dispenser. The angled channel acts as an open passage that contains only two sides where capillary forces move the liquid along the channel until it reaches the top lip where the forces reach an equilibrium and the flow stops. When one sips the liquid at the lip of the channel, the capillary force equilibrium is upset and more liquid flows to the lip from the reservoir at the bottom to re-establish the equilibrium. This sipping process can continue until the total liquid contents of the cup is consumed, leaving only a few residual drops about the same quantity as in a ceramic cup when it is drunk dry on Earth.

  11. Fluid mass sensor for a zero gravity environment

    NASA Technical Reports Server (NTRS)

    Fogal, G. L. (Inventor)

    1976-01-01

    A sensor for measuring the mass of fluids, is described which includes a housing having an inlet and outlet for receiving and dumping the fluid, a rotary impeller within the housing for imparting centrifugal motion to the fluid and a pressure sensitive transducer attached to the housing to sense the rotating fluid pressure. The fluid may be drawn into the housing by entrainment within a gas stream. The resulting mixture is then separated into two phases: gas and liquid. The gas is removed from the housing and the pressure of the liquid, under centrifugal motion, is sensed and correlated with the mass of the fluid.

  12. Design, development, and operation of a zero gravity shower

    NASA Technical Reports Server (NTRS)

    Middleton, R. L.; Krupnick, A. C.; Reily, J. C.; Schrick, B. J.

    1974-01-01

    The high mission penalty associated with water and electrical power usage constrained the shower configuration concept for the Skylab project to a procedure in which water is sprayed on the body to wet down and soaping is accomplished without water flow. The soap is then finally rinsed off. Initial concept confirmation tests are discussed along with details of the flight shower configuration, the shower water bottle, the shower stall assembly, the liquid-gas separator, the collection box and bag assembly, the hydrophobic filter assembly, and the soap dispenser. Aspects of microbial evaluation of flight qualification hardware are also considered.

  13. Dental equipment test during zero-gravity flight

    NASA Technical Reports Server (NTRS)

    Young, John; Gosbee, John; Billica, Roger

    1991-01-01

    The overall objectives of this program were to establish performance criteria and develop prototype equipment for use in the Health Maintenance Facility (HMF) in meeting the needs of dental emergencies during space missions. The primary efforts during this flight test were to test patient-operator relationships, patent (manikin) restraint and positioning, task lighting systems, use and operation of dental rotary instruments, suction and particle containment system, dental hand instrument delivery and control procedures, and the use of dental treatment materials. The initial efforts during the flight focused on verification of the efficiency of the particle containment system. An absorptive barrier was also tested in lieu of the suction collector. To test the instrument delivery system, teeth in the manikin were prepared with the dental drill to receive restorations, some with temporary filling materials and another with definitive filling material (composite resin). The best particle containment came from the combination use of the laminar-air/suction collector in concert with immediate area suction from a surgical high-volume suction tip. Lighting in the treatment area was provided by a flexible fiberoptic probe. This system is quite effective for small areas, but for general tasks ambient illumination is required. The instrument containment system (elastic cord network) was extremely effective and easy to use. The most serious problem with instrument delivey and actual treatment was lack of time during the microgravity sequences. The restorative materials handled and finished well.

  14. Venipuncture and intravenous infusion access during zero-gravity flight

    NASA Technical Reports Server (NTRS)

    Krupa, Debra T.; Gosbee, John; Billica, Roger; Bechtle, Perry; Creager, Gerald J.; Boyce, Joey B.

    1991-01-01

    The purpose of this experiment is to establish the difficulty associated with securing an intravenous (IV) catheter in place in microgravity flight and the techniques applicable in training the Crew Medical Officer (CMO) for Space Station Freedom, as well as aiding in the selection of appropriate hardware and supplies for the Health Maintenance Facility (HMF). The objectives are the following: (1) to determine the difficulties associated with venipuncture in a microgravity environment; (2) to evaluate the various methods of securing an IV catheter and attached tubing for infusion with regard to the unique environment; (3) to evaluate the various materials available for securing an intravenous catheter in place; and (4) to evaluate the fluid therapy administration system when functioning in a complete system. The inflight test procedures and other aspects of the KC-135 parabolic flight test to simulate microgravity are presented.

  15. Zero-gravity atmospheric Cloud Physics Experiment Laboratory; Programmatics report

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The programmatics effort included comprehensive analyses in four major areas: (1) work breakdown structure, (2) schedules, (3) costs, and (4) supporting research and technology. These analyses are discussed in detail in the following sections which identify and define the laboratory project development schedule, cost estimates, funding distributions and supporting research and technology requirements. All programmatics analyses are correlated among themselves and with the technical analyses by means of the work breakdown structure which serves as a common framework for program definition. In addition, the programmatic analyses reflect the results of analyses and plans for reliability, safety, test, and maintenance and refurbishment.

  16. Cardiovascular effects of simulated zero-gravity in humans

    NASA Astrophysics Data System (ADS)

    Bonde-Petersen, F.; Suzuki, Y.; Sadámoto, T.; Juel Christensen, N.

    Head-down and heat-up tilted bedrest (5 degrees) and head out water immersion (HOWI) for 6 hr were compared. Parameters: Cardiac output (rebreathing method), blood pressure (arm cuff), forearm blood flow (venous occlusion plethysmography), total peripheral (TPR), and forearm vascular (FVR) resistances, Hct, Hb, relativē plasma volume (PV) changes, and plasma catecholamines (single-isotope assay). During HOWI there was as expected a decrement in TPR, FVR, Mean arterial pressure (MAP, from 100 to 80 mmHg), Hct, and PV, and—as a new finding—catecholamines, which were 30-50% lower compared with both + 5 and - 5 degrees bedrest. During head down tilt, MAP was elevated (to 100-110 mmHg) and catecholamines did not fall, while TPR and FVR slowly decreased over 6 hr. HOWI is a stronger stimulus than - 5 degrees bedrest, probably because HOWI elevates central venous pressure more markedly emptying the peripheral veins, while bedrest permits a distension of veins, which induces an increase in sympathetic nervous activity.

  17. The spinning artificial gravity environment: A design project

    NASA Technical Reports Server (NTRS)

    Pignataro, Robert; Crymes, Jeff; Marzec, Tom; Seibert, Joe; Walker, Gary

    1987-01-01

    The SAGE, or Spinning Artificial Gravity Environment, design was carried out to develop an artificial gravity space station which could be used as a platform for the performance of medical research to determine the benefits of various, fractional gravity levels for astronauts normally subject to zero gravity. Desirable both for its medical research mission and a mission for the study of closed loop life-support and other factors in prolonged space flight, SAGE was designed as a low Earth orbiting, solar powered, manned space station.

  18. Graviresponses of osteocytes under altered gravity

    NASA Astrophysics Data System (ADS)

    Di, S. M.; Qian, A. R.; Qu, L. N.; Zhang, W.; Wang, Z.; Ding, C.; Li, Y. H.; Ren, H. G.; Shang, P.

    2011-09-01

    Single cell was capable of sensing and responding to alterations of gravity. Osteocytes, as the most abundant cells of the bone tissue playing an important role in the bone mechanotransduction, are very sensitive to mechanical stimuli. However, the effect of altered gravity on osteocytes so far is less known according to the public papers. Further study on this issue will help to verify and develop the theory of how cells perceive and respond to gravity. It also brings new ideas to the study of space bone loss. In our study, Osteocyte-like MLO-Y4 cells were exposed to 30 parabolic flights three times on ZERO-G airbus A300 to investigate the comprehensive effect on osteocytes stimulated by hyper- and hypo-gravity forces. It showed that the cell morphology, as well as cell area and height, was not changed significantly by hyper-gravity and hypo-gravity. However, the cytoskeleton was reorganized. In flight cells, F-actin polymerization was enhanced at the cell periphery and microtubule organizing center disappeared, but no apoptotic feathers were detected. The results of western blot showed that connexin 43 (Cx43) expression was down-regulated, indicating an decrease of gap-junction. In conclusion, hyper- and hypo-gravity stimulation altered the cytoskeleton architecture and suppressed gap-junction of osteocyte-like MLO-Y4 cells.

  19. Echoes at Ground Zero

    ERIC Educational Resources Information Center

    Chronicle of Higher Education, 2006

    2006-01-01

    An excerpt from the opening piece in "Everything That Rises: A Book of Convergences" by Lawrence Weschler is presented where the author is talking with Joel Meyerowitz, the only photographer granted unimpeded access to the clean-up operations at ground zero after the terrorist attacks of September 11, 2001. The two discuss the parallels between…

  20. Technology at Ground Zero.

    ERIC Educational Resources Information Center

    Techniques: Connecting Education and Careers, 2002

    2002-01-01

    Describes the robots used to aid in rescue and recovery at Ground Zero after the September 11, 2001 attack on the World Trade Center. The robots were developed as a result of national Science Foundation Quick Response Research Awards. Describes several awards that were made following the attack. (JOW)

  1. Zero Tolerance Expulsions.

    ERIC Educational Resources Information Center

    Zirkel, Perry A.

    1999-01-01

    Most courts have flexibly interpreted the constitutional requirement of procedural and substantive due process in favor of zero-tolerance expulsion decisions. While being sensitive to community intolerance for threats to school safety (student possession of guns or drugs), school leaders should modulate development and enforcement of expulsion…

  2. Zero Base Budgeting.

    ERIC Educational Resources Information Center

    Sarndal, Anne G.

    1979-01-01

    Traditional budgeting starts with the previous year's budget, but zero base budgeting demands that each activity be justified from "scratch," and establishes a number of increments for each unit, in order of priority. Given the set of increments and the money available, management can determine what activities to finance. (Author)

  3. Parrot "Understands" Zero

    ERIC Educational Resources Information Center

    Journal of College Science Teaching, 2005

    2005-01-01

    The walnut sized brain of the African grey parrot may actually be capable of comprehending abstract mathematical concepts. The bird seems to understand a numerical concept akin to zero--an abstract notion that humans don't typically understand until they are three or four years old. Alex, the 28-year-old parrot who lives in a Brandeis University…

  4. Zero Tolerance versus Privacy.

    ERIC Educational Resources Information Center

    Dowling-Sendor, Benjamin

    2000-01-01

    In a case involving questionable canine search-and-seizure practices, a circuit court upheld a school board's decision to terminate a teacher's contract. While touting zero tolerance, the board fired an honored teacher 3 years from retirement who may not have known about the marijuana cigarette in her car. (MLH)

  5. Making the Case for Conformal Gravity

    NASA Astrophysics Data System (ADS)

    Mannheim, Philip D.

    2012-03-01

    We review some recent developments in the conformal gravity theory that has been advanced as a candidate alternative to standard Einstein gravity. As a quantum theory the conformal theory is both renormalizable and unitary, with unitarity being obtained because the theory is a PT symmetric rather than a Hermitian theory. We show that in the theory there can be no a priori classical curvature, with all curvature having to result from quantization. In the conformal theory gravity requires no independent quantization of its own, with it being quantized solely by virtue of its being coupled to a quantized matter source. Moreover, because it is this very coupling that fixes the strength of the gravitational field commutators, the gravity sector zero-point energy density and pressure fluctuations are then able to identically cancel the zero-point fluctuations associated with the matter sector. In addition, we show that when the conformal symmetry is spontaneously broken, the zero-point structure automatically readjusts so as to identically cancel the cosmological constant term that dynamical mass generation induces. We show that the macroscopic classical theory that results from the quantum conformal theory incorporates global physics effects that provide for a detailed accounting of a comprehensive set of 138 galactic rotation curves with no adjustable parameters other than the galactic mass to light ratios, and with the need for no dark matter whatsoever. With these global effects eliminating the need for dark matter, we see that invoking dark matter in galaxies could potentially be nothing more than an attempt to describe global physics effects in purely local galactic terms. Finally, we review some recent work by 't Hooft in which a connection between conformal gravity and Einstein gravity has been found.

  6. How much gravity is needed to establish the perceptual upright?

    PubMed

    Harris, Laurence R; Herpers, Rainer; Hofhammer, Thomas; Jenkin, Michael

    2014-01-01

    Might the gravity levels found on other planets and on the moon be sufficient to provide an adequate perception of upright for astronauts? Can the amount of gravity required be predicted from the physiological threshold for linear acceleration? The perception of upright is determined not only by gravity but also visual information when available and assumptions about the orientation of the body. Here, we used a human centrifuge to simulate gravity levels from zero to earth gravity along the long-axis of the body and measured observers' perception of upright using the Oriented Character Recognition Test (OCHART) with and without visual cues arranged to indicate a direction of gravity that differed from the body's long axis. This procedure allowed us to assess the relative contribution of the added gravity in determining the perceptual upright. Control experiments off the centrifuge allowed us to measure the relative contributions of normal gravity, vision, and body orientation for each participant. We found that the influence of 1 g in determining the perceptual upright did not depend on whether the acceleration was created by lying on the centrifuge or by normal gravity. The 50% threshold for centrifuge-simulated gravity's ability to influence the perceptual upright was at around 0.15 g, close to the level of moon gravity but much higher than the threshold for detecting linear acceleration along the long axis of the body. This observation may partially explain the instability of moonwalkers but is good news for future missions to Mars. PMID:25184481

  7. How Much Gravity Is Needed to Establish the Perceptual Upright?

    PubMed Central

    Harris, Laurence R.; Herpers, Rainer; Hofhammer, Thomas; Jenkin, Michael

    2014-01-01

    Might the gravity levels found on other planets and on the moon be sufficient to provide an adequate perception of upright for astronauts? Can the amount of gravity required be predicted from the physiological threshold for linear acceleration? The perception of upright is determined not only by gravity but also visual information when available and assumptions about the orientation of the body. Here, we used a human centrifuge to simulate gravity levels from zero to earth gravity along the long-axis of the body and measured observers' perception of upright using the Oriented Character Recognition Test (OCHART) with and without visual cues arranged to indicate a direction of gravity that differed from the body's long axis. This procedure allowed us to assess the relative contribution of the added gravity in determining the perceptual upright. Control experiments off the centrifuge allowed us to measure the relative contributions of normal gravity, vision, and body orientation for each participant. We found that the influence of 1 g in determining the perceptual upright did not depend on whether the acceleration was created by lying on the centrifuge or by normal gravity. The 50% threshold for centrifuge-simulated gravity's ability to influence the perceptual upright was at around 0.15 g, close to the level of moon gravity but much higher than the threshold for detecting linear acceleration along the long axis of the body. This observation may partially explain the instability of moonwalkers but is good news for future missions to Mars. PMID:25184481

  8. Approaches to Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Oriti, Daniele

    2009-03-01

    Preface; Part I. Fundamental Ideas and General Formalisms: 1. Unfinished revolution C. Rovelli; 2. The fundamental nature of space and time G. 't Hooft; 3. Does locality fail at intermediate length scales R. Sorkin; 4. Prolegomena to any future quantum gravity J. Stachel; 5. Spacetime symmetries in histories canonical gravity N. Savvidou; 6. Categorical geometry and the mathematical foundations of quantum gravity L. Crane; 7. Emergent relativity O. Dreyer; 8. Asymptotic safety R. Percacci; 9. New directions in background independent quantum gravity F. Markopoulou; Questions and answers; Part II: 10. Gauge/gravity duality G. Horowitz and J. Polchinski; 11. String theory, holography and quantum gravity T. Banks; 12. String field theory W. Taylor; Questions and answers; Part III: 13. Loop Quantum Gravity T. Thiemann; 14. Covariant loop quantum gravity? E. LIvine; 15. The spin foam representation of loop quantum gravity A. Perez; 16. 3-dimensional spin foam quantum gravity L. Freidel; 17. The group field theory approach to quantum gravity D. Oriti; Questions and answers; Part IV. Discrete Quantum Gravity: 18. Quantum gravity: the art of building spacetime J. Ambjørn, J. Jurkiewicz and R. Loll; 19. Quantum Regge calculations R. Williams; 20. Consistent discretizations as a road to quantum gravity R. Gambini and J. Pullin; 21. The causal set approach to quantum gravity J. Henson; Questions and answers; Part V. Effective Models and Quantum Gravity Phenomenology: 22. Quantum gravity phenomenology G. Amelino-Camelia; 23. Quantum gravity and precision tests C. Burgess; 24. Algebraic approach to quantum gravity II: non-commutative spacetime F. Girelli; 25. Doubly special relativity J. Kowalski-Glikman; 26. From quantum reference frames to deformed special relativity F. Girelli; 27. Lorentz invariance violation and its role in quantum gravity phenomenology J. Collins, A. Perez and D. Sudarsky; 28. Generic predictions of quantum theories of gravity L. Smolin; Questions and

  9. Holographic zero sound at finite temperature

    NASA Astrophysics Data System (ADS)

    Davison, Richard A.; Starinets, Andrei O.

    2012-01-01

    We use gauge-gravity duality to study the temperature dependence of the zero sound mode and the fundamental matter diffusion mode in the strongly coupled N=4 SU(Nc) supersymmetric Yang-Mills theory with Nf N=2 hypermultiplets in the Nc≫1, Nc≫Nf limit, which is holographically realized via the D3/D7 brane system. In the high density limit μ≫T, three regimes can be identified in the behavior of these modes, analogous to the collisionless quantum, collisionless thermal, and hydrodynamic regimes of a Landau Fermi liquid. The transitions between the three regimes are characterized by the parameters T/μ and (T/μ)2, respectively, and in each of these regimes the modes have a distinctively different temperature and momentum dependence. The collisionless-hydrodynamic transition occurs when the zero sound poles of the density-density correlator in the complex frequency plane collide on the imaginary axis to produce a hydrodynamic diffusion pole. We observe that the properties characteristic of a Landau Fermi-liquid zero sound mode are present in the D3/D7 system despite the atypical T6/μ3 temperature scaling of the specific heat and an apparent lack of a directly identifiable Fermi surface.

  10. Effect of a zero g environment on flammability limits as determined using a standard flammability tube apparatus

    NASA Technical Reports Server (NTRS)

    Strehlow, R. A.; Reuss, D. L.

    1980-01-01

    Flammability limits in a zero gravity environment were defined. Key aspects of a possible spacelab experiment were investigated analytically, experimentally on the bench, and in drop tower facilities. A conceptual design for a spacelab experiment was developed.

  11. Zero leakage sealings

    NASA Astrophysics Data System (ADS)

    Kotesovec, Bernhard; Steinrück, Herbert

    2010-11-01

    The piston rod of a reciprocating compressor is sealed with elastic cylindrical sealing elements. Across the sealings the pressure drops from the operating pressure to the ambient pressure. The lubrication gap between the elastic sealing and reciprocating piston rod is studied with the aim to find conditions of a leakage free sealing. The flow in the lubrication gap and the elastic deformation of the sealing are determined simultaneously. The net-flow during one cycle of the reciprocating piston rod is calculated. It turns out that maintaining zero leakage is very sensible. Indeed the outbound flow during out-stroke has to be equal the inbound flow during the in-stroke. By prescribing a special shape of the undeformed sealing zero leakage can be attained - at least theoretically for certain operating conditions. It turns out that temperature dependent material data and a model for cavitation is necessary. The model, its numerical implementation and results will be discussed.

  12. Zero Energy Windows

    SciTech Connect

    Arasteh, Dariush; Selkowitz, Steve; Apte, Josh; LaFrance, Marc

    2006-05-17

    Windows in the U.S. consume 30 percent of building heating and cooling energy, representing an annual impact of 4.1 quadrillion BTU (quads) of primary energy. Windows have an even larger impact on peak energy demand and on occupant comfort. An additional 1 quad of lighting energy could be saved if buildings employed effective daylighting strategies. The ENERGY STAR{reg_sign} program has made standard windows significantly more efficient. However, even if all windows in the stock were replaced with today's efficient products, window energy consumption would still be approximately 2 quads. However, windows can be ''net energy gainers'' or ''zero-energy'' products. Highly insulating products in heating applications can admit more useful solar gain than the conductive energy lost through them. Dynamic glazings can modulate solar gains to minimize cooling energy needs and, in commercial buildings, allow daylighting to offset lighting requirements. The needed solutions vary with building type and climate. Developing this next generation of zero-energy windows will provide products for both existing buildings undergoing window replacements and products which are expected to be contributors to zero-energy buildings. This paper defines the requirements for zero-energy windows. The technical potentials in terms of national energy savings and the research and development (R&D) status of the following technologies are presented: (1) Highly insulating systems with U-factors of 0.1 Btu/hr-ft{sup 2}-F; (2) Dynamic windows: glazings that modulate transmittance (i.e., change from clear to tinted and/or reflective) in response to climate conditions; and (3) Integrated facades for commercial buildings to control/ redirect daylight. Market transformation policies to promote these technologies as they emerge into the marketplace are then described.

  13. Gravity Waves

    NASA Technical Reports Server (NTRS)

    Vanzandt, T. E.

    1985-01-01

    Atmospheric parameters fluctuate on all scales. In the mesoscale these fluctuations are occasionally sinusoidal so that they can be interpreted as gravity waves. Usually, however, the fluctuations are noise like, so that their cause is not immediately evident. Results of mesoscale observations in the 20 to 120 m altitude range that are suitable for incorporation into a model atmosphere are very limited. In the stratosphere and lower mesosphere observations are sparse and very little data has been summarized into appropriate form. There is much more data in the upper mesosphere and lower thermosphere, but again very little of it has been summarized. The available mesoscale spectra of horizontal wind u versus vertical wave number m in the 20 to 120 km altitude range are shown together with a spectrum from the lower atmosphere for comparison. Further information about these spectra is given. In spite of the large range of altitudes and latitudes, the spectra from the lower atmosphere (NASA, 1971 and DEWAN, 1984) are remarkably similar in both shape and amplitude. The mean slopes of -2.38 for the NASA spectrum and -2.7 for the Dewan spectra are supported by the mean slope of -2.75 found by ROSENBERG et al. (1974). The mesospheric spectrum is too short to establish a shape. Its amplitude is about an order of magnitude larger than the NASA spectrum in the same wave number range. The NASA and Dewan spectra suggest that the mesoscale spectra in the lower atmosphere are insensitive to meteorological conditions.

  14. The Hermes Robot Arm zero-g ground test facility

    NASA Astrophysics Data System (ADS)

    Eggers, Aad P.; Pouw, Aad

    1992-08-01

    The objectives and general design of the Hermes Robot Arm (HERA) zero-g ground test facility are described. The current facility concept, the servo support system, is the result of system level trade studies which have demonstrated the advantages of this approach over the standard flat floor concept. The principal advantage is that test results can be used to verify computer models since the disturbance forces introduced into the arm movement by the servo supports are negligible. Zero-g environment is simulated by eliminating the effects of gravity on the arm with air bearings and minimizing the dynamic variables introduced by the drive and leveling subsystems.

  15. Type Zero Copper Proteins

    PubMed Central

    Lancaster, Kyle M.; DeBeer George, Serena; Yokoyama, Keiko; Richards, John H.; Gray, Harry B.

    2009-01-01

    Copper proteins play key roles in biological processes such as electron transfer and dioxygen activation; the active site of each of these proteins is classified as either type 1, 2, or 3, depending on its optical and electron paramagnetic resonance properties. We have built a new type of site that we call “type zero copper” by incorporating leucine, isoleucine, or phenylalanine in place of methionine at position 121 in C112D Pseudomonas aeruginosa azurin. X-ray crystallographic analysis shows that these sites adopt distorted tetrahedral geometries, with an unusually short Cu-O(G45 carbonyl) bond (2.35–2.55 Å). Relatively weak absorption near 800 nm and narrow parallel hyperfine splittings in EPR spectra are the spectroscopic signatures of type zero copper. Copper K-edge x-ray absorption spectra suggest elevated Cu(II) 4p character in the d-electron ground state. Cyclic voltammetric experiments demonstrate that the electron transfer reactivities of type zero azurins are enhanced relative to that of the corresponding type 2 (C112D) protein. PMID:20305734

  16. Gravity wave transmission diagram

    NASA Astrophysics Data System (ADS)

    Tomikawa, Yoshihiro

    2016-07-01

    A possibility of gravity wave propagation from a source region to the airglow layer around the mesopause has been discussed based on the gravity wave blocking diagram taking into account the critical level filtering alone. This paper proposes a new gravity wave transmission diagram in which both the critical level filtering and turning level reflection of gravity waves are considered. It shows a significantly different distribution of gravity wave transmissivity from the blocking diagram.

  17. Soldering Tested in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Pettegrew, Richard D.; Watson, J. Kevin; Down, Robert S.; Haylett, Daniel R.

    2005-01-01

    Whether used occasionally for contingency repair or routinely in nominal repair operations, soldering will become increasingly important to the success of future long-duration human space missions. As a result, it will be critical to have a thorough understanding of the service characteristics of solder joints produced in reduced-gravity environments. The National Center for Space Exploration Research (via the Research for Design program), the NASA Glenn Research Center, and the NASA Johnson Space Center are conducting an experimental program to explore the influence of reduced gravity environments on the soldering process. Solder joint characteristics that are being considered include solder fillet geometry, porosity, and microstructural features. Both through-hole (see the drawing and image on the preceding figure) and surface-mounted devices are being investigated. This effort (the low-gravity portion being conducted on NASA s KC-135 research aircraft) uses the soldering hardware currently available on the International Space Station. The experiment involves manual soldering by a contingent of test operators, including both highly skilled technicians and less skilled individuals to provide a skill mix that might be encountered in space mission crews. The experiment uses both flux-cored solder and solid-core solder with an externally applied flux. Other experimental parameters include the type of flux, gravitational level (nominally zero,

  18. Low Gravity venting of Refrigerant 11

    NASA Technical Reports Server (NTRS)

    Labus, T. L.; Aydelott, J. C.; Lacovic, R. F.

    1972-01-01

    An experimental investigation was conducted in a five-second zero gravity facility to examine the effects of venting initially saturated Refrigerant 11 from a cylindrical container (15-cm diameter) under reduced gravitational conditions. The system Bond numbers studied were 0 (weightlessness), 9 and 63; the liquid exhibited a nearly zero-degree contact angle on the container surface. During the venting process, both liquid-vapor interface and liquid bulk vaporization occurred. The temperature of the liquid in the immediate vicinity of the liquid-vapor interface was found to decrease during venting, while the liquid bulk temperature remained constant. Qualitative observations of the effects of system acceleration, vent rate, and vapor volume presented. Quantitative information concerning the ullage pressure decay during low gravity venting is also included.

  19. Analytical comparison of condensing flows inside tubes under earth-gravity and space environments

    NASA Astrophysics Data System (ADS)

    Keshock, E. G.; Sadeghipour, M. S.

    1981-09-01

    The heat transfer behavior of flow condensation inside horizontal tubes under conditions of zero gravity and earth gravity is modeled and analyzed. For earth conditions for wetting fluids, the annular flow region changes to a stratified flow pattern as a result of gravity drainage of the condensate from the upper portion of the tube. The stratified condensate layer is considered inactive in the heat transfer process; its magnitude is determined along the tube length from the analytical results of Rufer and Kezios (1966). Under zero-gravity conditions, where no such gravity drainage is observed, the flow is considered to be annular along the complete length of the tube. The analytical approach of Bae (1970) is used to evaluate the heat transfer rates under zero-gravity conditions. The results suggest a substantially poorer condensing performance under zero-gravity conditions. It is pointed out that these results can be simply explained in terms of the smaller condensate film thickness over the upper portion of the tube periphery at any axial location under earth-gravity conditions because of gravity drainage of the condensate.

  20. Inertial waste separation system for zero G WMS

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The design, operation, and flight test are presented for an inertial waste separation system. Training personnel to use this system under simulated conditions is also discussed. Conclusions indicate that before the system is usable in zero gravity environments, a mirror for the user's guidance should be installed, the bounce cycle and bag changing system should be redesigned, and flange clips should be added to improve the user's balance.

  1. Zero Tolerance Policies. Research Brief

    ERIC Educational Resources Information Center

    Muir, Mike

    2004-01-01

    Much of this brief comes from the ERIC Digest on Zero Tolerance Policies (ERIC #: ED451579). State legislatures and school boards are adopting a growing number of zero-tolerance polices toward weapons, guns, and violence. Zero-tolerance polices are rules intended to address specific school-safety issues. Despite the controversies that it has…

  2. Chiral gravity, log gravity, and extremal CFT

    SciTech Connect

    Maloney, Alexander; Song Wei; Strominger, Andrew

    2010-03-15

    We show that the linearization of all exact solutions of classical chiral gravity around the AdS{sub 3} vacuum have positive energy. Nonchiral and negative-energy solutions of the linearized equations are infrared divergent at second order, and so are removed from the spectrum. In other words, chirality is confined and the equations of motion have linearization instabilities. We prove that the only stationary, axially symmetric solutions of chiral gravity are BTZ black holes, which have positive energy. It is further shown that classical log gravity--the theory with logarithmically relaxed boundary conditions--has finite asymptotic symmetry generators but is not chiral and hence may be dual at the quantum level to a logarithmic conformal field theories (CFT). Moreover we show that log gravity contains chiral gravity within it as a decoupled charge superselection sector. We formally evaluate the Euclidean sum over geometries of chiral gravity and show that it gives precisely the holomorphic extremal CFT partition function. The modular invariance and integrality of the expansion coefficients of this partition function are consistent with the existence of an exact quantum theory of chiral gravity. We argue that the problem of quantizing chiral gravity is the holographic dual of the problem of constructing an extremal CFT, while quantizing log gravity is dual to the problem of constructing a logarithmic extremal CFT.

  3. Cautionary tales for reduced-gravity particle research

    NASA Technical Reports Server (NTRS)

    Marshall, John R.; Greeley, Ronald; Tucker, D. W.

    1987-01-01

    Failure of experiments conducted on the KC-135 aircraft in zero gravity are discussed. Tests that were a total failure are reported. Why the failure occurred and the sort of questions that potential researchers should ask in order to avoid the appearance of abstracts such as this are discussed. Many types of aggregation studies were proposed for the Space Station, and it is hoped that the following synopsis of events will add a touch of reality to experimentation proposed for this zero-gravity environment.

  4. Minimum length, extra dimensions, modified gravity and black hole remnants

    NASA Astrophysics Data System (ADS)

    Maziashvili, Michael

    2013-03-01

    We construct a Hilbert space representation of minimum-length deformed uncertainty relation in presence of extra dimensions. Following this construction, we study corrections to the gravitational potential (back reaction on gravity) with the use of correspondingly modified propagator in presence of two (spatial) extra dimensions. Interestingly enough, for r→0 the gravitational force approaches zero and the horizon for modified Schwarzschild-Tangherlini space-time disappears when the mass approaches quantum-gravity energy scale. This result points out to the existence of zero-temperature black hole remnants in ADD brane-world model.

  5. Feeling Gravity's Pull: Gravity Modeling. The Gravity Field of Mars

    NASA Technical Reports Server (NTRS)

    Lemoine, Frank; Smith, David; Rowlands, David; Zuber, Maria; Neumann, G.; Chinn, Douglas; Pavlis, D.

    2000-01-01

    Most people take the constant presence of gravitys pull for granted. However, the Earth's gravitational strength actually varies from location to location. This variation occurs because mass, which influences an object's gravitational pull, is not evenly distributed within the planet. Changes in topography, such as glacial movement, an earthquake, or a rise in the ocean level, can subtly affect the gravity field. An accurate measurement of the Earth's gravity field helps us understand the distribution of mass beneath the surface. This insight can assist us in locating petroleum, mineral deposits, ground water, and other valuable substances. Gravity mapping can also help notice or verify changes in sea surface height and other ocean characteristics. Such changes may indicate climate change from polar ice melting and other phenomena. In addition, gravity mapping can indicate how land moves under the surface after earthquakes and other plate tectonic processes. Finally, changes in the Earth's gravity field might indicate a shift in water distribution that could affect agriculture, water supplies for population centers, and long-term weather prediction. Scientists can map out the Earth's gravity field by watching satellite orbits. When a satellite shifts in vertical position, it might be passing over an area where gravity changes in strength. Gravity is only one factor that may shape a satellite's orbital path. To derive a gravity measurement from satellite movement, scientists must remove other factors that might affect a satellite's position: 1. Drag from atmospheric friction. 2. Pressure from solar radiation as it heads toward Earth and. as it is reflected off the surface of the Earth 3. Gravitational pull from the Sun, the Moon, and other planets in the Solar System. 4. The effect of tides. 5. Relativistic effects. Scientists must also correct for the satellite tracking process. For example, the tracking signal must be corrected for refraction through the

  6. Entropic force, noncommutative gravity, and ungravity

    SciTech Connect

    Nicolini, Piero

    2010-08-15

    After recalling the basic concepts of gravity as an emergent phenomenon, we analyze the recent derivation of Newton's law in terms of entropic force proposed by Verlinde. By reviewing some points of the procedure, we extend it to the case of a generic quantum gravity entropic correction to get compelling deviations to the Newton's law. More specifically, we study: (1) noncommutative geometry deviations and (2) ungraviton corrections. As a special result in the noncommutative case, we find that the noncommutative character of the manifold would be equivalent to the temperature of a thermodynamic system. Therefore, in analogy to the zero temperature configuration, the description of spacetime in terms of a differential manifold could be obtained only asymptotically. Finally, we extend the Verlinde's derivation to a general case, which includes all possible effects, noncommutativity, ungravity, asymptotically safe gravity, electrostatic energy, and extra dimensions, showing that the procedure is solid versus such modifications.

  7. Entropic force, noncommutative gravity, and ungravity

    NASA Astrophysics Data System (ADS)

    Nicolini, Piero

    2010-08-01

    After recalling the basic concepts of gravity as an emergent phenomenon, we analyze the recent derivation of Newton’s law in terms of entropic force proposed by Verlinde. By reviewing some points of the procedure, we extend it to the case of a generic quantum gravity entropic correction to get compelling deviations to the Newton’s law. More specifically, we study: (1) noncommutative geometry deviations and (2) ungraviton corrections. As a special result in the noncommutative case, we find that the noncommutative character of the manifold would be equivalent to the temperature of a thermodynamic system. Therefore, in analogy to the zero temperature configuration, the description of spacetime in terms of a differential manifold could be obtained only asymptotically. Finally, we extend the Verlinde’s derivation to a general case, which includes all possible effects, noncommutativity, ungravity, asymptotically safe gravity, electrostatic energy, and extra dimensions, showing that the procedure is solid versus such modifications.

  8. Gravity-induced stresses in finite slopes

    USGS Publications Warehouse

    Savage, W.Z.

    1994-01-01

    An exact solution for gravity-induced stresses in finite elastic slopes is presented. This solution, which is applied for gravity-induced stresses in 15, 30, 45 and 90?? finite slopes, has application in pit-slope design, compares favorably with published finite element results for this problem and satisfies the conditions that shear and normal stresses vanish on the ground surface. The solution predicts that horizontal stresses are compressive along the top of the slopes (zero in the case of the 90?? slope) and tensile away from the bottom of the slopes, effects which are caused by downward movement and near-surface horizontal extension in front of the slope in response to gravity loading caused by the additional material associated with the finite slope. ?? 1994.

  9. Observational bounds on modified gravity models

    SciTech Connect

    De Felice, Antonio; Mukherjee, Pia; Wang Yun

    2008-01-15

    Modified gravity provides a possible explanation for the currently observed cosmic acceleration. In this paper, we study general classes of modified gravity models. The Einstein-Hilbert action is modified by using general functions of the Ricci and the Gauss-Bonnet scalars, both in the metric and in the Palatini formalisms. We do not use an explicit form for the functions, but a general form with a valid Taylor expansion up to second order about redshift zero in the Riemann-scalars. The coefficients of this expansion are then reconstructed via the cosmic expansion history measured using current cosmological observations. These are the quantities of interest for theoretical considerations relating to ghosts and instabilities. We find that current data provide interesting constraints on the coefficients. The next-generation dark energy surveys should shrink the allowed parameter space for modified gravity models quite dramatically.

  10. Multiphase Flow: The Gravity of the Situation

    NASA Technical Reports Server (NTRS)

    Hewitt, Geoffrey F.

    1996-01-01

    A brief survey is presented of flow patterns in two-phase, gas-liquid flows at normal and microgravity, the differences between them being explored. It seems that the flow patterns in zero gravity are in general much simpler than those in normal gravity with only three main regimes (namely bubbly, slug and annular flows) being observed. Each of these three regimes is then reviewed, with particular reference to identification of areas of study where investigation of flows at microgravity might not only be interesting in themselves, but also throw light on mechanisms at normal earth gravity. In bubbly flow, the main area of interest seems to be that of bubble coalescence. In slug flow, the extension of simple displacement experiments to the zero gravity case would appear to be a useful option, supplemented by computational fluid dynamics (CFD) studies. For annular flow, the most interesting area appears to be the study of the mechanisms of disturbance waves; it should be possible to extend the region of investigation of the onset and behavior of these waves to much low gas velocities where measurements are clearly much easier.

  11. Urine specific gravity test

    MedlinePlus

    Urine specific gravity is a laboratory test that shows the concentration of all chemical particles in the urine. ... changes to will tell the provider the specific gravity of your urine. The dipstick test gives only ...

  12. Tethered gravity laboratories study

    NASA Technical Reports Server (NTRS)

    Lucchetti, F.

    1989-01-01

    Tethered gravity laboratories study is presented. The following subject areas are covered: variable gravity laboratory; attitude tether stabilizer; configuration analysis (AIT); dynamic analysis (SAO); and work planned for the next reporting period.

  13. Urine specific gravity test

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003587.htm Urine specific gravity test To use the sharing features on this page, please enable JavaScript. Urine specific gravity is a laboratory test that shows the concentration ...

  14. Survival of scalar zero modes in warped extra dimensions

    SciTech Connect

    George, Damien P.

    2011-05-15

    Models with an extra dimension generally contain background scalar fields in a nontrivial configuration, whose stability must be ensured. With gravity present, the extra dimension is warped by the scalars, and the spin-0 degrees of freedom in the metric mix with the scalar perturbations. Where possible, we formally solve the coupled Schroedinger equations for the zero modes of these spin-0 perturbations. When specializing to the case of two scalars with a potential generated by a superpotential, we are able to fully solve the system. We show how these zero modes can be used to construct a solution matrix, whose eigenvalues tell whether a normalizable zero mode exists, and how many negative mass modes exist. These facts are crucial in determining stability of the corresponding background configuration. We provide examples of the general analysis for domain-wall models of an infinite extra dimension and domain-wall soft-wall models. For five-dimensional models with two scalars constructed using a superpotential, we show that a normalizable zero mode survives, even in the presence of warped gravity. Such models, which are widely used in the literature, are therefore phenomenologically unacceptable.

  15. Zero Temperature Hope Calculations

    SciTech Connect

    Rozsnyai, B F

    2002-07-26

    The primary purpose of the HOPE code is to calculate opacities over a wide temperature and density range. It can also produce equation of state (EOS) data. Since the experimental data at the high temperature region are scarce, comparisons of predictions with the ample zero temperature data provide a valuable physics check of the code. In this report we show a selected few examples across the periodic table. Below we give a brief general information about the physics of the HOPE code. The HOPE code is an ''average atom'' (AA) Dirac-Slater self-consistent code. The AA label in the case of finite temperature means that the one-electron levels are populated according to the Fermi statistics, at zero temperature it means that the ''aufbau'' principle works, i.e. no a priory electronic configuration is set, although it can be done. As such, it is a one-particle model (any Hartree-Fock model is a one particle model). The code is an ''ion-sphere'' model, meaning that the atom under investigation is neutral within the ion-sphere radius. Furthermore, the boundary conditions for the bound states are also set at the ion-sphere radius, which distinguishes the code from the INFERNO, OPAL and STA codes. Once the self-consistent AA state is obtained, the code proceeds to generate many-electron configurations and proceeds to calculate photoabsorption in the ''detailed configuration accounting'' (DCA) scheme. However, this last feature is meaningless at zero temperature. There is one important feature in the HOPE code which should be noted; any self-consistent model is self-consistent in the space of the occupied orbitals. The unoccupied orbitals, where electrons are lifted via photoexcitation, are unphysical. The rigorous way to deal with that problem is to carry out complete self-consistent calculations both in the initial and final states connecting photoexcitations, an enormous computational task. The Amaldi correction is an attempt to address this problem by distorting the

  16. Zero Emission Coal

    NASA Astrophysics Data System (ADS)

    Ziock, H.; Guthrie, G. D.; Lackner, K. S.; Harrison, D. P.; Johnson, A. A.

    2002-05-01

    Unless the economic development of the majority of the world's population is prohibited, thereby forcing thereby forcing them to remain in poverty, world energy consumption and therefore carbon dioxide greenhouse gas emission rates could easily increase by an order of magnitude during this century. Given that we have already increased global atmospheric concentrations by 30% compared to their pre-industrial age level, without massive intervention, we will completely overwhelm Nature's ability to cope. In order to stabilize atmospheric CO2 levels, while allowing desired world economic development, the future allowable US per capita CO2 emissions are only 3 % of today's value. This is effectively zero, and thus what is required is the development of technologies that aim for emission of zero CO2 as well as other pollutants. If we continue to rely on our lowest cost, readily available, and dominant energy source, this will involve both a separation of the energy from the fossil fuel carbon followed by a permanent disposal of the CO2. To set the scale, today's yearly global emissions are approaching 25 cubic kilometers of CO2 at liquid densities, and these could grow by an order of magnitude by the end of the century. We describe a zero emission coal technology that would be able to deal with both the scope of the problem and the emission goal. The energy production process is a chemical conversion of coal to electricity or hydrogen, which involves no combustion and thus no smoke stack. The process provides a pure stream of CO2 for disposal while simultaneously achieving fuel to electricity conversion efficiencies that are two times better than today's value. This high efficiency by itself extends cuts pollutant production by a factor of two while also extending the lifetime of our fossil fuel reserves by a factor of two to many hundreds of years. By concentrating on coal, we also lay the groundwork for energy security and complete independence for the US, given the

  17. The mass, gravity field, and ephemeris of Mercury

    NASA Technical Reports Server (NTRS)

    Anderson, John D.; Esposito, Pasquale B.; Lau, Eunice L.; Trager, Gayle B.; Colombo, Giuseppe

    1987-01-01

    In the present gravity analysis of Mariner 10/Deep Space Network radio Doppler and range data for Mercury encounters in March 1974 and March 1975, a combined least-squares fit to the Doppler data has determined two second-degree gravity harmonics that are referred to a 2439-km equatorial radius. It is noted that the 1-sigma error limits on the gravity results encompass the possibility that harmonics other than J2 and C22 significantly differ from zero. The Deep Space Network radio range data obtained with Mariner 10 are primarily applicable to such improvements of Mercury's ephemeris as the more precise determination of perihelion precession.

  18. Analytical Study of Gravity Effects on Laminar Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Edelman, R. B.; Fortune, O.; Weilerstein, G.

    1972-01-01

    A mathematical model is presented for the description of axisymmetric laminar-jet diffusion flames. The analysis includes the effects of inertia, viscosity, diffusion, gravity and combustion. These mechanisms are coupled in a boundary layer type formulation and solutions are obtained by an explicit finite difference technique. A dimensional analysis shows that the maximum flame width radius, velocity and thermodynamic state characterize the flame structure. Comparisons with experimental data showed excellent agreement for normal gravity flames and fair agreement for steady state low Reynolds number zero gravity flames. Kinetics effects and radiation are shown to be the primary mechanisms responsible for this discrepancy. Additional factors are discussed including elipticity and transient effects.

  19. Physics of Artificial Gravity

    NASA Technical Reports Server (NTRS)

    Bukley, Angie; Paloski, William; Clement, Gilles

    2006-01-01

    This chapter discusses potential technologies for achieving artificial gravity in a space vehicle. We begin with a series of definitions and a general description of the rotational dynamics behind the forces ultimately exerted on the human body during centrifugation, such as gravity level, gravity gradient, and Coriolis force. Human factors considerations and comfort limits associated with a rotating environment are then discussed. Finally, engineering options for designing space vehicles with artificial gravity are presented.

  20. Terrestrial Gravity Fluctuations

    NASA Astrophysics Data System (ADS)

    Harms, Jan

    2015-12-01

    Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW) detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10^-23 Hz^-1/2 above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our understanding of

  1. A manned Mars artificial gravity vehicle

    NASA Technical Reports Server (NTRS)

    Schultz, David N.; Rupp, Charles C.; Hajos, Gregory A.; Butler, John M., Jr.

    1988-01-01

    Data are presented on an artificial-gravity vehicle that is being designed for a manned Mars mission, using a 'split-mission' concept, in which an unmanned cargo vehicle is sent earlier and stored in a Mars orbit for a rendezvous with a manned vehicle about 1.5 years later. Special attention is given to the vehicle trajectory and configuration, the tether design, and the vehicle weight and launch requirements. It is shown that an artificial-G vehicle for a manned Mars missions is feasible technically and programmatically. Using an artificial-G vehicle instead of a zero-G vehicle for the piloted portion of a split mission provides physiological and human-factor-related benefits, does not eliminate requirements for zero-G countermeasures research (since zero-G is an abort mode), and could possibly reduce some life science activities. Diagrams are included.

  2. ZERO SUPPRESSION FOR RECORDERS

    DOEpatents

    Fort, W.G.S.

    1958-12-30

    A zero-suppression circuit for self-balancing recorder instruments is presented. The essential elements of the circuit include a converter-amplifier having two inputs, one for a reference voltage and the other for the signal voltage under analysis, and a servomotor with two control windings, one coupled to the a-c output of the converter-amplifier and the other receiving a reference input. Each input circuit to the converter-amplifier has a variable potentiometer and the sliders of the potentiometer are ganged together for movement by the servoinotor. The particular noveity of the circuit resides in the selection of resistance values for the potentiometer and a resistor in series with the potentiometer of the signal circuit to ensure the full value of signal voltage variation is impressed on a recorder mechanism driven by servomotor.

  3. Gravity is Geometry.

    ERIC Educational Resources Information Center

    MacKeown, P. K.

    1984-01-01

    Clarifies two concepts of gravity--those of a fictitious force and those of how space and time may have geometry. Reviews the position of Newton's theory of gravity in the context of special relativity and considers why gravity (as distinct from electromagnetics) lends itself to Einstein's revolutionary interpretation. (JN)

  4. Challenging Entropic Gravity

    NASA Astrophysics Data System (ADS)

    Roveto, Jonathan

    2011-11-01

    A recent proposal by Erik Verlinde claims that gravity should be viewed not as a fundamental force, but an emergent thermodynamic phenomenon due to some yet undetermined microscopic theory. We present a challenge to this reformulation of gravity. Our claim is that a detailed derivation using Verlinde's proposed theory fails to correctly give Newton's laws or Einstein gravity.

  5. The effects of Gravity on Transitional and Turbulent Jet Flames

    NASA Astrophysics Data System (ADS)

    Mehravaran, Kian; Jaberi, Farhad

    2002-11-01

    The effects of gravity on compositional and physical structure of transitional and turbulent jet flames are studied via analysis of the data generated by direct numerical simulation (DNS) of a planar jet flame at various gravity conditions. A fully-compressible finite-difference computational solver is used together with a single step Arrhenius model for chemical reaction. The results of our non-reacting flow simulations are in good agreement with available experimental data for planar jets. The results of our reacting simulations are also consistent with previous findings and indicate that at zero- (or micro-) gravity condition combustion damps the flow instability; hence reduces ``turbulence production'' and jet growth. However, in ``normal'' gravity condition, combustion generated density variations and buoyancy effects promotes vorticity generation and enhances the otherwise damped turbulence by heat of reaction. Buoyancy generated vorticity and strain field leads to more jet entrainment as well as better mixing and combustion. Both large and small scale flow structures are modified by gravity; resulting in variation of the spatial and the compositional flame structures. The analysis of compositional flame structures suggest that finite-rate chemistry effects and localized flame extinction are more significant in normal gravity conditions than in zero-gravity.

  6. Aerosol bolus dispersion in acinar airways--influence of gravity and airway asymmetry.

    PubMed

    Ma, Baoshun; Darquenne, Chantal

    2012-08-01

    The aerosol bolus technique can be used to estimate the degree of convective mixing in the lung; however, contributions of different lung compartments to measured dispersion cannot be differentiated unambiguously. To estimate dispersion in the distal lung, we studied the effect of gravity and airway asymmetry on the dispersion of 1 μm-diameter particle boluses in three-dimensional computational models of the lung periphery, ranging from a single alveolar sac to four-generation (g4) structures of bifurcating airways that deformed homogeneously during breathing. Boluses were introduced at the beginning of a 2-s inhalation, immediately followed by a 3-s exhalation. Dispersion was estimated by the half-width of the exhaled bolus. Dispersion was significantly affected by the spatial orientation of the models in normal gravity and was less in zero gravity than in normal gravity. Dispersion was strongly correlated with model volume in both normal and zero gravity. Predicted pulmonary dispersion based on a symmetric g4 acinar model was 391 ml and 238 ml under normal and zero gravity, respectively. These results accounted for a significant amount of dispersion measured experimentally. In zero gravity, predicted dispersion in a highly asymmetric model accounted for ∼20% of that obtained in a symmetric model with comparable volume and number of alveolated branches, whereas normal gravity dispersions were comparable in both models. These results suggest that gravitational sedimentation and not geometrical asymmetry is the dominant factor in aerosol dispersion in the lung periphery. PMID:22678957

  7. Aerosol bolus dispersion in acinar airways—influence of gravity and airway asymmetry

    PubMed Central

    Ma, Baoshun

    2012-01-01

    The aerosol bolus technique can be used to estimate the degree of convective mixing in the lung; however, contributions of different lung compartments to measured dispersion cannot be differentiated unambiguously. To estimate dispersion in the distal lung, we studied the effect of gravity and airway asymmetry on the dispersion of 1 μm-diameter particle boluses in three-dimensional computational models of the lung periphery, ranging from a single alveolar sac to four-generation (g4) structures of bifurcating airways that deformed homogeneously during breathing. Boluses were introduced at the beginning of a 2-s inhalation, immediately followed by a 3-s exhalation. Dispersion was estimated by the half-width of the exhaled bolus. Dispersion was significantly affected by the spatial orientation of the models in normal gravity and was less in zero gravity than in normal gravity. Dispersion was strongly correlated with model volume in both normal and zero gravity. Predicted pulmonary dispersion based on a symmetric g4 acinar model was 391 ml and 238 ml under normal and zero gravity, respectively. These results accounted for a significant amount of dispersion measured experimentally. In zero gravity, predicted dispersion in a highly asymmetric model accounted for ∼20% of that obtained in a symmetric model with comparable volume and number of alveolated branches, whereas normal gravity dispersions were comparable in both models. These results suggest that gravitational sedimentation and not geometrical asymmetry is the dominant factor in aerosol dispersion in the lung periphery. PMID:22678957

  8. NUT-charged black holes in Gauss-Bonnet gravity

    SciTech Connect

    Dehghani, M.H.; Mann, R.B.

    2005-12-15

    We investigate the existence of Taub-NUT (Newman-Unti-Tamburino) and Taub-bolt solutions in Gauss-Bonnet gravity and obtain the general form of these solutions in d dimensions. We find that for all nonextremal NUT solutions of Einstein gravity having no curvature singularity at r=N, there exist NUT solutions in Gauss-Bonnet gravity that contain these solutions in the limit that the Gauss-Bonnet parameter {alpha} goes to zero. Furthermore there are no NUT solutions in Gauss-Bonnet gravity that yield nonextremal NUT solutions to Einstein gravity having a curvature singularity at r=N in the limit {alpha}{yields}0. Indeed, we have nonextreme NUT solutions in 2+2k dimensions with nontrivial fibration only when the 2k-dimensional base space is chosen to be CP{sup 2k}. We also find that the Gauss-Bonnet gravity has extremal NUT solutions whenever the base space is a product of 2-torii with at most a two-dimensional factor space of positive curvature. Indeed, when the base space has at most one positively curved two-dimensional space as one of its factor spaces, then Gauss-Bonnet gravity admits extreme NUT solutions, even though there a curvature singularity exists at r=N. We also find that one can have bolt solutions in Gauss-Bonnet gravity with any base space with factor spaces of zero or positive constant curvature. The only case for which one does not have bolt solutions is in the absence of a cosmological term with zero curvature base space.

  9. Zero emission coal

    SciTech Connect

    Ziock, H.; Lackner, K.

    2000-08-01

    We discuss a novel, emission-free process for producing hydrogen or electricity from coal. Even though we focus on coal, the basic design is compatible with any carbonaceous fuel. The process uses cyclical carbonation of calcium oxide to promote the production of hydrogen from carbon and water. The carbonation of the calcium oxide removes carbon dioxide from the reaction products and provides the additional energy necessary to complete hydrogen production without additional combustion of carbon. The calcination of the resulting calcium carbonate is accomplished using the high temperature waste heat from solid oxide fuel cells (SOFC), which generate electricity from hydrogen fuel. Converting waste heat back to useful chemical energy allows the process to achieve very high conversion efficiency from fuel energy to electrical energy. As the process is essentially closed-loop, the process is able to achieve zero emissions if the concentrated exhaust stream of CO{sub 2} is sequestered. Carbon dioxide disposal is accomplished by the production of magnesium carbonate from ultramafic rock. The end products of the sequestration process are stable naturally occurring minerals. Sufficient rich ultramafic deposits exist to easily handle all the world's coal.

  10. A Demonstration of Einstein's Equivalence of Gravity and Acceleration

    ERIC Educational Resources Information Center

    Newburgh, Ronald

    2008-01-01

    In 1907, Einstein described a "Gedankenexperiment" in which he showed that free fall in a gravitational field is indistinguishable from a body at rest in an elevator accelerated upwards in zero gravity. This paper describes an apparatus, which is simple to make and simple to operate, that acts as an observable footnote to Einstein's example. It…

  11. BF Models in Dual Formulations of Linearized Gravity

    SciTech Connect

    Bizdadea, Constantin; Cioroianu, Eugen M.; Danehkar, Ashbiz; Iordache, Marius; Saliu, Solange O.; Sararu, Silviu C.

    2009-05-22

    The case of couplings in D = 5 between a simple, maximal BF model and the dual formulation of linearized gravity is considered. All the possible interactions are exhausted by means of computing the 'free' local BRST cohomology in ghost number zero.

  12. Density-metric unimodular gravity: Vacuum maximal symmetry

    SciTech Connect

    Abbassi, A.H.; Abbassi, A.M.

    2011-05-15

    We have investigated the vacuum maximally symmetric solutions of recently proposed density-metric unimodular gravity theory. The results are widely different from inflationary scenario. The exponential dependence on time in deSitter space is substituted by a power law. Open space-times with non-zero cosmological constant are excluded.

  13. Precision zero-home locator

    DOEpatents

    Stone, W.J.

    1983-10-31

    A zero-home locator includes a fixed phototransistor switch and a moveable actuator including two symmetrical, opposed wedges, each wedge defining a point at which switching occurs. The zero-home location is the average of the positions of the points defined by the wedges.

  14. Precision zero-home locator

    DOEpatents

    Stone, William J.

    1986-01-01

    A zero-home locator includes a fixed phototransistor switch and a moveable actuator including two symmetrical, opposed wedges, each wedge defining a point at which switching occurs. The zero-home location is the average of the positions of the points defined by the wedges.

  15. Asymptotic Safety in quantum gravity

    NASA Astrophysics Data System (ADS)

    Nink, Andreas; Reuter, Martin; Saueressig, Frank

    2013-06-01

    Asymptotic Safety (sometimes also referred to as nonperturbative renormalizability) is a concept in quantum field theory which aims at finding a consistent and predictive quantum theory of the gravitational field. Its key ingredient is a nontrivial fixed point of the theory's renormalization group flow which controls the behavior of the coupling constants in the ultraviolet (UV) regime and renders physical quantities safe from divergences. Although originally proposed by Steven Weinberg to find a theory of quantum gravity the idea of a nontrivial fixed point providing a possible UV completion can be applied also to other field theories, in particular to perturbatively nonrenormalizable ones. The essence of Asymptotic Safety is the observation that nontrivial renormalization group fixed points can be used to generalize the procedure of perturbative renormalization. In an asymptotically safe theory the couplings do not need to be small or tend to zero in the high energy limit but rather tend to finite values: they approach a nontrivial UV fixed point. The running of the coupling constants, i.e. their scale dependence described by the renormalization group (RG), is thus special in its UV limit in the sense that all their dimensionless combinations remain finite. This suffices to avoid unphysical divergences, e.g. in scattering amplitudes. The requirement of a UV fixed point restricts the form of the bare action and the values of the bare coupling constants, which become predictions of the Asymptotic Safety program rather than inputs. As for gravity, the standard procedure of perturbative renormalization fails since Newton's constant, the relevant expansion parameter, has negative mass dimension rendering general relativity perturbatively nonrenormalizable. This has driven the search for nonperturbative frameworks describing quantum gravity, including Asymptotic Safety which -- in contrast to other approaches -- is characterized by its use of quantum field theory

  16. Anisotropic stress and stability in modified gravity models

    SciTech Connect

    Saltas, Ippocratis D.; Kunz, Martin

    2011-03-15

    The existence of anisotropic stress of a purely geometrical origin seems to be a characteristic of higher order gravity models, and has been suggested as a probe to test these models observationally, for example, in weak lensing experiments. In this paper, we seek to find a class of higher order gravity models of f(R,G) type that would give us a zero anisotropic stress and study the consequences for the viability of the actual model. For the special case of a de Sitter background, we identify a subclass of models with the desired property. We also find a direct link between anisotropic stress and the stability of the model as well as the presence of extra degrees of freedom, which seems to be a general feature of higher order gravity models. Particularly, setting the anisotropic stress equal to zero for a de Sitter background leads to a singularity that makes it impossible to reach the de Sitter evolution.

  17. Canonical gravity with fermions

    SciTech Connect

    Bojowald, Martin; Das, Rupam

    2008-09-15

    Canonical gravity in real Ashtekar-Barbero variables is generalized to allow for fermionic matter. The resulting torsion changes several expressions in Holst's original vacuum analysis, which are summarized here. This in turn requires adaptations to the known loop quantization of gravity coupled to fermions, which is discussed on the basis of the classical analysis. As a result, parity invariance is not manifestly realized in loop quantum gravity.

  18. Complex zeros of the 2 d Ising model on dynamical random lattices

    NASA Astrophysics Data System (ADS)

    Ambjørn, J.; Anagnostopoulos, K. N.; Magnea, U.

    1998-04-01

    We study the zeros in the complex plane of the partition function for the Ising model coupled to 2 d quantum gravity for complex magnetic field and for complex temperature. We compute the zeros by using the exact solution coming from a two matrix model and by Monte Carlo simulations of Ising spins on dynamical triangulations. We present evidence that the zeros form simple one-dimensional patterns in the complex plane, and that the critical behaviour of the system is governed by the scaling of the distribution of singularities near the critical point.

  19. Apollo-Soyuz pamphlet no. 8: Zero-g technology. [experimental designispace processing and aerospace engineering

    NASA Technical Reports Server (NTRS)

    Page, L. W.; From, T. P.

    1977-01-01

    The behavior of liquids in zero gravity environments is discussed with emphasis on foams, wetting, and wicks. A multipurpose electric furnace (MA-010) for the high temperature processing of metals and salts in zero-g is described. Experiments discussed include: monolectic and synthetic alloys (MA-041); multiple material melting point (MA-150); zero-g processing of metals (MA-070); surface tension induced convection (MA-041); halide eutectic growth; interface markings in crystals (MA-060); crystal growth from the vapor phase (MA-085); and photography of crystal growth (MA-028).

  20. From gravity and the organism to gravity and the cell.

    PubMed

    Brown, A H

    1991-07-01

    This workshop on Gravity and the Cell was modeled on a 1968 conference on Gravity and the Organism. Each conference tried to identify the most salient scientific questions about how gravity is important to living systems. In the roughly two decades between the conferences there have been impressive advances in experimental methods, but the major scientific questions that have driven their applications to problems of gravitational biology, i.e., our broad research goals, remain much the same. In the case of plant research, improvements and extensions of biochemical techniques for investigating the ways organisms use environmental (g-force) information in salubrious ways has kept pace with progress in plant biochemistry. We now know much more about the roles of organic and inorganic substances that plants employ for information transfer and growth regulation and about the avenues and mechanisms for transport of those key substances within organisms. We have seen the acceptance of a "local control" concept that regulation of g-responses depends critically on plasmodesmata and gap junctions which allow plants and animals to throttle the transport of growth regulators across tissue boundaries often, especially in the case of plants, far removed from the morphological regions of concentration of statocytes that were once thought to be the exclusive bioaccelerometers used by plants. NASA's sponsorship of ground-based research in gravitational biology has served as important underpinning for orbital flight programs in space biology. The currently most noteworthy research area of ignorance is the mechanism by which the physical event of g-force susception becomes the biological process of g-force perception. Only rarely has it been possible to perform a definitive test of a theory of mechanism of gravity perception. Therefore, experimental research efforts in gravitational physiology still are essentially dependent on exploratory studies for which stimulus

  1. Zero/zero rotorcraft certification issues. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Adams, Richard J.

    1988-01-01

    This report analyzes the Zero/Zero Rotorcraft Certification Issues from the perspectives of manufacturers, operators, researchers and the FAA. The basic premise behind this analysis is the zero/zero, or at least extremely low visibility, rotorcraft operations are feasible today from both a technological and an operational standpoint. The questions and issues that need to be resolved are: What certification requirements do we need to ensure safety. Can we develop procedures which capitalize on the performance and maneuvering capabilities unique to rotorcraft. Will exptremely low visibility operations be economically feasible. This is Volume 1 of three. It provides an overview of the Certification Issues Forum held in Phoenix, Arizona in August of 1987. It presents a consensus of 48 experts from government, manufacturer, and research communities on 50 specific Certification Issues. The topics of Operational Requirements, Procedures, Airworthiness, and Engineering Capabilities are discussed.

  2. D-Zero Calorimeter Multiplan

    SciTech Connect

    Wintercorn, S.J.; /Fermilab

    1987-06-15

    This short report explains the parameters, and their basis, of the D-Zero calorimeter multiplan spread sheet Macintosh Multiplan worksheets have been found to be a valuable asset to the D-Zero design effort. The spread sheet contains parameters (constants) and results that come from the parameters. The full effect of changes in D-Zero calorimeter parameters can be calculated quite easily with Multiplan. When a change in a parameter is made, any results that pertain to that parameter automatically change also. This report will explain how some of the unobvious results were obtained.

  3. A simple volcano potential with an analytic, zero-energy, ground state

    NASA Astrophysics Data System (ADS)

    Nieto, M. M.

    2000-08-01

    We describe a simple volcano potential, which is supersymmetric and has an analytic, zero-energy, ground state. (The KK modes are also analytic.) It is an interior harmonic oscillator potential properly matched to an exterior angular momentum-like tail. Special cases are given to elucidate the physics, which may be intuitively useful in studies of higher-dimensional gravity.

  4. A research of 3D gravity inversion based on the recovery of sparse underdetermined linear equations

    NASA Astrophysics Data System (ADS)

    Zhaohai, M.

    2014-12-01

    Because of the properties of gravity data, it is made difficult to solve the problem of multiple solutions. There are two main types of 3D gravity inversion methods:One of two methods is based on the improvement of the instability of the sensitive matrix, solving the problem of multiple solutions and instability in 3D gravity inversion. Another is to join weight function into the 3D gravity inversion iteration. Through constant iteration, it can renewal density values and weight function to achieve the purpose to solve the multiple solutions and instability of the 3D gravity data inversion. Thanks to the sparse nature of the solutions of 3D gravity data inversions, we can transform it into a sparse equation. Then, through solving the sparse equations, we can get perfect 3D gravity inversion results. The main principle is based on zero norm of sparse matrix solution of the equation. Zero norm is mainly to solve the nonzero solution of the sparse matrix. However, the method of this article adopted is same as the principle of zero norm. But the method is the opposite of zero norm to obtain zero value solution. Through the form of a Gaussian fitting solution of the zero norm, we can find the solution by using regularization principle. Moreover, this method has been proved that it had a certain resistance to random noise in the mathematics, and it was more suitable than zero norm for the solution of the geophysical data. 3D gravity which is adopted in this article can well identify abnormal body density distribution characteristics, and it can also recognize the space position of abnormal distribution very well. We can take advantage of the density of the upper and lower limit penalty function to make each rectangular residual density within a reasonable range. Finally, this 3D gravity inversion is applied to a variety of combination model test, such as a single straight three-dimensional model, the adjacent straight three-dimensional model and Y three

  5. Natural vibration characteristics of gravity structures

    NASA Astrophysics Data System (ADS)

    Chugh, Ashok K.

    2007-04-01

    A forced vibration procedure is presented to estimate fundamental and higher frequencies of vibrations and associated mode shapes of gravity structures. The gravity structures considered are retaining walls and gravity dams. The validity of the proposed procedure is tested on three test problems of varying complexity for which the natural vibration frequencies and mode shapes either have known analytical solutions or have been determined via numerical means/field tests by others. Also included are the results of natural vibration frequencies and associated mode shapes for a spillway control structure located near the abutment end of an embankment dam obtained using the proposed procedure. For all problems considered, fundamental frequency and mode shape results using the proposed procedure are compared with the results obtained using an alternative procedure in which static deflections due to the structure's own weight are used as the starting point for free vibrations by setting the gravity vector to zero. All results compare well. The merits of the proposed procedure are discussed. Published in 2006 by John Wiley & Sons, Ltd.

  6. Unified theory of nonlinear electrodynamics and gravity

    SciTech Connect

    Torres-Gomez, Alexander; Krasnov, Kirill; Scarinci, Carlos

    2011-01-15

    We describe a class of unified theories of electromagnetism and gravity. The Lagrangian is of the BF type, with a potential for the B field, the gauge group is U(2) (complexified). Given a choice of the potential function the theory is a deformation of (complex) general relativity and electromagnetism, and describes just two propagating polarizations of the graviton and two of the photon. When gravity is switched off the theory becomes the usual nonlinear electrodynamics with a general structure function. The Einstein-Maxwell theory can be recovered by sending some of the parameters of the defining potential to zero, but for any generic choice of the potential the theory is indistinguishable from Einstein-Maxwell at low energies. A real theory is obtained by imposing suitable reality conditions. We also study the spherically-symmetric solution and show how the usual Reissner-Nordstrom solution is recovered.

  7. Low-gravity facilities for Space Station planetology experiments

    NASA Technical Reports Server (NTRS)

    Penzo, Paul A.

    1987-01-01

    For experimentation, space offers an environment which is unobtainable on earth. One characteristic is a gravity force less than 1 g, where g is the mean earth gravity acceleration of 9.8 m/sq s. The production of uniform gravity levels above zero g in space is discussed in relationship to experimental needs. For planetology experiments, providing gravity in space will make it possible to more nearly simulate conditions on natural bodies. The g-level is but one parameter involved in the design of a specific experiment. Other requirements may be: g-level range; g-level tolerance value; Coriolis tolerance value; volume requirement g-level duration; power and materials for the experiment; and automated or man-tended operations. These requirements, and certainly others, will dictate the type of facility which should be considered. The use of the Space Station of the Tethered Satellite System configurations is discussed.

  8. Shear waves in inhomogeneous, compressible fluids in a gravity field.

    PubMed

    Godin, Oleg A

    2014-03-01

    While elastic solids support compressional and shear waves, waves in ideal compressible fluids are usually thought of as compressional waves. Here, a class of acoustic-gravity waves is studied in which the dilatation is identically zero, and the pressure and density remain constant in each fluid particle. These shear waves are described by an exact analytic solution of linearized hydrodynamics equations in inhomogeneous, quiescent, inviscid, compressible fluids with piecewise continuous parameters in a uniform gravity field. It is demonstrated that the shear acoustic-gravity waves also can be supported by moving fluids as well as quiescent, viscous fluids with and without thermal conductivity. Excitation of a shear-wave normal mode by a point source and the normal mode distortion in realistic environmental models are considered. The shear acoustic-gravity waves are likely to play a significant role in coupling wave processes in the ocean and atmosphere. PMID:24606251

  9. Surface tension and bubble shapes in a partially filled rotating cylinder under low gravity

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Tsao, Y. D.; Leslie, Fred W.; Hong, B. B.

    1988-01-01

    A computer algorithm is developed to simulate the profile of a free liquid surface for a cylindrical container partially filled with a Newtonian fluid of constant density, rotating about its axis of symmetry. The equilibrium shape of the free surface is governed by a balance of capillary, centrifugal, and gravity forces. The results can be used to determine the profile of a bubble at various rotating speeds under the gravity environments from low gravity, microgravity to zero-gravity. The present paper discusses the further extension of the study of the determination of bubble shape in a higher rotating speed container developed by Hung and Leslie.

  10. Zero-shifted accelerometer outputs

    NASA Astrophysics Data System (ADS)

    Galef, Arnold

    1986-08-01

    It is claimed that the commonly appearing zero-shift in pyroshock data is usually a symptom of a malfunctioning measurement system, so that the data can not be repaired (by high-pass filtering or equivalent) unless tests can be devised that permit the demonstration that the system is operating in a linear mode in all respects other than the shift. The likely cause of the zero-shift and its prevention are discussed.

  11. Gauge/Gravity Duality (Gauge Gravity Duality)

    SciTech Connect

    Polchinski, Joseph

    2010-02-24

    Gauge theories, which describe the particle interactions, are well understood, while quantum gravity leads to many puzzles. Remarkably, in recent years we have learned that these are actually dual, the same system written in different variables. On the one hand, this provides our most precise description of quantum gravity, resolves some long-standing paradoxes, and points to new principles. On the other, it gives a new perspective on strong interactions, with surprising connections to other areas of physics. I describe these ideas, and discuss current and future directions.

  12. Tethered gravity laboratories study

    NASA Technical Reports Server (NTRS)

    Lucchetti, F.

    1989-01-01

    The use is studied of tether systems to improve the lowest possible steady gravity level on the Space Station. Particular emphasis is placed by the microgravity community on the achievement of high quality microgravity conditions. The tether capability is explored for active control of the center of gravity and the analysis of possible tethered configurations.

  13. Demonstrating Reduced Gravity.

    ERIC Educational Resources Information Center

    Pearlman, Howard; And Others

    1996-01-01

    Describes the construction of the Reduced-Gravity Demonstrator, which can be used to illustrate the effects of gravity on a variety of phenomena, including the way fluids flow, flames burn, and mechanical systems behave. Presents experiments, appropriate for classroom use, to demonstrate how the behavior of common physical systems change when…

  14. Demonstrating Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Pearlman, Howard; Stocker, Dennis; Gotti, Daniel; Urban, David; Ross, Howard; Sours, Thomas

    1996-01-01

    A miniature drop tower, Reduced-Gravity Demonstrator is developed to illustrate the effects of gravity on a variety of phenomena including the way fluids flow, flames burn, and mechanical systems (such as pendulum) behave. A schematic and description of the demonstrator and payloads are given, followed by suggestions for how one can build his (her) own.

  15. Warped brane worlds in critical gravity

    NASA Astrophysics Data System (ADS)

    Zhong, Yi; Chen, Feng-Wei; Xie, Qun-Ying; Liu, Yu-Xiao

    2014-12-01

    We investigate the brane models in arbitrary dimensional critical gravity presented in Lu and Pope (Phys Rev Lett 106:181302, 2011). For the models of the thin branes with codimension one, the Gibbons-Hawking surface term and the junction conditions are derived, with which the analytical solutions for the flat, AdS, and dS branes are obtained at the critical point of the critical gravity. It is found that all these branes are embedded in an AdS spacetime, but, in general, the effective cosmological constant of the AdS spacetime is not equal to the naked one in the critical gravity, which can be positive, zero, and negative. Another interesting result is that the brane tension can also be positive, zero, or negative, depending on the symmetry of the thin brane and the values of the parameters of the theory, which is very different from the case in general relativity. It is shown that the mass hierarchy problem can be solved in the braneworld model in the higher-derivative critical gravity. We also study the thick brane model and find analytical and numerical solutions of the flat, AdS, and dS branes. It is found that some branes will have inner structure when some parameters of the theory are larger than their critical values, which may result in resonant KK modes for some bulk matter fields. The flat branes with positive energy density and AdS branes with negative energy density are embedded in an -dimensional AdS spacetime, while the dS branes with positive energy density are embedded in an -dimensional Minkowski one.

  16. Anti-gravity device

    NASA Technical Reports Server (NTRS)

    Palsingh, S. (Inventor)

    1975-01-01

    An educational toy useful in demonstrating fundamental concepts regarding the laws of gravity is described. The device comprises a sphere 10 of radius r resting on top of sphere 12 of radius R. The center of gravity of sphere 10 is displaced from its geometrical center by distance D. The dimensions are so related that D((R+r)/r) is greater than r. With the center of gravity of sphere 10 lying on a vertical line, the device is in equilibrium. When sphere 10 is rolled on the surface of sphere 12 it will return to its equilibrium position upon release. This creates an illusion that sphere 10 is defying the laws of gravity. In reality, due to the above noted relationship of D, R, and r, the center of gravity of sphere 10 rises from its equilibrium position as it rolls a short distance up or down the surface of sphere 12.

  17. Grasping objects autonomously in simulated KC-135 zero-g

    NASA Technical Reports Server (NTRS)

    Norsworthy, Robert S.

    1994-01-01

    The KC-135 aircraft was chosen for simulated zero gravity testing of the Extravehicular Activity Helper/retriever (EVAHR). A software simulation of the EVAHR hardware, KC-135 flight dynamics, collision detection and grasp inpact dynamics has been developed to integrate and test the EVAHR software prior to flight testing on the KC-135. The EVAHR software will perform target pose estimation, tracking, and motion estimation for rigid, freely rotating, polyhedral objects. Manipulator grasp planning and trajectory control software has also been developed to grasp targets while avoiding collisions.

  18. Particle cloud combustion in reduced gravity

    NASA Technical Reports Server (NTRS)

    Berlad, A. L.

    1988-01-01

    The prinicipal objectives of this microgravity experiment program are to obtain flame propagation rate and flame extinction limit data for several important premixed, quiescent particle cloud combustion systems under near zero-gravity conditions. The data resulting from these experiments are needed for utilization with currently available and tractable flame propagation and extinction theory. These data are also expected to provide standards for the evaluation of fire hazards in particle suspensions in both Earth-based and space-based applications. Both terrestrial and space-based fire safety criteria require the identification of the critical concentrations of particulate fuels and inerts at the flame extinction conditions.

  19. Nonstationary Gravity Wave Forcing of the Stratospheric Zonal Mean Wind

    NASA Technical Reports Server (NTRS)

    Alexander, M. J.; Rosenlof, K. H.

    1996-01-01

    The role of gravity wave forcing in the zonal mean circulation of the stratosphere is discussed. Starting from some very simple assumptions about the momentum flux spectrum of nonstationary (non-zero phase speed) waves at forcing levels in the troposphere, a linear model is used to calculate wave propagation through climatological zonal mean winds at solstice seasons. As the wave amplitudes exceed their stable limits, a saturation criterion is imposed to account for nonlinear wave breakdown effects, and the resulting vertical gradient in the wave momentum flux is then used to estimate the mean flow forcing per unit mass. Evidence from global, assimilated data sets are used to constrain these forcing estimates. The results suggest the gravity-wave-driven force is accelerative (has the same sign as the mean wind) throughout most of the stratosphere above 20 km. The sense of the gravity wave forcing in the stratosphere is thus opposite to that in the mesosphere, where gravity wave drag is widely believed to play a principal role in decelerating the mesospheric jets. The forcing estimates are further compared to existing gravity wave parameterizations for the same climatological zonal mean conditions. Substantial disagreement is evident in the stratosphere, and we discuss the reasons for the disagreement. The results suggest limits on typical gravity wave amplitudes near source levels in the troposphere at solstice seasons. The gravity wave forcing in the stratosphere appears to have a substantial effect on lower stratospheric temperatures during southern hemisphere summer and thus may be relevant to climate.

  20. Gravity-induced cellular and molecular processes in plants studied under altered gravity conditions

    NASA Astrophysics Data System (ADS)

    Vagt, Nicole; Braun, Markus

    With the ability to sense gravity plants possess a powerful tool to adapt to a great variety of environmental conditions and to respond to environmental changes in a most beneficial way. Gravity is the only constant factor that provides organisms with reliable information for their orientation since billions of years. Any deviation of the genetically determined set-point angle of the plants organs from the vector of gravity is sensed by specialized cells, the statocytes of roots and shoots in higher plants. Dense particles, so-called statoliths, sediment in the direction of gravity and activate membrane-bound gravireceptors. A physiological signalling-cascade is initiated that eventually results in the gravitropic curvature response, namely, the readjust-ment of the growth direction. Experiments under microgravity conditions have significantly contributed to our understanding of plant gravity-sensing and gravitropic reorientation. For a gravity-sensing lower plant cell type, the rhizoid of the green alga Chara, and for statocytes of higher plant roots, it was shown that the interactions between statoliths and the actomyosin system consisting of the actin cytoskeleton and motor proteins (myosins) are the basis for highly efficient gravity-sensing processes. In Chara rhizoids, the actomyosin represents a guid-ing system that directs sedimenting statoliths to a specific graviperception site. Parabolic flight experiments aboard the airbus A300 Zero-G have provided evidence that lower and higher plant cells use principally the same statolith-mediated gravireceptor-activation mechanism. Graviper-ception is not dependent on mechanical pressure mediated through the weight of the sedimented statoliths, but on direct interactions between the statoliths's surface and yet unknown gravire-ceptor molecules. In contrast to Chara rhizoids, in the gravity-sensing cells of higher plants, the actin cytoskeleton is not essentially involved in the early phases of gravity sensing. Dis

  1. Gribov ambiguity in asymptotically AdS three-dimensional gravity

    SciTech Connect

    Anabalon, Andres; Canfora, Fabrizio; Giacomini, Alex; Oliva, Julio

    2011-03-15

    In this paper the zero modes of the de Donder gauge Faddeev-Popov operator for three-dimensional gravity with negative cosmological constant are analyzed. It is found that the AdS{sub 3} vacuum produces (infinitely many) normalizable smooth zero modes of the Faddeev-Popov operator. On the other hand, it is found that the Banados-Teitelboim-Zanelli black hole (including the zero mass black hole) does not generate zero modes. This differs from the usual Gribov problem in QCD where, close to the maximally symmetric vacuum, the Faddeev-Popov determinant is positive definite while 'far enough' from the vacuum it can vanish. This suggests that the zero mass Banados-Teitelboim-Zanelli black hole could be a suitable ground state of three-dimensional gravity with negative cosmological constant. Because of the kinematic origin of this result, it also applies for other covariant gravity theories in three dimensions with AdS{sub 3} as maximally symmetric solution, such as new massive gravity and topologically massive gravity. The relevance of these results for supersymmetry breaking is pointed out.

  2. Influence of gravity level and interfacial energies on dispersion-forming tendencies in hypermonotectic Cu-Pb-Al alloys

    NASA Technical Reports Server (NTRS)

    Andrews, J. B.; Curreri, P. A.; Sandlin, A. C.

    1988-01-01

    Results on the nondirectional solidification of several hypermonotectic Cu-Pb-Al alloys were obtained aboard NASA's KC-135 zero-gravity aircraft in order to determine the influence of interfacial energies and gravity levels on dispersion-forming tendencies. The Al content was systematially varied in the alloys. The dispersion-forming ability is correlated with gravity level during solidification, the interfacial energy between the immiscible phases, and the tendency for the minority immiscible phase to wet the walls of the crucible.

  3. The zero exemplar distance problem.

    PubMed

    Jiang, Minghui

    2011-09-01

    Given two genomes with duplicate genes, Zero Exemplar Distance is the problem of deciding whether the two genomes can be reduced to the same genome without duplicate genes by deleting all but one copy of each gene in each genome. Blin, Fertin, Sikora, and Vialette recently proved that Zero Exemplar Distance for monochromosomal genomes is NP-hard even if each gene appears at most two times in each genome, thereby settling an important open question on genome rearrangement in the exemplar model. In this article, we give a very simple alternative proof of this result. We also study the problem Zero Exemplar Distance for multichromosomal genomes without gene order, and prove the analogous result that it is also NP-hard even if each gene appears at most two times in each genome. For the positive direction, we show that both variants of Zero Exemplar Distance admit polynomial-time algorithms if each gene appears exactly once in one genome and at least once in the other genome. In addition, we present a polynomial-time algorithm for the related problem Exemplar Longest Common Subsequence in the special case that each mandatory symbol appears exactly once in one input sequence and at least once in the other input sequence. This answers an open question of Bonizzoni et al. We also show that Zero Exemplar Distance for multichromosomal genomes without gene order is fixed-parameter tractable in the general case if the parameter is the maximum number of chromosomes in each genome. PMID:21899417

  4. Net zero building energy conservation

    NASA Astrophysics Data System (ADS)

    Kadam, Rohit

    This research deals with energy studies performed as part of a net-zero energy study for buildings. Measured data of actual energy utilization by a building for a continuous period of 33 months was collected and studied. The peak design day on which the building consumes maximum energy was found. The averages of the energy consumption for the peak month were determined. The DOE EnergyPlus software was used to simulate the energy requirements for the building and also obtain peak energy requirements for the peak month. Alternative energy sources such as ground source heat pump, solar photovoltaic (PV) panels and day-lighting modifications were applied to redesign the energy consumption for the building towards meeting net-zero energy requirements. The present energy use by the building, DOE Energy software simulations for the building as well as the net-zero model for the building were studied. The extents of the contributions of the individual energy harvesting measures were studied. For meeting Net Zero Energy requirement, it was found that the total energy load for the building can be distributed between alternative energy methods as 5.4% to daylighting modifications, 58% to geothermal and 36.6% to solar photovoltaic panels for electricity supply and thermal energy. Thus the directions to proceed towards achieving complete net-zero energy status were identified.

  5. World gravity standards

    NASA Technical Reports Server (NTRS)

    Uotila, U. A.

    1978-01-01

    In order to use gravity anomalies in geodetic computations and geophysical interpretations, the observed gravity values from which anomalies are derived should be referred to one consistent world wide system. The International Gravity Standardization Net 1971 was adapted by the International Union of Geodesy and Geophysics at Moscow in 1971, the network was result of extensive cooperation by many organizations and individuals around the world. The network contains more than 1800 stations around the world. The data used in the adjustment included more than 25,000 gravimetry, pendulum and absolute measurements.

  6. Airborne gravity is here

    SciTech Connect

    Hammer, S.

    1982-01-11

    After 20 years of development efforts, the airborne gravity survey has finally become a practical exploration method. Besides gravity data, the airborne survey can also collect simultaneous, continuous records of high-precision magneticfield data as well as terrain clearance; these provide a topographic contour map useful in calculating terrain conditions and in subsequent planning and engineering. Compared with a seismic survey, the airborne gravity method can cover the same area much more quickly and cheaply; a seismograph could then detail the interesting spots.

  7. Containment of a silicone fluid free surface in reduced gravity

    NASA Technical Reports Server (NTRS)

    Pline, A.; Jacobson, T.

    1988-01-01

    In support of the surface tension driven convection experiment planned for flight aboard the Space Shuttle, tests were conducted under reduced gravity in the 2.2-sec drop tower and the 5.0-sec Zero-G facility at the Lewis Research Center. The dynamics of controlling the test fluid, a 10-centistoke viscosity silicone fluid, in a low-gravity environment were investigated using different container designs and barrier coatings. Three container edge designs were tested without a barrier coating: a square edge, a sharp edge with a 45-deg slope, and a saw-tooth edge. All three edge designs were successful in containing the fluid below the edge.

  8. Effects of background gravity stimuli on gravity-controlled behavior

    NASA Technical Reports Server (NTRS)

    Mccoy, D. F.

    1976-01-01

    Physiological and developmental effects of altered gravity were researched. The stimulus properties of gravity have been found to possess reinforcing and aversive properties. Experimental approaches taken, used animals placed into fields of artificial gravity, in the form of parabolic or spiral centrifuges. Gravity preferences were noted and it was concluded that the psychophysics of gravity and background factors which support these behaviors should be further explored.

  9. Zero-G Workstation Design

    NASA Technical Reports Server (NTRS)

    Gundersen, R. T.; Bond, R. L.

    1976-01-01

    Zero-g workstations were designed throughout manned spaceflight, based on different criteria and requirements for different programs. The history of design of these workstations is presented along with a thorough evaluation of selected Skylab workstations (the best zero-g experience available on the subject). The results were applied to on-going and future programs, with special emphasis on the correlation of neutral body posture in zero-g to workstation design. Where selected samples of shuttle orbiter workstations are shown as currently designed and compared to experience gained during prior programs in terms of man machine interface design, the evaluations were done in a generic sense to show the methods of applying evaluative techniques.

  10. Superconducting tensor gravity gradiometer

    NASA Technical Reports Server (NTRS)

    Paik, H. J.

    1981-01-01

    The employment of superconductivity and other material properties at cryogenic temperatures to fabricate sensitive, low-drift, gravity gradiometer is described. The device yields a reduction of noise of four orders of magnitude over room temperature gradiometers, and direct summation and subtraction of signals from accelerometers in varying orientations are possible with superconducting circuitry. Additional circuits permit determination of the linear and angular acceleration vectors independent of the measurement of the gravity gradient tensor. A dewar flask capable of maintaining helium in a liquid state for a year's duration is under development by NASA, and a superconducting tensor gravity gradiometer for the NASA Geodynamics Program is intended for a LEO polar trajectory to measure the harmonic expansion coefficients of the earth's gravity field up to order 300.

  11. Introduction to Massive Gravity

    NASA Astrophysics Data System (ADS)

    de Rham, Claudia

    We review recent progress on massive gravity. We first show how extra dimensions prove to be a useful tool in building theories of modified gravity, including Galileon theories and their DBI extensions. DGP arises from an infinite size extra dimension, and we show how massive gravity arises from `deconstructing' the extra dimension in the vielbein formalism. We then explain how the ghost issue is resolved in that special theory of massive gravity. The viability of such models relies on the Vainshtein mechanism which is best described in terms of Galileons. While its implementation is successful in most of these models it also comes hand in hand with superluminalities and strong coupling which are reviewed and their real consequences are discussed.

  12. Tethered gravity laboratories study

    NASA Technical Reports Server (NTRS)

    Lucchetti, F.

    1989-01-01

    Variable Gravity Laboratory studies are discussed. The following subject areas are covered: (1) conceptual design and engineering analysis; (2) control strategies (fast crawling maneuvers, main perturbations and their effect upon the acceleration level); and (3) technology requirements.

  13. Rotating Gravity Gradiometer Study

    NASA Technical Reports Server (NTRS)

    Forward, R. L.

    1976-01-01

    The application of a Rotating Gravity Gradiometer (RGG) system on board a Lunar Polar Orbiter (LPO) for the measurement of the Lunar gravity field was investigated. A data collection simulation study shows that a gradiometer will give significantly better gravity data than a doppler tracking system for the altitudes under consideration for the LOP, that the present demonstrated sensitivity of the RGG is adequate for measurement of the Lunar gravity gradient field, and that a single RGG instrument will provide almost as much data for geophysical interpretation as an orthogonal three axis RGG system. An engineering study of the RGG sensor/LPO spacecraft interface characteristics shows that the RGG systems under consideration are compatible with the present models of the LPO spacecraft.

  14. Marine gravity image available

    NASA Astrophysics Data System (ADS)

    The image below shows the gravity field from 30-72°S computed from Geosat geodetic mission (GM) and exact repeat mission (ERM) data. A color shaded-relief image of these gravity anomalies is available from NOAA in poster form (report MGG-8, [Marks et al., 1993] and also as a digital gridded data set on CD-ROM. To order, contact the National Geophysical Data Center, E/GC3, 325 Broadway, Boulder, CO 80303.

  15. Quantum massive conformal gravity

    NASA Astrophysics Data System (ADS)

    Faria, F. F.

    2016-04-01

    We first find the linear approximation of the second plus fourth order derivative massive conformal gravity action. Then we reduce the linearized action to separated second order derivative terms, which allows us to quantize the theory by using the standard first order canonical quantization method. It is shown that quantum massive conformal gravity is renormalizable but has ghost states. A possible decoupling of these ghost states at high energies is discussed.

  16. What Is Gravity?

    ERIC Educational Resources Information Center

    Nelson, George

    2004-01-01

    Gravity is the name given to the phenomenon that any two masses, like you and the Earth, attract each other. One pulls on the Earth and the Earth pulls on one the same amount. And one does not have to be touching. Gravity acts over vast distances, like the 150 million kilometers (93 million miles) between the Earth and the Sun or the billions of…

  17. Partial gravity habitat study

    NASA Technical Reports Server (NTRS)

    Capps, Stephen; Lorandos, Jason; Akhidime, Eval; Bunch, Michael; Lund, Denise; Moore, Nathan; Murakawa, Kiosuke

    1989-01-01

    The purpose of this study is to investigate comprehensive design requirements associated with designing habitats for humans in a partial gravity environment, then to apply them to a lunar base design. Other potential sites for application include planetary surfaces such as Mars, variable-gravity research facilities, and a rotating spacecraft. Design requirements for partial gravity environments include locomotion changes in less than normal earth gravity; facility design issues, such as interior configuration, module diameter, and geometry; and volumetric requirements based on the previous as well as psychological issues involved in prolonged isolation. For application to a lunar base, it is necessary to study the exterior architecture and configuration to insure optimum circulation patterns while providing dual egress; radiation protection issues are addressed to provide a safe and healthy environment for the crew; and finally, the overall site is studied to locate all associated facilities in context with the habitat. Mission planning is not the purpose of this study; therefore, a Lockheed scenario is used as an outline for the lunar base application, which is then modified to meet the project needs. The goal of this report is to formulate facts on human reactions to partial gravity environments, derive design requirements based on these facts, and apply the requirements to a partial gravity situation which, for this study, was a lunar base.

  18. Gravity Before Einstein and Schwinger Before Gravity

    NASA Astrophysics Data System (ADS)

    Trimble, Virginia L.

    2012-05-01

    Julian Schwinger was a child prodigy, and Albert Einstein distinctly not; Schwinger had something like 73 graduate students, and Einstein very few. But both thought gravity was important. They were not, of course, the first, nor is the disagreement on how one should think about gravity that is being highlighted here the first such dispute. The talk will explore, first, several of the earlier dichotomies: was gravity capable of action at a distance (Newton), or was a transmitting ether required (many others). Did it act on everything or only on solids (an odd idea of the Herschels that fed into their ideas of solar structure and sunspots)? Did gravitational information require time for its transmission? Is the exponent of r precisely 2, or 2 plus a smidgeon (a suggestion by Simon Newcomb among others)? And so forth. Second, I will try to say something about Scwinger's lesser known early work and how it might have prefigured his "source theory," beginning with "On the Interaction of Several Electrons (the unpublished, 1934 "zeroth paper," whose title somewhat reminds one of "On the Dynamics of an Asteroid," through his days at Berkeley with Oppenheimer, Gerjuoy, and others, to his application of ideas from nuclear physics to radar and of radar engineering techniques to problems in nuclear physics. And folks who think good jobs are difficult to come by now might want to contemplate the couple of years Schwinger spent teaching elementary physics at Purdue before moving on to the MIT Rad Lab for war work.

  19. Zero-Based Budgeting Redux.

    ERIC Educational Resources Information Center

    Geiger, Philip E.

    1993-01-01

    Zero-based, programmatic budgeting involves four basic steps: (1) define what needs to be done; (2) specify the resources required; (3) determine the assessment procedures and standards to use in evaluating the effectiveness of various programs; and (4) assign dollar figures to this information. (MLF)

  20. "Zero Tolerance" for Free Speech.

    ERIC Educational Resources Information Center

    Hils, Lynda

    2001-01-01

    Argues that school policies of "zero tolerance" of threatening speech may violate a student's First Amendment right to freedom of expression if speech is less than a "true threat." Suggests a two-step analysis to determine if student speech is a "true threat." (PKP)

  1. Stepping Back from Zero Tolerance

    ERIC Educational Resources Information Center

    Browne-Dianis, Judith

    2011-01-01

    Schools' use of zero tolerance policies has been increasing since the 1980s as part of a societal movement to crack down on drug abuse and violence among youth. But far from making schools safer, this harsh, inflexible approach to discipline has been eroding the culture of schools and creating devastating consequences for children, writes…

  2. Improved Zero-Crossing Detector

    NASA Technical Reports Server (NTRS)

    Dick, G. John; Kuhnle, Paul F.

    1992-01-01

    Improved zero-crossing-detector circuit designed for precisely measuring difference between frequencies of two frequency-standard signal sources. Contains low-bandwidth first-stage amplifier and three limiting amplifiers, each "squares" signal bit more. Crosstalk eliminated and jitter reduced to about 10 to the negative 7th power microseconds.

  3. Graphs and Zero-Divisors

    ERIC Educational Resources Information Center

    Axtell, M.; Stickles, J.

    2010-01-01

    The last ten years have seen an explosion of research in the zero-divisor graphs of commutative rings--by professional mathematicians "and" undergraduates. The objective is to find algebraic information within the geometry of these graphs. This topic is approachable by anyone with one or two semesters of abstract algebra. This article gives the…

  4. Modeling Candle Flame Behavior In Variable Gravity

    NASA Technical Reports Server (NTRS)

    Alsairafi, A.; Tien, J. S.; Lee, S. T.; Dietrich, D. L.; Ross, H. D.

    2003-01-01

    The burning of a candle, as typical non-propagating diffusion flame, has been used by a number of researchers to study the effects of electric fields on flame, spontaneous flame oscillation and flickering phenomena, and flame extinction. In normal gravity, the heat released from combustion creates buoyant convection that draws oxygen into the flame. The strength of the buoyant flow depends on the gravitational level and it is expected that the flame shape, size and candle burning rate will vary with gravity. Experimentally, there exist studies of candle burning in enhanced gravity (i.e. higher than normal earth gravity, g(sub e)), and in microgravity in drop towers and space-based facilities. There are, however, no reported experimental data on candle burning in partial gravity (g < g(sub e)). In a previous numerical model of the candle flame, buoyant forces were neglected. The treatment of momentum equation was simplified using a potential flow approximation. Although the predicted flame characteristics agreed well with the experimental results, the model cannot be extended to cases with buoyant flows. In addition, because of the use of potential flow, no-slip boundary condition is not satisfied on the wick surface. So there is some uncertainty on the accuracy of the predicted flow field. In the present modeling effort, the full Navier-Stokes momentum equations with body force term is included. This enables us to study the effect of gravity on candle flames (with zero gravity as the limiting case). In addition, we consider radiation effects in more detail by solving the radiation transfer equation. In the previous study, flame radiation is treated as a simple loss term in the energy equation. Emphasis of the present model is on the gas-phase processes. Therefore, the detailed heat and mass transfer phenomena inside the porous wick are not treated. Instead, it is assumed that a thin layer of liquid fuel coated the entire wick surface during the burning process

  5. A synthetic zero air standard

    NASA Astrophysics Data System (ADS)

    Pearce, Ruth

    2016-04-01

    A Synthetic Zero Air Standard R. E. Hill-Pearce, K. V. Resner, D. R. Worton, P. J. Brewer The National Physical Laboratory Teddington, Middlesex TW11 0LW UK We present work towards providing traceability for measurements of high impact greenhouse gases identified by the World Meteorological Organisation (WMO) as critical for global monitoring. Standards for these components are required with challengingly low uncertainties to improve the quality assurance and control processes used for the global networks to better assess climate trends. Currently the WMO compatibility goals require reference standards with uncertainties of < 100 nmolmol‑1 for CO2 (northern hemisphere) and < 2 nmolmol‑1 for CH4 and CO. High purity zero gas is required for both the balance gas in the preparation of reference standards and for baseline calibrations of instrumentation. Quantification of the amount fraction of the target components in the zero gas is a significant contributor to the uncertainty and is challenging due to limited availability of reference standard at the amount fraction of the measurand and limited analytical techniques with sufficient detection limits. A novel dilutor was used to blend NPL Primary Reference Gas Mixtures containing CO2, CH4 and CO at atmospheric amount fractions with a zero gas under test. Several mixtures were generated with nominal dilution ratios ranging from 2000:1 to 350:1. The baseline of two cavity ring down spectrometers was calibrated using the zero gas under test after purification by oxidative removal of CO and hydrocarbons to < 1 nmolmol‑1 (SAES PS15-GC50) followed by the removal of CO2 and water vapour to < 100 pmolmol‑1 (SAES MC190). Using the standard addition method.[1] we have quantified the amount fraction of CO, CO2, and CH4 in scrubbed whole air (Scott Marrin) and NPL synthetic zero air. This is the first synthetic zero air standard with a matrix of N2, O2 and Ar closely matching ambient composition with gravimetrically

  6. Entropy density of spacetime from the zero point length

    NASA Astrophysics Data System (ADS)

    Kothawala, Dawood; Padmanabhan, T.

    2015-09-01

    It is possible to obtain gravitational field equations in a large class of theories from a thermodynamic variational principle which uses the gravitational heat density Sg associated with null surfaces. This heat density is related to the structure of spacetime at Planck scale, LP2 = (Għ /c3), which assigns A⊥ /LP2 degrees of freedom to any area A⊥. On the other hand, it is also known that the surface term K√{ h} in the gravitational action correctly reproduces the heat density of the null surfaces. We provide a link between these ideas by obtaining Sg, used in emergent gravity paradigm, from the surface term in the Einstein-Hilbert action. This is done using the notion of a nonlocal qmetric - introduced recently [arxiv:arXiv:1307.5618, arxiv:arXiv:1405.4967] - which allows us to study the effects of zero-point-length of spacetime at the transition scale between quantum and classical gravity. Computing K√{ h} for the qmetric in the appropriate limit directly reproduces the entropy density Sg used in the emergent gravity paradigm.

  7. 6D SCFTs and gravity

    NASA Astrophysics Data System (ADS)

    Del Zotto, Michele; Heckman, Jonathan J.; Morrison, David R.; Park, Daniel S.

    2015-06-01

    We study how to couple a 6D superconformal field theory (SCFT) to gravity. In F-theory, the models in question are obtained working on the supersymmetric background 5,1 × B where B is the base of a compact elliptically fibered Calabi-Yau threefold in which two-cycles have contracted to zero size. When the base has orbifold singularities, we find that the anomaly polynomial of the 6D SCFTs can be understood purely in terms of the intersection theory of fractional divisors: the anomaly coefficient vectors are identified with elements of the orbifold homology. This also explains why in certain cases, the SCFT can appear to contribute a "fraction of a hypermultiplet" to the anomaly polynomial. Quantization of the lattice of string charges also predicts the existence of additional light states beyond those captured by such fractional divisors. This amounts to a refinement to the lattice of divisors in the resolved geometry. We illustrate these general considerations with explicit examples, focusing on the case of F-theory on an elliptic Calabi-Yau threefold with base.

  8. Gravity localization on hybrid branes

    NASA Astrophysics Data System (ADS)

    Veras, D. F. S.; Cruz, W. T.; Maluf, R. V.; Almeida, C. A. S.

    2016-03-01

    This work deals with gravity localization on codimension-1 brane worlds engendered by compacton-like kinks, the so-called hybrid branes. In such scenarios, the thin brane behavior is manifested when the extra dimension is outside the compact domain, where the energy density is non-trivial, instead of asymptotically as in the usual thick brane models. The zero mode is trapped in the brane, as required. The massive modes, although not localized in the brane, have important phenomenological implications such as corrections to the Newton's law. We study such corrections in the usual thick domain wall and in the hybrid brane scenarios. By means of suitable numerical methods, we attain the mass spectrum for the graviton and the corresponding wavefunctions. The spectra possess the usual linearly increasing behavior from the Kaluza-Klein theories. Further, we show that the 4D gravitational force is slightly increased at short distances. The first eigenstate contributes highly for the correction to the Newton's law. The subsequent normalized solutions have diminishing contributions. Moreover, we find out that the phenomenology of the hybrid brane is not different from the usual thick domain wall. The use of numerical techniques for solving the equations of the massive modes is useful for matching possible phenomenological measurements in the gravitational law as a probe to warped extra dimensions.

  9. Dissipative superfluid dynamics from gravity

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Jyotirmoy; Bhattacharyya, Sayantani; Minwalla, Shiraz

    2011-04-01

    Charged asymptotically AdS 5 black branes are sometimes unstable to the condensation of charged scalar fields. For fields of infinite charge and squared mass -4 Herzog was able to analytically determine the phase transition temperature and compute the endpoint of this instability in the neighborhood of the phase transition. We generalize Herzog's construction by perturbing away from infinite charge in an expansion in inverse charge and use the solutions so obtained as input for the fluid gravity map. Our tube wise construction of patched up locally hairy black brane solutions yields a one to one map from the space of solutions of superfluid dynamics to the long wavelength solutions of the Einstein Maxwell system. We obtain explicit expressions for the metric, gauge field and scalar field dual to an arbitrary superfluid flow at first order in the derivative expansion. Our construction allows us to read off the the leading dissipative corrections to the perfect superfluid stress tensor, current and Josephson equations. A general framework for dissipative superfluid dynamics was worked out by Landau and Lifshitz for zero superfluid velocity and generalized to nonzero fluid velocity by Clark and Putterman. Our gravitational results do not fit into the 13 parameter Clark-Putterman framework. Purely within fluid dynamics we present a consistent new generalization of Clark and Putterman's equations to a set of superfluid equations parameterized by 14 dissipative parameters. The results of our gravitational calculation fit perfectly into this enlarged framework. In particular we compute all the dissipative constants for the gravitational superfluid.

  10. Physiological tremor under pseudo-fraction gravity.

    PubMed

    Miao, T; Sakamoto, K

    1995-01-01

    The effect of pseudo-fraction gravity on physiological tremor of the human finger (finger tremor) has been examined experimentally by immersing an index finger into water at different immersion levels. The pseudo-fraction gravity, gamma G, was established by water buoyancy at immersion level omega, G being gravitation acceleration and gamma between zero and unit. The nature of variations of finger tremor under the influence of gamma G is estimated based on FFT spectral analysis. It is illustrated that with a decrease in gamma, or equivalently an increase in omega, two dominant peaks remaining approximately constant in frequencies around 10Hz and 20Hz are found, while peak amplitude is decreased rapidly for higher peak and slowly for lower one. Theoretically the effect of pseudo-fraction gravity is analyzed in terms of a specific model for finger tremor. The experimental results presented in this paper are predicted rather well by two resonant modes which occurred in our model system. It is possible to conclude that the model, which is characterized by a pair of antagonistic muscles and two reflex pathways, provides an adequate quantitative description of finger tremor. PMID:7621132

  11. Dirac particle, gravity, and inertial effects

    NASA Astrophysics Data System (ADS)

    Huang, Justin C.

    Dirac's equation with gravity for a noninertial observer is derived using local coordinate methods. Calculations for the equation are carried out to second order in the local coordinates. For easy application to interference experiments, the Schrödinger form of the Dirac equation with a well defined Hamiltonian in the local coordinates is presented. The presence of gravitational weighting factors in the scalar product lead to hermitian and antihermitian sectors for the Hamiltonian. The antihermitian part depends directly on the curvature and vanishes for zero curvature. The hermitian part which is important for the determination of phases is studied in detail and the nonrelativistic case is obtained by the application of three successive Foldy-Wouthuysen transformations. The results also give local currents and interactions which have pure inertial, pure gravity and mixed sectors. The pure inertial terms are the ones obtained by Hehl and Ni. The pure gravity and mixed sectors have contributions which are electric, magnetic and double magnetic in character. The focus is on the curvature contributions. Some are well within reach of the anticipated accuracy of atomic interferometers currently under consideration and other terms may follow if improvements can be made.

  12. Experimental concept for examination of biological effects of magnetic field concealed by gravity.

    PubMed

    Yamashita, M; Tomita-Yokotani, K; Hashimoto, H; Takai, M; Tsushima, M; Nakamura, T

    2004-01-01

    Space is not only a place to study biological effects of gravity, but also provides unique opportunities to examine other environmental factors, where the biological actions are masked by gravity on the ground. Even the earth's magnetic field is steadily acting on living systems, and is known to influence many biological processes. A systematic survey and assessment of its action are difficult to conduct in the presence of dominant factors, such as gravity. Investigation of responses of biological systems against the combined environment of zero-gravity and zero-magnetic field might establish the baseline for the analysis of biological effects of magnetic factors. We propose, in this paper, an experimental concept in this context, together with a practical approach of the experiments, both in orbit and on the ground, with a thin magnetic shielding film. Plant epicotyl growth was taken as an exemplar index to evaluate technical and scientific feasibility of the proposed system concept. PMID:15880894

  13. Cosmological stability bound in massive gravity and bigravity

    SciTech Connect

    Fasiello, Matteo; Tolley, Andrew J. E-mail: andrew.j.tolley@case.edu

    2013-12-01

    We give a simple derivation of a cosmological bound on the graviton mass for spatially flat FRW solutions in massive gravity with an FRW reference metric and for bigravity theories. This bound comes from the requirement that the kinetic term of the helicity zero mode of the graviton is positive definite. The bound is dependent only on the parameters in the massive gravity potential and the Hubble expansion rate for the two metrics. We derive the decoupling limit of bigravity and FRW massive gravity, and use this to give an independent derivation of the cosmological bound. We recover our previous results that the tension between satisfying the Friedmann equation and the cosmological bound is sufficient to rule out all observationally relevant FRW solutions for massive gravity with an FRW reference metric. In contrast, in bigravity this tension is resolved due to different nature of the Vainshtein mechanism. We find that in bigravity theories there exists an FRW solution with late-time self-acceleration for which the kinetic terms for the helicity-2, helicity-1 and helicity-0 are generically nonzero and positive making this a compelling candidate for a model of cosmic acceleration. We confirm that the generalized bound is saturated for the candidate partially massless (bi)gravity theories but the existence of helicity-1/helicity-0 interactions implies the absence of the conjectured partially massless symmetry for both massive gravity and bigravity.

  14. Energy in first order 2 +1 gravity

    NASA Astrophysics Data System (ADS)

    Corichi, Alejandro; Rubalcava-García, Iraís

    2015-08-01

    We consider Λ =0 three-dimensional gravity with asymptotically flat boundary conditions. This system was studied by Ashtekar and Varadarajan within the second-order formalism—with metric variables—who showed that the Regge-Teitelboim formalism yields a consistent Hamiltonian description where, surprisingly, the energy is bounded from below and from above. The energy of the spacetime is, however, determined up to an arbitrary constant. The natural choice was to fix that freedom such that Minkowski spacetime has zero energy. More recently, Marolf and Patiño started from the Einstein-Hilbert action supplemented with the Gibbons-Hawking term and showed that, in the (2 +1 ) decomposition of the theory, the energy is shifted from the Ashtekar-Varadarajan analysis in such a way that Minkowski spacetime possesses a negative energy. In this contribution we consider the first-order formalism, where the fundamental variables are a s o (2 ,1 ) connection waIJ and a triad eaI . We consider two actions. A natural extension to 3 dimensions of the consistent action in 4 D Palatini gravity is shown to be finite and differentiable. For this action, the (2 +1 ) decomposition (that we perform using two methods) yields a Hamiltonian boundary term that corresponds to energy. It assigns zero energy to Minkowski spacetime. We then put forward a totally gauge invariant action and show that it is also well defined and differentiable. Interestingly, it turns out to be related, on shell, to the 3D Palatini action by an additive constant in such a way that its associated energy is given by the Marolf-Patiño expression. Thus, we conclude that, from the perspective of the first-order formalism, Minkowski spacetime can consistently have either zero, or a negative energy equal to -1 /4 G , depending on the choice of consistent action employed as starting point.

  15. Gravity and Biology

    NASA Technical Reports Server (NTRS)

    Morey-Holton, Emily R.

    1996-01-01

    Gravity has been the most constant environmental factor throughout the evolution of biological species on Earth. Organisms are rarely exposed to other gravity levels, either increased or decreased, for prolonged periods. Thus, evolution in a constant 1G field has historically prevented us from appreciating the potential biological consequences of a multi-G universe. To answer the question 'Can terrestrial life be sustained and thrive beyond our planet?' we need to understand the importance of gravity on living systems, and we need to develop a multi-G, rather than a 1G, mentality. The science of gravitational biology took a giant step with the advent of the space program, which provided the first opportunity to examine living organisms in gravity environments lower than could be sustained on Earth. Previously, virtually nothing was known about the effects of extremely low gravity on living organisms, and most of the initial expectations were proven wrong. All species that have flown in space survive in microgravity, although no higher organism has ever completed a life cycle in space. It has been found, however, that many systems change, transiently or permanently, as a result of prolonged exposure to microgravity.

  16. Tethered gravity laboratories study

    NASA Technical Reports Server (NTRS)

    Lucchetti, F.

    1990-01-01

    The scope of the study is to investigate ways of controlling the microgravity environment of the International Space Station by means of a tethered system. Four main study tasks were performed. First, researchers analyzed the utilization of the tether systems to improve the lowest possible steady gravity level on the Space Station and the tether capability to actively control the center of gravity position in order to compensate for activities that would upset the mass distribution of the Station. The purpose of the second task was to evaluate the whole of the experiments performable in a variable gravity environment and the related beneficial residual accelerations, both for pure and applied research in the fields of fluid, materials, and life science, so as to assess the relevance of a variable g-level laboratory. The third task involves the Tethered Variable Gravity Laboratory. The use of the facility that would crawl along a deployed tether and expose experiments to varying intensities of reduced gravity is discussed. Last, a study performed on the Attitude Tether Stabilizer concept is discussed. The stabilization effect of ballast masses tethered to the Space Station was investigated as a means of assisting the attitude control system of the Station.

  17. n-DBI gravity

    NASA Astrophysics Data System (ADS)

    Herdeiro, Carlos; Hirano, Shinji; Sato, Yuki

    2011-12-01

    n-DBI gravity is a gravitational theory introduced in [C. Herdeiro and S. Hirano, arXiv:1109.1468.], motivated by Dirac-Born-Infeld type conformal scalar theory and designed to yield noneternal inflation spontaneously. It contains a foliation structure provided by an everywhere timelike vector field n, which couples to the gravitational sector of the theory, but decouples in the small curvature limit. We show that any solution of Einstein gravity with a particular curvature property is a solution of n-DBI gravity. Among them is a class of geometries isometric to a Reissner-Nordström-(anti)-de Sitter black hole, which is obtained within the spherically symmetric solutions of n-DBI gravity minimally coupled to the Maxwell field. These solutions have, however, two distinct features from their Einstein gravity counterparts: (1) the cosmological constant appears as an integration constant and can be positive, negative, or vanishing, making it a variable quantity of the theory; and (2) there is a nonuniqueness of solutions with the same total mass, charge, and effective cosmological constant. Such inequivalent solutions cannot be mapped to each other by a foliation preserving diffeomorphism. Physically they are distinguished by the expansion and shear of the congruence tangent to n, which define scalar invariants on each leaf of the foliation.

  18. Venus Gravity Handbook

    NASA Technical Reports Server (NTRS)

    Konopliv, Alexander S.; Sjogren, William L.

    1996-01-01

    This report documents the Venus gravity methods and results to date (model MGNP90LSAAP). It is called a handbook in that it contains many useful plots (such as geometry and orbit behavior) that are useful in evaluating the tracking data. We discuss the models that are used in processing the Doppler data and the estimation method for determining the gravity field. With Pioneer Venus Orbiter and Magellan tracking data, the Venus gravity field was determined complete to degree and order 90 with the use of the JPL Cray T3D Supercomputer. The gravity field shows unprecedented high correlation with topography and resolution of features to the 2OOkm resolution. In the procedure for solving the gravity field, other information is gained as well, and, for example, we discuss results for the Venus ephemeris, Love number, pole orientation of Venus, and atmospheric densities. Of significance is the Love number solution which indicates a liquid core for Venus. The ephemeris of Venus is determined to an accuracy of 0.02 mm/s (tens of meters in position), and the rotation period to 243.0194 +/- 0.0002 days.

  19. Variational principle and one-point functions in three-dimensional flat space Einstein gravity

    NASA Astrophysics Data System (ADS)

    Detournay, Stephane; Grumiller, Daniel; Schöller, Friedrich; Simón, Joan

    2014-04-01

    We provide a well-defined variational principle for three-dimensional flat space Einstein gravity by adding one-half of the Gibbons-Hawking-York boundary term to the bulk action. We check the zero-point function, recovering consistency with thermodynamics of flat space cosmologies. We then apply our result to calculate the one-point functions in flat space Einstein gravity for the vacuum and all flat space cosmologies. The results are compatible with the ones for the zero-mode charges obtained by canonical analysis.

  20. Approaches to Validation of Models for Low Gravity Fluid Behavior

    NASA Technical Reports Server (NTRS)

    Chato, David J.; Marchetta, Jeffery; Hochstein, John I.; Kassemi, Mohammad

    2005-01-01

    This paper details the author experiences with the validation of computer models to predict low gravity fluid behavior. It reviews the literature of low gravity fluid behavior as a starting point for developing a baseline set of test cases. It examines authors attempts to validate their models against these cases and the issues they encountered. The main issues seem to be that: Most of the data is described by empirical correlation rather than fundamental relation; Detailed measurements of the flow field have not been made; Free surface shapes are observed but through thick plastic cylinders, and therefore subject to a great deal of optical distortion; and Heat transfer process time constants are on the order of minutes to days but the zero-gravity time available has been only seconds.

  1. New Massive Gravity and AdS{sub 4} Counterterms

    SciTech Connect

    Jatkar, Dileep P.; Sinha, Aninda

    2011-04-29

    We show that the recently proposed Dirac-Born-Infeld extension of new massive gravity emerges naturally as a counterterm in four-dimensional anti-de Sitter space (AdS{sub 4}). The resulting on-shell Euclidean action is independent of the cutoff at zero temperature. We also find that the same choice of counterterm gives the usual area law for the AdS{sub 4} Schwarzschild black hole entropy in a cutoff-independent manner. The parameter values of the resulting counterterm action correspond to a c=0 theory in the context of the duality between AdS{sub 3} gravity and two-dimensional conformal field theory. We rewrite this theory in terms of the gauge field that is used to recast 3D gravity as a Chern-Simons theory.

  2. New massive gravity and AdS(4) counterterms.

    PubMed

    Jatkar, Dileep P; Sinha, Aninda

    2011-04-29

    We show that the recently proposed Dirac-Born-Infeld extension of new massive gravity emerges naturally as a counterterm in four-dimensional anti-de Sitter space (AdS(4)). The resulting on-shell Euclidean action is independent of the cutoff at zero temperature. We also find that the same choice of counterterm gives the usual area law for the AdS(4) Schwarzschild black hole entropy in a cutoff-independent manner. The parameter values of the resulting counterterm action correspond to a c=0 theory in the context of the duality between AdS(3) gravity and two-dimensional conformal field theory. We rewrite this theory in terms of the gauge field that is used to recast 3D gravity as a Chern-Simons theory. PMID:21635026

  3. Disposable remote zero headspace extractor

    DOEpatents

    Hand, Julie J.; Roberts, Mark P.

    2006-03-21

    The remote zero headspace extractor uses a sampling container inside a stainless steel vessel to perform toxicity characteristics leaching procedure to analyze volatile organic compounds. The system uses an in line filter for ease of replacement. This eliminates cleaning and disassembly of the extractor. All connections are made with quick connect fittings which can be easily replaced. After use, the bag can be removed and disposed of, and a new sampling container is inserted for the next extraction.

  4. Quantum-gravity fluctuations and the black-hole temperature

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2015-05-01

    Bekenstein has put forward the idea that, in a quantum theory of gravity, a black hole should have a discrete energy spectrum with concomitant discrete line emission. The quantized black-hole radiation spectrum is expected to be very different from Hawking's semi-classical prediction of a thermal black-hole radiation spectrum. One naturally wonders: Is it possible to reconcile the discrete quantum spectrum suggested by Bekenstein with the continuous semi-classical spectrum suggested by Hawking? In order to address this fundamental question, in this essay we shall consider the zero-point quantum-gravity fluctuations of the black-hole spacetime. In a quantum theory of gravity, these spacetime fluctuations are closely related to the characteristic gravitational resonances of the corresponding black-hole spacetime. Assuming that the energy of the black-hole radiation stems from these zero-point quantum-gravity fluctuations of the black-hole spacetime, we derive the effective temperature of the quantized black-hole radiation spectrum. Remarkably, it is shown that this characteristic temperature of the discrete (quantized) black-hole radiation agrees with the well-known Hawking temperature of the continuous (semi-classical) black-hole spectrum.

  5. Gravity and embryonic development

    NASA Technical Reports Server (NTRS)

    Young, R. S.

    1976-01-01

    The relationship between the developing embryo (both plant and animal) and a gravitational field has long been contemplated. The difficulty in designing critical experiments on the surface of the earth because of its background of 1 g, has been an obstacle to a resolution of the problem. Biological responses to gravity (particularly in plants) are obvious in many cases; however, the influence of gravity as an environmental input to the developing embryo is not as obvious and has proven to be extremely difficult to define. In spite of this, over the years numerous attempts have been made using a variety of embryonic materials to come to grips with the role of gravity in development. Three research tools are available: the centrifuge, the clinostat, and the orbiting spacecraft. Experimental results are now available from all three sources. Some tenuous conclusions are drawn, and an attempt at a unifying theory of gravitational influence on embryonic development is made.

  6. Inflation without quantum gravity

    NASA Astrophysics Data System (ADS)

    Markkanen, Tommi; Räsänen, Syksy; Wahlman, Pyry

    2015-04-01

    It is sometimes argued that observation of tensor modes from inflation would provide the first evidence for quantum gravity. However, in the usual inflationary formalism, also the scalar modes involve quantized metric perturbations. We consider the issue in a semiclassical setup in which only matter is quantized, and spacetime is classical. We assume that the state collapses on a spacelike hypersurface and find that the spectrum of scalar perturbations depends on the hypersurface. For reasonable choices, we can recover the usual inflationary predictions for scalar perturbations in minimally coupled single-field models. In models where nonminimal coupling to gravity is important and the field value is sub-Planckian, we do not get a nearly scale-invariant spectrum of scalar perturbations. As gravitational waves are only produced at second order, the tensor-to-scalar ratio is negligible. We conclude that detection of inflationary gravitational waves would indeed be needed to have observational evidence of quantization of gravity.

  7. Artificial gravity experiment satellites

    NASA Astrophysics Data System (ADS)

    Harada, Tadashi

    1992-07-01

    An overview of the conceptual study of an artificial gravity experiment satellite based on the assumption of a launch by the H-2 launch vehicle with a target launch date in the Year 2000 is presented. While many satellites provided with artificial gravity have been reported in relation to a manned Mars exploration spacecraft mission, the review has been conducted on missions and test subjects only for experimental purposes. Mission requirements were determined based on the results of reviews on the mission, test subjects, and model missions. The system baseline and development plan were based on the results of a study on conceptual structure and scale of the system, including measures to generate artificial gravity. Approximate scale of the system and arm length, mission orbit, visibility of the operation orbit from ground stations in Japan, and satellite attitude on the mission orbit are outlined.

  8. Newberry Combined Gravity 2016

    DOE Data Explorer

    Kelly Rose

    2016-01-22

    Newberry combined gravity from Zonge Int'l, processed for the EGS stimulation project at well 55-29. Includes data from both Davenport 2006 collection and for OSU/4D EGS monitoring 2012 collection. Locations are NAD83, UTM Zone 10 North, meters. Elevation is NAVD88. Gravity in milligals. Free air and observed gravity are included, along with simple Bouguer anomaly and terrain corrected Bouguer anomaly. SBA230 means simple Bouguer anomaly computed at 2.30 g/cc. CBA230 means terrain corrected Bouguer anomaly at 2.30 g/cc. This suite of densities are included (g/cc): 2.00, 2.10, 2.20, 2.30, 2.40, 2.50, 2.67.

  9. Singularity perturbed zero dynamics of nonlinear systems

    NASA Technical Reports Server (NTRS)

    Isidori, A.; Sastry, S. S.; Kokotovic, P. V.; Byrnes, C. I.

    1992-01-01

    Stability properties of zero dynamics are among the crucial input-output properties of both linear and nonlinear systems. Unstable, or 'nonminimum phase', zero dynamics are a major obstacle to input-output linearization and high-gain designs. An analysis of the effects of regular perturbations in system equations on zero dynamics shows that whenever a perturbation decreases the system's relative degree, it manifests itself as a singular perturbation of zero dynamics. Conditions are given under which the zero dynamics evolve in two timescales characteristic of a standard singular perturbation form that allows a separate analysis of slow and fast parts of the zero dynamics.

  10. Majorana Zero Modes in Graphene

    NASA Astrophysics Data System (ADS)

    San-Jose, P.; Lado, J. L.; Aguado, R.; Guinea, F.; Fernández-Rossier, J.

    2015-10-01

    A clear demonstration of topological superconductivity (TS) and Majorana zero modes remains one of the major pending goals in the field of topological materials. One common strategy to generate TS is through the coupling of an s -wave superconductor to a helical half-metallic system. Numerous proposals for the latter have been put forward in the literature, most of them based on semiconductors or topological insulators with strong spin-orbit coupling. Here, we demonstrate an alternative approach for the creation of TS in graphene-superconductor junctions without the need for spin-orbit coupling. Our prediction stems from the helicity of graphene's zero-Landau-level edge states in the presence of interactions and from the possibility, experimentally demonstrated, of tuning their magnetic properties with in-plane magnetic fields. We show how canted antiferromagnetic ordering in the graphene bulk close to neutrality induces TS along the junction and gives rise to isolated, topologically protected Majorana bound states at either end. We also discuss possible strategies to detect their presence in graphene Josephson junctions through Fraunhofer pattern anomalies and Andreev spectroscopy. The latter, in particular, exhibits strong unambiguous signatures of the presence of the Majorana states in the form of universal zero-bias anomalies. Remarkable progress has recently been reported in the fabrication of the proposed type of junctions, which offers a promising outlook for Majorana physics in graphene systems.

  11. Zero-Copy Objects System

    NASA Technical Reports Server (NTRS)

    Burleigh, Scott C.

    2011-01-01

    Zero-Copy Objects System software enables application data to be encapsulated in layers of communication protocol without being copied. Indirect referencing enables application source data, either in memory or in a file, to be encapsulated in place within an unlimited number of protocol headers and/or trailers. Zero-copy objects (ZCOs) are abstract data access representations designed to minimize I/O (input/output) in the encapsulation of application source data within one or more layers of communication protocol structure. They are constructed within the heap space of a Simple Data Recorder (SDR) data store to which all participating layers of the stack must have access. Each ZCO contains general information enabling access to the core source data object (an item of application data), together with (a) a linked list of zero or more specific extents that reference portions of this source data object, and (b) linked lists of protocol header and trailer capsules. The concatenation of the headers (in ascending stack sequence), the source data object extents, and the trailers (in descending stack sequence) constitute the transmitted data object constructed from the ZCO. This scheme enables a source data object to be encapsulated in a succession of protocol layers without ever having to be copied from a buffer at one layer of the protocol stack to an encapsulating buffer at a lower layer of the stack. For large source data objects, the savings in copy time and reduction in memory consumption may be considerable.

  12. Relativistic Dipole Matrix Element Zeros

    NASA Astrophysics Data System (ADS)

    Lajohn, L. A.; Pratt, R. H.

    2002-05-01

    There is a special class of relativistic high energy dipole matrix element zeros (RZ), whose positions with respect to photon energy ω , only depend on the bound state l quantum number according to ω^0=mc^2/(l_b+1) (independent of primary quantum number n, nuclear charge Z, central potential V and dipole retardation). These RZ only occur in (n,l_b,j_b)arrow (ɛ , l_b+1,j_b) transitions such as ns_1/2arrow ɛ p_1/2; np_3/2arrow ɛ d_3/2: nd_5/2arrow ɛ f_5/2 etc. The nonrelativistic limit of these matrix elements can be established explicitly in the Coulomb case. Within the general matrix element formalism (such as that in [1]); when |κ | is substituted for γ in analytic expressions for matrix elements, the zeros remain, but ω^0 now becomes dependent on n and Z. When the reduction to nonrelativistic form is completed by application of the low energy approximation ω mc^2 mc^2, the zeros disappear. This nonzero behavior was noted in nonrelativistic dipole Coulomb matrix elements by Fano and Cooper [2] and later proven by Oh and Pratt[3]. (J. H. Scofield, Phys. Rev. A 40), 3054 (1989 (U. Fano and J. W. Cooper, Rev. Mod. Phys. 40), 441 (1968). (D. Oh and R. H. Pratt, Phys. Rev. A 34), 2486 (1986); 37, 1524 (1988); 45, 1583 (1992).

  13. Brane-World Gravity

    NASA Astrophysics Data System (ADS)

    Maartens, Roy; Koyama, Kazuya

    2010-09-01

    The observable universe could be a 1+3-surface (the "brane") embedded in a 1+3+d-dimensional spacetime (the "bulk"), with Standard Model particles and fields trapped on the brane while gravity is free to access the bulk. At least one of the d extra spatial dimensions could be very large relative to the Planck scale, which lowers the fundamental gravity scale, possibly even down to the electroweak (˜TeV) level. This revolutionary picture arises in the framework of recent developments in M theory. The 1+10-dimensional M theory encompasses the known 1+9-dimensional superstring theories, and is widely considered to be a promising potential route to quantum gravity. At low energies, gravity is localized at the brane and general relativity is recovered, but at high energies gravity “leaks” into the bulk, behaving in a truly higher-dimensional way. This introduces significant changes to gravitational dynamics and perturbations, with interesting and potentially testable implications for high-energy astrophysics, black holes, and cosmology. Brane-world models offer a phenomenological way to test some of the novel predictions and corrections to general relativity that are implied by M theory. This review analyzes the geometry, dynamics and perturbations of simple brane-world models for cosmology and astrophysics, mainly focusing on warped 5-dimensional brane-worlds based on the Randall-Sundrum models. We also cover the simplest brane-world models in which 4-dimensional gravity on the brane is modified at low energies - the 5-dimensional Dvali-Gabadadze-Porrati models. Then we discuss co-dimension two branes in 6-dimensional models.

  14. Gravity and Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Blencowe, Miles

    The emergence of the macroscopic classical world from the microscopic quantum world is commonly understood to be a consequence of the fact that any given quantum system is open, unavoidably interacting with unobserved environmental degrees of freedom that will cause initial quantum superposition states of the system to decohere, resulting in classical mixtures of either-or alternatives. A fundamental question concerns how large a macroscopic object can be placed in a manifest quantum state, such as a center of mass quantum superposition state, under conditions where the effects of the interacting environmental degrees of freedom are reduced (i.e. in ultrahigh vacuum and at ultralow temperatures). Recent experiments have in fact demonstrated manifest quantum behavior in nano-to-micron-scale mechanical systems. Gravity has been invoked in various ways as playing a possible fundamental role in enforcing classicality of matter systems beyond a certain scale. Adopting the viewpoint that the standard perturbative quantization of general relativity provides an effective description of quantum gravity that is valid at ordinary energies, we show that it is possible to describe quantitatively how gravity as an environment can induce the decoherence of matter superposition states. The justification for such an approach follows from the fact that we are considering laboratory scale systems, where the matter is localized to regions of small curvature. As with other low energy effects, such as the quantum gravity correction to the Newtonian potential between two ordinary masses, it should be possible to quantitatively evaluate gravitationally induced decoherence rates by employing standard perturbative quantum gravity as an effective field theory; whatever the final form the eventual correct quantum theory of gravity takes, it must converge in its predictions with the effective field theory description at low energies. Research supported by the National Science Foundation (NSF

  15. The Grip of Gravity

    NASA Astrophysics Data System (ADS)

    Gondhalekar, Prabhakar

    2001-09-01

    Gravity is one of the most inexplicable forces of nature, controlling everything, from the expansion of the Universe to the ebb and flow of ocean tides. The search for the laws of motion and gravitation began more than two thousand years ago, a quest that Prabhakar Gondhalekar recounts in The Grip of Gravity. Beginning with Aristotle and concluding with Planck, Gondhalekar outlines a 'genealogy' of gravity and lucidly explains how previous explanations have shaped the most recent development in the field, string theory. In this work, physicist and astronomer Gondhalekar describes experiments, both planned and proposed, and clearly explains natural phenomena like ocean tides, seasons, ice ages, the formation of planets, stars, and exotic objects like black holes and neutron stars, which are all controlled by gravity. Including anecdotes and thumb-nail sketches of the personalities involved, The Grip of Gravity provides an introduction to the foundation of modern physics and shows how the current developments in string theory may lead to a new and radical interpretation of gravity. Prabhakar Gondhalekar is an Honorary Fellow in the Department of Physics and Astronomy, University College, London. Until his retirement in 1998, he was the head of the Space Astronomy Group at the Rutherford Appleton Laboratory, where he had been a researcher for 18 years. His research has included a number of topics in galactic and extragalactic astronomy, with his major work focusing on the interstellar medium and active galactic nuclei. Gondhalekar has been awarded Royal Society, Leverhulme Trust, and NATO Research Fellowships to do research in universities in the United States and Israel.

  16. Role of Gravity Waves in Determining Cirrus Cloud Properties

    NASA Technical Reports Server (NTRS)

    OCStarr, David; Singleton, Tamara; Lin, Ruei-Fong

    2008-01-01

    Cirrus clouds are important in the Earth's radiation budget. They typically exhibit variable physical properties within a given cloud system and from system to system. Ambient vertical motion is a key factor in determining the cloud properties in most cases. The obvious exception is convectively generated cirrus (anvils), but even in this case, the subsequent cloud evolution is strongly influenced by the ambient vertical motion field. It is well know that gravity waves are ubiquitous in the atmosphere and occur over a wide range of scales and amplitudes. Moreover, researchers have found that inclusion of statistical account of gravity wave effects can markedly improve the realism of simulations of persisting large-scale cirrus cloud features. Here, we use a 1 -dimensional (z) cirrus cloud model, to systematically examine the effects of gravity waves on cirrus cloud properties. The model includes a detailed representation of cloud microphysical processes (bin microphysics and aerosols) and is run at relatively fine vertical resolution so as to adequately resolve nucleation events, and over an extended time span so as to incorporate the passage of multiple gravity waves. The prescribed gravity waves "propagate" at 15 m s (sup -1), with wavelengths from 5 to 100 km, amplitudes range up to 1 m s (sup -1)'. Despite the fact that the net gravity wave vertical motion forcing is zero, it will be shown that the bulk cloud properties, e.g., vertically-integrated ice water path, can differ quite significantly from simulations without gravity waves and that the effects do depend on the wave characteristics. We conclude that account of gravity wave effects is important if large-scale models are to generate realistic cirrus cloud property climatology (statistics).

  17. Seeking the Light: Gravity Without the Influence of Gravity

    NASA Technical Reports Server (NTRS)

    Sack, Fred; Kern, Volker; Reed, Dave; Etheridge, Guy (Technical Monitor)

    2002-01-01

    All living things sense gravity like humans might sense light or sound. The Biological Research In Canisters (BRIC-14) experiment, explores how moss cells sense and respond to gravity and light. This experiment studies how gravity influences the internal structure of moss cells and seeks to understand the influences of the spaceflight environment on cell growth. This knowledge will help researchers understand the role of gravity in the evolution of cells and life on earth.

  18. Gauge/Gravity Duality

    ScienceCinema

    Polchinski, Joseph [Kavli Institute for Theoretical Physics

    2010-09-01

    Gauge theories, which describe the particle interactions, are well understood, while quantum gravity leads to many puzzles. Remarkably, in recent years we have learned that these are actually dual, the same system written in different variables. On the one hand, this provides our most precise description of quantum gravity, resolves some long-standing paradoxes, and points to new principles. On the other, it gives a new perspective on strong interactions, with surprising connections to other areas of physics. I describe these ideas, and discuss current and future directions.

  19. Continuous gravity gradient logging

    SciTech Connect

    Fitch, J.L.; Lyle, W.D. Jr.

    1986-07-29

    A method is described for conducting a gravimetry survey of an earth formation, comprising the steps of: (a) continuously traversing the earth formation with a gravity logging tool having a column of fluid within the tool, (b) measuring a first pressure difference along a first interval within the column of fluid, (c) measuring a second pressure difference along a second interval within the column of fluid, (d) differencing the first and second pressure differences to determine the gravity gradient along the earth formation between the first and second intervals.

  20. Position from gravity

    NASA Technical Reports Server (NTRS)

    Mather, R. S.

    1973-01-01

    Procedures for obtaining position from surface gravity observations are reviewed and their relevance assessed in the context of the application of modern geodetic techniques to programs of Earth and ocean physics. Solutions based on the use of surface layer techniques, the discrete value approach, and the development from Green's theorem are stated in summary, the latter being extended to order e cubed in the height anomaly. The representation of the surface gravity field which is required in order that this accuracy may be achieved is discussed. Interim techniques which could be used in the absence of such a representation are also outlined.

  1. Gauge/Gravity Duality

    SciTech Connect

    Polchinski, Joseph

    2010-02-24

    Gauge theories, which describe the particle interactions, are well understood, while quantum gravity leads to many puzzles. Remarkably, in recent years we have learned that these are actually dual, the same system written in different variables. On the one hand, this provides our most precise description of quantum gravity, resolves some long-standing paradoxes, and points to new principles. On the other, it gives a new perspective on strong interactions, with surprising connections to other areas of physics. I describe these ideas, and discuss current and future directions.

  2. Artificial gravity field

    NASA Astrophysics Data System (ADS)

    Markley, Larry C.; Lindner, John F.

    Using computer algebra to run Einstein's equations "backward", from field to source rather than from source to field, we design an artificial gravity field for a space station or spaceship. Everywhere inside astronauts experience normal Earth gravity, while outside they float freely. The stress-energy that generates the field contains exotic matter of negative energy density but also relies importantly on pressures and shears, which we describe. The same techniques can be readily used to design other interesting spacetimes and thereby elucidate the connection between the source and field in general relativity.

  3. Resummation of Massive Gravity

    SciTech Connect

    Rham, Claudia de; Gabadadze, Gregory; Tolley, Andrew J.

    2011-06-10

    We construct four-dimensional covariant nonlinear theories of massive gravity which are ghost-free in the decoupling limit to all orders. These theories resume explicitly all the nonlinear terms of an effective field theory of massive gravity. We show that away from the decoupling limit the Hamiltonian constraint is maintained at least up to and including quartic order in nonlinearities, hence excluding the possibility of the Boulware-Deser ghost up to this order. We also show that the same remains true to all orders in a similar toy model.

  4. Maglev Facility for Simulating Variable Gravity

    NASA Technical Reports Server (NTRS)

    Liu, Yuanming; Strayer, Donald M.; Israelsson, Ulf E.

    2010-01-01

    An improved magnetic levitation apparatus ("Maglev Facility") has been built for use in experiments in which there are requirements to impose variable gravity (including zero gravity) in order to assess the effects of gravity or the absence thereof on physical and physiological processes. The apparatus is expected to be especially useful for experiments on the effects of gravity on convection, boiling, and heat transfer in fluids and for experiments on mice to gain understanding of bone loss induced in human astronauts by prolonged exposure to reduced gravity in space flight. The maglev principle employed by the apparatus is well established. Diamagnetic cryogenic fluids such as liquid helium have been magnetically levitated for studying their phase transitions and critical behaviors. Biological entities consist mostly of diamagnetic molecules (e.g., water molecules) and thus can be levitated by use of sufficiently strong magnetic fields having sufficiently strong vertical gradients. The heart of the present maglev apparatus is a vertically oriented superconducting solenoid electromagnet (see figure) that generates a static magnetic field of about 16 T with a vertical gradient sufficient for levitation of water in normal Earth gravity. The electromagnet is enclosed in a Dewar flask having a volume of 100 L that contains liquid helium to maintain superconductivity. The Dewar flask features a 66-mm-diameter warm bore, lying within the bore of the magnet, wherein experiments can be performed at room temperature. The warm bore is accessible from its top and bottom ends. The superconducting electromagnet is run in the persistent mode, in which the supercurrent and the magnetic field can be maintained for weeks with little decay, making this apparatus extremely cost and energy efficient to operate. In addition to water, this apparatus can levitate several common fluids: liquid hydrogen, liquid oxygen, methane, ammonia, sodium, and lithium, all of which are useful

  5. Does Paramecium sense gravity?

    PubMed

    Mogami, Y; Ishii, J; Baba, S A

    1995-03-01

    In order to get an insight into the cellular mechanisms for the integration of the effects of gravity, we investigated the gravitactic behaviour in Paramecium. There are two main categories for the model of the mechanism of gravitaxis; one is derived on the basis of the mechanistic properties of the cell (physical model) and the other of the physiological properties including cellular gravireception (physiological model). In this review article, we criticized the physical models and introduced a new physiological model. Physical models postulated so far can be divided into two; one explaining the negative gravitactic orientation of the cell in terms of the static torque generated by the structural properties of the cell (gravity-buoyancy model by Verworn, 1889 and drag-gravity model by Roberts, 1970), and the other explaining it in terms of the dynamic torque generated by the helical swimming of the cell (propulsion-gravity model by Winet and Jahn, 1974 and lifting-force model by Nowakowska and Grebecki, 1977). Among those we excluded the possibility of dynamic-torque models because of their incorrect theoretical assumptions. According to the passive orientation of Ni(2+)-immobilized cells, the physical effect of the static torque should be inevitable for the gravitactic orientation. Downward orientation of the immobilized cells in the course of floating up in the hyper-density medium demonstrated the gravitactic orientation is not resulted by the nonuniform distribution of cellular mass (gravity-buoyancy model) but by the fore-aft asymmetry of the cell (drag-gravity model). A new model explaining the gravitactic behaviour is derived on the basis of the cellular gravity sensation through mechanoreceptor channels of the cell membrane. Paramecium is known to have depolarizing receptor channels in the anterior and hyperpolarizing receptors in the posterior of the cell. The uneven distribution of the receptor may lead to the bidirectional changes of the membrane

  6. Our World: Gravity in Space

    NASA Video Gallery

    What is gravity? Find out about the balance between gravity and inertia that keeps the International Space Station in orbit. Learn why astronauts "float" in space and how the space shuttle has to s...

  7. Physiological Considerations of Artificial Gravity

    NASA Technical Reports Server (NTRS)

    Cramer, D. B.

    1985-01-01

    Reasons for the development of artificial gravity environments on spacecraft are outlined. The physiological effects of weightlessness on the human cardiovascular skeletal, and vestibular systems are enumerated. Design options for creating artificial gravity environments are shown.

  8. Traversable wormholes and non-singular black holes from the vacuum of quadratic gravity

    NASA Astrophysics Data System (ADS)

    Duplessis, Francis; Easson, Damien A.

    2015-08-01

    We present new traversable wormhole and nonsingular black hole solutions in pure, scale-free R2 gravity. These exotic solutions require no null energy condition violating or "exotic" matter and are supported only by the vacuum of the theory. It is well known that f (R ) theories of gravity may be recast as dual theories in the Einstein frame. The solutions we present are found when the conformal transformation required to move to the dual frame is singular. For quadratic R2 gravity, the required conformal factor is identically zero for spacetimes with R =0 . Solutions in this case are argued to arise in the strong coupling limit of general relativity.

  9. Cubesat Gravity Field Mission

    NASA Astrophysics Data System (ADS)

    Burla, Santoshkumar; Mueller, Vitali; Flury, Jakob; Jovanovic, Nemanja

    2016-04-01

    CHAMP, GRACE and GOCE missions have been successful in the field of satellite geodesy (especially to improve Earth's gravity field models) and have established the necessity towards the next generation gravity field missions. Especially, GRACE has shown its capabilities beyond any other gravity field missions. GRACE Follow-On mission is going to continue GRACE's legacy which is almost identical to GRACE mission with addition of laser interferometry. But these missions are not only quite expensive but also takes quite an effort to plan and to execute. Still there are few drawbacks such as under-sampling and incapability of exploring new ideas within a single mission (ex: to perform different orbit configurations with multi satellite mission(s) at different altitudes). The budget is the major limiting factor to build multi satellite mission(s). Here, we offer a solution to overcome these drawbacks using cubesat/ nanosatellite mission. Cubesats are widely used in research because they are cheaper, smaller in size and building them is easy and faster than bigger satellites. Here, we design a 3D model of GRACE like mission with available sensors and explain how the Attitude and Orbit Control System (AOCS) works. The expected accuracies on final results of gravity field are also explained here.

  10. Low gravity phase separator

    NASA Technical Reports Server (NTRS)

    Smoot, G. F.; Pope, W. L.; Smith, L. (Inventor)

    1977-01-01

    An apparatus is described for phase separating a gas-liquid mixture as might exist in a subcritical cryogenic helium vessel for cooling a superconducting magnet at low gravity such as in planetary orbit, permitting conservation of the liquid and extended service life of the superconducting magnet.

  11. Variable gravity research facility

    NASA Technical Reports Server (NTRS)

    Allan, Sean; Ancheta, Stan; Beine, Donna; Cink, Brian; Eagon, Mark; Eckstein, Brett; Luhman, Dan; Mccowan, Daniel; Nations, James; Nordtvedt, Todd

    1988-01-01

    Spin and despin requirements; sequence of activities required to assemble the Variable Gravity Research Facility (VGRF); power systems technology; life support; thermal control systems; emergencies; communication systems; space station applications; experimental activities; computer modeling and simulation of tether vibration; cost analysis; configuration of the crew compartments; and tether lengths and rotation speeds are discussed.

  12. Cosmological tests of gravity

    SciTech Connect

    Jain, Bhuvnesh; Khoury, Justin

    2010-07-15

    Modifications of general relativity provide an alternative explanation to dark energy for the observed acceleration of the universe. We review recent developments in modified gravity theories, focusing on higher-dimensional approaches and chameleon/f(R) theories. We classify these models in terms of the screening mechanisms that enable such theories to approach general relativity on small scales (and thus satisfy solar system constraints). We describe general features of the modified Friedman equation in such theories. The second half of this review describes experimental tests of gravity in light of the new theoretical approaches. We summarize the high precision tests of gravity on laboratory and solar system scales. We describe in some detail tests on astrophysical scales ranging from {approx} kpc (galaxy scales) to {approx} Gpc (large-scale structure). These tests rely on the growth and inter-relationship of perturbations in the metric potentials, density and velocity fields which can be measured using gravitational lensing, galaxy cluster abundances, galaxy clustering and the integrated Sachs-Wolfe effect. A robust way to interpret observations is by constraining effective parameters, such as the ratio of the two metric potentials. Currently tests of gravity on astrophysical scales are in the early stages - we summarize these tests and discuss the interesting prospects for new tests in the coming decade.

  13. Hawaii Gravity Model

    SciTech Connect

    Nicole Lautze

    2015-12-15

    Gravity model for the state of Hawaii. Data is from the following source: Flinders, A.F., Ito, G., Garcia, M.O., Sinton, J.M., Kauahikaua, J.P., and Taylor, B., 2013, Intrusive dike complexes, cumulate cores, and the extrusive growth of Hawaiian volcanoes: Geophysical Research Letters, v. 40, p. 3367–3373, doi:10.1002/grl.50633.

  14. Time in quantum gravity

    NASA Astrophysics Data System (ADS)

    Zeh, H. D.

    1988-01-01

    The intrinsic time concept of quantum gravity allows one to derive thermodynamical and quantum mechanical time arrows correlated with cosmic expansion only. Tube-like standing waves subject to a ``final'' condition may resemble unparametrised orbits of the universe, with ``quantum Poincaré cycles'' coinciding with its durations. A recent criticism by Qadir is answered.

  15. Gravity and crustal structure

    NASA Technical Reports Server (NTRS)

    Bowin, C. O.

    1976-01-01

    Lunar gravitational properties were analyzed along with the development of flat moon and curved moon computer models. Gravity anomalies and mascons were given particular attention. Geophysical and geological considerations were included, and comparisons were made between the gravitional fields of the Earth, Mars, and the Moon.

  16. Revamped braneworld gravity

    SciTech Connect

    Bao Ruoyu; Park, Minjoon; Carena, Marcela; Santiago, Jose; Lykken, Joseph

    2006-03-15

    Gravity in five-dimensional braneworld backgrounds often exhibits problematic features, including kinetic ghosts, strong coupling, and the van Dam-Veltman-Zakharov (vDVZ) discontinuity. These problems are an obstacle to producing and analyzing braneworld models with interesting and potentially observable modifications of 4d gravity. We examine these problems in a general AdS{sub 5}/AdS{sub 4} setup with two branes and localized curvature from arbitrary brane kinetic terms. We use the interval approach and an explicit straight gauge-fixing. We compute the complete quadratic gauge-fixed effective 4d action, as well as the leading cubic order corrections. We compute the exact Green's function for gravity as seen on the brane. In the full parameter space, we exhibit the regions which avoid kinetic ghosts and tachyons. We give a general formula for the strong coupling scale, i.e., the energy scale at which the linearized treatment of gravity breaks down, for relevant regions of the parameter space. We show how the vDVZ discontinuity can be naturally but nontrivially avoided by ultralight graviton modes. We present a direct comparison of warping versus localized curvature in terms of their effects on graviton mode couplings. We exhibit the first example of Dvali-Gabadadze-Porrati (DGP)-like crossover behavior in a general warped setup.

  17. Revamped braneworld gravity

    SciTech Connect

    Bao, Ruoyu; Carena, Marcela; Lykken, Joseph; Park, Minjoon; Santiago, Jose; /Fermilab

    2005-11-01

    Gravity in five-dimensional braneworld backgrounds often exhibits problematic features, including kinetic ghosts, strong coupling, and the vDVZ discontinuity. These problems are an obstacle to producing and analyzing braneworld models with interesting and potentially observable modifications of 4d gravity. We examine these problems in a general AdS{sub 5}/AdS{sub 4} setup with two branes and localized curvature from arbitrary brane kinetic terms. We use the interval approach and an explicit ''straight'' gauge-fixing. We compute the complete quadratic gauge-fixed effective 4d action, as well as the leading cubic order corrections. We compute the exact Green's function for gravity as seen on the brane. In the full parameter space, we exhibit the regions which avoid kinetic ghosts and tachyons. We give a general formula for the strong coupling scale, i.e. the energy scale at which the linearized treatment of gravity breaks down, for relevant regions of the parameter space. We show how the vDVZ discontinuity can be naturally but nontrivially avoided by ultralight graviton modes. We present a direct comparison of warping versus localized curvature in terms of their effects on graviton mode couplings. We exhibit the first example of DGP-like crossover behavior in a general warped setup.

  18. Spaceborne Gravity Gradiometers

    NASA Technical Reports Server (NTRS)

    Wells, W. C. (Editor)

    1984-01-01

    The current status of gravity gradiometers and technology that could be available in the 1990's for the GRAVSAT-B mission are assessed. Problems associated with sensors, testing, spacecraft, and data processing are explored as well as critical steps, schedule, and cost factors in the development plan.

  19. Artificial Gravity Research Plan

    NASA Technical Reports Server (NTRS)

    Gilbert, Charlene

    2014-01-01

    This document describes the forward working plan to identify what countermeasure resources are needed for a vehicle with an artificial gravity module (intermittent centrifugation) and what Countermeasure Resources are needed for a rotating transit vehicle (continuous centrifugation) to minimize the effects of microgravity to Mars Exploration crewmembers.

  20. A Trick of Gravity

    ERIC Educational Resources Information Center

    Newburgh, Ronald

    2010-01-01

    It's both surprising and rewarding when an old, standard problem reveals a subtlety that expands its pedagogic value. I realized recently that the role of gravity in the range equation for a projectile is not so simple as first appears. This realization may be completely obvious to others but was quite new to me.

  1. Physiological Considerations of Artificial Gravity

    NASA Technical Reports Server (NTRS)

    Cramer, D. B.

    1985-01-01

    Weightlessness produces significant physiological changes. Whether these changes will stabilize or achieve medical significance is not clear. Artificial gravity is the physiological countermeasure, and the tether system represents an attractive approach to artificial gravity. The need for artificial gravity is examined.

  2. Gravity-Off-loading System for Large-Displacement Ground Testing of Spacecraft Mechanisms

    NASA Technical Reports Server (NTRS)

    Han, Olyvia; Kienholz, David; Janzen, Paul; Kidney, Scott

    2010-01-01

    Gravity-off-loading of deployable spacecraft mechanisms during ground testing is a long-standing problem. Deployable structures which are usually too weak to support their own weight under gravity require a means of gravity-off-loading as they unfurl. Conventional solutions to this problem have been helium-filled balloons or mechanical pulley/counterweight systems. These approaches, however, suffer from the deleterious effects of added inertia or friction forces. The changing form factor of the deployable structure itself and the need to track the trajectory of the center of gravity also pose a challenge to these conventional technologies. This paper presents a novel testing apparatus for high-fidelity zero-gravity simulation for special application to deployable space structures such as solar arrays, magnetometer booms, and robotic arms in class 100,000 clean room environments

  3. Propulsion Investigation for Zero and Near-Zero Emissions Aircraft

    NASA Technical Reports Server (NTRS)

    Snyder, Christopher A.; Berton, Jeffrey J.; Brown, Gerald v.; Dolce, James L.; Dravid, Marayan V.; Eichenberg, Dennis J.; Freeh, Joshua E.; Gallo, Christopher A.; Jones, Scott M.; Kundu, Krishna P.; Marek, Cecil J.; Millis, Marc G.; Murthy, Pappu L.; Roach, Timothy M.; Smith, Timothy D.; Stefko, George L.; Sullivan, Roy M.; Tornabene, Robert T.; Geiselhat, Karl A.; Kascak, Albert F.

    2009-01-01

    As world emissions are further scrutinized to identify areas for improvement, aviation s contribution to the problem can no longer be ignored. Previous studies for zero or near-zero emissions aircraft suggest aircraft and propulsion system sizes that would perform propulsion system and subsystems layout and propellant tankage analyses to verify the weight-scaling relationships. These efforts could be used to identify and guide subsequent work on systems and subsystems to achieve viable aircraft system emissions goals. Previous work quickly focused these efforts on propulsion systems for 70- and 100-passenger aircraft. Propulsion systems modeled included hydrogen-fueled gas turbines and fuel cells; some preliminary estimates combined these two systems. Hydrogen gas-turbine engines, with advanced combustor technology, could realize significant reductions in nitrogen emissions. Hydrogen fuel cell propulsion systems were further laid out, and more detailed analysis identified systems needed and weight goals for a viable overall system weight. Results show significant, necessary reductions in overall weight, predominantly on the fuel cell stack, and power management and distribution subsystems to achieve reasonable overall aircraft sizes and weights. Preliminary conceptual analyses for a combination of gas-turbine and fuel cell systems were also performed, and further studies were recommended. Using gas-turbine engines combined with fuel cell systems can reduce the fuel cell propulsion system weight, but at higher fuel usage than using the fuel cell only.

  4. Zero Tolerance in Tennessee Schools: An Update.

    ERIC Educational Resources Information Center

    Potts, Kim; Njie, Bintou; Detch, Ethel R.; Walton, Jason

    As required by Tennessee law, this report examines the state's zero-tolerance disciplinary data collected by the Tennessee Department of Education for school years 1999-00, 2000-01, and 2001-02. The first section displays statewide zero-tolerance statistics. The second section focuses on the zero-tolerance statistics of Tennessee's five major…

  5. 40 CFR 180.5 - Zero tolerances.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Definitions and Interpretative Regulations § 180.5 Zero tolerances. A zero tolerance means that no amount of the pesticide chemical may remain on the raw agricultural commodity when it is offered for shipment. A zero tolerance for a pesticide chemical in or on...

  6. 40 CFR 180.5 - Zero tolerances.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Definitions and Interpretative Regulations § 180.5 Zero tolerances. A zero tolerance means that no amount of the pesticide chemical may remain on the raw agricultural commodity when it is offered for shipment. A zero tolerance for a pesticide chemical in or on...

  7. Instruction Manual: ZBB. Zero Base Budgeting.

    ERIC Educational Resources Information Center

    Sidman, Bernard; Linstone, Robert T.

    This guide to zero base budgeting (ZBB) offers information intended to be useful to those implementing this system in schools. Beginning with an explanation of zero base budgeting, the paper then enumerates the advantages of such a system. Zero base budgeting design is then explained as well as the assumptions that underlie the system. Suggested…

  8. Role of Zero in Grading. Research Brief

    ERIC Educational Resources Information Center

    Walker, Karen

    2006-01-01

    What is the role of "zero" in grading? According to several authors, giving students a zero lets them too easily off the hook, seldom serves as a motivator for them to do better and is not an accurate reflection of what has been learned. While students do need to be responsible and accountable for their work, assigning a zero skews the grade and…

  9. GRAVITY detector systems

    NASA Astrophysics Data System (ADS)

    Mehrgan, Leander H.; Finger, Gert; Accardo, Matteo; Lizon, Jean-Louis; Stegmeier, Joerg; Eisenhauer, Frank

    2014-07-01

    GRAVITY is a second generation instrument for the VLT Interferometer, designed to enhance the near-infrared astrometric and spectro-imaging capabilities of VLTI. It will combine the AO corrected beams of the four VLT telescopes. The GRAVITY instrument uses a total of five eAPD detectors, four of which are for wavefront sensing and one for the Fringe tracker. In addition two Hawaii2RG are used, one for the acquisition camera and one for the spectrometer. A compact bath cryostat is used for each WFS unit, one for each of the VLT Unit Telescopes. Both Hawaii2RG detectors have a cutoff wavelength of 2.5 microns. A new and unique element of GRAVITY is the use of infrared wavefront sensors. For this reason SELEX-Galileo has developed a new high speed avalanche photo diode detector for ESO. The SAPHIRA detector, which stands for Selex Avalanche Photodiodes for Highspeed Infra Red Applications, has been already evaluated by ESO. At a frame rate of 1 KHz, a read noise of less than one electron can be demonstrated. A more detailed presentation about the performance of the SPAHIRA detector will be given at this conference 1. Each SAPHIRA detector is installed in an LN2 bath cryostat. The detector stage, filter wheel and optics are mounted on the cold plate of the LN2 vessel and enclosed by a radiation shield. All seven detector systems are controlled and read out by the standard ESO NGC controller. The NGC is a controller platform which can be adapted and customized for all infrared and optical detectors. This paper will discuss specific controller modifications implemented to meet the special requirements of the GRAVITY detector systems and give an overview of the GRAVITY detector systems and their performance.

  10. A study of two-phase flow in a reduced gravity environment

    NASA Technical Reports Server (NTRS)

    Hill, D.; Downing, Robert S.

    1987-01-01

    A test loop was designed and fabricated for observing and measuring pressure drops of two-phase flow in reduced gravity. The portable flow test loop was then tested aboard the NASA-JSC KC135 reduced gravity aircraft. The test loop employed the Sundstrand Two-Phase Thermal Management System (TPTMS) concept which was specially fitted with a clear two-phase return line and condenser cover for flow observation. A two-phase (liquid/vapor) mixture was produced by pumping nearly saturated liquid through an evaporator and adding heat via electric heaters. The quality of the two-phase flow was varied by changing the evaporator heat load. The test loop was operated on the ground before and after the KC135 flight tests to create a one-gravity data base. The ground testing included all the test points run during the reduced gravity testing. Two days of reduced gravity tests aboard the KC135 were performed. During the flight tests, reduced-gravity, one-gravity, and nearly two-gravity accelerations were experienced. Data was taken during the entire flight which provided flow regime and pressure drop data for the three operating conditions. The test results show that two-phase pressure drops and flow regimes can be accurately predicted in zero-gravity.

  11. Zero temperature dissipation and holography

    NASA Astrophysics Data System (ADS)

    Banerjee, Pinaki; Sathiapalan, B.

    2016-04-01

    We use holographic techniques to study the zero-temperature limit of dissipation for a Brownian particle moving in a strongly coupled CFT at finite temperature in various space-time dimensions. The dissipative term in the boundary theory for ω → 0, T → 0 with ω/ T held small and fixed, does not match the same at T = 0, ω → 0. Thus the T → 0 limit is not smooth for ω < T. This phenomenon appears to be related to a confinement-deconfinement phase transition at T = 0 in the field theory.

  12. The influence of simulated low-gravity environments on growth, development and metabolism of plants.

    PubMed

    Dedolph, R R

    1967-01-01

    Low-gravity environments may be simulated through appropriate horizontal clinostat rotation. This simulation is accomplished through a biological nullification of the directional component of gravitational force. Measuring biologically effective gravity force by organ response, it is readily demonstrated that biologically active gravitational force may be treated as a two-dimensional vector. Though the magnitude dimension of this vector remains virtually constant anywhere on earth, the biologically effective direction dimension may be quantitatively altered by clinostat rotation, provided appropriate angular velocities and angles of inclination of clinostat axes are employed. Using oat seedlings, a rotation rate of 2 rpm, and a horizontal axis clinostat, a 'zero g' environment may be simulated. This simulated 'zero g' condition is attested by the inability of plants to perceive unidirectional gravitational force of sufficient magnitude to elicit directional growth. Under such conditions, plants will grow in the direction imparted by the initial orientation of the plants in the system. Geotropic curvature responses to subsequent geostimulation are, however, greater in seedlings grown under these conditions, nullifying the direction dimension of gravitational force, than in seedlings grown with rotation but with normal unidirectional gravity loads. Root growth under simulated 'zero' gravity conditions is likewise enhanced as compared to plants grown with rotation but normal unidirectional gravity. These differences in magnitude of growth and response to subsequent geostimulation are inexplicable on bases of modified auxin economy or production. Respiration rates are, however, materially enhanced by the simulated 'zero g' environments. This enhancement of respiration, as well as growth, quantitatively diminishes as the unidirectional gravity load is increased. These results imply that the primary effect of low-gravity environments is likely that of modifying the

  13. Zero-G experiments in two-phase fluids flow regimes

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; King, C. D.; Littles, J. W.

    1975-01-01

    The two-phase flows studied were liquid and gas mixtures in a straight flow channel of circular cross-section. Boundaries between flow regimes have been defined for normogravity on coordinates of gas quality and total mass velocity; and, when combined with boundary expressions having a Froude number term, an analytical model was derived predicting boundary shifts with changes in gravity level. Experiments with air and water were performed, first in the normogravity environment of a ground laboratory and then in 'zero gravity' aboard a KC-135 aircraft flying parabolic trajectories. Data reduction confirmed regime boundary shifts in the direction predicted, although the magnitude was a little less than predicted. Pressure drop measurements showed significant increases for the low gravity condition.

  14. OBSERVED POLARIZATION OF BROWN DWARFS SUGGESTS LOW SURFACE GRAVITY

    SciTech Connect

    Sengupta, Sujan; Marley, Mark S. E-mail: Mark.S.Marley@NASA.go

    2010-10-20

    Light scattering by atmospheric dust particles is responsible for the polarization observed in some L dwarfs. Whether this polarization arises from an inhomogeneous distribution of dust across the disk or an oblate shape induced by rotation remains unclear. Here, we argue that the latter case is plausible and, for many L dwarfs, the more likely one. Furthermore, evolutionary models of mature field L dwarfs predict surface gravities ranging from about 200 to 2500 m s{sup -2} (corresponding to masses of {approx}15-70 M {sub Jupiter}). Yet comparison of observed spectra to available synthetic spectra often does not permit more precise determination of the surface gravity of individual field L dwarfs, leading to important uncertainties in their properties. Since rotationally induced non-sphericity, which gives rise to non-zero disk-integrated polarization, is more pronounced at lower gravities, polarization is a promising low gravity indicator. Here, we combine a rigorous multiple scattering analysis with a self-consistent cloudy atmospheric model and observationally inferred rotational velocities and find that the observed optical polarization can be explained if the surface gravity of the polarized objects is about 300 m s{sup -2} or less, potentially providing a new method for constraining L dwarf masses.

  15. National Geodetic Survey Gravity Network

    NASA Astrophysics Data System (ADS)

    Moose, R. E.

    1986-12-01

    In 1966, the U.S. National Gravity Base Network was established through the cooperative efforts of several government agencies and academic institutions involved in nationwide gravity observations. The network was reobserved between 1975 and 1979 by the National Geodetic Survey (NGS) using field procedures designed to give high-quality gravity differences. The report discusses the adjustment and the areas where apparent gravity change was observed. NGS plans to densify and maintain this network and to improve the accuracy of the station values by additional high-quality relative ties and by making observations with a new, absolute gravity meter in each of the states.

  16. Plants and gravity. Special issue

    NASA Technical Reports Server (NTRS)

    Kiss, J. Z. (Principal Investigator)

    2002-01-01

    This issue of the Journal of Plant Growth Regulation explores the effects of gravity on plant growth and development from several perspectives. Most of the review papers consider plants and gravity from the viewpoint of ground-based laboratory research, and several papers consider gravitropism, the directed growth in response to gravity, in some detail. However, another approach to study the effects of gravity on plant is to effectively remove the force due to gravity. A very dramatic way to accomplish this goal is through the free-fall conditions achieved by spacecraft in low Earth orbit, so some of the authors have reviewed recent advances in spaceflight research with plant systems.

  17. Industrial processes influenced by gravity

    NASA Technical Reports Server (NTRS)

    Ostrach, Simon

    1988-01-01

    In considering new directions for low gravity research with particular regard to broadening the number and types of industrial involvements, it is noted that transport phenomena play a vital role in diverse processes in the chemical, pharmaceutical, food, and biotech industries. Relatively little attention has been given to the role of gravity in such processes. Accordingly, numerous industrial processes and phenomena are identified which involve gravity and/or surface tension forces. Phase separations and mixing are examples that will be significantly different in low gravity conditions. A basis is presented for expanding the scope of the low gravity research program and the potential benefits of such research is indicated.

  18. Dirac cone and double zero materials

    NASA Astrophysics Data System (ADS)

    Chan, C. T.; Huang, Xueqin; Lai, Yun; Hang, Zhi Hong; Zheng, Huihuo

    2011-10-01

    Materials with zero permittivity and zero permeability (double zero) possess very interesting wave manipulation characteristics. Systems with Dirac cones in the band structure also possess amazing wave transport properties. These two classes of material are actually related to each other. We show that dielectric photonic crystals can be designed and fabricated which exhibit Dirac cones at k = 0 at a finite frequency. A subset of such materials behave as if they have zero permittivity and zero permeability at the Dirac point, as well as exhibiting properties intrinsic to a Dirac cone.

  19. Dirac cone and double zero materials

    SciTech Connect

    Chan, C. T.; Huang Xueqin; Hang Zhihong; Zheng Huihuo; Lai Yun

    2011-10-03

    Materials with zero permittivity and zero permeability (double zero) possess very interesting wave manipulation characteristics. Systems with Dirac cones in the band structure also possess amazing wave transport properties. These two classes of material are actually related to each other. We show that dielectric photonic crystals can be designed and fabricated which exhibit Dirac cones at k = 0 at a finite frequency. A subset of such materials behave as if they have zero permittivity and zero permeability at the Dirac point, as well as exhibiting properties intrinsic to a Dirac cone.

  20. Majorana Zero Modes in Graphene

    NASA Astrophysics Data System (ADS)

    San-Jose, Pablo; Lado, Jose L.; Aguado, Ramón; Guinea, Francisco; Fernández-Rossier, Joaquín

    A clear demonstration of topological superconductivity (TS) and Majorana zero modes remains one of the major pending goal in the field of topological materials. One common strategy to generate TS is through the coupling of an s-wave superconductor to a helical half-metallic system. Numerous proposals for the latter have been put forward in the literature, most of them based on semiconductors or topological insulators with strong spin-orbit coupling. Here we demonstrate an alternative approach for the creation of TS in graphene/superconductor junctions without the need of spin-orbit coupling. Our prediction stems from the helicity of graphene's zero Landau level edge states in the presence of interactions, and on the possibility, experimentally demonstrated, to tune their magnetic properties with in-plane magnetic fields. We show how canted antiferromagnetic ordering in the graphene bulk close to neutrality induces TS along the junction, and gives rise to isolated, topologically protected Majorana bound states at either end. We also discuss possible strategies to detect their presence. Remarkable progress has recently been reported in the fabrication of the proposed type of junctions, which offers a promising outlook for Majorana physics in graphene systems.

  1. Towards zero-power ICT.

    PubMed

    Gammaitoni, Luca; Chiuchiú, D; Madami, M; Carlotti, G

    2015-06-01

    Is it possible to operate a computing device with zero energy expenditure? This question, once considered just an academic dilemma, has recently become strategic for the future of information and communication technology. In fact, in the last forty years the semiconductor industry has been driven by its ability to scale down the size of the complementary metal-oxide semiconductor-field-effect transistor, the building block of present computing devices, and to increase computing capability density up to a point where the power dissipated in heat during computation has become a serious limitation. To overcome such a limitation, since 2004 the Nanoelectronics Research Initiative has launched a grand challenge to address the fundamental limits of the physics of switches. In Europe, the European Commission has recently funded a set of projects with the aim of minimizing the energy consumption of computing. In this article we briefly review state-of-the-art zero-power computing, with special attention paid to the aspects of energy dissipation at the micro- and nanoscales. PMID:25961656

  2. Towards zero-power ICT

    NASA Astrophysics Data System (ADS)

    Gammaitoni, Luca; Chiuchiú, D.; Madami, M.; Carlotti, G.

    2015-06-01

    Is it possible to operate a computing device with zero energy expenditure? This question, once considered just an academic dilemma, has recently become strategic for the future of information and communication technology. In fact, in the last forty years the semiconductor industry has been driven by its ability to scale down the size of the complementary metal-oxide semiconductor-field-effect transistor, the building block of present computing devices, and to increase computing capability density up to a point where the power dissipated in heat during computation has become a serious limitation. To overcome such a limitation, since 2004 the Nanoelectronics Research Initiative has launched a grand challenge to address the fundamental limits of the physics of switches. In Europe, the European Commission has recently funded a set of projects with the aim of minimizing the energy consumption of computing. In this article we briefly review state-of-the-art zero-power computing, with special attention paid to the aspects of energy dissipation at the micro- and nanoscales.

  3. Recent Advances in Conformal Gravity

    NASA Astrophysics Data System (ADS)

    O'Brien, James; Chaykov, Spasen

    2016-03-01

    In recent years, significant advances have been made in alternative gravitational theories. Although MOND remains the leading candidate among the alternative models, Conformal Gravity has been studied by Mannheim and O'Brien to solve the rotation curve problem without the need for dark matter. Recently, Mannheim, O'Brien and Chaykov have begun solving other gravitational questions in Conformal Gravity. In this presentation, we highlight the new work of Conformal Gravity's application to random motions of clusters (the original Zwicky problem), gravitational bending of light, gravitational lensing and a very recent survey of dwarf galaxy rotation curves. We will show in each case that Conformal Gravity can provide an accurate explanation and prediction of the data without the need for dark matter. Coupled with the fact that Conformal Gravity is a fully re-normalizable metric theory of gravity, these results help to push Conformal Gravity onto a competitive stage against other alternative models.

  4. [Low Fidelity Simulation of a Zero-Y Robot

    NASA Technical Reports Server (NTRS)

    Sweet, Adam

    2001-01-01

    The item to be cleared is a low-fidelity software simulation model of a hypothetical freeflying robot designed for use in zero gravity environments. This simulation model works with the HCC simulation system that was developed by Xerox PARC and NASA Ames Research Center. HCC has been previously cleared for distribution. When used with the HCC software, the model computes the location and orientation of the simulated robot over time. Failures (such as a broken motor) can be injected into the simulation to produce simulated behavior corresponding to the failure. Release of this simulation will allow researchers to test their software diagnosis systems by attempting to diagnose the simulated failure from the simulated behavior. This model does not contain any encryption software nor can it perform any control tasks that might be export controlled.

  5. Pilot investigation - Nominal crew induced forces in zero-g

    NASA Technical Reports Server (NTRS)

    Klute, Glenn K.

    1992-01-01

    This report presents pilot-study data of test subject forces induced by intravehicular activities such as push-offs and landings with both hands and feet. Five subjects participated in this investigation. Three orthogonal force axes were measured in the NASA KC-135 research aircraft's 'zero-g' environment. The largest forces were induced during vertical foot push-offs, including one of 534 newtons (120 lbs). The mean vertical foot push-off was 311 newtons (70 lbs). The vertical hand push-off forces were also relatively large, including one of 267 newtons (60 lbs) with a mean of 151 newtons (34 lbs). These force magnitudes of these forces would result in a Shuttle gravity environment of about 1 x exp 10 -4 g's.

  6. f(R)-gravity from Killing tensors

    NASA Astrophysics Data System (ADS)

    Paliathanasis, Andronikos

    2016-04-01

    We consider f(R)-gravity in a Friedmann-Lemaître-Robertson-Walker spacetime with zero spatial curvature. We apply the Killing tensors of the minisuperspace in order to specify the functional form of f(R) and for the field equations to be invariant under Lie-Bäcklund transformations, which are linear in momentum (contact symmetries). Consequently, the field equations to admit quadratic conservation laws given by Noether’s theorem. We find three new integrable f(R)-models, for which, with the application of the conservation laws, we reduce the field equations to a system of two first-order ordinary differential equations. For each model we study the evolution of the cosmological fluid. We find that for each integrable model the cosmological fluid has an equation of state parameter, in which there is linear behavior in terms of the scale factor which describes the Chevallier, Polarski and Linder parametric dark energy model.

  7. Hardware development for Gravity Probe-B

    NASA Technical Reports Server (NTRS)

    Bardas, D.; Cheung, W. S.; Gill, D.; Hacker, R.; Keiser, G. M.

    1986-01-01

    Gravity Probe-B (GP-B), also known as the Stanford Relativity Gyroscope Experiment, will test two fundamental predictions of Einstein's General Theory of Relativity by precise measurement of the precessions of nearly perfect gyroscopes in earth orbit. This endeavor embodies state-of-the-art technologies in many fields, including gyroscope fabrication and readout, cryogenics, superconductivity, magnetic shielding, precision optics and alignment methods, and satellite control systems. These technologies are necessary to enable measurement of the predicted precession rates to the milliarcsecond/year level, and to reduce to 'near zero' all non-General Relativistic torques on the gyroscopes. This paper provides a brief overview of the experiment followed by descriptions of several specific hardware items with highlights on progress to date and plans for future development and tests.

  8. Black hole remnant from gravity's rainbow

    NASA Astrophysics Data System (ADS)

    Farag Ali, Ahmed

    2014-05-01

    In this work, we investigate black hole (BH) physics in the context of the gravity rainbow. We investigate this through rainbow functions that have been proposed by Amelino-Camelia [Living Rev. Relativity 16, 5 (2013)] and Amelino-Camelia et al. in [Int. J. Mod. Phys. A 12, 607 (1997)]. This modification will give corrections to both the temperature and the entropy of BHs, and hence it changes the picture of Hawking radiation greatly when the size of the BH approaches the Planck scale. It prevents the BH from total evaporation, predicting the existence of a BH remnant, which may resolve the catastrophic behavior of Hawking radiation as the BH mass approaches zero.

  9. Constraints on texture zero and cofactor zero models for neutrino mass

    SciTech Connect

    Whisnant, K.; Liao, Jiajun; Marfatia, D.

    2014-06-24

    Imposing a texture or cofactor zero on the neutrino mass matrix reduces the number of independent parameters from nine to seven. Since five parameters have been measured, only two independent parameters would remain in such models. We find the allowed regions for single texture zero and single cofactor zero models. We also find strong similarities between single texture zero models with one mass hierarchy and single cofactor zero models with the opposite mass hierarchy. We show that this correspondence can be generalized to texture-zero and cofactor-zero models with the same homogeneous costraints on the elements and cofactors.

  10. Hydrology and Gravity at the Membach Station, Belgium

    NASA Astrophysics Data System (ADS)

    van Camp, M.; Dassargues, A.; Vanclooster, M.; Crommen, O.; Petermans, T.; Vanneste, K.; Verbeeck, K.; Meurers, B.

    2005-12-01

    This paper investigates hydrological processes and their influence on gravity at the underground Membach station (eastern Belgium), where absolute (AG) and superconducting (SG) gravity measurements have been performed since 1996. Seasonal and short term effects are observed. The 3 μGal seasonal effect reflects long-wavelength component of annual continental water storage variations. The short-term effects consist of fast gravity decrease lasting minutes to a few days. These variations are anticorrelated with rainfall events in 80 % of the cases. The largest decrease was 4 muGal after a significant rainfall (150 mm in 3 days). Apart from rainfall, the Newtonian effect of vertical air mass distribution plays also an essential role (Meurers et al., this session). The gravity station was excavated in low-porosity argillaceous sandstone. Geophysical prospecting showed that the thickness of the weathered zone covering this bedrock can be highly variable between zero and 10 meters. In 2004, soil moisture and temperature probes were installed in the shallow upper 60 cm partially saturated soil, 45 m above the station. Based on a digital elevation model and geological studies, we investigated the soil moisture data and their relationships with high temporal resolution rainfall and gravity time series. This work can be essential to correct local effects that can mask regional effects such as changes in continental water storage. Local effects, indeed, could prevent the combination of satellite data (e.g. GRACE) with ground-based gravity measurements. On the other hand, studying the local seasonal variations also contributes to investigate the influence of the water storage variations in small river basins on the time dependent gravity field.

  11. Gravity wave initiated convection

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1990-01-01

    The vertical velocity of convection initiated by gravity waves was investigated. In one particular case, the convective motion-initiated and supported by the gravity wave-induced activity (excluding contributions made by other mechanisms) reached its maximum value about one hour before the production of the funnel clouds. In another case, both rawinsonde and geosynchronous satellite imagery were used to study the life cycles of severe convective storms. Cloud modelling with input sounding data and rapid-scan imagery from GOES were used to investigate storm cloud formation, development and dissipation in terms of growth and collapse of cloud tops, as well as, the life cycles of the penetration of overshooting turrets above the tropopause. The results based on these two approaches are presented and discussed.

  12. Antimatter gravity experiment

    SciTech Connect

    Brown, R.E.; Camp, J.B.; Darling, T.W.

    1990-01-01

    An experiment is being developed to measure the acceleration of the antiproton in the gravitational field of the earth. Antiprotons of a few MeV from the LEAR facility at CERN will be slowed, captured, cooled to a temperature of about 10 K, and subsequently launched a few at a time into a drift tube where the effect of gravity on their motion will be determined by a time-of-flight method. Development of the experiment is proceeding at Los Alamos using normal matter. The fabrication of a drift tube that will produce a region of space in which gravity is the dominant force on moving ions is of major difficulty. This involves a study of methods of minimizing the electric fields produced by spatially varying work functions on conducting surfaces. Progress in a number of areas is described, with stress on the drift-tube development.

  13. Local quantum gravity

    NASA Astrophysics Data System (ADS)

    Christiansen, N.; Knorr, B.; Meibohm, J.; Pawlowski, J. M.; Reichert, M.

    2015-12-01

    We investigate the ultraviolet behavior of quantum gravity within a functional renormalization group approach. The present setup includes the full ghost and graviton propagators and, for the first time, the dynamical graviton three-point function. The latter gives access to the coupling of dynamical gravitons and makes the system minimally self-consistent. The resulting phase diagram confirms the asymptotic safety scenario in quantum gravity with a nontrivial UV fixed point. A well-defined Wilsonian block spinning requires locality of the flow in momentum space. This property is discussed in the context of functional renormalization group flows. We show that momentum locality of graviton correlation functions is nontrivially linked to diffeomorphism invariance, and is realized in the present setup.

  14. Plant gravity sensing

    NASA Technical Reports Server (NTRS)

    Sack, F. D.

    1991-01-01

    This review of plant gravity sensing examines sensing in organ gravitropism, sensing in single-cell gravitropism, and nongravitropic sensing. Topics related to sensing in organ gravitropism are (1) identification of the gravitropic susceptors, including intracellular asymmetry in equilibrium position and after reorientation, susceptor signal-to-noise ratio, signal integration over threshold stimulation periods, intracellular asymmetry and gravitropic competence, and starch deficiency and gravitropic competence; (2) possible root statocytes and receptors, including identification of presumptive statocytes, cytology, and possible receptors and models of sensing; and (3) negatively gravitropic organs, including identification and distribution of presumptive statocytes and cytology and possible receptors. Topics related to nongravitropic sensing include gravitaxis, reaction wood, gravimorphogenesis, other gravity-influenced organ movements, and cytoplasmic streaming.

  15. Computing Gravity's Strongest Grip

    NASA Astrophysics Data System (ADS)

    Shoemaker, Deirdre

    2008-04-01

    Gravitational physics is entering a new era, one driven by observation, that will begin once gravitational wave interferometers such as LIGO make their first detections. The gravitational waves are produced during violent events such as the merger of two black holes. The detection of these waves or ripples in the fabric of spacetime is a formidable undertaking, requiring innovative engineering, powerful data analysis tools and careful theoretical modeling. In support of this theoretical modeling, recent breakthroughs in numerical relativity have lead to the development of computational tools that allow us to explore where and how gravitational wave observations can constrain or inform our understanding of gravity and astrophysical phenomena. I will review these latest developments, focusing on binary black hole simulations and the role these simulations play in our new understanding of physics and astronomy where gravity exhibits its strongest grip on our spacetime.

  16. Hamiltonian spinfoam gravity

    NASA Astrophysics Data System (ADS)

    Wieland, Wolfgang M.

    2014-01-01

    This paper presents a Hamiltonian formulation of spinfoam gravity, which leads to a straightforward canonical quantization. To begin with, we derive a continuum action adapted to a simplicial decomposition of space-time. The equations of motion admit a Hamiltonian formulation, allowing us to perform the constraint analysis. We do not find any secondary constraints, but only get restrictions on the Lagrange multipliers enforcing the reality conditions. This comes as a surprise—in the continuum theory, the reality conditions are preserved in time, only if the torsionless condition (a secondary constraint) holds true. Studying an additional conservation law for each spinfoam vertex, we discuss the issue of torsion and argue that spinfoam gravity may still miss an additional constraint. Finally, we canonically quantize and recover the EPRL (Engle-Pereira-Rovelli-Livine) face amplitudes. Communicated by P R L V Moniz

  17. More about scalar gravity

    NASA Astrophysics Data System (ADS)

    Bittencourt, E.; Moschella, U.; Novello, M.; Toniato, J. D.

    2016-06-01

    We discuss a class of models for gravity based on a scalar field. The models include and generalize the old approach by Nordström which predated and, in some ways, inspired general relativity. The class include also a model that we have recently introduced and discussed in terms of its cosmological aspects (GSG). We present here a complete characterization of the Schwarschild geometry as a vacuum solution of GSG and sketch a discussion of the first post-Newtonian approximation.

  18. Artificial gravity Mars spaceship

    NASA Technical Reports Server (NTRS)

    Clark, Benton C.

    1989-01-01

    Experience gained in the study of artificial gravity for a manned trip to Mars is reviewed, and a snowflake-configured interplanetary vehicle cluster of habitat modules, descent vehicles, and propulsion systems is presented. An evolutionary design is described which permits sequential upgrading from five to nine crew members, an increase of landers from one to as many a three per mission, and an orderly, phased incorporation of advanced technologies as they become available.

  19. New improved massive gravity

    NASA Astrophysics Data System (ADS)

    Dereli, T.; Yetişmişoğlu, C.

    2016-06-01

    We derive the field equations for topologically massive gravity coupled with the most general quadratic curvature terms using the language of exterior differential forms and a first-order constrained variational principle. We find variational field equations both in the presence and absence of torsion. We then show that spaces of constant negative curvature (i.e. the anti de-Sitter space AdS 3) and constant torsion provide exact solutions.

  20. Gravity gradient study

    NASA Technical Reports Server (NTRS)

    Bell, C. C.

    1971-01-01

    The results of the noise and drift test, and the comparison of the experimental simulation tests with the theoretical predictions, confirm that the rotating gravity gradiometer is capable of extracting information about mascon distributions from lunar orbit, and that the sensitivity of the sensor is adequate for lunar orbital selenodesy. The experimental work also verified analytical and computer models for the directional and time response of the sensor.

  1. Gravity, Time, and Lagrangians

    ERIC Educational Resources Information Center

    Huggins, Elisha

    2010-01-01

    Feynman mentioned to us that he understood a topic in physics if he could explain it to a college freshman, a high school student, or a dinner guest. Here we will discuss two topics that took us a while to get to that level. One is the relationship between gravity and time. The other is the minus sign that appears in the Lagrangian. (Why would one…

  2. Zero-order bows in radially inhomogeneous spheres: direct and inverse problems.

    PubMed

    Adam, John A

    2011-10-01

    Zero-order ray paths are examined in radially inhomogeneous spheres with differentiable refractive index profiles. It is demonstrated that zero-order and sometimes twin zero-order bows can exist when the gradient of refractive index is sufficiently negative. Abel inversion is used to "recover" the refractive index profiles; it is therefore possible in principle to specify the nature and type of bows and determine the refractive index profile that induces them. This may be of interest in the field of rainbow refractometry and optical fiber studies. This ray-theoretic analysis has direct similarities with the phenomenon of "orbiting" and other phenomena in scattering theory and also in seismological, surface gravity wave, and gravitational "lensing" studies. For completeness these topics are briefly discussed in the appendixes; they may also be of pedagogic interest. PMID:22016245

  3. Zero-velocity magnetophoretic method for the determination of particle magnetic susceptibility.

    PubMed

    Watarai, Hitoshi; Duc, Hoang Trong Tien; Lan, Tran Thi Ngoc; Zhang, Tianyi; Tsukahara, Satoshi

    2014-01-01

    A simple zero-velocity method to determine the particle magnetic susceptibility by measuring the magnetophoretic velocity was proposed. The principle is that the magnetophoretic velocity of a particle in a liquid medium must be zero when the magnetic susceptibilities of the medium and the particle are equal, or the gravity force and the magnetophoretic force are balanced. By changing the medium magnetic susceptibility and measuring the magnetophoretic velocity of a particle, the particle magnetic susceptibility was determined from the medium magnetic susceptibility under the zero-velocity condition. The feasibility of the method was demonstrated for polystyrene particles using a Dy(III) solution in the horizontal migration mode and different organic solvents in the vertical migration mode. PMID:25007934

  4. Granular Superconductors and Gravity

    NASA Technical Reports Server (NTRS)

    Noever, David; Koczor, Ron

    1999-01-01

    As a Bose condensate, superconductors provide novel conditions for revisiting previously proposed couplings between electromagnetism and gravity. Strong variations in Cooper pair density, large conductivity and low magnetic permeability define superconductive and degenerate condensates without the traditional density limits imposed by the Fermi energy (approx. 10(exp -6) g cu cm). Recent experiments have reported anomalous weight loss for a test mass suspended above a rotating Type II, YBCO superconductor, with a relatively high percentage change (0.05-2.1%) independent of the test mass' chemical composition and diamagnetic properties. A variation of 5 parts per 104 was reported above a stationary (non-rotating) superconductor. In experiments using a sensitive gravimeter, bulk YBCO superconductors were stably levitated in a DC magnetic field and exposed without levitation to low-field strength AC magnetic fields. Changes in observed gravity signals were measured to be less than 2 parts in 108 of the normal gravitational acceleration. Given the high sensitivity of the test, future work will examine variants on the basic magnetic behavior of granular superconductors, with particular focus on quantifying their proposed importance to gravity.

  5. Branes in Gravity's Rainbow

    NASA Astrophysics Data System (ADS)

    Ashour, Amani; Faizal, Mir; Ali, Ahmed Farag; Hammad, Fayçal

    2016-05-01

    In this work, we investigate the thermodynamics of black p-branes (BB) in the context of Gravity's Rainbow. We investigate this using rainbow functions that have been motivated from loop quantum gravity and κ -Minkowski non-commutative spacetime. Then for the sake of comparison, we examine a couple of other rainbow functions that have also appeared in the literature. We show that, for consistency, Gravity's Rainbow imposes a constraint on the minimum mass of the BB, a constraint that we interpret here as implying the existence of a black p-brane remnant. This interpretation is supported by the computation of the black p-brane's heat capacity that shows that the latter vanishes when the Schwarzschild radius takes on a value that is bigger than its extremal limit. We found that the same conclusion is reached for the third version of rainbow functions treated here but not with the second one for which only standard black p-brane thermodynamics is recovered.

  6. D-Zero Vacuum System

    SciTech Connect

    Wintercorn, S.J.; /Fermilab

    1986-04-07

    The system pumping speed was calculated by taking the reciprocal of the sum of the reciprocal pump speed and the reciprocal line conductances. The conductances of the pipe were calculated from the following formulas taken from the Varian vacuum manual. This report updates the original to reflect the pumping curves and basic vacuum system characteristics for the purchased components and installed piping of the D-Zero vacuum system. The system consists of two Edward's E2M275 two stage mechanical pumps, a Leybold-Heraeus WSU2000 Blower and three Varian 4' diffusion pumps (one for each cryostat). Individual pump and system pumping speed curves and a diagram of the system is included.

  7. Spherically symmetric conformal gravity and ``gravitational bubbles''

    NASA Astrophysics Data System (ADS)

    Berezin, V. A.; Dokuchaev, V. I.; Eroshenko, Yu. N.

    2016-01-01

    The general structure of the spherically symmetric solutions in the Weyl conformal gravity is described. The corresponding Bach equations are derived for the special type of metrics, which can be considered as the representative of the general class. The complete set of the pure vacuum solutions is found. It consists of two classes. The first one contains the solutions with constant two-dimensional curvature scalar of our specific metrics, and the representatives are the famous Robertson-Walker metrics. One of them we called the ``gravitational bubbles'', which is compact and with zero Weyl tensor. Thus, we obtained the pure vacuum curved space-times (without any material sources, including the cosmological constant) what is absolutely impossible in General Relativity. Such a phenomenon makes it easier to create the universe from ``nothing''. The second class consists of the solutions with varying curvature scalar. We found its representative as the one-parameter family. It appears that it can be conformally covered by the thee-parameter Mannheim-Kazanas solution. We also investigated the general structure of the energy-momentum tensor in the spherical conformal gravity and constructed the vectorial equation that reveals clearly some features of non-vacuum solutions. Two of them are explicitly written, namely, the metrics à la Vaidya, and the electrovacuum space-time metrics.

  8. Conformal gravity and “gravitational bubbles”

    NASA Astrophysics Data System (ADS)

    Berezin, V. A.; Dokuchaev, V. I.; Eroshenko, Yu. N.

    2016-01-01

    We describe the general structure of the spherically symmetric solutions in the Weyl conformal gravity. The corresponding Bach equations are derived for the special type of metrics, which can be considered as the representative of the general class. The complete set of the pure vacuum solutions, consisting of two classes, is found. The first one contains the solutions with constant two-dimensional curvature scalar, and the representatives are the famous Robertson-Walker metrics. We called one of them the “gravitational bubbles”, which is compact and with zero Weyl tensor. These “gravitational bubbles” are the pure vacuum curved space-times (without any material sources, including the cosmological constant), which are absolutely impossible in General Relativity. This phenomenon makes it easier to create the universe from “nothing”. The second class consists of the solutions with varying curvature scalar. We found its representative as the one-parameter family, which can be conformally covered by the thee-parameter Mannheim-Kazanas solution. We describe the general structure of the energy-momentum tensor in the spherical conformal gravity and construct the vectorial equation that reveals clearly some features of non-vacuum solutions.

  9. Planckian axions and the Weak Gravity Conjecture

    NASA Astrophysics Data System (ADS)

    Bachlechner, Thomas C.; Long, Cody; McAllister, Liam

    2016-01-01

    Several recent works [1-3] have claimed that the Weak Gravity Conjecture (WGC) excludes super-Planckian displacements of axion fields, and hence large-field axion inflation, in the absence of monodromy. We argue that in theories with N ≫ 1 axions, super-Planckian axion diameters D are readily allowed by the WGC. We clarify the non-trivial relationship between the kinetic matrix K — unambiguously defined by its form in a Minkowski-reduced basis — and the diameter of the axion fundamental domain, emphasizing that in general the diameter is not solely determined by the eigenvalues f 1 2 ≤ ṡ ṡ ṡ ≤ f N 2 of K: the orientations of the eigenvectors with respect to the identifications imposed by instantons must be incorporated. In particular, even if one were to impose the condition f N < M pl, this would imply neither D < M pl nor D < √{N}{M}_{pl} . We then estimate the actions of instantons that fulfill the WGC. The leading instanton action is bounded from below by S≥ {S}{M}_{pl}/{f}_N , with {S} a fixed constant, but in the universal limit S≳ S√{N} {M}_{pl}/{f}_N . Thus, having f N > M pl does not immediately imply the existence of unsuppressed higher harmonic contributions to the potential. Finally, we argue that in effective axion-gravity theories, the zero-form version of the WGC can be satisfied by gravitational instantons that make negligible contributions to the potential.

  10. Phenomenology in minimal theory of massive gravity

    NASA Astrophysics Data System (ADS)

    De Felice, Antonio; Mukohyama, Shinji

    2016-04-01

    We investigate the minimal theory of massive gravity (MTMG) recently introduced. After reviewing the original construction based on its Hamiltonian in the vielbein formalism, we reformulate it in terms of its Lagrangian in both the vielbein and the metric formalisms. It then becomes obvious that, unlike previous attempts in the literature of Lorentz-violating massive gravity, not only the potential but also the kinetic structure of the action is modified from the de Rham-Gabadadze-Tolley (dRGT) massive gravity theory. We confirm that the number of physical degrees of freedom in MTMG is two at fully nonlinear level. This proves the absence of various possible pathologies such as superluminality, acausality and strong coupling. Afterwards, we discuss the phenomenology of MTMG in the presence of a dust fluid. We find that on a flat homogeneous and isotropic background we have two branches. One of them (self-accelerating branch) naturally leads to acceleration without the genuine cosmological constant or dark energy. For this branch both the scalar and the vector modes behave exactly as in general relativity (GR). The phenomenology of this branch differs from GR in the tensor modes sector, as the tensor modes acquire a non-zero mass. Hence, MTMG serves as a stable nonlinear completion of the self-accelerating cosmological solution found originally in dRGT theory. The other branch (normal branch) has a dynamics which depends on the time-dependent fiducial metric. For the normal branch, the scalar mode sector, even though as in GR only one scalar mode is present (due to the dust fluid), differs from the one in GR, and, in general, structure formation will follow a different phenomenology. The tensor modes will be massive, whereas the vector modes, for both branches, will have the same phenomenology as in GR.

  11. Perturbations of nested branes with induced gravity

    SciTech Connect

    Sbisà, Fulvio; Koyama, Kazuya E-mail: kazuya.koyama@port.ac.uk

    2014-06-01

    We study the behaviour of weak gravitational fields in models where a 4D brane is embedded inside a 5D brane equipped with induced gravity, which in turn is embedded in a 6D spacetime. We consider a specific regularization of the branes internal structures where the 5D brane can be considered thin with respect to the 4D one. We find exact solutions corresponding to pure tension source configurations on the thick 4D brane, and study perturbations at first order around these background solutions. To perform the perturbative analysis, we adopt a bulk-based approach and we express the equations in terms of gauge invariant and master variables using a 4D scalar-vector-tensor decomposition. We then propose an ansatz on the behaviour of the perturbation fields when the thickness of the 4D brane goes to zero, which corresponds to configurations where gravity remains finite everywhere in the thin limit of the 4D brane. We study the equations of motion using this ansatz, and show that they give rise to a consistent set of differential equations in the thin limit, from which the details of the internal structure of the 4D brane disappear. We conclude that the thin limit of the ''ribbon'' 4D brane inside the (already thin) 5D brane is well defined (at least when considering first order perturbations around pure tension configurations), and that the gravitational field on the 4D brane remains finite in the thin limit. We comment on the crucial role of the induced gravity term on the 5D brane.

  12. Gravity field information from Gravity Probe-B

    NASA Technical Reports Server (NTRS)

    Smith, D. E.; Lerch, F. J.; Colombo, O. L.; Everitt, C. W. F.

    1989-01-01

    The Gravity Probe-B Mission will carry the Stanford Gyroscope relativity experiment into orbit in the mid 1990's, as well as a Global Positioning System (GPS) receiver whose tracking data will be used to study the earth gravity field. Estimates of the likely quality of a gravity field model to be derived from the GPS data are presented, and the significance of this experiment to geodesy and geophysics are discussed.

  13. Rotating gravity currents. Part 1. Energy loss theory

    NASA Astrophysics Data System (ADS)

    Martin, J. R.; Lane-Serff, G. F.

    2005-01-01

    A comprehensive energy loss theory for gravity currents in rotating rectangular channels is presented. The model is an extension of the non-rotating energy loss theory of Benjamin (J. Fluid Mech. vol. 31, 1968, p. 209) and the steady-state dissipationless theory of rotating gravity currents of Hacker (PhD thesis, 1996). The theory assumes the fluid is inviscid, there is no shear within the current, and the Boussinesq approximation is made. Dissipation is introduced using a simple method. A head loss term is introduced into the Bernoulli equation and it is assumed that the energy loss is uniform across the stream. Conservation of momentum, volume flux and potential vorticity between upstream and downstream locations is then considered. By allowing for energy dissipation, results are obtained for channels of arbitrary depth and width (relative to the current). The results match those from earlier workers in the two limits of (i) zero rotation (but including dissipation) and (ii) zero dissipation (but including rotation). Three types of flow are identified as the effect of rotation increases, characterized in terms of the location of the outcropping interface between the gravity current and the ambient fluid on the channel boundaries. The parameters for transitions between these cases are quantified, as is the detailed behaviour of the flow in all cases. In particular, the speed of the current can be predicted for any given channel depth and width. As the channel depth increases, the predicted Froude number tends to surd 2, as for non-rotating flows.

  14. Gravity-dependent estimates of object mass underlie the generation of motor commands for horizontal limb movements.

    PubMed

    Crevecoeur, F; McIntyre, J; Thonnard, J-L; Lefèvre, P

    2014-07-15

    Moving requires handling gravitational and inertial constraints pulling on our body and on the objects that we manipulate. Although previous work emphasized that the brain uses internal models of each type of mechanical load, little is known about their interaction during motor planning and execution. In this report, we examine visually guided reaching movements in the horizontal plane performed by naive participants exposed to changes in gravity during parabolic flight. This approach allowed us to isolate the effect of gravity because the environmental dynamics along the horizontal axis remained unchanged. We show that gravity has a direct effect on movement kinematics, with faster movements observed after transitions from normal gravity to hypergravity (1.8g), followed by significant movement slowing after the transition from hypergravity to zero gravity. We recorded finger forces applied on an object held in precision grip and found that the coupling between grip force and inertial loads displayed a similar effect, with an increase in grip force modulation gain under hypergravity followed by a reduction of modulation gain after entering the zero-gravity environment. We present a computational model to illustrate that these effects are compatible with the hypothesis that participants partially attribute changes in weight to changes in mass and scale incorrectly their motor commands with changes in gravity. These results highlight a rather direct internal mapping between the force generated during stationary holding against gravity and the estimation of inertial loads that limb and hand motor commands must overcome. PMID:24790173

  15. Zero-Cost Estimation of Zero-Point Energies.

    PubMed

    Császár, Attila G; Furtenbacher, Tibor

    2015-10-01

    An additive, linear, atom-type-based (ATB) scheme is developed allowing no-cost estimation of zero-point vibrational energies (ZPVE) of neutral, closed-shell molecules in their ground electronic states. The atom types employed correspond to those defined within the MM2 molecular mechanics force field approach. The reference training set of 156 molecules cover chained and branched alkanes, alkenes, cycloalkanes and cycloalkenes, alkynes, alcohols, aldehydes, carboxylic acids, amines, amides, ethers, esters, ketones, benzene derivatives, heterocycles, nucleobases, all the natural amino acids, some dipeptides and sugars, as well as further simple molecules and ones containing several structural units, including several vitamins. A weighted linear least-squares fit of atom-type-based ZPVE increments results in recommended values for the following atoms, with the number of atom types defined in parentheses: H(8), D(1), B(1), C(6), N(7), O(3), F(1), Si(1), P(2), S(3), and Cl(1). The average accuracy of the ATB ZPVEs is considerably better than 1 kcal mol(-1), that is, better than chemical accuracy. The proposed ATB scheme could be extended to many more atoms and atom types, following a careful validation procedure; deviation from the MM2 atom types seems to be necessary, especially for third-row elements. PMID:26398318

  16. Geometric scalar theory of gravity

    SciTech Connect

    Novello, M.; Bittencourt, E.; Goulart, E.; Salim, J.M.; Toniato, J.D.; Moschella, U. E-mail: eduhsb@cbpf.br E-mail: egoulart@cbpf.br E-mail: toniato@cbpf.br

    2013-06-01

    We present a geometric scalar theory of gravity. Our proposal will be described using the ''background field method'' introduced by Gupta, Feynman, Deser and others as a field theory formulation of general relativity. We analyze previous criticisms against scalar gravity and show how the present proposal avoids these difficulties. This concerns not only the theoretical complaints but also those related to observations. In particular, we show that the widespread belief of the conjecture that the source of scalar gravity must be the trace of the energy-momentum tensor — which is one of the main difficulties to couple gravity with electromagnetic phenomenon in previous models — does not apply to our geometric scalar theory. From the very beginning this is not a special relativistic scalar gravity. The adjective ''geometric'' pinpoints its similarity with general relativity: this is a metric theory of gravity. Some consequences of this new scalar theory are explored.

  17. Collected Calculations in Quantum Gravity and QED

    NASA Astrophysics Data System (ADS)

    Sawhill, Bruce Kean

    In the first part of this thesis, I present a calculation of the helicity amplitudes of electron-positron double bremsstrahlung in the massless limit. Using a representation for free photon polarizations developed by a group of European physicists, helicity amplitudes for double bremsstrahlung in the massless limit are calculated for all possible combinations of helicities in the two incoming and four outgoing particle states. The calculation is made possible by the vast simplification which occurs at the amplitude level because of the gauge cancellations caused by expressing the photon polarizations in terms of the fermion momenta to which they are attached. The results of the calculation are discussed in terms of possible use as a polarization monitor for future generations of colliding beam machines in which the beams could be polarized. It is found that, although the total cross-section is easily measured experimentally, the polarization asymmetry is very difficult to measure unless the flux is very high. The possibility of using double bremsstrahlung as a means of analyzing the zed-zero is discussed. The applications for this purpose are very promising, as the shape and amplitude of the cross-section are very dependent on the chiral structure of the mediating particle. In the second part of this work, I present a calculation of the cosmological constant to two loops in matterless quantum gravity. A quantization method originally developed by 't Hooft and Veltman and later modified by M. Mueller is used. This is the standard path integral formulation of gravity modified such that it takes into account the dependence of the action functional on the fluctuating metric, an effect which is normally discarded because dimensional regularization nullifies its contributions. The purpose of the calculation was to explore more fully an intriguing result found by Mark Mueller while performing the same calculation to one-loop order; namely, the quantum corrections to the

  18. Zero sound in dipolar Fermi gases

    SciTech Connect

    Ronen, Shai; Bohn, John L.

    2010-03-15

    We study the propagation of sound in a homogeneous dipolar gas at zero temperature, which is known as zero sound. We find that undamped zero sound propagation is possible only in a range of solid angles around the direction of polarization of the dipoles. Above a critical dipole moment, we find an unstable mode, by which the gas collapses locally perpendicular to the dipoles' direction.

  19. Zero leakage separable and semipermanent ducting joints

    NASA Technical Reports Server (NTRS)

    Mischel, H. T.

    1973-01-01

    A study program has been conducted to explore new methods of achieving zero leakage, separable and semipermanent, ducting joints for space flight vehicles. The study consisted of a search of literature of existing zero leakage methods, the generation of concepts of new methods of achieving the desired zero leakage criteria and the development of detailed analysis and design of a selected concept. Other techniques of leak detection were explored with a view toward improving this area.

  20. Artificial or variable gravity attained by tether systems

    NASA Technical Reports Server (NTRS)

    Lundquist, C. A.

    1986-01-01

    The simplest orbiting tethered system demands for stability that the mass centers of two end bodies be displaced above and below the position of zero acceleration. Therefore, the contents of the end bodies are subjected necessarily to acceleration fields or artificial gravity whose magnitudes depend on the dimensions and masses of the system. If the length of the tether changes, so do the fields. Even for a fixed tether length, the acceleration field at a location in the system may be somewhat variable unless special means are employed to maintain a constant value. These fundamental properties of a tethered system can be used to advantage if small or variable acceleration fields are desired for experimental or operational reasons. This potential use involves a few expressions from a formulation of tether system dynamics. Some of these formulae were collected for convenient use. Two and three body tethered equilibrium equations are explained. A special application of acceleration field control using a tether system is attainment of near-zero gravity. In this applicaition, even small variations about zero become a critical matter.

  1. Cosmological tests of modified gravity

    NASA Astrophysics Data System (ADS)

    Koyama, Kazuya

    2016-04-01

    We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein’s theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard Λ CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years.

  2. Cosmological tests of modified gravity.

    PubMed

    Koyama, Kazuya

    2016-04-01

    We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein's theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard [Formula: see text]CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years. PMID:27007681

  3. Cascading gravity is ghost free

    SciTech Connect

    Rham, Claudia de; Khoury, Justin; Tolley, Andrew J.

    2010-06-15

    We perform a full perturbative stability analysis of the 6D cascading gravity model in the presence of 3-brane tension. We demonstrate that for sufficiently large tension on the (flat) 3-brane, there are no ghosts at the perturbative level, consistent with results that had previously only been obtained in a specific 5D decoupling limit. These results establish the cascading gravity framework as a consistent infrared modification of gravity.

  4. Materials analogue of zero-stiffness structures

    NASA Astrophysics Data System (ADS)

    Kumar, Arun; Subramaniam, Anandh

    2011-04-01

    Anglepoise lamps and certain tensegrities are examples of zero-stiffness structures. These structures are in a state of neutral equilibrium with respect to changes in configuration of the system. Using Eshelby's example of an edge dislocation in a thin plate that can bend, we report the discovery of a non-trivial new class of material structures as an analogue to zero-stiffness structures. For extended positions of the edge dislocation in these structures, the dislocation experiences a zero image force. Salient features of these material structures along with the key differences from conventional zero-stiffness structures are pointed out.

  5. NASA Net Zero Energy Buildings Roadmap

    SciTech Connect

    Pless, S.; Scheib, J.; Torcellini, P.; Hendron, B.; Slovensky, M.

    2014-10-01

    In preparation for the time-phased net zero energy requirement for new federal buildings starting in 2020, set forth in Executive Order 13514, NASA requested that the National Renewable Energy Laboratory (NREL) to develop a roadmap for NASA's compliance. NASA detailed a Statement of Work that requested information on strategic, organizational, and tactical aspects of net zero energy buildings. In response, this document presents a high-level approach to net zero energy planning, design, construction, and operations, based on NREL's first-hand experience procuring net zero energy construction, and based on NREL and other industry research on net zero energy feasibility. The strategic approach to net zero energy starts with an interpretation of the executive order language relating to net zero energy. Specifically, this roadmap defines a net zero energy acquisition process as one that sets an aggressive energy use intensity goal for the building in project planning, meets the reduced demand goal through energy efficiency strategies and technologies, then adds renewable energy in a prioritized manner, using building-associated, emission- free sources first, to offset the annual energy use required at the building; the net zero energy process extends through the life of the building, requiring a balance of energy use and production in each calendar year.

  6. Zero-distortion lossless data embedding

    NASA Astrophysics Data System (ADS)

    Nagaraj, Nithin; Mullick, Rakesh

    2004-05-01

    All known methods of lossless or reversible data embedding that exist today suffer from two major disadvantages: 1) The embedded image suffers from distortion, however small it may be by the very process of embedding and 2) The requirement of a special parser (decoder), which is necessary for the client to remove the embedded data in order to obtain the original image (lossless). We propose a novel lossless data embedding method where both these disadvantages are circumvented. Zero-distortion lossless data embedding (ZeroD-LDE) claims 'zero-distortion' of the embedded image for all viewing purposes and further maintaining that clients without any specialized parser can still recover the original image losslessly but would not have direct access to the embedded data. The fact that not all gray levels are used by most images is exploited to embed data by selective lossless compression of run-lengths of zeros (or any compressible pattern). Contiguous runs of zeros are changed such that the leading zero is made equal to the maximum original intensity plus the run-length and the succeeding zeros are converted to the embedded data (plus maximum original intensity) thus achieving extremely high embedding capacities. This way, the histograms of the host-data and the embedded data do not overlap and hence we can obtain zero-distortion by using the window-level setting of standard DICOM viewers. The embedded image is thus not only DICOM compatible but also zero-distortion visually and requires no clinical validation.

  7. Gravity: Simple Experiments for Young Scientists.

    ERIC Educational Resources Information Center

    White, Larry

    This book contains 12 simple experiments through which students can learn about gravity and its implications. Some of the topics included are weight, weightlessness, artificial gravity, the pull of gravity on different shapes, center of gravity, the universal law of gravity, and balancing. Experiments include: finding the balancing point; weighing…

  8. Active Response Gravity Offload System

    NASA Technical Reports Server (NTRS)

    Valle, Paul; Dungan, Larry; Cunningham, Thomas; Lieberman, Asher; Poncia, Dina

    2011-01-01

    The Active Response Gravity Offload System (ARGOS) provides the ability to simulate with one system the gravity effect of planets, moons, comets, asteroids, and microgravity, where the gravity is less than Earth fs gravity. The system works by providing a constant force offload through an overhead hoist system and horizontal motion through a rail and trolley system. The facility covers a 20 by 40-ft (approximately equals 6.1 by 12.2m) horizontal area with 15 ft (approximately equals4.6 m) of lifting vertical range.

  9. [Biology of size and gravity].

    PubMed

    Yamashita, Masamichi; Baba, Shoji A

    2004-03-01

    Gravity is a force that acts on mass. Biological effects of gravity and their magnitude depend on scale of mass and difference in density. One significant contribution of space biology is confirmation of direct action of gravity even at the cellular level. Since cell is the elementary unit of life, existence of primary effects of gravity on cells leads to establish the firm basis of gravitational biology. However, gravity is not limited to produce its biological effects on molecules and their reaction networks that compose living cells. Biological system has hierarchical structure with layers of organism, group, and ecological system, which emerge from the system one layer down. Influence of gravity is higher at larger mass. In addition to this, actions of gravity in each layer are caused by process and mechanism that is subjected and different in each layer of the hierarchy. Because of this feature, summing up gravitational action on cells does not explain gravity for biological system at upper layers. Gravity at ecological system or organismal level can not reduced to cellular mechanism. Size of cells and organisms is one of fundamental characters of them and a determinant in their design of form and function. Size closely relates to other physical quantities, such as mass, volume, and surface area. Gravity produces weight of mass. Organisms are required to equip components to support weight and to resist against force that arise at movement of body or a part of it. Volume and surface area associate with mass and heat transport process at body. Gravity dominates those processes by inducing natural convection around organisms. This review covers various elements and process, with which gravity make influence on living systems, chosen on the basis of biology of size. Cells and biochemical networks are under the control of organism to integrate a consolidated form. How cells adjust metabolic rate to meet to the size of the composed organism, whether is gravity

  10. A Challenge to Entropic Gravity

    NASA Astrophysics Data System (ADS)

    Roveto, Jonathan; Munoz, Gerardo

    2012-03-01

    In a recent publication, Erik Verlinde attempts to show that gravity should be viewed not as a fundamental force, but rather as an emergent thermodynamic phenomenon arising from an unspecified microscopic theory via equipartition and holography. We present a challenge to his reformulation of gravity. A detailed examination of Verlinde's derivation leads to a number of questions that severely weaken the claim that such a theory correctly reproduces Newton's laws or Einstein gravity. In particular, we find that neither Newtonian gravity nor the Einstein equations are uniquely determined using Verlinde's postulates.

  11. An inverse dynamic analysis on the influence of upper limb gravity compensation during reaching.

    PubMed

    Essers, J M N Hans; Meijer, Kenneth; Murgia, Alessio; Bergsma, Arjen; Verstegen, Paul

    2013-06-01

    Muscular dystrophies (MDs) are characterized by progressive muscle wasting and weakness. Several studies have been conducted to investigate the influence of arm supports in an attempt to restore arm function. Lowering the load allows the user to employ the residual muscle force for movement as well as for posture stabilization. In this pilot study three conditions were investigated during a reaching task performed by three healthy subjects and three MD subjects: a control condition involving reaching; a similar movement with gravity compensation using braces to support the forearm; an identical reaching movement in simulated zero-gravity. In the control condition the highest values of shoulder moments were present, with a maximum of about 6 Nm for shoulder flexion and abduction. In the gravity compensation and zero gravity conditions the maximum shoulder moments were decreased by more than 70% and instead of increasing during reaching, they remained almost unvaried, fluctuating around an offset value less than 1 Nm. Similarly, the elbow moments in the control condition were the highest with a peak around 3.3 Nm for elbow flexion, while the moments were substantially reduced in the remaining two conditions, fluctuating around offset values between 0 to 0.5 Nm. In conclusion, gravity compensation by lower arm support is effective in healthy subjects and MD subjects and lowers the amount of shoulder and elbow moments by an amount comparable to a zero gravity environment. However the influence of gravity compensation still needs to be investigated on more people with MDs in order to quantify any beneficial effect on this population. PMID:24187187

  12. Bringing Gravity to Space

    NASA Technical Reports Server (NTRS)

    Norsk, P.; Shelhamer, M.

    2016-01-01

    This panel will present NASA's plans for ongoing and future research to define the requirements for Artificial Gravity (AG) as a countermeasure against the negative health effects of long-duration weightlessness. AG could mitigate the gravity-sensitive effects of spaceflight across a host of physiological systems. Bringing gravity to space could mitigate the sensorimotor and neuro-vestibular disturbances induced by G-transitions upon reaching a planetary body, and the cardiovascular deconditioning and musculoskeletal weakness induced by weightlessness. Of particular interest for AG during deep-space missions is mitigation of the Visual Impairment Intracranial Pressure (VIIP) syndrome that the majority of astronauts exhibit in space to varying degrees, and which presumably is associated with weightlessness-induced fluid shift from lower to upper body segments. AG could be very effective for reversing the fluid shift and thus help prevent VIIP. The first presentation by Dr. Charles will summarize some of the ground-based and (very little) space-based research that has been conducted on AG by the various space programs. Dr. Paloski will address the use of AG during deep-space exploration-class missions and describe the different AG scenarios such as intra-vehicular, part-of-vehicle, or whole-vehicle centrifugations. Dr. Clement will discuss currently planned NASA research as well as how to coordinate future activities among NASA's international partners. Dr. Barr will describe some possible future plans for using space- and ground-based partial-G analogs to define the relationship between physiological responses and G levels between 0 and 1. Finally, Dr. Stenger will summarize how the human cardiovascular system could benefit from intermittent short-radius centrifugations during long-duration missions.

  13. Fast gravity, gravity partials, normalized gravity, gravity gradient torque and magnetic field: Derivation, code and data

    NASA Technical Reports Server (NTRS)

    Gottlieb, Robert G.

    1993-01-01

    Derivation of first and second partials of the gravitational potential is given in both normalized and unnormalized form. Two different recursion formulas are considered. Derivation of a general gravity gradient torque algorithm which uses the second partial of the gravitational potential is given. Derivation of the geomagnetic field vector is given in a form that closely mimics the gravitational algorithm. Ada code for all algorithms that precomputes all possible data is given. Test cases comparing the new algorithms with previous data are given, as well as speed comparisons showing the relative efficiencies of the new algorithms.

  14. Gravity and Granular Materials

    NASA Technical Reports Server (NTRS)

    Behringer, R. P.; Hovell, Daniel; Kondic, Lou; Tennakoon, Sarath; Veje, Christian

    1999-01-01

    We describe experiments that probe a number of different types of granular flow where either gravity is effectively eliminated or it is modulated in time. These experiments include the shaking of granular materials both vertically and horizontally, and the shearing of a 2D granular material. For the shaken system, we identify interesting dynamical phenomena and relate them to standard simple friction models. An interesting application of this set of experiments is to the mixing of dissimilar materials. For the sheared system we identify a new kind of dynamical phase transition.

  15. The gravity apple tree

    NASA Astrophysics Data System (ADS)

    Espinosa Aldama, Mariana

    2015-04-01

    The gravity apple tree is a genealogical tree of the gravitation theories developed during the past century. The graphic representation is full of information such as guides in heuristic principles, names of main proponents, dates and references for original articles (See under Supplementary Data for the graphic representation). This visual presentation and its particular classification allows a quick synthetic view for a plurality of theories, many of them well validated in the Solar System domain. Its diachronic structure organizes information in a shape of a tree following similarities through a formal concept analysis. It can be used for educational purposes or as a tool for philosophical discussion.

  16. Dynamics of Superfluid Helium in Low-Gravity

    NASA Technical Reports Server (NTRS)

    Frank, David J.

    1997-01-01

    sensitive to quasi-steady changes in the mass distribution of the liquid. The CFD codes were used to model the fluid's dynamic motion. Tests in one-g were performed with the main emphasis on being able to compute the actual damping of the fluid. A series of flights on the NASA Lewis reduced gravity DC-9 aircraft were performed with the Jet Propulsion Laboratory (JPL) Low Temperature Flight Facility and a superfluid Test Cell. The data at approximately 0.04g, lg and 2g were used to determine if correct fundamental frequencies can be predicted based on the acceleration field. Tests in zero gravity were performed to evaluate zero gravity motion.

  17. Gravity field of the Western Weddell Sea: Comparison of airborne gravity and Geosat derived gravity

    NASA Technical Reports Server (NTRS)

    Bell, R. E.; Brozena, J. M.; Haxby, W. F.; Labrecque, J. L.

    1989-01-01

    Marine gravity surveying in polar regions was typically difficult and costly, requiring expensive long range research vessels and ice-breakers. Satellite altimetry can recover the gravity field in these regions where it is feasible to survey with a surface vessel. Unfortunately, the data collected by the first global altimetry mission, Seasat, was collected only during the austral winter, producing a very poor quality gravitational filed for the southern oceans, particularly in the circum-Antarctic regions. The advent of high quality airborne gravity (Brozena, 1984; Brozena and Peters, 1988; Bell, 1988) and the availability of satellite altimetry data during the austral summer (Sandwell and McAdoo, 1988) has allowed the recovery of a free air gravity field for most of the Weddell Sea. The derivation of the gravity field from both aircraft and satellite measurements are briefly reviewed, before presenting along track comparisons and shaded relief maps of the Weddell Sea gravity field based on these two data sets.

  18. Humans use internal models to estimate gravity and linear acceleration.

    PubMed

    Merfeld, D M; Zupan, L; Peterka, R J

    1999-04-15

    Because sensory systems often provide ambiguous information, neural processes must exist to resolve these ambiguities. It is likely that similar neural processes are used by different sensory systems. For example, many tasks require neural processing to distinguish linear acceleration from gravity, but Einstein's equivalence principle states that all linear accelerometers must measure both linear acceleration and gravity. Here we investigate whether the brain uses internal models, defined as neural systems that mimic physical principles, to help estimate linear acceleration and gravity. Internal models may be used in motor contro, sensorimotor integration and sensory processing, but direct experimental evidence for such models is limited. To determine how humans process ambiguous gravity and linear acceleration cues, subjects were tilted after being rotated at a constant velocity about an Earth-vertical axis. We show that the eye movements evoked by this post-rotational tilt include a response component that compensates for the estimated linear acceleration even when no actual linear acceleration occurs. These measured responses are consistent with our internal model predictions that the nervous system can develop a non-zero estimate of linear acceleration even when no true linear acceleration is present. PMID:10217143

  19. The lunar environment as a fractional-gravity biological laboratory

    NASA Astrophysics Data System (ADS)

    Garshnek, V.

    A quarter of a century ago men stepped upon the lunar surface and established the possibility of human expansion beyond Earth. When humans return to the moon to occupy it with greater permanency, an applied lunar biological laboratory would provide a means of conducting experiments on the long-term effects of fractional gravity in animals and plants and provide necessary data to enhance the health, safety and well-being of lunar workers and inhabitants. In-depth studies can go beyond zero-g observations, on-orbit centrifuge studies, and ground-based research providing important insight into continuous 1/6- g effects on biological systems. Studies concentrating on development, gravity sensing, and adaptation/readaptation would provide preliminary data on whether long-term fractional gravity is detrimental or compromising to fundamental biological function. Food production research in 1/6- g would provide important information for on site application to improve the yield and quality of food (animal and plant) produced in the unique lunar environment. The purpose of this paper is to discuss some examples of the major gravitational biology areas that could be studied on the moon and applied to lunar population needs utilizing lunar biological facilities and continuous fractional gravity.

  20. Modifications of gravity.

    PubMed

    Skordis, Constantinos

    2011-12-28

    General relativity (GR) is a phenomenologically successful theory that rests on firm foundations, but has not been tested on cosmological scales. The deep mystery of dark energy (and possibly even the requirement of cold dark matter (CDM)) has increased the need for testing modifications to GR, as the inference of such otherwise undetected fluids depends crucially on the theory of gravity. Here, I discuss a general scheme for constructing consistent and covariant modifications to the Einstein equations. This framework is such that there is a clear connection between the modification and the underlying field content that produces it. I argue that this is mandatory for distinguishing modifications of gravity from conventional fluids. I give a non-trivial example, a simple metric-based modification of the fluctuation equations for which the background is exact ΛCDM, but differs from it in the perturbations. I show how this can be generalized and solved in terms of two arbitrary functions. Finally, I discuss future prospects and directions of research. PMID:22084286

  1. The International Space University's variable gravity research facility design

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Chiaramonte, Francis P.; Davidian, Kenneth J.

    1991-01-01

    A manned mission to Mars will require long travel times between Earth and Mars. However, exposure to long-duration zero gravity is known to be harmful to the human body. Some of the harmful effects are loss of heart and lung capacity, inability to stand upright, muscular weakness and loss of bone calcium. A variable gravity research facility (VGRF) that would be placed in low Earth orbit (LEO) was designed by students of the International Space University 1989 Summer Session held in Strasbourg, France, to provide a testbed for conducting experiments in the life and physical sciences in preparation for a mission to Mars. This design exercise was unique because it addressed all aspects concerning a large space project. The VGRF design was described which was developed by international participants specializing in the following areas: the politics of international cooperation, engineering, architecture, in-space physiology, material and life science experimentation, data communications, business, and management.

  2. Utilization of Low Gravity Environment for Measuring Liquid Viscosity

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.; Ethridge, Edwin

    1998-01-01

    The method of drop coalescence is used for determining the viscosity of highly viscous undercooled liquids. Low gravity environment is necessary in order to allow for examining large volumes affording much higher accuracy for the viscosity calculations than possible for smaller volumes available under 1 - g conditions. The drop coalescence method is preferred over the drop oscillation technique since the latter method can only be applied for liquids with vanishingly small viscosities. The technique developed relies on both the highly accurate solution of the Navier-Stokes equations as well as on data from experiments conducted in near zero gravity environment. Results are presented for method validation experiments recently performed on board the NASA/KC-135 aircraft. While the numerical solution was produced using the Boundary Element Method. In these tests the viscosity of a highly viscous liquid, glycerine at room temperature, was determined using the liquid coalescence method. The results from these experiments will be discussed.

  3. Cosmological perturbations in massive gravity and the Higuchi bound

    SciTech Connect

    Fasiello, Matteo; Tolley, Andrew J. E-mail: andrew.j.tolley@case.edu

    2012-11-01

    In de Sitter spacetime there exists an absolute minimum for the mass of a spin-2 field set by the Higuchi bound m{sup 2} ≥ 2H{sup 2}. We generalize this bound to arbitrary spatially flat FRW geometries in the context of the recently proposed ghost-free models of Massive Gravity with an FRW reference metric, by performing a Hamiltonian analysis for cosmological perturbations. We find that the bound generically indicates that spatially flat FRW solutions in FRW massive gravity, which exhibit a Vainshtein mechanism in the background as required by consistency with observations, imply that the helicity zero mode is a ghost. In contradistinction to previous works, the tension between the Higuchi bound and the Vainshtein mechanism is equally strong regardless of the equation of state for matter.

  4. The International Space University's variable gravity research facility design

    NASA Astrophysics Data System (ADS)

    Bailey, Sheila G.; Chiaramonte, Francis P.; Davidian, Kenneth J.

    1991-09-01

    A manned mission to Mars will require long travel times between Earth and Mars. However, exposure to long-duration zero gravity is known to be harmful to the human body. Some of the harmful effects are loss of heart and lung capacity, inability to stand upright, muscular weakness and loss of bone calcium. A variable gravity research facility (VGRF) that would be placed in low Earth orbit (LEO) was designed by students of the International Space University 1989 Summer Session held in Strasbourg, France, to provide a testbed for conducting experiments in the life and physical sciences in preparation for a mission to Mars. This design exercise was unique because it addressed all aspects concerning a large space project. The VGRF design was described which was developed by international participants specializing in the following areas: the politics of international cooperation, engineering, architecture, in-space physiology, material and life science experimentation, data communications, business, and management.

  5. International Space University variable gravity research facility design

    NASA Astrophysics Data System (ADS)

    Bailey, Sheila G.; Chiaramonte, Francis P.; Davidian, Kenneth J.

    1994-03-01

    A manned mission to Mars will require long travel times between Earth and Mars. However, exposure to long-duration zero gravity is known to be harmful to the human body. Some of the harmful effects are loss of heart and lung capacity, inability to stand upright, muscular weakness, and loss of bone calcium. A variable gravity research facility (VGRF) that will be placed in low Earth orbit (LEO) was designed by students of the International Space University 1989 Summer Session held in Strasbourg, France, to provide a testbed for conducting experiments in the life and physical sciences in preparation for a mission to Mars. This design exercise was unique because it addressed all aspects concerning a large space project. This report describes the VGRF design that was developed by international participants specializing in the following areas: the politics of international cooperation; engineering, architecture; in-space physiological, materials, and life science experimentation; data communications; and business and management.

  6. Crustal structure beneath the southern Appalachians: nonuniqueness of gravity modeling

    USGS Publications Warehouse

    Hutchinson, Deborah R.; Grow, John A.; Klitgord, Kim D.

    1983-01-01

    Gravity models computed for a profile across the long-wavelength paired negative-positive Bouguer anomalies of the southern Appalachian Mountains show that the large negative anomaly can be explained by a crustal root zone, whereas the steep gradient and positive anomaly east of the root may be explained equally well by three different geometries: a suture zone, a mantle upwarp, or a shallow body. Seismic data support the existence of a mountain root but are inadequate to resolve differences among the three possible geometries for the positive anomaly. The presence of outcropping mafic and ultramafic rocks in the southern Appalachians and the inferred tectonic history of the Appalachian orogen are most consistent with the suture-zone model. Crust similar to continental crust probably exists beneath the Coastal Plain and inner continental shelf where the gravity anomalies return to near-zero values.

  7. Wormholes, the weak energy condition, and scalar-tensor gravity

    NASA Astrophysics Data System (ADS)

    Shaikh, Rajibul; Kar, Sayan

    2016-07-01

    We obtain a large class of Lorentzian wormhole spacetimes in scalar-tensor gravity, for which the matter stress energy does satisfy the weak energy condition. Our constructions have zero Ricci scalar and an everywhere finite, nonzero scalar field profile. Interpreting the scalar-tensor gravity as an effective on-brane theory resulting from a two-brane Randall-Sundrum model of warped extra dimensions, it is possible to link wormhole existence with that of extra dimensions. We study the geometry, matter content, gravitational redshift and circular orbits in such wormholes and argue that our examples are perhaps among those which may have some observational relevance in astrophysics in the future. We also study traversability and find that our wormholes are indeed traversable for values of the metric parameters satisfying the weak energy condition.

  8. Reduced-gravity two-phase flow experiments in the NASA KC-135

    NASA Technical Reports Server (NTRS)

    Cuta, Judith M.; Michener, Thomas E.; Best, Frederick R.; Kachnik, Leo J.

    1988-01-01

    An adequate understanding is sought of flow and heat transfer behavior in reduced and zero gravity conditions. Microgravity thermal-hydraulic analysis capabilities were developed for application to space nuclear power systems. A series of reduced gravity two phase flow experiments using the NASA KC-135 were performed. The objective was to supply basic thermal hydraulic information that could be used in development of analytical tools for design of space power systems. The experiments are described. Two main conclusions were drawn. First, the tests demonstrate that the KC-135 is a suitable test environment for obtaining two phase flow and heat transfer data in reduced gravity conditions. Second, the behavior of two phase flow in low gravity is sufficiently different from that obtained in 1 g to warrant intensive investigation of the phenomenon if adequate analytical tools are to be developed for microgravity conditions.

  9. New observational constraints on f(T) gravity from cosmic chronometers

    NASA Astrophysics Data System (ADS)

    Nunes, Rafael C.; Pan, Supriya; Saridakis, Emmanuel N.

    2016-08-01

    We use the local value of the Hubble constant recently measured with 2.4% precision, as well as the latest compilation of cosmic chronometers data, together with standard probes such as Supernovae Type Ia and Baryon Acoustic Oscillation distance measurements, in order to impose constraints on the viable and most used f(T) gravity models, where T is the torsion scalar in teleparallel gravity. In particular, we consider three f(T) models with two parameters, out of which one is independent, and we quantify their deviation from ΛCDM cosmology through a sole parameter. Our analysis reveals that for one of the models a small but non-zero deviation from ΛCDM cosmology is slightly favored, while for the other models the best fit is very close to ΛCDM scenario. Clearly, f(T) gravity is consistent with observations, and it can serve as a candidate for modified gravity.

  10. Simulation of gaseous diffusion in partially saturated porous media under variable gravity with lattice Boltzmann methods

    NASA Technical Reports Server (NTRS)

    Chau, Jessica Furrer; Or, Dani; Sukop, Michael C.; Steinberg, S. L. (Principal Investigator)

    2005-01-01

    Liquid distributions in unsaturated porous media under different gravitational accelerations and corresponding macroscopic gaseous diffusion coefficients were investigated to enhance understanding of plant growth conditions in microgravity. We used a single-component, multiphase lattice Boltzmann code to simulate liquid configurations in two-dimensional porous media at varying water contents for different gravity conditions and measured gas diffusion through the media using a multicomponent lattice Boltzmann code. The relative diffusion coefficients (D rel) for simulations with and without gravity as functions of air-filled porosity were in good agreement with measured data and established models. We found significant differences in liquid configuration in porous media, leading to reductions in D rel of up to 25% under zero gravity. The study highlights potential applications of the lattice Boltzmann method for rapid and cost-effective evaluation of alternative plant growth media designs under variable gravity.

  11. Hypersonic Interplanetary Flight: Aero Gravity Assist

    NASA Technical Reports Server (NTRS)

    Bowers, Al; Banks, Dan; Randolph, Jim

    2006-01-01

    The use of aero-gravity assist during hypersonic interplanetary flights is highlighted. Specifically, the use of large versus small planet for gravity asssist maneuvers, aero-gravity assist trajectories, launch opportunities and planetary waverider performance are addressed.

  12. Zero-Base Budgeting:; An Institutional Experience.

    ERIC Educational Resources Information Center

    Alexander, Donald L.; Anderson, Roger C.

    Zero-base budgeting as it is used at Allegany College is described. Zero-based budgeting is defined as a budgeting and planning approach that requires the examination of every item in a budget request as if the request were being proposed for the first time. Budgets (decision packages) are first made up for decision units (i.e., a course for the…

  13. Zero Tolerance Policies. ERIC Digest Number 146.

    ERIC Educational Resources Information Center

    McAndrews, Tobin

    State legislatures and school boards are adopting a growing number of zero-tolerance polices toward weapons, guns, and violence. Zero-tolerance polices are rules intended to address specific school-safety issues. They have arisen in part as a response to the threat of the withdrawal of federal funds under the 1994 Gun-Free Schools Act, and…

  14. Determining Absolute Zero Using a Tuning Fork

    ERIC Educational Resources Information Center

    Goldader, Jeffrey D.

    2008-01-01

    The Celsius and Kelvin temperature scales, we tell our students, are related. We explain that a change in temperature of 1 degree C corresponds to a change of 1 Kelvin and that atoms and molecules have zero kinetic energy at zero Kelvin, -273 degrees C. In this paper, we will show how students can derive the relationship between the Celsius and…

  15. A Place for Zero in the Brain.

    PubMed

    Rinaldi, Luca; Girelli, Luisa

    2016-08-01

    It has long been thought that the primary cognitive and neural systems responsible for processing numerosities are not predisposed to encode empty sets (i.e., numerosity zero). A new study challenges this view by demonstrating that zero is translated into an abstract quantity along the numerical continuum by the primate parietofrontal magnitude system. PMID:27381744

  16. Workshop: Promoting Sustainability Through Net Zero Strategies

    EPA Science Inventory

    In 2011, EPA’s Office of Research and Development (ORD) signed an MOU with the U.S. Army to support the Army’s Net Zero initiative. The 17 Net Zero pilot installations aim to produce as much energy as used; limit freshwater use and increase water reuse; and reduce the generation ...

  17. Experimental Observation of Lee-Yang Zeros

    NASA Astrophysics Data System (ADS)

    Peng, Xinhua; Zhou, Hui; Wei, Bo-Bo; Cui, Jiangyu; Du, Jiangfeng; Liu, Ren-Bao

    2015-01-01

    Lee-Yang zeros are points on the complex plane of physical parameters where the partition function of a system vanishes and hence the free energy diverges. Lee-Yang zeros are ubiquitous in many-body systems and fully characterize their thermodynamics. Notwithstanding their fundamental importance, Lee-Yang zeros have never been observed in experiments, due to the intrinsic difficulty that they would occur only at complex values of physical parameters, which are generally regarded as unphysical. Here we report the first observation of Lee-Yang zeros, by measuring quantum coherence of a probe spin coupled to an Ising-type spin bath. The quantum evolution of the probe spin introduces a complex phase factor and therefore effectively realizes an imaginary magnetic field. From the measured Lee-Yang zeros, we reconstructed the free energy of the spin bath and determined its phase transition temperature. This experiment opens up new opportunities of studying thermodynamics in the complex plane.

  18. Is There Gravity in Space?

    ERIC Educational Resources Information Center

    Bar, Varda; And Others

    1997-01-01

    Investigates students' ideas about gravity beyond the earth's surface. Presents a lesson plan designed to help students understand that gravity can act beyond Earth's atmosphere. Also helps students gain a more adequate intuitive understanding of how natural and artificial satellites stay in orbit. Reports that this strategy changed some students'…

  19. Quantum Corrections to Entropic Gravity

    NASA Astrophysics Data System (ADS)

    Chen, Pisin; Wang, Chiao-Hsuan

    2013-12-01

    The entropic gravity scenario recently proposed by Erik Verlinde reproduced Newton's law of purely classical gravity yet the key assumptions of this approach all have quantum mechanical origins. As is typical for emergent phenomena in physics, the underlying, more fundamental physics often reveals itself as corrections to the leading classical behavior. So one naturally wonders: where is ħ hiding in entropic gravity? To address this question, we first revisit the idea of holographic screen as well as entropy and its variation law in order to obtain a self-consistent approach to the problem. Next we argue that as the concept of minimal length has been invoked in the Bekenstein entropic derivation, the generalized uncertainty principle (GUP), which is a direct consequence of the minimal length, should be taken into consideration in the entropic interpretation of gravity. Indeed based on GUP it has been demonstrated that the black hole Bekenstein entropy area law must be modified not only in the strong but also in the weak gravity regime where in the weak gravity limit the GUP modified entropy exhibits a logarithmic correction. When applying it to the entropic interpretation, we demonstrate that the resulting gravity force law does include sub-leading order correction terms that depend on ħ. Such deviation from the classical Newton's law may serve as a probe to the validity of entropic gravity.

  20. Quantum Corrections to Entropic Gravity

    NASA Astrophysics Data System (ADS)

    Chen, Pisin; Wang, Chiao-Hsuan

    2013-01-01

    The entropic gravity scenario recently proposed by Erik Verlinde reproduced Newton's law of purely classical gravity yet the key assumptions of this approach all have quantum mechanical origins. As is typical for emergent phenomena in physics, the underlying, more fundamental physics often reveals itself as corrections to the leading classical behavior. So one naturally wonders: where is ℏ hiding in entropic gravity? To address this question, we first revisit the idea of holographic screen as well as entropy and its variation law in order to obtain a self-consistent approach to the problem. Next we argue that since the concept of minimal length has been invoked in the Bekenstein entropic derivation, the generalized uncertainty principle (GUP), which is a direct consequence of the minimal length, should be taken into consideration in the entropic interpretation of gravity. Indeed based on GUP it has been demonstrated that the black hole Bekenstein entropy area law must be modified not only in the strong but also in the weak gravity regime where in the weak gravity limit the GUP modified entropy exhibits a logarithmic correction. When applying it to the entropic interpretation, we demonstrate that the resulting gravity force law does include sub-leading order correction terms that depend on ℏ. Such deviation from the classical Newton's law may serve as a probe to the validity of entropic gravity.

  1. Gravity...It's So Attractive!

    ERIC Educational Resources Information Center

    Lewis, Carol

    1992-01-01

    Describes six simple experiments that can enable students to better understand gravity and the role it plays in the universe. Includes discussions of Newton's experiments, weight and mass, center of gravity, center of mass, and the velocity of falling objects. (JJK)

  2. Born-Infeld-Horava gravity

    SciTech Connect

    Guellue, Ibrahim; Sisman, Tahsin Cagri; Tekin, Bayram

    2010-05-15

    We define various Born-Infeld gravity theories in 3+1 dimensions which reduce to Horava's model at the quadratic level in small curvature expansion. In their exact forms, our actions provide z{yields}{infinity} extensions of Horava's gravity, but when small curvature expansion is used, they reproduce finite z models, including some half-integer ones.

  3. Lunar gravity - A harmonic analysis

    NASA Technical Reports Server (NTRS)

    Ferrari, A. J.

    1977-01-01

    A sixteenth-degree and sixteenth-order spherical harmonic lunar gravity field has been derived from the long-term Keplerian variations in the orbits of the Apollo subsatellites and Lunar Orbiter 5. This model resolves the major mascon gravity anomalies of the lunar near side and is in very good agreement with line-of-sight acceleration results. The far-side map shows the major ringed basins to be strong localized negative anomalies located in broad regions of positive gravity which correspond closely to the highlands. The rms pressure levels calculated from equivalent-surface height variations show that the moon and earth support nearly equal pressures, whereas Mars is appreciably stronger. The moon appears to support larger loads than earth owing to its weaker central gravity field and perhaps a colder upper lithosphere. Significant differences between the low-degree gravity and topography spectra indicate that the longer-wavelength topographic features are isostatically compensated.

  4. Unimodular F(R) gravity

    NASA Astrophysics Data System (ADS)

    Nojiri, S.; Odintsov, S. D.; Oikonomou, V. K.

    2016-05-01

    We extend the formalism of the Einstein-Hilbert unimodular gravity in the context of modified F(R) gravity. After appropriately modifying the Friedmann-Robertson-Walker metric in a way that it becomes compatible to the unimodular condition of having a constant metric determinant, we derive the equations of motion of the unimodular F(R) gravity by using the metric formalism of modified gravity with Lagrange multiplier constraint. The resulting equations are studied in frames of reconstruction method, which enables us to realize various cosmological scenarios, which was impossible to realize in the standard Einstein-Hilbert unimodular gravity. Several unimodular F(R) inflationary scenarios are presented, and in some cases, concordance with Planck and BICEP2 observational data can be achieved.

  5. QCD analogy for quantum gravity

    NASA Astrophysics Data System (ADS)

    Holdom, Bob; Ren, Jing

    2016-06-01

    Quadratic gravity presents us with a renormalizable, asymptotically free theory of quantum gravity. When its couplings grow strong at some scale, as in QCD, then this strong scale sets the Planck mass. QCD has a gluon that does not appear in the physical spectrum. Quadratic gravity has a spin-2 ghost that we conjecture does not appear in the physical spectrum. We discuss how the QCD analogy leads to this conjecture and to the possible emergence of general relativity. Certain aspects of the QCD path integral and its measure are also similar for quadratic gravity. With the addition of the Einstein-Hilbert term, quadratic gravity has a dimensionful parameter that seems to control a quantum phase transition and the size of a mass gap in the strong phase.

  6. Foam formation in low gravity

    NASA Technical Reports Server (NTRS)

    Wessling, Francis C.; Mcmanus, Samuel P.; Matthews, John; Patel, Darayas

    1990-01-01

    An apparatus that produced the first polyurethane foam in low gravity has been described. The chemicals were mixed together in an apparatus designed for operation in low gravity. Mixing was by means of stirring the chemicals with an electric motor and propeller in a mixing chamber. The apparatus was flown on Consort 1, the first low-gravity materials payload launched by a commercial rocket launch team. The sounding rocket flight produced over 7 min of low gravity during which a polyurethane spheroidal foam of approximately 2300 cu cm was formed. Photographs of the formation of the foam during the flight show the development of the spheroidal form. This begins as a small sphere and grows to approximately a 17-cm-diam spheroid. The apparatus will be flown again on subsequent low-gravity flights.

  7. Diffraction patterns in ferrofluids: Effect of magnetic field and gravity

    NASA Astrophysics Data System (ADS)

    Radha, S.; Mohan, Shalini; Pai, Chintamani

    2014-09-01

    In this paper, we report the experimental observation of diffraction patterns in a ferrofluid comprising of Fe3O4 nanoparticles in hexane by a 10 mW He-Ne laser beam. An external dc magnetic field (0-2 kG) was applied perpendicular to the beam. The diffraction pattern showed a variation at different depths of the sample in both zero and applied magnetic field. The patterns also exhibit a change in shape and size as the external field is varied. This effect arises due to thermally induced self-diffraction under the influence of gravity and external magnetic field.

  8. Analog model for quantum gravity effects: phonons in random fluids.

    PubMed

    Krein, G; Menezes, G; Svaiter, N F

    2010-09-24

    We describe an analog model for quantum gravity effects in condensed matter physics. The situation discussed is that of phonons propagating in a fluid with a random velocity wave equation. We consider that there are random fluctuations in the reciprocal of the bulk modulus of the system and study free phonons in the presence of Gaussian colored noise with zero mean. We show that, in this model, after performing the random averages over the noise function a free conventional scalar quantum field theory describing free phonons becomes a self-interacting model. PMID:21230759

  9. Conceptualization and design of a variable-gravity research facility

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The goal is to provide facilities for the study of the effects of variable-gravity levels in reducing the physiological stresses upon the humans of long-term stay time in zero-g. The designs studied include: twin-tethered two module system with a central despun module with docking port and winch gear; and rigid arm tube facility using shuttle external tanks. Topics examined included: despun central capsule configuration, docking clearances, EVA requirements, crew selection, crew scheduling, food supply and preparation, waste handling, leisure use, biomedical issues, and psycho-social issues.

  10. Discrete Quantum Gravity in the Regge Calculus Formalism

    SciTech Connect

    Khatsymovsky, V.M.

    2005-09-01

    We discuss an approach to the discrete quantum gravity in the Regge calculus formalism that was developed in a number of our papers. The Regge calculus is general relativity for a subclass of general Riemannian manifolds called piecewise flat manifolds. The Regge calculus deals with a discrete set of variables, triangulation lengths, and contains continuous general relativity as a special limiting case where the lengths tend to zero. In our approach, the quantum length expectations are nonzero and of the order of the Plank scale, 10{sup -33} cm, implying a discrete spacetime structure on these scales.

  11. Further studies of propellant sloshing under low-gravity conditions

    NASA Technical Reports Server (NTRS)

    Dodge, F. T.

    1971-01-01

    A variational integral is formulated from Hamilton's Principle and is proved to be equivalent to the usual differential equations of low-gravity sloshing in ellipsoidal tanks. It is shown that for a zero-degree contact angle the contact line boundary condition corresponds to the stuck condition, a result that is due to the linearization of the equations and the ambiguity in the definition of the wave height at the wall. The variational integral is solved by a Rayleigh-Ritz technique. Results for slosh frequency when the free surface is not bent-over compare well with previous numerical solutions. When the free surface is bent over, however, the results for slosh frequency are considerably larger than those predicted by previous finite-difference, numerical approaches: the difference may be caused by the use of a zero degree contact angle in the present theory in contrast to the nonzero contact angle used in the numerical approaches.

  12. Superconducting gravity gradiometer for sensitive gravity measurements. I. Theory

    SciTech Connect

    Chan, H.A.; Paik, H.J.

    1987-06-15

    Because of the equivalence principle, a global measurement is necessary to distinguish gravity from acceleration of the reference frame. A gravity gradiometer is therefore an essential instrument needed for precision tests of gravity laws and for applications in gravity survey and inertial navigation. Superconductivity and SQUID (superconducting quantum interference device) technology can be used to obtain a gravity gradiometer with very high sensitivity and stability. A superconducting gravity gradiometer has been developed for a null test of the gravitational inverse-square law and space-borne geodesy. Here we present a complete theoretical model of this instrument. Starting from dynamical equations for the device, we derive transfer functions, a common mode rejection characteristic, and an error model of the superconducting instrument. Since a gradiometer must detect a very weak differential gravity signal in the midst of large platform accelerations and other environmental disturbances, the scale factor and common mode rejection stability of the instrument are extremely important in addition to its immunity to temperature and electromagnetic fluctuations. We show how flux quantization, the Meissner effect, and properties of liquid helium can be utilized to meet these challenges.

  13. Gravity Waves and their Effects on the Mean State and Variability of Mars' Atmosphere

    NASA Astrophysics Data System (ADS)

    Creasey, John E.

    Data from the Mars Global Surveyor (MGS) spacecraft has revealed the presence of gravity waves in Mars' lower atmosphere and thermosphere. From perturbations in radio occultation temperature profiles of the lower atmosphere, global distributions of gravity wave potential energy density were calculated. The potential energy density distributions served as the basis to compute gravity wave source momentum flux used in a Mars dynamical model, marking the first time that a numerical study of Mars' gravity waves was observationally constrained. The gravity wave source spectrum is believed to include a stationary component from topographic forcing and a non-stationary component from atmospheric tides with large zonal wavenumbers. The model used was a Mars-specific version of the Hybrid Lindzen-Matsuno gravity wave parameterization that was created and integrated into the time-dependent, two-dimensional QNLM model for Mars. Due to the non-stationary waves in the gravity wave spectrum, the effect on predicted zonal wind and temperature fields was profound, particularly in the upper atmosphere above 100 km altitude where Mars' atmosphere is poorly observed. At solstice, the middle atmosphere zonal jets were closed near 80 km, and upper atmosphere zonal winds were significantly diminished from 120--140 m s-1 to near zero. Meridional circulation increased to over 50 m s-1 at altitudes where gravity wave breaking occurred, and adiabatic heating above the winter pole was enhanced. The model results were particularly sensitive to the prescribed phase speed distribution, and multiple phase speed spectra were evaluated to assess sensitivity. The effects of the non-stationary tidal components in the gravity wave spectrum indicate that Mars' GCMs may be underestimating their contribution to middle and upper atmosphere forcing, but open questions remain with respect to the phase speed distribution of non-stationary components and the relative contribution to momentum flux of

  14. Transverse gravity versus observations

    SciTech Connect

    Álvarez, Enrique; Faedo, Antón F.; López-Villarejo, J.J. E-mail: anton.fernandez@uam.es

    2009-07-01

    Theories of gravity invariant under those diffeomorphisms generated by transverse vectors, ∂{sub μ}ξ{sup μ} = 0 are considered. Such theories are dubbed transverse, and differ from General Relativity in that the determinant of the metric, g, is a transverse scalar. We comment on diverse ways in which these models can be constrained using a variety of observations. Generically, an additional scalar degree of freedom mediates the interaction, so the usual constraints on scalar-tensor theories have to be imposed. If the purely gravitational part is Einstein-Hilbert but the matter action is transverse, the models predict that the three a priori different concepts of mass (gravitational active and gravitational passive as well as inertial) are not equivalent anymore. These transverse deviations from General Relativity are therefore tightly constrained, actually correlated with existing bounds on violations of the equivalence principle, local violations of Newton's third law and/or violation of Local Position Invariance.

  15. Problems of massive gravities

    NASA Astrophysics Data System (ADS)

    Deser, S.; Izumi, K.; Ong, Y. C.; Waldron, A.

    2015-01-01

    The method of characteristics is a key tool for studying consistency of equations of motion; it allows issues such as predictability, maximal propagation speed, superluminality, unitarity and acausality to be addressed without requiring explicit solutions. We review this method and its application to massive gravity (mGR) theories to show the limitations of these models' physical viability: Among their problems are loss of unique evolution, superluminal signals, matter coupling inconsistencies and micro-acausality (propagation of signals around local closed time-like curves (CTCs)/closed causal curves (CCCs)). We extend previous no-go results to the entire three-parameter range of mGR theories. It is also argued that bimetric models suffer a similar fate.

  16. Rotating gravity gradiometer study

    NASA Astrophysics Data System (ADS)

    Forward, R. L.

    1982-04-01

    Two rotating gravity gradiometer (RGG) sensors, along with all the external electronics needed to operate them, and the fixtures and special test equipment needed to fill and align the bearings, were assembled in a laboratory, and inspected. The thermal noise threshold of the RGG can be lowered by replacing a damping resistor in the first stage electronics by an active artificial resistor that generates less random voltage noise per unit bandwidth than the Johnson noise from the resistor it replaces. The artificial resistor circuit consists of an operational amplifier, three resistors, and a small DC to DC floating power supply. These are small enough to be retrofitted to the present circuit boards inside the RGG rotor in place of the 3 Megohm resistor. Using the artificial resistor, the thermal noise of the RGG-2 sensor can be lowered from 0.3 Eotvos to 0.15 Eotvos for a 10 sec integration time.

  17. Various aspects of gravity

    NASA Astrophysics Data System (ADS)

    Jankiewicz, Marcin

    2007-12-01

    This thesis summarizes research projects that I have been involved in during my graduate studies at Vanderbilt University. My research spanned different areas of theoretical high energy physics with gravity as a common denominator. I explore both fundamental and phenomenological aspects of: (i) mathematical physics where I have studied relations between partition functions of certain class of conformal field theories and Fischer-Griess Monster group; (ii) cosmology, where I performed a numerical study of a horizon size modes of scalar field; (iii) a black hole physics project involving possible extensions of the non-hair theorem in a presence of exotic types of scalar field; and (iv) a study of phenomenological space-time foam models and their relation to Planck scale physics.

  18. Vorticity in analog gravity

    NASA Astrophysics Data System (ADS)

    Cropp, Bethan; Liberati, Stefano; Turcati, Rodrigo

    2016-06-01

    In the analog gravity framework, the acoustic disturbances in a moving fluid can be described by an equation of motion identical to a relativistic scalar massless field propagating in curved space-time. This description is possible only when the fluid under consideration is barotropic, inviscid, and irrotational. In this case, the propagation of the perturbations is governed by an acoustic metric that depends algebrically on the local speed of sound, density, and the background flow velocity, the latter assumed to be vorticity-free. In this work we provide a straightforward extension in order to go beyond the irrotational constraint. Using a charged—relativistic and nonrelativistic—Bose–Einstein condensate as a physical system, we show that in the low-momentum limit and performing the eikonal approximation we can derive a d’Alembertian equation of motion for the charged phonons where the emergent acoustic metric depends on flow velocity in the presence of vorticity.

  19. Feeble forces and gravity.

    NASA Astrophysics Data System (ADS)

    Bars, Itzhak; Visser, Matt

    1987-03-01

    We develop a scenario in which feeble intermediate range forces emerge as an effect resulting from the compactification (à la Kaluza-Klein) of multidimensional theories. These feeble forces compete with gravity and in general permit different bodies to fall to earth with different accelerations. We show that these feeble forces are mediated by vectors (V) and/or scalars (S), whose dimensionless coupling constants are typically of order gv ≈ gs ≈ 10-10 Under certain plausible assumptions the ranges of these feeble forces are expected to be of order 1 m to 1 km. It is conjectured that the general strategy will prove applicable to realistic multidimensional theories such as the 10-dimensional superstring theories. We speculate that deviations from the standard gravitational force-similar to the ones reported recently as a “fifth force”-may be interpreted as evidence for higher dimensions.

  20. Supersymmetrizing massive gravity

    NASA Astrophysics Data System (ADS)

    Malaeb, O.

    2013-07-01

    When four scalar fields with global Lorentz symmetry are coupled to gravity and take a vacuum expectation value, breaking diffeomorphism invariance spontaneously, the graviton becomes massive. This model is supersymmetrized by considering four N=1 chiral superfields with global Lorentz symmetry. The global supersymmetry is promoted to a local one using the rules of tensor calculus of coupling the N=1 supergravity Lagrangian to the four chiral multiplets. When the scalar components of the chiral multiplets zA acquire a vacuum expectation value, both diffeomorphism invariance and local supersymmetry are broken spontaneously. The global Lorentz index A becomes identified with the space-time Lorentz index, making the scalar fields zA vectors and the chiral spinors ψA spin-3/2 Rarita-Schwinger fields. We show that the spectrum of the model in the broken phase consists of a massive spin-2 field, two massive spin-3/2 fields with different mass and a massive vector.