Science.gov

Sample records for zinc-independent folate biosynthesis

  1. Overexpression of folate biosynthesis genes in rice (Oryza sativa L.) and evaluation of their impact on seed folate content.

    PubMed

    Dong, Wei; Cheng, Zhi-jun; Lei, Cai-lin; Wang, Xiao-le; Wang, Jiu-lin; Wang, Jie; Wu, Fu-qing; Zhang, Xin; Guo, Xiu-ping; Zhai, Hu-qu; Wan, Jian-min

    2014-12-01

    Folate (vitamin B9) deficiency is a global health problem especially in developing countries where the major staple foods such as rice contain extremely low folates. Biofortification of rice could be an alternative complement way to fight folate deficiency. In this study, we evaluated the availability of the genes in each step of folate biosynthesis pathway for rice folate enhancement in the japonica variety kitaake genetic background. The first enzymes GTP cyclohydrolase I (GTPCHI) and aminodeoxychorismate synthase (ADCS) in the pterin and para-aminobenzoate branches resulted in significant increase in seed folate content, respectively (P < 0.01). Overexpression of two closely related enzymes dihydrofolate synthase (DHFS) and folypolyglutamate synthase (FPGS), which perform the first and further additions of glutamates, produced slightly increase in seed folate content separately. The GTPCHI transgene was combined with each of the other transgenes except ADCS to investigate the effects of gene stacking on seed folate accumulation. Seed folate contents in the gene-stacked plants were higher than the individual low-folate transgenic parents, but lower than the high-folate GTPCHI transgenic lines, pointing to an inadequate supply of para-aminobenzoic acid (PABA) precursor initiated by ADCS in constraining folate overproduction in gene-stacked plants. PMID:25432789

  2. Nuclear Enrichment of Folate Cofactors and Methylenetetrahydrofolate Dehydrogenase 1 (MTHFD1) Protect de Novo Thymidylate Biosynthesis during Folate Deficiency*

    PubMed Central

    Field, Martha S.; Kamynina, Elena; Agunloye, Olufunmilayo C.; Liebenthal, Rebecca P.; Lamarre, Simon G.; Brosnan, Margaret E.; Brosnan, John T.; Stover, Patrick J.

    2014-01-01

    Folate-mediated one-carbon metabolism is a metabolic network of interconnected pathways that is required for the de novo synthesis of three of the four DNA bases and the remethylation of homocysteine to methionine. Previous studies have indicated that the thymidylate synthesis and homocysteine remethylation pathways compete for a limiting pool of methylenetetrahydrofolate cofactors and that thymidylate biosynthesis is preserved in folate deficiency at the expense of homocysteine remethylation, but the mechanisms are unknown. Recently, it was shown that thymidylate synthesis occurs in the nucleus, whereas homocysteine remethylation occurs in the cytosol. In this study we demonstrate that methylenetetrahydrofolate dehydrogenase 1 (MTHFD1), an enzyme that generates methylenetetrahydrofolate from formate, ATP, and NADPH, functions in the nucleus to support de novo thymidylate biosynthesis. MTHFD1 translocates to the nucleus in S-phase MCF-7 and HeLa cells. During folate deficiency mouse liver MTHFD1 levels are enriched in the nucleus >2-fold at the expense of levels in the cytosol. Furthermore, nuclear folate levels are resistant to folate depletion when total cellular folate levels are reduced by >50% in mouse liver. The enrichment of folate cofactors and MTHFD1 protein in the nucleus during folate deficiency in mouse liver and human cell lines accounts for previous metabolic studies that indicated 5,10-methylenetetrahydrofolate is preferentially directed toward de novo thymidylate biosynthesis at the expense of homocysteine remethylation during folate deficiency. PMID:25213861

  3. Rice folate enhancement through metabolic engineering has an impact on rice seed metabolism, but does not affect the expression of the endogenous folate biosynthesis genes.

    PubMed

    Blancquaert, Dieter; Van Daele, Jeroen; Storozhenko, Sergei; Stove, Christophe; Lambert, Willy; Van Der Straeten, Dominique

    2013-11-01

    Folates are key-players in one-carbon metabolism in all organisms. However, only micro-organisms and plants are able to synthesize folates de novo and humans rely entirely on their diet as a sole folate source. As a consequence, folate deficiency is a global problem. Although different strategies are currently implemented to fight folate deficiency, up until now, all of them have their own drawbacks. As an alternative and complementary means to those classical strategies, folate biofortification of rice by metabolic engineering was successfully achieved a couple of years ago. To gain more insight into folate biosynthesis regulation and the effect of folate enhancement on general rice seed metabolism, a transcriptomic study was conducted in developing transgenic rice seeds, overexpressing 2 genes of the folate biosynthetic pathway. Upon folate enhancement, the expression of 235 genes was significantly altered. Here, we show that rice folate biofortification has an important effect on folate dependent, seed developmental and plant stress response/defense processes, but does not affect the expression of the endogenous folate biosynthesis genes. PMID:23771598

  4. A mathematical model of microbial folate biosynthesis and utilisation: implications for antifolate development.

    PubMed

    Salcedo-Sora, J Enrique; Mc Auley, Mark T

    2016-03-01

    The metabolic biochemistry of folate biosynthesis and utilisation has evolved into a complex network of reactions. Although this complexity represents challenges to the field of folate research it has also provided a renewed source for antimetabolite targets. A range of improved folate chemotherapy continues to be developed and applied particularly to cancer and chronic inflammatory diseases. However, new or better antifolates against infectious diseases remain much more elusive. In this paper we describe the assembly of a generic deterministic mathematical model of microbial folate metabolism. Our aim is to explore how a mathematical model could be used to explore the dynamics of this inherently complex set of biochemical reactions. Using the model it was found that: (1) a particular small set of folate intermediates are overrepresented, (2) inhibitory profiles can be quantified by the level of key folate products, (3) using the model to scan for the most effective combinatorial inhibitions of folate enzymes we identified specific targets which could complement current antifolates, and (4) the model substantiates the case for a substrate cycle in the folinic acid biosynthesis reaction. Our model is coded in the systems biology markup language and has been deposited in the BioModels Database (MODEL1511020000), this makes it accessible to the community as a whole. PMID:26794619

  5. The Rickettsia Endosymbiont of Ixodes pacificus Contains All the Genes of De Novo Folate Biosynthesis.

    PubMed

    Hunter, Daniel J; Torkelson, Jessica L; Bodnar, James; Mortazavi, Bobak; Laurent, Timothy; Deason, Jeff; Thephavongsa, Khanhkeo; Zhong, Jianmin

    2015-01-01

    Ticks and other arthropods often are hosts to nutrient providing bacterial endosymbionts, which contribute to their host's fitness by supplying nutrients such as vitamins and amino acids. It has been detected, in our lab, that Ixodes pacificus is host to Rickettsia species phylotype G021. This endosymbiont is predominantly present, and 100% maternally transmitted in I. pacificus. To study roles of phylotype G021 in I. pacificus, bioinformatic and molecular approaches were carried out. MUMmer genome alignments of whole genome sequence of I. scapularis, a close relative to I. pacificus, against completely sequenced genomes of R. bellii OSU85-389, R. conorii, and R. felis, identified 8,190 unique sequences that are homologous to Rickettsia sequences in the NCBI Trace Archive. MetaCyc metabolic reconstructions revealed that all folate gene orthologues (folA, folC, folE, folKP, ptpS) required for de novo folate biosynthesis are present in the genome of Rickettsia buchneri in I. scapularis. To examine the metabolic capability of phylotype G021 in I. pacificus, genes of the folate biosynthesis pathway of the bacterium were PCR amplified using degenerate primers. BLAST searches identified that nucleotide sequences of the folA, folC, folE, folKP, and ptpS genes possess 98.6%, 98.8%, 98.9%, 98.5% and 99.0% identity respectively to the corresponding genes of Rickettsia buchneri. Phylogenetic tree constructions show that the folate genes of phylotype G021 and homologous genes from various Rickettsia species are monophyletic. This study has shown that all folate genes exist in the genome of Rickettsia species phylotype G021 and that this bacterium has the genetic capability for de novo folate synthesis. PMID:26650541

  6. The Rickettsia Endosymbiont of Ixodes pacificus Contains All the Genes of De Novo Folate Biosynthesis

    PubMed Central

    Bodnar, James; Mortazavi, Bobak; Laurent, Timothy; Deason, Jeff; Thephavongsa, Khanhkeo; Zhong, Jianmin

    2015-01-01

    Ticks and other arthropods often are hosts to nutrient providing bacterial endosymbionts, which contribute to their host’s fitness by supplying nutrients such as vitamins and amino acids. It has been detected, in our lab, that Ixodes pacificus is host to Rickettsia species phylotype G021. This endosymbiont is predominantly present, and 100% maternally transmitted in I. pacificus. To study roles of phylotype G021 in I. pacificus, bioinformatic and molecular approaches were carried out. MUMmer genome alignments of whole genome sequence of I. scapularis, a close relative to I. pacificus, against completely sequenced genomes of R. bellii OSU85-389, R. conorii, and R. felis, identified 8,190 unique sequences that are homologous to Rickettsia sequences in the NCBI Trace Archive. MetaCyc metabolic reconstructions revealed that all folate gene orthologues (folA, folC, folE, folKP, ptpS) required for de novo folate biosynthesis are present in the genome of Rickettsia buchneri in I. scapularis. To examine the metabolic capability of phylotype G021 in I. pacificus, genes of the folate biosynthesis pathway of the bacterium were PCR amplified using degenerate primers. BLAST searches identified that nucleotide sequences of the folA, folC, folE, folKP, and ptpS genes possess 98.6%, 98.8%, 98.9%, 98.5% and 99.0% identity respectively to the corresponding genes of Rickettsia buchneri. Phylogenetic tree constructions show that the folate genes of phylotype G021 and homologous genes from various Rickettsia species are monophyletic. This study has shown that all folate genes exist in the genome of Rickettsia species phylotype G021 and that this bacterium has the genetic capability for de novo folate synthesis. PMID:26650541

  7. “Wigglesworthia morsitans” Folate (Vitamin B9) Biosynthesis Contributes to Tsetse Host Fitness

    PubMed Central

    Snyder, Anna K.

    2015-01-01

    Closely related ancient endosymbionts may retain minor genomic distinctions through evolutionary time, yet the biological relevance of these small pockets of unique loci remains unknown. The tsetse fly (Diptera: Glossinidae), the sole vector of lethal African trypanosomes (Trypanosoma spp.), maintains an ancient and obligate mutualism with species belonging to the gammaproteobacterium Wigglesworthia. Extensive concordant evolution with associated Wigglesworthia species has occurred through tsetse species radiation. Accordingly, the retention of unique symbiont loci between Wigglesworthia genomes may prove instrumental toward host species-specific biological traits. Genome distinctions between “Wigglesworthia morsitans” (harbored within Glossina morsitans bacteriomes) and the basal species Wigglesworthia glossinidia (harbored within Glossina brevipalpis bacteriomes) include the retention of chorismate and downstream folate (vitamin B9) biosynthesis capabilities, contributing to distinct symbiont metabolomes. Here, we demonstrate that these W. morsitans pathways remain functionally intact, with folate likely being systemically disseminated through a synchronously expressed tsetse folate transporter within bacteriomes. The folate produced by W. morsitans is demonstrated to be pivotal for G. morsitans sexual maturation and reproduction. Modest differences between ancient symbiont genomes may still play key roles in the evolution of their host species, particularly if loci are involved in shaping host physiology and ecology. Enhanced knowledge of the Wigglesworthia-tsetse mutualism may also provide novel and specific avenues for vector control. PMID:26025907

  8. Complex Patterns of Gene Fission in the Eukaryotic Folate Biosynthesis Pathway

    PubMed Central

    Maguire, Finlay; Henriquez, Fiona L.; Leonard, Guy; Dacks, Joel B.; Brown, Matthew W.; Richards, Thomas A.

    2014-01-01

    Shared derived genomic characters can be useful for polarizing phylogenetic relationships, for example, gene fusions have been used to identify deep-branching relationships in the eukaryotes. Here, we report the evolutionary analysis of a three-gene fusion of folB, folK, and folP, which encode enzymes that catalyze consecutive steps in de novo folate biosynthesis. The folK-folP fusion was found across the eukaryotes and a sparse collection of prokaryotes. This suggests an ancient derivation with a number of gene losses in the eukaryotes potentially as a consequence of adaptation to heterotrophic lifestyles. In contrast, the folB-folK-folP gene is specific to a mosaic collection of Amorphea taxa (a group encompassing: Amoebozoa, Apusomonadida, Breviatea, and Opisthokonta). Next, we investigated the stability of this character. We identified numerous gene losses and a total of nine gene fission events, either by break up of an open reading frame (four events identified) or loss of a component domain (five events identified). This indicates that this three gene fusion is highly labile. These data are consistent with a growing body of data indicating gene fission events occur at high relative rates. Accounting for these sources of homoplasy, our data suggest that the folB-folK-folP gene fusion was present in the last common ancestor of Amoebozoa and Opisthokonta but absent in the Metazoa including the human genome. Comparative genomic data of these genes provides an important resource for designing therapeutic strategies targeting the de novo folate biosynthesis pathway of a variety of eukaryotic pathogens such as Acanthamoeba castellanii. PMID:25252772

  9. Folate Acts in E. coli to Accelerate C. elegans Aging Independently of Bacterial Biosynthesis

    PubMed Central

    Virk, Bhupinder; Jia, Jie; Maynard, Claire A.; Raimundo, Adelaide; Lefebvre, Jolien; Richards, Shane A.; Chetina, Natalia; Liang, Yen; Helliwell, Noel; Cipinska, Marta; Weinkove, David

    2016-01-01

    Summary Folates are cofactors for biosynthetic enzymes in all eukaryotic and prokaryotic cells. Animals cannot synthesize folate and must acquire it from their diet or microbiota. Previously, we showed that inhibiting E. coli folate synthesis increases C. elegans lifespan. Here, we show that restriction or supplementation of C. elegans folate does not influence lifespan. Thus, folate is required in E. coli to shorten worm lifespan. Bacterial proliferation in the intestine has been proposed as a mechanism for the life-shortening influence of E. coli. However, we found no correlation between C. elegans survival and bacterial growth in a screen of 1,000+ E. coli deletion mutants. Nine mutants increased worm lifespan robustly, suggesting specific gene regulation is required for the life-shortening activity of E. coli. Disrupting the biosynthetic folate cycle did not increase lifespan. Thus, folate acts through a growth-independent route in E. coli to accelerate animal aging. PMID:26876180

  10. Structure and Function of the E. coli Dihydroneopterin Triphosphate Pyrophosphatase: A nudix enzyme involved in Folate Biosynthesis

    SciTech Connect

    Gabelli,S.; Bianchet, M.; Lu, W.; Dunn, C.; Niu, Z.; Amzel, L.

    2007-01-01

    Nudix hydrolases are a superfamily of pyrophosphatases, most of which are involved in clearing the cell of potentially deleterious metabolites and in preventing the accumulation of metabolic intermediates. We determined that the product of the orf17 gene of Escherichia coli, a Nudix NTP hydrolase, catalyzes the hydrolytic release of pyrophosphate from dihydroneopterin triphosphate, the committed step of folate synthesis in bacteria. That this dihydroneopterin hydrolase (DHNTPase) is indeed a key enzyme in the folate pathway was confirmed in vivo: knockout of this gene in E. coli leads to a marked reduction in folate synthesis that is completely restored by a plasmid carrying the gene. We also determined the crystal structure of this enzyme using data to 1.8 {angstrom} resolution and studied the kinetics of the reaction. These results provide insight into the structural bases for catalysis and substrate specificity in this enzyme and allow the definition of the dihydroneopterin triphosphate pyrophosphatase family of Nudix enzymes.

  11. Formate supplementation enhances folate-dependent nucleotide biosynthesis and prevents spina bifida in a mouse model of folic acid-resistant neural tube defects.

    PubMed

    Sudiwala, Sonia; De Castro, Sandra C P; Leung, Kit-Yi; Brosnan, John T; Brosnan, Margaret E; Mills, Kevin; Copp, Andrew J; Greene, Nicholas D E

    2016-07-01

    The curly tail mouse provides a model for neural tube defects (spina bifida and exencephaly) that are resistant to prevention by folic acid. The major ct gene, responsible for spina bifida, corresponds to a hypomorphic allele of grainyhead-like 3 (Grhl3) but the frequency of NTDs is strongly influenced by modifiers in the genetic background. Moreover, exencephaly in the curly tail strain is not prevented by reinstatement of Grhl3 expression. In the current study we found that expression of Mthfd1L, encoding a key component of mitochondrial folate one-carbon metabolism (FOCM), is significantly reduced in ct/ct embryos compared to a partially congenic wild-type strain. This expression change is not attributable to regulation by Grhl3 or the genetic background at the Mthfd1L locus. Mitochondrial FOCM provides one-carbon units as formate for FOCM reactions in the cytosol. We found that maternal supplementation with formate prevented NTDs in curly tail embryos and also resulted in increased litter size. Analysis of the folate profile of neurulation-stage embryos showed that formate supplementation resulted in an increased proportion of formyl-THF and THF but a reduction in proportion of 5-methyl THF. In contrast, THF decreased and 5-methyl THF was relatively more abundant in the liver of supplemented dams than in controls. In embryos cultured through the period of spinal neurulation, incorporation of labelled thymidine and adenine into genomic DNA was suppressed by supplemental formate, suggesting that de novo folate-dependent biosynthesis of nucleotides (thymidylate and purines) was enhanced. We hypothesise that reduced Mthfd1L expression may contribute to susceptibility to NTDs in the curly tail strain and that formate acts as a one-carbon donor to prevent NTDs. PMID:26924399

  12. Folate metabolism in malaria

    PubMed Central

    Ferone, Robert

    1977-01-01

    It is known that malaria parasites are inhibited by sulfonamides and antifolate compounds, require 4-aminobenzoic acid for growth, and respond only partly to intact folic and folinic acids. Biochemical data obtained during the last decade on the synthesis of nucleic acid precursors and on folate enzymes in malaria support the hypothesis that malaria parasites are similar to microorganisms that synthesize folate cofactors de novo. Sulfa drugs inhibit plasmodial dihydropteroate synthase (EC 2.5.1.15). Pyrimethamine and many other antifolate compounds bind to tetrahydrofolate dehydrogenase (EC 1.5.1.3) of the parasite more tightly than to the host enzyme. However, the metabolic consequences of the depletion of folate cofactors as a result of drug inhibition are not yet known. Other areas to be studied are the origin of the pteridine moiety of folates, the addition of glutamate(s) in folate cofactor biosynthesis, the means by which intact, exogenous folates affect malarial growth, and demonstration of the enzymes and reactions involving N5-methyl tetrahydrofolate. PMID:338184

  13. Rat hepatic uroporphyrinogen III co-synthase. Purification and evidence for a bound folate coenzyme participating in the biosynthesis of uroporphyrinogen III.

    PubMed Central

    Kohashi, M; Clement, R P; Tse, J; Piper, W N

    1984-01-01

    Rat hepatic uroporphyrinogen III co-synthase was isolated and purified 73-fold with a 13% yield by (NH4)2SO4 fractionation and sequential chromatography on DEAE-Sephacel, Sephadex G-100 (superfine grade) and folate-AH-Sepharose 4B. The purified co-synthase has an Mr of approx. 42 000, and is resolved into two bands, each possessing co-synthase activity, by polyacrylamide-gel electrophoresis. A factor was dissociated from the purified co-synthase. Results of both microbiological and competitive protein-binding assays suggest that it is a pteroylpolyglutamate. The isolated pteroylpolyglutamate factor was co-eluted with authentic N5-methyltetrahydropteroylheptaglutamate on DEAE-Sephacel. Uroporphyrinogen III is formed by cosynthase-free preparations of uroporphyrinogen I synthase in the presence of tetrahydropteroylglutamate. Tetrahydropeteroylheptaglutamate is also able to direct the formation of equivalent amounts of uroporphyrinogen III at a concentration approximately one-hundredth that of tetrahydropteroylmonoglutamate. These results suggest that a reduced pteroylpolyglutamate factor is associated with rat hepatic uroporphyrinogen III co-synthase, and that this may function as a coenzyme for the biosynthesis of uroporphyrinogen III. Images Fig. 5. PMID:6466301

  14. Exploring the Chemical Space around 8-Mercaptoguanine as a Route to New Inhibitors of the Folate Biosynthesis Enzyme HPPK

    PubMed Central

    Chhabra, Sandeep; Barlow, Nicholas; Dolezal, Olan; Hattarki, Meghan K.; Newman, Janet; Peat, Thomas S.; Graham, Bim; Swarbrick, James D.

    2013-01-01

    As the second essential enzyme of the folate biosynthetic pathway, the potential antimicrobial target, HPPK (6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase), catalyzes the Mg2+-dependant transfer of pyrophosphate from the cofactor (ATP) to the substrate, 6-hydroxymethyl-7,8-dihydropterin. Recently, we showed that 8-mercaptoguanine (8-MG) bound at the substrate site (KD ∼13 µM), inhibited the S. aureus enzyme (SaHPPK) (IC50 ∼ 41 µM), and determined the structure of the SaHPPK/8-MG complex. Here we present the synthesis of a series of guanine derivatives, together with their HPPK binding affinities, as determined by SPR and ITC analysis. The binding mode of the most potent was investigated using 2D NMR spectroscopy and X-ray crystallography. The results indicate, firstly, that the SH group of 8-MG makes a significant contribution to the free energy of binding. Secondly, direct N9 substitution, or tautomerization arising from N7 substitution in some cases, leads to a dramatic reduction in affinity due to loss of a critical N9-H···Val46 hydrogen bond, combined with the limited space available around the N9 position. The water-filled pocket under the N7 position is significantly more tolerant of substitution, with a hydroxyl ethyl 8-MG derivative attached to N7 (compound 21a) exhibiting an affinity for the apo enzyme comparable to the parent compound (KD ∼ 12 µM). In contrast to 8-MG, however, 21a displays competitive binding with the ATP cofactor, as judged by NMR and SPR analysis. The 1.85 Å X-ray structure of the SaHPPK/21a complex confirms that extension from the N7 position towards the Mg2+-binding site, which affords the only tractable route out from the pterin-binding pocket. Promising strategies for the creation of more potent binders might therefore include the introduction of groups capable of interacting with the Mg2+ centres or Mg2+ -binding residues, as well as the development of bitopic inhibitors featuring 8-MG linked to a moiety

  15. Folate-deficiency anemia

    MedlinePlus

    Folate-deficiency anemia is a decrease in red blood cells (anemia) due to a lack of folate. Folate is a type ... B vitamin. It is also called folic acid. Anemia is a condition in which the body does ...

  16. Enhancing the natural folate level in wine using bioengineering and stabilization strategies.

    PubMed

    Liu, Yazheng; Walkey, Christopher J; Green, Timothy J; van Vuuren, Hennie J J; Kitts, David D

    2016-03-01

    Folate deficiency is linked to many diseases, some of which may have higher probability in individuals with alcohol-induced alterations in one-carbon metabolism. Our study shows that folate content in commercial wine is not related to white or red varieties, but associated with the yeast that is used to produce the wine. The stability of folate in these wines, once opened for consumption, did not correlate with total phenolic or sulfite content. In addition, we employed yeast bioengineering to fortify wine with folate. We confirmed by overexpression that FOL2 was the key gene encoding the rate-limiting step of folate biosynthesis in wine yeast. In this study, we also show that overexpression of other folate biosynthesis genes, including ABZ1, ABZ2, DFR1, FOL1 and FOL3, had no effect on folate levels in wine. Ensuring stability of the increased natural folate in all wines was achieved by the addition of ascorbate. PMID:26471523

  17. Synthesis and biological activity of a novel series of 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate inhibitors of purine biosynthesis with selectivity for high affinity folate receptors and the proton-coupled folate transporter over the reduced folate carrier for cellular entry†

    PubMed Central

    Wang, Lei; Cherian, Christina; Desmoulin, Sita Kugel; Polin, Lisa; Deng, Yijun; Wu, Jianmei; Hou, Zhanjun; White, Kathryn; Kushner, Juiwanna; Matherly, Larry H.; Gangjee, Aleem

    2010-01-01

    2-Amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidines with a thienoyl side chain and 4-6 carbon bridge lengths (compounds 1-3) were synthesized as substrates for folate receptors (FRs) and the proton-coupled folate transporter (PCFT). Conversion of acetylene carboxylic acids to α-bromomethylketones and condensation with 2,4-diamino-6-hydroxypyrimidine afforded the 6-substituted pyrrolo[2,3-d]pyrimidines. Sonogashira coupling with (S)-2-[(5-bromo-thiophene-2-carbonyl)-amino]-pentanedioic acid diethyl ester, followed by hydrogenation and saponification, afforded 1-3. Compounds 1 and 2 potently inhibited KB and IGROV1 human tumor cells that express FRα, reduced folate carrier (RFC), and PCFT. The analogs were selective for FR- and PCFT over RFC. Glycinamide ribonucleotide formyltransferase was the principal cellular target. In SCID mice with KB tumors, 1 was highly active against both early (3.5 log kill, 1/5 cures) and advanced (3.7 log kill, 4/5 complete remissions) stage tumors. Our results demonstrate potent in vitro and in vivo antitumor activity for 1 due to selective transport by FRs and PCFT over RFC. PMID:20085328

  18. Folate-deficiency anemia

    MedlinePlus

    ... medlineplus.gov/ency/article/000551.htm Folate-deficiency anemia To use the sharing features on this page, please enable JavaScript. Folate-deficiency anemia is a decrease in red blood cells (anemia) ...

  19. Cerebral Folate Deficiency

    ERIC Educational Resources Information Center

    Gordon, Neil

    2009-01-01

    Cerebral folate deficiency (CFD) is associated with low levels of 5-methyltetrahydrofolate in the cerebrospinal fluid (CSF) with normal folate levels in the plasma and red blood cells. The onset of symptoms caused by the deficiency of folates in the brain is at around 4 to 6 months of age. This is followed by delayed development, with deceleration…

  20. Human Folate Bioavailability

    PubMed Central

    Ohrvik, Veronica E.; Witthoft, Cornelia M.

    2011-01-01

    The vitamin folate is recognized as beneficial health-wise in the prevention of neural tube defects, anemia, cardiovascular diseases, poor cognitive performance, and some forms of cancer. However, suboptimal dietary folate intake has been reported in a number of countries. Several national health authorities have therefore introduced mandatory food fortification with synthetic folic acid, which is considered a convenient fortificant, being cost-efficient in production, more stable than natural food folate, and superior in terms of bioavailability and bioefficacy. Other countries have decided against fortification due to the ambiguous role of synthetic folic acid regarding promotion of subclinical cancers and other adverse health effects. This paper reviews recent studies on folate bioavailability after intervention with folate from food. Our conclusions were that limited folate bioavailability data are available for vegetables, fruits, cereal products, and fortified foods, and that it is difficult to evaluate the bioavailability of food folate or whether intervention with food folate improves folate status. We recommend revising the classical approach of using folic acid as a reference dose for estimating the plasma kinetics and relative bioavailability of food folate. PMID:22254106

  1. Folylpoly-γ-glutamate synthetase: A key determinant of folate homeostasis and antifolate resistance in cancer.

    PubMed

    Raz, Shachar; Stark, Michal; Assaraf, Yehuda G

    2016-09-01

    Mammalians are devoid of autonomous biosynthesis of folates and hence must obtain them from the diet. Reduced folate cofactors are B9-vitamins which play a key role as donors of one-carbon units in the biosynthesis of purine nucleotides, thymidylate and amino acids as well as in a multitude of methylation reactions including DNA, RNA, histone and non-histone proteins, phospholipids, as well as intermediate metabolites. The products of these S-adenosylmethionine (SAM)-dependent methylations are involved in the regulation of key biological processes including transcription, translation and intracellular signaling. Folate-dependent one-carbon metabolism occurs in several subcellular compartments including the cytoplasm, mitochondria, and nucleus. Since folates are essential for DNA replication, intracellular folate cofactors play a central role in cancer biology and inflammatory autoimmune disorders. In this respect, various folate-dependent enzymes catalyzing nucleotide biosynthesis have been targeted by specific folate antagonists known as antifolates. Currently, antifolates are used in drug treatment of multiple human cancers, non-malignant chronic inflammatory disorders as well as bacterial and parasitic infections. An obligatory key component of intracellular folate retention and intracellular homeostasis is (anti)folate polyglutamylation, mediated by the unique enzyme folylpoly-γ-glutamate synthetase (FPGS), which resides in both the cytoplasm and mitochondria. Consistently, knockout of the FPGS gene in mice results in embryonic lethality. FPGS catalyzes the addition of a long polyglutamate chain to folates and antifolates, hence rendering them polyanions which are efficiently retained in the cell and are now bound with enhanced affinity by various folate-dependent enzymes. The current review highlights the crucial role that FPGS plays in maintenance of folate homeostasis under physiological conditions and delineates the plethora of the molecular mechanisms

  2. The methylation, neurotransmitter, and antioxidant connections between folate and depression.

    PubMed

    Miller, Alan L

    2008-09-01

    Depression is common - one-fourth of the U.S. population will have a depressive episode sometime in life. Folate deficiency is also relatively common in depressed people, with approximately one-third of depressed individuals having an outright deficiency. Folate is a water-soluble B-vitamin necessary for the proper biosynthesis of the monoamine neurotransmitters serotonin, epinephrine, and dopamine. The active metabolite of folate, 5-methyltetrahydrofolate (5-MTHF, L-methylfolate), participates in re-methylation of the amino acid metabolite homocysteine, creating methionine. S-adenosylmethionine (SAMe), the downstream metabolite of methionine, is involved in numerous biochemical methyl donation reactions, including reactions forming monoamine neurotransmitters. Without the participation of 5-MTHF in this process, SAMe and neurotransmitter levels decrease in the cerebrospinal fluid, contributing to the disease process of depression. SAMe supplementation was shown to improve depressive symptoms. 5-MTHF also appears to stabilize, enhance production of, or possibly act as a substitute for, tetrahydrobiopterin (BH4), an essential cofactor in monoamine neurotransmitter biosynthesis. There are few intervention studies of folic acid or 5-MTHF as a stand-alone treatment for depression related to folate deficiency; however, the studies that have been conducted are promising. Depressed individuals with low serum folate also tend to not respond well to selective serotonin reuptake inhibitor (SSRI) antidepressant drugs. Correcting the insufficiency by dosing folate along with the SSRI results in a significantly better antidepressant response. PMID:18950248

  3. Experimental and Metabolic Modeling Evidence for a Folate-Cleaving Side-Activity of Ketopantoate Hydroxymethyltransferase (PanB)

    PubMed Central

    Thiaville, Jennifer J.; Frelin, Océane; García-Salinas, Carolina; Harrison, Katherine; Hasnain, Ghulam; Horenstein, Nicole A.; Díaz de la Garza, Rocio I.; Henry, Christopher S.; Hanson, Andrew D.; de Crécy-Lagard, Valérie

    2016-01-01

    Tetrahydrofolate (THF) and its one-carbon derivatives, collectively termed folates, are essential cofactors, but are inherently unstable. While it is clear that chemical oxidation can cleave folates or damage their pterin precursors, very little is known about enzymatic damage to these molecules or about whether the folate biosynthesis pathway responds adaptively to damage to its end-products. The presence of a duplication of the gene encoding the folate biosynthesis enzyme 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (FolK) in many sequenced bacterial genomes combined with a strong chromosomal clustering of the folK gene with panB, encoding the 5,10-methylene-THF-dependent enzyme ketopantoate hydroxymethyltransferase, led us to infer that PanB has a side activity that cleaves 5,10-methylene-THF, yielding a pterin product that is recycled by FolK. Genetic and metabolic analyses of Escherichia coli strains showed that overexpression of PanB leads to accumulation of the likely folate cleavage product 6-hydroxymethylpterin and other pterins in cells and medium, and—unexpectedly—to a 46% increase in total folate content. In silico modeling of the folate biosynthesis pathway showed that these observations are consistent with the in vivo cleavage of 5,10-methylene-THF by a side-activity of PanB, with FolK-mediated recycling of the pterin cleavage product, and with regulation of folate biosynthesis by folates or their damage products. PMID:27065985

  4. Increased synthesis of folate transporters regulates folate transport in conditions of ethanol exposure and folate deficiency.

    PubMed

    Thakur, Shilpa; More, Deepti; Rahat, Beenish; Khanduja, Krishan Lal; Kaur, Jyotdeep

    2016-01-01

    Excessive alcohol consumption and dietary folate inadequacy are the main contributors leading to folate deficiency (FD). The present study was planned to study regulation of folate transport in conditions of FD and ethanol exposure in human embryonic kidney cell line. Also, the reversible nature of effects mediated by ethanol exposure and FD was determined by folate repletion and ethanol removal. For ethanol treatment, HEK293 cells were grown in medium containing 100 mM ethanol, and after treatment, one group of cells was shifted on medium that was free from ethanol. For FD treatment, cells were grown in folate-deficient medium followed by shifting of one group of cells on folate containing medium. FD as well as ethanol exposure resulted in an increase in folate uptake which was due to an increase in expression of folate transporters, i.e., reduced folate carrier, proton-coupled folate transporter, and folate receptor, both at the mRNA and protein level. The effects mediated by ethanol exposure and FD were reversible on removal of treatment. Promoter region methylation of folate transporters remained unaffected after FD and ethanol exposure. As far as transcription rate of folate transporters is concerned, an increase in rate of synthesis was observed in both ethanol exposure and FD conditions. Additionally, mRNA life of folate transporters was observed to be reduced by FD. An increased expression of folate transporters under ethanol exposure and FD conditions can be attributed to enhanced rate of synthesis of folate transporters. PMID:26433955

  5. Folate and asthma.

    PubMed

    Blatter, Joshua; Han, Yueh-Ying; Forno, Erick; Brehm, John; Bodnar, Lisa; Celedón, Juan C

    2013-07-01

    Findings from experimental studies and animal models led to the hypothesis that folic acid supplementation during pregnancy confers an increased risk of asthma. This review provides a critical examination of current experimental and epidemiologic evidence of a causal association between folate status and asthma. In industrialized nations, the prevalence of asthma was rising before widespread fortification of foodstuffs with folic acid or folate supplementation before or during pregnancy, thus suggesting that changes in folate status are an unlikely explanation for "the asthma epidemic." Consistent with this ecologic observation, evidence from human studies does not support moderate or strong effects of folate status on asthma. Given known protective effects against neural tube and cardiac defects, there is no reason to alter current recommendations for folic acid supplementation during conception or pregnancy based on findings for folate and asthma. Although we believe that there are inadequate data to exclude a weak effect of maternal folate status on asthma or asthma symptoms, such effects could be examined within the context of very large (and ongoing) birth cohort studies. At this time, there is no justification for funding new studies of folate and asthma. PMID:23650899

  6. Folate: a functional food constituent.

    PubMed

    Iyer, Ramya; Tomar, S K

    2009-01-01

    Folate, a water-soluble vitamin, includes naturally occurring food folate and synthetic folic acid in supplements and fortified foods. Mammalian cells cannot synthesize folate and its deficiency has been implicated in a wide variety of disorders. A number of reviews have dwelt up on the health benefits associated with increased folate intakes and many countries possess mandatory folate enrichment programs. Lately, a number of studies have shown that high intakes of folic acid, the chemically synthesized form, but not natural folates, can cause adverse effects in some individuals such as the masking of the hematological manifestations of vitamin B(12) deficiency, leukemia, arthritis, bowel cancer, and ectopic pregnancies. As fermented milk products are reported to contain even higher amounts of folate produced by the food-grade bacteria, primarily lactic acid bacteria (LAB), the focus has primarily shifted toward the natural folate, that is, folate produced by LAB and levels of folate present in foods fermented by/or containing these valuable microorganisms. The proper selection and use of folate-producing microorganisms is an interesting strategy to increase "natural" folate levels in foods. An attempt has been made through this review to share information available in the literature on wide ranging aspects of folate, namely, bioavailability, analysis, deficiency, dietary requirements, and health effects of synthetic and natural folate, dairy and nondairy products as a potential source of folate, microorganisms with special reference to Streptococcus thermophilus as prolific folate producer, and recent insight on modulation of folate production levels in LAB by metabolic engineering. PMID:20492126

  7. The Intestinal Absorption of Folates

    PubMed Central

    Visentin, Michele; Diop-Bove, Ndeye; Zhao, Rongbao; Goldman, I. David

    2014-01-01

    The properties of intestinal folate absorption were documented decades ago. However, it was only recently that the proton-coupled folate transporter (PCFT) was identified and its critical role in folate transport across the apical brush-border membrane of the proximal small intestine established by the loss-of-function mutations identified in the PCFT gene in subjects with hereditary folate malabsorption and, more recently, by the Pcft-null mouse. This article reviews the current understanding of the properties of PCFT-mediated transport and how they differ from those of the reduced folate carrier. Other processes that contribute to the transport of folates across the enterocyte, along with the contribution of the enterohepatic circulation, are considered. Important unresolved issues are addressed, including the mechanism of intestinal folate absorption in the absence of PCFT and regulation of PCFT gene expression. The impact of a variety of ions, organic molecules, and drugs on PCFT-mediated folate transport is described. PMID:24512081

  8. The intestinal absorption of folates.

    PubMed

    Visentin, Michele; Diop-Bove, Ndeye; Zhao, Rongbao; Goldman, I David

    2014-01-01

    The properties of intestinal folate absorption were documented decades ago. However, it was only recently that the proton-coupled folate transporter (PCFT) was identified and its critical role in folate transport across the apical brush-border membrane of the proximal small intestine established by the loss-of-function mutations identified in the PCFT gene in subjects with hereditary folate malabsorption and, more recently, by the Pcft-null mouse. This article reviews the current understanding of the properties of PCFT-mediated transport and how they differ from those of the reduced folate carrier. Other processes that contribute to the transport of folates across the enterocyte, along with the contribution of the enterohepatic circulation, are considered. Important unresolved issues are addressed, including the mechanism of intestinal folate absorption in the absence of PCFT and regulation of PCFT gene expression. The impact of a variety of ions, organic molecules, and drugs on PCFT-mediated folate transport is described. PMID:24512081

  9. Folate and cobalamin deficiencies and hyperhomocysteinemia in Bangladesh2

    PubMed Central

    Gamble, Mary V; Ahsan, Habibul; Liu, Xinhua; Factor-Litvak, Pam; Ilievski, Vesna; Slavkovich, Vesna; Parvez, Faruque; Graziano, Joseph H

    2007-01-01

    Background Indian Asian men residing in the United Kingdom have a higher prevalence of hyperhomocysteinemia than do their European counterparts. This has been largely attributed to dietary deficiencies in cobalamin associated with vegetarianism among these Indian Asians. Objective We aimed to ascertain the prevalence of folate and cobalamin deficiencies and hyperhomocysteinemia in Bangladesh. Design Plasma concentrations of homocysteine, folate, and cobalamin and urinary concentrations of creatinine were assessed in 1650 adults in Bangladesh. Results The prevalence of hyperhomocysteinemia (men: >11.4 μmol/L; women: >10.4 μmol/L) was markedly (P < 0.0001) greater among men (63%; x̄ ± SD: 15.3 ± 9.5 μmol/L) than among women (26%; 9.5 ± 4.7 μmol/L). Folate was lower (9.8 ± 6.5 and 12.3 ± 7.6 nmol/L, respectively), whereas cobalamin was higher (281 ± 115 and 256 ± 118 pmol/L, respectively) (P < 0.0001 for both) among men than among women. Folate explained 15% and cobalamin explained 5% of the variation in homocysteine concentrations. For men, folate (P = 0.005) and cobalamin (P = 0.03) were positively correlated with urinary creatinine. Smoking (P < 0.0003) and betelnut use (P < 0.0002) were independent negative predictors of folate. Conclusions Bangladeshi men have a high prevalence of hyperhomocysteinemia, which is more closely associated with folate than with cobalamin, although other factors, eg, smoking and betelnut use, may also contribute to its cause. The positive correlations between urinary creatinine and plasma folate and cobalamin were unanticipated and could suggest that, in marginal nutrition, these vitamins may be limiting for creatine biosynthesis. PMID:15941889

  10. Gene-environment interactions reveal a homeostatic role for cholesterol metabolism during dietary folate perturbation in mice

    PubMed Central

    Kitami, Toshimori; Rubio, Renee; O'Brien, William; Quackenbush, John; Nadeau, Joseph H.

    2008-01-01

    Dietary folate supplementation can dramatically reduce the severity and incidence of several common birth defects and adult diseases that are associated with anomalies in homocysteine and folate metabolism. The common polymorphisms that adversely affect these metabolic pathways do not fully account for the particular birth defects and adult diseases that occur in at-risk individuals. To test involvement of folate, homocysteine, and other pathways in disease pathogenesis and treatment response, we analyzed global and pathway-specific changes in gene expression and levels of selected metabolites after depletion and repletion of dietary folate in two genetically distinct inbred strains of mice. Compared with the C57BL/6J strain, A/J showed greater homeostatic response to folate perturbation by retaining a higher serum folate level and minimizing global gene expression changes. Remarkably, folate perturbation led to systematic strain-specific differences only in the expression profile of the cholesterol biosynthesis pathway and to changes in levels of serum and liver total cholesterol. By genetically increasing serum and liver total cholesterol levels in APOE-deficient mice, we modestly but significantly improved folate retention during folate depletion, suggesting that homeostasis among the homocysteine, folate and cholesterol metabolic pathways contributes to the beneficial effects of dietary folate supplementation. PMID:18697859

  11. Folate Deficiency Triggers an Oxidative-Nitrosative Stress-Mediated Apoptotic Cell Death and Impedes Insulin Biosynthesis in RINm5F Pancreatic Islet β–Cells: Relevant to the Pathogenesis of Diabetes

    PubMed Central

    Wang, Yu-Huei; Chen, Chia-Hui; Mau, Shin-Yi; Ho, Chun-Te; Chang, Pey-Jium; Liu, Tsan-Zon; Chen, Ching-Hsein

    2013-01-01

    It has been postulated that folic acid (folate) deficiency (FD) may be a risk factor for the pathogenesis of a variety of oxidative stress-triggered chronic degenerative diseases including diabetes, however, the direct evidence to lend support to this hypothesis is scanty. For this reason, we set out to study if FD can trigger the apoptotic events in an insulin-producing pancreatic RINm5F islet β cells. When these cells were cultivated under FD condition, a time-dependent growth impediment was observed and the demise of these cells was demonstrated to be apoptotic in nature proceeding through a mitochondria-dependent pathway. In addition to evoke oxidative stress, FD condition could also trigger nitrosative stress through a NF-κB-dependent iNOS-mediated overproduction of nitric oxide (NO). The latter compound could then trigger depletion of endoplasmic reticulum (ER) calcium (Ca2+) store leading to cytosolic Ca2+ overload and caused ER stress as evidence by the activation of CHOP expression. Furthermore, FD-induced apoptosis of RINm5F cells was found to be correlated with a time-dependent depletion of intracellular gluthathione (GSH) and a severe down-regulation of Bcl-2 expression. Along the same vein, we also demonstrated that FD could severely impede RINm5F cells to synthesize insulin and their abilities to secret insulin in response to glucose stimulation were appreciably hampered. Even more importantly, we found that folate replenishment could not restore the ability of RINm5F cells to resynthesize insulin. Taken together, our data provide strong evidence to support the hypothesis that FD is a legitimate risk factor for the pathogenesis of diabetes. PMID:24223745

  12. Folate deficiency triggers an oxidative-nitrosative stress-mediated apoptotic cell death and impedes insulin biosynthesis in RINm5F pancreatic islet β-cells: relevant to the pathogenesis of diabetes.

    PubMed

    Hsu, Hung-Chih; Chiou, Jeng-Fong; Wang, Yu-Huei; Chen, Chia-Hui; Mau, Shin-Yi; Ho, Chun-Te; Chang, Pey-Jium; Liu, Tsan-Zon; Chen, Ching-Hsein

    2013-01-01

    It has been postulated that folic acid (folate) deficiency (FD) may be a risk factor for the pathogenesis of a variety of oxidative stress-triggered chronic degenerative diseases including diabetes, however, the direct evidence to lend support to this hypothesis is scanty. For this reason, we set out to study if FD can trigger the apoptotic events in an insulin-producing pancreatic RINm5F islet β cells. When these cells were cultivated under FD condition, a time-dependent growth impediment was observed and the demise of these cells was demonstrated to be apoptotic in nature proceeding through a mitochondria-dependent pathway. In addition to evoke oxidative stress, FD condition could also trigger nitrosative stress through a NF-κB-dependent iNOS-mediated overproduction of nitric oxide (NO). The latter compound could then trigger depletion of endoplasmic reticulum (ER) calcium (Ca(2+)) store leading to cytosolic Ca(2+) overload and caused ER stress as evidence by the activation of CHOP expression. Furthermore, FD-induced apoptosis of RINm5F cells was found to be correlated with a time-dependent depletion of intracellular glutathione (GSH) and a severe down-regulation of Bcl-2 expression. Along the same vein, we also demonstrated that FD could severely impede RINm5F cells to synthesize insulin and their abilities to secret insulin in response to glucose stimulation were appreciably hampered. Even more importantly, we found that folate replenishment could not restore the ability of RINm5F cells to resynthesize insulin. Taken together, our data provide strong evidence to support the hypothesis that FD is a legitimate risk factor for the pathogenesis of diabetes. PMID:24223745

  13. A folate independent role for cytosolic HPPK/DHPS upon stress in Arabidopsis thaliana.

    PubMed

    Navarrete, Oscar; Van Daele, Jeroen; Stove, Christophe; Lambert, Willy; Van Der Straeten, Dominique; Storozhenko, Sergei

    2012-01-01

    Cytosolic HPPK/DHPS (cytHPPK/DHPS) in Arabidopsis is a functional enzyme with activity similar to its mitochondrial isoform. Genomic complementation of the cytHPPK/DHPS knockout mutant with the wild type gene led to a complete rescue of the stress sensitive mutant phenotype in seed germination tests under abiotic stress conditions. Moreover, over-expression of the gene resulted in higher germination rate under stress as compared to the wild-type, confirming its role in stress resistance. Analysis of folates in seedlings, inflorescence and dry seeds showed unchanged levels in the wild-type, mutant and over-expressor line, upon stress and normal conditions, suggesting a role for cytHPPK/DHPS distinct from folate biosynthesis and a folate-independent stress resistance mechanism. This apparently folate-independent mechanism of stress resistance points towards a possible role of pterins, since the product of HPPK/DHPS is dihydropteroate. PMID:21996493

  14. Folate in Skin Cancer Prevention

    PubMed Central

    Williams, J.D.; Jacobson, Elaine L.; Kim, H.; Kim, M.; Jacobson, M.K.

    2013-01-01

    Skin, the largest, most exposed organ of the body, provides a protective interface between humans and the environment. One of its primary roles is protection against exposure to sunlight, a major source of skin damage where the UV radiation (UVR) component functions as a complete carcinogen. Melanin pigmentation and the evolution of dark skin is an adaptive protective mechanism against high levels of UVR exposure. Recently, the hypothesis that skin pigmentation balances folate preservation and Vitamin D production has emerged. Both micronutrients are essential for reproductive success. Photodegradation of bioactive folates suggests a mechanism for the increased tendency of populations of low melanin pigmentation residing in areas of high UV exposure to develop skin cancers. Folate is proposed as a cancer prevention target for its role in providing precursors for DNA repair and replication, as well as its ability to promote genomic integrity through the generation of methyl groups needed for control of gene expression. The cancer prevention potential of folate has been demonstrated by large-scale epidemiological and nutritional studies indicating that decreased folate status increases the risk of developing certain cancers. While folate deficiency has been extensively documented by analysis of human plasma, folate status within skin has not been widely investigated. Nevertheless, inefficient delivery of micronutrients to skin and photolysis of folate argue that documented folate deficiencies will be present if not exacerbated in skin. Our studies indicate a critical role for folate in skin and the potential to protect sun exposed skin by effective topical delivery as a strategy for cancer prevention. PMID:22116700

  15. Folate levels modulate oncogene-induced replication stress and tumorigenicity

    PubMed Central

    Lamm, Noa; Maoz, Karin; Bester, Assaf C; Im, Michael M; Shewach, Donna S; Karni, Rotem; Kerem, Batsheva

    2015-01-01

    Chromosomal instability in early cancer stages is caused by replication stress. One mechanism by which oncogene expression induces replication stress is to drive cell proliferation with insufficient nucleotide levels. Cancer development is driven by alterations in both genetic and environmental factors. Here, we investigated whether replication stress can be modulated by both genetic and non-genetic factors and whether the extent of replication stress affects the probability of neoplastic transformation. To do so, we studied the effect of folate, a micronutrient that is essential for nucleotide biosynthesis, on oncogene-induced tumorigenicity. We show that folate deficiency by itself leads to replication stress in a concentration-dependent manner. Folate deficiency significantly enhances oncogene-induced replication stress, leading to increased DNA damage and tumorigenicity in vitro. Importantly, oncogene-expressing cells, when grown under folate deficiency, exhibit a significantly increased frequency of tumor development in mice. These findings suggest that replication stress is a quantitative trait affected by both genetic and non-genetic factors and that the extent of replication stress plays an important role in cancer development. PMID:26197802

  16. Intestinal folate absorption

    PubMed Central

    Strum, Williamson; Nixon, Peter F.; Bertino, Joseph B.; Binder, Henry J.

    1971-01-01

    Intestinal absorption of the monoglutamate form of the principal dietary and circulating folate compound, 5-methyltetrahydrofolic acid (5-MTHF), was studied in the rat utilizing a synthetic highly purified radiolabeled diastereoisomer. Chromatography confirmed that the compound was not altered after transfer from the mucosa to the serosa. Accumulation against a concentration gradient was not observed in duodenal, jejunal, or ileal segments at 5-MTHF concentration from 0.5 to 500 nmoles/liter. Unidirectional transmural flux determination also did not indicate a significant net flux. Mucosal to serosal transfer of 5-MTHF was similar in all segments of the intestine and increased in a linear fashion with increased initial mucosal concentrations. Further, no alteration in 5-MTHF transfer was found when studied in the presence of metabolic inhibitors or folate compounds. These results indicate that 5-MTHF is not absorbed by the rat small intestine by a carrier-mediated system and suggest that 5-MTHF transfer most likely represents diffusion. Images PMID:5564397

  17. Megaloblastic anaemia, cobalamin, and folate.

    PubMed Central

    Chanarin, I

    1987-01-01

    Developments relating to cobalamin and folate are reviewed. Current work on the relations between these two coenzymes are discussed, particularly those that have emerged in studies using nitrous oxide, which inactivates cobalamin. PMID:3312306

  18. Regulation of Folate-Mediated One-Carbon Metabolism by Glycine N-Methyltransferase (GNMT) and Methylenetetrahydrofolate Reductase (MTHFR).

    PubMed

    Wang, Yi-Cheng; Wu, Ming-Tsung; Lin, Yan-Jun; Tang, Feng-Yao; Ko, Hsin-An; Chiang, En-Pei

    2015-01-01

    Folate-mediated one-carbon metabolism is an important therapeutic target of human diseases. We extensively investigated how gene-nutrient interactions may modulate human cancer risk in 2 major folate metabolic genes, MTHFR and GNMT. The biochemical impacts of MTHFR and GNMT on methyl group supply, global DNA methylation, nucleotide biosynthesis, DNA damage, and partitioning of the folate dependent 1-carbon group were carefully studied. The distinct model systems used included: EB virus-transformed lymphoblasts expressing human MTHFR polymorphic genotypes; liver-derived GNMT-null cell-lines with and without GNMT overexpression; and HepG2 cells with stabilized inhibition of MTHFR using shRNA, GNMT wildtype, heterozygotous (GNMT(het)) and knockout (GNMT(nul)) mice. We discovered that the MTHFR TT genotype significantly reduces folate-dependent remethylation under folate restriction, but it assists purine synthesis when folate is adequate. The advantage of de novo purine synthesis found in the MTHFR TT genotype may account for the protective effect of MTHFR in human hematological malignancies. GNMT affects transmethylation kinetics and S-adenosylmethionine (adoMet) synthesis, and facilitates the conservation of methyl groups by limiting homocysteine remethylation fluxes. Restoring GNMT assists methylfolate-dependent reactions and ameliorates the consequences of folate depletion. GNMT expression in vivo improves folate retention and bioavailability in the liver. Loss of GNMT impairs nucleotide biosynthesis. Over-expression of GNMT enhances nucleotide biosynthesis and improves DNA integrity by reducing uracil misincorporation in DNA both in vitro and in vivo. The systematic series of studies gives new insights into the underlying mechanisms by which MTHFR and GNMT may participate in human tumor prevention. PMID:26598833

  19. Folate intake, MTHFR genotype, and sex modulate choline metabolism in mice.

    PubMed

    Chew, Tina W; Jiang, Xinyin; Yan, Jian; Wang, Wei; Lusa, Amanda L; Carrier, Bradley J; West, Allyson A; Malysheva, Olga V; Brenna, J Thomas; Gregory, Jesse F; Caudill, Marie A

    2011-08-01

    Choline and folate are interrelated in 1-carbon metabolism, mostly because of their shared function as methyl donors for homocysteine remethylation. Folate deficiency and mutations of methylenetetrahydrofolate reductase (MTHFR) reduce the availability of a major methyl donor, 5-methyltetrahydrofolate, which in turn may lead to compensatory changes in choline metabolism. This study investigated the hypothesis that reductions in methyl group supply, either due to dietary folate deficiency or Mthfr gene deletion, would modify tissue choline metabolism in a sex-specific manner. Mthfr wild type (+/+) or heterozygous (+/-) knockout mice were randomized to a folate-deficient or control diet for 8 wk during which time deuterium-labeled choline (d9-choline) was consumed in the drinking water (~10 μmol/d). Mthfr heterozygosity did not alter brain choline metabolite concentrations, but it did enhance their labeling in males (P < 0.05) and tended to do so in females (P < 0.10), a finding consistent with greater turnover of dietary choline in brains of +/- mice. Dietary folate deficiency in females yielded 52% higher (P = 0.027) hepatic glycerophosphocholine, which suggests that phosphatidylcholine (PtdCho) degradation was enhanced. Labeling of the hepatic PtdCho in d3 form was also reduced (P < 0.001) in females, which implies that fewer of the dietary choline-derived methyl groups were used for de novo PtdCho biosynthesis under conditions of folate insufficiency. Males responded to folate restriction with a doubling (P < 0.001) of hepatic choline dehydrogenase transcripts, a finding consistent with enhanced conversion of choline to the methyl donor, betaine. Collectively, these data show that several adaptations in choline metabolism transpire as a result of mild perturbations in folate metabolism, presumably to preserve methyl group homeostasis. PMID:21697299

  20. A 138-kDa glycoprotein from Dictyostelium membranes with folate deaminase and folate binding activity.

    PubMed

    Greiner, R A; Jacobs-Krahnen, D; Mutzel, R; Malchow, D; Wurster, B

    1992-03-15

    A 138-kDa glycoprotein comprising folate deaminase activity was purified to apparent homogeneity from membranes of Dictyostelium discoideum. Deaminase activity could be effectively inhibited by p-chloromercuriphenylsulfonate. This treatment protected folate from deamination and thus allowed investigation of folate binding to deaminase fractions. Two types of folate binding sites, differing in affinity and specificity, were detected on the folate deaminase glycoprotein. One type displays high affinity and binds folate stronger than N10-methylfolate. This binding site appears to be identical with the catalytic site of folate deaminase. The other type of binding site shows lower affinity but prefers N10-methylfolate relative to folate. A similar preference for N10-methylfolate was observed in chemotaxis tests pointing to the possibility that the second type of binding site is involved in chemotactic perception of folate compounds. Folate perception and deamination could thus be performed by activities residing on the same polypeptide. PMID:1544893

  1. FOLATE CONTENT IN SELECT DRY BEAN GENOTYPES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dry edible beans are a good natural source of folate (½-cup serving of cooked beans provide 35% daily value of folate). Recognized healthful benefits of folate in the human diet include reduced birth defects, decreased plasma homocysteine level which is a risk factor in cardiovascular disease, reduc...

  2. Folates in lettuce: a pilot study

    PubMed Central

    Johansson, Madelene; Jägerstad, Margaretha; Frølich, Wenche

    2007-01-01

    Background Leafy vegetables are good sources of folates and food shops nowadays offer an increasing number of lettuce varieties. Objective To obtain data on the folate content and forms in common lettuce varieties and spinach sold in the Nordic countries, and to investigate effects of different storage conditions and preparations in the consumer's home or at lunchtime restaurants. Design Folate was analysed in eight different lettuce varieties and spinach using a validated high-performance liquid chromatographic method and the detected forms of folates were confirmed by a mass spectrometric detector [liquid chromatography–mass spectrometry (LC-MS)] following heat extraction, deconjugation with rat serum and purification by solid-phase extraction. Results Folate content, expressed in folic acid equivalents, in the lettuce samples varied six-fold, from 30 to 198 µg 100 g−1 on a fresh weight basis. The folate content was decreased by 14% after storage at 4°C for 8 days and by 2–40% after storage at 22°C for 2–4 h, depending on whether samples were stored as whole leaves, or small torn or cut pieces. LC-MS confirmed the identity of the folate forms: H4folate, 5-CH3-H4folate, 5-HCO-H4folate and 10-HCO-H4folate. Conclusion The considerable variation in folate content between varieties of lettuce in this pilot study, with one variety reaching the level found in spinach, indicates the potential to increase folate intake considerably by choosing folate-rich varieties of lettuce and storing at low temperatures.

  3. Characterization of Folate in Peanuts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The folate levels in a group of raw and roasted samples selected from the 2007 and the 2008 Uniform Peanut Performance Trials (UPPT) and from a set of raw samples from the Core of the Core of the Peanut Germplasm collection grown in 2006 and 2008 were determined. The samples were digested in protea...

  4. Folate and carcinogenesis-mechanisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A large and growing body of both pre-clinical and clinical studies pertaining to colorectal neoplasms constitutes the most compelling evidence for the protective effect of folate against the development of cancer, although evidence is also accruing in this regard for cancers of the breast, lung, pan...

  5. Folate deficiency affects histone methylation.

    PubMed

    Garcia, Benjamin A; Luka, Zigmund; Loukachevitch, Lioudmila V; Bhanu, Natarajan V; Wagner, Conrad

    2016-03-01

    Formaldehyde is extremely toxic reacting with proteins to crosslinks peptide chains. Formaldehyde is a metabolic product in many enzymatic reactions and the question of how these enzymes are protected from the formaldehyde that is generated has largely remained unanswered. Early experiments from our laboratory showed that two liver mitochondrial enzymes, dimethylglycine dehydrogenase (DMGDH) and sarcosine dehydrogenase (SDH) catalyze oxidative demethylation reactions (sarcosine is a common name for monomethylglycine). The enzymatic products of these enzymes were the demethylated substrates and formaldehyde, produced from the removed methyl group. Both DMGDH and SDH contain FAD and both have tightly bound tetrahydrofolate (THF), a folate coenzyme. THF binds reversibly with formaldehyde to form 5,10-methylene-THF. At that time we showed that purified DMGDH, with tightly bound THF, reacted with formaldehyde generated during the reaction to form 5,10-methylene-THF. This effectively scavenged the formaldehyde to protect the enzyme. Recently, post-translational modifications on histone tails have been shown to be responsible for epigenetic regulation of gene expression. One of these modifications is methylation of lysine residues. The first enzyme discovered to accomplish demethylation of these modified histones was histone lysine demethylase (LSD1). LSD1 specifically removes methyl groups from di- and mono-methylated lysines at position 4 of histone 3. This enzyme contained tightly bound FAD and the products of the reaction were the demethylated lysine residue and formaldehyde. The mechanism of LSD1 demethylation is analogous to the mechanism previously postulated for DMGDH, i.e. oxidation of the N-methyl bond to the methylene imine followed by hydrolysis to generate formaldehyde. This suggested that THF might also be involved in the LSD1 reaction to scavenge the formaldehyde produced. Our hypotheses are that THF is bound to native LSD1 by analogy to DMGDH and SDH and

  6. A Milk-Free Diet Downregulates Folate Receptor Autoimmunity in Cerebral Folate Deficiency Syndrome

    ERIC Educational Resources Information Center

    Ramaekers, Vincent T.; Sequeira, Jeffrey M.; Blau, Nenad; Quadros, Edward V.

    2008-01-01

    In cerebral folate deficiency syndrome, the presence of autoantibodies against the folate receptor (FR) explains decreased folate transport to the central nervous system and the clinical response to folinic acid. Autoantibody crossreactivity with milk FR from different species prompted us to test the effect of a milk-free diet. Intervention with a…

  7. Associations between single nucleotide polymorphisms in folate uptake and metabolizing genes with blood folate, homocysteine and DNA uracil concentrations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Folate is an essential nutrient which supports nucleotide synthesis and biological methylation reactions. Diminished folate status results in chromosome breakage and is associated with several diseases including colorectal cancer. Folate status is also inversely related to plasma homocys...

  8. GNMT expression increases hepatic folate contents and folate-dependent methionine synthase-mediated homocysteine remethylation.

    PubMed

    Wang, Yi-Cheng; Chen, Yi-Ming; Lin, Yan-Jun; Liu, Shih-Ping; Chiang, En-Pei Isabel

    2011-01-01

    Glycine N-methyltransferase (GNMT) is a major hepatic enzyme that converts S-adenosylmethionine to S-adenosylhomocysteine while generating sarcosine from glycine, hence it can regulate mediating methyl group availability in mammalian cells. GNMT is also a major hepatic folate binding protein that binds to, and, subsequently, may be inhibited by 5-methyltetrafolate. GNMT is commonly diminished in human hepatoma; yet its role in cellular folate metabolism, in tumorigenesis and antifolate therapies, is not understood completely. In the present study, we investigated the impacts of GNMT expression on cell growth, folate status, methylfolate-dependent reactions and antifolate cytotoxicity. GNMT-diminished hepatoma cell lines transfected with GNMT were cultured under folate abundance or restriction. Folate-dependent homocysteine remethylation fluxes were investigated using stable isotopic tracers and gas chromatography/mass spectrometry. Folate status was compared between wild-type (WT), GNMT transgenic (GNMT(tg)) and GNMT knockout (GNMT(ko)) mice. In the cell model, GNMT expression increased folate concentration, induced folate-dependent homocysteine remethylation, and reduced antifolate methotrexate cytotoxicity. In the mouse models, GNMT(tg) had increased hepatic folate significantly, whereas GNMT(ko) had reduced folate. Liver folate levels correlated well with GNMT expressions (r = 0.53, P = 0.002); and methionine synthase expression was reduced significantly in GNMT(ko), demonstrating impaired methylfolate-dependent metabolism by GNMT deletion. In conclusion, we demonstrated novel findings that restoring GNMT assists methylfolate-dependent reactions and ameliorates the consequences of folate depletion. GNMT expression in vivo improves folate retention and bioavailability in the liver. Studies on how GNMT expression impacts the distribution of different folate cofactors and the regulation of specific folate dependent reactions are underway. PMID:21210071

  9. Identification of regulatory mechanisms of intestinal folate transport in condition of folate deficiency.

    PubMed

    Thakur, Shilpa; Rahat, Beenish; Hamid, Abid; Najar, Rauf Ahmad; Kaur, Jyotdeep

    2015-10-01

    Folic acid is an essential micronutrient, deficiency of which can lead to disturbance in various metabolic processes of cell. Folate transport across intestine occurs via the involvement of specialized folate transporters viz. proton coupled folate transporter (PCFT) and reduced folate carrier (RFC), which express at the membrane surfaces. The current study was designed to identify the regulatory mechanisms underlying the effects of folate deficiency (FD) on folate transport in human intestinal cell line as well as in rats and to check the reversibility of such effects. Caco-2 cells were grown for five generations in control and FD medium. Following treatment, one subgroup of cells was shifted on folate sufficient medium and grown for three more generations. Similarly, rats were fed an FD diet for 3 and 5 months, and after 3 months of FD treatment, one group of rats were shifted on normal folate-containing diet. Increase in folate transport and expression of folate transporters were observed on FD treatment. However, when cells and rats were shifted to control conditions after treatment, transport and expression of these genes restored to the control level. FD was found to have no impact on promoter methylation of PCFT and RFC; however, messenger RNA stability of transporters was found to be decreased, suggesting some adaptive response. Overall, increased expression of transporters under FD conditions can be attributed to enhanced rate of transcription of folate transporters and also to the increased binding of specificity protein 1 transcription factor to the RFC promoter only. PMID:26168702

  10. Effect of long-term supplementation of folate on folate status in plasma and erythrocytes.

    PubMed

    Heseker, H; Schmitt, G

    1987-06-01

    Folate nutritional status was estimated by radioassay of folate levels in plasma and erythrocytes during and after a long-term supplementation of folic acid. A 1-mg dose of folic acid per day was administered orally to 6 healthy subjects for 17 weeks. After 4 weeks of supplementation the mean folate concentration in plasma reached 11 ng/ml and remained constant thereafter, but decreased exponentially after stopping the supplementation. However, the folate concentrations in reticulocytes and erythrocytes increased linearly in all subjects during the supplementation. These results suggest that folate-rich, young erythrocytes are mixed at a constant rate with circulating ripe ones, which have a lower folate content, during folate supplementation. PMID:3668697

  11. Growing Mouse Oocytes Transiently Activate Folate Transport via Folate Receptors As They Approach Full Size.

    PubMed

    Meredith, Megan; MacNeil, Allison H; Trasler, Jacquetta M; Baltz, Jay M

    2016-06-01

    The folate cycle is central to cellular one-carbon metabolism, where folates are carriers of one-carbon units that are critical for synthesis of purines, thymidylate, and S-adenosylmethionine, the universal methyl donor that forms the cellular methyl pool. Although folates are well-known to be important for early embryo and fetal development, their role in oogenesis has not been clearly established. Here, folate transport proteins were detected in developing neonatal ovaries and growing oocytes by immunohistochemistry, Western blot, and immunofluorescence. The folate receptors FOLR1 and FOLR2 as well as reduced folate carrier 1 (RFC1, SLC19A1 protein) each appeared to be present in follicular cells including granulosa cells. In growing oocytes, however, only FOLR2 immunoreactivity appeared abundant. Localization of apparent FOLR2 immunofluorescence near the plasma membrane increased with oocyte growth and peaked in oocytes as they neared full size. We assessed folate transport using the model folate leucovorin (folinic acid). Unexpectedly, there was a transient burst of folate transport activity for a brief period during oocyte growth as they neared full size, while folate transport was otherwise undetectable for the rest of oogenesis and in fully grown germinal vesicle stage oocytes. This folate transport was inhibited by dynasore, an inhibitor of endocytosis, but insensitive to the anion transport inhibitor stilbene 4-acetamido-40-isothiocyanato-stilbene-2,20-disulfonic acid, consistent with folate receptor-mediated transport but not with RFC1-mediated transport. Thus, near the end of their growth, growing oocytes may take up folates that could support the final stage of oogenesis or be stored to provide the endogenous folates needed in early embryogenesis. PMID:27122634

  12. Genetics Home Reference: hereditary folate malabsorption

    MedlinePlus

    ... folates) from food. Folates are important for many cell functions, including the production of DNA and its chemical ... the mutated protein is not transported to the cell membrane, and so it is unable to perform its function. A lack of functional PCFT impairs the body's ...

  13. Opposing roles of folate in prostate cancer.

    PubMed

    Rycyna, Kevin J; Bacich, Dean J; O'Keefe, Denise S

    2013-12-01

    The US diet has been fortified with folic acid to prevent neural tube defects since 1998. The Physician Data Queries from the National Cancer Institute describe folate as protective against prostate cancer, whereas its synthetic analog, folic acid, is considered to increase prostate cancer risk when taken at levels easily achievable by eating fortified food or taking over-the-counter supplements. We review the present literature to examine the effects of folate and folic acid on prostate cancer, help interpret previous epidemiologic data, and provide clarification regarding the apparently opposing roles of folate for patients with prostate cancer. A literature search was conducted in Medline to identify studies investigating the effect of nutrition and specifically folate and folic acid on prostate carcinogenesis and progression. In addition, the National Health and Nutrition Examination Survey database was analyzed for trends in serum folate levels before and after mandatory fortification. Folate likely plays a dual role in prostate carcinogenesis. There remains conflicting epidemiologic evidence regarding folate and prostate cancer risk; however, there is growing experimental evidence that higher circulating folate levels can contribute to prostate cancer progression. Further research is needed to clarify these complex relationships. PMID:23992971

  14. Folate and brain function in the elderly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    PURPOSE OF REVIEW: Over the past several decades, folate has emerged as an important nutrient in several key conditions of concern to the elderly. Subclinical levels of folate inadequacy can have significant negative impacts on health in older individuals. RECENT FINDINGS: Serum and red blood cell...

  15. [Roles of folate metabolism in prostate cancer].

    PubMed

    Sun, Fei-vu; Hu, Qing-feng; Xia, Guo-wei

    2015-07-01

    Epidemiological surveys show that folic acid can prevent prostate cancer, but fortified folic acid may increase the risk of the malignancy. The physician data queries from the National Cancer Institute of the USA describe folate as protective against prostate cancer, whereas its synthetic analog, folic acid, is considered to increase prostate cancer risk when taken at levels easily achievable by eating fortified food or taking over-the-counter supplements. We review the current literature to examine the effects of folate and folic acid on prostate cancer, help interpret previous epidemiologic data, and provide a clarification regarding the apparently opposing roles of folate for patients with prostate cancer. A literature search was conducted in Medline to identify studies investigating the effect of nutrition and specifically folate and folic acid on prostate carcinogenesis and progression. In addition, the National Health and Nutrition Examination Survey database was analyzed for the trends in serum folate levels before and after mandatory fortification. Folate likely plays a dual role in prostate carcinogenesis. There remains some conflicting epidemiologic evidence regarding folate and prostate cancer risk. However, there is growing experimental evidence that higher circulating folate levels can contribute to prostate cancer progression. Further research is needed to clarify these complex relationships. PMID:26333231

  16. Folate-homocysteine interrelations: potential new markers of folate status.

    PubMed

    Lucock, M D; Daskalakis, I; Schorah, C J; Lumb, C H; Oliver, M; Devitt, H; Wild, J; Dowell, A C; Levene, M I

    1999-05-01

    We report a transient drop in plasma Hcy and Cys following a single oral dose of PteGlu. The thiol change was concomitant with both the peak plasma 5CH3H4PteGlu1 level (by HPLC) and the maximum plasma Lactobacillus casei activity which reflects absorption of unmodified PteGlu. The significant reciprocal association of Hcy with radioassay RBC folate (r = -0.28, 99% CI -0.48, -0.05, P = 0.0016), serum folate (r = -0.37, 99% CI -0.56, -16, P = 0.0001), and vitamin B12 (r = -0.42, 99% CI -0.59, -21, P = 0.0001) is shown and reflects the long-term nutritional effect of B vitamins on this important, potentially atherogenic thiol. These are now well-established associations. We extend the potential for investigation of folate metabolism in health and disease by evaluating a range of new folate indices which are based on erythrocyte coenzymes. These have been looked at independently and in association with established parameters. Erythrocyte methylfolates (mono- to hexaglutamate-5CH3H4PteGlu1-6), formylfolates (tri- to pentaglutamate-5CHOH4PteGlu3-5),formiminotetrahydrofolate (formiminoH4PteGlu1), unsubstituted tetrahydrofolate (H4PteGlu1), andpara-aminobenzoylglutamate (P-ABG) have been measured by HPLC with fluorescence detection. A positive linear association exists between (i) H4PteGlu1 and radioassay RBC folate (r = 0.50, 99% CI 0. 07, 0.77, P = 0.0036), and (ii) H4PteGlu1 and tetraglutamates of both formyl- and methylfolate (r = 0.52, 99% CI 0.10, 0.78, P = 0. 0022, and r = 0.56, 99% CI 0.15, 0.80, P = 0.0009, respectively). Since, in addition, a reciprocal linear association exists between Hcy and tetraglutamyl formylfolate (r = -0.41, 99% CI -0.73, 0.05, P = 0.0206), erythrocyte tetraglutamates may be a good reflection of the bodies' active coenzyme pools. Pentaglutamyl formylfolate, the longest oligo-gamma-glutamyl chain form of this coenzyme may be a good indicator of folate depletion. The abundance of this coenzyme both increases with increasing Hcy (r = 0

  17. Retained folates in the rat.

    PubMed Central

    Barford, P A; Staff, R J; Blair, J A

    1977-01-01

    The retention of radioactivity after doses of 14C- and 3H-labelled folic acid is described. Radioactivity was retained in liver, kidney and gut of rats for some time after administration of the dose. The retained radioactivity could not be displaced by large doses of unlabelled folic acid or unlabelled 5-methyltetrahydrofolate. 14C- and 3H-labbelled folates showed similar chromatographic behaviour onion-exchange chromatography to 5-methyltetrahydrofolate, and on ion-exchange and gel-permeation chromatography to synthetic pteroylhepta-gamma-glutamate. PMID:883955

  18. Membrane folate-binding proteins are responsible for folate-protein conjugate endocytosis into cultured cells.

    PubMed Central

    Leamon, C P; Low, P S

    1993-01-01

    Folate-protein conjugates have been shown to bind to and enter HeLa and KB cells by receptor-mediated endocytosis [Leamon and Low (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 5572-5576]. Although these cells contain a membrane folate-binding protein (FBP) involved in the uptake of free folate, no studies have been conducted to evaluate whether the folate-protein conjugates enter cells via the same protein. To address this issue, HeLa cell monolayers were treated with folate-labelled 125I-RNAase under various conditions characteristic of FBP-mediated folate uptake. Folate-labelled 125I-RNAase was found to bind to cells with high affinity (Kd = 24 nM), and like the free vitamin, its binding could be competitively blocked by excess free folate. Furthermore, binding could be reversed by either washing the cells with acid/saline, pH 3.0, or by treating the cells with phosphatidyl-inositol-specific phospholipase C, an enzyme known to release FBP from cell surfaces. Because cells pretreated with anti-FBP serum were unable to bind folate conjugates, and since the same antiserum identified a single 65 kDa band reminiscent of FBPs found in many other tissues, we conclude that a classical FBP is responsible for the uptake of folate-protein conjugates by receptor-bearing cells. Images Figure 5 PMID:8387781

  19. Alcohol-associated folate disturbances result in altered methylation of folate-regulating genes.

    PubMed

    Wani, Nissar Ahmad; Hamid, Abid; Kaur, Jyotdeep

    2012-04-01

    Folate plays a critical role in maintaining normal metabolic, energy, differentiation and growth status of all mammalian cells. The steady-state accumulation of folate seems to depend on the activity of two enzymes: folylpolyglutamate synthetase (FPGS), which adds glutamate residues, and gamma-glutamyl hydrolase (GGH), which removes them, enabling it to be transported across the biological membranes. Overexpression of GGH and downregulation of FPGS would be expected to decrease intracellular folate in its polyglutamylated form, thereby increasing efflux of folate and its related molecules, which might lead to resistance to drugs or folate deficiency. The study was sought to delineate the activity of GGH and expression FPGS in tissues involved in folate homeostasis during alcoholism and the epigenetic regulation of these enzymes and transporters regulating intracellular folate levels. We determined the activity of GGH and expression of FPGS in tissues after 3 months of ethanol feeding to rats at 1 g/kg body weight/day. The results showed that there was not any significant change in the activity of folate hydrolyzing enzyme GGH in ethanol-fed rats while there was significant down regulation in the expression of FPGS. Ethanol feeding decreased the total as well as polyglutamated folate levels. There was tissue-specific hyper/hypo methylation of folate transporter genes viz. PCFT and RFC by chronic ethanol feeding. Moreover, hypermethylation of FPGS gene was observed in intestine and kidney without any change in methylation levels of GGH in the ethanol-fed rats. In conclusion, the initial deconjugation of polyglutamylated folate by GGH was not impaired in ethanol-fed rats while the conversion of monoglutamylated folate to polyglutamylated form might be impaired. There was tissue-specific altered methylation of folate transporter genes by chronic ethanol feeding. PMID:22147198

  20. Regulation of reduced-folate transporter-1 (RFT-1) in retinal pigment epithelial cells by folate

    PubMed Central

    Naggar, Hany; VanElls, Tracy K.; Ganapathy, Vadivel; Smith, Sylvia B.

    2013-01-01

    Purpose Reduced-folate transporter-1 (RFT-1), a typical transport protein with twelve membrane-spanning domains, transports reduced-folates, such as N5-methyltetrahydrofolate (MTF), the predominant circulating form of folate. RFT-1 is localized to the RPE apical membrane and transports folate from RPE to photoreceptor cells. We asked whether RFT-1 activity in RPE is altered under high folate conditions. Methods ARPE-19 cells were cultured 24, 48 or 72 h in medium containing either 0.5 nM, 5.0 nM or 2.26 µM MTF and the activity of RFT-1 was assessed by determining the uptake of N5-MTF. Semi-quantitative RT-PCR and western blot analysis were used to study RFT-1 gene and protein expression. Results Cells treated for 72 h with 2.26 µM MTF showed a significant (40%) decrease in MTF uptake compared to cells exposed to 0.5 nM or 5 nM MTF. The effect of high concentrations of folate on RFT-1 activity was specific. Kinetic analysis showed that folate-induced attenuation of RFT-1 activity was associated with a decrease in the maximal velocity of the transporter, but no change in the substrate affinity. Steady-state levels of RFT-1 mRNA and protein decreased significantly in the presence of excess folate. Conclusions Excess folate levels folate downregulate RFT-1 in RPE. This study represents the first molecular analysis of the regulation of RFT-1 by folate in RPE and reveals attenuation of the activity and expression of a folate transport protein under conditions of high levels of folate. PMID:15875363

  1. Folate Metabolism and Human Reproduction

    PubMed Central

    Thaler, C. J.

    2014-01-01

    Folate metabolism affects ovarian function, implantation, embryogenesis and the entire process of pregnancy. In addition to its well-established effect on the incidence of neural tube defects, associations have been found between reduced folic acid levels and increased homocysteine concentrations on the one hand, and recurrent spontaneous abortions and other complications of pregnancy on the other. In infertility patients undergoing IVF/ICSI treatment, a clear correlation was found between plasma folate concentrations and the incidence of dichorionic twin pregnancies. In patients supplemented with 0.4 mg/d folic acid undergoing ovarian hyperstimulation and oocyte pick-up, carriers of the MTHFR 677T mutation were found to have lower serum estradiol concentrations at ovulation and fewer oocytes could be retrieved from them. It appears that these negative effects can be compensated for in full by increasing the daily dose of folic acid to at least 0.8 mg. In carriers of the MTHFR 677TT genotype who receive appropriate supplementation, AMH concentrations were found to be significantly increased, which could indicate a compensatory mechanism. AMH concentrations in homozygous carriers of the MTHFR 677TT genotype could even be overestimated, as almost 20 % fewer oocytes are retrieved from these patients per AMH unit compared to MTHFR 677CC wild-type individuals. PMID:25278626

  2. Folate status and neural tube defects.

    PubMed

    Molloy, A M; Mills, J L; Kirke, P N; Weir, D G; Scott, J M

    1999-01-01

    Periconceptional folic acid supplementation prevents approximately 70% of neural tube defects (NTDs). While most women carrying affected fetuses do not have deficient blood folate levels, the risk of having an NTD affected child is inversely correlated with pregnancy red cell folate levels. Current research is focused on the discovery of genetic abnormalities in folate related enzymes which might explain the role of folate in NTD prevention. The first candidate gene to emerge was the C677T variant of 5,10-methylenetetrahydrofolate reductase. Normal subjects who are homozygous for the mutation (TT) have red cell folate status some 20% lower than expected. It is now established that the prevalence of the TT genotype is significantly higher among spina bifida cases and their parents. Nevertheless, our studies show that the variant does not account for the reduced blood folate levels in many NTD affected mothers. We conclude that low maternal folate status may in itself be the most important risk factor for NTDs and that food fortification may be the only population strategy of benefit in the effort to eliminate NTDs. PMID:10609896

  3. Folate and Alzheimer: when time matters.

    PubMed

    Hinterberger, Margareta; Fischer, Peter

    2013-01-01

    Folate is necessary for DNA and mtDNA integrity and via folate/B12-dependent methionine cycle for methylation of multiple substrates (epigenetic DNA and enzymes) and methylation of homocysteine. During embryogenesis, folate deficiency is a risk factor for neural tube defects and late in life for cognitive decline and Alzheimer's dementia (AD). It induces several Alzheimer pathomechanisms like oxidative stress, Ca(++) influx, accumulation of hyperphosphorylated tau and β-amyloid. But impact of folic acid supplementation on prevention or delay of dementia is a matter of debate. Six out of seven randomized controlled trials (RCT) with B vitamin intervention periods between 2 and 5.4 years reported about cognitive benefits in the supplemented groups mainly for those subjects with high homocysteine or low folate levels at baseline. This review tries to demonstrate the connection between folate deficiency and AD, analyses selected epidemiologic studies and RCT on folate/B12/homocysteine with long-observation periods (≥ 2 years RCT; ≥ 4 years observational) and attempts to find explanations for the controversy in literature like short follow-up, heterogeneity of subjects concerning age, recruitment, baseline cognition, inclusion criteria and probably "misleading"(not representative for the past) folate/B12/homocysteine levels due to not reported short-term use of multivitamins or food-fortification. Population-based studies-epidemiologic and interventional-starting in the fourth decade would provide the best information about the impact of folate on later development of AD. Mandatory folate fortification areas will be important future field studies for-like neural tube defects-hopefully declining AD incidence and disproving safety concerns. PMID:22627695

  4. How well do blood folate concentrations predict dietary folate intakes in a sample of Canadian lactating women exposed to high levels of folate? An observational study

    PubMed Central

    Houghton, Lisa A; Sherwood, Kelly L; O'Connor, Deborah L

    2007-01-01

    Background In 1998, mandatory folic acid fortification of white flour and select cereal grain products was implemented in Canada with the intention to increase dietary folate intakes of reproducing women. Folic acid fortification has produced a dramatic increase in blood folate concentrations among reproductive age women, and a reduction in neural tube defect (NTD)-affected pregnancies. In response to improved blood folate concentrations, many health care professionals are asking whether a folic acid supplement is necessary for NTD prevention among women with high blood folate values, and how reliably high RBC folate concentrations predict folate intakes shown in randomized controlled trials to be protective against NTDs. The objective of this study was to determine how predictive blood folate concentrations and folate intakes are of each other in a sample of well-educated lactating Canadian women exposed to high levels of synthetic folate. Methods The relationship between blood folate concentrations and dietary folate intakes, determined by weighed food records, were assessed in a sample of predominantly university-educated lactating women (32 ± 4 yr) at 4-(n = 53) and 16-wk postpartum (n = 55). Results Median blood folate concentrations of all participants were well above plasma and RBC folate cut-off levels indicative of deficiency (6.7 and 317 nmol/L, respectively) and all, except for 2 subjects, were above the cut-off for NTD-risk reduction (>906 nmol/L). Only modest associations existed between total folate intakes and plasma (r = 0.46, P < 0.001) and RBC (r = 0.36, P < 0.01) folate concentrations at 16-wk postpartum. Plasma and RBC folate values at 16-wk postpartum correctly identified the quartile of folate intake of only 26 of 55 (47%) and 18 of 55 (33%) of subjects, respectively. The mean RBC folate concentration of women consuming 151–410 μg/d of synthetic folate (2nd quartile of intake) did not differ from that of women consuming >410 μg/d (3rd and

  5. Neither Folic Acid Supplementation nor Pregnancy Affects the Distribution of Folate Forms in the Red Blood Cells of Women1–3

    PubMed Central

    Hartman, Brenda A.; Fazili, Zia; Pfeiffer, Christine M.; O’Connor, Deborah L.

    2016-01-01

    It is not known whether folate metabolism is altered during pregnancy to support increased DNA and RNA biosynthesis. By using a state-of-the-art LC tandem mass spectrometry technique, the aim of this study was to investigate differences in RBC folate forms between pregnant and nonpregnant women and between nonpregnant women consuming different concentrations of supplemental folic acid. Forms of folate in RBCs were used to explore potential shifts in folate metabolism during early erythropoiesis. Total RBC folate and folate forms [tetrahydrofolate; 5-methyltetrahydrofolate (5-methyl-THF); 4α-hydroxy-5-methyl-tetrahydrofolate (an oxidation product of 5-methyl-THF); 5-formyl-tetrahydrofolate; and 5,10-methenyl-tetrahydrofolate] were measured in 4 groups of women (n = 26): pregnant women (PW) (30–36 wk of gestation) consuming 1 mg/d of folic acid, and nonpregnant women consuming 0 mg/d (NPW-0), 1 mg/d (NPW-1), and 5 mg/d (NPW-5) folic acid. The mean ± SD RBC folate concentration of the NPW-0 group (890 ± 530 nmol/L) was lower than the NPW-1 (1660 ± 350 nmol/L) and NPW-5 (1980 ± 570 nmol/L) groups as assessed by microbiologic assay (n = 26, P < 0.0022). No difference was found between the NPW-1 and NPW-5 groups. We detected 5-methyl-THF [limit of detection (LOD) = 0.06 nmol/L] in all groups and tetrahydrofolate (LOD = 0.2 nmol/L) in most women regardless of methylenetetrahydrofolate reductase genotype. Most women consuming folic acid supplements had detectable concentrations of 5,10-methenyl-tetrahydrofolate (LOD = 0.31 nmol/L). However, there was no difference in the relative distribution of 5-methyl-THF (83–84%), sum of non-methyl folates (0.6–3%), or individual non-methyl folate forms in RBCs across groups. We conclude that although folic acid supplementation in nonpregnant women increases RBC total folate and the concentration of individual folate forms, it does not alter the relative distribution of folate forms. Similarly, distribution of RBC folate

  6. Low Folate and Selenium in the Mouse Maternal Diet Alters Liver Gene Expression Patterns in the Offspring after Weaning

    PubMed Central

    Barnett, Matthew P.G.; Bermingham, Emma N.; Young, Wayne; Bassett, Shalome A.; Hesketh, John E.; Maciel-Dominguez, Anabel; McNabb, Warren C.; Roy, Nicole C.

    2015-01-01

    During pregnancy, selenium (Se) and folate requirements increase, with deficiencies linked to neural tube defects (folate) and DNA oxidation (Se). This study investigated the effect of a high-fat diet either supplemented with (diet H), or marginally deficient in (diet L), Se and folate. Pregnant female mice and their male offspring were assigned to one of four treatments: diet H during gestation, lactation and post-weaning; diet L during gestation, lactation and post-weaning; diet H during gestation and lactation but diet L fed to offspring post-weaning; or diet L during gestation and lactation followed by diet H fed to offspring post-weaning. Microarray and pathway analyses were performed using RNA from colon and liver of 12-week-old male offspring. Gene set enrichment analysis of liver gene expression showed that diet L affected several pathways including regulation of translation (protein biosynthesis), methyl group metabolism, and fatty acid metabolism; this effect was stronger when the diet was fed to mothers, rather than to offspring. No significant differences in individual gene expression were observed in colon but there were significant differences in cell cycle control pathways. In conclusion, a maternal low Se/folate diet during gestation and lactation has more effects on gene expression in offspring than the same diet fed to offspring post-weaning; low Se and folate in utero and during lactation thus has persistent metabolic effects in the offspring. PMID:26007332

  7. Folate content in different strawberry genotypes and folate status in healthy subjects after strawberry consumption.

    PubMed

    Tulipani, Sara; Romandini, Stefania; Alvarez Suarez, Josè M; Capocasa, Franco; Mezzetti, Bruno; Busco, Franco; Bamonti, Fabrizia; Novembrino, Cristina; Battino, Maurizio

    2008-01-01

    Folate is a micronutrient essential in a variety of biological processes, and an adequate dietary folate intake seems to play a crucial role in health promotion and disease prevention. The importance of strawberry as a natural food source of folate has been recognised only recently, and few pilot studies have investigated the impact of strawberry intake on human folate status. In this study, firstly, we evaluated the folate content of different commercial varieties (Alba, Irma, Patty, Adria, Sveva) and advanced selections (AN99.78.51; AN94.414.52; AN00.239.55) of strawberry. Significant differences were observed among genotypes, confirming the breeding approach as a reliable tool to increase folate content in strawberry. Secondly, the variety Sveva was selected for a medium-term strawberry consumption study, in order to check if a 2-weeks strawberry intake could have any effects on folate status and plasma homocysteine levels, in healthy subjects. An average 3.4% increase in serum folate was observed, however without any statistical significance, as shown by reference change value of each analyte in each subject. This study should be considered as a first pilot investigation, and further investigations are strongly hoped to evaluate the potential impact of strawberry consumption on human folate status, particularly in the case of a previously diagnosed deficiency. PMID:19706971

  8. Folate augmentation of antidepressant response.

    PubMed

    Owen, R T

    2013-12-01

    The use of two antidepressants from the initiation of treatment in major depressive disorder has been investigated in several recent studies and forms a paradigm shift in the pharmacotherapy of the condition. Several, but not all, trials have claimed improved response and remission rates with the combinations as opposed to monotherapy. The use of folate preparations (folic and folinic acid and l-meth-ylfolate) have shown effective augmentation of antidepressant response in a variety of controlled and open-label settings in patients with normo- and hypofolatemic status. Several recent trials using L-methylfolate, the active and more bioavailable form of folic acid, have shown promising adjunctive use with a well-tolerated adverse event profile. PMID:24524097

  9. Folate

    MedlinePlus

    ... the mouth as well as changes in the color of the skin, hair, or fingernails. Women who ... Office of Dietary Supplements Frequently Asked Questions: Which brand(s) of dietary supplements should I purchase? For information ...

  10. Auxin biosynthesis.

    PubMed

    Zhao, Yunde

    2014-01-01

    lndole-3-acetic acid (IAA), the most important natural auxin in plants, is mainly synthesized from the amino acid tryptophan (Trp). Recent genetic and biochemical studies in Arabidopsis have unambiguously established the first complete Trp-dependent auxin biosynthesis pathway. The first chemical step of auxin biosynthesis is the removal of the amino group from Trp by the TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA) family of transaminases to generate indole-3-pyruvate (IPA). IPA then undergoes oxidative decarboxylation catalyzed by the YUCCA (YUC) family of flavin monooxygenases to produce IAA. This two-step auxin biosynthesis pathway is highly conserved throughout the plant kingdom and is essential for almost all of the major developmental processes. The successful elucidation of a complete auxin biosynthesis pathway provides the necessary tools for effectively modulating auxin concentrations in plants with temporal and spatial precision. The progress in auxin biosynthesis also lays a foundation for understanding polar auxin transport and for dissecting auxin signaling mechanisms during plant development. PMID:24955076

  11. Auxin Biosynthesis

    PubMed Central

    Zhao, Yunde

    2014-01-01

    lndole-3-acetic acid (IAA), the most important natural auxin in plants, is mainly synthesized from the amino acid tryptophan (Trp). Recent genetic and biochemical studies in Arabidopsis have unambiguously established the first complete Trp-dependent auxin biosynthesis pathway. The first chemical step of auxin biosynthesis is the removal of the amino group from Trp by the TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA) family of transaminases to generate indole-3-pyruvate (IPA). IPA then undergoes oxidative decarboxylation catalyzed by the YUCCA (YUC) family of flavin monooxygenases to produce IAA. This two-step auxin biosynthesis pathway is highly conserved throughout the plant kingdom and is essential for almost all of the major developmental processes. The successful elucidation of a complete auxin biosynthesis pathway provides the necessary tools for effectively modulating auxin concentrations in plants with temporal and spatial precision. The progress in auxin biosynthesis also lays a foundation for understanding polar auxin transport and for dissecting auxin signaling mechanisms during plant development. PMID:24955076

  12. Folate status and health: challenges and opportunities.

    PubMed

    Obeid, Rima; Oexle, Konrad; Rißmann, Anke; Pietrzik, Klaus; Koletzko, Berthold

    2016-04-01

    Each year approximately 2400 pregnancies develop folic acid-preventable spina bifida and anencephaly in Europe. Currently, 70% of all affected pregnancies are terminated after prenatal diagnosis. The prevalence of neural tube defects (NTDs) has been significantly lowered in more than 70 countries worldwide by applying fortification with folic acid. Periconceptional supplementation of folic acid also reduces the risk of congenital heart diseases, preterm birth, low birth weight, and health problems associated with child mortality and morbidity. All European governments failed to issue folic acid fortification of centrally processed and widely eaten foods in order to prevent NTDs and other unwanted birth outcomes. The estimated average dietary intake of folate in Germany is 200 μg dietary folate equivalents (DFE)/day. More than half of German women of reproductive age do not consume sufficient dietary folate to achieve optimal serum or red blood cell folate concentrations (>18 or 1000 nmol/L, respectively) necessary to prevent spina bifida and anencephaly. To date, targeted supplementation is recommended in Europe, but this approach failed to reduce the rate of NTDs during the last 10 years. Public health centers for prenatal care and fortification with folic acid in Europe are urgently needed. Only such an action will sufficiently improve folate status, prevent at least 50% of the NTD cases, reduce child mortality and morbidity, and alleviate other health problems associated with low folate such as anemia. PMID:25825915

  13. Oxytetracycline Biosynthesis*

    PubMed Central

    Pickens, Lauren B.; Tang, Yi

    2010-01-01

    Oxytetracycline (OTC) is a broad-spectrum antibiotic that acts by inhibiting protein synthesis in bacteria. It is an important member of the bacterial aromatic polyketide family, which is a structurally diverse class of natural products. OTC is synthesized by a type II polyketide synthase that generates the poly-β-ketone backbone through successive decarboxylative condensation of malonyl-CoA extender units, followed by modifications by cyclases, oxygenases, transferases, and additional tailoring enzymes. Genetic and biochemical studies have illuminated most of the steps involved in the biosynthesis of OTC, which is detailed here as a representative case study in type II polyketide biosynthesis. PMID:20522541

  14. Seasonal folate serum concentrations at different nutrition.

    PubMed

    Krajcovicová-Kudlácková, Marica; Valachovicová, Martina; Blazícek, Pavel

    2013-03-01

    Folic acid (vitamin B9) rich sources are leafy green vegetables, legumes, whole grains, egg yolk, liver, and citrus fruit. In winter and early spring, there could be insufficient supply of vegetables and fruit and thus lower intake of folic acid and possible deficient folic acid blood concentrations. The aim of the study was to assess serum vitamin B9 concentrations depending on the season (the last third of winter - March, the last third of spring - May/June and the beginning of autumn - September) and different nutritional habits (apparently healthy adults non-smoking, non-obese 366 subjects; 204 persons of general population on traditional mixed diet; and 162 long-term lacto-ovo vegetarians). In general population group, the mean concentration of folate in March was low (narrowly above lower reference limit) with high incidence of deficient values - 31.5%. In May/ June vs. March was folate concentration significantly higher with deficient values in 13.2% of individuals. The highest serum values were observed in September with 11.1% of deficient values. In vegetarian vs. non-vegetarian group, significantly higher folate concentrations were found in each season with no deficient values. Folate and vitamin B12 are the regulators of homocysteinemia; plant food lacks of vitamin B12. The deficient folate serum values in March caused the mild hyperhomocysteinemia in 12.3% of individuals vs. only 5.9% and 4.8% of subjects in groups investigated in May/June and September. In spite of high folate concentrations in all investigations and no deficient value, 19.6-22.8% of vegetarians suffer from mild hyperhomocysteinemia as a consequence of deficient vitamin B12 concentrations in one quarter of subjects. As far as the general population is concerned, our findings suggest that winter and early spring are critical seasons in regards to optimal serum folate concentrations. PMID:23741898

  15. Quantitative flux analysis reveals folate-dependent NADPH production

    NASA Astrophysics Data System (ADS)

    Fan, Jing; Ye, Jiangbin; Kamphorst, Jurre J.; Shlomi, Tomer; Thompson, Craig B.; Rabinowitz, Joshua D.

    2014-06-01

    ATP is the dominant energy source in animals for mechanical and electrical work (for example, muscle contraction or neuronal firing). For chemical work, there is an equally important role for NADPH, which powers redox defence and reductive biosynthesis. The most direct route to produce NADPH from glucose is the oxidative pentose phosphate pathway, with malic enzyme sometimes also important. Although the relative contribution of glycolysis and oxidative phosphorylation to ATP production has been extensively analysed, similar analysis of NADPH metabolism has been lacking. Here we demonstrate the ability to directly track, by liquid chromatography-mass spectrometry, the passage of deuterium from labelled substrates into NADPH, and combine this approach with carbon labelling and mathematical modelling to measure NADPH fluxes. In proliferating cells, the largest contributor to cytosolic NADPH is the oxidative pentose phosphate pathway. Surprisingly, a nearly comparable contribution comes from serine-driven one-carbon metabolism, in which oxidation of methylene tetrahydrofolate to 10-formyl-tetrahydrofolate is coupled to reduction of NADP+ to NADPH. Moreover, tracing of mitochondrial one-carbon metabolism revealed complete oxidation of 10-formyl-tetrahydrofolate to make NADPH. As folate metabolism has not previously been considered an NADPH producer, confirmation of its functional significance was undertaken through knockdown of methylenetetrahydrofolate dehydrogenase (MTHFD) genes. Depletion of either the cytosolic or mitochondrial MTHFD isozyme resulted in decreased cellular NADPH/NADP+ and reduced/oxidized glutathione ratios (GSH/GSSG) and increased cell sensitivity to oxidative stress. Thus, although the importance of folate metabolism for proliferating cells has been long recognized and attributed to its function of producing one-carbon units for nucleic acid synthesis, another crucial function of this pathway is generating reducing power.

  16. Folate Metabolism and the Risk of Down Syndrome

    ERIC Educational Resources Information Center

    Patterson, David

    2008-01-01

    Folate is an important vitamin that contributes to cell division and growth and is therefore of particular importance during infancy and pregnancy. Folate deficiency has been associated with slowed growth, anaemia, weight loss, digestive disorders and some behavioural issues. Adequate folate intake around the time of conception and early pregnancy…

  17. Dietary folate deficiency with normal red cell folate and circulating blasts.

    PubMed

    Stark, G L; Hamilton, P J

    2003-04-01

    This report describes a 26 year old woman, of Pakistani origin, who presented five months postpartum with severe megaloblastic anaemia as a result of nutritional folate deficiency. This case was unusual in that a small number of myeloblasts were present in the peripheral blood at presentation, and this circulating population temporarily increased in size when folate replacement was begun. We also highlight the need to recognise the non-linear relation between haematocrit and red blood cell folate concentration when the haematocrit is very low (< 0.15) and emphasise the importance of the clinical history. PMID:12663648

  18. MTHFD1 regulates nuclear de novo thymidylate biosynthesis and genome stability.

    PubMed

    Field, Martha S; Kamynina, Elena; Stover, Patrick J

    2016-07-01

    Disruptions in folate-mediated one-carbon metabolism (FOCM) are associated with risk for several pathologies including developmental anomalies such as neural tube defects and congenital heart defects, diseases of aging including cognitive decline, neurodegeneration and epithelial cancers, and hematopoietic disorders including megaloblastic anemia. However, the causal pathways and mechanisms that underlie these pathologies remain unresolved. Because folate-dependent anabolic pathways are tightly interconnected and best described as a metabolic network, the identification of causal pathways and associated mechanisms of pathophysiology remains a major challenge in identifying the contribution of individual pathways to disease phenotypes. Investigations of genetic mouse models and human inborn errors of metabolism enable a more precise dissection of the pathways that constitute the FOCM network and enable elucidation of causal pathways associated with NTDs. In this overview, we summarize recent evidence that the enzyme MTHFD1 plays an essential role in FOCM in humans and in mice, and that it determines the partitioning of folate-activated one carbon units between the folate-dependent de novo thymidylate and homocysteine remethylation pathways through its regulated nuclear localization. We demonstrate that impairments in MTHFD1 activity compromise both homocysteine remethylation and de novo thymidylate biosynthesis, and provide evidence that MTHFD1-associated disruptions in de novo thymidylate biosynthesis lead to genome instability that may underlie folate-associated immunodeficiency and birth defects. PMID:26853819

  19. EFFECT OF VARYING MATERNAL FOLATE STATUS AND DIETARY FOLATE INTAKE ON RESPONSE TO DIVERSE DEVELOPMENTAL TOXICANTS IN THE RAT

    EPA Science Inventory

    Periconceptional and early pregnancy folate supplements are associated with reduced recurrence and occurrence of birth defects in humans. This study was undertaken to assess the influence of maternal folate status and dietary folate intake on outcome of exposures to diverse terat...

  20. Improving folate (vitamin B9) stability in biofortified rice through metabolic engineering.

    PubMed

    Blancquaert, Dieter; Van Daele, Jeroen; Strobbe, Simon; Kiekens, Filip; Storozhenko, Sergei; De Steur, Hans; Gellynck, Xavier; Lambert, Willy; Stove, Christophe; Van Der Straeten, Dominique

    2015-10-01

    Biofortification of staple crops could help to alleviate micronutrient deficiencies in humans. We show that folates in stored rice grains are unstable, which reduces the potential benefits of folate biofortification. We obtain folate concentrations that are up to 150 fold higher than those of wild-type rice by complexing folate to folate-binding proteins to improve folate stability, thereby enabling long-term storage of biofortified high-folate rice grains. PMID:26389575

  1. Folate and vitamin B12 status in schizophrenic patients

    PubMed Central

    Saedisomeolia, Ahmad; Djalali, Mahmoud; Moghadam, Ali Malekshahi; Ramezankhani, Ozra; Najmi, Laya

    2011-01-01

    BACKGROUND: This study aimed to determine red blood cell (RBC) and serum folate and vitamin B12 levels as well as their intake in schizophrenic patients. METHODS: The folate and cobalamin status of 60 schizophrenic patients (15-55 years) was compared to 60 matched healthy controls using Radio Isotope Dilution Assay (RIDA). RESULTS: Serum and RBC folate in schizophrenic patients was significantly lower than the control group. Mean serum cobalamin levels in the schizophrenic group were higher than controls. CONCLUSIONS: This study showed that folate deficiency is common in schizophrenic patients; therefore, it is important to pay attention to folate levels in these patients. PMID:22247731

  2. Impact of folate therapy on combined immunodeficiency secondary to hereditary folate malabsorption.

    PubMed

    Kishimoto, Kenji; Kobayashi, Ryoji; Sano, Hirozumi; Suzuki, Daisuke; Maruoka, Hayato; Yasuda, Kazue; Chida, Natsuko; Yamada, Masafumi; Kobayashi, Kunihiko

    2014-07-01

    Hereditary folate malabsorption (HFM) is a rare autosomal recessive disorder. Severe folate deficiency in HFM can result in immunodeficiency. We describe a female infant with HFM who acquired severe Pneumocystis pneumonia. The objective of the present study was to elucidate her immunological phenotype and to examine the time course of immune recovery following parenteral folate therapy. The patient demonstrated a combined immunodeficiency with an impaired T cell proliferation response, pan-hypogammaglobulinemia, and an imbalanced pro-inflammatory cytokine profile. She had normal white blood cell count, normal lymphocyte subsets, and normal complement levels. Two novel mutations were identified within the SLC46A1 gene to produce a compound heterozygote. We confirmed full recovery of her immunological and neurophysiological status with parenteral folate replacement. The time course of recovery of her immunological profile varied widely, however. HFM should be recognized as a unique form of immunodeficiency. PMID:24691418

  3. Purification of folate binding factor in normal umbilical cord serum.

    PubMed Central

    Kamen, B A; Caston, J D

    1975-01-01

    Human umbilical cord serum was found to contain both free folate and folate complexed to a high-molecular weight factor. The complexed folate was bound to a very high affinity binder and was present in concentrations equivalent to as much as 60 ng of 5-methyltetrahydrofolic acid per ml of serum. Acidification of the serum caused disassociation of the folate-binder complex. Released folates were separated from binder by Sephadex gel filtration, zonal centrifugation through sucrose gradients, or adsorption onto activated charcoal. The separated binding factor, either saturated or unsaturated with folate, had a molecular weight of about 40,000 on Sephadex G-200 chromatography. Binding of [3H]pteroylglutamic acid was rapid and, as in the original endogenous folate-binder complex, was essentially irreversible at neutral pH. The affinity and specificity of the binder were examined by competition experiments using [3H]pteroylglutamic acid and nonradioactive folate derivatives. Oxidized folates were bound in preference to reduced derivatives, but only three to four times more unlabeled 5-methyltetrahydrofolic acid than pteroylglutamic acid was required to produce an equal level of competition. The strong affinity for 5-methyltetrahydrofolic acid, the main serum folate, suggests that the binder could be part of the mechanism by which the fetus concentrates maternally supplied folate for its growth and development. PMID:676

  4. Cryptophane-Folate Biosensor for 129Xe NMR

    PubMed Central

    2015-01-01

    Folate-conjugated cryptophane was developed for targeting cryptophane to membrane-bound folate receptors that are overexpressed in many human cancers. The cryptophane biosensor was synthesized in 20 nonlinear steps, which included functionalization with folate recognition moiety, solubilizing peptide, and Cy3 fluorophore. Hyperpolarized 129Xe NMR studies confirmed xenon binding to the folate-conjugated cryptophane. Cellular internalization of biosensor was monitored by confocal laser scanning microscopy and quantified by flow cytometry. Competitive blocking studies confirmed cryptophane endocytosis through a folate receptor-mediated pathway. Flow cytometry revealed 10-fold higher cellular internalization in KB cancer cells overexpressing folate receptors compared to HT-1080 cells with normal folate receptor expression. The biosensor was determined to be nontoxic in HT-1080 and KB cells by MTT assay at low micromolar concentrations typically used for hyperpolarized 129Xe NMR experiments. PMID:25438187

  5. Reduced expression of folate transporters in kidney of a rat model of folate oversupplementation.

    PubMed

    Thakur, Shilpa; Thakur, Som Dev; Wani, Nissar Ahmad; Kaur, Jyotdeep

    2014-01-01

    Folic acid is the key one-carbon donor required for de novo nucleotide and methionine synthesis. Its deficiency is associated with megaloblastic anemia, cancer and various complications of pregnancy. However, its supplementation results in reduction of neural tube defects and prevention of several types of cancer. The intake of folic acid from fortified food together with the use of nutritional supplements creates a state of folate oversupplementation. Fortification of foods is occurring worldwide with little knowledge of the potential safety and physiologic consequences of intake of such high doses of folic acid. So, we planned to examine the effects of acute and chronic folate oversupplementation on the physiology of renal folate transport in rats. Male Wistar rats were procured and divided into two groups. Rats in group I were given semisynthetic diets containing 2 mg folic acid/kg diet (control) and those in group II were given folate-oversupplemented rat diet, i.e., 20 mg folic acid/kg diet (oversupplemented). Six animals from group I and group II received the treatment for 10 days (acute treatment) and remaining six for 60 days (chronic treatment). In acute folate-oversupplemented rats, 5-[(14)C]-methyltetrahydrofolate uptake was found to be significantly reduced, as compared to chronic folate-oversupplemented and control rats. This reduction in uptake was associated with a significant decrease in the mRNA and protein levels of the folate transporters. Results of the present investigation showed that acute oversupplementation led to a specific and significant down-regulation of renal folate uptake process mediated via transcriptional and translational regulatory mechanism(s). PMID:24306960

  6. Structures of human folate receptors reveal biological trafficking states and diversity in folate and antifolate recognition

    PubMed Central

    Wibowo, Ardian S.; Singh, Mirage; Reeder, Kristen M.; Carter, Joshua J.; Kovach, Alexander R.; Meng, Wuyi; Ratnam, Manohar; Zhang, Faming; Dann, Charles E.

    2013-01-01

    Antifolates, folate analogs that inhibit vitamin B9 (folic acid)-using cellular enzymes, have been used over several decades for the treatment of cancer and inflammatory diseases. Cellular uptake of the antifolates in clinical use occurs primarily via widely expressed facilitative membrane transporters. More recently, human folate receptors (FRs), high affinity receptors that transport folate via endocytosis, have been proposed as targets for the specific delivery of new classes of antifolates or folate conjugates to tumors or sites of inflammation. The development of specific, FR-targeted antifolates would be accelerated if additional biophysical data, particularly structural models of the receptors, were available. Here we describe six distinct crystallographic models that provide insight into biological trafficking of FRs and distinct binding modes of folate and antifolates to these receptors. From comparison of the structures, we delineate discrete structural conformations representative of key stages in the endocytic trafficking of FRs and propose models for pH-dependent conformational changes. Additionally, we describe the molecular details of human FR in complex with three clinically prevalent antifolates, pemetrexed (also Alimta), aminopterin, and methotrexate. On the whole, our data form the basis for rapid design and implementation of unique, FR-targeted, folate-based drugs for the treatment of cancer and inflammatory diseases. PMID:23934049

  7. Folate, vitamin B12 and human health

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During the past decade the role of folate and vitamin B12 in human nutrition have been under constant re-examination. Basic knowledge on the metabolism and interactions between these essential nutrients has expanded and multiple complexities have been unraveled. These micronutrients have shared func...

  8. Folate and neurological function: epidemiology perspective

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book chapter reviews and summarizes published literature on the relationship between folate status and Alzheimer’s disease, age-related cognitive impairment, and depression. Much of this research was motivated by the hypothesis that high circulating levels of the sulfur-containing amino acid ho...

  9. Iron and Folate-Deficiency Anaemias.

    ERIC Educational Resources Information Center

    Hercberg, Serge

    1990-01-01

    Nutritional anemia is believed to be the most widespread nutritional disorder in the world. While it generally affects developing countries, developed countries are also affected to an extent sufficient to justify the implementation of preventive measures at a national level. This report focuses on iron and folate deficiencies, which are by far…

  10. UK Policy on Folate Fortification of Foods

    ERIC Educational Resources Information Center

    Malcolm, Alan

    2004-01-01

    The UK Food Standards Agency has decided not to recommend fortification of foods with folate, the family of vitamins associated with the prevention of neural tube defects in babies. This is a change in attitude from previous recommendations made by a series of committees and reports in the UK. Notably, it differs from US policy on the matter. The…

  11. Germ Cells Need Folate to Proliferate.

    PubMed

    Walker, Amy K

    2016-07-11

    In this issue of Developmental Cell, Chaudhari and colleagues (2016) use a novel method to create an in vitro proliferative cell line from tumorous C. elegans germ cells, and in the process discover that bacterial folates act as signals for proliferation, independent of their roles as vitamins. PMID:27404353

  12. Cellular folate vitamer distribution during and after correction of vitamin B12 deficiency: a case for the methylfolate trap.

    PubMed

    Smulders, Y M; Smith, D E C; Kok, R M; Teerlink, T; Swinkels, D W; Stehouwer, C D A; Jakobs, C

    2006-03-01

    Haematological sequellae of vitamin B12 deficiency are attributed to disturbed DNA synthesis, but vitamin B12 itself plays no role in DNA biosynthesis. A proposed explanation for this is the methylfolate trap hypothesis. This hypothesis states that B12 deficiency impairs overall folate metabolism because 5-methyltetrahydrofolate (5MTHF) becomes metabolically trapped. This trap results from the fact that 5MTHF can neither be metabolised via the methionine synthase pathway, nor can it be reconverted to its precursor, methylenetetrahydrofolate. Other manifestations of the methylfolate trap include cellular folate loss because of shorter 5MTHF polyglutamate chains and global hypomethylation. The methylfolate trap has never been demonstrated in humans. We describe a patient with B12 deficiency who was homozygous for the common methylenetetrahydrofolate reductase (MTHFR) C677T mutation. We analysed red blood cell (RBC) folate vitamers and global DNA methylation by liquid chromatography (LC) in combination with tandem mass spectrometry, and 5MTHF polyglutamate length by LC-electrochemical detection. Compared to post-B12 supplementation values, homocysteine was higher (52.9 micromol/l vs. 16.8 micromol/l), RBC folate was lower (268.92 nmol/l vs. 501.2 nmol/l), the 5MTHF fraction of RBC folate was much higher (94.5% vs. 67.4%), polyglutamate chain length was shorter (more tetra- and pentaglutamates), and global DNA methylation was 22% lower. This is the first time that virtually all features of the methylfolate trap hypothesis have been demonstrated in a human with vitamin B12 deficiency. PMID:16445837

  13. The association between circulating total folate and folate vitamers with overall survival after postmenopausal breast cancer diagnosis.

    PubMed

    McEligot, Archana Jaiswal; Ziogas, Argyrios; Pfeiffer, Christine M; Fazili, Zia; Anton-Culver, Hoda

    2015-01-01

    We studied the relationship between plasma total folate and folate vitamer concentrations [5-methyltetrahydrofolic acid, pteroylglutamic acid (folic acid) and tetrahydrofolic acid] with overall survival after breast cancer diagnosis. A secondary aim was to assess the relationship between folic acid supplement use with circulating total folate and folate vitamer concentrations. Participants were postmenopausal women diagnosed with breast cancer (n = 498) with an average follow-up of 6.7 yr. Plasma total folate and folate vitamers were measured by isotope-dilution LC-MS/MS in samples collected at or postdiagnosis. Cox proportional multivariate hazards models (controlled for stage, age at diagnosis, body mass index, parity, hormone replacement therapy use, treatment, alcohol use, folic acid use, and energy intake), were used to assess overall survival after breast cancer diagnosis. We found that the relative risk of dying for women with plasma total folate concentrations in the highest quartile was 59% lower (hazard ratio: 0.41, 95% confidence interval: 0.19-0.90) compared with the lowest quartile. Data on supplement use showed that women taking folic acid supplements had significantly higher circulating total folate and folate vitamer concentrations (P < 0.0001), suggesting that increased folate consumption through diet and/or supplementation may improve prognosis after breast cancer diagnosis. PMID:25647689

  14. Folate Receptor Alpha Defect Causes Cerebral Folate Transport Deficiency: A Treatable Neurodegenerative Disorder Associated with Disturbed Myelin Metabolism

    PubMed Central

    Steinfeld, Robert; Grapp, Marcel; Kraetzner, Ralph; Dreha-Kulaczewski, Steffi; Helms, Gunther; Dechent, Peter; Wevers, Ron; Grosso, Salvatore; Gärtner, Jutta

    2009-01-01

    Sufficient folate supplementation is essential for a multitude of biological processes and diverse organ systems. At least five distinct inherited disorders of folate transport and metabolism are presently known, all of which cause systemic folate deficiency. We identified an inherited brain-specific folate transport defect that is caused by mutations in the folate receptor 1 (FOLR1) gene coding for folate receptor alpha (FRα). Three patients carrying FOLR1 mutations developed progressive movement disturbance, psychomotor decline, and epilepsy and showed severely reduced folate concentrations in the cerebrospinal fluid (CSF). Brain magnetic resonance imaging (MRI) demonstrated profound hypomyelination, and MR-based in vivo metabolite analysis indicated a combined depletion of white-matter choline and inositol. Retroviral transfection of patient cells with either FRα or FRβ could rescue folate binding. Furthermore, CSF folate concentrations, as well as glial choline and inositol depletion, were restored by folinic acid therapy and preceded clinical improvements. Our studies not only characterize a previously unknown and treatable disorder of early childhood, but also provide new insights into the folate metabolic pathways involved in postnatal myelination and brain development. PMID:19732866

  15. Folate-receptor-targeted delivery of doxorubicin nano-aggregates stabilized by doxorubicin-PEG-folate conjugate.

    PubMed

    Yoo, Hyuk Sang; Park, Tae Gwan

    2004-11-24

    For folate-receptor-targeted anti-cancer therapy, doxorubicin aggregates in a nano-scale size were produced employing doxorubicin-polyethylene glycol-folate (DOX-PEG-FOL) conjugate. Doxorubicin and folate were respectively conjugated to alpha- and omega-terminal end group of a PEG chain. The conjugates assisted to form doxorubicin nano-aggregates with an average size of 200 nm in diameter when combined with an excess amount of deprotonated doxorubicin in an aqueous phase. Hydrophobically deprotonated doxorubicin molecules were aggregated within the core, while the DOX-PEG-FOL conjugates stabilized the aggregates with exposing folate moieties on the surface. The doxorubicin nano-aggregates showed a greater extent of intracellular uptake against folate-receptor-positive cancer cells than folate-receptor-negative cells, indicating that the cellular uptake occurred via a folate-receptor-mediated endocytosis mechanism. They also exhibited more potent cytotoxic effect on KB cells than free doxorubicin. In a human tumor xenograft nude mouse model, folate-targeted doxorubicin nano-aggregates significantly reduced the tumor volume compared to non-targeted doxorubicin aggregates or free doxorubicin. These results suggested that folate-targeted doxorubicin nano-aggregates could be a potentially useful delivery system for folate-receptor-positive cancer cells. PMID:15544872

  16. Novel insights on interactions between folate and lipid metabolism.

    PubMed

    da Silva, Robin P; Kelly, Karen B; Al Rajabi, Ala; Jacobs, René L

    2014-01-01

    Folate is an essential B vitamin required for the maintenance of AdoMet-dependent methylation. The liver is responsible for many methylation reactions that are used for post-translational modification of proteins, methylation of DNA, and the synthesis of hormones, creatine, carnitine, and phosphatidylcholine. Conditions where methylation capacity is compromised, including folate deficiency, are associated with impaired phosphatidylcholine synthesis resulting in non-alcoholic fatty liver disease and steatohepatitis. In addition, folate intake and folate status have been associated with changes in the expression of genes involved in lipid metabolism, obesity, and metabolic syndrome. In this review, we provide insight on the relationship between folate and lipid metabolism, and an outlook for the future of lipid-related folate research. PMID:24353111

  17. Tetrahydrobiopterin biosynthesis, utilization and pharmacological effects.

    PubMed

    Werner-Felmayer, G; Golderer, G; Werner, E R

    2002-04-01

    Tetrahydrobiopterin (H4-biopterin) is an essential cofactor of a set of enzymes that are of central metabolic importance, i.e. the hydroxylases of the three aromatic amino acids phenylalanine, tyrosine, and tryptophan, of ether lipid oxidase, and of the three nitric oxide synthase (NOS) isoenzymes. As a consequence, H4-biopterin plays a key role in a vast number of biological processes and pathological states associated with neurotransmitter formation, vasorelaxation, and immune response. In mammals, its biosynthesis is controlled by hormones, cytokines and certain immune stimuli. This review aims to summarize recent developments concerning regulation of H4-biopterin biosynthetic and regulatory enzymes and pharmacological effects of H4-biopterin in various conditions, e.g. endothelial dysfunction or apoptosis of neuronal cells. Also, approaches towards gene therapy of diseases like the different forms of phenylketonuria or of Parkinson's disease are reviewed. Additional emphasis is given to H4-biopterin biosynthesis and function in non-mammalian species such as fruit fly, zebra fish, fungi, slime molds, the bacterium Nocardia as well as to the parasitic protozoan genus of Leishmania that is not capable of pteridine biosynthesis but has evolved a sophisticated salvage network for scavenging various pteridine compounds, notably folate and biopterin. PMID:12003348

  18. Perinatal folate supply: relevance in health outcome parameters.

    PubMed

    Fekete, Katalin; Berti, Cristiana; Cetin, Irene; Hermoso, Maria; Koletzko, Berthold V; Decsi, Tamás

    2010-10-01

    The importance of physiological supply of folate is well recognized in human health; the crucial roles of folate in one-carbon metabolism for physiological DNA synthesis and cell division, as well as in the conversion of homocysteine (Hcy) to methionine, and subsequently, to S-adenosylmethionine, have been convincingly demonstrated. Improved folate status may reduce the risk of macrocytic anaemia, cardiovascular diseases, neuropsychiatric disorders and adverse pregnancy outcomes. Inadequate folate status results in a decrease in the methylation cycle and in increased blood levels of the neurotoxic Hcy. The aim of this review is to provide insight into the influence of folate status on pregnancy health outcomes, and to consider increasing evidence of a link between the extent of genome/epigenome damage and elevated risk for adverse obstetrical endpoints. Pregnant women are at risk for folate insufficiency because of the increased need for folate for rapid fetal growth, placental development and enlargement of the uterus. Inadequate folate status may cause fetal malformations, impaired fetal growth, pre-term delivery and maternal anaemia. Even some diseases of the placenta may arise from folate deficiencies. Fetal growth seems to be vulnerable to maternal folate status during the periconception period, because it has the potential to affect both the closure of the neural tube and several epigenetic mechanisms within the placenta and the fetus. Mainly on the basis of the well recognized link between maternal folate status and fetal neural tube defects, women are advised to receive folic acid supplement during the periconceptional period. Because an adequate folate supply seems to play an important role in the implantation and development of the placenta and in improving endothelial function, folic acid supplementation in the late first trimester or early second trimester might also be beneficial. PMID:22296249

  19. Compilation of a standardised international folate database for EPIC.

    PubMed

    Nicolas, Geneviève; Witthöft, Cornelia M; Vignat, Jérôme; Knaze, Viktoria; Huybrechts, Inge; Roe, Mark; Finglas, Paul; Slimani, Nadia

    2016-02-15

    This paper describes the methodology applied for compiling an "international end-user" folate database. This work benefits from the unique dataset offered by the European Prospective Investigation into Cancer and Nutrition (EPIC) (N=520,000 subjects in 23 centres). Compilation was done in four steps: (1) identify folate-free foods then find folate values for (2) folate-rich foods common across EPIC countries, (3) the remaining "common" foods, and (4) "country-specific" foods. Compiled folate values were concurrently standardised in terms of unit, mode of expression and chemical analysis, using information in national food composition tables (FCT). 43-70% total folate values were documented as measured by microbiological assay. Foods reported in EPIC were either matched directly to FCT foods, treated as recipes or weighted averages. This work has produced the first standardised folate dataset in Europe, which was used to calculate folate intakes in EPIC; a prerequisite to study the relation between folate intake and diseases. PMID:26433299

  20. Folate Deficiency Could Restrain Decidual Angiogenesis in Pregnant Mice

    PubMed Central

    Li, Yanli; Gao, Rufei; Liu, Xueqing; Chen, Xuemei; Liao, Xinggui; Geng, Yanqing; Ding, Yubin; Wang, Yingxiong; He, Junlin

    2015-01-01

    The mechanism of birth defects induced by folate deficiency was focused on mainly in fetal development. Little is known about the effect of folate deficiency on the maternal uterus, especially on decidual angiogenesis after implantation which establishes vessel networks to support embryo development. The aim of this study was to investigate the effects of folate deficiency on decidual angiogenesis. Serum folate levels were measured by electrochemiluminescence. The status of decidual angiogenesis was examined by cluster designation 34 (CD34) immunohistochemistry and the expression of angiogenic factors, including vascular endothelial growth factor A (VEGFA), placental growth factor (PLGF), and VEGF receptor 2 (VEGFR2) were also tested. Serum levels of homocysteine (Hcy), follicle stimulating hormone (FSH), luteinizing hormone (LH), prolactin (PRL), progesterone (P4), and estradiol (E2) were detected by Enzyme-linked immunosorbent assay. The folate-deficient mice had a lower folate level and a higher Hcy level. Folate deficiency restrained decidual angiogenesis with significant abnormalities in vascular density and the enlargement and elongation of the vascular sinus. It also showed a reduction in the expressions of VEGFA, VEGFR2, and PLGF. In addition, the serum levels of P4, E2, LH, and PRL were reduced in folate-deficient mice, and the expression of progesterone receptor (PR) and estrogen receptor α (ERα) were abnormal. These results indicated that folate deficiency could impaire decidual angiogenesis and it may be related to the vasculotoxic properties of Hcy and the imbalance of the reproductive hormone. PMID:26247969

  1. Homogeneous assay for whole blood folate using photon upconversion.

    PubMed

    Arppe, Riikka; Mattsson, Leena; Korpi, Krista; Blom, Sami; Wang, Qi; Riuttamäki, Terhi; Soukka, Tero

    2015-02-01

    Red blood cell folate is measured for folate deficiency diagnosis, because it reflects the long-term folate level in tissues, whereas serum folate only represents the dietary intake. Direct homogeneous assay from whole blood would be ideal but conventional fluorescence techniques in blood suffer from high background and strong absorption of light at ultraviolet and visible wavelengths. In this study, a new photon upconversion-based homogeneous assay for whole blood folate is introduced based on resonance energy transfer from upconverting nanophosphor donor coated with folate binding protein to a near-infrared fluorescent acceptor dye conjugated to folate analogue. The sensitized acceptor emission is measured at 740 nm upon 980 nm excitation. Thus, optically transparent wavelengths are utilized for both donor excitation and sensitized acceptor emission to minimize the sample absorption, and anti-Stokes detection completely eliminates the Stokes-shifted autofluorescence. The IC50 value of the assay was 6.0 nM and the limit of detection (LOD) was 1 nM. The measurable concentration range was 2 orders of magnitude between 1.0-100 nM, corresponding to 40-4000 nM folate in the whole blood sample. Recoveries of added folic acid were 112%-114%. A good correlation was found when compared to a competitive heterogeneous assay based on the DELFIA-technology. The introduced assay provides a simple and fast method for whole blood folate measurement. PMID:25548870

  2. Lentils (Lens culinaris L.), a rich source of folates.

    PubMed

    Sen Gupta, Debjyoti; Thavarajah, Dil; Knutson, Phil; Thavarajah, Pushparajah; McGee, Rebecca J; Coyne, Clarice J; Kumar, Shiv

    2013-08-14

    The potential for genetic biofortification of U.S.-grown lentils ( Lens culinaris L.) with bioavailable folate has not been widely studied. The objectives of this study were (1) to determine the folate concentration of 10 commercial lentil cultivars grown in Minot and McLean counties, North Dakota, USA, in 2010 and 2011, (2) to determine the genotype (G) × environmental (E) interactions for folate concentration in lentil cultivars, and (3) to compare the folate concentration of other pulses [field peas ( Pisum sativum L.) and chickpea ( Cicer arietinum L.)] grown in the United States. Folate concentration in lentil cultivars ranged from 216 to 290 μg/100 g with a mean of 255 μg/100 g. In addition, lentil showed higher folate concentration compared to chickpea (42-125 μg/100 g), yellow field pea (41-55 μg/100 g), and green field pea (50-202 μg/100 g). A 100 g serving of lentils could provide a significant amount of the recommended daily allowance of dietary folates (54-73%) for adults. A significant year × location interaction on lentil folate concentration was observed; this indicates that possible location sourcing may be required for future lentil folate research. PMID:23865478

  3. Folate Augmentation of Treatment--Evaluation for Depression (FolATED): randomised trial and economic evaluation.

    PubMed Central

    Bedson, Emma; Bell, Diana; Carr, Daniel; Carter, Ben; Hughes, Dyfrig; Jorgensen, Andrea; Lewis, Helen; Lloyd, Keith; McCaddon, Andrew; Moat, Stuart; Pink, Joshua; Pirmohamed, Munir; Roberts, Seren; Russell, Ian; Sylvestre, Yvonne; Tranter, Richard; Whitaker, Rhiannon; Wilkinson, Clare; Williams, Nefyn

    2014-01-01

    BACKGROUND Folate deficiency is associated with depression. Despite the biological plausibility of a causal link, the evidence that adding folate enhances antidepressant treatment is weak. OBJECTIVES (1) Estimate the clinical effectiveness and cost-effectiveness of folic acid as adjunct to antidepressant medication (ADM). (2) Explore whether baseline folate and homocysteine predict response to treatment. (3) Investigate whether response to treatment depends on genetic polymorphisms related to folate metabolism. DESIGN FolATED (Folate Augmentation of Treatment - Evaluation for Depression) was a double-blind and placebo-controlled, but otherwise pragmatic, randomised trial including cost-utility analysis. To yield 80% power of detecting standardised difference on the Beck Depression Inventory version 2 (BDI-II) of 0.3 between groups (a 'small' effect), FolATED trialists sought to analyse 358 participants. To allow for an estimated loss of 21% of participants over three time points, we planned to randomise 453. SETTINGS Clinical - Three centres in Wales - North East Wales, North West Wales and Swansea. Trial management - North Wales Organisation for Randomised Trials in Health in Bangor University. Biochemical analysis - University Hospital of Wales, Cardiff. Genetic analysis - University of Liverpool. PARTICIPANTS Four hundred and seventy-five adult patients presenting to primary or secondary care with confirmed moderate to severe depression for which they were taking or about to start ADM, and able to consent and complete assessments, but not (1) folate deficient, vitamin B12 deficient, or taking folic acid or anticonvulsants; (2) misusing drugs or alcohol, or suffering from psychosis, bipolar disorder, malignancy or other unstable or terminal illness; (3) (planning to become) pregnant; or (4) participating in other clinical research. INTERVENTIONS Once a day for 12 weeks experimental participants added 5 mg of folic acid to their ADM, and control participants

  4. Clinical studies of intestinal folate conjugases.

    PubMed

    Halsted, C H; Beer, W H; Chandler, C J; Ross, K; Wolfe, B M; Bailey, L; Cerda, J J

    1986-03-01

    Clinical differences between the two human intestinal mucosal folate conjugases were assessed by measurement of their activities in normal individuals and in patients with chronic diarrhea of differing causes. Intracellular folate conjugase (ICFC) was 15-fold more active than brush border folate conjugase (BBFC) in jejunal mucosa from seven obese patients undergoing elective gastric bypass surgery. The activity of ICFC was similar among normal volunteers and patients with diarrhea of unknown origin (DUO), gluten-sensitive enteropathy (GSE), inflammatory bowel disease (IBD), and the short bowel syndrome (IBD-SBS). By contrast, BBFC, sucrase, and lactase were decreased significantly in GSE, and BBFC was increased in IBD-SBS. The activity of BBFC correlated with lactase and with sucrase in the normal subjects and in patients with DUO, whereas no correlations were found with the activity of ICFC in any group. Our clinical studies confirm that ICFC and BBFC are different enzymes. ICFC is not affected by intestinal disease, whereas the activity of jejunal BBFC, like that of other brush border enzymes, is decreased by mucosal injury and is also capable of adapting to distal small intestinal disease or surgical resection. PMID:3081671

  5. Human folate metabolism using 14C-accelerator mass spectrometry

    SciTech Connect

    Clifford, A. J.; Arjomand, A.; Duecker, S. R.; Johnson, H.; Schneider, P. D.; Zulim, R. A.; Bucholz, B. A.; Vogel, J. S.

    1999-03-25

    Folate is a water soluble vitamin required for optimal health, growth and development. It occurs naturally in various states of oxidation of the pteridine ring and with varying lengths to its glutamate chain. Folates function as one-carbon donors through methyl transferase catalyzed reactions. Low-folate diets, especially by those with suboptimal methyltransferase activity, are associated with increased risk of neural tube birth defects in children, hyperhomocysteinemic heart disease, and cancer in adults. Rapidly dividing (neoplastic) cells have a high folate need for DNA synthesis. Chemical analogs of folate (antifolates) that interfere with folate metabolism are used as therapeutic agents in cancer treatment. Although much is known about folate chemistry, metabolism of this vitamin in vivo in humans is not well understood. Since folate levels in blood and tissues are very low and methods to measure them are inadequate, the few previous studies that have examined folate metabolism used large doses of radiolabeled folic acid in patients with Hodgkin's disease and cancer (Butterworth et al. 1969, Krumdieck et al. 1978). A subsequent protocol using deuterated folic acid was also insufficiently sensitive to trace a physiologic folate dose (Stites et al. 1997). Accelerator mass spectrometry (AMS) is an emerging bioanalytical tool that overcomes the limitations of traditional mass spectrometry and of decay counting of long lived radioisotopes (Vogel et al. 1995). AMS can detect attomolar concentrations of 14 C in milligram-sized samples enabling in vivo radiotracer studies in healthy humans. We used AMS to study the metabolism of a physiologic 80 nmol oral dose of 14 C-folic acid (1/6 US RDA) by measuring the 14 C-folate levels in serial plasma, urine and feces samples taken over a 150-day period after dosing a healthy adult volunteer.

  6. Bioavailability of food folates and evaluation of food matrix effects with a rat bioassay.

    PubMed

    Clifford, A J; Heid, M K; Peerson, J M; Bills, N D

    1991-04-01

    Folate bioavailability of beef liver, lima beans, peas, spinach, mushrooms, collards, orange juice and wheat germ was estimated with a protocol of folate depletion-repletion using growth and liver, serum and erythrocyte folate of weanling male rats. Diets with 125, 250 and 375 micrograms folic acid/kg were standards. Individual foods were incorporated into a folate-free amino acid-based diet alone (250 micrograms folate/kg diet from food) or mixed with folic acid (125 micrograms folate from food + 125 micrograms folic acid) to evaluate folate bioavailability and effects of food matrix. Beef liver and orange juice folates were as available as folic acid, whereas those of wheat germ were less bioavailable. Folates of peas and spinach were also less available than folic acid using liver and serum folate concentrations and total liver folate as response criteria, but they were not lower when based on growth and erythrocyte folate concentrations. Lima bean, mushroom and collard folates were as available as folic acid using four of five response criteria. Folate bioavailability of all foods generally exceeded 70%. All response criteria gave approximately equivalent results, indicating that growth and tissue folate levels are appropriate criteria. No food matrix effects were observed for any food except lima beans. Foods rich in polyglutamyl folates were less bioavailable than those of foods rich in short-chain folates. PMID:2007897

  7. Lentils (Lens culinaris L.), a rich source of folates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pulses contain folates in the form of reduced tetrahydrofolate which is the biologically active form absorbed in the jejunum. Genetic biofortification potential of US-grown lentils (Lens culinaris L.) with the bioavailable form of folate has not been widely studied. The objectives of this study wer...

  8. Clinical utility of folate-containing oral contraceptives

    PubMed Central

    Lassi, Zohra S; Bhutta, Zulfiqar A

    2012-01-01

    Folate is a generic term for a water-soluble B-complex vitamin which plays an important role in protein synthesis and metabolism and other processes related to cell multiplication and tissue growth. Pregnant and lactating women are at increased risk of folic acid deficiency because generally their dietary folate is insufficient to meet their physiological requirements and the metabolic demands of the growing fetus. The evidence pertaining to the reduction of the risk of neural tube defects (NTDs) due to folate is so compelling that supplementation with 400 μg of folic acid to all women trying to conceive until 12 weeks of pregnancy has been recommended by every relevant authority. A recent Cochrane review has also found protective effects of folate supplementation in occurrence and reoccurrence of NTDs. Despite food fortification and targeted public health campaigns promoting folic acid supplementation, 4,300,000 new cases occur each year worldwide resulting in an estimated 41,000 deaths and 2.3 million disability-adjusted life years (DALYS). This article will review the burden and risk factors of NTDS, and the role of folate in preventing NTDs. It will also describe different modes of supplementing folate and the newer evidence of the effectiveness of adding folate in oral contraceptives for raising serum and red blood cell folate levels. PMID:22570577

  9. Thermal degradation of folates under varying oxygen conditions.

    PubMed

    Delchier, Nicolas; Ringling, Christiane; Cuvelier, Marie-Elisabeth; Courtois, Francis; Rychlik, Michael; Renard, Catherine M G C

    2014-12-15

    Folate losses in thermally treated foods are mainly due to oxidation. Other mechanisms and folate vitamers behaviour are poorly described. Our study evaluated oxygen impact on total folate degradation and derivatives' evolution during thermal treatments. Spinach and green bean purees were heated, in an instrumented reactor, in anaerobic conditions, under an oxygen partial pressure of 40 kPa. Folates were stable in the absence of oxygen, whilst they were degraded under 40 kPa of oxygen. Total folate showed a sharp decrease in the first hour driven by the degradation of 5-CH3-H4folate, followed by a plateau due to the formyl derivatives and minor compounds stability. The different evolution of the main derivatives was confirmed by the degradation of 5-CH3-H4folate and folic acid in solution, under the same conditions of oxygen concentrations. The stability of folic acid and the high susceptibility of 5-CH3-H4folate to degradation in the presence of oxygen were confirmed. PMID:25038652

  10. FOLATE DEFICIENCY ENHANCES ARSENIC-INDUCED GENOTOXICITY IN MICE

    EPA Science Inventory

    Folate deficiency increases background levels of DNA damage and can enhance the mutagenicity of chemical agents. Duplicate experiments were performed to investigate the effect of dietary folate deficiency on arsenic induction of micronuclei (MN) in peripheral blood cells. Male C5...

  11. Folates in Asian noodles: III. Fortification, impact of processing, and enhancement of folate intakes.

    PubMed

    Bui, Lan T T; Small, Darryl M

    2007-06-01

    Asian noodles, a widely consumed staple food, were evaluated as potential vehicles for fortification with folic acid. Samples of white salted, yellow alkaline, and instant noodles, prepared under controlled laboratory conditions, were fortified and folates were measured at each stage of processing using a microbiological assay. Although the 3 styles showed differing patterns of retention, overall losses were slightly more than 40% and were similar for all styles. White salted and yellow alkaline noodles showed no significant decrease in total folate content during production. In contrast, significant losses occurred for instant noodles during steaming and deep-frying of the noodle strands. In all cases, substantial losses occurred during subsequent cooking of the dried noodles. Fortification at a rate of 50% of the reference value per serving resulted in retention of folate at levels corresponding to 30% following cooking, whereas unfortified noodles contributed less than 4% per serving. It is concluded that fortifying Asian noodles provides an effective means for enhancing folate intake. PMID:17995717

  12. The Effect of Folate Deficiency on Neuronal RNA Content

    PubMed Central

    Haltia, Matti

    1970-01-01

    One-day-old chicks were fed a defined ration deficient in folic acid. They were killed at 4 weeks of age when they showed characteristic clinical signs of folate deficiency and extremely low whole blood folate levels. Cerebellar Purkinje cells were dissected out and their total ribonucleic acid (RNA) content was determined by Edström's microchemical technique. The total RNA content of Purkinje cells of the folate deficient chicks was significantly lower than that of control chicks fed a complete ration. The low RNA values of the folate deficient chicks were apparently not only secondary to anaemia or growth retardation, and suggest that severe folate deficiency may directly interfere with neuronal RNA synthesis. The significance of the findings is discussed with reference to human pathology. PMID:5420991

  13. Folate: metabolism, genes, polymorphisms and the associated diseases.

    PubMed

    Nazki, Fakhira Hassan; Sameer, Aga Syed; Ganaie, Bashir Ahmad

    2014-01-01

    Folate being an important vitamin of B Complex group in our diet plays an important role not only in the synthesis of DNA but also in the maintenance of methylation reactions in the cells. Folate metabolism is influenced by several processes especially its dietary intake and the polymorphisms of the associated genes involved. Aberrant folate metabolism, therefore, affects both methylation as well as the DNA synthesis processes, both of which have been implicated in the development of various diseases. This paper reviews the current knowledge of the processes involved in folate metabolism and consequences of deviant folate metabolism, particular emphasis is given to the polymorphic genes which have been implicated in the development of various diseases in humans, like vascular diseases, Down's syndrome, neural tube defects, psychiatric disorders and cancers. PMID:24091066

  14. The proton-coupled folate transporter: physiological and pharmacological roles.

    PubMed

    Zhao, Rongbao; Goldman, I David

    2013-12-01

    Recent studies have identified the proton-coupled folate transporter (PCFT) as the mechanism by which folates are absorbed across the apical brush-border membrane of the small intestine and across the basolateral membrane of the choroid plexus into the cerebrospinal fluid. Both processes are defective when there are loss-of-function mutations in this gene as occurs in the autosomal recessive disorder hereditary folate malabsorption. Because this transporter functions optimally at low pH, antifolates are being developed that are highly specific for PCFT in order to achieve selective delivery to malignant cells within the acidic environment of solid tumors. PCFT has a spectrum of affinities for folates and antifolates that narrows and increases at low pH. Residues have been identified that play a role in folate and proton binding, proton coupling, and oscillation of the carrier between its conformational states. PMID:24383099

  15. Assessing the Association between Natural Food Folate Intake and Blood Folate Concentrations: A Systematic Review and Bayesian Meta-Analysis of Trials and Observational Studies

    PubMed Central

    Marchetta, Claire M.; Devine, Owen J.; Crider, Krista S.; Tsang, Becky L.; Cordero, Amy M.; Qi, Yan Ping; Guo, Jing; Berry, Robert J.; Rosenthal, Jorge; Mulinare, Joseph; Mersereau, Patricia; Hamner, Heather C.

    2015-01-01

    Folate is found naturally in foods or as synthetic folic acid in dietary supplements and fortified foods. Adequate periconceptional folic acid intake can prevent neural tube defects. Folate intake impacts blood folate concentration; however, the dose-response between natural food folate and blood folate concentrations has not been well described. We estimated this association among healthy females. A systematic literature review identified studies (1 1992–3 2014) with both natural food folate intake alone and blood folate concentration among females aged 12–49 years. Bayesian methods were used to estimate regression model parameters describing the association between natural food folate intake and subsequent blood folate concentration. Seven controlled trials and 29 observational studies met the inclusion criteria. For the six studies using microbiologic assay (MA) included in the meta-analysis, we estimate that a 6% (95% Credible Interval (CrI): 4%, 9%) increase in red blood cell (RBC) folate concentration and a 7% (95% CrI: 1%, 12%) increase in serum/plasma folate concentration can occur for every 10% increase in natural food folate intake. Using modeled results, we estimate that a natural food folate intake of ≥450 μg dietary folate equivalents (DFE)/day could achieve the lower bound of an RBC folate concentration (~1050 nmol/L) associated with the lowest risk of a neural tube defect. Natural food folate intake affects blood folate concentration and adequate intakes could help women achieve a RBC folate concentration associated with a risk of 6 neural tube defects/10,000 live births. PMID:25867949

  16. [Folates in the treatment of depression].

    PubMed

    Erbe, S; Pellert, U N

    2014-02-01

    Depression is an important and often recurrent illness. An initial antidepressant trial is effective at achieving remission for about 30 % of patients when prescribed as monotherapy, with the majority of patients returning as partial or non-responders. Suboptimal serum and red blood cell folate levels have been associated with a poorer response to antidepressant therapy, a greater severity of symptoms, later onset of clinical improvement, and overall treatment resistance. This article reviews the evidence for L-methylfolate and folic acid as antidepressive agents in depression and discusses their clinical use. PMID:24519190

  17. Membrane Transporters and Folate Homeostasis; Intestinal Absorption, Transport into Systemic Compartments and Tissues

    PubMed Central

    Zhao, Rongbao; Matherly, Larry H.; Goldman, I. David

    2013-01-01

    Folates, the generic term for the family of B vitamins, are derived entirely from dietary sources, and are key one-carbon donors required for de novo nucleotide and methionine synthesis. These highly hydrophilic molecules utilize genetically distinct and functionally diverse transport systems to enter cells: the reduced folate carrier (RFC), the proton-coupled folate transporter (PCFT), and the folate receptors. Each plays a unique role in mediating folate transport across epithelia and into systemic tissues. With the recent discovery of the mechanism of intestinal folate absorption, and the clarification of the genetic basis for the autosomal recessive disorder, hereditary folate malabsorption, involving loss-of-function mutations in PCFT protein, it is now possible to piece together how these folate transporters contribute, both individually and collectively, to folate homeostasis in humans. This review focuses on the physiological roles of these major folate transporters with a brief consideration of their impact on the pharmacological activities of antifolates. PMID:19173758

  18. Folate targeted polymeric 'green' nanotherapy for cancer

    NASA Astrophysics Data System (ADS)

    Narayanan, Sreeja; Binulal, N. S.; Mony, Ullas; Manzoor, Koyakutty; Nair, Shantikumar; Menon, Deepthy

    2010-07-01

    The concept of 'green' chemotherapy by employing targeted nanoparticle mediated delivery to enhance the efficacy of phytomedicines is reported. Poly (lactide-co-glycolide) (PLGA) nanoparticles encapsulating a well known nutraceutical namely, grape seed extract (GSE)—'NanoGSE'—was prepared by a nanoprecipitation technique. The drug-loaded nanoparticles of size ~ 100 nm exhibited high colloidal stability at physiological pH. Molecular receptor targeting of this nanophytomedicine against folate receptor over-expressing cancers was demonstrated in vitro by conjugation with a potential cancer targeting ligand, folic acid (FA). Fluorescence microscopy and flow cytometry data showed highly specific cellular uptake of FA conjugated NanoGSE on folate receptor positive cancer cells. Studies were also conducted to investigate the efficiency of targeted (FA conjugated) versus non-targeted (non-FA conjugated) nanoformulations in causing cancer cell death. The IC50 values were lowered by a factor of ~ 3 for FA-NanoGSE compared to the free drug, indicating substantially enhanced bioavailability to the tumor cells, sparing the normal ones. Receptor targeting of FA-NanoGSE resulted in a significant increase in apoptotic index, which was also quantified by flow cytometry and fluorescence microscopy. This in vitro study provides a basis for the use of nanoparticle mediated delivery of anticancer nutraceuticals to enhance bioavailability and effectively target cancer by a 'green' approach.

  19. Effects of alcohol on folate metabolism: implications for carcinogenesis.

    PubMed

    Mason, Joel B; Choi, Sang-Woon

    2005-04-01

    Epidemiologic observations implicate excess ethanol ingestion as well as low dietary folate intake as risk factors for several cancers. Moreover, the epidemiologic observations support the concept of a synergistic effect between these two factors. Such a relation is biologically plausible because ethanol impedes the bioavailability of dietary folate and is known to inhibit select folate-dependent biochemical reactions. For example, alcohol ingestion in animals is known to inhibit folate-mediated methionine synthesis and thereby may interrupt critical methylation processes that are mediated by the activated form of methionine that provides substrate for biologic methylation, S-adenosylmethionine. Consistent with this observed inhibition of methionine synthesis is the observation that chronic alcohol ingestion in laboratory animals is known to produce hypomethylation of DNA in the colonic mucosa, a constant feature of early colorectal neoplasia. Inhibition of methionine synthase also creates a "methylfolate trap," analogous to what occurs in vitamin B12 deficiency. In addition, some evidence indicates that alcohol may redirect the utilization of folate toward serine synthesis and thereby may interfere with a critical function of methylenetetrahydrofolate, thymidine synthesis. Although a mechanistic link between alcohol and impaired folate metabolism in the genesis of cancer is still not definitively established, such a link should be pursued in future studies because of the intimate metabolic relation between alcohol and folate metabolism. PMID:16054985

  20. Mechanisms of folate losses during processing: diffusion vs. heat degradation.

    PubMed

    Delchier, Nicolas; Ringling, Christiane; Maingonnat, Jean-François; Rychlik, Michael; Renard, Catherine M G C

    2014-08-15

    Though folates are sensitive to heat treatments, leaching appears to be a major mechanism involved in folate losses in vegetables during processing. The aim of our study was to study folate diffusivity and degradation from spinach and green beans, in order to determine the proportion of each mechanism involved in folate losses. Folate diffusivity constant, calculated according to Fick's second law (Crank, 1975), was 7.4×10(-12) m(2)/s for spinach and 5.8×10(-10) m(2)/s for green beans, which is the same order of magnitude as for sugars and acids for each vegetable considered. Folate thermal degradation kinetics was not monotonous in spinach and green beans especially at 45 °C and did not follow a first order reaction. The proportion of vitamers changed markedly after thermal treatment, with a better retention of formyl derivatives. For spinach, folate losses were mainly due to diffusion while for green beans thermal degradation seemed to be preponderant. PMID:24679802

  1. Potential role of folate in pre-eclampsia.

    PubMed

    Singh, Mansi Dass; Thomas, Philip; Owens, Julie; Hague, William; Fenech, Michael

    2015-10-01

    Dietary deficiencies of folate and other B vitamin cofactors involved in one-carbon metabolism, together with genetic polymorphisms in key folate-methionine metabolic pathway enzymes, are associated with increases in circulating plasma homocysteine, reduction in DNA methylation patterns, and genome instability events. All of these biomarkers have also been associated with pre-eclampsia. The aim of this review was to explore the literature and identify potential knowledge gaps in relation to the role of folate at the genomic level in either the etiology or the prevention of pre-eclampsia. A systematic search strategy was designed to identify citations in electronic databases for the following terms: folic acid supplementation AND pre-eclampsia, folic acid supplementation AND genome stability, folate AND genome stability AND pre-eclampsia, folic acid supplementation AND DNA methylation, and folate AND DNA methylation AND pre-eclampsia. Forty-three articles were selected according to predefined selection criteria. The studies included in the present review were not homogeneous, which made pooled analysis of the data very difficult. The present review highlights associations between folate deficiency and certain biomarkers observed in various tissues of women at risk of pre-eclampsia. Further investigation is required to understand the role of folate in either the etiology or the prevention of pre-eclampsia. PMID:26359215

  2. [Folate and breast cancer risk: a systematic review].

    PubMed

    Castillo-L, Cecilia; Tur, Josep A; Uauy, Ricardo

    2012-02-01

    An increased folate intake may be beneficial in deficient populations. However, in women with adequate levels it may not deliver additional benefits while it may increase the risk for some forms of cancer. A systematic literature review of benefits or risks of folate in the development of breast cancer was performed using MEDLINE, systematic review of selected articles and references of the selected articles looking specifically at serum folate levels, dietary folate intake or total folate intake and the risk of developing breast cancer. Fourteen case-control studies, fourteen cohort studies, seven case-control nested studies, two randomized trials and two meta-analyses were selected for analysis based on pre-established criteria. The reviewed evidence does not support the hypothesis that higher intakes of dietary folate reduce the risk for breast cancer. Some studies showed a higher risk of breast cancer in populations exposed to high folate intake post fortification, especially when folic acid is used. The results support the need to be cautious and to limit the exposure of women to high intakes of folic acid, especially in countries with mandatory food fortification. PMID:22739957

  3. Drugs and vitamin B12 and folate metabolism.

    PubMed

    Lindenbaum, J

    1983-01-01

    Deficiency of either folic acid or vitamin B12 may interfere with DNA synthesis and result in megaloblastic anemia or other conditions. These 2 vitamins have dissimilar molecular structures and are present in different foods; they are also absorbed and metabolized differently. In 201 consecutive cases of megaloblastic anemia, for 90% the cause was alcoholism and poor diet; 0.5% (1 case) was related to oral contraceptives (OCs). Megaloblastic anemia due to folate deficiency has occasionally been reported in patients with inflammatory bowel disease and has been attributed to poor diet, impaired absorption, and increased tissue utilization of folate. Sulfasalazine, a compound containing a sulfa drug and a salicylate that is broken down to its active components by the gut flora, is widely used in the treatment of inflammatory bowel disease and has been shown to impair the absorption of folic acid, polyglutamyl folate, and methyl-tetrahydrofolic acid in patients with these disorders. There is also evidence suggesting an interaction between anticonvulsant drugs and folate balance. A number of cases of megaloblastic anemia due to folate deficiency have been reported in women taking OCs. While in some cases no apparent cause for the megaloblastic anemia other than contraceptive therapy was demonstrated, in many patients other underlying disorders that were likely to disturb folate balance such as celiac disease, decreased dietary vitamin intake, and the administration of other drugs known to affect folate status have also been present. There is no convincing evidence that sex steroids affect folate absorption; about 20% of women taking OCs were found to have mild megaloblastic changes on Papanicolaou smears. These changes disappered after folic acid therapy, suggesting that OCs may cause an increased demand for folate limited to the reproductive system. Another finding is of low serum cobalamin levels in women using OCs; this appears however to be a laboratory abnormality

  4. Production of folate by bacteria isolated from oat bran.

    PubMed

    Kariluoto, Susanna; Edelmann, Minnamari; Herranen, Mirkka; Lampi, Anna-Maija; Shmelev, Anton; Salovaara, Hannu; Korhola, Matti; Piironen, Vieno

    2010-09-30

    Twenty bacteria isolated from three commercial oat bran products were tested for their folate production capability. The bacteria as well as some reference organisms were grown until early stationary phase on a rich medium (YPD), and the amount of total folate in the separated cell mass and the culture medium (supernatant) was determined by microbiological assay. Folate vitamer distribution was determined for eight bacteria including one isolated from rye flakes. For seven bacteria the effect of temperature and pH on folate production was studied in more detail. Relatively large amount of folate was both produced in the cell biomass (up to 20.8microg/g) and released to the culture medium (up to 0.38microg/g) by studied bacteria. The best producers were characterized as Bacillus subtilis ON4, Chryseobacterium sp. NR7, Janthinobacterium sp. RB4, Pantoea agglomerans ON2, and Pseudomonas sp ON8. The level of folate released in culture medium was the highest for B. subtilis ON5, Chryseobacterium sp. NR7, Curtobacterium sp. ON7, Enterococcus durans ON9, Janthinobacterium sp. RB4, Paenibacillus sp. ON10, Propionibacterium sp. RB9, and Staphylococcus kloosii RB7. Marked differences in the distribution of folate vitamers among the bacterial strains were revealed by the HPLC analysis. The main vitamers were tetrahydrofolate, 5,10-methenyltetrahydrofolate, 5-methyltetrahydrofolate, and 5-formyltetrahydrofolate. Increase in the folate content during bacterial growth was accompanied by proportional increase in the 5-methyltetrahydrofolate content and decrease of 5-formyltetrahydrofolate. 10-Formylfolic acid dominated in the culture media of four bacteria, and Janthinobacterium sp. RB4 was also found to excrete 5-methyltetrahydrofolate. Intracellular folate content was higher when the bacteria were grown at 28 degrees C than at 18 degrees C or 37 degrees C and also higher at pH 7 than at pH 5.5. PMID:20708290

  5. Folate-functionalized nanoparticles for controlled 5-Fluorouracil delivery.

    PubMed

    Zhang, Yan; Li, Jiashi; Lang, Meidong; Tang, Xiaolin; Li, Lei; Shen, Xizhong

    2011-02-01

    In this paper, folate conjugated poly(ε-caprolactone-co-4-maleate-ε-caprolactone) (P(CL-co-MCL)-folate) was prepared by a carbodiimide coupling reaction, i.e., the vitamin folic acid (FA) was covalently linked to the main chain of the maleate-functionalized polymer, poly(ε-caprolactone-co-4-maleate-ε-caprolactone) (P(CL-co-MCL)). Then the 5-Fluorouracil (5-FU) loaded nanoparticles of P(CL-co-MCL)-folate were achieved by solvent-evaporation method. Their properties were extensively studied by dynamic light scattering (DLS) and scan electron microscopy (SEM). DLS and SEM showed that the nanoparticles were in a well-defined spherical shape with a uniform size distribution. We also investigated the entrapment and in vitro release behavior, which indicated that the release speed of 5-FU could be well controlled and the release half-life period could reach 16.86h, which was 26.4 times longer than that of pure 5-FU. The in vitro targeting test displayed that the 5-FU loaded P(CL-co-MCL)-folate nanoparticles exhibited an enhanced cell inhibition because folate targeting increased the concentration of 5-FU loaded P(CL-co-MCL)-folate nanoparticles in the tumor cells with folate receptor overexpressed. Meanwhile, the tumor inhibition of 5-FU loaded P(CL-co-MCL)-folate nanoparticles was much higher than that of pure 5-FU and that of 5-FU loaded P(CL-co-MCL) nanoparticles. Therefore, P(CL-co-MCL)-folate nanoparticles would be highly beneficial for biomedical and pharmaceutical applications. PMID:21094493

  6. [Treatable Dementia due to Vitamin B12 and Folate Deficiency].

    PubMed

    Yoshizawa, Toshihiro

    2016-04-01

    Vitamin deficiency is one of the major causes of treatable dementia. Specifically, patients suffering from dementia frequentry display low serum levels of vitamin B(12). There is a close metabolic interaction between folate and vitamin B(12). Folate deficiency causes various neuropsychiatric symptoms, which resemble those observed in vitamin B(12) deficiency. This review summarizes, the basic pathophysiology of vitamin B(12) and folate deficiency, its clinical diagnosis, associated neuropsychiatric symptoms such as subacute combined degeneration and dementia, and epidemiological studies of cognitive decline and brain atrophy. PMID:27056859

  7. Utilizing the folate receptor for active targeting of cancer nanotherapeutics

    PubMed Central

    Zwicke, Grant L.; Mansoori, G. Ali; Jeffery, Constance J.

    2012-01-01

    The development of specialized nanoparticles for use in the detection and treatment of cancer is increasing. Methods are being proposed and tested that could target treatments more directly to cancer cells, which could lead to higher efficacy and reduced toxicity, possibly even eliminating the adverse effects of damage to the immune system and the loss of quick replicating cells. In this mini-review we focus on recent studies that employ folate nanoconjugates to target the folate receptor. Folate receptors are highly overexpressed on the surface of many tumor types. This expression can be exploited to target imaging molecules and therapeutic compounds directly to cancerous tissues. PMID:23240070

  8. Pemetrexed alters folate phenotype and inflammatory profile in EA.hy 926 cells grown under low-folate conditions

    PubMed Central

    Hammons, Andrea L.; Summers, Carolyn M.; Jochems, Jeanine; Arora, Jasbir S.; Zhang, Suhong; Blair, Ian A.; Whitehead, Alexander S.

    2014-01-01

    Elevated homocysteine is a risk marker for several major human pathologies. Emerging evidence suggests that perturbations of folate/homocysteine metabolism can directly modify production of inflammatory mediators. Pemetrexed acts by inhibiting thymidylate synthetase (TYMS), dihydrofolate reductase (DHFR), and glycinamide ribonucleotide formyltransferase (GARFT). EA.hy 926 cells grown under low (“Lo”) and high (“Hi”) folate conditions were treated with pemetrexed. The concentrations of several intracellular folate derivatives were measured using LC-MRM/MS. Lo cells had lower total folate concentrations and a different distribution of the intracellular folate derivatives than Hi cells. Treatment with pemetrexed caused a decrease in individual folate analytes. Microarray analysis showed that several genes were significantly up or down-regulated in pemetrexed treated Lo cells. Several of the significantly up-regulated transcripts were inflammatory. Changes in transcript levels of selected targets, including C3, IL-8, and DHFR, were confirmed by quantitative RT-PCR. C3 and IL-8 transcript levels were increased in pemetrexed-treated Lo cells relative to Lo controls; DHFR transcript levels were decreased. In Lo cells, IL-8 and C3 protein concentrations were increased following pemetrexed treatment. Pemetrexed drug treatment was shown in this study to have effects that lead to an increase in pro-inflammatory mediators in Lo cells. No such changes were observed in Hi cells, suggesting that pemetrexed could not modify the inflammatory profile in the context of cellular folate sufficiency. PMID:22975265

  9. Expression of folate receptors in nasopharyngeal and laryngeal carcinoma and folate receptor-mediated endocytosis by molecular targeted nanomedicine

    PubMed Central

    Xie, M; Zhang, H; Xu, Y; Liu, T; Chen, S; Wang, J; Zhang, T

    2013-01-01

    Immunohistochemistry and an immunofluorescence technique was used to detect folate receptor expression in tissue samples and cell lines of head and neck squamous carcinoma, including 20 tissue samples of nasopharyngeal carcinoma, 16 tissue samples of laryngeal carcinoma, and HNE-1, HNE-2, CNE-1, CNE-2, SUNE-1, 5–8F, and Hep-2 cell lines. Iron staining, electron microscopy, and magnetic resonance imaging were used to observe endocytosis of folate-conjugated cisplatin-loaded magnetic nanoparticles (CDDP-FA-ASA-MNP) in cultured cells and transplanted tumors. As shown by immunohistochemistry, 83.3% (30/36) of the head and neck squamous carcinomas expressed the folate receptor versus none in the control group (0/24). Only the HNE-1 and Hep-2 cell lines expressed the folate receptor, and the other five cell lines did not. Endocytosis of CDDP-FA-ASA-MNP was seen in HNE-1 and Hep-2 cells by iron staining and electron microscopy. A similar result was seen in transplanted tumors in nude mice. Magnetic resonance imaging showed low signal intensity of HNE-1 cells and HNE-1 transplanted tumors on T2-weighted images after uptake of CDDP-FA-ASA-MNP, and this was not seen in CNE-2 transplanted tumors. In conclusion, head and neck squamous carcinoma cell strongly expressed the folate receptor, while normal tissue did not. The folate receptor can mediate endocytosis of folate-conjugated anticancer nanomedicines, and lays the foundation for molecular targeted treatment of cancer. PMID:23874095

  10. Folate Catabolites in Spot Urine as Non-Invasive Biomarkers of Folate Status during Habitual Intake and Folic Acid Supplementation

    PubMed Central

    Niesser, Mareile; Demmelmair, Hans; Weith, Thea; Moretti, Diego; Rauh-Pfeiffer, Astrid; van Lipzig, Marola; Vaes, Wouter; Koletzko, Berthold; Peissner, Wolfgang

    2013-01-01

    Background Folate status, as reflected by red blood cell (RCF) and plasma folates (PF), is related to health and disease risk. Folate degradation products para-aminobenzoylglutamate (pABG) and para-acetamidobenzoylglutamate (apABG) in 24 hour urine have recently been shown to correlate with blood folate. Aim Since blood sampling and collection of 24 hour urine are cumbersome, we investigated whether the determination of urinary folate catabolites in fasted spot urine is a suitable non-invasive biomarker for folate status in subjects before and during folic acid supplementation. Study Design and Methods Immediate effects of oral folic acid bolus intake on urinary folate catabolites were assessed in a short-term pre-study. In the main study we included 53 healthy men. Of these, 29 were selected for a 12 week folic acid supplementation (400 µg). Blood, 24 hour and spot urine were collected at baseline and after 6 and 12 weeks and PF, RCF, urinary apABG and pABG were determined. Results Intake of a 400 µg folic acid bolus resulted in immediate increase of urinary catabolites. In the main study pABG and apABG concentrations in spot urine correlated well with their excretion in 24 hour urine. In healthy men consuming habitual diet, pABG showed closer correlation with PF (rs = 0.676) and RCF (rs = 0.649) than apABG (rs = 0.264, ns and 0.543). Supplementation led to significantly increased folate in plasma and red cells as well as elevated urinary folate catabolites, while only pABG correlated significantly with PF (rs = 0.574) after 12 weeks. Conclusion Quantification of folate catabolites in fasted spot urine seems suitable as a non-invasive alternative to blood or 24 hour urine analysis for evaluation of folate status in populations consuming habitual diet. In non-steady-state conditions (folic acid supplementation) correlations between folate marker (RCF, PF, urinary catabolites) decrease due to differing kinetics. PMID:23457526

  11. Neural Tube Defects, Folate, and Immune Modulation

    PubMed Central

    Fathe, Kristin; Finnell, Richard H.; Taylor, Stephen M.; Woodruff, Trent M.

    2014-01-01

    Periconceptional supplementation with folic acid has led to a significant worldwide reduction in the incidence of neural tube defects (NTDs). However, despite increasing awareness of the benefits of folic acid supplementation and the implementation of food fortification programs in many countries, NTDs continue to be a leading cause of perinatal morbidity and mortality worldwide. Furthermore, there exists a significant subgroup of women who appear to be resistant to the protective effects of folic acid supplementation. The following review addresses emerging clinical and experimental evidence for a role of the immune system in the etiopathogenesis of NTDs, with the aim of developing novel preventative strategies to further reduce the incidence of NTD-affected pregnancies. In particular, recent studies demonstrating novel roles and interactions between innate immune factors such as the complement cascade, neurulation, and folate metabolism are explored. PMID:24078477

  12. Association between folate status and cervical intraepithelial neoplasia

    PubMed Central

    Zhao, W; Hao, M; Wang, Y; Feng, N; Wang, Z; Wang, W; Wang, J; Ding, L

    2016-01-01

    Background/Objectives: To investigate the effect of folate status on cervical intraepithelial neoplasia (CIN) progression and its relationship with high-risk human papillomavirus (hrHPV). Subjects/Methods: We evaluated 20 000 sexually active women aged <65 years in Yangqu County by using a questionnaire; the subjects were also screened using the ThinPrep cytologic test (TCT). Patients with abnormal TCT results (other than glandular cell abnormalities) who were willing to provide informed consent were further diagnosed using colposcopy and histopathological examination. We investigated 247 cases of low-grade cervical squamous intraepithelial lesions (LSIL), 125 cases of high-grade cervical squamous intraepithelial lesions (HSIL) and 877 controls. A 24-item food frequency questionnaire was filled out by the investigator to estimate the consumption of dietary folate. Positivity for hrHPV from residual exfoliated cervical cells was tested; serum folate was also measured. Results: The hrHPV infection rate in HSIL patients (77.6%) was higher than that in LSIL (33.2%) and control (32.0%) patients. Dietary folate intakes in controls, LSIL and HSIL were 306.9±176.6, 321.8±168.0 and 314.7±193.8 μg/kcal, respectively. The levels of serum folate in controls, LSIL and HSIL were 18.2±7.9, 15.9±7.1 and 14.3±7.5 nmol/l, respectively. Increased CIN correlated with higher rates of hrHPV infection and lower levels of serum folate. Conclusions: Low levels of serum folate may increase the risk of CIN progression. Furthermore, potential synergy may exist between low serum folate levels and hrHPV infection to promote CIN development. PMID:27026426

  13. Jejunal Perfusion of Simple and Conjugated Folates in Tropical Sprue

    PubMed Central

    Corcino, José J.; Reisenauer, Ann M.; Halsted, Charles H.

    1976-01-01

    Absorption of labeled simple 3′,5′,9′-3H pteroylmonoglutamate, ([3H]PG-1) and conjugated pteroyl-μ[14C]glutamyl-γ-hexaglutamate, ([14C]PG-7) folates was assessed in six patients with tropical sprue, before and after 6 mo of treatment, utilizing jejunal perfusion and urinary recovery techniques. Degradation products of [14C]PG-7 which were produced during perfusion were identified by DEAE-cellulose column chromatography. Jejunal mucosal activities of folate conjugase, lactase, sucrase, and maltase were measured in every patient. Malabsorption of both [3H]PG-1 and [14C]PG-7 was found in every untreated patient, with significant improvement after therapy. The urinary excretion of 3H and 14C paralleled the luminal disappearance of both isotopes. The chromatographic patterns of intraluminal degradation products of [14C]PG-7 obtained during perfusion did not differ from those previously found in normal subjects and were similar in studies performed before and after treatment. The activity of folate conjugase was increased in the mucosa of the untreated patients when compared to the post-treatment levels while the activities of mucosal lactase, sucrase, and maltase were originally low and increased significantly after therapy. These observations suggest that folate conjugase originates at a different mucosal locus than the brush border disaccharidases, and are consistent with previous evidence that folate conjugase is an intracellular enzyme. The present studies have demonstrated unequivocal malabsorption of both simple and conjugated folates in tropical sprue. In tropical sprue, folate malabsorption is the reflection of impaired folate transport and not of impaired hydrolysis. PMID:16695965

  14. The mechanism of folate transport in rabbit reticulocytes

    PubMed Central

    Bobzien, William F.; Goldman, David

    1972-01-01

    Folate transport in phenylhydrazine-induced rabbit reticulocytes was studied with the non-metabolized folate-analog, methotrexate. The time-course of methotrexate uptake into a mixed population of reticulocytes and mature erythrocytes is a two-component process consisting of a small, but rapid, initial uptake phase followed by a much slower uptake component which remains essentially constant over the period of observation. The velocity of the latter uptake component is directly proportional to the per cent reticulocytes and appears to represent a unidirectional influx of methotrexate into these cells. Uptake of methotrexate into reticulocytes was found to have the following characteristics: (a) temperature sensitivity, Q10 of 4; (b) uptake velocity as a function of the extracellular methotrexate concentration approximated Michaelis-Menten kinetics with a maximum transport velocity of 48 pmoles/min per g dry wt; the extracellular methotrexate level at which the uptake velocity was one-half maximum was 1.4 μM; (c) 5-formyltetrahydrofolate markedly inhibited methotrexate uptake but pteroylglutamic acid inhibition was weak; (d) uptake was stimulated in cells preincubated with 5-formyltetrahydrofolate, indicative of hetero-exchange diffusion; (e) uptake was independent of extracellular sodium but was inhibited by anions including nitrate, phosphate, and glucose-6-phosphate; (f) uptake was enhanced by azide plus iodoacetate. These data indicate that folate transport in rabbit reticulocytes is mediated by a carrier mechanism which disappears with reticulocyte maturation. The mechanism of folate transport in rabbit reticulocytes is qualitatively similar to tumor cells previously studied; both appear to have an energy-dependent mechanism limiting folate uptake, and influx in both is inhibited by structurally unrelated inorganic and organic anions. These studies suggest that circulating pteroylglutamic acid is of little importance in meeting the folate requirements of

  15. The role of folate metabolism in orofacial development and clefting.

    PubMed

    Wahl, Stacey E; Kennedy, Allyson E; Wyatt, Brent H; Moore, Alexander D; Pridgen, Deborah E; Cherry, Amanda M; Mavila, Catherine B; Dickinson, Amanda J G

    2015-09-01

    Folate deficiency has been associated with numerous diseases and birth defects including orofacial defects. However, whether folate has a role in the face during early orofacial development has been unclear. The present study reveals that pharmacological and antisense oligonucleotide mediated inhibition of DHFR, an integral enzyme in the folate pathway, results in specific changes in the size and shape of the midface and embryonic mouth. Such defects are accompanied by a severe reduction in the muscle and cartilage jaw elements without significant change in neural crest pattern or global levels of methylation. We propose that the orofacial defects associated with DHFR deficient function are the result of decreased cell proliferation and increased cell death via DNA damage. In particular, localized apoptosis may also be depleting the cells of the face that express crucial genes for the differentiation of the jaw structures. Folate supplementation is widely known to reduce human risk for orofacial clefts. In the present study, we show that activating folate metabolism can reduce median oral clefts in the primary palate by increasing cell survival. Moreover, we demonstrate that a minor decrease in DHFR function exacerbates median facial clefts caused by RAR inhibition. This work suggests that folate deficiencies could be a major contributing factor to multifactorial orofacial defects. PMID:26144049

  16. The Molecular Basis of Folate Salvage in Plasmodium falciparum

    PubMed Central

    Salcedo-Sora, J. Enrique; Ochong, Edwin; Beveridge, Susan; Johnson, David; Nzila, Alexis; Biagini, Giancarlo A.; Stocks, Paul A.; O'Neill, Paul M.; Krishna, Sanjeev; Bray, Patrick G.; Ward, Stephen A.

    2011-01-01

    Tetrahydrofolates are essential cofactors for DNA synthesis and methionine metabolism. Malaria parasites are capable both of synthesizing tetrahydrofolates and precursors de novo and of salvaging them from the environment. The biosynthetic route has been studied in some detail over decades, whereas the molecular mechanisms that underpin the salvage pathway lag behind. Here we identify two functional folate transporters (named PfFT1 and PfFT2) and delineate unexpected substrate preferences of the folate salvage pathway in Plasmodium falciparum. Both proteins are localized in the plasma membrane and internal membranes of the parasite intra-erythrocytic stages. Transport substrates include folic acid, folinic acid, the folate precursor p-amino benzoic acid (pABA), and the human folate catabolite pABAGn. Intriguingly, the major circulating plasma folate, 5-methyltetrahydrofolate, was a poor substrate for transport via PfFT2 and was not transported by PfFT1. Transport of all folates studied was inhibited by probenecid and methotrexate. Growth rescue in Escherichia coli and antifolate antagonism experiments in P. falciparum indicate that functional salvage of 5-methyltetrahydrofolate is detectable but trivial. In fact pABA was the only effective salvage substrate at normal physiological levels. Because pABA is neither synthesized nor required by the human host, pABA metabolism may offer opportunities for chemotherapeutic intervention. PMID:21998306

  17. Present and future of folate biofortification of crop plants.

    PubMed

    Blancquaert, Dieter; De Steur, Hans; Gellynck, Xavier; Van Der Straeten, Dominique

    2014-03-01

    Improving nutritional health is one of the major socio-economic challenges of the 21st century, especially with the continuously growing and ageing world population. Folate deficiency is an important and underestimated problem of micronutrient malnutrition affecting billions of people worldwide. More and more countries are adapting policies to fight folate deficiency, mostly by fortifying foods with folic acid. However, there is growing concern about this practice, calling for alternative or complementary strategies. In addition, fortification programmes are often inaccessible to remote and poor populations where folate deficiency is most prevalent. Enhancing folate content in staple crops by metabolic engineering is a promising, cost-effective strategy to eradicate folate malnutrition worldwide. Over the last decade, major progress has been made in this field. Nevertheless, engineering strategies have thus far been implemented on a handful of plant species only and need to be transferred to highly consumed staple crops to maximally reach target populations. Moreover, successful engineering strategies appear to be species-dependent, hence the need to adapt them in order to biofortify different staple crops with folate. PMID:24574483

  18. Folate and alcohol consumption and the risk of lung cancer

    SciTech Connect

    Bandera, E.V.; Graham, S.; Freudenheim, J.L.; Marshall, J.R.; Haughey, B.P.; Swanson, M.; Brasure, J.; Wilkinson, G. )

    1991-03-11

    Because both folate deficiency and alcohol intake have been hypothesized to be lung cancer risk factors, the authors examined the effect of folate and alcohol consumption on risk of lung cancer in a case-control study conducted 1980-1984. Usual dietary intake of 450 histologically confirmed lung cancer cases and 902 controls, all Western New York residents, was ascertained using a modified food frequency questionnaire. Folate intake was not associated with lung cancer risk. After adjusting for age, cigarette smoking, education, and carotene intake, the odds ratio (OR) for the highest category of folate intake was 1.59 in males and 1.34 in females. There was some indication of a protective effect of folate only among women who never smoked. There was a suggestion of a positive association of alcohol intake with lung cancer risk in males, independent of age, education, cigarette smoking, and carotene. Consumers of more than 9 beers per month had an OR of 1.51 compared to non-drinkers. In both sexes, there was an indication of an interaction between beer ingestion and cigarette smoking. While folate intake did not appear to affect risk of lung cancer, the association of alcohol intake with risk independent of cigarette smoking deserves further inquiry.

  19. Assessment of pyridoxine and folate intake in migraine patients

    PubMed Central

    Sadeghi, Omid; Maghsoudi, Zahra; Khorvash, Fariborz; Ghiasvand, Reza; Askari, Gholamreza

    2016-01-01

    Background: Migraine is a highly prevalent disorder worldwide. It affects 10–20% of the population during their lifetime. Recent studies have indicated that supplementation with folate and pyridoxine improves migraine symptoms. This study was undertaken to evaluate dietary intake of folate and pyridoxine in migraine patients and assessed their association with the frequency of migraine attacks. Materials and Methods: This is a case–control study performed on 124 migraine patients and 130 non-migraine subjects. Individuals’ common dietary intake was determined by using a valid semi-quantitative 168-item food frequency questionnaire (FFQ). Data had been analyzed using independent t-test using SPSS software (version 18). Results: In this study, we found that migraine patients had lower intake of dietary folate compared with control group, but energy and pyridoxine intake were not different between the two groups. Further analysis among men and women revealed no statistically significant changes in these relationships. In addition, we found no significant association between dietary intake of pyridoxine and folate with the frequency of migraine attacks. Conclusion: Migraine patients had lower dietary intake of folate, compared with non-migraine group subjects. There was no significant association between folate and pyridoxine intake with the frequency of migraine attacks. Further studies are needed to confirm our findings. PMID:27110544

  20. Cytotoxicity of momordin-folate conjugates in cultured human cells.

    PubMed

    Leamon, C P; Low, P S

    1992-12-15

    We have shown previously that macromolecules can be nondestructively delivered into cultured cells via folate receptor-mediated endocytosis if the macromolecules are conjugated to folic acid prior to addition to receptor-bearing cells (Leamon, C.P., and Low, P. S. (1991) Proc. Natl. Acad. Sci. U. S. A. 88, 5572-5576). Although an intracellular destination of the folate-linked proteins could be easily documented, the spatial resolution of the earlier data was insufficient to evaluate whether any endocytosed material was delivered into the cytosol. To resolve this issue, a folate-toxin conjugate was constructed using the impermeable ribosome-inactivating protein, momordin. Diminution of [3H]leucine incorporation into newly synthesized protein was then employed as a quantitative measure of the entry of the toxin into the cytosol. In studies with both HeLa and KB cells, cellular protein synthesis was found to be inhibited in a time- and concentration-dependent manner by the momordin-folate conjugate, but not by the underivatized toxin. IC50 values centered around 10(-9) M for the folate-linked samples. These observations provide direct evidence that folate conjugates not only reach the cytosol, but do so in a functionally active form. PMID:1460001

  1. An unusual role of folate in the self-assembly of heparin-folate conjugates into nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Jianquan; Ma, Daoshuang; Lu, Qian; Wu, Shaoxiong; Lee, Gee Young; Lane, Lucas A.; Li, Bin; Quan, Li; Wang, Yiqing; Nie, Shuming

    2015-09-01

    Tumor targeting agents including antibodies, peptides, and small molecules, are often used to improve the delivery efficiency of nanoparticles. Despite numerous studies investigating the abilities of targeting agents to increase the accumulation of nanosized therapeutics within diseased tissues, little attention has been focused on how these ligands can affect the self-assembly of the nanoparticle's modified polymer constituents upon chemical conjugation. Here we present an actively tumor targeted nanoparticle constructed via the self-assembly of a folate modified heparin. Folate conjugation unexpectedly allowed the self-assembly of heparin, where a majority of the folate molecules (>80%) resided inside the core of the nanoparticle. The folate-heparin nanoparticles could also physically encapsulate lipophilic fluorescent dyes, enabling the use of the constructs as activatable fluorescent probes for targeted in vivo tumor imaging.Tumor targeting agents including antibodies, peptides, and small molecules, are often used to improve the delivery efficiency of nanoparticles. Despite numerous studies investigating the abilities of targeting agents to increase the accumulation of nanosized therapeutics within diseased tissues, little attention has been focused on how these ligands can affect the self-assembly of the nanoparticle's modified polymer constituents upon chemical conjugation. Here we present an actively tumor targeted nanoparticle constructed via the self-assembly of a folate modified heparin. Folate conjugation unexpectedly allowed the self-assembly of heparin, where a majority of the folate molecules (>80%) resided inside the core of the nanoparticle. The folate-heparin nanoparticles could also physically encapsulate lipophilic fluorescent dyes, enabling the use of the constructs as activatable fluorescent probes for targeted in vivo tumor imaging. Electronic supplementary information (ESI) available: NMR spectra and fluorescent images of HF-488 with cancer

  2. Prospects in Folate Receptor-Targeted Radionuclide Therapy

    PubMed Central

    Müller, Cristina; Schibli, Roger

    2013-01-01

    Targeted radionuclide therapy is based on systemic application of particle-emitting radiopharmaceuticals which are directed toward a specific tumor-associated target. Accumulation of the radiopharmaceutical in targeted cancer cells results in high doses of absorbed radiation energy whereas toxicity to non-targeted healthy tissue is limited. This strategy has found widespread application in the palliative treatment of neuroendocrine tumors using somatostatin-based radiopeptides. The folate receptor (FR) has been identified as a target associated with a variety of frequent tumor types (e.g., ovarian, lung, brain, renal, and colorectal cancer). In healthy organs and tissue FR-expression is restricted to only a few sites such as for instance the kidneys. This demonstrates why FR-targeting is an attractive strategy for the development of new therapy concepts. Due to its high FR-binding affinity (KD < 10−9 M) the vitamin folic acid has emerged as an almost ideal targeting agent. Therefore, a variety of folic acid radioconjugates for nuclear imaging have been developed. However, in spite of the large number of cancer patients who could benefit of a folate-based radionuclide therapy, a therapeutic concept with folate radioconjugates has not yet been envisaged for clinical application. The reason is the generally high accumulation of folate radioconjugates in the kidneys where emission of particle-radiation may result in damage to the renal tissue. Therefore, the design of more sophisticated folate radioconjugates providing improved tissue distribution profiles are needed. This review article summarizes recent developments with regard to a therapeutic application of folate radioconjugates. A new construct of a folate radioconjugate and an application protocol which makes use of a pharmacological interaction allowed the first preclinical therapy experiments with radiofolates. These results raise hope for future application of such new concepts also in the clinic

  3. Identification and measurement of the folates in sheep liver

    PubMed Central

    Osborne-White, William S.; Smith, Richard M.

    1973-01-01

    1. Methods are described for the extraction, separation by ion-exchange chromatography and estimation by microbiological assay of the folates in sheep liver. 2. Injection of [2-14C]-pteroylglutamate into a sheep fed on a stock diet led to extensive labelling of chromatographically separable liver folates. About 12% of the label in the liver could not be extracted by the method used. 3. Liver folates were examined in five ewes fed on restricted amounts of a diet of wheaten hay-chaff and gluten and injected weekly with vitamin B12. Chromatographic separation was followed by microbiological assay with Lactobacillus casei, Streptococcus faecalis R. and Pediococcus cerevisiae both before and after treatment of fractions with conjugase (γ-glutamylcarboxypeptidase). Evidence was obtained that the folates present were predominantly polyglutamate forms of tetrahydropteroylglutamate, 5-methyltetrahydropteroylglutamate and 5- (and 10-) formyltetrahydropteroylglutamates. Differences in the responses of the assay organisms permitted quantitative distinction between these three main classes of folates. 4. Methyltetrahydrofolates were eluted in seven successive peaks that were separated by constant increments in the logarithm of eluant [Pi]. A similar relationship existed for seven successive peaks of tetrahydrofolate and may also have existed for each of the two series of formyltetrahydrofolates. 5. Based on these and other observations it is proposed that sheep liver folates consist predominantly of the mono- to hepta-glutamates of each of the reduced pteroates identified. The methods employed allowed quantitative determinations to be made of most of the folates present. The predominant forms were hexaglutamates. 6. Four components active for L. casei were detected that could not be identified. Three of them were polyglutamates. PMID:4204321

  4. Biomarkers of folate status in NHANES: a roundtable summary123456

    PubMed Central

    Pfeiffer, Christine M; Phinney, Karen W; Fazili, Zia; Lacher, David A; Bailey, Regan L; Blackmore, Sheena; Bock, Jay L; Brody, Lawrence C; Carmel, Ralph; Curtin, L Randy; Durazo-Arvizu, Ramón A; Eckfeldt, John H; Green, Ralph; Gregory, Jesse F; Hoofnagle, Andrew N; Jacobsen, Donald W; Jacques, Paul F; Molloy, Anne M; Massaro, Joseph; Mills, James L; Nexo, Ebba; Rader, Jeanne I; Selhub, Jacob; Sempos, Christopher; Shane, Barry; Stabler, Sally; Stover, Patrick; Tamura, Tsunenobu; Tedstone, Alison; Thorpe, Susan J; Johnson, Clifford L; Picciano, Mary Frances

    2011-01-01

    A roundtable to discuss the measurement of folate status biomarkers in NHANES took place in July 2010. NHANES has measured serum folate since 1974 and red blood cell (RBC) folate since 1978 with the use of several different measurement procedures. Data on serum 5-methyltetrahydrofolate (5MTHF) and folic acid (FA) concentrations in persons aged ≥60 y are available in NHANES 1999–2002. The roundtable reviewed data that showed that folate concentrations from the Bio-Rad Quantaphase II procedure (Bio-Rad Laboratories, Hercules, CA; used in NHANES 1991–1994 and NHANES 1999–2006) were, on average, 29% lower for serum and 45% lower for RBC than were those from the microbiological assay (MA), which was used in NHANES 2007–2010. Roundtable experts agreed that these differences required a data adjustment for time-trend analyses. The roundtable reviewed the possible use of an isotope-dilution liquid chromatography–tandem mass spectrometry (LC-MS/MS) measurement procedure for future NHANES and agreed that the close agreement between the MA and LC-MS/MS results for serum folate supported conversion to the LC-MS/MS procedure. However, for RBC folate, the MA gave 25% higher concentrations than did the LC-MS/MS procedure. The roundtable agreed that the use of the LC-MS/MS procedure to measure RBC folate is premature at this time. The roundtable reviewed the reference materials available or under development at the National Institute of Standards and Technology and recognized the challenges related to, and the scientific need for, these materials. They noted the need for a commutability study for the available reference materials for serum 5MTHF and FA. PMID:21593502

  5. Biocompatibility of folate-modified chitosan nanoparticles

    PubMed Central

    Chakraborty, Subhankari Prasad; Sahu, Sumanta Kumar; Pramanik, Panchanan; Roy, Somenath

    2012-01-01

    Objective To evaluate the acute toxicity of carboxymethyl chitosan-2, 2′ ethylenedioxy bis-ethylamine-folate (CMC-EDBE-FA) and as well as possible effect on microbial growth and in vitro cell cyto-toxicity. Methods CMC-EDBE-FA was prepared on basis of carboxymethyl chitosan tagged with folic acid by covalently linkage through 2, 2′ ethylenedioxy bis-ethylamine. In vivo acute toxicity, in vitro cyto-toxicity and antimicrobial activity of CMC-EDBE-FA nanoparticle were determined. Results Vancomycin exhibited the antibacterial activity against vancomycin sensitive Staphylococcus aureus, but CMC-EDBE-FA nanoparticle did not give any antibacterial activity as evidenced by minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC), disc agar diffusion (DAD) and killing kinetic assay. Further, the CMC-EDBE-FA nanoparticle showed no signs of in vivo acute toxicity up to a dose level of 1 000 mg/kg p.o., and as well as in vitro cyto-toxicity up to 250 µg/mL. Conclusions These findings suggest that CMC-EDBE-FA nanoparticle is expected to be safe for biomedical applications. PMID:23569900

  6. Cerebrospinal fluid folate and cobalamin levels in febrile convulsion.

    PubMed

    Osifo, B O; Lukanmbi, F A; Familusi, J B

    1985-05-01

    Folate and cobalamin parameters were studied in the serum and cerebrospinal fluid of 40 febrile paediatric patients. Eighteen of these children were in a state of febrile convulsion while the remaining 22 were non-convulsing. The serum folate concentration of all the patients was higher than that of the control group but the highest value was found in the convulsing children. There was no significant difference in the CSF folate levels between the two groups of patients. The serum cobalamin levels of the patients were significantly lower than those of the control children and the lowest mean was observed in the convulsing state. On the other hand, there was no difference in the CSF cobalamin between the convulsing and non-convulsing children. These results confirm that there is an effective blood-brain barrier system for folate even when serum folate levels are higher than normal. There is also a definite decrease in serum cobalamin during pyrexia but this decrease is more apparent in the convulsing state. The role of cobalamin metabolism in convulsion is not clear. PMID:4009203

  7. Synthesis of folate receptor-targeted photosensitizers for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Fang, Yanyan; Wang, Xiaopu; Zou, Qianli; Zhao, Yuxia; Wu, Feipeng

    2014-11-01

    A series of amphiphilic benzylidene cycloalkanes ketone photosensitizers C1-C4 with or without folate receptor-targeted agent were designed and synthesized. Their photophysical properties and in vitro photodynamic therapy (PDT) effects were studied. The results showed that all compounds exhibited appropriate lipid-water partition coefficients and high reactive oxygen yields. The introduction of the folate receptor-targeted agent had no obvious influence on the basic photophysical & photochemical properties of C2 and C4 compared to those of their corresponding prototype compounds (C1 and C3). In vitro studies were carried out using MCF-7 cells (FR+), Hela cells (FR+) and A549 cells (FR-), which represented different levels of folate receptor (FR) expression. All of C1-C4 showed low dark toxicity and superior PDT effects compared with the clinical drug PSD-007 (a mixture of porphyrins). What's more, folate receptor-targeted photosensitizers (C2 and C4) achieved higher accumulation and more excellent PDT effects in MCF-7 cells (FR+) and Hela cells (FR+) than photosensitizers (C1 and C3) without folate receptor-targeted agent and PSD-007. The photocytotoxicity of these photosensitizers showed no obvious differences in A549 cells (FR-).

  8. N-acetyltransferase 2 activity and folate levels

    PubMed Central

    Cao, Wen; Strnatka, Diana; McQueen, Charlene A.; Hunter, Robert J.; Erickson, Robert P.

    2010-01-01

    Aims To determine whether increased N-acetyltransferase (NAT) activity might have a toxic effect during development and an influence on folate levels since previous work has shown that only low levels of exogenous NAT can be achieved in constitutionally transgenic mice (Cao, et al, 2005) Main Methods A human NAT1 tet-inducible construct was used that would not be expressed until the inducer was delivered. Human NAT1 cDNA was cloned into pTRE2 and injected into mouse oocytes. Two transgenic lines were crossed to mouse line TgN(rtTahCMV)4Uh containing the CMV promoted “teton.”Measurements of red blood cell folate levels in inbred strains of mice were performed. Key findings Only low levels of human NAT1 could be achieved in kidney (highly responsive in other studies) whether the inducer, doxycycline, was given by gavage or in drinking water.An inverse correlation of folate levels with Nat2 enzyme activity was found. Significance Since increasing NAT1 activity decrease folate in at least one tissue, the detrimental effect of expression of human NAT1 in combination with endogenous mouse Nat2 may be a consequence of increased catabolism of folate. PMID:19932120

  9. Peptide Anchor for Folate-Targeted Liposomal Delivery.

    PubMed

    Nogueira, Eugénia; Mangialavori, Irene C; Loureiro, Ana; Azoia, Nuno G; Sárria, Marisa P; Nogueira, Patrícia; Freitas, Jaime; Härmark, Johan; Shimanovich, Ulyana; Rollett, Alexandra; Lacroix, Ghislaine; Bernardes, Gonçalo J L; Guebitz, Georg; Hebert, Hans; Moreira, Alexandra; Carmo, Alexandre M; Rossi, Juan Pablo F C; Gomes, Andreia C; Preto, Ana; Cavaco-Paulo, Artur

    2015-09-14

    Specific folate receptors are abundantly overexpressed in chronically activated macrophages and in most cancer cells. Directed folate receptor targeting using liposomes is usually achieved using folate linked to a phospholipid or cholesterol anchor. This link is formed using a large spacer like polyethylene glycol. Here, we report an innovative strategy for targeted liposome delivery that uses a hydrophobic fragment of surfactant protein D linked to folate. Our proposed spacer is a small 4 amino acid residue linker. The peptide conjugate inserts deeply into the lipid bilayer without affecting liposomal integrity, with high stability and specificity. To compare the drug delivery potential of both liposomal targeting systems, we encapsulated the nuclear dye Hoechst 34580. The eventual increase in blue fluorescence would only be detectable upon liposome disruption, leading to specific binding of this dye to DNA. Our delivery system was proven to be more efficient (2-fold) in Caco-2 cells than classic systems where the folate moiety is linked to liposomes by polyethylene glycol. PMID:26241560

  10. Biomarkers of Nutrition for Development—Folate Review12345

    PubMed Central

    Bailey, Lynn B; Stover, Patrick J; McNulty, Helene; Fenech, Michael F; Gregory, Jesse F; Mills, James L; Pfeiffer, Christine M; Fazili, Zia; Zhang, Mindy; Ueland, Per M; Molloy, Anne M; Caudill, Marie A; Shane, Barry; Berry, Robert J; Bailey, Regan L; Hausman, Dorothy B; Raghavan, Ramkripa; Raiten, Daniel J

    2015-01-01

    The Biomarkers of Nutrition for Development (BOND) project is designed to provide evidence-based advice to anyone with an interest in the role of nutrition in health. Specifically, the BOND program provides state-of-the-art information and service with regard to selection, use, and interpretation of biomarkers of nutrient exposure, status, function, and effect. To accomplish this objective, expert panels are recruited to evaluate the literature and to draft comprehensive reports on the current state of the art with regard to specific nutrient biology and available biomarkers for assessing nutrients in body tissues at the individual and population level. Phase I of the BOND project includes the evaluation of biomarkers for 6 nutrients: iodine, iron, zinc, folate, vitamin A, and vitamin B-12. This review represents the second in the series of reviews and covers all relevant aspects of folate biology and biomarkers. The article is organized to provide the reader with a full appreciation of folate’s history as a public health issue, its biology, and an overview of available biomarkers (serum folate, RBC folate, and plasma homocysteine concentrations) and their interpretation across a range of clinical and population-based uses. The article also includes a list of priority research needs for advancing the area of folate biomarkers related to nutritional health status and development. PMID:26451605

  11. Folate-receptor-targeted delivery of docetaxel nanoparticles prepared by PLGA-PEG-folate conjugate.

    PubMed

    Esmaeili, Farnaz; Ghahremani, Mohammad Hossein; Ostad, Seyed Nasser; Atyabi, Fatemeh; Seyedabadi, Mohammad; Malekshahi, Mazda Rad; Amini, Mohsen; Dinarvand, Rassoul

    2008-06-01

    For folate-receptor-targeted anticancer therapy, docetaxel (DTX) nanoparticles (NPs) were produced employing polylactide-co-glycolide-polyethylene glycol-folate (PLGA-PEG-FOL) conjugate. The FOL-conjugated di-block copolymer was synthesized by coupling the PLGA-PEG-NH(2) di-block copolymer with an activated folic acid. It was expected that FOL moieties were exposed on the micellar surface. The conjugates assisted in the formation of DTX NPs with an average size of 200 nm in diameter through an emulsification/solvent diffusion method. The FOL-targeted NPs showed a greater extent of intracellular uptake in FOL-receptor-positive cancer cells (SKOV3) in comparison with the non-targeted NPs, indicating that the FOL-receptor-mediated endocytosis mechanism could have a role in the cellular uptake of NPs. These results suggested that FOL-targeted DTX NPs could be a potentially useful delivery system for FOL-receptor-positive cancer cells. PMID:18569286

  12. Synthesis of folate- pegylated polyester nanoparticles encapsulating ixabepilone for targeting folate receptor overexpressing breast cancer cells.

    PubMed

    Siafaka, P; Betsiou, M; Tsolou, A; Angelou, E; Agianian, B; Koffa, M; Chaitidou, S; Karavas, E; Avgoustakis, K; Bikiaris, D

    2015-12-01

    The aim of this study was the preparation of novel polyester nanoparticles based on folic acid (FA)-functionalized poly(ethylene glycol)-poly(propylene succinate) (PEG-PPSu) copolymer and loaded with the new anticancer drug ixabepilone (IXA). These nanoparticles may serve as a more selective (targeted) treatment of breast cancer tumors overexpressing the folate receptor. The synthesized materials were characterized by (1)H-NMR, FTIR, XRD and DSC. The nanoparticles were prepared by a double emulsification and solvent evaporation method and characterized with regard to their morphology by scanning electron microscopy, drug loading with HPLC-UV and size by dynamic light scattering. An average size of 195 nm and satisfactory drug loading efficiency (3.5%) were observed. XRD data indicated that IXA was incorporated into nanoparticles in amorphous form. The nanoparticles exhibited sustained drug release properties in vitro. Based on in vitro cytotoxicity studies, the blank FA-PEG-PPSu nanoparticles were found to be non-toxic to the cells. Fluorescent nanoparticles were prepared by conjugating Rhodanine B to PEG-PPSu, and live cell, fluorescence, confocal microscopy was applied in order to demonstrate the ability of FA-PEG-PPSu nanoparticles to enter into human breast cancer cells expressing the folate receptor. PMID:26543021

  13. Folate and Thiamine Transporters mediated by Facilitative Carriers (SLC19A1-3 and SLC46A1) and Folate Receptors

    PubMed Central

    Zhao, Rongbao; Goldman, I. David

    2013-01-01

    The reduced folate carrier (RFC,SLC19A1), thiamine transporter-1 (ThTr1,SLC19A2) and thiamine transporter-2 (ThTr2,SLC19A3) evolved from the same family of solute carriers. SLC19A1 transports folates but not thiamine. SLC19A2 and SLC19A3 transport thiamine but not folates. SLC19A1 and SLC19A2 deliver their substrates to systemic tissues; SLC19A3 mediates intestinal thiamine absorption. The proton-coupled folate transporter (PCFT,SLC46A1) is the mechanism by which folates are absorbed across the apical-brush-border membrane of the proximal small intestine. Two folate receptors (FOLR1 and FOLR2) mediate folate transport across epithelia by an endocytic process. Folate transporters are routes of delivery of drugs for the treatment of cancer and inflammatory diseases. There are autosomal recessive disorders associated with mutations in genes encoded for SLC46A1 (hereditary folate malabsorption), FOLR1 (cerebral folate deficiency), SLC19A2 (thiamine-responsive megaloblastic anemia), and SLC19A3 (biotin-responsive basal ganglia disease). PMID:23506878

  14. Folate and thiamine transporters mediated by facilitative carriers (SLC19A1-3 and SLC46A1) and folate receptors.

    PubMed

    Zhao, Rongbao; Goldman, I David

    2013-01-01

    The reduced folate carrier (RFC, SLC19A1), thiamine transporter-1 (ThTr1, SLC19A2) and thiamine transporter-2 (ThTr2, SLC19A3) evolved from the same family of solute carriers. SLC19A1 transports folates but not thiamine. SLC19A2 and SLC19A3 transport thiamine but not folates. SLC19A1 and SLC19A2 deliver their substrates to systemic tissues; SLC19A3 mediates intestinal thiamine absorption. The proton-coupled folate transporter (PCFT, SLC46A1) is the mechanism by which folates are absorbed across the apical-brush-border membrane of the proximal small intestine. Two folate receptors (FOLR1 and FOLR2) mediate folate transport across epithelia by an endocytic process. Folate transporters are routes of delivery of drugs for the treatment of cancer and inflammatory diseases. There are autosomal recessive disorders associated with mutations in genes encoded for SLC46A1 (hereditary folate malabsorption), FOLR1 (cerebral folate deficiency), SLC19A2 (thiamine-responsive megaloblastic anemia), and SLC19A3 (biotin-responsive basal ganglia disease). PMID:23506878

  15. Exploring folate diversity in wild and primitive potatoes for modern crop improvement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Malnutrition is one of the world’s largest health concerns. Folate (a.k.a. vitamin B9) is essential in the human diet and without adequate folate intake several serious health concerns such as congenital birth defects and an increased risk of stroke and heart disease can occur. Most people’s folate ...

  16. Schizophyllan-folate conjugate as a new non-cytotoxic and cancer-targeted antisense carrier.

    PubMed

    Hasegawa, Teruaki; Fujisawa, Tomohisa; Haraguchi, Shuichi; Numata, Munenori; Karinaga, Ryouji; Kimura, Taro; Okumura, Shiro; Sakurai, Kazuo; Shinkai, Seiji

    2005-01-17

    Schizophyllan having folate-appendages was synthesized from native schizophyllan through NaIO(4)-oxidation and the subsequent reductive amination in aqueous ammonia followed by amido-coupling with folic acid. The resulting folate-appended schizophyllan can form stable complex with poly(dA), show specific affinity toward folate binding protein, and mediate effective antisense activity in cancer cells. PMID:15603948

  17. Determination of folate concentrations in diverse potato germplasm using a trienzyme extraction and microbiological assay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We determined total folate concentrations of potato tubers from 67 cultivars, advanced breeding lines, or wild species. Folates were extracted by a tri-enzyme treatment and analyzed by using a Lactobacillus rhamnosus microbiological assay. Folate concentrations varied from 521 ± 96 to 1373 ± 230 ng/...

  18. 77 FR 63336 - Certain Reduced Folate Nutraceutical Products and L-Methylfolate Raw Ingredients Used Therein...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-16

    ... COMMISSION Certain Reduced Folate Nutraceutical Products and L-Methylfolate Raw Ingredients Used Therein... States after importation of certain reduced folate nutraceutical products and l-methylfolate raw... certain reduced folate nutraceutical products and l-methylfolate raw ingredients used therein...

  19. 77 FR 57115 - Certain Reduced Folate; Nutraceutical Products and L-Methylfolate Raw Ingredients Used Therein...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-17

    ... COMMISSION Certain Reduced Folate; Nutraceutical Products and L-Methylfolate Raw Ingredients Used Therein... Trade Commission has received a complaint entitled Certain Reduced Folate Nutraceutical Products and L... within the United States after importation of certain reduced folate nutraceutical products and...

  20. Dietary intake of folate and co-factors in folate metabolism, MTHFR polymorphisms, and reduced rectal cancer.

    PubMed

    Murtaugh, Maureen A; Curtin, Karen; Sweeney, Carol; Wolff, Roger K; Holubkov, Richard; Caan, Bette J; Slattery, Martha L

    2007-03-01

    Little is known about the contribution of polymorphisms in the methylenetetrahydrofolate reductase gene (MTHFR) and the folate metabolism pathway in rectal cancer alone. Data were from participants in a case-control study conducted in Northern California and Utah (751 cases and 979 controls). We examined independent associations and interactions of folate, B vitamins, methionine, alcohol, and MTHFR polymorphisms (MTHFR C677T and A1298C) with rectal cancer. Dietary folate intake was associated with a reduction in rectal cancer OR 0.66, 95% CI 0.48-0.92 (>475 mcg day compared to < or = 322 mcg) as was a combination of nutrient intakes contributing to higher methyl donor status (OR 0.79, 95% CI 0.66-0.95). Risk was reduced among women with the 677 TT genotype (OR 0.54, 95% CI 0.30-0.9), but not men (OR 1.11, 95% CI 0.70-1.76) and with the 1298 CC genotype in combined gender analysis (OR 0.67, 95% CI 0.46-0.98). These data are consistent with a protective effect of increasing dietary folate against rectal cancer and suggest a protective role of the MTHFR 677 TT genotype in women and 1298 CC in men and women. Folate intake, low methyl donor status, and MTHFR polymorphisms may play independent roles in the etiology of rectal cancer. PMID:17245555

  1. The complex interplay between ligand binding and conformational structure of the folate binding protein (folate receptor): Biological perspectives.

    PubMed

    Holm, Jan; Bruun, Susanne W; Hansen, Steen I

    2015-10-01

    This review analyzes how interplay between folate binding and changes in folate binding protein (FBP) conformation/self-association affects the biological function of FBP. Concentration-dependent, reversible self-association of hydrophobic apo-FBP at pI=7.4 is associated with decreased affinity for folate, probably due to shielding of binding sites between interacting hydrophobic patches. Titration with folate removes apo-monomers, favoring dissociation of self-associated apo-FBP into apo-monomers. Folate anchors to FBP through a network of hydrogen bonds and hydrophobic interactions, and the binding induces a conformational change with formation of hydrophilic and stable holo-FBP. Holo-FBP exhibits a ligand-mediated concentration-dependent self-association into multimers of great thermal and chemical stability due to strong intermolecular forces. Both ligand and FBP are thus protected against biological/physicochemical decomposition. In biological fluids with low FBP concentrations, e.g., saliva, semen and plasma, hydrophobic apo-monomers and hydrophilic holo-monomers associate into stable asymmetrical complexes with aberrant binding kinetics unless detergents, e.g., cholesterol or phospholipids are present. PMID:26116148

  2. Detergent activation of the binding protein in the folate radioassay

    SciTech Connect

    Hansen, S.I.; Holm, J.; Lyngbye, J.

    1982-01-01

    A minor cow's whey protein associated with ..beta..-lactoglobulin is used as binding protein in the competitive radioassay for serum and erythrocyte folate. Seeking to optimize the assay, we tested the performance of binder solutions of increasing purity. The folate binding protein was isolated from cow's whey by means of CM-Sepharose CL-6B cation-exchange chromatography, and further purified on a methotrexate-AH-Sepharose 4B affinity matrix. In contrast to ..beta..-lactoglobulin, the purified protein did not bind folate unless the detergents cetyltrimethylammonium (10 mmol/Ll) or Triton X-100 (1 g/L) were present. Such detergent activation was not needed in the presence of serum. There seems to be a striking analogy between these phenomena and the well-known reactivation of certain purified membrane-derived enzymes by surfactants (lipids/detergents).

  3. Cobalamin, folate, methylmalonic acid, homocysteine, and gastritis markers in dementia.

    PubMed

    Nägga, K; Rajani, R; Mårdh, E; Borch, K; Mårdh, S; Marcusson, J

    2003-01-01

    The prevalence of dementia disorders, cobalamin and/or folate deficiency as well as gastritis increases with age. To investigate whether there is an association between these conditions, plasma homocysteine (Hcy), serum methylmalonic acid, serum cobalamin and blood folate concentrations were measured. Gastritis was indirectly diagnosed by measuring serum antibodies against H,K-ATPase, HELICOBACTER PYLORI and intrinsic factor, using enzyme-linked immunosorbent assays. The studied groups consisted of 47 patients with Alzheimer's disease (AD), 9 with AD pathology in combination with additive vascular lesions, 59 with vascular dementia, 8 who were cognitively impaired, and 101 control cases. Plasma Hcy concentrations were significantly elevated in the dementia groups, with the highest levels in patients with vascular pathology. We conclude that hyperhomocysteinemia is a common finding in patients with dementia disorders of different etiologies. The markers for gastritis did not contribute to an elucidation of a possible connection between this condition, dementia disorders, or cobalamin/folate deficiency. PMID:14512723

  4. Relative bioavailability of folate from the traditional food plant Moringa oleifera L. as evaluated in a rat model.

    PubMed

    Saini, R K; Manoj, P; Shetty, N P; Srinivasan, K; Giridhar, P

    2016-01-01

    Moringa oleifera is an affordable and rich source of dietary folate. Quantification of folate by HPLC showed that 5-formyl-5,6,7,8-tetrahydrofolic acid (502.1 μg/100 g DW) and 5,6,7,8-tetrahydrofolic acid (223.9 μg/100 g DW) as the most dominant forms of folate in M. oleifera leaves. The bioavailability of folate and the effects of folate depletion and repletion on biochemical and molecular markers of folate status were investigated in Wistar rats. Folate deficiency was induced by keeping the animals on a folate deficient diet with 1 % succinyl sulfathiazole (w/w). After the depletion period, animals were repleted with different levels of folic acid and M. oleifera leaves as a source of folate. Feeding the animals on a folate deficient diet for 7 weeks caused a significant (3.4-fold) decrease in serum folate content, compared to non-depleted control animals. Relative bioavailability of folate from dehydrated leaves of M. oleifera was 81.9 %. During folate depletion and repletion, no significant changes in liver glycine N-methyl transferase and 5-methyltetrahydrofolate-homocysteine methyltransferase expression were recorded. In RDA calculations, only 50 % of natural folate is assumed to be bioavailable. Therefore, the bioavailability of folate from Moringa is much higher, suggesting that M. oleifera based food can be used as a significant source of folate. PMID:26787970

  5. Increased chromosome fragility as a consequence of blood folate levels, smoking status, and coffee consumption

    SciTech Connect

    Chen, A.T.L.; Reidy, J.A.; Annest, J.L.; Welty, T.K.; Zhou, H. )

    1989-01-01

    Chromosome fragility in 96 h, low-folate cultures was found to be associated with smoking status, coffee consumption, and blood folate level. The higher proportion of cells with chromosome aberrations in cigarette smokers was attributable to lower red cell folate levels in smokers compared with nonsmokers. There was a positive linear relationship between the average cups of coffee consumed per day and the proportion of cells with aberrations. This association was independent of the effects of smoking and red cell folate level. These data suggest that smoking history, coffee consumption, and red cell folate level are important considerations for the design and interpretation of fragile site studies in cancer cytogenetics.

  6. The identification of the folate conjugates found in rat liver 48 h after the administration of radioactively labelled folate tracers.

    PubMed Central

    Connor, M J; Blair, J A

    1980-01-01

    About 70% of the radioactivity retained in the livers of rats dosed 48 h earlier with radioactively labelled folate was incorporated into two folate conjugates. The major derivative was purified and isolated by Sephadex G-15, DEAE-cellulose and DEAE-Sephadex ion-exchange column chromatography and paper chromatography. It was identified as 10-formylpteroylpentaglutamate by a combination of spectral, microbiological, chemical and chromatographic techniques. The minor conjugate, though less well characterized, exhibited similar properties and was assigned the structure 10-formylpteroyltetraglutamate. 10-Formylpteroylpentaglutamate (2.0nmol/g) and 10-formylpteroyltetraglutamate (0.25nmol/g) comprised about 20% of the total endogenous hepatic folate as determined by microbiological assay (Lactobacillus casei after conjugase treatment. PMID:6892769

  7. Folate bioavailability from foods rich in folates assessed in a short term human study using stable isotope dilution assays.

    PubMed

    Mönch, Sabine; Netzel, Michael; Netzel, Gabriele; Ott, Undine; Frank, Thomas; Rychlik, Michael

    2015-01-01

    Different sources of folate may have different bioavailability and hence may impact the standard definition of folate equivalents. In order to examine this, a short term human study was undertaken to evaluate the relative native folate bioavailabilities from spinach, Camembert cheese and wheat germs compared to pteroylmonoglutamic acid as the reference dose. The study had a single-centre, randomised, four-treatment, four-period, four-sequence, cross-over design, i.e. the four (food) items to be tested (referred to as treatments) were administered in sequences according to the Latin square, so that each experimental treatment occurred only once within each sequence and once within each study period. Each of the 24 subjects received the four experimental items separated by a 14-day equilibrium phase and received a pteroylmonoglutamic acid supplement for 14 days before the first testing and between the testings for saturation of body pools. Folates in test foods, plasma and urine samples were determined by stable isotope dilution assays, and in urine and plasma, the concentrations of 5-methyltetrahydrofolate were evaluated. Standard non-compartmental methods were applied to determine the biokinetic parameters C(max), t(max) and AUC from baseline corrected 5-methyltetrahydrofolate concentrations within the interval from 0 to 12 hours. The variability of AUC and C(max) was moderate for spinach and oral solution of pteroylmonoglutamic acid but high for Camembert cheese and very high for wheat germs. The median t(max) was lowest for spinach, though t(max) showed a high variability among all treatments. When comparing the ratio estimates of AUC and C(max) for the different test foods, highest bioavailability was found for spinach followed by that for wheat germs and Camembert cheese. The results underline the dependence of folate bioavailability on the type of food ingested. Therefore, the general assumption of 50% bioavailability as the rationale behind the definition of

  8. The metabolic basis for developmental disorders due to defective folate transport.

    PubMed

    Desai, Ankuri; Sequeira, Jeffrey M; Quadros, Edward V

    2016-07-01

    Folates are essential in the intermediary metabolism of amino acids, synthesis of nucleotides and for maintaining methylation reactions. They are also linked to the production of neurotransmitters through GTP needed for the synthesis of tetrahydrobiopterin. During pregnancy, folate is needed for fetal development. Folate deficiency during this period has been linked to increased risk of neural tube defects. Disturbances of folate metabolism due to genetic abnormalities or the presence of autoantibodies to folate receptor alpha (FRα) can impair physiologic processes dependent on folate, resulting in a variety of developmental disorders including cerebral folate deficiency syndrome and autism spectrum disorders. Overall, adequate folate status has proven to be important during pregnancy as well as neurological development and functioning in neonates and children. Treatment with pharmacologic doses of folinic acid has led to reversal of some symptoms in many children diagnosed with cerebral folate deficiency syndrome and autism, especially in those positive for autoantibodies to FRα. Thus, as the brain continues to develop throughout fetal and infant life, it can be affected and become dysfunctional due to a defective folate transport contributing to folate deficiency. Treatment and prevention of these disorders can be achieved by identification of those at risk and supplementation with folinic acid. PMID:26924398

  9. Folate and neural tube defects: The role of supplements and food fortification.

    PubMed

    Ami, Noam; Bernstein, Mark; Boucher, François; Rieder, Michael; Parker, Louise

    2016-04-01

    Periconceptional folic acid significantly reduces the risk of neural tube defects. It is difficult to achieve optimal levels of folate by diet alone, even with fortification of flour, especially because flour consumption in Canada is slightly decreasing. Intermittent concerns have been raised concerning possible deleterious effects of folate supplementation, including the masking of symptoms of vitamin B12 deficiency and an association with cancer, especially colorectal cancer. Both concerns have been disproved. The Canadian Paediatric Society endorses the following steps to enhance folate intake in women of child-bearing age: encouraging the consumption of folate-rich foods such as leafy vegetables, increasing the level of folate food fortification, taking a supplement containing folate and B12, and providing free folate supplementation to disadvantaged women of child-bearing age. These recommendations are consistent with those of the Society of Obstetricians and Gynaecologists of Canada. PMID:27398055

  10. Causes of Vitamin B12 and Folate Deficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review describes current knowledge of the main causes of vitamin B12 and folate deficiency. The most common explanations for poor B12 status are a low dietary intake of the vitamin (i.e., a low intake of animal-source foods) and malabsorption. Although it has long been known that strict vegetar...

  11. Folate metabolism and the risk of Down syndrome.

    PubMed

    Patterson, David

    2008-10-01

    Folate is an important vitamin that contributes to cell division and growth and is therefore of particular importance during infancy and pregnancy. Folate deficiency has been associated with slowed growth, anaemia, weight loss, digestive disorders and some behavioural issues. Adequate folate intake around the time of conception and early pregnancy can reduce the risk of certain problems including neural tube defects. It has been suggested that certain versions (polymorphisms) of some genes can increase the risk of conceiving a baby with Down syndrome. If this is the case, then people with Down syndrome may be more likely to carry these forms of these genes and to experience associated problems in folate metabolism. Studies to date have found conflicting results, suggesting that these gene variants may be part of a more complex picture. In this issue, a further study reports no association between the presence of a common polymorphism of one of these genes and the risk of having a child with Down syndrome among mothers of Northern Indian origin. This article reviews these challenging findings and looks at where investigations can now go to resolve these issues. PMID:19026278

  12. EFFECT OF DIETARY FOLATE DEFICIENCY ON ARSENIC GENOTOXICITY IN MICE

    EPA Science Inventory

    Arsenic, a human carcinogen found in drinking water supplies throughout the world, is clastogenic in human and rodent cells. An estimated ten percent of Americans are deficient in folate, a methyl donor necessary for normal nucleotide metabolism, DNA synthesis, and DNA methylatio...

  13. Causes of vitamin B12 and folate deficiency.

    PubMed

    Allen, Lindsay H

    2008-06-01

    This review describes current knowledge of the main causes of vitamin B12 and folate deficiency. The most common explanations for poor vitamin B12 status are a low dietary intake of the vitamin (i.e., a low intake of animal-source foods) and malabsorption. Although it has long been known that strict vegetarians (vegans) are at risk for vitamin B12 deficiency, evidence now indicates that low intakes of animal-source foods, such as occur in some lacto-ovo vegetarians and many less-industrialized countries, cause vitamin B12 depletion. Malabsorption of the vitamin is most commonly observed as food-bound cobalamin malabsorption due to gastric atrophy in the elderly, and probably as a result of Helicobacter pylori infection. There is growing evidence that gene polymorphisms in transcobalamins affect plasma vitamin B12 concentrations. The primary cause of folate deficiency is low intake of sources rich in the vitamin, such as legumes and green leafy vegetables, and the consumption of these foods may explain why folate status can be adequate in relatively poor populations. Other situations in which the risk of folate deficiency increases include lactation and alcoholism. PMID:18709879

  14. Quantification of Niacin and Folate Contents in Peanuts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanuts (Arachis hypogaea L.) are known to be sources of several important B-vitamins, including niacin and folate. Recent research has shown that therapeutic doses of niacin are beneficial for vascular health; therefore, determination of the concentrations found in current varieties in production ...

  15. Enhancing Methotrexate Tolerance with Folate Tagged Liposomes in Arthritic Mice.

    PubMed

    Nogueira, Eugénia; Lager, Franck; Le Roux, Delphine; Nogueira, Patrícia; Freitas, Jaime; Charvet, Celine; Renault, Gilles; Loureiro, Ana; Almeida, Catarina R; Ohradanova-Repic, Anna; Machacek, Christian; Bernardes, Gonçalo J L; Moreira, Alexandra; Stockinger, Hannes; Burnet, Michael; Carmo, Alexandre M; Gomes, Andreia C; Preto, Ana; Bismuth, Georges; Cavaco-Paulo, Artur

    2015-12-01

    Methotrexate is the first line of treatment of rheumatoid arthritis. Since many patients become unresponsive to methotrexate treatment, only very expensive biological therapies are effective and increased methotrexate tolerance strategies need to be identified. Here we propose the encapsulation of methotrexate in a new liposomal formulation using a hydrophobic fragment of surfactant protein conjugated to a linker and folate to enhance their tolerance and efficacy. In this study we aim to evaluate the efficiency of this system to treat rheumatoid arthritis, by targeting folate receptor β present at the surface of activated macrophages, key effector cells in this pathology. The specificity of our liposomal formulation to target folate receptor β was investigated both in vitro as in vivo using a mouse model of arthritis (collagen-induced arthritis in DBA/1J mice strain). In both systems, the liposomal constructs were shown to be highly specific and efficient in targeting folate receptor β. These liposomal formulations also significantly increase the clinical benefit of the encapsulated methotrexate in vivo in arthritic mice, together with reduced expression of CD39 and CD73 ectonucleotidases by joint-infiltrating macrophages. Thus, our formulation might be a promising cost effective way to treat rheumatoid arthritis and delay or reduce methotrexate intolerance. PMID:26510317

  16. Keratan Sulfate Biosynthesis

    PubMed Central

    Funderburgh, James L.

    2010-01-01

    Summary Keratan sulfate was originally identified as the major glycosaminoglycan of cornea but is now known to modify at least a dozen different proteins in a wide variety of tissues. Despite a large body of research documenting keratan sulfate structure, and an increasing interest in the biological functions of keratan sulfate, until recently little was known of the specific enzymes involved in keratan sulfate biosynthesis or of the molecular mechanisms that control keratan sulfate expression. In the last 2 years, however, marked progress has been achieved in identification of genes involved in keratan sulfate biosynthesis and in development of experimental conditions to study keratan sulfate secretion and control in vitro. This review summarizes current understanding of keratan sulfate structure and recent developments in understanding keratan sulfate biosynthesis. PMID:12512857

  17. Glycine and Folate Ameliorate Models of Congenital Sideroblastic Anemia

    PubMed Central

    Dufay, J. Noelia; Steele, Shelby L.; Gaston, Daniel; Nasrallah, Gheyath K.; Coombs, Andrew J.; Liwski, Robert S.; Fernandez, Conrad V.; Berman, Jason N.; McMaster, Christopher R.

    2016-01-01

    Sideroblastic anemias are acquired or inherited anemias that result in a decreased ability to synthesize hemoglobin in red blood cells and result in the presence of iron deposits in the mitochondria of red blood cell precursors. A common subtype of congenital sideroblastic anemia is due to autosomal recessive mutations in the SLC25A38 gene. The current treatment for SLC25A38 congenital sideroblastic anemia is chronic blood transfusion coupled with iron chelation. The function of SLC25A38 is not known. Here we report that the SLC25A38 protein, and its yeast homolog Hem25, are mitochondrial glycine transporters required for the initiation of heme synthesis. To do so, we took advantage of the fact that mitochondrial glycine has several roles beyond the synthesis of heme, including the synthesis of folate derivatives through the glycine cleavage system. The data were consistent with Hem25 not being the sole mitochondrial glycine importer, and we identify a second SLC25 family member Ymc1, as a potential secondary mitochondrial glycine importer. Based on these findings, we observed that high levels of exogenous glycine, or 5-aminolevulinic acid (5-Ala) a metabolite downstream of Hem25 in heme biosynthetic pathway, were able to restore heme levels to normal in yeast cells lacking Hem25 function. While neither glycine nor 5-Ala could ameliorate SLC25A38 congenital sideroblastic anemia in a zebrafish model, we determined that the addition of folate with glycine was able to restore hemoglobin levels. This difference is likely due to the fact that yeast can synthesize folate, whereas in zebrafish folate is an essential vitamin that must be obtained exogenously. Given the tolerability of glycine and folate in humans, this study points to a potential novel treatment for SLC25A38 congenital sideroblastic anemia. PMID:26821380

  18. Glycine and Folate Ameliorate Models of Congenital Sideroblastic Anemia.

    PubMed

    Fernández-Murray, J Pedro; Prykhozhij, Sergey V; Dufay, J Noelia; Steele, Shelby L; Gaston, Daniel; Nasrallah, Gheyath K; Coombs, Andrew J; Liwski, Robert S; Fernandez, Conrad V; Berman, Jason N; McMaster, Christopher R

    2016-01-01

    Sideroblastic anemias are acquired or inherited anemias that result in a decreased ability to synthesize hemoglobin in red blood cells and result in the presence of iron deposits in the mitochondria of red blood cell precursors. A common subtype of congenital sideroblastic anemia is due to autosomal recessive mutations in the SLC25A38 gene. The current treatment for SLC25A38 congenital sideroblastic anemia is chronic blood transfusion coupled with iron chelation. The function of SLC25A38 is not known. Here we report that the SLC25A38 protein, and its yeast homolog Hem25, are mitochondrial glycine transporters required for the initiation of heme synthesis. To do so, we took advantage of the fact that mitochondrial glycine has several roles beyond the synthesis of heme, including the synthesis of folate derivatives through the glycine cleavage system. The data were consistent with Hem25 not being the sole mitochondrial glycine importer, and we identify a second SLC25 family member Ymc1, as a potential secondary mitochondrial glycine importer. Based on these findings, we observed that high levels of exogenous glycine, or 5-aminolevulinic acid (5-Ala) a metabolite downstream of Hem25 in heme biosynthetic pathway, were able to restore heme levels to normal in yeast cells lacking Hem25 function. While neither glycine nor 5-Ala could ameliorate SLC25A38 congenital sideroblastic anemia in a zebrafish model, we determined that the addition of folate with glycine was able to restore hemoglobin levels. This difference is likely due to the fact that yeast can synthesize folate, whereas in zebrafish folate is an essential vitamin that must be obtained exogenously. Given the tolerability of glycine and folate in humans, this study points to a potential novel treatment for SLC25A38 congenital sideroblastic anemia. PMID:26821380

  19. Mammalian cardiolipin biosynthesis.

    PubMed

    Mejia, Edgard M; Nguyen, Hieu; Hatch, Grant M

    2014-04-01

    Cardiolipin is a major phospholipid in mitochondria and is involved in the generation of cellular energy in the form of ATP. In mammalian and eukaryotic cells it is synthesized via the cytidine-5'-diphosphate-1,2-diacyl-sn-glycerol phosphate pathway. This brief review will describe some of the more recent studies on mammalian cardiolipin biosynthesis and provide an overview of regulation of cardiolipin biosynthesis. In addition, the important role that this key phospholipid plays in disease processes including heart failure, diabetes, thyroid hormone disease and the genetic disease Barth Syndrome will be discussed. PMID:24144810

  20. Folate in depression: efficacy, safety, differences in formulations, and clinical issues.

    PubMed

    Fava, Maurizio; Mischoulon, David

    2009-01-01

    Supplementation with folate may help reduce depressive symptoms. Folate, a naturally occurring B vitamin, is needed in the brain for the synthesis of norepinephrine, serotonin, and dopamine. Three forms of folate are commonly used: folic acid, 5-methyltetrahydrofolate (5-MTHF) (also known as methylfolate and L-methylfolate), and folinic acid. Some forms may be more bioavailable than others in patients with a genetic polymorphism and in those who take particular medications or use alcohol. Folic acid augmentation in depressed patients may reduce residual symptoms. The 5-MTHF formulation indicated efficacy as adjunctive therapy or monotherapy in reducing depressive symptoms in patients with normal and low folate levels, improving cognitive function and reducing depressive symptoms in elderly patients with dementia and folate deficiency, and reducing depressive and somatic symptoms in patients with depression and alcoholism. Adjunctive folinic acid reduced depressive symptoms in patients who were partially responsive or nonresponsive to a selective serotonin reuptake inhibitor. Evidence for the efficacy of folate in improving cognitive symptoms is equivocal, but most studies used folic acid. Although the studies reviewed have limitations and, historically, concerns have been raised about the role of folate in increasing cancer risk, masking B(12) deficiency, and worsening depressive symptoms, folate is generally well tolerated, and 5-MTHF may be less likely to incur some of these risks. Several forms of folate appear to be safe and efficacious in some individuals with major depressive disorder, but more information is needed about dosage and populations most suited to folate therapy. PMID:19909688

  1. The distribution of serum folate concentration and red blood cell indices in alcoholics.

    PubMed

    Cylwik, Bogdan; Naklicki, Marcin; Gruszewska, Ewa; Szmitkowski, Maciej; Chrostek, Lech

    2013-01-01

    Chronic alcohol consumption leads to malnutrition and to the deficiency of many vitamins. One of the most important is folate deficiency. Folate deficiency disrupts the process of hematopoiesis, which can be evaluated by the changes of red cell indices. The aim of this study was to determine the hematological disturbances by the measurement of red blood cell indices in a Polish population of chronic alcoholics according to folate status. We studied 80 consecutive chronic alcoholic men and 30 healthy controls. Patients were divided into 2 groups according to the folate concentration. The serum folate and vitamin B12 concentration and the blood count were determined. We have shown that the serum folate concentration was decreased in 40% of alcoholics, but there was no folate deficiency and the level of vitamin B12 was normal. There was no correlation between folate, vitamin B12 and hematological indices. We have observed that most hematological parameters (Hb, RBCs, and Hct) in alcoholics were decreased and only two of them (MCV and MCHC) were increased in comparison with the controls. We observed no significant correlation between the RBCs indices and the weekly alcohol intake, but the correlation between RBCs, Hb, Hct and the duration of dependence have been shown. We concluded that, there is no folate deficiency in the Polish alcoholic population but the abusers with low folate levels may already have some RBCs indices affected. It means that the Polish alcoholic population consumes a sufficient amount of vitamins, which prevents the occurrence of hematological disturbances. PMID:23535533

  2. Delivery of liposomes into cultured KB cells via folate receptor-mediated endocytosis.

    PubMed

    Lee, R J; Low, P S

    1994-02-01

    Folic acid was covalently conjugated to 66-nm liposomes via spacers of various lengths in an attempt to target the liposomes to KB cells expressing folate receptors. Spacers of short and intermediate lengths were unable to mediate association of folate-conjugated liposomes with receptor-bearing cells, however, use of a 250 A polyethyleneglycol spacer (PEG, M(r) approximately 3350) permitted avid uptake of the liposomes at approximately 2.5 x 10(5) sites/cell. The binding of folate-PEG liposomes to KB cells could be competitively inhibited by excess free folate or by antiserum against the folate receptor, demonstrating the interaction is mediated by the cell surface folate-binding protein. Following binding, cell-associated folate-PEG liposomes were internalized by folate-receptor-mediated endocytosis at 37 degrees C but not at 4 degrees C. These folate-PEG liposomes show potential for delivering large quantities of low molecular weight compounds nondestructively into folate receptor-bearing cells. PMID:8106354

  3. Exploring Folate Diversity in Wild and Primitive Potatoes for Modern Crop Improvement.

    PubMed

    Robinson, Bruce R; Sathuvalli, Vidyasagar; Bamberg, John; Goyer, Aymeric

    2015-01-01

    Malnutrition is one of the world's largest health concerns. Folate (also known as vitamin B₉) is essential in the human diet, and without adequate folate intake, several serious health concerns, such as congenital birth defects and an increased risk of stroke and heart disease, can occur. Most people's folate intake remains sub-optimal, even in countries that have a folic acid food fortification program in place. Staple crops, such as potatoes, represent an appropriate organism for biofortification through traditional breeding based on their worldwide consumption and the fact that modern cultivars only contain about 6% of the daily recommended intake of folate. To start breeding potatoes with enhanced folate content, high folate potato material must be identified. In this study, 250 individual plants from 77 accessions and 10 Solanum species were screened for their folate content using a tri-enzyme extraction and microbial assay. There was a 10-fold range of folate concentrations among individuals. Certain individuals within the species Solanum tuberosum subsp. andigenum, Solanum vernei and Solanum boliviense have the potential to produce more than double the folate concentrations of commercial cultivars, such as Russet Burbank. Our results show that tapping into the genetic diversity of potato is a promising approach to increase the folate content of this important crop. PMID:26670256

  4. In situ enrichment of folate by microorganisms in beta-glucan rich oat and barley matrices.

    PubMed

    Kariluoto, Susanna; Edelmann, Minnamari; Nyström, Laura; Sontag-Strohm, Tuula; Salovaara, Hannu; Kivelä, Reetta; Herranen, Mirkka; Korhola, Matti; Piironen, Vieno

    2014-04-17

    The objective was to study folate production of yeast strains, bacteria isolated from oat bran, and selected lactic acid bacteria as well as one propionibacterium in oat and barley based models. Simultaneously, we aimed at sustaining the stability of viscosity, representing the physicochemical state of beta-glucan. Total folate contents were determined microbiologically and vitamers for selected samples by UHPLC. Folate in yeast cells comprised mainly 5-methyltetrahydrofolate and tetrahydrofolate. Folate production by microbes in YPD medium was different to that in cereal fermentations where vitamers included 5-methyltetrahydrofolate, 5,10-methenyltetrahydrofolate and formylated derivatives. Microbes producing significant amounts of folate without affecting viscosity were Saccharomyces cerevisiae ALKO743 and Candida milleri ABM4949 among yeasts and Pseudomonas sp. ON8 and Janthinobacterium sp. RB4 among bacteria. Net folate production was up to 120 ng/g after 24 h fermentation and could increase during 2-week storage. Glucose addition increased the proportion of 5-methyltetrahydrofolate. Streptococcus thermophilus ABM5097, Lactobacillus reuteri, and Propionibacterium sp. ABM5378 produced folate but in lower concentrations. Both endogenous and added microbes contribute to folate enhancement. Selection of microbes with folate producing capability and limited hydrolytic activity will enable the development of products rich in folate and beta-glucan. PMID:24561828

  5. Exploring Folate Diversity in Wild and Primitive Potatoes for Modern Crop Improvement

    PubMed Central

    Robinson, Bruce R.; Sathuvalli, Vidyasagar; Bamberg, John; Goyer, Aymeric

    2015-01-01

    Malnutrition is one of the world’s largest health concerns. Folate (also known as vitamin B9) is essential in the human diet, and without adequate folate intake, several serious health concerns, such as congenital birth defects and an increased risk of stroke and heart disease, can occur. Most people’s folate intake remains sub-optimal, even in countries that have a folic acid food fortification program in place. Staple crops, such as potatoes, represent an appropriate organism for biofortification through traditional breeding based on their worldwide consumption and the fact that modern cultivars only contain about 6% of the daily recommended intake of folate. To start breeding potatoes with enhanced folate content, high folate potato material must be identified. In this study, 250 individual plants from 77 accessions and 10 Solanum species were screened for their folate content using a tri-enzyme extraction and microbial assay. There was a 10-fold range of folate concentrations among individuals. Certain individuals within the species Solanum tuberosum subsp. andigenum, Solanum vernei and Solanum boliviense have the potential to produce more than double the folate concentrations of commercial cultivars, such as Russet Burbank. Our results show that tapping into the genetic diversity of potato is a promising approach to increase the folate content of this important crop. PMID:26670256

  6. An investigation of folate-related genetic factors in the determination of birthweight.

    PubMed

    Relton, Caroline L; Pearce, Mark S; Burn, John; Parker, Louise

    2005-09-01

    Recent evidence suggests that maternal folate status in early gestation is a significant determinant of infant birthweight. Folate metabolism is known to be controlled by genetic factors, with a number of polymorphic variations in folate metabolising genes identified, several of which have well-documented functional effects. The current study investigated whether folate-related polymorphic variation, in association with low maternal folate status, influences birthweight. Red blood cell (RBC) folate analysis and genotyping of five polymorphisms in folate-related genes [Methylenetetrahydrofolate reductase (MTHFR) 677C>T; MTHFR 1298A>C; cystathionine-beta-synthase (CbetaS) 844ins68bp; serine hydroxymethyltransferase (SHMT) 1420C>T; reduced folate carrier-1 (RFC-1) 80G>A] were undertaken in mothers and infants from 998 pregnancies. These data were analysed in relation to infant birthweight, adjusted for gender and gestational age (z-score). Low maternal RBC folate status was associated with reduced infant birthweight. None of the genetic variants studied showed an independent association with infant birthweight. However, two genetic variants were shown to have a significant effect on birthweight when found in association with low maternal RBC folate status. When individuals with variant genotypes and mothers with folate in the lowest quintile were compared with wild-type individuals and mothers with folate in the highest quintile, the following differences in mean birthweight (z-score) were observed; maternal MTHFR 677C>T (-0.56 [95% CI -1.00, -0.12]P=0.01) and infant CbetaS 844ins68bp (-0.71 [95% CI -1.97, -0.07]P=0.03). The findings of this study suggest that folate-related genetic polymorphisms do not directly influence infant birthweight. However, when placed on a background of deficient maternal nutritional status, they may detrimentally affect fetal growth. PMID:16115288

  7. Do Thai women of child bearing age need pre-conceptional supplementation of dietary folate?

    PubMed

    Sirikulchayanonta, Chutima; Madjupa, Kannatcha; Chongsuwat, Rewadee; Pandii, Wongdyan

    2004-01-01

    Recent studies in western countries have indicated that women with low serum folate before pregnancy have greater risk of giving birth to babies with neural tube defects, and preconceptional folate supplementation has been recommended to prevent such defects. To determine whether Thai women needed folate supplementation before pregnancy, we carried out a cross-sectional study from September 2001 to January 2002. The objectives were to determine serum folate levels among women of child-bearing age and their relationship to dietary folate intake. One hundred and sixty-five apparently healthy, volunteer women aged 15 - 45 years were recruited from the Family Planning Clinic, Mother and Child Hospital, Health Promotion Centre, Region I, Bangkok. Data on general characteristics, nutritional status and dietary folate intake were recorded while venous blood was drawn for serum folate analysis. Results showed that 65.5% of the study group had low dietary folate intake, that 18% had low serum folate, and that there was a significant correlation between dietary intake and serum level (r = 0.68, P<0.001). There were also significant correlations between serum level and body mass index, (r =0.13, P<0.001). However, there were no significant associations between serum level and age, educational level, occupation, family income, or duration vegetables were stored in the refrigerator before consumption. In conclusion, there is preliminary evidence that some pregnant Thai women may have sufficiently low serum folate levels to put their babies at risk. We recommend further study on a larger scale to confirm whether folate supplementation is needed for Thai women at child bearing age. In the interim, it may be wise for obstetricians to measure serum folate in pregnant women to determine whether folate supplementation is required. PMID:15003917

  8. Folate supplementation increases genomic DNA methylation in the liver of elder rats.

    PubMed

    Choi, Sang-Woon; Friso, Simonetta; Keyes, Mary K; Mason, Joel B

    2005-01-01

    The availability of folate is implicated as a determinant of DNA methylation, a functionally important feature of DNA. Nevertheless, when this phenomenon has been examined in the rodent model, the effect has not always been observed. Several reasons have been postulated for the inconsistency between studies: the rodent is less dependent on folate as a methyl source than man; juvenile animals, which most studies use, are more resistant to folate depletion than old animals; methods to measure genomic DNA methylation might not be sensitive enough to detect differences. We therefore examined the relationship between folate and genomic DNA methylation in an elder rat model with a newly developed method that can measure genomic DNA methylation sensitively and precisely. Thirty-nine 1-year-old rats were divided into three groups and fed a diet containing 0, 4.5 or 18 mumol folate/kg (folate-deplete, -replete and -supplemented groups, respectively). Rats were killed at 8 and 20 weeks. At both time points, mean liver folate concentrations increased incrementally between the folate-deplete, -replete and -supplemented rats (P for trend <0.001) and by 20 weeks hepatic DNA methylation also increased incrementally between the folate-deplete, -replete and -supplemented rats (P for trend=0.025). At both time points folate-supplemented rats had significantly increased levels of DNA methylation compared with folate-deplete rats (P<0.05). There was a strong correlation between hepatic folate concentration and genomic DNA methylation in the liver (r 0.48, P=0.004). In the liver of this animal model, dietary folate over a wide range of intakes modulates genomic DNA methylation. PMID:15705222

  9. Moderate folate depletion modulates the expression of selected genes involved in cell cycle, intracellular signaling, and folate uptake in human colonic epithelial cell lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Folate deficiency may affect gene expression by disrupting DNA methylation patterns or by inducing base substitution, DNA breaks, gene deletions and gene amplification. Changes in expression may explain the inverse relationship observed between folate status and risk of colorectal cancer. Three cell...

  10. CHRONIC CIGARETTE SMOKING IS ASSOCIATED WITH DIMINISHED FOLATE STATUS, ALTERED FOLATE FORM DISTRIBUTION, AND INCREASED GENETIC DAMAGE IN THE BUCCAL MUCOSA OF HEALTHY ADULTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Smoking causes genetic damage in buccal cells and increases the risk of oral cancer. Since folate is instrumental in DNA synthesis and repair, it is a determinant of genetic stability and therefore might attenuate the genotoxic effects of smoking. Objective: To compare folate metabolites...

  11. Biosynthesis of Polyisoprenoids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The invention is a process for synthesis of a polymer with the same chemical structure as Natural Rubber (NR) obtained from Hevea brasiliensis and other plant species. The research collaborators recently proposed that NR biosynthesis proceeds via a carbocationic polymerization. Based on this theory...

  12. Evaluation of the novel folate receptor ligand [18F]fluoro-PEG-folate for macrophage targeting in a rat model of arthritis

    PubMed Central

    2013-01-01

    Introduction Detection of (subclinical) synovitis is relevant for both early diagnosis and monitoring of therapy of rheumatoid arthritis (RA). Previously, the potential of imaging (sub)clinical arthritis was demonstrated by targeting the translocator protein in activated macrophages using (R)-[11C]PK11195 and positron emission tomography (PET). Images, however, also showed significant peri-articular background activity. The folate receptor (FR)-β is a potential alternative target for imaging activated macrophages. Therefore, the PET tracer [18F]fluoro-PEG-folate was synthesized and evaluated in both in vitro and ex vivo studies using a methylated BSA induced arthritis model. Methods [18F]fluoro-PEG-folate was synthesized in a two-step procedure. Relative binding affinities of non-radioactive fluoro-PEG-folate, folic acid and naturally circulating 5-methyltetrahydrofolate (5-Me-THF) to FR were determined using KB cells with high expression of FR. Both in vivo [18F]fluoro-PEG-folate PET and ex vivo tissue distribution studies were performed in arthritic and normal rats and results were compared with those of the established macrophage tracer (R)-[11C]PK11195. Results [18F]fluoro-PEG-folate was synthesized with a purity >97%, a yield of 300 to 1,700 MBq and a specific activity between 40 and 70 GBq/µmol. Relative in vitro binding affinity for FR of F-PEG-folate was 1.8-fold lower than that of folic acid, but 3-fold higher than that of 5-Me-THF. In the rat model, [18F]fluoro-PEG-folate uptake in arthritic knees was increased compared with both contralateral knees and knees of normal rats. Uptake in arthritic knees could be blocked by an excess of glucosamine-folate, consistent with [18F]fluoro-PEG-folate being specifically bound to FR. Arthritic knee-to-bone and arthritic knee-to-blood ratios of [18F]fluoro-PEG-folate were increased compared with those of (R)-[11C]PK11195. Reduction of 5-Me-THF levels in rat plasma to those mimicking human levels increased absolute

  13. Folate status and concentrations of serum folate forms in the US population: National Health and Nutrition Examination Survey 2011-2.

    PubMed

    Pfeiffer, Christine M; Sternberg, Maya R; Fazili, Zia; Lacher, David A; Zhang, Mindy; Johnson, Clifford L; Hamner, Heather C; Bailey, Regan L; Rader, Jeanne I; Yamini, Sedigheh; Berry, R J; Yetley, Elizabeth A

    2015-06-28

    Serum and erythrocyte (RBC) total folate are indicators of folate status. No nationally representative population data exist for folate forms. We measured the serum folate forms (5-methyltetrahydrofolate (5-methylTHF), unmetabolised folic acid (UMFA), non-methyl folate (sum of tetrahydrofolate (THF), 5-formyltetrahydrofolate (5-formylTHF), 5,10-methenyltetrahydrofolate (5,10-methenylTHF)) and MeFox (5-methylTHF oxidation product)) by HPLC-MS/MS and RBC total folate by microbiologic assay in US population ≥ 1 year (n approximately 7500) participating in the National Health and Nutrition Examination Survey 2011-2. Data analysis for serum total folate was conducted including and excluding MeFox. Concentrations (geometric mean; detection rate) of 5-methylTHF (37·5 nmol/l; 100 %), UMFA (1·21 nmol/l; 99·9 %), MeFox (1·53 nmol/l; 98·8 %), and THF (1·01 nmol/l; 85·2 %) were mostly detectable. 5-FormylTHF (3·6 %) and 5,10-methenylTHF (4·4 %) were rarely detected. The biggest contributor to serum total folate was 5-methylTHF (86·7 %); UMFA (4·0 %), non-methyl folate (4·7 %) and MeFox (4·5 %) contributed smaller amounts. Age was positively related to MeFox, but showed a U-shaped pattern for other folates. We generally noted sex and race/ethnic biomarker differences and weak (Spearman's r< 0·4) but significant (P< 0·05) correlations with physiological and lifestyle variables. Fasting, kidney function, smoking and alcohol intake showed negative associations. BMI and body surface area showed positive associations with MeFox but negative associations with other folates. All biomarkers showed significantly higher concentrations with recent folic acid-containing dietary supplement use. These first-time population data for serum folate forms generally show similar associations with demographic, physiological and lifestyle variables as serum total folate. Patterns observed for MeFox may suggest altered folate metabolism dependent on biological

  14. Folate status and concentrations of serum folate forms in the US population: National Health and Nutrition Examination Survey 2011–2

    PubMed Central

    Pfeiffer, Christine M.; Sternberg, Maya R.; Fazili, Zia; Lacher, David A.; Zhang, Mindy; Johnson, Clifford L.; Hamner, Heather C.; Bailey, Regan L.; Rader, Jeanne I.; Yamini, Sedigheh; Berry, R. J.; Yetley, Elizabeth A.

    2016-01-01

    Serum and red blood cell (RBC) total folate are indicators of folate status. No nationally representative population data exist for folate forms. We measured serum folate forms [5-methyltetrahydrofolate (5-methylTHF), unmetabolized folic acid (UMFA), non-methyl folate (sum of THF, 5-formylTHF, 5,10-methenylTHF), and MeFox (5-methylTHF oxidation product)] by HPLC-MS/MS and RBC total folate by microbiologic assay in US persons ≥1 year (n ~7500) participating in the National Health and Nutrition Examination Survey 2011–2. Data analysis for serum total folate was conducted including and excluding MeFox. Concentrations (geometric mean; detection rate) of 5-methylTHF (37.5 nmol/L; 100%), UMFA (1.21 nmol/L; 99.9%), MeFox (1.53 nmol/L; 98.8%), and THF (1.01 nmol/L; 85.2%) were mostly detectable. 5-FormylTHF (3.6%) and 5,10-methenylTHF (4.4%) were rarely detected. The biggest contributor to serum total folate was 5-methylTHF (86.7%); UMFA (4.0%), non-methyl folate (4.7%), and MeFox (4.5%) contributed smaller amounts. Age was positively related to MeFox but showed a U-shaped pattern for other folates. We generally noted sex and race-ethnic biomarker differences and weak (Spearman r <0.4) but significant (P <0.05) correlations with physiologic and lifestyle variables. Fasting, kidney function, smoking, and alcohol intake showed negative associations. BMI and body surface area showed positive associations with MeFox but negative associations with other folates. All biomarkers showed significantly higher concentrations with recent folic acid-containing dietary supplement use. These first-time population data for serum folate forms generally show similar associations with demographic, physiologic, and lifestyle variables as serum total folate. Patterns observed for MeFox may suggest altered folate metabolism dependent on biological characteristics. PMID:25917925

  15. A Humanized Mouse Model for the Reduced Folate Carrier

    PubMed Central

    Patterson, David; Graham, Christine; Cherian, Christina; Matherly, Larry H.

    2008-01-01

    The ubiquitously expressed reduced folate carrier (RFC) or SLC19A1 is recognized to be an essential transport system for folates in mammalian cells and tissues. In addition to its generalized role as a folate transporter, RFC provides specialized tissue functions including absorption across intestinal/colonic epithelia, transport across the basolateral membrane of renal proximal tubules, transplacental transport of folates, and folate transport across the blood-brain barrier. The human RFC (hRFC) gene is regulated by 5 major upstream non-coding regions (designated A1/A2, A, B, C, and D), each transcribed from a unique promoter. Altogether, at least 14 distinct hRFC transcripts can be envisaged in which different 5’ untranslated regions (UTRs) are fused to a common splice acceptor region (positions -1 to -49) within the first coding exon with a common 1776 bp coding sequence. The 5’ non-coding regions are characterized by alternate transcription start sites, multiple splice forms, and selective tissue distributions. Alternate 5’UTRs impact mRNA stabilities and translation efficiencies, and result in synthesis of modified hRFC proteins translated from upstream AUGs. In this report, we describe production and characterization of transgenic mice (TghRFC1) containing a functional hRFC gene and of humanized mice in which the mRFC gene is inactivated and an active hRFC gene has been introduced. The mice appear to be healthy and to breed well. Analysis of tissue specificity of expression in both the TghRFC1 and humanized hRFC mice by real-time RT-PCR demonstrates that the hRFC gene is expressed with a specificity closely resembling that seen in human tissues. For the humanized hRFC mice, levels of B and A1/A2 5’UTRs predominated in all mice/tissues, thus resembling results in normal human tissues. Lower levels of A and C 5’UTRs were also detected. The availability of humanized mouse models for hRFC will permit investigators to address critical unanswered

  16. A humanized mouse model for the reduced folate carrier.

    PubMed

    Patterson, David; Graham, Christine; Cherian, Christina; Matherly, Larry H

    2008-02-01

    The ubiquitously expressed reduced folate carrier (RFC) or SLC19A1 is recognized to be an essential transport system for folates in mammalian cells and tissues. In addition to its generalized role as a folate transporter, RFC provides specialized tissue functions including absorption across intestinal/colonic epithelia, transport across the basolateral membrane of renal proximal tubules, transplacental transport of folates, and folate transport across the blood-brain barrier. The human RFC (hRFC) gene is regulated by five major upstream non-coding regions (designated A1/A2, A, B, C, and D), each transcribed from a unique promoter. Altogether, at least 14 distinct hRFC transcripts can be envisaged in which different 5' untranslated regions (UTRs) are fused to a common splice acceptor region (positions -1 to -49) within the first coding exon with a common 1776bp coding sequence. The 5' non-coding regions are characterized by alternate transcription start sites, multiple splice forms, and selective tissue distributions. Alternate 5' UTRs impact mRNA stabilities and translation efficiencies, and result in synthesis of modified hRFC proteins translated from upstream AUGs. In this report, we describe production and characterization of transgenic mice (TghRFC1) containing a functional hRFC gene and of humanized mice in which the mRFC gene is inactivated and an active hRFC gene has been introduced. The mice appear to be healthy and to breed well. Analysis of tissue specificity of expression in both the TghRFC1 and humanized hRFC mice by real-time RT-PCR demonstrates that the hRFC gene is expressed with a specificity closely resembling that seen in human tissues. For the humanized hRFC mice, levels of B and A1/A2 5' UTRs predominated in all mice/tissues, thus resembling results in normal human tissues. Lower levels of A and C 5' UTRs were also detected. The availability of humanized mouse models for hRFC will permit investigators to address critical unanswered questions

  17. Controversial roles of methylenetetrahydrofolate reductase polymorphisms and folate in breast cancer disease.

    PubMed

    Bravatà, Valentina

    2015-02-01

    Breast cancer (BC) represents a highly heterogeneous tumour at both the clinical and molecular levels. Single-nucleotide polymorphisms (SNPs) of the folate-metabolising enzyme methylenetetrahydrofolate-reductase (MTHFR) may modify the association between folate intake and BC and influence plasma folate concentration. The role of folate in BC is equivocal, association studies between the common MTHFR SNPs C677T and A1298C and BC risk are controversial. In this study, I have reviewed observed associations between folate intake, as well as its blood levels, and BC. The purpose of this review is to analyse the role of folate and the two SNPs associated with reduced enzyme activity in BC. I explored the most relevant and updated work that emphasises positive and negative associations among these variables. My findings indicate that no definitive conclusions can be drawn from the studies on this topic. However, this manuscript highlights variables that could be useful to explore in further association analyses. PMID:25318348

  18. Effects of yeasts and bacteria on the levels of folates in rye sourdoughs.

    PubMed

    Kariluoto, Susanna; Aittamaa, Marja; Korhola, Matti; Salovaara, Hannu; Vahteristo, Liisa; Piironen, Vieno

    2006-02-01

    Fermentation of rye dough is often accompanied with an increase in folate content. In this study, three sourdough yeasts, Candida milleri CBS 8195, Saccharomyces cerevisiae TS 146, and Torulaspora delbrueckii TS 207; a control, baker's yeast S. cerevisiae ALKO 743; and four Lactobacillus spp., L. acidophilus TSB 262, L. brevis TSB 307, L. plantarum TSB 304, and L. sanfranciscensis TSB 299 originally isolated from rye sourdough were examined for their abilities to produce or consume folates. The microorganisms were grown in yeast extract-peptone-d-glucose medium as well as in small-scale fermentations that modelled the sourdough fermentation step used in rye baking. Total folate contents were determined using Lactobacillus rhamnosus (ATCC 7469) as the growth indicator organism. The microorganisms studied did not excrete folates into the media in significant amounts. Yeasts increased the folate contents of sterilised rye flour-water mixtures from 6.5 microg/100 g to between 15 and 23 microg/100 g after 19-h fermentation, whereas lactic acid bacteria decreased it to between 2.9 and 4.2 microg/100 g. Strains of Lactobacillus bulgaricus, L. casei, L. curvatus, L. fermentum, L. helveticus, Pediococcus spp., and Streptococcus thermophilus that were also tested gave folate contents after fermentation that varied between 2 and 10.4 microg/100 g. Although the four Lactobacillus spp. from sourdough consumed folates their effect on folate contents in co-cultivations was minimal. It was concluded that the increase of folate content during fermentation was mainly due to folate synthesis by yeasts. Fermentation of non-sterilised flour-water mixtures as such resulted in three-fold increases in the folate contents. Two folate producing bacteria were isolated from the non-sterilised flour and identified as Enterobacter cowanii and Pantoea agglomerans. PMID:16213050

  19. MRP1 mediates folate transport and antifolate sensitivity in Plasmodium falciparum.

    PubMed

    Rijpma, Sanna R; van der Velden, Maarten; Bilos, Albert; Jansen, Robert S; Mahakena, Sunny; Russel, Frans G M; Sauerwein, Robert W; van de Wetering, Koen; Koenderink, Jan B

    2016-02-01

    Multidrug resistance-associated proteins (MRP) of Plasmodium falciparum have been associated with altered drug sensitivity. Knowledge on MRP substrate specificity is indispensible for the characterization of resistance mechanisms and identifying its physiological roles. An untargeted metabolomics approach detected decreased folate concentrations in red blood cells infected with schizont stage parasites lacking expression of MRP1. Furthermore, a tenfold decrease in sensitivity toward the folate analog methotrexate was detected for parasites lacking MRP1. PfMRP1 is involved in the export of folate from parasites into red blood cells and is therefore a relevant factor for efficient malaria treatment through the folate pathway. PMID:26900081

  20. Effect of freezing technology and storage conditions on folate content in selected vegetables.

    PubMed

    Czarnowska, Marta; Gujska, Elzbieta

    2012-12-01

    Folates (B vitamins) are essential for the proper function of many bodily processes. Although a rich natural source are vegetables, the literature lacks data on the effect of the pre-treatment and freezing technologies used in vegetable processing and frozen storage time on the folate content in these materials. Moreover, since folates are very unstable nutrients, the amount available in processed and stored foods can be significantly lower than in raw products. In tested vegetables (green beans, yellow beans, peas, cauliflower, broccoli and spinach), one folate form was identified, 5-methyltetrahydrofolate (5-CH₃-H₄folate). It was observed that pre-treatment and freezing technology significantly (p < 0.05) decreased 5-CH₃-H₄folate content only in vegetables with the largest degree of fragmentation (cut and briquetted spinach) and the smallest size (peas). In all analyzed samples, the 5-CH₃-H₄folate content decreased with the time of frozen storage. In frozen cauliflower, the 5-CH₃-H₄folate loss exceeded 95 % compared to the fresh product just after the third month of frozen storage. Meanwhile, in green and yellow beans, significant 5-CH₃-H₄folate losses (at the level of 75 % and 95 %, respectively) were observed no earlier than after the 9th month of frozen storage. PMID:22983767

  1. Bacterial Folates Provide an Exogenous Signal for C. elegans Germline Stem Cell Proliferation.

    PubMed

    Chaudhari, Snehal N; Mukherjee, Madhumati; Vagasi, Alexandra S; Bi, Gaofeng; Rahman, Mohammad M; Nguyen, Christine Q; Paul, Ligi; Selhub, Jacob; Kipreos, Edward T

    2016-07-11

    Here we describe an in vitro primary culture system for Caenorhabditis elegans germline stem cells. This culture system was used to identify a bacterial folate as a positive regulator of germ cell proliferation. Folates are a family of B-complex vitamins that function in one-carbon metabolism to allow the de novo synthesis of amino acids and nucleosides. We show that germ cell proliferation is stimulated by the folate 10-formyl-tetrahydrofolate-Glun both in vitro and in animals. Other folates that can act as vitamins to rescue folate deficiency lack this germ cell stimulatory activity. The bacterial folate precursor dihydropteroate also promotes germ cell proliferation in vitro and in vivo, despite its inability to promote one-carbon metabolism. The folate receptor homolog FOLR-1 is required for the stimulation of germ cells by 10-formyl-tetrahydrofolate-Glun and dihydropteroate. This work defines a folate and folate-related compound as exogenous signals to modulate germ cell proliferation. PMID:27404357

  2. Folate exacerbates the effects of ethanol on peripubertal mouse mammary gland development.

    PubMed

    Masso-Welch, Patricia A; Tobias, Menachem E; Vasantha Kumar, Shyam C; Bodziak, MaryLou; Mashtare, Terry; Tamburlin, Judith; Koury, Stephen T

    2012-05-01

    Alcohol consumption is linked with increased breast cancer risk in women, even at low levels of ingestion. The proposed mechanisms whereby ethanol exerts its effects include decreased folate levels resulting in diminished DNA synthesis and repair, and/or acetaldehyde-generated DNA damage. Based on these proposed mechanisms, we hypothesized that ethanol would have increased deleterious effects during periods of rapid mammary gland epithelial proliferation, such as peripuberty, and that folate deficiency alone might mimic and/or exacerbate the effects of ethanol. To test this hypothesis, weight-matched 28-35 day old CD2F1 female mice were pair-fed liquid diets ±3.2% ethanol, ±0.1% folate for 4 weeks. Folate status was confirmed by assay of liver and kidney tissues. In folate deficient mice, no significant ethanol-induced changes to the mammary gland were observed. Folate replete mice fed ethanol had an increased number of ducts per section, due to an increased number of terminal short branches. Serum estrogen levels were increased by ethanol, but only in folate replete mice. These results demonstrate that folate deficiency alone does not mimic the effects of ethanol, and that folate deficiency in the presence of ethanol blocks proliferative effects of ethanol on the mammary ductal tree. PMID:22440688

  3. Cerebral folate receptor autoantibodies in autism spectrum disorder

    PubMed Central

    Frye, R E; Sequeira, J M; Quadros, E V; James, S J; Rossignol, D A

    2013-01-01

    Cerebral folate deficiency (CFD) syndrome is a neurodevelopmental disorder typically caused by folate receptor autoantibodies (FRAs) that interfere with folate transport across the blood–brain barrier. Autism spectrum disorders (ASDs) and improvements in ASD symptoms with leucovorin (folinic acid) treatment have been reported in some children with CFD. In children with ASD, the prevalence of FRAs and the response to leucovorin in FRA-positive children has not been systematically investigated. In this study, serum FRA concentrations were measured in 93 children with ASD and a high prevalence (75.3%) of FRAs was found. In 16 children, the concentration of blocking FRA significantly correlated with cerebrospinal fluid 5-methyltetrahydrofolate concentrations, which were below the normative mean in every case. Children with FRAs were treated with oral leucovorin calcium (2 mg kg−1 per day; maximum 50 mg per day). Treatment response was measured and compared with a wait-list control group. Compared with controls, significantly higher improvement ratings were observed in treated children over a mean period of 4 months in verbal communication, receptive and expressive language, attention and stereotypical behavior. Approximately one-third of treated children demonstrated moderate to much improvement. The incidence of adverse effects was low. This study suggests that FRAs may be important in ASD and that FRA-positive children with ASD may benefit from leucovorin calcium treatment. Given these results, empirical treatment with leucovorin calcium may be a reasonable and non-invasive approach in FRA-positive children with ASD. Additional studies of folate receptor autoimmunity and leucovorin calcium treatment in children with ASD are warranted. PMID:22230883

  4. Folate Receptor Targeted Alpha-Therapy Using Terbium-149

    PubMed Central

    Müller, Cristina; Reber, Josefine; Haller, Stephanie; Dorrer, Holger; Köster, Ulli; Johnston, Karl; Zhernosekov, Konstantin; Türler, Andreas; Schibli, Roger

    2014-01-01

    Terbium-149 is among the most interesting therapeutic nuclides for medical applications. It decays by emission of short-range α-particles (Eα = 3.967 MeV) with a half-life of 4.12 h. The goal of this study was to investigate the anticancer efficacy of a 149Tb-labeled DOTA-folate conjugate (cm09) using folate receptor (FR)-positive cancer cells in vitro and in tumor-bearing mice. 149Tb was produced at the ISOLDE facility at CERN. Radiolabeling of cm09 with purified 149Tb resulted in a specific activity of ~1.2 MBq/nmol. In vitro assays performed with 149Tb-cm09 revealed a reduced KB cell viability in a FR-specific and activity concentration-dependent manner. Tumor-bearing mice were injected with saline only (group A) or with 149Tb-cm09 (group B: 2.2 MBq; group C: 3.0 MBq). A significant tumor growth delay was found in treated animals resulting in an increased average survival time of mice which received 149Tb-cm09 (B: 30.5 d; C: 43 d) compared to untreated controls (A: 21 d). Analysis of blood parameters revealed no signs of acute toxicity to the kidneys or liver in treated mice over the time of investigation. These results demonstrated the potential of folate-based α-radionuclide therapy in tumor-bearing mice. PMID:24633429

  5. Folates and S-adenosylmethionine for major depressive disorder.

    PubMed

    Papakostas, George I; Cassiello, Clair F; Iovieno, Nadia

    2012-07-01

    Interest in nonpharmaceutical supplements for treating major depressive disorder (MDD) has increased significantly, both among patients and among clinicians during the past decades. Despite the large array of antidepressants (ADs) available, many patients continue to experience relatively modest response and remission rates, in addition to a burden of side effects that can hinder treatment compliance and acceptability. In this article, we review the literature on folates and S-adenosylmethionine (SAMe), 2 natural compounds linked in the 1-carbon cycle metabolic pathway, for which substantial evidence supports their involvement in mood disorders. Background information, efficacy data, proposed mechanisms of action, and side effects are reviewed. Based on existing data, supplementation with SAMe, as well as with various formulations of folates, appears to be efficacious and well tolerated in reducing depressive symptoms. Compared with other forms of folates, 5-methyltetrahydrofolate (L-methylfolate or 5-MTHF) may represent a preferable treatment option for MDD given its greater bioavailability in patients with a genetic polymorphism, and the lower risk of specific side effects associated with folic acid. Although further randomized controlled trials in this area appear warranted, SAMe and L-methylfolate may represent a useful addition to the AD armamentarium. PMID:22762295

  6. Professor John Scott, folate and neural tube defects.

    PubMed

    Hoffbrand, A Victor

    2014-02-01

    John Scott (1940-2013) was born in Dublin where he was to spend the rest of his career, both as an undergraduate and subsequently Professor of Biochemistry and Nutrition at Trinity College. His research with the talented group of scientists and clinicians that he led has had a substantial impact on our understanding of folate metabolism, mechanisms of its catabolism and deficiency. His research established the leading theory of folate involvement with vitamin B12 in the pathogenesis of vitamin B12 neuropathy. He helped to establish the normal daily intake of folate and the increased requirements needed either in food or as a supplement before and during pregnancy to prevent neural tube defects. He also suggested a dietary supplement of vitamin B12 before and during pregnancy to reduce the risk of neural tube defects. It would be an appropriate epitaph if fortification of food with folic acid became mandatory in the UK and Ireland, as it is in over 70 other countries. PMID:24224721

  7. Mutation at the folate receptor 4 locus modulates gene expression profiles in the mouse uterus in response to preconceptual folate supplementation

    PubMed Central

    Salbaum, J. michael; Kruger, Claudia; Kappen, Claudia

    2013-01-01

    Periconceptional supplementation of folic acid to the diet of women is considered a great success for a public health intervention. Higher folate status, either by supplementation, or via the mandatory fortification of grain products in the United States, has lead to significant reduction in the incidence of neural tube defects. Besides birth defects, folate deficiency has been linked to a variety of morbidities, most notably to increased risk for cancer. However, recent evidence suggests that excess folate may be detrimental - for birth defect incidence or in the progression of cancer. How folate mediates beneficial or detrimental effects is not well understood. It is also unknown what molecular responses are elicited in women taking folate supplements, and thus experience a bolus of folate on top of the status achieved by fortification. To characterize the response to a preconceptional regimen of supplementation with folinic acid, we performed gene expression profiling experiments on uterus tissue of pregnant mice with either wildtype alleles or targeted disruption at the folate receptor 4 locus. We observed that, depending on the genetic background, folinic acid supplementation affects expression of genes that contribute to lipid metabolism, protein synthesis, mitochondrial function, cell cycle, and cell activation. The extent of the response is strongly modulated by the genetic background. Finally, we provide evidence that folinic acid supplementation in the mutant paradigm affects histone methylation status, a potential mechanisms of gene regulation in this model. PMID:23651732

  8. Stable Isotope Dilution Assays for Clinical Analyses of Folates and Other One-Carbon Metabolites: Application to Folate-Deficiency Studies

    PubMed Central

    Kopp, Markus; Morisset, Rosalie; Koehler, Peter

    2016-01-01

    Folate deficiency is generally accepted as a potential direct or indirect risk factor for diseases including spina bifida, coronary heart diseases, malfunctions of the central nervous system, and cancer. The direct inclusion of folates in the methylation cycle, including the remethylation of homocysteine and regeneration of S-adenosylmethionine, underlines the importance of these vitamins and other components of one-carbon metabolism. Therefore, the aim of the present study was to develop a multiple stable isotope dilution assay (SIDA) for the respective analytes in plasma and tissue samples to allow for a closer look at the interaction between a severe folate deficiency and local folate status, as well as further interactions with circulating S-adenosylmethionine, S-adenosylhomocysteine, and homocysteine. The analytical methods were based on SIDAs coupled with liquid chromatography—tandem mass spectrometry (LC-MS/MS) analysis using the deuterated folates [2H4]-5-methyltetrahydrofolic acid, [2H4]-5-formyltetrahydrofolic acid, [2H4]-tetrahydrofolic acid, [2H4]-10-formylfolic acid, and [2H4]-folic acid and the deuterated one-carbon metabolites [2H4]-homocysteine, [2H4]-S-adenosylhomocysteine, and [2H3]-S-adenosylmethionine as internal standards. Three analytical methods have been developed for the analysis of homocysteine, S-adenosylmethionine, S-adenosylhomocysteine, and six folate vitamers. Validation data for the analysis of C1-metabolites in plasma and tissue samples or folate analysis in tissue samples revealed excellent sensitivity, precision, and recovery for all analytes studied. The miniaturized methods using sample volumes as low as 50 μL and weighed portions of 5–25 mg will allow the assessment of the status of folates and additional biomarkers of impaired one-carbon metabolism during folate deficiency. PMID:27276031

  9. Stable Isotope Dilution Assays for Clinical Analyses of Folates and Other One-Carbon Metabolites: Application to Folate-Deficiency Studies.

    PubMed

    Kopp, Markus; Morisset, Rosalie; Koehler, Peter; Rychlik, Michael

    2016-01-01

    Folate deficiency is generally accepted as a potential direct or indirect risk factor for diseases including spina bifida, coronary heart diseases, malfunctions of the central nervous system, and cancer. The direct inclusion of folates in the methylation cycle, including the remethylation of homocysteine and regeneration of S-adenosylmethionine, underlines the importance of these vitamins and other components of one-carbon metabolism. Therefore, the aim of the present study was to develop a multiple stable isotope dilution assay (SIDA) for the respective analytes in plasma and tissue samples to allow for a closer look at the interaction between a severe folate deficiency and local folate status, as well as further interactions with circulating S-adenosylmethionine, S-adenosylhomocysteine, and homocysteine. The analytical methods were based on SIDAs coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis using the deuterated folates [2H4]-5-methyltetrahydrofolic acid, [2H4]-5-formyltetrahydrofolic acid, [2H4]-tetrahydrofolic acid, [2H4]-10-formylfolic acid, and [2H4]-folic acid and the deuterated one-carbon metabolites [2H4]-homocysteine, [2H4]-S-adenosylhomocysteine, and [2H3]-S-adenosylmethionine as internal standards. Three analytical methods have been developed for the analysis of homocysteine, S-adenosylmethionine, S-adenosylhomocysteine, and six folate vitamers. Validation data for the analysis of C1-metabolites in plasma and tissue samples or folate analysis in tissue samples revealed excellent sensitivity, precision, and recovery for all analytes studied. The miniaturized methods using sample volumes as low as 50 μL and weighed portions of 5-25 mg will allow the assessment of the status of folates and additional biomarkers of impaired one-carbon metabolism during folate deficiency. PMID:27276031

  10. Chemical synthesis of deuterated folate monoglutamate and in vivo assessment of urinary excretion of deuterated folates in man

    SciTech Connect

    Gregory, J.F. III; Toth, J.P.

    1988-04-01

    The synthesis and in vivo application of stable-isotopically labeled folic acid was investigated to devise methods suitable for studies of folate metabolism in human subjects. Glutamate-labeled tetradeutero-pteroylglutamic acid (d4-folic acid) was prepared by mixed anhydride coupling of N10-trifluoroacetylpteroic acid and dimethyl L-(3,3,4,4-2H4)glutamic acid, saponification in sodium deuteroxide, and chromatographic purification. Retention of the isotopic label was verified by proton NMR and mass spectrometry of the para-aminobenzoylglutamic acid product of C9-N10 bond cleavage. A method was devised for determination of of isotopic enrichment of urinary d4-folates derived from orally administered d4-folic acid using affinity chromatographic purification, chemical cleavage of the C9-N10 bond, HPLC isolation of the p-(2H4)aminobenzoylglutamate product, followed by negative-ion chemical-ionization gas chromatography/mass spectrometry. Data concerning the urinary excretion of d4-folates derived from an oral dose of d4-folic acid in an adult human are presented.

  11. Quantitative and qualitative effects of N10-methylfolate on high-affinity folate binding in human leukocytes.

    PubMed

    Holm, J; Hansen, S I; Lyngbye, J

    1984-01-01

    N10-methylfolate acted as a potent competitive inhibitor of high-affinity [3H] folate binding in human leukocytes, while methotrexate had no effect. Furthermore, folate binding changed into a non-cooperative type in the presence of N10-methylfolate. Hence, in qualitative and quantitative respects, the substrate specificity characteristics of leukocyte folate binding resemble those of other high-affinity folate binding systems. PMID:6500843

  12. The folate hydrolase 1561 C>T polymorphism is associated with depressive symptoms in Puerto Rican adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low plasma folate has been associated with depression. Variants of genes involved in the uptake, retention and metabolism of folate have been linked with plasma folate and homocysteine concentrations. It remains unclear whether such variants are also associated with depressive symptoms, directly or ...

  13. Cognitive impairment in folate-deficient rats corresponds to depleted brain phosphatidylcholine and is prevented by methionine without lowering homocysteine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poor folate status is associated with cognitive decline and dementia in older adults. Although impaired brain methylation activity and homocysteine toxicity are widely believed to account for this association, how folate deficiency impairs cognition is uncertain. To better define the role of folate ...

  14. High-Level folate production in fermented foods by the B12 producer Lactobacillus reuteri JCM1112.

    PubMed

    Santos, Filipe; Wegkamp, Arno; de Vos, Willem M; Smid, Eddy J; Hugenholtz, Jeroen

    2008-05-01

    We observed that Lactobacillus reuteri JCM1112 produces B(12) and folate. However, the folate/B(12) mass ratio found was far below that desired for human consumption ( approximately 170:1). We used metabolic engineering applying genetic and physiological approaches to improve this ratio and developed a generic and natural process that significantly increases folate production. PMID:18344331

  15. Concentration of folate in colorectal tissue biopsies predicts prevalence of adenomatous polyps

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background and aims: Folate has been implicated as a potential aetiological factor for colorectal cancer. Previous research has not adequately exploited concentrations of folate in normal colonic mucosal biopsies to examine the issue. Methods: Logistic regression models were used to estimate ORs ...

  16. Folate supplementation differently affects uracil content in DNA in the mouse colon and liver

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High folate intake may increase the risk of cancer, especially in the elderly. The present study examined the effects of ageing and dietary folate on uracil misincorporation into DNA, which has a mutagenic effect, in the mouse colon and liver. Old (18 months; n 42) and young (4 months; n 42) male C5...

  17. Folate content and retention in commonly consumed vegetables in the South Pacific.

    PubMed

    Maharaj, Prayna P P; Prasad, Surendra; Devi, Riteshma; Gopalan, Romila

    2015-09-01

    This paper reports the effect of boiling and frying on the retention of folate in commonly consumed Fijian vegetables (drumstick leaves, taro leaves, bele leaves, amaranth leaves, fern/ota, okra and French bean). The folate content was determined by microbiological assay (Lactobacillus casei rhamnosus) and tri-enzyme (protease, α-amylase and chicken pancreas conjugase) extraction treatment. The folate loss varied among the vegetables from 10-64% on boiling while 1-36% on frying. The higher folate loss was observed during boiling. The folate content in the water derived after boiling different vegetables ranged from 11.9 ± 0.5 to 61.6 ± 2.5 μg/100mL. The folate loss on boiling was accounted for in the cooking water. The predominant way of folate loss on boiling was leaching rather than thermal degradation which makes boiling the better choice of cooking the studied vegetables for folate intake, provided the cooking water is consumed together with the vegetables. PMID:25842344

  18. Folate and vitamin B12 status in Latin America and the Caribbean: An update

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: The current magnitude of folate and vitamin B12 deficiency in Latin America and the Caribbean is uncertain. Objective: To summarize data on plasma or serum vitamin B12 and folate concentrations in Latin America and the Caribbean reported since 1990, a period that covers the era before an...

  19. Folate mediated self-assembled phytosterol-alginate nanoparticles for targeted intracellular anticancer drug delivery.

    PubMed

    Wang, Jianting; Wang, Ming; Zheng, Mingming; Guo, Qiong; Wang, Yafan; Wang, Heqing; Xie, Xiangrong; Huang, Fenghong; Gong, Renmin

    2015-05-01

    Self-assembled core/shell nanoparticles (NPs) were synthesized from water-soluble alginate substituted by hydrophobic phytosterols. Folate, a cancer-cell-specific ligand, was conjugated to the phytosterol-alginate (PA) NPs for targeting folate-receptor-overexpressing cancer cells. The physicochemical properties of folate-phytosterol-alginate (FPA) NPs were characterized by nuclear magnetic resonance, transmission electron microscopy, dynamic light scattering, electrophoretic light scattering, and fluorescence spectroscopy. Doxorubicin (DOX), an anticancer drug, was entrapped inside prepared NPs by dialysis method. The identification of prepared FPA NPs to folate-receptor-overexpressing cancer cells (KB cells) was confirmed by cytotoxicity and folate competition assays. Compared to the pure DOX and DOX/PA NPs, the DOX/FPA NPs had lower IC50 value to KB cells because of folate-receptor-mediated endocytosis process and the cytotoxicity of DOX/FPA NPs to KB cells could be competitively inhibited by free folate. The cellular uptake and internalization of pure DOX and DOX/FPA NPs was confirmed by confocal laser scanning microscopy image and the higher intracellular uptake of drug for DOX/FPA NPs over pure DOX was observed. The FPA NPs had the potential as a promising carrier to target drugs to cancer cells overexpressing folate receptors and avoid cytotoxicity to normal tissues. PMID:25829128

  20. Plasma folate, vitamin B-6, vitamin B-12, and risk of breast cancer in women

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: B vitamins such as folate, vitamin B-6, and vitamin B-12 are coenzymes that are important for DNA integrity and stability. Deficiency in these B vitamins may promote tumor carcinogenesis. Objective: We prospectively evaluated plasma concentrations of folate, pyridoxal 5'-phosphate (PLP; ...

  1. Application of the Key Events Dose-response Framework to Folate Metabolism.

    PubMed

    Hu, Jing; Wang, Bing; Sahyoun, Nadine R

    2016-06-10

    Folate is a vitamin that plays a role as a cofactor and coenzyme in many essential reactions. These reactions are interrelated and any change in folate homeostasis could affect other reactions. With food fortified with folic acid, and use of multivitamin, unmetabolized folic acid (UMFA) has been detected in blood circulation, particularly among older adults. This has raised concern about the potential harmful effect of high folic acid intake and UMFA on health conditions such as cognitive dysfunction and cancer. To examine what is known about folate metabolism and the release of circulating UMFA, the Key Events Dose-Response Framework (KEDRF) was used to review each of the major key events, dose-response characteristics and homeostatic mechanisms of folate metabolism. The intestine, liver and kidneys each play essential roles in regulating body folate homeostasis. But the determining event in folate metabolism leading to the release of UMFA in circulation appears to be the saturation of dihydrofolate reductase in the liver. However, at each of the key events in folate metabolism, limited information is available on threshold, homeostatic regulation and intracellular effects of folic acid. More studies are needed to fill in the knowledge gaps for quantitatively characterizing the dose-effect relationship especially in light of the call for extending folate fortification to other foods. PMID:25674817

  2. Nutrient Intake Values for Folate during Pregnancy and Lactation Vary Widely around the World

    PubMed Central

    Stamm, Rosemary A.; Houghton, Lisa A.

    2013-01-01

    Folate is a B-vitamin with particular importance during reproduction due to its role in the synthesis and maintenance of DNA. Folate is well known for its role in preventing neural tube defects (NTDs) during the periconceptional period. There is also an increased need for folate throughout pregnancy to support optimal growth and development of the fetus and blood volume expansion and tissue growth of the mother. During lactation, women are at risk of folate deficiency due to increased demands to accommodate milk folate levels. Nutrient Intake Values (NIVs) for folate have been calculated to take into account additional needs during pregnancy and lactation. However, these values vary widely between countries. For example, the folate requirement that is set to meet the needs of almost all healthy women during pregnancy varies from 300 µg/day in the United Kingdom to 750 µg/day in Mexico. Currently, there is no accepted standardized terminology or framework for establishing NIVs. This article reviews country-specific NIVs for folate during pregnancy and lactation and the basis for setting these reference values. PMID:24084052

  3. Folate composition of ten types of mushrooms determined by liquid chromatography-mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    White button, crimini, shiitake, maitake, enoki, oyster, chanterelle, morel, portabella, and uv-treated portabella mushrooms were sampled from U.S. retail outlets and major producers. Folate (5-methyltetrahydrofolate [5MTHF], 10-formyl folate [10FF], 5-formyltetrahydrofolate [5FTHF]) was analyzed u...

  4. Bioavailability of folates in selected foods incorporated into amino acid-based diets fed to rats.

    PubMed

    Clifford, A J; Jones, A D; Bills, N D

    1990-12-01

    Two experiments were conducted to determine the feasibility of using a folate depletion/repletion protocol with rats fed an amino acid-based diet to measure the bioavailability of food folate. Growth, liver folate and serum folate of depleted rats that were fed test foods incorporated into a folate-free, amino acid-based diet were standardized against similar responses of rats fed known amounts of folic acid incorporated into the same diet. Bioavailability of folate of cooked broccoli, refried beans and orange juice concentrate in experiment 1 was 80-89, 113 and 62%, respectively, based on growth response; in experiment 2, values for cooked and raw broccoli, cooked cabbage and cantaloupe were 95, 103, 74 and 81%, respectively. The results demonstrate that in addition to serum and liver folate concentrations, growth may be a useful response criterion to evaluate the bioavailability of folates in foods. Further research is needed to determine the relevance of these bioavailability estimates to human nutrition. PMID:2262810

  5. Folates in Asian noodles: II. A comparison of commercial samples and the impact of cooking.

    PubMed

    Bui, Lan T T; Small, Darryl M

    2007-06-01

    The folate contents of 26 commercial noodle samples were investigated. The impact of ingredients, pH, and cooking on folate content was studied for the 3 predominant styles of noodles: white salted, yellow alkaline, and instant. Some variability was found in the proportion of folate present in the free form and the noodles generally had low total folate contents. The pH values of the samples covered a wide range, varying from 3.7 to 10.3; however, the results did not provide strong evidence for a relationship between pH and folate content for any of the noodle styles studied. Higher folate levels were typically found in yellow alkaline samples compared to white salted and instant noodles. The storage of noodles in dry or moist forms did not appear to influence total folate contents, and subsequent losses during cooking depended upon the time of exposure to elevated temperatures. The enzymatic treatment of samples was particularly important for cooked noodles, indicating that folates were bound or entrapped during this process. PMID:17995716

  6. Folate in potato tubers: effects of genotype, location, storage, and development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Folates (vitamin B9) are essential micronutrients in the human diet. Deficiency in folate intake is a leading cause of birth defects and is implicated in several other diseases. As the fourth most consumed staple food in the world and the most consumed vegetable in the West, potato is a logical targ...

  7. DIETARY FOLATE DEFICIENCY ENHANCES ARSENIC-INDUCED MICRONUCLEUS FORMATION IN MICE

    EPA Science Inventory


    Dietary folate deficiency enhances arsenic-induced micronucleus formation in mice.

    Folate deficiency increases background levels ofDNA damage and can enhance the mutagenicity of chemical agents. Duplicate experiments were performed to investigate the effect of dietary...

  8. 78 FR 42973 - Certain Reduced Folate Nutraceutical Products and L-Methylfolate Raw Ingredients Used Therein...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-18

    ... COMMISSION Certain Reduced Folate Nutraceutical Products and L-Methylfolate Raw Ingredients Used Therein..., Louisiana (``Pamlab''). 77 FR 63336 (October 16, 2012). The complaint alleged violations of Section 337 of... within the United States after importation of certain reduced folate neutraceutical products and...

  9. DIETARY FOLATE DEFICIENCY ENHANCES INDUCTION OF MICRONUCLEI BY ARSENIC IN MICE

    EPA Science Inventory

    Folate deficiency increases background levels of DNA damage and can enhance the genotoxicity of chemical agents. Arsenic, a known human carcinogen present in drinking water supplies around the world, induces chromosomal and DNA damage. The effect of dietary folate deficiency on...

  10. 78 FR 117 - Certain Reduced Folate Nutraceutical Products and L- Methylfolate Raw Ingredients Used Therein...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-02

    ... COMMISSION Certain Reduced Folate Nutraceutical Products and L- Methylfolate Raw Ingredients Used Therein..., ``Complainants''). 77 FR 63336 (October 16, 2012). The complaint alleged violations of Section 337 of the Tariff... importation into the United States of certain folate nutraceutical products and l-methylfolate raw...

  11. 21 CFR 101.79 - Health claims: Folate and neural tube defects.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Health claims: Folate and neural tube defects. 101.79 Section 101.79 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION FOOD LABELING Specific Requirements for Health Claims § 101.79 Health claims: Folate and neural...

  12. Self-illuminating nanoprobe for in vivo imaging of cancers over-expressing the folate receptor

    NASA Astrophysics Data System (ADS)

    Miller, Steven C.; Beviglia, Lucia; Yeung, Pete; Bhattacharyya, Sukanta; Sobek, Daniel

    2012-03-01

    New in vivo imaging reagents with increased sensitivity and penetration depth are needed to advance our understanding of metastases and accelerate the development of therapeutics. The folate receptor (FR) is a promising imaging target that is up-regulated in many human carcinomas, including cancers of the ovary, breast, pancreas, endometrium, lungs, kidneys, colon, brain, and myeloid cells. Zymera has developed a self-illuminating Bioluminescence Resonance Energy Transfer Quantum Dot (BRET-Qdot) nanoprobe conjugated with folate (BQ-Folate) for in vivo imaging of cancers overexpressing FR. BQ-Folate is a novel nanoprobe formed by co-conjugating Renilla reniformis luciferase enzyme and folate to near-infrared (NIR) emitting quantum dots. The luciferase substrate, coelenterazine, activates the BQ-Folate nanoprobe generating luminescence emission in the near-infrared (NIR) region (655 nm) for increased sensitivity and penetration depth. Because BQ-Folate requires no external light source for light emission, it has significant advantages for challenging in vivo preclinical optical imaging applications, such as the detection of early stage metastases. Zymera and OncoMed Pharmaceuticals have demonstrated that in vivo imaging with the BQ-Folate nanoprobe detected the primary tumor and early stage metastases in an orthotopic NOD/SCID mouse model of human pancreatic cancer.

  13. Too much folate – a risk factor for cancer and cardiovascular disease?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose of review: The intent of this evidence-based review is to analyze the role of folate in chronic diseases, focusing on cancer and cardiovascular disease. Recent findings: Low folate status has been shown to be a risk factor for cancer and cardiovascular disease. While epidemiological data su...

  14. Developmental consequences of in utero sodium arsenate exposure in mice with folate transport deficiencies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies have demonstrated that mice lacking a functional folate binding protein 2 gene (Folbp2'/') were significantly more sensitive to in utero arsenic exposure than were the wild-type mice similarly exposed. When these mice were fed a folate-deficient diet, the embryotoxic effect of arsen...

  15. Carnitine biosynthesis in mammals.

    PubMed Central

    Vaz, Frédéric M; Wanders, Ronald J A

    2002-01-01

    Carnitine is indispensable for energy metabolism, since it enables activated fatty acids to enter the mitochondria, where they are broken down via beta-oxidation. Carnitine is probably present in all animal species, and in numerous micro-organisms and plants. In mammals, carnitine homoeostasis is maintained by endogenous synthesis, absorption from dietary sources and efficient tubular reabsorption by the kidney. This review aims to cover the current knowledge of the enzymological, molecular, metabolic and regulatory aspects of mammalian carnitine biosynthesis, with an emphasis on the human and rat. PMID:11802770

  16. Optimization of Folate-Targeted Immunotherapy for the Treatment of Experimental Arthritis.

    PubMed

    Varghese, Bindu; Paulos, Chrystal; Low, Philip S

    2016-08-01

    Folate-targeted immunotherapy constitutes a powerful method for the treatment of established arthritis in multiple animal models of the disease. The therapy involves immunization of the animal against a hapten to induce anti-hapten antibodies, followed by injection with a folate-hapten conjugate to decorate the surface of folate receptor-positive (activated) macrophages with the antigenic hapten. The hapten-marked macrophages are then recognized by the anti-hapten antibodies and eliminated by immune mechanisms, leading to attenuation of disease symptoms. In the following paper, we optimize the therapy for elimination of inflammatory macrophages and suppression of rheumatoid arthritis symptoms. We also demonstrate a tight correlation between folate receptor-positive macrophage abundance in the liver and inflammation of affected joints. The results suggest that therapies that reduce folate receptor-positive macrophage populations in the body should constitute effective treatments for rheumatoid arthritis. PMID:27206918

  17. Acinetobacter baumannii FolD ligand complexes – potent inhibitors of folate metabolism and a re-evaluation of the structure of LY374571

    PubMed Central

    Eadsforth, Thomas C.; Maluf, Fernando V.; Hunter, William N.

    2013-01-01

    The bifunctional N5,N10-methylenetetrahydrofolate dehydrogenase/cyclohydrolase (DHCH or FolD), which is widely distributed in prokaryotes and eukaryotes, is involved in the biosynthesis of folate cofactors that are essential for growth and cellular development. The enzyme activities represent a potential antimicrobial drug target. We have characterized the kinetic properties of FolD from the Gram-negative pathogen Acinetobacter baumanni and determined high-resolution crystal structures of complexes with a cofactor and two potent inhibitors. The data reveal new details with respect to the molecular basis of catalysis and potent inhibition. A unexpected finding was that our crystallographic data revealed a different structure for LY374571 (an inhibitor studied as an antifolate) than that previously published. The implications of this observation are discussed. PMID:23050773

  18. Folate depletion impairs DNA excision repair in the colon of the rat

    PubMed Central

    Choi, S; Kim, Y; Weitzel, J; Mason, J

    1998-01-01

    Background/Aims—Diminished folate status appears to promote colonic carcinogenesis by, as of yet, undefined mechanisms. Impaired DNA repair plays a significant role in the evolution of many colon cancers. Since folate is essential for the de novo synthesis of nucleotides and since folate depletion has previously been associated with excessive DNA strand breaks, it was hypothesised that folate depletion may impair DNA repair. Studies were therefore performed to examine whether folate depletion affects the two major categories of DNA repair. 
Methods—Study 1: eight weanling male Sprague-Dawley rats were fed on diets containing either 0 or 8 mg folate/kg diet with 1% succinylsulphathiazole for four weeks. After viable colonocytes had been harvested, DNA excision repair was evaluated by a single cell gel electrophoresis assay. Study 2: eighteen animals were fed on similar diets for five weeks. Also in study 2, 18 additional rats were fed on the same defined diet without succinylsulphathiazole for 15 weeks. Weekly injections with the procarcinogen, 1,2-dimethylhydrazine (20 mg base/kg), were administered to the latter group of animals. Five microsatellite loci from different chromosomes were investigated for instability in hepatic and colonic DNA. 
Results—In study 1, a significantly retarded rate of DNA excision repair was observed in the folate deficient colonocytes compared with controls (p<0.05). In study 2, there was no evidence of instability at the five microsatellite loci associated with either short or long term folate depletion. 
Conclusions—Folate deficiency impairs DNA excision repair in rat colonic mucosa; a similar degree of deficiency, even when administered in conjunction with a colonic carcinogen, did not produce evidence of a widespread defect in mismatch repair. 

 Keywords: folate; colon cancer; DNA repair; single cell gel electrophoresis; microsatellite instability; rat PMID:9771411

  19. Folate transport gene inactivation in mice increases sensitivity to colon carcinogenesis.

    PubMed

    Ma, David W L; Finnell, Richard H; Davidson, Laurie A; Callaway, Evelyn S; Spiegelstein, Ofer; Piedrahita, Jorge A; Salbaum, J Michael; Kappen, Claudia; Weeks, Brad R; James, Jill; Bozinov, Daniel; Lupton, Joanne R; Chapkin, Robert S

    2005-02-01

    Low dietary folate intake is associated with an increased risk for colon cancer; however, relevant genetic animal models are lacking. We therefore investigated the effect of targeted ablation of two folate transport genes, folate binding protein 1 (Folbp1) and reduced folate carrier 1 (RFC1), on folate homeostasis to elucidate the molecular mechanisms of folate action on colonocyte cell proliferation, gene expression, and colon carcinogenesis. Targeted deletion of Folbp1 (Folbp1(+/-) and Folbp1(-/-)) significantly reduced (P < 0.05) colonic Folbp1 mRNA, colonic mucosa, and plasma folate concentration. In contrast, subtle changes in folate homeostasis resulted from targeted deletion of RFC1 (RFC1(+/-)). These animals had reduced (P < 0.05) colonic RFC1 mRNA and exhibited a 2-fold reduction in the plasma S-adenosylmethionine/S-adenosylhomocysteine. Folbp1(+/-) and Folbp1(-/-) mice had larger crypts expressed as greater (P < 0.05) numbers of cells per crypt column relative to Folbp1(+/+) mice. Colonic cell proliferation was increased in RFC1(+/-) mice relative to RFC1(+/+) mice. Microarray analysis of colonic mucosa showed distinct changes in gene expression specific to Folbp1 or RFC1 ablation. The effect of folate transporter gene ablation on colon carcinogenesis was evaluated 8 and 38 weeks post-azoxymethane injection in wild-type and heterozygous mice. Relative to RFC1(+/+) mice, RFC1(+/-) mice developed increased (P < 0.05) numbers of aberrant crypt foci at 8 weeks. At 38 weeks, RFC1(+/-) mice developed local inflammatory lesions with or without epithelial dysplasia as well as adenocarcinomas, which were larger relative to RFC1(+/+) mice. In contrast, Folbp1(+/-) mice developed 4-fold (P < 0.05) more lesions relative to Folbp1(+/+) mice. In conclusion, Folbp1 and RFC1 genetically modified mice exhibit distinct changes in colonocyte phenotype and therefore have utility as models to examine the role of folate homeostasis in colon cancer development. PMID:15705887

  20. The Folate-Vitamin B12 Interaction, Low Hemoglobin, and the Mortality Risk from Alzheimer's Disease.

    PubMed

    Min, Jin-Young; Min, Kyoung-Bok

    2016-03-21

    Abnormal hemoglobin levels are a risk factor for Alzheimer's disease (AD). Although the mechanism underlying these associations is elusive, inadequate micronutrients, particularly folate and vitamin B12, may increase the risk for anemia, cognitive impairment, and AD. In this study, we investigated whether the nutritional status of folate and vitamin B12 is involved in the association between low hemoglobin levels and the risk of AD mortality. Data were obtained from the 1999-2006 National Health and Nutrition Examination Survey (NHANES) and the NHANES (1999-2006) Linked Mortality File. A total of 4,688 participants aged ≥60 years with available baseline data were included in this study. We categorized three groups based on the quartiles of folate and vitamin B12 as follows: Group I (low folate and vitamin B12); Group II (high folate and low vitamin B12 or low folate and high vitamin B12); and Group III (high folate and vitamin B12). Of 4,688 participants, 49 subjects died due to AD. After adjusting for age, sex, ethnicity, education, smoking history, body mass index, the presence of diabetes or hypertension, and dietary intake of iron, significant increases in the AD mortality were observed in Quartile1 for hemoglobin (HR: 8.4, 95% CI: 1.4-50.8), and the overall risk of AD mortality was significantly reduced with increases in the quartile of hemoglobin (p for trend = 0.0200), in subjects with low levels of both folate and vitamin B12 at baseline. This association did not exist in subjects with at least one high level of folate and vitamin B12. Our finding shows the relationship between folate and vitamin B12 levels with respect to the association between hemoglobin levels and AD mortality. PMID:27003215

  1. Parallel changes in metabolite and expression profiles in crooked-tail mutant and folate-reduced wild-type mice.

    PubMed

    Ernest, Sheila; Carter, Michelle; Shao, Haifeng; Hosack, Angela; Lerner, Natalia; Colmenares, Clemencia; Rosenblatt, David S; Pao, Yoh-Han; Ross, M Elizabeth; Nadeau, Joseph H

    2006-12-01

    Anomalies in homocysteine (HCY) and folate metabolism are associated with common birth defects and adult diseases, several of which can be suppressed with dietary folate supplementation. Although supplementation reduces the occurrence and severity of neural tube defects (NTDs), many cases are resistant to these beneficial effects. The basis for variable response and biomarkers that predict responsiveness are unknown. Crooked-tail (Cd) mutant mice are an important model of folate-responsive NTDs. To identify features that are diagnostic for responsiveness versus resistance to dietary folate supplementation, we surveyed metabolite and expression levels in liver samples from folate-supplemented, folate-reduced and control diets in Cd mutant and wild-type adult females. Cd homozygotes had normal total homocysteine (tHcy) levels suggesting that folate suppresses NTDs through a mechanism that does not involve modulating serum tHcy levels. Instead, parallel changes in metabolite and expression profiles in folate-supplemented Cd/Cd homozygotes and folate-reduced+/+and Cd/+mice suggest that Crooked-tail homozygotes have a defect in the utilization of intracellular folate. Then, by combining these expression and metabolite profile results with published results for other models and their controls, two clusters were found, one of which included several folate-responsive NTD models and the other previously untested and presumably folate-resistant models. The predictive value of these profiles was verified by demonstrating that NTDs of Ski-/-mutant mice, whose profile suggested resistance to folate supplementation, were not suppressed with dietary folate supplementation. These results raise the possibility of using metabolite and expression profiles to distinguish folate-responsive and resistance adult females who are at risk for bearing fetuses with an NTD. PMID:17050573

  2. Terpene Biosynthesis: Modularity Rules

    PubMed Central

    Oldfield, Eric; Lin, Fu-Yang

    2013-01-01

    Terpenes are the largest class of small molecule natural products on Earth, and the most abundant by mass. Here, we summarize recent developments in elucidating the structure and function of the proteins involved in their biosynthesis. There are 6 main building blocks or modules (α,β,γ,δ,ε and ζ) that make up the structures of these enzymes: the αα and αδ head-to-tail trans-prenyl transferases that produce trans-isoprenoid diphosphates from C5 precursors; the ε head-to-head prenyl transferases that convert these diphosphates into the tri-and tetra-terpene precursors of sterols, hopanoids and carotenoids; the βγ di- and tri-terpene synthases; the ζ head-to-tail cis-prenyl transferases that produce the cis-isoprenoid diphosphates involved in bacterial cell wall biosynthesis, and finally the α, αβ and αβγ terpene synthases that produce plant terpenes, with many of these modular enzymes having originated from ancestral α and β domain proteins. We also review progress in determining the structure and function of the two 4Fe-4S reductases involved in formation of the C5 diphosphates in many bacteria, where again, highly modular structures are found. PMID:22105807

  3. Taxol biosynthesis: an update.

    PubMed

    Hezari, M; Croteau, R

    1997-08-01

    The novel diterpenoid taxol (paclitaxel) is now well-established as a potent chemotherapeutic agent. Total synthesis of the drug is not commercially feasible and, in the foreseeable future, the supply of taxol and its synthetically useful progenitors must rely on biological methods of production. The first three steps of taxol biosynthesis have been defined and the responsible enzymes described. These are the cyclization of the universal diterpenoid precursor geranylgeranyl diphosphate to taxa-4(5),11(12)-diene, the cytochrome P450-catalyzed hydroxylation of this olefin to taxa-4(20), 11(12)-dien-5 alpha-ol, and the acetyl CoA-dependent conversion of the alcohol to the corresponding acetate ester. Demonstration of these early steps of taxol biosynthesis suggests that the complete pathway can be defined by a systematic, stepwise approach at the cell-free enzyme level. When combined with in vivo studies to determine contribution to pathway flux, slow steps can be targeted for gene isolation and subsequent overexpression in Taxus to improve the yield of taxol and related compounds. PMID:9270370

  4. Folate content in tomato ( Lycopersicon esculentum ). influence of cultivar, ripeness, year of harvest, and pasteurization and storage temperatures.

    PubMed

    Iniesta, M Dolores; Pérez-Conesa, Darío; García-Alonso, Javier; Ros, Gaspar; Periago, M Jesús

    2009-06-10

    The effects of cultivar, on-vine ripening, and year of harvest on the folate content of raw tomatoes were studied. Folate content in hot-break tomato puree (HTP) subjected to pasteurization at different temperatures and its evolution during the shelf life of tomato juice were also investigated. 5-Methyltetrahydrofolate (5-CH(3)-H(4)-folate) was the only folate compound identified in raw tomatoes and HTP, but tetrahydrofolate (H(4)-folate) was 10% of the folate detected in tomato juice. The content of folates in raw tomatoes ranged from 4.1 to 35.3 microg/100 g of fresh weight and was highly influenced by all of the factors studied. No clear trend of folate content with ripening stage was observed. The extractability of 5-CH(3)-H(4)-folate from HTP increased significantly after pasteurization at 98 degrees C for 40 s, but higher temperatures decreased its content. Tomato juice showed folate losses during storage independent of the storage temperature. Folate losses were higher when tomato juice was packed in glass bottles than in Tetra Pak. PMID:19449809

  5. Folate responsiveness during growth and development of Dictyostelium: separate but related pathways control chemotaxis and gene regulation.

    PubMed

    Blusch, J H; Nellen, W

    1994-01-01

    Folate-controlled gene expression and chemotaxis have been examined in Dictyostelium wild-type and mutant strains. We show that regulation of the discoidin genes is sensitive to folate in growing cells as well as in suspension development. The signal is transferred via the N10-methylfolate-sensitive folate receptor sites, which also appear to confer the chemotactic response. The strain HG5145 has previously been isolated as a mutant that does not display chemotactic movement towards folate. Nevertheless, these cells are fully functional in folate-mediated downregulation of discoidin I expression. The strain ga 93 has been isolated as an overproducer mutant of the cyclic nucleotide phosphodiesterase inhibitor. Simultaneously, these cells fail to downregulate discoidin I in response to folate but are fully functional in folate chemotaxis. Therefore we conclude that the pathways for chemotaxis and for gene regulation diverge downstream of a common receptor type. PMID:8170395

  6. Protective effect of mesoporous silica particles on encapsulated folates.

    PubMed

    Ruiz-Rico, María; Daubenschüz, Hanna; Pérez-Esteve, Édgar; Marcos, María D; Amorós, Pedro; Martínez-Máñez, Ramón; Barat, José M

    2016-08-01

    Mesoporous silica particles (MSPs) are considered suitable supports to design gated materials for the encapsulation of bioactive molecules. Folates are essential micronutrients which are sensitive to external agents that provoke nutritional deficiencies. Folates encapsulation in MSPs to prevent degradation and to allow their controlled delivery is a promising strategy. Nevertheless, no information exists about the protective effect of MSPs encapsulation to prevent their degradation. In this work, 5-formyltetrahydrofolate (FO) and folic acid (FA) were entrapped in MSPs functionalized with polyamines, which acted as pH-dependent molecular gates. The stability of free and entrapped vitamins after acidic pH, high temperature and light exposure was studied. The results showed the degradation of FO after high temperature and acidic pH, whereas entrapped FO displayed enhanced stability. Free FA was degraded by light, but MSPs stabilized the vitamin. The obtained results point toward the potential use of MSPs as candidates to enhance stability and to improve the bioavailability of functional biomolecules. PMID:27235728

  7. Multicomponent folate-targeted magnetoliposomes: Design, characterization, and cellular uptake

    PubMed Central

    Bothun, Geoffrey D.; Lelis, Alline; Chen, Yanjing; Scully, Kyle; Stoner, Matthew A.

    2011-01-01

    Multifunctional folate-targeted cationic magnetoliposomes (FTMLs) have been prepared with co-encapsulated doxorubicin (DOX) and anionic superparamagnetic iron oxide (SPIO) nanoparticles with 5 nm γ-Fe2O3 cores and 16 nm hydrodynamic diameters. Nanoparticle encapsulation (89%) was confirmed by cryogenic transmission electron microscopy, and the presence of the oppositely charged nanoparticles did not cause liposome aggregation. The FTMLs had an average diameter of 174 ± 53 nm and existed as unilamellar and cup-shaped liposomes, which was attributed to dissimilar lipid packing parameters and the presence of PEG-lipids. A 3-fold increase in DOX release was achieved over two hours when the encapsulated SPIO nanoparticles were heated by an alternating current electromagnetic field operating at radiofrequencies (RF). Results with human cervical cancer cells (HeLa), which have been shown to exhibit high folate receptor (FR) expression, confirmed FTML surface binding and cellular uptake. In contrast, no uptake was observed for lower FR-expressing human breast carcinoma cells (ZR-75-1). PMID:21419872

  8. Folate receptor gene variants and neural tube defect occurrence

    SciTech Connect

    Finnell, R.; Greer, K.; Lammer, E.

    1994-09-01

    Recent epidemiological evidence shows that periconceptional use of folic acid supplements may prevent 40-50% of neural tube defects (NTDs). The FDA has subsequently recommended folic acid supplementation of all women of childbearing potential, even though the mechanism by which folic acid prevents NTDs is unknown. We investigated genetic variation of a candidate gene, the 5-methyltetrahydrofolate (5-MeTHF) receptor, that may mediate this preventive effect. The receptor concentrates folate within cells and we have localized its mRNA to neuroepithelial cells during neurulation. Our hypothesis is that dysfunctional 5-MeTHF receptors inadequately concentrate folate intracellularly, predisposing infants to NTDs. We have completed SSCP analysis on 3 of the 4 coding exons of the 5-MeTHF receptor gene of 474 infants participating in a large population-based epidemiological case-control study of NTDs in California; genotyping of another 500 infants is ongoing. Genomic DNA was extracted from residual blood spots from newborn screening samples of cases and controls. Genotyping was done blinded to case status. Polymorphisms have been detected for exons 4 and 5; fourteen percent of the infants have exon 5 polymorphisms. Data will be presented on the prevalence of 5-MeTHF receptor polymorphisms among cases and controls. Relationships among the polymorphisms and NTD occurrence may shed light on how folic acid supplementation prevents NTDs.

  9. Biosynthesis of cylindrospermopsin.

    PubMed

    Burgoyne, D L; Hemscheidt, T K; Moore, R E; Runnegar, M T

    2000-01-14

    Studies on the biosynthesis of cylindrospermopsin (1), a potent hepatotoxin associated with the cyanobacterium Cylindrospermopsis raciborskii, indicate that 1 is an acetogenin with guanidinoacetic acid serving as the starter unit of the polyketide chain. Feeding experiments show that C14 and C15 of 1 are derived from C1 and C2 of glycine, respectively, and C4 through C13 arise from five contiguous acetate units attached head to tail. The methyl carbon on C13 originates from the C(1) pool. The starter unit, established by the incorporation of [guanidino-(13)C,alpha-(15)N]-guanidinoacetic acid into N16 and C17 of 1, does not appear to be formed from glycine by known amidination pathways. The origin of the NH-CO-NH segment in the uracil ring is also unknown. PMID:10813909

  10. Biosynthesis of plant sulfolipids

    SciTech Connect

    Kleppinger-Sparace, K.; Mudd, J.B.; Sparace, S. )

    1989-04-01

    The complete biosynthesis of sulfoquinovosyldiacylglycerol (SQDG) remains undetermined although dark synthesis of SQDG by chloroplasts supplied with AP{sup 35}S, PAP{sup 35}S or {sup 35}SO{sub 4} plus ATP suggests the sulfur moiety arises from either APS or sulfite (1). Sulfate incorporation into sulfolipids in isolated chloroplasts and in intact roots is reported here and compared to lipids labelled by {sup 14}C-acetate or {sup 14}C-glycerol. Several unknown {sup 35}S-labelled chloroform-soluble compounds were isolated from sterile roots. These {sup 35}S-labelled compounds differ from those of the chloroplast, identified as elemental sulfur forms. Identification of the unknown root compounds is in progress. Unlike chloroplast, isolated root plastids do not synthesis SQDG from sulfate plus ATP suggesting a requirement for an activated form of sulfate, such as APS or PAPS.