Science.gov

Sample records for zinc-independent folate biosynthesis

  1. Developmental and feedforward control of the expression of folate biosynthesis genes in tomato fruit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known about how plants regulate their folate content, including whether the expression of folate biosynthesis genes is orchestrated during development or modulated by folate levels. Nor is much known about how folate levels impact the expression of other genes. These points were addressed ...

  2. Overexpression of folate biosynthesis genes in rice (Oryza sativa L.) and evaluation of their impact on seed folate content.

    PubMed

    Dong, Wei; Cheng, Zhi-jun; Lei, Cai-lin; Wang, Xiao-le; Wang, Jiu-lin; Wang, Jie; Wu, Fu-qing; Zhang, Xin; Guo, Xiu-ping; Zhai, Hu-qu; Wan, Jian-min

    2014-12-01

    Folate (vitamin B9) deficiency is a global health problem especially in developing countries where the major staple foods such as rice contain extremely low folates. Biofortification of rice could be an alternative complement way to fight folate deficiency. In this study, we evaluated the availability of the genes in each step of folate biosynthesis pathway for rice folate enhancement in the japonica variety kitaake genetic background. The first enzymes GTP cyclohydrolase I (GTPCHI) and aminodeoxychorismate synthase (ADCS) in the pterin and para-aminobenzoate branches resulted in significant increase in seed folate content, respectively (P?folate content separately. The GTPCHI transgene was combined with each of the other transgenes except ADCS to investigate the effects of gene stacking on seed folate accumulation. Seed folate contents in the gene-stacked plants were higher than the individual low-folate transgenic parents, but lower than the high-folate GTPCHI transgenic lines, pointing to an inadequate supply of para-aminobenzoic acid (PABA) precursor initiated by ADCS in constraining folate overproduction in gene-stacked plants. PMID:25432789

  3. Polyamine biosynthesis impacts cellular folate requirements necessary to maintain S-adenosylmethionine and nucleotide pools.

    PubMed

    Bistulfi, G; Diegelman, P; Foster, B A; Kramer, D L; Porter, C W; Smiraglia, D J

    2009-09-01

    Folate (vitamin B9) is utilized for synthesis of both S-adenosylmethionine (AdoMet) and deoxythymidine monophosphate (dTMP), which are required for methylation reactions and DNA synthesis, respectively. Folate depletion leads to an imbalance in both AdoMet and nucleotide pools, causing epigenetic and genetic damage capable of initiating tumorigenesis. Polyamine biosynthesis also utilizes AdoMet, but polyamine pools are not reduced under a regimen of folate depletion. We hypothesized that high polyamine biosynthesis, due to the high demand on AdoMet pools, might be a factor in determining sensitivity to folate depletion. We found a significant correlation (P<0.001) between polyamine biosynthesis and the amount of folate required to sustain cell line proliferation. We manipulated polyamine biosynthesis by genetic and pharmacological intervention and mechanistically demonstrated that we could thereby alter AdoMet pools and increase or decrease demand on folate availability needed to sustain cellular proliferation. Furthermore, growing a panel of cell lines with 100 nM folate led to imbalanced nucleotide and AdoMet pools only in cells with endogenously high polyamine biosynthesis. These data demonstrate that polyamine biosynthesis is a critical factor in determining sensitivity to folate depletion and may be particularly important in the prostate, where biosynthesis of polyamines is characteristically high due to its secretory function. PMID:19417083

  4. Folate

    MedlinePLUS

    ... celiac disease and inflammatory bowel disease ). People with alcoholism . What happens if I don't get enough ... or low-birth-weight baby. What are some effects of folate on health? Scientists are studying folate ...

  5. The Rickettsia Endosymbiont of Ixodes pacificus Contains All the Genes of De Novo Folate Biosynthesis

    PubMed Central

    Bodnar, James; Mortazavi, Bobak; Laurent, Timothy; Deason, Jeff; Thephavongsa, Khanhkeo; Zhong, Jianmin

    2015-01-01

    Ticks and other arthropods often are hosts to nutrient providing bacterial endosymbionts, which contribute to their host’s fitness by supplying nutrients such as vitamins and amino acids. It has been detected, in our lab, that Ixodes pacificus is host to Rickettsia species phylotype G021. This endosymbiont is predominantly present, and 100% maternally transmitted in I. pacificus. To study roles of phylotype G021 in I. pacificus, bioinformatic and molecular approaches were carried out. MUMmer genome alignments of whole genome sequence of I. scapularis, a close relative to I. pacificus, against completely sequenced genomes of R. bellii OSU85-389, R. conorii, and R. felis, identified 8,190 unique sequences that are homologous to Rickettsia sequences in the NCBI Trace Archive. MetaCyc metabolic reconstructions revealed that all folate gene orthologues (folA, folC, folE, folKP, ptpS) required for de novo folate biosynthesis are present in the genome of Rickettsia buchneri in I. scapularis. To examine the metabolic capability of phylotype G021 in I. pacificus, genes of the folate biosynthesis pathway of the bacterium were PCR amplified using degenerate primers. BLAST searches identified that nucleotide sequences of the folA, folC, folE, folKP, and ptpS genes possess 98.6%, 98.8%, 98.9%, 98.5% and 99.0% identity respectively to the corresponding genes of Rickettsia buchneri. Phylogenetic tree constructions show that the folate genes of phylotype G021 and homologous genes from various Rickettsia species are monophyletic. This study has shown that all folate genes exist in the genome of Rickettsia species phylotype G021 and that this bacterium has the genetic capability for de novo folate synthesis. PMID:26650541

  6. Folate

    MedlinePLUS

    ... Guidelines for Americans and the U.S. Department of Agriculture's food guidance system, ChooseMyPlate . Where can I find ... on food sources of folate: U.S. Department of Agriculture's (USDA) National Nutrient Database Nutrient List for folate ( ...

  7. "Wigglesworthia morsitans" Folate (Vitamin B9) Biosynthesis Contributes to Tsetse Host Fitness.

    PubMed

    Snyder, Anna K; Rio, Rita V M

    2015-08-15

    Closely related ancient endosymbionts may retain minor genomic distinctions through evolutionary time, yet the biological relevance of these small pockets of unique loci remains unknown. The tsetse fly (Diptera: Glossinidae), the sole vector of lethal African trypanosomes (Trypanosoma spp.), maintains an ancient and obligate mutualism with species belonging to the gammaproteobacterium Wigglesworthia. Extensive concordant evolution with associated Wigglesworthia species has occurred through tsetse species radiation. Accordingly, the retention of unique symbiont loci between Wigglesworthia genomes may prove instrumental toward host species-specific biological traits. Genome distinctions between "Wigglesworthia morsitans" (harbored within Glossina morsitans bacteriomes) and the basal species Wigglesworthia glossinidia (harbored within Glossina brevipalpis bacteriomes) include the retention of chorismate and downstream folate (vitamin B9) biosynthesis capabilities, contributing to distinct symbiont metabolomes. Here, we demonstrate that these W. morsitans pathways remain functionally intact, with folate likely being systemically disseminated through a synchronously expressed tsetse folate transporter within bacteriomes. The folate produced by W. morsitans is demonstrated to be pivotal for G. morsitans sexual maturation and reproduction. Modest differences between ancient symbiont genomes may still play key roles in the evolution of their host species, particularly if loci are involved in shaping host physiology and ecology. Enhanced knowledge of the Wigglesworthia-tsetse mutualism may also provide novel and specific avenues for vector control. PMID:26025907

  8. Complex Patterns of Gene Fission in the Eukaryotic Folate Biosynthesis Pathway

    PubMed Central

    Maguire, Finlay; Henriquez, Fiona L.; Leonard, Guy; Dacks, Joel B.; Brown, Matthew W.; Richards, Thomas A.

    2014-01-01

    Shared derived genomic characters can be useful for polarizing phylogenetic relationships, for example, gene fusions have been used to identify deep-branching relationships in the eukaryotes. Here, we report the evolutionary analysis of a three-gene fusion of folB, folK, and folP, which encode enzymes that catalyze consecutive steps in de novo folate biosynthesis. The folK-folP fusion was found across the eukaryotes and a sparse collection of prokaryotes. This suggests an ancient derivation with a number of gene losses in the eukaryotes potentially as a consequence of adaptation to heterotrophic lifestyles. In contrast, the folB-folK-folP gene is specific to a mosaic collection of Amorphea taxa (a group encompassing: Amoebozoa, Apusomonadida, Breviatea, and Opisthokonta). Next, we investigated the stability of this character. We identified numerous gene losses and a total of nine gene fission events, either by break up of an open reading frame (four events identified) or loss of a component domain (five events identified). This indicates that this three gene fusion is highly labile. These data are consistent with a growing body of data indicating gene fission events occur at high relative rates. Accounting for these sources of homoplasy, our data suggest that the folB-folK-folP gene fusion was present in the last common ancestor of Amoebozoa and Opisthokonta but absent in the Metazoa including the human genome. Comparative genomic data of these genes provides an important resource for designing therapeutic strategies targeting the de novo folate biosynthesis pathway of a variety of eukaryotic pathogens such as Acanthamoeba castellanii. PMID:25252772

  9. An atypical orthologue of 6-pyruvoyltetrahydropterin synthase can provide the missing link in the folate biosynthesis pathway of malaria parasites

    PubMed Central

    Dittrich, Sabine; Mitchell, Sarah L; Blagborough, Andrew M; Wang, Qi; Wang, Ping; Sims, Paul F G; Hyde, John E

    2008-01-01

    Folate metabolism in malaria parasites is a long-standing, clinical target for chemotherapy and prophylaxis. However, despite determination of the complete genome sequence of the lethal species Plasmodium falciparum, the pathway of de novo folate biosynthesis remains incomplete, as no candidate gene for dihydroneopterin aldolase (DHNA) could be identified. This enzyme catalyses the third step in the well-characterized pathway of plants, bacteria, and those eukaryotic microorganisms capable of synthesizing their own folate. Utilizing bioinformatics searches based on both primary and higher protein structures, together with biochemical assays, we demonstrate that P. falciparum cell extracts lack detectable DHNA activity, but that the parasite possesses an unusual orthologue of 6-pyruvoyltetrahydropterin synthase (PTPS), which simultaneously gives rise to two products in comparable amounts, the predominant of which is 6-hydroxymethyl-7,8-dihydropterin, the substrate for the fourth step in folate biosynthesis (catalysed by 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase; PPPK). This can provide a bypass for the missing DHNA activity and thus a means of completing the biosynthetic pathway from GTP to dihydrofolate. Supported by site-directed mutagenesis experiments, we ascribe the novel catalytic activity of the malarial PTPS to a Cys to Glu change at its active site relative to all previously characterized PTPS molecules, including that of the human host. PMID:18093090

  10. Structure and Function of the E. coli Dihydroneopterin Triphosphate Pyrophosphatase: A nudix enzyme involved in Folate Biosynthesis

    SciTech Connect

    Gabelli,S.; Bianchet, M.; Lu, W.; Dunn, C.; Niu, Z.; Amzel, L.

    2007-01-01

    Nudix hydrolases are a superfamily of pyrophosphatases, most of which are involved in clearing the cell of potentially deleterious metabolites and in preventing the accumulation of metabolic intermediates. We determined that the product of the orf17 gene of Escherichia coli, a Nudix NTP hydrolase, catalyzes the hydrolytic release of pyrophosphate from dihydroneopterin triphosphate, the committed step of folate synthesis in bacteria. That this dihydroneopterin hydrolase (DHNTPase) is indeed a key enzyme in the folate pathway was confirmed in vivo: knockout of this gene in E. coli leads to a marked reduction in folate synthesis that is completely restored by a plasmid carrying the gene. We also determined the crystal structure of this enzyme using data to 1.8 {angstrom} resolution and studied the kinetics of the reaction. These results provide insight into the structural bases for catalysis and substrate specificity in this enzyme and allow the definition of the dihydroneopterin triphosphate pyrophosphatase family of Nudix enzymes.

  11. Functional Characterization of the Pneumocystis jirovecii Potential Drug Targets dhfs and abz2 Involved in Folate Biosynthesis

    PubMed Central

    Luraschi, A.; Cissé, O. H.; Monod, M.; Pagni, M.

    2015-01-01

    Pneumocystis species are fungal parasites colonizing mammal lungs with strict host specificity. Pneumocystis jirovecii is the human-specific species and can turn into an opportunistic pathogen causing severe pneumonia in immunocompromised individuals. This disease is currently the second most frequent life-threatening invasive fungal infection worldwide. The most efficient drug, cotrimoxazole, presents serious side effects, and resistance to this drug is emerging. The search for new targets for the development of new drugs is thus of utmost importance. The recent release of the P. jirovecii genome sequence opens a new era for this task. It can now be carried out on the actual targets to be inhibited instead of on those of the relatively distant model Pneumocystis carinii, the species infecting rats. We focused on the folic acid biosynthesis pathway because (i) it is widely used for efficient therapeutic intervention, and (ii) it involves several enzymes that are essential for the pathogen and have no human counterparts. In this study, we report the identification of two such potential targets within the genome of P. jirovecii, the dihydrofolate synthase (dhfs) and the aminodeoxychorismate lyase (abz2). The function of these enzymes was demonstrated by the rescue of the null allele of the orthologous gene of Saccharomyces cerevisiae. PMID:25691634

  12. Folate status of gut microbiome affects Caenorhabditis elegans lifespan.

    PubMed

    Nguyen, Theresa P T; Clarke, Catherine F

    2012-01-01

    In a paper in BMC Biology Virk et al. show that Caenorhabditis elegans lifespan is extended in response to a diet of folate-deficient Escherichia coli. The deficiencies in folate biosynthesis were due to an aroD mutation, or treatment of E. coli with sulfa drugs, which are mimics of the folate precursor para-aminobenzoic acid. This study suggests that pharmacological manipulation of the gut microbiome folate status may be a viable approach to slow animal aging, and raises questions about folate supplementation. PMID:22849295

  13. Folate deficiency

    MedlinePLUS

    ... and platelets (in severe cases) In folate-deficiency anemia , the red blood cells are abnormally large (megaloblastic). Pregnant women need to get enough folic acid. The vitamin is important to the growth of the fetus’ ...

  14. Targeting the Proton-Coupled Folate Transporter for Selective Delivery of 6-Substituted Pyrrolo[2,3-d]Pyrimidine Antifolate Inhibitors of De Novo Purine Biosynthesis in the Chemotherapy of Solid TumorsS?

    PubMed Central

    Desmoulin, Sita Kugel; Wang, Yiqiang; Wu, Jianmei; Stout, Mark; Hou, Zhanjun; Fulterer, Andreas; Chang, Min-Hwang; Romero, Michael F.; Cherian, Christina; Gangjee, Aleem

    2010-01-01

    The proton-coupled folate transporter (PCFT) is a folate-proton symporter with an acidic pH optimum, approximating the microenvironments of solid tumors. We tested 6-substituted pyrrolo[2,3-d]pyrimidine antifolates with one to six carbons in the bridge region for inhibition of proliferation in isogenic Chinese hamster ovary (CHO) and HeLa cells expressing PCFT or reduced folate carrier (RFC). Only analogs with three and four bridge carbons (N-{4-[3-2-amino-4-oxo-4,7-dihydro-3H-pyrrolo[2,3-d]-pyrimidin-6-yl)propyl]benzoyl}-l-glutamic acid (compound 2) and N-{4-[4-2-amino-4-oxo-4,7-dihydro-3H-pyrrolo[2,3-d]-pyrimidin-6-yl)butyl]benzoyl}*-l-glutamic acid (compound 3), respectively) were inhibitory, with 2 ? 3. Activity toward RFC-expressing cells was negligible. Compound 2 and pemetrexed (Pmx) competed with [3H]methotrexate for PCFT transport in PCFT-expressing CHO (R2/hPCFT4) cells from pH 5.5 to 7.2; inhibition increased with decreasing pH. In Xenopus laevis oocytes microinjected with PCFT cRNA, uptake of 2, like that of Pmx, was electrogenic. Cytotoxicity of 2 toward R2/hPCFT4 cells was abolished in the presence of adenosine or 5-amino-4-imidazolecarboxamide, suggesting that glycinamide ribonucleotide formyltransferase (GARFTase) in de novo purine biosynthesis was the primary target. Compound 2 decreased GTP and ATP pools by ?50 and 75%, respectively. By an in situ GARFTase assay, 2 was ?20-fold more inhibitory toward intracellular GARFTase than toward cell growth or colony formation. Compound 2 irreversibly inhibited clonogenicity, although this required at least 4 h of exposure. Our results document the potent antiproliferative activity of compound 2, attributable to its efficient cellular uptake by PCFT, resulting in inhibition of GARFTase and de novo purine biosynthesis. Furthermore, they establish the feasibility of selective chemotherapy drug delivery via PCFT over RFC, a process that takes advantage of a unique biological feature of solid tumors. PMID:20601456

  15. Enhancing the natural folate level in wine using bioengineering and stabilization strategies.

    PubMed

    Liu, Yazheng; Walkey, Christopher J; Green, Timothy J; van Vuuren, Hennie J J; Kitts, David D

    2016-03-01

    Folate deficiency is linked to many diseases, some of which may have higher probability in individuals with alcohol-induced alterations in one-carbon metabolism. Our study shows that folate content in commercial wine is not related to white or red varieties, but associated with the yeast that is used to produce the wine. The stability of folate in these wines, once opened for consumption, did not correlate with total phenolic or sulfite content. In addition, we employed yeast bioengineering to fortify wine with folate. We confirmed by overexpression that FOL2 was the key gene encoding the rate-limiting step of folate biosynthesis in wine yeast. In this study, we also show that overexpression of other folate biosynthesis genes, including ABZ1, ABZ2, DFR1, FOL1 and FOL3, had no effect on folate levels in wine. Ensuring stability of the increased natural folate in all wines was achieved by the addition of ascorbate. PMID:26471523

  16. Synthesis and biological activity of a novel series of 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate inhibitors of purine biosynthesis with selectivity for high affinity folate receptors and the proton-coupled folate transporter over the reduced folate carrier for cellular entry†

    PubMed Central

    Wang, Lei; Cherian, Christina; Desmoulin, Sita Kugel; Polin, Lisa; Deng, Yijun; Wu, Jianmei; Hou, Zhanjun; White, Kathryn; Kushner, Juiwanna; Matherly, Larry H.; Gangjee, Aleem

    2010-01-01

    2-Amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidines with a thienoyl side chain and 4-6 carbon bridge lengths (compounds 1-3) were synthesized as substrates for folate receptors (FRs) and the proton-coupled folate transporter (PCFT). Conversion of acetylene carboxylic acids to ?-bromomethylketones and condensation with 2,4-diamino-6-hydroxypyrimidine afforded the 6-substituted pyrrolo[2,3-d]pyrimidines. Sonogashira coupling with (S)-2-[(5-bromo-thiophene-2-carbonyl)-amino]-pentanedioic acid diethyl ester, followed by hydrogenation and saponification, afforded 1-3. Compounds 1 and 2 potently inhibited KB and IGROV1 human tumor cells that express FR?, reduced folate carrier (RFC), and PCFT. The analogs were selective for FR- and PCFT over RFC. Glycinamide ribonucleotide formyltransferase was the principal cellular target. In SCID mice with KB tumors, 1 was highly active against both early (3.5 log kill, 1/5 cures) and advanced (3.7 log kill, 4/5 complete remissions) stage tumors. Our results demonstrate potent in vitro and in vivo antitumor activity for 1 due to selective transport by FRs and PCFT over RFC. PMID:20085328

  17. Folate-deficiency anemia

    MedlinePLUS

    ... type of B vitamin. It is also called folic acid. Anemia is a condition in which the body ... Folate (folic acid) is needed for red blood cells to form and grow. You can get folate by eating green ...

  18. Cerebral Folate Deficiency

    ERIC Educational Resources Information Center

    Gordon, Neil

    2009-01-01

    Cerebral folate deficiency (CFD) is associated with low levels of 5-methyltetrahydrofolate in the cerebrospinal fluid (CSF) with normal folate levels in the plasma and red blood cells. The onset of symptoms caused by the deficiency of folates in the brain is at around 4 to 6 months of age. This is followed by delayed development, with deceleration…

  19. Association between dietary fiber intake and the folate status of a group of female adolescents.

    PubMed

    Houghton, L A; Green, T J; Donovan, U M; Gibson, R S; Stephen, A M; O'Connor, D L

    1997-12-01

    The main objective of this study was to assess the association between dietary fiber intake and the folate status of Canadian female adolescents. We also assessed dietary folate intakes and evaluated the prevalence of biochemical folate deficiency in these subjects. Female adolescents aged 14-19 y (n = 224) were recruited and fasting blood samples were collected. Dietary intakes (3-d food record) were recorded and participants were classified as lactoovovegetarians, semivegetarians, or omnivores on the basis of food-consumption patterns assessed with food-frequency questionnaires. Fourteen percent, 17%, and 26% of lactoovovegetarians, semivegetarians, and omnivores, respectively, had dietary folate intakes below their predicted requirements; 1%, 4%, and 23%, respectively, had serum folate concentrations indicative of deficiency. Despite low dietary folate intakes and serum folate concentrations, few subjects had homocysteine concentrations indicative of deficiency, suggesting that the degree of folate depletion had not yet produced functional consequences. Most important, results suggest that the consumption of nonstarch polysaccharide is significantly associated with serum folate concentrations (P < 0.001). For each 1-g increase in nonstarch polysaccharide intake, a 1.8% increase in serum folate concentration is expected. In summary, we propose that an increase in nonstarch polysaccharide intake may promote the intestinal biosynthesis of folate, providing a complementary strategy to enhance the folate nutriture of humans. PMID:9394694

  20. The methylation, neurotransmitter, and antioxidant connections between folate and depression.

    PubMed

    Miller, Alan L

    2008-09-01

    Depression is common - one-fourth of the U.S. population will have a depressive episode sometime in life. Folate deficiency is also relatively common in depressed people, with approximately one-third of depressed individuals having an outright deficiency. Folate is a water-soluble B-vitamin necessary for the proper biosynthesis of the monoamine neurotransmitters serotonin, epinephrine, and dopamine. The active metabolite of folate, 5-methyltetrahydrofolate (5-MTHF, L-methylfolate), participates in re-methylation of the amino acid metabolite homocysteine, creating methionine. S-adenosylmethionine (SAMe), the downstream metabolite of methionine, is involved in numerous biochemical methyl donation reactions, including reactions forming monoamine neurotransmitters. Without the participation of 5-MTHF in this process, SAMe and neurotransmitter levels decrease in the cerebrospinal fluid, contributing to the disease process of depression. SAMe supplementation was shown to improve depressive symptoms. 5-MTHF also appears to stabilize, enhance production of, or possibly act as a substitute for, tetrahydrobiopterin (BH4), an essential cofactor in monoamine neurotransmitter biosynthesis. There are few intervention studies of folic acid or 5-MTHF as a stand-alone treatment for depression related to folate deficiency; however, the studies that have been conducted are promising. Depressed individuals with low serum folate also tend to not respond well to selective serotonin reuptake inhibitor (SSRI) antidepressant drugs. Correcting the insufficiency by dosing folate along with the SSRI results in a significantly better antidepressant response. PMID:18950248

  1. Folate and Asthma

    PubMed Central

    Blatter, Joshua; Han, Yueh-Ying; Forno, Erick; Brehm, John; Bodnar, Lisa

    2013-01-01

    Findings from experimental studies and animal models led to the hypothesis that folic acid supplementation during pregnancy confers an increased risk of asthma. This review provides a critical examination of current experimental and epidemiologic evidence of a causal association between folate status and asthma. In industrialized nations, the prevalence of asthma was rising before widespread fortification of foodstuffs with folic acid or folate supplementation before or during pregnancy, thus suggesting that changes in folate status are an unlikely explanation for “the asthma epidemic.” Consistent with this ecologic observation, evidence from human studies does not support moderate or strong effects of folate status on asthma. Given known protective effects against neural tube and cardiac defects, there is no reason to alter current recommendations for folic acid supplementation during conception or pregnancy based on findings for folate and asthma. Although we believe that there are inadequate data to exclude a weak effect of maternal folate status on asthma or asthma symptoms, such effects could be examined within the context of very large (and ongoing) birth cohort studies. At this time, there is no justification for funding new studies of folate and asthma. PMID:23650899

  2. Excessive folate synthesis limits lifespan in the C. elegans: E. coli aging model

    PubMed Central

    2012-01-01

    Background Gut microbes influence animal health and thus, are potential targets for interventions that slow aging. Live E. coli provides the nematode worm Caenorhabditis elegans with vital micronutrients, such as folates that cannot be synthesized by animals. However, the microbe also limits C. elegans lifespan. Understanding these interactions may shed light on how intestinal microbes influence mammalian aging. Results Serendipitously, we isolated an E. coli mutant that slows C. elegans aging. We identified the disrupted gene to be aroD, which is required to synthesize aromatic compounds in the microbe. Adding back aromatic compounds to the media revealed that the increased C. elegans lifespan was caused by decreased availability of para-aminobenzoic acid, a precursor to folate. Consistent with this result, inhibition of folate synthesis by sulfamethoxazole, a sulfonamide, led to a dose-dependent increase in C. elegans lifespan. As expected, these treatments caused a decrease in bacterial and worm folate levels, as measured by mass spectrometry of intact folates. The folate cycle is essential for cellular biosynthesis. However, bacterial proliferation and C. elegans growth and reproduction were unaffected under the conditions that increased lifespan. Conclusions In this animal:microbe system, folates are in excess of that required for biosynthesis. This study suggests that microbial folate synthesis is a pharmacologically accessible target to slow animal aging without detrimental effects. PMID:22849329

  3. Folate: a functional food constituent.

    PubMed

    Iyer, Ramya; Tomar, S K

    2009-01-01

    Folate, a water-soluble vitamin, includes naturally occurring food folate and synthetic folic acid in supplements and fortified foods. Mammalian cells cannot synthesize folate and its deficiency has been implicated in a wide variety of disorders. A number of reviews have dwelt up on the health benefits associated with increased folate intakes and many countries possess mandatory folate enrichment programs. Lately, a number of studies have shown that high intakes of folic acid, the chemically synthesized form, but not natural folates, can cause adverse effects in some individuals such as the masking of the hematological manifestations of vitamin B(12) deficiency, leukemia, arthritis, bowel cancer, and ectopic pregnancies. As fermented milk products are reported to contain even higher amounts of folate produced by the food-grade bacteria, primarily lactic acid bacteria (LAB), the focus has primarily shifted toward the natural folate, that is, folate produced by LAB and levels of folate present in foods fermented by/or containing these valuable microorganisms. The proper selection and use of folate-producing microorganisms is an interesting strategy to increase "natural" folate levels in foods. An attempt has been made through this review to share information available in the literature on wide ranging aspects of folate, namely, bioavailability, analysis, deficiency, dietary requirements, and health effects of synthetic and natural folate, dairy and nondairy products as a potential source of folate, microorganisms with special reference to Streptococcus thermophilus as prolific folate producer, and recent insight on modulation of folate production levels in LAB by metabolic engineering. PMID:20492126

  4. The human proton-coupled folate transporter

    PubMed Central

    Desmoulin, Sita Kugel; Hou, Zhanjun; Gangjee, Aleem; Matherly, Larry H.

    2012-01-01

    This review summarizes the biology of the proton-coupled folate transporter (PCFT). PCFT was identified in 2006 as the primary transporter for intestinal absorption of dietary folates, as mutations in PCFT are causal in hereditary folate malabsorption (HFM) syndrome. Since 2006, there have been major advances in understanding the mechanistic roles of critical amino acids and/or domains in the PCFT protein, many of which were identified as mutated in HFM patients, and in characterizing transcriptional control of the human PCFT gene. With the recognition that PCFT is abundantly expressed in human tumors and is active at pHs characterizing the tumor microenvironment, attention turned to exploiting PCFT for delivering novel cytotoxic antifolates for solid tumors. The finding that pemetrexed is an excellent PCFT substrate explains its demonstrated clinical efficacy for mesothelioma and non-small cell lung cancer, and prompted development of more PCFT-selective tumor-targeted 6-substituted pyrrolo[2,3-d]pyrimidine antifolates that derive their cytotoxic effects by targeting de novo purine nucleotide biosynthesis. PMID:22954694

  5. Folate deficiency triggers an oxidative-nitrosative stress-mediated apoptotic cell death and impedes insulin biosynthesis in RINm5F pancreatic islet ?-cells: relevant to the pathogenesis of diabetes.

    PubMed

    Hsu, Hung-Chih; Chiou, Jeng-Fong; Wang, Yu-Huei; Chen, Chia-Hui; Mau, Shin-Yi; Ho, Chun-Te; Chang, Pey-Jium; Liu, Tsan-Zon; Chen, Ching-Hsein

    2013-01-01

    It has been postulated that folic acid (folate) deficiency (FD) may be a risk factor for the pathogenesis of a variety of oxidative stress-triggered chronic degenerative diseases including diabetes, however, the direct evidence to lend support to this hypothesis is scanty. For this reason, we set out to study if FD can trigger the apoptotic events in an insulin-producing pancreatic RINm5F islet ? cells. When these cells were cultivated under FD condition, a time-dependent growth impediment was observed and the demise of these cells was demonstrated to be apoptotic in nature proceeding through a mitochondria-dependent pathway. In addition to evoke oxidative stress, FD condition could also trigger nitrosative stress through a NF-?B-dependent iNOS-mediated overproduction of nitric oxide (NO). The latter compound could then trigger depletion of endoplasmic reticulum (ER) calcium (Ca(2+)) store leading to cytosolic Ca(2+) overload and caused ER stress as evidence by the activation of CHOP expression. Furthermore, FD-induced apoptosis of RINm5F cells was found to be correlated with a time-dependent depletion of intracellular glutathione (GSH) and a severe down-regulation of Bcl-2 expression. Along the same vein, we also demonstrated that FD could severely impede RINm5F cells to synthesize insulin and their abilities to secret insulin in response to glucose stimulation were appreciably hampered. Even more importantly, we found that folate replenishment could not restore the ability of RINm5F cells to resynthesize insulin. Taken together, our data provide strong evidence to support the hypothesis that FD is a legitimate risk factor for the pathogenesis of diabetes. PMID:24223745

  6. Folate levels modulate oncogene-induced replication stress and tumorigenicity

    PubMed Central

    Lamm, Noa; Maoz, Karin; Bester, Assaf C; Im, Michael M; Shewach, Donna S; Karni, Rotem; Kerem, Batsheva

    2015-01-01

    Chromosomal instability in early cancer stages is caused by replication stress. One mechanism by which oncogene expression induces replication stress is to drive cell proliferation with insufficient nucleotide levels. Cancer development is driven by alterations in both genetic and environmental factors. Here, we investigated whether replication stress can be modulated by both genetic and non-genetic factors and whether the extent of replication stress affects the probability of neoplastic transformation. To do so, we studied the effect of folate, a micronutrient that is essential for nucleotide biosynthesis, on oncogene-induced tumorigenicity. We show that folate deficiency by itself leads to replication stress in a concentration-dependent manner. Folate deficiency significantly enhances oncogene-induced replication stress, leading to increased DNA damage and tumorigenicity in vitro. Importantly, oncogene-expressing cells, when grown under folate deficiency, exhibit a significantly increased frequency of tumor development in mice. These findings suggest that replication stress is a quantitative trait affected by both genetic and non-genetic factors and that the extent of replication stress plays an important role in cancer development. PMID:26197802

  7. Folate-linked drugs for the treatment of cancer and inflammatory diseases.

    PubMed

    Yang, Jun; Vlashi, Erina; Low, Philip

    2012-01-01

    Folic acid, also known as vitamin B9 (Fig. 9.1), is an essential co-enzyme in one-carbon metabolism pathways, including the biosynthesis of nucleotides (i.e. purines, thymidine) and several amino acids. In general, two functionally different systems mediate the cellular uptake of folate: (1) the reduced folate carrier (RFC, Kd ? 10-6 M), an anion transporter that delivers folates across the plasma membrane in a bidirectional fashion, and (2) the folate receptor (FR, Kd ? 10-10 M), which internalizes folate through active receptor-mediated endocytosis. The RFC, a membrane-spanning anion transporter, is present in virtually all tissues and is responsible for the majority of folate transport in and out of cells. In contrast, FR expression is largely restricted to malignant cells, activated macrophages, and the proximal tubule cells of the kidneys. Because a variety of important diseases are caused by the former two cell types, interest in exploiting FR for drug targeting applications has rapidly increased. And achievement of this targeting objective, primarily through conjugation of drugs to folic acid is believed to enable (1) enhanced net drug uptake by pathologic cells, and more importantly (2) reduction in drug deposition into non-pathologic cells, thereby mitigating collateral toxicity to normal tissues. PMID:22116699

  8. Synthesis and turnover of folates in plants.

    PubMed

    Hanson, Andrew D; Gregory, Jesse F

    2002-06-01

    Folates are essential cofactors for one-carbon transfer reactions, which are central to plant metabolism. Plants synthesize folates de novo, and are key sources of dietary folate for humans. Research into plant folates therefore impacts human nutrition. Biochemical progress, the sequencing of the Arabidopsis genome, and EST databases are now painting a clear picture of the folate synthesis pathway in plants and its surprising compartmentation. Moreover, new analytical advances will help to elucidate plant folate turnover and transport, which are practically unexplored. PMID:11960743

  9. FOLATE CONTENT IN SELECT DRY BEAN GENOTYPES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dry edible beans are a good natural source of folate (½-cup serving of cooked beans provide 35% daily value of folate). Recognized healthful benefits of folate in the human diet include reduced birth defects, decreased plasma homocysteine level which is a risk factor in cardiovascular disease, reduc...

  10. Selenium, Folate, and Colon Cancer

    PubMed Central

    Connelly-Frost, Alexandra; Poole, Charles; Satia, Jessie A.; Kupper, Lawrence L.; Millikan, Robert C.; Sandler, Robert S.

    2009-01-01

    Background Selenium is an essential trace element which has been implicated in cancer risk; however, study results have been inconsistent with regard to colon cancer. Our objectives were to 1) investigate the association between selenium and colon cancer 2) evaluate possible effect measure modifiers and 3) evaluate potential biases associated with the use of post-diagnostic serum selenium measures Methods The North Carolina Colon Cancer Study is a large population-based, case-control study of colon cancer in North Carolina between 1996 and 2000 (n=1,691). Nurses interviewed patients about diet and lifestyle and drew blood specimens which were used to measure serum selenium. Results Individuals who had both high serum selenium (>140 mcg/L) and high reported folate (>354 mcg/day), had a reduced relative risk of colon cancer (OR=0.5, 95% CI=0.4,0.8). The risk of colon cancer for those with high selenium and low folate was approximately equal to the risk among those with low selenium and low folate (OR=1.1, 95% CI=0.7,1.5) as was the risk for those with low selenium and high folate (OR=0.9, 95% CI=0.7–1.2). We did not find evidence of bias due to weight loss, stage at diagnosis, or time from diagnosis to selenium measurement. Conclusion High levels of serum selenium and reported folate jointly were associated with a substantially reduced risk of colon cancer. Folate status should be taken into account when evaluating the relation between selenium and colon cancer in future studies. Importantly, weight loss, stage at diagnosis, or time from diagnosis to blood draw did not appear to produce strong bias in our study. PMID:19235033

  11. Folate and carcinogenesis-mechanisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A large and growing body of both pre-clinical and clinical studies pertaining to colorectal neoplasms constitutes the most compelling evidence for the protective effect of folate against the development of cancer, although evidence is also accruing in this regard for cancers of the breast, lung, pan...

  12. Folate and Depression: The Role of Nutritional Folate Supplementation in Antidepressant Therapy

    E-print Network

    Liu, Yi Wen

    1998-01-01

    low folate and depression and low folate and antidepressantdepression has been treated with psychotherapy, antidepressantand depression received, in addition to ongoing standard medications, a placebo for two weeks; then, either the antidepressant

  13. Associations between single nucleotide polymorphisms in folate uptake and metabolizing genes with blood folate, homocysteine and DNA uracil concentrations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Folate is an essential nutrient which supports nucleotide synthesis and biological methylation reactions. Diminished folate status results in chromosome breakage and is associated with several diseases including colorectal cancer. Folate status is also inversely related to plasma homocys...

  14. A Milk-Free Diet Downregulates Folate Receptor Autoimmunity in Cerebral Folate Deficiency Syndrome

    ERIC Educational Resources Information Center

    Ramaekers, Vincent T.; Sequeira, Jeffrey M.; Blau, Nenad; Quadros, Edward V.

    2008-01-01

    In cerebral folate deficiency syndrome, the presence of autoantibodies against the folate receptor (FR) explains decreased folate transport to the central nervous system and the clinical response to folinic acid. Autoantibody crossreactivity with milk FR from different species prompted us to test the effect of a milk-free diet. Intervention with a…

  15. obtain it by ingestion from folate-rich dietary sources. Maternal folate deficiency has been

    E-print Network

    Floeter, Sergio Ricardo

    from food. Through a combination of database mining, cell biology, and human genetic analysis, Qiu etobtain it by ingestion from folate-rich dietary sources. Maternal folate deficiency has been folate efficiently into cultured cells at the low pH that character- izes the intestinal milieu

  16. Genetic and epigenomic footprints of folate.

    PubMed

    Salbaum, J Michael; Kappen, Claudia

    2012-01-01

    Dietary micronutrient composition has long been recognized as a determining factor for human health. Historically, biochemical research has successfully unraveled how vitamins serve as essential cofactors for enzymatic reactions in the biochemical machinery of the cell. Folate, also known as vitamin B9, follows this paradigm as well. Folate deficiency is linked to adverse health conditions, and dietary supplementation with folate has proven highly beneficial in the prevention of neural tube defects. With its function in single-carbon metabolism, folate levels affect nucleotide synthesis, with implications for cell proliferation, DNA repair, and genomic stability. Furthermore, by providing the single-carbon moiety in the synthesis pathway for S-adenosylmethionine, the main methyl donor in the cell, folate also impacts methylation reactions. It is this capacity that extends the reach of folate functions into the realm of epigenetics and gene regulation. Methylation reactions play a major role for several modalities of the epigenome. The specific methylation status of histones, noncoding RNAs, transcription factors, or DNA represents a significant determinant for the transcriptional output of a cell. Proper folate status is therefore necessary for a broad range of biological functions that go beyond the biochemistry of folate. In this review, we examine evolutionary, genetic, and epigenomic footprints of folate and the implications for human health. PMID:22656376

  17. GNMT Expression Increases Hepatic Folate Contents and Folate-Dependent Methionine Synthase-Mediated Homocysteine Remethylation

    PubMed Central

    Wang, Yi-Cheng; Chen, Yi-Ming; Lin, Yan-Jun; Liu, Shih-Ping; Chiang, En-Pei Isabel

    2011-01-01

    Glycine N-methyltransferase (GNMT) is a major hepatic enzyme that converts S-adenosylmethionine to S-adenosylhomocysteine while generating sarcosine from glycine, hence it can regulate mediating methyl group availability in mammalian cells. GNMT is also a major hepatic folate binding protein that binds to, and, subsequently, may be inhibited by 5-methyltetrafolate. GNMT is commonly diminished in human hepatoma; yet its role in cellular folate metabolism, in tumorigenesis and antifolate therapies, is not understood completely. In the present study, we investigated the impacts of GNMT expression on cell growth, folate status, methylfolate-dependent reactions and antifolate cytotoxicity. GNMT–diminished hepatoma cell lines transfected with GNMT were cultured under folate abundance or restriction. Folate-dependent homocysteine remethylation fluxes were investigated using stable isotopic tracers and gas chromatography/mass spectrometry. Folate status was compared between wild-type (WT), GNMT transgenic (GNMTtg) and GNMT knockout (GNMTko) mice. In the cell model, GNMT expression increased folate concentration, induced folate-dependent homocysteine remethylation, and reduced antifolate methotrexate cytotoxicity. In the mouse models, GNMTtg had increased hepatic folate significantly, whereas GNMTko had reduced folate. Liver folate levels correlated well with GNMT expressions (r = 0.53, P = 0.002); and methionine synthase expression was reduced significantly in GNMTko, demonstrating impaired methylfolate-dependent metabolism by GNMT deletion. In conclusion, we demonstrated novel findings that restoring GNMT assists methylfolate-dependent reactions and ameliorates the consequences of folate depletion. GNMT expression in vivo improves folate retention and bioavailability in the liver. Studies on how GNMT expression impacts the distribution of different folate cofactors and the regulation of specific folate dependent reactions are underway. PMID:21210071

  18. Subacute combined degeneration of the cord due to folate deficiency: response to methyl folate treatment.

    PubMed Central

    Lever, E G; Elwes, R D; Williams, A; Reynolds, E H

    1986-01-01

    Subacute combined degeneration of the cord is a rare complication of folate deficiency. Disturbance of methylation reactions in nervous tissue probably underlie subacute combined degeneration of the cord arising from folate as well as vitamin B12 deficiency. Methyl tetrahydrofolate is the form in which folic acid is transported into the CNS. Therefore methyl tetrahydrofolate treatment of the neurological and psychiatric manifestations of folate deficiency would seem to be theoretically advantageous. A case of subacute combined degeneration of the cord due to dietary folate deficiency and associated with an organic brain syndrome is reported. There was striking haematological, neurological and psychiatric response to methyl folate treatment. PMID:3783183

  19. Folate and brain function in the elderly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    PURPOSE OF REVIEW: Over the past several decades, folate has emerged as an important nutrient in several key conditions of concern to the elderly. Subclinical levels of folate inadequacy can have significant negative impacts on health in older individuals. RECENT FINDINGS: Serum and red blood cell...

  20. Can folate intake reduce arsenic toxicity?

    PubMed Central

    Kile, Molly L; Ronnenberg, Alayne G

    2014-01-01

    Arsenic-contaminated groundwater is a global environmental health concern. Inorganic arsenic is a known carcinogen, and epidemiologic studies suggest that persons with impaired arsenic metabolism are at increased risk for certain cancers, including skin and bladder carcinoma. Arsenic metabolism involves methylation to monomethylarsonic acid and dimethylarsinic acid (DMA) by a folate-dependent process. Persons possessing polymorphisms in certain genes involved in folate metabolism excrete a lower proportion of urinary arsenic as DMA, which may influence susceptibility to arsenic toxicity. A double-blind placebo-controlled trial in a population with low plasma folate observed that after 12 weeks of folic acid supplementation, the proportion of total urinary arsenic excreted as DMA increased and blood arsenic concentration decreased, suggesting an improvement in arsenic metabolism. Although no studies have directly shown that high folate intake reduces the risk of arsenic toxicity, these findings provide evidence to support an interaction between folate and arsenic metabolism. PMID:18522624

  1. Auxin biosynthesis.

    PubMed

    Zhao, Yunde

    2014-01-01

    lndole-3-acetic acid (IAA), the most important natural auxin in plants, is mainly synthesized from the amino acid tryptophan (Trp). Recent genetic and biochemical studies in Arabidopsis have unambiguously established the first complete Trp-dependent auxin biosynthesis pathway. The first chemical step of auxin biosynthesis is the removal of the amino group from Trp by the TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA) family of transaminases to generate indole-3-pyruvate (IPA). IPA then undergoes oxidative decarboxylation catalyzed by the YUCCA (YUC) family of flavin monooxygenases to produce IAA. This two-step auxin biosynthesis pathway is highly conserved throughout the plant kingdom and is essential for almost all of the major developmental processes. The successful elucidation of a complete auxin biosynthesis pathway provides the necessary tools for effectively modulating auxin concentrations in plants with temporal and spatial precision. The progress in auxin biosynthesis also lays a foundation for understanding polar auxin transport and for dissecting auxin signaling mechanisms during plant development. PMID:24955076

  2. Low Folate and Selenium in the Mouse Maternal Diet Alters Liver Gene Expression Patterns in the Offspring after Weaning

    PubMed Central

    Barnett, Matthew P.G.; Bermingham, Emma N.; Young, Wayne; Bassett, Shalome A.; Hesketh, John E.; Maciel-Dominguez, Anabel; McNabb, Warren C.; Roy, Nicole C.

    2015-01-01

    During pregnancy, selenium (Se) and folate requirements increase, with deficiencies linked to neural tube defects (folate) and DNA oxidation (Se). This study investigated the effect of a high-fat diet either supplemented with (diet H), or marginally deficient in (diet L), Se and folate. Pregnant female mice and their male offspring were assigned to one of four treatments: diet H during gestation, lactation and post-weaning; diet L during gestation, lactation and post-weaning; diet H during gestation and lactation but diet L fed to offspring post-weaning; or diet L during gestation and lactation followed by diet H fed to offspring post-weaning. Microarray and pathway analyses were performed using RNA from colon and liver of 12-week-old male offspring. Gene set enrichment analysis of liver gene expression showed that diet L affected several pathways including regulation of translation (protein biosynthesis), methyl group metabolism, and fatty acid metabolism; this effect was stronger when the diet was fed to mothers, rather than to offspring. No significant differences in individual gene expression were observed in colon but there were significant differences in cell cycle control pathways. In conclusion, a maternal low Se/folate diet during gestation and lactation has more effects on gene expression in offspring than the same diet fed to offspring post-weaning; low Se and folate in utero and during lactation thus has persistent metabolic effects in the offspring. PMID:26007332

  3. Genetics Home Reference: Hereditary folate malabsorption

    MedlinePLUS

    ... the production of DNA and its chemical cousin, RNA. Infants with hereditary folate malabsorption are born with ... anemia ; microvilli ; neurological ; platelets ; prevalence ; protein ; proton ; recessive ; RNA ; susceptibility ; thrombocytopenia ; vitamins ; white blood cells You may ...

  4. Thiamine metabolism in folate deficient rats

    SciTech Connect

    Walzem, R.L.

    1987-01-01

    Folate status (FS) and resultant alterations in thiamine status (TS) were evaluated in weanling rats fed either 17% amino acids (RHAA); 14% amino acids (LOGLU); 20% Vitamin Free casein (VFC) + 8% gelatin (HICG); 10% VFC + 4% gelatin + 0.3% methionine (CGM); or 10% VFC + 4 % gelatin (LOCG). Diets were fed with and without 8 mg FA/kg diet. HICG diet contained 54 ug/kg endogenous folate, the CGM and LOCG, 27 ug/kg, RHAA and LOGLU were folate free. FS was assessed by growth rate, hematology, formiminoglutamic acid excretion following a histidine load and tissue folate levels. TS was assessed by determining the fate of oral /sup 3/H-labeled and intravenous /sup 14/C-labeled thiamine over a six hour test period and by measurement of blood transketolase activity (TKA) and TPP effect (TPPE). TKA and TPPE were measured by an enzymatic single-point assay developed during these investigations.

  5. Folate, vitamin B??, and S-adenosylmethionine.

    PubMed

    Bottiglieri, Teodoro

    2013-03-01

    Folate (vitamin B9) and cobalamin (vitamin B12) are essential for the normal development and function of the central nervous system. The metabolism of these vitamins is intimately linked and supports the synthesis of S-adenosylmethionine (SAMe), the major methyl group donor in methylation reactions. This article reviews the metabolic and clinical importance of folate, vitamin B12, and SAMe, as well as clinical trials in relation to depression and dementia. PMID:23538072

  6. Immobilized purified folate-binding protein: binding characteristics and use for quantifying folate in erythrocytes

    SciTech Connect

    Hansen, S.I.; Holm, J.; Nexo, E.

    1987-08-01

    Purified folate-binding protein from cow's milk was immobilized on monodisperse polymer particles (Dynospheres) activated by rho-toluenesulfonyl chloride. Leakage from the spheres was less than 0.1%, and the binding properties were similar to those of the soluble protein with regard to dissociation, pH optimum for binding pteroylglutamic acid, and specificity for binding various folate derivatives. We used the immobilized folate-binding protein as binding protein in an isotope-dilution assay for quantifying folate in erythrocytes. The detection limit was 50 nmol/L and the CV over a six-month period was 2.3% (means = 1.25 mumol/L, n = 15). The reference interval, for folate measured in erythrocytes of 43 blood donors, was 0.4-1.5 mumol/L.

  7. Quantitative flux analysis reveals folate-dependent NADPH production

    NASA Astrophysics Data System (ADS)

    Fan, Jing; Ye, Jiangbin; Kamphorst, Jurre J.; Shlomi, Tomer; Thompson, Craig B.; Rabinowitz, Joshua D.

    2014-06-01

    ATP is the dominant energy source in animals for mechanical and electrical work (for example, muscle contraction or neuronal firing). For chemical work, there is an equally important role for NADPH, which powers redox defence and reductive biosynthesis. The most direct route to produce NADPH from glucose is the oxidative pentose phosphate pathway, with malic enzyme sometimes also important. Although the relative contribution of glycolysis and oxidative phosphorylation to ATP production has been extensively analysed, similar analysis of NADPH metabolism has been lacking. Here we demonstrate the ability to directly track, by liquid chromatography-mass spectrometry, the passage of deuterium from labelled substrates into NADPH, and combine this approach with carbon labelling and mathematical modelling to measure NADPH fluxes. In proliferating cells, the largest contributor to cytosolic NADPH is the oxidative pentose phosphate pathway. Surprisingly, a nearly comparable contribution comes from serine-driven one-carbon metabolism, in which oxidation of methylene tetrahydrofolate to 10-formyl-tetrahydrofolate is coupled to reduction of NADP+ to NADPH. Moreover, tracing of mitochondrial one-carbon metabolism revealed complete oxidation of 10-formyl-tetrahydrofolate to make NADPH. As folate metabolism has not previously been considered an NADPH producer, confirmation of its functional significance was undertaken through knockdown of methylenetetrahydrofolate dehydrogenase (MTHFD) genes. Depletion of either the cytosolic or mitochondrial MTHFD isozyme resulted in decreased cellular NADPH/NADP+ and reduced/oxidized glutathione ratios (GSH/GSSG) and increased cell sensitivity to oxidative stress. Thus, although the importance of folate metabolism for proliferating cells has been long recognized and attributed to its function of producing one-carbon units for nucleic acid synthesis, another crucial function of this pathway is generating reducing power.

  8. Seasonal folate serum concentrations at different nutrition.

    PubMed

    Krajcovicová-Kudlácková, Marica; Valachovicová, Martina; Blazícek, Pavel

    2013-03-01

    Folic acid (vitamin B9) rich sources are leafy green vegetables, legumes, whole grains, egg yolk, liver, and citrus fruit. In winter and early spring, there could be insufficient supply of vegetables and fruit and thus lower intake of folic acid and possible deficient folic acid blood concentrations. The aim of the study was to assess serum vitamin B9 concentrations depending on the season (the last third of winter - March, the last third of spring - May/June and the beginning of autumn - September) and different nutritional habits (apparently healthy adults non-smoking, non-obese 366 subjects; 204 persons of general population on traditional mixed diet; and 162 long-term lacto-ovo vegetarians). In general population group, the mean concentration of folate in March was low (narrowly above lower reference limit) with high incidence of deficient values - 31.5%. In May/ June vs. March was folate concentration significantly higher with deficient values in 13.2% of individuals. The highest serum values were observed in September with 11.1% of deficient values. In vegetarian vs. non-vegetarian group, significantly higher folate concentrations were found in each season with no deficient values. Folate and vitamin B12 are the regulators of homocysteinemia; plant food lacks of vitamin B12. The deficient folate serum values in March caused the mild hyperhomocysteinemia in 12.3% of individuals vs. only 5.9% and 4.8% of subjects in groups investigated in May/June and September. In spite of high folate concentrations in all investigations and no deficient value, 19.6-22.8% of vegetarians suffer from mild hyperhomocysteinemia as a consequence of deficient vitamin B12 concentrations in one quarter of subjects. As far as the general population is concerned, our findings suggest that winter and early spring are critical seasons in regards to optimal serum folate concentrations. PMID:23741898

  9. Folate Metabolism and the Risk of Down Syndrome

    ERIC Educational Resources Information Center

    Patterson, David

    2008-01-01

    Folate is an important vitamin that contributes to cell division and growth and is therefore of particular importance during infancy and pregnancy. Folate deficiency has been associated with slowed growth, anaemia, weight loss, digestive disorders and some behavioural issues. Adequate folate intake around the time of conception and early pregnancy…

  10. Cobalamin and folate evaluation: measurement of methylmalonic acid and homocysteine vs vitamin B(12) and folate.

    PubMed

    Klee, G G

    2000-08-01

    Vitamin B(12) and folate are two vitamins that have interdependent roles in nucleic acid synthesis. Deficiencies of either vitamin can cause megaloblastic anemia; however, inappropriate treatment of B(12) deficiency with folate can cause irreversible nerve degeneration. Inadequate folate nutrition during early pregnancy can cause neural tube defects in the developing fetus. In addition, folate and vitamin B(12) deficiency and the compensatory increase in homocysteine are a significant risk factor for cardiovascular disease. Laboratory support for the diagnosis and management of these multiple clinical entities is controversial and somewhat problematic. Automated ligand binding measurements of vitamin B(12) and folate are easiest to perform and widely used. Unfortunately, these tests are not the most sensitive indicators of disease. Measurement of red cell folate is less dependent on dietary fluctuations, but these measurements may not be reliable. Homocysteine and methylmalonic acid are better metabolic indicators of deficiencies at the tissue level. There are no "gold standards" for the diagnosis of these disorders, and controversy exists regarding the best diagnostic approach. Healthcare strategies that consider the impact of laboratory tests on the overall costs and quality of care should consider the advantages of including methylmalonic acid and homocysteine in the early evaluation of patients with suspected deficiencies of vitamin B(12) and folate. PMID:10926922

  11. Improving folate (vitamin B9) stability in biofortified rice through metabolic engineering.

    PubMed

    Blancquaert, Dieter; Van Daele, Jeroen; Strobbe, Simon; Kiekens, Filip; Storozhenko, Sergei; De Steur, Hans; Gellynck, Xavier; Lambert, Willy; Stove, Christophe; Van Der Straeten, Dominique

    2015-10-01

    Biofortification of staple crops could help to alleviate micronutrient deficiencies in humans. We show that folates in stored rice grains are unstable, which reduces the potential benefits of folate biofortification. We obtain folate concentrations that are up to 150 fold higher than those of wild-type rice by complexing folate to folate-binding proteins to improve folate stability, thereby enabling long-term storage of biofortified high-folate rice grains. PMID:26389575

  12. EFFECT OF VARYING MATERNAL FOLATE STATUS AND DIETARY FOLATE INTAKE ON RESPONSE TO DIVERSE DEVELOPMENTAL TOXICANTS IN THE RAT

    EPA Science Inventory

    Periconceptional and early pregnancy folate supplements are associated with reduced recurrence and occurrence of birth defects in humans. This study was undertaken to assess the influence of maternal folate status and dietary folate intake on outcome of exposures to diverse terat...

  13. The role of methionine in the intracellular accumulation and function of folates

    SciTech Connect

    Scott, J.M.; McKenna, B.; McGing, P.; Molloy, A.; Dinn, J.; Weir, D.G.

    1983-01-01

    It is suggested that mammalian cells have evolved to respond to methionine deficiency since in such circumstances vital methylation reactions are put at risk, due to decreased levels of S-adenosyl-methionine. Decreased cellular homocysteine, as a result of decreased methionine, would also restrict cell division by decreased conversion of plasma 5-CH3-H/sub 4/PteGlu into intracellular polyglutamates. Cobalamin deficiency, either nutritional or due to exposure to the Co(I)cobalamin inactivating agent nitrous oxide, prevents the demethylation of 5-CH3-H/sub 4/PteGlu, which even in the presence of adequate amounts of homocysteine and methionine prevents rapidly proliferating cells from converting enough of the plasma 5-CH3-H/sub 4/ PteGlu into folylpolyglutamate forms to permit normal DNA biosynthesis and cell replication. This, together with the trapping of the cellular folate cofactors in the 5-CH3-H/sub 4/PteGlu form, results in megaloblastic changes occurring in tissues such as the marrow. The vital role of the methylation reactions was demonstrated by exposing monkeys to nitrous oxide which inactivated their methionine synthetase. The resultant ataxia and severe demyelination was prevented and diminished by methionine supplementation. When methionine synthetase was similarly inactivated in mice it was shown that while 5-CH3-H/sub 4/PteGlu enters mammalian cells, it is not converted into a polyglutamyl form and subsequently leaves the cell unmetabolised. In similar experiments in rats methionine was found to have only a small effect in restoring folylpolyglutamate biosynthesis. It was found that a decrease in the deoxythymidine salvage pathway by methionine has led others to the mistaken conclusion that methionine has an 'anti-folate' effect in bone marrow, i.e. that it decreases folate availability for thymidylate synthetase.

  14. Vitamin B12--folate interrelations.

    PubMed

    Das, K C; Herbert, V

    1976-10-01

    Megaloblastic anaemia is due to a derangement of DNA synthesis caused by insufficient supply of one or other of the four deoxyribonucleoside triphosphate (dNTP) precursors of DNA synthesis or by direct inhibition of one or other DNA polymerase. Reduced supply of the pyrimidine deoxythymidine triphosphate (dTTP) may be caused by folate or vitamin B12 deficiencies or by the action of dihydrofolate reductase inhibitors (e.g. methotrexate, pyrimethamine or trimethoprim), all of which cause reduced supply of the coenzyme 5, 10 methylene tetrahydrofolate (pentaglutamate) needed for thymidylate synthetase. Reduced dTTP supply may also be caused by direct inhibition of thymidylate synthetase by 5-fluorouracil. Reduced supply of both purines, deoxyadenosine triphosphate (dATP) and deoxyguanosine triphosphate (dGTP), may be caused by hydroxyurea, 6-mercaptopurine (and probably by another purine antagonist azaserine), whilst reduced supply of both pyrimidine DNA precursors, dTTP and dCTP (deoxycytidine triphosphate) may be due to inherited orotic aciduria or to treatment with azauridine. Cytosine arabinoside directly inhibits DNA polymerase. DNA replication is a discontinuous process and a number of enzymes are concerned with different aspects of the process. The parental strands partly unwind and a large number of initiation points or origins are activated on both strands. A primer RNA is first synthesised using the parental strand of DNA as template. Fragments of new DNA are then synthesised on the parental DNA template, starting at the RNA primer, under the action of one or other DNA polymerase (probably gamma). The RNA primer is then removed and the gap left is filled by further DNA synthesis under the action of a different DNA polymerase (probably alpha). The fragments of new DNA are joined to give newly synthesised stretches of DNA (replicons) which are then liigated together to form bulk DNA of enormous molecular weight. It is suggested here that reduced supply of one or other of the four deoxyribonucleoside triphosphate (dNTP) during the 'S' phase of the cell cycle (due to vitamin B12 or folate deficiency, drug treatment or other congenital or acquired abnormality in synthesis of the dNTP) impairs the cell's ability to elongate newly initiated DNA fragments by preventing gap-filling, the polymerase needed for gap-filling requiring substantially greater concentrations of the deoxyribonucleoside triphosphates than the polymerase involved in chain initiation. Cytosine arabinoside, which also may cause megaloblastosis, may affect principally the synthesis of new DNA fragments. Since active protein synthesis is needed for the cell to enter the S phase and RNA synthesis is needed to prime new DNA synthesis, megaloblastic anaemia may be expected to occur only when DNA synthesis is inhibited but protein and RNA synthesis are relatively unimpaired... PMID:10122

  15. Production of folates by yeasts in Tanzanian fermented togwa.

    PubMed

    Hjortmo, Sofia B; Hellström, Andreas M; Andlid, Thomas A

    2008-08-01

    We have investigated the impact of different yeasts and fermentation time on folate content and composition in a fermented maize-based porridge, called togwa, consumed in rural areas in Tanzania. The yeasts studied, originally isolated from indigenous togwa, belong to Issatchenkia orientalis, Pichia anomala, Saccharomyces cerevisiae, Klyveromyces marxianus and Candida glabrata. The main folate forms found, detected and quantified by HPLC during the fermentations were 5-methyl-tetrahydrofolate (5-CH(3)-H(4)folate) and tetrahydrofolate (H(4)folate). The content of H(4)folate, per unit togwa, remained fairly stable at a low level throughout the experiment for all strains, whereas the 5-CH(3)-H(4)folate concentration was highly dependent on yeast strain as well as on fermentation time. The highest folate concentration was found after 46 h of fermentation with C. glabrata (TY26) (6.91+/-0.14 microg 100 mL(-1)), corresponding to a 23-fold increase compared with unfermented togwa. The cell concentration per se could not predict the togwa folate level, as shown by the much higher specific folate content (g folate CFU(-1)) in the S. cerevisiae strain (TY08) compared with the other species tested. This study provides useful data when trying to maximize folate content in togwa as well as in other yeast-fermented products. PMID:18547328

  16. Structures of human folate receptors reveal biological trafficking states and diversity in folate and antifolate recognition.

    PubMed

    Wibowo, Ardian S; Singh, Mirage; Reeder, Kristen M; Carter, Joshua J; Kovach, Alexander R; Meng, Wuyi; Ratnam, Manohar; Zhang, Faming; Dann, Charles E

    2013-09-17

    Antifolates, folate analogs that inhibit vitamin B9 (folic acid)-using cellular enzymes, have been used over several decades for the treatment of cancer and inflammatory diseases. Cellular uptake of the antifolates in clinical use occurs primarily via widely expressed facilitative membrane transporters. More recently, human folate receptors (FRs), high affinity receptors that transport folate via endocytosis, have been proposed as targets for the specific delivery of new classes of antifolates or folate conjugates to tumors or sites of inflammation. The development of specific, FR-targeted antifolates would be accelerated if additional biophysical data, particularly structural models of the receptors, were available. Here we describe six distinct crystallographic models that provide insight into biological trafficking of FRs and distinct binding modes of folate and antifolates to these receptors. From comparison of the structures, we delineate discrete structural conformations representative of key stages in the endocytic trafficking of FRs and propose models for pH-dependent conformational changes. Additionally, we describe the molecular details of human FR in complex with three clinically prevalent antifolates, pemetrexed (also Alimta), aminopterin, and methotrexate. On the whole, our data form the basis for rapid design and implementation of unique, FR-targeted, folate-based drugs for the treatment of cancer and inflammatory diseases. PMID:23934049

  17. Folate, vitamin B12 and human health

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During the past decade the role of folate and vitamin B12 in human nutrition have been under constant re-examination. Basic knowledge on the metabolism and interactions between these essential nutrients has expanded and multiple complexities have been unraveled. These micronutrients have shared func...

  18. UK Policy on Folate Fortification of Foods

    ERIC Educational Resources Information Center

    Malcolm, Alan

    2004-01-01

    The UK Food Standards Agency has decided not to recommend fortification of foods with folate, the family of vitamins associated with the prevention of neural tube defects in babies. This is a change in attitude from previous recommendations made by a series of committees and reports in the UK. Notably, it differs from US policy on the matter. The…

  19. Folate and neurological function: epidemiology perspective

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book chapter reviews and summarizes published literature on the relationship between folate status and Alzheimer’s disease, age-related cognitive impairment, and depression. Much of this research was motivated by the hypothesis that high circulating levels of the sulfur-containing amino acid ho...

  20. Iron and Folate-Deficiency Anaemias.

    ERIC Educational Resources Information Center

    Hercberg, Serge

    1990-01-01

    Nutritional anemia is believed to be the most widespread nutritional disorder in the world. While it generally affects developing countries, developed countries are also affected to an extent sufficient to justify the implementation of preventive measures at a national level. This report focuses on iron and folate deficiencies, which are by far…

  1. Folate Augmentation of Treatment – Evaluation for Depression (FolATED): protocol of a randomised controlled trial

    PubMed Central

    Roberts, Seren Haf; Bedson, Emma; Hughes, Dyfrig; Lloyd, Keith; Moat, Stuart; Pirmohamed, Munir; Slegg, Gary; Tranter, Richard; Whitaker, Rhiannon; Wilkinson, Clare; Russell, Ian

    2007-01-01

    Background Clinical depression is common, debilitating and treatable; one in four people experience it during their lives. The majority of sufferers are treated in primary care and only half respond well to active treatment. Evidence suggests that folate may be a useful adjunct to antidepressant treatment: 1) patients with depression often have a functional folate deficiency; 2) the severity of such deficiency, indicated by elevated homocysteine, correlates with depression severity, 3) low folate is associated with poor antidepressant response, and 4) folate is required for the synthesis of neurotransmitters implicated in the pathogenesis and treatment of depression. Methods/Design The primary objective of this trial is to estimate the effect of folate augmentation in new or continuing treatment of depressive disorder in primary and secondary care. Secondary objectives are to evaluate the cost-effectiveness of folate augmentation of antidepressant treatment, investigate how the response to antidepressant treatment depends on genetic polymorphisms relevant to folate metabolism and antidepressant response, and explore whether baseline folate status can predict response to antidepressant treatment. Seven hundred and thirty patients will be recruited from North East Wales, North West Wales and Swansea. Patients with moderate to severe depression will be referred to the trial by their GP or Psychiatrist. If patients consent they will be assessed for eligibility and baseline measures will be undertaken. Blood samples will be taken to exclude patients with folate and B12 deficiency. Some of the blood taken will be used to measure homocysteine levels and for genetic analysis (with additional consent). Eligible participants will be randomised to receive 5 mg of folic acid or placebo. Patients with B12 deficiency or folate deficiency will be given appropriate treatment and will be monitored in the 'comprehensive cohort study'. Assessments will be at screening, randomisation and 3 subsequent follow-ups. Discussion If folic acid is shown to improve the efficacy of antidepressants, then it will provide a safe, simple and cheap way of improving the treatment of depression in primary and secondary care. Trial registration Current controlled trials ISRCTN37558856 PMID:18005429

  2. Differences in folate production by bifidobacteria of different origins

    PubMed Central

    SUGAHARA, Hirosuke; ODAMAKI, Toshitaka; HASHIKURA, Nanami; ABE, Fumiaki; XIAO, Jin-zhong

    2015-01-01

    Bifidobacteria are known to produce folate, a vital nutrient for humans. Previous studies have suggested that the ability to produce folate is strain dependent, but further adequate evaluation is needed. In this study, a total of 44 strains, including 12 species and 7 subspecies, of bifidobacteria were investigated for the production of folate during cultivation in medium containing essential levels of folate for growth of the tested strains. An in vitro assay showed that all strains of human-residential bifidobacteria (HRB) were able to produce folate, whereas most strains of non-HRB were not, with the exception of the B. thermophilum and B. longum ssp. suis strains. The differences in the in vivo production of folate by HRB and non-HRB were confirmed using mono-associated mice. The fecal folate concentrations, blood levels of hemoglobin and mean corpuscular volumes were significantly higher in the mice colonized with a folate producer, B. longum subsp. longum, compared with mice colonized with a nonproducer, B. animalis subsp. lactis. Our results confirmed the differences in folate production between HRB and non-HRB strains and suggested the benefit of HRB to hosts from the perspective of potential folate delivery. PMID:26594608

  3. 77 FR 57115 - Certain Reduced Folate; Nutraceutical Products and L-Methylfolate Raw Ingredients Used Therein...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-17

    ...Reduced Folate; Nutraceutical Products and L-Methylfolate Raw Ingredients Used Therein...Reduced Folate Nutraceutical Products and L-methylfolate Raw Ingredients Used Therein...reduced folate nutraceutical products and L- methylfolate raw ingredients used...

  4. 77 FR 63336 - Certain Reduced Folate Nutraceutical Products and L-Methylfolate Raw Ingredients Used Therein...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-16

    ...Reduced Folate Nutraceutical Products and L-Methylfolate Raw Ingredients Used Therein...reduced folate nutraceutical products and l-methylfolate raw ingredients used therein...reduced folate nutraceutical products and l-methylfolate raw ingredients used...

  5. Folate Receptor Alpha Defect Causes Cerebral Folate Transport Deficiency: A Treatable Neurodegenerative Disorder Associated with Disturbed Myelin Metabolism

    PubMed Central

    Steinfeld, Robert; Grapp, Marcel; Kraetzner, Ralph; Dreha-Kulaczewski, Steffi; Helms, Gunther; Dechent, Peter; Wevers, Ron; Grosso, Salvatore; Gärtner, Jutta

    2009-01-01

    Sufficient folate supplementation is essential for a multitude of biological processes and diverse organ systems. At least five distinct inherited disorders of folate transport and metabolism are presently known, all of which cause systemic folate deficiency. We identified an inherited brain-specific folate transport defect that is caused by mutations in the folate receptor 1 (FOLR1) gene coding for folate receptor alpha (FR?). Three patients carrying FOLR1 mutations developed progressive movement disturbance, psychomotor decline, and epilepsy and showed severely reduced folate concentrations in the cerebrospinal fluid (CSF). Brain magnetic resonance imaging (MRI) demonstrated profound hypomyelination, and MR-based in vivo metabolite analysis indicated a combined depletion of white-matter choline and inositol. Retroviral transfection of patient cells with either FR? or FR? could rescue folate binding. Furthermore, CSF folate concentrations, as well as glial choline and inositol depletion, were restored by folinic acid therapy and preceded clinical improvements. Our studies not only characterize a previously unknown and treatable disorder of early childhood, but also provide new insights into the folate metabolic pathways involved in postnatal myelination and brain development. PMID:19732866

  6. Human mutations in methylenetetrahydrofolate dehydrogenase 1 impair nuclear de novo thymidylate biosynthesis

    PubMed Central

    Field, Martha S.; Kamynina, Elena; Watkins, David; Rosenblatt, David S.; Stover, Patrick J.

    2015-01-01

    An inborn error of metabolism associated with mutations in the human methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) gene has been identified. The proband presented with SCID, megaloblastic anemia, and neurologic abnormalities, but the causal metabolic impairment is unknown. SCID has been associated with impaired purine nucleotide metabolism, whereas megaloblastic anemia has been associated with impaired de novo thymidylate (dTMP) biosynthesis. MTHFD1 functions to condense formate with tetrahydrofolate and serves as the primary entry point of single carbons into folate-dependent one-carbon metabolism in the cytosol. In this study, we examined the impact of MTHFD1 loss of function on folate-dependent purine, dTMP, and methionine biosynthesis in fibroblasts from the proband with MTHFD1 deficiency. The flux of formate incorporation into methionine and dTMP was decreased by 90% and 50%, respectively, whereas formate flux through de novo purine biosynthesis was unaffected. Patient fibroblasts exhibited enriched MTHFD1 in the nucleus, elevated uracil in DNA, lower rates of de novo dTMP synthesis, and increased salvage pathway dTMP biosynthesis relative to control fibroblasts. These results provide evidence that impaired nuclear de novo dTMP biosynthesis can lead to both megaloblastic anemia and SCID in MTHFD1 deficiency. PMID:25548164

  7. Homogeneous assay for whole blood folate using photon upconversion.

    PubMed

    Arppe, Riikka; Mattsson, Leena; Korpi, Krista; Blom, Sami; Wang, Qi; Riuttamäki, Terhi; Soukka, Tero

    2015-02-01

    Red blood cell folate is measured for folate deficiency diagnosis, because it reflects the long-term folate level in tissues, whereas serum folate only represents the dietary intake. Direct homogeneous assay from whole blood would be ideal but conventional fluorescence techniques in blood suffer from high background and strong absorption of light at ultraviolet and visible wavelengths. In this study, a new photon upconversion-based homogeneous assay for whole blood folate is introduced based on resonance energy transfer from upconverting nanophosphor donor coated with folate binding protein to a near-infrared fluorescent acceptor dye conjugated to folate analogue. The sensitized acceptor emission is measured at 740 nm upon 980 nm excitation. Thus, optically transparent wavelengths are utilized for both donor excitation and sensitized acceptor emission to minimize the sample absorption, and anti-Stokes detection completely eliminates the Stokes-shifted autofluorescence. The IC50 value of the assay was 6.0 nM and the limit of detection (LOD) was 1 nM. The measurable concentration range was 2 orders of magnitude between 1.0-100 nM, corresponding to 40-4000 nM folate in the whole blood sample. Recoveries of added folic acid were 112%-114%. A good correlation was found when compared to a competitive heterogeneous assay based on the DELFIA-technology. The introduced assay provides a simple and fast method for whole blood folate measurement. PMID:25548870

  8. Folate Deficiency Could Restrain Decidual Angiogenesis in Pregnant Mice

    PubMed Central

    Li, Yanli; Gao, Rufei; Liu, Xueqing; Chen, Xuemei; Liao, Xinggui; Geng, Yanqing; Ding, Yubin; Wang, Yingxiong; He, Junlin

    2015-01-01

    The mechanism of birth defects induced by folate deficiency was focused on mainly in fetal development. Little is known about the effect of folate deficiency on the maternal uterus, especially on decidual angiogenesis after implantation which establishes vessel networks to support embryo development. The aim of this study was to investigate the effects of folate deficiency on decidual angiogenesis. Serum folate levels were measured by electrochemiluminescence. The status of decidual angiogenesis was examined by cluster designation 34 (CD34) immunohistochemistry and the expression of angiogenic factors, including vascular endothelial growth factor A (VEGFA), placental growth factor (PLGF), and VEGF receptor 2 (VEGFR2) were also tested. Serum levels of homocysteine (Hcy), follicle stimulating hormone (FSH), luteinizing hormone (LH), prolactin (PRL), progesterone (P4), and estradiol (E2) were detected by Enzyme-linked immunosorbent assay. The folate-deficient mice had a lower folate level and a higher Hcy level. Folate deficiency restrained decidual angiogenesis with significant abnormalities in vascular density and the enlargement and elongation of the vascular sinus. It also showed a reduction in the expressions of VEGFA, VEGFR2, and PLGF. In addition, the serum levels of P4, E2, LH, and PRL were reduced in folate-deficient mice, and the expression of progesterone receptor (PR) and estrogen receptor ? (ER?) were abnormal. These results indicated that folate deficiency could impaire decidual angiogenesis and it may be related to the vasculotoxic properties of Hcy and the imbalance of the reproductive hormone. PMID:26247969

  9. Folate Deficiency Could Restrain Decidual Angiogenesis in Pregnant Mice.

    PubMed

    Li, Yanli; Gao, Rufei; Liu, Xueqing; Chen, Xuemei; Liao, Xinggui; Geng, Yanqing; Ding, Yubin; Wang, Yingxiong; He, Junlin

    2015-08-01

    The mechanism of birth defects induced by folate deficiency was focused on mainly in fetal development. Little is known about the effect of folate deficiency on the maternal uterus, especially on decidual angiogenesis after implantation which establishes vessel networks to support embryo development. The aim of this study was to investigate the effects of folate deficiency on decidual angiogenesis. Serum folate levels were measured by electrochemiluminescence. The status of decidual angiogenesis was examined by cluster designation 34 (CD34) immunohistochemistry and the expression of angiogenic factors, including vascular endothelial growth factor A (VEGFA), placental growth factor (PLGF), and VEGF receptor 2 (VEGFR2) were also tested. Serum levels of homocysteine (Hcy), follicle stimulating hormone (FSH), luteinizing hormone (LH), prolactin (PRL), progesterone (P4), and estradiol (E2) were detected by Enzyme-linked immunosorbent assay. The folate-deficient mice had a lower folate level and a higher Hcy level. Folate deficiency restrained decidual angiogenesis with significant abnormalities in vascular density and the enlargement and elongation of the vascular sinus. It also showed a reduction in the expressions of VEGFA, VEGFR2, and PLGF. In addition, the serum levels of P4, E2, LH, and PRL were reduced in folate-deficient mice, and the expression of progesterone receptor (PR) and estrogen receptor ? (ER?) were abnormal. These results indicated that folate deficiency could impaire decidual angiogenesis and it may be related to the vasculotoxic properties of Hcy and the imbalance of the reproductive hormone. PMID:26247969

  10. Hepatic folate metabolism in the chronic alcoholic monkey

    SciTech Connect

    Tamura, T.; Romero, J.J.; Watson, J.E.; Gong, E.J.; Halsted, C.H.

    1981-05-01

    To assess the role of altered hepatic folate metabolism in the pathogenesis of the folate deficiency of chronic alcoholism, the hepatic metabolism of a tracer dose of /sup 3/H-PteGlu was compared in monkeys given 50% of energy as ethanol for 2 years and in control monkeys. Long-term ethanol feeding resulted in mild hepatic injury, with a significant decrease in hepatic folate levels. Chromatographic studies of liver biopsies obtained after the tracer dose indicated that the processes of reduction, methylation, and formylation of reduced folate and the synthesis of polyglutamyl folates were not affected by long-term ethanol feeding. Hepatic tritium levels were significantly decreased in the ethanol-fed group. These studies suggest that the decrease in hepatic folate levels observed after long-term ethanol ingestion is due to a decrease in hepatic folate levels observed after long-term ethanol ingestion is due to a decreased ability to retain folates in the liver, whereas reduction and further metabolism of folates is not affected.

  11. Compilation of a standardised international folate database for EPIC.

    PubMed

    Nicolas, Geneviève; Witthöft, Cornelia M; Vignat, Jérôme; Knaze, Viktoria; Huybrechts, Inge; Roe, Mark; Finglas, Paul; Slimani, Nadia

    2016-02-15

    This paper describes the methodology applied for compiling an "international end-user" folate database. This work benefits from the unique dataset offered by the European Prospective Investigation into Cancer and Nutrition (EPIC) (N=520,000 subjects in 23 centres). Compilation was done in four steps: (1) identify folate-free foods then find folate values for (2) folate-rich foods common across EPIC countries, (3) the remaining "common" foods, and (4) "country-specific" foods. Compiled folate values were concurrently standardised in terms of unit, mode of expression and chemical analysis, using information in national food composition tables (FCT). 43-70% total folate values were documented as measured by microbiological assay. Foods reported in EPIC were either matched directly to FCT foods, treated as recipes or weighted averages. This work has produced the first standardised folate dataset in Europe, which was used to calculate folate intakes in EPIC; a prerequisite to study the relation between folate intake and diseases. PMID:26433299

  12. Targeting the vitamin biosynthesis pathways for the treatment of malaria.

    PubMed

    Kronenberger, Thales; Schettert, Isolmar; Wrenger, Carsten

    2013-05-01

    The most severe form of malaria is Malaria tropica, caused by Plasmodium falciparum. There are more than 1 billion people that are exposed to malaria parasites leading to more than 500,000 deaths annually. Vaccines are not available and the increasing drug resistance of the parasite prioritizes the need for novel drug targets and chemotherapeutics, which should be ideally designed to target selectively the parasite. In this sense, parasite-specific pathways, such as the vitamin biosyntheses, represent perfect drug-target characteristics because they are absent in humans. In the past, the vitamin B9 (folate) metabolism has been exploited by antifolates to treat infections caused by malaria parasites. Recently, two further vitamin biosynthesis pathways - for the vitamins B6 (pyridoxine) and B1 (thiamine) - have been identified in Plasmodium and analyzed for their suitability to discover new drugs. In this review, the current status of the druggability of plasmodial vitamin biosynthesis pathways is summarized. PMID:23651091

  13. Utility of measuring serum or red blood cell folate in the era of folate fortification of flour.

    PubMed

    Gilfix, Brian M

    2014-05-01

    Folic acid is an essential nutrient involved in one-carbon metabolism. Insufficient folate can result in megaloblastic anemia and an increased risk of neural tube defects. In response to the latter, some governments have mandated the fortification of flour with folate. This had resulted in a documented rise in the serum and red blood cell folate levels in the population. This has impacted the potential utility of folate measurements to detect folate deficiency in the clinical context. Folate measurements, whether done in serum or red blood cells, are subject to analytical variation, especially the latter, which also affects the utility of such measurements. Examining the literature reveals that in clinical situations, generally <1% of the subjects will have folate deficiency regardless of potentially pre-disposing factors (e.g. anemia, anti-folate agents, inflammatory bowel disease). Data from our center for both pediatric and adult populations is presented that supports this observation. Consequently, there exists very few indications for folate determinations (unexplained macrocytosis, inborn errors of metabolism) and it may be more efficient to simply treat suspected cases. PMID:24486651

  14. Human folate metabolism using 14C-accelerator mass spectrometry

    SciTech Connect

    Clifford, A. J.; Arjomand, A.; Duecker, S. R.; Johnson, H.; Schneider, P. D.; Zulim, R. A.; Bucholz, B. A.; Vogel, J. S.

    1999-03-25

    Folate is a water soluble vitamin required for optimal health, growth and development. It occurs naturally in various states of oxidation of the pteridine ring and with varying lengths to its glutamate chain. Folates function as one-carbon donors through methyl transferase catalyzed reactions. Low-folate diets, especially by those with suboptimal methyltransferase activity, are associated with increased risk of neural tube birth defects in children, hyperhomocysteinemic heart disease, and cancer in adults. Rapidly dividing (neoplastic) cells have a high folate need for DNA synthesis. Chemical analogs of folate (antifolates) that interfere with folate metabolism are used as therapeutic agents in cancer treatment. Although much is known about folate chemistry, metabolism of this vitamin in vivo in humans is not well understood. Since folate levels in blood and tissues are very low and methods to measure them are inadequate, the few previous studies that have examined folate metabolism used large doses of radiolabeled folic acid in patients with Hodgkin's disease and cancer (Butterworth et al. 1969, Krumdieck et al. 1978). A subsequent protocol using deuterated folic acid was also insufficiently sensitive to trace a physiologic folate dose (Stites et al. 1997). Accelerator mass spectrometry (AMS) is an emerging bioanalytical tool that overcomes the limitations of traditional mass spectrometry and of decay counting of long lived radioisotopes (Vogel et al. 1995). AMS can detect attomolar concentrations of 14 C in milligram-sized samples enabling in vivo radiotracer studies in healthy humans. We used AMS to study the metabolism of a physiologic 80 nmol oral dose of 14 C-folic acid (1/6 US RDA) by measuring the 14 C-folate levels in serial plasma, urine and feces samples taken over a 150-day period after dosing a healthy adult volunteer.

  15. Bioavailability of food folates and evaluation of food matrix effects with a rat bioassay.

    PubMed

    Clifford, A J; Heid, M K; Peerson, J M; Bills, N D

    1991-04-01

    Folate bioavailability of beef liver, lima beans, peas, spinach, mushrooms, collards, orange juice and wheat germ was estimated with a protocol of folate depletion-repletion using growth and liver, serum and erythrocyte folate of weanling male rats. Diets with 125, 250 and 375 micrograms folic acid/kg were standards. Individual foods were incorporated into a folate-free amino acid-based diet alone (250 micrograms folate/kg diet from food) or mixed with folic acid (125 micrograms folate from food + 125 micrograms folic acid) to evaluate folate bioavailability and effects of food matrix. Beef liver and orange juice folates were as available as folic acid, whereas those of wheat germ were less bioavailable. Folates of peas and spinach were also less available than folic acid using liver and serum folate concentrations and total liver folate as response criteria, but they were not lower when based on growth and erythrocyte folate concentrations. Lima bean, mushroom and collard folates were as available as folic acid using four of five response criteria. Folate bioavailability of all foods generally exceeded 70%. All response criteria gave approximately equivalent results, indicating that growth and tissue folate levels are appropriate criteria. No food matrix effects were observed for any food except lima beans. Foods rich in polyglutamyl folates were less bioavailable than those of foods rich in short-chain folates. PMID:2007897

  16. FOLATE DEFICIENCY ENHANCES ARSENIC-INDUCED GENOTOXICITY IN MICE

    EPA Science Inventory

    Folate deficiency increases background levels of DNA damage and can enhance the mutagenicity of chemical agents. Duplicate experiments were performed to investigate the effect of dietary folate deficiency on arsenic induction of micronuclei (MN) in peripheral blood cells. Male C5...

  17. How much Folate (Vitamin B9) is in Potatoes?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We used a microbial assay to measure folate levels in mature tubers from ~80 different cultivars and wild species. We found about a 3-fold difference in folate concentrations between tubers with the lowest and highest concentrations. Of the top 10 varieties, 7 were yellow fleshed, 2 were red fleshed...

  18. Lentils (Lens culinaris L.), a rich source of folates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pulses contain folates in the form of reduced tetrahydrofolate which is the biologically active form absorbed in the jejunum. Genetic biofortification potential of US-grown lentils (Lens culinaris L.) with the bioavailable form of folate has not been widely studied. The objectives of this study wer...

  19. Assessing the Association between Natural Food Folate Intake and Blood Folate Concentrations: A Systematic Review and Bayesian Meta-Analysis of Trials and Observational Studies

    PubMed Central

    Marchetta, Claire M.; Devine, Owen J.; Crider, Krista S.; Tsang, Becky L.; Cordero, Amy M.; Qi, Yan Ping; Guo, Jing; Berry, Robert J.; Rosenthal, Jorge; Mulinare, Joseph; Mersereau, Patricia; Hamner, Heather C.

    2015-01-01

    Folate is found naturally in foods or as synthetic folic acid in dietary supplements and fortified foods. Adequate periconceptional folic acid intake can prevent neural tube defects. Folate intake impacts blood folate concentration; however, the dose-response between natural food folate and blood folate concentrations has not been well described. We estimated this association among healthy females. A systematic literature review identified studies (1 1992–3 2014) with both natural food folate intake alone and blood folate concentration among females aged 12–49 years. Bayesian methods were used to estimate regression model parameters describing the association between natural food folate intake and subsequent blood folate concentration. Seven controlled trials and 29 observational studies met the inclusion criteria. For the six studies using microbiologic assay (MA) included in the meta-analysis, we estimate that a 6% (95% Credible Interval (CrI): 4%, 9%) increase in red blood cell (RBC) folate concentration and a 7% (95% CrI: 1%, 12%) increase in serum/plasma folate concentration can occur for every 10% increase in natural food folate intake. Using modeled results, we estimate that a natural food folate intake of ?450 ?g dietary folate equivalents (DFE)/day could achieve the lower bound of an RBC folate concentration (~1050 nmol/L) associated with the lowest risk of a neural tube defect. Natural food folate intake affects blood folate concentration and adequate intakes could help women achieve a RBC folate concentration associated with a risk of 6 neural tube defects/10,000 live births. PMID:25867949

  20. Folate content and retention in selected raw and processed foods.

    PubMed

    Bassett, M N; Sammán, N C

    2010-09-01

    Adequate intake of folate reduced the risk of abnormalities in early embryonic brain development such as the risk of malformations of the embryonic brain/spinal cord, collectively referred to as neural tube defects (NTDs). Folate is extremely sensitive to destruction by heat, oxidation and UV light. The purpose of this study was to evaluate the use of different extraction procedures and enzymatic treatment to determine folate concentrations in variety of foods using a microbiological assay (MA) with Lactobacillus rhamnosus as the test organism. This study also aimed to evaluate the retention of folate in foods after using different cooking processes. Nine of the most commonly consumed foods in Argentina and that contain folate were analyzed: broccoli, spinach, potato, lentil, soy (raw and boiled); hen whole egg and yolks (raw, boiled and fried); beef liver (raw and cooked); strawberry (raw) and white bread. For this study, rat plasma (RP) and human plasma (HP) conjugases together with acetate and phosphate buffers were tested. In extraction step for all analyses, RP conjugase was selected since it was easily available in our laboratory and small quantities were required. The acetate buffer was chosen since better growth and more reproducible results were obtained in the different conditions assayed. The results allowed the foods to be grouped into (a) rich sources of folate: hen eggs, yolks, spinach, soybean (raw) and strawberry (100 and 350 microg/100 g fresh weight (FW); (b) good sources of folate: broccoli (raw), soybean (boiled), lentils (raw) and potato (56 to 83 microg/100 g FW) and c) moderate sources of folate: broccoli, lentils (boiled), white breads, onions and beef liver (15 to 30 microg/100g FW). The folate retention was in the range 14-99% according to both type of food and method of processing. Contents and losses of folate vary widely according to type of food and cooking method. PMID:21612148

  1. Membrane Transporters and Folate Homeostasis; Intestinal Absorption, Transport into Systemic Compartments and Tissues

    PubMed Central

    Zhao, Rongbao; Matherly, Larry H.; Goldman, I. David

    2013-01-01

    Folates, the generic term for the family of B vitamins, are derived entirely from dietary sources, and are key one-carbon donors required for de novo nucleotide and methionine synthesis. These highly hydrophilic molecules utilize genetically distinct and functionally diverse transport systems to enter cells: the reduced folate carrier (RFC), the proton-coupled folate transporter (PCFT), and the folate receptors. Each plays a unique role in mediating folate transport across epithelia and into systemic tissues. With the recent discovery of the mechanism of intestinal folate absorption, and the clarification of the genetic basis for the autosomal recessive disorder, hereditary folate malabsorption, involving loss-of-function mutations in PCFT protein, it is now possible to piece together how these folate transporters contribute, both individually and collectively, to folate homeostasis in humans. This review focuses on the physiological roles of these major folate transporters with a brief consideration of their impact on the pharmacological activities of antifolates. PMID:19173758

  2. Statistical interaction model for exchangeability of food folates in rat growth bioassay.

    PubMed

    Müller, H G; Facer, M R; Bills, N D; Clifford, A J

    1996-10-01

    The comparative value of several sources of dietary folate in promoting growth of folate-depleted rats was determined in a folate depletion-repletion rat growth bioassay. Folate-depleted rats were fed an amino acid-based diet supplemented with 11 different concentrations of folate (227, 272, 317, 363, 408, 454, 499, 544, 590, 635 and 680 nmol/kg) from each of 12 different sources of folate (folic acid, fried beef liver, cooked pinto beans individually, or as 1/3, 1/1, or 3/1 combinations of folate from the folic acid/beans, folic acid/beef liver and beans/beef liver) for a total of 132 treatments. Growth response to folic acid and bean folate was linear, whereas that to beef liver folate was distinctly nonlinear, beef liver folate being more potent at lower dietary concentrations but less potent at higher concentrations compared with folic acid and bean folate. Folic acid and bean folate were equivalent to and exchangeable with one another in promoting growth. Beef liver folate and folic acid/bean folate had an interactive effect in promoting growth. The nature of the interaction was antagonistic in that the presence of folic acid and/or bean folate reduced the efficacy of beef liver folate and vice versa. Beef liver folate is not exchangeable with either folic acid or bean folate. We conclude that food folates generally are not exchangeable and do interact adversely. A statistical interaction model that predicted the growth-promoting effect of several sources of dietary folate was developed and validated. PMID:8857521

  3. Acute effects of ethanol on renal folate clearance in rats

    SciTech Connect

    Eisenga, B.H.; McMartin, K.E.

    1986-03-05

    Studies of the renal clearance of folic acid in primates demonstrate net reabsorption of folate by a saturable system. The acute administration of ethanol to rats causes a significant increase in urinary folate excretion. The mechanism for this effect is unknown and thus the effect of acute administration of ethanol on the renal absorption and urinary clearance of folate was studied in rats. Folic acid was administered to male Sprague-Dawley rats via continuous intravenous infusion in doses ranging from 3-75 micromoles/kg and renal clearance relative to inulin was determined. The effects of various dose levels of ethanol on these parameters were then determined. At a dose of 15 micromoles/kg, the renal clearance of folate relative to that of inulin was about 0.65 mg/min. At a plasma ethanol level about 100 mg/dl, the renal clearance of folate was not markedly altered. These results suggests that there is net reabsorption of folate in the rat kidney and that moderate doses of ethanol have little effect on renal effect on renal folate reabsorption.

  4. Effects of industrial processing on folate content in green vegetables.

    PubMed

    Delchier, Nicolas; Ringling, Christiane; Le Grandois, Julie; Aoudé-Werner, Dalal; Galland, Rachel; Georgé, Stéphane; Rychlik, Michael; Renard, Catherine M G C

    2013-08-15

    Folates are described to be sensitive to different physical parameters such as heat, light, pH and leaching. Most studies on folates degradation during processing or cooking treatments were carried out on model solutions or vegetables only with thermal treatments. Our aim was to identify which steps were involved in folates loss in industrial processing chains, and which mechanisms were underlying these losses. For this, the folates contents were monitored along an industrial canning chain of green beans and along an industrial freezing chain of spinach. Folates contents decreased significantly by 25% during the washing step for spinach in the freezing process, and by 30% in the green beans canning process after sterilisation, with 20% of the initial amount being transferred into the covering liquid. The main mechanism involved in folate loss during both canning green beans and freezing spinach was leaching. Limiting the contact between vegetables and water or using steaming seems to be an adequate measure to limit folates losses during processing. PMID:23561177

  5. Folate targeted polymeric 'green' nanotherapy for cancer

    NASA Astrophysics Data System (ADS)

    Narayanan, Sreeja; Binulal, N. S.; Mony, Ullas; Manzoor, Koyakutty; Nair, Shantikumar; Menon, Deepthy

    2010-07-01

    The concept of 'green' chemotherapy by employing targeted nanoparticle mediated delivery to enhance the efficacy of phytomedicines is reported. Poly (lactide-co-glycolide) (PLGA) nanoparticles encapsulating a well known nutraceutical namely, grape seed extract (GSE)—'NanoGSE'—was prepared by a nanoprecipitation technique. The drug-loaded nanoparticles of size ~ 100 nm exhibited high colloidal stability at physiological pH. Molecular receptor targeting of this nanophytomedicine against folate receptor over-expressing cancers was demonstrated in vitro by conjugation with a potential cancer targeting ligand, folic acid (FA). Fluorescence microscopy and flow cytometry data showed highly specific cellular uptake of FA conjugated NanoGSE on folate receptor positive cancer cells. Studies were also conducted to investigate the efficiency of targeted (FA conjugated) versus non-targeted (non-FA conjugated) nanoformulations in causing cancer cell death. The IC50 values were lowered by a factor of ~ 3 for FA-NanoGSE compared to the free drug, indicating substantially enhanced bioavailability to the tumor cells, sparing the normal ones. Receptor targeting of FA-NanoGSE resulted in a significant increase in apoptotic index, which was also quantified by flow cytometry and fluorescence microscopy. This in vitro study provides a basis for the use of nanoparticle mediated delivery of anticancer nutraceuticals to enhance bioavailability and effectively target cancer by a 'green' approach.

  6. Utilizing the folate receptor for active targeting of cancer nanotherapeutics

    PubMed Central

    Zwicke, Grant L.; Mansoori, G. Ali; Jeffery, Constance J.

    2012-01-01

    The development of specialized nanoparticles for use in the detection and treatment of cancer is increasing. Methods are being proposed and tested that could target treatments more directly to cancer cells, which could lead to higher efficacy and reduced toxicity, possibly even eliminating the adverse effects of damage to the immune system and the loss of quick replicating cells. In this mini-review we focus on recent studies that employ folate nanoconjugates to target the folate receptor. Folate receptors are highly overexpressed on the surface of many tumor types. This expression can be exploited to target imaging molecules and therapeutic compounds directly to cancerous tissues. PMID:23240070

  7. Intestinal folate binding protein (FBP) and folate absorption in the suckling rat

    SciTech Connect

    Mason, J.B.; Selhub, J.

    1986-03-01

    The folate in milk is bound to high affinity FBPs but it is unknown whether this binding affects intestinal transport of milk folate in the suckling rat. The authors examined the FBP activity of segments of the GI tract in fed and fasting states. Under fed conditions, the FBP activity in the mucosa of the stomach and proximal small intestine were similar (0.28 and 0.32 pMole folic acid binding/mg protein, N.S.). Both demonstrated less activity than the mucosa of the distal small intestine (1.31 pMole/mg protein, P < .001). A 6 hr fast produced no change in the FBP activity in the stomach or proximal small intestine but resulted in a 42% decrease in the distal small intestine (p < .01). Intestinal transport of unbound and FB-bound H/sup 3/pteryolmonoglutamate (H/sup 3/PGA) was examined in suckling rats by the intestinal loop model. Unbound H/sup 3/PGA demonstrated greater lumenal disappearance in the proximal segment of the small intestine compared to the distal segment (79% vs. 56%, P < .001) whereas the bound H/sup 3/PGA demonstrated greater lumenal disappearance in the distal segment (36% vs. 21%, p < .005). That porton of FBP activity in the distal small intestine that disappears with fasting may represent FBP absorbed from the lumen of the intestine. The FBP-bound folate in milk appears to be absorbed in the suckling rat by a mechanism that favors the distal small intestine and is different from the mechanism responsible for absorption of the unbound folate.

  8. [The significance of folate metabolism in complications of pregnant women].

    PubMed

    Seremak-Mrozikiewicz, Agnieszka

    2013-05-01

    Proper metabolism of folates has a crucial role for body homeostasis. Folate metabolism regulates changing of amino acids (homocysteine and methionine), purine and pyrimidine synthesis and DNA methylation. These whole biochemical processes have significant influence on hematopoietic, cardiovascular and nervous system functions. The disturbances of folate cycle could result in chronic hypertension, coronary artery disease, higher risk of heart infarction, could promote cancers development, and psychic and neurodegenerative diseases. No less important is the connection with complications appearing in pregnant woman (recurrent miscarriages, preeclampsia, fetus hypotrophy intrauterine death, preterm placenta ablation, preterm delivery) and fetus defects (Down syndrome, spina bifida, encephalomeningocele, myelomeningocele). The complex process of folate metabolism requires adequate activity of many enzymes and presence of co-enzymes. A key enzyme in folate metabolism is methylenetetrahydrofolate reductase (MTHFR - methylenetetrahydrofolate reductase), and 677C>T polymorphism of MTHFR gene is connected with lower enzymatic activity In several researches it was indicated that 677C>T MTHFR polymorphism is an independent factor influencing homocysteine concentration in serum, and also folate concentration in serum and red blood cells. Nevertheless, it was also observed the correlation of 677C>T MTHFR polymorphism with Down syndrome, and neural tube defects appearance in fetus. In European populations frequency of mutated 677TT genotype ranges from a few to several percent. Women carriers of 677TT or 677CT MTHFR genotypes are exposed on folate metabolism disturbances and on the consequences of incorrect folate process during pregnancy Nowadays in this group of women folic acid supplementation is widely recommended. In the light of modern knowledge the attention was also focused on the importance of metafolin administration that omitted pathways of folic acid transformation after administration, and in pregnant women certainly is valuable complement of supplementation in this respect. PMID:23819405

  9. Mammalian folylpoly-. gamma. -glutamate synthetase. 3. Specificity for folate analogues

    SciTech Connect

    George, S.; Cichowicz, D.J.; Shane, B.

    1987-01-27

    A variety of folate analogues were synthesized to explore the specificity of the folate binding site of hog liver folypolyglutamate synthetase and the requirements for catalysis. Modifications of the internal and terminal glutamate moieties of folate cause large drops in on rates and/or affinity for the protein. The only exceptions are glutamine, homocysteate, and ornithine analogues, indicating a less stringent specificity around the delta-carbon of glutamate. It is proposed that initial folate binding to the enzyme involves low-affinity interactions at a pterin and a glutamate site and that the first glutamate bound is the internal residue adjacent to the benzoyl group. Processive movement of the polyglutamate chain through the glutamate site and a possible conformational change in the protein when the terminal residue is bound would result in tight binding and would position the ..gamma..-carboxyl of the terminal glutamate in the correct position for catalysis. The 4-amino substitution of folate increases the on rate for monoglutamate derivatives but severely impairs catalysis with diglutamate derivatives. Pteroylornithine derivatives are the first potent and specific inhibitors of folylpolyglutamate synthetase to be identified and may act as analogues of reaction intermediates. Other folate derivatives with tetrahedral chemistry replacing the peptide bond, such as pteroyl-..gamma..-glutamyl-(psi,CH/sub 2/-NH)-glutamate, retain affinity for the protein but are considerably less effective inhibitors than the ornithine derivatives. Enzyme activity was assayed using (/sup 14/C)glutamate.

  10. The role of folate metabolism in orofacial development and clefting.

    PubMed

    Wahl, Stacey E; Kennedy, Allyson E; Wyatt, Brent H; Moore, Alexander D; Pridgen, Deborah E; Cherry, Amanda M; Mavila, Catherine B; Dickinson, Amanda J G

    2015-09-01

    Folate deficiency has been associated with numerous diseases and birth defects including orofacial defects. However, whether folate has a role in the face during early orofacial development has been unclear. The present study reveals that pharmacological and antisense oligonucleotide mediated inhibition of DHFR, an integral enzyme in the folate pathway, results in specific changes in the size and shape of the midface and embryonic mouth. Such defects are accompanied by a severe reduction in the muscle and cartilage jaw elements without significant change in neural crest pattern or global levels of methylation. We propose that the orofacial defects associated with DHFR deficient function are the result of decreased cell proliferation and increased cell death via DNA damage. In particular, localized apoptosis may also be depleting the cells of the face that express crucial genes for the differentiation of the jaw structures. Folate supplementation is widely known to reduce human risk for orofacial clefts. In the present study, we show that activating folate metabolism can reduce median oral clefts in the primary palate by increasing cell survival. Moreover, we demonstrate that a minor decrease in DHFR function exacerbates median facial clefts caused by RAR inhibition. This work suggests that folate deficiencies could be a major contributing factor to multifactorial orofacial defects. PMID:26144049

  11. Folate and alcohol consumption and the risk of lung cancer

    SciTech Connect

    Bandera, E.V.; Graham, S.; Freudenheim, J.L.; Marshall, J.R.; Haughey, B.P.; Swanson, M.; Brasure, J.; Wilkinson, G. )

    1991-03-11

    Because both folate deficiency and alcohol intake have been hypothesized to be lung cancer risk factors, the authors examined the effect of folate and alcohol consumption on risk of lung cancer in a case-control study conducted 1980-1984. Usual dietary intake of 450 histologically confirmed lung cancer cases and 902 controls, all Western New York residents, was ascertained using a modified food frequency questionnaire. Folate intake was not associated with lung cancer risk. After adjusting for age, cigarette smoking, education, and carotene intake, the odds ratio (OR) for the highest category of folate intake was 1.59 in males and 1.34 in females. There was some indication of a protective effect of folate only among women who never smoked. There was a suggestion of a positive association of alcohol intake with lung cancer risk in males, independent of age, education, cigarette smoking, and carotene. Consumers of more than 9 beers per month had an OR of 1.51 compared to non-drinkers. In both sexes, there was an indication of an interaction between beer ingestion and cigarette smoking. While folate intake did not appear to affect risk of lung cancer, the association of alcohol intake with risk independent of cigarette smoking deserves further inquiry.

  12. An unusual role of folate in the self-assembly of heparin-folate conjugates into nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Jianquan; Ma, Daoshuang; Lu, Qian; Wu, Shaoxiong; Lee, Gee Young; Lane, Lucas A.; Li, Bin; Quan, Li; Wang, Yiqing; Nie, Shuming

    2015-09-01

    Tumor targeting agents including antibodies, peptides, and small molecules, are often used to improve the delivery efficiency of nanoparticles. Despite numerous studies investigating the abilities of targeting agents to increase the accumulation of nanosized therapeutics within diseased tissues, little attention has been focused on how these ligands can affect the self-assembly of the nanoparticle's modified polymer constituents upon chemical conjugation. Here we present an actively tumor targeted nanoparticle constructed via the self-assembly of a folate modified heparin. Folate conjugation unexpectedly allowed the self-assembly of heparin, where a majority of the folate molecules (>80%) resided inside the core of the nanoparticle. The folate-heparin nanoparticles could also physically encapsulate lipophilic fluorescent dyes, enabling the use of the constructs as activatable fluorescent probes for targeted in vivo tumor imaging.Tumor targeting agents including antibodies, peptides, and small molecules, are often used to improve the delivery efficiency of nanoparticles. Despite numerous studies investigating the abilities of targeting agents to increase the accumulation of nanosized therapeutics within diseased tissues, little attention has been focused on how these ligands can affect the self-assembly of the nanoparticle's modified polymer constituents upon chemical conjugation. Here we present an actively tumor targeted nanoparticle constructed via the self-assembly of a folate modified heparin. Folate conjugation unexpectedly allowed the self-assembly of heparin, where a majority of the folate molecules (>80%) resided inside the core of the nanoparticle. The folate-heparin nanoparticles could also physically encapsulate lipophilic fluorescent dyes, enabling the use of the constructs as activatable fluorescent probes for targeted in vivo tumor imaging. Electronic supplementary information (ESI) available: NMR spectra and fluorescent images of HF-488 with cancer cells. See DOI: 10.1039/c5nr03303a

  13. Some nutritional effects of folate-binding protein in bovine milk on the bioavailability of folate to rats

    SciTech Connect

    Tani, M.; Iwai, K.

    1984-04-01

    The excretions of folate compounds into both the urine and bile were investigated in rats after the administration of pteroylglutamic acid (PteGlu) with or without the folate-binding protein (FBP) prepared from bovine milk. When the sample solution, containing either free or bound (/sup 3/H)PteGlu (i.e., bound to the FBP from milk), was delivered to rats intragastrically via oral intubation, the amounts of (/sup 3/H)PteGlu excreted into the feces did not change. On the other hand, the urinary excretion of /sup 3/H-labeled folate compounds, especially (/sup 3/H)5-methyltetrahydrofolic acid (5-CH/sub 3/-H/sub 4/PteGlu), after the administration of bound (/sup 3/H)PteGlu was significantly lower (P less than 0.01) than that after the administration of free (/sup 3/H)PteGlu. The urinary excretion of (/sup 3/H)5-CH/sub 3/-H/sub 4/PteGlu was directly proportional to the initial amount of free (/sup 3/H)PteGlu administered. The similar effect of FBP was also observed when the biliary excretion of /sup 3/H-labeled folate compounds was investigated in situ. Furthermore, the incorporation of (/sup 3/H)PteGlu into folate-requiring intestinal microorganisms was considerably reduced when it was bound to FBP. These results suggest that milk FBP has some nutritional effects on the bioavailability of folate in vivo.

  14. Prospects in Folate Receptor-Targeted Radionuclide Therapy

    PubMed Central

    Müller, Cristina; Schibli, Roger

    2013-01-01

    Targeted radionuclide therapy is based on systemic application of particle-emitting radiopharmaceuticals which are directed toward a specific tumor-associated target. Accumulation of the radiopharmaceutical in targeted cancer cells results in high doses of absorbed radiation energy whereas toxicity to non-targeted healthy tissue is limited. This strategy has found widespread application in the palliative treatment of neuroendocrine tumors using somatostatin-based radiopeptides. The folate receptor (FR) has been identified as a target associated with a variety of frequent tumor types (e.g., ovarian, lung, brain, renal, and colorectal cancer). In healthy organs and tissue FR-expression is restricted to only a few sites such as for instance the kidneys. This demonstrates why FR-targeting is an attractive strategy for the development of new therapy concepts. Due to its high FR-binding affinity (KD?folate-based radionuclide therapy, a therapeutic concept with folate radioconjugates has not yet been envisaged for clinical application. The reason is the generally high accumulation of folate radioconjugates in the kidneys where emission of particle-radiation may result in damage to the renal tissue. Therefore, the design of more sophisticated folate radioconjugates providing improved tissue distribution profiles are needed. This review article summarizes recent developments with regard to a therapeutic application of folate radioconjugates. A new construct of a folate radioconjugate and an application protocol which makes use of a pharmacological interaction allowed the first preclinical therapy experiments with radiofolates. These results raise hope for future application of such new concepts also in the clinic. PMID:24069581

  15. Exploring folate diversity in wild and primitive potatoes for modern crop improvement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Malnutrition is one of the world’s largest health concerns. Folate (a.k.a. vitamin B9) is essential in the human diet and without adequate folate intake several serious health concerns such as congenital birth defects and an increased risk of stroke and heart disease can occur. Most people’s folate ...

  16. Determination of folate concentrations in diverse potato germplasm using a trienzyme extraction and microbiological assay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We determined total folate concentrations of potato tubers from 67 cultivars, advanced breeding lines, or wild species. Folates were extracted by a tri-enzyme treatment and analyzed by using a Lactobacillus rhamnosus microbiological assay. Folate concentrations varied from 521 ± 96 to 1373 ± 230 ng/...

  17. Genetic Architecture of Vitamin B12 and Folate Levels Uncovered Applying Deeply Sequenced Large Datasets

    E-print Network

    Nielsen, Rasmus

    Genetic Architecture of Vitamin B12 and Folate Levels Uncovered Applying Deeply Sequenced Large architecture of serum levels of vitamin B12 (B12) and folate. Up to 22.9 million sequence variants were analyzed in combined samples of 45,576 and 37,341 individuals with serum B12 and folate measurements

  18. Synthesis of folate receptor-targeted photosensitizers for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Fang, Yanyan; Wang, Xiaopu; Zou, Qianli; Zhao, Yuxia; Wu, Feipeng

    2014-11-01

    A series of amphiphilic benzylidene cycloalkanes ketone photosensitizers C1-C4 with or without folate receptor-targeted agent were designed and synthesized. Their photophysical properties and in vitro photodynamic therapy (PDT) effects were studied. The results showed that all compounds exhibited appropriate lipid-water partition coefficients and high reactive oxygen yields. The introduction of the folate receptor-targeted agent had no obvious influence on the basic photophysical & photochemical properties of C2 and C4 compared to those of their corresponding prototype compounds (C1 and C3). In vitro studies were carried out using MCF-7 cells (FR+), Hela cells (FR+) and A549 cells (FR-), which represented different levels of folate receptor (FR) expression. All of C1-C4 showed low dark toxicity and superior PDT effects compared with the clinical drug PSD-007 (a mixture of porphyrins). What's more, folate receptor-targeted photosensitizers (C2 and C4) achieved higher accumulation and more excellent PDT effects in MCF-7 cells (FR+) and Hela cells (FR+) than photosensitizers (C1 and C3) without folate receptor-targeted agent and PSD-007. The photocytotoxicity of these photosensitizers showed no obvious differences in A549 cells (FR-).

  19. Peptide Anchor for Folate-Targeted Liposomal Delivery.

    PubMed

    Nogueira, Eugénia; Mangialavori, Irene C; Loureiro, Ana; Azoia, Nuno G; Sárria, Marisa P; Nogueira, Patrícia; Freitas, Jaime; Härmark, Johan; Shimanovich, Ulyana; Rollett, Alexandra; Lacroix, Ghislaine; Bernardes, Gonçalo J L; Guebitz, Georg; Hebert, Hans; Moreira, Alexandra; Carmo, Alexandre M; Rossi, Juan Pablo F C; Gomes, Andreia C; Preto, Ana; Cavaco-Paulo, Artur

    2015-09-14

    Specific folate receptors are abundantly overexpressed in chronically activated macrophages and in most cancer cells. Directed folate receptor targeting using liposomes is usually achieved using folate linked to a phospholipid or cholesterol anchor. This link is formed using a large spacer like polyethylene glycol. Here, we report an innovative strategy for targeted liposome delivery that uses a hydrophobic fragment of surfactant protein D linked to folate. Our proposed spacer is a small 4 amino acid residue linker. The peptide conjugate inserts deeply into the lipid bilayer without affecting liposomal integrity, with high stability and specificity. To compare the drug delivery potential of both liposomal targeting systems, we encapsulated the nuclear dye Hoechst 34580. The eventual increase in blue fluorescence would only be detectable upon liposome disruption, leading to specific binding of this dye to DNA. Our delivery system was proven to be more efficient (2-fold) in Caco-2 cells than classic systems where the folate moiety is linked to liposomes by polyethylene glycol. PMID:26241560

  20. PHYLOGENY AND EVOLUTION OF ALDEHYDE DEHYDROGENASE-HOMOLOGOUS FOLATE ENZYMES

    PubMed Central

    Strickland, Kyle C.; Holmes, Roger S.; Oleinik, Natalia V.; Krupenko, Natalia I.; Krupenko, Sergey A.

    2011-01-01

    Folate coenzymes function as one-carbon group carriers in intracellular metabolic pathways. Folate-dependent reactions are compartmentalized within the cell and are catalyzed by two distinct groups of enzymes, cytosolic and mitochondrial. Some folate enzymes are present in both compartments and are likely the products of gene duplications. A well-characterized cytosolic folate enzyme, FDH (10-formyltetrahydrofolate dehydrogenase, ALDH1L1), contains a domain with significant sequence similarity to aldehyde dehydrogenases. This domain enables FDH to catalyze the NADP+-dependent conversion of short-chain aldehydes to corresponding acids in vitro. The aldehyde dehydrogenase-like reaction is the final step in the overall FDH mechanism, by which a tetrahydrofolate-bound formyl group is oxidized to CO2 in an NADP+-dependent fashion. We have recently cloned and characterized another folate enzyme containing an ALDH domain, a mitochondrial FDH. Here the biological roles of the two enzymes, a comparison of the respective genes, and some potential evolutionary implications are discussed. The phylogenic analysis suggests that the vertebrate ALDH1L2 gene arose from a duplication event of the ALDH1L1 gene prior to the emergence of osseous fish >500 millions years ago. PMID:21215736

  1. Comparison of five automated serum and whole blood folate assays.

    PubMed

    Owen, William E; Roberts, William L

    2003-07-01

    Serum and whole blood folate measurements are used to establish folate deficiency. Most methods used in clinical laboratories are automated, nonistopic methods that use folate-binding protein. Linearity, imprecision, and method comparison studies, including serum and whole blood hemolysates, were performed with the Access, Advia Centaur, ARCHITECT i2000, Elecsys 2010, and IMMULITE 2000 methods. The QuantaPhase II radioassay served as the comparison method. (Proprietary information is given in the text.) The Access and IMMULITE 2000 methods had higher systematic errors in linearity studies than the other 3 methods. The imprecision of all methods was acceptable (coefficient of variation, < 10%) even at low folate concentrations with the exception of the Elecsys 2010 (coefficient of variation, 16%). Method comparison studies using serum samples revealed calibration differences between the Access and Elecsys 2010 methods and the comparison method. Method comparison studies using whole blood samples showed poorer agreement between each of the automated methods and the comparison method than was seen with serum samples. The ARCHITECT i2000 folate assay demonstrated the best analytic performance. The poor agreement seen with whole blood hemolysates likely is due to calibration differences and differences in hemolysate preparation conditions. PMID:12866382

  2. Synthesis of folate- pegylated polyester nanoparticles encapsulating ixabepilone for targeting folate receptor overexpressing breast cancer cells.

    PubMed

    Siafaka, P; Betsiou, M; Tsolou, A; Angelou, E; Agianian, B; Koffa, M; Chaitidou, S; Karavas, E; Avgoustakis, K; Bikiaris, D

    2015-12-01

    The aim of this study was the preparation of novel polyester nanoparticles based on folic acid (FA)-functionalized poly(ethylene glycol)-poly(propylene succinate) (PEG-PPSu) copolymer and loaded with the new anticancer drug ixabepilone (IXA). These nanoparticles may serve as a more selective (targeted) treatment of breast cancer tumors overexpressing the folate receptor. The synthesized materials were characterized by (1)H-NMR, FTIR, XRD and DSC. The nanoparticles were prepared by a double emulsification and solvent evaporation method and characterized with regard to their morphology by scanning electron microscopy, drug loading with HPLC-UV and size by dynamic light scattering. An average size of 195 nm and satisfactory drug loading efficiency (3.5 %) were observed. XRD data indicated that IXA was incorporated into nanoparticles in amorphous form. The nanoparticles exhibited sustained drug release properties in vitro. Based on in vitro cytotoxicity studies, the blank FA-PEG-PPSu nanoparticles were found to be non-toxic to the cells. Fluorescent nanoparticles were prepared by conjugating Rhodanine B to PEG-PPSu, and live cell, fluorescence, confocal microscopy was applied in order to demonstrate the ability of FA-PEG-PPSu nanoparticles to enter into human breast cancer cells expressing the folate receptor. PMID:26543021

  3. The complex interplay between ligand binding and conformational structure of the folate binding protein (folate receptor): Biological perspectives.

    PubMed

    Holm, Jan; Bruun, Susanne W; Hansen, Steen I

    2015-10-01

    This review analyzes how interplay between folate binding and changes in folate binding protein (FBP) conformation/self-association affects the biological function of FBP. Concentration-dependent, reversible self-association of hydrophobic apo-FBP at pI=7.4 is associated with decreased affinity for folate, probably due to shielding of binding sites between interacting hydrophobic patches. Titration with folate removes apo-monomers, favoring dissociation of self-associated apo-FBP into apo-monomers. Folate anchors to FBP through a network of hydrogen bonds and hydrophobic interactions, and the binding induces a conformational change with formation of hydrophilic and stable holo-FBP. Holo-FBP exhibits a ligand-mediated concentration-dependent self-association into multimers of great thermal and chemical stability due to strong intermolecular forces. Both ligand and FBP are thus protected against biological/physicochemical decomposition. In biological fluids with low FBP concentrations, e.g., saliva, semen and plasma, hydrophobic apo-monomers and hydrophilic holo-monomers associate into stable asymmetrical complexes with aberrant binding kinetics unless detergents, e.g., cholesterol or phospholipids are present. PMID:26116148

  4. Diagnosis and management of folate deficiency in low birthweight infants.

    PubMed Central

    Strelling, M K; Blackledge, D G; Goodall, H B

    1979-01-01

    Significant folate deficiency in 14 out of 37 preterm infants of birthweights 2.0 kg or less was found to be reliably and most conveniently diagnosed by abnormal morphological changes in peripheral blood and confirmed by the response to folic acid. Deficiency appeared to be more common in light-for-dates infants including the smaller of twins. Neither the clinical status nor the levels of haemoglobin or erythrocyte folate was a reliable guide to the presence of megaloblastic erythropoiesis in the very young preterm infant. 100-200 microgram folic acid a day, orally or IM, may be required to ensure an optimal haematological response, and this would be appropriate for therapeutic trial if the diagnosis is in doubt. This amount would also replenish tissue folate stores; larger doses are likely to exceed the requirements of small infants. PMID:453910

  5. Diagnosis and management of folate deficiency in low birthweight infants.

    PubMed

    Strelling, M K; Blackledge, D G; Goodall, H B

    1979-04-01

    Significant folate deficiency in 14 out of 37 preterm infants of birthweights 2.0 kg or less was found to be reliably and most conveniently diagnosed by abnormal morphological changes in peripheral blood and confirmed by the response to folic acid. Deficiency appeared to be more common in light-for-dates infants including the smaller of twins. Neither the clinical status nor the levels of haemoglobin or erythrocyte folate was a reliable guide to the presence of megaloblastic erythropoiesis in the very young preterm infant. 100-200 microgram folic acid a day, orally or IM, may be required to ensure an optimal haematological response, and this would be appropriate for therapeutic trial if the diagnosis is in doubt. This amount would also replenish tissue folate stores; larger doses are likely to exceed the requirements of small infants. PMID:453910

  6. Synthesis and evaluation of Lys(1)(?,?-Folate)Lys(3)((177)Lu-DOTA)-Bombesin(1-14) as a potential theranostic radiopharmaceutical for breast cancer.

    PubMed

    Aranda-Lara, Liliana; Ferro-Flores, Guillermina; Azorín-Vega, Erika; Ramírez, Flor de María; Jiménez-Mancilla, Nallely; Ocampo-García, Blanca; Santos-Cuevas, Clara; Isaac-Olivé, Keila

    2016-01-01

    The aim of this work was to synthesize Lys(1)(?,?-Folate)-Lys(3)((177)Lu-DOTA)-Bombesin (1-14) ((177)Lu-Folate-BN), as well as to assess its potential for molecular imaging and targeted radiotherapy of breast tumors expressing folate receptors (FR) and gastrin-releasing peptide receptors (GRPR). Radiation absorbed doses of (177)Lu-Folate-BN (74 MBq, i.v.) estimated in athymic mice with T47D-induced breast tumors (positive to FR and GRPR), showed tumor doses of 23.9±2.1Gy. T47D-tumors were clearly visible (Micro-SPECT/CT images). (177)Lu-Folate-BN demonstrated properties suitable as a theranostic radiopharmaceutical. PMID:26545016

  7. Increased chromosome fragility as a consequence of blood folate levels, smoking status, and coffee consumption

    SciTech Connect

    Chen, A.T.L.; Reidy, J.A.; Annest, J.L.; Welty, T.K.; Zhou, H. )

    1989-01-01

    Chromosome fragility in 96 h, low-folate cultures was found to be associated with smoking status, coffee consumption, and blood folate level. The higher proportion of cells with chromosome aberrations in cigarette smokers was attributable to lower red cell folate levels in smokers compared with nonsmokers. There was a positive linear relationship between the average cups of coffee consumed per day and the proportion of cells with aberrations. This association was independent of the effects of smoking and red cell folate level. These data suggest that smoking history, coffee consumption, and red cell folate level are important considerations for the design and interpretation of fragile site studies in cancer cytogenetics.

  8. Folate bioavailability from foods rich in folates assessed in a short term human study using stable isotope dilution assays.

    PubMed

    Mönch, Sabine; Netzel, Michael; Netzel, Gabriele; Ott, Undine; Frank, Thomas; Rychlik, Michael

    2015-01-01

    Different sources of folate may have different bioavailability and hence may impact the standard definition of folate equivalents. In order to examine this, a short term human study was undertaken to evaluate the relative native folate bioavailabilities from spinach, Camembert cheese and wheat germs compared to pteroylmonoglutamic acid as the reference dose. The study had a single-centre, randomised, four-treatment, four-period, four-sequence, cross-over design, i.e. the four (food) items to be tested (referred to as treatments) were administered in sequences according to the Latin square, so that each experimental treatment occurred only once within each sequence and once within each study period. Each of the 24 subjects received the four experimental items separated by a 14-day equilibrium phase and received a pteroylmonoglutamic acid supplement for 14 days before the first testing and between the testings for saturation of body pools. Folates in test foods, plasma and urine samples were determined by stable isotope dilution assays, and in urine and plasma, the concentrations of 5-methyltetrahydrofolate were evaluated. Standard non-compartmental methods were applied to determine the biokinetic parameters C(max), t(max) and AUC from baseline corrected 5-methyltetrahydrofolate concentrations within the interval from 0 to 12 hours. The variability of AUC and C(max) was moderate for spinach and oral solution of pteroylmonoglutamic acid but high for Camembert cheese and very high for wheat germs. The median t(max) was lowest for spinach, though t(max) showed a high variability among all treatments. When comparing the ratio estimates of AUC and C(max) for the different test foods, highest bioavailability was found for spinach followed by that for wheat germs and Camembert cheese. The results underline the dependence of folate bioavailability on the type of food ingested. Therefore, the general assumption of 50% bioavailability as the rationale behind the definition of folate equivalents has to be questioned and requires further investigation. PMID:25407846

  9. Biosynthesis of Polyisoprenoids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The invention is a process for synthesis of a polymer with the same chemical structure as Natural Rubber (NR) obtained from Hevea brasiliensis and other plant species. The research collaborators recently proposed that NR biosynthesis proceeds via a carbocationic polymerization. Based on this theory...

  10. Causes of vitamin B12 and folate deficiency.

    PubMed

    Allen, Lindsay H

    2008-06-01

    This review describes current knowledge of the main causes of vitamin B12 and folate deficiency. The most common explanations for poor vitamin B12 status are a low dietary intake of the vitamin (i.e., a low intake of animal-source foods) and malabsorption. Although it has long been known that strict vegetarians (vegans) are at risk for vitamin B12 deficiency, evidence now indicates that low intakes of animal-source foods, such as occur in some lacto-ovo vegetarians and many less-industrialized countries, cause vitamin B12 depletion. Malabsorption of the vitamin is most commonly observed as food-bound cobalamin malabsorption due to gastric atrophy in the elderly, and probably as a result of Helicobacter pylori infection. There is growing evidence that gene polymorphisms in transcobalamins affect plasma vitamin B12 concentrations. The primary cause of folate deficiency is low intake of sources rich in the vitamin, such as legumes and green leafy vegetables, and the consumption of these foods may explain why folate status can be adequate in relatively poor populations. Other situations in which the risk of folate deficiency increases include lactation and alcoholism. PMID:18709879

  11. Enhancing Methotrexate Tolerance with Folate Tagged Liposomes in Arthritic Mice.

    PubMed

    Nogueira, Eugénia; Lager, Franck; Le Roux, Delphine; Nogueira, Patrícia; Freitas, Jaime; Charvet, Celine; Renault, Gilles; Loureiro, Ana; Almeida, Catarina R; Ohradanova-Repic, Anna; Machacek, Christian; Bernardes, Gonçalo J L; Moreira, Alexandra; Stockinger, Hannes; Burnet, Michael; Carmo, Alexandre M; Gomes, Andreia C; Preto, Ana; Bismuth, Georges; Cavaco-Paulo, Artur

    2015-12-01

    Methotrexate is the first line of treatment of rheumatoid arthritis. Since many patients become unresponsive to methotrexate treatment, only very expensive biological therapies are effective and increased methotrexate tolerance strategies need to be identified. Here we propose the encapsulation of methotrexate in a new liposomal formulation using a hydrophobic fragment of surfactant protein conjugated to a linker and folate to enhance their tolerance and efficacy. In this study we aim to evaluate the efficiency of this system to treat rheumatoid arthritis, by targeting folate receptor ? present at the surface of activated macrophages, key effector cells in this pathology. The specificity of our liposomal formulation to target folate receptor ? was investigated both in vitro as in vivo using a mouse model of arthritis (collagen-induced arthritis in DBA/1J mice strain). In both systems, the liposomal constructs were shown to be highly specific and efficient in targeting folate receptor ?. These liposomal formulations also significantly increase the clinical benefit of the encapsulated methotrexate in vivo in arthritic mice, together with reduced expression of CD39 and CD73 ectonucleotidases by joint-infiltrating macrophages. Thus, our formulation might be a promising cost effective way to treat rheumatoid arthritis and delay or reduce methotrexate intolerance. PMID:26510317

  12. EFFECT OF DIETARY FOLATE DEFICIENCY ON ARSENIC GENOTOXICITY IN MICE

    EPA Science Inventory

    Arsenic, a human carcinogen found in drinking water supplies throughout the world, is clastogenic in human and rodent cells. An estimated ten percent of Americans are deficient in folate, a methyl donor necessary for normal nucleotide metabolism, DNA synthesis, and DNA methylatio...

  13. Causes of Vitamin B12 and Folate Deficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review describes current knowledge of the main causes of vitamin B12 and folate deficiency. The most common explanations for poor B12 status are a low dietary intake of the vitamin (i.e., a low intake of animal-source foods) and malabsorption. Although it has long been known that strict vegetar...

  14. Folate ameliorates dexamethasone-induced fetal and placental growth restriction potentially via improvement of trophoblast migration

    PubMed Central

    Zhou, Linfang; Zhang, Ai; Wang, Kai; Zhou, Qian; Duan, Tao

    2015-01-01

    Overexposure to prenatal dexamethasone (Dex) leads to small placental and fetal size and the alteration of fetal programming. Folate plays important roles in processes associated with successful pregnancy, including angiogenesis and trophoblast invasion. Placental folate transport is altered with prenatal Dex administration. The purpose of this study was to investigate the protective role of maternal folate administration in placentas exposed to Dex. In vitro, four groups of C57BL/6J pregnant mice were utilized: 1) normal drinking water + Saline injection group (NN); 2) normal drinking water + Dex injection group (ND); 3) drinking water with folate + Saline injection group (FN); and 4) drinking water with folate + Dex injection group (FD). In vivo, four treatment groups of the human extravillous trophoblast HTR-8/SVneo cells were classified: 1) control (NN); 2) Dex treatment (ND); 3) folate treatment (FN); and 4) folate and Dex treatment (FD). The results showed the maternal folate increases the placental size, birth weight, and expression of matrix metalloproteinases 9 (MMP9) in a mice model of Dex overexposure. In human extravillous trophoblast HTR8/SVneo, folate ameliorated the Dex-induced supress of cell migration and improved the expression/activity of MMP2 and MMP9. In conclusion, folate might be a potential therapy intervention to reduce the adverse effects of prenatal Dex exposure partially via improved trophoblast migration. PMID:26045811

  15. Exploring Folate Diversity in Wild and Primitive Potatoes for Modern Crop Improvement

    PubMed Central

    Robinson, Bruce R.; Sathuvalli, Vidyasagar; Bamberg, John; Goyer, Aymeric

    2015-01-01

    Malnutrition is one of the world’s largest health concerns. Folate (also known as vitamin B9) is essential in the human diet, and without adequate folate intake, several serious health concerns, such as congenital birth defects and an increased risk of stroke and heart disease, can occur. Most people’s folate intake remains sub-optimal, even in countries that have a folic acid food fortification program in place. Staple crops, such as potatoes, represent an appropriate organism for biofortification through traditional breeding based on their worldwide consumption and the fact that modern cultivars only contain about 6% of the daily recommended intake of folate. To start breeding potatoes with enhanced folate content, high folate potato material must be identified. In this study, 250 individual plants from 77 accessions and 10 Solanum species were screened for their folate content using a tri-enzyme extraction and microbial assay. There was a 10-fold range of folate concentrations among individuals. Certain individuals within the species Solanum tuberosum subsp. andigenum, Solanum vernei and Solanum boliviense have the potential to produce more than double the folate concentrations of commercial cultivars, such as Russet Burbank. Our results show that tapping into the genetic diversity of potato is a promising approach to increase the folate content of this important crop. PMID:26670256

  16. Exploring Folate Diversity in Wild and Primitive Potatoes for Modern Crop Improvement.

    PubMed

    Robinson, Bruce R; Sathuvalli, Vidyasagar; Bamberg, John; Goyer, Aymeric

    2015-01-01

    Malnutrition is one of the world's largest health concerns. Folate (also known as vitamin B?) is essential in the human diet, and without adequate folate intake, several serious health concerns, such as congenital birth defects and an increased risk of stroke and heart disease, can occur. Most people's folate intake remains sub-optimal, even in countries that have a folic acid food fortification program in place. Staple crops, such as potatoes, represent an appropriate organism for biofortification through traditional breeding based on their worldwide consumption and the fact that modern cultivars only contain about 6% of the daily recommended intake of folate. To start breeding potatoes with enhanced folate content, high folate potato material must be identified. In this study, 250 individual plants from 77 accessions and 10 Solanum species were screened for their folate content using a tri-enzyme extraction and microbial assay. There was a 10-fold range of folate concentrations among individuals. Certain individuals within the species Solanum tuberosum subsp. andigenum, Solanum vernei and Solanum boliviense have the potential to produce more than double the folate concentrations of commercial cultivars, such as Russet Burbank. Our results show that tapping into the genetic diversity of potato is a promising approach to increase the folate content of this important crop. PMID:26670256

  17. Moderate folate depletion modulates the expression of selected genes involved in cell cycle, intracellular signaling, and folate uptake in human colonic epithelial cell lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Folate deficiency may affect gene expression by disrupting DNA methylation patterns or by inducing base substitution, DNA breaks, gene deletions and gene amplification. Changes in expression may explain the inverse relationship observed between folate status and risk of colorectal cancer. Three cell...

  18. CHRONIC CIGARETTE SMOKING IS ASSOCIATED WITH DIMINISHED FOLATE STATUS, ALTERED FOLATE FORM DISTRIBUTION, AND INCREASED GENETIC DAMAGE IN THE BUCCAL MUCOSA OF HEALTHY ADULTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Smoking causes genetic damage in buccal cells and increases the risk of oral cancer. Since folate is instrumental in DNA synthesis and repair, it is a determinant of genetic stability and therefore might attenuate the genotoxic effects of smoking. Objective: To compare folate metabolites...

  19. Effect of folate metabolism on the psychopathology of adults with mental retardation and epilepsy.

    PubMed

    Deb, S

    1994-05-01

    Different aspects of psychopathology and folate metabolism were studied in a group of 150 adults from hospitals and the community who had mental retardation and epilepsy and compared with an individually matched control group of 150 adults with mental retardation but no epilepsy. Only 4.45% of those receiving anticonvulsant medication had a serum folate level below the normal laboratory reference range. Anticonvulsants other than sodium valproate tended to lower serum folate level. Results showed an inverse relation between the serum anticonvulsant levels and serum folate level. When the serum folate level of the adults with epilepsy who had either severe behavior problems and/or psychiatric illness and/or personality disorder was compared with the adults with epilepsy who did not have these disorders, no major significant intergroup difference emerged in serum folate level. PMID:8054200

  20. Quantification of folate in fruits and vegetables: A fluorescence-based homogeneous assay.

    PubMed

    Martin, Harry; Comeskey, Daniel; Simpson, Robert M; Laing, William A; McGhie, Tony K

    2010-07-15

    A high-throughput, homogeneous, fluorescence polarization, and fluorescence intensity assay has been developed for the measurement of folate in fruits and vegetables. This assay is based on the competitive displacement of the fluorescent folate ligands Alexa Fluor (Alexa) 594-folate and Alexa 660-folate from bovine milk folate-binding protein by folates in fruit and vegetable extracts. These fluorescent ligands are employed because their excitation and emission maxima are in regions of the spectrum with minimal autofluorescence in many extracts. Folate-binding protein and Alexa-folate were typically used at concentrations of 0.5 microg/ml and 5nM, respectively, in 20-microl volumes in 384-well microplates. The assay is complete within 100 min. The folate estimate is unaffected by the heterogeneity of polyglutamyl residues that complicates the liquid chromatography-mass spectrometry (LC-MS)-based methods of quantification. In this assay, folic acid had an apparent affinity 2.5-fold greater than 5-methyltetrahydrofolate (5MTHF); therefore, it cannot be used to quantify folate when both natural and synthetic folate are present. 5MTHF-equivalent values were measured in broccoli (240 microg/100g), strawberry (113 microg/100g), white grape (32 microg/100g), orange (44 microg/100g), tomato (12 microg/100g), raspberry (31 microg/100g), banana (29 microg/g), and kiwifruit (36 microg/100g). These data are similar to published values. However, the assay will not detect 5-formyltetrahydrofolate which is a significant constituent of the total folate in lettuce, spinach, carrot, and peppers. PMID:20361923

  1. Cerebral folate deficiency with developmental delay, autism, and response to folinic acid.

    PubMed

    Moretti, P; Sahoo, T; Hyland, K; Bottiglieri, T; Peters, S; del Gaudio, D; Roa, B; Curry, S; Zhu, H; Finnell, R H; Neul, J L; Ramaekers, V T; Blau, N; Bacino, C A; Miller, G; Scaglia, F

    2005-03-22

    The authors describe a 6-year-old girl with developmental delay, psychomotor regression, seizures, mental retardation, and autistic features associated with low CSF levels of 5-methyltetrahydrofolate, the biologically active form of folates in CSF and blood. Folate and B12 levels were normal in peripheral tissues, suggesting cerebral folate deficiency. Treatment with folinic acid corrected CSF abnormalities and improved motor skills. PMID:15781839

  2. A dendritic ?-galactosidase-responsive folate-monomethylauristatin E conjugate.

    PubMed

    Alsarraf, Jérôme; Péraudeau, Elodie; Poinot, Pauline; Tranoy-Opalinski, Isabelle; Clarhaut, Jonathan; Renoux, Brigitte; Papot, Sébastien

    2015-10-20

    We report the study of a new drug delivery system programmed for the selective internalisation and the subsequent enzyme-catalysed release of two monomethylauristatin E molecules inside FR-positive cancer cells. This targeting device is the most potent ?-galactosidase-responsive folate-drug conjugate developed so far, killing cancer cells expressing a medium level of FR at low nanomolar concentrations. PMID:26365722

  3. Nutriepigenetic regulation by folate-homocysteine-methionine axis: a review.

    PubMed

    Bhargava, Seema; Tyagi, S C

    2014-02-01

    Although normally folic acid is given during pregnancy, presumably to prevent neural tube defects, the mechanisms of this protection are unknown. More importantly it is unclear whether folic acid has other function during development. It is known that folic acid re-methylates homocysteine (Hcy) to methionine by methylene tetrahydrofolate reductase-dependent pathways. Folic acid also generates high-energy phosphates, behaves as an antioxidant and improves nitric oxide (NO) production by endothelial NO synthase. Interestingly, during epigenetic modification, methylation of DNA/RNA generate homocysteine unequivocally. The enhanced overexpression of methyl transferase lead to increased yield of Hcy. The accumulation of Hcy causes vascular dysfunction, reduces perfusion in the muscles thereby causing musculopathy. Another interesting fact is that children with severe hyperhomocysteinaemia (HHcy) have skeletal deformities, and do not live past teenage. HHcy is also associated with the progeria syndrome. Epilepsy is primarily caused by inhibition of gamma-amino-butyric-acid (GABA) receptor, an inhibitory neurotransmitter in the neuronal synapse. Folate deficiency leads to HHcy which then competes with GABA for binding on the GABA receptors. With so many genetic and clinical manifestations associated with folate deficiency, we propose that folate deficiency induces epigenetic alterations in the genes and thereby results in disease. PMID:24213682

  4. Folate Receptor Targeted Alpha-Therapy Using Terbium-149

    PubMed Central

    Müller, Cristina; Reber, Josefine; Haller, Stephanie; Dorrer, Holger; Köster, Ulli; Johnston, Karl; Zhernosekov, Konstantin; Türler, Andreas; Schibli, Roger

    2014-01-01

    Terbium-149 is among the most interesting therapeutic nuclides for medical applications. It decays by emission of short-range ?-particles (E? = 3.967 MeV) with a half-life of 4.12 h. The goal of this study was to investigate the anticancer efficacy of a 149Tb-labeled DOTA-folate conjugate (cm09) using folate receptor (FR)-positive cancer cells in vitro and in tumor-bearing mice. 149Tb was produced at the ISOLDE facility at CERN. Radiolabeling of cm09 with purified 149Tb resulted in a specific activity of ~1.2 MBq/nmol. In vitro assays performed with 149Tb-cm09 revealed a reduced KB cell viability in a FR-specific and activity concentration-dependent manner. Tumor-bearing mice were injected with saline only (group A) or with 149Tb-cm09 (group B: 2.2 MBq; group C: 3.0 MBq). A significant tumor growth delay was found in treated animals resulting in an increased average survival time of mice which received 149Tb-cm09 (B: 30.5 d; C: 43 d) compared to untreated controls (A: 21 d). Analysis of blood parameters revealed no signs of acute toxicity to the kidneys or liver in treated mice over the time of investigation. These results demonstrated the potential of folate-based ?-radionuclide therapy in tumor-bearing mice. PMID:24633429

  5. Assessment of folate receptor-? expression in human neoplastic tissues

    PubMed Central

    Shen, Jiayin; Putt, Karson S.; Visscher, Daniel W.; Murphy, Linda; Cohen, Cynthia; Singhal, Sunil; Sandusky, George; Feng, Yang; Dimitrov, Dimiter S.; Low, Philip S.

    2015-01-01

    Over-expression of folate receptor alpha on cancer cells has been frequently exploited for delivery of folate-targeted imaging and therapeutic agents to tumors. Because limited information exists on expression of the beta isoform of the folate receptor in human cancers (FR-?), we have evaluated the immunohistochemical staining pattern of FR-? in 992 tumor sections from 20 different human cancer types using a new anti-human FR-? monoclonal antibody. FR-? expression was shown to be more pronounced in cells within the stroma, primarily macrophages and macrophage-like cells than cancer cells in every cancer type studied. Moreover, FR-? expression in both cancer and stromal cells was found to be statistically more prominent in females than males. A significant positive correlation was also observed between FR-? expression on stromal cells and both the stage of the cancer and the presence of lymph node metastases. Based on these data we conclude FR-? may constitute a good target for specific delivery of therapeutic agents to activated macrophages and that accumulation of FR-? positive macrophages in the stroma could serve as a useful indicator of a tumor's metastatic potential. PMID:25909292

  6. Red blood cell folate and plasma folate are not associated with risk of incident colorectal cancer in the Women's Health Initiative observational study.

    PubMed

    Neuhouser, Marian L; Cheng, Ting-Yuan David; Beresford, Shirley A A; Brown, Elissa; Song, Xiaoling; Miller, Joshua W; Zheng, Yingye; Thomson, Cynthia A; Shikany, James M; Vitolins, Mara Z; Rohan, Thomas; Green, Ralph; Ulrich, Cornelia M

    2015-08-15

    The relationship between folate and colorectal cancer (CRC) risk is unclear. We investigated the association of two biomarkers of folate status, plasma folate and red blood cell (RBC) folate, with CRC risk using a nested case-control design in the Women's Health Initiative Observational Study. Postmenopausal women (n = 93,676) aged 50-79 years were enrolled in the Women's Health Initiative Observational Study (1993-1998). A fasting blood draw and extensive health, dietary and lifestyle data were collected upon enrollment. Through 2008, 988 incident CRC cases were reported and confirmed with medical records adjudication. Cases and controls were matched on age (± 3 years), enrollment date (± 1 year), race/ethnicity, blood draw date (± 6 months) and hysterectomy status. Plasma and RBC folate were determined by radio assay. Folate biomarker values were divided into quartiles, and conditional logistic regression estimated odds ratios (ORs) and 95% confidence intervals (CI) for the associations of folate with total CRC, by tumor site and by stage at diagnosis. Additional analyses examined whether risks varied across time periods corresponding to the United States folic acid fortification policy: prefortification (1994-1995), perifortification (1996-1997) and postfortification (1998). ORs for overall CRC risk comparing Q4 vs. Q1 were 0.91 (95% CI 0.67-1.24) and 0.91 (95% CI 0.67-1.23) for RBC and plasma folate, respectively. There were no changes in risk attributable to food supply fortification. These results do not support an overall association of folate with CRC risk and suggest that folic acid fortification of the US food supply did not alter the associations in these postmenopausal women. PMID:25643945

  7. Folate Depletion and Increased Glutamation in Juvenile Idiopathic Arthritis Patients Treated with Methotrexate

    PubMed Central

    Funk, Ryan S.; van Haandel, Leon; Leeder, J. Steven; Becker, Mara L.

    2015-01-01

    Objective Folates exist as a fluctuating pool of polyglutamated metabolites that may serve as a clinical marker of MTX activity. This study evaluates circulating folate content and folate polyglutamate distribution in Juvenile Idiopathic Arthritis (JIA) patients and in a cell culture model based on MTX exposure and folate supply. Methods Blood, plasma and red blood cell (RBC) measurements of MTX and folates were obtained from previously published data sets and additional sample analysis for JIA patients receiving (n=98) and not receiving (n=78) MTX therapy. Erythroblastoid cells maintained in culture were exposed to MTX and grown under varying levels of folic acid supplementation. Samples were analyzed for cellular folate and MTX content. Results Circulating folate levels were lower in JIA patients receiving MTX, with reduced levels of blood, plasma and RBC 5-methyl-tetrahydrofolate (5mTHF) (p<0.0001). Average polyglutamate chain-length (Gluavg) of RBC 5mTHF was elevated in JIA patients receiving MTX (5.63±0.15 vs. 5.54±0.11, p<0.0001) and correlated with both RBC MTX accumulation (p=0.02) and reduced plasma 5mTHF levels (p=0.008). MTX exposure and folate deprivation in erythroblastoid cells resulted in a depletion of bioactive folate species that was associated with a shift to higher Gluavg values for several species, most notably tetrahydrofolate (THF) and 5,10-methylenetetrahydrofolate (CH2-THF). Increased Gluavg resulted from the depletion of short-chain and the accumulation of long-chain glutamate species. Conclusion Folate content and polyglutamate distribution are responsive markers of MTX activity and folate supply in vivo and in vitro, and may provide novel clinical markers of pharmacologic activity of MTX. PMID:25186097

  8. Telomere length in peripheral blood mononuclear cells is associated with folate status in men.

    PubMed

    Paul, Ligi; Cattaneo, Marco; D'Angelo, Armando; Sampietro, Francesca; Fermo, Isabella; Razzari, Cristina; Fontana, Gessica; Eugene, Nindra; Jacques, Paul F; Selhub, Jacob

    2009-07-01

    Human chromosomes are capped by telomeres, which consist of tandem repeats of DNA and associated proteins. The length of the telomeres is reduced with increasing cell divisions except when the enzyme telomerase is active, as in stem cells and germ cells. Telomere dysfunction has been associated with development of age-related pathologies, including cancer, cardiovascular disease, Alzheimer's disease, and Parkinson's disease. DNA damage in the telomeric region causes attrition of telomeres. Because folate provides precursors for nucleotide synthesis and thus affects the integrity of DNA, including that of the telomeric region, folate status has the potential to influence telomere length. Telomere length is epigenetically regulated by DNA methylation, which in turn could be modulated by folate status. In this study, we determined whether folate status and the 677C > T polymorphism of the methylene tetrahydrofolate reductase (MTHFR) gene are associated with the telomere length of peripheral blood mononuclear cells in healthy men. The results of our study showed that plasma concentration of folate was associated with telomere length of peripheral blood mononuclear cells in a nonlinear manner. When plasma folate concentration was above the median, there was a positive relationship between folate and telomere length. In contrast, there was an inverse relationship between folate and telomere length when plasma folate concentration was below the median. The MTHFR 677C > T polymorphism was weakly associated (P = 0.065) with increased telomere length at below-median folate status. We propose that folate status influences telomere length by affecting DNA integrity and the epigenetic regulation of telomere length through DNA methylation. PMID:19458030

  9. Chemical synthesis of deuterated folate monoglutamate and in vivo assessment of urinary excretion of deuterated folates in man

    SciTech Connect

    Gregory, J.F. III; Toth, J.P.

    1988-04-01

    The synthesis and in vivo application of stable-isotopically labeled folic acid was investigated to devise methods suitable for studies of folate metabolism in human subjects. Glutamate-labeled tetradeutero-pteroylglutamic acid (d4-folic acid) was prepared by mixed anhydride coupling of N10-trifluoroacetylpteroic acid and dimethyl L-(3,3,4,4-2H4)glutamic acid, saponification in sodium deuteroxide, and chromatographic purification. Retention of the isotopic label was verified by proton NMR and mass spectrometry of the para-aminobenzoylglutamic acid product of C9-N10 bond cleavage. A method was devised for determination of of isotopic enrichment of urinary d4-folates derived from orally administered d4-folic acid using affinity chromatographic purification, chemical cleavage of the C9-N10 bond, HPLC isolation of the p-(2H4)aminobenzoylglutamate product, followed by negative-ion chemical-ionization gas chromatography/mass spectrometry. Data concerning the urinary excretion of d4-folates derived from an oral dose of d4-folic acid in an adult human are presented.

  10. EFFECTS OF DIETARY FOLATE AND AGING ON GENE EXPRESSION IN THE COLONIC MUCOSA OF RATS: IMPLICATIONS FOR CARCINOGENESIS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Folate depletion and aging are risk factors for human & rodent colorectal (CR) cancer. We investigated the effects of folate status and aging on gene expression patterns in the rat colon and hypothesized that folate depletion and advancing age cause deleterious changes in expression that predispose ...

  11. Cognitive impairment in folate-deficient rats corresponds to depleted brain phosphatidylcholine and is prevented by methionine without lowering homocysteine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poor folate status is associated with cognitive decline and dementia in older adults. Although impaired brain methylation activity and homocysteine toxicity are widely believed to account for this association, how folate deficiency impairs cognition is uncertain. To better define the role of folate ...

  12. The folate hydrolase 1561 C>T polymorphism is associated with depressive symptoms in Puerto Rican adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low plasma folate has been associated with depression. Variants of genes involved in the uptake, retention and metabolism of folate have been linked with plasma folate and homocysteine concentrations. It remains unclear whether such variants are also associated with depressive symptoms, directly or ...

  13. A METHOD FOR THE ANALYSIS OF NATURAL AND SYNTHETIC FOLATE IN FOODS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The essentiality of dietary folates for human beings has been known for many years. Over the shorter term, biological activities associated with several human maladies and the attenuation of biomarkers for several chronic diseases also has been assigned to folates. In the U.S., these observations ...

  14. Folate content and retention in commonly consumed vegetables in the South Pacific.

    PubMed

    Maharaj, Prayna P P; Prasad, Surendra; Devi, Riteshma; Gopalan, Romila

    2015-09-01

    This paper reports the effect of boiling and frying on the retention of folate in commonly consumed Fijian vegetables (drumstick leaves, taro leaves, bele leaves, amaranth leaves, fern/ota, okra and French bean). The folate content was determined by microbiological assay (Lactobacillus casei rhamnosus) and tri-enzyme (protease, ?-amylase and chicken pancreas conjugase) extraction treatment. The folate loss varied among the vegetables from 10-64% on boiling while 1-36% on frying. The higher folate loss was observed during boiling. The folate content in the water derived after boiling different vegetables ranged from 11.9 ± 0.5 to 61.6 ± 2.5 ?g/100mL. The folate loss on boiling was accounted for in the cooking water. The predominant way of folate loss on boiling was leaching rather than thermal degradation which makes boiling the better choice of cooking the studied vegetables for folate intake, provided the cooking water is consumed together with the vegetables. PMID:25842344

  15. DIETARY FOLATE DEFICIENCY ENHANCES INDUCTION OF MICRONUCLEI BY ARSENIC IN MICE

    EPA Science Inventory

    Folate deficiency increases background levels of DNA damage and can enhance the genotoxicity of chemical agents. Arsenic, a known human carcinogen present in drinking water supplies around the world, induces chromosomal and DNA damage. The effect of dietary folate deficiency on...

  16. Developmental consequences of in utero sodium arsenate exposure in mice with folate transport deficiencies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies have demonstrated that mice lacking a functional folate binding protein 2 gene (Folbp2'/') were significantly more sensitive to in utero arsenic exposure than were the wild-type mice similarly exposed. When these mice were fed a folate-deficient diet, the embryotoxic effect of arsen...

  17. Folate composition of ten types of mushrooms determined by liquid chromatography-mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    White button, crimini, shiitake, maitake, enoki, oyster, chanterelle, morel, portabella, and uv-treated portabella mushrooms were sampled from U.S. retail outlets and major producers. Folate (5-methyltetrahydrofolate [5MTHF], 10-formyl folate [10FF], 5-formyltetrahydrofolate [5FTHF]) was analyzed u...

  18. Too much folate – a risk factor for cancer and cardiovascular disease?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose of review: The intent of this evidence-based review is to analyze the role of folate in chronic diseases, focusing on cancer and cardiovascular disease. Recent findings: Low folate status has been shown to be a risk factor for cancer and cardiovascular disease. While epidemiological data su...

  19. Genome-wide Association Study of Vitamin B6, Vitamin B12, Folate,

    E-print Network

    Abecasis, Goncalo

    REPORT Genome-wide Association Study of Vitamin B6, Vitamin B12, Folate, and Homocysteine Blood Schlessinger,12 Manuela Uda,6 and Luigi Ferrucci2 The B vitamins are components of one-carbon metabolism (OCM circulating vitamin B6, vitamin B12, folate and homocysteine, a genome-wide association analysis was conducted

  20. Self-illuminating nanoprobe for in vivo imaging of cancers over-expressing the folate receptor

    NASA Astrophysics Data System (ADS)

    Miller, Steven C.; Beviglia, Lucia; Yeung, Pete; Bhattacharyya, Sukanta; Sobek, Daniel

    2012-03-01

    New in vivo imaging reagents with increased sensitivity and penetration depth are needed to advance our understanding of metastases and accelerate the development of therapeutics. The folate receptor (FR) is a promising imaging target that is up-regulated in many human carcinomas, including cancers of the ovary, breast, pancreas, endometrium, lungs, kidneys, colon, brain, and myeloid cells. Zymera has developed a self-illuminating Bioluminescence Resonance Energy Transfer Quantum Dot (BRET-Qdot) nanoprobe conjugated with folate (BQ-Folate) for in vivo imaging of cancers overexpressing FR. BQ-Folate is a novel nanoprobe formed by co-conjugating Renilla reniformis luciferase enzyme and folate to near-infrared (NIR) emitting quantum dots. The luciferase substrate, coelenterazine, activates the BQ-Folate nanoprobe generating luminescence emission in the near-infrared (NIR) region (655 nm) for increased sensitivity and penetration depth. Because BQ-Folate requires no external light source for light emission, it has significant advantages for challenging in vivo preclinical optical imaging applications, such as the detection of early stage metastases. Zymera and OncoMed Pharmaceuticals have demonstrated that in vivo imaging with the BQ-Folate nanoprobe detected the primary tumor and early stage metastases in an orthotopic NOD/SCID mouse model of human pancreatic cancer.

  1. Plasma folate, vitamin B-6, vitamin B-12, and risk of breast cancer in women

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: B vitamins such as folate, vitamin B-6, and vitamin B-12 are coenzymes that are important for DNA integrity and stability. Deficiency in these B vitamins may promote tumor carcinogenesis. Objective: We prospectively evaluated plasma concentrations of folate, pyridoxal 5'-phosphate (PLP; ...

  2. Concentration of folate in colorectal tissue biopsies predicts prevalence of adenomatous polyps

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background and aims: Folate has been implicated as a potential aetiological factor for colorectal cancer. Previous research has not adequately exploited concentrations of folate in normal colonic mucosal biopsies to examine the issue. Methods: Logistic regression models were used to estimate ORs ...

  3. DIETARY FOLATE DEFICIENCY ENHANCES ARSENIC-INDUCED MICRONUCLEUS FORMATION IN MICE

    EPA Science Inventory


    Dietary folate deficiency enhances arsenic-induced micronucleus formation in mice.

    Folate deficiency increases background levels ofDNA damage and can enhance the mutagenicity of chemical agents. Duplicate experiments were performed to investigate the effect of dietary...

  4. Folate in potato tubers: effects of genotype, location, storage, and development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Folates (vitamin B9) are essential micronutrients in the human diet. Deficiency in folate intake is a leading cause of birth defects and is implicated in several other diseases. As the fourth most consumed staple food in the world and the most consumed vegetable in the West, potato is a logical targ...

  5. Folate supplementation differently affects uracil content in DNA in the mouse colon and liver

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High folate intake may increase the risk of cancer, especially in the elderly. The present study examined the effects of ageing and dietary folate on uracil misincorporation into DNA, which has a mutagenic effect, in the mouse colon and liver. Old (18 months; n 42) and young (4 months; n 42) male C5...

  6. Designer microbes for biosynthesis

    PubMed Central

    Quin, Maureen B.; Schmidt-Dannert, Claudia

    2014-01-01

    Microbes have long been adapted for the biosynthetic production of useful compounds. There is increasing demand for the rapid and cheap microbial production of diverse molecules in an industrial setting. Microbes can now be designed and engineered for a particular biosynthetic purpose, thanks to recent developments in genome sequencing, metabolic engineering, and synthetic biology. Advanced tools exist for the genetic manipulation of microbes to create novel metabolic circuits, making new products accessible. Metabolic processes can be optimized to increase yield and balance pathway flux. Progress is being made towards the design and creation of fully synthetic microbes for biosynthetic purposes. Together, these emerging technologies will facilitate the production of designer microbes for biosynthesis. PMID:24646570

  7. Biosynthesis of plant sulfolipids

    SciTech Connect

    Kleppinger-Sparace, K.; Mudd, J.B.; Sparace, S. )

    1989-04-01

    The complete biosynthesis of sulfoquinovosyldiacylglycerol (SQDG) remains undetermined although dark synthesis of SQDG by chloroplasts supplied with AP{sup 35}S, PAP{sup 35}S or {sup 35}SO{sub 4} plus ATP suggests the sulfur moiety arises from either APS or sulfite (1). Sulfate incorporation into sulfolipids in isolated chloroplasts and in intact roots is reported here and compared to lipids labelled by {sup 14}C-acetate or {sup 14}C-glycerol. Several unknown {sup 35}S-labelled chloroform-soluble compounds were isolated from sterile roots. These {sup 35}S-labelled compounds differ from those of the chloroplast, identified as elemental sulfur forms. Identification of the unknown root compounds is in progress. Unlike chloroplast, isolated root plastids do not synthesis SQDG from sulfate plus ATP suggesting a requirement for an activated form of sulfate, such as APS or PAPS.

  8. Biosynthesis of Thiamin Pyrophosphate.

    PubMed

    Jurgenson, Christopher T; Ealick, Steven E; Begley, Tadhg P

    2009-08-01

    The biosynthesis of thiamin pyrophosphate (TPP) in prokaryotes, as represented by the Escherichia coli and the Bacillus subtilis pathways, is summarized in this review. The thiazole heterocycle is formed by the convergence of three separate pathways. First, the condensation of glyceraldehyde 3-phosphate and pyruvate, catalyzed by 1-deoxy-D-xylulose 5-phosphate synthase (Dxs), gives 1-deoxy-D-xylulose 5-phosphate (DXP). Next, the sulfur carrier protein ThiS-COO- is converted to its carboxyterminal thiocarboxylate in reactions catalyzed by ThiF, ThiI, and NifS (ThiF and IscS in B. subtilis). Finally, tyrosine (glycine in B. subtilis) is converted to dehydroglycine by ThiH (ThiO in B. subtilis). Thiazole synthase (ThiG) catalyzes the complex condensation of ThiS-COSH, dehydroglycine, and DXP to give a thiazole tautomer, which is then aromatized to carboxythiazole phosphate by TenI (B. subtilis). Hydroxymethyl pyrimidine phosphate (HMP-P) is formed by a complicated rearrangement reaction of 5-aminoimidazole ribotide (AIR) catalyzed by ThiC. ThiD then generates hydroxymethyl pyrimidine pyrophosphate. The coupling of the two heterocycles and decarboxylation, catalyzed by thiamin phosphate synthase (ThiE), gives thiamin phosphate. A final phosphorylation, catalyzed by ThiL, completes the biosynthesis of TPP, the biologically active form of the cofactor. This review reviews the current status of mechanistic and structural studies on the enzymes involved in this pathway. The availability of multiple orthologs of the thiamin biosynthetic enzymes has also greatly facilitated structural studies, and most of the thiamin biosynthetic and salvage enzymes have now been structurally characterized. PMID:26443755

  9. Folate receptor targeted Type 1 photosensitizer bioconjugates for tumor visualization and phototherapy

    NASA Astrophysics Data System (ADS)

    Rajagopalan, Raghavan; Poreddy, Amruta R.; Karwa, Amolkumar; Asmelash, Bethel; Putnam, Nicole E.; Chinen, Lori; Nichols, Maureen; Shieh, J. Jeng; Dorshow, Richard B.

    2011-02-01

    Folate receptors are over expressed in many types of cancers, including, ovarian, breast, and cervical. In our continuing efforts toward the development of targeted Type 1 phototherapeutic agents, an azide-based Type 1 photosensitizer and a pyrzine-based fluorophore that absorb and emits in the visible region, and a dual diagnostic-therapeutic probe consisting of the fluorophore and the photosensitizer were prepared and independently conjugated to two folate receptor specific vectors: ?-carboxyl-modified folic acid and anti-human FOLR1 (folate receptor-1) antibody In vitro receptor binding study showed that all the conjugates had high (ca 1-7 nM) affinity to the folate receptor. Confocal microscopy images indicated that the pyrazine conjugates were selectively taken up by the folate receptor expressing ovarian cancer KB cells.

  10. BIOSYNTHESIS OF STRESS ETHYLENE IN SOYBEAN SEEDLINGS: SIMILARITIES TO ENDOGENOUS ETHYLENE BIOSYNTHESIS

    EPA Science Inventory

    The similarity of stress ethylene biosynthesis in whole plants to endogenous ethylene biosynthesis was investigated using two inhibitors of ethylene biosynthesis, amino-ethoxyvinylglycine (AVG) and cobalt chloride (Co2+); and the intermediates, methionine, S-adenosylmethionine (S...

  11. FDH: an Aldehyde Dehydrogenase Fusion Enzyme in Folate Metabolism

    PubMed Central

    Krupenko, Sergey A.

    2009-01-01

    FDH (10-formyltetrahydrofolate dehydrogenase, Aldh1L1, EC 1.5.1.6) converts 10-formyltetrahydrofolate (10-formyl-THF) to tetrahydrofolate and CO2 in a NADP+-dependent reaction. It is a tetramer of four identical 902 amino acid residue subunits. The protein subunit is a product of a natural fusion of three unrelated genes and consists of three distinct domains. The N-terminal domain of FDH (residues 1–310) carries the folate binding site and shares sequence homology and structural topology with other enzymes utilizing 10-formyl-THF as a substrate. In vitro it functions as 10-formyl-THF hydrolase, and evidence indicate that this activity is a part of the overall FDH mechanism. The C-terminal domain of FDH (residues 400–902) originated from an aldehyde dehydrogenase-related gene and is capable of oxidation of short-chain aldehydes to corresponding acids. Similar to class 1 and 2 aldehyde dehydrogenases, this domain exists as a tetramer and defines the oligomeric structure of the full-length enzyme. The two catalytic domains are connected by an intermediate linker (residues 311–399), which is a structural and functional homolog of carrier proteins possessing a 4?-phosphopantetheine prosthetic group. In the FDH mechanism, the intermediate linker domain transfers a formyl, covalently attached to the sulfhydryl group of the phosphopantetheine arm, from the N-terminal domain to the C-terminal domain. The overall FDH mechanism is a coupling of two sequential reactions, a hydrolase and a formyl dehydrogenase, bridged by a substrate transfer step. In this mechanism, one domain provides the folate binding site and a hydrolase catalytic center to remove the formyl group from the folate substrate, another provides a transfer vehicle between catalytic centers and the third one contributes the dehydrogenase machinery further oxidizing formyl to CO2. PMID:18848533

  12. Evaluation of Serum Homocysteine, High-Sensitivity CRP, and RBC Folate in Patients with Alopecia Areata

    PubMed Central

    Yousefi, Maryam; Namazi, Mohammad Reza; Rahimi, Hoda; Younespour, Shima; Ehsani, Amir Houshang; Shakoei, Safoura

    2014-01-01

    Introduction: Alopecia areata (AA) is a common type of hair loss with an autoimmune basis. As the role of homocysteine (Hcys), folate, and CRP has been considered in some autoimmune diseases. Objectives: To evaluate homocysteine, folate and CRP level in AA. Methods: This study was performed on 29 patients who had AA for at least 6 months affecting more than 20% of scalp, and 32 healthy controls. Levels of serum Hcys, blood high-sensitivity CRP, and RBC folate were measured in all subjects. Results: The mean level of RBC folate was significantly lower in the patient group than that in controls (P < 0.001). Also, the level of RBC folate was significantly lower in patients with extensive forms of disease (alopecia totalis/alopecia universalis) in comparison with more localized form (patchy hair loss) (P < 0.05). Patients with higher “Severity of Alopecia Total” (SALT) score had lower RBC folate, as well. Serum Hcys and blood high-sensitivity CRP levels did not show a significant difference in two groups. Conclusion: Patients with alopecia areata have lower level of RBC folate which is in negative correlation with both severity and extension of AA. PMID:25484412

  13. Folate-equipped nanolipoplexes mediated efficient gene transfer into human epithelial cells.

    PubMed

    Mornet, Emmanuel; Carmoy, Nathalie; Lainé, Céline; Lemiègre, Loïc; Le Gall, Tony; Laurent, Isabelle; Marianowski, Remi; Férec, Claude; Lehn, Pierre; Benvegnu, Thierry; Montier, Tristan

    2013-01-01

    Since recombinant viral vectors have been associated with serious side effects, such as immunogenicity and oncogenicity, synthetic delivery systems represent a realistic alternative for achieving efficacy in gene therapy. A major challenge for non-viral nanocarriers is the optimization of transgene expression in the targeted cells. This goal can be achieved by fine-tuning the chemical carriers and the adding specific motifs to promote cellular penetration. Our study focuses on the development of novel folate-based complexes that contain varying quantities of folate motifs. After controlling for their physical properties, neutral folate-modified lipid formulations were compared in vitro to lipoplexes leading to comparable expression levels. In addition, no cytotoxicity was detected, unlike what was observed in the cationic controls. Mechanistically, the delivery of the transgene appeared to be, in part, due to endocytosis mediated by folate receptor targeting. This mechanism was further validated by the observation that adding free folate into the medium decreased luciferase expression by 50%. In vivo transfection with the folate-modified MM18 lipid, containing the highest amount of FA-PEG(570)-diether co-lipid (w:w; 90:10), at a neutral charge ratio, gave luciferase transgene expression. These studies indicate that modification of lipids with folate residues could enhance non-toxic, cell-specific gene delivery. PMID:23344053

  14. Subjective well-being in older adults: folate and vitamin B12 independently predict positive affect.

    PubMed

    Edney, Laura C; Burns, Nicholas R; Danthiir, Vanessa

    2015-10-01

    Vitamin B12, folate and homocysteine have long been implicated in mental illness, and growing evidence suggests that they may play a role in positive mental health. Elucidation of these relationships is confounded due to the dependence of homocysteine on available levels of vitamin B12 and folate. Cross-sectional and longitudinal relationships between vitamin B12, folate, homocysteine and subjective well-being were assessed in a sample of 391 older, community-living adults without clinically diagnosed depression. Levels of vitamin B12, but not folate, influenced homocysteine levels 18 months later. Vitamin B12, folate and their interaction significantly predicted levels of positive affect (PA) 18 months later, but had no impact on the levels of negative affect or life satisfaction. Cross-sectional relationships between homocysteine and PA were completely attenuated in the longitudinal analyses, suggesting that the cross-sectional relationship is driven by the dependence of homocysteine on vitamin B12 and folate. This is the first study to offer some evidence of a causal link between levels of folate and vitamin B12 on PA in a large, non-clinical population. PMID:26346363

  15. Carotenoid biosynthesis in diatoms.

    PubMed

    Bertrand, Martine

    2010-11-01

    Diatoms are ubiquitous and constitute an important group of the phytoplankton community having a major contribution to the total marine primary production. These microalgae exhibit a characteristic golden-brown colour due to a high amount of the xanthophyll fucoxanthin that plays a major role in the light-harvesting complex of photosystems. In the water column, diatoms are exposed to light intensities that vary quickly from lower to higher values. Xanthophyll cycles prevent photodestruction of the cells in excessive light intensities. In diatoms, the diadinoxanthin-diatoxanthin cycle is the most important short-term photoprotective mechanism. If the biosynthetic pathways of chloroplast pigments have been extensively studied in higher plants and green algae, the research on carotenoid biosynthesis in diatoms is still in its infancy. In this study, the data on the biosynthetic pathway of diatom carotenoids are reviewed. The early steps occur through the 2-C-methyl-D: -erythritol 4-phosphate (MEP) pathway. Then a hypothetical pathway is suggested from dimethylallyl diphosphate (DMAPP) and isopentenyl pyrophosphate (IPP). Most of the enzymes of the pathway have not been so far isolated from diatoms, but candidate genes for each of them were identified using protein similarity searches of genomic data. PMID:20734232

  16. Stereoselectivity in Polyphenol Biosynthesis

    NASA Technical Reports Server (NTRS)

    Lewis, Norman G.; Davin, Laurence B.

    1992-01-01

    Stereoselectivity plays an important role in the late stages of phenyl-propanoid metabolism, affording lignins, lignans, and neolignans. Stereoselectivity is manifested during monolignol (glucoside) synthesis, e.g., where the geometry (E or Z) of the pendant double bond affects the specificity of UDPG:coniferyl alcohol glucosyltransferases in different species. Such findings are viewed to have important ramifications in monolignol transport and storage processes, with roles for both E- and Z-monolignols and their glucosides in lignin/lignan biosynthesis being envisaged. Stereoselectivity is also of great importance in enantiose-lective enzymatic processes affording optically active lignans. Thus, cell-free extracts from Forsythia species were demonstrated to synthesize the enantiomerically pure lignans, (-)-secoisolariciresinol, and (-)-pinoresinol, when NAD(P)H, H2O2 and E-coniferyl alcohol were added. Progress toward elucidating the enzymatic steps involved in such highly stereoselective processes is discussed. Also described are preliminary studies aimed at developing methodologies to determine the subcellular location of late-stage phenylpropanoid metabolites (e.g., coniferyl alcohol) and key enzymes thereof, in intact tissue or cells. This knowledge is essential if questions regarding lignin and lignan tissue specificity and regulation of these processes are to be deciphered.

  17. Folate receptor ?: a storied past and promising future in immunotherapy.

    PubMed

    Clifton, Guy T; Sears, Alan K; Clive, Kevin S; Holmes, Jarrod P; Mittendorf, Elizabeth A; Ioannides, Constantine G; Ponniah, Sathibalan; Peoples, George E

    2011-02-01

    Folate receptor alpha (FR ?) is a membrane-bound transport protein with several features which make it an attractive target for cancer immunotherapy. FR ? is largely shielded from the immune system in normal tissue but exposed while expressed on a variety of malignancies; it is functionally active in cancer pathogenesis; and it is immunogenic. A variety of different immunotherapeutic methods targeting FR ? are being explored to treat cancer. Passive immunotherapy includes monoclonal antibodies, antibodies modified to deliver treatments, and modified T cell therapy. Active immunotherapy has focused on using FR ? to increase the immunogenicity of cancer or to generate active FR ?-directed immunity through a range of vaccination techniques. We will review the rationale behind targeting immunotherapy to FR ? and cover the various techniques designed to do this. Folate receptor alpha (FR?) is a unique tumor-associated antigen (TAA) with many characteristics that make it an attractive target for immunotherapy in cancer. Many different immunotherapeutic modalities utilizing FR? are being explored to treat cancer. The research is in various stages: some are just beyond conception, others have been tried and abandoned, and others still are progressing through human clinical trials. This review will cover immunotherapeutic methods, both active and passive, that target FR?. PMID:21321484

  18. Folate receptor gene variants and neural tube defect occurrence

    SciTech Connect

    Finnell, R.; Greer, K.; Lammer, E.

    1994-09-01

    Recent epidemiological evidence shows that periconceptional use of folic acid supplements may prevent 40-50% of neural tube defects (NTDs). The FDA has subsequently recommended folic acid supplementation of all women of childbearing potential, even though the mechanism by which folic acid prevents NTDs is unknown. We investigated genetic variation of a candidate gene, the 5-methyltetrahydrofolate (5-MeTHF) receptor, that may mediate this preventive effect. The receptor concentrates folate within cells and we have localized its mRNA to neuroepithelial cells during neurulation. Our hypothesis is that dysfunctional 5-MeTHF receptors inadequately concentrate folate intracellularly, predisposing infants to NTDs. We have completed SSCP analysis on 3 of the 4 coding exons of the 5-MeTHF receptor gene of 474 infants participating in a large population-based epidemiological case-control study of NTDs in California; genotyping of another 500 infants is ongoing. Genomic DNA was extracted from residual blood spots from newborn screening samples of cases and controls. Genotyping was done blinded to case status. Polymorphisms have been detected for exons 4 and 5; fourteen percent of the infants have exon 5 polymorphisms. Data will be presented on the prevalence of 5-MeTHF receptor polymorphisms among cases and controls. Relationships among the polymorphisms and NTD occurrence may shed light on how folic acid supplementation prevents NTDs.

  19. Hyperbranched amphiphilic polymer with folate mediated targeting property.

    PubMed

    Zhang, Lei; Hu, Chao-Hua; Cheng, Si-Xue; Zhuo, Ren-Xi

    2010-09-01

    Hyperbranched amphiphilic polymer PG6-PLA-PEG was synthesized through grafting hydrophobic poly(D,L-lactide) (PLA) segments and hydrophilic poly(ethylene glycol) (PEG) blocks to hydrophilic hyperbranched polyglycerol core (PG6), subsequently. To achieve cell targeting property, folic acid (FA) was further incorporated to the hyperbranched polymer to obtain PG6-PLA-PEG-FA. The polymers were characterized by (1)H NMR, UV-vis spectroscopy and combined size-exclusion chromatography and multiangle laser light scattering (SEC-MALLS) analysis. Due to the amphiphilicity, PG6-PLA-PEG and PG6-PLA-PEG-FA could self-assemble to form nanoparticles in aqueous solutions. Antineoplastic drug, paclitaxel (PTX), was encapsulated into the nanoparticles. The nanoparticles were observed by transmission electron microscopy (TEM). The targeting property of PG6-PLA-PEG-FA was evaluated in vitro. The results showed that the PTX loaded PG6-PLA-PEG-FA nanoparticles exhibited enhanced inhibition on folate receptor positive tumor cells due to the folate mediated targeting. PMID:20537873

  20. Solar cycle predicts folate-sensitive neonatal genotypes at discrete phases of the first trimester of pregnancy: a novel folate-related human embryo loss hypothesis.

    PubMed

    Lucock, Mark; Glanville, Tracey; Yates, Zoë; Walker, James; Furst, John; Simpson, Nigel

    2012-08-01

    Folate, a key periconceptional nutrient, is ultraviolet light (UV-R) sensitive. We therefore hypothesise that a relationship exists between sunspot activity, a proxy for total solar irradiance (particularly UV-R) reaching Earth, and the occurrence of folate-sensitive, epigenomic-related neonatal genotypes during the first trimester of pregnancy. Limited data is provided to support the hypothesis that the solar cycle predicts folate-related human embryo loss: 379 neonates born at latitude 54°N between 1998 and 2000 were examined for three folate-sensitive, epigenome-related polymorphisms, with solar activity for trimester one accessed via the Royal Greenwich Observatory-US Air force/National Oceanic and Atmospheric Administration Sunspot Database (34,110 total observation days). Logistic regression showed solar activity predicts C677T-methylenetetrahydrofolate reductase (C677T-MTHFR) and A66G-methionine synthase reductase (A66G-MSR) genotype at discrete phases of trimester one. Total and maximal sunspot activity predicts C677T-MTHFR genotype for days 31-60 of trimester one (p=0.0181 and 0.0366, respectively) and A66G-MSR genotype for days 61-90 of trimester one (p=0.0072 and 0.0105, respectively). Loss of UV-R sensitive folate associated with the sunspot cycle might therefore interact with variant folate genes to perturb DNA methylation and/or elaboration of the primary base sequence (thymidylate synthesis), as well as increase embryo-toxic homocysteine. We hypothesise that this may influence embryo viability leading to 677CC-MTHFR and 66GG-MSR embryo loss at times of increased solar activity. This provides an interesting and plausible link between well recognised 'folate gene originated developmental disorders' and 'solar activity/seasonality modulated developmental disorders'. PMID:22608858

  1. The necessity of debranching in starch biosynthesis

    E-print Network

    Shaw, Eudean

    1999-01-01

    Although research in starch biosynthesis has been carried out since the 1940s, many issues remain unresolved. For example, the number of reactions in the pathway is still an open question. The biosynthesis of the starch ...

  2. GENETIC CONTROL OF TRICHOTHECENE BIOSYNTHESIS IN FUSARIUM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The biosynthesis of trichothecenes involves a complex pathway that begins with the sesquiterpene hydrocarbon trichodiene and consists of multiple oxygenation, cyclization, and esterification steps. Twelve genes required for trichothecene biosynthesis in Fusarium are clustered within a 26-kb segment...

  3. The spectrum of mutations in the PCFT gene, coding for an intestinal folate transporter, that are the basis for hereditary folate malabsorption.

    PubMed

    Zhao, Rongbao; Min, Sang Hee; Qiu, Andong; Sakaris, Antoinette; Goldberg, Gary L; Sandoval, Claudio; Malatack, J Jeffrey; Rosenblatt, David S; Goldman, I David

    2007-08-15

    Hereditary folate malabsorption (HFM) is a rare autosomal recessive disorder caused by impaired intestinal folate absorption and impaired folate transport into the central nervous system. Recent studies in 1 family revealed that the molecular basis for this disorder is a loss-of-function mutation in the PCFT gene encoding a proton-coupled folate transporter. The current study broadens the understanding of the spectrum of alterations in the PCFT gene associated with HFM in 5 additional patients. There was no racial, ethnic, or sex pattern. A total of 4 different homozygous mutations were detected in 4 patients; 2 heterozygous mutations were identified in the fifth patient. Mutations involved 4 of the 5 exons, all at highly conserved amino acid residues. A total of 4 of the mutated transporters resulted in a complete loss of transport function, primarily due to decreased protein stability and/or defects in membrane trafficking, while 2 of the mutated carriers manifested residual function. Folate transport at low pH was markedly impaired in transformed lymphocytes from 2 patients. These findings further substantiate the role that mutations in PCFT play in the pathogenesis of HFM and will make possible rapid diagnosis and treatment of this disorder in infants, and prenatal diagnosis in families that carry a mutated gene. PMID:17446347

  4. Low paternal dietary folate alters the mouse sperm epigenome and is associated with negative pregnancy outcomes

    PubMed Central

    Lambrot, R.; Xu, C.; Saint-Phar, S.; Chountalos, G.; Cohen, T.; Paquet, M.; Suderman, M.; Hallett, M.; Kimmins, S.

    2013-01-01

    Epidemiological studies suggest that a father’s diet can influence offspring health. A proposed mechanism for paternal transmission of environmental information is via the sperm epigenome. The epigenome includes heritable information such as DNA methylation. We hypothesize that the dietary supply of methyl donors will alter epigenetic reprogramming in sperm. Here we feed male mice either a folate-deficient or folate-sufficient diet throughout life. Paternal folate deficiency is associated with increased birth defects in the offspring, which include craniofacial and musculoskeletal malformations. Genome-wide DNA methylation analysis and the subsequent functional analysis identify differential methylation in sperm of genes implicated in development, chronic diseases such as cancer, diabetes, autism and schizophrenia. While >300 genes are differentially expressed in offspring placenta, only two correspond to genes with differential methylation in sperm. This model suggests epigenetic transmission may involve sperm histone H3 methylation or DNA methylation and that adequate paternal dietary folate is essential for offspring health. PMID:24326934

  5. Brief report: autistic symptoms, developmental regression, mental retardation, epilepsy, and dyskinesias in CNS folate deficiency.

    PubMed

    Moretti, Paolo; Peters, Sarika U; Del Gaudio, Daniela; Sahoo, Trilochan; Hyland, Keith; Bottiglieri, Teodoro; Hopkin, Robert J; Peach, Elizabeth; Min, Sang Hee; Goldman, David; Roa, Benjamin; Bacino, Carlos A; Scaglia, Fernando

    2008-07-01

    We studied seven children with CNS folate deficiency (CFD). All cases exhibited psychomotor retardation, regression, cognitive delay, and dyskinesia; six had seizures; four demonstrated neurological abnormalities in the neonatal period. Two subjects had profound neurological abnormalities that precluded formal behavioral testing. Five subjects received ADOS and ADI-R testing and met diagnostic criteria for autism or autism spectrum disorders. They exhibited difficulties with transitions, insistence on sameness, unusual sensory interests, and repetitive behaviors. Those with the best language skills largely used repetitive phrases. No mutations were found in folate transporter or folate enzyme genes. These findings demonstrate that autistic features are salient in CFD and suggest that a subset of children with developmental regression, mental retardation, seizures, dyskinesia, and autism may have CNS folate abnormalities. PMID:18027081

  6. Auxin biosynthesis and storage forms

    PubMed Central

    Strader, Lucia C.

    2013-01-01

    The plant hormone auxin drives plant growth and morphogenesis. The levels and distribution of the active auxin indole-3-acetic acid (IAA) are tightly controlled through synthesis, inactivation, and transport. Many auxin precursors and modified auxin forms, used to regulate auxin homeostasis, have been identified; however, very little is known about the integration of multiple auxin biosynthesis and inactivation pathways. This review discusses the many ways auxin levels are regulated through biosynthesis, storage forms, and inactivation, and the potential roles modified auxins play in regulating the bioactive pool of auxin to affect plant growth and development. PMID:23580748

  7. Vitamin B12, folate and iron levels in primary nocturnal enuresis

    PubMed Central

    Albayrak, Sebahattin; Zengin, Kürsad; Tanik, Serhat; Daar, Ghaniya; Ozdamar, Mustafa Yasar; Bakirtas, Hasan; Imamoglu, M. Abdurrahim; Gurdal, Mesut

    2015-01-01

    Objective: Folate, vitamin B12 and iron are important vitamin and minerals which play role in the development of nervous system. The aim of this study was looking at the presence of folate, vitamin B12 and iron deficiency among patients with Primary nocturnal enuresis (PNE) and possible relation between the delay of central nervous system (CNS) development, PNE and folate, vitamin B12 and iron states. Methods: Consecutively applied forty patients with PNE (23 girls and 17 boys) and otherwise normal thirty control subjects (17 girls and 13 boys) were included in the study. Average ages (in range) of PNE and the control group were 9.2(6-12) years and 9.3 (6-12) years accordingly. Age, height, weight, complete blood count, blood vitamin B12, folate, ferritin and iron values of both groups were recorded and compared to each other. Results: Average vitamin B12 and folate levels of patients with PNE were significantly and statistically lower compared to those of the control group. Average blood iron of patients with PNE was significantly higher than that of the control group and also average ferritin level of the PNE group was detected to be higher than the control group but this relation was statistically insignificant. Conclusion: Primary nocturnal enuresis is related to the delay in CNS maturation so it was thought that low vitamin B12 and folate which were found in patients with PNE may have role in the delay of CNS maturation. Additionally, further studies are needed to investigate the role of vitamin B12 and folate either alone or as combination in treatment of patients with PNE who have low vitamin B12and folate level. PMID:25878620

  8. Pediatric cancer epigenome and the influence of folate

    PubMed Central

    Yiu, Teresa T; Li, Wei

    2015-01-01

    Despite improvement in clinical treatment of childhood cancer, it remains the leading cause of disease-related mortality in children with survivors often suffering from treatment-related toxicity and premature death. Because childhood cancer is vastly different from cancer in adults, a thorough understanding of the underlying molecular mechanisms specific to childhood cancer is essential. Although childhood cancer contains much fewer mutations, a subset of cancer subtypes has a higher frequency of mutations in gene encoding epigenetic regulators. Thus, in this review, we will focus on epigenetic deregulations in childhood cancers, the use of genomewide analysis for cancer subtype classification, prediction of clinical outcomes and the influence of folate on epigenetic mechanisms. PMID:25950259

  9. Structural and dynamic investigation of bovine folate receptor alpha (FOLR1), and role of ultra-high temperature processing on conformational and thermodynamic characteristics of FOLR1-folate complex.

    PubMed

    Sahoo, Bikash Ranjan; Maharana, Jitendra; Patra, Mahesh Chandra; Bhoi, Gopal Krushna; Lenka, Santosh Kumar; Dubey, Praveen Kumar; Goyal, Shubham; Dehury, Budheswar; Pradhan, Sukanta Kumar

    2014-09-01

    The folate receptor alpha (FOLR1) present in milk has widely been studied to investigate the effects of pasteurization, ultra-high temperature (UHT) processing and fermentation on net folate concentration. However, the folate binding mechanism with FOLR1, and effect of temperature on FOLR1-folate complex is poorly explored till now in bovine milk which is a chief resource of folate. Despite of enormous importance of folic acid and the routine intake of bovine milk, folic acid deficiency diseases are common in human race. To understand the folate deficiency in milk after processing, in absence of experimental structure, 3D model of bovine FOLR1 (bvFOLR1) was built followed by 40ns molecular dynamics (MD) simulation. The folate and its derivatives binding sites in bvFOLR1 were anticipated by molecular docking using AutoDock 4.2. Essential MD studies suggested the presence of a longer signal peptide (22 residues) and a short propeptide (7 residues) at the C-terminus that may cleaved during post-translational modification. MD analysis of bvFOLR1-folate complex at 298, 323, 353, 373 and 408K followed by binding energy (BE) calculation showed maximum binding affinity at ?353K. However, at 373K and UHT (408K), the folate BE is significantly decreased with substantial conformational alteration. Heating at UHT followed by cooling within 298-408K range demoed no structural reformation with temperature reduction, and the folate was displaced from the active site. This study presented the disintegration of folate from bvFOLR1 during high temperature processing and revealed a lower folate concentration in UHT milk and dairy products. PMID:25023142

  10. Folate content in fresh-cut vegetable packed products by 96-well microtiter plate microbiological assay.

    PubMed

    Fajardo, Violeta; Alonso-Aperte, Elena; Varela-Moreiras, Gregorio

    2015-02-15

    Ready-to-eat foods have nowadays become a significant portion of the diet. Accordingly, nutritional composition of these food categories should be well-known, in particular its folate content. However, there is a broad lack of folate data in food composition tables and databases. A total of 21 fresh-cut vegetable and fruit packed products were analysed for total folate (TF) content using a validated method that relies on the folate-dependent growth of chloramphenicol-resistant Lactobacillus casei subspecies rhamnosus (NCIMB 10463). Mean TF content ranged from 10.0 to 140.9?g/100g for the different matrices on a fresh weight basis. Higher TF quantity, 140.9-70.1?g/100g, was found in spinach, rocket, watercress, chard and broccoli. Significant differences were observed between available data for fresh vegetables and fruits from food composition tables or databases and the analysed results for fresh-cut packed products. Supplied data support the potential of folate-rich fresh-cut ready-to-eat vegetables to increase folate intake significantly. PMID:25236228

  11. Folate and vitamin B12 status of adolescent girls in northern Nigeria.

    PubMed Central

    VanderJagt, D. J.; Spelman, K.; Ambe, J.; Datta, P.; Blackwell, W.; Crossey, M.; Glew, R. H.

    2000-01-01

    The diets of populations in many developing countries are low in folate and vitamin B12 and a deficiency of either of these vitamins results in increased risk for cardiovascular disease and neural tube defects. The rates of neural tube defects in Nigeria are among the highest reported worldwide. Since many girls marry at an early age in northern Nigeria, we therefore determined the folate and vitamin B12 status of adolescent girls between 12 and 16 years of age in Maiduguri, Nigeria. The mean serum folate concentration for subjects was 15.3 +/- 5.2 nmol/L. Whereas only four subjects (2.4%) had serum folate concentrations lower than 6.8 nmol/L, a level indicative of negative folate balance, 9% of the subjects had serum vitamin B12 concentrations at or below 134 pmol/L, the lower limit of the reference range for their age group. Serum homocysteine was measured in 56 of the 162 subjects and the mean level was 15.9 +/- 5.0 mumol/L. The majority of subjects had serum homocysteine concentrations above the upper limit of the reference range for their age group. We conclude that the adolescent girls we studied were at greater risk for vitamin B12 deficiency than folate deficiency. This conclusion is consistent with the fact that their diet included few foods that contained vitamin B12. PMID:10946529

  12. Interactions of ethanol and folate deficiency in development of alcoholic liver disease in the micropig.

    PubMed Central

    Halsted, Charles H.; Villanueva, Jesus A.; Devlin, Angela M.; James, S. Jill

    2002-01-01

    Folate deficiency is present in most patients with alcoholic liver disease (ALD), whereas folate regulates and alcoholism perturbs intrahepatic methionine metabolism, and S-adenosyl-methionine prevents the development of experimental ALD. Our studies explored the hypothesis that abnormal methionine metabolism is exacerbated by folate deficiency and promotes the development of ALD in the setting of chronic ethanol exposure. Using the micropig animal model, dietary combinations of folate deficiency and a diet containing 40% of kcal as ethanol were followed by measurements of hepatic methionine metabolism and indices of ALD. Alcoholic liver injury, expressed as steatohepatitis in terminal 14 week liver specimens, was evident in micropigs fed the combined ethanol containing and folate deficient diet but not in micropigs fed each diet separately. Perturbations of methionine metabolism included decreased hepatic S-adenosylmethionine and glutathione with increased products of DNA and lipid oxidation. Thus, the development of ALD is linked to abnormal methionine metabolism and is accelerated in the presence of folate deficiency. PMID:12053707

  13. Maternal folate status as a risk factor for autism spectrum disorders: a review of existing evidence.

    PubMed

    DeVilbiss, Elizabeth A; Gardner, Renee M; Newschaffer, Craig J; Lee, Brian K

    2015-09-14

    Emerging evidence from epidemiological studies supports the notion that maternal folate status regulated by dietary and genetic factors early in pregnancy may influence the risk of autism spectrum disorders (ASD). In this review, we provide an overview of what is known about the role of folate in the aetiology of neurodevelopmental disorders; summarise relevant biological, genetic and epigenetic mechanisms; and synthesise the evidence from human observational studies and randomised controlled trials that have examined the relationship between maternal folate and ASD or related traits. Much of the existing literature on this topic is subject to limitations such as potential confounding by healthy behaviours and other dietary factors, and exposure assessed within limited exposure windows. As the existing evidence is inconclusive, further research remains to be conducted in order to verify this hypothesis. Complete assessment of maternal functional folate status through the pre- and peri-conceptional periods requires biological measurement of folate, vitamin B12 and homocysteine and genetic variants involved in one-carbon metabolism and epigenetic mechanisms. In addition to more complete assessment of maternal functional folate status, careful consideration of potential confounding is warranted. PMID:26243379

  14. Oxidative DNA damage and global DNA hypomethylation are related to folate deficiency in chromate manufacturing workers.

    PubMed

    Wang, Tian-Cheng; Song, Yan-Shuang; Wang, Hui; Zhang, Ji; Yu, Shan-Fa; Gu, Yong-En; Chen, Tian; Wang, Yun; Shen, Hui-Qi; Jia, Guang

    2012-04-30

    Exposure to hexavalent chromium [Cr (VI)] can cause DNA damage, genetic instability and increase the risk of cancer development. Folate deficiency affects DNA methylation and reduces the stability of the genetic material. However, the correlation between folate deficiency and DNA damage has never been clearly elucidated in chromate workers. In this study, we recruited one hundred and fifteen workers from chromate producing facilities as testing subjects and sixty local residents without chromium exposure history served as controls. The results showed an evident accumulation of Cr in peripheral red blood cells accompanied by a significantly decreased serum folate in chromate exposed workers. The decreased serum folate was associated with an increased urinary 8-hydroxy-2'-deoxyguanosine, DNA strand breaks and global DNA hypomethylation. These findings suggest that chronic occupational chromate exposure could induce folate depletion, which may further promote DNA damages and global DNA hypomethylation. Adequate folate supplement may provide benefit to chromate sufferers in stabilization of genetic material and reduce the risk of cancer development. PMID:22398029

  15. The Evolution of Aflatoxin Biosynthesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The biosynthesis of aflatoxin (AF) involves over 20 enzymatic reactions in a complex polyketide pathway that converts acetate and malonate to the intermediates sterigmatocystin (ST) and O-methylsterigmatocysin (OMST), the respective penultimate and ultimate precursors of AF. Although ST, OMST, and ...

  16. Regulatory Elements in Aflatoxin Biosynthesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aflatoxin (AF) biosynthesis in fungi is responsive to environmental cues, such as carbon and nitrogen source, stress, plant constituents (i.e. volatiles and tannins), and physical factors such as pH and temperature. These environmental stimuli are transduced via complex signaling cascades that cont...

  17. Prevalence and correlates of high red blood cell folate concentrations in the Canadian population using 3 proposed cut-offs.

    PubMed

    Colapinto, Cynthia K; O'Connor, Deborah L; Dubois, Lise; Tremblay, Mark S

    2015-10-01

    A distinct shift towards higher folate concentrations has emerged in Canada. These higher concentrations have known benefits, including prevention of neural tube defects, but concerns have been raised regarding potential associations with adverse health outcomes. The aim of this research was to propose cut-offs for high red blood cell (RBC) folate concentrations and identify their correlates. RBC folate was measured in a nationally representative cross-sectional sample of Canadians (N = 5248) aged 6 to 79 years. RBC folate concentrations were adjusted from the IMMULITE 2000 immunoassay to a microbiologic assay. The population was characterized at 3 RBC folate cut-offs: 1450 nmol/L, 1800 nmol/L, and 2150 nmol/L. We used t tests to examine differences by age, sex, income, and body mass index (BMI) at each cut-off and logistic regression to explore associations with folic acid supplement intake. The prevalence of high RBC folate was 16%, 6%, and 2% at thresholds of 1450 nmol/L, 1800 nmol/L, and 2150 nmol/L, respectively. Females, those aged 60 to 79 years, and overweight or obese participants had the greatest prevalence of having high RBC folate at each cut-off. Folic acid supplement users were more likely than non-users to have high RBC folate concentrations. Older age, higher BMI, and folic acid supplement use were identified as correlates of high folate status. A high RBC folate concentration cut-off will advance the field towards consistent measurement and reporting of high folate status. This may facilitate future investigation of associations between RBC folate concentrations at the upper end of the distribution and health outcomes. PMID:26319565

  18. (-)-Menthol biosynthesis and molecular genetics

    NASA Astrophysics Data System (ADS)

    Croteau, Rodney B.; Davis, Edward M.; Ringer, Kerry L.; Wildung, Mark R.

    2005-12-01

    (-)-Menthol is the most familiar of the monoterpenes as both a pure natural product and as the principal and characteristic constituent of the essential oil of peppermint ( Mentha x piperita). In this paper, we review the biosynthesis and molecular genetics of (-)-menthol production in peppermint. In Mentha species, essential oil biosynthesis and storage is restricted to the peltate glandular trichomes (oil glands) on the aerial surfaces of the plant. A mechanical method for the isolation of metabolically functional oil glands, has provided a system for precursor feeding studies to elucidate pathway steps, as well as a highly enriched source of the relevant biosynthetic enzymes and of their corresponding transcripts with which cDNA libraries have been constructed to permit cloning and characterization of key structural genes. The biosynthesis of (-)-menthol from primary metabolism requires eight enzymatic steps, and involves the formation and subsequent cyclization of the universal monoterpene precursor geranyl diphosphate to the parent olefin (-)-(4 S)-limonene as the first committed reaction of the sequence. Following hydroxylation at C3, a series of four redox transformations and an isomerization occur in a general “allylic oxidation-conjugate reduction” scheme that installs three chiral centers on the substituted cyclohexanoid ring to yield (-)-(1 R, 3 R, 4 S)-menthol. The properties of each enzyme and gene of menthol biosynthesis are described, as are their probable evolutionary origins in primary metabolism. The organization of menthol biosynthesis is complex in involving four subcellular compartments, and regulation of the pathway appears to reside largely at the level of gene expression. Genetic engineering to up-regulate a flux-limiting step and down-regulate a side route reaction has led to improvement in the composition and yield of peppermint oil.

  19. Evidence that the low-affinity folate-binding protein in erythrocyte hemolysate is identical to hemoglobin

    SciTech Connect

    Hansen, S.I.; Holm, J.; Lyngbye, J.

    1981-07-01

    Gel filtration studies on erythrocyte hemolysate demonstrated the presence of a folate binding protein, apparently of the low-affinity type, that co-elutes with hemoglobin. Further, the folate binder eluted with a low salt concentration after DEAE-Sepharose CL-6B anion-exchange chromatography of erythrocyte hemolysate at pH 6.3. The chromatographic behavior of hemoglobin labeled with (3H)folate was so similar to that of the present binder as to suggest that the folate binder in erythrocytes is in fact hemoglobin.

  20. Pilot study of folate status in healthy volunteers and in patients with psoriasis before and after UV exposure.

    PubMed

    Juzeniene, Asta; Stokke, Kjell Torgeir; Thune, Per; Moan, Johan

    2010-11-01

    Ultraviolet radiation, UV, is widely used for treatment of psoriasis. UV radiation may destroy blood folates in test tubes, but clinical data are scarce. Folate deficiency may increase the risk of cardiovascular diseases, colorectal carcinoma, megaloblastic anemia, pregnancy and birth complications, depression and dementia. The aim of the present study was to investigate the influence of solar radiation, sunbeds and/or broadband UVB phototherapy on the levels of serum and erythrocyte folate in patients with psoriasis or healthy volunteers. Serum and erythrocyte folate status in patients with psoriasis and healthy volunteers was measured before and after exposure to solar radiation, broadband UVB or use of sunbeds. In some cases plasma homocysteine and serum 25-hydroxyvitamin D (25(OH)D) were also measured. Serum and erythrocyte folate levels in healthy volunteers and in psoriasis patients were not influenced to any statistically significant extent after exposure to solar radiation, to single or to multiple UV treatments. However, a slight decay of blood folates and an increase of plasma homocysteine levels were observed in psoriasis patients after exposure to UV radiation. Exposure to sun or sunbeds does not have any significant effect on the levels of blood folate of healthy humans. High doses of broadband UVB phototherapy may slightly decrease blood folates in psoriasis patients. Further studies, using proper, adequate 5-methyltetrahydrofolate methodology, are needed to clarify the influence of broadband phototherapy on folate degradation and the consequences of these on the health of psoriasis patients. PMID:20207157

  1. Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes

    PubMed Central

    Magnúsdóttir, Stefanía; Ravcheev, Dmitry; de Crécy-Lagard, Valérie; Thiele, Ines

    2015-01-01

    The human gut microbiota supplies its host with essential nutrients, including B-vitamins. Using the PubSEED platform, we systematically assessed the genomes of 256 common human gut bacteria for the presence of biosynthesis pathways for eight B-vitamins: biotin, cobalamin, folate, niacin, pantothenate, pyridoxine, riboflavin, and thiamin. On the basis of the presence and absence of genome annotations, we predicted that each of the eight vitamins was produced by 40–65% of the 256 human gut microbes. The distribution of synthesis pathways was diverse; some genomes had all eight biosynthesis pathways, whereas others contained no de novo synthesis pathways. We compared our predictions to experimental data from 16 organisms and found 88% of our predictions to be in agreement with published data. In addition, we identified several pairs of organisms whose vitamin synthesis pathway pattern complemented those of other organisms. This analysis suggests that human gut bacteria actively exchange B-vitamins among each other, thereby enabling the survival of organisms that do not synthesize any of these essential cofactors. This result indicates the co-evolution of the gut microbes in the human gut environment. Our work presents the first comprehensive assessment of the B-vitamin synthesis capabilities of the human gut microbiota. We propose that in addition to diet, the gut microbiota is an important source of B-vitamins, and that changes in the gut microbiota composition can severely affect our dietary B-vitamin requirements. PMID:25941533

  2. The intracellular controlled release from bioresponsive mesoporous silica with folate as both targeting and capping agent

    NASA Astrophysics Data System (ADS)

    Guo, Rui; Li, Le-Le; Zhao, Wen-Hua; Chen, Yu-Xi; Wang, Xiao-Zhu; Fang, Chen-Jie; Feng, Wei; Zhang, Tian-Lan; Ma, Xiang; Lu, Meng; Peng, Shi-Qi; Yan, Chun-Hua

    2012-05-01

    A smart mesoporous silica nanocarrier with intracellular controlled release is fabricated, with folic acid as dual-functional targeting and capping agent. The folate not only improves the efficiency of the nanocarrier internalized by the cancer cells, but also blocks the pores of the mesoporous silica to eliminate premature leakage of the drug. With disulfide bonds as linkers to attach the dual-functional folate within the surface of mesoporous silica, the controlled release can be triggered in the presence of reductant dithiothreitol (DTT) or glutathione (GSH). The cellular internalization via folate-receptor-mediated endocytosis and the intracellular controlled release of highly toxic anticancer drug DOX were demonstrated with an in vitro HeLa cell culture, indicating an efficient cancer-targeted drug delivery.A smart mesoporous silica nanocarrier with intracellular controlled release is fabricated, with folic acid as dual-functional targeting and capping agent. The folate not only improves the efficiency of the nanocarrier internalized by the cancer cells, but also blocks the pores of the mesoporous silica to eliminate premature leakage of the drug. With disulfide bonds as linkers to attach the dual-functional folate within the surface of mesoporous silica, the controlled release can be triggered in the presence of reductant dithiothreitol (DTT) or glutathione (GSH). The cellular internalization via folate-receptor-mediated endocytosis and the intracellular controlled release of highly toxic anticancer drug DOX were demonstrated with an in vitro HeLa cell culture, indicating an efficient cancer-targeted drug delivery. Electronic supplementary information (ESI) available: the details of XRD patterns and HRTEM images of the materials, release profile of F?M-F in an acidic solution, intracellular uptake measurement with flow cytometry, intracellular release measurement with confocal fluorescence microscopy, selected distance of folate derivatives. See DOI: 10.1039/c2nr30425b

  3. High Dietary Folate in Mice Alters Immune Response and Reduces Survival after Malarial Infection

    PubMed Central

    Meadows, Danielle N.; Bahous, Renata H.; Best, Ana F.; Rozen, Rima

    2015-01-01

    Malaria is a significant global health issue, with nearly 200 million cases in 2013 alone. Parasites obtain folate from the host or synthesize it de novo. Folate consumption has increased in many populations, prompting concerns regarding potential deleterious consequences of higher intake. The impact of high dietary folate on the host’s immune function and response to malaria has not been examined. Our goal was to determine whether high dietary folate would affect response to malarial infection in a murine model of cerebral malaria. Mice were fed control diets (CD, recommended folate level for rodents) or folic acid-supplemented diets (FASD, 10x recommended level) for 5 weeks before infection with Plasmodium berghei ANKA. Survival, parasitemia, numbers of immune cells and other infection parameters were assessed. FASD mice had reduced survival (p<0.01, Cox proportional hazards) and higher parasitemia (p< 0.01, joint model of parasitemia and survival) compared with CD mice. FASD mice had lower numbers of splenocytes, total T cells, and lower numbers of specific T and NK cell sub-populations, compared with CD mice (p<0.05, linear mixed effects). Increased brain TNF? immunoreactive protein (p<0.01, t-test) and increased liver Abca1 mRNA (p<0.01, t-test), a modulator of TNF?, were observed in FASD mice; these variables correlated positively (rs = 0.63, p = 0.01). Bcl-xl/Bak mRNA was increased in liver of FASD mice (p<0.01, t-test), suggesting reduced apoptotic potential. We conclude that high dietary folate increases parasite replication, disturbs the immune response and reduces resistance to malaria in mice. These findings have relevance for malaria-endemic regions, when considering anti-folate anti-malarials, food fortification or vitamin supplementation programs. PMID:26599510

  4. Excess folate during adolescence suppresses thyroid function with permanent deficits in motivation and spatial memory.

    PubMed

    Sittig, L J; Herzing, L B K; Xie, H; Batra, K K; Shukla, P K; Redei, E E

    2012-03-01

    Cognitive and memory deficits can be caused or exacerbated by dietary folate deficiency, which has been combatted by the addition of folate to grains and dietary supplements. The recommended dose of the B9 vitamin folate is 400 µg/day for adolescents and non-pregnant adults, and consumption above the recommended daily allowance is not considered to be detrimental. However, the effects of excess folate have not been tested in adolescence when neuro and endocrine development suggest possible vulnerability to long-term cognitive effects. We administered folate-supplemented (8.0 mg folic acid/kg diet) or control lab chow (2.7 mg folic acid/kg diet) to rats ad libitum from 30 to 60 days of age, and subsequently tested their motivation and learning and memory in the Morris water maze. We found that folate-supplemented animals had deficits in motivation and spatial memory, but they showed no changes of the learning- and memory-related molecules growth-associated protein-43 or Gs-? subunit protein in the hippocampus. They had decreased levels of thyroxine (T4) and triiodothyronine (T3) in the periphery and decreased protein levels of thyroid receptor-?1 and -?2 (TR?1 and TR?2) in the hippocampus. The latter may have been due to an observed increase of cytosine-phosphate-guanosine island methylation within the putative thyroid hormone receptor-? promoter, which we have mapped for the first time in the rat. Overall, folate supplementation in adolescence led to motivational and spatial memory deficits that may have been mediated by suppressed thyroid hormone function in the periphery and hippocampus. PMID:22050771

  5. Combinatorial Biosynthesis – Potential and Problems

    PubMed Central

    Floss, Heinz G.

    2007-01-01

    Because of their ecological functions, natural products have been optimized in evolution for interaction with biological systems and receptors. However, they have not necessarily been optimized for other desirable drug properties and thus can often be improved by structural modification. Using examples from the literature, this paper reviews the opportunities for increasing structural diversity among natural products by combinatorial biosynthesis, i.e., the genetic manipulation of biosynthetic pathways. It distinguishes between combinatorial biosynthesis in a narrower sense to generate libraries of modified structures, and metabolic engineering for the targeted formation of specific structural analogs. Some of the problems and limitations encountered with these approaches are also discussed. Work from the author’s laboratory on ansamycin antibiotics is presented which illustrates some of the opportunities and limitations. PMID:16414140

  6. Biosynthesis of Fungal Indole Alkaloids

    PubMed Central

    Xu, Wei; Gavia, Diego J.; Tang, Yi

    2014-01-01

    This review provides a summary of recent research advances in elucidating the biosynthesis of fungal indole alkaloids. Different strategies used to incorporate and derivatize the indole/indoline moieties in various families of fungal indole alkaloids will be discussed, including tryptophan-containing nonribosomal peptides and polyketide-nonribosomal peptide hybrids; and alkaloids derived from other indole building blocks. This review also includes discussion regarding the downstream modifications that generate chemical and structural diversity among indole alkaloids. PMID:25180619

  7. ?-Alanine Biosynthesis in Methanocaldococcus jannaschii

    PubMed Central

    Wang, Yu; Xu, Huimin

    2014-01-01

    One efficient approach to assigning function to unannotated genes is to establish the enzymes that are missing in known biosynthetic pathways. One group of such pathways is those involved in coenzyme biosynthesis. In the case of the methanogenic archaeon Methanocaldococcus jannaschii as well as most methanogens, none of the expected enzymes for the biosynthesis of the ?-alanine and pantoic acid moieties required for coenzyme A are annotated. To identify the gene(s) for ?-alanine biosynthesis, we have established the pathway for the formation of ?-alanine in this organism after experimentally eliminating other known and proposed pathways to ?-alanine from malonate semialdehyde, l-alanine, spermine, dihydrouracil, and acryloyl-coenzyme A (CoA). Our data showed that the decarboxylation of aspartate was the only source of ?-alanine in cell extracts of M. jannaschii. Unlike other prokaryotes where the enzyme producing ?-alanine from l-aspartate is a pyruvoyl-containing l-aspartate decarboxylase (PanD), the enzyme in M. jannaschii is a pyridoxal phosphate (PLP)-dependent l-aspartate decarboxylase encoded by MJ0050, the same enzyme that was found to decarboxylate tyrosine for methanofuran biosynthesis. A Km of ?0.80 mM for l-aspartate with a specific activity of 0.09 ?mol min?1 mg?1 at 70°C for the decarboxylation of l-aspartate was measured for the recombinant enzyme. The MJ0050 gene was also demonstrated to complement the Escherichia coli panD deletion mutant cells, in which panD encoding aspartate decarboxylase in E. coli had been knocked out, thus confirming the function of this gene in vivo. PMID:24891443

  8. Contribution of serine, folate and glycine metabolism to the ATP, NADPH and purine requirements of cancer cells

    PubMed Central

    Tedeschi, P M; Markert, E K; Gounder, M; Lin, H; Dvorzhinski, D; Dolfi, S C; Chan, L L-Y; Qiu, J; DiPaola, R S; Hirshfield, K M; Boros, L G; Bertino, J R; Oltvai, Z N; Vazquez, A

    2013-01-01

    Recent observations on cancer cell metabolism indicate increased serine synthesis from glucose as a marker of poor prognosis. We have predicted that a fraction of the synthesized serine is routed to a pathway for ATP production. The pathway is composed by reactions from serine synthesis, one-carbon (folate) metabolism and the glycine cleavage system (SOG pathway). Here we show that the SOG pathway is upregulated at the level of gene expression in a subset of human tumors and that its level of expression correlates with gene signatures of cell proliferation and Myc target activation. We have also estimated the SOG pathway metabolic flux in the NCI60 tumor-derived cell lines, using previously reported exchange fluxes and a personalized model of cell metabolism. We find that the estimated rates of reactions in the SOG pathway are highly correlated with the proliferation rates of these cell lines. We also observe that the SOG pathway contributes significantly to the energy requirements of biosynthesis, to the NADPH requirement for fatty acid synthesis and to the synthesis of purines. Finally, when the PC-3 prostate cancer cell line is treated with the antifolate methotrexate, we observe a decrease in the ATP levels, AMP kinase activation and a decrease in ribonucleotides and fatty acids synthesized from [1,2-13C2]-D-glucose as the single tracer. Taken together our results indicate that the SOG pathway activity increases with the rate of cell proliferation and it contributes to the biosynthetic requirements of purines, ATP and NADPH of cancer cells. PMID:24157871

  9. Post-transcriptional regulation of the human reduced folate carrier as a novel adaptive mechanism in response to folate excess or deficiency

    PubMed Central

    Hou, Zhanjun; Orr, Steve; Matherly, Larry H.

    2014-01-01

    The RFC (reduced folate carrier) is the principal mechanism by which folates and clinically used antifolates are delivered to mammalian cells. hRFC (human RFC) is subject to complex transcriptional controls and exists as homo-oligomer. To explore the post-transcriptional regulation of hRFC by exogenous folates, hRFC-null HeLa cells were stably transfected with hRFC under control of a constitutive promoter. hRFC transcripts and the total membrane protein increased with increasing LCV [(6R,S)5-formyl tetrahydrofolate (leucovorin)] with a maximum at 20 nM LCV, attributable to reduced turnover of hRFC transcripts. hRFC homo-oligomerization was unaffected by increasing LCV. Cell surface hRFC paralleled [3H]methotrexate transport and increased from 0.5 to 2 nM LCV, and then decreased (~2-fold) with increasing LCV up to 20 nM. hRFC was localized to the cell surface at low LCV concentrations (0.5–1.5 nM). However, at higher LCV concentrations, significant intracellular hRFC was localized to the ER (endoplasmic reticulum), such that at 20 nM LCV, intracellular hRFC was predominated. Our results demonstrate a novel post-transcriptional regulation of hRFC involving: (i) increased hRFC transcripts and proteins, accompanying increased extracellular folates, attributable to differences in hRFC transcript stabilities; and (ii) increased retention of hRFC in the ER under conditions of folate excess, because of impaired intracellular trafficking and plasma membrane targeting. PMID:24949876

  10. Multiple B-vitamin inadequacy amplifies alterations induced by folate depletion in p53 expression and its downstream effector MDM2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Folate is required for biological methylation and nucleotide synthesis, and it is aberrations in these processes that are thought to be the mechanisms that enhance colorectal carcinogenesis produced by folate inadequacy. These functions of folate also depend on availability of other B-vitamins that ...

  11. Folate-conjugated beta-cyclodextrin-based polymeric micelles with enhanced doxorubicin antitumor efficacy.

    PubMed

    Zhang, Lu; Lu, Jiafei; Jin, Yangmin; Qiu, Liyan

    2014-10-01

    In order to enhance the antitumor effects of doxorubicin (DOX), a novel micellar vector with high DOX loading and tumor targeting function based on folate-conjugated amphiphilic copolymer folate-poly(ethylene glycol)-poly(d,l-lactide)-?-cyclodextrin (FA-PEL-CD) was constructed. Cytotoxicity and cellular uptake experiments were performed in HeLa, KB, and A549 cell lines expressing different amounts of folate receptors in order to evaluate the targeting effect of the folate modification. The antitumor experiments performed in a KB cell-xenografted nude mouse model showed that the treatment with 10mg/kg DOX loaded FA-PEL-CD micelles achieved approximately 86% of tumor growth inhibition compared to the control. Ex vivo fluorescence imaging experiments and histological examination confirmed that folate modification can enhance the antitumorigenesis efficacy and reduce the cardiotoxicity of DOX. These results suggest that FA-PEL-CD copolymer-based micelles are promising nanocarriers for targeted doxorubicin delivery, with improved antitumor efficacy and reduced toxicity in normal tissues. PMID:25058857

  12. Development of (153) Sm-folate-polyethyleneimine-conjugated chitosan nanoparticles for targeted therapy.

    PubMed

    Mollarazi, Esmail; Jalilian, Amir R; Johari-Daha, Fariba; Atyabi, Fatemeh

    2015-06-30

    The aim of this study was to develop biocompatible, water-soluble (153) Sm-labeled chitosan nanoparticles (NPs) containing folate and polyethyleneimine functionalities i.e. chitosan-graft-PEI-folate (CHI-DTPA-g-PEI-FA), suitable for targeted therapy. The physicochemical properties of the obtained NPs were characterized by dynamic light-scattering analysis for their mean size, size distribution, and zeta potential; scanning electron microscopy for surface morphology; and (1) H-NMR, FT-IR analyses for molecular dispersity of folate in the NPs. NPs were spherical with mean diameter below 250?nm, polydispersity of below 0.15, and positive zeta potential values. The NP complex ((153) Sm-CHI-DTPA-g-PEI-FA) was stable at 25?°C (6-8?h, >90% radiochemical purity, instant thin layer chromatography (ITLC)). Binding studies using fluorescent NPs for internalization also demonstrated significant uptake in MCF-7 cells. MCF-7 cell internalization was significantly greater for 4T1. In blocking studies, both MCF-7 and 4T1 cell lines demonstrated specific folate receptor (FR) binding (decreasing 45%). In vivo biodistribution studies indicated major excretion of NPs metabolites and/or free (153) Sm through the kidneys. The preliminary imaging studies in 4T1 tumor-bearing mice showed minor uptake up to 96?h. The present folic acid that functionalized chitosan NP is a candidate material for folate receptor therapy. PMID:26036233

  13. A relationship between vitamin B sub 12 , folate, ascorbic acid, and mercury metabolism

    SciTech Connect

    Zorn, N.E.

    1988-01-01

    The effect of megadoses of vitamin B{sub 12}, folate, and vitamin C on the in vivo methylation of mercuric chloride was studied in guinea pigs. The incorporation of high levels of vitamin B{sub 12}, folate, and vitamin C resulted in a decrease in both inorganic mercury and methylmercury concentrations in all tissues except the lungs and heart compared to controls. However, percent methylmercury levels tended to increase with vitamin treatment. The addition of megadoses of vitamin B{sub 12} fed either singularly or in combination with the other vitamins resulted in increased methylmercury concentrations in the liver, spleen, and kidney tissues of the guinea pig. Moreover, percent methylmercury levels increased with B{sub 12} treatment in the liver, heart, and kidney. Incorporation of high levels of folate into the dietary regime also affected the mercury methylation process particularly in the liver, heart, kidney and hair tissues. However, this effect was observed most often in animals fed both B{sub 12} and folate. Vitamin C appears to play a synergistic role with vitamin B{sub 12} and/or folate in the methylation of mercury.

  14. Folate, Vitamin B12, and Homocysteine as Risk Factors for Cognitive Decline in the Elderly

    PubMed Central

    Kim, Jae-Min; Kim, Sung-Wan; Shin, Il-Seon; Yang, Su-Jin; Park, Woo-Young; Kim, Sung-Jin; Shin, Hee-Young

    2008-01-01

    Objective Cross-sectional studies have shown that the dysregulation of one-carbon metabolism is associated with cognitive impairment. However, the findings of longitudinal studies investigating this association have been inconsistent. This study investigated the prospective associations between cognitive decline and the levels of folate, vitamin B12 and homocysteine both at baseline and over course of the study period. Methods A total of 607 (83%) elderly individuals were selected from a group of 732 elderly individuals without dementia at baseline and followed over a 2.4-year study period. The Mini-Mental State Examination (MMSE) was administered to the subjects, and the serum levels of folate, vitamin B12 and homocysteine were assayed both at baseline and at follow-up examinations. Covariates included demographic data, disability, depression, alcohol consumption, physical activity, vascular risk factors, serum creatinine level, vitamin intake, and apolipoprotein E genotype. Results Cognitive decline was associated with decreasing quintiles of folate at baseline, a relative decline in folate and an increase in homocysteine across the two examinations after adjustment for relevant covariates. Conclusion These results suggest that folate and homocysteine are involved in the etiology of cognitive decline in the elderly. PMID:20046406

  15. Intakes of Alcohol and Folate During Adolescence and Risk of Proliferative Benign Breast Disease

    PubMed Central

    Liu, Ying; Tamimi, Rulla M.; Berkey, Catherine S.; Willett, Walter C.; Collins, Laura C.; Schnitt, Stuart J.; Connolly, James L.

    2012-01-01

    OBJECTIVES: To examine the combined effect of alcohol and folate intake during adolescence on the risk of proliferative benign breast disease (BBD). METHODS: We used data from 29?117 women in the Nurses’ Health Study II who completed both adolescent alcohol consumption questions in 1989 and an adolescent diet questionnaire in 1998. A total of 659 women with proliferative BBD diagnosed between 1991 and 2001 were confirmed by central pathology review. Cox proportional hazards models were used to estimate hazard ratios and 95% confidence intervals (CIs), adjusted for established risk factors of breast cancer. RESULTS: Adolescent alcohol consumption was dose-dependently associated with an increased risk of proliferative BBD (hazard ratio = 1.15 per 10 g/day consumption; 95% CI, 1.03–1.28). There was no significant association between adolescent folate intake and the risk of proliferative BBD. Stratified analyses showed that each 10-g/day alcohol intake during adolescence was associated with a 21% (95% CI, 1.01–1.45) increase in the risk of proliferative BBD among women with low folate intake during adolescence, which was not significantly different from the alcohol-associated risk among women with moderate and high folate intake during adolescence (P for interaction = 0.18). CONCLUSIONS: Adolescent alcohol consumption is associated with increased risk of proliferative BBD, which may not be reduced by increased folate intake during adolescence. PMID:22492774

  16. Folate status in type 2 diabetic patients with and without retinopathy

    PubMed Central

    Malaguarnera, Giulia; Gagliano, Caterina; Salomone, Salvatore; Giordano, Maria; Bucolo, Claudio; Pappalardo, Antonino; Drago, Filippo; Caraci, Filippo; Avitabile, Teresio; Motta, Massimo

    2015-01-01

    Background Folate deficiency is associated with cardiovascular disease, megaloblastic anemia, and with hyperhomocysteinemia. This study has been undertaken to investigate the role of folate status during the progression of the diabetic retinopathy. Methods We measured the plasma levels of homocysteine, folic acid, and red cell folate in 70 diabetic type 2 patients with nonproliferative diabetic retinopathy (NPDR), 65 with proliferative diabetic retinopathy (PDR), 96 without diabetic retinopathy, and 80 healthy subjects used as a control group. Results We found higher plasma levels of homocysteine in the NPDR group compared to the control group (P<0.001) and in the PDR group compared to control group (P<0.001) and NPDR group (P<0.01). The severity of diabetic retinopathy was associated with lower folic acid and red cell folate levels, and a significant difference was observed between PDR and NPDR groups (P<0.05). Conclusion The folate status could play a role in the development and progression of diabetic retinopathy. PMID:26300625

  17. Diagnosis and management of cerebral folate deficiency. A form of folinic acid-responsive seizures.

    PubMed

    Al-Baradie, Raidah S; Chaudhary, Mohammed W

    2014-10-01

    Folinic acid-responsive seizures (FARS) are a rare treatable cause of neonatal epilepsy. They have characteristic peaks on CSF monoamine metabolite analysis, and have mutations in the ALDH7A1 gene, characteristically found in pyridoxine-dependent epilepsy. There are case reports of patients presenting with seizures at a later age, and with folate deficiency due to different mechanisms with variable response to folinic acid supplementation. Here, we report 2 siblings who presented with global developmental delay and intractable seizures who responded clinically to folinic acid therapy. Their work-up included metabolic and genetic testing. The DNA sequencing was carried out for the ALDH7A1 gene, and the folate receptor 1 (FOLR1) gene. They had very low 5-methyltetrahydrofolate (5-MTHF) in CSF with no systemic folate deficiency and no characteristic peaks on neurotransmitter metabolite chromatogram. A novel mutation in the FOLR1 gene was found. The mutation in this gene is shown to affect CSF folate transport leading to cerebral folate deficiency. The response to treatment with folinic acid was dramatic with improvement in social interaction, mobility, and complete seizure control. We should consider the possibility of this treatable condition in appropriate clinical circumstances early, as diagnosis with favorable outcome depends on the specialized tests. PMID:25274592

  18. Folate Deficiency Decreases Apoptosis of Endometrium Decidual Cells in Pregnant Mice via the Mitochondrial Pathway

    PubMed Central

    Liao, Xing Gui; Li, Yan Li; Gao, Ru Fei; Geng, Yan Qing; Chen, Xue Mei; Liu, Xue Qing; Ding, Yu Bin; Mu, Xin Yi; Wang, Ying Xiong; He, Jun Lin

    2015-01-01

    It is well known that maternal folate deficiency results in adverse pregnancy outcomes. In addition to aspects in embryonic development, maternal uterine receptivity and the decidualization of stromal cells is also very important for a successful pregnancy. In this study, we focused on endometrium decidualization and investigated whether apoptosis, which is essential for decidualization, was impaired. Flow cytometry and TUNEL detection revealed that apoptosis of mouse endometrium decidual cells was suppressed in the dietary folate-deficient group on Days 7 and 8 of pregnancy (Day 1 = vaginal plug) when decidua regression is initiated. The endometrium decidual tissue of the folate deficiency group expressed less Bax compared to the normal diet group while they had nearly equal expression of Bcl2 protein. Further examination revealed that the mitochondrial transmembrane potential (??m) decreased, and the fluorescence of diffuse cytoplasmic cytochrome c protein was detected using laser confocal microscopy in normal decidual cells. However, no corresponding changes were observed in the folate-deficient group. Western blotting analyses confirmed that more cytochrome c was released from mitochondria in normal decidual cells. Taken together, these results demonstrated that folate deficiency could inhibit apoptosis of decidual cells via the mitochondrial apoptosis pathway, thereby restraining decidualization of the endometrium and further impairing pregnancy. PMID:25781218

  19. The purification, crystallization and preliminary structural characterization of human MAWDBP, a member of the phenazine biosynthesis-like protein family

    SciTech Connect

    Herde, Petra; Blankenfeldt, Wulf

    2006-06-01

    The purification, crystallization and preliminary structural characterization of human MAWD-binding protein (MAWDBP) are described. MAWDBP is the only representative of the phenazine biosynthesis-like protein family in the human genome. Its expression is elevated in several disease processes, including insulin resistance, folate deficiency and hypotension, and it may also be involved in carcinogenesis. The exact molecular function of MAWDBP is unknown. Native and seleno-l-methionine-labelled MAWDBP were expressed in Escherichia coli and crystallized at room temperature from precipitants containing 10 mM KF, 14%(w/v) PEG 3350 and 0.1 M sodium citrate pH 5.4. Crystals belong to space group H32, with unit-cell parameters a = b = 187, c = 241 Å, indicative of three to five monomers per asymmetric unit. Crystals were cryoprotected with 15%(v/v) glycerol and data have been collected to 2.7 Å resolution.

  20. Targeting folate metabolism for therapeutic option: A bioinformatics approach.

    PubMed

    Hande, Sneha; Goswami, Kalyan; Sharma, Richa; Bhoj, Priyanka; Jena, Lingaraj; Reddy, Maryada Venkata Rami

    2015-11-01

    Lymphatic filariasis, commonly called elephantiasis, poses a burden of estimated level of 5.09 million disability adjusted life year. Limitations of its sole drug, diethylcarbamazine (DEC) drive exploration of effective filarial target. A few plant extracts having polyphenolic ingredients and some synthetic compounds possess potential dihydrofolate reductase (DHFR) inhibitory effect. Here, we postulated a plausible link between folates and polyphenolics based on their common precursor in shikimate metabolism. Considering its implication in structural resemblance based antagonism, we have attempted to validate parasitic DHFR protein as a target. The bioinformatics approach, in the absence of crystal structure of the proposed target, used to authenticate and for virtual docking with suitable tested compounds, showed remarkably lower thermodynamic parameters as opposed to the positive control. A comparative docking analysis between human and Brugia malayi DHFR also showed effective binding parameters with lower inhibition constants of these ligands with parasitic target, but not with human counterpart highlighting safety and efficacy. This study suggests that DHFR could be a valid drug target for lymphatic filariasis, and further reveal that bioinformatics may be an effective tool in reverse pharmacological approach for drug design. PMID:26669020

  1. Antioxidative effect of folate-modified chitosan nanoparticles

    PubMed Central

    Chakraborty, Subhankari Prasad; Mahapatra, Santanu Kar; Sahu, Sumanta Kumar; Pramanik, Panchanan; Roy, Somenath

    2011-01-01

    Objective To evaluate the potency of carboxymethyl chitosan-2, 2? ethylenedioxy bis-ethylamine-folate (CMC-EDBE-FA) on tissue injury, antioxidant status and glutathione system in tissue mitochondria and serum against nicotine-induced oxidative stress in mice. Methods CMC-EDBE-FA was prepared on basis of carboxymethyl chitosan tagged with folic acid by covalently linkage through 2, 2? ethylenedioxy bis-ethylamine. Animals were divided into four groups, i.e., control, nicotine (1 mg/kg bw/day), CMC-EDBE-FA (1 mg/kg bw/day) and nicotine (1 mg/kg bw/day) and CMC-EDBE-FA (1 mg/kg bw/day) for 7 days. Levels of lipid peroxidation, oxidized glutathione level, antioxidant enzyme status and DNA damage were observed and compared. Results The significantly increase of lipid peroxidation, oxidized glutathione levels and DNA damage was observed in nicotine treated group as compared with control group; those were significantly reduced in CMC-EDBE-FA supplemented group. Moreover, significantly reduced antioxidant status in nicotine treated group was effectively ameliorated by the supplementation of CMC-EDBE-FA. Only CMC-EDBE-FA treated groups showed no significant change as compared with control group; rather than it repairs the tissue damage of nicotine treated group. Conclusions These findings suggest that CMC-EDBE-FA is non-toxic and ameliorates nicotine-induced toxicity. PMID:23569721

  2. Folate deficiency in chicks fed diets containing practical ingredients.

    PubMed

    Pesti, G M; Rowland, G N; Ryu, K S

    1991-03-01

    Development of folate deficiency was evaluated in young chicks fed diets containing corn and soybean meal as major constituents. Folic acid deficiency, as indicated by retarded growth and feed efficiency, could be produced in 18-day-old chicks. Chicks fed the basal diet had increased growth when given supplements of either folic acid, choline Cl, or DL-methionine, but not vitamin B12. Relative liver size (grams per 100 g of body weight) was reduced by a methionine or methionine plus choline supplement in two experiments but by folic acid in only one of two experiments. Plasma hemoglobin was reduced by folic acid or a methionine and choline supplement after 42 days on the diets. Folic acid deficiency can be produced in young chicks with a diet based on practical ingredients. Purified diets or very high levels of antibiotic feeding are not necessary to produce folic acid deficiency as long as low levels of methionine and choline are present in the basal diet. PMID:2047351

  3. Folate and Nutrients Involved in the 1-Carbon Cycle in the Pretreatment of Patients for Colorectal Cancer

    PubMed Central

    Ferrari, Ariana; de Carvalho, Aline Martins; Steluti, Josiane; Teixeira, Juliana; Marchioni, Dirce Maria Lobo; Aguiar, Samuel

    2015-01-01

    To assess the ingestion of folate and nutrients involved in the 1-carbon cycle in non-treated patients with colorectal adenocarcinoma in a reference center for oncology in southeastern Brazil. In total, 195 new cases with colorectal adenocarcinoma completed a clinical evaluation questionnaire and a Food Frequency Questionnaire (FFQ). Blood samples from 161 patients were drawn for the assessment of serum folate. A moderate correlation was found between serum concentrations of folate, folate intake and the dietary folate equivalent (DFE) of synthetic supplements. Mulatto or black male patients with a primary educational level had a higher intake of dietary folate. Of patients obtaining folate from the diet alone or from dietary supplements, 11.00% and 0.10%, respectively, had intake below the recommended level. Of the patients using dietary supplements, 35% to 50% showed high levels of folic acid intake. There was a prevalence of inadequacy for vitamins B2, B6 and B12, ranging from 12.10% to 20.18%, while 13.76% to 22.55% of patients were likely to have adequate choline intake. The considerable percentage of patients with folate intake above the recommended levels deserves attention because of the harmful effects that this nutrient may have in the presence of established neoplastic lesions. PMID:26043032

  4. Plasma folate, methylenetetrahydrofolate reductase (MTHFR), and colorectal cancer risk in three large nested case-control studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Few prospective studies have examined the associations between blood levels of folate, in conjunction with methylenetetrahydrofolate reductase (MTHFR) polymorphisms, and colorectal cancer. We evaluated the associations between plasma folate, MTHFR C677T, and A1298C, and colorectal cancer in three la...

  5. Older age and dietary folate are determinants of genomic and p16-specific DNA methylation in mouse colon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elder age and inadequate folate intake are strongly implicated as important risk factors for colon cancer, and each is associated with altered DNA methylation. This study was designed to determine the effect of aging and dietary folate on select features of DNA methylation in the colon that are rele...

  6. Genomic and p16-specific DNA methylation of the mouse colon: elder age and dietary folate as interactive determinants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elder age and inadequate folate intake are strongly implicated as important risk factors for colon cancer and each is associated with altered DNA methylation. This study was designed to determine the effect of aging and dietary folate on select features of DNA methylation in the colon that are relev...

  7. A COMMON POLYMORPHISM IN THE METHYLENETETRAHYDROFOLATE REDUCTASE (MTHFR) GENE IS ASSOCIATED WITH QUANTITATIVE ULTRASOUND IN THOSE WITH LOW PLASMA FOLATE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study of a polymorphism in the MTHFR gene, plasma folate, and bone phenotypes in 1632 individuals revealed that the genotype effect on BMD and quantitative ultrasound was dependent on the level of folate. Our findings support the hypothesis that the association between an MTHFR polymorphism and bo...

  8. Relationship between the 19 base pair deletion polymorphism in DHFR and unmetabolized folic and in plasma and RBC folate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: A 19 base pair (bp) deletion allele of dihydrofolate reductase (DHFR), an enzyme that makes folic acid metabolically active and reduces dihydrofolate to tetrahydrofolate to stimulate folate turnover, has been implicated in folate related health outcomes. Objective: Examine the effect ...

  9. Folate content in faba beans (Vicia faba L.)-effects of cultivar, maturity stage, industrial processing, and bioprocessing.

    PubMed

    Hefni, Mohammed E; Shalaby, Mohamed T; Witthöft, Cornelia M

    2015-01-01

    Faba beans are an important source of folate and commonly consumed in Egypt. This study examined the effects of Egyptian industrial food processing (e.g., canning and freezing), germination, cultivar, and maturity stages on folate content, with the aim to develop a candidate functional canned faba bean food with increased folate content. The folate content in four cultivars of green faba beans ranged from 110 to 130 ?g 100 g(-1) fresh weight (535-620 ?g 100 g(-1) dry matter [DM]), which was four- to sixfold higher than in dried seeds. Industrial canning of dried seeds resulted in significant folate losses of ?20% (P = 0.004), while industrial freezing had no effect. Germination of faba beans increased the folate content by >40% (P < 0.0001). A novel industrial canning process involving pregermination of dried faba beans resulted in a net folate content of 194 ?g 100 g(-1) DM, which is 52% more than in conventional canned beans. The consumption of green faba beans should be recommended, providing ?120 ?g dietary folate equivalents per 100 g/portion. PMID:25650294

  10. Folate content in faba beans (Vicia faba L.)—effects of cultivar, maturity stage, industrial processing, and bioprocessing

    PubMed Central

    Hefni, Mohammed E; Shalaby, Mohamed T; Witthöft, Cornelia M

    2015-01-01

    Faba beans are an important source of folate and commonly consumed in Egypt. This study examined the effects of Egyptian industrial food processing (e.g., canning and freezing), germination, cultivar, and maturity stages on folate content, with the aim to develop a candidate functional canned faba bean food with increased folate content. The folate content in four cultivars of green faba beans ranged from 110 to 130 ?g 100 g?1 fresh weight (535–620 ?g 100 g?1 dry matter [DM]), which was four- to sixfold higher than in dried seeds. Industrial canning of dried seeds resulted in significant folate losses of ?20% (P = 0.004), while industrial freezing had no effect. Germination of faba beans increased the folate content by >40% (P < 0.0001). A novel industrial canning process involving pregermination of dried faba beans resulted in a net folate content of 194 ?g 100 g?1 DM, which is 52% more than in conventional canned beans. The consumption of green faba beans should be recommended, providing ?120 ?g dietary folate equivalents per 100 g/portion. PMID:25650294

  11. Dietary folate and choline status differentially affect lipid metabolism and behavior-mediated neurotransmitters in young rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The relationship between choline and folate metabolisms is an important issue due to the essential role of these nutrients in brain plasticity and cognitive functions. Present study was designed to investigate whether modification of the dietary folate-choline status in young rats would affect brain...

  12. LOW FOLATE STATUS IS ASSOCIATED WITH IMPAIRED COGNITIVE FUNCTION AND DEMENTIA IN THE SACRAMENTO AREA LATINO STUDY ON AGING

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: Low folate status is associated with poor cognitive function and dementia in the elderly. Since 1998, grain products in the United States have been fortified with folic acid, which has reduced the prevalence of folate deficiency and hyperhomocysteinemia. OBJECTIVE: We investigated wheth...

  13. Targeting the de novo biosynthesis of thymidylate for the development of a PET probe for pancreatic cancer imaging.

    PubMed

    Nilaweera, Thushani D; Saeed, Muhammad; Kohen, Amnon

    2015-02-10

    The development of cancer-specific probes for imaging by positron emission tomography (PET) is gaining impetus in cancer research and clinical oncology. One of the hallmarks of most cancer cells is incessant DNA replication, which requires the continuous synthesis of nucleotides. Thymidylate synthase (TSase) is unique in this context because it is the only enzyme in humans that is responsible for the de novo biosynthesis of the DNA building block 2'-deoxy-thymidylate (dTMP). TSase catalyzes the reductive methylation of 2'-deoxy-uridylate (dUMP) to dTMP using (R)-N(5),N(10)-methylene-5,6,7,8-tetrahydrofolate (MTHF) as a cofactor. Not surprisingly, several human cancers overexpress TSase, which makes it a common target for chemotherapy (e.g., 5-fluorouracil). We envisioned that [(11)C]-MTHF might be a PET probe that could specifically label cancerous cells. Using stable radiotracer [(14)C]-MTHF, we had initially found increased uptake by breast and colon cancer cell lines. In the current study, we examined the uptake of this radiotracer in human pancreatic cancer cell lines MIAPaCa-2 and PANC-1 and found predominant radiolabeling of cancerous versus normal pancreatic cells. Furthermore, uptake of the radiotracer is dependent on the intracellular level of the folate pool, cell cycle phase, expression of folate receptors on the cell membrane, and cotreatment with the common chemotherapeutic drug methotrexate (MTX, which blocks the biosynthesis of endogenous MTHF). These results point toward [(11)C]-MTHF being used as PET probe with broad specificity and being able to control its signal through MTX co-administration. PMID:25581782

  14. Group Q streptococci. II. Nutritional characteristics and growth relationship to thymine, folate, and folinate.

    PubMed

    Nowlan, S S; Deibel, R H

    1967-08-01

    The vitamin requirements of the group Q streptococci (Streptococcus avium) and the established enterococcal species (S. faecalis and S. faecium) paralleled one another, although S. avium did not characteristically require riboflavine or pyridoxal. S. avium was further differentiated in that it required thymine for growth initiation whether or not folate was present. Folate was stimulatory in the presence of sub-optimal concentrations of thymine, as well as during the early growth period with optimal thymine concentrations. Folinate completely replaced the thymine requirement, and the S. avium strains required significantly higher concentrations than did Pediococcus cerevisiae 8081. The requirement pattern for folate and related compounds was compared, and marked differences were observed in the requirements of S. faecalis, S. faecium, S. avium, and P. cerevisiae. PMID:4962700

  15. In vivo mouse fluorescence imaging for folate-targeted delivery and release kinetics

    PubMed Central

    Tsai, Esther H. R.; Bentz, Brian Z.; Chelvam, Venkatesh; Gaind, Vaibhav; Webb, Kevin J.; Low, Philip S.

    2014-01-01

    Many cancer cells over-express folate receptors, and this provides an opportunity for both folate-targeted fluorescence imaging and the development of targeted anti-cancer drugs. We present an optical imaging modality that allows for the monitoring and evaluation of drug delivery and release through disulfide bond reduction inside a tumor in vivo for the first time. A near-infrared folate-targeting fluorophore pair was synthesized and used to image a xenograft tumor grown from KB cells in a live mouse. The in vivo results are shown to be in agreement with previous in vitro studies, confirming the validity and feasibility of our method as an effective tool for preclinical studies in drug development. PMID:26236559

  16. Effects of Oral Contraceptive Usage on B12 and Folate Levels

    PubMed Central

    Mountifield, J. A.

    1985-01-01

    Evidence shows a fall in folate and vitamin B12 levels in women taking oral contraceptives. These levels do not return to normal until about three months after usage has stopped, but many women become pregnant during this time. This paper examines the evidence for an effect on such pregnancies of lowered folate and B12 levels, and concludes that nutritional counselling should begin in schools, should continue in the medical care of women in their childbearing years, and folic acid supplementation should begin as soon as pregnancy is confirmed. This supplementation should be periconceptional in women at higher risk of bearing a child with neural tube defects, and greater in multiple pregnancy, malabsorption, hemolytic anemia and concomitant use of drugs known to be folate antogonists. PMID:21274038

  17. Dietary folate protects against the development of macroscopic colonic neoplasia in a dose responsive manner in rats.

    PubMed Central

    Kim, Y I; Salomon, R N; Graeme-Cook, F; Choi, S W; Smith, D E; Dallal, G E; Mason, J B

    1996-01-01

    BACKGROUND AND AIMS: Diminished folate status is associated with enhanced colorectal carcinogenesis. This study investigated the potential chemopreventive role of dietary folate in the dimethylhydrazine colorectal cancer model. SUBJECTS AND METHODS: Sprague-Dawley rats were fed diets containing either 0, 2 (daily dietary requirement), 8 or 40 mg folate/kg diet for 20 weeks. After five weeks of diet, rats were injected with dimethyl-hydrazine (44 mg/kg) weekly for 15 weeks. Fifteen weeks after the first injection of dimethylhydrazine, all rats were killed. Folate status was determined, and the entire colorectum from each rat was analysed for macroscopic and microscopic neoplasms. RESULTS: Plasma and colonic folate concentrations correlated directly with dietary folate levels (p < 0.005). The incidence of microscopic neoplasms was similar among the four groups. However, the incidence and the average number of macroscopic tumours per rat decreased progressively with increasing dietary folate levels up to 8 mg/kg diet (p < 0.05). In the strongly procarcinogenic milieu used in this study, folate supplementation at 20 times the basal requirement was associated with rates of macroscopic tumour development that were intermediate, and not statistically distinct, from rates observed at either 0 or 8 mg/kg diet. CONCLUSIONS: These data indicate that in this rat model, (a) increasing dietary folate up to four times the basal requirement leads to a progressive reduction in the evolution of macroscopic neoplasms from microscopic foci; and (b) folate supplementation beyond four times the requirement does not convey further benefit. PMID:9014775

  18. Folate Deficiency during Early-Mid Pregnancy Affects the Skeletal Muscle Transcriptome of Piglets from a Reciprocal Cross

    PubMed Central

    Li, Yi; Zhang, Xu; Sun, Yanxiao; Feng, Qiang; Li, Guanglei; Wang, Meng; Cui, Xinxing; Kang, Li; Jiang, Yunliang

    2013-01-01

    Folate deficiency (FD) during pregnancy can cause fetal intrauterine growth restriction in pigs, of which the skeletal dysplasia is a major manifestation. Factors influencing muscle development are very important in the formation of porcine meat quality trait. However, the effect of folate deficiency on skeletal muscle development and its molecular mechanisms are unknown. The objective of this study is to determine the effect of maternal folate deficiency on the skeletal muscle transcriptome of piglets from a reciprocal cross, in which full-sibling Landrace (LR) and full-sibling Chinese local breed Laiwu (LW) pigs were used for reciprocal cross matings, and sows were fed either a folate deficient or a normal diet during early-mid gestation. In addition, the difference in the responsiveness of the piglets to folate deficiency during early-mid pregnancy between reciprocal cross groups was investigated. Longissimus dorsi (LD) muscle samples were collected from newborn piglets and a 4 × 44K Agilent porcine oligo microarray was used for transcriptome analysis of porcine LD muscle. The results showed that folate deficiency during early-mid pregnancy affected piglet body weight, LD muscle fiber number and content of intramuscular triglyceride. The microarray results indicated that 3154 genes were differentially expressed between folate deficient and normal piglets from the LR? × LW? cross, and 3885 differentially expressed genes (DEGs) in the ones from the LW? × LR? cross. From functional analyses, sow folate deficiency affected almost all biological processes in the progeny. Lipid metabolism-related genes and associated metabolic pathways were regulated extensively by folate deficiency, especially in LR? × LW? cross piglets. Most of the genes that are regulated by folate deficiency in the LD muscle of piglets were different between LR? × LW? and LW? × LR? crosses, suggesting some epigenetic effects of FD exist in genes underlying myogenesis and intramuscular fat deposition in piglets. PMID:24349320

  19. Vitamin B12, folate, and homocysteine levels in patients with obsessive–compulsive disorder

    PubMed Central

    Türksoy, Nuray; Bilici, Rabia; Yalç?ner, Altan; Özdemir, Y Özay; Örnek, Ibrahim; Tufan, Ali Evren; Kara, Ay?e

    2014-01-01

    It is known that elevated serum homocysteine, decreased folate, and low vitamin B12 serum levels are associated with poor cognitive function, cognitive decline, and dementia. Current literature shows that some psychiatric disorders, mainly affective and psychotic ones, can be related to the levels of vitamin B12, folate, and homocysteine. These results can be explained by the importance of vitamin B12, folate, and homocysteine in carbon transfer metabolism (methylation), which is required for the production of serotonin as well as for other monoamine neurotransmitters and catecholamines. Earlier studies focused on the relationship between folate deficiency, hyperhomocysteinemia, and depressive disorders. Although depressive and anxiety disorders show a common comorbidity pattern, there are few studies addressing the effect of impaired one-carbon metabolism in anxiety disorders – especially in obsessive–compulsive disorder (OCD). This study aimed to measure the levels of vitamin B12, folate, and homocysteine specifically in order to see if eventual alterations have an etiopathogenetic significance on patients with OCD. Serum vitamin B12, folate, and homocysteine concentrations were measured in 35 patients with OCD and 22 controls. In addition, the Structured Clinical Interview for the Diagnostic and Statistical Manual for Mental Disorders, Fourth Edition, Text Revision, Yale–Brown Obsessive Compulsive Scale, Hamilton Rating Scale for Depression, and Hamilton Rating Scale for Anxiety were conducted for each patient. It was found that vitamin B12 levels were decreased and homocysteine levels were increased in some OCD patients. Homocysteine levels were positively correlated with Yale–Brown compulsion and Yale–Brown total scores. In conclusion, findings of this study suggest that some OCD patients might have vitamin B12 deficiency and higher homocysteine levels. PMID:25228807

  20. Vitamin B12, folate, and homocysteine levels in patients with obsessive-compulsive disorder.

    PubMed

    Türksoy, Nuray; Bilici, Rabia; Yalç?ner, Altan; Ozdemir, Y Özay; Ornek, Ibrahim; Tufan, Ali Evren; Kara, Ay?e

    2014-01-01

    It is known that elevated serum homocysteine, decreased folate, and low vitamin B12 serum levels are associated with poor cognitive function, cognitive decline, and dementia. Current literature shows that some psychiatric disorders, mainly affective and psychotic ones, can be related to the levels of vitamin B12, folate, and homocysteine. These results can be explained by the importance of vitamin B12, folate, and homocysteine in carbon transfer metabolism (methylation), which is required for the production of serotonin as well as for other monoamine neurotransmitters and catecholamines. Earlier studies focused on the relationship between folate deficiency, hyperhomocysteinemia, and depressive disorders. Although depressive and anxiety disorders show a common comorbidity pattern, there are few studies addressing the effect of impaired one-carbon metabolism in anxiety disorders - especially in obsessive-compulsive disorder (OCD). This study aimed to measure the levels of vitamin B12, folate, and homocysteine specifically in order to see if eventual alterations have an etiopathogenetic significance on patients with OCD. Serum vitamin B12, folate, and homocysteine concentrations were measured in 35 patients with OCD and 22 controls. In addition, the Structured Clinical Interview for the Diagnostic and Statistical Manual for Mental Disorders, Fourth Edition, Text Revision, Yale-Brown Obsessive Compulsive Scale, Hamilton Rating Scale for Depression, and Hamilton Rating Scale for Anxiety were conducted for each patient. It was found that vitamin B12 levels were decreased and homocysteine levels were increased in some OCD patients. Homocysteine levels were positively correlated with Yale-Brown compulsion and Yale-Brown total scores. In conclusion, findings of this study suggest that some OCD patients might have vitamin B12 deficiency and higher homocysteine levels. PMID:25228807

  1. Evolution of rosmarinic acid biosynthesis.

    PubMed

    Petersen, Maike; Abdullah, Yana; Benner, Johannes; Eberle, David; Gehlen, Katja; Hücherig, Stephanie; Janiak, Verena; Kim, Kyung Hee; Sander, Marion; Weitzel, Corinna; Wolters, Stefan

    2009-01-01

    Rosmarinic acid and chlorogenic acid are caffeic acid esters widely found in the plant kingdom and presumably accumulated as defense compounds. In a survey, more than 240 plant species have been screened for the presence of rosmarinic and chlorogenic acids. Several rosmarinic acid-containing species have been detected. The rosmarinic acid accumulation in species of the Marantaceae has not been known before. Rosmarinic acid is found in hornworts, in the fern family Blechnaceae and in species of several orders of mono- and dicotyledonous angiosperms. The biosyntheses of caffeoylshikimate, chlorogenic acid and rosmarinic acid use 4-coumaroyl-CoA from the general phenylpropanoid pathway as hydroxycinnamoyl donor. The hydroxycinnamoyl acceptor substrate comes from the shikimate pathway: shikimic acid, quinic acid and hydroxyphenyllactic acid derived from l-tyrosine. Similar steps are involved in the biosyntheses of rosmarinic, chlorogenic and caffeoylshikimic acids: the transfer of the 4-coumaroyl moiety to an acceptor molecule by a hydroxycinnamoyltransferase from the BAHD acyltransferase family and the meta-hydroxylation of the 4-coumaroyl moiety in the ester by a cytochrome P450 monooxygenase from the CYP98A family. The hydroxycinnamoyltransferases as well as the meta-hydroxylases show high sequence similarities and thus seem to be closely related. The hydroxycinnamoyltransferase and CYP98A14 from Coleus blumei (Lamiaceae) are nevertheless specific for substrates involved in RA biosynthesis showing an evolutionary diversification in phenolic ester metabolism. Our current view is that only a few enzymes had to be "invented" for rosmarinic acid biosynthesis probably on the basis of genes needed for the formation of chlorogenic and caffeoylshikimic acid while further biosynthetic steps might have been recruited from phenylpropanoid metabolism, tocopherol/plastoquinone biosynthesis and photorespiration. PMID:19560175

  2. Inhibition of cholesterol biosynthesis under hypoxia 

    E-print Network

    Tan, Qiulin

    2006-04-12

    -limiting enzyme in cholesterol biosynthesis. The interaction between SREBP1a and HIF-1suggests that HIF-1 may play an important role in regulation of cholesterol biosynthesis. We tested the effects of hypoxia on the HMG-CoA reductase. We found that hypoxia caused...

  3. Current aspects of auxin biosynthesis in plants.

    PubMed

    Kasahara, Hiroyuki

    2015-01-01

    Auxin is an important plant hormone essential for many aspects of plant growth and development. Indole-3-acetic acid (IAA) is the most studied auxin in plants, and its biosynthesis pathway has been investigated for over 70 years. Although the complete picture of auxin biosynthesis remains to be elucidated, remarkable progress has been made recently in understanding the mechanism of IAA biosynthesis. Genetic and biochemical studies demonstrate that IAA is mainly synthesized from l-tryptophan (Trp) via indole-3-pyruvate by two-step reactions in Arabidopsis. While IAA is also produced from Trp via indole-3-acetaldoxime in Arabidopsis, this pathway likely plays an auxiliary role in plants of the family Brassicaceae. Recent studies suggest that the Trp-independent pathway is not a major route for IAA biosynthesis, but they reveal an important role for a cytosolic indole synthase in this pathway. In this review, I summarize current views and future prospects of IAA biosynthesis research in plants. PMID:26364770

  4. Folate status, folate-related genes and serum miR-21 expression: Implications for miR-21 as a biomarker

    PubMed Central

    Beckett, Emma Louise; Martin, Charlotte; Choi, Jeong Hwa; King, Katrina; Niblett, Suzanne; Boyd, Lyndell; Duesing, Konsta; Yates, Zoe; Veysey, Martin; Lucock, Mark

    2015-01-01

    Background Free circulating microRNA (miRNA) in serum may be valuable biomarkers for disease diagnosis and prognosis. miR-21, the archetypal oncogenic miRNA, has been proposed as a biomarker for colorectal cancer and its benign precursor, adenomatous polyps. However, it is now becoming clear that circulating miRNA profiles may be sensitive to lifestyle and environmental influences. Dietary components involved in one-carbon metabolism are particularly well placed to modulate miRNA expression through an influence on DNA methylation pathways. Methods We investigated the role of methyl group donors (folate, B12, cysteine, homocysteine), polymorphisms of the enzymes of one-carbon metabolism, and serum miR-21 expression in a primary case–control cohort (colonoscopy confirmed adenomatous colon polyps vs controls; n = 253) and a secondary cross-sectional cohort (over 65s; n = 649). The relationships between these parameters and serum miR-21 levels were assessed, stratified by gender. Conclusions Serum miR-21 expression was related to occurrence of adenomatous polyps in females, but not males. Folate levels and MTHFR-C677T genotype was associated with miR-21 expression in both genders. Additionally, DHFR-19 del and MSR-A66G were associated with miR-21 expression in females and males, respectively. Stimulation with excess folate increased expression of miR-21 in colon cancer cell lines. General significance This study demonstrates that serum miR-21 expression correlates with folate status and related genetic status. This may have consequences for the proposed use of miR-21 as a colorectal cancer biomarker. PMID:26674922

  5. Biosynthesis of phosphatidylcholine in bacteria.

    PubMed

    Sohlenkamp, Christian; López-Lara, Isabel M; Geiger, Otto

    2003-03-01

    Phosphatidylcholine (PC) is the major membrane-forming phospholipid in eukaryotes and can be synthesized by either of two pathways, the methylation pathway or the CDP-choline pathway. Many prokaryotes lack PC, but it can be found in significant amounts in membranes of rather diverse bacteria and based on genomic data, we estimate that more than 10% of all bacteria possess PC. Enzymatic methylation of phosphatidylethanolamine via the methylation pathway was thought to be the only biosynthetic pathway to yield PC in bacteria. However, a choline-dependent pathway for PC biosynthesis has been discovered in Sinorhizobium meliloti. In this pathway, PC synthase, condenses choline directly with CDP-diacylglyceride to form PC in one step. A number of symbiotic (Rhizobium leguminosarum, Mesorhizobium loti) and pathogenic (Agrobacterium tumefaciens, Brucella melitensis, Pseudomonas aeruginosa, Borrelia burgdorferi and Legionella pneumophila) bacteria seem to possess the PC synthase pathway and we suggest that the respective eukaryotic host functions as the provider of choline for this pathway. Pathogens entering their hosts through epithelia (Streptococcus pneumoniae, Haemophilus influenzae) require phosphocholine substitutions on their cell surface components that are biosynthetically also derived from choline supplied by the host. However, the incorporation of choline in these latter cases proceeds via choline phosphate and CDP-choline as intermediates. The occurrence of two intermediates in prokaryotes usually found as intermediates in the eukaryotic CDP-choline pathway for PC biosynthesis raises the question whether some bacteria might form PC via a CDP-choline pathway. PMID:12547654

  6. Review of the magnitude of folate and vitamin B12 deficiencies worldwide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human deficiencies of folate and vitamin B12 result in adverse effects which may be of public health significance, but the magnitude of these deficiencies is unknown. Therefore, we examine the prevalence data currently available, assess global coverage of surveys, determine the frequency with which...

  7. Continuous renal replacement therapy amino acid, trace metal and folate clearance in critically ill children

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We hypothesized that continuous veno-venous hemodialysis (CVVHD) results in amino acid, trace metals, and folate losses, thereby adversely impacting nutrient balance. Critically ill children receiving CVVHD were studied prospectively for 5 days. Blood concentrations, amino acids, copper, zinc, man...

  8. Molecular imaging of folate receptor ?-positive macrophages during acute lung inflammation.

    PubMed

    Han, Wei; Zaynagetdinov, Rinat; Yull, Fiona E; Polosukhin, Vasiliy V; Gleaves, Linda A; Tanjore, Harikrishna; Young, Lisa R; Peterson, Todd E; Manning, H Charles; Prince, Lawrence S; Blackwell, Timothy S

    2015-07-01

    Characterization of markers that identify activated macrophages could advance understanding of inflammatory lung diseases and facilitate development of novel methodologies for monitoring disease activity. We investigated whether folate receptor ? (FR?) expression could be used to identify and quantify activated macrophages in the lungs during acute inflammation induced by Escherichia coli LPS. We found that FR? expression was markedly increased in lung macrophages at 48 hours after intratracheal LPS. In vivo molecular imaging with a fluorescent probe (cyanine 5 polyethylene glycol folate) showed that the fluorescence signal over the chest peaked at 48 hours after intratracheal LPS and was markedly attenuated after depletion of macrophages. Using flow cytometry, we identified the cells responsible for uptake of cyanine 5-conjugated folate as FR?(+) interstitial macrophages and pulmonary monocytes, which coexpressed markers associated with an M1 proinflammatory macrophage phenotype. These findings were confirmed using a second model of acute lung inflammation generated by inducible transgenic expression of an NF-?B activator in airway epithelium. Using CC chemokine receptor 2-deficient mice, we found that FR?(+) macrophage/monocyte recruitment was dependent on the monocyte chemotactic protein-1/CC chemokine receptor 2 pathway. Together, our results demonstrate that folate-based molecular imaging can be used as a noninvasive approach to detect classically activated monocytes/macrophages recruited to the lungs during acute inflammation. PMID:25375039

  9. Difference in Folate Content of Green and Red Sweet Peppers (Capsicum annuum)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Folic acid (pteroylmonoglutamic acid) is used in enriched foods; however, very little folic acid occurs naturally in foods other than liver. For the USDA's National Food and Nutrient Analysis Program, a number of fruits and vegetables have been assayed for endogenous folates, using a liquid chromato...

  10. Folate-conjugated ?-cyclodextrin from click chemistry strategy and for tumor-targeted drug delivery.

    PubMed

    Zhang, Huaihong; Cai, Zhaosheng; Sun, Yu; Yu, Fei; Chen, Yaoqiang; Sun, Baiwang

    2012-09-01

    To enhance site-specific intracellular delivery against the folate receptor, a drug carrier was designed and synthesized by bioconjugation of folic acid (FA) to ?-cyclodextrins (?-CD) through a poly(ethylene glycol) (PEG) spacer from "click chemistry" strategy. The resulted conjugates were confirmed by (1)H NMR and IR spectroscopy. Host-guest interactions between hydrophobic drug and ?-CD are capable of entrapping a hydrophobic drug, like 5-Fluorouracil, to form drug-?-CD-PEG-FA nanoparticles (NPs) in aqueous solution. The morphology and size of ?-CD-PEG-FA NPs were measured by transmission electron microscopy (TEM) and dynamic light scattering (DLS). The targeting ability of the ?-CD-PEG-FA NPs was investigated against two kinds of cell lines (HeLa and A549), which have different amounts of folate receptors on their surface. Confocal image analysis revealed that ?-CD-PEG-FA conjugate-assembled nanoparticles exhibited a greater extent of cellular uptake against HeLa cells than A549 cells. This suggests folate-receptor-mediated endocytosis can affect the cellular uptake efficiency of drug-loaded ?-CD-PEG-FA NPs. The ?-CD-PEG-FA conjugates that are presented may be promising active tumor-targeting carrier candidates via folate mediation. PMID:22566147

  11. Increased cancer cell proliferation in prostate cancer patients with high levels of serum folate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: A recent clinical trial revealed that folic acid supplementation is associated with an increased incidence of prostate cancer (1). The present study evaluates serum and prostate tissue folate levels in men with prostate cancer, compared to histologically normal prostate glands from can...

  12. EFFECTS OF DIETARY FOLATE ON ARSENIC-INDUCED GENE EXPRESSION IN MICE

    EPA Science Inventory

    Effects of Dietary Folate on Arsenic-induced Gene Expression in Mice

    Arsenic, a drinking water contaminant, is a known carcinogen. Human exposure to inorganic arsenic has been linked to tumors of skin, bladder, lung, and to a lesser extent, kidney and liver. Dietary fola...

  13. Brief Report: Autistic Symptoms, Developmental Regression, Mental Retardation, Epilepsy, and Dyskinesias in CNS Folate Deficiency

    ERIC Educational Resources Information Center

    Moretti, Paolo; Peters, Sarika U.; del Gaudio, Daniela; Sahoo, Trilochan; Hyland, Keith; Bottiglieri, Teodoro; Hopkin, Robert J.; Peach, Elizabeth; Min, Sang Hee; Goldman, David; Roa, Benjamin; Bacino, Carlos A.; Scaglia, Fernando

    2008-01-01

    We studied seven children with CNS folate deficiency (CFD). All cases exhibited psychomotor retardation, regression, cognitive delay, and dyskinesia; six had seizures; four demonstrated neurological abnormalities in the neonatal period. Two subjects had profound neurological abnormalities that precluded formal behavioral testing. Five subjects…

  14. PLACENTAL WEIGHTS ARE GREATER IN GILTS HOMOZYGOUS FOR A SECRETED FOLATE BINDING PROTEIN (SFBP) GENE POLYMORPHISM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Secreted FBP likely plays a role in the transfer of folate to the conceptus during pregnancy in swine. A single nucleotide polymorphism (SNP) exists in the sFBP gene that encodes amino acid 175 as either a serine (C allele) or an arginine (A allele). Genomic DNAs from one-half Meishan, one-half whit...

  15. 21 CFR 101.79 - Health claims: Folate and neural tube defects.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... folate may reduce the risk of neural tube defects. The strongest evidence for this relationship comes... at risk of recurrence of a neural tube defect pregnancy who consumed a supplement containing 4... pregnancy had a reduced risk of having a child with a neural tube defect. (Products containing this level...

  16. 21 CFR 101.79 - Health claims: Folate and neural tube defects.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... folate may reduce the risk of neural tube defects. The strongest evidence for this relationship comes... at risk of recurrence of a neural tube defect pregnancy who consumed a supplement containing 4... pregnancy had a reduced risk of having a child with a neural tube defect. (Products containing this level...

  17. Folate, cancer risk, and the greek god, Proteus: a tale of two chameleons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evidence indicates that an abundant intake of foodstuffs rich in folate conveys protection against the development of colorectal cancer, and perhaps some other common cancers as well. The issue is a complex one however, since some observations in animal and human studies demonstrate that an overly ...

  18. MYCN amplification confers enhanced folate dependence and methotrexate sensitivity in neuroblastoma

    PubMed Central

    Lau, Diana T.; Flemming, Claudia L.; Gherardi, Samuele; Perini, Giovanni; Oberthuer, André; Fischer, Matthias; Juraeva, Dilafruz; Brors, Benedikt; Xue, Chengyuan; Norris, Murray D.; Marshall, Glenn M.; Haber, Michelle

    2015-01-01

    MYCN amplification occurs in 20% of neuroblastomas and is strongly related to poor clinical outcome. We have identified folate-mediated one-carbon metabolism as highly upregulated in neuroblastoma tumors with MYCN amplification and have validated this finding experimentally by showing that MYCN amplified neuroblastoma cell lines have a higher requirement for folate and are significantly more sensitive to the antifolate methotrexate than cell lines without MYCN amplification. We have demonstrated that methotrexate uptake in neuroblastoma cells is mediated principally by the reduced folate carrier (RFC; SLC19A1), that SLC19A1 and MYCN expression are highly correlated in both patient tumors and cell lines, and that SLC19A1 is a direct transcriptional target of N-Myc. Finally, we assessed the relationship between SLC19A1 expression and patient survival in two independent primary tumor cohorts and found that SLC19A1 expression was associated with increased risk of relapse or death, and that SLC19A1 expression retained prognostic significance independent of age, disease stage and MYCN amplification. This study adds upregulation of folate-mediated one-carbon metabolism to the known consequences of MYCN amplification, and suggests that this pathway might be targeted in poor outcome tumors with MYCN amplification and high SLC19A1 expression. PMID:25860940

  19. PLACENTAL EXPRESSION OF THE MEMBRANE FORM OF FOLATE BINDING PROTEIN DURING PREGNANCY IN SWINE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous experiments indicated that secreted (s) and membrane (m) forms of folate binding protein (FBP) are present in the intrauterine environment of the pig. Our studies indicated that the two forms were produced sequentially; the secreted form was present in the intrauterine glands until Day 20 o...

  20. Targeted drug delivery via folate receptors in recurrent ovarian cancer: a review

    PubMed Central

    Marchetti, Claudia; Palaia, Innocenza; Giorgini, Margherita; De Medici, Caterina; Iadarola, Roberta; Vertechy, Laura; Domenici, Lavinia; Di Donato, Violante; Tomao, Federica; Muzii, Ludovico; Benedetti Panici, Pierluigi

    2014-01-01

    Ovarian cancer is the most common cause of gynecological cancer-related mortality, with the majority of women presenting with advanced disease; although chemotherapeutic advances have improved progression-free survival, conventional treatments offer limited results in terms of long-term responses and survival. Research has recently focused on targeted therapies, which represent a new, promising therapeutic approach, aimed to maximize tumor kill and minimize toxicity. Besides antiangiogenetic agents and poly (ADP-ribose) polymerase inhibitors, the folate, with its membrane-bound receptor, is currently one of the most investigated alternatives. In particular, folate receptor (FR) has been shown to be frequently overexpressed on the surface of almost all epithelial ovarian cancers, making this receptor an excellent tumor-associated antigen. There are two basic strategies to targeting FRs with therapeutic intent: the first is based on anti-FR antibody (ie, farletuzumab) and the second is based on folate–chemotherapy conjugates (ie, vintafolide/etarfolatide). Both strategies have been investigated in Phase III clinical trials. The aim of this review is to analyze the research regarding the activity of these promising anti-FR agents in patients affected by ovarian cancer, including anti-FR antibodies and folate–chemotherapy conjugates. PMID:25031539

  1. Folate-genetics and colorectal neoplasia: What we know and need to know next

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The metabolism of folate involves a complex network of polymorphic enzymes that may explain a proportion of the risk associated with colorectal neoplasia. Over 60 observational studies primarily in non-Hispanic White populations have been conducted on selected genetic variants in specific genes, MTH...

  2. MATERNAL FOLATE DEFICIENCY AMPLIFIES THE CELLULAR AND TERATOLOGIC EFFECTS OF TOMUDEX

    EPA Science Inventory

    Lau, C., J.E. Andrews, B.E. Grey*, R.G. Hanson*, J.R. Thibodeaux* and J.M. Rogers. Reproductive Toxicology Division, NHEERL, US EPA, ORD, Research Triangle Park, North Carolina. Maternal folate deficiency amplifies the cellular and teratologic effects of Tomudex.
    Maternal fo...

  3. Detection of Folate Binding Protein with Enhanced Sensitivity Using a Functionalized Quartz Crystal

    E-print Network

    Savran, Çaðrý A.

    M with a 100-fold excess of folic acid, indicating the specificity of the folate-FBP interaction enhancement based on an anti-FBP antibody and protein-A-coated gold nanosphere sandwich assay extended (FBP), is associated with numerous malignancies, including myelogenous leukemias; ovarian, lung, kidney

  4. Isolation, sequencing, and the genomic organization of the reduced folate carrier gene in the murine system 

    E-print Network

    Greer, Kimberly Ann

    1996-01-01

    of the cell. As a first step in defining the relationship between NTDs and aberrant folate internalization, we isolated and partially sequenced the RFC gene in the mouse. Screening of a murine ES cell genomic library produced eight positive clones; three were...

  5. FOLATE DEFICIENCY ENHANCES ARSENIC EFFECTS ON EXPRESSION OF GENES INVOLVED IN EPIDERMAL DIFFERENTIATION

    EPA Science Inventory

    Chronic arsenic exposure in humans is associated with cancers of the skin, lung, and bladder. There is evidence that folate deficiency may increase susceptibility to arsenic¿s effects, including arsenic-induced skin lesions. K6/ODC mice develop skin tumors when exposed to 10 ppm ...

  6. Folate and Vitamin B12 Transport Systems in the Developing Infant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    B vitamin transport systems in infants are not as well studied as those for amino acids and glucose. For most B vitamins, a 2-step process allows for digestion of coenzyme forms of the vitamins in food, followed by specific transport systems for the free vitamin in the intestine. Folate and vitamin ...

  7. Iron, folate, and vitamin B12 nutrition in pregnancy: a study of 1 000 women from southern India*

    PubMed Central

    Yusufji, D.; Mathan, V. I.; Baker, S. J.

    1973-01-01

    As part of a WHO collaborative programme the prevalence of anaemia was studied and the serum concentrations of iron, folate, and vitamin B12 were measured in 1 000 pregnant women from southern India. The results of the study show a high prevalence of anaemia, resulting from iron and folate deficiency with iron deficiency predominating. Interrelationships between these nutrients and their effect on pregnancy and the fetus were investigated. The results indicate that, in comparison with populations in developed countries, there was a high prevalence of iron and vitamin B12 deficiency in the community, but the state of folate nutrition was similar to that found elsewhere. PMID:4541142

  8. Is Folate Status a Risk Factor for Asthma or Other Allergic Diseases?

    PubMed Central

    Wang, Ting; Zhang, Hong-Ping; Zhang, Xin; Liang, Zong-An; Ji, Yu-Lin

    2015-01-01

    Purpose It is controversial whether folate status is a risk factor for the development of asthma or other allergic diseases. This study was conducted to investigate whether indirect or direct exposure to folate and impaired folate metabolism, reflected as methylene-tetrahydrofolate reductase (MTHFR) C677T polymorphism, would contribute to the development of asthma and other allergic diseases. Methods Electronic databases were searched to identify all studies assessing the association between folate status and asthma or other allergic diseases. Two reviewers independently assessed the eligibility of studies and extracted data. The relative risk (RR) or odds ratio (OR) with 95% confidence intervals (CI) was calculated and pooled. Results Twenty-six studies (16 cohort, 7 case-control, and 3 cross-sectional studies) were identified. Maternal folic acid supplementation was not associated with the development of asthma, atopic dermatitis (AD), eczema, and sensitization in the offspring, whereas exposure during early pregnancy was related to wheeze occurrence in the offspring (RR=1.06, 95% CI=[1.02-1.09]). The TT genotype of MTHFR C677T polymorphism was at high risk of asthma (OR=1.41, 95% CI=[1.07-1.86]). Conclusions It is indicated that maternal folic acid supplementation during early pregnancy may increase the risk of wheeze in early childhood and that the TT genotype of MTHFR C677T polymorphism impairing folic acid metabolism would be at high risk of asthma development. These results might provide additional information for recommendations regarding forced folate consumption or folic acid supplements during pregnancy based on its well-established benefits for the prevention of congenital malformations. However, currently available evidence is of low quality which is needed to further elucidate. PMID:26333700

  9. Genetic Architecture of Vitamin B12 and Folate Levels Uncovered Applying Deeply Sequenced Large Datasets

    PubMed Central

    Thorleifsson, Gudmar; Ahluwalia, Tarunveer S.; Steinthorsdottir, Valgerdur; Bjarnason, Helgi; Gudbjartsson, Daniel F.; Magnusson, Olafur T.; Sparsø, Thomas; Albrechtsen, Anders; Kong, Augustine; Masson, Gisli; Tian, Geng; Cao, Hongzhi; Nie, Chao; Kristiansen, Karsten; Husemoen, Lise Lotte; Thuesen, Betina; Li, Yingrui; Nielsen, Rasmus; Linneberg, Allan; Olafsson, Isleifur; Eyjolfsson, Gudmundur I.; Jørgensen, Torben; Wang, Jun; Hansen, Torben; Thorsteinsdottir, Unnur; Stefánsson, Kari; Pedersen, Oluf

    2013-01-01

    Genome-wide association studies have mainly relied on common HapMap sequence variations. Recently, sequencing approaches have allowed analysis of low frequency and rare variants in conjunction with common variants, thereby improving the search for functional variants and thus the understanding of the underlying biology of human traits and diseases. Here, we used a large Icelandic whole genome sequence dataset combined with Danish exome sequence data to gain insight into the genetic architecture of serum levels of vitamin B12 (B12) and folate. Up to 22.9 million sequence variants were analyzed in combined samples of 45,576 and 37,341 individuals with serum B12 and folate measurements, respectively. We found six novel loci associating with serum B12 (CD320, TCN2, ABCD4, MMAA, MMACHC) or folate levels (FOLR3) and confirmed seven loci for these traits (TCN1, FUT6, FUT2, CUBN, CLYBL, MUT, MTHFR). Conditional analyses established that four loci contain additional independent signals. Interestingly, 13 of the 18 identified variants were coding and 11 of the 13 target genes have known functions related to B12 and folate pathways. Contrary to epidemiological studies we did not find consistent association of the variants with cardiovascular diseases, cancers or Alzheimer's disease although some variants demonstrated pleiotropic effects. Although to some degree impeded by low statistical power for some of these conditions, these data suggest that sequence variants that contribute to the population diversity in serum B12 or folate levels do not modify the risk of developing these conditions. Yet, the study demonstrates the value of combining whole genome and exome sequencing approaches to ascertain the genetic and molecular architectures underlying quantitative trait associations. PMID:23754956

  10. Genetic architecture of vitamin B12 and folate levels uncovered applying deeply sequenced large datasets.

    PubMed

    Grarup, Niels; Sulem, Patrick; Sandholt, Camilla H; Thorleifsson, Gudmar; Ahluwalia, Tarunveer S; Steinthorsdottir, Valgerdur; Bjarnason, Helgi; Gudbjartsson, Daniel F; Magnusson, Olafur T; Sparsø, Thomas; Albrechtsen, Anders; Kong, Augustine; Masson, Gisli; Tian, Geng; Cao, Hongzhi; Nie, Chao; Kristiansen, Karsten; Husemoen, Lise Lotte; Thuesen, Betina; Li, Yingrui; Nielsen, Rasmus; Linneberg, Allan; Olafsson, Isleifur; Eyjolfsson, Gudmundur I; Jørgensen, Torben; Wang, Jun; Hansen, Torben; Thorsteinsdottir, Unnur; Stefánsson, Kari; Pedersen, Oluf

    2013-06-01

    Genome-wide association studies have mainly relied on common HapMap sequence variations. Recently, sequencing approaches have allowed analysis of low frequency and rare variants in conjunction with common variants, thereby improving the search for functional variants and thus the understanding of the underlying biology of human traits and diseases. Here, we used a large Icelandic whole genome sequence dataset combined with Danish exome sequence data to gain insight into the genetic architecture of serum levels of vitamin B(12) (B12) and folate. Up to 22.9 million sequence variants were analyzed in combined samples of 45,576 and 37,341 individuals with serum B(12) and folate measurements, respectively. We found six novel loci associating with serum B(12) (CD320, TCN2, ABCD4, MMAA, MMACHC) or folate levels (FOLR3) and confirmed seven loci for these traits (TCN1, FUT6, FUT2, CUBN, CLYBL, MUT, MTHFR). Conditional analyses established that four loci contain additional independent signals. Interestingly, 13 of the 18 identified variants were coding and 11 of the 13 target genes have known functions related to B(12) and folate pathways. Contrary to epidemiological studies we did not find consistent association of the variants with cardiovascular diseases, cancers or Alzheimer's disease although some variants demonstrated pleiotropic effects. Although to some degree impeded by low statistical power for some of these conditions, these data suggest that sequence variants that contribute to the population diversity in serum B(12) or folate levels do not modify the risk of developing these conditions. Yet, the study demonstrates the value of combining whole genome and exome sequencing approaches to ascertain the genetic and molecular architectures underlying quantitative trait associations. PMID:23754956

  11. Ex-ante evaluation of biotechnology innovations: the case of folate biofortified rice in China.

    PubMed

    De Steur, Hans; Blancquaert, Dieter; Gellynck, Xavier; Lambert, Willy; Van Der Straeten, Dominique

    2012-12-01

    In order to valorize novel biotechnology innovations, there is a need to evaluate ex-ante their market potential. A case in point is biofortification, i.e. the enhancement of the micronutrient content of staple crops through conventional or genetic breeding techniques. In a recent article in Nature Biotechnology, for example, De Steur et al. (2010) demonstrated the large potential consumer health benefits of folate biofortified rice as a means to reduce folate deficiency and Neural-Tube Defects. By focusing on a Chinese high-risk region of Neural-Tube Defects, the current study defines the potential cost-effectiveness of this genetically modified crop where the need to improve folate intake levels is highest. Building on the Disability-Adjusted Life Years (DALY) approach, both the potential health impacts and costs of its implementation are measured and benchmarked against similar innovations. The results show that this transgenic crop could be a highly cost-effective product innovation (US$ 120.34 - US$ 40.1 per DALY saved) to alleviate the large health burden of folate deficiency and reduce the prevalence of neural-tube birth defects. When compared with other biofortified crops and target regions, folate biofortified rice in China has a relatively high health impact and moderate cost-effectiveness. This research further supports the need for, and importance of ex-ante evaluation studies in order to adequately market and, thus, valorize biotechnology innovations. Although the cost-effectiveness analysis enables to illustrate the market potential of innovative agricultural biotechnology research, further research is required to address policy issues on transgenic biofortification, such as biosafety regulatory requirements. PMID:23072390

  12. Affinity labeling of the folate-methotrexate transporter from Leishmania donovani

    SciTech Connect

    Beck, J.T.; Ullman, B. )

    1989-08-22

    An affinity labeling technique has been developed to identify the folate-methotrexate transporter of Leishmania donovani promastigotes using activated derivatives of the ligands. These activated derivatives were synthesized by incubating folate and methotrexate with a 10-fold excess of 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide (EDC) for 10 min at ambient temperature in dimethyl sulfoxide. When intact wild-type (DI700) Leishmania donovani or preparations of their membranes were incubated with a 0.4 {mu}M concentration of either activated ({sup 3}H)folate or activated ({sup 3}H)methotrexate, the radiolabeled ligands were covalently incorporated into a polypeptide with a molecular weight of approximately 46,000, as demonstrated by SDS-polyacrylamide gel electrophoresis. No affinity labeling of a 46,000-dalton protein was observed when equimolar concentrations of activated radiolabeled ligands were incubated with intact cells or membranes prepared from a methotrexate-resistant mutant clone of Leishmania donovani, MTXA5, that is genetically defective in folate-methotrexate transport capability. Time course studies indicated that maximal labeling of the 46,000-dalton protein occurred within 5-10 min of incubation of intact cells with activated ligand. These studies provide biochemical evidence that the folate-methotrexate transporter of Leishmania donovani can be identified in crude extracts by an affinity labeling technique and serve as a prerequisite to further analysis of the transport protein by providing a vehicle for subsequent purification of this membrane carrier. Moreover, these investigations suggest that the affinity labeling technique using EDC-activated ligands may be exploitable to analyze other cell surface binding proteins in Leishmania donovani, as well as in other organisms.

  13. Oral Clefts and Maternal Biomarkers of Folate-Dependent One-Carbon Metabolism in Utah

    PubMed Central

    Munger, Ronald G.; Tamura, Tsunenobu; Johnston, Kelley E.; Feldkamp, Marcia L.; Pfister, Roxane; Cutler, Richard; Murtaugh, Maureen A.; Carey, John C.

    2016-01-01

    BACKGROUND Maternal folate intake and related biomarkers have been inconsistently associated with a risk of oral clefts. METHODS Maternal concentrations of plasma folate (PF) and erythrocyte folate (EF), plasma pyridoxal-5?-phosphate (PLP; active vitamin B6) and total plasma homocysteine (tHcy) were measured in a Utah study with 347 cases and 469 controls. RESULTS Risk of all clefts combined, including cleft lip with or without cleft palate (CL/P) and cleft palate only (CP), was 65% lower in the highest versus lowest PF quartile (odds ratio [OR], 0.35; 95% confidence interval [CI], 0.23–0.53; p-trend < 0.001). Results remained significant in the subgroups with isolated CL/P and CP (p-trend < 0.001 in each). EF results were similar. In the highest versus lowest PLP quartile, risk of CP with other malformations was lower (OR, 0.25; 95% CI, 0.07–0.95); however, no other associations were significant for PLP or tHcy. Differences in mean bio-marker levels between cases and controls widened with an increasing interval between delivery and maternal blood collection. Decreased cleft risk with increasing quartiles of PF, EF, and PLP and decreasing tHcy was more apparent in mothers with a longer versus shorter interval between the index child delivery and blood collection. CONCLUSION Low maternal blood folate concentration was associated with an increased risk of clefts, and the differences in mean case and control PF, EF, PLP, and tHcy concentrations widened over time. Additional mechanistic studies are warranted to elucidate whether an acquired or inherited disorder of folate metabolism plays a role in the etiology of clefts. PMID:21290562

  14. Folic acid mediates activation of the pro-oncogene STAT3 via the Folate Receptor alpha.

    PubMed

    Hansen, Mariann F; Greibe, Eva; Skovbjerg, Signe; Rohde, Sarah; Kristensen, Anders C M; Jensen, Trine R; Stentoft, Charlotte; Kjær, Karina H; Kronborg, Camilla S; Martensen, Pia M

    2015-07-01

    The signal transducer and activator of transcription 3 (STAT3) is a well-described pro-oncogene found constitutively activated in several cancer types. Folates are B vitamins that, when taken up by cells through the Reduced Folate Carrier (RFC), are essential for normal cell growth and replication. Many cancer cells overexpress a glycophosphatidylinositol (GPI)-anchored Folate Receptor ? (FR?). The function of FR? in cancer cells is still poorly described, and it has been suggested that transport of folate is not its primary function in these cells. We show here that folic acid and folinic acid can activate STAT3 through FR? in a Janus Kinase (JAK)-dependent manner, and we demonstrate that gp130 functions as a transducing receptor for this signalling. Moreover, folic acid can promote dose dependent cell proliferation in FR?-positive HeLa cells, but not in FR?-negative HEK293 cells. After folic acid treatment of HeLa cells, up-regulation of the STAT3 responsive genes Cyclin A2 and Vascular Endothelial Growth Factor (VEGF) were verified by qRT-PCR. The identification of this FR?-STAT3 signal transduction pathway activated by folic and folinic acid contributes to the understanding of the involvement of folic acid in preventing neural tube defects as well as in tumour growth. Previously, the role of folates in these diseases has been attributed to their roles as one-carbon unit donors following endocytosis into the cell. Our finding that folic acid can activate STAT3 via FR? adds complexity to the established roles of B9 vitamins in cancer and neural tube defects. PMID:25841994

  15. DGAT enzymes and triacylglycerol biosynthesis

    PubMed Central

    Yen, Chi-Liang Eric; Stone, Scot J.; Koliwad, Suneil; Harris, Charles; Farese, Robert V.

    2008-01-01

    Triacylglycerols (triglycerides) (TGs) are the major storage molecules of metabolic energy and FAs in most living organisms. Excessive accumulation of TGs, however, is associated with human diseases, such as obesity, diabetes mellitus, and steatohepatitis. The final and the only committed step in the biosynthesis of TGs is catalyzed by acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes. The genes encoding two DGAT enzymes, DGAT1 and DGAT2, were identified in the past decade, and the use of molecular tools, including mice deficient in either enzyme, has shed light on their functions. Although DGAT enzymes are involved in TG synthesis, they have distinct protein sequences and differ in their biochemical, cellular, and physiological functions. Both enzymes may be useful as therapeutic targets for diseases. Here we review the current knowledge of DGAT enzymes, focusing on new advances since the cloning of their genes, including possible roles in human health and diseases. PMID:18757836

  16. Biosynthesis and deficiencies of glycosylphosphatidylinositol

    PubMed Central

    KINOSHITA, Taroh

    2014-01-01

    At least 150 different human proteins are anchored to the outer leaflet of the plasma membrane via glycosylphosphatidylinositol (GPI). GPI preassembled in the endoplasmic reticulum is attached to the protein’s carboxyl-terminus as a post-translational modification by GPI transamidase. Twenty-two PIG (for Phosphatidyl Inositol Glycan) genes are involved in the biosynthesis and protein-attachment of GPI. After attachment to proteins, both lipid and glycan moieties of GPI are structurally remodeled in the endoplasmic reticulum and Golgi apparatus. Four PGAP (for Post GPI Attachment to Proteins) genes are involved in the remodeling of GPI. GPI-anchor deficiencies caused by somatic and germline mutations in the PIG and PGAP genes have been found and characterized. The characteristics of the 26 PIG and PGAP genes and the GPI deficiencies caused by mutations in these genes are reviewed. PMID:24727937

  17. Isoprenoid Biosynthesis in Plasmodium falciparum

    PubMed Central

    Guggisberg, Ann M.; Amthor, Rachel E.

    2014-01-01

    Malaria kills nearly 1 million people each year, and the protozoan parasite Plasmodium falciparum has become increasingly resistant to current therapies. Isoprenoid synthesis via the methylerythritol phosphate (MEP) pathway represents an attractive target for the development of new antimalarials. The phosphonic acid antibiotic fosmidomycin is a specific inhibitor of isoprenoid synthesis and has been a helpful tool to outline the essential functions of isoprenoid biosynthesis in P. falciparum. Isoprenoids are a large, diverse class of hydrocarbons that function in a variety of essential cellular processes in eukaryotes. In P. falciparum, isoprenoids are used for tRNA isopentenylation and protein prenylation, as well as the synthesis of vitamin E, carotenoids, ubiquinone, and dolichols. Recently, isoprenoid synthesis in P. falciparum has been shown to be regulated by a sugar phosphatase. We outline what is known about isoprenoid function and the regulation of isoprenoid synthesis in P. falciparum, in order to identify valuable directions for future research. PMID:25217461

  18. Acylphloroglucinol Biosynthesis in Strawberry Fruit.

    PubMed

    Song, Chuankui; Ring, Ludwig; Hoffmann, Thomas; Huang, Fong-Chin; Slovin, Janet; Schwab, Wilfried

    2015-11-01

    Phenolics have health-promoting properties and are a major group of metabolites in fruit crops. Through reverse genetic analysis of the functions of four ripening-related genes in the octoploid strawberry (Fragaria × ananassa), we discovered four acylphloroglucinol (APG)-glucosides as native Fragaria spp. fruit metabolites whose levels were differently regulated in the transgenic fruits. The biosynthesis of the APG aglycones was investigated by examination of the enzymatic properties of three recombinant Fragaria vesca chalcone synthase (FvCHS) proteins. CHS is involved in anthocyanin biosynthesis during ripening. The F. vesca enzymes readily catalyzed the condensation of two intermediates in branched-chain amino acid metabolism, isovaleryl-Coenzyme A (CoA) and isobutyryl-CoA, with three molecules of malonyl-CoA to form phlorisovalerophenone and phlorisobutyrophenone, respectively, and formed naringenin chalcone when 4-coumaroyl-CoA was used as starter molecule. Isovaleryl-CoA was the preferred starter substrate of FvCHS2-1. Suppression of CHS activity in both transient and stable CHS-silenced fruit resulted in a substantial decrease of APG glucosides and anthocyanins and enhanced levels of volatiles derived from branched-chain amino acids. The proposed APG pathway was confirmed by feeding isotopically labeled amino acids. Thus, Fragaria spp. plants have the capacity to synthesize pharmaceutically important APGs using dual functional CHS/(phloriso)valerophenone synthases that are expressed during fruit ripening. Duplication and adaptive evolution of CHS is the most probable scenario and might be generally applicable to other plants. The results highlight that important promiscuous gene function may be missed when annotation relies solely on in silico analysis. PMID:26169681

  19. Combined dietary folate, vitamin B-12, and vitamin B-6 intake influences plasma docosahexaenoic acid concentration in rats

    E-print Network

    van Wijk, Nick

    Background: Folate, vitamin B-12, and vitamin B-6 are essential nutritional components in one-carbon metabolism and are required for methylation capacity. The availability of these vitamins may therefore modify methylation ...

  20. Advances in Understanding the Biosynthesis of Fumonisins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fumonisins are a group of economically important mycotoxins that are derived polyketides. Since the cloning of the fumonisin polyketide synthase (PKS) gene from Fusarium verticillioides in 1999, significant advances have been made in understanding the molecular mechanisms for fumonisin biosynthesis...

  1. Sterols of the fungi - Distribution and biosynthesis

    NASA Technical Reports Server (NTRS)

    Weete, J. D.

    1973-01-01

    The importance of sterols in the growth and reproduction in fungi is becoming increasingly apparent. This article concerns the composition and biosynthesis of ergosterol in these organisms. Comparison to plant and animal sterol formation are made.

  2. Sterols of the fungi - Distribution and biosynthesis.

    NASA Technical Reports Server (NTRS)

    Weete, J. D.

    1973-01-01

    The importance of sterols in the growth and reproduction in fungi is becoming increasingly apparent. This article concerns the composition and biosynthesis of ergosterol in these organisms. Comparison to plant and animal sterol formation are made.

  3. The epigenetic effects of a high prenatal folate intake in male mouse fetuses exposed in utero to arsenic

    SciTech Connect

    Tsang, Verne; Fry, Rebecca C.; Niculescu, Mihai D.; Rager, Julia E.; Saunders, Jesse; Paul, David S.; Zeisel, Steven H.; UNC Nutrition Research Institute, Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 ; Waalkes, Michael P.; Stýblo, Miroslav; Drobná, Zuzana

    2012-11-01

    Inorganic arsenic (iAs) is a complete transplacental carcinogen in mice. Previous studies have demonstrated that in utero exposure to iAs promotes cancer in adult mouse offspring, possibly acting through epigenetic mechanisms. Humans and rodents enzymatically convert iAs to its methylated metabolites. This reaction requires S-adenosylmethionine (SAM) as methyl group donor. SAM is also required for DNA methylation. Supplementation with folate, a major dietary source of methyl groups for SAM synthesis, has been shown to modify iAs metabolism and the adverse effects of iAs exposure. However, effects of gestational folate supplementation on iAs metabolism and fetal DNA methylation have never been thoroughly examined. In the present study, pregnant CD1 mice were fed control (i.e. normal folate, or 2.2 mg/kg) or high folate diet (11 mg/kg) from gestational day (GD) 5 to 18 and drank water with 0 or 85 ppm of As (as arsenite) from GD8 to 18. The exposure to iAs significantly decreased body weight of GD18 fetuses and increased both SAM and S-adenosylhomocysteine (SAH) concentrations in fetal livers. High folate intake lowered the burden of total arsenic in maternal livers but did not prevent the effects of iAs exposure on fetal weight or hepatic SAM and SAH concentrations. In fact, combined folate-iAs exposure caused further significant body weight reduction. Notably, iAs exposure alone had little effect on DNA methylation in fetal livers. In contrast, the combined folate-iAs exposure changed the CpG island methylation in 2,931 genes, including genes known to be imprinted. Most of these genes were associated with neurodevelopment, cancer, cell cycle, and signaling networks. The canonical Wnt-signaling pathway, which regulates fetal development, was among the most affected biological pathways. Taken together, our results suggest that a combined in utero exposure to iAs and a high folate intake may adversely influence DNA methylation profiles and weight of fetuses, compromising fetal development and possibly increasing the risk for early-onset of disease in offspring. Highlights: ? We used transplacental CD1 mice model for inorganic arsenic (iAs) carcinogenesis. ? We examined the effects of gestational iAs and high folate exposure on DNA methylation. ? iAs–folate interaction resulted in low fetal weights and changes in DNA methylation. ? Epigenetically altered genes were associated with cancer and neurodevelopment. ? We showed that in utero iAs–folate interaction negatively affects fetal development.

  4. Cobalamin and Folate Status in 6 to 35 Months Old Children Presenting with Acute Diarrhea in Bhaktapur, Nepal

    PubMed Central

    Ulak, Manjeswori; Chandyo, Ram K.; Adhikari, Ramesh K.; Sharma, Pushpa R.; Sommerfelt, Halvor; Refsum, Helga; Strand, Tor A.

    2014-01-01

    Background Cobalamin and folate are essential micronutrients and are important in DNA and RNA synthesis, cell proliferation, growth, hematopoiesis, and cognitive function. However, data on cobalamin and folate status are lacking particularly from young children residing in low and middle income countries. Objective To measure cobalamin and folate status and identifies their predictors among 6 to 35 months old children presenting with acute diarrhea. Design This was a cross-sectional study in 823 children presenting with acute diarrhea. We measured plasma cobalamin, folate, methylmalonic acid and total homocysteine who sought treatment for acute diarrhea between June 1998 and August 2000. Results The mean (SD) plasma concentrations of cobalamin, folate, total homocysteine and methylmalonic acid were 206 (124) pmol/L, 55 (32) nmol/L, 11.4 (5.6) µmol/L and 0.79 (1.2) µmol/L, respectively. The prevalence of low plasma cobalamin (<150 pmol/L) was 41% but less than 2% (15) children had low folate concentration (<10 nmol/L). Plasma homocysteine and methylmalonic acid concentrations were negatively associated with cobalamin concentration but not associated with folate status. The prevalence of cobalamin deficiency was higher in breastfed than non-breastfed children (44% vs 24%; p?=?<0.001). The prevalence of hyperhomocysteinemia (>10 µmol/L) and elevated methylmalonic acid (>0.28 µmol/L) were 73% and 52%, respectively. In the regression analyses, the plasma cobalamin concentration was positively associated with age, and introduction of animal or formula milk. Conclusions Our study indicated that poor cobalamin status was common particularly among breastfed children. Folate deficiency was virtually none existent. Possible consequences of cobalamin deficiency in young children need to be explored. PMID:24594935

  5. Alcohol and dietary folate intake and the risk of breast cancer: a case-control study in Japan.

    PubMed

    Islam, Tania; Ito, Hidemi; Sueta, Aiko; Hosono, Satoyo; Hirose, Kaoru; Watanabe, Miki; Iwata, Hiroji; Tajima, Kazuo; Tanaka, Hideo; Matsuo, Keitaro

    2013-07-01

    Owing to its interaction with alcohol, folate has been suggested to be a potential factor for many types of cancer. The impact of these factors on the risk of breast cancer among Asian populations has not been fully examined, however, particularly with respect to receptor status. We carried out a case-control study in premenopausal and postmenopausal Japanese women, including 1754 breast cancer patients and 3508 noncancer controls. We determined the association between self-reported alcohol drinking, dietary folate intake, and the risk of breast cancer. Odds ratios (ORs) with 95% confidence intervals (CIs) were estimated using logistic models adjusted for potential confounders. Alcohol consumption was associated with the risk of breast cancer, with the OR for a drinker consuming 23 g or more per day relative to a nondrinker of 1.39 (95% CI: 1.07-1.80). A significant inverse association was observed between folate intake and overall risk of breast cancer, with an OR of 0.79 (95% CI: 0.68-0.93; Ptrend=0.004) for the highest tertile relative to the lowest. The OR of a drinker consuming 23 g or more per day relative to a nondrinker with a low folate intake was 1.58 (95% CI: 1.06-2.33). However, a significantly increased risk was not observed in tertile 2 and tertile 3 folate in taker with any amount of alcohol consumption. Higher folate intake decreases the risk of breast cancer among Japanese, whereas alcohol intake increases the risk. These two factors interact with each other, and the excess risk of breast cancer with alcohol consumption might be attenuated by increasing the intake of folate. In addition, the effects of folate/alcohol may vary according to the tumor subtype. PMID:23183091

  6. Folate (vitamin B9) and vitamin B12 and their function in the maintenance of nuclear and mitochondrial genome integrity.

    PubMed

    Fenech, Michael

    2012-05-01

    Folate plays a critical role in the prevention of uracil incorporation into DNA and hypomethylation of DNA. This activity is compromised when vitamin B12 concentration is low because methionine synthase activity is reduced, lowering the concentration of S-adenosyl methionine (SAM) which in turn may diminish DNA methylation and cause folate to become unavailable for the conversion of dUMP to dTMP. The most plausible explanation for the chromosome-breaking effect of low folate is excessive uracil misincorporation into DNA, a mutagenic lesion that leads to strand breaks in DNA during repair. Both in vitro and in vivo studies with human cells clearly show that folate deficiency causes expression of chromosomal fragile sites, chromosome breaks, excessive uracil in DNA, micronucleus formation, DNA hypomethylation and mitochondrial DNA deletions. In vivo studies show that folate and/or vitamin B12 deficiency and elevated plasma homocysteine (a metabolic indicator of folate deficiency) are significantly correlated with increased micronucleus formation and reduced telomere length respectively. In vitro experiments indicate that genomic instability in human cells is minimised when folic acid concentration in culture medium is greater than 100nmol/L. Intervention studies in humans show (a) that DNA hypomethylation, chromosome breaks, uracil incorporation and micronucleus formation are minimised when red cell folate concentration is greater than 700nmol/L and (b) micronucleus formation is minimised when plasma concentration of vitamin B12 is greater than 300pmol/L and plasma homocysteine is less than 7.5?mol/L. These concentrations are achievable at intake levels at or above current recommended dietary intakes of folate (i.e. >400?g/day) and vitamin B12 (i.e. >2?g/day) depending on an individual's capacity to absorb and metabolise these vitamins which may vary due to genetic and epigenetic differences. PMID:22093367

  7. Erythrocyte folate concentrations, CpG methylation at genomically imprinted domains, and birth weight in a multiethnic newborn cohort

    PubMed Central

    Hoyo, Cathrine; Daltveit, Anne Kjersti; Iversen, Edwin; Benjamin-Neelon, Sara E; Fuemmeler, Bernard; Schildkraut, Joellen; Murtha, Amy P; Overcash, Francine; Vidal, Adriana C; Wang, Frances; Huang, Zhiqing; Kurtzberg, Joanne; Seewaldt, Victoria; Forman, Michele; Jirtle, Randy L; Murphy, Susan K

    2014-01-01

    Epigenetic mechanisms are proposed to link maternal concentrations of methyl group donor nutrients with the risk of low birth weight. However, empirical data are lacking. We have examined the association between maternal folate and birth weight and assessed the mediating role of DNA methylation at nine differentially methylated regions (DMRs) of genomically imprinted genes in these associations. Compared with newborns of women with folate levels in the lowest quartile, birth weight was higher in newborns of mothers in the second (? = 143.2, se = 63.2, P = 0.02), third (? = 117.3, se = 64.0, P = 0.07), and fourth (? = 133.9, se = 65.2, P = 0.04) quartiles, consistent with a threshold effect. This pattern of association did not vary by race/ethnicity but was more apparent in newborns of non-obese women. DNA methylation at the PLAGL1, SGCE, DLK1/MEG3 and IGF2/H19 DMRs was associated with maternal folate levels and also birth weight, suggestive of threshold effects. MEG3 DMR methylation mediated the association between maternal folate levels and birth weight (P =0.06). While the small sample size and partial scope of examined DMRs limit our conclusions, our data suggest that, with respect to birth weight, no additional benefits may be derived from increased maternal folate concentrations, especially in non-obese women. These data also support epigenetic plasticity as a key mechanistic response to folate availability during early fetal development. PMID:24874916

  8. High performance liquid chromatography coupled to mass spectrometry for profiling and quantitative analysis of folate monoglutamates in tomato.

    PubMed

    Tyagi, Kamal; Upadhyaya, Pallawi; Sarma, Supriya; Tamboli, Vajir; Sreelakshmi, Yellamaraju; Sharma, Rameshwar

    2015-07-15

    Folates are essential micronutrients for animals as they play a major role in one carbon metabolism. Animals are unable to synthesize folates and obtain them from plant derived food. In the present study, a high performance liquid chromatography coupled to mass spectrometric (HPLC-MS/MS) method was developed for the high throughput screening and quantitative analysis of folate monoglutamates in tomato fruits. For folate extraction, several parameters were optimized including extraction conditions, pH range, amount of tri-enzyme and boiling time. After processing the extract was purified using ultra-filtration with 10 kDa membrane filter. The ultra-filtered extract was chromatographed on a RP Luna C18 column using gradient elution program. The method was validated by determining linearity, sensitivity and recovery. This method was successfully applied to folate estimation in spinach, capsicum, and garden pea and demonstrated that this method offers a versatile approach for accurate and fast determination of different folate monoglutamates in vegetables. PMID:25722141

  9. Consortium analysis of gene and gene-folate interactions in purine and pyrimidine metabolism pathways with ovarian carcinoma risk

    PubMed Central

    Kelemen, Linda E.; Terry, Kathryn L.; Goodman, Marc T.; Webb, Penelope M.; Bandera, Elisa V.; McGuire, Valerie; Rossing, Mary Anne; Wang, Qinggang; Dicks, Ed; Tyrer, Jonathan P.; Song, Honglin; Kupryjanczyk, Jolanta; Dansonka-Mieszkowska, Agnieszka; Plisiecka-Halasa, Joanna; Timorek, Agnieszka; Menon, Usha; Gentry-Maharaj, Aleksandra; Gayther, Simon A.; Ramus, Susan J.; Narod, Steven A.; Risch, Harvey A.; McLaughlin, John R.; Siddiqui, Nadeem; Glasspool, Rosalind; Paul, James; Carty, Karen; Gronwald, Jacek; Lubi?ski, Jan; Jakubowska, Anna; Cybulski, Cezary; Kiemeney, Lambertus A.; Massuger, Leon F. A. G.; van Altena, Anne M.; Aben, Katja K. H.; Olson, Sara H.; Orlow, Irene; Cramer, Daniel W.; Levine, Douglas A.; Bisogna, Maria; Giles, Graham G.; Southey, Melissa C.; Bruinsma, Fiona; Kjær, Susanne Krüger; Høgdall, Estrid; Jensen, Allan; Høgdall, Claus K.; Lundvall, Lene; Engelholm, Svend-Aage; Heitz, Florian; du Bois, Andreas; Harter, Philipp; Schwaab, Ira; Butzow, Ralf; Nevanlinna, Heli; Pelttari, Liisa M.; Leminen, Arto; Thompson, Pamela J.; Lurie, Galina; Wilkens, Lynne R.; Lambrechts, Diether; Van Nieuwenhuysen, Els; Lambrechts, Sandrina; Vergote, Ignace; Beesley, Jonathan; Fasching, Peter A.; Beckmann, Matthias W.; Hein, Alexander; Ekici, Arif B.; Doherty, Jennifer A.; Wu, Anna H.; Pearce, Celeste L.; Pike, Malcolm C.; Stram, Daniel; Chang-Claude, Jenny; Rudolph, Anja; Dörk, Thilo; Dürst, Matthias; Hillemanns, Peter; Runnebaum, Ingo B.; Bogdanova, Natalia; Antonenkova, Natalia; Odunsi, Kunle; Edwards, Robert P.; Kelley, Joseph L.; Modugno, Francesmary; Ness, Roberta B.; Karlan, Beth Y.; Walsh, Christine; Lester, Jenny; Orsulic, Sandra; Fridley, Brooke L.; Vierkant, Robert A.; Cunningham, Julie M.; Wu, Xifeng; Lu, Karen; Liang, Dong; Hildebrandt, Michelle A.T.; Weber, Rachel Palmieri; Iversen, Edwin S.; Tworoger, Shelley S.; Poole, Elizabeth M.; Salvesen, Helga B.; Krakstad, Camilla; Bjorge, Line; Tangen, Ingvild L.; Pejovic, Tanja; Bean, Yukie; Kellar, Melissa; Wentzensen, Nicolas; Brinton, Louise A.; Lissowska, Jolanta; Garcia-Closas, Montserrat; Campbell, Ian G.; Eccles, Diana; Whittemore, Alice S.; Sieh, Weiva; Rothstein, Joseph H.; Anton-Culver, Hoda; Ziogas, Argyrios; Phelan, Catherine M.; Moysich, Kirsten B.; Goode, Ellen L.; Schildkraut, Joellen M.; Berchuck, Andrew; Pharoah, Paul D.P.; Sellers, Thomas A.; Brooks-Wilson, Angela; Cook, Linda S.; Le, Nhu D.

    2014-01-01

    Scope We re-evaluated previously reported associations between variants in pathways of one-carbon (folate) transfer genes and ovarian carcinoma (OC) risk, and in related pathways of purine and pyrimidine metabolism, and assessed interactions with folate intake. Methods and Results Odds ratios (OR) for 446 genetic variants were estimated among 13,410 OC cases and 22,635 controls and among 2,281 cases and 3,444 controls with folate information. Following multiple testing correction, the most significant main effect associations were for DPYD variants rs11587873 (OR=0.92, P=6x10?5) and rs828054 (OR=1.06, P=1x10?4). Thirteen variants in the pyrimidine metabolism genes, DPYD, DPYS, PPAT and TYMS, also interacted significantly with folate in a multi-variant analysis (corrected P=9.9x10?6) but collectively explained only 0.2% of OC risk. Although no other associations were significant after multiple testing correction, variants in SHMT1 in one-carbon transfer, previously reported with OC, suggested lower risk at higher folate (Pinteraction=0.03-0.006). Conclusions Variation in pyrimidine metabolism genes, particularly DPYD, which was previously reported to be associated with OC, may influence risk; however, stratification by folate intake is unlikely to modify disease risk appreciably in these women. SHMT1 SNP-byfolate interactions are plausible but require further validation. Polymorphisms in selected genes in purine metabolism were not associated with OC. PMID:25066213

  10. The therapeutic effect of methotrexate-conjugated Pluronic-based polymeric micelles on the folate receptor-rich tumors treatment

    PubMed Central

    Chen, Yanzuo; Zhang, Wei; Huang, YuKun; Gao, Feng; Sha, Xianyi; Lou, Kaiyan; Fang, Xiaoling

    2015-01-01

    The therapeutic effect of methotrexate (MTX)-conjugated Pluronic-based polymeric mixed micelles (F127/P105-MTX) on the folate receptor-overexpressing tumors treatment was investigated in this study. Due to its high structural similarity to folic acid and the high expression of folate receptor in most solid tumors, MTX serves as not only a cytotoxic agent but also a homing ligand. Cellular uptake and the endocytic mechanism studies of MTX-conjugated mixed micelles were performed in folate receptor-rich KBv and folate receptor-deficient A-549 cancer cells. Additionally, the efficacy and safety studies of F127/P105-MTX in KBv tumor-bearing mice were evaluated. Results indicate that F127/P105-MTX significantly enhanced the cellular uptake in KBv cells as compared to that of conventional non-MTX-conjugated mixed micelles. Moreover, the results showed that F127/P105-MTX can be internalized by both caveolae- and clathrin-mediated endocytosis in energy-dependent and folate receptor-dependent manners. The in vitro and in vivo antitumor efficacies of F127/P105-MTX were significantly enhanced in comparison with MTX-entrapped mixed micelles. Furthermore, no acute toxicities to hematological system and major organs have been observed after intravenous administration during the regimen. Therefore, our results suggest that F127/P105-MTX could be an effective and safe nano-drug delivery system for cancer therapy, especially for the folate receptor-rich cancer treatment. PMID:26150715

  11. Functional Loss of the Reduced Folate Carrier Enhances the Antitumor Activities of Novel Antifolates with Selective Uptake by the Proton-Coupled Folate Transporter

    PubMed Central

    Desmoulin, Sita Kugel; Wang, Lei; Polin, Lisa; White, Kathryn; Kushner, Juiwanna; Stout, Mark; Hou, Zhanjun; Cherian, Christina; Gangjee, Aleem

    2012-01-01

    Uptake of 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolates with four or three bridge carbons [compound 1 (C1) and compound 2 (C2), respectively] into solid tumors by the proton-coupled folate transporter (PCFT) represents a novel therapeutic strategy that harnesses the acidic tumor microenvironment. Although these compounds are not substrates for the reduced folate carrier (RFC), the major facilitative folate transporter, RFC expression may alter drug efficacies by affecting cellular tetrahydrofolate (THF) cofactor pools that can compete for polyglutamylation and/or binding to intracellular enzyme targets. Human tumor cells including wild-type (WT) and R5 (RFC-null) HeLa cells express high levels of PCFT protein. C1 and C2 inhibited proliferation of R5 cells 3 to 4 times more potently than WT cells or R5 cells transfected with RFC. Transport of C1 and C2 was virtually identical between WT and R5 cells, establishing that differences in drug sensitivities between sublines were independent of PCFT transport. Steady-state intracellular [3H]THF cofactors derived from [3H]5-formyl-THF were depleted in R5 cells compared with those in WT cells, an effect exacerbated by C1 and C2. Whereas C1 and C2 polyglutamates accumulated to similar levels in WT and R5 cells, there were differences in polyglutamyl distributions in favor of the longest chain length forms. In severe combined immunodeficient mice, the antitumor efficacies of C1 and C2 were greater toward subcutaneous R5 tumors than toward WT tumors, confirming the collateral drug sensitivities observed in vitro. Thus, solid tumor-targeted antifolates with PCFT-selective cellular uptake should have enhanced activities toward tumors lacking RFC function, reflecting contraction of THF cofactor pools. PMID:22740639

  12. Rho GTPases RhoA and Rac1 Mediate Effects of Dietary Folate on Metastatic Potential of A549 Cancer Cells through the Control of Cofilin Phosphorylation*

    PubMed Central

    Oleinik, Natalia V.; Helke, Kristi L.; Kistner-Griffin, Emily; Krupenko, Natalia I.; Krupenko, Sergey A.

    2014-01-01

    Folate, an important nutrient in the human diet, has been implicated in cancer, but its role in metastasis is not established. We have shown previously that the withdrawal of medium folate leads to the inhibition of migration and invasion of A549 lung carcinoma cells. Here we have demonstrated that medium folate regulates the function of Rho GTPases by enabling their carboxyl methylation and translocation to plasma membrane. Conversely, the lack of folate leads to the retention of these proteins in endoplasmic reticulum. Folate also promoted the switch from inactive (GDP-bound) to active (GTP-bound) GTPases, resulting in the activation of downstream kinases p21-activated kinase and LIM kinase and phosphorylation of the actin-depolymerizing factor cofilin. We have further demonstrated that in A549 cells two GTPases, RhoA and Rac1, but not Cdc42, are immediate sensors of folate status: the siRNA silencing of RhoA or Rac1 blocked effects of folate on cofilin phosphorylation and cellular migration and invasion. The finding that folate modulates metastatic potential of cancer cells was confirmed in an animal model of lung cancer using tail vein injection of A549 cells in SCID mice. A folate-rich diet enhanced lung colonization and distant metastasis to lymph nodes and decreased overall survival (35 versus 63 days for mice on a folate-restricted diet). High folate also promoted epithelial-mesenchymal transition in cancer cells and experimental mouse tumors. Our study provides experimental evidence for a mechanism of metastasis promotion by dietary folate and highlights the interaction between nutrients and metastasis-related signaling. PMID:25086046

  13. Biosynthesis of trichothecenes and apotrichothecenes.

    PubMed

    Zamir, L O; Nikolakakis, A; Sauriol, F; Mamer, O

    1999-05-01

    Fusarium culmorum produces two major trichothecenes, 3-acetyldeoxynivalenol and sambucinol, and some minor apotrichothecenes. It was desired to investigate if during their biosynthesis a C-11-keto intermediate was involved. To verify this postulate, trichodiene, a known precursor to trichothecenes, was synthesized with two deuteriums at C-11 and one at C-15. It was then fed to F. culmorum cultures, and the derived metabolites were purified and analyzed. The results ruled out the involvement of an 11-keto intermediate but revealed two novel apotrichothecenes. The characterization of their structures suggested that one of the 2-hydroxy-11alpha-apotrichothecene stereoisomers (2alpha or 2beta) could be converted to sambucinol. These apotrichothecenes were therefore synthesized labeled specifically with two deuteriums at C-4 and C-15 and fed to F. culmorum cultures. Indeed, the result established for the first time that 2alpha-hydroxy-11alpha-apotrichothecene was a precursor to sambucinol. A biosynthetic scheme for the production of trichothecenes and apotrichothecenes is described. PMID:10552458

  14. In vitro and in vivo targeting effect of folate decorated paclitaxel loaded PLA–TPGS nanoparticles

    PubMed Central

    Thu, Ha Phuong; Nam, Nguyen Hoai; Quang, Bui Thuc; Son, Ho Anh; Toan, Nguyen Linh; Quang, Duong Tuan

    2015-01-01

    Paclitaxel is one of the most effective chemotherapeutic agents for treating various types of cancer. However, the clinical application of paclitaxel in cancer treatment is considerably limited due to its poor water solubility and low therapeutic index. Thus, it requires an urgent solution to improve therapeutic efficacy of paclitaxel. In this study, folate decorated paclitaxel loaded PLA–TPGS nanoparticles were prepared by a modified emulsification/solvent evaporation method. The obtained nanoparticles were characterized by Field Emission Scanning Electron Microscopy (FESEM), Fourier Transform Infrared (FTIR) and Dynamic Light Scattering (DLS) method. The spherical nanoparticles were around 50 nm in size with a narrow size distribution. Targeting effect of nanoparticles was investigated in vitro on cancer cell line and in vivo on tumor bearing nude mouse. The results indicated the effective targeting of folate decorated paclitaxel loaded copolymer nanoparticles on cancer cells both in vitro and in vivo. PMID:26702264

  15. Nuclear localization of folate receptor alpha: a new role as a transcription factor

    PubMed Central

    Boshnjaku, Vanda; Shim, Kyu-Won; Tsurubuchi, Takao; Ichi, Shunsuke; Szany, Elise V.; Xi, Guifa; Mania-Farnell, Barbara; McLone, David G.; Tomita, Tadanori; Mayanil, C. Shekhar

    2012-01-01

    Folic acid (FA) has traditionally been associated with prevention of neural tube defects; more recent work suggests that it may also be involved in in the prevention of adult onset diseases. As the role of FA in human health and disease expands, it also becomes more critical to understand the mechanisms behind FA action. In this work we examined the hypothesis that folate receptor alpha (FR?) acts as a transcription factor. FR? is a GPI-anchored protein and a component of the caveolae fraction. The work described here shows that FR? translocates to the nucleus, where it binds to cis-regulatory elements at promoter regions of Fgfr4 and Hes1, and regulates their expression. The FR? recognition domain mapped to AT rich regions on the promoters. Until this time FR? has only been considered as a folate transporter, these studies describe a novel role for FR? as a transcription factor. PMID:23243496

  16. Maytansine-loaded star-shaped folate-core PLA-TPGS nanoparticles enhancing anticancer activity

    PubMed Central

    Tang, Xiaolong; Dai, Hong; Zhu, Yongxiang; Tian, Ye; Zhang, Rongbo; Mei, Rengbiao; Li, Deqiang

    2014-01-01

    The efficient delivery of therapeutic molecule agents into target cells of interest is a critical challenge to broad application of non-viral vector systems. In this research, maytansine-loaded star-shaped folate-core polylactide-D-?-tocopheryl polyethylene glycol 1000 succinate (FA-PLA-TPGS) block copolymer was applied to be a vector of maytansine for folate receptor positive (FR+) breast cancer therapy. The uptake of maytansine nanoparticles by SKBR3 cells were observed by fluorescence microscopy and confocal laser scanning microscopy. The cell viability of maytansine-NPs in SKBR3 cells was assessed according to the changed level of intracellular microtubules and apoptosis-associated proteins. The cytotoxicity of the SKBR3 cells was significantly increased by maytansine-NPs when compared with control groups. In conclusion, the maytansine-NPs offer a considerable potential formulation for FR-expressing tumor targeting biotherapy. PMID:25360217

  17. Determination of biotin and folate in infant formula and milk by optical biosensor-based immunoassay.

    PubMed

    Indyk, H E; Evans, E A; Bostrom Caselunghe, M C; Persson, B S; Finglas, P M; Woollard, D C; Filonzi, E L

    2000-01-01

    Biomolecular interaction analysis was evaluated for the automated analysis of biotin- and folate-supplemented infant formulas and milk powders. The technique was configured as a biosensor-based, nonlabeled inhibition immunoassay using monoclonal antibodies raised against analyte-conjugate. Sample extraction conditions were optimized and antibodies were evaluated for cross-reactivity. Performance parameters included a quantitation range of 2-70 ng/mL, recoveries of 86-102%, agreement against assigned reference values for National Institute of Standards and Technology Standard Reference Material 1846, between-laboratory reproducibility relative standard deviation of 9.1% for biotin and 8.1% for folate, respectively, and equivalence against reference microbiological assay methods for both analytes. PMID:11048855

  18. Conjugating folate on superparamagnetic Fe3O4@Au nanoparticles using click chemistry

    NASA Astrophysics Data System (ADS)

    Shen, Xiaofang; Ge, Zhaoqiang; Pang, Yuehong

    2015-02-01

    Gold-coated magnetic core@shell nanoparticles, which exhibit magneto-optical properties, not only enhance the chemical stability of core and biocompatibility of surface, but also provide a combination of multimodal imaging and therapeutics. The conjugation of these tiny nanoparticles with specific biomolecules allows researchers to target the desired location. In this paper, superparamagnetic Fe3O4@Au nanoparticles were synthesized and functionalized with the azide group on the surface by formation of self-assembled monolayers. Folate (FA) molecules, non-immunogenic target ligands for cancer cells, are conjugated with alkyne and then immobilized on the azide-terminated Fe3O4@Au nanoparticles through copper(I)-catalyzed azide-alkyne cycloaddition (click reaction). Myelogenous leukemia K562 cells were used as a folate receptor (FR) model, which can be targeted and extracted by magnetic field after interaction with the Fe3O4@Au-FA nanoparticles.

  19. Influence of Physiologic Folate Deficiency on Human Papillomavirus Type 16 (HPV16)-harboring Human Keratinocytes in Vitro and in Vivo*

    PubMed Central

    Xiao, Suhong; Tang, Ying-Sheng; Khan, Rehana A.; Zhang, Yonghua; Kusumanchi, Praveen; Stabler, Sally P.; Jayaram, Hiremagalur N.; Antony, A?ok C.

    2012-01-01

    Although HPV16 transforms infected epithelial tissues to cancer in the presence of several co-factors, there is insufficient molecular evidence that poor nutrition has any such role. Because physiological folate deficiency led to the intracellular homocysteinylation of heterogeneous nuclear ribonucleoprotein E1 (hnRNP-E1) and activated a nutrition-sensitive (homocysteine-responsive) posttranscriptional RNA operon that included interaction with HPV16 L2 mRNA, we investigated the functional consequences of folate deficiency on HPV16 in immortalized HPV16-harboring human (BC-1-Ep/SL) keratinocytes and HPV16-organotypic rafts. Although homocysteinylated hnRNP-E1 interacted with HPV16 L2 mRNA cis-element, it also specifically bound another HPV16 57-nucleotide poly(U)-rich cis-element in the early polyadenylation element (upstream of L2?L1 genes) with greater affinity. Together, these interactions led to a profound reduction of both L1 and L2 mRNA and proteins without effects on HPV16 E6 and E7 in vitro, and in cultured keratinocyte monolayers and HPV16-low folate-organotypic rafts developed in physiological low folate medium. In addition, HPV16-low folate-organotypic rafts contained fewer HPV16 viral particles, a similar HPV16 DNA viral load, and a much greater extent of integration of HPV16 DNA into genomic DNA when compared with HPV16-high folate-organotypic rafts. Subcutaneous implantation of 18-day old HPV16-low folate-organotypic rafts into folate-replete immunodeficient mice transformed this benign keratinocyte-derived raft tissue into an aggressive HPV16-induced cancer within 12 weeks. Collectively, these studies establish a likely molecular linkage between poor folate nutrition and HPV16 and predict that nutritional folate and/or vitamin-B12 deficiency, which are both common worldwide, will alter the natural history of HPV16 infections and also warrant serious consideration as reversible co-factors in oncogenic transformation of HPV16-infected tissues to cancer. PMID:22351779

  20. Is folate a promising agent in the prevention and treatment of cardiovascular disease in patients with renal failure?

    PubMed

    De Vriese, An S; Verbeke, Francis; Schrijvers, Bieke F; Lameire, Norbert H

    2002-04-01

    Management of the conventional cardiovascular risk factors is insufficient to prevent the dramatic increase in atherosclerotic cardiovascular morbidity and mortality in patients with renal failure. Folate recently received attention as a potential alternative treatment option to decrease the excess cardiovascular risk in the uremic population. Folate administration is the principal treatment modality for hyperhomocysteinemia. Hyperhomocysteinemia is prevalent in more than 85% of patients with end-stage renal disease (ESRD) and is independently associated with increased odds for atherosclerotic cardiovascular disease. Several attempts have been made to normalize homocysteine levels in uremic patients with folate-based vitamin regimens. Although supraphysiologic doses of folic acid afford greater reductions in homocysteine levels than standard doses, the response to treatment is generally only partial and the large majority of ESRD patients have residual hyperhomocysteinemia. Several defects in folate metabolism have been described in uremia, which may explain the relative folate resistance in patients with renal failure, but their clinical relevance remains uncertain. It appears unlikely that the hyperhomocysteinemia in ESRD can be cured solely with folic acid supplements, since folate does not affect the prolonged plasma elimination of homocysteine, which is the primary defect in homocysteine metabolism in uremia. Folate restores endothelial dysfunction, associated with hyperlipidemia, diabetes and hyperhomocysteinemia. The beneficial effect appears to be independent of its homocysteine-lowering capacity and is possibly related to an improved bioavailability of nitric oxide. However, folate has failed to improve endothelial dysfunction in uremic patients. In the ESRD population, multiple metabolic and hemodynamic abnormalities adversely affect endothelial function. In addition, irreversible structural vascular disease already may be present. Folate should, therefore, probably be an integral part of an "endothelial protective regimen," consisting of lipid-lowering agents, antihypertensives and antioxidant vitamins and started very early in patients with renal failure. Before large-scale folate administration can be recommended, effects on hard endpoints of cardiovascular disease need to be demonstrated in randomized trials. Such trials are currently underway in patients with normal renal function at high risk for cardiovascular disease, and one trial has recently been initiated in stable renal transplant recipients. PMID:11918726

  1. Design of Multifunctional Liposomal Nanocarriers for Folate Receptor-Specific Intracellular Drug Delivery.

    PubMed

    Kang, Min Hyung; Yoo, Hyun Joon; Kwon, Yie Hyuk; Yoon, Ho Yub; Lee, Sang Gon; Kim, Sung Rae; Yeom, Dong Woo; Kang, Myung Joo; Choi, Young Wook

    2015-12-01

    As a novel carrier for folate receptor (FR)-targeted intracellular delivery, we designed two types of targetable liposomal systems using Pep-1 peptide (Pep1) and folic acid as a cell-penetrating peptide (CPP) and target molecule, respectively. Folate-linked Pep1 (Fol-Pep1) was synthesized by solid phase peptide synthesis (SPPS) and verified using (1)H NMR and far-ultraviolet (UV) circular dichroism (CD). The chimeric ligand (Fol-Pep1)-modified liposome (cF-P-L) was prepared by coupling Fol-Pep1 to maleimide-derivatized liposomes at various ratios. The dual ligand (folate and Pep1)-modified liposome (dF/P-L) was prepared by separately attaching both ligands to the liposomal surface via a short (PEG2000) or long (PEG3400) linker. The physical and conformational characteristics including vesicle size, zeta potential, and the number of conjugated ligands were determined. Intracellular uptake specificities of various fluorescent probe-containing cF-P-L and dF/P-L systems were assessed using FR-positive HeLa and FR-negative HaCaT cells. Cellular uptake behavior was visualized by confocal laser scanning microscopy (CLSM). Internalization was time-dependent. Fol-Pep1 and Pep-1 cytotoxicities were negligible up to 25 ?M in FR-positive and FR-negative cells. Empty cF-P-L and dF/P-L were nontoxic at the concentration used. The optimized dF3/P2(450/90) system carrying 450 PEG3400-linked folate and 90 PEG2000-linked Pep1 molecules could be a good candidate for FR-specific intracellular drug delivery. PMID:26544061

  2. Micronutrient Status in Female University Students: Iron, Zinc, Copper, Selenium, Vitamin B12 and Folate

    PubMed Central

    Fayet-Moore, Flavia; Petocz, Peter; Samman, Samir

    2014-01-01

    Young women are at an increased risk of micronutrient deficiencies, particularly due to higher micronutrient requirements during childbearing years and multiple food group avoidances. The objective of this study was to investigate biomarkers of particular micronutrients in apparently healthy young women. Female students (n = 308; age range 18–35 year; Body Mass Index 21.5 ± 2.8 kg/m2; mean ± SD) were recruited to participate in a cross-sectional study. Blood samples were obtained from participants in the fasted state and analysed for biomarkers of iron status, vitamin B12, folate, homocysteine, selenium, zinc, and copper. The results show iron deficiency anaemia, unspecified anaemia, and hypoferritinemia in 3%, 7% and 33.9% of participants, respectively. Low vitamin B12 concentrations (<120 pmol/L) were found in 11.3% of participants, while 4.7% showed sub-clinical deficiency based on serum methylmalonic acid concentrations >0.34 ?mol/L. Folate concentrations below the reference range were observed in 1.7% (serum) or 1% (erythrocytes) of participants, and 99.7% of the participant had erythrocyte-folate concentrations >300 nmol/L. Serum zinc concentrations <10.7 ?mol/L were observed in 2% of participants. Serum copper and selenium concentrations were below the reference range in 23% and 11% of participants, respectively. Micronutrient deficiencies including iron and vitamin B12, and apparent excess of folate are present in educated Australian female students of childbearing age, including those studying nutrition. The effects of dietary behaviours and food choices on markers of micronutrient status require further investigation. PMID:25401503

  3. Folate-modified lipid–polymer hybrid nanoparticles for targeted paclitaxel delivery

    PubMed Central

    Zhang, Linhua; Zhu, Dunwan; Dong, Xia; Sun, Hongfan; Song, Cunxian; Wang, Chun; Kong, Deling

    2015-01-01

    The purpose of this study was to develop a novel lipid–polymer hybrid drug carrier comprised of folate (FA) modified lipid-shell and polymer-core nanoparticles (FLPNPs) for sustained, controlled, and targeted delivery of paclitaxel (PTX). The core-shell NPs consist of 1) a poly(?-caprolactone) hydrophobic core based on self-assembly of poly(?-caprolactone)–poly(ethylene glycol)–poly(?-caprolactone) (PCL-PEG-PCL) amphiphilic copolymers, 2) a lipid monolayer formed with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol)-2000] (DSPE-PEG2000), 3) a targeting ligand (FA) on the surface, and were prepared using a thin-film hydration and ultrasonic dispersion method. Transmission electron microscopy and dynamic light scattering analysis confirmed the coating of the lipid monolayer on the hydrophobic polymer core. Physicochemical characterizations of PTX-loaded FLPNPs, such as particle size and size distribution, zeta potential, morphology, drug loading content, encapsulation efficiency, and in vitro drug release, were also evaluated. Fluorescent microscopy proved the internalization efficiency and targeting ability of the folate conjugated on the lipid monolayer for the EMT6 cancer cells which overexpress folate receptor. In vitro cytotoxicity assay demonstrated that the cytotoxic effect of PTX-loaded FLPNPs was lower than that of Taxol®, but higher than that of PTX-loaded LPNPs (without folate conjugation). In EMT6 breast tumor model, intratumoral administration of PTX-loaded FLPNPs showed similar antitumor efficacy but low toxicity compared to Taxol®. More importantly, PTX-loaded FLPNPs showed greater tumor growth inhibition (65.78%) than the nontargeted PTX-loaded LPNPs (48.38%) (P<0.05). These findings indicated that the PTX loaded-FLPNPs with mixed lipid monolayer shell and biodegradable polymer core would be a promising nanosized drug formulation for tumor-targeted therapy. PMID:25844039

  4. The nutritional status of iron, folate, and vitamin B-12 of Buddhist vegetarians.

    PubMed

    Lee, Yujin; Krawinkel, Michael

    2011-01-01

    Nutritional status of iron, folate, and vitamin B-12 in vegetarians were assessed and compared with those of non- vegetarians in Korea. The vegetarian subjects were 54 Buddhist nuns who ate no animal source food except for dairy products. The non-vegetarians were divided into two groups: 31 Catholic nuns and 31 female college students. Three-day dietary records were completed, and the blood samples were collected for analyzing a complete blood count, and serum levels of ferritin, folate, and vitamin B-12. There was no difference in hemoglobin among the diet groups. The serum ferritin and hematocrit levels of vegetarians did not differ from that of non- vegetarian students with a high intake of animal source food but low intake of vitamin C, and the levels were lower than that of non-vegetarian Catholic nuns with a modest consumption of animal source food and a high intake of vitamin C. The serum vitamin B-12 levels of all subjects except one vegetarian and the serum folate levels of all subjects except one non-vegetarian student fell within a normal range. In vegetarians, there was a positive correlation between the vitamin C intake and serum ferritin levels as well as between the laver intake and serum vitamin B-12 levels. In order to achieve an optimal iron status, both an adequate amount of iron intake and its bioavailability should be considered. Sufficient intake of vegetables and fruits was reflected in adequate serum folate status. Korean laver can be a good source of vitamin B-12 for vegetarians. PMID:21393109

  5. Folate-vinca alkaloid conjugates for cancer therapy: a structure-activity relationship.

    PubMed

    Leamon, Christopher P; Vlahov, Iontcho R; Reddy, Joseph A; Vetzel, Marilynn; Santhapuram, Hari Krishna R; You, Fei; Bloomfield, Alicia; Dorton, Ryan; Nelson, Melissa; Kleindl, Paul; Vaughn, Jeremy F; Westrick, Elaine

    2014-03-19

    Vintafolide is a potent folate-targeted vinca alkaloid small molecule drug conjugate (SMDC) that has shown promising results in multiple clinical oncology studies. Structurally, vintafolide consists of 4 essential modules: (1) folic acid, (2) a hydrophilic peptide spacer, (3) a disulfide-containing, self-immolative linker, and (4) the cytotoxic drug, desacetylvinblastine hydrazide (DAVLBH). Here, we report a structure-activity study evaluating the biological impact of (i) substituting DAVLBH within the vintafolide molecule with other vinca alkaloid analogues such as vincristine, vindesine, vinflunine, or vinorelbine; (ii) substituting the naturally (S)-configured Asp-Arg-Asp-Asp-Cys peptide with alternative hydrophilic spacers of varied composition; and (iii) varying the composition of the linker module. A series of vinca alkaloid-containing SMDCs were synthesized and purified by HPLC and LCMS. The SMDCs were screened in vitro against folate receptor (FR)-positive cells, and anti-tumor activity was tested against well-established subcutaneous FR-positive tumor xenografts. The cytotoxic and anti-tumor activity was directly compared to that produced by vintafolide. Among all the folate vinca alkaloid SMDCs tested, DAVLBH-containing SMDCs were active, while those constructed with vincristine, vindesine, or vinorelbine analogues failed to produce meaningful biological activity. Within the DAVLBH series, having a bioreleasable, self-immolative linker system was found to be critical for activity since multiple analogues constructed with thioether-based linkers all failed to produce meaningful activity both in vitro and in vivo. Substitutions of some or all of the natural amino acids within vintafolide's hydrophilic spacer module did not significantly change the in vitro or in vivo potency of the SMDCs. Vintafolide remains one of the most potent folate-vinca alkaloid SMDCs produced to date, and continued clinical development is warranted. PMID:24564229

  6. Dioxin mediates downregulation of the reduced folate carrier transport activity via the arylhydrocarbon receptor signalling pathway

    SciTech Connect

    Halwachs, Sandra; Lakoma, Cathleen; Gebhardt, Rolf; Schaefer, Ingo; Seibel, Peter; Honscha, Walther

    2010-07-15

    Dioxins such as 2,3,7,8-tetrachlordibenzo-p-dioxin (TCDD) are common environmental contaminants known to regulate several genes via activation of the transcription factor aryl hydrocarbon receptor (AhR) associated with the development of numerous adverse biological effects. However, comparatively little is known about the molecular mechanisms by which dioxins display their toxic effects in vertebrates. The 5' untranslated region of the hepatocellular Reduced folate carrier (Rfc1; Slc19a1) exhibits AhR binding sites termed dioxin responsive elements (DRE) that have as yet only been found in the promoter region of prototypical TCDD target genes. Rfc1 mediated transport of reduced folates and antifolate drugs such as methotrexate (MTX) plays an essential role in physiological folate homeostasis and MTX cancer chemotherapy. In order to determine whether this carrier represents a target gene of dioxins we have investigated the influence of TCDD on functional Rfc1 activity in rat liver. Pre-treatment of rats with TCDD significantly diminished hepatocellular Rfc1 uptake activity in a time- and dose-dependent manner. In further mechanistic studies we demonstrated that this reduction was due to TCDD-dependent activation of the AhR signalling pathway. We additionally showed that binding of the activated receptor to DRE motifs in the Rfc1 promoter resulted in downregulation of Rfc1 gene expression and reduced carrier protein levels. As downregulation of pivotal Rfc1 activity results in functional folate deficiency associated with an elevated risk of cardiovascular diseases or carcinogenesis, our results indicate that deregulation of this essential transport pathway represents a novel regulatory mechanism how dioxins display their toxic effects through the Ah receptor.

  7. Intracellular uptake, trafficking and subcellular distribution of folate conjugated single walled carbon nanotubes within living cells.

    PubMed

    Kang, Bin; Yu, De-Cai; Chang, Shu-Quan; Chen, Da; Dai, Yao-Dong; Ding, Yitao

    2008-09-17

    Herein we studied the uptake, trafficking and distribution of folate conjugated single walled carbon nanotubes (SWNTs) within living cells. SWNTs were noncovalently functionalized with chitosan and then linked with folate acid and fluorescence dye Alexa Fluor 488 (denoted FA-SWNTs). Hep G2 cells were cultured in vitro and incubated with FA-SWNTs at different levels. The FA-SWNTs exhibited a concentration-dependent uptake within Hep G2 cells, and Hep G2 cells were able to internalize FA-SWNTs via a folate receptor-mediated pathway. The distribution of nanotubes inside cells demonstrated that the FA-SWNTs only locate in the cytoplasm and not in nuclei, indicating the failure of transporting through the nuclear envelope. Transmission electron microscope (TEM) results showed the presence of FA-SWNTs in lysosomes and the discharge to extracellular space after incubation with nanotubes for 5 h. No obvious cellular death rate was observed when the concentration of nanotubes was below 50 µg ml(-1). However, cells with FA-SWNT uptake showed a concentration-dependent apoptosis. These discoveries might be helpful for understanding the interaction of SWNTs and living cells. PMID:21832540

  8. Human reduced folate carrier: translation of basic biology to cancer etiology and therapy.

    PubMed

    Matherly, Larry H; Hou, Zhanjun; Deng, Yijun

    2007-03-01

    This review attempts to provide a comprehensive overview of the biology of the physiologically and pharmacologically important transport system termed the "reduced folate carrier" (RFC). The ubiquitously expressed RFC has unequivocally established itself as the major transport system in mammalian cells and tissues for a group of compounds including folate cofactors and classical antifolate therapeutics. Loss of RFC expression or function may have potentially profound pathophysiologic consequences including cancer. For chemotherapeutic antifolates used for cancer such as methotrexate or pemetrexed, synthesis of mutant RFCs or loss of RFC transcripts and proteins results in antifolate resistance due to incomplete inhibition of cellular enzyme targets and insufficient substrate for polyglutamate synthesis. Since RFC was first cloned in 1994, tremendous advances have been made in understanding the complex transcriptional and posttranscriptional regulation of RFC, in identifying structurally and functionally important domains and amino acids in the RFC molecule as a prelude to establishing the mechanism of transport, and in characterizing the molecular defects in RFC associated with loss of transport in antifolate resistant cell line models. Many of the insights gained from laboratory models of RFC portend opportunities for modulating carrier expression in drug resistant tumors, and for designing a new generation of agents with improved transport by RFC or substantially enhanced transport by other folate transporters over RFC. Many of the advances in the basic biology of RFC in cell line models are now being directly applied to human cancers in the clinical setting, most notably pediatric acute lymphoblastic leukemia and osteogenic sarcoma. PMID:17334909

  9. The folate-coupled enzyme MTHFD2 is a nuclear protein and promotes cell proliferation

    PubMed Central

    Gustafsson Sheppard, Nina; Jarl, Lisa; Mahadessian, Diana; Strittmatter, Laura; Schmidt, Angelika; Madhusudan, Nikhil; Tegnér, Jesper; Lundberg, Emma K.; Asplund, Anna; Jain, Mohit; Nilsson, Roland

    2015-01-01

    Folate metabolism is central to cell proliferation and a target of commonly used cancer chemotherapeutics. In particular, the mitochondrial folate-coupled metabolism is thought to be important for proliferating cancer cells. The enzyme MTHFD2 in this pathway is highly expressed in human tumors and broadly required for survival of cancer cells. Although the enzymatic activity of the MTHFD2 protein is well understood, little is known about its larger role in cancer cell biology. We here report that MTHFD2 is co-expressed with two distinct gene sets, representing amino acid metabolism and cell proliferation, respectively. Consistent with a role for MTHFD2 in cell proliferation, MTHFD2 expression was repressed in cells rendered quiescent by deprivation of growth signals (serum) and rapidly re-induced by serum stimulation. Overexpression of MTHFD2 alone was sufficient to promote cell proliferation independent of its dehydrogenase activity, even during growth restriction. In addition to its known mitochondrial localization, we found MTHFD2 to have a nuclear localization and co-localize with DNA replication sites. These findings suggest a previously unknown role for MTHFD2 in cancer cell proliferation, adding to its known function in mitochondrial folate metabolism. PMID:26461067

  10. The association of folate pathway and DNA repair polymorphisms with susceptibility to childhood acute lymphoblastic leukemia.

    PubMed

    Gori?ar, Katja; Er?ulj, Nina; Faganel Kotnik, Barbara; Debeljak, Maruša; Hovnik, Tinka; Jazbec, Janez; Dolžan, Vita

    2015-05-15

    Genetic factors may play an important role in susceptibility to childhood acute lymphoblastic leukemia (ALL). The aim of our study was to evaluate the associations of genetic polymorphisms in folate pathway and DNA repair genes with susceptibility to ALL. In total, 121 children with ALL and 184 unrelated healthy controls of Slovenian origin were genotyped for 14 polymorphisms in seven genes of folate pathway, base excision repair and homologous recombination repair (TYMS, MTHFR, OGG1, XRCC1, NBN, RAD51, and XRCC3). In addition, the exon 6 of NBN was screened for the presence of mutations using denaturing high performance liquid chromatography. Twelve polymorphisms were in Hardy-Weinberg equilibrium in controls and their genotype frequencies were in agreement with those reported in other Caucasian populations. Among the investigated polymorphisms and mutations, NBN Glu185Gln significantly decreased susceptibility to B-cell ALL (p=0.037), while TYMS 3R allele decreased susceptibility to T-cell ALL (p=0.011). Moreover, significantly decreased susceptibility to ALL was observed for MTHFR TA (p=0.030) and RAD51 GTT haplotypes (p=0.016). Susceptibility to ALL increased with the increasing number of risk alleles (ptrend=0.007). We also observed significant influence of hOGG-RAD51 and NBN-RAD51 interactions on susceptibility to ALL. Our results suggest that combination of several polymorphisms in DNA repair and folate pathways may significantly affect susceptibility to childhood ALL. PMID:25746326

  11. A history of the isolation and identification of folic acid (folate).

    PubMed

    Rosenberg, Irwin H

    2012-01-01

    In the 1930s, Lucy Wills identified a 'new hemopoietic factor' in yeast and liver which cured tropical macrocytic anemia in humans and experimental anemia in monkeys. Janet Watson and William B. Castle named the unknown substance, which would ultimately become a form of folate, 'Wills' factor'. Further studies with this unknown substance showed that it was active against nutritional pancytopenia in monkeys and experimental anemia in chicks, leading to various designations such as vitamin M (monkey) and vitamin B(c) (chick). Other factors with growth-promoting activity for microorganisms such as Lactobacillus casei were given the interim names including folic acid - in recognition of extracts from leafy greens. Competing pharmaceutical research groups headed by Robert Stokstad at Lederle Laboratories and Joseph John Pfiffner at Parke-Davis Research Laboratory independently isolated factors bearing the biological properties of Wills' factor and other unknown related factors including folic acid, Lederle Laboratories from a bacterial culture and Parke-Davis Laboratory from yeast and liver as a conjugate of folate. The new vitamin then was crystallized, chemically identified, and synthesized as pteroylglutamic acid and named folic acid between 1943 and 1945. Further studies of the monoglutamic folic acid and the yeast isolate polyglutamyl folate followed through the 1950s and to the present. PMID:23183294

  12. Paternal dietary folate, B6 and B12 intake, and the risk of childhood brain tumors.

    PubMed

    Greenop, Kathryn R; Miller, Margaret; Bailey, Helen D; Scott, Rodney J; Attia, John; Bower, Carol; van Bockxmeer, Frank M; Ashton, Lesley J; Armstrong, Bruce K; Milne, Elizabeth

    2015-01-01

    It is biologically plausible that a paternal preconception diet low in nutrients related to DNA integrity could affect sperm DNA and subsequently risk of cancer in the offspring. The aim of this analysis was to investigate whether paternal preconception dietary folate, B6, or B12 intake was associated with the risk of childhood brain tumors (CBT) in an Australian case-control study. Cases <15 years of age were recruited from 10 Australian pediatric oncology centers between 2005 and 2010, and controls from random-digit dialing, frequency-matched to cases on age, sex, and state of residence. Paternal dietary information was obtained by food-frequency questionnaires. Nutrient values were energy adjusted and divided into tertiles for analysis by unconditional logistic regression. In fathers with relevant data (237 cases and 629 controls), no association with dietary folate and B6 and risk of CBT was seen; high B12 intake was associated with an increased risk of CBT (odds ratio highest vs. lowest tertile: 1.74, 95% confidence interval: 1.14, 2.66) without an increasing trend. These results do not support the hypothesis that paternal dietary folate intake influences the risk of CBT. The increased OR observed between dietary B12 intake and risk of CBT is without any certain explanation. PMID:25625505

  13. para-Aminobenzoic Acid Is a Precursor in Coenzyme Q6 Biosynthesis in Saccharomyces cerevisiae*

    PubMed Central

    Marbois, Beth; Xie, Letian X.; Choi, Samuel; Hirano, Kathleen; Hyman, Kyle; Clarke, Catherine F.

    2010-01-01

    Coenzyme Q (ubiquinone or Q) is a crucial mitochondrial lipid required for respiratory electron transport in eukaryotes. 4-Hydroxybenozoate (4HB) is an aromatic ring precursor that forms the benzoquinone ring of Q and is used extensively to examine Q biosynthesis. However, the direct precursor compounds and enzymatic steps for synthesis of 4HB in yeast are unknown. Here we show that para-aminobenzoic acid (pABA), a well known precursor of folate, also functions as a precursor for Q biosynthesis. A hexaprenylated form of pABA (prenyl-pABA) is normally present in wild-type yeast crude lipid extracts but is absent in yeast abz1 mutants starved for pABA. A stable 13C6-isotope of pABA (p- amino[aromatic-13C6]benzoic acid ([13C6]pABA)), is prenylated in either wild-type or abz1 mutant yeast to form prenyl-[13C6]pABA. We demonstrate by HPLC and mass spectrometry that yeast incubated with either [13C6]pABA or [13C6]4HB generate both 13C6-demethoxy-Q (DMQ), a late stage Q biosynthetic intermediate, as well as the final product 13C6-coenzyme Q. Pulse-labeling analyses show that formation of prenyl-pABA occurs within minutes and precedes the synthesis of Q. Yeast utilizing pABA as a ring precursor produce another nitrogen containing intermediate, 4-imino-DMQ6. This intermediate is produced in small quantities in wild-type yeast cultured in standard media and in abz1 mutants supplemented with pABA. We suggest a mechanism where Schiff base-mediated deimination forms DMQ6 quinone, thereby eliminating the nitrogen contributed by pABA. This scheme results in the convergence of the 4HB and pABA pathways in eukaryotic Q biosynthesis and has implications regarding the action of pABA-based antifolates. PMID:20592037

  14. Light-controlled flavonoid biosynthesis in fruits

    PubMed Central

    Zoratti, Laura; Karppinen, Katja; Luengo Escobar, Ana; Häggman, Hely; Jaakola, Laura

    2014-01-01

    Light is one of the most important environmental factors affecting flavonoid biosynthesis in plants. The absolute dependency of light to the plant development has driven evolvement of sophisticated mechanisms to sense and transduce multiple aspects of the light signal. Light effects can be categorized in photoperiod (duration), intensity (quantity), direction and quality (wavelength) including UV-light. Recently, new information has been achieved on the regulation of light-controlled flavonoid biosynthesis in fruits, in which flavonoids have a major contribution on quality. This review focuses on the effects of the different light conditions on the control of flavonoid biosynthesis in fruit producing plants. An overview of the currently known mechanisms of the light-controlled flavonoid accumulation is provided. R2R3 MYB transcription factors are known to regulate by differential expression the biosynthesis of distinct flavonoids in response to specific light wavelengths. Despite recent advances, many gaps remain to be understood in the mechanisms of the transduction pathway of light-controlled flavonoid biosynthesis. A better knowledge on these regulatory mechanisms is likely to be useful for breeding programs aiming to modify fruit flavonoid pattern. PMID:25346743

  15. Radiosensitization effect of folate-conjugated gold nanoparticles on HeLa cancer cells under orthovoltage superficial radiotherapy techniques

    NASA Astrophysics Data System (ADS)

    Khoshgard, Karim; Hashemi, Bijan; Arbabi, Azim; Javad Rasaee, Mohammad; Soleimani, Masoud

    2014-05-01

    Due to the high atomic number of gold nanoparticles (GNPs), they are known as new radiosensitizer agents for enhancing the efficiency of superficial radiotherapy techniques by increasing the dose absorbed in tumor cells wherein they can be accumulated selectively. The aim of this study was to compare the effect of various common low energy levels of orthovoltage x-rays and megavoltage ?-rays (Co-60) on enhancing the therapeutic efficiency of HeLa cancer cells in the presence of conjugated folate and non-conjugated (pegylated) GNPs. To achieve this, GNPs with an average diameter of 52 nm were synthesized and conjugated to folic acid molecules. Pegylated GNPs with an average diameter of 47 nm were also synthesized and used as non-conjugated folate GNPs. Cytotoxicity assay of the synthesized folate-conjugated and pegylated GNPs was performed using different levels of nanoparticle concentration incubated with HeLa cells for 24 h. The radiosensitizing effect of both the conjugated and pegylated GNPs on the cells at a concentration of 50 µM was compared using MTT as well as clonogenic assays after exposing them to 2 Gy ionizing radiation produced by an orthovoltage x-ray machine at four different kVps and ?-rays of a Co-60 unit. Significant differences were noted among various irradiated groups with and without the folate conjugation, with an average dose enhancement factor (DEF) of 1.64 ± 0.05 and 1.35 ± 0.05 for the folate-conjugated and pegylated GNPs, respectively. The maximum DEF was obtained with the 180 kVp x-ray beam for both of the GNPs. Folate-conjugated GNPs can significantly enhance the cell killing potential of orthovoltage x-ray energies (especially at 180 kVp) in folate receptor-expressing cancer cells, such as HeLa, in superficial radiotherapy techniques.

  16. Intakes of dietary folate and other B vitamins are associated with risks of esophageal adenocarcinoma, Barrett's esophagus, and reflux esophagitis.

    PubMed

    Sharp, Linda; Carsin, Anne-Elie; Cantwell, Marie M; Anderson, Lesley A; Murray, Liam J

    2013-12-01

    Folate is implicated in carcinogenesis via effects on DNA synthesis, repair, and methylation. Efficient folate metabolism requires other B vitamins and is adversely affected by smoking and alcohol. Esophageal adenocarcinoma (EAC) may develop through a process involving inflammation [reflux esophagitis (RE)] leading to metaplasia [Barrett's esophagus (BE)] and carcinoma. Within a population-based, case-control study, we investigated associations between dietary folate and related factors and risks of EAC, BE, and RE. EAC and BE cases had histologically confirmed disease; RE cases had endoscopically visible inflammation. Controls, age-sex frequency matched to EAC cases, were selected through population and general practice registers. Participants underwent structured interviews and completed food-frequency questionnaires. Multivariate ORs and 95% CIs were computed using logistic regression. A total of 256 controls and 223 EAC, 220 BE, and 219 RE cases participated. EAC risk decreased with increasing folate intake (OR highest vs. lowest = 0.56; 95% CI: 0.31, 1.00; P-trend < 0.01). Similar trends were found for BE (P-trend < 0.01) and RE (P-trend = 0.01). Vitamin B-6 intake was significantly inversely related to risks of all 3 lesions. Riboflavin intake was inversely associated with RE. Vitamin B-12 intake was positively associated with EAC. For EAC, there was a borderline significant interaction between folate intake and smoking (P-interaction = 0.053); compared with nonsmokers with high (? median) folate intake, current smokers with low intakes (Folate and other dietary methyl-group factors are implicated in the etiology of EAC and its precursors. PMID:24132576

  17. Mild depletion of dietary folate combined with other B vitamins alters multiple components of the Wnt pathway in mouse colon.

    PubMed

    Liu, Zhenhua; Choi, Sang-Woon; Crott, Jimmy W; Keyes, Mary K; Jang, Hyeran; Smith, Donald E; Kim, Myungjin; Laird, Peter W; Bronson, Roderick; Mason, Joel B

    2007-12-01

    Preclinical and clinical studies suggest that diminished folate status increases the risk of colorectal carcinogenesis. However, many biochemical functions of folate are dependent on the adequate availability of other 1-carbon nutrients, including riboflavin, vitamin B-6, and vitamin B-12. Aberrations in the Wnt pathway are thought to play an important role in human colorectal cancers. This study therefore investigated if mild depletion of folate combined with depletion of riboflavin, vitamin B-6, and vitamin B-12 could induce alterations in the Wnt pathway in the colonic mucosa. Ninety-six mice were pair-fed diets with different combinations of B vitamin depletion for 10 wk. Genomic DNA methylation and uracil misincorporation were measured by LC/MS and GC/MS. Gene-specific methylation, strand breaks, and expressions were measured by real-time PCR and immunoblotting. Proliferation and apoptosis were determined by immunohistochemistry. DNA strand breaks within the Apc mutation cluster region were induced by folate depletion combined with inadequacies of riboflavin, vitamin B-6, and vitamin B-12 (P < 0.05), but such effects were not induced by folate depletion alone. Similarly, minor changes in the expression of Apc, beta-catenin, and cyclin D1 produced by mild folate depletion were significantly magnified by multiple vitamin depletion. Apoptosis, which can be suppressed by increased Wnt-signaling, was attenuated by the combined deficiency state (P < 0.05) but not by singlet or doublet deficiencies. These findings indicate that a mild depletion of folate that is of insufficient magnitude by itself to induce alterations in components of the Wnt pathway may produce such effects when present in conjunction with mild inadequacies of other 1-carbon nutrients. PMID:18029487

  18. Association between dietary intake of folate, vitamin B6, B12 & MTHFR, MTR Genotype and breast cancer risk

    PubMed Central

    Weiwei, Zheng; Liping, Chen; Dequan, Li

    2014-01-01

    Objective: we conducted a case-control study to investigate the association between dietary folate, vitamin B6 and vitamin B12 intake, MTHFR and MTR genotype, and breast cancer risk. Methods: Genotyping for MTHFR C677T and A1298C and MTR A2756G polymorphisms were performed using polymerase chain reaction-restriction fragment length polymorphism analysis (PCR-RFLP) method. The intake of folate, vitamin B6 and vitamin B12 were calculated by each food item from questionnaire. Results: Subjects with breast cancer tended to have more first-degree relatives (?2=30.77, P<0.001) and have high intake of folate (t=2.42, P=0.008) and Vitamin B6 (t=2.94, P=0.002). Compared to the reference group, women with MTHFR 677 TT genotype and T allele had a significantly increased risk of breast cancer, with ORs (95%CI) of 1.8(1.08-2.27) and 1.39(1.02-1.92), respectively. For those who had folate intake?450 ug/day, MTHFR 667TT genotype was associated with a higher risk of breast cancer (OR=2.45, 95% CI=1.09-5.82, P=0.02). Similarly, subjects with Vitamin B6 intake?0.84 mg/day and MTHFR 667T allele genotype was correlated with a marginally increased risk of breast cancer. A significant interaction was observed between MTHFR C667T polymorphism and folate intake on the risk of breast cancer (P for interaction was 0.025). Conclusion: This case-control study found a significant association between MTHFR C667T polymorphism, folate intake and vitamin B6 and breast cancer risk, and a significant interaction was observed between MTHFR C667T polymorphism and folate intake on the risk of breast cancer. PMID:24639841

  19. Mitochondrial respiration without ubiquinone biosynthesis.

    PubMed

    Wang, Ying; Hekimi, Siegfried

    2013-12-01

    Ubiquinone (UQ), a.k.a. coenzyme Q, is a redox-active lipid that participates in several cellular processes, in particular mitochondrial electron transport. Primary UQ deficiency is a rare but severely debilitating condition. Mclk1 (a.k.a. Coq7) encodes a conserved mitochondrial enzyme that is necessary for UQ biosynthesis. We engineered conditional Mclk1 knockout models to study pathogenic effects of UQ deficiency and to assess potential therapeutic agents for the treatment of UQ deficiencies. We found that Mclk1 knockout cells are viable in the total absence of UQ. The UQ biosynthetic precursor DMQ9 accumulates in these cells and can sustain mitochondrial respiration, albeit inefficiently. We demonstrated that efficient rescue of the respiratory deficiency in UQ-deficient cells by UQ analogues is side chain length dependent, and that classical UQ analogues with alkyl side chains such as idebenone and decylUQ are inefficient in comparison with analogues with isoprenoid side chains. Furthermore, Vitamin K2, which has an isoprenoid side chain, and has been proposed to be a mitochondrial electron carrier, had no efficacy on UQ-deficient mouse cells. In our model with liver-specific loss of Mclk1, a large depletion of UQ in hepatocytes caused only a mild impairment of respiratory chain function and no gross abnormalities. In conjunction with previous findings, this surprisingly small effect of UQ depletion indicates a nonlinear dependence of mitochondrial respiratory capacity on UQ content. With this model, we also showed that diet-derived UQ10 is able to functionally rescue the electron transport deficit due to severe endogenous UQ deficiency in the liver, an organ capable of absorbing exogenous UQ. PMID:23847050

  20. EE-drospirenone-levomefolate calcium versus EE-drospirenone + folic acid: folate status during 24 weeks of treatment and over 20 weeks following treatment cessation

    PubMed Central

    Diefenbach, Konstanze; Trummer, Dietmar; Ebert, Frank; Lissy, Michael; Koch, Manuela; Rohde, Beate; Blode, Hartmut

    2013-01-01

    Background Adequate folate supplementation in the periconceptional phase is recommended to reduce the risk of neural tube defects. Oral contraceptives may provide a reasonable delivery vehicle for folate supplementation before conception in women of childbearing potential. This study aimed to demonstrate that a fixed-dose combination of an oral contraceptive and levomefolate calcium leads to sustainable improvements in folate status compared with an oral contraceptive + folic acid. Methods This was a double-blind, randomized, parallel-group study in which 172 healthy women aged 18–40 years received ethinylestradiol (EE)-drospirenone-levomefolate calcium or EE-drospirenone + folic acid for 24 weeks (invasion phase), and EE-drospirenone for an additional 20 weeks (folate elimination phase). The main objective of the invasion phase was to examine the area under the folate concentration time-curve for plasma and red blood cell (RBC) folate, while the main objective of the elimination phase was to determine the duration of time for which RBC folate concentration remained ? 906 nmol/L after cessation of EE-drospirenone-levomefolate calcium. Results Mean concentration-time curves for plasma folate, RBC folate, and homocysteine were comparable between treatment groups during both study phases. During the invasion phase, plasma and RBC folate concentrations increased and approached steady-state after about 8 weeks (plasma) or 24 weeks (RBC). After cessation of treatment with levomefolate calcium, folate concentrations decreased slowly. The median time to RBC folate concentrations falling below 906 nmol/L was 10 weeks (95% confidence interval 8–12 weeks) after cessation of EE-drospirenone-levomefolate calcium treatment. Plasma and RBC folate levels remained above baseline values in 41.3% and 89.3% of women, respectively, at the end of the 20-week elimination phase. Conclusion Improvements in folate status were comparable between EE-drospirenone-levomefolate calcium and EE-drospirenone + folic acid. Plasma and RBC folate levels remained elevated for several months following cessation of treatment with EE-drospirenone-levomefolate calcium. PMID:23610531

  1. Hydrogen isotope fractionation during lipid biosynthesis by Haloarcula marismortui

    E-print Network

    Hydrogen isotope fractionation during lipid biosynthesis by Haloarcula marismortui Sitindra S studied the controls on the fractionation of hydrogen isotopes during lipid biosynthesis by Haloarcula marismortui, a halophilic archaea, in pure culture experiments by varying organic substrate, the hydrogen

  2. Hereditary folate malabsorption: A positively charged amino acid at position 113 of the proton-coupled folate transporter (PCFT/SLC46A1) is required for folic acid binding

    SciTech Connect

    Lasry, Inbal; Berman, Bluma; Glaser, Fabian; Jansen, Gerrit; Assaraf, Yehuda G.

    2009-08-28

    The proton-coupled folate transporter (PCFT/SLC46A1) mediates intestinal folate uptake at acidic pH. Some loss of folic acid (FA) transport mutations in PCFT from hereditary folate malabsorption (HFM) patients cluster in R113, thereby suggesting a functional role for this residue. Herein, unlike non-conservative substitutions, an R113H mutant displayed 80-fold increase in the FA transport Km while retaining parental Vmax, hence indicating a major fall in folate substrate affinity. Furthermore, consistent with the preservation of 9% of parental transport activity, R113H transfectants displayed a substantial decrease in the FA growth requirement relative to mock transfectants. Homology modeling based on the crystal structures of the Escherichia coli transporter homologues EmrD and glycerol-3-phosphate transporter revealed that the R113H rotamer properly protrudes into the cytoplasmic face of the minor cleft normally occupied by R113. These findings constitute the first demonstration that a basic amino acid at position 113 is required for folate substrate binding.

  3. Flavonoids: biosynthesis, biological functions, and biotechnological applications

    PubMed Central

    Falcone Ferreyra, María L.; Rius, Sebastián P.; Casati, Paula

    2012-01-01

    Flavonoids are widely distributed secondary metabolites with different metabolic functions in plants. The elucidation of the biosynthetic pathways, as well as their regulation by MYB, basic helix-loop-helix (bHLH), and WD40-type transcription factors, has allowed metabolic engineering of plants through the manipulation of the different final products with valuable applications. The present review describes the regulation of flavonoid biosynthesis, as well as the biological functions of flavonoids in plants, such as in defense against UV-B radiation and pathogen infection, nodulation, and pollen fertility. In addition, we discuss different strategies and achievements through the genetic engineering of flavonoid biosynthesis with implication in the industry and the combinatorial biosynthesis in microorganisms by the reconstruction of the pathway to obtain high amounts of specific compounds. PMID:23060891

  4. Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies

    PubMed Central

    Schmid, Jochen; Sieber, Volker; Rehm, Bernd

    2015-01-01

    Bacteria produce a wide range of exopolysaccharides which are synthesized via different biosynthesis pathways. The genes responsible for synthesis are often clustered within the genome of the respective production organism. A better understanding of the fundamental processes involved in exopolysaccharide biosynthesis and the regulation of these processes is critical toward genetic, metabolic and protein-engineering approaches to produce tailor-made polymers. These designer polymers will exhibit superior material properties targeting medical and industrial applications. Exploiting the natural design space for production of a variety of biopolymer will open up a range of new applications. Here, we summarize the key aspects of microbial exopolysaccharide biosynthesis and highlight the latest engineering approaches toward the production of tailor-made variants with the potential to be used as valuable renewable and high-performance products for medical and industrial applications. PMID:26074894

  5. Biosynthesis and metabolism of salicylic acid

    SciTech Connect

    Lee, H.; Leon, J.; Raskin, I.

    1995-05-09

    Pathways of salicylic acid (SA) biosynthesis and metabolism in tobacco have been recently identified. SA, an endogenous regulator of disease resistance, is a product of phenylpropanoid metabolism formed via decarboxylation of trans-cinnamic acid to benzoic acid and its subsequent 2-hydroxylation to SA. In tobacco mosaic virus-inoculated tobacco leaves, newly synthesized SA is rapidly metabolized to SA O-{beta}-D-glucoside and methyl salicylate. Two key enzymes involved in SA biosynthesis and metabolism: benzoic acid 2-hydroxylase, which converts benzoic acid to SA, and UDPglucose:SA glucosyltransferase (EC 2.4.1.35), which catalyzes conversion of SA to SA glucoside have been partially purified and characterized. Progress in enzymology and molecular biology of SA biosynthesis and metabolism will provide a better understanding of signal transduction pathway involved in plant disease resistance. 62 refs., 1 fig.

  6. Unconventional membrane lipid biosynthesis in Xanthomonas campestris.

    PubMed

    Aktas, Meriyem; Narberhaus, Franz

    2015-09-01

    All bacteria are surrounded by at least one bilayer membrane mainly composed of phospholipids (PLs). Biosynthesis of the most abundant PLs phosphatidylethanolamine (PE), phosphatidylglycerol (PG) and cardiolipin (CL) is well understood in model bacteria such as Escherichia coli. It recently emerged, however, that the diversity of bacterial membrane lipids is huge and that not yet explored biosynthesis pathways exist, even for the common PLs. A good example is the plant pathogen Xanthomonas campestris pv. campestris. It contains PE, PG and CL as major lipids and small amounts of the N-methylated PE derivatives monomethyl PE and phosphatidylcholine (PC?=?trimethylated PE). Xanthomonas campestris uses a repertoire of canonical and non-canonical enzymes for the synthesis of its membrane lipids. In this minireview, we briefly recapitulate standard pathways and integrate three recently discovered pathways into the overall picture of bacterial membrane biosynthesis. PMID:26119594

  7. Triterpenoid biosynthesis in Euphorbia lathyris latex

    SciTech Connect

    Hawkins, D.R.

    1987-11-01

    The structures of triterpenols, not previously been known, from Euphorbia lathyris latex are reported. A method for quantifying very small amounts of these compounds was developed. Concerning the biochemistry of the latex, no exogenous cofactors were required for the biosynthesis and the addition of compounds such as NADPAH and ATP do not stimulate the biosynthesis. The addition of DTE or a similar anti-oxidant was found to help reduce the oxidation of the latex, thus increasing the length of time that the latex remains active. The requirement of a divalent cation and the preference for Mn in the pellet was observed. The effect of several inhibitors on the biosynthesis of the triterpenoids was examined. Mevinolin was found to inhibit the biosynthesis of the triterpenoids from acetate, but not mevalonate. A dixon plot of the inhibition of acetate incorporation showed an I/sub 50/ concentration of 3.2 ..mu..M. Fenpropimorph was found to have little or no effect on the biosynthesis. Tridemorph was found to inhibit the biosynthesis of all of the triterpenoids with an I/sub 50/ of 4 ..mu..M. It was also observed that the cyclopropyl containing triterpenols, cycloartenol and 24-methylenecycloartenol were inhibited much more strongly than those containing an 8-9 double bond, lanosterol and 24-methylenelanosterol. The evidence indicates, but does not definetely prove, that lanosterol and 24-methylenelanosterol are not made from cycloartenol and 24-methylenecycloartenol via a ring-opening enzyme such as cycloeucalenol-obtusifoliol isomerase. The possibilty that cycloartenol is made via lanosterol was investigated by synthesizing 4-R-4-/sup 3/H-mevalonic acid and incubating latex with a mixture of this and /sup 14/C-mevalonic acid. From the /sup 3/H//sup 14/C ratio it was shown that cycloartenol and 24-methylenecycloartenol are not made via an intermediate containing as 8-9 double bond. 88 refs., 15 figs., 30 tabs.

  8. Ethylene biosynthesis. 7. Secondary isotope effects

    SciTech Connect

    Pirrung, M.C.; McGeehan, G.M.

    1986-09-03

    In a continuing investigation of the mechanism of the biosynthesis of ethylene, the plant ripening hormone, from 1-amino-cyclopropanecarboxylic acid, the study of isotope effects was undertaken in order to provide insight into the rates of various bond-breaking steps. While the applicability of the concept of rate-limiting step to enzymatic reactions has been questioned and redefined (and there is little doubt an ethylene-forming enzyme exists), such studies were expected to elucidate some mechanistic detail as well as measure the validity of a model for ethylene biosynthesis.

  9. The structural biology of phenazine biosynthesis

    PubMed Central

    Blankenfeldt, Wulf; Parsons, James F.

    2014-01-01

    The phenazines are a class of over 150 nitrogen-containing aromatic compounds of bacterial and archeal origin. Their redox properties not only explain their activity as broad-specificity antibiotics and virulence factors but also enable them to function as respiratory pigments, thus extending their importance to the primary metabolism of phenazine-producing species. Despite their discovery in the mid-19th century, the molecular mechanisms behind their biosynthesis have only been unraveled in the last decade. Here, we review the contribution of structural biology that has led to our current understanding of phenazine biosynthesis. PMID:25215885

  10. Carotenoid biosynthesis regulatory mechanisms in plants.

    PubMed

    Othman, Rashidi; Mohd Zaifuddin, Fatimah Azzahra; Hassan, Norazian Mohd

    2014-01-01

    Carotenoids are bioactive compounds with remarkably special properties produced by plants in response to internal and external stresses. In this review paper, we focus on the subject of carotenoid biosynthesis and several factors that have been reported to significantly enhance or reduce carotenoid accumulation in studied plant species. These factors include varietal aspects, location, growing season, and type of stress experienced by a plant. In addition, we propose that there are three stress resistance mechanisms in plants: avoidance, tolerance, and acclimation. Better understanding of the environmental factors affecting carotenoid biosynthesis will help researchers to develop methods for enhancing the production of carotenoids and other pigments to desired concentrations in plant crops. PMID:25017864

  11. Serum folate, cobalamin, homocysteine and methylmalonic acid concentrations in pigs with acute, chronic or subclinical Lawsonia intracellularis infection.

    PubMed

    Grützner, Niels; Gebhart, Connie J; Lawhorn, Bruce D; Suchodolski, Jan S; Steiner, Jörg M

    2015-03-01

    Lawsonia intracellularis is the causative agent of porcine proliferative enteropathy. The clinical presentation can be acute (i.e. proliferative hemorrhagic enteropathy, PHE), chronic (i.e. porcine intestinal adenomatosis, PIA) or subclinical. In humans with chronic enteropathies, low serum folate (vitamin B(9)) and cobalamin (vitamin B(12)) concentrations have been associated with increased serum concentrations of homocysteine and methylmalonic acid (MMA), which reflect the availability of both vitamins at the cellular level. The aim of this study was to evaluate serum folate, cobalamin, homocysteine and MMA concentrations in serum samples from pigs with PHE, PIA or subclinical L. intracellularis infection, and in negative controls. Serum folate, cobalamin, homocysteine and MMA concentrations differed significantly among pigs in the PHE, PIA, subclinical and negative control groups. Serum folate concentrations in the PHE and PIA groups were lower than in the subclinical and negative control groups, while serum cobalamin concentrations were lower in the PIA group than in other groups. Serum concentrations of homocysteine were higher in the PHE, PIA and subclinical groups than in the negative control group. Serum concentrations of MMA were higher in the subclinical and PIA groups than in the control group. These data suggest that pigs infected with L. intracellularis have altered serum cobalamin, folate, homocysteine and MMA concentrations. PMID:25618855

  12. Plasma folate, vitamin B12, and homocysteine and cancers of the esophagus, stomach, and liver in a Chinese population.

    PubMed

    Chang, Shen-Chih; Goldstein, Binh Y; Mu, Lina; Cai, Lin; You, Nai-Chieh Y; He, Na; Ding, Bao-Guo; Zhao, Jin-Kou; Yu, Shun-Zhang; Heber, David; Zhang, Zuo-Feng; Lu, Qing-Yi

    2015-01-01

    Evidence is accumulating regarding a role of micronutrients in folate metabolism in cancer risk. We investigated the associations of plasma folate, vitamin B12, and homocysteine with upper gastrointestinal (GI) cancers in a population-based case-control study in Taixing City, China. With informed consent, we recruited cases with cancers of esophagus (n = 218), stomach (n = 206), and liver (n = 204), and one common healthy control group (n = 405). A standardized epidemiologic questionnaire was used in face-to-face interviews, and blood samples were collected during interviews. We observed an inverse association between plasma folate levels and liver cancer. The adjusted odds ratio (aOR) was 0.46 [95% confidence interval (CI) = 0.24-0.88] comparing individuals in the highest quartile to those in the lowest. We found a positive association between plasma vitamin B12 levels and all three cancers. The aORs for those in the highest quartile were 2.80 (95% CI = 1.51-5.18) for esophageal cancer, 2.17 (1.21-3.89) for stomach cancer, and 9.97 (4.82-20.60) for liver cancer, comparing to those in the lowest quartile. We further observed interaction between plasma folate and vitamin B12 on these cancers. Our data indicated associations between plasma folate and vitamin B12 with upper GI cancers in Chinese population. Further research is warranted considering the debate over the necessity of food fortification. PMID:25607998

  13. The Major Facilitative Folate Transporters Solute Carrier 19A1 and Solute Carrier 46A1: Biology and Role in Antifolate Chemotherapy of Cancer

    PubMed Central

    Wilson, Mike R.; Hou, Zhanjun

    2014-01-01

    This review summarizes the biology of the major facilitative membrane transporters, the reduced folate carrier (RFC) (Solute Carrier 19A1) and the proton-coupled folate transporter (PCFT) (Solute Carrier 46A1). Folates are essential vitamins, and folate deficiency contributes to a variety of health disorders. RFC is ubiquitously expressed and is the major folate transporter in mammalian cells and tissues. PCFT mediates the intestinal absorption of dietary folates and appears to be important for transport of folates into the central nervous system. Clinically relevant antifolates for cancer, such as methotrexate and pralatrexate, are transported by RFC, and loss of RFC transport is an important mechanism of methotrexate resistance in cancer cell lines and in patients. PCFT is expressed in human tumors, and is active at pH conditions associated with the tumor microenvironment. Pemetrexed is an excellent substrate for both RFC and PCFT. Novel tumor-targeted antifolates related to pemetrexed with selective membrane transport by PCFT over RFC are being developed. In recent years, there have been major advances in understanding the structural and functional properties and the regulation of RFC and PCFT. The molecular bases for methotrexate resistance associated with loss of RFC transport and for hereditary folate malabsorption, attributable to mutant PCFT, were determined. Future studies should continue to translate molecular insights from basic studies of RFC and PCFT biology into new therapeutic strategies for cancer and other diseases. PMID:24396145

  14. Mild depletion of dietary folate combined with other B-vitamins alters multiple components of the Wnt pathway in the mouse colon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Preclinical and clinical studies suggest that diminished folate status increases the risk of colorectal carcinogenesis. However, many biochemical functions of folate are dependent on the adequate availability of other ‘one-carbon nutrients’, including riboflavin, vitamin B-6 and B-12. Aberrations i...

  15. TRIBROMOMETHANE EXPOSURE AND DIETARY FOLATE DEFICIENCY IN THE FORMATION OF ABERRANT CRYPT FOCI IN THE COLONS OF F344/N RATS

    EPA Science Inventory

    Folate and folic acid are forms of the B vitamin that are involved in the synthesis, repair and functioning of DNA and are required for the production and maintenance of cells. Low levels of folate have been associated with several forms of cancer, including colon cancer. Aberran...

  16. Doxorubicin loaded polymeric gold nanoparticles targeted to human folate receptor upon laser photothermal therapy potentiates chemotherapy in breast cancer cell lines.

    PubMed

    Banu, Hussaina; Sethi, Dipinder Kaur; Edgar, Andre; Sheriff, Adhnaan; Rayees, Nuthan; Renuka, N; Faheem, S M; Premkumar, Kumpati; Vasanthakumar, Geetha

    2015-08-01

    The current research focuses on the application of folate conjugated and doxorubicin loaded polymeric gold nanoparticles (GNPs) for the targeted treatment of folate receptor overexpressing breast cancers, augmented by adjunctive laser photothermal therapy. Herein, GNPs surface modified with folate, drug doxorubicin and polyethylene glycol were engineered and were used as vehicles for folate receptor targeted delivery of doxorubicin into cancer cells. Subsequently, the GNPs were photo-excited using laser light for mediating hyperthermia in the cancer cells. In vitro studies were performed to validate the efficacy of the combined modality of folate conjugated and doxorubicin loaded polymeric GNP mediated chemotherapy followed by photothermal therapy in comparison to treatment with free drug; and the combination modality showed better therapeutic efficacy than that of plain doxorubicin treatment in MDA-MB-231 breast cancer cells that express increased levels of surface folate receptors when compared to MCF-7 breast cancer cells that express low levels of folate receptor. The mechanism of cell death was investigated using fluorescent microscopy. Immunoassays showed the up-regulation of the pro-apoptotic protein p53 and down-regulation of the anti-apoptotic protein Bcl-2. Collectively, these results suggest that the folate tagged doxorubicin loaded GNPs are an attractive platform for targeted delivery of doxorubicin and are agents suitable for photothermal cancer therapy. PMID:26057021

  17. Folate depletion in human lymphocytes up-regulates p53 expression despite marked induction of strand breaks in exons 5 – 8 of the gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low dietary folate intake is associated with an elevated risk for carcinogenesis. One putative mechanism by which folate depletion promotes carcinogenesis is by inducing gene-specific strand breakage and impaired expression of affected genes. Primary human lymphocytes were cultured in media containi...

  18. Macrophage Folate Receptor-Targeted Antiretroviral Therapy Facilitates Drug Entry, Retention, Antiretroviral Activities and Biodistribution for Reduction of Human Immunodeficiency Virus Infections

    PubMed Central

    Puligujja, Pavan; McMillan, JoEllyn; Kendrick, Lindsey; Li, Tianyuzi; Balkundi, Shantanu; Smith, Nathan; Veerubhotla, Ram S.; Edagwa, Benson J.; Kabanov, Alexander V.; Bronich, Tatiana; Gendelman, Howard E.; Liu, Xin-Ming

    2013-01-01

    Macrophages serve as vehicles for the carriage and delivery of polymer-coated nanoformulated antiretroviral therapy (nanoART). Although superior to native drug, high drug concentrations are required for viral inhibition. Herein, folate-modified atazanavir/ritonavir (ATV/r)-encased polymers facilitated macrophage receptor targeting for optimizing drug dosing. Folate coating of nanoART ATV/r significantly enhanced cell uptake, retention and antiretroviral activities without altering cell viability. Enhanced retentions of folate-coated nanoART within recycling endosomes provided a stable subcellular drug depot. Importantly, five-fold enhanced plasma and tissue drug levels followed folate-coated formulation injection in mice. Folate polymer encased ATV/r improves nanoART pharmacokinetics bringing the technology one step closer to human use. PMID:23680933

  19. Cyclopiazonic acid biosynthesis gene cluster gene cpaM is required for speradine A biosynthesis.

    PubMed

    Tokuoka, Masafumi; Kikuchi, Tomoki; Shinohara, Yasutomo; Koyama, Akifumi; Iio, Shin-Ichiro; Kubota, Takaaki; Kobayashi, Jun'ichi; Koyama, Yasuji; Totsuka, Akira; Shindo, Hitoshi; Sato, Kazuo

    2015-12-01

    Speradine A is a derivative of cyclopiazonic acid (CPA) found in culture of an Aspergillus tamarii isolate. Heterologous expression of a predicted methyltransferase gene, cpaM, in the cpa biosynthesis gene cluster of A. tamarii resulted in the speradine A production in a 2-oxoCPA producing A. oryzae strain, indicating cpaM is involved in the speradine A biosynthesis. PMID:26207447

  20. Control of aflatoxin biosynthesis in Aspergilli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Expression of the genes in the AF biosynthesis cluster is mainly controlled by the pathway specific Cys6Zn2 DNA binding protein, AflR. While AflR appears to be necessary for the activation, a number of coactivators are important for fine-tuning of the timing of AflR’s activity. These proteins, AflJ,...

  1. The lipid biosynthesis hole in the rickettsiales

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using a complementation assay in E. coli, we have shown that the propionyl-CoA carboxylase complex (PCC) from Wolbachia pipientis wMel, order Rickettsiales, provides for lipid biosynthesis through malonyl-CoA production. Normally, the prototypical prokaryote fatty acid synthesis (FASII) initiation ...

  2. {sup 13}C-enrichment at carbons 8 and 2 of uric acid after {sup 13}C-labeled folate dose in man

    SciTech Connect

    Baggott, Joseph E.; Gorman, Gregory S.; Morgan, Sarah L.; Tamura, Tsunenobu . E-mail: tamurat@uab.edu

    2007-09-21

    To evaluate folate-dependent carbon incorporation into the purine ring, we measured {sup 13}C-enrichment independently at C{sub 2} and C{sub 8} of urinary uric acid (the final catabolite of purines) in a healthy male after an independent oral dose of [6RS]-5-[{sup 13}C]-formyltetrahydrofolate ([6RS]-5-H{sup 13}CO-H{sub 4}folate) or 10-H{sup 13}CO-7,8-dihydrofolate (10-H{sup 13}CO-H{sub 2}folate). The C{sub 2} position was {sup 13}C-enriched more than C{sub 8} after [6RS]-5-H{sup 13}CO-H{sub 4}folate, and C{sub 2} was exclusively enriched after 10-H{sup 13}CO-H{sub 2}folate. The enrichment of C{sub 2} was greater from [6RS]-5-H{sup 13}CO-H{sub 4}folate than 10-H{sup 13}CO-H{sub 2}folate using equimolar bioactive doses. Our data suggest that formyl C of [6RS]-10-H{sup 13}CO-H{sub 4}folate was not equally utilized by glycinamide ribotide transformylase (enriches C{sub 8}) and aminoimidazolecarboxamide ribotide (AICAR) transformylase (enriches C{sub 2}), and the formyl C of 10-H{sup 13}CO-H{sub 2}folate was exclusively used by AICAR transformylase. 10-HCO-H{sub 2}folate may function in vivo as the predominant substrate for AICAR transformylase in humans.

  3. The Transcript and Metabolite Networks Affected by the Two Clades of Arabidopsis Glucosinolate Biosynthesis Regulators1[W

    PubMed Central

    Malitsky, Sergey; Blum, Eyal; Less, Hadar; Venger, Ilya; Elbaz, Moshe; Morin, Shai; Eshed, Yuval; Aharoni, Asaph

    2008-01-01

    In this study, transcriptomics and metabolomics data were integrated in order to examine the regulation of glucosinolate (GS) biosynthesis in Arabidopsis (Arabidopsis thaliana) and its interface with pathways of primary metabolism. Our genetic material for analyses were transgenic plants overexpressing members of two clades of genes (ALTERED TRYPTOPHAN REGULATION1 [ATR1]-like and MYB28-like) that regulate the aliphatic and indole GS biosynthetic pathways (AGs and IGs, respectively). We show that activity of these regulators is not restricted to the metabolic space surrounding GS biosynthesis but is tightly linked to more distal metabolic networks of primary metabolism. This suggests that with similarity to the regulators we have investigated here, other factors controlling pathways of secondary metabolism might also control core pathways of central metabolism. The relatively broad view of transcripts and metabolites altered in transgenic plants overexpressing the different factors underlined novel links of GS metabolism to additional metabolic pathways, including those of jasmonic acid, folate, benzoic acid, and various phenylpropanoids. It also revealed transcriptional and metabolic hubs in the “distal” network of metabolic pathways supplying precursors to GS biosynthesis and that overexpression of the ATR1-like clade genes has a much broader effect on the metabolism of indolic compounds than described previously. While the reciprocal, negative cross talk between the methionine and tryptophan pathways that generate GSs in Arabidopsis has been suggested previously, we now show that it is not restricted to AGs and IGs but includes additional metabolites, such as the phytoalexin camalexin. Combining the profiling data of transgenic lines with gene expression correlation analysis allowed us to propose a model of how the balance in the metabolic network is maintained by the GS biosynthesis regulators. It appears that ATR1/MYB34 is an important mediator between the gene activities of the two clades. While it is very similar to the ATR1-like clade members in terms of downstream gene targets, its expression is highly correlated with that of the MYB28-like clade members. Finally, we used the unique transgenic plants obtained here to show that AGs are likely more potent deterrents of the whitefly Bemisia tabaci compared with IGs. The influence on insect behavior raises an important question for future investigation of the functional aspect of our initial finding, which pointed to enriched expression of the MYB28-like clade genes in the abaxial domain of the Arabidopsis leaf. PMID:18829985

  4. Low fruit consumption and folate deficiency are associated with LINE-1 hypomethylation in women of a cancer-free population.

    PubMed

    Agodi, Antonella; Barchitta, Martina; Quattrocchi, Annalisa; Maugeri, Andrea; Canto, Carolina; Marchese, Anna Elisa; Vinciguerra, Manlio

    2015-09-01

    Several dietary agents, such as micronutrient and non-nutrient components, the so-called bioactive food components, have been shown to display anticancer properties and influence genetic processes. The most common epigenetic change is DNA methylation. Hypomethylation of long interspersed elements (LINE-1) has been associated with an increased risk of several cancers, although conflicting findings have also been observed. The aim of the present study was to test the hypothesis that a low adherence to the Mediterranean diet (MD) and folate deficiency may cause LINE-1 hypomethylation in blood leukocytes of healthy women, and thus genomic instability. One hundred and seventy-seven non-pregnant women were enrolled. Mediterranean diet score (MDS) and folate intake were calculated using a food frequency questionnaire. LINE-1 methylation level was measured by pyrosequencing analysis in three CpG sites of LINE-1 promoter. According to MDS, only 9.6 % of subjects achieved a high adherence to MD. Taking into account the use of supplements, there was a high prevalence of folate deficiency (73.4 %). Women whose consumption of fruit was below the median value (i.e., <201 gr/day) were 3.7 times more likely to display LINE-1 hypomethylation than women whose consumption was above the median value (OR 3.7; 95 % CI 1.4-9.5). Similarly, women with folate deficiency were 3.6 times more likely to display LINE-1 hypomethylation than women with no folate deficiency (OR 3.6; 95 % CI 1.1-12.1). A dietary pattern characterized by low fruit consumption and folate deficiency is associated with LINE-1 hypomethylation and with cancer risk. PMID:26183162

  5. Vitamin B12 and folate concentrations during pregnancy and insulin resistance in the offspring: the Pune Maternal Nutrition Study

    PubMed Central

    Deshpande, S. S.; Jackson, A. A.; Refsum, H.; Rao, S.; Fisher, D. J.; Bhat, D. S.; Naik, S. S.; Coyaji, K. J.; Joglekar, C. V.; Joshi, N.; Lubree, H. G.; Deshpande, V. U.; Rege, S. S.; Fall, C. H. D.

    2007-01-01

    Aims/hypothesis Raised maternal plasma total homocysteine (tHcy) concentrations predict small size at birth, which is a risk factor for type 2 diabetes mellitus. We studied the association between maternal vitamin B12, folate and tHcy status during pregnancy, and offspring adiposity and insulin resistance at 6 years. Methods In the Pune Maternal Nutrition Study we studied 700 consecutive eligible pregnant women in six villages. We measured maternal nutritional intake and circulating concentrations of folate, vitamin B12, tHcy and methylmalonic acid (MMA) at 18 and 28 weeks of gestation. These were correlated with offspring anthropometry, body composition (dual-energy X-ray absorptiometry scan) and insulin resistance (homeostatic model assessment of insulin resistance [HOMA-R]) at 6 years. Results Two-thirds of mothers had low vitamin B12 (<150 pmol/l), 90% had high MMA (>0.26 ?mol/l) and 30% had raised tHcy concentrations (>10 ?mol/l); only one had a low erythrocyte folate concentration. Although short and thin (BMI), the 6-year-old children were relatively adipose compared with the UK standards (skinfold thicknesses). Higher maternal erythrocyte folate concentrations at 28 weeks predicted higher offspring adiposity and higher HOMA-R (both p?folate and low vitamin B12 concentrations were the most insulin resistant. Conclusions/interpretation Low maternal vitamin B12 and high folate status may contribute to the epidemic of adiposity and type 2 diabetes in India. Electronic supplementary material The online version of this article (doi:10.1007/s00125-007-0793-y) contains supplementary material, which is available to authorised users. PMID:17851649

  6. Thromboxane A2 biosynthesis in human disease.

    PubMed

    FitzGerald, G A; Healy, C; Daugherty, J

    1987-01-01

    Thromboxane A2 (TxA2), the predominant cyclooxygenase product of human platelets, is a potent vasoconstrictor and platelet agonist. Although its biological properties are readily appreciable in vitro, it has been difficult to define its biological importance in vivo. To a large extent this reflected the problems associated with efforts to monitor biosynthesis of this eicosanoid and the lack of selective pharmacological probes that prevented the synthesis of TxA2 or antagonized its biological action in vivo. Recently the analysis of urinary metabolites of TxB2 has become simplified so that the methodology is readily applicable to clinical studies. This provides a noninvasive, time-integrated index of Tx biosynthesis. Although one cannot definitively establish a tissue of origin for metabolites measured in urine, indirect evidence suggests that urinary TxB2 derives primarily from the kidney whereas its dinor metabolite predominantly reflects platelet biosynthesis under physiological conditions. Although plasma concentrations of TxB2 are readily confounded by platelet activation ex vivo, the enzymatic metabolites formed from TxB2 have recently been identified and appear to bypass this problem. Combined analysis of long-lived (e.g., 11-dehydro-TxB2) and short-lived (e.g., 2,3-dinor-TxB2) metabolites in plasma promise to more accurately localize phasic increases in the biosynthesis of TxA2 and have been paralleled by the development of antagonists of the TxA2/prostaglandin endoperoxide receptor and their study of humans. The use of such specific probes in conditions characterized by abnormal biosynthesis of TxA2 promises to define the biological role of this mediator for humans. PMID:3100340

  7. Studies on identifying the binding sites of folate and its derivatives in Lactobacillus casei thymidylate synthase

    SciTech Connect

    Maley, F.; Maley, G.F.

    1983-01-01

    It was shown that folate and its derivatives have a profound effect on stabilizing thymidylate synthase in vitro and in vivo, as a consequence of ternary formation between the folate, dUMP, or FdUMP, and the synthase. The degree to which complex formation is affected can be revealed qualitatively by circular dichroism and quantitatively by equilibrium dialysis using the Lactobacillus casei synthase. In contrast to the pteroylmonoglutamates, the pteroylpolyglutamates bind to thymidylate synthase in the absence of dUMP, but even their binding affinity is increased greatly by this nucleotide or its analogues. Similarly, treatment of the synthase with carboxypeptidase A prevents the binding of the pteroylmonoglutamates and reduces the binding of the polyglutamates without affecting dUMP binding. The latter does not protect against carboxypeptidase inactivation but does potentiate the protective effect of the pteroylpolyglutamates. To determine the region of the synthase involved in the binding of the glutamate residues, Pte(/sup 14/C)GluGlu6 was activated by a water soluble carbodiimide in the presence and absence of dUMP. This folate derivative behaved as a competitive inhibitor of 5,10-CH/sub 2/H/sub 4/PteGlu, in contrast to methotrexate which was non-competitive. Separation of the five cyanogen bromide peptides from the L. casei synthase revealed 80% of the radioactivity to be associated with CNBr-2 and about 15% with CNBr-4. Chymotrypsin treatment of CNBr-2 yielded two /sup 14/C-labeled peaks on high performance liquid chromatography, with the slower migrating one being separated further into two peaks by Bio-gel P2 chromatography. All three peptides came from the same region of CNBr-2, encompassing residues 47-61 of the enzyme. From these studies it would appear that the residues most probably involved in the fixation of PteGlu7 are lysines 50 and 58. In contrast, methotrexate appeared to bind to another region of CNBr-2.

  8. The Epigenetic Effects of a High Prenatal Folate Intake in Male Mouse Fetuses Exposed In Utero to Arsenic

    PubMed Central

    Tsang, Verne; Fry, Rebecca C.; Niculescu, Mihai D.; Rager, Julia E.; Saunders, Jesse; Paul, David S.; Zeisel, Steven H.; Waalkes, Michael P.; Stýblo, Miroslav; Drobná, Zuzana

    2012-01-01

    Inorganic arsenic (iAs) is a complete transplacental carcinogen in mice. Previous studies have demonstrated that in utero exposure to iAs promotes cancer in adult mouse offspring, possibly acting through epigenetic mechanisms. Humans and rodents enzymatically convert iAs to its methylated metabolites. This reaction requires S-adenosylmethionine (SAM) as methyl group donor. SAM is also required for DNA methylation. Supplementation with folate, a major dietary source of methyl groups for SAM synthesis, has been shown to modify iAs metabolism and the adverse effects of iAs exposure. However, effects of gestational folate supplementation on iAs metabolism and fetal DNA methylation have never been thoroughly examined. In the present study, pregnant CD1 mice were fed control (i.e. normal folate, or 2.2 mg/kg) or high folate diet (11 mg/kg) from gestational day (GD) 5 to 18 and drank water with 0 or 85 ppm of As (as arsenite) from GD8 to 18. The exposure to iAs significantly decreased body weight of GD18 fetuses and increased both SAM and S-adenosylhomocysteine (SAH) concentrations in fetal livers. High folate intake lowered the burden of total arsenic in maternal livers but did not prevent the effects of iAs exposure on fetal weight or hepatic SAM and SAH concentrations. In fact, combined folate-iAs exposure caused further significant body weight reduction. Notably, iAs exposure alone had little effect on DNA methylation in fetal livers. In contrast, the combined folate-iAs exposure changed the CpG island methylation in 2,931 genes, including genes known to be imprinted. Most of these genes were associated with neurodevelopment, cancer, cell cycle, and signaling networks. The canonical Wnt-signaling pathway, which regulates fetal development, was among the most affected biological pathways. Taken together, our results suggest that a combined in utero exposure to iAs and a high folate intake may adversely influence DNA methylation profiles and weight of fetuses, compromising fetal development and possibly increasing the risk for early-onset of disease in offspring. PMID:22959928

  9. Cofactors and vitamins in the metabolism of malarial parasites. Factors other than folates

    PubMed Central

    Trager, William

    1977-01-01

    Relatively few cofactors have so far been demonstrated to be essential for the intracellular development of erythrocytic stages of malarial parasites. Besides 4-aminobenzoic acid, presumably required for the synthesis of folates, these are biotin and pantothenate. The pantothenate is not used directly by the parasites but rather as coenzyme A synthesized by the host erythrocyte. Parasites maintained extracellularly in vitro also have a requirement for exogenous adenosine triphosphate. No information is available concerning cofactor requirements of the sporogonic or pre-erythrocytic stages. PMID:412604

  10. Periconception Maternal Folate Status and Human Embryonic Cerebellum Growth Trajectories: The Rotterdam Predict Study

    PubMed Central

    Koning, Irene V.; Groenenberg, Irene A. L.; Gotink, Anniek W.; Willemsen, Sten P.; Gijtenbeek, Manon; Dudink, Jeroen; Go, Attie T. J. I.; Reiss, Irwin K. M.; Steegers, Eric A. P.; Steegers-Theunissen, Régine P. M.

    2015-01-01

    We aimed to investigate whether periconceptional maternal folate status affects human embryonic cerebellar size and growth trajectories. In a prospective periconceptional cohort participants filled out questionnaires and received weekly transvaginal 3D-ultrasounds between 7+0 and 12+6 weeks gestational age (GA). Viable non-malformed singleton pregnancies were selected for cerebellar measurements; transcerebellar diameter, (TCD), left and right cerebellar diameters (LCD, RCD). Linear mixed models were performed to estimate associations between questionnaire data on the timing of maternal folic acid supplement initiation and longitudinal cerebellar measurements as a function of crown-rump length (CRL) and GA. Maternal red blood cell folate concentrations were analysed before 8 weeks GA to validate the associations. A total of 263 serial high quality three-dimensional ultrasound scans of 135 pregnancies were studied. Preconceptional compared to postconceptional initiation of folic acid use was associated with slightly larger cerebellar diameters per millimetre increase of CRL (TCD: ? = 0.260mm, 95%CI = 0.023–0.491, p<0.05; LCD: ? = 0.171mm, 95%CI = 0.038–0.305, p<0.05; RCD: ? = 0.156mm, 95%CI = 0.032–0.280, p<0.05) and with proportional cerebellar growth (TCD/CRL:? = 0.015mm/mm, 95%CI = 0.005–0.024, p<0.01; LCD/CRL:? = 0.012mm/mm, 95%CI = 0.005–0.018, p<0.01; RCD/CRL:? = 0.011mm/mm, 95%CI = 0.005–0.017, p<0.01). Cerebellar growth was significantly highest in the third quartile of maternal red blood cell folate levels (1538–1813 nmol/L). These first findings show that periconceptional maternal folate status is associated with human embryonic cerebellar development. Implications of these small but significant variations for fetal cerebellar growth trajectories and the child’s neurodevelopmental outcome are yet unknown and warrant further investigation. PMID:26491876

  11. Folate content in sea buckthorn berries and related products (Hippophaë rhamnoides L. ssp. rhamnoides): LC-MS/MS determination of folate vitamer stability influenced by processing and storage assessed by stable isotope dilution assay.

    PubMed

    Gutzeit, Derek; Mönch, Sabine; Jerz, Gerold; Winterhalter, Peter; Rychlik, Michael

    2008-05-01

    A stable isotope dilution assay was adopted for quantitation of folate vitamers in sea buckthorn berries, juice, and concentrate using fourfold labeled folate isotopologues of the folate derivatives as the internal standards and reversed-phase liquid chromatography-tandem mass spectrometry with electrospray ionization (LC-ESI-MS/MS). Processing effects and storage stability were investigated during juice and concentrate production from sea buckthorn berries (Hippophaë rhamnoides). The technological processing of the berries caused a total degradation of tetrahydrofolate and 5-formyltetrahydrofolate in the generated juice. The content of the main folate vitamer 5-methyltetrahydrofolate remained approximately unchanged during the whole processing from the berries to the concentrate. Sea buckthorn juice was stored under two household storage conditions (6 degrees C, 25 degrees C), and also under accelerated aging conditions (40 degrees C) for up to 7 days to determine the effects of storage temperature on the stability of 5-methyltetrahydrofolate. The content of 5-methyltetrahydrofolate was nearly unchanged during the storage at 6 degrees C after 7 days. The juice showed almost identical degradation of 5-methyltetrahydrofolate of about 17-20% at 25 degrees C and 40 degrees C after 7 days of storage. [figure: see text] PMID:18278485

  12. COMMUNICATION: Folate and S-adenosylmethionine modulate synaptic activity in cultured cortical neurons: acute differential impact on normal and apolipoprotein-deficient mice

    NASA Astrophysics Data System (ADS)

    Serra, Michael; Chan, Amy; Dubey, Maya; Gilman, Vladimir; Shea, Thomas B.

    2008-12-01

    Folate deficiency is accompanied by a decline in the cognitive neurotransmitter acetylcholine and a decline in cognitive performance in mice lacking apolipoprotein E (ApoE-/- mice), a low-density lipoprotein that regulates aspects of lipid metabolism. One direct consequence of folate deficiency is a decline in S-adenosylmethionine (SAM). Since dietary SAM supplementation maintains acetylcholine levels and cognitive performance in the absence of folate, we examined herein the impact of folate and SAM on neuronal synaptic activity. Embryonic cortical neurons from mice expressing or lacking ApoE (ApoE+/+ or -/-, respectively) were cultured for 1 month on multi-electrode arrays, and signaling was recorded. ApoE+/+ cultures displayed significantly more frequent spontaneous signals than ApoE-/- cultures. Supplementation with 166 µm SAM (not normally present in culture medium) increased signal frequency and decreased signal amplitude in ApoE+/+ cultures. SAM also increased the frequency of tightly clustered signal bursts. Folate deprivation reversibly reduced signal frequency in ApoE+/+ cultures; SAM supplementation maintained signal frequency despite folate deprivation. These findings support the importance of dietary supplementation with folate and SAM on neuronal health. Supplementation with 166 µm SAM did not alter signaling in ApoE-/- cultures, which may be a reflection of the reduced SAM levels in ApoE-/- mice. The differential impact of SAM on ApoE+/+ and -/- neurons underscores the combined impact of nutritional and genetic deficiencies on neuronal homeostasis.

  13. Influence of thermal processing on hydrolysis and stability of folate poly-gamma-glutamates in broccoli (Brassica oleracea var. italica), carrot (Daucus carota) and tomato (Lycopersicon esculentum).

    PubMed

    Munyaka, Ann Wambui; Verlinde, Philippe; Mukisa, Ivan Muzira; Oey, Indrawati; Van Loey, Ann; Hendrickx, Marc

    2010-04-14

    The folate poly-gamma-glutamate profile, their concentrations, and hydrolysis by endogenous gamma-glutamyl hydrolase (GGH) were evaluated in broccoli, carrot and tomato. Further studies on the effect of time and temperature on folate poly-gamma-glutamate hydrolysis and stability were carried out in broccoli since this vegetable showed the highest long-chain and total folate poly-gamma-glutamate concentration. The evolution of l-ascorbic acid, total phenols and Trolox equivalent antioxidant capacity (TEAC) values was evaluated in parallel. Upon thermal inactivation of GGH prior to crushing, it was observed that broccoli, carrot and tomato contained poly-gamma-glutamates with one to seven glutamate residues but differed in the predominant poly-gamma-glutamates. Crushing of raw broccoli, carrot and tomato resulted in significant poly-gamma-glutamate profile changes in broccoli and carrot (indicating GGH-catalyzed hydrolysis) but not in tomato. In this study, the actual crushing of raw broccoli matrix had a greater effect on folate poly-gamma-glutamate hydrolysis than incubation conditions (0-30 min at 25-55 degrees C). During treatments at 25-140 degrees C, folate retention was higher at 80 and 100 degrees C than at the other temperatures. A similar trend in thermal stability was observed for folates, vitamin C, total phenols and TEAC value, an indication that conditions that result in endogenous antioxidants degradation might also result in folate degradation. PMID:20329724

  14. Sonochemical synthesis of iron oxide nanoparticles loaded with folate and cisplatin: effect of ultrasonic frequency.

    PubMed

    Dolores, Reyman; Raquel, Serrano; Adianez, Garcia-Leis

    2015-03-01

    Simple preparative methods were used to sonosynthesize different magnetic iron oxide nanoparticles (FeNPs) via co-precipitation of aqueous solutions of ferrous salts in a basic aqueous solution of ethylene glycol (EG). Sonosynthesis was achieved using different frequencies of ultrasound: 581, 861, and 1141 kHz under the same acoustic power. The hydroxyl radicals generated by cavitational collapse, induced by the ultrasonic field, led to the oxidation of Fe(2+) to Fe(3+). The rate of sonochemical Fe(3+) production decreased linearly with the frequency. Three different systems of FeNPs were synthesized, all with the same core but a different shell: FeNPs capped with EG (EG/FeNPs), FeNPs capped with EG and folate (Fol/EG/FeNPs), and FeNPs capped with EG, folate and cisplatin (Pt/EG/FeNPs). The nanoparticles were characterized by transmission electron microscopy, fluorescence and Raman microspectroscopy, total-reflection X-ray fluorescence, and elemental analysis (C, N, and H). The magnetization hysteresis loops of these samples were also measured. The obtained values of saturation magnetization were within the interval between 60 and 93 Am(2)kg(-1). From the analysis of these results, it was found that the ultrasonic frequency did not affect the nanoparticle size (diameter of 21-31 nm). In contrast, the frequency affected the amount of drug loaded, as cisplatin loading increased proportionately with ultrasound frequency. PMID:25218767

  15. Involvement of autophagy in antitumor activity of folate-appended methyl-?-cyclodextrin.

    PubMed

    Onodera, Risako; Motoyama, Keiichi; Tanaka, Nao; Ohyama, Ayumu; Okamatsu, Ayaka; Higashi, Taishi; Kariya, Ryusho; Okada, Seiji; Arima, Hidetoshi

    2014-01-01

    Autophagy, the major lysosomal pathway for recycling intracellular components including organelles, is emerging as a key process regulating tumorigenesis and cancer therapy. Most recently, we newly synthesized folate-appended methyl-?-cyclodextrin (FA-M-?-CyD), and demonstrated the potential of FA-M-?-CyD as a new antitumor drug. In this study, we investigated whether anticancer activity of FA-M-?-CyD in folate receptor-? (FR-?)-positive tumor cells is involved in autophagy. In contrast to methyl-?-cyclodextrin (M-?-CyD), FA-M-?-CyD entered KB cells (FR-? (+)) through CLIC/GEEC endocytosis. No significant depression in the DNA content was observed in KB cells after treatment with FA-M-?-CyD. Additionally, the transmembrane potential of mitochondria after treatment with FA-M-?-CyD was drastically elevated. Meanwhile, FA-M-?-CyD induced the formation of autophagic vacuoles, which were partially colocalized with mitochondria, in KB cells. Taken together, these results suggest that FR-?-expressing cell-selective cytotoxic activity of FA-M-?-CyD could be mediated by the regulation of autophagy, rather than the induction of apoptosis. PMID:24646866

  16. Potential use of folate-appended methyl-?-cyclodextrin as an anticancer agent.

    PubMed

    Onodera, Risako; Motoyama, Keiichi; Okamatsu, Ayaka; Higashi, Taishi; Arima, Hidetoshi

    2013-01-01

    To obtain a tumor cell-selectivity of methyl-?-cyclodextrin (M-?-CyD), we newly synthesized folate-appended M-?-CyD (FA-M-?-CyD), and evaluated the potential of FA-M-?-CyD as a novel anticancer agent in vitro and in vivo. Potent antitumor activity and cellular association of FA-M-?-CyD were higher than those of M-?-CyD in KB cells, folate receptor (FR)-positive cells. FA-M-?-CyD drastically inhibited the tumor growth after intratumoral or intravenous injection to FR-positive Colon-26 cells-bearing mice. The antitumor activity of FA-M-?-CyD was comparable and superior to that of doxorubicin after both intratumoral and intravenous administrations, respectively, at the same dose, in the tumor-bearing mice. All of the tumor-bearing mice after an intravenous injection of FA-M-?-CyD survived for at least more than 140 days. Importantly, an intravenous administration of FA-M-?-CyD to tumor-bearing mice did not show any significant change in blood chemistry values. These results strongly suggest that FA-M-?-CyD has the potential as a novel anticancer agent. PMID:23346361

  17. Metformin Retards Aging in C. elegans by Altering Microbial Folate and Methionine Metabolism

    PubMed Central

    Cabreiro, Filipe; Au, Catherine; Leung, Kit-Yi; Vergara-Irigaray, Nuria; Cochemé, Helena M.; Noori, Tahereh; Weinkove, David; Schuster, Eugene; Greene, Nicholas D.E.; Gems, David

    2013-01-01

    Summary The biguanide drug metformin is widely prescribed to treat type 2 diabetes and metabolic syndrome, but its mode of action remains uncertain. Metformin also increases lifespan in Caenorhabditis elegans cocultured with Escherichia coli. This bacterium exerts complex nutritional and pathogenic effects on its nematode predator/host that impact health and aging. We report that metformin increases lifespan by altering microbial folate and methionine metabolism. Alterations in metformin-induced longevity by mutation of worm methionine synthase (metr-1) and S-adenosylmethionine synthase (sams-1) imply metformin-induced methionine restriction in the host, consistent with action of this drug as a dietary restriction mimetic. Metformin increases or decreases worm lifespan, depending on E. coli strain metformin sensitivity and glucose concentration. In mammals, the intestinal microbiome influences host metabolism, including development of metabolic disease. Thus, metformin-induced alteration of microbial metabolism could contribute to therapeutic efficacy—and also to its side effects, which include folate deficiency and gastrointestinal upset. PaperClip PMID:23540700

  18. Role of genetic mutations in folate-related enzyme genes on Male Infertility

    PubMed Central

    Liu, Kang; Zhao, Ruizhe; Shen, Min; Ye, Jiaxin; Li, Xiao; Huang, Yuan; Hua, Lixin; Wang, Zengjun; Li, Jie

    2015-01-01

    Several studies showed that the genetic mutations in the folate-related enzyme genes might be associated with male infertility; however, the results were still inconsistent. We performed a meta-analysis with trial sequential analysis to investigate the associations between the MTHFR C677T, MTHFR A1298C, MTR A2756G, MTRR A66G mutations and the MTHFR haplotype with the risk of male infertility. Overall, a total of 37 studies were selected. Our meta-analysis showed that the MTHFR C677T mutation was a risk factor for male infertility in both azoospermia and oligoasthenoteratozoospermia patients, especially in Asian population. Men carrying the MTHFR TC haplotype were most liable to suffer infertility while those with CC haplotype had lowest risk. On the other hand, the MTHFR A1298C mutation was not related to male infertility. MTR A2756G and MTRR A66G were potential candidates in the pathogenesis of male infertility, but more case-control studies were required to avoid false-positive outcomes. All of these results were confirmed by the trial sequential analysis. Finally, our meta-analysis with trial sequential analysis proved that the genetic mutations in the folate-related enzyme genes played a significant role in male infertility. PMID:26549413

  19. Folate receptor ? expression and significance in endometrioid endometrium carcinoma and endometrial hyperplasia

    PubMed Central

    Senol, Serkan; Ceyran, Ayse Bahar; Aydin, Abdullah; Zemheri, Ebru; Ozkanli, Seyma; Kösemetin, Duygu; Sehitoglu, Ibrahim; Akalin, Ibrahim

    2015-01-01

    Endometrioid-type endometrial carcinoma (EEC) developing on the ground of endometrial hyperplasia (EH) is amongst the most commonly observed type of cancer in the world. Folate receptor ? (FR?) is a vitamin molecule that has a role in cell proliferation. The fact that FR?, which is known to be needed extremely by the cells of malignancies that proliferate rapidly, is present in limited amounts in normal tissues while it is overexpressed in malignant cells of the same tissues makes folate a candidate for target molecular therapy. In our study, FR? expression in 214 cases, with 95 diagnosed within EEC and 119 with EH, was studied immunohistochemically. FR? expression in EEC was found significantly high compared to EH and normal endometrium (P<0.01). Similarly, FR? expression in EH cases with complex atypia were significantly high compared to other hyperplasia subgroups (P<0.01). The findings of our results make us think that FR? overexpression may play a role in the EEC carcinogenesis and carcinoma progression from EH. Furthermore, we suggest that it can be helpful in the treatment of EEC and/or transition from hyperplasia stage to EEC as a molecular therapy targeting receptors labeled with antibody-based props containing FR?. Finally, we suggest that FR? may be used, based on the expression intensity, as a supplemental option to determine the patients that shall be directed to radical therapy amongst patients with complex atypical EH. PMID:26191275

  20. In vitro and in vivo antitumor effects of folate-targeted ursolic acid stealth liposome.

    PubMed

    Yang, Guang; Yang, Tan; Zhang, Wendian; Lu, Miao; Ma, Xiang; Xiang, Guangya

    2014-03-12

    The antitumor efficacy of ursolic acid (UA) was limited by poor hydrophilicity and low bioavailability. To overcome this issue, UA was encapsulated in liposomes modified with folate conjugates for better solubility and bioavailability. This novel agent was prepared by a thin-film dispersion method and characterized by mean diameter, zeta potential, and entrapment efficiency (160.1 nm, -21.2 mV, and 88.9%, respectively). In vitro, cellular uptake efficiency, cytotoxicity, apoptosis, and cell cycle analyses were performed to show that folate-receptor (FR) positive cells endocytose more FR-targeted liposome (FTL-UA) than nontargeted PEGylated liposome (PL-UA) and that FTL-UA induced more cytotoxicity and higher apoptosis than PL-UA. Pharmacokinetic assessments showed advantages of systemic bioavailability of FTL-UA (AUC = 218.32 mg/L·h, t1/2 = 7.61 h) over free UA (AUC = 36.88 mg/L·h, t1/2 = 0.78 h). In vivo, FTL-UA showed significantly higher human epidermoid carcinoma (KB) inhibition in Balb/c nu/nu mice compared to PL-UA or free UA. The results indicate the great potential of FTL-UA against KB tumor. PMID:24528163

  1. Structural basis for phosphatidylinositol-phosphate biosynthesis

    PubMed Central

    Clarke, Oliver B.; Tomasek, David; Jorge, Carla D.; Dufrisne, Meagan Belcher; Kim, Minah; Banerjee, Surajit; Rajashankar, Kanagalaghatta R.; Shapiro, Lawrence; Hendrickson, Wayne A.; Santos, Helena; Mancia, Filippo

    2015-01-01

    Phosphatidylinositol is critical for intracellular signalling and anchoring of carbohydrates and proteins to outer cellular membranes. The defining step in phosphatidylinositol biosynthesis is catalysed by CDP-alcohol phosphotransferases, transmembrane enzymes that use CDP-diacylglycerol as donor substrate for this reaction, and either inositol in eukaryotes or inositol phosphate in prokaryotes as the acceptor alcohol. Here we report the structures of a related enzyme, the phosphatidylinositol-phosphate synthase from Renibacterium salmoninarum, with and without bound CDP-diacylglycerol to 3.6 and 2.5?Å resolution, respectively. These structures reveal the location of the acceptor site, and the molecular determinants of substrate specificity and catalysis. Functional characterization of the 40%-identical ortholog from Mycobacterium tuberculosis, a potential target for the development of novel anti-tuberculosis drugs, supports the proposed mechanism of substrate binding and catalysis. This work therefore provides a structural and functional framework to understand the mechanism of phosphatidylinositol-phosphate biosynthesis. PMID:26510127

  2. Circular Bacteriocins: Biosynthesis and Mode of Action

    PubMed Central

    Brede, Dag A.; Nes, Ingolf F.; Diep, Dzung B.

    2014-01-01

    Circular bacteriocins are a group of N-to-C-terminally linked antimicrobial peptides, produced by Gram-positive bacteria of the phylum Firmicutes. Circular bacteriocins generally exhibit broad-spectrum antimicrobial activity, including against common food-borne pathogens, such as Clostridium and Listeria spp. These peptides are further known for their high pH and thermal stability, as well as for resistance to many proteolytic enzymes, properties which make this group of bacteriocins highly promising for potential industrial applications and their biosynthesis of particular interest as a possible model system for the synthesis of highly stable bioactive peptides. In this review, we summarize the current knowledge on this group of bacteriocins, with emphasis on the recent progress in understanding circular bacteriocin genetics, biosynthesis, and mode of action; in addition, we highlight the current challenges and future perspectives for the application of these peptides. PMID:25172850

  3. Complete biosynthesis of opioids in yeast.

    PubMed

    Galanie, Stephanie; Thodey, Kate; Trenchard, Isis J; Filsinger Interrante, Maria; Smolke, Christina D

    2015-09-01

    Opioids are the primary drugs used in Western medicine for pain management and palliative care. Farming of opium poppies remains the sole source of these essential medicines, despite diverse market demands and uncertainty in crop yields due to weather, climate change, and pests. We engineered yeast to produce the selected opioid compounds thebaine and hydrocodone starting from sugar. All work was conducted in a laboratory that is permitted and secured for work with controlled substances. We combined enzyme discovery, enzyme engineering, and pathway and strain optimization to realize full opiate biosynthesis in yeast. The resulting opioid biosynthesis strains required the expression of 21 (thebaine) and 23 (hydrocodone) enzyme activities from plants, mammals, bacteria, and yeast itself. This is a proof of principle, and major hurdles remain before optimization and scale-up could be achieved. Open discussions of options for governing this technology are also needed in order to responsibly realize alternative supplies for these medically relevant compounds. PMID:26272907

  4. Amino Acid Biosynthesis Pathways in Diatoms

    PubMed Central

    Bromke, Mariusz A.

    2013-01-01

    Amino acids are not only building blocks for proteins but serve as precursors for the synthesis of many metabolites with multiple functions in growth and other biological processes of a living organism. The biosynthesis of amino acids is tightly connected with central carbon, nitrogen and sulfur metabolism. Recent publication of genome sequences for two diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum created an opportunity for extensive studies on the structure of these metabolic pathways. Based on sequence homology found in the analyzed diatomal genes, the biosynthesis of amino acids in diatoms seems to be similar to higher plants. However, one of the most striking differences between the pathways in plants and in diatomas is that the latter possess and utilize the urea cycle. It serves as an important anaplerotic pathway for carbon fixation into amino acids and other N-containing compounds, which are essential for diatom growth and contribute to their high productivity. PMID:24957993

  5. Functional specialization in proline biosynthesis of melanoma.

    PubMed

    De Ingeniis, Jessica; Ratnikov, Boris; Richardson, Adam D; Scott, David A; Aza-Blanc, Pedro; De, Surya K; Kazanov, Marat; Pellecchia, Maurizio; Ronai, Ze'ev; Osterman, Andrei L; Smith, Jeffrey W

    2012-01-01

    Proline metabolism is linked to hyperprolinemia, schizophrenia, cutis laxa, and cancer. In the latter case, tumor cells tend to rely on proline biosynthesis rather than salvage. Proline is synthesized from either glutamate or ornithine; both are converted to pyrroline-5-carboxylate (P5C), and then to proline via pyrroline-5-carboxylate reductases (PYCRs). Here, the role of three isozymic versions of PYCR was addressed in human melanoma cells by tracking the fate of (13)C-labeled precursors. Based on these studies we conclude that PYCR1 and PYCR2, which are localized in the mitochondria, are primarily involved in conversion of glutamate to proline. PYCRL, localized in the cytosol, is exclusively linked to the conversion of ornithine to proline. This analysis provides the first clarification of the role of PYCRs to proline biosynthesis. PMID:23024808

  6. Structural basis for phosphatidylinositol-phosphate biosynthesis

    NASA Astrophysics Data System (ADS)

    Clarke, Oliver B.; Tomasek, David; Jorge, Carla D.; Dufrisne, Meagan Belcher; Kim, Minah; Banerjee, Surajit; Rajashankar, Kanagalaghatta R.; Shapiro, Lawrence; Hendrickson, Wayne A.; Santos, Helena; Mancia, Filippo

    2015-10-01

    Phosphatidylinositol is critical for intracellular signalling and anchoring of carbohydrates and proteins to outer cellular membranes. The defining step in phosphatidylinositol biosynthesis is catalysed by CDP-alcohol phosphotransferases, transmembrane enzymes that use CDP-diacylglycerol as donor substrate for this reaction, and either inositol in eukaryotes or inositol phosphate in prokaryotes as the acceptor alcohol. Here we report the structures of a related enzyme, the phosphatidylinositol-phosphate synthase from Renibacterium salmoninarum, with and without bound CDP-diacylglycerol to 3.6 and 2.5 Å resolution, respectively. These structures reveal the location of the acceptor site, and the molecular determinants of substrate specificity and catalysis. Functional characterization of the 40%-identical ortholog from Mycobacterium tuberculosis, a potential target for the development of novel anti-tuberculosis drugs, supports the proposed mechanism of substrate binding and catalysis. This work therefore provides a structural and functional framework to understand the mechanism of phosphatidylinositol-phosphate biosynthesis.

  7. [Peculiarities of Proteus mirabilis extracellular metalloproteinase biosynthesis].

    PubMed

    Zamaliutdinova, N M; Sharipova, M R; Bogomol'naia, L M; Bozhokina, E S; Mardanova, A M

    2015-01-01

    Biosynthesis of metalloproteinase by the Proteus mirabilis 5127-1 strain on different media and the influence of glucose and urea on biosynthesis were studied. It was found that the P. mirabilis 5127-1 bacteria secretes metalloproteinase in the medium in two isoforms (52 and 50 kDa). It was established that proteinase synthesis is completely suppressed during the growth of bacteria on synthetic media, as well as in the presence of LB glucose in the medium. It was demonstrated that addition of urea in the medium results in an increase of the culture productivity in the proteinase synthesis. Maximal culture productivity in the proteinase synthesis was found in the medium with natural urine. During the growth of bacteria on artificial urine, proteinase appeared in the medium only after 12 hours of growth as a single isoform. PMID:25872397

  8. Functional Specialization in Proline Biosynthesis of Melanoma

    PubMed Central

    Richardson, Adam D.; Scott, David A.; Aza-Blanc, Pedro; De, Surya K.; Kazanov, Marat; Pellecchia, Maurizio; Ronai, Ze'ev; Osterman, Andrei L.; Smith, Jeffrey W.

    2012-01-01

    Proline metabolism is linked to hyperprolinemia, schizophrenia, cutis laxa, and cancer. In the latter case, tumor cells tend to rely on proline biosynthesis rather than salvage. Proline is synthesized from either glutamate or ornithine; both are converted to pyrroline-5-carboxylate (P5C), and then to proline via pyrroline-5-carboxylate reductases (PYCRs). Here, the role of three isozymic versions of PYCR was addressed in human melanoma cells by tracking the fate of 13C-labeled precursors. Based on these studies we conclude that PYCR1 and PYCR2, which are localized in the mitochondria, are primarily involved in conversion of glutamate to proline. PYCRL, localized in the cytosol, is exclusively linked to the conversion of ornithine to proline. This analysis provides the first clarification of the role of PYCRs to proline biosynthesis. PMID:23024808

  9. Biosynthesis and Heterologous Production of Epothilones

    NASA Astrophysics Data System (ADS)

    Müller, Rolf

    Although a variety of chemical syntheses for the epothilones and various derivatives have been described, modifying the backbone of those natural products remains a major challenge. One alternative to chemical alteration is the elucidation and subsequent manipulation of the biosynthetic pathway via genetic engineering in the producing organism. This type of approach is known as “combinatorial biosynthesis” and holds great promise, especially in conjunction with semi-synthesis methods to alter the structure of the natural product. In parallel, production can be optimized in the natural producer if the regulatory mechanisms governing the biosynthesis are understood. Alternatively, the entire gene cluster can be transferred into a heterologous host, more amenable both to genetic alteration and overexpression.

  10. Structural basis for phosphatidylinositol-phosphate biosynthesis.

    PubMed

    Clarke, Oliver B; Tomasek, David; Jorge, Carla D; Dufrisne, Meagan Belcher; Kim, Minah; Banerjee, Surajit; Rajashankar, Kanagalaghatta R; Shapiro, Lawrence; Hendrickson, Wayne A; Santos, Helena; Mancia, Filippo

    2015-01-01

    Phosphatidylinositol is critical for intracellular signalling and anchoring of carbohydrates and proteins to outer cellular membranes. The defining step in phosphatidylinositol biosynthesis is catalysed by CDP-alcohol phosphotransferases, transmembrane enzymes that use CDP-diacylglycerol as donor substrate for this reaction, and either inositol in eukaryotes or inositol phosphate in prokaryotes as the acceptor alcohol. Here we report the structures of a related enzyme, the phosphatidylinositol-phosphate synthase from Renibacterium salmoninarum, with and without bound CDP-diacylglycerol to 3.6 and 2.5?Å resolution, respectively. These structures reveal the location of the acceptor site, and the molecular determinants of substrate specificity and catalysis. Functional characterization of the 40%-identical ortholog from Mycobacterium tuberculosis, a potential target for the development of novel anti-tuberculosis drugs, supports the proposed mechanism of substrate binding and catalysis. This work therefore provides a structural and functional framework to understand the mechanism of phosphatidylinositol-phosphate biosynthesis. PMID:26510127

  11. Functional genomics and the biosynthesis of artemisinin.

    PubMed

    Covello, Patrick S; Teoh, Keat H; Polichuk, Devin R; Reed, Darwin W; Nowak, Goska

    2007-07-01

    Artemisinin, a sesquiterpene lactone endoperoxide derived from the glandular secretory trichomes (GSTs) of Artemisia annua, provides the basis for the most effective treatments of malaria. The biology and biochemistry of GSTs of the Asteraceae and their biosynthesis of isoprenoids is reviewed. Recent efforts to understand the biosynthesis of artemisinin in A. annua GSTs are discussed in detail. This includes the development in the authors' laboratory of an expressed sequence tag (EST) approach to identifying the relevant biosynthetic genes using isolated GST as a source of mRNA. This has lead to the isolation of a cDNA encoding CYP71AV1, a multifunctional cytochrome P450 which catalyzes multiple oxidations of the sesquiterpene intermediate amorpha-4,11-diene to artemisinic acid. Further biochemical and molecular genetic work is required to elucidate the precise route from artemisinic alcohol to artemisinin and to engineer more efficient low cost production of artemisinin-based antimalarial drugs. PMID:17399751

  12. The effects of folate intake on DNA and single-carbon pathway metabolism in the fruit fly Drosophila melanogaster compared to mammals.

    PubMed

    Blatch, Sydella A; Stabler, Sally P; Harrison, Jon F

    2015-11-01

    Mechanisms of vitamin function in non-mammals are poorly understood, despite being essential for development. Folate and cobalamin are B-vitamin cofactors with overlapping roles in transferring various single-carbon units. In mammals, one or both is needed for nucleotide synthesis, DNA methylation, amino acid conversions and other reactions. However, there has been little investigation of the response to folate or cobalamin in insects. Here, we manipulated folate intake and potentially cobalamin levels in the fruit fly Drosophila melanogaster with chemically-defined diets, an antibiotic to reduce bacterially-derived vitamins, and the folate-interfering pharmaceutical methotrexate, to see if single-carbon metabolites and DNA synthesis rates would be affected. We found that similar to mammals with low folate intake, fruit fly larvae had significantly slower growth and DNA synthesis rates. But changes to single carbon-metabolites did not mirror that of mammals with abnormal folate or given MTX. Five of the nine metabolites measured were not significantly affected (methionine, serine, glycine, methylglycine, and dimethylglycine) and three (cystathionine, methylgycine, and methylmalonic acid) were only decreased in larvae consuming methotrexate. Metabolites expected to be elevated if flies used cobalamin from microbial symbionts were not affected by dietary sulfaquinoxaline. Our data support the role of folate in nucleotide synthesis in D. melanogaster and that microbial symbionts provide functioning folates. We could not confirm how folate intake affects single carbon pathway metabolites, nor whether Drososphila use microbially-derived cobalamin. Further work should explore which cofactors are used in fruit flies in these important and potentially novel pathways. PMID:26219578

  13. Phenol biosynthesis in higher plants. Gallic acid

    PubMed Central

    Dewick, P. M.; Haslam, E.

    1969-01-01

    The biosynthesis of gallic acid in a number of higher plants was investigated by using l-[U-14C]phenylalanine, (?)-[G-14C]shikimic acid, d-[1-14C]glucose and d-[6-14C]glucose as tracers. The results are compared with those obtained similarly for caffeic acid and are interpreted in terms of the dehydrogenation of 5-dehydroshikimic acid as a normal route of metabolism for gallic acid. PMID:5807212

  14. Brief Report: Are Autistic-Behaviors in Children Related to Prenatal Vitamin Use and Maternal Whole Blood Folate Concentrations?

    ERIC Educational Resources Information Center

    Braun, Joseph M.; Froehlich, Tanya; Kalkbrenner, Amy; Pfeiffer, Christine M.; Fazili, Zia; Yolton, Kimberly; Lanphear, Bruce P.

    2014-01-01

    Prenatal multivitamin/folic acid supplement use may reduce the risk of autism spectrum disorders. We investigated whether 2nd trimester prenatal vitamin use and maternal whole blood folate (WBF) concentrations were associated with Social Responsiveness Scale (SRS) scores at 4-5 years of age in a prospective cohort of 209 mother-child pairs. After…

  15. LOW ERYTHROCYTE FOLATE, BUT NOT PLASMA VITAMIN B-12 OR HOMOCYSTEINE, IS ASSOCIATED WITH DEMENTIA IN ELDERLY LATINOS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The relationship between B vitamin status and cognitive function has been of interest for many years. There is evidence of relationships between intake and status of folate and vitamin B-12 with neurological, cognitive, and memory impairment, but results have been inconsistent. Plasma B-12, erythroc...

  16. THE GLUTAMATE CARBOXYPEPTIDASE GENE II (C>T) POLYMORPHISM DOES NOT AFFECT FOLATE STATUS IN THE FRAMINGHAM OFFSPRING COHORT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Naturally occurring folates are comprised mostly of reduced polyglutamyl derivatives and require hydrolysis to monoglutamyl derivatives before they are absorbed by the small intestine. This hydrolysis is catalyzed by glutamate carboxypeptidase II (GCPII). Recently, a 1561 C>T polymorphism in the GCP...

  17. Characterization of the pH of Folate Receptor-Containing Endosomes and the Rate of Hydrolysis of Internalized

    E-print Network

    Cheng, Ji-Xin

    -drug conjugate during folate receptor (FR)-mediated endosomal trafficking. For this purpose, we synthesized.5). Taken together, these data argue that the FR-trafficking pathway does not involve acidic compartments Current affiliation: St. Jude Children's Research Hospital, Memphis, Ten- nessee. Article, publicat

  18. Folate-binding protein and the absorption of folic acid in the small intestine of the suckling rat

    SciTech Connect

    Mason, J.B.; Selhub, J.

    1988-09-01

    The folate in milk is largely bound to high-affinity folate-binding protein (FBP). With an in vivo intestinal loop technique, we examined the absorption of folic acid bound to FBP (FA-FBP) in the small intestine of the suckling rat. In contrast to unbound folic acid (FA), FA-FBP is absorbed more avidly in the ileum than in the jejunum (p less than 0.025) and its absorption is not inhibited by 1 mmol sulfasalazine/L. Folate-binding activities in the mucosa of the proximal (duodenum and jejunum combined) and distal (ileum) small intestine were also examined and found to be 0.32 and 1.31 pmol/mg protein, respectively (p less than 0.001). A 6-h fast produced a 42% decrease in folate-binding activity in the distal small intestine (p less than 0.01) but did not change activity in the proximal portion. Collectively, these observations suggest that FA-FBP is absorbed by a mechanism that is distinct from that responsible for the absorption of FA and that absorption does not require prior dissociation of the vitamin-binding protein complex.

  19. Lower Maternal Folate Status in Early Pregnancy Is Associated with Childhood Hyperactivity and Peer Problems in Offspring

    ERIC Educational Resources Information Center

    Schlotz, Wolff; Jones, Alexander; Phillips, David I. W.; Gale, Catharine R.; Robinson, Sian M.; Godfrey, Keith M.

    2010-01-01

    Background: Maternal nutrition during pregnancy has been linked with fetal brain development and psychopathology in the offspring. We examined for associations of maternal folate status and dietary intake during pregnancy with brain growth and childhood behavioural difficulties in the offspring. Methods: In a prospective cohort study, maternal red…

  20. A MASS SPECTROMETRIC VALIDATED HIGH=PERFORMACE LIQUID CHROMATOGRAPHY PROCEDURE FOR THE DETERMINATION OF FOLATES IN FOODS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of five food reference materials (RM) that had certified values of folate concentrations and five frozen food samples were analyzed for 5-methyltetrahydrofolic acid (5-MTHFA) and folic acid (FA) using a High Performance Liquid Chromatography (HPLC) method with fluorescence detection that wa...

  1. The construction and in vitro testing of photo-activatable cancer targeting folated anti-CD3 conjugates

    SciTech Connect

    Thompson, Stephen Dessi, John; Self, Colin H.

    2008-02-08

    The construction and in vitro testing of a photo-activatable anti-tumour immuno-regulatory antibody is described. In this 'cloaked' folated anti-CD3 antibody conjugate, the folate portion of the conjugate is free to bind to folate receptor expressing cancer cells, whilst the anti-CD3 activity is effectively rendered inert by a coating of photo-labile 2-nitrobenzyl groups. On irradiation with UV-A light the activity of the anti-CD3 antibody is restored, not only when it is required, but more importantly, only where it is required. The conjugate can then attract killer T-cells to the surface of the tumour cells and kill them. Unirradiated normal tissues, to which the conjugate has been targeted by specific and non-specific binding, remain unharmed. We believe that these 'photo-switchable' conjugates could be used to markedly improve the targeting of the immune response to folate receptor (FR) expressing ovarian and breast cancers whilst minimising the side effects in the rest of the body.

  2. The Status of Vitamin B12 and Folate among Chinese Women: A Population-Based Cross-Sectional Study in Northwest China

    PubMed Central

    Dang, Shaonong; Yan, Hong; Zeng, Lingxia; Wang, Quanli; Li, Qiang; Xiao, Shengbin; Fan, Xiaojing

    2014-01-01

    Objective To assess the status of the vitamin B12 and folate of Chinese women living in northwest China. Methods A population-based cross-sectional study was conducted in 2008 among Chinese women aged 10–49 years living in Shaanxi province of northwest China. A stratified multistage random sampling method was adopted to obtain a sample of 1170 women. The women were interviewed for collection of their background information and their plasma vitamin B12 and folate were measured with the immunoassay method. The status of both vitamins was evaluated and the prevalence of deficiency was estimated. Results The median value of the women was 214.5 pg/mL for vitamin B12 and 4.6 ng/mL for folate. The urban women had a significantly higher vitamin B12 (254.1 vs. 195.9 pg/mL) but lower folate (4.4 vs. 4.7 ng/mL) than rural women. Total prevalence of deficiency was 45.5% (95% CI: 42.6%?48.4%) for vitamin B12 and 14.7% (95% CI: 12.6%?16.8%) for folate. About 36% of women presented vitamin B12 deficiency alone, 5.2% belonged to folate deficiency alone and 9.5% was combined deficiency in both vitamins. More than 25% of the women were in marginal vitamin B12 status (200–299 pg/mL) and 60% in marginal status of folate (3–6 ng/mL). About 75.2% of rural women with folate deficiency were deficient in vitamin B12 and 46% for urban women. Quantile regression model found decreasing coefficient of folate status across 73 different quantiles of vitamin B12, which indicated that the women with folate deficiency had lower vitamin B12 significantly compared with those with no deficiency. Conclusions The deficiency of vitamin B12 and folate is still prevalent among the Chinese women in northwest China. Vitamin B12 deficiency could be more serious and the improvement of poor vitamin B12 status should be invoked when practicing the supplementation of folate against the neural tube defects in northwest China. PMID:25390898

  3. LOW PLASMA VITAMIN B12 AND HIGH FOLATE CONCENTRATIONS IN PREGNANCY ARE ASSOCIATED WITH GESTATIONAL DIABESITY AND INCIDENT DIABETES

    PubMed Central

    Krishnaveni, GV; Hill, JC; Veena, SR; Bhat, DS; Wills, AK; Chachyamma, KJ; Karat, SC; Yajnik, CS; Fall, CHD

    2012-01-01

    Aim To test the hypothesis that low plasma vitamin B12 concentrations combined with high folate concentrations in pregnancy are associated with higher incidence of gestational diabetes (GDM) and later diabetes. Methods Women (N=785) attending the antenatal clinics of the Holdsworth Memorial Hospital, Mysore, India had their anthropometry, insulin resistance (Homeostasis Model Assessment) and glucose tolerance assessed at 30 weeks gestation (100g Oral Glucose Tolerance Test/ OGTT; Carpenter-Coustan criteria), and five years after delivery (75g OGTT, WHO 1999). Vitamin B12 and folate concentrations in pregnancy were measured in stored frozen plasma samples. Results Low vitamin B12 concentrations (<150 pmol/l, B12 deficiency) were observed in 43% of women and low folate concentrations (<7 nmol/l) in 4%. Women with vitamin B12 deficiency had higher body mass index (BMI; P<0.001), sum of skinfolds (P<0.001), insulin resistance (P=0.02) and a higher incidence of GDM (8.7% v 4.6%; OR=2.14, P=0.02; P=0.1 after adjusting for maternal BMI) than non-deficient women. Among vitamin B12-deficient women the incidence of GDM increased with folate concentration (5.6%, 8.8%, 12.8% respectively from lowest to highest third; P for interaction=0.2). B12 deficiency during pregnancy predicted larger skinfolds, increased insulin resistance (P<0.05) and incident diabetes at 5-year follow-up (P=0.02, after adjusting for current BMI). Conclusion Maternal vitamin B12 deficiency is associated with increased adiposity and, in turn, with increased insulin resistance and GDM, especially in the presence of high folate concentrations. Vitamin B12 deficiency may be an important factor underlying the high risk of diabesity in south Asian Indians. PMID:19707742

  4. Genetic variation of folate-mediated one-carbon transfer pathway predicts susceptibility to choline deficiency in humans

    PubMed Central

    Kohlmeier, Martin; da Costa, Kerry-Ann; Fischer, Leslie M.; Zeisel, Steven H.

    2005-01-01

    Choline is a required nutrient, and some humans deplete quickly when fed a low-choline diet, whereas others do not. Endogenous choline synthesis can spare some of the dietary requirement and requires one-carbon groups derived from folate metabolism. We examined whether major genetic variants of folate metabolism modify susceptibility of humans to choline deficiency. Fifty-four adult men and women were fed diets containing adequate choline and folate, followed by a diet containing almost no choline, with or without added folate, until they were clinically judged to be choline-deficient, or for up to 42 days. Criteria for clinical choline deficiency were a more than five times increase in serum creatine kinase activity or a >28% increase of liver fat after consuming the low-choline diet that resolved when choline was returned to the diet. Choline deficiency was observed in more than half of the participants, usually within less than a month. Individuals who were carriers of the very common 5,10-methylenetetrahydrofolate dehydrogenase-1958A gene allele were more likely than noncarriers to develop signs of choline deficiency (odds ratio, 7.0; 95% confidence interval, 2.0-25; P < 0.01) on the low-choline diet unless they were also treated with a folic acid supplement. The effects of the C677T and A1298C polymorphisms of the 5,10-methylene tetrahydrofolate reductase gene and the A80C polymorphism of the reduced folate carrier 1 gene were not statistically significant. The most remarkable finding was the strong association in premenopausal women of the 5,10-methylenetetrahydrofolate dehydrogenase-1958A gene allele polymorphism with 15 times increased susceptibility to developing organ dysfunction on a low-choline diet. PMID:16236726

  5. Preparation, co-assembling and interfacial crosslinking of photocurable and folate-conjugated amphiphilic block copolymers for controlled and targeted drug delivery: smart armored nanocarriers.

    PubMed

    Khoee, Sepideh; Kavand, Alireza

    2014-02-12

    Novel pH-sensitive, biodegradable and biocompatible copolymers based on polycaprolactone-poly(ethylene glycol) (PCL/PEG) were synthesized and further modified with folic acid and/or acryloyl chloride. The mixed polymeric micelles were formed by self-assembling of folated-copolymer and non-folated-copolymer with different compositions via nanoprecipitation method. The solubilization of quercetin as anti-cancer drug by the mixed micelle with the optimized composition (folated/non-folated 20/80) was more efficient than those made of each one alone. Nanogels with different crosslinking density were produced in the presence of ethylene glycol dimethacrylate (EGDMA) as the crosslinker via a photochemical method. Interfacial crosslinking of acrylated groups were utilized to produce a core-shell spherical nanoparticle to evaluate their in-vitro drug release and degradation rate. PMID:24374349

  6. Exploiting alkaloid biosynthesis in Madagascar periwinkle to obtain natural product derivatives and new biocatalysts

    E-print Network

    Bernhardt, Peter, Ph. D. Massachusetts Institute of Technology

    2010-01-01

    Plant alkaloid biosynthesis produces many natural products with medicinal value. For example, vinblastine and vincristine from Catharanthus roseus monoterpene indole alkaloid biosynthesis, and camptothecin derivatives from ...

  7. Comparing Various Evolutionary Algorithms on the Parameter Optimization of the Valine and Leucine Biosynthesis in

    E-print Network

    Zell, Andreas

    Biosynthesis in Corynebacterium glutamicum Andreas Dr¨ager Jochen Supper Hannes Planatscher Jørgen B. Magnus biosynthesis in C. glutamicum. Due to the lack of indisputable information regarding reversibility

  8. Socioeconomic factors are associated with folate and vitamin B12 intakes and related biomarkers concentrations in European adolescents: the Healthy Lifestyle in Europe by Nutrition in Adolescence study.

    PubMed

    Iglesia, Iris; Mouratidou, Theodora; González-Gross, Marcela; Novakovic, Romana; Breidenassel, Christina; Jiménez-Pavón, David; Huybrechts, Inge; De Henauw, Stefaan; Geelen, Anouk; Gottrand, Frédéric; Kafatos, Anthony; Mistura, Lorenza; de Heredia, Fátima Pérez; Widhalm, Kurt; Manios, Yanis; Molnar, Denes; Stehle, Peter; Gurinovic, Mirjana; Cavelaars, Adrienne E J M; Van't Veer, Pieter; Moreno, Luis A

    2014-03-01

    Because socioeconomic factors (SEFs) may influence dietary quality and vitamin intakes, this study aimed to examine associations between socioeconomic factors and folate and vitamin B12 intakes as well as their related biomarkers in the Healthy Lifestyle in Europe by Nutrition in Adolescence study. Vitamin intakes were obtained from two 24-hour recalls in 2253 participants (47% males). Vitamin B biomarkers were assessed in a subsample of 977 participants (46% males). Socioeconomic factors were assessed by questionnaire, and 1-way analysis of covariance and linear regression analysis were applied. For males and females, mean intakes of folate were 211.19 and 177.18 ?g/d, and for vitamin B12, 5.98 and 4.54 ?g/d, respectively. Levels of plasma folate, red blood cell folate, serum B12, and holotranscobalamin were 18.74, 807.19, 330.64, and 63.04 nmol/L in males, respectively, and 19.13, 770.16, 377.9, and 65.63 nmol/L in females, respectively. Lower folate intakes were associated with several SEFs, including maternal and paternal education in both sexes. Regarding folate biomarkers, lower plasma folate intakes were associated with single/shared care in males and with lower paternal occupation in females. Lower vitamin B12 intakes were associated with almost all the studied SEFs, except paternal occupation in both sexes. In females, when considering vitamin B12 biomarkers, lower plasma vitamin B12 was associated with lower maternal education and occupation, and lower holotranscobalamin was associated with lower maternal education and lower paternal occupation. In conclusion, from the set of socioeconomic determinants studied in a sample of European adolescents, maternal education and paternal occupation were more consistently associated with folate and vitamin B12 intakes and biomarkers concentrations. PMID:24655486

  9. Factors associated with compliance of prenatal iron folate supplementation among women in Mecha district, Western Amhara: a cross-sectional study

    PubMed Central

    Taye, Bekele; Abeje, Gedefaw; Mekonen, Alemetsehaye

    2015-01-01

    Introduction Iron and folate supplementation can effectively control and prevent anaemia in pregnancy. In Ethiopia, all pregnant women are prescribed iron folate during their ANC visit. However, limited adherence is thought to be a major reason for the low effectiveness of iron supplementation programs. Therefore this study was done to investigate factors associated with compliance of prenatal iron folate supplementation among women who gave birth in the last 12 months before the survey in Mecha district. Methods Community based cross sectional study design was employed in Mecha district from June 25 - July 15/2013. A sample of 634 women who gave birth 12 months before the survey was included in the study. Study participants were selected by systematic random sampling technique after allocating the total sample to each kebele proportionally. Data were collected using a pre-tested structured Amharic questionnaire. Collected data were edited, coded and entered to Epi info version 3.1 and exported to‘ SPSS version 16. Bivariate and multivariable analysis was computed. Results A total of 628 women who gave birth twelve months before the survey were enrolled. In this study only 20.4% of participants were compliant with iron foliate supplementation. In multivariable analysis, age of the mother, educational status of the mother, knowledge of anaemia and iron folate tablets, and history of anaemia during pregnancy were significantly associated with compliance to iron folate supplementation (P < .05). Belief that too many tablets would harm the baby and fear of side effects were the major reasons given for noncompliance. Conclusion Compliance to iron folate supplementation is very low in the study area. Increasing female education and increasing knowledge of women about anaemia and iron folate tablets are recommended to increase compliance to iron folate supplementation. PMID:26090001

  10. Folate, vitamin B6, vitamin B12 and methionine intakes and risk for nasopharyngeal carcinoma in Chinese adults: a matched case-control study.

    PubMed

    Zeng, Fang-Fang; Liu, Yuan-Ting; Lin, Xiao-Ling; Fan, Yu-Ying; Zhang, Xing-Lan; Xu, Chun-Hua; Chen, Yu-Ming

    2016-01-01

    Many studies have suggested that folate-related one-carbon metabolism-related nutrients may play a role in certain cancer risks, but few studies have assessed their associations with the risk for nasopharyngeal carcinoma (NPC). In this study, we investigated the association between four folate-related one-carbon metabolism-related nutrients (folate, vitamin B6, vitamin B12 and methionine) and NPC risk in Chinese adults. A total of 600 patients newly diagnosed (within 3 months) with NPC were individually matched with 600 hospital-based controls by age, sex and household type (urban v. rural). Folate, vitamin B6, vitamin B12 and methionine intakes were measured using a validated seventy-eight-item FFQ. A higher dietary folate or vitamin B6 intake was associated with a lower NPC risk after adjusting for potential confounders. The adjusted OR of NPC for quartiles 2-4 (v. 1) were 0·66 (95 % CI 0·48, 0·91), 0·52 (95 % CI 0·37, 0·74) and 0·34 (95 % CI 0·23, 0·50) (P trend<0·001) for folate and 0·72 (95 % CI 0·52, 1·00), 0·55 (95 % CI 0·39, 0·78) and 0·44 (95 % CI 0·30, 0·63) (P trend<0·001) for vitamin B6. No significant association with NPC risk was observed for dietary vitamin B12 or methionine intake. The risk for NPC with dietary folate intake was more evident in the participants who were not exposed to toxic substances than in those who were exposed (P interaction=0·014). This study suggests that dietary folate and vitamin B6 may be protective for NPC in a high-risk population. PMID:26515433

  11. Size controlled protein nanoemulsions for active targeting of folate receptor positive cells.

    PubMed

    Loureiro, Ana; Nogueira, Eugénia; Azoia, Nuno G; Sárria, Marisa P; Abreu, Ana S; Shimanovich, Ulyana; Rollett, Alexandra; Härmark, Johan; Hebert, Hans; Guebitz, Georg; Bernardes, Gonçalo J L; Preto, Ana; Gomes, Andreia C; Cavaco-Paulo, Artur

    2015-11-01

    Bovine serum albumin (BSA) nanoemulsions were produced by high pressure homogenization with a tri-block copolymer (Poloxamer 407), which presents a central hydrophobic chain of polyoxypropylene (PPO) and two identical lateral hydrophilic chains of polyethylene glycol (PEG). We observed a linear correlation between tri-block copolymer concentration and size - the use of 5mg/mL of Poloxamer 407 yields nanoemulsions smaller than 100nm. Molecular dynamics and fluorescent tagging of the tri-block copolymer highlight their mechanistic role on the size of emulsions. This novel method enables the fabrication of highly stable albumin emulsions in the nano-size range, highly desirable for controlled drug delivery. Folic Acid (FA)-tagged protein nanoemulsions were shown to promote specific folate receptor (FR)-mediated targeting in FR positive cells. The novel strategy presented here enables the construction of size controlled, functionalized protein-based nanoemulsions with excellent characteristics for active targeting in cancer therapy. PMID:26241920

  12. Two-compartment behavior during transport of folate compounds in L1210 cell plasma membrane vesicles

    SciTech Connect

    Yang, C.H.; Dembo, M.; Sirotnak, F.M.

    1982-01-01

    The transport of (/sup 3/H) 1,L 5-formyltetrahydrofolate, (/sup 3/H) folic acid, and (/sup 3/H)methotrexate by L1210 cell plasma membrane vesicles exhibited multicompartmental behavior. Two separate vesicular compartments (parallel relationship) of approximately equal volume were revealed during measurements of influx and efflux. Flux in one compartment was rapid, saturable, highly temperature-sensitive, and inhibited by pCMBS. Flux in the other compartment exhibited all of the characteristics of passive diffusion. These results imply that our plasma membrane vesicle preparations consist of a mixture of two functional species. Transport of folate into one of these species occurs by passive diffusion alone, whereas transport into the other kind of vesicle occurs by both passive diffusion and carrier-facilitated transport.

  13. Encapsulated Lactococcus lactis with enhanced gastrointestinal survival for the development of folate enriched functional foods.

    PubMed

    Divya, Jayakumar Beena; Nampoothiri, Kesavan Madhavan

    2015-01-01

    Two lactic acid bacteria (LAB) isolated from cow's milk were identified as Lactococcus lactis strains and designated as L. lactis CM22 and L. lactis CM28. They were immobilised by co-encapsulation using alginate and mannitol and by hybrid entrapment with skim milk, glycerol, CaCO3 and alginate. The encapsulated cells survived better in simulated gastrointestinal conditions compared to the free cells. The percentage survival of probiotics encapsulated by hybrid entrapment method was 62.74% for L. lactis CM22 and 68% for L. lactis CM28. Studies to check their efficacy in fermentative fortification of skim milk and ice cream revealed an enhancement in folate level. PMID:25686721

  14. Computer aided gene mining for gingerol biosynthesis

    PubMed Central

    James, Priyanka; Baby, Bincy; Charles, SonaSona; Nair, Lekshmysree Saraschandran; Nazeem, Puthiyaveetil Abdulla

    2015-01-01

    Inspite of the large body of genomic data obtained from the transcriptome of Zingiber officinale, very few studies have focused on the identification and characterization of miRNAs in gingerol biosynthesis. Zingiber officinale transcriptome was analyzed using EST dataset (38169 total) deposited in public domains. In this paper computational functional annotation of the available ESTs and identification of genes which play a significant role in gingerol biosynthesis are described. Zingiber officinale transcriptome was analyzed using EST dataset (38169 total) from ncbi. ESTs were clustered and assembled, resulting in 8624 contigs and 8821 singletons. Assembled dataset was then submitted to the EST functional annotation workflow including blast, gene ontology (go) analysis, and pathway enrichment by kyoto encyclopedia of genes and genomes (kegg) and interproscan. The unigene datasets were further exploited to identify simple sequence repeats that enable linkage mapping. A total of 409 simple sequence repeats were identified from the contigs. Furthermore we examined the existence of novel miRNAs from the ESTs in rhizome, root and leaf tissues. EST analysis revealed the presence of single hypothetical miRNA in rhizome tissue. The hypothetical miRNA is warranted to play an important role in controlling genes involved in gingerol biosynthesis and hence demands experimental validation. The assembly and associated information of transcriptome data provides a comprehensive functional and evolutionary characterization of genomics of Zingiber officinale. As an effort to make the genomic and transcriptomic data widely available to the public domain, the results were integrated into a web-based Ginger EST database which is freely accessible at http://www.kaubic.in/gingerest/. PMID:26229293

  15. Computer aided gene mining for gingerol biosynthesis.

    PubMed

    James, Priyanka; Baby, Bincy; Charles, SonaSona; Nair, Lekshmysree Saraschandran; Nazeem, Puthiyaveetil Abdulla

    2015-01-01

    Inspite of the large body of genomic data obtained from the transcriptome of Zingiber officinale, very few studies have focused on the identification and characterization of miRNAs in gingerol biosynthesis. Zingiber officinale transcriptome was analyzed using EST dataset (38169 total) deposited in public domains. In this paper computational functional annotation of the available ESTs and identification of genes which play a significant role in gingerol biosynthesis are described. Zingiber officinale transcriptome was analyzed using EST dataset (38169 total) from ncbi. ESTs were clustered and assembled, resulting in 8624 contigs and 8821 singletons. Assembled dataset was then submitted to the EST functional annotation workflow including blast, gene ontology (go) analysis, and pathway enrichment by kyoto encyclopedia of genes and genomes (kegg) and interproscan. The unigene datasets were further exploited to identify simple sequence repeats that enable linkage mapping. A total of 409 simple sequence repeats were identified from the contigs. Furthermore we examined the existence of novel miRNAs from the ESTs in rhizome, root and leaf tissues. EST analysis revealed the presence of single hypothetical miRNA in rhizome tissue. The hypothetical miRNA is warranted to play an important role in controlling genes involved in gingerol biosynthesis and hence demands experimental validation. The assembly and associated information of transcriptome data provides a comprehensive functional and evolutionary characterization of genomics of Zingiber officinale. As an effort to make the genomic and transcriptomic data widely available to the public domain, the results were integrated into a web-based Ginger EST database which is freely accessible at http://www.kaubic.in/gingerest/. PMID:26229293

  16. Biosynthesis of Gold Nanoparticles Using Pseudomonas Aeruginosa

    SciTech Connect

    Abd El-Aziz, M.; Badr, Y.; Mahmoud, M. A.

    2007-02-14

    Pseudomonas aeruginosa were used for extracellular biosynthesis of gold nanoparticles (Au NPs). Consequently, Au NPs were formed due to reduction of gold ion by bacterial cell supernatant of P. aeruginos ATCC 90271, P. aeruginos (2) and P. aeruginos (1). The UV-Vis. and fluorescence spectra of the bacterial as well as chemical prepared Au NPs were recorded. Transmission electron microscopy (TEM) micrograph showed the formation of well-dispersed gold nanoparticles in the range of 15-30 nm. The process of reduction being extracellular and may lead to the development of an easy bioprocess for synthesis of Au NPs.

  17. Green biosynthesis of floxuridine by immobilized microorganisms.

    PubMed

    Rivero, Cintia W; Britos, Claudia N; Lozano, Mario E; Sinisterra, Jose V; Trelles, Jorge A

    2012-06-01

    This work describes an efficient, simple, and green bioprocess for obtaining 5-halogenated pyrimidine nucleosides from thymidine by transglycosylation using whole cells. Biosynthesis of 5-fluoro-2'-deoxyuridine (floxuridine) was achieved by free and immobilized Aeromonas salmonicida ATCC 27013 with an 80% and 65% conversion occurring in 1 h, respectively. The immobilized biocatalyst was stable for more than 4 months in storage conditions (4 °C) and could be reused at least 30 times without loss of its activity. This microorganism was able to biosynthesize 2.0 mg L(-1) min(-1) (60%) of 5-chloro-2'-deoxyuridine in 3 h. These halogenated pyrimidine 2'-deoxynucleosides are used as antitumoral agents. PMID:22428623

  18. Pogostol biosynthesis by the endophytic fungus Geniculosporium.

    PubMed

    Barra, Lena; Schulz, Barbara; Dickschat, Jeroen S

    2014-11-01

    Six (13)C-labelled isotopomers of mevalonolactone were synthesised and used in feeding experiments with the endophytic fungus Geniculosporium. The high incorporation rates of (13)C-label into a sesquiterpene that was found in headspace extracts of the fungus enabled unambiguous identification of this volatile as pogostol without the need for compound purification, simply by collecting the volatile fraction with a closed-loop stripping apparatus followed by direct (13)C NMR analysis (CLSA-NMR). The feeding experiments also gave insights into the biosynthesis of pogostol, including stereochemical aspects of the terpene cyclisation reaction. The possible biological function of pogostol is discussed. PMID:25186118

  19. Diet, methyl donors and DNA methylation: interactions between dietary folate, methionine and choline.

    PubMed

    Niculescu, Mihai D; Zeisel, Steven H

    2002-08-01

    DNA methylation influences the expression of some genes and depends upon the availability of methyl groups from S-adenosylmethionine (SAM). Dietary methyl groups derive from foods that contain methionine, one-carbon units and choline (or the choline metabolite betaine). Humans ingest approximately 50 mmol of methyl groups per day; 60% of them are derived from choline. Transmethylation metabolic pathways closely interconnect choline, methionine, methyltetrahydrofolate (methyl-THF) and vitamins B-6 and B-12. The pathways intersect at the formation of methionine from homocysteine. Perturbing the metabolism of one of these pathways results in compensatory changes in the others. For example, methionine can be formed from homocysteine using methyl groups from methyl-THF, or using methyl groups from betaine that are derived from choline. Similarly, methyl-THF can be formed from one-carbon units derived from serine or from the methyl groups of choline via dimethylglycine, and choline can be synthesized de novo using methyl groups derived from methionine (via SAM). When animals and humans are deprived of choline, they use more methyl-THF to remethylate homocysteine in the liver and increase dietary folate requirements. Conversely, when they are deprived of folate, they use more methyl groups from choline, increasing the dietary requirement for choline. The availability of transgenic and knockout mice has made possible additional studies that demonstrate the interrelationship of these methyl sources. In summary, as we consider dietary requirements and possible effects on DNA methylation, it is important to realize that methionine, methyl-THF and choline can be fungible sources of methyl groups, and the design of our studies should reflect this. PMID:12163687

  20. Periconceptional intake of vitamins and fetal death: a cohort study on multivitamins and folate

    PubMed Central

    Nohr, Ellen A; Olsen, Jorn; Bech, Bodil H; Bodnar, Lisa M; Olsen, Sjurdur F; Catov, Janet M

    2014-01-01

    Background Women planning to conceive are often advised to take multivitamins. Whether this affects the survival of the fetus is not known. Methods We used data from 35 914 women in the Danish National Birth Cohort who at recruitment had reported the number of weeks of supplement use during a 12-week periconceptional period. A telephone interview provided information about maternal characteristics and data on fetal death came from registers. The associations between periconceptional multivitamin or folate-only use and early (<20 weeks) and late (?20 weeks) fetal death were estimated by hazard ratios (HR) with 95% confidence intervals (CI). Follow-up started at 8 completed weeks of gestation, and comparisons were made with no supplement use at any time during the periconceptional period. Results Any multivitamin use was associated with a small increased crude risk of fetal death [HR 1.12 (1.01–1.25)], which was restricted to early losses [HR 1.18 (1.05–1.33)] compared with late losses [HR 0.82 (0.62–1.10)]. Adjustment for maternal factors increased this excess risk further. Whereas regular users of multivitamins (4–6 weeks of 6) before conception had more early losses [HR 1.29 (1.12–1.48)], a decreased risk of late losses was indicated when use started after conception [HR 0.65 (0.39–1.09)]. Folate-only use was not associated with fetal death. Conclusions Multivitamin use was associated with a modest increased risk of early fetal death. For late fetal death, regular supplement use after conception may decrease risk, but numbers were small. Further studies on preconceptional multivitamin use are needed to guide public health recommendations. PMID:24453235

  1. Folate-Modified Lipoplexes Delivering the Interleukin-12 Gene for Targeting Colon Cancer Immunogene Therapy.

    PubMed

    Luo, Min; Liang, Xiao; Luo, Shun-Tao; Wei, Xia-Wei; Liu, Ting; Ren, Jun; Ma, Cui-Cui; Yang, Yu-Han; Wang, Bi-Lan; Liu, Li; Song, Xiang-Rong; He, Zhi-Yao; Wei, Yu-Quan

    2015-11-01

    The incidence and mortality rate of colorectal cancer increase every year, making it a serious threat to human health. Targeted immunogene therapy is a novel method of treating this type of cancer. Colon cancer overexpresses folate receptor ? (FR?) and folate-modified liposomes for colon cancer immunogene therapy may suppress tumor growth effectively. In this study, F-PLP/pIL12, an FR?-targeted lipoplex loading plasmid interleukin-12 (pIL12) was prepared and its physicochemical properties were characterized. Then the antitumor effect of F-PLP/pIL12 was studied in an in vivo model of CT-26 colon cancer. F-PLP/pIL12 was associated with about 56.6% tumor growth inhibition compared with the saline control. The production of malignant ascites was significantly less pronounced than in controls, and there were fewer tumor nodules and less overall tumor mass (P < 0.01). There was more IL12 expression and IFN-? secretion in F-PLP/pIL12-treated tumor tissues, but there was less FR? expression. The antitumor mechanisms involved inducing tumor cell apoptosis, reducing microvessel density, and stimulating TNF-? secretion. In addition, there were fewer M2 macrophages in the tumor microenvironment of tissues stimulated with F-PLP/pIL12, which also activated the natural killer cells. H&E staining of vital organs suggested that F-PLP/pIL12 is safe for use in intraperitoneally administered cancer therapy. It was here concluded that F-PLP/plL12 may be a suitable targeting formulation for colon cancer immunogene therapy. PMID:26554159

  2. Folate Receptor-Beta Has Limited Value for Fluorescent Imaging in Ovarian, Breast and Colorectal Cancer

    PubMed Central

    de Boer, Esther; van der Vegt, Bert; van der Sluis, Tineke; Kooijman, Paulien; Low, Philip S.; van der Zee, Ate G. J.; Arts, Henriette J. G.; van Dam, Gooitzen M.; Bart, Joost

    2015-01-01

    Aims Tumor-specific targeted imaging is rapidly evolving in cancer diagnosis. The folate receptor alpha (FR-?) has already been identified as a suitable target for cancer therapy and imaging. FR-? is present on ~40% of human cancers. FR-? is known to be expressed on several hematologic malignancies and on activated macrophages, but little is known about FR-? expression in solid tumors. Additional or simultaneous expression of FR-? could help extend the indications for folate-based drugs and imaging agents. In this study, the expression pattern of FR-? is evaluated in ovarian, breast and colorectal cancer. Methods FR-? expression was analyzed by semi-quantitative scoring of immunohistochemical staining on tissue microarrays (TMAs) of 339 ovarian cancer patients, 418 breast cancer patients, on 20 slides of colorectal cancer samples and on 25 samples of diverticulitis. Results FR-? expression was seen in 21% of ovarian cancer samples, 9% of breast cancer samples, and 55% of colorectal cancer samples. Expression was weak or moderate. Of the diverticulitis samples, 80% were positive for FR-? expression in macrophages. FR-? status neither correlated to known disease-related variables, nor showed association with overall survival and progression free survival in ovarian and breast cancer. In breast cancer, negative axillary status was significantly correlated to FR-? expression (p=0.022). Conclusions FR-? expression was low or absent in the majority of ovarian, breast and colorectal tumor samples. From the present study we conclude that the low FR-? expression in ovarian and breast tumor tissue indicates limited practical use of this receptor in diagnostic imaging and therapeutic purposes. Due to weak expression, FR-? is not regarded as a suitable target in colorectal cancer. PMID:26248049

  3. Carbohydrate coated, folate functionalized colloidal graphene as a nanocarrier for both hydrophobic and hydrophilic drugs

    NASA Astrophysics Data System (ADS)

    Maity, Amit Ranjan; Chakraborty, Atanu; Mondal, Avijit; Jana, Nikhil R.

    2014-02-01

    Although graphene based drug delivery has gained significant recent interest, the synthesis of colloidal graphene based nanocarriers with high drug loading capacities and with targeting ligands at the outer surface is a challenging issue. We have synthesized carbohydrate coated and folate functionalized colloidal graphene which can be used as a nanocarrier for a wide variety of hydrophobic and hydrophilic drugs. The synthesized colloidal graphene is loaded with paclitaxol, camptothecin, doxorubicin, curcumin and used for their targeted delivery to cancer cells. We demonstrate that this drug loaded functional graphene nanocarrier can successfully deliver drugs into target cells and offers an enhanced therapeutic performance. The reported approach can be extended to the cellular delivery of other hydrophobic and hydrophilic drugs and the simultaneous delivery of multiple drugs.Although graphene based drug delivery has gained significant recent interest, the synthesis of colloidal graphene based nanocarriers with high drug loading capacities and with targeting ligands at the outer surface is a challenging issue. We have synthesized carbohydrate coated and folate functionalized colloidal graphene which can be used as a nanocarrier for a wide variety of hydrophobic and hydrophilic drugs. The synthesized colloidal graphene is loaded with paclitaxol, camptothecin, doxorubicin, curcumin and used for their targeted delivery to cancer cells. We demonstrate that this drug loaded functional graphene nanocarrier can successfully deliver drugs into target cells and offers an enhanced therapeutic performance. The reported approach can be extended to the cellular delivery of other hydrophobic and hydrophilic drugs and the simultaneous delivery of multiple drugs. Electronic supplementary information (ESI) available: Details of the characterisation of carbohydrate functionalisation, images of different drug/dye loaded graphene nanocarriers at 3 hours incubation time, controlled cell line experiment. See DOI: 10.1039/c3nr05431d

  4. Regulation of connexin biosynthesis, assembly, gap junction formation, and removal

    E-print Network

    Mullen, Sean P.

    Segretaina , Matthias M. Falkb,* a INSERM EMI 00-09, Universite´ de Paris 5 V, 45 rue des Saint Pe`res, 75006, highly regulated process that includes biosynthesis of the connexin subunit proteins on endoplasmic biosynthesis and degradation, draw comparisons to other membrane proteins, highlight novel findings, point out

  5. Decreased serum levels of polyunsaturated fatty acids and folate, but not brain-derived neurotrophic factor, in childhood and adolescent females with depression.

    PubMed

    Tsuchimine, Shoko; Saito, Manabu; Kaneko, Sunao; Yasui-Furukori, Norio

    2015-01-30

    Evidence from observational studies suggests that there is an association among depression and brain-derived neurotrophic factor (BDNF), polyunsaturated fatty acids (PUFAs), and folate; however, this association has yet to be examined in childhood and adolescent depression. The objective was to determine whether the BDNF, PUFAs, and folate in serum differ between first-episode childhood and adolescent depressed patients and healthy controls. We measured the serum levels of BDNF, PUFAs, and folate of cases admitted to the hospital for depression (n=24) and compared it to that of controls (n=26). Subjects and their parents were informed about the nature and the purpose of this study, and a consent form was signed by parents. The ethics committee of Hirosaki University Graduate School of Medicine approved the study protocol. There were significant differences in the docosahexanoic acid (DHA), arachidonic acid (AA), and folate levels between cases and controls. Serum levels of DHA, AA, and folate levels in the patients group were statistically lower than those in the control group, while serum levels of BDNF were not different between cases and controls. These results are in line with findings of previous studies involving adult and elderly subjects, demonstrating lower levels of PUFAs and folate in patients with depression than healthy controls. However, further studies using larger sample size are warranted. PMID:25466229

  6. Macrophage uptake and accumulation of folates are polarization-dependent in vitro and in vivo and are regulated by activin A.

    PubMed

    Samaniego, Rafael; Palacios, Blanca Soler; Domiguez-Soto, Angeles; Vidal, Carlos; Salas, Azucena; Matsuyama, Takami; Sánchez-Torres, Carmen; de la Torre, Inmaculada; Miranda-Carús, Maria Eugenia; Sánchez-Mateos, Paloma; Puig-Kröger, Amaya

    2014-01-01

    Vitamin B9, commonly known as folate, is an essential cofactor for one-carbon metabolism that enters cells through three major specialized transporter molecules (RFC, FR, and PCFT), which differ in expression pattern, affinity for substrate, and ligand-binding pH dependency. We now report that the expression of the folate transporters differs between macrophage subtypes and explains the higher accumulation of 5-MTHF-the major folate form found in serum-in M2 macrophages in vitro and in vivo. M1 macrophages display a higher expression of RFC, whereas FR? and PCFT are preferentially expressed by anti-inflammatory and homeostatic M2 macrophages. These differences are also seen in macrophages from normal tissues involved in folate transit (placenta, liver, colon) and inflamed tissues (ulcerative colitis, RA), as M2-like macrophages from normal tissues express FR? and PCFT, whereas TNF-?-expressing M1 macrophages from inflamed tissues are RFC+. Besides, we provide evidences that activin A is a critical factor controlling the set of folate transporters in macrophages, as it down-regulates FR?, up-regulates RFC expression, and modulates 5-MTHF uptake. All of these experiments support the notion that folate handling is dependent on the stage of macrophage polarization. PMID:24399840

  7. Molecular Regulation of Antibiotic Biosynthesis in Streptomyces

    PubMed Central

    Liu, Gang; Chandra, Govind; Niu, Guoqing

    2013-01-01

    SUMMARY Streptomycetes are the most abundant source of antibiotics. Typically, each species produces several antibiotics, with the profile being species specific. Streptomyces coelicolor, the model species, produces at least five different antibiotics. We review the regulation of antibiotic biosynthesis in S. coelicolor and other, nonmodel streptomycetes in the light of recent studies. The biosynthesis of each antibiotic is specified by a large gene cluster, usually including regulatory genes (cluster-situated regulators [CSRs]). These are the main point of connection with a plethora of generally conserved regulatory systems that monitor the organism's physiology, developmental state, population density, and environment to determine the onset and level of production of each antibiotic. Some CSRs may also be sensitive to the levels of different kinds of ligands, including products of the pathway itself, products of other antibiotic pathways in the same organism, and specialized regulatory small molecules such as gamma-butyrolactones. These interactions can result in self-reinforcing feed-forward circuitry and complex cross talk between pathways. The physiological signals and regulatory mechanisms may be of practical importance for the activation of the many cryptic secondary metabolic gene cluster pathways revealed by recent sequencing of numerous Streptomyces genomes. PMID:23471619

  8. Benzylisoquinoline alkaloid biosynthesis in opium poppy.

    PubMed

    Beaudoin, Guillaume A W; Facchini, Peter J

    2014-07-01

    Opium poppy (Papaver somniferum) is one of the world's oldest medicinal plants and remains the only commercial source for the narcotic analgesics morphine, codeine and semi-synthetic derivatives such as oxycodone and naltrexone. The plant also produces several other benzylisoquinoline alkaloids with potent pharmacological properties including the vasodilator papaverine, the cough suppressant and potential anticancer drug noscapine and the antimicrobial agent sanguinarine. Opium poppy has served as a model system to investigate the biosynthesis of benzylisoquinoline alkaloids in plants. The application of biochemical and functional genomics has resulted in a recent surge in the discovery of biosynthetic genes involved in the formation of major benzylisoquinoline alkaloids in opium poppy. The availability of extensive biochemical genetic tools and information pertaining to benzylisoquinoline alkaloid metabolism is facilitating the study of a wide range of phenomena including the structural biology of novel catalysts, the genomic organization of biosynthetic genes, the cellular and sub-cellular localization of biosynthetic enzymes and a variety of biotechnological applications. In this review, we highlight recent developments and summarize the frontiers of knowledge regarding the biochemistry, cellular biology and biotechnology of benzylisoquinoline alkaloid biosynthesis in opium poppy. PMID:24671624

  9. Essences in Metabolic Engineering of Lignan Biosynthesis

    PubMed Central

    Satake, Honoo; Koyama, Tomotsugu; Bahabadi, Sedigheh Esmaeilzadeh; Matsumoto, Erika; Ono, Eiichiro; Murata, Jun

    2015-01-01

    Lignans are structurally and functionally diverse phytochemicals biosynthesized in diverse plant species and have received wide attentions as leading compounds of novel drugs for tumor treatment and healthy diets to reduce of the risks of lifestyle-related non-communicable diseases. However, the lineage-specific distribution and the low-amount of production in natural plants, some of which are endangered species, hinder the efficient and stable production of beneficial lignans. Accordingly, the development of new procedures for lignan production is of keen interest. Recent marked advances in the molecular and functional characterization of lignan biosynthetic enzymes and endogenous and exogenous factors for lignan biosynthesis have suggested new methods for the metabolic engineering of lignan biosynthesis cascades leading to the efficient, sustainable, and stable lignan production in plants, including plant cell/organ cultures. Optimization of light conditions, utilization of a wide range of elicitor treatments, and construction of transiently gene-transfected or transgenic lignan-biosynthesizing plants are mainly being attempted. This review will present the basic and latest knowledge regarding metabolic engineering of lignans based on their biosynthetic pathways and biological activities, and the perspectives in lignan production via metabolic engineering. PMID:25946459

  10. Molecular genetics of carbapenem antibiotic biosynthesis.

    PubMed

    McGowan, S J; Holden, M T; Bycroft, B W; Salmond, G P

    1999-01-01

    Carbapenems are potent beta-lactam antibiotics with a broad spectrum of activity against both Gram positive and Gram negative bacteria. As naturally produced metabolites, they have been isolated from species of Streptomyces, Erwinia and Serratia. The latter two members of the Enterobacteriaceae have proved to be genetically amenable and a growing body of research on these organisms now exists concerning the genes responsible for carbapenem biosynthesis and the regulatory mechanisms controlling their expression. A cluster of nine carbapenem (car) genes has been identified on the chromosome of Erwinia carotovora. These genes encode the enzymes required for construction of carbapenem and the proteins responsible for a novel beta-lactam resistance mechanism, conferring carbapenem immunity in the producing host. Although sharing no homology with the well known enzymes of penicillin biosynthesis, two of the encoded proteins are apparently similar to enzymes of the clavulanic acid biosynthetic pathway implying a common mechanism for construction of the beta-lactam ring. In addition, a transcriptional activator is encoded as the first gene of the carbapenem cluster and this allows positive expression of the remaining downstream genes in response to a quorum sensing, N-acyl homoserine lactone, signalling molecule. PMID:10422586

  11. Biosynthesis of archaeal membrane ether lipids

    PubMed Central

    Jain, Samta; Caforio, Antonella; Driessen, Arnold J. M.

    2014-01-01

    A vital function of the cell membrane in all living organism is to maintain the membrane permeability barrier and fluidity. The composition of the phospholipid bilayer is distinct in archaea when compared to bacteria and eukarya. In archaea, isoprenoid hydrocarbon side chains are linked via an ether bond to the sn-glycerol-1-phosphate backbone. In bacteria and eukarya on the other hand, fatty acid side chains are linked via an ester bond to the sn-glycerol-3-phosphate backbone. The polar head groups are globally shared in the three domains of life. The unique membrane lipids of archaea have been implicated not only in the survival and adaptation of the organisms to extreme environments but also to form the basis of the membrane composition of the last universal common ancestor (LUCA). In nature, a diverse range of archaeal lipids is found, the most common are the diether (or archaeol) and the tetraether (or caldarchaeol) lipids that form a monolayer. Variations in chain length, cyclization and other modifications lead to diversification of these lipids. The biosynthesis of these lipids is not yet well understood however progress in the last decade has led to a comprehensive understanding of the biosynthesis of archaeol. This review describes the current knowledge of the biosynthetic pathway of archaeal ether lipids; insights on the stability and robustness of archaeal lipid membranes; and evolutionary aspects of the lipid divide and the LUCA. It examines recent advances made in the field of pathway reconstruction in bacteria. PMID:25505460

  12. Phytogenic biosynthesis and emission of methyl acetate.

    PubMed

    Jardine, Kolby; Wegener, Frederik; Abrell, Leif; van Haren, Joost; Werner, Christiane

    2014-02-01

    Acetylation of plant metabolites fundamentally changes their volatility, solubility and activity as semiochemicals. Here we present a new technique termed dynamic (13) C-pulse chasing to track the fate of C1-3 carbon atoms of pyruvate into the biosynthesis and emission of methyl acetate (MA) and CO2 . (13) C-labelling of MA and CO2 branch emissions respond within minutes to changes in (13) C-positionally labelled pyruvate solutions fed through the transpiration stream. Strong (13) C-labelling of MA emissions occurred only under pyruvate-2-(13) C and pyruvate-2,3-(13) C feeding, but not pyruvate-1-(13) C feeding. In contrast, strong (13) CO2 emissions were only observed under pyruvate-1-(13) C feeding. These results demonstrate that MA (and other volatile and non-volatile metabolites) derive from the C2,3 atoms of pyruvate while the C1 atom undergoes decarboxylation. The latter is a non-mitochondrial source of CO2 in the light generally not considered in studies of CO2 sources and sinks. Within a tropical rainforest mesocosm, we also observed atmospheric concentrations of MA up to 0.6 ppbv that tracked light and temperature conditions. Moreover, signals partially attributed to MA were observed in ambient air within and above a tropical rainforest in the Amazon. Our study highlights the potential importance of acetyl coenzyme A (CoA) biosynthesis as a source of acetate esters and CO2 to the atmosphere. PMID:23862653

  13. Fatty acid biosynthesis in pea root plastids

    SciTech Connect

    Stahl, R.J.; Sparace, S.A. )

    1989-04-01

    Fatty acid biosynthesis from (1-{sup 14}C)acetate was optimized in plastids isolated from primary root tips of 7-day-old germinating pea seeds. Fatty acid synthesis was maximum at approximately 80 nmoles/hr/mg protein in the presence of 200 {mu}M acetate, 0.5 mM each of NADH, NADPH and CoA, 6 mM each of ATP and MgCl{sub 2}, 1 mM each of the MnCl{sub 2} and glycerol-3-phosphate, 15 mM KHCO{sub 3}, and 0.1M Bis-tris-propane, pH 8.0 incubated at 35C. At the standard incubation temperature of 25C, fatty acid synthesis was linear from up to 6 hours with 80 to 100 {mu}g/mL plastid protein. ATP and CoA were absolute requirements, whereas KHCO{sub 3}, divalent cations and reduced nucleotides all improved activity by 80 to 85%. Mg{sup 2+} and NADH were the preferred cation and nucleotide, respectively. Dithiothreitol and detergents were generally inhibitory. The radioactive products of fatty acid biosynthesis were approximately 33% 16:0, 10% 18:0 and 56% 18:1 and generally did not vary with increasing concentrations of each cofactor.

  14. The main auxin biosynthesis pathway in Arabidopsis.

    PubMed

    Mashiguchi, Kiyoshi; Tanaka, Keita; Sakai, Tatsuya; Sugawara, Satoko; Kawaide, Hiroshi; Natsume, Masahiro; Hanada, Atsushi; Yaeno, Takashi; Shirasu, Ken; Yao, Hong; McSteen, Paula; Zhao, Yunde; Hayashi, Ken-ichiro; Kamiya, Yuji; Kasahara, Hiroyuki

    2011-11-01

    The phytohormone auxin plays critical roles in the regulation of plant growth and development. Indole-3-acetic acid (IAA) has been recognized as the major auxin for more than 70 y. Although several pathways have been proposed, how auxin is synthesized in plants is still unclear. Previous genetic and enzymatic studies demonstrated that both TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA) and YUCCA (YUC) flavin monooxygenase-like proteins are required for biosynthesis of IAA during plant development, but these enzymes were placed in two independent pathways. In this article, we demonstrate that the TAA family produces indole-3-pyruvic acid (IPA) and the YUC family functions in the conversion of IPA to IAA in Arabidopsis (Arabidopsis thaliana) by a quantification method of IPA using liquid chromatography-electrospray ionization-tandem MS. We further show that YUC protein expressed in Escherichia coli directly converts IPA to IAA. Indole-3-acetaldehyde is probably not a precursor of IAA in the IPA pathway. Our results indicate that YUC proteins catalyze a rate-limiting step of the IPA pathway, which is the main IAA biosynthesis pathway in Arabidopsis. PMID:22025724

  15. Engineering the MEP pathway enhanced ajmalicine biosynthesis.

    PubMed

    Chang, Kai; Qiu, Fei; Chen, Min; Zeng, Lingjiang; Liu, Xiaoqiang; Yang, Chunxian; Lan, Xiaozhong; Wang, Qiang; Liao, Zhihua

    2014-01-01

    The 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway genes encoding DXR and MECS from Taxus species and STR from Catharanthus roseus were used to genetically modify the ajmalicine biosynthetic pathway in hairy root cultures of C. roseus. As expected, the STR-overexpressed root cultures showed twofold higher accumulation of ajmalicine than the control. It was important to discover that overexpression of the single DXR or MECS gene from the MEP pathway also remarkably enhanced ajmalicine biosynthesis in transgenic hairy root cultures, and this suggested that engineering the MEP pathway by overexpression of DXR or MECS promoted the metabolic flux into ajmalicine biosynthesis. The transgenic hairy root cultures with co-overexpression of DXR and STR or MECS and STR had higher levels of ajmalicine than those with overexpression of a single gene alone such as DXR, MECS, and STR. It could be concluded that transgenic hairy root cultures harboring both DXR/MECS and STR possessed an increased flux in the terpenoid indole alkaloid biosynthetic pathway that enhanced ajmalicine yield, which was more efficient than cultures harboring only one of the three genes. PMID:24237015

  16. Pathways for phosphatidylcholine biosynthesis in bacteria.

    PubMed

    Martínez-Morales, Fernando; Schobert, Max; López-Lara, Isabel M; Geiger, Otto

    2003-12-01

    Phosphatidylcholine (PC) is the major membrane-forming phospholipid in eukaryotes with important structural and signalling functions. Although many prokaryotes lack PC, it can be found in significant amounts in membranes of rather diverse bacteria. Two pathways for PC biosynthesis are known in bacteria, the methylation pathway and the phosphatidylcholine synthase (PCS) pathway. In the methylation pathway, phosphatidylethanolamine is methylated three times to yield PC, in reactions catalysed by one or several phospholipid N-methyltransferases (PMTs). In the PCS pathway, choline is condensed directly with CDP-diacylglyceride to form PC in a reaction catalysed by PCS. Using cell-free extracts, it was demonstrated that Sinorhizobium meliloti, Agrobacterium tumefaciens, Rhizobium leguminosarum, Bradyrhizobium japonicum, Mesorhizobium loti and Legionella pneumophila have both PMT and PCS activities. In addition, Rhodobacter sphaeroides has PMT activity and Brucella melitensis, Pseudomonas aeruginosa and Borrelia burgdorferi have PCS activities. Genes from M. loti and L. pneumophila encoding a Pmt or a Pcs activity and the genes from P. aeruginosa and Borrelia burgdorferi responsible for Pcs activity have been identified. Based on these functional assignments and on genomic data, one might predict that if bacteria contain PC as a membrane lipid, they usually possess both bacterial pathways for PC biosynthesis. However, important pathogens such as Brucella melitensis, P. aeruginosa and Borrelia burgdorferi seem to be exceptional as they possess only the PCS pathway for PC formation. PMID:14663079

  17. Biosynthesis of sulfoquinovosyldiacylglycerol in higher plants

    SciTech Connect

    Kleppinger-Sparace, K.F. ); Mudd, J.B. )

    1990-05-01

    Adenosine-5{prime}-phosphosulfate (APS) and adenosine-3{prime}-phosphate 5{prime}-phosphosulfate (PAPS) have been used as precursors of sulfoquinovosyldiacylglycerol (SQDG) in intact chloroplasts incubated in the dark. Competition studies demonstrated APS was preferred over PAPS and SO{sub 4}{sup 2{minus}}. Rates of SQDG synthesis up to 3 nanomoles per milligram of chlorophyll per hour were observed when ({sup 35}S)APS and appropriate cofactors were supplied to chloroplasts incubated in the dark. The pH optimum for utilization of APS was 7.0. The incorporation was linear for at least 30 minutes. ATP and UTP stimulated the incorporation of sulfur from APS into SQDG, but the most stimulatory additions were DHAP and glycerol-3-P. The concentration curve for APS showed a maximum at 20 micromolar in the absence of DHAP and 30 micromolar in the presence of DHAP. The optimum concentration of DHAP for conversion of APS into SQDG was 2 millimolar. Rates of synthesis up to 4 nanomoles per milligram of chlorophyll per hour were observed when ({sup 35}S)PAPS was the sulfur donor and appropriate cofactors were supplied to chloroplasts. Optimal rates for conversion of sulfur from PAPS into SQDG occurred with concentrations of DHAP between 5 and 10 millimolar. DHAP was by far the most effective cofactor, although ATP and UTP also stimulated the utilization of PAPS for SQDG biosynthesis. In general, triose phosphates, including glycerol-3-P were not effective cofactors for SQDG biosynthesis.

  18. Biosynthesis of nanoparticles using microbes- a review.

    PubMed

    Hulkoti, Nasreen I; Taranath, T C

    2014-09-01

    The biosynthesis of nanoparticles by microorganism is a green and eco-friendly technology. This review focuses on the use of consortium of diverse microorganisms belonging to both prokaryotes and eukaryotes for the synthesis of metallic nanoparticles viz. silver, gold, platinum, zirconium, palladium, iron, cadmium and metal oxides such as titanium oxide, zinc oxide, etc. These microorganisms include bacteria, actinomycetes, fungi and algae. The synthesis of nanoparticles may be intracellular or extracellular. The several workers have reported that NADH dependent nitrate reductase enzyme plays a vital role in the conversion of metallic ions to nanoparticles. The FTIR study reveals that diverse biomolecules viz. carboxyl group, primary and secondary amines, amide I, II, and III bands etc serve as a tool for bioreduction and capping agents there by offering stability to particles by preventing agglomeration and growth. The size and shape of the nanoparticles vary with the organism employed and conditions employed during the synthesis which included pH, temperature and substrate concentration. The microorganisms provide diverse environment for biosynthesis of nanoparticles. These particles are safe and eco-friendly with a lot of applications in medicine, agriculture, cosmetic industry, drug delivery and biochemical sensors. The challenges for redressal include optimal production and minimal time to obtain desired size and shape, to enhance the stability of nanoparticles and optimization of specific microorganisms for specific application. PMID:25001188

  19. Enzymology of retinoic acid biosynthesis and degradation

    PubMed Central

    Kedishvili, Natalia Y.

    2013-01-01

    All-trans-retinoic acid is a biologically active derivative of vitamin A that regulates numerous physiological processes. The concentration of retinoic acid in the cells is tightly regulated, but the exact mechanisms responsible for this regulation are not completely understood, largely because the enzymes involved in the biosynthesis of retinoic acid have not been fully defined. Recent studies using in vitro and in vivo models suggest that several members of the short-chain dehydrogenase/reductase superfamily of proteins are essential for retinoic acid biosynthesis and the maintenance of retinoic acid homeostasis. However, the exact roles of some of these recently identified enzymes are yet to be characterized. The properties of the known contributors to retinoid metabolism have now been better defined and allow for more detailed understanding of their interactions with retinoid-binding proteins and other retinoid enzymes. At the same time, further studies are needed to clarify the interactions between the cytoplasmic and membrane-bound proteins involved in the processing of hydrophobic retinoid metabolites. This review summarizes current knowledge about the roles of various biosynthetic and catabolic enzymes in the regulation of retinoic acid homeostasis and outlines the remaining questions in the field. PMID:23630397

  20. Folate analysis in foods by UPLC-MS/MS: development and validation of a novel, high throughput quantitative assay; folate levels determined in Australian fortified breads.

    PubMed

    Chandra-Hioe, Maria V; Bucknall, Martin P; Arcot, Jayashree

    2011-08-01

    An ultra-performance liquid chromatography-tandem mass spectrometry method was developed, optimised and validated for the quantification of synthetic folic acid (FA), also called pteroyl-L: -glutamic acid or vitamin B9 and naturally occurring 5-methyltetrahydrofolate (5-MTHF) found in folate-fortified breads. Optimised sample preparation prior to analysis involved addition of (13)C(5) labelled internal standards, treatments with ?-amylase and rat serum, solid-phase extraction using aromatic-selective cartridges and ultra-filtration. Analytes were separated on a Waters ACQUITY HSS T3 column during a 6-min run and analysed by positive ion electrospray selected reaction monitoring MS/MS. Standard calibration curves for the two analytes were linear over the range of 0.018-14 ?g FA/g of fresh bread (r(2) = 0.997) and 9.3-900 ng 5-MTHF/g of fresh bread (r(2) = 0.999). The absolute recoveries were 90% and 76% for FA and 5-MTHF, respectively. Intra-day coefficients of variation were 3% for FA and 18% for 5-MTHF. The limit of detection was 9.0 ng/g for FA and 4.3 ng/g for 5-MTHF, determined using pre-extracted tapioca starch as the blank matrix. The assay is rugged, fast, accurate and sensitive, applicable to a variety of food matrices and is capable of the detection and quantification of the naturally occurring low levels of 5-MTHF in wheat breads. The findings of this study revealed that the FA range in Australian fortified breads was 79-110 ?g/100 g of fresh bread and suggest that the flour may not have the mandated FA fortification level (200-300 ?g/100 g of flour), though this cannot be determined conclusively from experimental bread data alone, as variable baking losses have been documented by other authors. PMID:21667347

  1. The synergistic effect of folate and RGD dual ligand of nanographene oxide on tumor targeting and photothermal therapy in vivo

    NASA Astrophysics Data System (ADS)

    Jang, Cheol; Lee, Jong Hyun; Sahu, Abhishek; Tae, Giyoong

    2015-11-01

    Effective delivery of nanoparticles to the target site is necessary for successful biomedical applications. Inefficient targeting is a major concern for nanomedicines in cancer therapy. Conjugation of multiple targeting ligands to the nanoparticle surface might further enhance the targeting efficiency by a co-operative effect of individual ligands. In this study, a dual ligand targeting nanographene oxide (nGO) was developed by non-covalent interaction with folate and cRGD functionalized pluronic, which allowed precise control of ligand number on the nGO surface and ensured stability under physiological conditions. The tumor targeting abilities of single and dual ligand decorated nGOs were evaluated in vitro by using KB cells, over-expressing folate and integrin ?v?3 receptors. In vitro cellular uptake analysis by flow cytometry and confocal laser scanning microscopy showed enhanced uptake of dual ligand modified nGO compared to any of the single ligand modified nGOs. The cellular uptake of dual targeted cRGD-FA-nGO was increased by 1.9 and 2.4 folds compared to single targeted cRGD-nGO or FA-nGO, respectively. The in vivo biodistribution experiment in a mouse xenograft model also confirmed the synergistic targeting effect of cRGD and folate dual functionalized nGO. A significantly higher tumor accumulation of cRGD-FA-nGO was observed compared to cRGD-nGO or FA-nGO. The higher tumor accumulation of dual targeted nGO resulted in complete ablation of tumor tissue through an enhanced photothermal effect by NIR laser irradiation. Therefore, co-functionalization of a nanoparticle by cRGD and folate is a potentially useful way to enhance the tumor targeting efficacy.Effective delivery of nanoparticles to the target site is necessary for successful biomedical applications. Inefficient targeting is a major concern for nanomedicines in cancer therapy. Conjugation of multiple targeting ligands to the nanoparticle surface might further enhance the targeting efficiency by a co-operative effect of individual ligands. In this study, a dual ligand targeting nanographene oxide (nGO) was developed by non-covalent interaction with folate and cRGD functionalized pluronic, which allowed precise control of ligand number on the nGO surface and ensured stability under physiological conditions. The tumor targeting abilities of single and dual ligand decorated nGOs were evaluated in vitro by using KB cells, over-expressing folate and integrin ?v?3 receptors. In vitro cellular uptake analysis by flow cytometry and confocal laser scanning microscopy showed enhanced uptake of dual ligand modified nGO compared to any of the single ligand modified nGOs. The cellular uptake of dual targeted cRGD-FA-nGO was increased by 1.9 and 2.4 folds compared to single targeted cRGD-nGO or FA-nGO, respectively. The in vivo biodistribution experiment in a mouse xenograft model also confirmed the synergistic targeting effect of cRGD and folate dual functionalized nGO. A significantly higher tumor accumulation of cRGD-FA-nGO was observed compared to cRGD-nGO or FA-nGO. The higher tumor accumulation of dual targeted nGO resulted in complete ablation of tumor tissue through an enhanced photothermal effect by NIR laser irradiation. Therefore, co-functionalization of a nanoparticle by cRGD and folate is a potentially useful way to enhance the tumor targeting efficacy. Electronic supplementary information (ESI) available: UV-Vis spectra, photograph, and FTIR spectra of GO and nGO, TGA curve of nGO and PF-nGO, mice body weight change after photothermal therapy. See DOI: 10.1039/c5nr05067g

  2. Folate-targeted polymeric micelles loaded with ultrasmall superparamagnetic iron oxide: combined small size and high MRI sensitivity

    PubMed Central

    Hong, Guo-bin; Zhou, Jing-xing; Yuan, Ren-xu

    2012-01-01

    Targeted delivery of contrast agents is a highly desirable strategy for enhancing diagnostic efficiency and reducing side effects and toxicity. Water-soluble and tumor-targeting superparamagnetic iron oxide nanoparticles (SPIONs) were synthesized by loading hydrophobic SPIONs into micelles assembled from an amphiphilic block copolymer poly(ethylene glycol)- poly(?-caprolactone) (PEG-PCL) bearing folate in the distal ends of PEG chains. Compared to the water-soluble SPIONs obtained by small molecular surfactant coating, ultrasmall SPION encapsulation with PEG-PCL micelles (PEG-PCL-SPIONs) simultaneously increases transverse (r2) and decreases longitudinal (r1) magnetic resonance (MR) relaxivities of water proton in micelle solution, leading to a notably high r2/r1 ratio up to 78, which makes the PEG-PCL-SPIONs a highly sensitive MR imaging (MRI) T2 contrast agent. The mean size of folate-attached SPION micelles (Fa-PEG-PCL-SPIONs) is 44 ± 3 nm on average, ideal for in vivo MRI applications in which long circulation is greatly determined by small particle size and is highly desirable. Prussian blue staining of BEL-7402 cells over-expressing folate receptors, after incubation with micelle-containing medium, demonstrated that folate functionalization of the magnetic particles significantly enhanced their cell uptake. The potential of Fa-PEG-PCL-SPIONs as a potent MRI probe for in vivo tumor detection was assessed. At 3 hours after intravenous injection of the Fa-PEG-PCL-SPION solution into mice bearing subcutaneous xenografts of human BEL-7402 hepatoma, a 41.2% signal intensity decrease was detected in the T2-weighted MR images of the tumor, indicating the efficient accumulation of Fa-PEG-PCL-SPIONs in the tumor tissue. PMID:22745549

  3. In silico inspired design and synthesis of a novel tubulin-binding anti-cancer drug: folate conjugated noscapine (Targetin).

    PubMed

    Naik, Pradeep K; Lopus, Manu; Aneja, Ritu; Vangapandu, Surya N; Joshi, Harish C

    2012-02-01

    Our screen for tubulin-binding small molecules that do not depolymerize bulk cellular microtubules, but based upon structural features of well known microtubule-depolymerizing colchicine and podophyllotoxin, revealed tubulin binding anti-cancer property of noscapine (Ye et al. in Proc Natl Acad Sci USA 95:2280-2286, 1998). Guided by molecular modelling calculations and structure-activity relationships we conjugated at C9 of noscapine, a folate group-a ligand for cellular folate receptor alpha (FR?). FR? is over-expressed on some solid tumours such as ovarian epithelial cancers. Molecular docking experiments predicted that a folate conjugated noscapine (Targetin) accommodated well inside the binding cavity (docking score -11.295 kcal/mol) at the interface between ?- and ?-tubulin. The bulky folate moiety of Targetin is extended toward lumen of microtubules. The binding free energy (?G (bind)) computed based on molecular mechanics energy minimization was -221.01 kcal/mol that revealed favourable interaction of Targetin with the receptor. Chemical synthesis, tubulin-binding experiments, and anti-cancer activity in vitro corroborate fully well with the molecular modelling experiments. Targetin binds tubulin with a dissociation constant (K (d) value) of 149 ± 3.0 ?M and decreases the transition frequencies between growth and shortening phases of microtubule assembly dynamics at concentrations that do not alter the total polymer mass. Cancer cells in general were more sensitive to Targetin compared with the founding compound noscapine (IC(50) in the range of 15-40 ?M). Quite strikingly, ovarian cancer cells (SKOV3 and A2780), known to overexpress FR?, were much more sensitive to targetin (IC(50) in the range of 0.3-1.5 ?M). PMID:22170255

  4. The synergistic effect of folate and RGD dual ligand of nanographene oxide on tumor targeting and photothermal therapy in vivo.

    PubMed

    Jang, Cheol; Lee, Jong Hyun; Sahu, Abhishek; Tae, Giyoong

    2015-11-28

    Effective delivery of nanoparticles to the target site is necessary for successful biomedical applications. Inefficient targeting is a major concern for nanomedicines in cancer therapy. Conjugation of multiple targeting ligands to the nanoparticle surface might further enhance the targeting efficiency by a co-operative effect of individual ligands. In this study, a dual ligand targeting nanographene oxide (nGO) was developed by non-covalent interaction with folate and cRGD functionalized pluronic, which allowed precise control of ligand number on the nGO surface and ensured stability under physiological conditions. The tumor targeting abilities of single and dual ligand decorated nGOs were evaluated in vitro by using KB cells, over-expressing folate and integrin ?v?3 receptors. In vitro cellular uptake analysis by flow cytometry and confocal laser scanning microscopy showed enhanced uptake of dual ligand modified nGO compared to any of the single ligand modified nGOs. The cellular uptake of dual targeted cRGD-FA-nGO was increased by 1.9 and 2.4 folds compared to single targeted cRGD-nGO or FA-nGO, respectively. The in vivo biodistribution experiment in a mouse xenograft model also confirmed the synergistic targeting effect of cRGD and folate dual functionalized nGO. A significantly higher tumor accumulation of cRGD-FA-nGO was observed compared to cRGD-nGO or FA-nGO. The higher tumor accumulation of dual targeted nGO resulted in complete ablation of tumor tissue through an enhanced photothermal effect by NIR laser irradiation. Therefore, co-functionalization of a nanoparticle by cRGD and folate is a potentially useful way to enhance the tumor targeting efficacy. PMID:26489965

  5. Folate Deficiency, Hyperhomocysteinemia, Low Urinary Creatinine, and Hypomethylation of Leukocyte DNA Are Risk Factors for Arsenic-Induced Skin Lesions

    PubMed Central

    Pilsner, J. Richard; Liu, Xinhua; Ahsan, Habibul; Ilievski, Vesna; Slavkovich, Vesna; Levy, Diane; Factor-Litvak, Pam; Graziano, Joseph H.; Gamble, Mary V.

    2009-01-01

    Background Arsenic methylation relies on folate-dependent one-carbon metabolism and facilitates urinary As elimination. Clinical manifestations of As toxicity vary considerably among individuals and populations, and poor methylation capacity is thought to confer greater susceptibility. Objective After determining that folate deficiency, hyperhomocysteinemia, and low urinary creatinine are associated with reduced As methylation, and that As exposure is associated with increased genomic methylation of leukocyte DNA, we asked whether these factors are associated with As-induced skin lesion risk among Bangladeshi adults. Methods We conducted a nested case–control study of 274 cases who developed lesions 2 years after recruitment, and 274 controls matched to cases for sex, age, and water As. Results The odds ratios and 95% confidence intervals (CIs) for development of skin lesions for participants who had low folate (< 9 nmol/L), hyperhomocysteinemia (men, > 11.4 ?mol/L; women, > 10.4 ?mol/L), or hypomethylated leukocyte DNA at recruitment (< median) were 1.8 (95% CI, 1.1–2.9), 1.7 (95% CI, 1.1–2.6), and 1.8 (95% CI, 1.2–2.8), respectively. Compared with the subjects in the first quartile, those in the third and fourth quartiles for urinary creatinine had a 0.4-fold decrease in the odds of skin lesions (p < 0.01). Conclusions These results suggest that folate deficiency, hyperhomocysteinemia, and low urinary creatinine, each associated with decreased As methylation, are risk factors for As-induced skin lesions. The increased DNA methylation associated with As exposure previously observed, and confirmed among controls in this study, may be an adaptive change because hypomethylation of leukocyte DNA is associated with increased risk for skin lesions. PMID:19270796

  6. Plasma total homocysteine level in association with folate, pyridoxine, and cobalamin status among Iranian primary breast cancer patients.

    PubMed

    Pirouzpanah, Saeed; Taleban, Forough-Azam; Mehdipour, Parvin; Atri, Morteza; Foroutan-Ghaznavi, Mitra

    2014-01-01

    Recently the elevated plasma total homocysteine (tHcy) concentration has been concerned as the secondary feature of tumoral proliferation and enhances the likelihood of thrombogenesis in cancer patients. The objective of this study was to determine the associations between folate, cobalamin, and pyridoxine with fasting plasma tHcy concentration in breast cancer (BC) patients. The intake levels of nutrients were assessed using a validated food frequency questionnaire in 141 newly diagnosed BC patients. The plasma tHcy and pyridoxal-5-phosphate were measured using high performance liquid chromatography with fluorescence detector. Plasma tHcy levels were observed to be significantly higher among BC participants with Stage III where the plasma concentrations of folate was also comparatively less (P < 0.05) than other stages. Dietary pyridoxine was even being consumed less at this stage (P < 0.05). The plasma, dietary, and residual variables of folate were inversely correlated with plasma tHcy concentration (P < 0.05). Dietary cobalamin was also associated negatively with tHcy (P < 0.05). The odds ratio of comparing the highest tertile of plasma cobalamin (>394 pmol/l) and folate (>11.4 ng/ml) vs. the lowest categories were associated with reduced odds of high tHcy occurrence with 0.20 (95% confidence interval: 0.04-0.98) and 0.14 (95% confidence interval: 0.03-0.64), respectively. In conclusion, nutrition-related methyl-group insufficiency could lead to imbalance in tHcy metabolism, as a possible cancer marker. PMID:25157842

  7. Vision Changes after Space Flight Are Related to Alterations in Folate-Dependent One-Carbon Metabolism

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Gibson, C. Robert; Mader, Thomas H.; Ericson, Karen; Ploutz-Snyder, Robert; Heer, Martina; Zwart, Sara R.

    2011-01-01

    About 20% of astronauts on International Space Station missions have developed measurable ophthalmic changes after flight. This study was conducted to determine whether the folate-dependent 1-carbon pathway is altered in these individuals. Data were modeled to evaluate differences between individuals with ophthalmic changes (n=5) and those without them (n=15). We also correlated mean preflight serum concentrations of the 1-carbon metabolites with changes in measured refraction after flight. Serum homocysteine (HCy), cystathionine, 2-methylcitric acid, and methylmalonic acid concentrations were 25%-45% higher (P<0.001) in astronauts with ophthalmic changes than in those without them. These differences existed before, during, and after flight. Preflight serum HCy and cystathionine, and in-flight serum folate, were significantly (P<0.05) correlated with postflight change in refraction, and preflight serum concentrations of 2-methylcitric acid tended to be associated (P=0.06) with ophthalmic changes. The biochemical differences observed in those with vision issues strongly suggests impairment of the folate-dependent 1-carbon transfer pathway. Impairment of this pathway, by polymorphisms, diet or other means, may interact with components of the microgravity environment to influence these pathophysiologic changes. This study was funded by the NASA Human Research Program.

  8. Nonflowering Plants Possess a Unique Folate-Dependent Phenylalanine Hydroxylase That Is Localized in Chloroplasts[W

    PubMed Central

    Pribat, Anne; Noiriel, Alexandre; Morse, Alison M.; Davis, John M.; Fouquet, Romain; Loizeau, Karen; Ravanel, Stéphane; Frank, Wolfgang; Haas, Richard; Reski, Ralf; Bedair, Mohamed; Sumner, Lloyd W.; Hanson, Andrew D.

    2010-01-01

    Tetrahydropterin-dependent aromatic amino acid hydroxylases (AAHs) are known from animals and microbes but not plants. A survey of genomes and ESTs revealed AAH-like sequences in gymnosperms, mosses, and algae. Analysis of full-length AAH cDNAs from Pinus taeda, Physcomitrella patens, and Chlamydomonas reinhardtii indicated that the encoded proteins form a distinct clade within the AAH family. These proteins were shown to have Phe hydroxylase activity by functional complementation of an Escherichia coli Tyr auxotroph and by enzyme assays. The P. taeda and P. patens AAHs were specific for Phe, required iron, showed Michaelian kinetics, and were active as monomers. Uniquely, they preferred 10-formyltetrahydrofolate to any physiological tetrahydropterin as cofactor and, consistent with preferring a folate cofactor, retained activity in complementation tests with tetrahydropterin-depleted E. coli host strains. Targeting assays in Arabidopsis thaliana mesophyll protoplasts using green fluorescent protein fusions, and import assays with purified Pisum sativum chloroplasts, indicated chloroplastic localization. Targeting assays further indicated that pterin-4a-carbinolamine dehydratase, which regenerates the AAH cofactor, is also chloroplastic. Ablating the single AAH gene in P. patens caused accumulation of Phe and caffeic acid esters. These data show that nonflowering plants have functional plastidial AAHs, establish an unprecedented electron donor role for a folate, and uncover a novel link between folate and aromatic metabolism. PMID:20959559

  9. Wernicke's Encephalopathy, Wet Beriberi, and Polyneuropathy in a Patient with Folate and Thiamine Deficiency Related to Gastric Phytobezoar

    PubMed Central

    Huertas-González, Nuria; Hernando-Requejo, Virgilio; Luciano-García, Zaida; Cervera-Rodilla, Juan Luis

    2015-01-01

    Background. Wernicke's encephalopathy (WE) is an acute neurological disorder resulting from thiamine deficiency. It is mainly related to alcohol abuse but it can be associated with other conditions such as gastrointestinal disorders. This vitamin deficiency can also present with cardiovascular symptoms, called “wet beriberi.” Association with folate deficit worsens the clinical picture. Subject. A 70-year-old man with gastric phytobezoar presented with gait instability, dyspnoea, chest pain associated with right heart failure and pericarditis, and folate deficiency. Furosemide was administered and cardiac symptoms improved but he soon developed vertiginous syndrome, nystagmus, diplopia, dysmetria, and sensitive and motor deficit in all four limbs with areflexia. Results. A cerebral magnetic resonance imaging (MRI) showed typical findings of WE. He was immediately treated with thiamine. Neurological symptoms improved in a few days and abnormal signals disappeared in a follow-up MRI two weeks later. Conclusion. Patients with malabsorption due to gastrointestinal disorders have an increased risk of thiamine deficiency, and folate deficiency can make this vitamin malabsorption worse. An established deficiency mainly shows neurological symptoms, WE, or rarely cardiovascular symptoms, wet beriberi. Early vitamin treatment in symptomatic patients improves prognosis. We recommend administration of prophylactic multivitamins supplements in patients at risk as routine clinical practice. PMID:26697247

  10. Maternal dietary intake of folate and vitamins B6 and B12 during pregnancy and risk of childhood brain tumors.

    PubMed

    Greenop, Kathryn R; Miller, Margaret; de Klerk, Nicholas H; Scott, Rodney J; Attia, John; Ashton, Lesley J; Dalla-Pozza, Luciano; Bower, Carol; Armstrong, Bruce K; Milne, Elizabeth

    2014-01-01

    Childhood brain tumors (CBT) are the second most common childhood cancers, yet their etiology is largely unknown. We investigated whether maternal gestational intake of folate and vitamins B6 and B12 was associated with CBT risk in a nationwide case-control study conducted 2005-2010. Case children 0-14 years were recruited from all 10 Australian pediatric oncology centers. Control children were recruited by national random digit dialing, frequency matched to cases on age, sex, and state of residence. Dietary intake was ascertained using food frequency questionnaires and adjusted for total energy intake. Data from 293 case and 726 control mothers were analyzed using unconditional logistic regression. The odds ratio (OR) for the highest versus lowest tertile of folate intake was 0.70 [95% confidence interval (CI): 0.48, 1.02]. The ORs appeared lower in mothers who drank alcohol during pregnancy (OR = 0.45, 95% CI: 0.22, 0.93), mothers who took folic acid (OR = 0.67, 95% CI: 0.42, 1.06) or B6/B12 supplements (OR = 0.51, 95% CI: 0.25, 1.06) and in children younger than 5 years (OR = 0.50, 95% CI: 0.27, 0.93). These findings are consistent with folate's crucial role in maintenance of genomic integrity and DNA methylation. Dietary intake of B6 and B12 was not associated with risk of CBT. PMID:24897174

  11. A potential epigenetic marker mediating serum folate and vitamin B12 levels contributes to the risk of ischemic stroke.

    PubMed

    Wei, Loo Keat; Sutherland, Heidi; Au, Anthony; Camilleri, Emily; Haupt, Larisa M; Gan, Siew Hua; Griffiths, Lyn R

    2015-01-01

    Stroke is a multifactorial disease that may be associated with aberrant DNA methylation profiles. We investigated epigenetic dysregulation for the methylenetetrahydrofolate reductase (MTHFR) gene among ischemic stroke patients. Cases and controls were recruited after obtaining signed written informed consents following a screening process against the inclusion/exclusion criteria. Serum vitamin profiles (folate, vitamin B12, and homocysteine) were determined using immunoassays. Methylation profiles for CpGs A and B in the MTHFR gene were determined using a bisulfite-pyrosequencing method. Methylation of MTHFR significantly increased the susceptibility risk for ischemic stroke. In particular, CpG A outperformed CpG B in mediating serum folate and vitamin B12 levels to increase ischemic stroke susceptibility risks by 4.73-fold. However, both CpGs A and B were not associated with serum homocysteine levels or ischemic stroke severity. CpG A is a potential epigenetic marker in mediating serum folate and vitamin B12 to contribute to ischemic stroke. PMID:25705649

  12. Effect modification by population dietary folate on the association between MTHFR genotype, homocysteine, and stroke risk: a meta-analysis of genetic studies and randomised trials

    PubMed Central

    Holmes, Michael V; Newcombe, Paul; Hubacek, Jaroslav A; Sofat, Reecha; Ricketts, Sally L; Cooper, Jackie; Breteler, Monique MB; Bautista, Leonelo E; Sharma, Pankaj; Whittaker, John C; Smeeth, Liam; Fowkes, F Gerald R; Algra, Ale; Shmeleva, Veronika; Szolnoki, Zoltan; Roest, Mark; Linnebank, Michael; Zacho, Jeppe; Nalls, Michael A; Singleton, Andrew B; Ferrucci, Luigi; Hardy, John; Worrall, Bradford B; Rich, Stephen S; Matarin, Mar; Norman, Paul E; Flicker, Leon; Almeida, Osvaldo P; van Bockxmeer, Frank M; Shimokata, Hiroshi; Khaw, Kay-Tee; Wareham, Nicholas J; Bobak, Martin; Sterne, Jonathan AC; Smith, George Davey; Talmud, Philippa J; van Duijn, Cornelia; Humphries, Steve E; Price, Jackie F; Ebrahim, Shah; Lawlor, Debbie A; Hankey, Graeme J; Meschia, James F; Sandhu, Manjinder S; Hingorani, Aroon D; Casas, Juan P

    2011-01-01

    Summary Background The MTHFR 677C?T polymorphism has been associated with raised homocysteine concentration and increased risk of stroke. A previous overview showed that the effects were greatest in regions with low dietary folate consumption, but differentiation between the effect of folate and small-study bias was difficult. A meta-analysis of randomised trials of homocysteine-lowering interventions showed no reduction in coronary heart disease events or stroke, but the trials were generally set in populations with high folate consumption. We aimed to reduce the effect of small-study bias and investigate whether folate status modifies the association between MTHFR 677C?T and stroke in a genetic analysis and meta-analysis of randomised controlled trials. Methods We established a collaboration of genetic studies consisting of 237 datasets including 59?995 individuals with data for homocysteine and 20?885 stroke events. We compared the genetic findings with a meta-analysis of 13 randomised trials of homocysteine-lowering treatments and stroke risk (45?549 individuals, 2314 stroke events, 269 transient ischaemic attacks). Findings The effect of the MTHFR 677C?T variant on homocysteine concentration was larger in low folate regions (Asia; difference between individuals with TT versus CC genotype, 3·12 ?mol/L, 95% CI 2·23 to 4·01) than in areas with folate fortification (America, Australia, and New Zealand, high; 0·13 ?mol/L, ?0·85 to 1·11). The odds ratio (OR) for stroke was also higher in Asia (1·68, 95% CI 1·44 to 1·97) than in America, Australia, and New Zealand, high (1·03, 0·84 to 1·25). Most randomised trials took place in regions with high or increasing population folate concentrations. The summary relative risk (RR) of stroke in trials of homocysteine-lowering interventions (0·94, 95% CI 0·85 to 1·04) was similar to that predicted for the same extent of homocysteine reduction in large genetic studies in populations with similar folate status (predicted RR 1·00, 95% CI 0·90 to 1·11). Although the predicted effect of homocysteine reduction from large genetic studies in low folate regions (Asia) was larger (RR 0·78, 95% CI 0·68 to 0·90), no trial has evaluated the effect of lowering of homocysteine on stroke risk exclusively in a low folate region. Interpretation In regions with increasing levels or established policies of population folate supplementation, evidence from genetic studies and randomised trials is concordant in suggesting an absence of benefit from lowering of homocysteine for prevention of stroke. Further large-scale genetic studies of the association between MTHFR 677C?T and stroke in low folate settings are needed to distinguish effect modification by folate from small-study bias. If future randomised trials of homocysteine-lowering interventions for stroke prevention are undertaken, they should take place in regions with low folate consumption. Funding Full funding sources listed at end of paper (see Acknowledgments). PMID:21803414

  13. Serum folate but not vitamin B-12 concentrations are positively associated with cognitive test scores in children aged 6-16 years.

    PubMed

    Nguyen, Cathy T; Gracely, Edward J; Lee, Brian K

    2013-04-01

    Folate and vitamin B-12 are important for nervous system functioning at all ages, with important roles in functions such as neurotransmitter synthesis. Although studies suggest a relation between folate and vitamin B-12 and cognitive function in the elderly population, there is relatively less evidence regarding these vitamins and children's cognitive function. The purpose of the study was to examine the associations of serum folate and vitamin B-12 with cognitive performance in children 6-16 y old in the NHANES III, conducted from 1988 to 1994, prior to the implementation of folic acid fortification. A cross-sectional analysis was conducted using data on 5365 children 6-16 y old from NHANES III. Serum folate and vitamin B-12 concentrations were measured, along with performance, on the Wide Range Achievement Test-Revised and the Wechsler Intelligence Scale for Children-Revised. Associations of B vitamins with cognitive performance were assessed using linear regression models adjusted for various covariates. Higher serum concentrations of folate were associated with higher reading and block design scores after adjusting for various covariates. For example, compared with the lowest quartile of folate, children in the highest quartile scored 3.28 points or 0.19 SD units higher on the reading test (P < 0.05). Vitamin B-12 was not associated with any of the test scores. In the largest study to date, higher folate concentrations were associated with better reading and block design scores. These associations appear to be biologically plausible and merit further study. PMID:23390191

  14. A Novel Muconic Acid Biosynthesis Approach by Shunting Tryptophan Biosynthesis via Anthranilate

    PubMed Central

    Sun, Xinxiao; Lin, Yuheng; Huang, Qin; Yuan, Qipeng

    2013-01-01

    Muconic acid is the synthetic precursor of adipic acid, and the latter is an important platform chemical that can be used for the production of nylon-6,6 and polyurethane. Currently, the production of adipic acid relies mainly on chemical processes utilizing petrochemicals, such as benzene, which are generally considered environmentally unfriendly and nonrenewable, as starting materials. Microbial synthesis from renewable carbon sources provides a promising alternative under the circumstance of petroleum depletion and environment deterioration. Here we devised a novel artificial pathway in Escherichia coli for the biosynthesis of muconic acid, in which anthranilate, the first intermediate in the tryptophan biosynthetic branch, was converted to catechol and muconic acid by anthranilate 1,2-dioxygenase (ADO) and catechol 1,2-dioxygenase (CDO), sequentially and respectively. First, screening for efficient ADO and CDO from different microbial species enabled the production of gram-per-liter level muconic acid from supplemented anthranilate in 5 h. To further achieve the biosynthesis of muconic acid from simple carbon sources, anthranilate overproducers were constructed by overexpressing the key enzymes in the shikimate pathway and blocking tryptophan biosynthesis. In addition, we found that introduction of a strengthened glutamine regeneration system by overexpressing glutamine synthase significantly improved anthranilate production. Finally, the engineered E. coli strain carrying the full pathway produced 389.96 ± 12.46 mg/liter muconic acid from simple carbon sources in shake flask experiments, a result which demonstrates scale-up potential for microbial production of muconic acid. PMID:23603682

  15. Serine Biosynthesis and Regulation in Haemophilus influenzae

    PubMed Central

    Pizer, Lewis I.; Ponce-De-Leon, Manuel; Michalka, Jack

    1969-01-01

    Nutritional mutants of Haemophilus influenzae requiring l-serine for growth were shown to be deficient in their capacity to synthesize serine-phosphate from 3-phosphoglycerate. On the basis of the correlation between this block and the requirement for an exogenous supply of the amino acid, it was concluded that the “phosphorylated” pathway is the only pathway used by H. influenzae for serine biosynthesis. Serine inhibits serine-phosphate production, thereby regulating its own synthesis in a manner analagous to the Enterobacteriaceae. A mutant strain that required either serine or tryptophan for growth was normal in serine-phosphate synthesis and regulation. It was concluded that this strain probably has a tryptophan synthetase with an increased Michaelis constant for serine. PMID:5305003

  16. Serine biosynthesis and regulation in Haemophilus influenzae.

    PubMed

    Pizer, L I; Ponce-de-Leon, M; Michalka, J

    1969-03-01

    Nutritional mutants of Haemophilus influenzae requiring l-serine for growth were shown to be deficient in their capacity to synthesize serine-phosphate from 3-phosphoglycerate. On the basis of the correlation between this block and the requirement for an exogenous supply of the amino acid, it was concluded that the "phosphorylated" pathway is the only pathway used by H. influenzae for serine biosynthesis. Serine inhibits serine-phosphate production, thereby regulating its own synthesis in a manner analagous to the Enterobacteriaceae. A mutant strain that required either serine or tryptophan for growth was normal in serine-phosphate synthesis and regulation. It was concluded that this strain probably has a tryptophan synthetase with an increased Michaelis constant for serine. PMID:5305003

  17. GENETIC CONTROL OF CHLOROPHYLL BIOSYNTHESIS IN CHLAMYDOMONAS

    PubMed Central

    Wang, Wei-Yeh; Wang, Wenan Lee; Boynton, John E.; Gillham, Nicholas W.

    1974-01-01

    In this report we describe two nonallelic Mendelian protoporphyrin accumulating mutants brs-1 and brc-1. Results of experiments with these mutants lead us to postulate that porphyrin biosynthesis branches into light and dark steps between protoporphyrin-IX and magnesium protoporphyrin. We hypothesize that the brc locus controls a dark step while the brs locus either controls a step in the main pathway before the branch or mediates the preparation of the magnesium ion for its insertion into protoporphyrin-IX. The brs-1 mutant is thought to be light sensitive because a block prior to the branch point in the porphyrin pathway prevents chlorophyll formation in either the light or the dark. The brc-1 mutant, which also accumulates protoporphyrin in the dark, forms chlorophyll and chloroplast lamellae when transferred to the light, showing that function of the porphyrin pathway is normal in the light. PMID:4436384

  18. Expanding metabolism for biosynthesis of nonnatural alcohols

    PubMed Central

    Zhang, Kechun; Sawaya, Michael R.; Eisenberg, David S.; Liao, James C.

    2008-01-01

    Nature uses a limited set of metabolites to perform all of the biochemical reactions. To increase the metabolic capabilities of biological systems, we have expanded the natural metabolic network, using a nonnatural metabolic engineering approach. The branched-chain amino acid pathways are extended to produce abiotic longer chain keto acids and alcohols by engineering the chain elongation activity of 2-isopropylmalate synthase and altering the substrate specificity of downstream enzymes through rational protein design. When introduced into Escherichia coli, this nonnatural biosynthetic pathway produces various long-chain alcohols with carbon number ranging from 5 to 8. In particular, we demonstrate the feasibility of this approach by optimizing the biosynthesis of the 6-carbon alcohol, (S)-3-methyl-1-pentanol. This work demonstrates an approach to build artificial metabolism beyond the natural metabolic network. Nonnatural metabolites such as long chain alcohols are now included in the metabolite family of living systems. PMID:19064911

  19. Biosynthesis of the Novel Macrolide Antibiotic Anthracimycin.

    PubMed

    Alt, Silke; Wilkinson, Barrie

    2015-11-20

    We report the identification of the biosynthetic gene cluster for the unusual antibiotic anthracimycin (atc) from the marine derived producer strain Streptomyces sp. T676 isolated off St. John's Island, Singapore. The 53?253 bps atc locus includes a trans-acyltransferase (trans-AT) polyketide synthase (PKS), and heterologous expression in Streptomyces coelicolor resulted in anthracimycin production. Analysis of the atc cluster revealed that anthracimycin is likely generated by four PKS gene products AtcC-AtcF without involvement of post-PKS tailoring enzymes, and a biosynthetic pathway is proposed. The availability of the atc cluster provides a basis for investigating the biosynthesis of anthracimycin and its subsequent bioengineering to provide novel analogues with improved pharmacological properties. PMID:26349074

  20. Glycerolipid biosynthesis in isolated pea root plastids

    SciTech Connect

    Xue, Lingru; Sparace, S.A. )

    1990-05-01

    Plastids have been isolated from germinating pea (Pisum sativum L.) roots by differential centrifugation and purified on Percoll gradients. Marker enzymes (NADPH: cytochrome c reductase, fumarase and fatty acid synthesis) indicate that greater than 50% of the plastids are recovered essentially free from mitochondrial and endoplasmic reticulum contamination. Fatty acids synthesized from ({sup 14}C)acetate by Percoll-purified plastids are primarily 16:0, 16:1 and 18:1. ({sup 14}C)Acetate-labelled fatty acids and ({sup 14}C)glycerol-3-phosphate are both readily incorporated into glycerolipid. Approximately 12% of the total activity for glycerolipid biosynthesis from glycerol-3-phosphate is recovered in the purified plastid fraction. Glycerolipids synthesized from these precursors are primarily TAG, DAG, PE, PG, PC, PI and PA. Acyl-CoA's also accumulate when acetate is the precursor.

  1. Biosynthesis of the phytoalexin pisatin. [Pisum sativum

    SciTech Connect

    Preisig, C.L.; Bell, J.N.; Matthews, D.E.; VanEtten, H.D. ); Sun, Yuejin; Hrazdina, G. )

    1990-11-01

    NADPH-dependent reduction of 2{prime},7-dihydroxy-4{prime},5{prime}-methylenedioxyisoflavone to the isoflavanone sophorol, a proposed intermediate step in pisatin biosynthesis, was detected in extracts of Pisum sativum. This isoflavone reductase activity was inducible by treatment of pea seedlings with CuCl{sub 2}. The timing of induction coincided with that of the 6a-hydroxymaackiain 3-O-methyltransferase, which catalyzes the terminal biosynthetic step. Neither enzyme was light inducible. Further NADPH-dependent metabolism of sophorol by extracts of CuCl{sub 2}-treated seedlings was also observed; three products were radiolabeled when ({sup 3}H)sophorol was the substrate, one of which is tentatively identified as maackiain.

  2. Biosynthesis of Nitrogenase FeMoco.

    PubMed

    Hu, Yilin; Ribbe, Markus W

    2011-05-01

    Biosynthesis of nitrogenase FeMoco is a highly complex process that requires, minimally, the participation of nifS, nifU, nifB, nifE, nifN, nifV, nifH, nifD and nifK gene products. Previous genetic analyses have identified the essential factors for the assembly of FeMoco; however, the exact functions of these factors and the precise sequence of events during the assembly process had remained unclear until recently, when a number of the biosynthetic intermediates of FeMoco were identified and characterized by combined biochemical, spectroscopic and structural analyses. This review gives a brief account of the recent progress toward understanding the assembly process of FeMoco, which has identified some important missing pieces of this biosynthetic puzzle. PMID:21503270

  3. Substrate Control in Stereoselective Lanthionine Biosynthesis

    PubMed Central

    Tang, Weixin; Jiménez-Osés, Gonzalo; Houk, K. N.; van der Donk, Wilfred A.

    2014-01-01

    Enzymes are typically highly stereoselective catalysts that enforce a reactive conformation on their native substrates. We report here a rare example where the substrate controls the stereoselectivity of an enzyme-catalyzed Michael-type addition during the biosynthesis of lanthipeptides. These natural products contain thioether crosslinks formed by cysteine attack on dehydrated Ser and Thr residues. We demonstrate that several lanthionine synthetases catalyze highly selective anti additions in which the substrate (and not the enzyme) determines whether the addition occurs from the Re or Si face. A single point mutation in the peptide substrate completely inverted the stereochemical outcome of the enzymatic modification. Quantum mechanical calculations reproduced the experimentally observed selectivity and suggest that conformational restraints imposed by the amino acid sequence on the transition states determine the face selectivity of the Michael-type cyclization. PMID:25515891

  4. Terpenoids and Their Biosynthesis in Cyanobacteria

    PubMed Central

    Pattanaik, Bagmi; Lindberg, Pia

    2015-01-01

    Terpenoids, or isoprenoids, are a family of compounds with great structural diversity which are essential for all living organisms. In cyanobacteria, they are synthesized from the methylerythritol-phosphate (MEP) pathway, using glyceraldehyde 3-phosphate and pyruvate produced by photosynthesis as substrates. The products of the MEP pathway are the isomeric five-carbon compounds isopentenyl diphosphate and dimethylallyl diphosphate, which in turn form the basic building blocks for formation of all terpenoids. Many terpenoid compounds have useful properties and are of interest in the fields of pharmaceuticals and nutrition, and even potentially as future biofuels. The MEP pathway, its function and regulation, and the subsequent formation of terpenoids have not been fully elucidated in cyanobacteria, despite its relevance for biotechnological applications. In this review, we summarize the present knowledge about cyanobacterial terpenoid biosynthesis, both regarding the native metabolism and regarding metabolic engineering of cyanobacteria for heterologous production of non-native terpenoids. PMID:25615610

  5. Biosurfactant Mediated Biosynthesis of Selected Metallic Nanoparticles

    PubMed Central

    P?aza, Gra?yna A.; Chojniak, Joanna; Banat, Ibrahim M.

    2014-01-01

    Developing a reliable experimental protocol for the synthesis of nanomaterials is one of the challenging topics in current nanotechnology particularly in the context of the recent drive to promote green technologies in their synthesis. The increasing need to develop clean, nontoxic and environmentally safe production processes for nanoparticles to reduce environmental impact, minimize waste and increase energy efficiency has become essential in this field. Consequently, recent studies on the use of microorganisms in the synthesis of selected nanoparticles are gaining increased interest as they represent an exciting area of research with considerable development potential. Microorganisms are known to be capable of synthesizing inorganic molecules that are deposited either intra- or extracellularly. This review presents a brief overview of current research on the use of biosurfactants in the biosynthesis of selected metallic nanoparticles and their potential importance. PMID:25110864

  6. The association between MTHFR 677C>T genotype and folate status and genomic and gene-specific DNA methylation in the colon of individuals without colorectal neoplasia1234

    PubMed Central

    Hanks, Joanna; Ayed, Iyeman; Kukreja, Neil; Rogers, Chris; Harris, Jessica; Gheorghiu, Alina; Liu, Chee Ling; Emery, Peter

    2013-01-01

    Background: Decreased genomic and increased gene-specific DNA methylation predispose to colorectal cancer. Dietary folate intake and the methylenetetrahydrofolate reductase polymorphism (MTHFR 677C>T) may influence risk by modifying DNA methylation. Objective: We investigated the associations between MTHFR 677C>T genotype, folate status, and DNA methylation in the colon. Design: We conducted a cross-sectional study of 336 men and women (age 19–92 y) in the United Kingdom without colorectal neoplasia. We obtained blood samples for measurement of serum and red blood cell folate, plasma homocysteine, and MTHFR 677C>T genotype and colonic tissue biopsies for measurement of colonic tissue folate and DNA methylation (genomic- and gene-specific, estrogen receptor 1, ESR1; myoblast determination protein 1, MYOD1; insulin-like growth factor II, IGF2; tumor suppressor candidate 33, N33; adenomatous polyposis coli, APC; mut-L homolog 1, MLH1; and O6-methylguanine-DNA methyltransferase, MGMT) by liquid chromatography/electrospray ionization mass spectrometry and pyrosequencing, respectively. Results: Of the 336 subjects recruited, 185 (55%) carried the CC, 119 (35%) the CT, and 32 (10%) the TT alleles. No significant differences in systemic markers of folate status and colonic tissue folate between genotypes were found. The MTHFR TT genotype was not associated with genomic or gene-specific DNA methylation. Biomarkers of folate status were not associated with genomic DNA methylation. Relations between biomarkers of folate status and gene-specific methylation were inconsistent. However, low serum folate was associated with high MGMT methylation (P = 0.001). Conclusion: MTHFR 677C>T genotype and folate status were generally not associated with DNA methylation in the colon of a folate-replete population without neoplasia. This trial was registered at clinicaltrials.gov as ISRCTN43577261. PMID:24108782

  7. Serum Folate and DDT Isomers and Metabolites Are Inversely Associated in Chinese Women: A Cross-Sectional Analysis

    PubMed Central

    Arguelles, Lester M.; Liu, Xue; Venners, Scott A.; Ronnenberg, Alayne G.; Li, Zhiping; Yang, Fan; Yang, Jianhua; Xu, Xiping; Wang, Xiaobin

    2010-01-01

    Background Vitamin nutritional status may influence some xenobiotic metabolism or vice versa. Methods This analysis examines the relationship between B-vitamin concentrations and 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDT) isomers and metabolites in healthy women. Serum pp?DDT, pp?DDE, pp?DDD, op?DDT, op?DDE, and serum folate, cysteine, and vitamins B6 and B12 were measured in 296 nonsmoking female textile workers (21–34 yr) in Anhui, China. Mean (SD) age and body mass index of this cohort were 24.9 (1.5) y and 19.7 (2.0) kg/m2, respectively. Results Median pp?DDT, pp?DDE, pp?DDD, op?DDT, and op?DDE were 1.5, 29.2, 0.22, 0.17, and 0.09 ng/g, respectively. Median folate and cysteine were 9.2 and 200.0 nmol/L, respectively. Folate was significantly inversely associated with pp?DDT and pp?DDE: ? (95% confidence interval [CI]) = ?0.23 (?0.39, ?0.07) and ?0.20 (?0.36, ?0.05), respectively, and it was marginally associated with pp?DDD. Cysteine was significantly inversely associated with pp?DDT, ? (95% CI) = ?0.69 (?1.00, ?0.37); pp?DDE, ? (95% CI) = ?0.32 (?0.62, ?0.02); pp?DDD, ? (95% CI) = ?0.31 (?0.59, ?0.03); and op?DDT, ? (95% CI) = ?0.35 (?0.68, ?0.02). Conclusions Folate and cysteine are independently inversely associated with DDT isomers, adjusting for vitamins B6 and B12, age, and body mass index. These nutrients may play a role in DDT metabolism; however, it is also possible that DDT may exert a negative impact on folate and cysteine levels. Longitudinal studies are needed to ascertain the direction of this association. PMID:20368376

  8. A folate-integrated magnetic polymer micelle for MRI and dual targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Ao, Lijiao; Wang, Bi; Liu, Peng; Huang, Liang; Yue, Caixia; Gao, Duyang; Wu, Chunlei; Su, Wu

    2014-08-01

    This paper devotes a novel micellar structure for cancer theranostics by incorporating magnetic and therapeutic functionalities into a natural sourced targeting polymer vehicle. Heparin-folic acid micelles taking advantage of both excellent loading capability and cancer targeting ability have been employed to simultaneously incorporate superparamagnetic iron oxide nanoparticles (SPIONs) and doxorubicin through an ultrasonication-assisted microemulsion method. In this system, folic acids not only take the responsibility of micelle construction, but also facilitate cellular uptake due to their specific reorganization by MCF-7 cells over-expressing folate receptors. The obtained micelles exhibit good colloidal stability, a high magnetic content, considerable drug loading and sustained in vitro drug release. These clustered SPIONs exhibited high r2 relaxivity (243.65 mM-1 s-1) and further served as efficient probes for MR imaging. Notably, the transport efficiency of these micelles could be significantly improved under an external magnetic field, owing to their quick magnetic response. As a result, the as-proposed micelle shows great potential in multimodal theranostics, including active targeting, MRI diagnosis and drug delivery.This paper devotes a novel micellar structure for cancer theranostics by incorporating magnetic and therapeutic functionalities into a natural sourced targeting polymer vehicle. Heparin-folic acid micelles taking advantage of both excellent loading capability and cancer targeting ability have been employed to simultaneously incorporate superparamagnetic iron oxide nanoparticles (SPIONs) and doxorubicin through an ultrasonication-assisted microemulsion method. In this system, folic acids not only take the responsibility of micelle construction, but also facilitate cellular uptake due to their specific reorganization by MCF-7 cells over-expressing folate receptors. The obtained micelles exhibit good colloidal stability, a high magnetic content, considerable drug loading and sustained in vitro drug release. These clustered SPIONs exhibited high r2 relaxivity (243.65 mM-1 s-1) and further served as efficient probes for MR imaging. Notably, the transport efficiency of these micelles could be significantly improved under an external magnetic field, owing to their quick magnetic response. As a result, the as-proposed micelle shows great potential in multimodal theranostics, including active targeting, MRI diagnosis and drug delivery. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr02484b

  9. An emerging role of mTOR in lipid biosynthesis

    E-print Network

    Laplante, Mathieu

    Lipid biosynthesis is essential for the maintenance of cellular homeostasis. The lipids produced by cells (glycerolipids, fatty acids, phospholipids, cholesterol, and sphingolipids) are used as an energy source/reserve, ...

  10. Engineering E. coli for caffeic acid biosynthesis from renewable sugars.

    PubMed

    Zhang, Haoran; Stephanopoulos, Gregory

    2013-04-01

    Caffeic acid is a valuable aromatic compound that possesses many important pharmacological activities. In structure, caffeic acid belongs to the hydroxycinnamic acid family and can be biosynthesized from the aromatic amino acid tyrosine. In the present paper, the caffeic acid biosynthesis pathway was reconstituted in engineered Escherichia coli to produce caffeic acid from simple biomass sugar glucose and xylose. Different engineering approaches were utilized to optimize the production. Specifically, two parallel biosynthesis routes leading from tyrosine to caffeic acid were studied. The copy number of the intermediate biosynthesis genes was varied to find appropriate gene doses for caffeic acid biosynthesis. Three different media, including a MOPS medium, a synthetic medium, and a rich medium, were also examined to improve the production. The highest specific caffeic acid production achieved was 38 mg/L/OD. Lastly, cultivation of engineered E. coli in a bioreactor resulted in a production of 106 mg/L caffeic acid after 4 days. PMID:23179615

  11. Arginine biosynthesis in Escherichia coli: experimental perturbation and mathematical modeling

    E-print Network

    Goldbeter, Albert

    1 Arginine biosynthesis in Escherichia coli: experimental perturbation and mathematical modeling , Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium. Running title: Modeling arginine, the arginine and pyrimidine biosynthetic pathways are connected through a common metabolite provided

  12. Thiamine biosynthesis can be used to dissect metabolic integration

    PubMed Central

    Koenigsknecht, Mark J.; Downs, Diana M.

    2010-01-01

    The emergence of systems biology has reemphasized the advantages of understanding biological processes with a global perspective. One biological process amenable to global approaches is microbial metabolism. This review describes a model system that contributes to the goals of systems biology by experimentally defining metabolic integration found in a bacterial cell and thus providing data needed for implementation and interpretation of systems approaches. We have taken a largely unbiased in vivo approach centered on thiamine biosynthesis to identify new metabolic components and connections and explore uncharacterized paradigms of the integration amongst them. This article summarizes recent results from this approach that include the identification of the function of unknown genes, connections between cofactors biosynthesis and thiamine biosynthesis, and how metabolites from one biosynthetic pathway can be used in thiamine biosynthesis. PMID:20382023

  13. Investigating the pathway of asparagine-linked glycoprotein biosynthesis

    E-print Network

    O'Reilly, Mary K. (Mary Katherine)

    2006-01-01

    The biosynthesis of asparagine-linked glycoproteins, highly conserved throughout all eukaryotes, requires a dolichylpyrophosphate-linked tetradecasaccharide precursor (Dol-PP-GlcNAc2Man9Glc3), from which the tetradecasaccharide ...

  14. Differences in folate?protein interactions result in differing inhibition of native rat liver and recombinant glycine N-methyltransferase by 5-methyltetrahydrofolate

    SciTech Connect

    Luka, Zigmund; Pakhomova, Svetlana; Loukachevitch, Lioudmila V.; Newcomer, Marcia E.; Wagner, Conrad

    2012-06-27

    Glycine N-methyltransferase (GNMT) is a key regulatory enzyme in methyl group metabolism. In mammalian liver it reduces S-adenosylmethionine levels by using it to methylate glycine, producing N-methylglycine (sarcosine) and S-adenosylhomocysteine. GNMT is inhibited by binding two molecules of 5-methyltetrahydrofolate (mono- or polyglutamate forms) per tetramer of the active enzyme. Inhibition is sensitive to the status of the N-terminal valine of GNMT and to polyglutamation of the folate inhibitor. It is inhibited by pentaglutamate form more efficiently compared to monoglutamate form. The native rat liver GNMT contains an acetylated N-terminal valine and is inhibited much more efficiently compared to the recombinant protein expressed in E. coli where the N-terminus is not acetylated. In this work we used a protein crystallography approach to evaluate the structural basis for these differences. We show that in the folate-GNMT complexes with the native enzyme, two folate molecules establish three and four hydrogen bonds with the protein. In the folate-recombinant GNMT complex only one hydrogen bond is established. This difference results in more effective inhibition by folate of the native liver GNMT activity compared to the recombinant enzyme.

  15. Structure, Biosynthesis, and Occurrence of Bacterial Pyrrolizidine Alkaloids.

    PubMed

    Schimming, Olivia; Challinor, Victoria L; Tobias, Nicholas J; Adihou, Hélène; Grün, Peter; Pöschel, Laura; Richter, Christian; Schwalbe, Harald; Bode, Helge B

    2015-10-19

    Pyrrolizidine alkaloids (PAs) are widespread plant natural products with potent toxicity and bioactivity. Herein, the identification of bacterial PAs from entomopathogenic bacteria using differential analysis by 2D NMR spectroscopy (DANS) and mass spectrometry is described. Their biosynthesis was elucidated to involve a non-ribosomal peptide synthetase. The occurrence of these biosynthesis gene clusters in Gram-negative and Gram-positive bacteria indicates an important biological function in bacteria. PMID:26465655

  16. Folated Synperonic-Cholesteryl Hemisuccinate Polymeric Micelles for the Targeted Delivery of Docetaxel in Melanoma

    PubMed Central

    Varshosaz, Jaleh; Taymouri, Somayeh; Hassanzadeh, Farshid; Haghjooy Javanmard, Shaghayegh; Rostami, Mahboobeh

    2015-01-01

    The objective of this study was the synthesis of folic acid- (FA-) targeted polymeric micelles of Synperonic PE/F 127-cholesteryl hemisuccinate (PF127-Chol) for specific delivery of docetaxel (DTX). Targeted or nontargeted micelles loaded with DTX were prepared via dialysis method. The effects of processing variables on the physicochemical properties of targeted micelles were evaluated using a full factorial design. After the optimization of the polymer/drug ratio, the organic solvent type used for the preparation of the micelles, and the temperature of dialyzing medium, the in vitro cytotoxicity and cellular uptake of the optimized micelles were studied on B16F10 melanoma cells by flow cytometry and fluorescent microscopy. The anticancer efficacy of DTX-loaded FA-PF127-Chol was evaluated in mice bearing melanoma tumor. Optimized targeted micelles had the particle size of 171.3?nm, zeta potential of ?7.8?mV, PDI of 0.325, and a high encapsulation efficiency that released the drug within 144?h. The MTT assay indicated that targeted micelles carrying DTX were significantly more cytotoxic, had higher cellular uptake, and reduced the tumor volume significantly more than the nontargeted micelles and the free drug. FA-PF127-Chol could be, therefore, a promising biomaterial for tumors overexpressing folate receptors. PMID:25839040

  17. Target-specific cellular uptake of folate-decorated biodegradable polymer micelles.

    PubMed

    Zhou, Qi; Guo, Xing; Chen, Tao; Zhang, Zhao; Shao, Shijun; Luo, Chao; Li, Jinrong; Zhou, Shaobing

    2011-11-01

    For cancer therapy, folate (FA) and ?-cyclodextrin (?-CD) decorated micelles based on the biodegradable pluronic F127-b-poly(?-caprolactone) copolymer were fabricated. These micelles were measured by dynamic light scattering measurements and atomic force microscopy. The in vitro release of doxorubicin hydrochloride (DOX·HCl) from the biodegradable polymer micelles was performed in a phosphate-buffered saline solution at pH 7.4 and acetate buffer solution at pH 5.0 at the temperatures of 4, 25, and 37 °C, and the results show that the release was obviously influenced by the pH and temperature. The material cytotoxicity and the tumor cell growth inhibition assays of DOX·HCl-loaded micelles were studied with the human hepatoblastoma cell line (HepG2), the lung epithelial cancer cell line (A549), and human nasopharyngeal epidermoid carcinoma cells (KB) and fibroblast normal cells using fluorescence microscopy as well as confocal laser scanning microscopy. The cellular uptake was quantitatively analyzed to further evaluate the active targeting behaviors of the micelles by flow cytometry. These quantitative and qualitative results of cellular uptake of the micelles provide evidence for the different targeting efficiencies of FA decoration for HepG2, KB, and A549 tumor cells as well as fibroblast normal cells. It also suggested that FA- and ?-CD-decorated doxorubicin-loaded micelles may have great potential as nanocarriers for targeted drug delivery. PMID:21942511

  18. Enhanced cellular uptake and cytotoxicity of folate decorated doxorubicin loaded PLA-TPGS nanoparticles

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoai Nam; Nhung Hoang, Thi My; Thu Trang Mai, Thi; Quynh Trang Nguyen, Thi; Doan Do, Hai; Hien Pham, Thi; Lap Nguyen, Thi; Thu Ha, Phuong

    2015-01-01

    Doxorubicin (DOX) is one of the most effective anticancer drugs for treating many types of cancer. However, the clinical applications of DOX were hindered because of serious side-effects resulting from the unselective delivery to cancer cell including congestive heart failure, chronic cardiomyopathy and drug resistance. Recently, it has been demonstrated that loading anti-cancer drugs onto drug delivery nanosystems helps to maximize therapeutic efficiency and minimize unwanted side-effects via passive and active targeting mechanisms. In this study we prepared folate decorated DOX loaded PLA-TPGS nanoparticles with the aim of improving the potential as well as reducing the side-effects of DOX. Characteristics of nanoparticles were investigated by field emission scanning electron microscopy (FESEM), dynamic light scattering (DLS) method and Fourier transform infrared spectroscopy (FTIR). Anticancer activity of the nanoparticles was evaluated through cytotoxicity and cellular uptake assays on HeLa and HT29 cancer cell lines. The results showed that prepared drug delivery system had size around 100 nm and exhibited higher cytotoxicity and cellular uptake on both tested HeLa and HT29 cells.

  19. Vitamin B12 and ageing: current issues and interaction with folate.

    PubMed

    Hughes, Catherine F; Ward, Mary; Hoey, Leane; McNulty, Helene

    2013-07-01

    A compromised vitamin B12 status is common in older people despite dietary intakes that typically far exceed current recommendations. The maintenance of an optimal status of vitamin B12 is not only dependent on adequate dietary intake but more critically on effective absorption which diminishes with age. The measurement of vitamin B12 is complicated by the lack of a gold standard assay. There are a number of direct and functional indicators of vitamin B12 status; however, none of these are without limitations and should be used in combination. Vitamin B12 is of public health importance, not only because deficiency leads to megaloblastic anaemia and irreversible nerve damage, but also because emerging evidence links low B12 to an increased risk of a number of age-related diseases, including cardiovascular disease, cognitive dysfunction, dementia and osteoporosis. Furthermore, there are concerns relating to potential adverse effects for older adults with low vitamin B12 status of over-exposure to folic acid in countries where there is mandatory fortification of food with folic acid. The aim of this review is to examine the known and emerging issues related to vitamin B12 in ageing, its assessment and inter-relationship with folate. PMID:23592803

  20. Antiproliferative, antiinvasive, and proapoptotic activity of folate receptor ?-targeted liposomal doxorubicin in nonfunctional pituitary adenoma cells.

    PubMed

    Liu, Xiaohai; Ma, Sihai; Dai, Congxin; Cai, Feng; Yao, Yong; Yang, Yakun; Feng, Ming; Deng, Kan; Li, Guiling; Ma, Wenbing; Xin, Bing; Lian, Wei; Xiang, Guangya; Zhang, Bo; Wang, Renzhi

    2013-04-01

    There is an urgent need for novel therapeutic strategies for the treatment of nonfunctional pituitary adenomas (NFPAs), especially those that are invasive. The folate receptor (FR)? is overexpressed in several cancers, including NFPA. The aim of this study was to determine the efficacy of FR?-targeted liposomes loaded with doxorubicin (F-L-DOX) in the treatment of NFPA. We evaluated targeting, cytotoxicity, antiinvasive, and proapoptotic activity of F-L-DOX in 25 primary cell lines derived from patients with NFPAs. We found that these liposomes effectively targeted NFPA cells through FR? and that endocytosis of the liposomes was blocked by 1mM free folic acid. F-L-DOX inhibited proliferation of NFPA cells and promoted apoptosis through activation of caspase-8, caspase-9, and caspase-3/7 more effectively than L-DOX. Furthermore, F-L-DOX also exerted greater antiinvasive ability in NFPA cells than L-DOX through suppression of the secretion of matrix metalloproteinase-2 and matrix metalloproteinase-9. Addition of 1mM free folic acid significantly reduced the pleotropic effects of F-L-DOX in NFPA cells, suggesting that FR? plays a critical role in mediating the antitumor effect of F-L-DOX. Our findings warrant further investigation of F-L-DOX as an alternative therapeutic strategy for the treatment of NFPAs that express FR?. PMID:23462961

  1. Comparison of Folate Receptor Targeted Optical Contrast Agents for Intraoperative Molecular Imaging

    PubMed Central

    De Jesus, Elizabeth; Keating, Jane J.; Kularatne, Sumith A.; Jiang, Jack; Judy, Ryan; Predina, Jarrod; Nie, Shuming; Low, Philip; Singhal, Sunil

    2015-01-01

    Background. Intraoperative imaging can identify cancer cells in order to improve resection; thus fluorescent contrast agents have emerged. Our objective was to do a preclinical comparison of two fluorescent dyes, EC17 and OTL38, which both target folate receptor but have different fluorochromes. Materials. HeLa and KB cells lines were used for in vitro and in vivo comparisons of EC17 and OTL38 brightness, sensitivity, pharmacokinetics, and biodistribution. In vivo experiments were then performed in mice. Results. The peak excitation and emission wavelengths of EC17 and OTL38 were 470/520?nm and 774/794?nm, respectively. In vitro, OTL38 required increased incubation time compared to EC17 for maximum fluorescence; however, peak signal-to-background ratio (SBR) was 1.4-fold higher compared to EC17 within 60 minutes (p < 0.001). Additionally, the SBR for detecting smaller quantity of cells was improved with OTL38. In vivo, the mean improvement in SBR of tumors visualized using OTL38 compared to EC17 was 3.3 fold (range 1.48–5.43). Neither dye caused noticeable toxicity in animal studies. Conclusions. In preclinical testing, OTL38 appears to have superior sensitivity and brightness compared to EC17. This coincides with the accepted belief that near infrared (NIR) dyes tend to have less autofluorescence and scattering issues than visible wavelength fluorochromes. PMID:26491562

  2. Modular Nanotransporters for Targeted Intracellular Delivery of Drugs: Folate Receptors as Potential Targets

    PubMed Central

    Slastnikova, Tatiana A.; Rosenkranz, Andrey A.; Zalutsky, Michael R.; Sobolev, Alexander S.

    2015-01-01

    The review is devoted to a subcellular drug delivery system, modular nanotransporters (MNT) that can penetrate into target cells and deliver a therapeutic into their subcellular compartments, particularly into the nucleus. The therapeutics which need such type of delivery belong to two groups: (i) those that exert their effect only when delivered into a certain cell compartment (like DNA delivered into the nucleus); and (ii) those drugs that are capable of exerting their effect in different parts of the cells, however there can be found a cell compartment that is the most sensitive to their effect. A particular interest attract such cytotoxic agents as Auger electron emitters which are known to be ineffective outside the cell nucleus, whereas they possess high cytotoxicity in the vicinity of nuclear DNA through the induction of non-reparable double-strand DNA breaks. The review discusses main approaches permitting to choose internalizable receptors permitting both recognition of target cells and penetration into them. Special interest attract folate receptors which become accessible to blood circulating therapeutics after malignant transformation or on activated macrophages which makes them an attractive target for both several oncological and inflammatory diseases, like atherosclerosis. In vitro and in vivo experiments demonstrated that MNT is a promising platform for targeted delivery of different therapeutics into the nuclei of target cells. PMID:25312738

  3. Total serum homocysteine as an indicator of vitamin B12 and folate status

    SciTech Connect

    Chu, R.C.; Hall, C.A.

    1988-10-01

    Presented is a modification of an assay for total serum homocysteine (Hcy) in which the Hcy plus radioactive adenosine is converted enzymatically to labeled S-adenosylhomocysteine (AdoHcy). The modifications included a commerical source for the AdoHcy hydrolase, adenosine labeled with either /sup 14/C or /sup 3/H, and separation of the AdoHcy by thin layer chromatography. The assay was sensitive to 25 pmol. Hcy levels in sera from 18 controls ranged from 6.9 to 12.1 mumol/L with a mean of 9.1 and a SD of 1.5 mumol/L. The total serum Hcy was increased in vitamin B12 and folate deficiency. The level was high in congenital defects of vitamin B12 metabolism, blocking the methylation of Hcy regardless of the serum vitamin B12 levels, but was normal in the absence of tissue deficiency even if the serum vitamin B12 levels were low. The procedure has been found practical in two years of use and requires only 0.1 mL of serum.

  4. Identification of a Unique Radical S-Adenosylmethionine Methylase Likely Involved in Methanopterin Biosynthesis in Methanocaldococcus jannaschii

    PubMed Central

    Allen, Kylie D.; Xu, Huimin

    2014-01-01

    Methanopterin (MPT) and its analogs are coenzymes required for methanogenesis and methylotrophy in specialized microorganisms. The methyl groups at C-7 and C-9 of the pterin ring distinguish MPT from all other pterin-containing natural products. However, the enzyme(s) responsible for the addition of these methyl groups has yet to be identified. Here we demonstrate that a putative radical S-adenosyl-l-methionine (SAM) enzyme superfamily member encoded by the MJ0619 gene in the methanogen Methanocaldococcus jannaschii is likely this missing methylase. When MJ0619 was heterologously expressed in Escherichia coli, various methylated pterins were detected, consistent with MJ0619 catalyzing methylation at C-7 and C-9 of 7,8-dihydro-6-hydroxymethylpterin, a common intermediate in both folate and MPT biosynthesis. Site-directed mutagenesis of Cys77 present in the first of two canonical radical SAM CX3CX2C motifs present in MJ0619 did not inhibit C-7 methylation, while mutation of Cys102, found in the other radical SAM amino acid motif, resulted in the loss of C-7 methylation, suggesting that the first motif could be involved in C-9 methylation, while the second motif is required for C-7 methylation. Further experiments demonstrated that the C-7 methyl group is not derived from methionine and that methylation does not require cobalamin. When E. coli cells expressing MJ0619 were grown with deuterium-labeled acetate as the sole carbon source, the resulting methyl group on the pterin was predominantly labeled with three deuteriums. Based on these results, we propose that this archaeal radical SAM methylase employs a previously uncharacterized mechanism for methylation, using methylenetetrahydrofolate as a methyl group donor. PMID:25002541

  5. Ethylene biosynthesis-inducing protein from cellulysin is an endoxylanase.

    PubMed

    Fuchs, Y; Saxena, A; Gamble, H R; Anderson, J D

    1989-01-01

    The proteinaceous ethylene biosynthesis-inducing factor (EIF) that was purified from Cellulysin was also shown to contain a xylanase activity. In all nondenaturing protein separation methods employed (Sephacryl S-200 chromatography, and preparative isoelectric focusing and agarose electrophoresis), xylanase activity copurified with the ethylene biosynthesis-inducing activity. Treatment with heat (60 degrees C) or proteases in 8 molar urea inhibited both ethylene-inducing and xylanase activities. Antibodies raised against purified EIF, which contains three polypeptides of 18, 14, and 10 kilodaltons, immunoprecipitated both ethylene biosynthesis-inducing and xylanase activities. The purified EIF contained no detectable cellulase, polygalacturonase, or protease activity. Other hydrolytic activities as estimated by using p-nitrophenyl derivatives of several sugars as substrates also were not detected. Different commercially available hydrolytic enzyme preparations were tested for both ethylene biosynthesis-inducing and xylanase activities. All enzymes tested contained xylanase activity, but only a few induced ethylene biosynthesis. Western blots of proteins separated by SDS-PAGE, using antibodies prepared against the non-denatured purified EIF, revealed two major bands of about 18 and 14 kilodaltons in EIF. These antibodies seem to be specific for these proteins from Trichoderma viride, because there was little cross-reactivity with the other proteins in Cellulysin and other commercial enzyme preparations. Based on these data, we suggest that EIF contains a specific xylanase activity which is involved in inducing ethylene biosynthesis. PMID:16666504

  6. Fenarimol, a Pyrimidine-Type Fungicide, Inhibits Brassinosteroid Biosynthesis.

    PubMed

    Oh, Keimei; Matsumoto, Tadashi; Yamagami, Ayumi; Hoshi, Tomoki; Nakano, Takeshi; Yoshizawa, Yuko

    2015-01-01

    The plant steroid hormone brassinosteroids (BRs) are important signal mediators that regulate broad aspects of plant growth and development. With the discovery of brassinoazole (Brz), the first specific inhibitor of BR biosynthesis, several triazole-type BR biosynthesis inhibitors have been developed. In this article, we report that fenarimol (FM), a pyrimidine-type fungicide, exhibits potent inhibitory activity against BR biosynthesis. FM induces dwarfism and the open cotyledon phenotype of Arabidopsis seedlings in the dark. The IC50 value for FM to inhibit stem elongation of Arabidopsis seedlings grown in the dark was approximately 1.8 ± 0.2 ?M. FM-induced dwarfism of Arabidopsis seedlings could be restored by brassinolide (BL) but not by gibberellin (GA). Assessment of the target site of FM in BR biosynthesis by feeding BR biosynthesis intermediates indicated that FM interferes with the side chain hydroxylation of BR biosynthesis from campestanol to teasterone. Determination of the binding affinity of FM to purified recombinant CYP90D1 indicated that FM induced a typical type II binding spectrum with a Kd value of approximately 0.79 ?M. Quantitative real-time PCR analysis of the expression level of the BR responsive gene in Arabidopsis seedlings indicated that FM induces the BR deficiency in Arabidopsis. PMID:26230686

  7. Fenarimol, a Pyrimidine-Type Fungicide, Inhibits Brassinosteroid Biosynthesis

    PubMed Central

    Oh, Keimei; Matsumoto, Tadashi; Yamagami, Ayumi; Hoshi, Tomoki; Nakano, Takeshi; Yoshizawa, Yuko

    2015-01-01

    The plant steroid hormone brassinosteroids (BRs) are important signal mediators that regulate broad aspects of plant growth and development. With the discovery of brassinoazole (Brz), the first specific inhibitor of BR biosynthesis, several triazole-type BR biosynthesis inhibitors have been developed. In this article, we report that fenarimol (FM), a pyrimidine-type fungicide, exhibits potent inhibitory activity against BR biosynthesis. FM induces dwarfism and the open cotyledon phenotype of Arabidopsis seedlings in the dark. The IC50 value for FM to inhibit stem elongation of Arabidopsis seedlings grown in the dark was approximately 1.8 ± 0.2 ?M. FM-induced dwarfism of Arabidopsis seedlings could be restored by brassinolide (BL) but not by gibberellin (GA). Assessment of the target site of FM in BR biosynthesis by feeding BR biosynthesis intermediates indicated that FM interferes with the side chain hydroxylation of BR biosynthesis from campestanol to teasterone. Determination of the binding affinity of FM to purified recombinant CYP90D1 indicated that FM induced a typical type II binding spectrum with a Kd value of approximately 0.79 ?M. Quantitative real-time PCR analysis of the expression level of the BR responsive gene in Arabidopsis seedlings indicated that FM induces the BR deficiency in Arabidopsis. PMID:26230686

  8. BioSYNTHESIS: Integrating Multiple Databases into a Virtual Database

    PubMed Central

    Broering, Naomi C.; Bagdoyan, Helen; Hylton, Jeffrey; Strickler, John

    1989-01-01

    BioSYNTHESIS is a front-end retrieval system under development as part of the IAIMS project at Georgetown University. It is designed to achieve system integration of multiple IAIMS databases maintained at Georgetown so they appear as a “virtual database” to users. The aim is to create an integrated system that enables users to easily retrieve information from various databases residing on disparate computers. The project work has been divided in two phases: BioSYNTHESIS I, development of a single menu to access various databases which reside on different computers; and BioSYNTHESIS II, development of a search component that facilitates complex searching for the user. BioSYNTHESIS I is currently available to users, and BioSYNTHESIS II is in an early stage of development. The design work will continue as a multiyear technical research effort of the Georgetown IAIMS Implementation Project. Plans are to release portions of BioSYNTHESIS II during the project period as components become available.

  9. High circulating folate and vitamin B-12 concentrations in women during pregnancy are associated with increased prevalence of atopic dermatitis in their offspring.

    PubMed

    Kiefte-de Jong, Jessica C; Timmermans, Sarah; Jaddoe, Vincent W V; Hofman, Albert; Tiemeier, Henning; Steegers, Eric A; de Jongste, Johan C; Moll, Henriette A

    2012-04-01

    Recent studies suggest that in utero exposure of methyl donors influences programming of the fetal immune system in favor of development of allergic disease. The aim of this study was to assess whether the MTHFR C677T polymorphism, folic acid supplementation, and circulating folate and vitamin B-12 concentrations during pregnancy were associated with wheezing, shortness of breath, and atopic dermatitis in offspring. The study was a population-based birth cohort from fetal life until 48 mo (n = 8742). The use of folic acid supplementation during pregnancy was assessed by questionnaire. Plasma folate and serum vitamin B-12 concentrations and the MTHFR C677T polymorphism were available from blood collected in early pregnancy. Atopic dermatitis, wheezing, and shortness of breath in the offspring were assessed by parental-derived questionnaires at 12, 24, 36, and 48 mo. Maternal folate >16.2 nmol/L and vitamin B-12 >178 pmol/L were positively associated with the development of atopic dermatitis [adjusted OR: 1.18 (95% CI: 1.05-1.33) and adjusted OR: 1.30 (95% CI: 1.06-1.60) for the highest quartiles of folate and vitamin B-12 concentrations, respectively] but not with wheezing and shortness of breath. Maternal MTHFR C677T polymorphism and folic acid supplementation were not associated with wheezing, shortness of breath, and atopic dermatitis. No interactions were found by age, family history of atopy, folic acid supplementation, MTHFR C677T polymorphism, or maternal smoking (P-interaction > 0.10). High folate and vitamin B-12 levels during pregnancy are associated with increased prevalence of atopic dermatitis in the offspring. Potential risks of high folate and vitamin B-12 concentrations on allergic outcomes should be evaluated when discussing mandatory fortification programs. PMID:22399526

  10. A high prevalence of biochemical evidence of vitamin B12 or folate deficiency does not translate into a comparable prevalence of anemia.

    PubMed

    Metz, Jack

    2008-06-01

    Based on biochemical evidence, a high prevalence of biochemical evidence of vitamin B12 or folate deficiency has been reported in a number of areas in the world. The evidence that these biochemical abnormalities lead to a comparable prevalence of anemia is reviewed. The overall contribution of vitamin B12 deficiency to the global burden of anemia is probably not significant, except perhaps in women and their infants and children in vegetarian communities. In developed countries, folate-deficiency anemia is uncommon. In some developing countries, this anemia is still seen, but there are no comprehensive data on the relative prevalence compared with anemia due to malaria, iron-deficiency, hemoglobinopathy, and HIV disease. It seems unlikely that folate deficiency makes a major contribution to the burden of anemia in developing countries. Iron-deficiency anemia may coexist with vitamin B12 and especially folate deficiency, and may confound the hematological features of the vitamin deficiencies whose prevalence would then be underestimated. Supplementation of the diet of pregnant women with folic acid can virtually eliminate folate-deficiency anemia in these women. There are very few data on the hematological effect of vitamin B12 supplementation or fortification at the population level. The addition of vitamin B12 to the supplementation of the diet of pregnant women with iron and folic acid does not produce an increased hematological response, at least in nonvegetarian populations. There are numerous reports of the effect of folic acid fortification of food on tests of folate status, but only a single published report on the hematological response was found. PMID:18709883

  11. Comparative analysis of serum iron, serum ferritin and red cell folate levels among breast fed, fortified milk and cow’s milk fed infants

    PubMed Central

    Qudsia, Fatima; Saboor, Muhammad; Khosa, Shafi Muhammad; Ayub, Qamar; Moinuddin

    2015-01-01

    Objective: Iron and folic acid are essential nutrients needed for hematopoiesis. Infants’ diet is commonly deficient in these micronutrients that lead to nutritional anemia. Aim of this study was to determine serum iron, serum ferritin and red cell folate levels among healthy breast fed, fortified milk and cow’s milk fed infants. Methods: A total of 120 infants of 4-9 months of age were enrolled in this study. It included 40 normal breast fed controls, 40 fortified milk fed (FM) and 40 cow’s milk fed (CM) infants. Serum iron, serum ferritin and red cell folate concentrations were determined using colorimetric and enzyme immunoassay techniques. Results: Mean serum iron, serum ferritin and red cell folate concentrations of breast fed control group were 120.9±68.4µg/dl, 109±71.7ng/ml and 1044.1±409.2ng/ml respectively. Fortified milk (FM) group showed significantly decreased serum iron (p<0.003) as compared with controls whereas serum ferritin and red cell folate values showed insignificant change (p=0.25 and p=0.85 respectively). However serum iron, serum ferritin and red cell folate were significantly decreased in cow’s milk fed (CM) group as compared with control subjects (p<0.04, p<0.006, p<0.02 respectively). Comparison of these biochemical parameters between FM and CM groups showed statistically significant difference of serum ferritin and red cell folate among cow’s milk group (p<0.0001 and p<0.02) whereas serum iron level showed no significant difference, a p-value being 0.38. Conclusion: Healthy breast fed infants do not need any supplementation and fortification of iron and folic acid. Fortified milk appears to be an acceptable alternative in the absence of breast milk whereas cow’s milk is a poor source of iron and folic acid in infants. PMID:26150872

  12. Biosynthesis of the manumycin group antibiotics

    SciTech Connect

    Thiericke, R.; Zeeck, A. ); Nakagawa, Akira; Omura, Satoshi ); Herrold, R.E.; Wu, S.T.S. ); Beale, J.M.; Floss, H.G. )

    1990-05-09

    The biosynthesis of the manumycin group antibiotics manumycin (1) and asukamycin (2) was studied in Streptomyces parvulus Tue 64 and Streptomyces nodosus ssp. asukaensis ATCC 29,757 by using radioactive and stable isotope tracer techniques and high-field NMR spectroscopy. The results have demonstrated that the central, multifunctional mC{sub 7}N unit typical of this group of antibiotics, which serves as the starter unit for a short polyketide chain, is biosynthesized from a C{sub 4} Krebs cycle and a C{sub 3} triose phosphate pool intermediate by a new pathway, distinct from the shikimate, polyketide, or pentose phosphate routes leading to other mC{sub 7}N units in nature. The C{sub 5} unit in both 1 and 2 arises by a novel intramolecular cyclization of 5-aminolevulinic acid, and a cyclohexane ring and the adjacent carbon in 2 arise from the seven carbon atoms of shikimic acid. The side chains of both antibiotics represent typical polyketide-derived moieties, differing with respect to their combinations of starter and elongation units.

  13. Mitochondrial fusion is essential for steroid biosynthesis.

    PubMed

    Duarte, Alejandra; Poderoso, Cecilia; Cooke, Mariana; Soria, Gastón; Cornejo Maciel, Fabiana; Gottifredi, Vanesa; Podestá, Ernesto J

    2012-01-01

    Although the contribution of mitochondrial dynamics (a balance in fusion/fission events and changes in mitochondria subcellular distribution) to key biological process has been reported, the contribution of changes in mitochondrial fusion to achieve efficient steroid production has never been explored. The mitochondria are central during steroid synthesis and different enzymes are localized between the mitochondria and the endoplasmic reticulum to produce the final steroid hormone, thus suggesting that mitochondrial fusion might be relevant for this process. In the present study, we showed that the hormonal stimulation triggers mitochondrial fusion into tubular-shaped structures and we demonstrated that mitochondrial fusion does not only correlate-with but also is an essential step of steroid production, being both events depend on PKA activity. We also demonstrated that the hormone-stimulated relocalization of ERK1/2 in the mitochondrion, a critical step during steroidogenesis, depends on mitochondrial fusion. Additionally, we showed that the SHP2 phosphatase, which is required for full steroidogenesis, simultaneously modulates mitochondrial fusion and ERK1/2 localization in the mitochondrion. Strikingly, we found that mitofusin 2 (Mfn2) expression, a central protein for mitochondrial fusion, is upregulated immediately after hormone stimulation. Moreover, Mfn2 knockdown is sufficient to impair steroid biosynthesis. Together, our findings unveil an essential role for mitochondrial fusion during steroidogenesis. These discoveries highlight the importance of organelles' reorganization in specialized cells, prompting the exploration of the impact that organelle dynamics has on biological processes that include, but are not limited to, steroid synthesis. PMID:23029265

  14. Regulation of mammalian nucleotide metabolism and biosynthesis

    PubMed Central

    Lane, Andrew N.; Fan, Teresa W.-M.

    2015-01-01

    Nucleotides are required for a wide variety of biological processes and are constantly synthesized de novo in all cells. When cells proliferate, increased nucleotide synthesis is necessary for DNA replication and for RNA production to support protein synthesis at different stages of the cell cycle, during which these events are regulated at multiple levels. Therefore the synthesis of the precursor nucleotides is also strongly regulated at multiple levels. Nucleotide synthesis is an energy intensive process that uses multiple metabolic pathways across different cell compartments and several sources of carbon and nitrogen. The processes are regulated at the transcription level by a set of master transcription factors but also at the enzyme level by allosteric regulation and feedback inhibition. Here we review the cellular demands of nucleotide biosynthesis, their metabolic pathways and mechanisms of regulation during the cell cycle. The use of stable isotope tracers for delineating the biosynthetic routes of the multiple intersecting pathways and how these are quantitatively controlled under different conditions is also highlighted. Moreover, the importance of nucleotide synthesis for cell viability is discussed and how this may lead to potential new approaches to drug development in diseases such as cancer. PMID:25628363

  15. Control of triacylglycerol biosynthesis in plants

    SciTech Connect

    Not Available

    1993-01-31

    Seeds of most species of the Umbelliferae (Apiaciae), Araliaceae, and Garryaceae families are characterized by their high content of the unusual C[sub 18] monounsaturated fatty acid petroselinic acid (18:l[Delta][sup 6cis]). Prior to a recent report of this lab, little was known of the biosynthetic origin of the cis[Delta][sup 6] double bond of petroselinic acid. Such knowledge may be of both biochemical and biotechnological significance. Because petroselinic acid is potentially the product of a novel desaturase, information regarding its synthesis may contribute to an understanding of fatty acid desaturation mechanisms in plants. Through chemical cleavage at its double bond, petroselinic acid can be used as a precursor of lauric acid (12:0), a component of detergents and surfactants, and adipic acid (6:0 dicarboxylic), the monomeric component of nylon 6,6. Therefore, the development of an agronomic source of an oil rich in petroselinic acid is of biotechnological interest. As such, studies of petroselinic acid biosynthesis may provide basic information required for any attempt to genetically engineer the production and accumulation of this fatty acid in an existing oilseed.

  16. Expanding ester biosynthesis in Escherichia coli

    PubMed Central

    Rodriguez, Gabriel M; Tashiro, Yohei; Atsumi, Shota

    2015-01-01

    To expand the capabilities of whole-cell biocatalysis, we have engineered Escherichia coli to produce various esters. The alcohol O-acyltransferase (ATF) class of enzyme uses acyl-CoA units for ester formation. The release of free CoA upon esterification with an alcohol provides the free energy to facilitate ester formation. The diversity of CoA molecules found in nature in combination with various alcohol biosynthetic pathways allows for the biosynthesis of a multitude of esters. Small to medium volatile esters have extensive applications in the flavor, fragrance, cosmetic, solvent, paint and coating industries. The present work enables the production of these compounds by designing several ester pathways in E. coli. The engineered pathways generated acetate esters of ethyl, propyl, isobutyl, 2-methyl-1-butyl, 3-methyl-1-butyl and 2-phenylethyl alcohols. In particular, we achieved high-level production of isobutyl acetate from glucose (17.2 g l?1). This strategy was expanded to realize pathways for tetradecyl acetate and several isobutyrate esters. PMID:24609358

  17. Transcriptional analysis of apple fruit proanthocyanidin biosynthesis

    PubMed Central

    Henry-Kirk, Rebecca A.

    2012-01-01

    Proanthocyanidins (PAs) are products of the flavonoid pathway, which also leads to the production of anthocyanins and flavonols. Many flavonoids have antioxidant properties and may have beneficial effects for human health. PAs are found in the seeds and fruits of many plants. In apple fruit (Malus × domestica Borkh.), the flavonoid biosynthetic pathway is most active in the skin, with the flavan-3-ols, catechin, and epicatechin acting as the initiating units for the synthesis of PA polymers. This study examined the genes involved in the production of PAs in three apple cultivars: two heritage apple cultivars, Hetlina and Devonshire Quarrenden, and a commercial cultivar, Royal Gala. HPLC analysis shows that tree-ripe fruit from Hetlina and Devonshire Quarrenden had a higher phenolic content than Royal Gala. Epicatechin and catechin biosynthesis is under the control of the biosynthetic enzymes anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR1), respectively. Counter-intuitively, real-time quantitative PCR analysis showed that the expression levels of Royal Gala LAR1 and ANR were significantly higher than those of both Devonshire Quarrenden and Hetlina. This suggests that a compensatory feedback mechanism may be active, whereby low concentrations of PAs may induce higher expression of gene transcripts. Further investigation is required into the regulation of these key enzymes in apple. Abbreviations:ANOVAanalysis of varianceANRanthocyanidin reductaseDADdiode array detectorDAFBdays after full bloomDFRdihydroflavonol reductaseLARleucoanthocyanidin reductaseLC-MSliquid chromatography/mass spectrometryPAproanthocyanidinqPCRreal-time quantitative PCR PMID:22859681

  18. Lipid Biosynthesis in Developing Mustard Seed

    PubMed Central

    Mukherjee, Kumar D.

    1983-01-01

    Cotyledons of developing mustard (Sinapis alba L.) seed have been found to synthesize lipids containing the common plant fatty acids and very long-chain monounsaturated (icosenoic, erucic, and tetracosenic) and saturated (icosanoic, docosanoic, and tetracosanoic) fatty acids from various radioactive precursors. The in vivo pattern of labeling of acyl lipids, either from fatty acids synthesized `endogenously' from radioactive acetate or malonate, or from radioactive fatty acids added `exogenously', indicates the involvement of the following pathways in the biosynthesis of triacylglycerols. Palmitic, stearic, and oleic acid, synthesized in the acyl carrier protein-track, are channeled to the Coenzyme A (CoA)-track and converted to triacylglycerols via the glycerol-3-phosphate pathway. Pools of stearoyl-CoA and oleoyl-CoA are elongated to very long-chain saturated and monounsaturated acyl-CoA, respectively. Most of the very long-chain saturated acyl-CoAs acylate preformed diacylglycerols. Very long-chain monounsaturated acyl-CoAs are converted to triacylglycerols, partly via phosphatidic acids and diacylglycerols, and partly by acylation of preformed diacylglycerols. PMID:16663345

  19. High folate gestational and post-weaning diets alter hypothalamic feeding pathways by DNA methylation in Wistar rat offspring.

    PubMed

    Cho, Clara E; Sánchez-Hernández, Diana; Reza-López, Sandra A; Huot, Pedro S P; Kim, Young-In; Anderson, G Harvey

    2013-07-01

    Excess vitamins, especially folate, are consumed during pregnancy but later-life effects on the offspring are unknown. High multivitamin (10-fold AIN-93G, HV) gestational diets increase characteristics of metabolic syndrome in Wistar rat offspring. We hypothesized that folate, the vitamin active in DNA methylation, accounts for these effects through epigenetic modification of food intake regulatory genes. Male offspring of dams fed 10-fold folate (HFol) diet during pregnancy and weaned to recommended vitamin (RV) or HFol diets were compared with those born to RV dams and weaned to RV diet for 29 weeks. Food intake and body weight were highest in offspring of HFol dams fed the RV diet. In contrast, the HFol pup diet in offspring of HFol dams reduced food intake (7%, p = 0.02), body weight (9%, p = 0.03) and glucose response to a glucose load (21%, p = 0.02), and improved glucose response to an insulin load (20%, p = 0.009). HFol alone in either gestational or pup diet modified gene expression of feeding-related neuropeptides. Hypomethylation of the pro-opiomelanocortin (POMC) promoter occurred with the HFol pup diet. POMC-specific methylation was positively associated with glucose response to a glucose load (r = 0.7, p = 0.03). In conclusion, the obesogenic phenotype of offspring from dams fed the HFol gestational diet can be corrected by feeding them a HFol diet. Our work is novel in showing post-weaning epigenetic plasticity of the hypothalamus and that in utero programming by vitamin gestational diets can be modified by vitamin content of the pup diet. PMID:23803567

  20. Distribution of Folate Derivatives and Enzymes for Synthesis of 10-Formyltetrahydrofolate in Cytosolic and Mitochondrial Fractions of Pea Leaves.

    PubMed Central

    Chen, L.; Chan, S. Y.; Cossins, E. A.

    1997-01-01

    Leaf extracts of 14-d-old pea (Pisum sativum L. cv Homesteader) seedlings were examined for folate derivatives and for 10-formyltetrahydrofolate synthetase (SYN), 5,10-methenyltetrahydrofolate cyclohydrolase (CYC), and 5,10-methylenetetrahydrofolate dehydrogenase (DHY) activities. Microbiological and enzyme assays showed that leaf folates SYN, CYC, and DHY were predominantly cytosolic. Extracts of Percoll gradient-purified mitochondria contained less than 1% of total leaf folate and less that 1% of each enzyme activity. Fractionation of whole-leaf homogenates resulted in the copurification of DHY and CYC (subunit 38 kD) and the isolation of a SYN protein (subunit 66 kD). Polyclonal antibodies were raised against purified cytosolic DHY-CYC (DHY-CYC-Ab) and cytosolic SYN (SYN-Ab), respectively. Immunoblots showed that DHY-CYC-Ab cross-reacted with a mitochondrial protein band (38 kD). Two mitochondrial protein bands (subunit Mr = 40,000 and 44,000) cross-reacted with SYN-Ab. Immunoaffinity chromatography (DHY-CYC-Ab as the immobile ligand) indicated that the bulk of mitochondrial SYN activity was not associated with mitochondrial DHY or CYC. When 9-d-old etiolated pea seedlings were exposed to light for up to 3 d, the specific enzyme activities of DHY-CYC in whole-leaf extracts rose 2-fold and more DHY-CYC-Ab cross-reacting protein was detected. In contrast, the specific activity of SYN fell from 5 to 1 [mu]mol min-1 mg-1 protein and less SYN-Ab cross-reacting protein was detected. The data suggest that in pea leaves, the bulk of one-carbon-substituted tetrahydrofolates and enzymes for the generation of 10-formyltetrahydrofolate are extra-mitochondrial. PMID:12223808

  1. Impact on Social Inequalities of Population Strategies of Prevention for Folate Intake in Women of Childbearing Age

    PubMed Central

    Sumar, Nureen

    2011-01-01

    We reviewed the recent assertion that population strategies of prevention may inadvertently widen social inequalities in health. We used folate intake as a case example to examine what is known about the impact on inequalities of 2 population strategies: one agentic (public information campaign) and the other structural (mandatory fortification policy). We found some support for our hypothesis that the mandatory fortification policy was less likely than were the information campaigns to lead to worsening inequalities in health by socioeconomic status or race/ethnicity; however, conclusions were complicated by different outcome variables and different economic and political regimes in which interventions took place. PMID:21566037

  2. Repression of human reduced folate carrier gene expression by wild type p53.

    PubMed

    Ding, B C; Whetstine, J R; Witt, T L; Schuetz, J D; Matherly, L H

    2001-03-23

    The relationship between loss of functional p53 and human reduced folate carrier (hRFC) levels and function was examined in REH lymphoblastic leukemia cells, which express wild type p53, and in p53-null K562 cells (K562(pTet-on/p53)) engineered to express wild type p53 under control of a tetracycline-inducible promoter. Activation of p53 in REH cells by treatment with daunorubicin was accompanied by decreased ( approximately 5-fold) levels of hRFC transcripts and methotrexate transport. Treatment of K562(pTet-on/p53) cells with doxycycline resulted in a dose-dependent expression of p53 protein and transcripts, increased p21 protein, decreased dihydrofolate reductase, and G(1) arrest with decreased numbers of cells in S-phase. p53 induction was accompanied by up to 3-fold decreases in hRFC transcripts transcribed from the upstream hRFC-B promoter and similar losses of hRFC protein and methotrexate uptake capacity. Expression of p15 in an analogous inducible system in K562 cells resulted in a nearly identical decrease of S-phase cells and dihydrofolate reductase without effects on hRFC levels or activity. When the hRFC-B promoter was expressed as full-length and basal promoter-luciferase reporter constructs in K562(pTet-on/p53) cells, induction of p53 with doxycycline resulted in a 3-fold loss of promoter activity, which was reversed by cotransfection with a trans-dominant-negative p53. These studies show that wild type p53 acts as a repressor of hRFC gene expression, via a mechanism that is independent of its effects on cell cycle progression. PMID:11106643

  3. Jasmonate-induced biosynthesis of andrographolide in Andrographis paniculata.

    PubMed

    Sharma, Shiv Narayan; Jha, Zenu; Sinha, Rakesh Kumar; Geda, Arvind Kumar

    2015-02-01

    Andrographolide is a prominent secondary metabolite found in Andrographis paniculata that exhibits enormous pharmacological effects. In spite of immense value, the normal biosynthesis of andrographolide results in low amount of the metabolite. To induce the biosynthesis of andrographolide, we attempted elicitor-induced activation of andrographolide biosynthesis in cell cultures of A. paniculata. This was carried out by using methyl jasmonate (MeJA) as an elicitor. Among the various concentrations of MeJA tested at different time periods, 5 µM MeJA yielded 5.25 times more andrographolide content after 24 h of treatment. The accumulation of andrographolide was correlated with the expression level of known regulatory genes (hmgs, hmgr, dxs, dxr, isph and ggps) of mevalonic acid (MVA) and 2-C-methyl-d-erythritol-4-phosphate (MEP) pathways. These results established the involvement of MeJA in andrographolide biosynthesis by inducing the transcription of its biosynthetic pathways genes. The coordination of isph, ggps and hmgs expression highly influenced the andrographolide biosynthesis. PMID:25104168

  4. Roles of lignin biosynthesis and regulatory genes in plant development.

    PubMed

    Yoon, Jinmi; Choi, Heebak; An, Gynheung

    2015-11-01

    Lignin is an important factor affecting agricultural traits, biofuel production, and the pulping industry. Most lignin biosynthesis genes and their regulatory genes are expressed mainly in the vascular bundles of stems and leaves, preferentially in tissues undergoing lignification. Other genes are poorly expressed during normal stages of development, but are strongly induced by abiotic or biotic stresses. Some are expressed in non-lignifying tissues such as the shoot apical meristem. Alterations in lignin levels affect plant development. Suppression of lignin biosynthesis genes causes abnormal phenotypes such as collapsed xylem, bending stems, and growth retardation. The loss of expression by genes that function early in the lignin biosynthesis pathway results in more severe developmental phenotypes when compared with plants that have mutations in later genes. Defective lignin deposition is also associated with phenotypes of seed shattering or brittle culm. MYB and NAC transcriptional factors function as switches, and some homeobox proteins negatively control lignin biosynthesis genes. Ectopic deposition caused by overexpression of lignin biosynthesis genes or master switch genes induces curly leaf formation and dwarfism. PMID:26297385

  5. Recent advances in combinatorial biosynthesis for drug discovery.

    PubMed

    Sun, Huihua; Liu, Zihe; Zhao, Huimin; Ang, Ee Lui

    2015-01-01

    Because of extraordinary structural diversity and broad biological activities, natural products have played a significant role in drug discovery. These therapeutically important secondary metabolites are assembled and modified by dedicated biosynthetic pathways in their host living organisms. Traditionally, chemists have attempted to synthesize natural product analogs that are important sources of new drugs. However, the extraordinary structural complexity of natural products sometimes makes it challenging for traditional chemical synthesis, which usually involves multiple steps, harsh conditions, toxic organic solvents, and byproduct wastes. In contrast, combinatorial biosynthesis exploits substrate promiscuity and employs engineered enzymes and pathways to produce novel "unnatural" natural products, substantially expanding the structural diversity of natural products with potential pharmaceutical value. Thus, combinatorial biosynthesis provides an environmentally friendly way to produce natural product analogs. Efficient expression of the combinatorial biosynthetic pathway in genetically tractable heterologous hosts can increase the titer of the compound, eventually resulting in less expensive drugs. In this review, we will discuss three major strategies for combinatorial biosynthesis: 1) precursor-directed biosynthesis; 2) enzyme-level modification, which includes swapping of the entire domains, modules and subunits, site-specific mutagenesis, and directed evolution; 3) pathway-level recombination. Recent examples of combinatorial biosynthesis employing these strategies will also be highlighted in this review. PMID:25709407

  6. Recent advances in combinatorial biosynthesis for drug discovery

    PubMed Central

    Sun, Huihua; Liu, Zihe; Zhao, Huimin; Ang, Ee Lui

    2015-01-01

    Because of extraordinary structural diversity and broad biological activities, natural products have played a significant role in drug discovery. These therapeutically important secondary metabolites are assembled and modified by dedicated biosynthetic pathways in their host living organisms. Traditionally, chemists have attempted to synthesize natural product analogs that are important sources of new drugs. However, the extraordinary structural complexity of natural products sometimes makes it challenging for traditional chemical synthesis, which usually involves multiple steps, harsh conditions, toxic organic solvents, and byproduct wastes. In contrast, combinatorial biosynthesis exploits substrate promiscuity and employs engineered enzymes and pathways to produce novel “unnatural” natural products, substantially expanding the structural diversity of natural products with potential pharmaceutical value. Thus, combinatorial biosynthesis provides an environmentally friendly way to produce natural product analogs. Efficient expression of the combinatorial biosynthetic pathway in genetically tractable heterologous hosts can increase the titer of the compound, eventually resulting in less expensive drugs. In this review, we will discuss three major strategies for combinatorial biosynthesis: 1) precursor-directed biosynthesis; 2) enzyme-level modification, which includes swapping of the entire domains, modules and subunits, site-specific mutagenesis, and directed evolution; 3) pathway-level recombination. Recent examples of combinatorial biosynthesis employing these strategies will also be highlighted in this review. PMID:25709407

  7. Biosynthesis and functions of sulfur modifications in tRNA

    PubMed Central

    Shigi, Naoki

    2014-01-01

    Sulfur is an essential element for a variety of cellular constituents in all living organisms. In tRNA molecules, there are many sulfur-containing nucleosides, such as the derivatives of 2-thiouridine (s2U), 4-thiouridine (s4U), 2-thiocytidine (s2C), and 2-methylthioadenosine (ms2A). Earlier studies established the functions of these modifications for accurate and efficient translation, including proper recognition of the codons in mRNA or stabilization of tRNA structure. In many cases, the biosynthesis of these sulfur modifications starts with cysteine desulfurases, which catalyze the generation of persulfide (an activated form of sulfur) from cysteine. Many sulfur-carrier proteins are responsible for delivering this activated sulfur to each biosynthesis pathway. Finally, specific “modification enzymes” activate target tRNAs and then incorporate sulfur atoms. Intriguingly, the biosynthesis of 2-thiouridine in all domains of life is functionally and evolutionarily related to the ubiquitin-like post-translational modification system of cellular proteins in eukaryotes. This review summarizes the recent characterization of the biosynthesis of sulfur modifications in tRNA and the novel roles of this modification in cellular functions in various model organisms, with a special emphasis on 2-thiouridine derivatives. Each biosynthesis pathway of sulfur-containing molecules is mutually modulated via sulfur trafficking, and 2-thiouridine and codon usage bias have been proposed to control the translation of specific genes. PMID:24765101

  8. Dithiolopyrrolone Natural Products: Isolation, Synthesis and Biosynthesis

    PubMed Central

    Qin, Zhiwei; Huang, Sheng; Yu, Yi; Deng, Hai

    2013-01-01

    Dithiolopyrrolones are a class of antibiotics that possess the unique pyrrolinonodithiole (4H-[1,2] dithiolo [4,3-b] pyrrol-5-one) skeleton linked to two variable acyl groups. To date, there are approximately 30 naturally occurring dithiolopyrrolone compounds, including holomycin, thiolutin, and aureothricin, and more recently thiomarinols, a unique class of hybrid marine bacterial natural products containing a dithiolopyrrolone framework linked by an amide bridge with an 8-hydroxyoctanoyl chain linked to a monic acid. Generally, dithiolopyrrolone antibiotics have broad-spectrum antibacterial activity against various microorganisms, including Gram-positive and Gram-negative bacteria, and even parasites. Holomycin appeared to be active against rifamycin-resistant bacteria and also inhibit the growth of the clinical pathogen methicillin-resistant Staphylococcus aureus N315. Its mode of action is believed to inhibit RNA synthesis although the exact mechanism has yet to be established in vitro. A recent work demonstrated that the fish pathogen Yersinia ruckeri employs an RNA methyltransferase for self-resistance during the holomycin production. Moreover, some dithiolopyrrolone derivatives have demonstrated promising antitumor activities. The biosynthetic gene clusters of holomycin have recently been identified in S. clavuligerus and characterized biochemically and genetically. The biosynthetic gene cluster of thiomarinol was also identified from the marine bacterium Pseudoalteromonas sp. SANK 73390, which was uniquely encoded by two independent pathways for pseudomonic acid and pyrrothine in a novel plasmid. The aim of this review is to give an overview about the isolations, characterizations, synthesis, biosynthesis, bioactivities and mode of action of this unique family of dithiolopyrrolone natural products, focusing on the period from 1940s until now. PMID:24141227

  9. Natural Products as Tools for Chemogenomic Analysis of Mycotoxin Biosynthesis and Fungal Stress-Response Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Certain phenolics having antioxidative activity can inhibit aflatoxin biosynthesis by Aspergillus flavus, with no effect on fungal growth. Contrastingly, exposing A. flavus to oxidative stress, such as hydrogen peroxide, enhances aflatoxin biosynthesis. Use of gene-deletion mutants of Saccharomyces ...

  10. Biosynthesis of the tunicamycin antibiotics proceeds via unique exo-glycal intermediates

    E-print Network

    Davis, Ben G.

    Biosynthesis of the tunicamycin antibiotics proceeds via unique exo-glycal intermediates Filip J antibiotics targeting bacterial peptidoglycan biosynthesis and eukaryotic protein N, to create an 11-carbon chain. T he tunicamycins are fatty acyl nucleoside antibiotics with potent inhibitory

  11. Folate Receptor-Positive Circulating Tumor Cells as a Novel Diagnostic Biomarker in Non-Small Cell Lung Cancer1

    PubMed Central

    Yu, Yue; Chen, Zhaoli; Dong, Jingsi; Wei, Peng; Hu, Rongjun; Zhou, Chengcheng; Sun, Nan; Luo, Mei; Yang, Wenjing; Yao, Ran; Gao, Yibo; Li, Jiagen; Yang, Guohua; He, Wei; He, Jie

    2013-01-01

    The study aims to determine the efficacy and feasibility of a novel folate receptor (FR)-based circulating tumor cell (CTC) detection method in the diagnosis of non-small cell lung cancer (NSCLC). CTCs were collected from 3 ml of blood based on negative enrichment by immunomagnetic beads and then labeled by a conjugate of a tumor-specific ligand folate and an oligonucleotide. After washing off redundant conjugates, the bound conjugates were removed and analyzed by quantitative polymerase chain reaction. The captured cells were validated as tumor cells by immunofluorescence staining. In the evaluation of clinical utility, the results showed that the CTC levels of 153 patients with NSCLC were significantly higher than the controls (49 healthy donors and 64 patients with benign lung diseases; P < .001). With a threshold of 8.64 CTC units, the method showed a sensitivity of 73.2% and a specificity of 84.1% in the diagnosis of NSCLC, especially a sensitivity of 67.2% in stage I disease. Compared with the existing clinical biomarkers such as neuron-specific enolase (NSE), carcinoembryonic antigen (CEA), cancer antigen 125 (CA125), cyfra21-1, and squamous cell carcinoma antigen (SCC Ag), the method showed the highest diagnostic efficiency (area under the curve, 0.823; 95% confidence interval, 0.773–0.874). Together, our results demonstrated that FR-positive CTCs were feasible diagnostic biomarkers in patients with NSCLC, as well as in early-stage tumors. PMID:24466372

  12. Chicken riboflavin-binding protein. cDNA sequence and homology with milk folate-binding protein.

    PubMed

    Zheng, D B; Lim, H M; Pène, J J; White, H B

    1988-08-15

    The Rd gene is expressed in the livers and oviducts of laying hens and codes for the riboflavin-binding protein (RfBP) of egg yolk and egg white. A lambda gt11 cDNA library derived from chicken oviduct poly(A)+ RNA was screened with polyclonal rabbit antiserum to chicken RfBP. Positive clones were isolated and rescreened with a mixed oligonucleotide probe corresponding to residues 20-25 of the mature protein. The largest cDNA clone (969 base pairs) was subcloned into plasmid pIBI21, and the nucleotide sequence was determined by the dideoxynucleotide method. This clone contained the entire coding region for RfBP. The published amino acid sequence of the mature protein was confirmed. In addition, the following 17-residue signal peptide was deduced: Met-Leu-Arg-Phe-Ala-Ile-Thr-Leu-Phe-Ala-Val-Ile-Thr-Ser-Ser-Thr-Cys. Unexpectedly, the nucleotide sequence codes for 2 adjacent arginine residues at the carboxyl terminus that are not observed in the mature protein. The amino acid sequence of RfBP is homologous with bovine milk folate-binding protein. Eight of the nine pairs of cysteines involved in disulfide bonds in RfBP are conserved in folate-binding protein, as are all of the tryptophan residues. Sequence identity between homologous regions of these two vitamin-binding proteins is more than 30%. PMID:3403518

  13. Willingness-to-accept and purchase genetically modified rice with high folate content in Shanxi Province, China.

    PubMed

    De Steur, H; Gellynck, X; Storozhenko, S; Liqun, G; Lambert, W; Van Der Straeten, D; Viaene, J

    2010-02-01

    Neural-tube defects (NTDs) are considered to be the most common congenital malformations. As Shanxi Province, a poor region in the North of China, has one of the highest reported prevalence rates of NTDs in the world, folate fortification of rice is an excellent alternative to low intake of folate acid pills in this region. This paper investigates the relations between socio-demographic indicators, consumer characteristics (knowledge, consumer perceptions on benefits, risks, safety and price), willingness-to-accept and willingness-to-pay genetically modified (GM) rice. The consumer survey compromises 944 face-to-face interviews with rice consumers in Shanxi Province, China. Multivariate analyses consist of multinomial logistic regression and multiple regression. The results indicate that consumers generally are willing-to-accept GM rice, with an acceptance rate of 62.2%. Acceptance is influenced by objective knowledge and consumers' perceptions on benefits and risks. Willingness-to-pay GM rice is influenced by objective knowledge, risk perception and acceptance. Communication towards the use of GM rice should target mainly improving knowledge and consumers' perceptions on high-risk groups within Shanxi Province, in particular low educated women. PMID:19815041

  14. Folate-functionalized nanoparticles for controlled ergosta-4,6,8(14),22-tetraen-3-one delivery.

    PubMed

    Liang, Xuhua; Sun, Yang; Liu, Lusha; Ma, Xuan; Hu, Xiaoyun; Fan, Jun; Zhao, Yingyong

    2013-01-30

    To improve the therapeutic effect of ergosta-4,6,8(14),22-tetraen-3-one (ergone), a folate-decorated ergone-bovine serum albumin nanoparticles (abbreviated FA-ergone-BSANPs) was prepared. The properties were extensively studied by Zetasizer Nano Particle Size Analyzer and TEM, which indicated the prepared nanoparticles were spherical in shape and uniform in size with a zeta potential of -23.8 mV. The drug-loading capacity also has been determined with drug loading content of 2.73% and encapsulation efficiency of 61.8%. In vitro release studies proved the much slow drug release from the nanoparticles during circulating in the blood stream and the increase of drug release at the target sites. The FA-ergone-BSANPs showed enhanced cellular uptake, increased targeting capacity, and increased cytotoxicity against KB cells over-expressing folate receptor (FR), which indicated that its potent cell-killing activity is specific for cells that express the FR. In vivo experiment also confirmed that FA-ergone-BSANPs represent a FR-targeted chemotherapeutic that can produce potent activity against FR-positive tumors. In conclusion, this report has a great significance in pharmacology and clinical medicine as well as methodology. Further detailed dose-optimization studies will be required for better understanding in vivo pharmacokinetic and bio-distribution behaviors. PMID:23262423

  15. Quinolizidine alkaloid biosynthesis: recent advances and future prospects

    PubMed Central

    Bunsupa, Somnuk; Yamazaki, Mami; Saito, Kazuki

    2012-01-01

    Lys-derived alkaloids, including piperidine, quinolizidine, indolizidine, and lycopodium alkaloids, are widely distributed throughout the plant kingdom. Several of these alkaloids have beneficial properties for humans and have been used in medicine. However, the molecular mechanisms underlying the biosynthesis of these alkaloids are not well understood. In the present article, we discuss recent advances in our understanding of Lys-derived alkaloids, especially the biochemistry, molecular biology, and biotechnology of quinolizidine alkaloid (QA) biosynthesis. We have also highlighted Lys decarboxylase (LDC), the enzyme that catalyzes the first committed step of QA biosynthesis and answers a longstanding question about the molecular entity of LDC activity in plants. Further prospects using current advanced technologies, such as next-generation sequencing, in medicinal plants have also been discussed. PMID:23112802

  16. Biosynthesis of resorcylic acid lactone lasiodiplodin in Lasiodiplodia theobromae.

    PubMed

    Kashima, Takasumi; Takahashi, Kosaku; Matsuura, Hideyuki; Nabeta, Kensuke

    2009-05-01

    The biosynthesis of lasiodiplodin (1) and its (5S)-5-hydroxylated derivative (2) were investigated by the administration of (13)C-labeled acetates to Lasiodiplodia theobromae. The labeling patterns of biosynthetically (13)C-labeled 1 and 2 were determined by (13)C-NMR and INADEQUATE spectra, demonstrating the octaketide origins of 1 and 2. Taking into account the biosynthetic study of resorcylic acid lactones, the involvement of highly reduced acyl intermediates in the biosynthesis of lasiodiplodins was presumed; thus, we synthesized (2)H-labeled hypothetical acyl intermediates of 1, 9-hydroxydecanoic acid (4) and its N-acetylcysteamine thioester (SNAC, 5). When L. theobromae was incubated with 5 mM of a (2)H-labeled intermediate, the (2)H-label from the intermediate was incorporated at the expected position of 1. These incorporation studies revealed that 1 was produced via a pathway which closely resembles that of resorcylic acid lactone biosynthesis. PMID:19420710

  17. Higher maternal plasma folate but not vitamin B-12 concentrations during pregnancy are associated with better cognitive function scores in 9- to 10- year-old children in South India.

    PubMed

    Veena, Sargoor R; Krishnaveni, Ghattu V; Srinivasan, Krishnamachari; Wills, Andrew K; Muthayya, Sumithra; Kurpad, Anura V; Yajnik, Chittaranjan S; Fall, Caroline H D

    2010-05-01

    Folate and vitamin B-12 are essential for normal brain development. Few studies have examined the relationship of maternal folate and vitamin B-12 status during pregnancy and offspring cognitive function. To test the hypothesis that lower maternal plasma folate and vitamin B-12 concentrations and higher plasma homocysteine concentrations during pregnancy are associated with poorer neurodevelopment, 536 children (aged 9-10 y) from the Mysore Parthenon birth cohort underwent cognitive function assessment during 2007-2008 using 3 core tests from the Kaufman Assessment Battery, and additional tests measuring learning, long-term storage/retrieval, attention and concentration, and visuo-spatial and verbal abilities. Maternal folate, vitamin B-12, and homocysteine concentrations were measured at 30 +/- 2 wk gestation. During pregnancy, 4% of mothers had low folate concentrations (<7 nmol/L), 42.5% had low vitamin B-12 concentrations (<150 pmol/L), and 3% had hyperhomocysteinemia (>10 micromol/L). The children's cognitive test scores increased by 0.1-0.2 SD per SD increase across the entire range of maternal folate concentrations (P < 0.001 for all), with no apparent associations at the deficiency level. The associations with learning, long-term storage/retrieval, visuo-spatial ability, attention, and concentration were independent of the parents' education, socioeconomic status, religion, and the child's sex, age, current size, and folate and vitamin B-12 concentrations. There were no consistent associations of maternal vitamin B-12 and homocysteine concentrations with childhood cognitive performance. In this Indian population, higher maternal folate, but not vitamin B-12, concentrations during pregnancy predicted better childhood cognitive ability. It also suggests that, in terms of neurodevelopment, the concentration used to define folate deficiency may be set too low. PMID:20335637

  18. Identification of unique mechanisms for triterpene biosynthesis in Botryococcus braunii

    PubMed Central

    Niehaus, Tom D.; Okada, Shigeru; Devarenne, Timothy P.; Watt, David S.; Sviripa, Vitaliy; Chappell, Joe

    2011-01-01

    Botryococcene biosynthesis is thought to resemble that of squalene, a metabolite essential for sterol metabolism in all eukaryotes. Squalene arises from an initial condensation of two molecules of farnesyl diphosphate (FPP) to form presqualene diphosphate (PSPP), which then undergoes a reductive rearrangement to form squalene. In principle, botryococcene could arise from an alternative rearrangement of the presqualene intermediate. Because of these proposed similarities, we predicted that a botryococcene synthase would resemble squalene synthase and hence isolated squalene synthase-like genes from Botryococcus braunii race B. While B. braunii does harbor at least one typical squalene synthase, none of the other three squalene synthase-like (SSL) genes encodes for botryococcene biosynthesis directly. SSL-1 catalyzes the biosynthesis of PSPP and SSL-2 the biosynthesis of bisfarnesyl ether, while SSL-3 does not appear able to directly utilize FPP as a substrate. However, when combinations of the synthase-like enzymes were mixed together, in vivo and in vitro, robust botryococcene (SSL-1+SSL-3) or squalene biosynthesis (SSL1+SSL-2) was observed. These findings were unexpected because squalene synthase, an ancient and likely progenitor to the other Botryococcus triterpene synthases, catalyzes a two-step reaction within a single enzyme unit without intermediate release, yet in B. braunii, these activities appear to have separated and evolved interdependently for specialized triterpene oil production greater than 500 MYA. Coexpression of the SSL-1 and SSL-3 genes in different configurations, as independent genes, as gene fusions, or targeted to intracellular membranes, also demonstrate the potential for engineering even greater efficiencies of botryococcene biosynthesis. PMID:21746901

  19. Physiological insights into all-trans-retinoic acid biosynthesis

    PubMed Central

    Napoli, Joseph L.

    2011-01-01

    All-trans-retinoic acid (atRA) provides essential support to diverse biological systems and physiological processes. Epithelial differentiation and its relationship to cancer and embryogenesis have typified intense areas of interest into atRA function. Recently, however, interest in atRA action in the nervous system, the immune system, energy balance and obesity has increased considerably, especially concerning postnatal function. atRA action depends on atRA biosynthesis: defects in retinoid-dependent processes increasingly relate to defects in atRA biogenesis. Considerable evidence indicates that physiological atRA biosynthesis occurs via a regulated process, consisting of a complex interaction of retinoid binding-proteins and retinoid recognizing enzymes. An accrual of biochemical, physiological and genetic data have identified specific functional outcomes for the retinol dehydrogenases, RDH1, RDH10, and DHRS9, as physiological catalysts of the first step in atRA biosynthesis, and for the retinal dehydrogenases RALDH1, RALDH2, and RALDH3, as catalysts of the second and irreversible step. Each of these enzymes associates with explicit biological processes mediated by atRA. Redundancy occurs, but seems limited. Cumulative data supports a model of interactions among these enzymes with retinoid binding-proteins, with feedback regulation and/or control by atRA via modulating gene expression of multiple participants. The ratio apo-CRBP1/holo-CRBP1 participates by influencing retinol flux into and out of storage as retinyl esters, thereby modulating substrate to support atRA biosynthesis. atRA biosynthesis requires presence of both an RDH and an RALDH: conversely, absence of one isozyme of either step does not indicate lack of atRA biosynthesis at the site. PMID:21621639

  20. Collard, mustard and turnip greens: Effects of varieties and leaf position on concentrations of ascorbic acid, folate, B-carotene, lutein and phylloquinone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leafy Brassica crops: collard (Brassica oleracea L.), mustard (B. juncea L.) and turnip (B. rapa) greens are important commercial and culinary vegetables; especially in the southern United States. However, almost no information on essential human-health vitamins [ascorbic acid (vit C), folate (vit...

  1. Metabolic evidence of vitamin B-12 deficiency, including high homocysteine and methylmalonic acid and low holotranscobalamin, is more pronounced in older adults with elevated plasma folate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: An analysis of data from the National Health and Nutrition Examination Survey indicated that in older adults exposed to folic acid fortification, the combination of low serum vitamin B-12 and elevated folate is associated with higher concentrations of homocysteine and methylmalonic acid ...

  2. DIETARY SELENIUIM (SE) AND FOLATE AFFECT DIMETHYLHYDRAZINE (DMH)-INDUCED ABERRANT CRYPT FORMATION, GLOBAL DNA METHYLATION AND ONE-CARBON METABOLISM IN RATS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several observations implicate a role for DNA methylation in cancer pathogenesis. Although both Se and folate deficiency have been shown to cause global DNA hypomethylation and increased cancer susceptibility, the nutrients have different effects on one-carbon metabolism. Thus, the purpose of this s...

  3. In vitamin B12 deficiency, higher serum folate is assoicated with increased total homocysteine (tHcy) and methlmalonic acid (MMA) concentrations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In a recent study of older participants (age >/= 60 y) in the 1999-2002 National Health and Nutrition Examination Survey (NHANES), we showed that a combination of high serum folate and low vitamin B-12 status was associated with higher prevalence of cognitive impairment and anemia than other combina...

  4. The role of the cell cycle in the cellular uptake of folate-modified poly(l-amino acid) micelles in a cell population.

    PubMed

    Tang, Jihui; Liu, Ziwei; Ji, Fenqi; Li, Yao; Liu, Junjie; Song, Jian; Li, Jun; Zhou, Jianping

    2015-12-01

    Nanoparticles are widely recognized as a vehicle for tumor-targeted therapies. There are many factors that can influence the uptake of nanoparticles, such as the size of the nanoparticles, and/or their shape, elasticity, surface charge and even the cell cycle phase. However, the influence of the cell cycle on the active targeting of a drug delivery system has been unknown until now. In this study, we initially investigated the folate receptor ? (FR-?) expression in different phases of HeLa cells by flow cytometric and immunocytochemical methods. The results obtained showed that FR-? expression was cell cycle-dependent, i.e. the S cells' folate receptor expression was the highest as the cell progressed through its cycle. Then, we used folate modified poly(l-amino acid) micelles (FA-PM) as an example to investigate the influence of the cell cycle on the active targeting drug delivery system. The results obtained indicated that the uptake of FA-PM by cells was influenced by the cell cycle phase, and the S cells took up the greatest number of folate conjugated nanoparticles. Our findings suggest that future studies on ligand-mediated active targeting preparations should consider the cell cycle, especially when this system is used for a cell cycle-specific drug. PMID:26463458

  5. Preliminary joint X-ray and neutron protein crystallographic studies of ecDHFR complexed with folate and NADP{sup +}

    SciTech Connect

    Wan, Qun Kovalevsky, Andrey Y.; Wilson, Mark A.; Bennett, Brad C.; Langan, Paul; Dealwis, Chris

    2014-05-25

    A 2.0 Å resolution neutron data set and a 1.6 Å resolution X-ray data set were collected for joint X-ray/neutron refinement of the ecDHFR–folate–NADP{sup +} complex in order to study the reaction mechanism of dihydrofolate reductase.

  6. TRIBROMOMETHANE EXPOSURE AND DIETARY FOLATE DEFICIENCY IN THE FORMATION OF ABERRANT CRYPT FOCI IN THE COLONS OF F344/N RATS

    EPA Science Inventory

    TRIBROMOMETHANE EXPOSURE AND DIETARY FOLATE DEFICIENCY IN THE FORMATION OF ABERRANT CRYPT FOCI IN THE COLONS OF F344/N RATS

    David R. Geter', Tanya M. Moore', Michael H. George', Steve R. Kilburn', Gloria Huggins-Clark', James W. Allen', and Anthony B. DeAngelo' 'National H...

  7. A 19-base pair deletion polymorphism in dihydrofolate reductase is associated with increased unmetabolized folic acid in plasma and decreased red blood cell folate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dihydrofolate reductase (DHFR) catalyzes the reduction of folic acid to tetrahydrofolate (THF). A 19-bp noncoding deletion allele maps to intron 1, beginning 60 bases from the splice donor site, and has been implicated in neural tube defects and cancer, presumably by influencing folate metabolism. T...

  8. Vitamin B-12 and folate status in relation to decline in scores on the Mini-Mental State Examination in the Framingham Heart Study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochemical evidence of low vitamin B-12 status is common in seniors, but its clinical relevance is unclear. Vitamin B-12 deficiency can result in rapid, irreversible cognitive decline – a phenomenon that has been linked to high folate status. Our objective was to investigate the cognitive significa...

  9. Aging, chronic alcohol consumption, and low folate intake are determinants of genomic DNA methylation in the liver and colon of mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Advanced age and chronic alcohol consumption are important risk factors in the development of colon and liver cancer. Both factors are known to be associated with altered DNA methylation. Inadequate folate intake can also derange biological methylation pathways. We investigated the effects of aging,...

  10. Response to Quinlivan: Post-fortification, folate intake in vitamin B12 deficiency is positively related to homocysteine and methylmalonic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With cross-sectional data, causes and effects are difficult to distinguish, and Quinlivan suggests that high circulating concentrations of homcysteine (Hcy), methylmalonic acid (MMA), and folate observed among vitamin B12-deficient survey participants all resulted from a lack of vitamin B12 (1). How...

  11. Final Report on Regulation of Guaiacyl and Syringyl Monolignol Biosynthesis

    SciTech Connect

    Vincent L. Chiang

    2006-03-09

    The focus of this research is to understand syringyl monolignol biosynthesis that leads to the formation of syringyl lignin, a type of lignin that can be easily removed during biomass conversion. We have achieved the three originally proposed goals for this project. (1) SAD and CAD genes (enzyme catalytic and kinetic properties) and their functional relevance to CAld5H/AldOMT pathway, (2) spatiotemporal expression patterns of Cald5H, AldOMT, SAD and CAD genes, and (3) functions of CAld5H, AldOMT, and SAD genes in vivo using transgenic aspen. Furthermore, we also found that microRNA might be involved in the upstream regulatory network of lignin biosynthesis and wood formation. The achievements are as below. (1) Based on biochemical and molecular studies, we discovered a novel syringyl-specific alcohol dehydrogenase (SAD) involved in monolignol biosynthesis in angiosperm trees. Through CAld5H/OMT/SAD mediation, syringyl monolignol biosynthesis branches out from guaiacyl pathway at coniferaldehyde; (2) The function of CAld5H gene in this syringyl monolignol biosynthesis pathway also was confirmed in vivo in transgenic Populus; (3) The proposed major monolignol biosynthesis pathways were further supported by the involving biochemical functions of CCR based on a detailed kinetic study; (4) Gene promoter activity analysis also supported the cell-type specific expression of SAD and CAD genes in xylem tissue, consistent with the cell-specific locations of SAD and CAD proteins and with the proposed pathways; (5) We have developed a novel small interfering RNA (siRNA)-mediated stable gene-silencing system in transgenic plants; (6) Using the siRNA and P. trichocarpa transformation/regeneration systems we are currently producing transgenic P. trichocarpa to investigate the interactive functions of CAD and SAD in regulating guaiacyl and syringyl lignin biosynthesis; (7) We have cloned for the first time from a tree species, P. trichocarpa, small regulatory RNAs termed microRNAs (miRNAs) with likely effector roles in regulating the expression of genes involved in lignin biosynthesis and wood formation networks.

  12. A Stereoselective Vanadium-Dependent Chloroperoxidase in Bacterial Antibiotic Biosynthesis

    PubMed Central

    Bernhardt, Peter; Okino, Tatsufumi; Winter, Jaclyn M.; Miyanaga, Akimasa; Moore, Bradley S.

    2011-01-01

    Halogenases catalyze reactions that introduce halogen atoms into electron-rich organic molecules. Vanadium-dependent haloperoxidases are generally considered to be promiscuous halogenating enzymes that have thus far been derived exclusively from eukaryotes, where their cellular function is often disputed. We now report the first biochemical characterization of a bacterial vanadium-dependent chloroperoxidase, NapH1 from Streptomyces sp. CNQ-525, which catalyzes a highly stereoselective chlorination-cyclization reaction in napyradiomycin antibiotic biosynthesis. This finding biochemically links a vanadium chloroperoxidase to microbial natural product biosynthesis. PMID:21384874

  13. Lomaiviticin Biosynthesis Employs a New Strategy for Starter Unit Generation

    PubMed Central

    Waldman, Abraham J.; Balskus*, Emily P.

    2014-01-01

    Lomaiviticin biosynthesis is thought to utilize a propionyl starter unit for a type II polyketide synthase (PKS). Discovery of the lomaiviticin (lom) biosynthetic gene cluster suggested an unusual method for starter unit generation involving a bifunctional acyltransferase/decarboxylase (AT/DC) thus far observed only in type I PKS pathways. In vitro biochemical characterization of AT/DC Lom62 confirmed its ability to generate a propionyl-acyl carrier protein (ACP), revealing a new role for this enzymatic activity within natural product biosynthesis. PMID:24383813

  14. Lomaiviticin biosynthesis employs a new strategy for starter unit generation.

    PubMed

    Waldman, Abraham J; Balskus, Emily P

    2014-01-17

    Lomaiviticin biosynthesis is thought to utilize a propionyl starter unit for a type II polyketide synthase (PKS). Discovery of the lomaiviticin (lom) biosynthetic gene cluster suggested an unusual method for starter unit generation involving a bifunctional acyltransferase/decarboxylase (AT/DC) thus far observed only in type I PKS pathways. In vitro biochemical characterization of AT/DC Lom62 confirmed its ability to generate a propionyl-acyl carrier protein (ACP), revealing a new role for this enzymatic activity within natural product biosynthesis. PMID:24383813

  15. Edinburgh Research Explorer A model of flux regulation in the cholesterol biosynthesis

    E-print Network

    Millar, Andrew J.

    Edinburgh Research Explorer A model of flux regulation in the cholesterol biosynthesis pathway in the cholesterol biosynthesis pathway: Immune mediated graduated flux reduction versus statin-like led stepped flux of flux regulation in the cholesterol biosynthesis pathway: Immune mediated graduated flux reduction

  16. Importance of glycosidases in mammalian glycoprotein biosynthesis.

    PubMed

    Herscovics, A

    1999-12-01

    Processing glycosidases play an important role in N-glycan biosynthesis in mammalian cells by trimming Glc(3)Man(9)GlcNAc(2) and thus providing the substrates for the formation of complex and hybrid structures by Golgi glycosyltransferases. Processing glycosidases also play a role in the folding of newly formed glycoproteins and in endoplasmic reticulum quality control. The properties and molecular nature of mammalian processing glycosidases are described in this review. Membrane-bound alpha-glucosidase I and soluble alpha-glucosidase II of the endoplasmic reticulum remove the alpha1,2-glucose and alpha1,3-glucose residues, respectively, beginning immediately following transfer of Glc(3)Man(9)GlcNAc(2) to nascent polypeptides. The alpha-glucosidases participate in glycoprotein folding mediated by calnexin and calreticulin by forming the monoglucosylated high mannose oligosaccharides required for the interaction with the chaperones. In some mammalian cells, Golgi endo alpha-mannosidase provides an alternative pathway for removal of glucose residues. Removal of alpha1,2-linked mannose residues begins in the endoplasmic reticulum where trimming of mannose residues in the endoplasmic reticulum has been implicated in the targeting of malfolded glycoproteins for degradation. Removal of mannose residues continues in the Golgi with the action of alpha1, 2-mannosidases IA and IB that can form Man(5)GlcNAc(2) and of alpha-mannosidase II that removes the alpha1,3- and alpha1,6-linked mannose from GlcNAcMan(5)GlcNAc(2) to form GlcNAcMan(3)GlcNAc(2). These membrane-bound Golgi enzymes have been cloned and shown to have very distinct patterns of tissue-specific expression. There are also broad specificity alpha-mannosidases that can trim Man(4-9)GlcNAc(2) to Man(3)GlcNAc(2), and provide an alternative pathway toward complex oligosaccharide formation. Cloning of the remaining alpha-mannosidases will be required to evaluate their specific functions in glycoprotein maturation. PMID:10580131

  17. Synthesis, biological and antitumor activity of a highly potent 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate inhibitor with proton-coupled folate transporter and folate receptor selectivity over the reduced folate carrier that inhibits ?-glycinamide ribonucleotide formyltransferase

    PubMed Central

    Wang, Lei; Desmoulin, Sita Kugel; Cherian, Christina; Polin, Lisa; White, Kathryn; Kushner, Juiwanna; Fulterer, Andreas; Chang, Min-Hwang; Mitchell, Shermaine; Stout, Mark; Romero, Michael F.; Hou, Zhanjun; Matherly, Larry H.; Gangjee, Aleem

    2011-01-01

    2-Amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidine antifolates with a thienoyl side chain (compounds 1–3, respectively) were synthesized for comparison with compound 4, the previous lead compound of this series. Conversion of hydroxyl acetylen-thiophene carboxylic esters to thiophenyl-?-bromomethylketones and condensation with 2,4-diamino-6-hydroxypyrimidine afforded the 6-substituted pyrrolo[2,3-d]pyrimidine compounds of type 18 and 19. Coupling with L-glutamate diethyl ester, followed by saponification, afforded 1–3. Compound 3 selectively inhibited proliferation of cells expressing folate receptors (FRs) ? or ?, or the proton-coupled folate transporter (PCFT), including human tumor cells KB and IGROV1 much more potently than 4. Compound 3 was more inhibitory than 4 toward ?-glycinamide ribonucleotide formyltransferase (GARFTase). Both 3 and 4 depleted cellular ATP pools. In SCID mice with IGROV1 tumors, 3 was more efficacious than 4. Collectively, our results show potent antitumor activity for 3 in vitro and in vivo, associated with its selective membrane transport by FRs and PCFT over RFC and inhibition of GARFTase, clearly establishing the 3-atom bridge as superior to the 1, 2 and 4-atom bridge lengths for the activity of this series. PMID:21879757

  18. Reduced folate carrier gene expression in childhood acute lymphoblastic leukemia: relationship to immunophenotype and ploidy.

    PubMed

    Zhang, L; Taub, J W; Williamson, M; Wong, S C; Hukku, B; Pullen, J; Ravindranath, Y; Matherly, L H

    1998-09-01

    Reduced folate carrier (RFC) transcripts in human leukemias were measured by a competitive PCR assay. Total RNAs were reverse transcribed and amplified in the presence of competitive templates for RFC and beta-actin. RFC transcripts were normalized to transcripts for beta-actin. In a series of K562 sublines, a approximately 30-fold range of RFC transcripts measured by PCR assay closely agreed with results of Northern analysis and varied in proportion to RFC protein on Western blots and [3H]methotrexate transport. RFC transcripts varied over a 88-fold range in 49 specimens from 48 children with acute lymphoblastic leukemia (ALL). Median RFC transcripts were similar for 15 T-cell and 33 B-precursor ALL samples (RFC/beta-actin = 6.13 x 10(-3) and 7.92 x 10(-3), respectively) and for 41 diagnostic (7.20 x 10(-3)) and 8 relapse (5.58 x 10(-3)) samples. Whereas PCR measurements of RFC transcripts approximated changes in methotrexate transport in B-precursor ALL blasts (n = 10), for T-ALL blasts (n = 12) there was no apparent relationship between these parameters. For hyperdiploid B-precursor blasts (n = 11) with greater than 52 chromosomes and three to five copies of chromosome 21, the median RFC transcript level was approximately 3-fold higher than that for diploid B-precursor blasts. RFC transcripts were also elevated for two of three B-precursor specimens with acquired trisomy 21. Our results suggest that RFC gene expression is far more predictive of methotrexate uptake capacity in B-precursor than T-ALL and that increased copies of chromosome 21 in B-precursor ALL blasts are generally associated with increased RFC transcripts. Hence, the good prognosis for children with hyperdiploid B-precursor ALL treated with antimetabolite-based chemotherapy and the high levels of methotrexate and methotrexate polyglutamates accumulated may, in part, reflect elevated RFC gene expression and capacities for methotrexate transport. PMID:9748136

  19. A Lower Degree of PBMC L1 Methylation Is Associated with Excess Body Weight and Higher HOMA-IR in the Presence of Lower Concentrations of Plasma Folate

    PubMed Central

    Piyathilake, Chandrika J.; Badiga, Suguna; Alvarez, Ronald D.; Partridge, Edward E.; Johanning, Gary L.

    2013-01-01

    Background Identification of associations between global DNA methylation and excess body weight (EBW) and related diseases and their modifying factors are an unmet research need that may lead to decreasing DNA methylation-associated disease risks in humans. The purpose of the current study was to evaluate the following; 1) Association between the degree of peripheral blood mononuclear cell (PBMC) L1 methylation and folate, and indicators of EBW, 2) Association between the degree of PBMC L1 methylation and folate, and insulin resistance (IR) as indicated by a higher homeostasis model assessment (HOMA-IR). Methods The study population consisted of 470 child-bearing age women diagnosed with abnormal pap. The degree of PBMC L1 methylation was assessed by pyrosequencing. Logistic regression models specified indicators of EBW (body mass index–BMI, body fat–BF and waist circumference–WC) or HOMA-IR as dependent variables and the degree of PBMC L1 methylation and circulating concentrations of folate as the independent predictor of primary interest. Results Women with a lower degree of PBMC L1 methylation and lower plasma folate concentrations were significantly more likely to have higher BMI, % BF or WC (OR?=?2.49, 95% CI:1.41–4.47, P?=?0.002; OR?=?2.49, 95% CI:1.40–4.51, P?=?0.002 and OR?=?1.98, 95% ?=?1.14–3.48 P?=?0.0145, respectively) and higher HOMA-IR (OR?=?1.78, 95% CI:1.02–3.13, P?=?0.041). Conclusion Our results demonstrated that a lower degree of PBMC L1 methylation is associated with excess body weight and higher HOMA-IR, especially in the presence of lower concentrations of plasma folate. PMID:23358786

  20. AcsD catalyzes enantioselective citrate desymmetrization in siderophore biosynthesis

    PubMed Central

    Schmelz, Stefan; Kadi, Nadia; McMahon, Stephen A.; Song, Lijiang; Oves-Costales, Daniel; Oke, Muse; Liu, Huanting; Johnson, Kenneth A.; Carter, Lester G.; Botting, Catherine H.; White, Malcolm F.; Challis, Gregory L.; Naismith, James H.

    2009-01-01

    Bacterial pathogens need to scavenge iron from their host for growth and proliferation during infection. They have evolved several strategies to do this, one being the biosynthesis and excretion of small, high-affinity iron chelators known as siderophores. The biosynthesis of siderophores is an important area of study, not only for potential therapeutic intervention, but also to illuminate new enzyme chemistries. Two general pathways for siderophore biosynthesis exist: the well-characterized nonribosomal peptide synthetase (NRPS)-dependent pathway and the NRPS-independent (NIS) pathway, which relies on a different family of sparsely-investigated synthetases. Here, we report structural and biochemical studies of AcsD from Pectobacterium (formerly Erwinia) chrysanthemi, a NIS synthetase involved in achromobactin biosynthesis. The structures of ATP and citrate complexes provide a mechanistic rationale for stereospecific formation of an enzyme-bound (3R)-citryl-adenylate, which reacts with L-serine to form a likely achromobactin precursor. AcsD is a novel acyl adenylate-forming enzyme with a new fold and chemical catalysis strategy. PMID:19182782