Science.gov

Sample records for zirconate titanate pzt

  1. Ferroelectric devices using lead zirconate titanate (PZT) nanoparticles.

    PubMed

    Paik, Young Hun; Kojori, Hossein Shokri; Kim, Sung Jin

    2016-02-19

    We successfully demonstrate the synthesis of lead zirconate titanate nanoparticles (PZT NPs) and a ferroelectric device using the synthesized PZT NPs. The crystalline structure and the size of the nanocrystals are studied using x-ray diffraction and transmission electron microscopy, respectively. We observe <100 nm of PZT NPs and this result matches dynamic light scattering measurements. A solution-based low-temperature process is used to fabricate PZT NP-based devices on an indium tin oxide substrate. The fabricated ferroelectric devices are characterized using various optical and electrical measurements and we verify ferroelectric properties including ferroelectric hysteresis and the ferroelectric photovoltaic effect. Our approach enables low-temperature solution-based processes that could be used for various applications. To the best of our knowledge, this low-temperature solution processed ferroelectric device using PZT NPs is the first successful demonstration of its kind. PMID:26788984

  2. Ferroelectric devices using lead zirconate titanate (PZT) nanoparticles

    NASA Astrophysics Data System (ADS)

    Paik, Young Hun; Shokri Kojori, Hossein; Kim, Sung Jin

    2016-02-01

    We successfully demonstrate the synthesis of lead zirconate titanate nanoparticles (PZT NPs) and a ferroelectric device using the synthesized PZT NPs. The crystalline structure and the size of the nanocrystals are studied using x-ray diffraction and transmission electron microscopy, respectively. We observe <100 nm of PZT NPs and this result matches dynamic light scattering measurements. A solution-based low-temperature process is used to fabricate PZT NP-based devices on an indium tin oxide substrate. The fabricated ferroelectric devices are characterized using various optical and electrical measurements and we verify ferroelectric properties including ferroelectric hysteresis and the ferroelectric photovoltaic effect. Our approach enables low-temperature solution-based processes that could be used for various applications. To the best of our knowledge, this low-temperature solution processed ferroelectric device using PZT NPs is the first successful demonstration of its kind.

  3. Electrostriction of composites of polyurethane (PU) with ferroelectric lead zirconate titanate (PZT) ceramic particles

    NASA Astrophysics Data System (ADS)

    Wong, Yuen-Wah; Liu, Chun-Xiao; Tai, Liang-Shiang; Shin, Franklin G.

    2001-07-01

    Electrostrictive composites of thermoplastic elastomer polyurethane (PU) and the ferroelectric lead zirconate titanate (PZT) of various volume fractions have been prepared by hot-roller miller. X-ray diffraction results and SEM micrographs showed that the ceramic crystallized in the ferroelectric phase and was dispersed uniformly in the elastomer. The elastic modulus and dielectric permittivity increased with PZT volume fractions. For composites of low PZT volume fraction, negative electrostrictive strain (contraction) was observed. As the PZT volume fraction increased to more than 6%, the composites exhibited a switching characteristic when the applied electric field was increased to a critical value. The critical electric fields decreased with increasing PZT volume fractions. This effect can be explained as the resultant of the electrostriction of PU and polarization reversal of the PZT at high field. This interesting property of the PU/PZT composite will lead to some switching actuations for high electric field applications.

  4. Fabrication and Characterization of Lead Zirconate Titanate (PZT) Thin Films by Sol-Gel Technique

    NASA Astrophysics Data System (ADS)

    Rahman, M. F.; Miglioli, L.

    2016-02-01

    In this work, thin lead zirconate titanate, Pb[Zr0.52Ti0.48]O3 (PZT) films have been developed from a novel sol-gel route. The sol-gel films were deposited by spin coating method. Isopropanol-based solution was used for its less toxic property. Gold (Au), platinum (Pt) and indium tin oxide (ITO) were used as substrates. Homogeneous polycrystalline films with (110) preferred orientation were obtained from all the films. The films behaved as ferroelectric material where dielectric constant at 0V for the films obtained from Au, Pt and ITO substrates were 484, 770 and 655, respectively. The coercive field values were around 10-15KV/cm which revealed that the films were soft ferroelectric.

  5. Mechanical and dielectric characterization of lead zirconate titanate(PZT)/polyurethane(PU) thin film composite for energy harvesting

    NASA Astrophysics Data System (ADS)

    Aboubakr, S.; Rguiti, M.; Hajjaji, A.; Eddiai, A.; Courtois, C.; d'Astorg, S.

    2014-04-01

    The Lead Zirconate titanate (PZT) ceramic is known by its piezoelectric feature, but also by its stiffness, the use of a composite based on a polyurethane (PU) matrix charged by a piezoelectric material, enable to generate a large deformation of the material, therefore harvesting more energy. This new material will provide a competitive alternative and low cost manufacturing technology of autonomous systems (smart clothes, car seat, boat sail, flag ...). A thin film of the PZT/PU composite was prepared using up to 80 vol. % of ceramic. Due to the dielectric nature of the PZT, inclusions of this one in a PU matrix raises the permittivity of the composite, on other hand this latter seems to decline at high frequencies.

  6. Lead zirconate titanate ceramics

    SciTech Connect

    Walker, B.E. Jr.

    1986-12-02

    This patent describes a lead zirconate titanate (PZT) piezoelectric ceramic composition which, based on total composition weight, consists essentially of a solid solution of lead zirconate and lead titanate in a PbZrO/sub 3/:PbTiO/sub 3/ ratio from about 0.505:0.495 to about 0.54:0.46; a halide salt selected from the group consisting of fluorides and chlorides of alkali metal and alkaline earth elements and mixtures thereof except for francium and radium in an amount from about 0.5 to 2 weight percent; and an oxide selected from the group consisting of magnesium, barium, scandium, aluminum, lanthanum, praesodynium, neodymium, samarium, and mixtures thereof in an amount from about 0.5 to about 6 weight percent, the relative amount of oxide being from about 1 to about 4 times that of the halide.

  7. Wafer-scale fabrication of self-actuated piezoelectric nanoelectromechanical resonators based on lead zirconate titanate (PZT)

    NASA Astrophysics Data System (ADS)

    Dezest, D.; Thomas, O.; Mathieu, F.; Mazenq, L.; Soyer, C.; Costecalde, J.; Remiens, D.; Deü, J. F.; Nicu, L.

    2015-03-01

    In this paper we report an unprecedented level of integration of self-actuated nanoelectromechanical system (NEMS) resonators based on a 150 nm thick lead zirconate titanate (PZT) thin film at the wafer-scale. A top-down approach combining ultraviolet (UV) lithography with other standard planar processing technologies allows us to achieve high-throughput manufacturing. Multilayer stack cantilevers with different geometries have been implemented with measured fundamental resonant frequencies in the megahertz range and Q-factor values ranging from ~130 in air up to ~900 in a vacuum at room temperature. A refined finite element model taking into account the exact configuration of the piezoelectric stack is proposed and demonstrates the importance of considering the dependence of the beam’s cross-section upon the axial coordinate. We extensively investigate both experimentally and theoretically the transduction efficiency of the implemented piezoelectric layer and report for the first time at this integration level a piezoelectric constant of {{d}31}=15  fm V-1. Finally, we discuss the current limitations to achieve piezoelectric detection.

  8. Reactive ion etching of lead zirconate titanate (PZT) thin film capacitors

    SciTech Connect

    Vijay, D.P.; Desu, S.B.; Pan, W. . Dept. of Materials Science and Engineering)

    1993-09-01

    One of the key processing concerns in the integration of PbZr[sub x]Ti[sub 1[minus]x]O[sub 3](PZT) thin film capacitors into the existing VLSI for ferroelectric or dynamic random access memory applications is the patterning of these films and the electrodes. In this work, the authors have identified a suitable etch gas (CCl[sub 2]F[sub 2]) for dry etching of PZT thin films on RuO[sub 2] electrodes. The etch rate and anisotropy have been studied as a function of etching conditions. The trends in the effect on the etch rate of the gas pressure, RF power and O[sub 2] additions to the etch gas have been determined and an etching mechanism has been proposed. It was found that ion bombardment effects are primarily responsible for the etching of both PZT and RuO[sub 2] thin films. Etch rates of the order of 20--30 nm/min were obtained for PZT thin films under low gas pressure and high RF power conditions. The etch residues and the relative etch rates of the components of the PZT solid solution were determined using XPS. The results show that the etching of PbO is the limiting factor in the etch process.

  9. Design, fabrication, test, and evaluation of RF MEMS series switches using lead zirconate titanate (PZT) thin film actuators

    NASA Astrophysics Data System (ADS)

    Polcawich, Ronald G.

    The aim of this thesis was to design and prototype a robust, low voltage RF MEMS switch for use in military phased arrays. The frequencies of interest for this work include very low frequencies down to DC operation with the upper limit extending to at least 40 GHz. This broad frequency requirement requires a robust high frequency design and simulation using microwave transmission lines. With the aid of researchers at the US Army Research Laboratory, co-planar waveguide (CPW) transmission lines were chosen and designed to provide a low loss, 50 ohm impedance transmission line for the switch. CPW designs allow for both series and shunt switch configuration with this work focusing on a series switch. Furthermore, a series switch an ohmic contact was chosen as opposed to capacitive contacts. Piezoelectric actuation is chosen for the switch to enable operating voltages less than 10 volts while still maintaining a restoring force to prevent stiction. To meet these demands, lead zirconate titanate (PZT) thin films have been chosen for the piezoelectric actuator. Mechanical modeling of cantilevers comprised of an elastic layer and a Pt-PZT-Pt actuator were used to demonstrate feasibility of closing large gaps between switch contacts. Placement of the actuator to minimize perturbations to the RF transmission line is critical for broadband performance. Using fabrication design rules, electro-mechanical modeling, and high frequency design, the actuators were designed to fit with the RF gap between the RF conductor and ground planes of the CPW transmission line. Optimal performance was obtained with the actuators mechanically isolated from a majority of the RF transmission except for a small section that provides the contact pad to enable switch closure. The resulting switch is the first demonstrated first surface micromachined RF MEMS switch operating from DC to 65 GHz. This switch has a median actuation voltage below 5 volts with operation as low as 2 volts. Isolation in the

  10. Improved pyroelectric performance for thin film lead zirconate titanate (PZT) capacitors with IrO2 electrodes

    NASA Astrophysics Data System (ADS)

    Hanrahan, B.; Sanchez, L.; Waits, C. M.; Polcawich, R. G.

    2016-01-01

    A four orders-of-magnitude reduction in high temperature leakage current was realized through the use of IrO2 top electrodes in thin film lead zirconate titanate capacitors which has been shown to directly impact the performance of future energy conversion applications. Pyroelectric energy conversion is enhanced near the material Curie temperature, but elevated leakage current in this temperature range hinders current applications. Conductivity experiments varying temperature, composition, and applied bias showed that oxygen vacancy hopping dominates the leakage current in the thin film capacitors above 200 °C. IrO2 top electrodes allow for a reduction in vacancy concentration by allowing for oxygen to be reintroduced during a post-processing annealing step for the thin film. The power lost to leakage current through the pyroelectric conversion cycle is explored. Improvements in remnant polarization and pyroelectric constant are also realized.

  11. Symmetries and multiferroic properties of novel room-temperature magnetoelectrics: Lead iron tantalate - lead zirconate titanate (PFT/PZT)

    NASA Astrophysics Data System (ADS)

    Sanchez, Dilsom A.; Ortega, N.; Kumar, Ashok; Roque-Malherbe, R.; Polanco, R.; Scott, J. F.; Katiyar, Ram S.

    2011-12-01

    Mixing 60-70% lead zirconate titanate with 40-30% lead iron tantalate produces a single-phase, low-loss, room-temperature multiferroic with magnetoelectric coupling: (PbZr0.53Ti0.47O3) (1-x)- (PbFe0.5Ta0.5O3)x. The present study combines x-ray scattering, magnetic and polarization hysteresis in both phases, plus a second-order dielectric divergence (to epsilon = 6000 at 475 K for 0.4 PFT; to 4000 at 520 K for 0.3 PFT) for an unambiguous assignment as a C2v-C4v (Pmm2-P4mm) transition. The material exhibits square saturated magnetic hysteresis loops with 0.1 emu/g at 295 K and saturation polarization Pr = 25 μC/cm2, which actually increases (to 40 μC/cm2) in the high-T tetragonal phase, representing an exciting new room temperature oxide multiferroic to compete with BiFeO3. Additional transitions at high temperatures (cubic at T>1300 K) and low temperatures (rhombohedral or monoclinic at T<250 K) are found. These are the lowest-loss room-temperature multiferroics known, which is a great advantage for magnetoelectric devices.

  12. Symmetries and multiferroic properties of novel room-temperature magnetoelectrics: Lead iron tantalate – lead zirconate titanate (PFT/PZT)

    DOE PAGESBeta

    Sanchez, Dilsom A.; Ortega, N.; Kumar, Ashok; Roque-Malherbe, R.; Polanco, R.; Scott, J. F.; Katiyar, Ram S.

    2011-12-01

    Mixing 60-70% lead zirconate titanate with 40-30% lead iron tantalate produces a single-phase, low-loss, room-temperature multiferroic with magnetoelectric coupling: (PbZr₀.₅₃Ti₀.₄₇O₃) (1-x)- (PbFe₀.₅Ta₀.₅O₃)x. The present study combines x-ray scattering, magnetic and polarization hysteresis in both phases, plus a second-order dielectric divergence (to epsilon = 6000 at 475 K for 0.4 PFT; to 4000 at 520 K for 0.3 PFT) for an unambiguous assignment as a C2v-C4v (Pmm2-P4mm) transition. The material exhibits square saturated magnetic hysteresis loops with 0.1 emu/g at 295 K and saturation polarization Pr = 25 μC/cm², which actually increases (to 40 μC/cm²) in the high-T tetragonal phase, representingmore » an exciting new room temperature oxide multiferroic to compete with BiFeO₃. Additional transitions at high temperatures (cubic at T>1300 K) and low temperatures (rhombohedral or monoclinic at T<250 K) are found. These are the lowest-loss room-temperature multiferroics known, which is a great advantage for magnetoelectric devices.« less

  13. Shear response of lead zirconate titanate piezoceramics

    NASA Astrophysics Data System (ADS)

    Mueller, V.; Zhang, Q. M.

    1998-04-01

    The piezoelectric shear strain S5 of several commercial lead zirconate titanate (PZT) piezoceramics was evaluated under the nonresonant condition in a sinusoidal ac-field E1(t) applied perpendicular to the poling direction. Results obtained on donor doped (soft PZT) and acceptor doped (hard PZT) ceramics are compared. At fields sufficiently below the limiting field Elim necessary to electrically depole the sample, we find a linear, nonhysteretic relationship between S5 and the polarization P1. In soft PZT ceramics, the effective piezoelectric shear coefficient d15=S5/E1 shows a pronounced ac-field dependence which was fitted according to d15(E1)=dlin[1+(dnlE1)α] with α≈1.2. The results indicate that irreversible motion of non-180° walls causes the nonlinearity of PZT and the contribution of 180° walls to the linear and nonlinear coefficients is negligible. The analysis of the relationship between linear and nonlinear coefficients obtained at different ceramic systems suggests that there exists another extrinsic contribution to the permittivity in PZT which may not be attributed to domain wall motion but may be responsible to the dielectric dispersion at microwave frequencies.

  14. Ferroelastic domains in lead-free barium zirconate titanate - barium calcium titanate piezoceramics

    NASA Astrophysics Data System (ADS)

    Ehmke, Matthias Claudius

    Piezoelectricity was first discovered by Pierre and Jaque Curie in the year 1880. Nowadays, piezoelectric materials are used in many application such as high voltage generation in gas igniters, actuation in micro-positioning devices, generation and detection of acoustic waves, emitters and receivers for sonar technology, ultrasonic cleaning, ultrasound medical therapy, and micropumps for ink-jet printers. The most commonly used piezoelectric material since the 1950's is the solid solution system lead zirconate titanate (PZT) that offers high piezoelectric performance under a large range of operating conditions. However, the toxicity of lead requires the replacement of PZT. The studied lead-free alternatives are commonly based on potassium sodium niobate (KNN) and bismuth sodium titanate (BNT), and more recently zirconium and calcium substituted barium titanate (BZT-BCT). The BZT-BCT system exhibits large piezoelectric coefficients that can exceed even those of most PZT compositions under certain conditions. Piezoelectricity was first discovered by Pierre and Jaque Curie in the year 1880. Nowadays, piezoelectric materials are used in many application such as high voltage generation in gas igniters, actuation in micro-positioning devices, generation and detection of acoustic waves, emitters and receivers for sonar technology, ultrasonic cleaning, ultrasound medical therapy, and micropumps for ink-jet printers. The most commonly used piezoelectric material since the 1950's is the solid solution system lead zirconate titanate (PZT) that offers high piezoelectric performance under a large range of operating conditions. However, the toxicity of lead requires the replacement of PZT. The studied lead-free alternatives are commonly based on potassium sodium niobate (KNN) and bismuth sodium titanate (BNT), and more recently zirconium and calcium substituted barium titanate (BZT-BCT). The BZT-BCT system exhibits large piezoelectric coefficients that can exceed even those of

  15. Piezoelectric lead zirconate titanate ceramic fiber/polymer composites

    SciTech Connect

    Waller, D.J.; Safari, P. )

    1992-06-01

    This papers on piezoelectric lead zirconate titanate (PZT) ceramic fiber/polymer composite were fabricated by a novel technique referred to as relic processing. Basically, this involved impregnating a woven carbon-fiber template material with PZT precursor by soaking the template in a PZT stock solution. Careful heat treatment pyrolized the carbon, resulting in a PZT ceramic relic that retained the fibrous template form. After sintering, the densified relic was backfilled with polymer to form a composite. Optimized relic processing consisted of soaking activated carbon-fiber fabric twice in an intermediate concentration (405-mg PZT/(1-g solution)) alkoxide PZT solution and sintering at 1285{degrees}C for 2 h. A series of piezoelectric composites encompassing a wide range of dielectric and piezoelectric properties was prepared by varying the PZT-fiber orientation and polymer-matrix material. In PZT/Eccogel polymer composites with PZT fibers orientated parallel to the electrodes, K = 75, d{sub 33} = 145 pC/N, d{sub h} = 45 {plus minus} 5 pC/N, and d{sub h}g{sub h} = 3150 {times} 10{sup {minus}15} m{sup 2}/N were measured. Furthermore, in composites with a number of PZT fibers arranged perpendicular to the electroded surfaces, K = 190, d{sub 33} = 250 pC/N, d{sub h} = 65 {plus minus} 2 pC/N, and d{sub h}g{sub h} = 2600 {times} 10{sup {minus}15} m{sub 2}/N.

  16. Measurement of incident position of hypervelocity particles on piezoelectric lead zirconate titanate detector

    SciTech Connect

    Takechi, Seiji; Onishi, Toshiyuki; Minami, Shigeyuki; Miyachi, Takashi; Fujii, Masayuki; Hasebe, Nobuyuki; Nogami, Ken-ichi; Ohashi, Hideo; Sasaki, Sho; Shibata, Hiromi; Iwai, Takeo; Gruen, Eberhard; Srama, Ralf; Okada, Nagaya

    2008-04-15

    A cosmic dust detector for use onboard a satellite is currently being developed by using piezoelectric lead zirconate titanate (PZT). The characteristics of the PZT detector have been studied by bombarding it with hypervelocity iron (Fe) particles supplied by a Van de Graaff accelerator. One central electrode and four peripheral electrodes were placed on the front surface of the PZT detector to measure the impact positions of the incident Fe particles. It was demonstrated that the point of impact on the PZT detector could be identified by using information on the time at which the first peak of the output signal obtained from each electrode appeared.

  17. Fabrication and Characterization of a Lead Zirconate Titanate Micro Energy Harvester Based on Eutectic Bonding

    NASA Astrophysics Data System (ADS)

    Li, Yi-Gui; Sun, Jian; Yang, Chun-Sheng; Liu, Jing-Quan; Sugiyama, Susumu; Tanaka, Katsuhiko

    2011-06-01

    A lead zirconate titanate(PZT)-Si energy harvester cantilever with PZT bulk ceramics is fabricated by eutectic bonding, polishing and dicing processes. The feasibility of this process is studied using a successful operation of the cantilever in both actuation and harvesting modes. The first prototype made from a PZT-Au-Si cantiliever is tested. The testing results show the voltage output of 632 mV at the frequency of 815 Hz when the excitation acceleration is 0.5 g. The PZT and silicon layers are bonded together to form a sandwiched structure using a gold layer as an intermediate layer.

  18. Interaction of piezoelectric lead zirconate titanate with 400 MeV/n xenon beam

    NASA Astrophysics Data System (ADS)

    Takechi, Seiji; Morinaga, Shin-ya; Kurozumi, Atsuma; Miyachi, Takashi; Fujii, Masayuki; Hasebe, Nobuyuki; Shibata, Hiromi; Murakami, Takeshi; Uchihori, Yukio; Okada, Nagaya

    2010-05-01

    The characteristics of radiation detector fabricated by stacking some piezoelectric lead zirconate titanate (PZT) elements were studied by irradiating it with a 400 MeV/n xenon (Xe) beam. Comparing between observed results from the detector and calculation results using Bethe-Bloch formula, it was found that the amplitude of the output voltage observed was dependent on the amount of ionization energy loss of Xe ion with PZT.

  19. Effects of rapid thermal annealing on nucleation, growth, and properties of lead zirconate titanate films.

    PubMed

    Lu, Jian; Zhang, Yi; Ikehara, Tsuyoshi; Mihara, Takashi; Maeda, Ryutaro

    2007-12-01

    The nucleation and growth behavior of solgel-derived lead zirconate titanate (PZT) films was investigated at different rapid thermal annealing (RTA) processes. The effects of RTA on PZT film surface morphology, crystal orientation, residual stress, and properties were also studied and are discussed. PZT nucleation and growth behavior were found to be more sensitive to heating rate than to hold time during RTA. Higher heating rates were preferred for uniform PZT nucleation and grain growth, which resulted in dense microstructures, smooth surfaces, and better film ferroelectric properties. Lower heating rates led to strong PZT (100) orientation, better film piezoelectric properties, and low residual stress, but at the risk of film cracks caused by arbitrarily distributed large crystallites with diameters of approximately 300 nm among crystallites with diameters of approximately 30 nm. Furthermore, the residual stress of the PZT film was found to be effectively reduced by extending the hold time. PMID:18276553

  20. Relationship between orientation factor of lead zirconate titanate nanowires and dielectric permittivity of nanocomposites

    SciTech Connect

    Tang, Haixiong E-mail: hsodano@ufl.edu; Malakooti, Mohammad H.; Sodano, Henry A. E-mail: hsodano@ufl.edu

    2013-11-25

    The relationship between the orientation of lead zirconate titanate (PZT) nanowires dispersed in nanocomposites and the resulting dielectric constants are quantified. The orientation of the PZT nanowires embedded in a polymer matrix is controlled by varying the draw ratio and subsequently quantified using Herman's Orientation Factor. Consequently, it is demonstrated that the dielectric constants of nanocomposites are improved by increasing the orientation factor of the PZT nanowires. This technique is proposed to improve the dielectric constant of the nanocomposites without the need for additional filler volume fraction since the nanocomposites are utilized in a wide range of high dielectric permittivity electronic components.

  1. Properties of ultra-thin lead zirconate titanate thin films prepared by ozone jet reactive evaporation

    NASA Astrophysics Data System (ADS)

    Torii, Kazuyoshi; Kawakami, Hirosi; Miki, Hiroshi; Kushida, Keiko; Fujisaki, Yoshihisa

    1997-03-01

    Lead zirconate titanate (PZT) thin films were prepared by reactive coevaporation with high-concentration ozone. PZT thin films that demonstrate the highest charge storage density (280 fC/μm2 at 1.5 V for 75-nm-thick film) yet reported have been fabricated. No fatigue was observed after 1011 polarization switching cycles even though a Pt electrode is used. A low leakage current of <10-7 A/cm2 at 1.5 V was attained. These PZT films are promising candidates of an alternative capacitor dielectric for dynamic random access memory (DRAM) and ferroelectric nonvolatile memories.

  2. Acoustic signals generated in piezoelectric lead zirconate titanate elements by direct bombardment with xenon ions

    NASA Astrophysics Data System (ADS)

    Miyachi, T.; Nakamura, Y.; Kuraza, G.; Fujii, M.; Nagashima, A.; Hasebe, N.; Kobayashi, M. N.; Kobayashi, S.; Miyajima, M.; Mori, K.; Okudaira, O.; Yamashita, N.; Shibata, H.; Murakami, T.; Uchihori, Y.; Okada, N.

    2006-12-01

    Acoustic signals were observed with a lead-zirconate-titanate (PZT) element that was directly irradiated with a 368 MeV/n xenon beam. Using an array comprising PZT elements, the energy loss in the PZT was studied. These elements are sensitive to an energy deposit of 100 nJ. A series of values of output voltage vs. integrated thickness of PZT was represented along a line similar to the ionization loss calculated by the Bethe-Bloch formula. The induced voltage was attributed to several processes—ionization, thermal, elastic, and piezoelectric processes. This study describes the possible applications of the PZT element as an active medium for calorimeters and a monitor for hypervelocity impact of space dust.

  3. Dielectric and pyroelectric properties of lead zirconate titanate/polyurethane composites

    NASA Astrophysics Data System (ADS)

    Lam, K. S.; Wong, Y. W.; Tai, L. S.; Poon, Y. M.; Shin, F. G.

    2004-10-01

    0-3 composite ranging between 0 and 3, of ferroelectric ceramic lead zirconate titanate (PZT) and thermoplastic elastomer polyurethane (PU) were fabricated. The pyroelectric and dielectric properties of the hot-pressed thin film samples of various PZT volume fractions were measured. The experimental dielectric permittivities and losses agreed reasonably well with the Bruggeman model. The room temperature pyroelectric coefficients of the composites were found to increase linearly with PZT volume fraction and substantially larger than expected. For example, for a composite with 30% PZT, its pyroelectric coefficient is about 90μC/m2K at room temperature, which is more than tenfold of a PZT/PVDF composite of the same ceramic volume fraction. We propose a model in which the electrical conductivity of the composite system is taken into consideration to explain the linear relationship and the extraordinarily large pyroelectric coefficients obtained.

  4. Dielectric and pyroelectric properties of lead zirconate titanate/polyurethane composites

    SciTech Connect

    Lam, K.S.; Wong, Y.W.; Tai, L.S.; Poon, Y.M.; Shin, F.G.

    2004-10-01

    0-3 composite ranging between 0 and 3, of ferroelectric ceramic lead zirconate titanate (PZT) and thermoplastic elastomer polyurethane (PU) were fabricated. The pyroelectric and dielectric properties of the hot-pressed thin film samples of various PZT volume fractions were measured. The experimental dielectric permittivities and losses agreed reasonably well with the Bruggeman model. The room temperature pyroelectric coefficients of the composites were found to increase linearly with PZT volume fraction and substantially larger than expected. For example, for a composite with 30% PZT, its pyroelectric coefficient is about 90 {mu}C/m{sup 2}K at room temperature, which is more than tenfold of a PZT/PVDF composite of the same ceramic volume fraction. We propose a model in which the electrical conductivity of the composite system is taken into consideration to explain the linear relationship and the extraordinarily large pyroelectric coefficients obtained.

  5. Helmholtz Resonator for Lead Zirconate Titanate Acoustic Energy Harvester

    NASA Astrophysics Data System (ADS)

    Matsuda, Tomohiro; Tomii, Kazuki; Hagiwara, Saori; Miyake, Shuntaro; Hasegawa, Yuichi; Sato, Takamitsu; Kaneko, Yuta; Nishioka, Yasushiro

    2013-12-01

    Acoustic energy harvesters that function in environments where sound pressure is extremely high (~150 dB), such as in engine rooms of aircrafts, are expected to be capable of powering wireless health monitoring systems. This paper presents the power generation performances of a lead-zirconate-titanate (PZT) acoustic energy harvester with a vibrating PZT diaphragm. The diaphragm had a diameter of 2 mm, consisting of Al(0.1 μm)/PZT(1 μm)/Pt(0.1 μm)/Ti(0.1 μm)/SiO2(1.5 μm). The harvester generated a power of 1.7×10-13 W under a sound pressure level of 110 dB at the first resonance frequency of 6.28 kHz. It was found that the generated power was increased to 6.8×10-13 W using a sound-collecting Helmholtz resonator cone with the height of 60 mm. The cone provided a Helmholtz resonance at 5.8 kHz, and the generated power increased from 3.4×10-14 W to 1.4×10-13 W at this frequency. The cone was also effective in increasing the bandwidth of the energy harvester.

  6. Simulation and calculation of the piezoelectric modulus of a lead zirconate-titanate thin film in a test microstructure

    SciTech Connect

    Amelichev, V. V.; Saikin, D. A.; Roshchin, V. M.; Silibin, M. V.

    2010-12-15

    Results of simulation of stresses in the test structure of a silicon beam and analytical calculation of piezoelectric modulus d{sub 31} of a lead zirconate-titanate (PZT) thin film arranged in the region of an elastic element are presented. The characteristics of the sensitive element of acceleration are calculated based on a PZT thin film with an inertial mass made of silicon.

  7. Pb nanowire formation on Al/lead zirconate titanate surfaces in high-pressure hydrogen

    SciTech Connect

    Alvine, Kyle J.; Shutthanandan, V.; Arey, Bruce W.; Wang, Chong M.; Bennett, Wendy D.; Pitman, Stan G.

    2012-07-12

    Thin films of Al on lead zirconate titanate (PZT) annealed in high-pressure hydrogen at 100C exhibit surface Pb nanowire growth. Wire diameter is approximately 80 nm and length can exceed 100 microns. Based on microstructural analysis using electron microscopy and ion scattering, a vapor-solid scheme with hydrogen as a carrier gas was proposed as a growth mechanism. We expect that these observations may lead to controlled Pb nanowires growth through pattering of the Al film.

  8. Enhanced piezoelectric property of porous lead zirconate titanate ceramics with one dimensional ordered pore structure

    SciTech Connect

    Guo Rui; Wang Changan; Yang Ankun; Fu Juntao

    2010-12-15

    Lead zirconate titanate (PZT) ceramics with one dimensional ordered pore structure (1-3 type porous PZT ceramics) were fabricated in this study. The special structure not only enhanced the piezoelectric and dielectric properties effectively but also further decreased the acoustic impedance. All samples exhibited excellent piezoelectric properties despite high porosities. The d{sub 33} value was 608 pC /N (remained 88% that of dense PZT) when the porosity was up to 68.7%. The d{sub 33} value was 690 pC /N (same as dense PZT) when the porosity was 41.7%. The lowest acoustic impedance (Z) reached 1.3 MRayls. These results are promising for improving performance in hydrophones applications.

  9. Detection of high-energy heavy ions using piezoelectric lead zirconate titanate

    SciTech Connect

    Takechi, Seiji; Morinaga, Shin-ya; Kurozumi, Atsuma; Miyachi, Takashi; Fujii, Masayuki; Hasebe, Nobuyuki; Shibata, Hiromi; Murakami, Takeshi; Uchihori, Yukio; Okada, Nagaya

    2009-04-15

    The characteristics of a radiation detector fabricated with stacks of piezoelectric lead zirconate titanate (PZT) elements were studied by irradiating it with a 400 MeV/n xenon (Xe) beam for various beam pulse durations. This detector is referred to as the multilayered detector (MD). To understand the production mechanism behind the output voltage obtained from the MD, measurement of the spatial distribution of the output signals generated in the MD was attempted. It was found that the amplitude observed was dependent on the number of Xe ions per unit time and the amount of ionization loss energy of Xe ions in PZT.

  10. Nonlinearity and Scaling Behavior in Lead Zirconate Titanate Piezoceramic

    NASA Astrophysics Data System (ADS)

    Mueller, V.

    1998-03-01

    The results of a comprehensive study of the nonlinear dielectric and electromechanical response of lead zirconate titanate (PZT) piezoceramics are presented. The piezoelectric strain of a series of donor doped (soft PZT) and acceptor doped (hard PZT) polycrystalline systems was measured under quasistatic (nonresonant) conditions. The measuring field was applied both parallel and perpendicular to the poling direction of the ceramic in order to investigate the influence of different symmetry conditions. Dielectric properties were studied in addition to the electromechanical measurements which enables us to compare piezoelectric and dielectric nonlinearities. Due to the different level and type of dopants, the piezoceramics examined differ significantly with regard to its Curie temperature (190^o CPZT, two different effective thresholds for the onset of nonlinearity of dielectric and piezoelectric coefficients are found at electric ac-fields E_c1≈ 100V/cm and E_c2 ≈ 1V/cm, respectively. Both are characterized by non-analytic scaling behavior \\chi (E_ac) = \\chi_lin+ A[(E-E_c)/E_c]^φ above the respective threshold. The values of the effective exponent φ are apparently independent of the particular ceramic system which indicates a universal behavior of soft PZT. Hard PZT exhibits a less pronounced nonlinearity and a threshold E_c2≈ 1000V/cm at higher field level than soft PZT. The low field behavior of hard PZT seems to be related to a gradual depinning of ferroelectric domain walls with individual depinning threshold whereas in large fields E>E_c2 the

  11. Pyroelectric response of lead zirconate titanate thin films on silicon: Effect of thermal stresses

    SciTech Connect

    Kesim, M. T.; Zhang, J.; Alpay, S. P.; Trolier-McKinstry, S.; Mantese, J. V.; Whatmore, R. W.

    2013-11-28

    Ferroelectric lead zirconate titanate [Pb(Zr{sub x}Ti{sub 1-x}O){sub 3}, (PZT x:1-x)] has received considerable interest for applications related to uncooled infrared devices due to its large pyroelectric figures of merit near room temperature, and the fact that such devices are inherently ac coupled, allowing for simplified image post processing. For ferroelectric films made by industry-standard deposition techniques, stresses develop in the PZT layer upon cooling from the processing/growth temperature due to thermal mismatch between the film and the substrate. In this study, we use a non-linear thermodynamic model to investigate the pyroelectric properties of polycrystalline PZT thin films for five different compositions (PZT 40:60, PZT 30:70, PZT 20:80, PZT 10:90, PZT 0:100) on silicon as a function of processing temperature (25–800 °C). It is shown that the in-plane thermal stresses in PZT thin films alter the out-of-plane polarization and the ferroelectric phase transformation temperature, with profound effect on the pyroelectric properties. PZT 30:70 is found to have the largest pyroelectric coefficient (0.042 μC cm{sup −2} °C{sup −1}, comparable to bulk values) at a growth temperature of 550 °C; typical to what is currently used for many deposition processes. Our results indicate that it is possible to optimize the pyroelectric response of PZT thin films by adjusting the Ti composition and the processing temperature, thereby, enabling the tailoring of material properties for optimization relative to a specific deposition process.

  12. Gas Flow Sputtered Thick Layers of Columnar Lead Zirconate Titanate on Silicon Wafers for High Frequency Ultrasound Transducers

    NASA Astrophysics Data System (ADS)

    Tiefensee, F.; Kaden, D.; Jakob, A.; Quenzer, H. J.; Jung, Th.

    The piezoelectric ceramic PZT, lead zirconate titanate, is the most spread material to generate ultrasound in medical and technical applications. Thereby frequencies between 30 MHz and 100 MHz require ceramic thicknesses between 50 μm and 20 μm. The presented gas flow sputtering process permits to deposit PZT of this thickness with a sputtering rate of 100 nm/min at temperatures between 520 °C and 550 °C. The PZT shows a typical columnar structure with a piezoelectric coefficient d33f of about 500 pm/V. An example for the fabrication ultrasound arrays with this sputtering process and lithographic structuring is given.

  13. Hot-Pressed Ferrite-Lead Zirconate Titanate Magnetoelectric Composites

    NASA Astrophysics Data System (ADS)

    Devreugd, C. P.; Srinivasan, G.; Micheli, A. L.; Mantese, J. V.

    2004-03-01

    The electromagnetic coupling in magnetostrictive/piezoelectric is mediated by mechanical stress: magnetostriction induced mechanical deformation and piezoelectric effect induced electric fields. Composites studied so far include ferrite-lead zirconate titanate (PZT) and manganite-PZT [1-3]. Bulk or layered composites are usually synthesized by conventional sintering of mixture of powders or laminated thick films. This study is concerned with the fabrication of novel ferromagnetic-ferroelectric bulk and thin film layered composites by hot pressing together with studies on the nature of magnetoelectric interactions. The objective is to obtain defect free samples with good interface coupling. Systems studied includes Ni-Zn, Co-Zn and Co-Ni ferrites that are predicted to show high piezomagnetic and magnetomechanical couplings and PZT. Samples were prepared using aluminum oxide or high temperature alloy dies. Sintering was done at 1300 K at a pressure of 5000-7000 psi. Measurements of transverse and longitudinal ME coefficients are performed at low frequencies (10 Hz-1kHz), and at electromechanical resonance (100-300 kHz). Important results of our studies are follows. (1) Hot-pressed samples show an order of magnitude improvement in ME voltage coefficient compared to samples processed by conventional sintering. The enhancement is attributed to an increase in density, sample resistivity, and interface coupling. (2) The longitudinal coupling is stronger than the transverse effect. (3) There is a significant increase in ME interactions at electromechanical resonance. (4) Samples with Ni-Zn ferrites show the highest ME coefficients. The results are analysed using our model for a bulk composite. - supported by a grant from the National Science Foundation (DMR-0322254) 1. G. Srinivasan, E. T. Rasmussen, J. Gallegos, Yu. I. Bokhan, and V. M. Laletin, Phys. Rev. B, 64, 214408 (2001). 2. G. Srinivasan, E. T. Rasmussen, B. J. Levin, and R. Hayes, Phys. Rev. B 65, 134402 (2002). 3

  14. Dual Piezoelectric Actuation Bridge of In-Plane Polarized Lead Zirconate Titanate Film

    NASA Astrophysics Data System (ADS)

    Hwang, Hyun-Suk; Song, Joon-Tae

    2008-08-01

    A dual piezoelectric actuation bridge of in-plane polarized lead zirconate titanate (PZT) film is demonstrated. The in-plane polarized PZT film makes the development of a bending mechanism in the d33 mode, which exhibits a strain performance twice that of the d31 mode. Further, this design can provide deflection exceeding the structure thickness and individual driving mechanism for improving reliability of the devices. In order to simplify the fabrication process, a photoresist and Au are selected for the sacrificial and structural materials, respectively. The PZT thin film, which is deposited on the Au structural layer by the RF magnetron sputtering method, is poled and driven with interdigitated electrodes (IDEs) in order to exploit d33 mode actuation. The fabricated actuator exhibits good performance with a fast response time of <500 ms and low driving voltage of 5 V. This design can also be applied for a linearly tunable capacitor, depending on the magnitude of biasing voltage.

  15. Phase separation in lead zirconate titanate and bismuth titanate during electrical shorting and fatigue

    NASA Astrophysics Data System (ADS)

    Lou, Xiaojie; Hu, Xiaobing; Zhang, Ming; Morrison, F. D.; Redfern, S. A. T.; Scott, J. F.

    2006-02-01

    Micro-Raman and electron microprobe techniques are used to show that lead zirconate titanate and samarium-doped bismuth titanate undergo local phase transformations and separation during electrical shorting and in the dendritic precursors to microshorts caused by bipolar fatigue. These precursors for shorts, consisting of dark filaments, were studied just before they completely shorted the sample. The aim of the study was to compare electrical breakdown and breakdown precursors in ABO3 perovskite oxides and related Aurivillius phase layer structures with Bi (A site) substitution and with B-site substitution (e.g., Ti for Zr in PZT). The observation of phase separation and decomposition is related to congruent and incongruent meltings in these materials. Dendritelike shorts and short precursors of a few microns in diameter, produced by extreme bipolar voltage cycling fatigue, are mapped spectroscopically in 1 μm2 areas and exhibit almost pure regions of α-PbO, β-PbO, and rutile TiO2. The α-β PbO phase boundary runs from 500 °C at 1 atm to room temperature at 0.4 GPa, easily accessible temperatures and pressures in the dynamical process. Similarly, under large dc voltages the Sm-doped bismuth titanate transforms from a layered-perovskite structure to a pyrochlore structure during filamentary electrical breakdown, with the loss of Bi. The interfacial phase separation has been attributed to the combination of defect aggregation and thermal decomposition effects.

  16. Effects of Electric Field and Biaxial Flexure on the Failure of Poled Lead Zirconate Titanate

    SciTech Connect

    Wang, Hong; Wereszczak, Andrew A

    2008-01-01

    Reliable design of lead zirconate titanate (PZT) piezo stack actuators demands that a number of issues, including electromechanical coupling and ceramic strength-size scaling, be scrutinized. This study addresses those through the use of ball-on-ring (BoR) biaxial flexure strength tests of a PZT piezoelectric material that is concurrently subjected to an electric field. The Weibull strength distributions and fracture surfaces were examined. The mechanical failures were further analyzed in terms of internal stress, energy release rate, and domain-switching toughening. Both the sign and the magnitude of an electric field had a significant effect on the strength of poled PZT within the tested range. A surface flaw type with a depth of ~18 m was identified to be the strength limiter and responsible for the failure of the tested PZT under both mechanical and electromechanical loadings. With ~0.74 in the absence of electric field, the fracture toughness of the poled PZT was affected by an applied electric field just as the strength was affected. These results and observations have the potential to serve probabilistic reliability analysis and design optimization of multilayer PZT piezo actuators.

  17. Temperature Dependent Electrical Properties of PZT Wafer

    NASA Astrophysics Data System (ADS)

    Basu, T.; Sen, S.; Seal, A.; Sen, A.

    2016-04-01

    The electrical and electromechanical properties of lead zirconate titanate (PZT) wafers were investigated and compared with PZT bulk. PZT wafers were prepared by tape casting technique. The transition temperature of both the PZT forms remained the same. The transition from an asymmetric to a symmetric shape was observed for PZT wafers at higher temperature. The piezoelectric coefficient (d 33) values obtained were 560 pc/N and 234 pc/N, and the electromechanical coupling coefficient (k p) values were 0.68 and 0.49 for bulk and wafer, respectively. The reduction in polarization after fatigue was only ~3% in case of PZT bulk and ~7% for PZT wafer.

  18. Fatigue of extracted lead zirconate titanate multilayer actuators under unipolar high field electric cycling

    DOE PAGESBeta

    Wang, Hong; Lee, Sung Min; Wang, James L.; Lin, Hua-Tay

    2014-12-19

    Testing of large prototype lead zirconate titanate (PZT) stacks presents substantial technical challenges to electronic testing systems, so an alternative approach that uses subunits extracted from prototypes has been pursued. Extracted 10-layer and 20-layer plate specimens were subjected to an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 10^8 cycles. The effects of measurement field level and stack size (number of PZT layers) on the fatigue responses of piezoelectric and dielectric coefficients were observed. On-line monitoring permitted examination of the fatigue response of the PZT stacks. The fatigue rate (based on on-line monitoring) and themore » fatigue index (based on the conductance spectrum from impedance measurement or small signal measurement) were developed to quantify the fatigue status of the PZT stacks. The controlling fatigue mechanism was analyzed against the fatigue observations. The data presented can serve as input to design optimization of PZT stacks and to operation optimization in critical applications such as piezoelectric fuel injectors in heavy-duty diesel engines.« less

  19. Fatigue of extracted lead zirconate titanate multilayer actuators under unipolar high field electric cycling

    SciTech Connect

    Wang, Hong; Lee, Sung Min; Wang, James L.; Lin, Hua-Tay

    2014-12-19

    Testing of large prototype lead zirconate titanate (PZT) stacks presents substantial technical challenges to electronic testing systems, so an alternative approach that uses subunits extracted from prototypes has been pursued. Extracted 10-layer and 20-layer plate specimens were subjected to an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 10^8 cycles. The effects of measurement field level and stack size (number of PZT layers) on the fatigue responses of piezoelectric and dielectric coefficients were observed. On-line monitoring permitted examination of the fatigue response of the PZT stacks. The fatigue rate (based on on-line monitoring) and the fatigue index (based on the conductance spectrum from impedance measurement or small signal measurement) were developed to quantify the fatigue status of the PZT stacks. The controlling fatigue mechanism was analyzed against the fatigue observations. The data presented can serve as input to design optimization of PZT stacks and to operation optimization in critical applications such as piezoelectric fuel injectors in heavy-duty diesel engines.

  20. Fatigue of extracted lead zirconate titanate multilayer actuators under unipolar high field electric cycling

    SciTech Connect

    Wang, Hong Lee, Sung-Min; Wang, James L.; Lin, Hua-Tay

    2014-12-21

    Testing of large prototype lead zirconate titanate (PZT) stacks presents substantial technical challenges to electronic testing systems, so an alternative approach that uses subunits extracted from prototypes has been pursued. Extracted 10-layer and 20-layer plate specimens were subjected to an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 10{sup 8} cycles. The effects of measurement field level and stack size (number of PZT layers) on the fatigue responses of piezoelectric and dielectric coefficients were observed. On-line monitoring permitted examination of the fatigue response of the PZT stacks. The fatigue rate (based on on-line monitoring) and the fatigue index (based on the conductance spectrum from impedance measurement or small signal measurement) were developed to quantify the fatigue status of the PZT stacks. The controlling fatigue mechanism was analyzed against the fatigue observations. The data presented can serve as input to design optimization of PZT stacks and to operation optimization in critical applications, such as piezoelectric fuel injectors in heavy-duty diesel engines.

  1. Hydrogen diffusion in lead zirconate titanate and barium titanate

    SciTech Connect

    Alvine, K. J.; Vijayakumar, M.; Bowden, M. E.; Schemer-Kohrn, A. L.; Pitman, S. G.

    2012-08-28

    Hydrogen is a potential clean-burning, next-generation fuel for vehicle and stationary power. Unfortunately, hydrogen is also well known to have serious materials compatibility issues in metals, polymers, and ceramics. Piezoelectric actuator materials proposed for low-cost, high efficiency high-pressure hydrogen internal combustion engines (HICE) are known to degrade rapidly in hydrogen. This limits their potential use and poses challenges for HICE. Hydrogen-induced degradation of piezoelectrics is also an issue for low-pressure hydrogen passivation in ferroelectric random access memory. Currently, there is a lack of data in the literature on hydrogen species diffusion in piezoelectrics in the temperature range appropriate for the HICE as charged via a gaseous route. We present 1HNMR quantification of the local hydrogen species diffusion within lead zirconate titanate and barium titanate on samples charged by exposure to high-pressure gaseous hydrogen ~32 MPa. We discuss results in the context of theoretically predicted interstitial hydrogen lattice sites and aqueous charging experiments from existing literature.

  2. Pressure-temperature phase diagram for a tin modified lead zirconate titanate ceramic.

    SciTech Connect

    Grubbs, Robert K.; DiAntonio, Christopher Brian; Yang, Pin; Roesler, Alexander William; Montgomery, Stephen Tedford; Moore, Roger Howard

    2010-06-01

    Structural phase transformations between ferroelectric (FE), antiferroelectric (AFE), and paraelectric (FE) phases are frequently observed in the zirconia-rich phase region on the lead zirconate-titanate (PZT) phase diagram. Since the free energy difference among these phases is small, phase transformation can be easily induced by temperature, pressure and electric field. These induced transformation characteristics have been used for many practical applications. This study focuses on a hydrostatic pressure induced FE-to-AFE phase transformation in a tin modified PZT ceramic (PSZT). The relative phase stability between FE and AFE phases is determined by the dielectric permittivity measurement as a function of temperature from -60 C to 125 C. A pressure-temperature phase diagram for the PSZT system will be presented.

  3. Longitudinal electroptic effects and photosensitivities of lead zirconate titanate thin films

    SciTech Connect

    Land, C.E. )

    1989-11-01

    The feasibility of storing and reading high-density optical information in lead zirconate titanate (PZT) and in lead lanthanum zirconate titanate (PLZT) thin films depends on both the longitudinal electrooptic coefficients and the photosensitivities of the films. This paper describes the methods used to measure the longitudinal electrooptic effects and the photosensitivities of the films. The results of these measurements were used to evaluate a longitudinal quadratic electrooptic R coefficient, a longitudinal linear electrooptic r{sub c} coefficient, and the wavelength dependence of the photosensitivity of a composition of PZT polycrystalline thin film. The longitudinal electrooptic R and r{sub c} coefficients are about an order of magnitude less than the transverse R and r{sub c} coefficients of bulk ceramics of similar compositions. This is attributed to clamping of the film by the rigid substrate. The large birefringence of the films after poling (>10{sup {minus} 2}) suggests that the optic axes of the films are preferentially oriented normal to the film surface. The techniques used in this paper for evaluating the photosensitivities of thin films are based on measuring the photocurrent generated rather than the reduction in coercive voltage (as in bulk ceramics) when the film is exposed to light.

  4. Lead zirconate titanate fiber/polymer composites prepared by a replication process

    SciTech Connect

    Waller, D.J.; Safari, A. ); Card, R.J.; O'Toole, M.P. )

    1990-11-01

    The woven replication process was used to fabricate lead zirconate titanate (PZT)/polymer composites with 1-3, 2-3, and 3-3 connectivities by starting with novoloid-derived carbon fiber, woven fabric, and nonwoven felt templates, respectively. Activated carbon-fiber template material was impregnated with PZT by soaking it in a solution containing stoichiometric amounts of dissolved lead, zirconium, titanium, and niobium ions. Heat treatment burned out the carbon, leaving a PZT replica with the same form as the template material. Replicas were sintered in a controlled atmosphere and back-filled with an epoxy polymer to form final composites. This method, which is believed to be adaptable for mass production, is capable of producing composites and extremely fine microstructures. Woven composite samples have fiber tow diameters of 200 to 250 {mu}m and spacings between tows of about 150 to 250 {mu}m. Average d{sub 33} = 90 pC/N, g{sub 33} = 211 mV {center dot} m/N, and d{sub h}g{sub h} hydrophone figure of merit of 2100 {times} 10{sup {minus}15} m{sup 2}/N values are reported for woven PZT/polymer composites.

  5. Optimum reaction conditions for lead zirconate titanate thick film deposition by ultrasound-assisted hydrothermal method

    NASA Astrophysics Data System (ADS)

    Saigusa, Katsuhiro; Morita, Takeshi

    2016-07-01

    A hydrothermal method can be used to deposit lead zirconate titanate (PZT) films and has several advantages, such as a relatively low reaction temperature and high crystal quality. We developed an ultrasound-assisted hydrothermal method to promote the hydrothermal reactions, which is effective for thick-PZT-film deposition. The first ultrasound-assisted hydrothermal method we developed can synthesize a 7.5 µm PZT film on a titanium substrate. However, for a much thicker film, repeated depositions were required, and the optimum precursor solution for the first deposition was not suitable for repeated depositions. In this study, we attempted to find the optimum precursor solution for depositing a film of sufficient thickness by repeated depositions. As a result, we were able to synthesize a 23.6 µm PZT film on second deposition by changing the ratio of zirconium to titanium ions in the precursor solutions. In addition, a transverse effect transducer was fabricated under optimum conditions and its vibration properties were evaluated.

  6. Biaxial Flexural Strength of Poled Lead Zirconate Titanate under High Electric Field with Extended Field Range

    SciTech Connect

    Zhang, Kewei; Zeng, Fan W; Wang, Hong; Lin, Hua-Tay

    2013-01-01

    In the present work, as-received poled lead zirconate titanate, or PZT 5A, was examined using ball-on-ring (BoR) mechanical testing coupled with an electric field. Electric fields in the range of 4Ec (Ec, coercive field) with controlled loading paths were applied, and mechanical tests at a substantial number of characteristic electric field levels were conducted. Commercial electronic liquid FC-40 was used to prevent the setup from dielectric breakdown under a high electric field. Weibull strength distribution was used to interpret the mechanical strength data. The data showed that the strength levels of the PZT-5A tested under OC (open circuit) in air and in FC-40 were almost the same. It was further revealed that , for the studied cases, the effect of loading history on the biaxial flexural strength of the PZT was significant in -Ec, but not in OC or zero field as well as 4Ec . An asymmetry V curve was observed for the characteristic strength-electric field graph, and the bottom of V curve was located near the negative coercive field. Microscopy analysis showed that surface-located volume-distributed flaws were the strength limiter and responsible for the failure of the tested PZT under electromechanical loadings.

  7. Transverse piezoelectric coefficient measurement of flexible lead zirconate titanate thin films

    NASA Astrophysics Data System (ADS)

    Dufay, T.; Guiffard, B.; Thomas, J.-C.; Seveno, R.

    2015-05-01

    Highly flexible lead zirconate titanate, Pb(Zr,Ti)O3 (PZT), thin films have been realized by modified sol-gel process. The transverse piezoelectric coefficient d31 was determined from the tip displacement of bending-mode actuators made of PZT cantilever deposited onto bare or RuO2 coated aluminium substrate (16 μm thick). The influence of the thickness of ruthenium dioxide RuO2 and PZT layers was investigated for Pb(Zr0.57Ti0.43)O3. The modification of Zr/Ti ratio from 40/60 to 60/40 was done for 3 μm thick PZT thin films onto aluminium (Al) and Al/RuO2 substrates. A laser vibrometer was used to measure the beam displacement under controlled electric field. The experimental results were fitted in order to find the piezoelectric coefficient. Very large tip deflections of about 1 mm under low voltage (˜8 V) were measured for every cantilevers at the resonance frequency (˜180 Hz). For a given Zr/Ti ratio of 58/42, it was found that the addition of a 40 nm thick RuO2 interfacial layer between the aluminium substrate and the PZT layer induces a remarkable increase of the d31 coefficient by a factor of 2.7, thus corresponding to a maximal d31 value of 33 pC/N. These results make the recently developed PZT/Al thin films very attractive for both low frequency bending mode actuating applications and vibrating energy harvesting.

  8. Transverse piezoelectric coefficient measurement of flexible lead zirconate titanate thin films

    SciTech Connect

    Dufay, T.; Guiffard, B.; Seveno, R.; Thomas, J.-C.

    2015-05-28

    Highly flexible lead zirconate titanate, Pb(Zr,Ti)O{sub 3} (PZT), thin films have been realized by modified sol-gel process. The transverse piezoelectric coefficient d{sub 31} was determined from the tip displacement of bending-mode actuators made of PZT cantilever deposited onto bare or RuO{sub 2} coated aluminium substrate (16 μm thick). The influence of the thickness of ruthenium dioxide RuO{sub 2} and PZT layers was investigated for Pb(Zr{sub 0.57}Ti{sub 0.43})O{sub 3}. The modification of Zr/Ti ratio from 40/60 to 60/40 was done for 3 μm thick PZT thin films onto aluminium (Al) and Al/RuO{sub 2} substrates. A laser vibrometer was used to measure the beam displacement under controlled electric field. The experimental results were fitted in order to find the piezoelectric coefficient. Very large tip deflections of about 1 mm under low voltage (∼8 V) were measured for every cantilevers at the resonance frequency (∼180 Hz). For a given Zr/Ti ratio of 58/42, it was found that the addition of a 40 nm thick RuO{sub 2} interfacial layer between the aluminium substrate and the PZT layer induces a remarkable increase of the d{sub 31} coefficient by a factor of 2.7, thus corresponding to a maximal d{sub 31} value of 33 pC/N. These results make the recently developed PZT/Al thin films very attractive for both low frequency bending mode actuating applications and vibrating energy harvesting.

  9. Microwave emission from lead zirconate titanate induced by impulsive mechanical load

    NASA Astrophysics Data System (ADS)

    Aman, A.; Majcherek, S.; Hirsch, S.; Schmidt, B.

    2015-10-01

    This paper focuses on microwave emission from Lead zirconate titanate Pb [ZrxTi1-x] O3 (PZT) induced by mechanical stressing. The mechanical stress was initiated by impact of a sharp tungsten indenter on the upper surface of PZT ceramic. The sequences of microwave and current impulses, which flew from indenter to electric ground, were detected simultaneously. The voltage between the upper and lower surface of ceramic was measured to obtain the behavior of mechanical force acting on ceramic during the impact. It was found that the amplitude, form, and frequency of measured microwave impulses were different by compression and restitution phase of impact. Two different mechanisms of electron emission, responsible for microwave impulse generation, were proposed based on the dissimilar impulse behavior. The field emission from tungsten indenter is dominant during compression, whereas ferroemission dominates during restitution phase. Indeed, it was observed that the direction of the current flow, i.e., sign of current impulses is changed by transitions from compression to restitution phase of impact. The observed dissimilar behavior of microwave impulses, caused by increasing and decreasing applied force, can be used to calculate the contact time and behavior of mechanical force during mechanical impact on ceramic surface. It is shown that the generation of microwave impulses exhibits high reproducibility, impulse intensity, a low damping factor, and high mechanical failure resistance. Based on these microwave emission properties of PZT, the development of new type of stress sensor with spatial resolution of few microns becomes possible.

  10. Strength Properties of Aged Poled Lead Zirconate Titanate Subjected to Electromechanical Loadings

    SciTech Connect

    Zhang, Kewei; Zeng, Fan W; Wang, Hong; Lin, Hua-Tay

    2012-01-01

    Electric field and aging time are two important factors that affect the mechanical strength and long-term reliability of lead zirconate titanate or PZT actuators. In the present work, a commercial PZT-5A aged four years was examined using ball-on-ring (BoR) mechanical testing under coupled electric fields. The electric field range of -3E{sub c} to +3E{sub c} (E{sub c}, coercive electric field) was studied (i.e., -3E{sub c}, -E{sub c}, 0, +E{sub c}, +2E{sub c}, and +3E{sub c}) with a controlled electric loading path. A Weibull distribution was used to interpret the mechanical strength data. With an electric field preloaded from 0 to -3E{sub c}, it was found that subsequent increases in the electric field resulted in an asymmetrical V-shaped curve of mechanical strength against the electric field. The bottom of the V curve was located near the zero electric field level. Microscopy analysis showed that pores were the strength limiter for the tested PZT under electromechanical loadings.

  11. A statistical model approximation for perovskite solid-solutions: a Raman study of lead-zirconate- titanate single crystal

    SciTech Connect

    Frantti, Johannes; Fujioka, Y; Puretzky, Alexander A; Xie, Y; Glazer, A

    2013-01-01

    Lead titanate (PbTiO3) is a classical example of a ferroelectric perovskite oxide illustrating a displacive phase transition accompanied by a softening of a symmetry-breaking mode. The underlying assumption justifying the soft-mode theory is that the crystal is macroscopically sufficiently uniform so that a meaningful free energy function can be formed. In contrast to PbTiO3, experimental studies show that the phase transition behaviour of lead-zirconate-titanate solid solution (PZT) is far more subtle. Most of the studies on the PZT system have been dedicated to ceramic or powder samples, in which case an unambiguous soft-mode study is not possible, as modes with different symmetries appear together. Our Raman scattering study on titanium-rich PZT single crystal shows that the phase transitions in PZT cannot be described by a simple soft-mode theory. In strong contrast to PbTiO3, splitting of transverse E-symmetry modes reveals that there are different locally-ordered regions. The role of crystal defects, random distribution of Ti and Zr at the B- cation site and Pb ions shifted away from their ideal positions, dictates the phase transition mechanism. A statistical model explaining the observed peak splitting and phase transformation to a complex state with spatially varying local order in the vicinity of the morphotropic phase boundary is given.

  12. Substrate Clamping Effects on Irreversible Domain Wall Dynamics in Lead Zirconate Titanate Thin Films

    SciTech Connect

    Griggio, Flavio; Jesse, Stephen; Kumar, Amit; Ovchinnikov, Oleg S; Kim, H.; Jackson, T. N.; Damjanovic, Dragan; Kalinin, Sergei V; Trolier-Mckinstry, Susan E

    2012-01-01

    The role of long-range strain interactions on domain wall dynamics is explored through macroscopic and local measurements of nonlinear behavior in mechanically clamped and released polycrystalline lead zirconate-titanate (PZT) films. Released films show a dramatic change in the global dielectric nonlinearity and its frequency dependence as a function of mechanical clamping. Furthermore, we observe a transition from strong clustering of the nonlinear response for the clamped case to almost uniform nonlinearity for the released film. This behavior is ascribed to increased mobility of domain walls. These results suggest the dominant role of collective strain interactions mediated by the local and global mechanical boundary conditions on the domain wall dynamics. The work presented in this Letter demonstrates that measurements on clamped films may considerably underestimate the piezoelectric coefficients and coupling constants of released structures used in microelectromechanical systems, energy harvesting systems, and microrobots.

  13. Piezoelectric and Dielectric Performance of Poled Lead Zirconate Titanate Subjected to Electric Cyclic Fatigue

    SciTech Connect

    Wang, Hong; Matsunaga, Tadashi; Lin, Hua-Tay; Mottern, Alexander M; Wereszczak, Andrew A

    2012-01-01

    Poled lead zirconate titanate (PZT) material as a single-layer plate was tested using piezodilatometer under electric cyclic loading in both unipolar and bipolar modes. Their responses were evaluated using unipolar and bipolar measurements on the same setup. Mechanical strain and charge density or polarization loops exhibited various variations when the material was cycled to more than 10^8 cycles. Important quantities including loop amplitude, hysteresis, switchable polarization, coercive field have been characterized accordingly under corresponding measurement conditions. At the same time, offset polarization and bias electric field of the material were observed to be changed and the trend was found to be related to the measurement condition also. Finally, the piezoelectric and dielectric coefficients were analyzed and their implications to the application of interest have been discussed.

  14. Internal Friction and Dielectric Measurements in Lead Zirconate Titanate Ferroelectric Ceramics

    NASA Astrophysics Data System (ADS)

    Bourim, El Mostafa; Tanaka, Hidehiko; Gabbay, Maurice; Fantozzi, Gilbert

    2000-09-01

    Elastic modulus (Young’s modulus M and shear modulus G) and internal friction Q-1 are measured as a function of temperature from {-}180{\\degC} to 500°C in undoped lead zirconate titanate (PZT) ferroelectric ceramics in the range of kHz and low frequencies (0.1 to 1 Hz). New phase transition temperatures at the morphotropic zone at low temperatures are determined from the elastic modulus minimum. Permittivity \\varepsilon and dielectric loss \\tan(δ) are measured in the frequency range of 20 Hz to 10 kHz. Both mechanical and electrical measurements allow the observation of relaxation peaks in the ferroelectric phase. The Arrhenius plots of all these results show that it is possible to investigate these relaxation processes using both experimental techniques.

  15. Fatigue and failure responses of lead zirconate titanate multilayer actuator under unipolar high-field electric cycling

    SciTech Connect

    Zeng, Fan W; Wang, Hong; Lin, Hua-Tay

    2013-01-01

    Lead zirconate titanate (PZT) multilayer actuators with an interdigital electrode design were studied under high electric fields (3 and 6 kV/mm) in a unipolar cycling mode. A 100 Hz sine wave was used in cycling. Five specimens tested under 6 kV/mm failed from 3.8 10^5 to 7 10^5 cycles, whereas three other specimens tested under 3 kV/mm were found to be still functional after 10^8 cycles. Variations in piezoelectric and dielectric responses of the tested specimens were observed during the fatigue test, depending on the measuring and cycling conditions. Selected fatigued and damaged actuators were characterized using an impedance analyzer or small signal measurement. A scanning acoustic microscope also was employed as a nondestructive tool to detect the presence of defects. Failed plates were subsequently sectioned, and the extensive cracks and porous regions were observed to be across the PZT layers. The results from this study have demonstrated that the high-field cycling can accelerate the fatigue of PZT stacks as long as the partial discharge is controlled. The small signal measurement can also be integrated into the large signal measurement to characterize the fatigue response of PZT stacks in a more comprehensive basis. The former can further serve as an experimental method to monitor the behavior of PZT stacks.

  16. EPDM composite membranes modified with cerium doped lead zirconate titanate

    NASA Astrophysics Data System (ADS)

    Zaharescu, T.; Dumitru, A.; Lungulescu, M. E.; Velciu, G.

    2016-01-01

    This study was performed on γ-irradiated ethylene-propylene diene terpolymer (EPDM) loaded with lead zirconate titanate. The inorganic phase has a perovskite structure with general formula Pb(Zr0.65-xCexTi0.35)O3. The three composites with different Ce dopant concentrations revealed the stabilization activity of filler against oxidation proved by chemiluminescence investigation in respect to pristine polymer. The presence of cerium low concentrations in the solid lead zirconate titanate nanoparticles causes significant slowing of oxidation rate during radiation exposure. The improvement in the stabilization feature of filler is correlated with the existence of traps, whose interaction with free radicals assumes medium energy due to their convenient depth.

  17. Study of the characteristics of a piezoelectric lead zirconate titanate radiation detector using a pulsed xenon source

    SciTech Connect

    Miyachi, Takashi; Fujii, Masayuki; Hasebe, Nobuyuki; Okudaira, Osamu; Takechi, Seiji; Kurozumi, Atsuma; Morinaga, Shinya; Uno, Takefumi; Shibata, Hiromi; Kobayashi, Masanori; Murakami, Takeshi; Uchihori, Yukio; Okada, Nagaya

    2010-05-15

    The detector characteristics of piezoelectric lead zirconate titanate (PZT) were studied by directly irradiating a multilayered PZT detector with 400 MeV/n xenon ions. An extracted beam was processed with a rotating slit. Thus, passed through {approx}10{sup 3} xenon ions were available for 50 to 250 {mu}s. The effect of polarization on the output signal was discussed, and the optimal electrode configuration was determined. The output signal appeared as an isolated pulse whose amplitude was qualitatively understood by the Bethe-Bloch formula. However, the calculated and the observed values differed depending on the rotation speed of the slit. A process that can explain the differences is presented here. The output signal appearing beyond the range of 400 MeV/n xenon ion beam was discussed. The sensitivity was compared with that obtained with hypervelocity collision of dust.

  18. Study of the characteristics of a piezoelectric lead zirconate titanate radiation detector using a pulsed xenon source

    NASA Astrophysics Data System (ADS)

    Miyachi, Takashi; Fujii, Masayuki; Hasebe, Nobuyuki; Okudaira, Osamu; Takechi, Seiji; Kurozumi, Atsuma; Morinaga, Shinya; Uno, Takefumi; Shibata, Hiromi; Kobayashi, Masanori; Murakami, Takeshi; Uchihori, Yukio; Okada, Nagaya

    2010-05-01

    The detector characteristics of piezoelectric lead zirconate titanate (PZT) were studied by directly irradiating a multilayered PZT detector with 400 MeV/n xenon ions. An extracted beam was processed with a rotating slit. Thus, passed through ˜103 xenon ions were available for 50 to 250 μs. The effect of polarization on the output signal was discussed, and the optimal electrode configuration was determined. The output signal appeared as an isolated pulse whose amplitude was qualitatively understood by the Bethe-Bloch formula. However, the calculated and the observed values differed depending on the rotation speed of the slit. A process that can explain the differences is presented here. The output signal appearing beyond the range of 400 MeV/n xenon ion beam was discussed. The sensitivity was compared with that obtained with hypervelocity collision of dust.

  19. A circular array transducer for photoacoustic imaging by using piezoelectric single crystal lead magnesium niobate-lead zirconate titanate

    NASA Astrophysics Data System (ADS)

    Cao, Yonggang; Ha, Kanglyeol; Kim, Moojoon; Kang, Hyunwook; Oh, Jung-Hwan; Kim, Jungsoon

    2015-07-01

    The ultrasound transducers of which center frequencies are lower than 10 MHz are commonly used in low frequency photoacoustic (PA) imaging systems. However, the improvement of their sensitivity is still needed to detect weak PA signals. In this study, a circular array transducer was constructed by using 120 needle hydrophones made of piezoelectric single crystal lead magnesium niobate-lead zirconate titanate (PMN-PZT). The needle hydrophone was designed to have high sensitivity and wide bandwidth through the Krimtholz-Leedom-Matthaei (KLM) simulation of receiving impulse response. The sensitivity of the fabricated PMN-PZT hydrophone was compared with a commercial poly(vinylidene fluoride) (PVDF) needle hydrophone. The usefulness of the circular array transducer was demonstrated by applying it to a PA system for obtaining images.

  20. Investigation of the additive induced doping effects in gelcast soft lead zirconate titanate ceramics

    SciTech Connect

    Guo Dong; Cai Kai; Li Longtu; Gui Zhilun

    2009-09-01

    Due to the high sensitivity of the electrical properties of electronic ceramics to various factors, knowledge about the possible influence of the processing procedure on their electrical performance is critical for applying a new technique to the fabrication of the materials. In this study, various electrical parameters, complex impedance spectra, ferroelectric hysteresis loops, and microstructures of soft lead zirconate titanate (PZT) ceramics formed by the gelcasting technique from suspensions with various dispersants were investigated in comparison with those of the conventional dry pressed ones. We found that the sodium ion, which is the main cation in many commercial surfactants, exhibited obvious hard doping effects; thus causing deteriorated performance of the gelcast PZT ceramics. While a certain impurity ion introduced by a dispersant was also found to induce soft doping characteristics and improve the electrical performance of the materials. The results suggest that the doping effects of the metal ions or impurities introduced by the dispersants, or other additives, should be generally considered for applying a wet processing technique to forming multicomponent electronic ceramics.

  1. In situ cell detection using piezoelectric lead zirconate titanate-stainless steel cantilevers

    NASA Astrophysics Data System (ADS)

    Yi, Jeong W.; Shih, Wan Y.; Mutharasan, R.; Shih, Wei-Heng

    2003-01-01

    We have investigated piezoelectric lead zirconate titanate (PZT)-stainless steel cantilevers as real-time in-water cell detectors using yeast cells as a model system. Earlier studies have shown that mass changes of a cantilever can be detected by monitoring the resonance frequency shift. In this study, two PZT-stainless steel cantilevers with different sensitivities were used to detect the presence of yeast cells in a suspension. The stainless steel cantilever tip was coated with poly-L-lysine that attracted yeast cells from the suspension, and immobilized them on the cantilever surface. After immersing the poly-L-lysine coated tip in a yeast suspension, the flexural resonance frequency of the cantilever was monitored with time. The flexural resonance frequency decreased with time in agreement with the optical micrographs that showed increasing amount of adsorbed yeast cells with time. The resonance frequency shifts are further shown to be consistent with both the mass of immobilized cells on the poly-L-lysine coated stainless steel surface and that deduced from the optical micrographs. Furthermore, under the present experimental conditions where the cell diffusion distance is smaller than the linear dimension of the adsorption area, it is shown that the rate of resonance frequency shift is linear with the cell concentration and the rate of resonance frequency shift can be used to quantify the cell concentration.

  2. Structural health monitoring of multi-spot welded joints using a lead zirconate titanate based active sensing approach

    NASA Astrophysics Data System (ADS)

    Yao, Ping; Kong, Qingzhao; Xu, Kai; Jiang, Tianyong; Huo, Lin-sheng; Song, Gangbing

    2016-01-01

    Failures of spot welded joints directly reduce the load capacity of adjacent structures. Due to their complexity and invisibility, real-time health monitoring of spot welded joints is still a challenge. In this paper, a lead zirconate titanate (PZT) based active sensing approach was proposed to monitor the structural health of multi-spot welded joints in real time. In the active sensing approach, one PZT transducer was used as an actuator to generate a guided stress wave, while another one, as a sensor, detected the wave response. Failure of a spot welded joint reduces the stress wave paths and attenuates the wave propagation energy from the actuator to the sensor. A total of four specimens made of dual phase steel with spot welds, including two specimens with 20 mm intervals of spot welded joints and two with 25 mm intervals, were designed and fabricated for this research. Under tensile tests, the spot welded joints successively failed, resulting in the PZT sensor reporting decreased received energy. The energy attenuations due to the failures of joints were clearly observed by the PZT sensor signal in both the time domain and frequency domain. In addition, a wavelet packet-based spot-weld failure indicator was developed to quantitatively evaluate the failure condition corresponding to the number of failed joints.

  3. Microwave emission from lead zirconate titanate induced by impulsive mechanical load

    SciTech Connect

    Aman, A.; Majcherek, S.; Hirsch, S.; Schmidt, B.

    2015-10-28

    This paper focuses on microwave emission from Lead zirconate titanate Pb [Zr{sub x}Ti{sub 1−x}] O{sub 3} (PZT) induced by mechanical stressing. The mechanical stress was initiated by impact of a sharp tungsten indenter on the upper surface of PZT ceramic. The sequences of microwave and current impulses, which flew from indenter to electric ground, were detected simultaneously. The voltage between the upper and lower surface of ceramic was measured to obtain the behavior of mechanical force acting on ceramic during the impact. It was found that the amplitude, form, and frequency of measured microwave impulses were different by compression and restitution phase of impact. Two different mechanisms of electron emission, responsible for microwave impulse generation, were proposed based on the dissimilar impulse behavior. The field emission from tungsten indenter is dominant during compression, whereas ferroemission dominates during restitution phase. Indeed, it was observed that the direction of the current flow, i.e., sign of current impulses is changed by transitions from compression to restitution phase of impact. The observed dissimilar behavior of microwave impulses, caused by increasing and decreasing applied force, can be used to calculate the contact time and behavior of mechanical force during mechanical impact on ceramic surface. It is shown that the generation of microwave impulses exhibits high reproducibility, impulse intensity, a low damping factor, and high mechanical failure resistance. Based on these microwave emission properties of PZT, the development of new type of stress sensor with spatial resolution of few microns becomes possible.

  4. Lead zirconate titanate cantilever for noncontact atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Miyahara, Y.; Fujii, T.; Watanabe, S.; Tonoli, A.; Carabelli, S.; Yamada, H.; Bleuler, H.

    1999-02-01

    Noncontact atomic force microscopy with frequency modulation detection is a promising technique for surface observation with true atomic resolution. The piezoelectric material itself can be an actuator and sensor of the oscillating probe simultaneously, without the need for additional electro-mechanical transducers or other measurement systems. A vertical resolution of 0.01 nm rms has been achieved using a microfabricated cantilever with lead zirconate titanate thin film in noncontact mode frequency modulation detection. The cantilever also has a sharpened pyramidal stylus with a radius of about 10 nm for noncontact atomic force microscopy.

  5. Local origin of macroscopic properties and patterning in Lead zirconate titanate films

    NASA Astrophysics Data System (ADS)

    Bintachitt, Patamas

    This thesis describes the preparation of high quality lead zirconate titanate (PZT) films, the nonlinearity in their dielectric and piezoelectric responses, as well as their patterning by reactive ion etching. One goal of the research was to obtain {001} oriented PZT films on Pt-coated Si substrates. In this work, PbTiO3 buffer layers were chosen due to good lattice matching with PZT films, and the strong propensity for development of {001} orientation. The pyrolysis, crystallization steps, and lead excess addition of PbTiO3 buffer layers deposition were investigated. Using a thin PbTiO3 buffer layer and controlled pyrolysis conditions allowed {100} oriented PZT films to be prepared. The PbTiO3 buffer layer can be used over a full wafer to provide orientation. Higher piezoelectric coefficients, e31,f of -14 and -10 C/m2 were achieved for {001} PZT thin films of 1.0 mum and 0.24 mum thickness, respectively using appropriate poling conditions. The local and global domain wall contributions were studied by piezoelectric nonlinearity and dielectric nonlinearity in both {001}-textured PZT films and PZT films with mixed {001} and {111} orientation. It was found that films over the thickness range probed showed Rayleigh-like behavior. 4 mum thick films were nearly uniform in their Rayleigh coefficient, suggesting that any heterogeneities in the response developed at lateral length scales below the resolution of the PFM measurement. In contrast, thinner films showed significantly more patchiness in their response, so that fluctuations in behavior developed at a lateral length scale on the order of 0.6 to 2.5 micron. These variations did not appear to be correlated directly with the surface topology. Finally, it is hypothesized that the same population of domain wall contributes to the local and global nonlinearity. Nanoindentation measurements were conducted in an attempt to distinguish 180° and non-180° domain wall motion in these films. Non-180° domain walls can be

  6. Fabrication and modeling of bismuth titanate-PZT ceramic transducers for high temperature applications

    NASA Astrophysics Data System (ADS)

    Reinhardt, B.; Searfass, C.; Cyphers, R.; Sinding, K.; Pheil, C.; Tittmann, B.

    2013-01-01

    Utilization of a spray-on deposition technique of ferroelectric bismuth titanate (Bi4Ti3O12) composites has a competitive advantage to standard ultrasonic transducers. These can conform to curved surfaces, can operate at high temperature (Curie-Weiss temperature 685 °C) and are mechanically well-coupled to a substrate. However, an issue with many high temperature transducers such as bismuth titanate ceramics is that they have relatively low transduction efficiency, i.e. d33 is about 12-14 pC/F in Bi4Ti3O12 versus 650 pC/F in PZT-5H. It is a common conception that high-temperature capability comes at the cost of electro-mechanical coupling. It will be shown that the high temperature capability of bismuth-titanate-PZT composite transducers using the spray-on deposition technique previously developed, improves the electro-mechanical coupling while maintaining the high temperature performance and mechanical coupling. This material could provide advantages in harsh environments where high signal-to-noise ratios are needed.

  7. Luminescence studies of perovskite structured titanates: A review

    NASA Astrophysics Data System (ADS)

    Nag Bhargavi, G.; Khare, Ayush

    2015-06-01

    Apart from widely known dielectric and ferroelectric properties, the perovskite type materials also constitute a class of materials, which are recently investigated for their optical properties. These materials are being used for fabrication of various microelectronics and optoelectronic devices. Photoluminescence (PL), mechanoluminescence (ML) and thermoluminescence (TL) are such phenomena offering numerous applications in different fields like electro-optics, flat panel displays, LED technology, sensors, dynamic visualization etc. This paper briefly reviews the status and new progress in luminescence studies of ferroelectric materials like barium titanate (BT), barium zirconate titanate (BZT), calcium titanate (CT), calcium zirconate titanate (CZT), lead titanate (PT), lead zirconate titanate (PZT), etc., prepared through various methods.

  8. Active layers of high-performance lead zirconate titanate at temperatures compatible with silicon nano- and microelecronic devices

    PubMed Central

    Bretos, Iñigo; Jiménez, Ricardo; Tomczyk, Monika; Rodríguez-Castellón, Enrique; Vilarinho, Paula M.; Calzada, M. Lourdes

    2016-01-01

    Applications of ferroelectric materials in modern microelectronics will be greatly encouraged if the thermal incompatibility between inorganic ferroelectrics and semiconductor devices is overcome. Here, solution-processable layers of the most commercial ferroelectric compound ─ morphotrophic phase boundary lead zirconate titanate, namely Pb(Zr0.52Ti0.48)O3 (PZT) ─ are grown on silicon substrates at temperatures well below the standard CMOS process of semiconductor technology. The method, potentially transferable to a broader range of Zr:Ti ratios, is based on the addition of crystalline nanoseeds to photosensitive solutions of PZT resulting in perovskite crystallization from only 350 °C after the enhanced decomposition of metal precursors in the films by UV irradiation. A remanent polarization of 10.0 μC cm−2 is obtained for these films that is in the order of the switching charge densities demanded for FeRAM devices. Also, a dielectric constant of ~90 is measured at zero voltage which exceeds that of current single-oxide candidates for capacitance applications. The multifunctionality of the films is additionally demonstrated by their pyroelectric and piezoelectric performance. The potential integration of PZT layers at such low fabrication temperatures may redefine the concept design of classical microelectronic devices, besides allowing inorganic ferroelectrics to enter the scene of the emerging large-area, flexible electronics. PMID:26837240

  9. Active layers of high-performance lead zirconate titanate at temperatures compatible with silicon nano- and microeletronic [corrected] devices.

    PubMed

    Bretos, Iñigo; Jiménez, Ricardo; Tomczyk, Monika; Rodríguez-Castellón, Enrique; Vilarinho, Paula M; Calzada, M Lourdes

    2016-01-01

    Applications of ferroelectric materials in modern microelectronics will be greatly encouraged if the thermal incompatibility between inorganic ferroelectrics and semiconductor devices is overcome. Here, solution-processable layers of the most commercial ferroelectric compound--morphotrophic phase boundary lead zirconate titanate, namely Pb(Zr0.52Ti0.48)O3 (PZT)--are grown on silicon substrates at temperatures well below the standard CMOS process of semiconductor technology. The method, potentially transferable to a broader range of Zr:Ti ratios, is based on the addition of crystalline nanoseeds to photosensitive solutions of PZT resulting in perovskite crystallization from only 350 °C after the enhanced decomposition of metal precursors in the films by UV irradiation. A remanent polarization of 10.0 μC cm(-2) is obtained for these films that is in the order of the switching charge densities demanded for FeRAM devices. Also, a dielectric constant of ~90 is measured at zero voltage which exceeds that of current single-oxide candidates for capacitance applications. The multifunctionality of the films is additionally demonstrated by their pyroelectric and piezoelectric performance. The potential integration of PZT layers at such low fabrication temperatures may redefine the concept design of classical microelectronic devices, besides allowing inorganic ferroelectrics to enter the scene of the emerging large-area, flexible electronics. PMID:26837240

  10. Active layers of high-performance lead zirconate titanate at temperatures compatible with silicon nano- and microelecronic devices

    NASA Astrophysics Data System (ADS)

    Bretos, Iñigo; Jiménez, Ricardo; Tomczyk, Monika; Rodríguez-Castellón, Enrique; Vilarinho, Paula M.; Calzada, M. Lourdes

    2016-02-01

    Applications of ferroelectric materials in modern microelectronics will be greatly encouraged if the thermal incompatibility between inorganic ferroelectrics and semiconductor devices is overcome. Here, solution-processable layers of the most commercial ferroelectric compound - morphotrophic phase boundary lead zirconate titanate, namely Pb(Zr0.52Ti0.48)O3 (PZT) - are grown on silicon substrates at temperatures well below the standard CMOS process of semiconductor technology. The method, potentially transferable to a broader range of Zr:Ti ratios, is based on the addition of crystalline nanoseeds to photosensitive solutions of PZT resulting in perovskite crystallization from only 350 °C after the enhanced decomposition of metal precursors in the films by UV irradiation. A remanent polarization of 10.0 μC cm-2 is obtained for these films that is in the order of the switching charge densities demanded for FeRAM devices. Also, a dielectric constant of ~90 is measured at zero voltage which exceeds that of current single-oxide candidates for capacitance applications. The multifunctionality of the films is additionally demonstrated by their pyroelectric and piezoelectric performance. The potential integration of PZT layers at such low fabrication temperatures may redefine the concept design of classical microelectronic devices, besides allowing inorganic ferroelectrics to enter the scene of the emerging large-area, flexible electronics.

  11. Lead zirconate titanate-based thick films for high-frequency focused ultrasound transducers prepared by electrophoretic deposition.

    PubMed

    Abellard, André-Pierre; Kuscer, Danjela; Grégoire, Jean-Marc; Lethiecq, Marc; Malic, Barbara; Levassort, Franck

    2014-03-01

    An electrophoretic deposition (EPD) process with high deposition rate was used to fabricate a curved piezoelectric thick film devoted to high-frequency transducers for medical imaging. Niobium-doped lead zirconate titanate (PZTNb) powder was stabilized in ethanol to prepare a suspension with high zeta potential and low conductivity. A gold layer, pad-printed and fired on a curved porous PZT substrate, was used as the working electrode for the deposition of the PZTNb thick film. This substrate was chosen because it has the required properties (acoustic impedance and attenuation) to be used directly as a backing for the high-frequency transducer, leading to a simplified process for transducer assembly with this integrated structure. PZT-Nb thick films were also deposited by EPD on flat gold-coated alumina substrates as a reference. The thickness of the films was between 20 and 35 μm, and their electromechanical performance was comparable to standard PZT bulk ceramics with a thickness coupling factor of 48%. For the curved thick film, the thickness coupling factor was slightly lower. The corresponding integrated structure was used to fabricate a transducer with a center frequency of 40 MHz and an f-number of 2.8. It was integrated into a realtime ultrasound scanner and used to image human forearm skin; the resulting images showed, for the first time, the efficacy of the EPD process for these imaging applications. PMID:24569258

  12. Energy harvesting from vertically aligned PZT nanowire arrays

    NASA Astrophysics Data System (ADS)

    Malakooti, Mohammad H.; Zhou, Zhi; Sodano, Henry A.

    2016-04-01

    In this paper, a nanostructured piezoelectric beam is fabricated using vertically aligned lead zirconate titanate (PZT) nanowire arrays and its capability of continuous power generation is demonstrated through direct vibration tests. The lead zirconate titanate nanowires are grown on a PZT thin film coated titanium foil using a hydrothermal reaction. The PZT thin film serves as a nucleation site while the titanium foil is used as the bottom electrode. Electromechanical frequency response function (FRF) analysis is performed to evaluate the power harvesting efficiency of the fabricated device. Furthermore, the feasibility of the continuous power generation using the nanostructured beam is demonstrated through measuring output voltage from PZT nanowires when beam is subjected to a sinusoidal base excitation. The effect of tip mass on the voltage generation of the PZT nanowire arrays is evaluated experimentally. The final results show the great potential of synthesized piezoelectric nanowire arrays in a wide range of applications, specifically power generation at nanoscale.

  13. Converse mode piezoelectric coefficient for lead zirconate titanate thin film with interdigitated electrode

    NASA Astrophysics Data System (ADS)

    Chidambaram, N.; Balma, D.; Nigon, R.; Mazzalai, A.; Matloub, R.; Sandu, C. S.; Muralt, P.

    2015-04-01

    The use of interdigitated electrodes (IDEs) in conjunction with ferroelectric thin films shows many attractive features for piezoelectric MEMS applications. In this work, growth of {1 0 0}-textured lead zirconate titanate (PZT) thin films was achieved on insulating MgO buffered, oxidized silicon substrates. IDEs were fabricated by lift-off techniques and cantilevers were formed by dicing. The deflection upon application of a sweeping voltage was measured as large signal response in parallel to the ferroelectric polarization (PV loop). Likewise, the small signal piezoelectric response was measured in parallel to the capacitance-voltage (CV) measurement. In this way, a complete picture of the ferroelectric-piezoelectric element was obtained. From the deflection, the in-plane piezoelectric stress in the PZT thin film was derived and, from this, the effective piezoelectric coefficients. For the latter, two types were defined: an engineering type corresponding to the average value along the IDE, which can directly be compared to coefficient of a parallel plate electrode (PPE) capacitor and a second one that approximately yields the idealized coefficient governing between the electrode fingers. The IDE structures were experimentally compared with PPE structures of identical film thickness. The resulting coefficients were of opposite sign, as expected. In spite of a much better polarization loop, the IDE device showed a lower average piezoelectric stress. The estimated peak value between the fingers was about the same as in the PPE device, corresponding to about 20 C m-2. Nevertheless, the result is very promising for cases where compressive piezoelectric stresses are required and for preventing cracking due to large piezoelectric tensile stresses in PPE systems.

  14. Formation and properties of porous films of lead zirconate titanate

    NASA Astrophysics Data System (ADS)

    Seregin, D. S.; Vorotilov, K. A.; Sigov, A. S.; Zubkova, E. N.; Abdullaev, D. A.; Kotova, N. M.; Vishnevskiy, A. S.

    2015-03-01

    The processes of formation and the properties of porous ceramic lead zirconate titanate films have been considered. The porous structure formed by thermal destruction of polyvinylpyrrolidone (PVP) with the molecular weight 29000 makes it possible to increase the cracking-free film thickness (by a factor of approximately two for one deposition at 20 wt % PVP; in this case, the volume porosity is 33%). An increase in the porosity decreases the permittivity ɛ; at 20 wt % PVP, ɛ = 432-456 depending on the film thickness. These values are less than those in nonporous films by a factor of more than two. An increase in the porosity is accompanied by an increase in the remanent polarization in the films. However, the hysteresis loop shape changes in the region of saturation polarization.

  15. Neutron irradiation effects on domain wall mobility and reversibility in lead zirconate titanate thin films

    SciTech Connect

    Graham, Joseph T.; Brennecka, Geoff L.; Ihlefeld, Jon F.; Ferreira, Paulo; Small, Leo; Duquette, David; Apblett, Christopher; Landsberger, Sheldon

    2013-03-28

    The effects of neutron-induced damage on the ferroelectric properties of thin film lead zirconate titanate (PZT) were investigated. Two sets of PbZr{sub 0.52}Ti{sub 0.48}O{sub 3} films of varying initial quality were irradiated in a research nuclear reactor up to a maximum 1 MeV equivalent neutron fluence of (5.16 {+-} 0.03) Multiplication-Sign 10{sup 15} cm{sup -2}. Changes in domain wall mobility and reversibility were characterized by polarization-electric field measurements, Rayleigh analysis, and analysis of first order reversal curves (FORC). With increasing fluence, extrinsic contributions to the small-signal permittivity diminished. Additionally, redistribution of irreversible hysterons towards higher coercive fields was observed accompanied by the formation of a secondary hysteron peak following exposure to high fluence levels. The changes are attributed to the radiation-induced formation of defect dipoles and other charged defects, which serve as effective domain wall pinning sites. Differences in damage accumulation rates with initial film quality were observed between the film sets suggesting a dominance of pre-irradiation microstructure on changes in macroscopic switching behavior.

  16. Fundamental Study of Cavitation Sensors Fabricated with Lead Zirconate Titanate Film Deposited by Hydrothermal Method: Analysis and Consideration of Output Signal from the Sensor

    NASA Astrophysics Data System (ADS)

    Seto, Yuki; Kawashima, Norimichi; Kuribayashi Kurosawa, Minoru; Takeuchi, Shinichi

    2008-05-01

    Small cavitation sensors were developed with hydrothermally synthesized lead zirconate titanate (PZT) on the outer surface of the Ti cylinder. Output signals from the fabricated cavitation sensor were analyzed in frequency domain with changing applied voltage to the Langevin transducer of the ultrasound exposure system. Frequency components from 1 to 5 MHz included in the output signal from the cavitation sensor were measured as the cavitation signal in order to distinguish the harmonic components from acoustic cavitation from those by nonlinear propagation in water. Broadband integrated voltage can be calculated by integrating harmonic components from 1 to 5 MHz included in the output signal from the cavitation sensor.

  17. Effects of Pb5Ge3O11 on pyroelectric lead-zirconate-titanate thick films deposited on silicon substrate by electrophoresis deposition

    NASA Astrophysics Data System (ADS)

    Gui Wu, Chuan; Peng, Qiang Xiang; Sun, Xiang Yu; Meng, Jia; Yao, Shuai; Luo, Wen Bo; Li Zhang, Wan

    2015-04-01

    The effects of Pb5Ge3O11 (PGO) sintering additive on the sintering temperature (Ts) and pyroelectric properties of 1 × 1 mm2 lead-zirconate-titanate (PZT) thick films on Pt/Ti/SiO2/Si substrates were studied. The pattern of PGO-added PZT thick films were formed directly by electrophoresis deposition (EPD). The PGO percentage and Ts were optimized at the range from 0 to 9 wt % and 700 to 900 °C, respectively. The energy dispersive spectrometer (EDS) results showed that the diffusion between Si and PZT were weaken gradually as the Ts decreased. The sintered PZT films sintered at 800 °C with 3 wt % PGO exhibited room-temperature pyroelectric coefficient (Pc) of 1.73 × 10-8 C/(cm2·K), figure of merit for detectivity (FD) of 1.9 × 10-5 Pa-0.5, permittivity of 330 and dielectric loss of 1.5% (1 kHz), respectively. These results demonstrate that the directly patterned PGO-added PZT thick films fabricated by EPD show potential application in MEMS detectors.

  18. Improved dielectric properties of lead zirconate titanate thin films deposited on metal foils with LaNiO3 buffer layers

    NASA Astrophysics Data System (ADS)

    Zou, Q.; Ruda, H. E.; Yacobi, B. G.

    2001-02-01

    Improved dielectric properties of lead zirconate titanate (PZT) films deposited on a variety of foils using buffer layers are reported. Foils include titanium, stainless steel, and nickel with LaNiO3(LNO) buffer layers which were prepared by sol-gel processing. High dielectric constant (330 for stainless steel, 420 for titanium, and 450 for nickel foils), low dielectric loss (<2.2% for titanium and 8% for stainless steel), symmetric ferroelectric C-V characteristics and P-E curves were obtained. The LNO layers are shown to provide an effective diffusion barrier for Ni and Cr and to restrict oxide layer formation (i.e., TiOx or NiOx) between the PZT film and the metallic foils during annealing in air.

  19. Pressure, temperature, and electric field dependence of phase transformations in niobium modified 95/5 lead zirconate titanate

    SciTech Connect

    Dong, Wen D.; Carlos Valadez, J.; Gallagher, John A.; Jo, Hwan R.; Lynch, Christopher S.; Sahul, Raffi; Hackenberger, Wes

    2015-06-28

    Ceramic niobium modified 95/5 lead zirconate-lead titanate (PZT) undergoes a pressure induced ferroelectric to antiferroelectric phase transformation accompanied by an elimination of polarization and a volume reduction. Electric field and temperature drive the reverse transformation from the antiferroelectric to ferroelectric phase. The phase transformation was monitored under pressure, temperature, and electric field loading. Pressures and temperatures were varied in discrete steps from 0 MPa to 500 MPa and 25 °C to 125 °C, respectively. Cyclic bipolar electric fields were applied with peak amplitudes of up to 6 MV m{sup −1} at each pressure and temperature combination. The resulting electric displacement–electric field hysteresis loops were open “D” shaped at low pressure, characteristic of soft ferroelectric PZT. Just below the phase transformation pressure, the hysteresis loops took on an “S” shape, which split into a double hysteresis loop just above the phase transformation pressure. Far above the phase transformation pressure, when the applied electric field is insufficient to drive an antiferroelectric to ferroelectric phase transformation, the hysteresis loops collapse to linear dielectric behavior. Phase stability maps were generated from the experimental data at each of the temperature steps and used to form a three dimensional pressure–temperature–electric field phase diagram.

  20. Preparation and Characterization of PZT Thin Films

    SciTech Connect

    Bose, A.; Sreemany, M.; Bhattacharyya, D. K.; Sen, Suchitra; Halder, S. K.

    2008-07-29

    In analogy with Piezoelectric Wafer Active Sensors (PWAS), Lead Zirconate Titanate (PZT) thin films also seem to be promising for Structural Health Monitoring (SHM) due to a number of reasons. Firstly, PZT thin films with well oriented domains show enhanced piezoelectric response. Secondly, PWAS requires comparatively large voltage leading to a demand for thin PZT films (<< {mu}m in thickness) for low voltage operation at {<=}10 V. This work focuses on two different aspects: (a) growing oriented PZT thin films in ferroelectric perovskite phase in the range of (80-150) nm thickness on epitaxial Si/Pt without a seed layer and (b) synthesizing perovskite phase in PZT thin films on Corning glass 1737 using a seed layer of TiO{sub x} (TiO{sub x} thickness ranging between 30 nm to 500 nm)

  1. Domain wall motion effect on the anelastic behavior in lead zirconate titanate piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Bourim, El Mostafa; Tanaka, Hidehiko; Gabbay, Maurice; Fantozzi, Gilbert; Cheng, Bo Lin

    2002-05-01

    Three undoped lead zirconate titanate (PZT) ceramics were prepared with compositions close to the morphotropic phase boundary: Pb(Zr0.50Ti0.50)O3, Pb(Zr0.52Ti0.48)O3, and Pb(Zr0.54Ti0.46)O3. Internal friction Q-1 and shear modulus G were measured versus temperature from 20 °C to 500 °C. Experiments were performed on an inverted torsional pendulum at low frequencies (0.1, 0.3, and 1 Hz). The ferroelectric-paraelectric phase transition results in a peak (P1) of Q-1 correlated with a sharp minimum M1 of G. Moreover the Q-1(T) curves show two relaxation peaks called R1 and R2 respectively, correlated with two shear modulus anomalies called A1 and A2 on the G(T) curves. The main features of the transition P1 peak are studied, they suggest that its behavior is similar to the internal friction peaks associated with martensitic transformation. The relaxation peak, R1 and R2 are both attributed to motion of domain walls (DWs), and can be analyzed by thermal activated process described by Arrhenius law. The R2 peak is demonstrated to be due to the interaction of domain walls and oxygen vacancies because it depends on oxygen vacancy concentration and electrical polarization. However, the R1 peak is more complex; its height is found to be increased as stress amplitude and heating rate increase. It seems that the R1 peak is influenced by three mechanisms: (i) relaxation due to DW-point defects interaction, (ii) variation of domain wall density, and (iii) domain wall depinning from point defect clusters.

  2. Evaluation of antibacterial properties of Barium Zirconate Titanate (BZT) nanoparticle

    PubMed Central

    Mohseni, Simin; Aghayan, Mahdi; Ghorani-Azam, Adel; Behdani, Mohammad; Asoodeh, Ahmad

    2014-01-01

    So far, the antibacterial activity of some organic and inorganic compounds has been studied. Barium zirconate titanate [Ba(ZrxTi1-x)O3] (x = 0.05) nanoparticle is an example of inorganic materials. In vitro studies have provided evidence for the antibacterial activity of this nanoparticle. In the current study, the nano-powder was synthesized by sol-gel method. X-ray diffraction showed that the powder was single-phase and had a perovskite structure at the calcination temperature of 1000 °C. Antibacterial activity of the desired nanoparticle was assessed on two gram-positive (Staphylococcus aureus PTCC1431 and Micrococcus luteus PTCC1625) and two gram-negative (Escherichia coli HP101BA 7601c and clinically isolated Klebsiella pneumoniae) bacteria according to Radial Diffusion Assay (RDA). The results showed that the antibacterial activity of BZT nano-powder on both gram-positive and gram-negative bacteria was acceptable. The minimum inhibitory concentration of this nano-powder was determined. The results showed that MIC values for E. coli, K. pneumoniae, M. luteus and S. aureus were about 2.3 μg/mL, 7.3 μg/mL, 3 μg/mL and 12 μg/mL, respectively. Minimum bactericidal concentration (MBC) was also evaluated and showed that the growth of E. coli, K. pneumoniae, M. luteus and S. aureus could be decreased at 2.3, 14, 3 and 18 μg/mL of BZT. Average log reduction in viable bacteria count in time-kill assay ranged between 6 Log10 cfu/mL to zero after 24 h of incubation with BZT nanoparticle. PMID:25763046

  3. Detection of indentation induced Fe-to-Afe phase transformation in lead zirconate titanate.

    SciTech Connect

    Baddorf, Arthur P.; Shin, Junsoo; Gogotsi, Yury G.; Buchheit, Thomas Edward; Watson, Chad Samuel; Kalinin, Sergei; Juliano, Thomas F.

    2005-08-01

    Instrumented indentation was combined with microscopy and spectroscopy analysis to investigate the local mechanically induced ferroelectric to anti-ferroelectric phase transformation of niobium-modified lead zirconate titanate 95/5. Indentation experiments to a depth of 2 {micro}m were performed using a Berkovich pyramidal three-sided diamond tip. Subsequent Raman spectroscopy and piezoelectric force microscopy revealed that indentation locally induced the ferroelectric to antiferroelectric phase transformation. Piezoelectric force microscopy demonstrated the ability to map the individual phases within and near indented regions on the niobium-modified lead zirconate titanate ceramics.

  4. Raman study of lead zirconate titanate under uniaxial stress

    SciTech Connect

    TALLANT, DAVID R.; SIMPSON, REGINA L.; GRAZIER, J. MARK; ZEUCH, DAVID H.; OLSON, WALTER R.; TUTTLE, BRUCE A.

    2000-04-01

    The authors used micro-Raman spectroscopy to monitor the ferroelectric (FE) to antiferroelectric (AFE) phase transition in PZT ceramic bars during the application of uniaxial stress. They designed and constructed a simple loading device, which can apply sufficient uniaxial force to transform reasonably large ceramic bars while being small enough to fit on the mechanical stage of the microscope used for Raman analysis. Raman spectra of individual grains in ceramic PZT bars were obtained as the stress on the bar was increased in increments. At the same time gauges attached to the PZT bar recorded axial and lateral strains induced by the applied stress. The Raman spectra were used to calculate an FE coordinate, which is related to the fraction of FE phase present. The authors present data showing changes in the FE coordinates of individual PZT grains and correlate these changes to stress-strain data, which plot the macroscopic evolution of the FE-to-AFE transformation. Their data indicates that the FE-to-AFE transformation does not occur simultaneously for all PZT grains but that grains react individually to local conditions.

  5. Phase Formation in PZT Phosphorus-Doped Ceramics

    SciTech Connect

    Celi, L. A.; Caballero, A. C.; Villegas, M.; Moure, C.; Fernandez, J. F.; Eiras, J. A.

    2009-04-19

    The surface modification of lead zirconate titanate (PZT) ceramics with phosphate ester leaves a phosphorus residue absorbed onto the particle surface. During the sintering processes, this surface layer reacts with the PZT to form lead-rich compounds, such as Pb{sub 3}(PO{sub 4}){sub 2} and Pb{sub 4}(P{sub 2}O{sub 9}). The formation of such a compounds may be the responsible for the grain growth inhibition observed in PZT-modified ceramics, as well as the lead loss reduction.

  6. Hyperfine interaction measurements on ceramics: PZT revisited

    NASA Astrophysics Data System (ADS)

    Guarany, Cristiano A.; Araújo, Eudes B.; Silva, Paulo R. J.; Saitovitch, Henrique

    2007-02-01

    The solid solution of PbZr 1-xTi xO 3, known as lead-zirconate titanate (PZT), was probably one of the most studied ferroelectric materials, especially due to its excellent dielectric, ferroelectric and piezoelectric properties. The highest piezoelectric coefficients of the PZT are found near the morphotropic phase boundary (MPB) (0.46⩽ x⩽0.49), between the tetragonal and rhombohedral regions of the composition-temperature phase diagram. Recently, a new monoclinic phase near the MPB was observed, which can be considered as a “bridge” between PZT's tetragonal and rhombohedral phases. This work is concerned with the study of the structural properties of the ferroelectric PZT (Zr/Ti=52/48, 53/47) by hyperfine interaction (HI) measurements obtained from experiments performed by using the nuclear spectroscopy time differential perturbed angular correlation (TDPAC) in a wide temperature range.

  7. Dielectric Properties of PVDF/PZT

    SciTech Connect

    Zak, A. Khorsand; Chen, Gan Wee; Majid, W. H. Abd.

    2011-03-30

    Poly(vinylidene fluoride)/ lead zirconate titanate nanocomposite (PVDF/PZT-NPs) were successfully prepared by mixing fine Pb(Zr{sub 0.52}, Ti{sub 0.48})O{sub 3} nanoparticles (PZT-NPs) into a PVDF solution under ultrasonication. The mixture was spin coated onto glass substrate and then annealed at 80 deg. C. X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) were used to characterize the structure and properties of the obtained thin-film nanocomposites. The nanocomposites exhibited good dielectric stability over a wide frequency range.

  8. Influence of combined external stress and electric field on electric properties of 0.5% Fe-doped lead zirconate titanate ceramics

    SciTech Connect

    Suchanicz, J.; Kim-Ngan, N.-T. H.; Konieczny, K.; Jankowska-Sumara, I.; Sitko, D.; Goc-Jaglo, D.; Balogh, A. G.

    2009-11-01

    Influence of uniaxial pressure (0-1000 bars) applied parallel to or perpendicularly to the ac or dc electric field (in one-dimensional or two-dimensional manner) on dielectric and ferroelectric properties of hard lead zirconate titanate (PZT) ceramics were investigated. The experimental results revealed that applying uniaxial pressure leads to a reduction in the peak intensity of the electric permittivity (epsilon), of the frequency dispersion as well as of the dielectric hysteresis. Moreover, with increasing pressure the peak intensity of epsilon becomes diffused and shifts to a higher temperature. It was also found that simultaneous application of uniaxial pressure and electric field (perpendicular to each other) in the poling process improves the ferroelectric properties. This indeed indicates new possibility for poling materials with a high coercive field and/or high electric conductivity. The effects of uniaxial load are weaker than that obtained for soft PZT ceramics. It was concluded that applying uniaxial pressure induces similar effects as increasing the Ti ion concentration in PZT system. The obtained results were interpreted through Cochran soft mode and domain switching processes under applying of pressure.

  9. Development of a straightness measurement and compensation system with multiple right-angle reflectors and a lead zirconate titanate-based compensation stage

    SciTech Connect

    Liu, Chien-Hung; Chen, Jui-Hung; Teng, Yun-Feng

    2009-11-15

    This paper presents a real-time straightness measurement and compensation system with an optical straightness measurement system and a single-axis flexure-hinge type lead zirconate titanate (PZT)-based compensation stage. The optical straightness measurement system consists of a He-Ne laser, a quadrant photodiode detector, and five right-angle reflectors. Multiple laser beam reflections between the right-angle reflectors increase the sensitivity of the straightness measurement by a factor of 6. The right-angle reflectors can be moved by the flexure-hinge type PZT-based compensation stage that is actuated by a PZT actuator to ensure that the laser beam is always projected onto the center of the quadrant detector. These two systems are integrated and fixed on a scanning stage. The resolution of the straightness measurement system is 0.1 {mu}m. Using the real-time straightness compensation system, the straightness error of the scanning stage is fed back to the control system. The compensated straightness error of the scanning stage system was reduced from 6.5 {mu}m to less than 1 {mu}m.

  10. Oriented lead zirconate titanate thin films: Characterization of film crystallization

    SciTech Connect

    Voigt, J.A.; Tuttle, B.A.; Headley, T.J.; Eatough, M.O.; Lamppa, D.L.; Goodnow, D.

    1993-11-01

    Film processing temperature and time was varied to characterize the pyrochlore-to-perovskite crystallization of solution-derived PZT 20/80 thin films. 3000 {Angstrom} thick films were prepared by spin deposition using <100> single crystal MgO as substrate. By controlled rapid thermal processing, films at different stages in the perovskite crystallization process were prepared with the tetragonal PZT 20/80 phase being <100>/<001> oriented relative to the MgO surface. An activation energy for the conversion process of 326 kJ/mole was determined by use of an Arrhenius expression using rate constants found by application of the method of Avrami. Activation energy for formation of the PZT 20/80 perovskite phase of the solution-derived films compared favorably with that calculated from data by Kwok and Desu for sputter-deposited 3500 {Angstrom} thick PZT 55/45 films. Similarity in activation energies indicates that the energetics of the conversion process are not strongly dependent on the method used for film deposition.

  11. Cantilever Type Lead Zirconate Titanate Microactuator Utilizing Ruthenium Oxide

    NASA Astrophysics Data System (ADS)

    Lee, Sun-Ho; Jeon, Min-Seok; Hong, Kyung-Il; Lee, Jin-Won; Kim, Chang-Kyung; Choi, Duck-Kyun

    2000-05-01

    A new and simple cantilever type Pb(Zr, Ti)O3 [PZT] microactuator was fabricated by adopting RuO2. The RuO2 has reasonably good conductivity and stiffness and it can replace the double layer of electrode and supporting layer to a single layer in a cantilever beam. The RuO2, PZT and Al thin films were deposited on the Si substrate. The patterning of the Al was carried out by a lithography process and etched with a chemical wet etchant. The etching of PZT and RuO2 were performed by a reactive ion etching system. The Si was etched isotropically to form a cantilever beam. The fabricated cantilever beam consists of Al, PZT and RuO2, and the thicknesses of the films are 0.40, 0.25 and 0.70 μm, respectively. The beams were from 140 μm to 275 μm in length and all of them were 60 μm wide. Driving tilt angles of the cantilever beams were almost proportional to the applied voltages.

  12. Thickness dependence of the poling and current-voltage characteristics of paint films made up of lead zirconate titanate ceramic powder and epoxy resin

    NASA Astrophysics Data System (ADS)

    Egusa, Shigenori; Iwasawa, Naozumi

    1995-11-01

    A specially prepared paint made up of lead zirconate titanate (PZT) ceramic powder and epoxy resin was coated on an aluminum plate and was cured at room temperature, thus forming the paint film of 25-300 μm thickness with a PZT volume fraction of 53%. The paint film was then poled at room temperature, and the poling behavior was determined by measuring the piezoelectric activity as a function of poling field. The poling behavior shows that the piezoelectric activity obtained at a given poling field increases with an increase in the film thickness from 25 to 300 μm. The current-voltage characteristic of the paint film, on the other hand, shows that the increase in the film thickness leads not only to an increase in the magnitude of the current density at a given electric field but also to an increase in the critical electric field at which the transition from the ohmic to space-charge-limited conduction takes place. This fact indicates that the amount of the space charge of electrons injected into the paint film decreases as the film thickness increases. Furthermore, comparison of the current-voltage characteristic of the paint film with that of a pure epoxy film reveals that the space charge is accumulated largely at the interface between the PZT and epoxy phases in the paint film. On the basis of this finding, a model is developed for the poling behavior of the paint film by taking into account a possible effect of the space-charge accumulation and a broad distribution of the electric field in the PZT phase. This model is shown to give an excellent fit to the experimental data of the piezoelectric activity obtained here as a function of poling field and film thickness.

  13. Optical absorption in ion-implanted lead lanthanum zirconate titanate ceramics

    SciTech Connect

    Seager, C.H.; Land, C.E.

    1984-08-15

    Optical absorption measurements have been performed on unmodified and on ion-implanted lead lanthanum zirconate titanate ceramics using the photothermal deflection spectroscopy technique. Bulk absorption coefficients depend on the average grain size of the material while the absorption associated with the ion-damaged layers does not. The damage-induced surface absorptance correlates well with the photosensitivity observed in implanted PLZT devices, supporting earlier models for the enhanced imaging efficiency of the materials.

  14. Photo-reduction of silver salts on highly heterogeneous lead zirconate titanate

    NASA Astrophysics Data System (ADS)

    Jones, P. M.; Dunn, S.

    2007-05-01

    This paper presents the work undertaken to determine the influences on the photo-induced growth of silver nanoclusters on the surfaces of lead zirconate titanate thin films. The lead zirconate titanate films were grown on indium tin oxide coated glass. They exhibited a highly textured surface and can be treated as wide bandgap semiconductors that exhibit ferroelectric behaviour. We show that there is a preferential deposition of silver metal on the ferroelectric films that is related not only to the polarization state of the ferroelectric domains but also to the surface defects such as grain boundaries and defects within the film. The greatest deposition rates are found to occur at grain boundaries where there is an approximately 40:1 ratio of silver clusters when compared to the native positive domains exhibited by the lead zirconate titanate. We propose that the mechanism for cluster growth depends on the availability, and diffusion rate, of electrons into the growing cluster and that the clusters grow from a discrete nucleation point. We also show that the growth of a monolayer of silver is sufficient to prevent the formation of electron-hole pairs by blocking the UV irradiation and that the silver nanoparticles are readily removed from the surface using an ultrasonic bath leading to a possible new method of manufacturing metal nanoparticles.

  15. The effect of a hydrostatic pressure induced phase transformation on the unipolar electrical response of Nb modified 95/5 lead zirconate titanate

    NASA Astrophysics Data System (ADS)

    Valadez, J. C.; Sahul, R.; Alberta, E.; Hackenberger, W.; Lynch, C. S.

    2012-01-01

    Niobium doped lead zirconate titanate (95/5 NbPZT) undergoes a hydrostatic pressure induced ferroelectric rhombohedral to antiferroelectric orthorhombic phase transformation (FE-AFE). This work reports on the experimental characterization of the large field dielectric response to unipolar electric field as it passes through the forward and reverse FE-AFE transformations. The poled ceramic was hydrostatically depoled by driving the FE-AFE phase transformation and stress-strain and stress-electric displacement responses were measured. After this initial characterization, specimens of 95/5 NbPZT were subjected to unipolar electric field loading at different hydrostatic pressure levels. Electric field was varied from zero to 1 MV/m at a series of fixed pressure levels between zero and 550 MPa. This resulted in minor hysteresis loops with the area inside the loops dependent on both pressure and electric field amplitude. Two different slopes were taken from the D-E loops, identified as the small field and large field slopes. Each changed with pressure and displayed distinct jumps at the forward and reverse FE-AFE phase transformations. The area within the loops in the ferroelectric regime, attributed to domain wall motion, increased as pressure was increased and dropped abruptly as the material passed through the pressure induced phase transformation.

  16. Microstructural and optical characterization of PZT nanopowder prepared at low temperature

    NASA Astrophysics Data System (ADS)

    Ghasemifard, M.; Hosseini, S. M.; Khorsand Zak, A.; Khorrami, Gh. H.

    2009-01-01

    Lead zirconate titanate (PZT) nanopowders were synthesized by the metal organic and salt precursor's sol-gel combustion technique. Single-phase perovskite PZT powders were obtained after heat treatment at temperature of 500 °C. The effects of calcination temperature on lattice parameters and tetragonality of PZT powders have been discussed. The average particles size is estimated to be around 70-80 nm by SEM observations. The absorption coefficient ( α) and the band-gap energy ( Eg) of the perovskite oxide have been estimated using Fourier transform infrared (FTIR) spectroscopy.

  17. Low Temperature Sintering of PZT

    NASA Astrophysics Data System (ADS)

    Medesi, A.; Greiner, T.; Benkler, M.; Megnin, C.; Hanemann, T.

    2014-11-01

    This paper describes the fabrication and characterization of lead zirconate titanate (PZT) films fired in a liquid-phase sintering process at 900 °C in air. In detail the manufacturing of piezoelectric multilayers with internal pure silver (Tm = 961 °C) electrodes are reported. The feasibility of ten sintering aids in two different volume fractions was investigated for a commercial hard PZT powder (PIC 181, PI Ceramics) with respect to density, microstructure, mechanical behaviour, and piezoelectric properties. Li2O, Li2CO3, PbO, MnO2, V2O5, CuO, Bi2O3, the eutectic mixtures Cu2O·PbO and PbO·WO3 and the ternary system Li2CO3·Bi2O3·CuO (LBCu) have been tested as liquid phase sintering aids. The combination of PZT with LBCu showed the best results. With 5 vol.% LBCu an average relative density of 97% and a characteristic breaking strength of 77 MPa was achieved. Composition of PZT with 2 vol.% LBCu exhibits the highest averaged piezoelectrical charge constant (d33) of 181 pC/N.

  18. Power harvesting using PZT ceramics embedded in orthopedic implants.

    PubMed

    Chen, Hong; Liu, Ming; Jia, Chen; Wang, Zihua

    2009-09-01

    Battery lifetime has been the stumbling block for many power-critical or maintenance-free real-time embedded applications, such as wireless sensors and orthopedic implants. Thus a piezoelectric material that could convert human motion into electrical energy provides a very attractive solution for clinical implants. In this work, we analyze the power generation characteristics of stiff lead zirconate titanate (PZT) ceramics and the equivalent circuit through extensive experiments. Our experimental framework allows us to explore many important design considerations of such a PZT-based power generator. Overall we can achieve a PZT element volume of 0.5 x 0.5 x 1.8 cm, which is considerably smaller than the results reported so far. Finally, we outline the application of our PZT elements in a total knee replacement (TKR) implant. PMID:19812004

  19. Programmable diffractive optical element using a multichannel lanthanum-modified lead zirconate titanate phase modulator

    NASA Astrophysics Data System (ADS)

    Thomas, James A.; Fainman, Yeshaiahu

    1995-07-01

    We introduce a programmable diffractive optical element based on an electro-optic phased array implemented with a multichannel lanthanum-modified lead zirconate titanate phase modulator. The design and fabrication procedures are outlined, along with an experimental demonstration of the device. Experimental results from a 16-channel device operating with a 2 pi voltage of 300 V demonstrate selective beam steering. The programmable diffractive optical element allows for efficient, high-speed high-resolution random-access optical beam steering over a continuous scanning range.

  20. Electron-microscope study of lanthanum-doped lead zirconate-titanate solid solutions

    SciTech Connect

    Ishchuk, V.M.; Presnyakova, O.V.

    1985-12-01

    This paper examines the structure of specimens of lanthanumdoped lead zirconate-titanate solid solutions in the hysteresis region of the phase diagram, using transmission electron microscopy. The electron-microscopic images of PLZT ceramic of composition display an unusual diffraction contrast. An analysis of the images obtained for different orientations of the cleavages of specimens of composition indicate that the second-phase inclusions are cylindrical in the main. The authors hypothesize that the inclusions are a ferroelectric phase in an antiferroelectric matrix.

  1. Dielectric loss peak due to platinum electrode porosity in lead zirconate titanate thin-film capacitors

    NASA Astrophysics Data System (ADS)

    Jung, D. J.; Dawber, M.; Ruediger, A.; Scott, J. F.; Kim, H. H.; Kim, Kinam

    2002-09-01

    Impedance spectroscopy measurements were carried out in situ on lead zirconate titanate capacitors 1.2×1.2 μm2 in size on a Samsung 4 Mbit 6 in, wafer. We show here that large dielectric loss appears at low frequencies, which is a constriction effect due to the porosity of the platinum electrode. Porous platinum electrodes facilitate an oxygen electrode reaction. The effect may be removed by annealing the platinum electrode at moderate temperature (300 °C). Such an anneal should thus be considered an essential step in the fabrication of a ferroelectric thin-film capacitor on Pt.

  2. Bistable optical information storage using antiferroelectric-phase lead lanthanum zirconate titanate ceramics

    SciTech Connect

    Land, C.E.

    1988-11-01

    A recently discovered photostorage effect in antiferroelectric-phase (AFE-phase) lead lanthanum zirconate titanate (PLZT) compositions appears to be particularly applicable to binary optical information storage. The basis for bistable optical information storage is that exposure to near-UV or visible light shifts the electric field threshold of the phase transition between the field-induced ferroelectric (FE) phase and the stable AFE phase in the direction of the initial AFE /yields/ FE phase transition. Properties of this photoactivated shift of the FE /yields/ AFE phase transition, including preliminary photosensitivity measurements and photostorage mechanisms, are presented. Photosensitivity enhancement by ion implantation is also discussed.

  3. Compact piezoelectric micromotor with a single bulk lead zirconate titanate stator

    NASA Astrophysics Data System (ADS)

    Yan, Liang; Lan, Hua; Jiao, Zongxia; Chen, Chin-Yin; Chen, I.-Ming

    2013-04-01

    The advance of micro/nanotechnology promotes the development of micromotors in recent years. In this article, a compact piezoelectric ultrasonic micromotor with a single bulk lead zirconate titanate stator is proposed. A traveling wave is generated by superposition of bending modes with 90° phase difference excited by d15 inverse piezoelectric effects. The operating principle simplifies the system structure significantly, and provides a miniaturization solution. A research prototype with the size of 0.75× 0.75×1.55 mm is developed. It can produce start-up torque of 0.27μNmand maximum speed of 2760 r/min at 14RMS.

  4. Strong magnetoelectric coupling at microwave frequencies in metallic magnetic film/lead zirconate titanate multiferroic composites

    NASA Astrophysics Data System (ADS)

    Pettiford, C.; Lou, J.; Russell, L.; Sun, N. X.

    2008-03-01

    Strong magnetoelectric coupling was observed at microwave frequencies in metallic magnetic film/lead zirconate titanate [Pb(Zr,Ti)O3] multiferroic composites, in which the magnetic films were either FeCoB or FeGaB with relatively high saturation magnetostriction constants between 40 and 70ppm and narrow ferromagnetic resonance linewidths of ˜20Oe at 10GHz. Large electrostatically induced ferromagnetic resonance frequency shifts of 50-110MHz at ˜2.3GHz were observed. These metallic magnetic film/Pb(Zr ,Ti)O3 multiferroic composites with large electrostatic tunability of the ferromagnetic resonance frequency provide great opportunities for integrated microwave multiferroic devices.

  5. EFFECTS OF ELECTRIC FIELD ON THE BIAXIAL STRENGTH OF POLED PZT

    SciTech Connect

    Wang, Hong; Wereszczak, Andrew A

    2008-01-01

    The mechanical integrity of piezoelectric ceramics plays a crucial role in the performance and design of lead zirconate titanate (PZT) piezo stack actuators especially as PZT actuators become physically larger and are sought to operate under harsher conditions. The reliable design of such systems demands additional consideration of a number of issues that include electro-mechanical coupling as well as strength-size scaling. This study addresses some of those issues through the use of ball-on-ring (BoR) equibiaxial flexure strength tests of two PZT piezo ceramics. The BoR biaxial flexure tests were conducted with two PZT materials under different electric fields. Fracture surfaces and failure initiations were analyzed using optical and scanning electronic microscopy. The effects of electric fields on the two-parameter Weibull distribution are discussed. These results will serve as input data for future probabilistic reliability analysis of multilayer PZT piezo actuators.

  6. A role of BNLT compound addition on structure and properties of PZT ceramics

    NASA Astrophysics Data System (ADS)

    Jaita, P.; Watcharapasorn, A.; Jiansirisomboon, S.

    2010-09-01

    In this research, effects of lead-free bismuth sodium lanthanum titanate (BNLT) addition on structure and properties of lead zirconate titanate (PZT) ceramics were investigated. PZT ceramics with addition of 0.1-3.0 wt%BNLT were fabricated by a solid-state mixed oxide method and sintering at 1050-1200 °C for 2 h to obtain dense ceramics with at least 96% of theoretical density. X-ray diffraction indicated that complete solid solution occurred for all compositions. Phase identification showed both tetragonal and rhombohedral perovskite structure of PZT with no BNLT phase detected. Scanning electron micrographs of fractured PZT/BNLT ceramics showed equiaxed grain shape with both transgranular and intergranular fracture modes. Addition of BNLT was also found to reduce densification and effectively limited grain growth of PZT ceramic. Optimum Hv and KIC values were found to be 4.85 GPa and 1.56 MPa.m 1/2 for PZT/0.5 wt%BNLT sample. Among PZT/BNLT samples, room temperature dielectric constant seemed to be improved with increasing BNLT content. The maximum piezoelectric coefficient values were observed in pure PZT ceramic and were slightly decreased in BNLT-added samples. Small reduction of remanent polarization and coercive field in hysteresis loops was observed in BNLT-added samples, indicating a slightly suppressed ferroelectric interaction in this material system.

  7. Experimental characterization of PZT fibers using IDE electrodes

    NASA Astrophysics Data System (ADS)

    Wyckoff, Nicholas; Ben Atitallah, Hassene; Ounaies, Zoubeida

    2016-04-01

    Lead zirconate titanate (PZT) fibers are mainly used in active fiber composites (AFC) where they are embedded in a polymer matrix. Interdigitated electrodes (IDE) along the direction of the fibers are used to achieve planar actuation, hereby exploiting the d33 coefficient of PZT. When embedded in the AFC, the PZT fibers are subjected to mechanical loading as well as non-uniform electric field as a result of the IDEs. Therefore, it is important to characterize the electrical and electromechanical behavior of these fibers ex-situ using the IDE electrodes to assess the impact of nonuniform electric field on the properties of the fibers. For that reason, this work aims at quantifying the impact of IDE electrodes on the electrical and electromechanical behavior of PZT fibers, which is necessary for their successful implementation in devices like AFC. The tested fibers were purchased from Advanced Cerametrics and they have an average diameter of 250 micrometers. The IDE electrodes were screen printed on an acrylic substrate. The PZT fibers were subjected to frequency sweeps at low voltages to determine permittivity for parallel and interdigitated electrodes. The piezoelectric e33 constant is determined from electromechanical testing of PZT fibers in parallel electrodes to compare the electromechanical behavior for PZT in bulk and fiber form. The dielectric constant and e33 were found to be lower for the IDE and parallel electrodes compared to bulk but comparable to results published in literature.

  8. Mechanical behavior, properties and reliability of tin-modified lead zirconate titanate.

    SciTech Connect

    Watson, Chad Samuel

    2003-08-01

    The influences of temperature and processing conditions (unpoled or poled-depoled) on strength, fracture toughness and the stress-strain behavior of tin-modified lead zirconate titanate (PSZT) were evaluated in four-point bending. PSZT exhibits temperature-dependent non-linear and non-symmetric stress-strain behavior. A consequence of temperature dependent non-linearity is an apparent reduction in the flexural strength of PSZT as temperature increases. At room temperature the average stress in the outer-fiber of bend bars was 84 MPa, whereas, for specimens tested at 120 C the average failure stress was only 64 MPa. The load-carrying capacity, however, does not change with temperature, but the degree of deformation tolerated by PSZT prior to failure increased with temperature.

  9. Model for ion-implantation-induced improvements of photoferroelectric imaging in lead lanthanum zirconate titanate ceramics

    SciTech Connect

    Peercy, P.S.; Land, C.E.

    1980-11-01

    Studies of photoferroelectric image storage in H-, He-, and, more recently, Ar-implanted /(PLZT) lead lanthanum zirconate titanate reveal that the photosensitivity can be significantly increased by ion implantation into the image storage surface. For example, the photosensitivity after implantation with 5 x 10/sup 14/ 500-keV Ar/cm/sup 2/ is increased by about three orders of magnitude over that of unimplanted PLZT. The increase in photosensitivity results from a decrease in dark conductivity and changes in the photoconductivity of the implanted layer. We present a phenomenological model which describes the photosensitivity enhancement obtained by ion implantation. This model takes into account both light- and ion- implantation-induced changes in conductivity and gives quantitative agreement with the measured changes in the coercive voltage with near-UV light intensity for ion-implantated PLZT.

  10. Effects of ion implantation on the photoferroelectric properties of lead lanthanum zirconate titanate ceramics

    SciTech Connect

    Land, C.E.; Peercy, P.S.

    1981-01-01

    Earlier studies of Ar-, Ar + Ne- and Ar + Ne + He- implanted ferroelectric-phase lead lanthanum zirconate titanate (PLZT) ceramics indicate that ion implantation can increase the intrinsic (near-uv) photoferroelectric sensitivity by more than four orders of magnitude compared to that of unimplanted PLZT. More recent studies involving implantation of chemically active ions, e.g., Al and Cr, indicate that the absorption spectrum of the implanted region can be extended from the near-uv to the visible, and that the extrinsic (visible-light) photoferroelectric sensitivity can be improved substantially with respect to that of PLZT implanted with inert ions. The results of these studies are reviewed and photographic sensitivities of Ar-, Ar + Ne-, Ar + Ne + He-, Al-, Cr-, Fe-, and Fe + Ne- implanted PLZT at both near-uv and visible-light wavelengths are compared with the sensitivities of other image storage media.

  11. Photoluminescence of barium titanate and barium zirconate in multilayer disordered thin films at room temperature.

    PubMed

    Moreira, M L; Gurgel, M F C; Mambrini, G P; Leite, E R; Pizani, P S; Varela, J A; Longo, E

    2008-09-25

    The emission of wide band photoluminescence showed a synergic effect on barium zirconate and barium titanate thin films in alternate multilayer system at room temperature by 488 nm exiting wavelength. The thin films obtained by spin-coating were annealed at 350, 450, and 550 degrees C for 2 h. The X-ray patterns revealed the complete separation among the BaTiO3 and BaZrO3 phases in the adjacent films. Visible and intense photoluminescence was governed by BaZrO3 thin films in the multilayer system. Quantum mechanics calculations were used in order to simulate ordered and disordered thin films structures. The disordered models, which were built by using the displacement of formers and modifier networks, showed a different symmetry in each system, which is in accordance with experimental photoluminescence emission, thus allowing to establish a correlation among the structural and optical properties of these multilayered systems. PMID:18593105

  12. Processing and structural properties of random oriented lead lanthanum zirconate titanate thin films

    SciTech Connect

    Araújo, E.B.; Nahime, B.O.; Melo, M.; Dinelli, F.; Tantussi, F.; Baschieri, P.; Fuso, F.; Allegrini, M.

    2015-01-15

    Highlights: • Pyrochlore phase crystallizes near the bottom film-electrode interface. • PLZT films show a non-uniform microstrain and crystallite size in depth profile. • Complex grainy structure leads to different elastic modulus at the nanoscale. - Abstract: Polycrystalline lead lanthanum zirconate titanate (PLZT) thin films have been prepared by a polymeric chemical route to understand the mechanisms of phase transformations and map the microstructure and elastic properties at the nanoscale in these films. X-ray diffraction, atomic force microscopy (AFM) and ultrasonic force microscopy (UFM) have been used as investigative tools. On one side, PLZT films with mixed-phase show that the pyrochlore phase crystallizes predominantly in the bottom film-electrode interface while a pure perovskite phase crystallizes in top film surface. On the contrary, pyrochlore-free PLZT films show a non-uniform microstrain and crystallite size along the film thickness with a heterogeneous complex grainy structure leading to different elastic properties at nanoscale.

  13. Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring

    NASA Astrophysics Data System (ADS)

    Dagdeviren, Canan; Su, Yewang; Joe, Pauline; Yona, Raissa; Liu, Yuhao; Kim, Yun-Soung; Huang, Yongan; Damadoran, Anoop R.; Xia, Jing; Martin, Lane W.; Huang, Yonggang; Rogers, John A.

    2014-08-01

    The ability to measure subtle changes in arterial pressure using devices mounted on the skin can be valuable for monitoring vital signs in emergency care, detecting the early onset of cardiovascular disease and continuously assessing health status. Conventional technologies are well suited for use in traditional clinical settings, but cannot be easily adapted for sustained use during daily activities. Here we introduce a conformal device that avoids these limitations. Ultrathin inorganic piezoelectric and semiconductor materials on elastomer substrates enable amplified, low hysteresis measurements of pressure on the skin, with high levels of sensitivity (~0.005 Pa) and fast response times (~0.1 ms). Experimental and theoretical studies reveal enhanced piezoelectric responses in lead zirconate titanate that follow from integration on soft supports as well as engineering behaviours of the associated devices. Calibrated measurements of pressure variations of blood flow in near-surface arteries demonstrate capabilities for measuring radial artery augmentation index and pulse pressure velocity.

  14. Ultra large deflection of thin PZT/aluminium cantilever beam

    NASA Astrophysics Data System (ADS)

    Seveno, Raynald; Guiffard, Benoit; Regoin, Jean-Pierre

    2015-04-01

    Flexible piezoelectric cantilever beam has been realized by depositing lead zirconate titanate (PZT) thin film (4.5 μm) by chemical solution deposition (CSD) onto very thin aluminium foil (16 μm). The tip deflection of the beam has been measured as a function of the frequency of the applied sinusoidal voltage to the PZT film for different amplitudes. Resonance curves have been compared to a classical model of an oscillating system under sinusoidal stress with a very good agreement. Despite of weak ferroelectric properties (remnant polarization: 13 μC/cm2), ultra-large deflection amplitudes have been measured under very moderate applied voltage values: 750 μm@10 V for quasi-static mode and 5 mm@10 V at the resonance frequency ( 12 Hz), which makes this PZT/aluminium composite film very promising for highly flexible actuation applications where large displacements are wanted.

  15. Microemulsion Synthesis of Nanoparticle PZT Powder

    NASA Astrophysics Data System (ADS)

    Amiriyan, M.; Nemati, Z. A.; Rahmanifar, M. S.; Ramesh, S.; Meenaloshini, S.; Tolouei, R.

    2011-01-01

    Nanocrystalline lead zirconate titanate (PZT) powders have been synthesized using microemulsion processing route. Microemulsion is one of the major processing techniques to synthesize a nanosize, homogenous, and almost agglomerate free ceramic powders. The ternary microemulsion system is consisted of cyclohexane as the oil phase, Triton X100 as the nonionic surfactant phase, and an aqueous phase containing 0.619 M Pb2+, 0.325 M Zr4+, and 0.3 M Ti4+, representing a Pb2+: Zr4+: Ti4+ molar ratio of 1:0.52:0.48. The ratio of these cations has been adjusted using Inductively Coupled Plasma (ICP) technique. After coprecipitation of metallic hydroxides by adding ammonia solution in microemulsion system, the PZT precursor was obtained. PZT powders have been prepared upon calcination of precursor at 800° C. Prepared powders was characterised using techniques such as X-ray diffraction, differential thermal analysis, and scanning electron microscopy. The characteristics of microemulsion processed powder is discussed, with emphasis on the presence of nano scaled PZT powder with a composition near to morphotropic phase boundary (MPB) without formation of any intermediate phases.

  16. Damage detection of concrete beam based on embedded PZT impedance transducer encapsulated by cement

    NASA Astrophysics Data System (ADS)

    Wang, Dansheng; Zhu, Hongping; Yuan, Junqiang; Li, Jinghui; Li, Yu

    2012-04-01

    Piezoelectric material, such as, Lead Zirconate Titanate (PZT) can be use as sensing and/or actuating element for structural health monitoring due to its direct and converse piezoelectric effects. In this study, several fabricated PZT impedance transducers encapsulated by cement were embedded into a plain concrete beam to detect the surface crack damage. By monitoring the electromechanical (EM) admittance spectra of the embedded transducers, the structural surface crack damage was investigated. From the experimental results it is found that the shape of the electrical admittance spectra curve of the embedded PZT transducers hardly changes before and after surface crack is of presence, and the EM admittance spectra exhibits tiny change in amplitude with the increase of crack depth, which indicate that the embedded PZT transducers into concrete are insensitive to surface crack damage.

  17. Transducer loading effect on the performance of PZT-based SHM systems.

    PubMed

    Baptista, Fabricio Guimarães; Filho, Jozue Vieira

    2010-04-01

    In the last years, the piezoelectric transducers of lead zirconate titanate (PZT) have been widely used in structural health monitoring (SHM) systems based on the electromechanical (E/M) impedance technique. Although many studies indicate the successful use of PZT in damage detection, some practical considerations still have to be considered in real applications. In this work, the effect of the transducer loading caused by mechanical impedance of the host structure is analyzed using an equivalent electromechanical circuit. Tests were performed on structures with various sizes and the results show that the transducer loading significantly reduces the sensitivity of the system for detecting structural damages. PMID:20378455

  18. New Fabrication of High-Frequency (100-MHz) Ultrasound PZT Film Kerfless Linear Array

    PubMed Central

    Zhu, Benpeng; Chan, Ngai Yui; Dai, Jiyan; Shung, K. Kirk; Takeuchi, Shinichi; Zhou, Qifa

    2013-01-01

    The paper describes the design, fabrication, and measurements of a high-frequency ultrasound kerfless linear array prepared from hydrothermal lead zirconate titanate (PZT) thick film. The 15-µm hydrothermal PZT thick film with an area of 1 × 1 cm, obtained through a self-separation process from Ti substrate, was used to fabricate a 32-element 100-MHz kerfless linear array with photolithography. The bandwidth at −6 dB without matching layer, insertion loss around center frequency, and crosstalk between adjacent elements were measured to be 39%, −30 dB, and −15 dB, respectively. PMID:23549547

  19. Passive vibration damping of carbon fiber reinforced plastic with PZT particles and SMA powder

    NASA Astrophysics Data System (ADS)

    Jung, Jaemin; Lee, Woo Il; Lee, Dasom; Park, Sungho; Moon, Sungnam

    2016-04-01

    Carbon fiber reinforced plastic (CFRP) has been used various industrial fields, because of high strength, light weight, corrosion resistance and other properties. In this study, lead zirconate titanate (PZT) ceramic particles which is one of typical piezoelectric material and shape memory alloy powder dispersed in CFRP laminate in order to improve the vibration damping by dissipating vibration energy quickly. The loss factor (tanδ) is measured in Dynamic mechanical analyzer (DMA) which is used to measure the viscoelastic behavior of a material to verify the change in vibration damping. The results show that there exists difference on vibration damping ability between CFRP with PZT ceramic particles and CFRP with SMA powder.

  20. Thin film multilayers of ferroelastic TiNi-ferroelectric PZT: Fabrication and characterization

    SciTech Connect

    Mercado, P.G.; Jardine, A.P.

    1994-12-31

    Heterostructure multilayers of ferroelastic TiNi coupled to thin film TiO{sub 2} and ferroelectric lead zirconate titanate (PZT) produces a smart material capable of performing both sensing and actuating functions. An important issue is the ability to generate the appropriate crystalline phases of each of the materials and to minimize the chemical interactions from the surrounding material. TiO{sub 2} and PZT thin films were deposited onto commercially available TiNi substrates by the sol-gel process. Minimum crystallization temperatures for the TiO{sub 2} phases and PZT perovskite phases were determined and characterized by X-ray diffraction (XRD). For testing of the properties of these mesoscale structures to occur, the mechanical and electrical properties of the individual components need to be characterized. The mechanical properties of the PZT thin film were characterized by Scanning Electron Microscopy and optical microscopy. Cracking and defects in the PZT were observed for thick films, however thin PZT films of 1 micron or less showed better mechanical integrity. The ferroelectric properties of the PZT thin films were smaller than for bulk PZT; this was likely associated with leakage currents caused by the mechanical imperfections of the films.

  1. Oxalate co-precipitation synthesis of calcium zirconate and calcium titanate powders.

    SciTech Connect

    Hernandez-Sanchez, Bernadette A.; Tuttle, Bruce Andrew

    2009-06-01

    Fine powders of calcium zirconate (CaZrO{sub 3}, CZ) and calcium titanate (CaTiO{sub 3}, CT) were synthesized using a nonaqueous oxalate co-precipitation route from Ca(NO{sub 3}){sub 2}{center_dot}4 H{sub 2}O and group(IV) n-butoxides (Ti(OBu{sup n}){sub 4} or Zr(OBu{sup n}){sub 4}). Several reaction conditions and batch sizes (2-35 g) were explored to determine their influence on final particle size, morphology, and phase. Characterization of the as-prepared oxalate precursors, oven dried oxalate precursors (60-90 C), and calcined powders (635-900 C) were analyzed with TGA/DTA, XRD, TEM, and SEM. Densification and sintering studies on pressed CZ pellets at 1375 and 1400 C were also performed. Through the developed oxalate co-precipitation route, densification temperatures for CZ were lowered by 125 C from the 1500 C firing temperature required for conventional mixed oxide powders. Low field electrical tests of the CZ pellets indicated excellent dielectric properties with dielectric constants of {approx}30 and a dissipation factor of 0.0004 were measured at 1 kHz.

  2. Effect of composition and temperature on electric fatigue of La-doped lead zirconate titanate ceramics

    NASA Astrophysics Data System (ADS)

    Jiang, Q. Y.; Subbarao, E. C.; Cross, L. E.

    1994-06-01

    Composition and temperature of ferroelectric La-doped lead zirconate titanate ceramics influence its electric fatigue behavior, defined as the degradation of the electrical properties under the action of an ac field applied for a long time. Compositions of rhombohedral symmetry exhibit little or no fatigue compared with those of tetragonal and orthorhombic symmetry. At temperatures higher than the dielectric maximum, no fatigue effect was detected. Compositions close to phase boundaries (FE-AFE, FE-FE, or FE-PE) display significant fatigue behavior. Electric fatigue arises from the pinning of domains by space charges or injected carriers or from microcracking. The former (which are charge related) is accompanied by smaller strains and is recoverable by thermal and electrical treatment, while the latter (arising from microcracking) arises from large incompatible stresses between grains and is a permanent damage. The understanding of the mechanism of electric fatigue gained in the present study provides guidelines for enhancing the long-term reliability of devices based on ferroic materials.

  3. Develop techniques for ion implantation of PLZT (lead-lanthanum-zirconate-titanate) for adaptive optics

    SciTech Connect

    Batishko, C.R.; Brimhall, J.L.; Pawlewicz, W.T.; Stahl, K.A.; Toburen, L.H.

    1987-07-01

    Research was conducted at Pacific Northwest Laboratory to develop high photosensitivity adaptive optical elements utilizing ion implanted lanthanum-doped lead-zirconate-titanate (PLZT). One centimeter square samples were prepared by implanting ferroelectric and anti-ferroelectric PLZT with a variety of species or combinations of species. These included Ne, O, Ni, Ne/Cr, Ne/Al, Ne/Ni, Ne/O, and Ni/O, at a variety of energies and fluences. An indium-tin oxide (ITO) electrode coating was designed to give a balance of high conductivity and optical transmission at near uv to near ir wavelengths. Samples were characterized for photosensitivity; implanted layer thickness, index of refraction, and density; electrode (ITO) conductivity; and in some cases, residual stress curvature. Thin film anti-ferroelectric PLZT was deposited in a preliminary experiment. The structure was amorphous with x-ray diffraction showing the beginnings of a structure at substrate temperatures of approximately 550/sup 0/C. This report summarizes the research and provides a sampling of the data taken during the report period.

  4. Thermal and mechanical effects on large field dielectric loss in lanthanum-doped lead zirconate titanate

    NASA Astrophysics Data System (ADS)

    Gallagher, John A.; Jo, Hwan Ryul; Lynch, Christopher S.

    2013-04-01

    Ferroelectric material losses in devices ranging from sonar transducers to energy harvesters result in the conversion of energy to heat. Under small amplitude sinusoidal drive, either electrical or mechanical, the losses are expressed in terms of a loss tangent. This study addressed the effects of temperature and bias stress on large field dielectric loss in the presence of thermal and mechanical loading in lanthanum-doped lead zirconate titanate, Pb0.92La0.08(Zr0.65Ti0.35)0.98O3 (PLZT 8/65/35). This loss is associated with domain wall motion. Large field dielectric loss was experimentally measured using a technique that matches the area within a unipolar electric displacement - electric field hysteresis loop to an equivalent area ellipse-shaped hysteresis loop. The results indicate that the dependence of dielectric loss on bias stress changes with the onset of a thermally induced transition to slim loop behavior. Stress causes the dielectric loss to increase at low temperature and decrease at high temperature. This is consistent with changes in remnant polarization and saturation of the unipolar electric field - electric displacement hysteresis loops.

  5. Crystal structure and electrical properties of bismuth sodium titanate zirconate ceramics

    PubMed Central

    2012-01-01

    Lead-free bismuth sodium titanate zirconate (Bi0.5Na0.5Ti1-xZrxO3 where x = 0.20, 0.35, 0.40, 0.45, 0.60, and 0.80 mole fraction) [BNTZ] ceramics were successfully prepared using the conventional mixed-oxide method. The samples were sintered for 2 h at temperatures lower than 1,000°C. The density of the BNTZ samples was at least 95% of the theoretical values. The scanning electron microscopy micrographs showed that small grains were embedded between large grains, causing a relatively wide grain size distribution. The density and grain size increased with increasing Zr concentration. A peak shift in X-ray diffraction patterns as well as the disappearance of several hkl reflections indicated some significant crystal-structure changes in these materials. Preliminary crystal-structure analysis indicated the existence of phase transition from a rhombohedral to an orthorhombic structure. The dielectric and ferroelectric properties were also found to correlate well with the observed phase transition. PMID:22221595

  6. Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring.

    PubMed

    Dagdeviren, Canan; Su, Yewang; Joe, Pauline; Yona, Raissa; Liu, Yuhao; Kim, Yun-Soung; Huang, YongAn; Damadoran, Anoop R; Xia, Jing; Martin, Lane W; Huang, Yonggang; Rogers, John A

    2014-01-01

    The ability to measure subtle changes in arterial pressure using devices mounted on the skin can be valuable for monitoring vital signs in emergency care, detecting the early onset of cardiovascular disease and continuously assessing health status. Conventional technologies are well suited for use in traditional clinical settings, but cannot be easily adapted for sustained use during daily activities. Here we introduce a conformal device that avoids these limitations. Ultrathin inorganic piezoelectric and semiconductor materials on elastomer substrates enable amplified, low hysteresis measurements of pressure on the skin, with high levels of sensitivity (~0.005 Pa) and fast response times (~0.1 ms). Experimental and theoretical studies reveal enhanced piezoelectric responses in lead zirconate titanate that follow from integration on soft supports as well as engineering behaviours of the associated devices. Calibrated measurements of pressure variations of blood flow in near-surface arteries demonstrate capabilities for measuring radial artery augmentation index and pulse pressure velocity. PMID:25092496

  7. Microstrain in tetragonal lead-zirconate-titanate: The effect of pressure on the ionic displacements

    SciTech Connect

    Frantti, J. Fujioka, Y.; Zhang, J.; Zhu, J.; Vogel, S. C.; Zhao, Y.

    2014-08-15

    Piezoelectric materials respond to external stimuli by adjusting atomic positions. In solid-solutions, the changes occurring in atomic scale are very complex since the short- and long-range order are different. Standard methods used in diffraction data analysis fail to model the short-range order accurately. Pressure-induced cation displacements in ferroelectric Pb(Zr{sub 0.45}Ti{sub 0.55})O{sub 3} perovskite oxide are modeled by starting from a short-range order. We show that the model gives the average structure correctly and properly describes the local structure. The origin of the microstrain in lead zirconate titanate is the spatially varying Zr and Ti concentration and atomic distances, which is taken into account in the simulation. High-pressure neutron powder diffraction and simulation techniques are applied for the determination of atomic positions and bond-valences as a function of pressure. Under hydrostatic pressure, the material loses its piezoelectric properties far before the transition to the cubic phase takes place. The total cation valence +6 is preserved up to 3.31 GPa by compensating the increasing B-cation valence by decreasing Pb-displacement from the high-symmetry position. At 3.31 GPa, Pb-displacement is zero and the material is no more ferroelectric. This is also the pressure at which the Pb-valence is minimized. The average structure is still tetragonal. The model for microstrain predicts that the transition occurs over a finite pressure range: Pb-displacements are spatially varying and follow the distribution of Zr and Ti ions.

  8. Thermally induced modifications of the optic properties of lead zirconate titanate thin films obtained on different substrates by sol-gel synthesis

    SciTech Connect

    D'Elia, Stefano; Castriota, Marco; Scaramuzza, Nicola; Versace, Carlo; Cazzanelli, Enzo; Vena, Carlo; Strangi, Giuseppe; Bartolino, Roberto; Policicchio, Alfonso; Agostino, Raffaele Giuseppe

    2008-12-15

    Lead zirconium titanate PbZr{sub 0.53}Ti{sub 0.47}O{sub 3} (PZT) thin films have been obtained by sol-gel synthesis, deposited on different substrates [float glass, indium tin oxide (ITO)-coated float glass, and intrinsic silicon wafer], and later subjected to different thermal treatments. The morphologic and the structural properties of both PZT thin films and substrates have been investigated by scanning electron microscope and their composition was determined by energy dispersive x-ray (EDX) analysis. Moreover, variable angle spectroscopic ellipsometry provides relevant information on the electronic and optical properties of the samples. In particular, the optical constant dispersion of PZT deposited on ITO-coated float glasses shows a small absorption resonance in the near IR region, not observed in PZT films deposited on the other substrates, so that such absorption resonance can be explained by interfacial effects between ITO and PZT layers. This hypothesis is also supported by EDX measurements, showing an interdiffusion of lead and indium ions, across the PZT-ITO interface, that can generate a peculiar charge distribution in this region.

  9. Piezoelectric Energy Harvesting Using PZT Bimorphs and Multilayered Stacks

    NASA Astrophysics Data System (ADS)

    Panda, Prasanta Kumar; Sahoo, Benudhar; Chandraiah, M.; Raghavan, Sreekumari; Manoj, Bindu; Ramakrishna, J.; Kiran, P.

    2015-11-01

    Piezoelectric materials have a unique ability to interchange electrical and mechanical energy. This property allows the absorption of mechanical energy such as ambient vibration and its transformation into electrical energy. The electrical energy generated can be used to power low-power electronic devices. In the present study, energy harvesting by lead zirconate titanate (PZT) multilayer (ML) stacks and bimorphs is presented. The devices were fabricated by a tape casting technique and were poled at 2 kV/mm for 30 min immersed in a silicone oil bath maintained at 60°C. The energy harvesting characteristics of the fabricated devices were measured in a suitably assembled test setup. The output voltage obtained from the PZT bimorphs and ML stacks was 450 mV and 125 mV, respectively. The higher output voltage from the bimorph is due to its low capacitance.

  10. From lab to industrial: PZT nanoparticles synthesis and process control for application in additive manufacturing

    NASA Astrophysics Data System (ADS)

    Huang, Hsien-Lin

    Lead Zirconate Titanate (PZT) nanoparticles hold many promising current and future applications, such as PZT ink for 3-D printing or seeds for PZT thick films. One common method is hydrothermal growth, in which temperature, duration time, or mineralizer concentrations are optimized to produce PZT nanoparticles with desired morphology, controlled size and size distribution. A modified hydrothermal process is used to fabricate PZT nanoparticles. The novelty is to employ a high ramping rate (e.g., 20 deg C/min) to generate abrupt supersaturation so as to promote burst nucleation of PZT nanoparticles as well as a fast cooling rate (e.g., 5 deg C/min) with a controlled termination of crystal growth. As a result, PZT nanoparticles with a size distribution ranging from 200 nm to 800 nm are obtained with cubic morphology and good crystallinity. The identification of nanoparticles is confirmed through use of X-ray diffractometer (XRD). XRD patterns are used to compare sample variations in their microstructures such as lattice parameter. A cubic morphology and particle size are also examined via SEM images. The hydrothermal process is further modified with excess lead (from 20% wt. to 80% wt.) to significantly reduce amorphous phase and agglomeration of the PZT nanoparticles. With a modified process, the particle size still remains within the 200 nm to 800 nm. Also, the crystal structures (microstructure) of the samples show little variations. Finally, a semi-continuous hydrothermal manufacturing process was developed to substantially reduce the fabrication time and maintained the same high quality as the nanoparticles prepared in an earlier stage. In this semi-continuous process, a furnace is maintained at the process temperature (200 deg C), whereas autoclaves containing PZT sol are placed in and out of the furnace to control the ramp-up and cooling rates. This setup eliminates an extremely time-consuming step of cooling down the furnace, thus saving tremendous amount of

  11. Deformation behavior of lead zirconate titanate ceramics under uniaxial compression measured by the digital image correlation method

    NASA Astrophysics Data System (ADS)

    Chen, Di; Carter, Emma; Kamlah, Marc

    2016-09-01

    The deformation behavior of lead zirconate titanate bulk ceramic specimen under uniaxial compression was monitored by the digital image correlation method and the homogeneity of the deformation was discussed. Combined with using a Sawyer–Tower circuit, the depolarization curve was also obtained. Because of the friction at both the top and bottom surfaces of the lead zirconate titanate ceramic specimen, the distribution of deformation under large uniaxial compressive stresses usually shows a barrel shape. By focusing on correspondingly selected regions of interest and calculating the values of strain components there, the barreling behavior was proved. This barreling behavior is due to elastic strains, in the first place, while the remnant strains are less affected by this phenomenon. All these findings are the experimental justifications for the selection of an aspect ratio of 3:1 for our specimens, where only the central cubic region of a specimen represents the desired purely uniaxial stress state. Only from this region, true uniaxial stress–strain results can be obtained to develop constitutive models.

  12. Titan

    NASA Technical Reports Server (NTRS)

    Owen, Tobias; Gautier, Daniel; Raulin, Francois; Scattergood, Thomas

    1992-01-01

    The following topics are discussed with respect to Titan: observations of the atmosphere; laboratory simulations and theoretical models of Titan's atmosphere; endpoints of atmospheric chemistry - aerosols and oceans; exobiology; and the next steps in understanding Titan.

  13. Temperature Dependent Mechanical Property of PZT Film: An Investigation by Nanoindentation

    PubMed Central

    Li, Yingwei; Feng, Shangming; Wu, Wenping; Li, Faxin

    2015-01-01

    Load-depth curves of an unpoled Lead Zirconate Titanate (PZT) film composite as a function of temperature were measured by nanoindentation technique. Its reduce modulus and hardness were calculated by the typical Oliver-Pharr method. Then the true modulus and hardness of the PZT film were assessed by decoupling the influence of substrate using methods proposed by Zhou et al. and Korsunsky et al., respectively. Results show that the indentation depth and modulus increase, but the hardness decreases at elevated temperature. The increasing of indentation depth and the decreasing of hardness are thought to be caused by the decreasing of the critical stress needed to excite dislocation initiation at high temperature. The increasing of true modulus is attributed to the reducing of recoverable indentation depth induced by back-switched domains. The influence of residual stress on the indentation behavior of PZT film composite was also investigated by measuring its load-depth curves with pre-load strains. PMID:25768957

  14. Temperature dependent mechanical property of PZT film: an investigation by nanoindentation.

    PubMed

    Li, Yingwei; Feng, Shangming; Wu, Wenping; Li, Faxin

    2015-01-01

    Load-depth curves of an unpoled Lead Zirconate Titanate (PZT) film composite as a function of temperature were measured by nanoindentation technique. Its reduce modulus and hardness were calculated by the typical Oliver-Pharr method. Then the true modulus and hardness of the PZT film were assessed by decoupling the influence of substrate using methods proposed by Zhou et al. and Korsunsky et al., respectively. Results show that the indentation depth and modulus increase, but the hardness decreases at elevated temperature. The increasing of indentation depth and the decreasing of hardness are thought to be caused by the decreasing of the critical stress needed to excite dislocation initiation at high temperature. The increasing of true modulus is attributed to the reducing of recoverable indentation depth induced by back-switched domains. The influence of residual stress on the indentation behavior of PZT film composite was also investigated by measuring its load-depth curves with pre-load strains. PMID:25768957

  15. Enhanced ferroelectric and piezoelectric properties in La-modified PZT ceramics

    NASA Astrophysics Data System (ADS)

    Kour, P.; Pradhan, S. K.; Kumar, Pawan; Sinha, S. K.; Kar, Manoranjan

    2016-06-01

    The effect of lanthanum (La) doping on ferroelectric and piezoelectric properties of lead zirconate titanate (PZT) sample has been investigated. Pb1- x La x Zr0.52Ti0.48O3 ceramics with x = 0.00, 0.02, 0.04, 0.06 and 0.10 were prepared by the sol-gel technique. Raman and Fourier transforms infrared spectroscopy have been employed to understand the structural modification due to ionic size mismatch. Raman spectra show the existence of both rhombohedral and tetragonal crystal symmetries. It also shows the dielectric relaxation with increase in La concentration in the sample. The increase in lattice strain due to La doping increases the remnant polarization and coercive field. The linear piezoelectric coefficient increases with the increase in La concentration. It reveals that La-substituted PZT is a better candidate for piezoelectric sensor applications as compared to that of PZT.

  16. Electrochemistry of ferroelectric thin film lead zirconate titanate in sulfuric acid

    NASA Astrophysics Data System (ADS)

    Small, Leo J.

    Remote sensing applications in harsh environments require sensor materials appropriately matched to the environment. PbZr0.52Ti0.48O 3 (PZT) is a candidate for remote sensing applications, where it could be used as both a sensor and power source. In this light, the evolution of the PZT-H2SO4 interface is explored at low pHs. A robotic microdroplet cell is developed to differentiate the electrochemical response of the cracks and pores inherent to the PZT film from that of continuous PZT. Accelerated chemical attack is observed at the pores, while the continuous PZT displays electrochemical hysteresis; the ferroelectric-solution interface can be switched between two different charge states at a given potential. As time progresses, electrochemical impedance spectroscopy reveals a change in the structure of the PZT-H2SO4 interface. Development of equivalent circuits to model the competing processes of pore growth, interfacial layer formation, and uniform chemical attack are guided by the evolution of film structure and chemistry as observed ex-situ with scanning electron microscopy, x-ray photoelectron spectroscopy, and x-ray diffraction. The Point Defect Model for the passive state is used to explain the dissolution processes observed in the complex oxide. Application of this model to PbZrxTi1- xO3 for x = 0.25, 0.52, and 0.95 points to the role of titanium in the creation of an ionically insulating layer that impedes further chemical attack.

  17. Domain pinning near a single-grain boundary in tetragonal and rhombohedral lead zirconate titanate films

    DOE PAGESBeta

    Marincel, Dan M.; Zhang, H. R.; Briston, J.; Belianinov, Alex; Jesse, Stephen; Kalinin, Sergei V.; Chen, L. Q.; Rainforth, William M.; Reaney, Ian M.; Randall, Clive A.; et al

    2015-04-27

    The interaction of grain boundaries with ferroelectric domain walls strongly influences the extrinsic contribution to piezoelectric activity in Pb(Zr,Ti)O3 (PZT), ubiquitous in modern transducers and actuators. However, the fundamental understanding of these phenomena has been limited by complex mechanisms originating from the interplay of atomic-level domain wall pinning, collective domain wall dynamics, and emergent mesoscopic behavior. This contribution utilizes engineered grain boundaries created by depositing epitaxial PZT films with various Zr:Ti ratio onto 24º SrTiO3 tilt bicrystals. The nonlinear piezoelectric response and surface domain structure across the boundary are investigated using piezoresponse force microscopy whilst cross section domain structure ismore » studied using transmission electron microscopy. The grain boundary reduces domain wall motion over a width of 800±70 nm for PZT 45:55 and 450±30 nm for PZT 52:48. Phase field modeling provides an understanding of the elastic and electric fields associated with the grain boundary and local domain configurations. In conclusion, this study demonstrates that complex mesoscopic behaviors can be explored to complement atomic-level pictures of the material system.« less

  18. Domain pinning near a single-grain boundary in tetragonal and rhombohedral lead zirconate titanate films

    SciTech Connect

    Marincel, Dan M.; Zhang, H. R.; Briston, J.; Belianinov, Alex; Jesse, Stephen; Kalinin, Sergei V.; Chen, L. Q.; Rainforth, William M.; Reaney, Ian M.; Randall, Clive A.; Trolier-McKinstry, Susan

    2015-04-27

    The interaction of grain boundaries with ferroelectric domain walls strongly influences the extrinsic contribution to piezoelectric activity in Pb(Zr,Ti)O3 (PZT), ubiquitous in modern transducers and actuators. However, the fundamental understanding of these phenomena has been limited by complex mechanisms originating from the interplay of atomic-level domain wall pinning, collective domain wall dynamics, and emergent mesoscopic behavior. This contribution utilizes engineered grain boundaries created by depositing epitaxial PZT films with various Zr:Ti ratio onto 24º SrTiO3 tilt bicrystals. The nonlinear piezoelectric response and surface domain structure across the boundary are investigated using piezoresponse force microscopy whilst cross section domain structure is studied using transmission electron microscopy. The grain boundary reduces domain wall motion over a width of 800±70 nm for PZT 45:55 and 450±30 nm for PZT 52:48. Phase field modeling provides an understanding of the elastic and electric fields associated with the grain boundary and local domain configurations. In conclusion, this study demonstrates that complex mesoscopic behaviors can be explored to complement atomic-level pictures of the material system.

  19. Study of PZT thick-film infrared detectors prepared by MEMS technology

    NASA Astrophysics Data System (ADS)

    Qiang, Xiang-Peng; Chuan, Gui-Wu; Wen, Bo-Luo; Wan, Li-Zhang; Jia, Qiang-Cao

    2011-08-01

    In this paper, a single element integrated infrared detector using screen printed lead zirconate titanate (PZT) thick films on Pt/Ti/Al2O3/SiO2 coated silicon cup has been developed. The thermal insulating micro-bridge of the detector was prepared by Micro-electro-mechanical System (MEMS) technology. To increase the density of PZT ceramic thick films, cool isostatic pressing experiments had been conducted under 300MPa and 30s dwell time. The XRD pattern shows that PZT thick films possess good perovskite structure. The SEM cross section image demonstrate that the PZT film was dense and the thickness is about 25μm. The dielectric constant, loss and pyroelectric coefficient of PZT thick films prepared at optimized conditions is 1100, 1% and 1×10-8C/Kcm 2, respectively. The results indicated that the PZT thermal sensitive layer fabricated by screen printing on the Pt/Ti coated silicon cup with micro-bridge thermal insulation structure, and Al2O3/SiO2 barrier layer show potential application in infrared detectors.

  20. Design of a dual-effect lens on lanthanum-modified lead zirconate titanate for continuous variation of focal length

    NASA Astrophysics Data System (ADS)

    Castro, Francisco; Nabet, Bahram

    1995-05-01

    The design of a Fresnel lens with continuous focal length is proposed for use in optical processing. A convex lens is induced in lanthanum-modified lead zirconate titanate through the application of an electric-field profile supplied by the indium tin oxide electrodes that make up the zones of a Fresnel lens. The use of a numerical method based on fast Fourier transform algorithms was required to analyze accurately the induced field inside a Fresnel lens with an initial focal length of 0.4 m (at 470 nm) and 20 indium tin oxide electrodes. The effective focal location obtained by the combined mechanisms is derived. This design is expected to produce continuous variations of approximately 16% in focal length; the ability of previous designs to achieve focal length switching is maintained.

  1. Modified Johnson model for ferroelectric lead lanthanum zirconate titanate at very high fields and below Curie temperature.

    SciTech Connect

    Narayanan, M.; Tong, S.; Ma, B.; Liu, S.; Balachandran, U.

    2012-01-01

    A modified Johnson model is proposed to describe the nonlinear field dependence of the dielectric constant ({var_epsilon}-E loop) in ferroelectric materials below the Curie temperature. This model describes the characteristic ferroelectric 'butterfly' shape observed in typical {var_epsilon}-E loops. The predicted nonlinear behavior agreed well with the measured values in both the low- and high-field regions for lead lanthanum zirconate titanate films. The proposed model was also validated at different temperatures below the ferroelectric-to-paraelectric Curie point. The anharmonic coefficient in the model decreased from 6.142 x 10{sup -19} cm{sup 2}/V{sup 2} to 2.039 x 10{sup -19} cm{sup 2}/V{sup 2} when the temperature increased from 25 C to 250 C.

  2. Deformation in lead zirconate titanate ceramics under large signal electric field loading measured by digital image correlation

    NASA Astrophysics Data System (ADS)

    Chen, Di; Kamlah, Marc

    2015-11-01

    Digital image correlation, a noncontact and nondestructive method, was employed to monitor the deformation of lead zirconate titanate piezoelectric ceramics. This method is based on imaging a speckle pattern on the specimen surface during the test and subsequently correlating each image of the deformed pattern to that in the reference state. In our work, both longitudinal and transverse strains were calculated from imaging a bulk sample under a ±2 kV/mm electric field. Compared with linear variable displacement transducer data, the results from this correlation method were validated. At the same time, based on this optical technique, different strain-electric field butterfly loops can be drawn from correspondingly selected regions of interest. Combined with contour plots of strain on the surface of the sample, the deformation of bulk ceramic sample under uniaxial electric field loading without any mechanical constraints is proven to be highly homogenous under macro-observing scale.

  3. Thickness effect on the structure, grain size, and local piezoresponse of self-polarized lead lanthanum zirconate titanate thin films

    NASA Astrophysics Data System (ADS)

    Melo, M.; Araújo, E. B.; Shvartsman, V. V.; Shur, V. Ya.; Kholkin, A. L.

    2016-08-01

    Polycrystalline lanthanum lead zirconate titanate (PLZT) thin films were deposited on Pt/TiO2/SiO2/Si substrates to study the effects of the thickness and grain size on their structural and piezoresponse properties at nanoscale. Thinner PLZT films show a slight (100)-orientation tendency that tends to random orientation for the thicker film, while microstrain and crystallite size increases almost linearly with increasing thickness. Piezoresponse force microscopy and autocorrelation function technique were used to demonstrate the existence of local self-polarization effect and to study the thickness dependence of correlation length. The obtained results ruled out the bulk mechanisms and suggest that Schottky barriers near the film-substrate are likely responsible for a build-in electric field in the films. Larger correlation length evidence that this build-in field increases the number of coexisting polarization directions in larger grains leading to an alignment of macrodomains in thinner films.

  4. Dielectric properties of lead lanthanum zirconate titanate thin films with and without ZrO2 insertion layers

    NASA Astrophysics Data System (ADS)

    Liu, Shanshan; Ma, Beihai; Narayanan, Manoj; Tong, Sheng; Koritala, Rachel E.; Hu, Zhongqiang; Balachandran, Uthamalingam

    2013-05-01

    The dielectric properties of lead lanthanum zirconate titanate (PLZT) thin films on platinized silicon (Pt/Si) with and without ZrO2 insertion layers were investigated in the temperature range from 20 °C to 300 °C. Permittivity, dielectric loss tangent, and tunability were reduced for the samples with ZrO2 insertion layers compared to those without the layers. Additionally, the permittivity was less dependent on frequency over the broad temperature range studied (20-300 °C). The leakage current behavior of the PLZT films with and without ZrO2 insertion layers was also investigated, and on the basis of those results, a probable conduction mechanism has been suggested. The improved electrical properties in the PLZT with ZrO2 layers are attributed to the ZrO2 layer blocking the mobile ionic defects and reducing free charge carriers to transport.

  5. Stress-optic modulator in TriPleX platform using a ezoelectric lead zirconate titanate (PZT) thin film.

    PubMed

    Hosseini, Naser; Dekker, Ronald; Hoekman, Marcel; Dekkers, Matthijn; Bos, Jan; Leinse, Arne; Heideman, Rene

    2015-06-01

    We will demonstrate a stress-optic phase modulator in the passive SiN-based TriPleX platform using a layer of piezoelectric material. Regarding the stress-optic effect, the piezoelectric layer deposited on top of an optical waveguide is employed to control the phase of propagating light in the structure by applying an electrical field across the layer. In this work, it is demonstrated that the stress-optic effect lowers the power consumption by a factor of one million for quasi-DC operation and increases the modulation speed by three orders of magnitude, compared to currently used thermo-optic modulation in the TriPleX platform. PMID:26072771

  6. Polar-axis-oriented crystal growth of tetragonal PZT films on stainless steel substrate using pseudo-perovskite nanosheet buffer layer

    NASA Astrophysics Data System (ADS)

    Minemura, Yoshiki; Ichinose, Daichi; Nagasaka, Kohei; Kim, Jin Woon; Shima, Hiromi; Nishida, Ken; Kiguchi, Takanori; Konno, Toyohiko J.; Oshima, Naoya; Funakubo, Hiroshi; Uchida, Hiroshi

    2015-07-01

    Lead zirconate titanate (PZT) film with polar axis orientation was grown on a SUS 316L stainless steel substrate with the help of a Ca2Nb3O10 nanosheet (ns-CN) layer that had a pseudo-perovskite-type crystal structure. The ns-CN buffer layer was supported on a platinized SUS 316L (Pt/SUS) substrate, followed by chemical solution deposition (CSD) of the PZT films with tetragonal symmetry (Zr/Ti =40/60). The PZT films consisting of c-domain, with [001]-axis orientation of the perovskite unit cell, were deposited on the ns-CN/Pt/SUS substrate owing to (i) epitaxial lattice matching between the unit cell of PZT and substrate surface and (ii) in-plane thermal stress applied to the PZT film during cooling-down step of CSD procedure. The c-domain-oriented PZT film on ns-CN/Pt/SUS substrate exhibited enhanced remanent polarization of approximately 52 μC/cm2 and lowered dielectric permittivity of approximately 230, which are superior to those of conventional PZT films with random crystal orientation and comparable to those of epitaxial PZT films grown on (100)SrRuO3//(100)SrTiO3 substrates.

  7. PZT Thin Film Piezoelectric Traveling Wave Motor

    NASA Technical Reports Server (NTRS)

    Shen, Dexin; Zhang, Baoan; Yang, Genqing; Jiao, Jiwei; Lu, Jianguo; Wang, Weiyuan

    1995-01-01

    With the development of micro-electro-mechanical systems (MEMS), its various applications are attracting more and more attention. Among MEMS, micro motors, electrostatic and electromagnetic, are the typical and important ones. As an alternative approach, the piezoelectric traveling wave micro motor, based on thin film material and integrated circuit technologies, circumvents many of the drawbacks of the above mentioned two types of motors and displays distinct advantages. In this paper we report on a lead-zirconate-titanate (PZT) piezoelectric thin film traveling wave motor. The PZT film with a thickness of 150 micrometers and a diameter of 8 mm was first deposited onto a metal substrate as the stator material. Then, eight sections were patterned to form the stator electrodes. The rotor had an 8 kHz frequency power supply. The rotation speed of the motor is 100 rpm. The relationship of the friction between the stator and the rotor and the structure of the rotor on rotation were also studied.

  8. Study of global and local crystallography at the domain boundaries of lead zirconate titanate piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Farooq, M. U.; Villaurrutia, R.; MacLaren, I.; Kungl, H.; Hoffmann, M. J.; Fundenberger, J.-J.; Bouzy, E.

    2008-08-01

    Reliable automated orientation mapping of 90° domains in a tetragonal perovskite has been achieved for the first time using both EBSD and TEM-Kikuchi pattern analysis. This has been used to compare local measurements of c/a ratios in PZT with global measurements by X-ray diffraction. The local c/a rations are in broad agreement with the global measurements, but further work is needed to determine whether the small discrepancies are real local variations or are caused by experimental factors.

  9. Sensitivity of PZT Impedance Sensors for Damage Detection of Concrete Structures

    PubMed Central

    Yang, Yaowen; Hu, Yuhang; Lu, Yong

    2008-01-01

    Piezoelectric ceramic Lead Zirconate Titanate (PZT) based electro-mechanical impedance (EMI) technique for structural health monitoring (SHM) has been successfully applied to various engineering systems. However, fundamental research work on the sensitivity of the PZT impedance sensors for damage detection is still in need. In the traditional EMI method, the PZT electro-mechanical (EM) admittance (inverse of the impedance) is used as damage indicator, which is difficult to specify the effect of damage on structural properties. This paper uses the structural mechanical impedance (SMI) extracted from the PZT EM admittance signature as the damage indicator. A comparison study on the sensitivity of the EM admittance and the structural mechanical impedance to the damages in a concrete structure is conducted. Results show that the SMI is more sensitive to the damage than the EM admittance thus a better indicator for damage detection. Furthermore, this paper proposes a dynamic system consisting of a number of single-degree-of-freedom elements with mass, spring and damper components to model the SMI. A genetic algorithm is employed to search for the optimal value of the unknown parameters in the dynamic system. An experiment is carried out on a two-storey concrete frame subjected to base vibrations that simulate earthquake. A number of PZT sensors are regularly arrayed and bonded to the frame structure to acquire PZT EM admittance signatures. The relationship between the damage index and the distance of the PZT sensor from the damage is studied. Consequently, the sensitivity of the PZT sensors is discussed and their sensing region in concrete is derived.

  10. Physical vapor deposition of multilayered lead-zirconate-titanate films for ultrasonic transducer fabrication

    NASA Astrophysics Data System (ADS)

    Kline-Schoder, Robert J.; Kynor, David B.; Jaeger, Michael D.; Winder, Alan A.; Desilets, Charles S.

    1999-06-01

    Creare is developing microfabrication techniques to manufacture low-cost, multi-dimensional ultrasonic transducer arrays with single- and multi-layer piezoelectric elements for low impedance and high sensitivity. The manufacturing approach is scaleable for fabrication of transducer arrays in the frequency range of 10 - 50 MHz in dense or sparse array configurations. Our approach employs the following processes: (1) Physical Vapor Deposition (PVD or sputtering) of high-quality, piezoelectric films using reactive sputtering of metallic targets and (2) Novel use of state-of-the-art photolithography and masking to provide the interlayer electrodes, element interconnections, and array element fabrication. To date, Creare has successfully demonstrated that piezoelectrically active thick films of PZT material can be deposited by using a reactive sputtering approach. In addition, these thick, multi-layer PZT films have been formed into high aspect ratio elements using dicing to fabricate a 12 MHz transducer. Array designs based on these films show that expected performance should meet the requirements for high resolution biomedical imaging.

  11. Influence of crystal phase and transparent substrates on electro-optic properties of lead zirconate titanate films

    SciTech Connect

    Zhu, M. M.; Du, Z. H.; Ma, J.

    2010-12-01

    Pb(Zr{sub x}Ti{sub 1-x})O{sub 3}[x=0.52, PZT(52) near morphotropic phase boundary], tetragonal PZT(65), and rhombohedral PZT(20) thin films have been fabricated on different transparent substrates by radio frequency sputtering. The optical studies show that the band gap energies and refractive indices of the PZT thin films are crystal phase dependent. The largest electro-optic (EO) coefficient of 219.6 pm/V has been achieved by controlling the crystal phase of the PZT thin films. The linear EO coefficients of PZT(52) films on the (Pb{sub 0.86}La{sub 0.14})TiO{sub 3}-coated glass, indium tin oxides, and MgO substrates are also studied. Such study could contribute to the crystal phase and substrate dependent PZT films for electro-optic devices and multifunctional integrated circuits.

  12. Titan

    NASA Astrophysics Data System (ADS)

    Coustenis, Athena

    Titan, Saturn's biggest satellite (second in size among the satellites in our solar system), has attracted the eye of astronomers preferentially ever since its discovery by Dutch astronomer Christiaan Huygens on March 25, 1655. Titan orbits around Saturn at a distance of 1,222,000 km (759,478 mi) in a synchronous rotation, taking 15.9 days to complete. As Titan follows Saturn on its trek around the Sun, one Titanian year equals about 30 Earth years. The sunlight that reaches such distances is only 1/100th of that received by the Earth. Titan is therefore a cold and dark place, but a fascinating one.

  13. Application of Multiplexed FBG and PZT Impedance Sensors for Health Monitoring of Rocks

    PubMed Central

    Yang, Yaowen; Annamdas, Venu Gopal Madhav; Wang, Chao; Zhou, Yingxin

    2008-01-01

    Reliable structural health monitoring (SHM) including nondestructive evaluation (NDE) is essential for safe operation of infrastructure systems. Effective monitoring of the rock components of civil infrastructures such as tunnels and caverns remains challenging. The feasibility of employing smart optical fibre sensor (OFS) and piezoelectric impedance sensor made up of lead zirconate titanate (PZT) for comprehensive health monitoring of rocks, covering load history monitoring/retrieval as well as damage assessment is presented in this paper. The rock specimens are subjected to cyclic loading and their conditions are continuously monitored using OFS and PZT sensors. OFS based multiplexed fibre Bragg grating (FBG) sensors are surface bonded on the rock specimens. Their strain sensing performance is compared with the conventional electric strain gauges (ESGs). In addition, PZT patches are also bonded on the specimens to study the damage pattern during different loading cycles. Unlike the FBGs or ESGs, PZT patches are used as bi-functional sensors and actuators, enabling them to be efficient detectors of incipient damages using the principle of electromechanical impedance. The experimental study demonstrated superior performance of these smart FBG and PZT impedance sensors. This work is expected to be useful for SHM based NDE application of rock structures such as caverns and tunnels.

  14. Titan

    NASA Astrophysics Data System (ADS)

    Müller-Wodarg, Ingo; Griffith, Caitlin A.; Lellouch, Emmanuel; Cravens, Thomas E.

    2014-03-01

    Introduction I. C. F. Müller-Wodarg, C. A. Griffith, E. Lellouch and T. E. Cravens; Prologue 1: the genesis of Cassini-Huygens W.-H. Ip, T. Owen and D. Gautier; Prologue 2: building a space flight instrument: a P.I.'s perspective M. Tomasko; 1. The origin and evolution of Titan G. Tobie, J. I. Lunine, J. Monteux, O. Mousis and F. Nimmo; 2. Titan's surface geology O. Aharonson, A. G. Hayes, P. O. Hayne, R. M. Lopes, A. Lucas and J. T. Perron; 3. Thermal structure of Titan's troposphere and middle atmosphere F. M. Flasar, R. K. Achterberg and P. J. Schinder; 4. The general circulation of Titan's lower and middle atmosphere S. Lebonnois, F. M. Flasar, T. Tokano and C. E. Newman; 5. The composition of Titan's atmosphere B. Bézard, R. V. Yelle and C. A. Nixon; 6. Storms, clouds, and weather C. A. Griffith, S. Rafkin, P. Rannou and C. P. McKay; 7. Chemistry of Titan's atmosphere V. Vuitton, O. Dutuit, M. A. Smith and N. Balucani; 8. Titan's haze R. West, P. Lavvas, C. Anderson and H. Imanaka; 9. Titan's upper atmosphere: thermal structure, dynamics, and energetics R. V. Yelle and I. C. F. Müller-Wodarg; 10. Titan's upper atmosphere/exosphere, escape processes, and rates D. F. Strobel and J. Cui; 11. Titan's ionosphere M. Galand, A. J. Coates, T. E. Cravens and J.-E. Wahlund; 12. Titan's magnetospheric and plasma environment J.-E. Wahlund, R. Modolo, C. Bertucci and A. J. Coates.

  15. The Effects of TI/PT Bottom Electrode on Crystallographic and Surface Characteristics of PZT Thick Films

    NASA Astrophysics Data System (ADS)

    Koochekzadeh, Ali; Keshavarz Alamdari, Eskandar; Barzegar, Abdolghafar

    The ceramic lead zirconate titanate (PZT) films near the morphotropic phase boundary are successfully integrated into MEMS devices, especially for applications in microsensors and actuators. The ferro/piezo electric properties of PZT thick films are widely dependent on its surface quality and crystallographic orientation growth. This paper indicates the influences of platinum bottom electrode on the surface and crystallographic properties of PZT. Ti (10nm) and Pt (100nm) thin films have been deposited on silicon substrate by thermal evaporation and electron beam respectively without vacuum breaking. After annealing treatment, the Pt film exhibited (111) preferred orientation. Finally one micron thick PZT (54/46) film was deposited by a RF magnetron sputtering at room temperature in pure Argon followed by a conventional post annealing treatment on silicon substrate. The XRD measurements have shown the provskite structure of PZT films with (100) preferred orientation at annealing temperatures above 600°C and (111) preferred orientation above 650°c. The SEM results demonstrate that whatever the annealing temperature is increased, recrystallization grains and black holes on Pt surface occurs and cause morphological change of PZT surface. The AFM test shows the strong RMS roughness of platinum surface after annealing temperature at 650°C.

  16. Residual stress relief due to fatigue in tetragonal lead zirconate titanate ceramics

    SciTech Connect

    Hall, D. A.; Mori, T.; Comyn, T. P.; Ringgaard, E.; Wright, J. P.

    2013-07-14

    High energy synchrotron XRD was employed to determine the lattice strain {epsilon}{l_brace}111{r_brace}and diffraction peak intensity ratio R{l_brace}200{r_brace}in tetragonal PZT ceramics, both in the virgin poled state and after a bipolar fatigue experiment. It was shown that the occurrence of microstructural damage during fatigue was accompanied by a reduction in the gradient of the {epsilon}{l_brace}111{r_brace}-cos{sup 2} {psi} plot, indicating a reduction in the level of residual stress due to poling. In contrast, the fraction of oriented 90 Degree-Sign ferroelectric domains, quantified in terms of R{l_brace}200{r_brace}, was not affected significantly by fatigue. The change in residual stress due to fatigue is interpreted in terms of a change in the average elastic stiffness of the polycrystalline matrix due to the presence of inter-granular microcracks.

  17. Phase field simulation of domain switching dynamics in multiaxial lead zirconate titanate thin films

    NASA Astrophysics Data System (ADS)

    Britson, Jason

    The defining characteristic of ferroelectric materials is their ability to be switched between energetically equivalent polarization states. This behavior has led to an interest in ferroelectrics for a wide range of bulk and thin film applications such as mechanical actuators and ferroelectric random access memory devices. Ferroelectric switching depends on domain wall motion, however, and is critically influenced by the existence of defects such as dislocations and preexisting domains. Domain wall motion in thin film applications can be controlled by individual local defects due to the reduced length scale of the system. This dissertation describes the impact of preexisting ferroelastic domains and misfits dislocations in coherent (001)-oriented Pb(Zr0.2,Ti0.8)O3 (PZT) thin films on the switching response and domain structure. A phase field model based on the Landau-Ginzburg-Devonshire theory that accounts for the electrostatic and mechanical interactions is used to describe domain structures in ferroelectric PZT thin films. To solve the governing equations a semi-implicit Fourier-Spectral scheme is developed that accommodates boundary conditions appropriate to the thin film geometry. Errors are reduced in the solutions at the film edges through extensions to the model developed to correct the Fourier transform around stationary discontinuities at the thin film edges. This correction is shown to result in increased accuracy of the phase field model needed to appropriately describe dynamic switching responses in the thin film. Investigation of switching around preexisting ferroelastic domains showed these defects are strong obstacles to switching in PZT thin films. Directly above the ferroelastic domain the magnitude of the required nucleation bias underneath a tip-like electrode was found to be elevated compared to the required bias far from the domain. Locally both the piezoelectric and dielectric responses of the thin film were found to be suppressed, which is

  18. The structure and dielectric properties of thin barium zirconate titanate films obtained by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Tumarkin, A. V.; Razumov, S. V.; Gagarin, A. G.; Altynnikov, A. G.; Stozharov, V. M.; Kaptelov, E. Yu.; Senkevich, S. V.; Pronin, I. P.

    2016-02-01

    Submicron thin layers of BaZr x Ti1- x O3 are grown in-situ by RF magnetron sputtering of a ceramic target ( x = 0.50) on a substrate of Pt/ r-cut leucosapphire Al2O3. It is shown that the composition of the ferroelectric layer is not identical to the composition of the sputtered target and is shifted toward barium zirconate. The reasons for such behavior are discussed. The obtained samples are characterized by high breakdown voltages (1 MV/cm and higher). The structural and high-frequency dielectric properties are studied, and high tunability of the capacitance of thin layers is revealed.

  19. Photosensitivity enhancement by H- and He-ion implantation in lead lanthanum zirconate titanate ceramics

    SciTech Connect

    Land, C.E.; Peercy, P.S.

    1980-07-01

    H- and He-ion implantation has been used to increase the photoferroelectric image storage sensitivity of lead lanthanum zirconium titanate ceramics by factors of approx.10 and approx.30, respectively. The increased photosensitivity can be attributed primarily to implantation-produced disorder, which increases the efficiency of carrier photoexcitation and trapping and reduces the exposure energy required to establish nonvolatile space-charge fields. Implantation-induced disorder may also contribute to a substantial increase in photoconductivity in the ion-damaged near-surface region.

  20. Resonant magnetoelectric coupling in trilayers of ferromagnetic alloys and piezoelectric lead zirconate titanate: The influence of bias magnetic field

    NASA Astrophysics Data System (ADS)

    Srinivasan, G.; de Vreugd, C. P.; Laletin, V. M.; Paddubnaya, N.; Bichurin, M. I.; Petrov, V. M.; Filippov, D. A.

    2005-05-01

    We present the first data and theory for the bias magnetic field dependence of magnetoelectric coupling in the electromechanical resonance (EMR) region for ferromagnetic-piezoelectric heterostructures. Trilayers of Permendur, a Co-Fe-V alloy, and lead zirconate titanate were studied. Measurements of the magnetoelectric (ME) voltage coefficient αE indicate a strong ME coupling in the low-frequency range and a giant ME effect due to EMR at 200-300kHz for radial modes and at ˜2.7MHz for thickness modes. Data were obtained for the bias field H dependence of two key parameters, the EMR frequency fr and the ME coefficient αE,R at resonance. With increasing H , an increase in fr and a rapid rise and fall in αE,R are measured. In our model we consider two mechanisms for the magnetic field influence on ME interactions: (i) a shift in the EMR frequency due to changes in compliance coefficients ( ΔE effect) and (ii) variation in the piezomagnetic coefficient that manifests as a change in αE,R . Theoretical profiles of αE vs frequency and estimates of frequency shift based on the ΔE effect are in excellent agreement with the data.

  1. Phase field simulation of domain switching dynamics in multiaxial lead zirconate titanate thin films

    NASA Astrophysics Data System (ADS)

    Britson, Jason

    The defining characteristic of ferroelectric materials is their ability to be switched between energetically equivalent polarization states. This behavior has led to an interest in ferroelectrics for a wide range of bulk and thin film applications such as mechanical actuators and ferroelectric random access memory devices. Ferroelectric switching depends on domain wall motion, however, and is critically influenced by the existence of defects such as dislocations and preexisting domains. Domain wall motion in thin film applications can be controlled by individual local defects due to the reduced length scale of the system. This dissertation describes the impact of preexisting ferroelastic domains and misfits dislocations in coherent (001)-oriented Pb(Zr0.2,Ti0.8)O3 (PZT) thin films on the switching response and domain structure. A phase field model based on the Landau-Ginzburg-Devonshire theory that accounts for the electrostatic and mechanical interactions is used to describe domain structures in ferroelectric PZT thin films. To solve the governing equations a semi-implicit Fourier-Spectral scheme is developed that accommodates boundary conditions appropriate to the thin film geometry. Errors are reduced in the solutions at the film edges through extensions to the model developed to correct the Fourier transform around stationary discontinuities at the thin film edges. This correction is shown to result in increased accuracy of the phase field model needed to appropriately describe dynamic switching responses in the thin film. Investigation of switching around preexisting ferroelastic domains showed these defects are strong obstacles to switching in PZT thin films. Directly above the ferroelastic domain the magnitude of the required nucleation bias underneath a tip-like electrode was found to be elevated compared to the required bias far from the domain. Locally both the piezoelectric and dielectric responses of the thin film were found to be suppressed, which is

  2. Ferroelectric/Ferroelastic domain wall motion in dense and porous tetragonal lead zirconate titanate films.

    PubMed

    Johnson-Wilke, Raegan L; Wilke, Rudeger H T; Wallace, Margeaux; Rajashekhar, Adarsh; Esteves, Giovanni; Merritt, Zachary; Jones, Jacob L; Trolier-McKinstry, Susan

    2015-01-01

    Direct evidence of ferroelectric/ferroelastic domain reorientation is shown in Pb(Zr0.30Ti0.70)O3 (PZT30/70) thin films clamped to a rigid silicon substrate using in situ synchrotron X-ray diffraction during application of electric fields. Both dense films and films with 3 to 4 vol% porosity were measured. On application of electric fields exceeding the coercive field, it is shown that the porous films exhibit a greater volume fraction of ferroelastic domain reorientation (approximately 12 vol% of domains reorient at 3 times the coercive field, Ec) relative to the dense films (~3.5 vol% at 3Ec). Furthermore, the volume fraction of domain reorientation significantly exceeded that predicted by linear mixing rules. The high response of domain reorientation in porous films is discussed in the context of two mechanisms: local enhancement of the electric field near the pores and a reduction of substrate clamping resulting from the lowering of the film stiffness as a result of the porosity. Similar measurements during weak-field (subcoercive) amplitudes showed 0.6% volume fraction of domains reoriented for the porous films, which demonstrates that extrinsic effects contribute to the dielectric and piezoelectric properties. PMID:25585389

  3. Titan!

    NASA Astrophysics Data System (ADS)

    Matson, Dennis L.

    2010-05-01

    Cassini-Huygens achieved Saturnian orbit on July 1, 2004. The first order of business was the safe delivery of the Huygens atmospheric probe to Titan that took place on January 14, 2005. Huygens descended under parachute obtaining observations all the way down to a safe landing. It revealed Titan for the first time. Stunning are the similarities between Titan and the Earth. Viewing the lakes and seas, the fluvial terrain, the sand dunes and other features through the hazy, nitrogen atmosphere, brings to mind the geological processes that created analogous features on the Earth. On Titan frozen water plays the geological role of rock; liquid methane takes the role of terrestrial water. The atmospheres of both Earth and Titan are predominately nitrogen gas. Titan's atmosphere contains 1.5% methane and no oxygen. The surface pressure on Titan is 1.5 times the Earth's. There are aerosol layers and clouds that come and go. Now, as Saturn proceeds along its solar orbit, the seasons are changing. The effects upon the transport of methane are starting to be seen. A large lake in the South Polar Region seems to be filling more as winter onsets. Will the size and number of the lakes in the South grow during winter? Will the northern lakes and seas diminish or dry up as northern summer progresses? How will the atmospheric circulation change? Much work remains not only for Cassini but also for future missions. Titan has many different environments to explore. These require more capable instruments and in situ probes. This work was conducted at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration.

  4. A method to decrease the harmonic distortion in Mn-Zn ferrite/PZT and Ni-Zn ferrite/PZT layered composite rings exhibiting high magnetoelectric effects

    NASA Astrophysics Data System (ADS)

    Loyau, V.; Morin, V.; Fortineau, J.; LoBue, M.; Mazaleyrat, F.

    2015-10-01

    We have investigated the magnetoelectric (ME) effect in layered composite rings subjected to circumferential AC magnetic fields and DC magnetic fields in radial, axial, or circumferential directions. Bilayer samples were obtained combining different grades of commercial Mn-Zn ferrites or Ni-Zn ferrites with commercial lead zirconate titanate (PZT). Mn-Zn ferrites with low magnetostriction saturation ( λs<10-6 ) and low magneto-crystalline anisotropy constants show high ME capabilities when associated with PZT in ring structures. In certain conditions, these ME effects are higher than those obtained with Terfenol-D/PZT composites in the same layered ring structure. Magnetostrictive and mechanical characterizations have given results that explain these high ME performances. Nevertheless, Mn-Zn ferrite/PZT composites exhibit voltages responses with low linearity especially at high signal level. Based on the particular structure of the ME device, a method to decrease the nonlinear harmonic distortion of the ME voltages is proposed. Harmonic distortion analysis of ME voltages measured in different configurations allows us to explain the phenomenon.

  5. Ferroelectric domain switching of individual nanoscale grains in polycrystalline lead zirconate titanate thin films

    NASA Astrophysics Data System (ADS)

    Jing, Yuanyuan

    2011-12-01

    carried out in a polycrystalline PZT thin film. Using PDMs, 90° switching of individual grains is identified in addition to the expected 180° switching. What is noteworthy is that a significant number of grains undergo 90° switching in both switching and relaxation processes, a striking contrast with epitaxial thin films where only 180o switching have been reported. In chapter 5, the reason that a large amount of 90o switching occurred in a polycrystalline thin film is studied by experimentally characterizing the local microstructure. The preliminary results show a direct correlation between the crystal orientation of a chosen grain and its switching type, indicating that the switching of a grain is dominated by its orientation. For a minority of the grains, however, the neighboring grain should play a dominant role. The effects of neighboring grains on the center grain switching are studied in chapter 6. Switching loops are carried out at different positions within individual grains. A correlation across grain boundaries in the coercive bias was observed for almost all measured grain boundaries. Even inside the same grain, different grain boundaries can either facilitate or hinder the switching, depending on the grain boundary misorientation. Future work is discussed in chapter 7, including the non-deterministic domain switching in polycrystalline thin films, the influence of electron beams on the domain switching behavior, and the domain relaxation through 90o switching. In conclusion, a large fraction of 90o switching is found in a polycrystalline PZT thin film. The switching of an individual grain is found to be mainly determined by the grain orientation and the grain boundary misorientations. Grains orientated close to the [001] direction are more likely to go through a 90o switching than a 180o switching. Grain boundaries with different misorientation angles tend to either hinder or facilitate the switching of grains on both sides.

  6. Effects of acetylacetone additions on PZT thin film processing

    SciTech Connect

    Schwartz, R.W.; Assink, R.A.; Dimos, D.; Sinclair, M.B.; Boyle, T.J.; Buchheit, C.D.

    1995-02-01

    Sol-gel processing methods are frequently used for the fabrication of lead zirconate titanate (PZT) thin films for many electronic applications. Our standard approach for film fabrication utilizes lead acetate and acetic acid modified metal alkoxides of zirconium and titanium in the preparation of our precursor solutions. This report highlights some of our recent results on the effects of the addition of a second chelating ligand, acetylacetone, to this process. The authors discuss the changes in film drying behavior, densification and ceramic microstructure which accompany acetylacetone additions to the precursor solution and relate the observed variations in processing behavior to differences in chemical precursor structure induced by the acetylacetone ligand. Improvements in thin film microstructure, ferroelectric and optical properties are observed when acetylacetone is added to the precursor solution.

  7. Fabrication and Evaluation of One-Axis Oriented Lead Zirconate Titanate Films Using Metal-Oxide Nanosheet Interface Layer

    NASA Astrophysics Data System (ADS)

    Minemura, Yoshiki; Nagasaka, Kohei; Kiguchi, Takanori; Konno, Toyohiko J.; Funakubo, Hiroshi; Uchida, Hiroshi

    2013-09-01

    Nanosheet Ca2Nb3O20 (ns-CN) layers with pseudo-perovskite-type crystal configuration were applied on the surface of polycrystalline metal substrates to achieve preferential crystal orientation of Pb(Zr,Ti)O3 (PZT) films for the purpose of enhanced ferroelectricity comparable to that of epitaxial thin films. PZT films with tetragonal symmetry (Zr/Ti=0.40:0.60) were fabricated by chemical solution deposition (CSD) on ns-CN-buffered Inconel 625 and SUS 316L substrates, while ns-CN was applied on the the substrates by dip-coating. The preferential crystal growth on the ns-CN layer can be achieved by favorable lattice matching between (001)/(100)PZT and (001)ns-CN planes. The degree of (001) orientation was increased for PZT films on ns-CN/Inconel 625 and ns-CN/SUS 316L substrates, whereas randomly-oriented PZT films with a lower degree of (001) orientation were grown on bare and Inconel 625 films. Enhanced remanent polarization of 60 µC/cm2 was confirmed for the PZT films on ns-CN/metal substrates, ascribed to the preferential alignment of the polar [001] axis normal to the substrate surface, although it also suffered from higher coercive field above 500 kV/cm caused by PZT/metal interfacial reaction.

  8. In situ transmission electron microscopy study of the electric field-induced transformation of incommensurate modulations in a Sn-modified lead zirconate titanate ceramic

    NASA Astrophysics Data System (ADS)

    He, H.; Tan, X.

    2004-10-01

    Electric field-induced transformation of incommensurate modulations in a Sn-modified lead zirconate titanate ceramic was investigated with an electric field in situ transmission electron microscopy technique. It is found that the spacing between the (1/x){110} satellite spots and the fundamental reflections do not change with external electric field, indicating that the modulation wavelength stays constant under applied field. The intensity of these satellites starts to decrease when the field level reaches a critical value. Further increase in the field strength eventually leads to the complete disappearance of the satellite reflections. In addition, the 1/2 {111}-type superlattice reflections showed no response to electrical stimuli.

  9. Y3Fe5O12/Na,Bi,Sr-doped PZT particulate magnetoelectric composites

    NASA Astrophysics Data System (ADS)

    Lisnevskaya, I. V.; Bobrova, I. A.; Lupeiko, T. G.; Agamirzoeva, M. R.; Myagkaya, K. V.

    2016-05-01

    Magnetoelectric (ME) composites of Na, Bi, Sr substituted lead zirconate titanate (PZT) and yttrium iron garnet having representative formula (100-х) wt% Na,Bi,Sr-doped PZT (PZTNB-1)+х wt% Y3Fe5O12 (YIG) with х=10-90 were manufactured using powdered components obtained through sol-gel processes. It is shown that the decrease in sintering temperature provided by the use of finely dispersed PZTNB-1 and YIG powders allows to significantly reduce content of fluorite-like foreign phase based on zirconium oxide, which forms due to the interfacial interaction during heat treatment and becomes stabilized by yttrium oxide. Connectivity has considerable effect on the value of ME coefficient of composite ceramics. With the same x value, ΔЕ/ΔН characteristic decreases when changing from 0-3-type structured composites (PZT grains embedded in ferrite matrix) to 3-3-(interpenetrating network of two phases) and especially 3-0-type samples (YIG grains embedded in PZT matrix); in the last case this can be attributed to the substrate clamping effect when ferrite grains are clamped with piezoelectric matrix. ΔЕ/ΔН value of 0-3 composites with х=40-60 wt% was found to be ∼1.6 mV/(cm Oe).

  10. Evaluation of additive element to improve PZT piezoelectricity by using first-principles calculation

    NASA Astrophysics Data System (ADS)

    Yasoda, Yutaka; Uetsuji, Yasutomo; Tsuchiya, Kazuyoshi

    2015-12-01

    Recently, piezoelectric material has a very important potential for functional material which configure Bio-MEMS (Biological Micro Electro Mechanical Systems) actuator and sensor. Specifically, in implementation of piezoelectric material for Bio-MEMS, thin film fabrication by sputtering method is made from the viewpoint of miniaturization. Furthermore, in piezoelectric material, perovskite type material composed of ABO3 has a high piezoelectricity. Then, PZT (Lead Zirconate Titanate) as the perovskite type piezoelectric material is widely used since it is easy to produce and has high piezoelectricity. PZT has zirconium or titanium in the B site of ABO3 structure. PZT has the features such as physical properties to greatly change by change in the B site composition ratio of zirconium and titanium. Thus, the B site greatly influences physical properties and therefore function improvement by additive element is tried widely. However, experimental method to lack in economy and quantitativeness is mainstream. Therefore, application of the result is difficult and new evaluation method of B site additive element for sputtering fabrication is necessary. Accordingly, in this research, search of an additive element at low cost and quantitative from the viewpoint of energy by first-principles calculation. First of all, the additive elements which capable of substituting for a B site of PZT were searched. Next, change of piezoelectricity was evaluated by change of crystal structure in a PZT system was introduced an additive element that substitution of the B site was possible. As a result, additive elements for the PZT B site capable of improving piezoelectricity were determined.

  11. PZT Thin-Film Micro Probe Device with Dual Top Electrodes

    NASA Astrophysics Data System (ADS)

    Luo, Chuan

    Lead zirconate titanate (PZT) thin-film actuators have been studied intensively for years because of their potential applications in many fields. In this dissertation, a PZT thin-film micro probe device is designed, fabricated, studied, and proven to be acceptable as an intracochlear acoustic actuator. The micro probe device takes the form of a cantilever with a PZT thin-film diaphragm at the tip of the probe. The tip portion of the probe will be implanted in cochlea later in animal tests to prove its feasibility in hearing rehabilitation. The contribution of the dissertation is three-fold. First, a dual top electrodes design, consisting of a center electrode and an outer electrode, is developed to improve actuation displacement of the PZT thin-film diaphragm. The improvement by the dual top electrodes design is studied via a finite element model. When the dimensions of the dual electrodes are optimized, the displacement of the PZT thin-film diaphragm increases about 30%. A PZT thin-film diaphragm with dual top electrodes is fabricated to prove the concept, and experimental results confirm the predictions from the finite element analyses. Moreover, the dual electrode design can accommodate presence of significant residual stresses in the PZT thin-film diaphragm by changing the phase difference between the two electrodes. Second, a PZT thin-film micro probe device is fabricated and tested. The fabrication process consists of PZT thin-film deposition and deep reactive ion etching (DRIE). The uniqueness of the fabrication process is an automatic dicing mechanism that allows a large number of probes to be released easily from the wafer. Moreover, the fabrication is very efficient, because the DRIE process will form the PZT thin-film diaphragm and the special dicing mechanism simultaneously. After the probes are fabricated, they are tested with various possible implantation depths (i.e., boundary conditions). Experimental results show that future implantation depths

  12. An experimental investigation of lead zirconate titanate--epoxy-multi-walled carbon nanotube bulk and flexible thick film composites

    NASA Astrophysics Data System (ADS)

    Banerjee, Sankha

    Piezoelectric sensors and actuators are needed for a wide range of applications from physiological measurement to industrial monitoring systems. Sensors that can be easily integrated with the host, while maintaining high sensitivity and reliability over a wide range of frequencies are not readily feasible and economical with homogenous piezoelectric materials. It is well known that two-phase piezoelectric-epoxy composites offer several benefits over their single phase counterparts, as the properties of the constituent phases combine to improve the range of applicability. However, the piezoelectric properties of these materials suffer from the electrically insulating properties of the epoxy matrix. The electrical properties of the matrix may be enhanced by including electrically conducting inclusions however, less is known about the mechanisms that drive the changes in these properties. Hence, this experimental investigation of sensor materials builds on the previous work in two-phase piezoelectric composites, where the aims are to understand the roles that specific fabrication parameters and inclusion composition play in determining the piezoelectric and dielectric performance the aforementioned composites. The materials under investigation will be comprised of Lead Zirconate Titanate, Epofix Cold-Setting Embedding Resin and multi-walled carbon nanotubes, i.e. the piezoelectric, epoxy and electrical inclusions respectively. Our work suggests that inclusion of MWCNTs enhances the piezoelectric and dielectric properties with increasing volume fraction below the percolation threshold. This work seeks to understand how the processing parameters: poling temperature, poling type and particle distribution influence the contact resistance, space charge double layer at the piezoelectric and conductor interfaces and electric field intensity at the piezoelectric boundary, which all ultimately dictate the piezoelectric and dielectric performance of the composite materials

  13. Performance of PZT stacks under high-field electric cycling at various temperatures in heavy-duty diesel engine fuel injectors

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Lee, Sung-Min; Lin, Hua-Tay; Stafford, Randy

    2016-04-01

    Testing and characterization of large prototype lead zirconate titanate (PZT) stacks present substantial technical challenges to electronic systems. The work in this study shows that an alternative approach can be pursued by using subunits extracted from prototype stacks. Piezoelectric and dielectric integrity was maintained even though the PZT plate specimens experienced an additional loading process involved with the extraction after factory poling. Extracted 10-layer plate specimens were studied by an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 108 cycles, both at room temperature (22°C) and at 50°C. The elevated temperature had a defined impact on the fatigue of PZT stacks. About 48 and 28% reductions were observed in the piezoelectric and dielectric coefficients, respectively, after 108 cycles at 50°C, compared with reductions of 25 and 15% in the respective coefficients at 22°C. At the same time, the loss tangent varied to a limited extent. The evolution of PZT-electrode interfacial layers or nearby dielectric layers should account for the difference in the fatigue rates of piezoelectric and dielectric coefficients. But the basic contribution to observed fatigue may result from the buildup of a bias field that finally suppressed the motion of the domain walls. Finally, monitoring of dielectric coefficients can be an effective tool for on-line lifetime prediction of PZT stacks in service if a failure criterion is defined properly.

  14. Interface magnetoelectric effect in the layered heterostructures with Co layers on the polished and ion-beam planarized ceramic PZT substrates

    NASA Astrophysics Data System (ADS)

    Stognij, Alexandre I.; Novitskii, Nickolaj; Poddubnaya, Natalia; Sharko, Sergei; Ketsko, Valerij; Mikhailov, Vladimir; Dyakonov, Vladimir; Szymczak, Henryk

    2015-01-01

    The low-frequency room temperature interface magnetoelectric (ME) effect was observed in the layered heterostructures comprising the ferromagnetic (FM) Co layers and ferroelectric (FE) ceramic substrates on the base of lead zirconate titanate PbZr0.45Ti0.55O3 (PZT). The Co films 1-12 μm in thickness were deposited by ion-beam sputtering/deposition technics onto the 400 μm PZT substrates. Results of X-ray, magnetic and ME experiments have shown the existence of ME effect in Co/PZT/Co and (Co/PZT/Co)3 heterostructures obtained by the above mentioned techniques being independent on ferromagnetic/ferroelectric interface roughness. The values of ME voltage coefficient in heterostructures with ion-beam planarized PZT surfaces are much higher than that in heterostructures with mechanochemically polished ceramic substrate surfaces. The heterostructures possess ME effect of the same order as those obtained by means of the mechanical bonding of FM and FE sheets with organic binders and have the typical ME hysteresis curves. The structures obtained are perspective for application as energy-independent elements in magnetic field sensors and magnetic memory.

  15. Optoenergy storage, stimulated processes in optical amplification with electro-optic ceramic gain media of Nd3+ doped lanthanum lead zirconate titanate

    NASA Astrophysics Data System (ADS)

    Wu, Ye; Zhao, Hua; Zou, Yingyin K.; Chen, Xuesheng; Bartolo, Baldassare Di; Zhang, Jingwen W.

    2011-08-01

    Optical amplification was observed in electro-optic (EO) ceramic plates of neodymium doped lanthanum-modified lead zirconate titanate (Nd3+:PLZT), when the pumping and seeding beams are not overlapped temporarily. This striking feature in the gain measurement and the accompanying slowly trailing-off both seen in the optical amplification as well as in the lasing action are satisfactorily explained by electron releasing from the rich vacancy-based carrier traps in the intrinsically disordered ceramics, i.e., the consecutively optical, thermal stimuli are found responsible for the long persistent optoenergy storage, and consequently the slow response of the gain dynamics. These findings in optical amplification, the slowly trailing-off, and the underlying mechanism have opened a new way of developing novel controllable optical devices. The model thus established could serve as a guide in design and refinement of a new generation of products out of this excellent, well commercialized EO PLZT ceramics family and similar others.

  16. Field-enhanced piezoelectric deformation during the high temperature/low temperature rhombohedral (FERh/FERL) phase transformation for tin modified lead zirconate titanate ceramics

    NASA Astrophysics Data System (ADS)

    Yang, Pin; Moore, Roger H.; Burns, George R.

    2002-06-01

    An unusual field-enhanced piezoelectric deformation near the FERH/FERL structural phase transformation was observed in a tin modified lead zirconate titanate solid solution. In addition to the typical field-induced domain reorientation and the piezoelectric strain, this additional field-enhanced deformation only observed near the phase transformation increases linearly with external electric field strength. A 78% increase in field-enhanced strain was observed at a field strength of 32 kV/cm. Comparison of the dielectric susceptibility at low and high field conditions suggests that the observed unusual behavior is created by a field-induced lattice softening during the structural phase transformation. Experimental observations on the field-induced softening phenomena are reported.

  17. An in situ diffraction study of domain wall motion contributions to the frequency dispersion of the piezoelectric coefficient in lead zirconate titanate

    SciTech Connect

    Seshadri, Shruti B.; Prewitt, Anderson D.; Jones, Jacob L.; Studer, Andrew J.; Damjanovic, Dragan

    2013-01-28

    The contribution of non-180 Degree-Sign domain wall displacement to the frequency dependence of the longitudinal piezoelectric coefficient has been determined experimentally in lead zirconate titanate using time-resolved, in situ neutron diffraction. Under subcoercive electric fields of low frequencies, approximately 3% to 4% of the volume fraction of non-180 Degree-Sign domains parallel to the field experienced polarization reorientation. This subtle non-180 Degree-Sign domain wall motion directly contributes to 64% to 75% of the magnitude of the piezoelectric coefficient. Moreover, part of the 33 pm/V decrease in piezoelectric coefficient across 2 orders of magnitude in frequency is quantitatively attributed to non-180 Degree-Sign domain wall motion effects.

  18. Effects of postdeposition annealing on the dielectric properties of antiferroelectric lanthanum-doped lead zirconate stannate titanate thin films derived from pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Yao, Yingbang; Lu, S. G.; Chen, Haydn; Wong, K. H.

    2004-11-01

    Lanthanum-doped lead zirconate stannate titanate antiferroelectric thin films were deposited onto Pt-buffered silicon substrates using the pulsed laser deposition method. The deposition temperature was 570°C. The postdeposition annealing process was carried out in an oxygen-flow tube furnace at temperatures ranging from 650 to 800°C for a duration of 30min; its effects were studied through the variations of the microstructure as well as the electrical and dielectric properties. It was found that an appropriate annealing process at temperatures above 700°Ccould substantially improve the dielectric properties. However, annealing beyond 800°C caused the film properties to deteriorate severely. Explanations were given with regard to the microstructure-property relationship.

  19. Miniature Cryogenic Valves for a Titan Lake Sampling System

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Zimmerman, Wayne; Takano, Nobuyuki; Avellar, Louisa

    2014-01-01

    The Cassini mission has revealed Titan to be one of the most Earthlike worlds in the Solar System complete with many of the same surface features including lakes, river channels, basins, and dunes. But unlike Earth, the materials and fluids on Titan are composed of cryogenic organic compounds with lakes of liquid methane and ethane. One of the potential mission concepts to explore Titan is to land a floating platform on one of the Titan Lakes and determine the local lake chemistry. In order to accomplish this within the expected mass volume and power budgets there is a need to pursue the development for a low power lightweight cryogenic valves which can be used along with vacuum lines to sample lake liquid and to distribute to various instruments aboard the Lander. To meet this need we have initiated the development of low power cryogenic valves and actuators based on a single crystal piezoelectric flextensional stacks produced by TRS Ceramics Inc. Since the origin of such high electromechanical properties of Relaxor-PT single crystals is due to the polarization rotation effect, (i.e., intrinsic contributions), the strain per volt decrease at cryogenic temperatures is much lower than in standard Lead Zirconate Titanate (PZT) ceramics. This makes them promising candidates for cryogenic actuators with regards to the stroke for a given voltage. This paper will present our Titan Lake Sampling and Sample Handling system design and the development of small cryogenic piezoelectric valves developed to meet the system specifications.

  20. Dependence of the ferroelectric properties of modified spin-coating-derived PZT thick films on the crystalline orientation

    NASA Astrophysics Data System (ADS)

    Annapureddy, Venkateswarlu; Choi, Jong-Jin; Kim, Jong-Woo; Hahn, Byung-Dong; Ahn, Cheol-Woo; Ryu, Jungho

    2016-06-01

    The effects of crystalline orientation on the ferroelectric properties of lead zirconate titanate (PZT) thick films deposited on (111)-oriented Pt/Ti/SiO2/Si substrates by using a modified spincoating method have been studied. The texture and the microstructure of the thick films were characterized by using X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis, respectively. The XRD results implied that the texture of the PZT films was sensitive to the pyrolysis conditions after spin-coating, but less dependent on the film's thickness. The texture had mainly a (111)-orientation for pyrolysis temperatures from 330 to 400 °C, and changes in the (100)- orientation occurred for pyrolysis temperatures at or above 450 °C after annealing at 650 °C for 5 min. The formation of a preferred texture could be explained by using the intermetallic phases and the internal stress energies between the substrate and the film. The ferroelectric properties of the PZT films fabricated by using this method have been found to be enhanced as compared to those of the PZT films fabricated by using the conventional spin-coating method and to be correlated to the microstructure of the film.

  1. Lanthanide-Assisted Deposition of Strongly Electro-optic PZT Thin Films on Silicon: Toward Integrated Active Nanophotonic Devices.

    PubMed

    George, J P; Smet, P F; Botterman, J; Bliznuk, V; Woestenborghs, W; Van Thourhout, D; Neyts, K; Beeckman, J

    2015-06-24

    The electro-optical properties of lead zirconate titanate (PZT) thin films depend strongly on the quality and crystallographic orientation of the thin films. We demonstrate a novel method to grow highly textured PZT thin films on silicon using the chemical solution deposition (CSD) process. We report the use of ultrathin (5-15 nm) lanthanide (La, Pr, Nd, Sm) based intermediate layers for obtaining preferentially (100) oriented PZT thin films. X-ray diffraction measurements indicate preferentially oriented intermediate Ln2O2CO3 layers providing an excellent lattice match with the PZT thin films grown on top. The XRD and scanning electron microscopy measurements reveal that the annealed layers are dense, uniform, crack-free and highly oriented (>99.8%) without apparent defects or secondary phases. The EDX and HRTEM characterization confirm that the template layers act as an efficient diffusion barrier and form a sharp interface between the substrate and the PZT. The electrical measurements indicate a dielectric constant of ∼650, low dielectric loss of ∼0.02, coercive field of 70 kV/cm, remnant polarization of 25 μC/cm(2), and large breakdown electric field of 1000 kV/cm. Finally, the effective electro-optic coefficients of the films are estimated with a spectroscopic ellipsometer measurement, considering the electric field induced variations in the phase reflectance ratio. The electro-optic measurements reveal excellent linear effective pockels coefficients of 110 to 240 pm/V, which makes the CSD deposited PZT thin film an ideal candidate for Si-based active integrated nanophotonic devices. PMID:26043103

  2. Development of fine scale PZT ceramic fiber/polymer shell composite transducers

    SciTech Connect

    Livneh, S.S.; Janas, V.F.; Safari, A.

    1995-07-01

    The relic processing technique was used to fabricate fine-scale piezoelectric lead zirconate titanate (PZT) ceramic fiber/polymer shell composites. In this technique sacrificial activated carbon fabrics were soaked in a PZT precursor solution, dried, and heat treated to form piezoceramic relics. Relics were embedded with polymer, which was allowed to cure, and the resulting composites were polished, electroded, and poled. Different facets of the composite-forming process were examined: structural modifications, soaking, firing, and polymer impregnation. The physical and electromechanical properties of the unique resulting composite were evaluated. Optimized PZT shell composites with 39 vol% ceramic exhibited the following property values: K{approximately}200, tan {delta} {approximately} 5.5%, d{sub 33} {approximately} 290 pC/N, d{sub h} {approximately} 100 pC/N, d{sub h}g{sub h} {approximately} 6000 {times} 10 {sup {minus}15} m{sup 2}/N, k{sub p} {approximately} 0.19, and k{sub t} {approximately} 0.28.

  3. Low frequency acoustic energy harvesting using PZT piezoelectric plates in a straight tube resonator

    NASA Astrophysics Data System (ADS)

    Li, Bin; You, Jeong Ho; Kim, Yong-Joe

    2013-05-01

    A novel and practical acoustic energy harvesting mechanism to harvest traveling sound at low audible frequency is introduced and studied both experimentally and numerically. The acoustic energy harvester in this study contains a quarter-wavelength straight tube resonator with lead zirconate titanate (PZT) piezoelectric cantilever plates placed inside the tube. When the tube resonator is excited by an incident sound at its acoustic resonance frequency, the amplified acoustic pressure inside the tube drives the vibration motions of piezoelectric plates, resulting in the generation of electricity. To increase the total voltage and power, multiple PZT plates were placed inside the tube. The number of PZT plates to maximize the voltage and power is limited due to the interruption of air particle motion by the plates. It has been found to be more beneficial to place the piezoelectric plates in the first half of the tube rather than along the entire tube. With an incident sound pressure level of 100 dB, an output voltage of 5.089 V was measured. The output voltage increases linearly with the incident sound pressure. With an incident sound pressure of 110 dB, an output voltage of 15.689 V and a power of 12.697 mW were obtained. The corresponding areal and volume power densities are 0.635 mW cm-2 and 15.115 μW cm-3, respectively.

  4. Design Optimization of PZT-Based Piezoelectric Cantilever Beam by Using Computational Experiments

    NASA Astrophysics Data System (ADS)

    Kim, Jihoon; Park, Sanghyun; Lim, Woochul; Jang, Junyong; Lee, Tae Hee; Hong, Seong Kwang; Song, Yewon; Sung, Tae Hyun

    2016-08-01

    Piezoelectric energy harvesting is gaining huge research interest since it provides high power density and has real-life applicability. However, investigative research for the mechanical-electrical coupling phenomenon remains challenging. Many researchers depend on physical experiments to choose devices with the best performance which meet design objectives through case analysis; this involves high design costs. This study aims to develop a practical model using computer simulations and to propose an optimized design for a lead zirconate titanate (PZT)-based piezoelectric cantilever beam which is widely used in energy harvesting. In this study, the commercial finite element (FE) software is used to predict the voltage generated from vibrations of the PZT-based piezoelectric cantilever beam. Because the initial FE model differs from physical experiments, the model is calibrated by multi-objective optimization to increase the accuracy of the predictions. We collect data from physical experiments using the cantilever beam and use these experimental results in the calibration process. Since dynamic analysis in the FE analysis of the piezoelectric cantilever beam with a dense step size is considerably time-consuming, a surrogate model is employed for efficient optimization. Through the design optimization of the PZT-based piezoelectric cantilever beam, a high-performance piezoelectric device was developed. The sensitivity of the variables at the optimum design is analyzed to suggest a further improved device.

  5. Feasibility of PZT ceramics for impact damage detection in composite structures

    NASA Astrophysics Data System (ADS)

    Dib, Gerges; Koricho, Ermias; Karpenko, Oleksii; Haq, Mahmood; Udpa, Lalita; Udpa, Satish S.

    2015-03-01

    Fiber reinforced plastic composites are becoming widely used in vehicles and airframe structures due to their high strength to weight ratio. However unlike metals, the multilayered composite structures are more susceptible to damage mechanisms such as disbonds and delaminations due to impacts. It is often difficult to visually detect the damage. Lead-Zirconate-Titanate (PZT) thin films are becoming popular for in-situ structural health monitoring due to their small size, high piezoelectric coupling coefficient, and ease of surface-mounting and/or embedding in composite structures. A network of such transducers could be utilized for damage detection using guided wave techniques, impedance techniques, or passive impact detection techniques. However, the PZT films are subject to the same impact probabilities that the structure encounters. If the transducers fail due to the subjected impacts, they can result in false readings and ultimately failing to correctly detect damage in the structure. This paper presents a feasibility study using the guided wave S0 mode for detecting impact damage. The health of the structure is quantified using guided wave measurements, and the PZT health is monitored using impedance methods.

  6. Design Optimization of PZT-Based Piezoelectric Cantilever Beam by Using Computational Experiments

    NASA Astrophysics Data System (ADS)

    Kim, Jihoon; Park, Sanghyun; Lim, Woochul; Jang, Junyong; Lee, Tae Hee; Hong, Seong Kwang; Song, Yewon; Sung, Tae Hyun

    2016-04-01

    Piezoelectric energy harvesting is gaining huge research interest since it provides high power density and has real-life applicability. However, investigative research for the mechanical-electrical coupling phenomenon remains challenging. Many researchers depend on physical experiments to choose devices with the best performance which meet design objectives through case analysis; this involves high design costs. This study aims to develop a practical model using computer simulations and to propose an optimized design for a lead zirconate titanate (PZT)-based piezoelectric cantilever beam which is widely used in energy harvesting. In this study, the commercial finite element (FE) software is used to predict the voltage generated from vibrations of the PZT-based piezoelectric cantilever beam. Because the initial FE model differs from physical experiments, the model is calibrated by multi-objective optimization to increase the accuracy of the predictions. We collect data from physical experiments using the cantilever beam and use these experimental results in the calibration process. Since dynamic analysis in the FE analysis of the piezoelectric cantilever beam with a dense step size is considerably time-consuming, a surrogate model is employed for efficient optimization. Through the design optimization of the PZT-based piezoelectric cantilever beam, a high-performance piezoelectric device was developed. The sensitivity of the variables at the optimum design is analyzed to suggest a further improved device.

  7. Fabrication and performance of a single-crystal lead magnesium niobate-lead titanate cylindrical hydrophone.

    PubMed

    Brown, Jeremy A; Dunphy, Kevin; Leadbetter, Jeff R; Adamson, Robert B A; Beslin, Olivier

    2013-08-01

    The development of a piezoelectric hydrophone based on lead magnesium niobate-lead titanate [PbMg1/3Nb2/3O3-PbTiO3 (PMN-PT)] single-crystal piezoelectric as the hydrophone substrate is reported. Although PMN-PT can possess much higher piezoelectric sensitivity than traditional lead zirconate titanate (PZT) piezoelectrics, it is highly anisotropic and therefore there is a large gain in sensitivity only when the crystal structure is oriented in a specific direction. Because of this, simply replacing the PZT substrate with a PMN-PT cylinder is not an optimal solution because the crystal orientation does not uniformly align with the circumferential axis of the hydrophone. Therefore, a composite hydrophone that maintains the optimal crystal axis around the hydrophone circumference has been developed. An 11.3 mm diameter composite hydrophone cylinder was fabricated from a single <110> cut PMN-PT rectangular plate. Solid end caps were applied to the cylinder and the sensitivity was directly compared with a solid PZT-5A cylindrical hydrophone of equal dimensions in a hydrophone test tank. The charge sensitivity showed a 9.1 dB improvement over the PZT hydrophone and the voltage sensitivity showed a 3.5 dB improvement. This was in good agreement with the expected theoretical improvements of 10.1 and 4.5 dB, respectively. PMID:23927102

  8. Photovoltaic enhancement due to surface-plasmon assisted visible-light absorption at the inartificial surface of lead zirconate-titanate film

    NASA Astrophysics Data System (ADS)

    Zheng, Fengang; Zhang, Peng; Wang, Xiaofeng; Huang, Wen; Zhang, Jinxing; Shen, Mingrong; Dong, Wen; Fang, Liang; Bai, Yongbin; Shen, Xiaoqing; Sun, Hua; Hao, Jianhua

    2014-02-01

    PZT film of 300 nm thickness was deposited on tin indium oxide (ITO) coated quartz by a sol-gel method. Four metal electrodes, such as Pt, Au, Cu and Ag, were used as top electrodes deposited on the same PZT film by sputtering at room temperature. In ITO-PZT-Ag and ITO-PZT-Au structures, the visible light (400-700 nm) can be absorbed partially by a PZT film, and the maximum efficiency of photoelectric conversion of the ITO-PZT-Ag structure was enhanced to 0.42% (100 mW cm-2, AM 1.5G), which is about 15 times higher than that of the ITO-PZT-Pt structure. Numerical simulations show that the natural random roughness of polycrystalline-PZT-metal interface can offer a possibility of coupling between the incident photons and SPs at the metal surface. The coincidence between the calculated SP properties and the measured EQE spectra reveals the SP origin of the photovoltaic enhancement in these ITO-PZT-metal structures, and the improved photocurrent output is caused by the enhanced optical absorption in the PZT region near the metal surface, rather than by the direct charge-transfer process between two materials.PZT film of 300 nm thickness was deposited on tin indium oxide (ITO) coated quartz by a sol-gel method. Four metal electrodes, such as Pt, Au, Cu and Ag, were used as top electrodes deposited on the same PZT film by sputtering at room temperature. In ITO-PZT-Ag and ITO-PZT-Au structures, the visible light (400-700 nm) can be absorbed partially by a PZT film, and the maximum efficiency of photoelectric conversion of the ITO-PZT-Ag structure was enhanced to 0.42% (100 mW cm-2, AM 1.5G), which is about 15 times higher than that of the ITO-PZT-Pt structure. Numerical simulations show that the natural random roughness of polycrystalline-PZT-metal interface can offer a possibility of coupling between the incident photons and SPs at the metal surface. The coincidence between the calculated SP properties and the measured EQE spectra reveals the SP origin of the

  9. Adjustable grazing incidence x-ray optics based on thin PZT films

    NASA Astrophysics Data System (ADS)

    Cotroneo, Vincenzo; Davis, William N.; Marquez, Vanessa; Reid, Paul B.; Schwartz, Daniel A.; Johnson-Wilke, Raegan L.; Trolier-McKinstry, Susan E.; Wilke, Rudeger H. T.

    2012-10-01

    The direct deposition of piezoelectric thin films on thin substrates offers an appealing technology for the realization of lightweight adjustable mirrors capable of sub-arcsecond resolution. This solution will make it possible to realize X-ray telescopes with both large effective area and exceptional angular resolution and, in particular, it will enable the realization of the adjustable optics for the proposed mission Square Meter Arcsecond Resolution X-ray Telescope (SMART-X). In the past years we demonstrated for the first time the possibility of depositing a working piezoelectric thin film (1-5 um) made of lead-zirconate-titanate (PZT) on glass. Here we review the recent progress in film deposition and influence function characterization and comparison with finite element models. The suitability of the deposited films is analyzed and some constrains on the piezoelectric film performances are derived. The future steps in the development of the technology are described.

  10. Identification of crystalline elastic anisotropy in PZT ceramics from in-situ blocking stress measurements

    SciTech Connect

    Daniel, L.; Hall, D. A.; Withers, P. J.; Webber, K. G.; King, A.

    2014-05-07

    High energy x-ray diffraction measurements of lattice strains were performed on a rhombohedral Lead Zirconate Titanate ceramic (PZT 55-45) under combinations of applied electric field and compressive stress. These measurements allow the construction of blocking stress curves for different sets of crystallographic orientations which reflect the single crystal elastic anisotropy. A micro-mechanical interpretation of the results is then proposed. Assuming cubic symmetry for the crystalline elastic stiffness tensor and isotropy for the macroscopic elastic properties, the elastic properties of the single crystal are extracted from the measured data. An anisotropy ratio close to 0.3 is found (compared to 1 for isotropic materials). The high level of anisotropy found in this work suggests that crystalline elastic anisotropy should not be neglected in the modelling of ferroelectric materials.

  11. Damage Evaluation Based on a Wave Energy Flow Map Using Multiple PZT Sensors

    PubMed Central

    Liu, Yaolu; Hu, Ning; Xu, Hong; Yuan, Weifeng; Yan, Cheng; Li, Yuan; Goda, Riu; Alamusi; Qiu, Jinhao; Ning, Huiming; Wu, Liangke

    2014-01-01

    A new wave energy flow (WEF) map concept was proposed in this work. Based on it, an improved technique incorporating the laser scanning method and Betti's reciprocal theorem was developed to evaluate the shape and size of damage as well as to realize visualization of wave propagation. In this technique, a simple signal processing algorithm was proposed to construct the WEF map when waves propagate through an inspection region, and multiple lead zirconate titanate (PZT) sensors were employed to improve inspection reliability. Various damages in aluminum and carbon fiber reinforced plastic laminated plates were experimentally and numerically evaluated to validate this technique. The results show that it can effectively evaluate the shape and size of damage from wave field variations around the damage in the WEF map. PMID:24463430

  12. Large Stroke Vertical PZT Microactuator With High-Speed Rotational Scanning

    PubMed Central

    Qiu, Zhen; Rhee, Choong-Ho; Choi, Jongsoo; Wang, Thomas D.; Oldham, Kenn R.

    2014-01-01

    A thin-film piezoelectric microactuator using a novel combination of active vertical translational scanning and passive resonant rotational scanning is presented. Thin-film lead-zirconate-titanate unimorph bending beams surrounding a central platform provide nearly 200-μm displacement at 18 V with bandwidth greater than 200 Hz. Inside the platform, a mirror mount, or mirror surface, supported by silicon dioxide spring beams can be excited to resonance by low-voltage; high-frequency excitation of the outer PZT beams. Over ±5.5° mechanical resonance is obtained at 3.8 kHz and ±2 V. The combination of large translational vertical displacements and high-speed rotational scanning is intended to support real-time cross-sectional imaging in a dual axes confocal endomicroscope. PMID:25506187

  13. Photovoltaic enhancement due to surface-plasmon assisted visible-light absorption at the inartificial surface of lead zirconate-titanate film.

    PubMed

    Zheng, Fengang; Zhang, Peng; Wang, Xiaofeng; Huang, Wen; Zhang, Jinxing; Shen, Mingrong; Dong, Wen; Fang, Liang; Bai, Yongbin; Shen, Xiaoqing; Sun, Hua; Hao, Jianhua

    2014-03-01

    PZT film of 300 nm thickness was deposited on tin indium oxide (ITO) coated quartz by a sol-gel method. Four metal electrodes, such as Pt, Au, Cu and Ag, were used as top electrodes deposited on the same PZT film by sputtering at room temperature. In ITO-PZT-Ag and ITO-PZT-Au structures, the visible light (400-700 nm) can be absorbed partially by a PZT film, and the maximum efficiency of photoelectric conversion of the ITO-PZT-Ag structure was enhanced to 0.42% (100 mW cm(-2), AM 1.5G), which is about 15 times higher than that of the ITO-PZT-Pt structure. Numerical simulations show that the natural random roughness of polycrystalline-PZT-metal interface can offer a possibility of coupling between the incident photons and SPs at the metal surface. The coincidence between the calculated SP properties and the measured EQE spectra reveals the SP origin of the photovoltaic enhancement in these ITO-PZT-metal structures, and the improved photocurrent output is caused by the enhanced optical absorption in the PZT region near the metal surface, rather than by the direct charge-transfer process between two materials. PMID:24477668

  14. Effects of high energy x ray and proton irradiation on lead zirconate titanate thin films' dielectric and piezoelectric response

    SciTech Connect

    Bastani, Y.; Cortes-Pena, A. Y.; Wilson, A. D.; Gerardin, S.; Bagatin, M.; Paccagnella, A.; Bassiri-Gharb, N.

    2013-05-13

    The effects of irradiation by X rays and protons on the dielectric and piezoelectric response of highly (100)-textured polycrystalline Pb(Zr{sub x}Ti{sub 1-x})O{sub 3} (PZT) thin films have been studied. Low-field dielectric permittivity, remanent polarization, and piezoelectric d{sub 33,f} response all degraded with exposure to radiation, for doses higher than 300 krad. At first approximation, the degradation increased at higher radiation doses, and was stronger in samples exposed to X rays, compared to the proton-irradiated ones. Nonlinear and high-field dielectric characterization suggest a radiation-induced reduction of the extrinsic contributions to the response, attributed to increased pinning of the domain walls by the radiation-induced point defects.

  15. A PZT-based smart aggregate for compressive seismic stress monitoring

    NASA Astrophysics Data System (ADS)

    Hou, S.; Zhang, H. B.; Ou, J. P.

    2012-10-01

    A PZT-based smart aggregate (SA) for compressive seismic stress monitoring is proposed in this paper. The proposed SA consists of a piece of PZT (lead zirconate titanate) patch sandwiched between a pair of marble cubes through epoxy. A soft PZT is selected, rendering the SA as a potential actuator in active sensing. Finite element analysis (FEA) was conducted to investigate the stress distribution in the SA under compression, which is used for calculating its sensitivity to compressive stresses. With a commercially available charge amplifier, the frequency response of both the amplitude and the phase shift of the sensing system are investigated by applying the frequency sweep loading scheme on the proposed SA. The frequency ranges from 0.01 to 10 Hz, corresponding to the range of seismic frequency response of most building structures. The alternating load for evaluating SA sensitivity was applied by the servo-hydraulic machine. The lower limit of frequency response is determined to be 0.5 Hz. The depolarization process of the piezoelectric coefficient of the selected PZT material was investigated to decide the load-holding time in calibration tests. The degradation of the piezoelectric coefficient with a series of compressive pre-stresses from 4.8 to 24 MPa was evaluated, and the experimental results showed that the influence from the considered range of pre-stresses is negligible. Using a commercially available charge amplifier, the proposed SA-based sensing system can monitor the seismic stress of low- and middle-rise building structures under moderate earthquakes.

  16. Development of dual PZT transducers for reference-free crack detection in thin plate structures.

    PubMed

    Sohn, Hoon; Kim, Seuno Bum

    2010-01-01

    A new Lamb-wave-based nondestructive testing (NDT) technique, which does not rely on previously stored baseline data, is developed for crack monitoring in plate structures. Commonly, the presence of damage is identified by comparing "current data" measured from a potentially damaged stage of a structure with "baseline data" previously obtained at the intact condition of the structure. In practice, structural defects typically take place long after collection of the baseline data, and the baseline data can be also affected by external loading, temperature variations, and changing boundary conditions. To eliminate the dependence on the baseline data comparison, the authors previously developed a reference-free NDT technique using 2 pairs of collocated lead zirconate titanate (PZT) transducers placed on both sides of a plate. This reference-free technique is further advanced in the present study by the necessity of attaching transducers only on a single surface of a structure for certain applications such as aircraft. To achieve this goal, a new design of PZT transducers called dual PZT transducers is proposed. Crack formation creates Lamb wave mode conversion due to a sudden thickness change of the structure. This crack appearance is instantly detected from the measured Lamb wave signals using the dual PZT transducers. This study also suggests a reference-free statistical approach that enables damage classification using only the currently measured data set. Numerical simulations and experiments were conducted using an aluminum plate with uniform thickness and fundamental Lamb waves modes to demonstrate the applicability of the proposed technique to reference-free crack detection. PMID:20040449

  17. Investigations on structural and multiferroic properties of artificially engineered lead zirconate titanate-cobalt iron oxide layered nanostructures

    NASA Astrophysics Data System (ADS)

    Ortega Achury, Nora Patricia

    Mutiferroics are a novel class of next generation multifunctional materials, which display simultaneous magnetic, electric, and ferroelastic ordering, have drawn increasing interest due to their multi-functionality for a variety of device applications. Since, very rare single phase materials exist in nature this kind of properties, an intensive research activity is being pursued towards the development of new engineered materials with strong magneto-electric (ME) coupling. In the present investigation, we have fabricated polycrystalline and highly oriented PbZr0.53,Ti0.47O3--CoFe 2O4 (PZT/CFO) artificially multilayers (MLs) engineered nanostructures thin films which were grown on Pt/TiO2/SiO2/Si and La 0.5Sr0.5CoO3 (LSCO) coated (001) MgO substrates respectively, using the pulsed laser deposition technique. The effect of various PZT/CFO sandwich configurations having 3, 5, and 9 layers, while maintaining similar total PZT and CFO thickness, has been systematically investigated. The first part of this thesis is devoted to the analysis of structural and microstructure properties of the PZT/CFO MLs. X-ray diffraction (XRD) and micro Raman analysis revealed that PZT and CFO were in the perovskite and spinel phases respectively in the all layered nanostructure, without any intermediate phase. The TEM and STEM line scan of the ML thin films showed that the layered structure was maintained with little inter-diffusion near the interfaces at nano-metric scale without any impurity phase, however better interface was observed in highly oriented films. Second part of this dissertation was dedicated to study of the dielectric, impedance, modulus, and conductivity spectroscopies. These measurements were carried out over a wide range of temperatures (100 K to 600 K) and frequencies (100 Hz to 1 MHz) to investigate the grain and grain boundary effects on electrical properties of MLs. The temperature dependent dielectric and loss tangent illustrated step-like behavior and

  18. The Physics of Sol-Gel Derived Ferroelectric Thin Film PZT

    NASA Astrophysics Data System (ADS)

    Melnick, Bradley Michael

    Initial examination of a simple Auger depth profile reveals that thin film, pure lead zirconate titanate (PZT) is intrinsically a layered structure. Oxygen vacancies at the electrode interfaces create an n-type region in a normally p-type material by contributing electrons into the conduction band. Therefore, such measurable effects as the polarization versus applied field (hysteresis), and the dielectric constant versus applied field are all thickness dependent via a space charge effect on the surface of the material. M. E. Lines has suggested that the decay in switching polarization (fatigue) of barium titanate is linked to a build up of a space charge layer near the surface region. Although no specifics as to the source of the space charge layer (electronic or ionic) are given, it is implied that the space charge layer does inhibit switching due to an interaction with the domain nuclei. Therefore, it is plausible that degradation of the remnant polarization in PZT may also be connected with a surface layer. The implication from the above discussion is that thin film ferroelectric materials, such as sol-gel derived PZT, are intrinsically layered structures. This thesis involves the study of ferroelectric PZT synthesized via a solution-gelation technique (sol -gel). Using a reproducible and stable liquid solution, thin films are made by spinning droplets of the metalorganic liquid onto a substrate. The thin layers are then dried and annealed in order to form perovskite phase ferroelectric PZT capacitors for testing. A testing methodology is presented in order to test the capacitors unambiguous of artifacts due to the integration process. Capacitance versus voltage (CV), true DC leakage current, switching curve and hysteresis curve data is analyzed in order to examine the unique properties of the thin film ferroelectric. CV analysis indicates that a depletion region exists near the surface of the ferroelectric capacitor. The depletion region is found to dominate

  19. Effect of buffer layer on the voltage responsivity of the pyroelectric thermal sensors prepared with PZT ceramics

    NASA Astrophysics Data System (ADS)

    Lee, Moon-Ho; Hwang, Ha R.; Bae, Seong-Ho

    1997-08-01

    The pyroelectric thermal detectors were prepared with lead zirconate titanate (PZT) ceramics, where a signal electrode had a structure of Au/metallic buffer/(PZT ceramic). The effect of buffer layer on the voltage responsivity was investigated with a response to step signal, taken by dynamic pyroelectric measurement. Pyroelectric ceramic wafer was prepared by mixed oxide technique. Au layer (thickness: 50 nm) and metallic buffers (thickness: 0 - 20 nm) of Cr, NiCr (80/20), and Ti were prepared by dc magnetron sputtering. In order to improve the light absorptivity, an Au-black was coated on Au signal electrode by thermal evaporation. At steady state, the output voltage (Vo) was decreased with increasing chopping frequency in the range of 1 - 100 Hz. A sensor without buffer showed the severe time-drift and instability in the output signal. However, the sensors with buffer layer showed the stable outputs. For step radiations, rising time (tp), peak voltage (Vp), and initial slope (k) of the output voltage were dependent upon the thickness and materials of buffer layer. The mechanical and electrical contacts between Au electrode and PZT ceramics were improved by inserting the metallic buffer layer. Considering the characteristics of the output voltage, the optimum thickness of buffer layer was about 15 - 20 nm, and the sensors with Ti buffer of 15 - 20 nm in thickness showed the good detectivity. Therefore, the stability and reliability of the thermal sensors could be improved by use of appropriate buffer layer.

  20. Enhancing the dielectric property of 0.69PZT-0.31PZNN thick films by optimizing the poling condition

    NASA Astrophysics Data System (ADS)

    Song, Daniel; Woo, Min Sik; Ahn, Jung Hwan; Sung, Tae Hyun

    2015-05-01

    We investigated how the applied electric-field's magnitude and the poling time affected, respectively, the dielectric property and the microstructure of piezoelectric lead zirconate titanate/lead zirconate nickel niobate (PZT-PZNN) thick films in order to apply the films to piezoelectric energy harvesters. Several 300-µm-thick, 10 × 10-mm2 PZT-PZNN squares were tape cast, laminated, sintered, and poled under 2-, 4-, 6-, 10-, 14-, and 15-kV/mm electric fields for 30 min. The 10-kV/mm electric field produced the highest d 33 × g 33 without mechanically damaging the sample. Further, samples were sintered at 950, 1000, and 1020 °C and subsequently poled at 10 kV/mm (previously determined as the magnitude of the optimal poling electric field) for 15, 30, 60, 120, and 240 min to investigate how the poling time affected the piezoelectric ceramic's microstructure. The optimal poling time for all the sintered samples was 60 min. Further, the piezoelectric ceramics composed of small grains and poled longer than 60 min showed higher dielectric constants. However, those composed of large grains and poled for times shorter than 60 min showed higher dielectric constants because the element mobility of the piezoelectric ceramics increased with increasing poling time.

  1. Synthesis of lead zirconate titanate nanofibres and the Fourier-transform infrared characterization of their metallo-organic decomposition process

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Santiago-Avilés, Jorge J.

    2004-01-01

    We have synthesized Pb(Zr0.52Ti0.48)O3 fibres with diameters ranging from 500 nm to several microns using electrospinning and metallo-organic decomposition techniques (Wang et al 2002 Mater. Res. Soc. Symp. Proc. 702 359). By a refinement of our electrospinning technique, i.e. by increasing the viscosity of the precursor solution, and by adding a filter to the tip of the syringe, the diameter of the synthesized PZT fibres has been reduced to the neighbourhood of 100 nm. The complex thermal decomposition was characterized using Fourier-transform infrared (FTIR) spectroscopy and x-ray diffraction (XRD). It was found that alcohol evaporated during electrospinning and that most of the organic groups had pyrolysed before the intermediate pyrochlore phase was formed. There is a good correspondence between XRD and FTIR spectra. We also verify that a thin film of platinum coated on the silicon substrate catalyses the phase transformation of the pyrochlore into the perovskite phase.

  2. Emission, plasma formation, and brightness of a PZT ferroelectric cathode

    SciTech Connect

    Sampayan, S.; Caporaso, G.; Trimble, D.; Westenskow, G.

    1995-04-27

    We have measured an 36-A-cm{sup {minus}2} current emission density over the surface area of an 11.4-cm{sup 2}-area Lead-Titanate- Zirconate (PZT) ferroelectric cathode with a pulsed anode-cathode (A-K) potential of 50 kV. We have also observed currents above those predicted by classical Child-Langmuir formula for a wide variety of cases. Since a plasma within the A-K gap could also lead to increase current emission we are attempting to measure the properties of the plasma near the cathode surface at emission time. In other measurements, we have observed strong gap currents in the absence of an A-K potential. Further, we continue to make brightness measurements of the emitted beam and observe spatially non-uniform emission and large shot-to-shot variation. Measurements show individual beamlets with a brightness as high 10{sup 11} Am{sup {minus}2} rad{sup {minus}2}.

  3. High-precision impedance spectroscopy: a strategy demonstrated on PZT.

    PubMed

    Boukamp, Bernard A; Blank, Dave H A

    2011-12-01

    Electrochemical impedance spectroscopy (EIS) has been recognized as a very powerful tool for studying charge and mass transport and transfer in a wide variety of electrically or electrochemically active systems. Sophisticated modeling programs make it possible to extract parameters from the impedance data, thus contributing to a better understanding of the system or material properties. For an accurate analysis, a correct modeling function is needed; this is often in the form of an equivalent circuit. It is not always possible to define the modeling function from visual inspection of the impedance dispersion. Small contributions to the overall dispersion can be masked, and hence overlooked. In this publication, a strategy is presented for high-precision impedance data analysis. A Kramers-Kronig test is used for the essential data validation. An iterative process of partial analysis and subtraction assists in deconvoluting the impedance spectrum, yielding both a vi- able model function and a set of necessary starting values for the full complex nonlinear least squares (CNLS) modeling. The advantage and possibilities of this strategy are demonstrated with an analysis of the ionic and electronic conductivity of lead zirconate titanate (PZT) as functions of temperature and oxygen partial pressure. PMID:23443688

  4. Fatigue Response of a PZT Multilayer Actuator under High-Field Electric Cycling with Mechanical Preload

    SciTech Connect

    Wang, Hong; Wereszczak, Andrew A; Lin, Hua-Tay

    2009-01-01

    An electric fatigue test system has been developed for piezoelectric actuator with a mechanical loading capability. Fatigue responses of a lead zirconate titanate (PZT) multilayer actuator (MLA) with a plate-through electrode configuration have been studied under an electric field (1.7 times that of a coercive field of PZT material) and a concurrent mechanical preload (30.0 MPa). A total of 1.0x10^9 cycles were carried out. Variations in charge density and mechanical strain under a high electric field and constant mechanical loads were observed during the fatigue test. The dc and the first harmonic (at 10 Hz) dielectric and piezoelectric coefficients were subsequently characterized by using FFT (Fast Fourier Transformation). It has been observed that both the dielectric and the piezoelectric coefficients underwent a monotonic decrease prior to 2.86x10^8 cycles under the relevant preload, and then fluctuated to a certain extent. Both the dielectric loss tangent and the piezoelectric loss tangent also exhibited the fluctuations after a certain amount of drop but at different levels relative to the pre-fatigue. And finally, the results were discussed with respect to domain wall mobility, microcracking, and other pre-existing anomalies.

  5. Optimized pyroelectric properties of 0-3 composites of PZT particles in polyurethane doped with lithium perchlorate.

    PubMed

    Ploss, Bernd; Krause, Markus

    2007-12-01

    A substantial improvement in the performance of pyroelectric 0-3 composites of ceramic particles in a polymer matrix has been achieved by doping the polymer matrix material. Readily prepared and polarized films with various volume fractions of lead zirconate-titanate (PZT) particles in polyurethane have been doped in a solution of lithium perchlorate in acetone to increase the conductivity. With an appropriate conductivity, the dielectric permittivities of the ceramic particles and the polymer matrix become matched, resulting in an improvement of the pyroelectric coefficient from about 6 microC/(m(2)K) to about 50 microC/(m(2)K). The experimental results are explained by theoretical predictions. PMID:18276541

  6. Optical amplification in disordered electrooptic Tm{sup 3+} and Ho{sup 3+} codoped lanthanum-modified lead zirconate titanate ceramics and study of spectroscopy and communication between cations

    SciTech Connect

    Zhao, Hua; Zhang, Kun; Xu, Long; Sun, Fankui; Zhang, Jingwen; Chen, Xuesheng; Li, Kewen K.

    2014-02-21

    Rare earth doped electro-optic (EO) ceramics of lanthanum-modified lead zirconate titanate (PLZT) are promising in building multifunctional optical devices, by taking advantage of both EO effect and optical activity. In this work, the combination of the measured spectra of absorption and photoluminescence, the fluorescent decay, the calculated Judd-Ofelt parameters, and measured single pass gain in Tm{sup 3+}, Ho{sup 3+} codoped PLZT ceramics have marked them out as promising gain media in building electrically controllable lasers/optical amplifiers and other multifunctional devices. Optical energy storage was also observed in the optical amplification dynamics.

  7. Clamping effect on the piezoelectric responses of screen-printed low temperature PZT/Polymer films on flexible substrates

    NASA Astrophysics Data System (ADS)

    Almusallam, A.; Yang, K.; Zhu, D.; Torah, R. N.; Komolafe, A.; Tudor, J.; Beeby, S. P.

    2015-11-01

    This paper introduces a new flexible lead zirconate titanate (PZT)/polymer composite material that can be screen-printed onto fabrics and flexible substrates, and investigates the clamping effect of these substrates on the characterization of the piezoelectric material. Experimental results showed that the optimum blend of PZT/polymer binder with a weight ratio of 12:1 provides a dielectric constant of 146. The measured value of the piezoelectric coefficient d33 was found to depend on the substrate used. Measured d33clp values of 70, 40, 36 pC N-1 were obtained from the optimum formulation printed on Polyester-cotton with an interface layer, Kapton and alumina substrates, respectively. The variation in the measured d33clp values occurs because of the effect of the mechanical boundary conditions of the substrate. The piezoelectric film is mechanically bonded to the surface of the substrate and this constrains the film in the plane of the substrate (the 1-direction). This constraint means that the perpendicular forces (applied in the 3-direction) used to measure d33 introduce a strain in the 1-direction that produces a charge of the opposite polarity to that induced by the d33 effect. This is due to the negative sign of the d31 coefficient and has the effect of reducing the measured d33 value. Theoretical and experimental investigations confirm a reduction of 13%, 50% and 55% in the estimated freestanding d33fs values (80 pC N-1) on Polyester-cotton, Kapton and alumina substrates, respectively. These results demonstrate the effect of the boundary conditions of the substrate/PZT interface on the piezoelectric response of the PZT/polymer film and in particular the reduced effect of fabric substrates due to their lowered stiffness.

  8. Ion-beam sputtering deposition and magnetoelectric properties of layered heterostructures (FM/PZT/FM)n, where FM - Co or Ni78Fe22

    NASA Astrophysics Data System (ADS)

    Stognij, Alexander; Novitskii, Nikolai; Sazanovich, Andrei; Poddubnaya, Nadezhda; Sharko, Sergei; Mikhailov, Vladimir; Nizhankovski, Viktor; Dyakonov, Vladimir; Szymczak, Henryk

    2013-08-01

    Magnetoelectric properties of layered heterostructures (FM/PZT/FM)n (n≤ 3) obtained by ion-beam sputtering deposition of ferromagnetic metal (FM), where FM is the cobalt (Co) or permalloy Ni78Fe22, onto ferroelectric ceramic based on lead zirconate titanate (PZT) have been studied. The polished ferroelectric plates in thickness from 400 to 20 μm were subjected to finished treatment by ion-beam sputtering. After plasma activation they were covered by the ferromagnetic films from 1 to 6 μm in thickness. Enhanced characteristics of these structures were reached by means of both the thickness optimization of ferroelectric and ferromagnetic layers and obtaining of ferromagnetic/ferroelectric interfaces being free from defects and foreign impurities. Assuming on the basis of analysis of elastic stresses in the ferromagnetic film that the magnetoelectric effect forms within ferromagnetic/ferroelectric interface, the structures with 2-3 ferromagnetic layers were obtained. In layered heterostructure (Py/PZT/Py)3, the optimal thickness of ferromagnetic film was 2 μm, and outer and inner ferroelectric layers had 20 μm and 80 μm in thickness, respectively. For such structure the maximal magnetoelectric voltage coefficient of 250 mV/(cm Oe) was reached at a frequency 100 Hz in magnetic field of 0.25 T at room temperature. The structures studied can serve as energy-independent elements detecting the change of magnetic or electric fields in electronic devices based on magnetoelectric effect.

  9. Real-Time, Label-Free, All-Electrical Detection of Salmonella typhimurium Using Lead Zirconate Titanate/Gold-Coated Glass Cantilevers at any Relative Humidity

    PubMed Central

    Zhu, Qing; Shih, Wan Y.; Shih, Wei-Heng

    2007-01-01

    We have examined non-insulated PZT/gold-coated glass cantilevers for real-time, label-free detection of Salmonella t. by partial dipping at any relative humidity. The PZT/gold-coated glass cantilevers were consisted of a 0.127 mm thick PZT layer about 0.8 mm long, 2 mm wide bonded to a 0.15 mm thick gold-coated glass layer with a 3.0 mm long gold-coated glass tip for detection. We showed that by placing the water level at the nodal point, about 0.8 mm from the free end of the gold-glass tip, there was a 1-hr window in which the resonance frequency was stable despite the water level change by evaporation at 20% relative humidity or higher. By dipping the cantilevers to their nodal point, we were able to do real-time, label-free detection without background resonance frequency corrections at any relative humidity. The partially dipped PZT/gold-coated glass cantilever exhibited mass detection sensitivity, Δm/Δf = −5×10−11g/Hz, and a detection concentration sensitivity, 5×103 cells/ml in 2 ml of liquid, which was about two orders of magnitude lower than that of a 5 MHz QCM. It was also about two orders of magnitude lower than the infection dosage and one order of magnitude lower that the detection limit of a commercial Raptor sensor. PMID:22872784

  10. The effect of a hydrostatic pressure on the D-E response of Nb modified 95/5 PZT

    NASA Astrophysics Data System (ADS)

    Lynch, Christopher; Valadez, Carlos; Altgilbers, Larry; Sahul, Raffi; Alberta, Ed; Hackenberger, Wes

    2012-02-01

    Niobium doped lead zirconate titanate (95/5 NbPZT) undergoes a hydrostatic pressure induced FE to AFE phase transformation. This work reports the large field dielectric response to both unipolar and bipolar electric field as 95/5 PZT passes through the forward and reverse FE-AFE transformations. The poled ceramic was first hydrostatically depoled by driving the FE-AFE phase transformation and stress-strain and stress - electric displacement responses were measured. Next, specimens were subjected to electric field loading at different hydrostatic pressure levels. Electric field was varied at a series of fixed pressure levels between zero and 550 MPa. The unipolar experiments resulted in minor hysteresis loops with the area inside the loops dependent on both pressure and electric field amplitude. Two different slopes were taken from the D-E loops, identified as the small field and large field slopes. Each changed with pressure and displayed distinct jumps at the forward and reverse FE-AFE phase transformations. The area within the loops in the ferroelectric regime, attributed to domain wall motion, increased as pressure was increased and dropped abruptly as the material passed through the pressure induced phase transformation. The bipolar experiments resulted in open D-E hysteresis loops in the ferroelectric phase that transitioned to linear in the anti-ferroelectric phase.

  11. Damage Detection Based on Power Dissipation Measured with PZT Sensors through the Combination of Electro-Mechanical Impedances and Guided Waves.

    PubMed

    Sevillano, Enrique; Sun, Rui; Perera, Ricardo

    2016-01-01

    The use of piezoelectric ceramic transducers (such as Lead-Zirconate-Titanate-PZT) has become more and more widespread for Structural Health Monitoring (SHM) applications. Among all the techniques that are based on this smart sensing solution, guided waves and electro-mechanical impedance techniques have found wider acceptance, and so more studies and experimental works can be found containing these applications. However, even though these two techniques can be considered as complementary to each other, little work can be found focused on the combination of them in order to define a new and integrated damage detection procedure. In this work, this combination of techniques has been studied by proposing a new integrated damage indicator based on Electro-Mechanical Power Dissipation (EMPD). The applicability of this proposed technique has been tested through different experimental tests, with both lab-scale and real-scale structures. PMID:27164104

  12. Out-of-Plane Translational PZT Bimorph Actuator with Archimedes’ Spiral Actuating Tethers

    NASA Astrophysics Data System (ADS)

    Yang, Chenye; Liu, Sanwei; Livermore, Carol

    2015-12-01

    The design, finite element analysis (FEA), and experimental characterization of a MEMS out-of-plane (vertical) translational lead-zirconate-titanate (PZT) bimorph actuator supported on Archimedes’ spiral tethers are presented. Two types of bimorph actuators with different electrode patterns (with spiral tethers half actuated or fully actuated) are designed and fabricated. Both designs are fabricated by commercial processes and are compatible with integration into more complex MEMS systems. Finite element analysis (FEA) was used to analyze and predict the displacements of both types of actuators. The deflections of both fully- actuated and half-actuated devices were measured experimentally to validate the design. At an applied voltage of 110V, the out-of-plane deflections of the actuators with half-actuated and fully-actuated tethers were measured at about 17 μm and 29 μm respectively, in good agreement with FEA predictions of 17.1 μm and 25.8 μm. The corresponding blocking forces are predicted as 10 mN and 17 mN by FEA.

  13. Detection of cancer biomarkers by piezoelectric biosensor using PZT ceramic resonator as the transducer.

    PubMed

    Su, Li; Zou, Lan; Fong, Chi-Chun; Wong, Wing-Leung; Wei, Fan; Wong, Kwok-Yin; Wu, Rudolf S S; Yang, Mengsu

    2013-08-15

    A novel piezoelectric biosensor using lead titanate zirconate (PZT) ceramic resonator as transducer was developed for label-free, cost-effective, and direct detection of cancer biomarkers. We designed a dual sensing scheme where two ceramic resonators were connected in parallel, in which one resonator was used as the sensing unit and the other as the control unit, in order to minimize environment influences including temperature fluctuation and to achieve the required frequency stability for biosensing applications. Detection of selected cancer biomarkers, such as prostate specific antigen (PSA) and α-fetoprotein (AFP) was carried out to evaluate the performance of the biosensor. The device showed high sensitivity (0.25 ng/ml) and fast detection (within 30 min) with small amount of sample (1 μl), which is compatible to that required by clinical measurements. The results also showed that the ceramic resonator-based piezoelectric biosensor platform could be utilized with different chemical interfaces, and the miniaturized size of the ceramic resonators makes it suitable for fabricating sensor arrays for multiplex detection. PMID:23542085

  14. An investigation of vibration-induced protein desorption mechanism using a micromachined membrane and PZT plate.

    PubMed

    Yeh, Po Ying; Le, Yevgeniya; Kizhakkedathu, Jayachandran N; Chiao, Mu

    2008-10-01

    A micromachined vibrating membrane is used to remove adsorbed proteins on a surface. A lead zirconate titanate (PZT) composite (3 x 1 x 0.5 mm) is attached to a silicon membrane (2,000 x 500 x 3 microm) and vibrates in a flexural plate wave (FPW) mode with wavelength of 4,000/3 microm at a resonant frequency of 308 kHz. The surface charge on the membrane and fluid shear stress contribute in minimizing the protein adsorption on the SiO(2) surface. In vitro characterization shows that 57 +/- 10% of the adsorbed bovine serum albumin (BSA), 47 +/- 13% of the immunoglobulin G (IgG), and 55.3~59.2 +/- 8% of the proteins from blood plasma are effectively removed from the vibrating surface. A simulation study of the vibration-frequency spectrum and vibrating amplitude distribution matches well with the experimental data. Potentially, a microelectromechanical system (MEMS)-based vibrating membrane could be the tool to minimize biofouling of in vivo MEMS devices. PMID:18427993

  15. Exploring the piezoelectric performance of PZT particulate-epoxy composites loaded in shear

    NASA Astrophysics Data System (ADS)

    Van Loock, F.; Deutz, D. B.; van der Zwaag, S.; Groen, W. A.

    2016-08-01

    The active and passive piezoelectric response of lead zirconium titanate (PZT)-epoxy particulate composites loaded in shear is studied using analytical models, a finite element model and by experiments. The response is compared to that of the same composites when loaded in simple tension. Analogously to bulk PZT, particulate PZT-polymer composites loaded in shear show higher piezoelectric charge coefficient (d 15) and energy density figure of merit (FOM15) values compared to simple tension (d 33) and (FOM33). This outcome demonstrates the as-yet barely explored potential of piezoelectric particulate composites for optimal strain energy harvesting when activated in shear.

  16. Identification of Material Properties of PZT Single Crystals through Crystallographic Homogenization Method

    NASA Astrophysics Data System (ADS)

    Uetsuji, Yasutomo; Tanaka, Satoshi; Tsuchiya, Kazuyoshi; Ueda, Sei; Nakamachi, Eiji

    Single crystals of lead zirconium titanate (PZT) are difficult to fabricate. Thus, not all material properties of PZT have been fully characterized. In this paper, the mechanical and electrical properties of a PZT single crystal, which can be assumed to be identical to those of a crystal grain in a polycrystal, have been computed from those of a polycrystalline PZT ceramic by the steepest decent method and multiscale finite element modeling based on crystallographic homogenization method. Crystallographic homogenization enables us to predict macroscopic properties of ceramics taking into account the inhomogeneous microstructure of an aggregate of crystal grains. The crystal morphology of the PZT ceramic was measured by the SEM·EBSD technique, and the result was used in the microscopic finite element model. Then, the mechanical and electrical properties of the crystal grain were derived by the steepest decent method so that its macroscopic properties would correspond to the measured properties of the PZT ceramic. The proposed computational method was applied to barium titanate (BT) and validated by comparison of the computed material properties with known properties of the BT single crystal. Finally, the computed material properties, such as the elastic compliance, and the dielectric and piezoelectric constants, were presented for the PZT single crystal.

  17. Optical tuning of electrical properties of PZT thin film deposited on STO

    NASA Astrophysics Data System (ADS)

    Gupta, Reema; Tomar, Monika; Gupta, Vinay

    2015-11-01

    Present report deals with the optical tuning of electrical properties of PZT thin film based photodetector (PD). Lead Zirconium Titanate (PZT) thin film has been fabricated over epitaxially matched Strontium Titanate (STO) substrate using Pulsed Laser Deposition technique. Fine aluminium inter digital electrodes were patterned over PZT film to study the response of the PD. The photo response has been investigated by tuning the optical properties of the incident laser beam. The response was found to be modified according to the incident laser intensity and the distance between sample and laser. Moreover, PZT based photo detector was found to be highly sensitive towards small variation in the optical properties of the incident light. The intrinsic properties of the PZT thin film including its ferroelectric properties make it a novel material for the fabrication of UV based photo detector. The response of the PZT based Photodetector was found to be about 152 at a distance of 10cm between the PD and the UV laser of wavelength 365nm. The response time and recovery time were found to be 60 msec each which are much faster for UV detection as compared to other photodetectors. Moreover, a stable response was also observed on the repetitive UV sensing for the fabricated PZT based Photodetector.

  18. The fabrication and material characterization of PZT based functionally graded piezoceramics

    NASA Astrophysics Data System (ADS)

    Alexander, Paul W.; Brei, Diann; Halloran, John W.

    2005-05-01

    Functionally Graded Piezoceramics (FGP) increase actuator lifetime and provide complex deformations; however, to reap these benefits sophisticated grading and fabrication techniques beyond the conventional layered bonding techniques are required. This paper introduces the Dual Electro/Piezo Property (DEPP) gradient technique via MicroFabrication through CoeXtrusion (MFCX). The Dual Electro/Piezo Property (DEPP) grading technique pairs a high displacement lead zirconate titanate (PZT) piezoceramic with a high permittivity barium titanate (BT) dielectric. These compatible materials act synergistically to form dramatic gradients in permittivity across the structure, concentrating the electric field in the more piezoelectrically active region leading to electrically-efficient, large-displacement actuators; with the benefit of increased reliability stemming from the continuous gradients and monolithic nature of the ceramic. The DEPP variation was first evaluated independently of the MFCX process through fabrication and experimental characterization of a powder pressed bimorph. While simple one-dimensionally graded FGPs can be realized by this process, MFCX is needed for any complex, multidimensional gradient. The MFCX process was adapted for DEPP grading and demonstrated by creating a more complex linearly-graded FGP. Both the bimorph and linearly graded specimens had good material quality and generated high displacements correlating well with published FGP theory; with the linear gradient reducing internal stress levels, extending actuator lifetime. This paper presents a general FGP methodology that couples grading and fabrication to generate high yield, low cost monolithic actuators with complicated one-dimensional gradients. Extension of this research will pave the way for more complicated gradients yielding such deformation capabilities as warping, twisting, rippling, and dimpling.

  19. In-Situ phase and texture characterization of solution deposited PZT thin films during crystallization.

    SciTech Connect

    Brennecka, Geoffrey L.; Nittala, Krishna; Jones, Jacob L.

    2010-08-01

    Ferroelectric lead zirconate titanate (PZT) thin films are used for integrated capacitors, ferroelectric memory, and piezoelectric actuators. Solution deposition is routinely used to fabricate these thin films. During the solution deposition process, the precursor solutions are spin coated onto the substrate and then pyrolyzed to form an amorphous film. The amorphous film is then heated at a higher temperature (650-700 C) to crystallize the film into the desired perovskite phase. Phase purity is critical in achieving high ferroelectric properties. Moreover, due to the anisotropy in the structure and properties of PZT, it is desirable to control the texture obtained in these thin films. The heating rate during crystallization process is known to affect the sequence of phase evolution and texture obtained in these thin films. However, to date, a comprehensive understanding of how phase and texture evolution takes place is still lacking. To understand the effects of heating rate on phase and texture evolution, in-situ diffraction experiments during the crystallization of solution deposited PZT thin films were carried out at beamline 6-ID-B, Advanced Photon Source (APS). The high X-ray flux coupled with the sophisticated detectors available at the APS synchrotron source allow for in-situ characterization of phase and texture evolution at the high ramp rates that are commonly used during processing of PZT thin films. A PZT solution of nominal composition 52/48 (Zr/Ti) was spin coated onto a platinum-coated Si substrate (Pt//TiO{sub x}//SiO{sub 2}//Si). The films were crystallized using an infrared lamp, similar to a rapid thermal annealing furnace. The ramp rate was adjusted by controlling the voltage applied to the infrared lamp and increasing the voltage by a constant step with every acquisition. Four different ramp rates, ranging from {approx}1000 C/s to {approx}1 C/s, were investigated. The sample was aligned in grazing incidence to maximize the signal from the thin

  20. Magnetoelectric effect in layered ferrite/PZT composites. Study of the demagnetizing effect on the magnetoelectric behavior

    NASA Astrophysics Data System (ADS)

    Loyau, V.; Morin, V.; Chaplier, G.; LoBue, M.; Mazaleyrat, F.

    2015-05-01

    We report the use of high magnetomechanical coupling ferrites in magnetoelectric (ME) layered composites. Bilayer samples combining (Ni0.973 Co0.027)1-xZnxFe2O4 ferrites (x = 0-0.5) synthesized by non conventional reactive Spark Plasma Sintering and commercial lead zirconate titanate (PZT) were characterized in term of ME voltage coefficients measured at sub-resonant frequency. Strong ME effects are obtained and we show that an annealing at 1000 °C and a quenching in air improve the piezomagnetic behavior of Zn-rich compositions. A theoretical model that predicts the ME behavior was developed, focusing our work on the demagnetizing effects in the transversal mode as well as the longitudinal mode. The model shows that: (i) high ME coefficients are obtained when ferrites with high magnetomechanical coupling are used in bilayer ME composites, (ii) the ME behavior in transversal and longitudinal modes is quite similar, and differences in the shapes of the ME curves are mainly due the demagnetizing effects, (iii) in the transversal mode, the magnetic field penetration depends on the ferrite layer thickness and the ME coefficient is affected accordingly. The two later points are confirmed by measurements on ME samples and calculations. Performances of the ME composites made with high magnetomechanical coupling ferrites are compared to those obtained using Terfenol-D materials in the same conditions of size, shape, and volume ratio. It appears that a ferrite with an optimized composition has performances comparable to those obtained with Terfenol-D material. Nevertheless, the fabrication processes of ferrites are quite simpler. Finally, a ferrite/PZT based ME composite was used as a current sensor.

  1. A three-degree-of-freedom thin-film PZT-actuated microactuator with large out-of-plane displacement

    PubMed Central

    Choi, Jongsoo; Qiu, Zhen; Rhee, Choong-Ho; Wang, Thomas; Oldham, Kenn

    2014-01-01

    A novel three degree-of-freedom microactuator based on thin-film lead-zirconate-titanate (PZT) is described with its detailed structural model. Its central rectangular-shaped mirror platform, also referred to as the stage, is actuated by four symmetric PZT bending legs such that each leg provides vertical translation for one corner of the stage. It has been developed to support real-time in vivo vertical cross-sectional imaging with a dual axes confocal endomicroscope for early cancer detection, having large displacements in three axes (z, θx, θy) and a relatively high bandwidth in the z-axis direction. Prototype microactuators closely meet the performance requirements for this application; in the out-of-plane (z-axis) direction, it has shown more than 177 μm of displacement and about 84 Hz of structural natural frequency, when two diagonal legs are actuated at 14V. With all four legs, another prototype of the same design with lighter stage mass has achieved more than 430 μm of out-of-plane displacement at 15V and about 200 Hz of bandwidth. The former design has shown approximately 6.4° and 2.9° of stage tilting about the x-axis and y-axis, respectively, at 14V. This paper also presents a modeling technique that uses experimental data to account for the effects of fabrication uncertainties in residual stress and structural dimensions. The presented model predicts the static motion of the stage within an average absolute error of 14.6 μm, which approaches the desired imaging resolution, 5 μm, and also reasonably anticipates the structural dynamic behavior of the stage. The refined model will support development of a future trajectory tracking controller for the system. PMID:25506131

  2. A three-degree-of-freedom thin-film PZT-actuated microactuator with large out-of-plane displacement

    NASA Astrophysics Data System (ADS)

    Choi, Jongsoo; Qiu, Zhen; Rhee, Choong-Ho; Wang, Thomas; Oldham, Kenn

    2014-07-01

    A novel three degree-of-freedom microactuator based on thin-film lead-zirconate-titanate (PZT) is described with its detailed structural model. Its central rectangular-shaped mirror platform, also referred to as the stage, is actuated by four symmetric PZT bending legs such that each leg provides vertical translation for one corner of the stage. It has been developed to support real-time in vivo vertical cross-sectional imaging with a dual axes confocal endomicroscope for early cancer detection, having large displacements in three axes (z, θx, θy) and a relatively high bandwidth in the z-axis direction. Prototype microactuators closely meet the performance requirements for this application; in the out-of-plane (z-axis) direction, it has shown more than 177 μm of displacement and about 84 Hz of structural natural frequency, when two diagonal legs are actuated at 14V. With all four legs, another prototype of the same design with lighter stage mass has achieved more than 430 μm of out-of-plane displacement at 15V and about 200 Hz of bandwidth. The former design has shown approximately 6.4° and 2.9° of stage tilting about the x-axis and y-axis, respectively, at 14V. This paper also presents a modeling technique that uses experimental data to account for the effects of fabrication uncertainties in residual stress and structural dimensions. The presented model predicts the static motion of the stage within an average absolute error of 14.6 μm, which approaches the desired imaging resolution, 5 μm, and also reasonably anticipates the structural dynamic behavior of the stage. The refined model will support development of a future trajectory tracking controller for the system.

  3. High performance Au/PZT/TiOxNy/Si MFIS structure for next generation ferroelectric memory applications

    NASA Astrophysics Data System (ADS)

    Sharma, Deepak K.; Khosla, Robin; Sharma, Satinder K.

    2015-05-01

    The Metal-Ferroelectric-Insulator-Semiconductor (MFIS) capacitors with thin 20 nm lead zirconate titanate (PZT) and titanium oxynitride (TiOxNy) buffer layer were fabricated by RF magnetron sputtering technique and characterized. TiOxNy as a buffer layer deposited for the first time for MFIS application at different thicknesses and fabricated structure was found to exhibit excellent electrical characteristics at 14 nm TiOxNy. Memory window of 0.4 V was found at low sweep voltage of ± 3 V which increases to 1.8 V at sweep voltage of ±14 V indicating multilevel data storage. Moreover the fabricated structure possesses low leakage current density of ˜4 µA/cm2 at 36 nm TiOxNy which increases to 12 µA/cm2 at 4 nm TiOxNy at 5 V, reasonable limit. Furthermore, the fabricated structure possesses outstanding data retention capability at 14 nm TiOxNy; the high and low capacitance becomes constant after few seconds and clearly distinguishable for 1h and 30 min. This shows that proposed MFIS structure is suitable for high performance ferroelectric memory applications.

  4. A large-scan-angle piezoelectric MEMS optical scanner actuated by a Nb-doped PZT thin film

    NASA Astrophysics Data System (ADS)

    Naono, Takayuki; Fujii, Takamichi; Esashi, Masayoshi; Tanaka, Shuji

    2014-01-01

    Resonant 1D microelectromechanical systems (MEMS) optical scanners actuated by piezoelectric unimorph actuators with a Nb-doped lead zirconate titanate (PNZT) thin film were developed for endoscopic optical coherence tomography (OCT) application. The MEMS scanners were designed as the resonance frequency was less than 125 Hz to obtain enough pixels per frame in OCT images. The device size was within 3.4 mm × 2.5 mm, which is compact enough to be installed in a side-imaging probe with 4 mm inner diameter. The fabrication process started with a silicon-on-insulator wafer, followed by PNZT deposition by the Rf sputtering and Si bulk micromachining process. The fabricated MEMS scanners showed maximum optical scan angles of 146° at 90 Hz, 148° at 124 Hz, 162° at 180 Hz, and 152° at 394 Hz at resonance in atmospheric pressure. Such wide scan angles were obtained by a drive voltage below 1.3 Vpp, ensuring intrinsic safety in in vivo uses. The scanner with the unpoled PNZT film showed three times as large a scan angle as that with a poled PZT films. A swept-source OCT system was constructed using the fabricated MEMS scanner, and cross-sectional images of a fingertip with image widths of 4.6 and 2.3 mm were acquired. In addition, a PNZT-based angle sensor was studied for feedback operation.

  5. Chem-prep PZT 95/5 for neutron generator applicatios : powder preparation characterization utilizing design of experiments.

    SciTech Connect

    Lockwood, Steven John; Rodman-Gonzales, Emily Diane; Voigt, James A.; Moore, Diana Lynn

    2003-07-01

    Niobium doped PZT 95/5 (lead zirconate-lead titanate) is the material used in voltage bars for all ferroelectric neutron generator power supplies. In June of 1999, the transfer and scale-up of the Sandia Process from Department 1846 to Department 14192 was initiated. The laboratory-scale process of 1.6 kg has been successfully scaled to a production batch quantity of 10 kg. This report documents efforts to characterize and optimize the production-scale process utilizing Design of Experiments methodology. Of the 34 factors identified in the powder preparation sub-process, 11 were initially selected for the screening design. Additional experiments and safety analysis subsequently reduced the screening design to six factors. Three of the six factors (Milling Time, Media Size, and Pyrolysis Air Flow) were identified as statistically significant for one or more responses and were further investigated through a full factorial interaction design. Analysis of the interaction design resulted in developing models for Powder Bulk Density, Powder Tap Density, and +20 Mesh Fraction. Subsequent batches validated the models. The initial baseline powder preparation conditions were modified, resulting in improved powder yield by significantly reducing the +20 mesh waste fraction. Response variation analysis indicated additional investigation of the powder preparation sub-process steps was necessary to identify and reduce the sources of variation to further optimize the process.

  6. Dynamic Electromechanical Characterization of Axially Poled PZT 95/5

    SciTech Connect

    Chhabildas, Lalit C.; Furnish, Michael D.; Montgomery, Stephen T.; Setchell, Robert E.

    1999-06-25

    We are conducting a comprehensive experimental study of the electromechanical behavior of poled PZT 95/5 (lead zirconate titattate). As part of this study, eight plane-wave tests have been conducted on axially poled PZT 95/5 at stress levels ranging from 0.9 to 4.6 GPa, using VISAR and electrical diagnos- tics. Observed wave velocities were slightly decreased from ultrasonic vahtes, by contrast' with unpoled samples. Compression waveforms show a step at 0.6 GPa more marked than for normally poled or unpoled samples; this may correspond to a poling effect on the ferroelectric/antiferroelectric transition. A similar step is observed on release. The released charge upon loading to 0.9 GPa is consistent with nearly complete depoling. Loading to higher stresses gave lower currents (factor of 10), suggesting shock-induced conduc- tivity or electrical breakdown.

  7. New Candidate for FRAM Dielectric Layer—Rare Earth Europium Doped PZT Thin Films

    NASA Astrophysics Data System (ADS)

    Yu, Y. J.; Li, Y. M.; Chan, H. L. W.

    2005-03-01

    Europium (Eu) doped lead zirconium titanate (PZT) ferroelectric thin films (PEZT) were grown on platinized Si substrates by a sol-gel technique with a rapid thermal process. Based on the analysis of TEM and AFM, an obvious modification of PZT films by Eu doping was observed. Compared with undoped PZT, PEZT films show 5 times larger size of grains (100 nm) but only 15% increase in roughness mean square (about 1.08 nm). That is, PEZT films with high quality (large grain size and good uniformity) were fabricated under the same processing condition as pure PZT, in no charge of long-time and high-temperature. The high quality PEZT dielectric layer could greatly improve the performance, mainly the reliability and the reproducibility of FRAM units. Furthermore, increased remenant polarization and improved polarization fatigue properties were found by optimizing Eu doping content. Mechanism of Eu doping effects on the microstructure and electrical properties of PZT films was discussed from the physics of crystal growth and the defect chemistry points of view.

  8. Biologically functionalized nanochannels on ferroelectric lead zirconium titanate surfaces.

    SciTech Connect

    Ocola, L. E.; Pan, W. C.; Kuo, M.; Tirumala, V. R.; Reiss, B. D.; Firestone, M. A.; Illinois Mathematics and Science Academy

    2005-01-01

    We recently started a program at Argonne to exploit patterned, polarizable ferroelectric surfaces, such as lead zirconium titanate (PZT), as a means to create field-responsive inorganic-biomolecule interfaces to study and manipulate biomatter on surfaces. In this paper we will discuss the integration of nanochannels on the surface of PZT films and their selective functionalization to create nanovalves to control nanofluidic flow. Microfluidic devices have been fabricated using a variety of methods, ranging from thermal decomposition of buried patterned channels, to fabricating trenches via plasma etch or hot embossing followed by trench capping. Our work focuses on an alternative method by using a bilayer resist in an inverted configuration normally used for T- and Gamma- gate fabrication. This method is capable of yielding sub-100 nm nanochannels with high aspect ratios and sub-500nm alignment. We have recently demonstrated that the polarization hysteresis loop of PZT is the same before and after exposure to an aqueous environment. This opens the possibility of selective surface modification of PZT via coupling of a wide range of biomolecules (e.g., peptides, proteins) and the use of the electric-field-responsive properties of PZT to manipulate the function (e.g., orientation) of the tethered biomolecules. We have used phage display techniques to evolve specific peptide motifs that selectively bind to PZT. The optimum heptapeptide that facilitates both the attachment of functional biological molecules to the surface of PZT has been identified.

  9. Control of crystallographic texture and surface morphology of Pt/Tio2 templates for enhanced PZT thin film texture.

    PubMed

    Fox, Austin J; Drawl, Bill; Fox, Glen R; Gibbons, Brady J; Trolier-McKinstry, Susan

    2015-01-01

    Optimized processing conditions for Pt/TiO2/SiO2/Si templating electrodes were investigated. These electrodes are used to obtain [111] textured thin film lead zirconate titanate (Pb[ZrxTi1-x ]O3 0 ≤ x ≤ 1) (PZT). Titanium deposited by dc magnetron sputtering yields [0001] texture on a thermally oxidized Si wafer. It was found that by optimizing deposition time, pressure, power, and the chamber pre-conditioning, the Ti texture could be maximized while maintaining low surface roughness. When oxidized, titanium yields [100]-oriented rutile. This seed layer has as low as a 4.6% lattice mismatch with [111] Pt; thus, it is possible to achieve strongly oriented [111] Pt. The quality of the orientation and surface roughness of the TiO2 and the Ti directly affect the achievable Pt texture and surface morphology. A transition between optimal crystallographic texture and the smoothest templating surface occurs at approximately 30 nm of original Ti thickness (45 nm TiO2). This corresponds to 0.5 nm (2 nm for TiO2) rms roughness as determined by atomic force microscopy and a full-width at half-maximum (FWHM) of the rocking curve 0002 (200) peak of 5.5/spl degrees/ (3.1/spl degrees/ for TiO2). A Pb[Zr0.52Ti 0.48]O3 layer was deposited and shown to template from the textured Pt electrode, with a maximum [111] Lotgering factor of 87% and a minimum 111 FWHM of 2.4/spl degrees/ at approximately 30 nm of original Ti. PMID:25585390

  10. Explosive crystallization of PZT microstructures by femtosecond infrared radiation

    NASA Astrophysics Data System (ADS)

    Elshin, A. S.; Firsova, N. Yu; Emelianov, V. I.; Pronin, I. P.; Senkevich, S. V.; Zhigalina, O. M.; Mishina, E. D.; Sigov, A. S.

    2015-12-01

    The features of microstructure crystallization into perovskite phase in lead zirconate titanate film by femtosecond laser radiation of near-infrared range were discussed. In-situ crystallization kinetics by method of second harmonic generation (SHG) was studied. The presence of several types of crystallization was shown, including ultra-fast (explosive) crystallization occurring immediately after the start of exposure, and slow (self-sustaining) crystallization, occurring after termination of exposure. The advantage of the second-harmonic generation microscopy for the study of annealed microstructures was shown. The morphology of microstructures was investigated by transmission electron microscopy (TEM).

  11. Structural Properties of Ferroelectric Lead(Zirconium0.5,Titanium0.5)Oxygen3 Nanotube Array and Electronic Structure of Lao delta-doped strontium titanate

    NASA Astrophysics Data System (ADS)

    Adhikari, Rajendra P.

    In this Dissertation we begin with two introductions on: 1) ferroelectricity and related phenomena, and 2) novel properties of Oxide electronics and the generation of two dimensional electron gas. We then give theoretical background of density functional theory (including LDA+U) and pseudopotentials. The first part of research work is about structural, polarization, and dielectric properties of ferroelectric Lead Zirconate Titanate (PZT) solid solution in the form of a nanotube array, embedded in a matrix medium of different ferroelectric strengths. We use the effective Hamiltonian derived from first-principles and finite-temperature Monte Carlo methods to determine the various properties. We revealed different polarization phases of the system in the absence of an external electric field and explained these properties in microscopic detail. In the second part, we study the effects of compressive biaxial inplane strains on the electronic and structural properties of Lanthanum Oxide delta-doped Strontium Titanate supercell. We use first-principles density functional calculations within the local density approximation including also on-site Coulomb interaction energy. We approached the problem by comparing the band structures, localization of electronic states, and cation-anion displacements of unstrained and strained systems. We found a critical strain above which there are abrupt changes in conduction band dispersions and cation-anion displacements, indicating that inplane biaxial strain can drastically tune the properties of this system, which may have potential technological applications.

  12. The effects of non-hydrostatic compression and applied electric field on the electromechanical behavior of poled PZT 95/5-2Nb ceramic during the F{sub R1} {yields} A{sub 0} polymorphic phase transformation

    SciTech Connect

    Zeuch, D.H.; Montgomery, S.T.; Zimmerer, D.J.

    1995-10-01

    We conducted hydrostatic and constant-stress-difference (CSD) experiments at room temperature on two different sintered batches of poled, niobium-doped lead-zirconate-titanate ceramic (PZT 95/5-2Nb). The objective of this test plan was to quantify the effects of nonhydrostatic stress on the electromechanical behavior of the ceramic during the ferroelectric, rhombohedral {yields} antiferroelectric, orthorhombic (FE {yields} AFE) phase transformation. We also performed a series of hydrostatic and triaxial compression experiments in which a 1000 V potential was applied to poled specimens to evaluate any effect of a sustained bias on the transformation. As we predicted from earlier tests on unpoled PZT 95/5-2Nb, increasing the stress difference up to 200 MPa (corresponding to a maximum resolved shear stress of 100 MPa) decreases the mean stress and confining pressure at which the transformation occurs by 25--33%, for both biased and unbiased conditions. This same stress difference also retards the rate of transformation at constant pressurization rate, resulting in reductions of up to an order of magnitude in the rate of charge release and peak voltage attained in our tests. This shear stress-voltage effect offers a plausible, though qualitative explanation for certain systematic failures that have occurred in neutron generator power supplies when seemingly minor design changes have been made. Transformation strains in poled ceramic are anisotropic (differing by up to 33%) in hydrostatic compression, and even more anisotropic under non-hydrostatic stress states. Application of a 1000 V bias appears to slightly increase (by {le}2%) the transformation pressure for poled ceramic, but evidence for this conclusion is weak.

  13. Studies on electrical properties and the magnetoelectric effect on ferroelectric-rich (x)Ni0.8Zn0.2Fe2O4+(1-x) PZT ME composites

    NASA Astrophysics Data System (ADS)

    Chougule, S. S.; Chougule, B. K.

    2007-04-01

    Magnetoelectric composites with ferrite-ferroelectric composition (x)Ni0.8Zn0.2Fe2O4+(1-x) PZT (lead zirconate titanate (PbZr0.52Ti0.48O3) used as a ferroelectric phase) in which x varies as 0, 0.15, 0.30, 0.45 and 1 mol% were prepared by using a conventional ceramic double-sintering method. Phase analysis was carried out using the x-ray diffraction technique, which confirms a cubic spinel structure for the ferrite and tetragonal perovskite structure for the ferroelectric phase. The variation of the dielectric constant (ɛ') and loss tangent (tanδ) in the frequency range 20 Hz-1 MHz were studied. The conduction phenomenon is explained on the basis of a small polaron hopping model. The confirmation of this phenomenon was made with the help of ac conductivity measurements. The dc resistivity was measured as a function of temperature in the range from room temperature to 800 °C. Hysteresis measurements were performed to determine the saturation magnetization (Ms) and magnetic moment (ηB). The static magnetoelectric conversion factor (dE/dH)H was measured as a function of the magnetic field. All composites show a linear decrease of magnetoelectric conversion in the presence of a static magnetic field.

  14. Comparison of Properties of Pt/PZT/Pt and Ru/PZT/Pt Ferroelectric Capacitors

    NASA Astrophysics Data System (ADS)

    Jia, Ze; Ren, Tian-Ling; Liu, Tian-Zhi; Hu, Hong; Zhang, Zhi-Gang; Xie, Dan; Liu, Li-Tian

    2006-04-01

    Pb(Zr0.4Ti0.6)O3 film prepared by sol-gel spin coating on a Pt/Ti/SiO2/Si substrate is applied to ferroelectric capacitors with Pt or Ru as the top electrode. For the Pt/PZT/Pt and Ru/PZT/Pt ferroelectric capacitors, although with the same ferroelectric film, different top electrode materials incur different properties of PZT capacitors, such as fatigue, leakage, remanent and saturated polarization, except the similar crystal orientations of the PZT film. After 1010 switch cycles, the remanent polarizations of the Ru/PZT/Pt and Pt/PZT/Pt capacitors decrease to 70% and 84%, respectively. The leakage current density of the latter increases obviously at positive bias after 108 switch cycles, compared with the former. Different materials for the top electrode bring different conditions at the PZT/top electrode interface. The influence of oxygen-vacancy concentration at the PZT/electrode interface and the influence of oxides of the electrode material at the PZT/electrode interface to charge injection can explain the difference of properties of the PZT capacitors with Pt or Ru as the top electrodes.

  15. A new PZT with prolonged exposure and Wuchang PZT catalogue.

    NASA Astrophysics Data System (ADS)

    Gao, Buxi; Li, Jingfeng; Hu, Yashe

    The most important improvement in the authors' PZT is that the stars with 11 mag. can be observed, because exposure time for dimmer stars is prolonged. The observational practice during last three years denotes that the method of prolonged exposure is very successful. The number of observed stars is increased about three times, and the precision is improved. As there are so many star images in the plate, a series of processes is suggested, which includes the process of predicting the positions of star images on plates, finding out the pairs of star images and their corresponding stars automatically, calculating the apparent positions of stars and giving the final observational results. The corrections of 289 stars (on 150 measured plates) are given. The results show that many errors of stellar positions in AGK 3R and AGK 3 are larger than 0″5.

  16. Polarization characterization of PZT disks and of embedded PZT plates by thermal wave methods

    SciTech Connect

    Eydam, Agnes Suchaneck, Gunnar Gerlach, Gerald; Esslinger, Sophia; Schönecker, Andreas; Neumeister, Peter

    2014-11-05

    In this work, the thermal wave method was applied to characterize PZT disks and embedded PZT plates with regard to the polarization magnitude and spatial homogeneity. The samples were exposed to periodic heating by means of a laser beam and the pyroelectric response was determined. Thermal relaxation times (single time constants or distributions of time constants) describe the heat losses of the PZT samples to the environment. The resulting pyroelectric current spectrum was fitted to the superposition of thermal relaxation processes. The pyroelectric coefficient gives insight in the polarization distribution. For PZT disks, the polarization distribution in the surface region showed a characteristic decrease towards the electrodes.

  17. Uniaxial Compression Experiments on Lead Zirconate Titanate 95/5-2Nb Ceramic: Evidence for an Orientation-Dependent, ''Maximum Compressive Stress'' Criterion for Onset of the Ferroelectric - Antiferroelectric Polymorphic Transformation

    SciTech Connect

    Zeuch, D.H.; Montgomery, S.T.; Holcomb, D.J.

    1999-07-26

    Some time ago we presented evidence that, under nonhydrostatic loading, the F{sub R1} {r_arrow} A{sub O} polymorphic transformation of unpoled PZT 95/5-2Nb (PNZT) ceramic began when the maximum compressive stress equaled the hydro-static pressure at which the transformation otherwise took place. Recently we showed that this simple criterion did not apply to nonhydrostatically compressed, poled ceramic. However, unpoled ceramic is isotropic, whereas poled ceramic has a preferred crystallographic orientation and is mechanically anisotropic. If we further assume that the transformation depends not only on the magnitude of the compressive stress, but also its orientation relative to some feature(s) of PNZT's crystallography, then these disparate results can be qualitatively resolved. It has long been known that this transformation can be triggered in uniaxial compression. Our modified hypothesis makes two predictions for transformation of unpoled polycrystals under uniaxial stress: (i) the transformation should begin when the maximum compressive stress, {sigma}{sub 1}, equals the hydrostatic pressure for transformation, and (ii) a steadily increasing axial stress should be required to drive the transformation.

  18. Zircon growth in slate

    NASA Astrophysics Data System (ADS)

    Dempster, T. J.; Hay, D. C.; Bluck, B. J.

    2004-03-01

    Clastic sedimentary and low-grade metasedimentary rocks preserve populations of detrital zircons because of the unreactive nature of this mineral. However, evidence of new zircon growth has been found within highly heterogeneous populations of zircon from several greenschist facies slates from the Scottish Highlands. Small (<10 μm), anhedral, unzoned zircons and discrete overgrowths on rounded detrital grains are very common. These new fine-grained zircons have crystallized at temperatures below 350 °C and have been observed only in polished thin sections; they are absent from conventional mineral separates. Typical separation techniques create severe biases in the heavy-mineral populations of metasedimentary rocks, and recognition of the growth of zircon in such conditions may allow isotopic dating of low-temperature events.

  19. Modified lead titanate thin films for pyroelectric infrared detectors on gold electrodes

    NASA Astrophysics Data System (ADS)

    Ahmed, Moinuddin; Butler, Donald P.

    2015-07-01

    Pyroelectric infrared detectors provide the advantage of both a wide spectral response and dynamic range, which also has enabled systems to be developed with reduced size, weight and power consumption. This paper demonstrates the deposition of lead zirconium titanate (PZT) and lead calcium titanate (PCT) thin films for uncooled pyroelectric detectors with the utilization of gold electrodes. The modified lead titanate thin films were deposited by pulsed laser deposition on gold electrodes. The PZT and PCT thins films deposited and annealed at temperatures of 650 °C and 550 °C respectively demonstrated the best pyroelectric performance in this work. The thin films displayed a pyroelectric effect that increased with temperature. Poling of the thin films was carried out for a fixed time periods and fixed dc bias voltages at elevated temperature in order to increase the pyroelectric coefficient by establishing a spontaneous polarization of the thin films. Poling caused the pyroelectric current to increase one order of magnitude.

  20. Methane Clouds on Titan

    NASA Astrophysics Data System (ADS)

    Griffith, Caitlin A.

    Following the Voyager encounter with Titan in 1981 Saturn's largest moon was hypothesized sport a liquid cycle similar that on Earth with clouds rain and seas. On Titan methane is the condensible playing the role that water plays on Earth. Although the presence of seas is difficult to establish from ground methane clouds have been detected on Titan. Ground-based observations reveal that Titan's clouds differ remarkedly from their terrestrial counterparts. Titan's clouds are sparse reside primarily at particular altitude and concentrate presently in the south pole. That Titan's clouds are exotic is not surprising. Titan receives ~100 times less sunlight than Earth to drive weather. In addition Titan's radiative time constant is 180 years large compared to the 3 month terrestrial value. With little power and sluggish conditions it is not clear how clouds form on Titan. This talk will compare Titan to Earth to explore the nature of clouds under Titan's foreign conditions.

  1. Ceramic with zircon coating

    NASA Technical Reports Server (NTRS)

    Wang, Hongyu (Inventor)

    2003-01-01

    An article comprises a silicon-containing substrate and a zircon coating. The article can comprise a silicon carbide/silicon (SiC/Si) substrate, a zircon (ZrSiO.sub.4) intermediate coating and an external environmental/thermal barrier coating.

  2. Radiation Effects in Zircon

    SciTech Connect

    Ewing, Rodney C.; Meldrum, Alkiviathes; Wang, L. M.; Weber, William J.; Corrales, Louis R.

    2003-12-11

    The widespread distribution of zircon in the continental crust, its tendency to concentrate trace elements, particularly lanthanides and actinides, its use in age-dating, and its resistance to chemical and physical degradation have made zircon the most important accessory mineral in geologic studies. Because zircon is highly refractory, it also has important industrial applications, including its use as a lining material in high-temperature furnaces. However, during the past decade, zircon has also been proposed for advanced technology applications, such as a durable material for the immobilization of plutonium or, when modified by ion-beam irradiation, as an optic waveguide material. In all of these applications, the change in properties as a function of increasing radiation dose is of critical importance. In this chapter, we summarize the state-of-knowledge on the radiation damage accumulation process in zircon.

  3. Very High Frequency (Beyond 100 MHz) PZT Kerfless Linear Arrays

    PubMed Central

    Wu, Da-Wei; Zhou, Qifa; Geng, Xuecang; Liu, Chang-Geng; Djuth, Frank; Shung, K. Kirk

    2010-01-01

    This paper presents the design, fabrication, and measurements of very high frequency kerfless linear arrays prepared from PZT film and PZT bulk material. A 12-µm PZT thick film fabricated from PZT-5H powder/solution composite and a piece of 15-µm PZT-5H sheet were used to fabricate 32-element kerfless high-frequency linear arrays with photolithography. The PZT thick film was prepared by spin-coating of PZT sol-gel composite solution. The thin PZT-5H sheet sample was prepared by lapping a PZT-5H ceramic with a precision lapping machine. The measured results of the 2 arrays were compared. The PZT film array had a center frequency of 120 MHz, a bandwidth of 60% with a parylene matching layer, and an insertion loss of 41 dB. The PZT ceramic sheet array was found to have a center frequency of 128 MHz with a poorer bandwidth (40% with a parylene matching layer) but a better sensitivity (28 dB insertion loss). PMID:19942516

  4. Chemical durability of zircon

    NASA Astrophysics Data System (ADS)

    Trocellier, Patrick; Delmas, Robert

    2001-07-01

    Zircon (ZrSiO 4) exhibits a strong structural affinity for uranium and thorium together with a very high chemical durability. This makes it a potential crystalline host matrix to immobilize actinides issued from separation of nuclear wastes. Irradiation induces amorphization of the crystalline structure (the metamictization process) and thus may decrease the chemical durability of the material. Leaching tests have been conducted on natural zircons from Brazil and Madagascar at 96°C for a period of 1 month, using deionized water. Leachates have been analysed by inductively coupled plasma mass spectrometry (ICP-MS) and UV-visible spectrophotometry. Zircon solid surfaces have been investigated by coupling scanning electron microscopy and X-ray microanalysis (SEM-EDX) with nuclear microprobe analysis ( μPIXE, μRBS and μERDA). From the mass balance between leachates and hydrated surfaces, the probable mechanisms of zircon aqueous alteration are presented and discussed.

  5. Epitaxial growth of lead zirconium titanate thin films on Ag buffered Si substrates using rf sputtering

    SciTech Connect

    Wang Chun; Laughlin, David E.; Kryder, Mark H.

    2007-04-23

    Epitaxial lead zirconium titanate (PZT) (001) thin films with a Pt bottom electrode were deposited by rf sputtering onto Si(001) single crystal substrates with a Ag buffer layer. Both PZT(20/80) and PZT(53/47) samples were shown to consist of a single perovskite phase and to have the (001) orientation. The orientation relationship was determined to be PZT(001)[110](parallel sign)Pt(001)[110](parallel sign)Ag(001)[110](parallel sign)Si(001)[110]. The microstructure of the multilayer was studied using transmission electron microscopy (TEM). The electron diffraction pattern confirmed the epitaxial relationship between each layer. The measured remanent polarization P{sub r} and coercive field E{sub c} of the PZT(20/80) thin film were 26 {mu}C/cm{sup 2} and 110 kV/cm, respectively. For PZT(53/47), P{sub r} was 10 {mu}C/cm{sup 2} and E{sub c} was 80 kV/cm.

  6. Titan Meteorology

    NASA Astrophysics Data System (ADS)

    Mitchell, Jonathan

    2012-04-01

    Titan’s methane clouds have received much attention since they were first discovered spectroscopically (Griffith et al. 1998). Titan's seasons evolve slowly, and there is growing evidence of a seasonal response in the regions of methane cloud formation (e.g. Rodriguez et al. 2009). A complete, three-dimensional view of Titan’s clouds is possible through the determination of cloud-top heights from Cassini images (e.g., Ádámkovics et al. 2010). Even though Titan’s surface is warmed by very little sunlight, we now know Titan’s methane clouds are convective, evolving through tens of kilometers of altitude on timescales of hours to days with dynamics similar to clouds that appear on Earth (Porco et al. 2005). Cassini ISS has also shown evidence of rain storms on Titan that produce surface accumulation of methane (Turtle et al. 2009). Most recently, Cassini has revealed a 1000-km-scale, arrow-shaped cloud at the equator followed by changes that appear to be evidence of surface precipitation (Turtle et al. 2011b). Individual convective towers simulated with high fidelity indicate that surface convergence of methane humidity and dynamic lifting are required to trigger deep, precipitating convection (e.g. Barth & Rafkin 2010). The global expanses of these cloud outbursts, the evidence for surface precipitation, and the requirement of dynamic convergence and lifting at the surface to trigger deep convection motivate an analysis of storm formation in the context of Titan’s global circulation. I will review our current understanding of Titan’s methane meteorology using Cassini and ground-based observations and, in particular, global circulation model simulations of Titan’s methane cycle. When compared with cloud observations, our simulations indicate an essential role for planetary-scale atmospheric waves in organizing convective storms on large scales (Mitchell et al. 2011). I will end with predictions of Titan’s weather during the upcoming northern

  7. Pyroelectric effect in layered magnetoelectric PZT/Ni-Zn ferrite composites

    NASA Astrophysics Data System (ADS)

    Solnyshkin, A. V.; Bogomolov, A. A.; Karpenkov, D. Yu.; Kislova, I. L.; Belov, A. N.

    2016-04-01

    The electric response of layered 2-2 connectivity magnetoelectric composites to the action of a modulated heat flow, which is detected by a dynamic method, is studied. The kinetics of the pyroelectric response of the composite material to a pulsed thermal action is calculated. The experimental results and calculation data suggest that a modulated heat action induces a signal due to both the pyroelectric and piezoelectric effects. The latter effect is caused by the mechanical interaction of the layers of lead zirconate titanate ceramic and nickel-zinc (Ni-Zn) ferrite.

  8. Lamb wave dispersion in a PZT/metal/PZT sandwich plate with imperfect interface

    NASA Astrophysics Data System (ADS)

    Kurt, Ilkay; Akbarov, Surkay D.; Sezer, Semih

    2016-07-01

    The Lamb wave dispersion in a PZT/Metal/PZT sandwich plate is investigated by employing the exact linear equations of electro-elastic waves in piezoelectric materials within the scope of the plane-strain state. It is assumed that at the interfaces between the piezoelectric face layers and metal core layer, shear-spring and normal-spring type imperfect conditions are satisfied. The degree of this imperfectness is estimated through the corresponding shear-spring and normal-spring type parameters which appear in the contact condition characterizing the transverse and normal displacements' discontinuity. The corresponding dispersion equation is derived, and as a result of the numerical solution to this equation, the dispersion curves are constructed for the first and second lowest modes in the cases where the material of the face layers is PZT and the material of the middle layer is Steel (St). Consequently, for the PZT/St/PZT sandwich plate, the study of the influence of the problem parameters such as the piezoelectric and dielectric constants, layer thickness ratios, non-dimensional shear-spring, and normal-spring type parameters, is carried out. In particular, it is established that the imperfectness of the contact between the layers of the plate causes a decrease in the values of the wave propagation velocity.

  9. Genetic Adaptive Control for PZT Actuators

    NASA Technical Reports Server (NTRS)

    Kim, Jeongwook; Stover, Shelley K.; Madisetti, Vijay K.

    1995-01-01

    A piezoelectric transducer (PZT) is capable of providing linear motion if controlled correctly and could provide a replacement for traditional heavy and large servo systems using motors. This paper focuses on a genetic model reference adaptive control technique (GMRAC) for a PZT which is moving a mirror where the goal is to keep the mirror velocity constant. Genetic Algorithms (GAs) are an integral part of the GMRAC technique acting as the search engine for an optimal PID controller. Two methods are suggested to control the actuator in this research. The first one is to change the PID parameters and the other is to add an additional reference input in the system. The simulation results of these two methods are compared. Simulated Annealing (SA) is also used to solve the problem. Simulation results of GAs and SA are compared after simulation. GAs show the best result according to the simulation results. The entire model is designed using the Mathworks' Simulink tool.

  10. Titanic: A Statistical Exploration.

    ERIC Educational Resources Information Center

    Takis, Sandra L.

    1999-01-01

    Uses the available data about the Titanic's passengers to interest students in exploring categorical data and the chi-square distribution. Describes activities incorporated into a statistics class and gives additional resources for collecting information about the Titanic. (ASK)

  11. Titan Haze

    NASA Technical Reports Server (NTRS)

    Anderson, Carrie M.; West, Robert; Lavvas, Panayotis

    2011-01-01

    The Titan haze exerts a dominating influence on surface visibility and atmospheric radiative heating at optical and near-infrared wavelengths and our desire to understand surface composition and atmospheric dynamics provides a strong motivation to study the properties of the haze. Prior to the Cassini/Huygens missions the haze was known to be global in extent, with a hemispheric contrast asymmetry, with a complicated structure in the polar vortex region poleward of about 55 deg latitude, and with a distinct layer near 370 km altitude outside of the polar vortex at the time of the Voyager 2 flyby. The haze particles measured by the Pioneer and Voyager spacecraft were both highly polarizing and strongly forward scattering, a combination that seems to require an aggregation of small (several tens of nm radius) primary particles. These same properties were seen in the Cassini orbiter and Huygens Probe data. The most extensive set of optical measurements were made inside the atmosphere by the Descent Imager/Spectral Radiometer (DISR) instrument on the Huygens Probe. At the probe location as determined by the DISR measurements the average haze particle contained about 3000 primary particles whose radius is about 40 nm. Three distinct vertical regions were seen in the DISR data with differing particle properties. Refractive indices of the particles in the main haze layer resemble those reported by Khare et al. between O.3S and about 0.7 micron but are more absorbing than the Khare et al. results between 0.7 micron and the long-wavelength limit of the DISR spectra at 1.6 micron. These and other results are described by Tomasko et al., and a broader summary of results was given by Tomasko and West,. New data continue to stream in from the Cassini spacecraft. New data analyses and new laboratory and model results continue to move the field forward. Titan's 'detached' haze layer suffered a dramatic drop in altitude near equinox in 2009 with implications for the circulation

  12. The Climate of Titan

    NASA Astrophysics Data System (ADS)

    Mitchell, Jonathan L.; Lora, Juan M.

    2016-06-01

    Over the past decade, the Cassini-Huygens mission to the Saturn system has revolutionized our understanding of Titan and its climate. Veiled in a thick organic haze, Titan's visible appearance belies an active, seasonal weather cycle operating in the lower atmosphere. Here we review the climate of Titan, as gleaned from observations and models. Titan's cold surface temperatures (˜90 K) allow methane to form clouds and precipitation analogously to Earth's hydrologic cycle. Because of Titan's slow rotation and small size, its atmospheric circulation falls into a regime resembling Earth's tropics, with weak horizontal temperature gradients. A general overview of how Titan's atmosphere responds to seasonal forcing is provided by estimating a number of climate-related timescales. Titan lacks a global ocean, but methane is cold-trapped at the poles in large seas, and models indicate that weak baroclinic storms form at the boundary of Titan's wet and dry regions. Titan's saturated troposphere is a substantial reservoir of methane, supplied by deep convection from the summer poles. A significant seasonal cycle, first revealed by observations of clouds, causes Titan's convergence zone to migrate deep into the summer hemispheres, but its connection to polar convection remains undetermined. Models suggest that downwelling of air at the winter pole communicates upper-level radiative cooling, reducing the stability of the middle troposphere and priming the atmosphere for spring and summer storms when sunlight returns to Titan's lakes. Despite great gains in our understanding of Titan, many challenges remain. The greatest mystery is how Titan is able to retain an abundance of atmospheric methane with only limited surface liquids, while methane is being irreversibly destroyed by photochemistry. A related mystery is how Titan is able to hide all the ethane that is produced in this process. Future studies will need to consider the interactions between Titan's atmosphere, surface

  13. Does Titan have oceans?

    NASA Astrophysics Data System (ADS)

    Lunine, J. I.

    1994-04-01

    Titan is one of the few worlds in the solar system whose essential nature remains hidden. Satellite data from Voyager are examined. Remote sensing investigations from Earth are explored. Possible models of Titan's surface are reviewed. A closer look at Titan would provide useful information. The data to be gathered by the planetary mission Cassini is discussed.

  14. Tides in Titan

    NASA Technical Reports Server (NTRS)

    Rappaport, Nicole J.

    1997-01-01

    Tides raised in Titan by Saturn give rise to a static and a periodic deformation; both will be measured with Doppler tracking during the CASSINI Tour of the Saturnian System. The latter deformation is due to the significant eccentricity of Titan's orbit and has a frequency equal to the orbital angular velocity of Titan.

  15. Intensive Titan exploration begins

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul R.

    2005-01-01

    The Cassini Orbiter spacecraft first skimmed through the tenuous upper atmosphere of Titan on 26 October 2004. This moon of Saturn is unique in our solar system, with a dense nitrogen atmosphere that is cold enough in places to rain methane, the feedstock for the atmospheric chemistry that produces hydrocarbons, nitrile compounds, and Titan's orange haze. The data returned from this flyby supply new information on the magnetic field and plasma environment around Titan, expose new facets of the dynamics and chemistry of Titan's atmosphere, and provide the first glimpses of what appears to be a complex, fluid-processed, geologically young Titan surface.

  16. Shear piezoelectric coefficients of PZT, LiNbO3 and PMN-PT at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Bukhari, Syed; Islam, Md; Haziot, Ariel; Beamish, John

    2014-12-01

    Piezoelectric transducers are used to detect stress and to generate nanometer scale displacements but their piezoelectric coefficients decrease with temperature, limiting their performance in cryogenic applications. We have developed a capacitive technique and directly measured the temperature dependence of the shear coefficient d15 for ceramic lead zirconium titanate (PZT), 41° X-cut lithium niobate (LiNbO3) and single crystal lead magnesium niobium-lead titanate (PMN-PT). In PZT, d15 decreases nearly linearly with temperature, dropping by factor of about 4 by 1.3 K. LiNbO3 has the smallest room temperature d15, but its value decreased by only 6% at the lowest temperatures. PMN-PT had the largest value of d15 at room temperature (2.9 × 10-9 m/V, about 45 times larger than for LiNbO3) but it decreased rapidly below 75 K; at 1.3 K, d15 was only about 8% of its room temperature value.

  17. Hydrogen diffusion in Zircon

    NASA Astrophysics Data System (ADS)

    Ingrin, Jannick; Zhang, Peipei

    2016-04-01

    Hydrogen mobility in gem quality zircon single crystals from Madagascar was investigated through H-D exchange experiments. Thin slices were annealed in a horizontal furnace flushed with a gas mixture of Ar/D2(10%) under ambient pressure between 900 ° C to 1150 ° C. FTIR analyses were performed on oriented slices before and after each annealing run. H diffusion along [100] and [010] follow the same diffusion law D = D0exp[-E /RT], with log D0 = 2.24 ± 1.57 (in m2/s) and E = 374 ± 39 kJ/mol. H diffusion along [001] follows a slightly more rapid diffusion law, with log D0 = 1.11 ± 0.22 (in m2/s) and E = 334 ± 49 kJ/mol. H diffusion in zircon has much higher activation energy and slower diffusivity than other NAMs below 1150 ° C even iron-poor garnets which are known to be among the slowest (Blanchard and Ingrin, 2004; Kurka et al. 2005). During H-D exchange zircon incorporates also deuterium. This hydration reaction involves uranium reduction as it is shown from the exchange of U5+ and U4+ characteristic bands in the near infrared region during annealing. It is the first time that a hydration reaction U5+ + OH‑ = U4+ + O2‑ + 1/2H2, is experimentally reported. The kinetics of deuterium incorporation is slightly slower than hydrogen diffusion, suggesting that the reaction is limited by hydrogen mobility. Hydrogen isotopic memory of zircon is higher than other NAMs. Zircons will be moderately retentive of H signatures at mid-crustal metamorphic temperatures. At 500 ° C, a zircon with a radius of 300 μm would retain its H isotopic signature over more than a million years. However, a zircon is unable to retain this information for geologically significant times under high-grade metamorphism unless the grain size is large enough. Refrences Blanchard, M. and Ingrin, J. (2004) Hydrogen diffusion in Dora Maira pyrope. Physics and Chemistry of Minerals, 31, 593-605. Kurka, A., Blanchard, M. and Ingrin, J. (2005) Kinetics of hydrogen extraction and deuteration in

  18. Crystallographic changes in lead zirconate titanate due to neutron irradiation

    DOE PAGESBeta

    Henriques, Alexandra; Graham, Joseph T.; Landsberger, Sheldon; Ihlefeld, Jon F.; Brennecka, Geoff L.; Brown, Donald W.; Forrester, Jennifer S.; Jones, Jacob L.

    2014-11-17

    Piezoelectric and ferroelectric materials are useful as the active element in non-destructive monitoring devices for high-radiation areas. Here, crystallographic structural refinement (i.e., the Rietveld method) is used to quantify the type and extent of structural changes in PbZr0.5Ti0.5O3 after exposure to a 1 MeV equivalent neutron fluence of 1.7 × 1015 neutrons/cm2. The results show a measurable decrease in the occupancy of Pb and O due to irradiation, with O vacancies in the tetragonal phase being created preferentially on one of the two O sites. The results demonstrate a method by which the effects of radiation on crystallographic structure maymore » be investigated.« less

  19. Crystallographic changes in lead zirconate titanate due to neutron irradiation

    SciTech Connect

    Henriques, Alexandra; Graham, Joseph T.; Landsberger, Sheldon; Ihlefeld, Jon F.; Brennecka, Geoff L.; Brown, Donald W.; Forrester, Jennifer S.; Jones, Jacob L.

    2014-11-17

    Piezoelectric and ferroelectric materials are useful as the active element in non-destructive monitoring devices for high-radiation areas. Here, crystallographic structural refinement (i.e., the Rietveld method) is used to quantify the type and extent of structural changes in PbZr0.5Ti0.5O3 after exposure to a 1 MeV equivalent neutron fluence of 1.7 × 1015 neutrons/cm2. The results show a measurable decrease in the occupancy of Pb and O due to irradiation, with O vacancies in the tetragonal phase being created preferentially on one of the two O sites. The results demonstrate a method by which the effects of radiation on crystallographic structure may be investigated.

  20. Crystallographic changes in lead zirconate titanate due to neutron irradiation

    DOE PAGESBeta

    Henriques, Alexandra; Graham, Joseph T.; Landsberger, Sheldon; Ihlefeld, Jon F.; Brennecka, Geoff L.; Brown, Donald W.; Forrester, Jennifer S.; Jones, Jacob L.

    2014-11-17

    Piezoelectric and ferroelectric materials are useful as the active element in non-destructive monitoring devices for high-radiation areas. Here, crystallographic structural refinement (i.e., the Rietveld method) is used to quantify the type and extent of structural changes in PbZr0.5Ti0.5O3 after exposure to a 1 MeV equivalent neutron fluence of 1.7 × 1015 neutrons/cm2. The results show a measurable decrease in the occupancy of Pb and O due to irradiation, with O vacancies in the tetragonal phase being created preferentially on one of the two O sites. Lastly, the results demonstrate a method by which the effects of radiation on crystallographic structuremore » may be investigated.« less

  1. Crystallographic changes in lead zirconate titanate due to neutron irradiation

    SciTech Connect

    Henriques, Alexandra; Graham, Joseph T.; Landsberger, Sheldon; Ihlefeld, Jon F.; Brennecka, Geoff L.; Brown, Donald W.; Forrester, Jennifer S.; Jones, Jacob L.

    2014-11-17

    Piezoelectric and ferroelectric materials are useful as the active element in non-destructive monitoring devices for high-radiation areas. Here, crystallographic structural refinement (i.e., the Rietveld method) is used to quantify the type and extent of structural changes in PbZr0.5Ti0.5O3 after exposure to a 1 MeV equivalent neutron fluence of 1.7 × 1015 neutrons/cm2. The results show a measurable decrease in the occupancy of Pb and O due to irradiation, with O vacancies in the tetragonal phase being created preferentially on one of the two O sites. Lastly, the results demonstrate a method by which the effects of radiation on crystallographic structure may be investigated.

  2. Crystallographic changes in lead zirconate titanate due to neutron irradiation

    SciTech Connect

    Henriques, Alexandra; Graham, Joseph T.; Landsberger, Sheldon; Ihlefeld, Jon F.; Brennecka, Geoff L.; Brown, Donald W.; Forrester, Jennifer S.; Jones, Jacob L.

    2014-11-15

    Piezoelectric and ferroelectric materials are useful as the active element in non-destructive monitoring devices for high-radiation areas. Here, crystallographic structural refinement (i.e., the Rietveld method) is used to quantify the type and extent of structural changes in PbZr{sub 0.5}Ti{sub 0.5}O{sub 3} after exposure to a 1 MeV equivalent neutron fluence of 1.7 × 10{sup 15} neutrons/cm{sup 2}. The results show a measurable decrease in the occupancy of Pb and O due to irradiation, with O vacancies in the tetragonal phase being created preferentially on one of the two O sites. The results demonstrate a method by which the effects of radiation on crystallographic structure may be investigated.

  3. Future Exploration of Titan

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.; Titan Decadal Panel Collaboration

    2001-11-01

    Titan promises to be the Mars of the Outer Solar System - the focus of not only the broadest range of investigations in planetary science but also the focus of public attention. The reasons for exploring Titan are threefold: 1. Titan and Astrobiology : Titan ranks with Mars and Europa as a prime body for astrobiological study due to its abundant organics. Like Europa, it may well have a liquid water interior. 2. Titan - A world in its own right. Titan deserves study even only to put other satellites (its remarkably smaller Saturnian siblings, and its same-sized but volatile-poor Jovian counterparts) in context. The added dimension of an atmosphere makes Titan's origin and evolution particularly interesting. 3. Titan - an environmental laboratory for Earth. Titan will be an unrivalled place to investigate meteorological, oceanographical and other processes. Many of these (e.g. wave generation by wind) are only empirically parameterized - the very different physical parameters of the Titan environment will bring new insights to these phenomena. While Cassini-Huygens will dramatically boost our knowledge of Titan, it will likely only whet our appetite for more. The potential for prebiotic materials at various locations (in particular where liquid water has interacted with photochemical deposits) and the need to monitor Titan's meteorology favor future missions that may exploit Titan's unique thick-atmosphere, low-gravity environment - a mobile platform like an airship or helicopter, able to explore on global scales, but access the surface for in-situ chemical analysis and probe the interior by electromagnetic and seismic means. Such missions have dramatic potential to capture the public's imagination, on both sides of the Atlantic.

  4. Ti Diffusion in Zircon

    NASA Astrophysics Data System (ADS)

    Cherniak, D. J.; Watson, E. B.

    2006-12-01

    Diffusion of Ti under anhydrous conditions at 1 atmosphere and under fluid-present conditions at 1.1-1.2 GPa has been measured in natural zircon. The source of diffusant for 1-atm experiments was a ZrO2- TiO2-ZrSiO4 mixture, with experiments run in Pt capsules. Diffusion experiments conducted in the presence of H2O-CO2 fluid were run in a piston-cylinder apparatus, using a source of ground TiO2, ZrSiO4 and SiO2, with oxalic acid added to produce H2O-CO2 vapor and partially melt the solid source material, yielding an assemblage of rutile + zircon + melt + vapor. Resonant nuclear reaction analysis (NRA) with the nuclear reaction ^{48}Ti(p,Γ)^{49}V was used to measure diffusion profiles for both sets of experiments. The following Arrhenius relation was obtained for Ti diffusion normal to c over the temperature range 1350-1550C at one atmosphere: DTi = 3.3x102 exp(-754 ± 56 kJ mol-1 /RT) m2sec-1 Ti diffusivities were found to be similar for experiments run under fluid-present conditions. A fit to all of the data yields the Arrhenius relation D = 1.3x103 exp(-741 ± 46 kJ mol-1 /RT) m2sec-1. These data suggest that zircon should be extremely retentive of Ti chemical signatures, indicating that the recently developed Ti-in-zircon crystallization geothermometer (Watson and Harrison, 2005; Watson et al., 2006) will be quite robust in preserving temperatures of zircon crystallization. Titanium diffuses somewhat faster in zircon than larger tetravalent cations U, Th, and Hf, but considerably more slowly than Pb, the REE, and oxygen; hence Ti crystallization temperatures may be retained under circumstances when radiometric ages or other types of geochemical information are lost. Watson EB, Harrison TM (2005) Science 308, 841-844. Watson EB, Wark DA, Thomas JB (2006) CMP(in press).

  5. Titan Saturn System Mission

    NASA Technical Reports Server (NTRS)

    Reh, Kim R.

    2009-01-01

    Titan is a high priority for exploration, as recommended by NASA's 2006 Solar System Exploration (SSE) Roadmap. NASA's 2003 National Research Council (NRC) Decadal Survey and ESA's Cosmic Vision Program Themes. Recent revolutionary Cassini-Huygens discoveries have dramatically escalated interest in Titan as the next scientific target in the outer solar system. This study demonstrates that an exciting Titan Saturn System Mission (TSSM) that explores two worlds of intense astrobiological interest can be initiated now as a single NASA/ESA collaboration.

  6. Future Titan Missions

    NASA Astrophysics Data System (ADS)

    Waite, J. H.; Coustenis, A.; Lorenz, R.; Lunine, J.; Stofan, E.

    2012-04-01

    New discoveries about Titan from the Cassini-Huygens mission have led to a broad range of mission class studies for future missions, ranging from NASA Discovery class to International Flagship class. Three consistent science themes emerge and serve as a framework for discussing the various mission concepts: Goal A: Explore Titan, an Earth-Like System - How does Titan function as a system? How are the similarities and differences with Earth, and other solar system bodies, a result of the interplay of the geology, hydrology, meteorology, and aeronomy present in the Titan system?; Goal B: Examine Titan’s Organic Inventory—A Path to Prebiological Molecules - What is the complexity of Titan’s organic chemistry in the atmosphere, within its lakes, on its surface, and in its putative subsurface water ocean and how does this inventory differ from known abiotic organic material in meteorites and therefore contribute to our understanding of the origin of life in the Solar System?; and Goal C: Explore Enceladus and Saturn’s magnetosphere—clues to Titan’s origin and evolution - What is the exchange of energy and material with the Saturn magnetosphere and solar wind? What is the source of geysers on Enceladus? Does complex chemistry occur in the geyser source? Within this scientific framework the presentation will overview the Titan Explorer, Titan AND Enceladus Mission, Titan Saturn System Mission, Titan Mare Explorer, and Titan Submersible. Future timelines and plans will be discussed.

  7. Oxygen isotope geochemistry of zircon

    NASA Astrophysics Data System (ADS)

    Valley, John W.; Chiarenzelli, Jeffrey R.; McLelland, James M.

    1994-09-01

    The high-temperature and small sample size of an I.R. laser system has allowed the first detailed study of oxygen isotope ratios in zircon. Low-magnetism zircons that have grown during metamorphism in the Adirondack Mts., N.Y. preserve primary delta (O-18) values and low magnetism igneous zircons are likewise primary, showing no significant affect due to subsequent granulite facies metamorphism. The measured fractionation between zircon and garnet is delta (Gt-Zrc) = 0.0 + or - 0.2/mil (1(sigma)) for most low-magnetism zircons in meta-igneous rocks. The consistency of this value indicates equilibration at temperatures of 700 - 1100 C and little or no change in the equilibrium fractionation over this temperature range. In contrast, detrital low-magnetism zircons in quartzite preserve igneous compositions, up to 4/mil out of equilibrium with host quartz, in spite of granulite facies metamorphism. The oxygen isotope composition of zircon can be linked to U-Pb ages and can `see through' metamorphism, providing a new tool for deciphering complex igneous, metamorphic and hydrothermal histories. Zircons separated by magnetic susceptibility show a consistent correlation. Low-magnetism zircons have the lowest uranium contents, the most concordant U-Pb isotopic compositions, and primary delta (O-18) values. In contrast, high-magnetism zircons are up to 2/mil lower in delta (O-18) than low-magnetism zircons from the same rock. The resetting of oxygen isotope ratios in high-magnetism zircons is caused by radiation damage which creates microfractures and enhances isotopic exchange. Zircons from the metamorphosed anorthosite-mangerite-charnocite-granite (AMCG) suite of adirondacks have previously been dated (1125-1157 Ma) and classified as igneous, metamorphic or disturbed based on their physical and U-Pb isotopic characteristics. Low-magnetism zircons from the AMCG suite have high, nearly constant values of delta (O-18) that average 8.1 + or - 0.4/mil(1 sigma) for samples

  8. Ti site occupancy in zircon

    NASA Astrophysics Data System (ADS)

    Tailby, N. D.; Walker, A. M.; Berry, A. J.; Hermann, J.; Evans, K. A.; Mavrogenes, J. A.; O'Neill, H. St. C.; Rodina, I. S.; Soldatov, A. V.; Rubatto, D.; Sutton, S. R.

    2011-02-01

    Ti site occupancy in zircon (ZrSiO 4) is fundamental to thermobarometry because substitution mechanisms control Ti content-temperature relations. Here we describe the results of three independent methods used to demonstrate that Ti substitutes for Si and not Zr in zircon. Zircon grains were synthesized from oxide powders held in a Na 2WO 4 flux at 1 bar and 1300 °C. Zircon grains equilibrated with rutile + cristobalite show Ti contents (1201 ppm) nearly half that of zircon grains equilibrated with srilankite ((Ti,Zr)O 2) + tetragonal zirconia (2640 ppm). The lower Ti content of zircon grains produced at silica-saturated conditions indicates that Ti substitution predominately occurs on the Si site. Moreover, the higher Ti contents of silica-saturated experiments at 1 bar (1201 ppm), relative to those at 1 GPa (457 ppm, Ferry and Watson, 2007), indicates a substantial pressure effect on Ti solubility in zircon. Measured Ti K-α edge X-ray Absorption Near Edge Structure (XANES) spectra of synthetic zircon grains show energies and normalized intensities akin to those seen among tetrahedrally coordinated Ti-bearing standard minerals, strongly suggesting that Ti occupies the Si site. Density functional theory (DFT) calculations confirm that Ti substitution is most likely to occur on the Si site and predict a Ti-O bond length of 1.797 Å (compared to an average of 2.160 Å for substitution on the Zr site), in excellent agreement with X-ray Absorption Fine Structure (EXAFS) spectra of experimentally grown zircon grains which indicate a value of 1.76(1) Å. The software FEFF 8.4 was used to simulate XANES spectra from the defect structures determined by DFT for Ti substituting on both the Si and Zr sites. The predicted spectrum for Ti on the Si site reproduces all the key features of the experimental zircon spectra, whereas Ti on the Zr site is markedly different. All applied methods confirm that Ti substitutes for Si in zircon. Consequently, the Ti content of zircon at a

  9. Etching fission tracks in zircons

    USGS Publications Warehouse

    Naeser, C.W.

    1969-01-01

    A new technique has been developed whereby fission tracks can be etched in zircon with a solution of sodium hydroxide at 220??C. Etching time varied between 15 minutes and 5 hours. Colored zircon required less etching time than the colorless varieties.

  10. Ferroelectric capped magnetization in multiferroic PZT/LSMO tunnel junctions

    SciTech Connect

    Kumar, Ashok Shukla, A. K.; Barrionuevo, D.; Ortega, N.; Katiyar, Ram S.; Shannigrahi, Santiranjan; Scott, J. F.

    2015-03-30

    Self-poled ultra-thin ferroelectric PbZr{sub 0.52}Ti{sub 0.48}O{sub 3} (PZT) (5 and 7 nm) films have been grown by pulsed laser deposition technique on ferromagnetic La{sub 0.67}Sr{sub 0.33}MnO{sub 3} (LSMO) (30 nm) to check the effect of polar capping on magnetization for ferroelectric tunnel junction devices. PZT/LSMO heterostructures with thick polar PZT (7 nm) capping show nearly 100% enhancement in magnetization compared with thin polar PZT (5 nm) films, probably due to excess hole transfer from the ferroelectric to the ferromagnetic layers. Core-level x-ray photoelectron spectroscopy studies revealed the presence of larger Mn 3s exchange splitting and higher Mn{sup 3+}/Mn{sup 4+} ion ratio in the LSMO with 7 nm polar capping.

  11. The astrobiology of Titan

    NASA Astrophysics Data System (ADS)

    Raulin, F.; Coll, P.; Cabane, M.; Hebrard, E.; Israel, G.; Nguyen, M.-J.; Szopa, C.; Gpcos Team

    Largest satellite of Saturn and the only satellite in the solar system having a dense atmosphere, Titan is one of the key planetary bodies for astrobiological studies, due to several aspects: Its analogies with planet Earth, in spite of much lower temperatures, The Cassini-Huygens data have largely confirmed the many analogies between Titan and our own planet. Both have similar vertical temperature profiles, (although much colder, of course, on Titan). Both have condensable and non condensable greenhouse gases in their atmosphere. Both are geologically very active. Furthermore, the data also suggest strongly the presence of a methane cycle on Titan analogous to the water cycle on Earth. The presence of an active organic chemistry, involving several of the key compounds of prebiotic chemistry. The recent data obtained from the Huygens instruments show that the organic matter in Titan low atmosphere (stratosphere and troposphere) is mainly concentrated in the aerosol particles. Because of the vertical temperature profile in this part of the atmosphere, most of the volatile organics are probably mainly condensed on the aerosol particles. The nucleus of these particles seems to be made of complex macromolecular organic matter, well mimicked in the laboratory by the "Titan's tholins". Now, laboratory tholins are known to release many organic compounds of biological interest, such as amino acids and purine and pyrimidine bases, when they are in contact with liquid water. Such hydrolysis may have occurred on the surface of Titan, in the bodies of liquid water which episodically may form on Titan's surface from meteoritic and cometary impacts. The formation of biologically interesting compounds may also occur in the deep water ocean, from the hydrolysis of complex organic material included in the chrondritic matter accreted during the formation of Titan. The possible emergence and persistence of Life on Titan 1 All ingredients which seems necessary for Life are present on

  12. Titan's Variable Plasma Interaction

    NASA Astrophysics Data System (ADS)

    Ledvina, S. A.; Brecht, S. H.

    2015-12-01

    Cassini observations have found that the plasma and magnetic field conditions upstream of Titan are far more complex than they were thought to be after the Voyager encounter. Rymer et al., (2009) used the Cassini Plasma Spectrometer (CAPS) electron observations to classify the plasma conditions along Titan's orbit into 5 types (Plasma Sheet, Lobe, Mixed, Magnetosheath and Misc.). Nemeth et al., (2011) found that the CAPS ion observations could also be separated into the same plasma regions as defined by Rymer et al. Additionally the T-96 encounter found Titan in the solar wind adding a sixth classification. Understanding the effects of the variable upstream plasma conditions on Titan's plasma interaction and the evolution of Titan's ionosphere/atmosphere is one of the main objectives of the Cassini mission. To compliment the mission we perform hybrid simulations of Titan's plasma interaction to examine the effects of the incident plasma distribution function and the flow velocity. We closely examine the results on Titan's induced magnetosphere and the resulting pickup ion properties.

  13. Titan's organic chemistry

    NASA Technical Reports Server (NTRS)

    Sagan, C.; Thompson, W. R.; Khare, B. N.

    1985-01-01

    Voyager discovered nine simple organic molecules in the atmosphere of Titan. Complex organic solids, called tholins, produced by irradiation of the simulated Titanian atmosphere, are consistent with measured properties of Titan from ultraviolet to microwave frequencies and are the likely main constituents of the observed red aerosols. The tholins contain many of the organic building blocks central to life on earth. At least 100-m, and possibly kms thicknesses of complex organics have been produced on Titan during the age of the solar system, and may exist today as submarine deposits beneath an extensive ocean of simple hydrocarbons.

  14. Titan Casts Revealing Shadow

    NASA Astrophysics Data System (ADS)

    2004-05-01

    A rare celestial event was captured by NASA's Chandra X-ray Observatory as Titan -- Saturn's largest moon and the only moon in the Solar System with a thick atmosphere -- crossed in front of the X-ray bright Crab Nebula. The X-ray shadow cast by Titan allowed astronomers to make the first X-ray measurement of the extent of its atmosphere. On January 5, 2003, Titan transited the Crab Nebula, the remnant of a supernova explosion that was observed to occur in the year 1054. Although Saturn and Titan pass within a few degrees of the Crab Nebula every 30 years, they rarely pass directly in front of it. "This may have been the first transit of the Crab Nebula by Titan since the birth of the Crab Nebula," said Koji Mori of Pennsylvania State University in University Park, and lead author on an Astrophysical Journal paper describing these results. "The next similar conjunction will take place in the year 2267, so this was truly a once in a lifetime event." Animation of Titan's Shadow on Crab Nebula Animation of Titan's Shadow on Crab Nebula Chandra's observation revealed that the diameter of the X-ray shadow cast by Titan was larger than the diameter of its solid surface. The difference in diameters gives a measurement of about 550 miles (880 kilometers) for the height of the X-ray absorbing region of Titan's atmosphere. The extent of the upper atmosphere is consistent with, or slightly (10-15%) larger, than that implied by Voyager I observations made at radio, infrared, and ultraviolet wavelengths in 1980. "Saturn was about 5% closer to the Sun in 2003, so increased solar heating of Titan may account for some of this atmospheric expansion," said Hiroshi Tsunemi of Osaka University in Japan, one of the coauthors on the paper. The X-ray brightness and extent of the Crab Nebula made it possible to study the tiny X-ray shadow cast by Titan during its transit. By using Chandra to precisely track Titan's position, astronomers were able to measure a shadow one arcsecond in

  15. The greenhouse of Titan.

    NASA Technical Reports Server (NTRS)

    Sagan, C.

    1973-01-01

    Analysis of non-gray radiative equilibrium and gray convective equilibrium on Titan suggests that a massive molecular-hydrogen greenhouse effect may be responsible for the disagreement between the observed IR temperatures and the equilibrium temperature of an atmosphereless Titan. Calculations of convection indicate a probable minimum optical depth of 14 which corresponds to a molecular hydrogen shell of substantial thickness with total pressures of about 0.1 bar. It is suggested that there is an equilibrium between outgassing and blow-off on the one hand and accretion from the protons trapped in a hypothetical Saturnian magnetic field on the other, in the present atmosphere of Titan. It is believed that an outgassing equivalent to the volatilization of a few kilometers of subsurface ice is required to maintain the present blow-off rate without compensation for all geological time. The presence of an extensive hydrogen corona around Titan is postulated, with surface temperatures up to 200 K.

  16. Raising the Titanic.

    ERIC Educational Resources Information Center

    Baker, Romona

    1990-01-01

    Described is an activity in which groups of students investigate engineering principles by writing a feasibility study to raise the luxury liner, Titanic. The problem statement and directions, and suggestions for problem solutions are included. (CW)

  17. Clash of the Titans

    ERIC Educational Resources Information Center

    Subramaniam, Karthigeyan

    2010-01-01

    WebQuests and the 5E learning cycle are titans of the science classroom. These popular inquiry-based strategies are most often used as separate entities, but the author has discovered that using a combined WebQuest and 5E learning cycle format taps into the inherent power and potential of both strategies. In the lesson, "Clash of the Titans,"…

  18. Titan's Ammonia Feature

    NASA Technical Reports Server (NTRS)

    Smythe, W.; Nelson, R.; Boryta, M.; Choukroun, M.

    2011-01-01

    NH3 has long been considered an important component in the formation and evolution of the outer planet satellites. NH3 is particularly important for Titan, since it may serve as the reservoir for atmospheric nitrogen. A brightening seen on Titan starting in 2004 may arise from a transient low-lying fog or surface coating of ammonia. The spectral shape suggests the ammonia is anhydrous, a molecule that hydrates quickly in the presence of water.

  19. Zircon Recycling in Arc Intrusions

    NASA Astrophysics Data System (ADS)

    Miller, J.; Barth, A.; Matzel, J.; Wooden, J.; Burgess, S.

    2008-12-01

    Recycling of zircon has been well established in arc intrusions and arc volcanoes, but a better understanding of where and how zircons are recycled can help illuminate how arc magma systems are constructed. To that end, we are conducting age, trace element (including Ti-in-zircon temperatures; TzrnTi) and isotopic studies of zircons from the Late Cretaceous (95-85 Ma) Tuolumne Intrusive Suite (TIS) in the Sierra Nevada Batholith (CA). Within the TIS zircons inherited from ancient basement sources and/or distinctly older host rocks are uncommon, but recycled zircon antecrysts from earlier periods of TIS-related magmatism are common and conspicuous in the inner and two most voluminous units of the TIS, the Half Dome and Cathedral Peak Granodiorites. All TIS units have low bulk Zr ([Zr]<150 ppm) and thus low calculated zircon saturation temperatures (Tzrnsat). Within the Half Dome and Cathedral Peak, TzrnTi values are predominantly at or below average Tzrnsat, and there is no apparent correlation between age and TzrnTi. At temperatures appropriate for granodiorite/tonalite melt generation (at or above biotite dehydration; >825°C), [Zr] in the TIS is a factor of 2 to 3 lower than saturation values. Low [Zr] in TIS rocks might be attributed to a very limited supply of zircon in the source, by disequilibrium melting and rapid melt extraction [1], by melting reactions involving formation of other phases that can incorporate appreciable Zr [2], or by removal of zircon at an earlier stage of magma evolution. Based on a preliminary compilation of literature data, low [Zr] is common to Late Cretaceous N.A. Cordilleran granodioritic/tonalitic intrusions (typically <200 ppm and frequently 100-150 ppm for individual large intrusions or intrusive suites). We infer from this that [Zr] in anatectic melts is probably not limited by zircon supply and is primarily controlled by melting parameters. Comparison of the data from TIS with one of these intrusions, the smaller but otherwise

  20. Titan Probe navigation analysis

    NASA Technical Reports Server (NTRS)

    Vijayaraghavan, A.; Wood, L. J.

    1986-01-01

    In the proposed Cassini mission, a combined Saturn Orbiter/Titan Probe spacecraft will be launched from the Space Shuttle to arrive at Saturn around 2002, by means of a delta-VEGA trajectory. After Saturn-orbit insertion and a pericrone raise maneuver, the probe will be released to enter the Titan atmosphere and impact onto its surface. During its descent phase and impact onto Titan, the probe will maintain radio contact with the orbiter. Since the Titan-probe experimental phase lasts for only about four hours, probe-orbiter geometry and probe-delivery accuracy are critical to successful completion of this part of the mission. From a preliminary navigation analysis for probe delivery accuracy, it seems feasible to deliver the probe within 50 km (1-sigma value) of the desired aim-point in the Titan B-plane. The covariance study, however, clearly indicates the need for optical data, in addition to radio metric data. A Monte Carlo study indicates that a Delta-V capability of 98 m/sec for trajectory correction maneuvers will be sufficient to cover 99 percent of all contingencies during the segment from Saturn-orbit insertion to Titan-probe release.

  1. Titan's surface and atmosphere

    NASA Astrophysics Data System (ADS)

    Hayes, Alexander G.; Soderblom, Jason M.; Ádámkovics, Máté

    2016-05-01

    Since its arrival in late 2004, the NASA/ESA Cassini-Huygens mission to Saturn has revealed Titan to be a world that is both strange and familiar. Titan is the only extraterrestrial body known to support standing bodies of stable liquid on its surface and, along with Earth and early Mars, is one of three places in the Solar System known to have had an active hydrologic cycle. With atmospheric pressures of 1.5 bar and temperatures of 90-95 K at the surface, methane and ethane condense out of Titan's nitrogen-dominated atmosphere and flow as liquids on the surface. Despite vast differences in environmental conditions and materials from Earth, Titan's methane-based hydrologic cycle drives climatic and geologic processes which generate landforms that are strikingly similar to their terrestrial counterparts, including vast equatorial dunes, well-organized channel networks that route material through erosional and depositional landscapes, and lakes and seas of liquid hydrocarbons. These similarities make Titan a natural laboratory for studying the processes that shape terrestrial landscapes and drive climates, probing extreme conditions impossible to recreate in earthbound laboratories. Titan's exotic environment ensures that even rudimentary measurements of atmospheric/surface interactions, such as wind-wave generation or aeolian dune development, provide valuable data to anchor physical models.

  2. The TITAN reversed-field-pinch fusion reactor study

    SciTech Connect

    Not Available

    1990-01-01

    This report discusses the following topics: overview of titan-2 design; titan-2 fusion-power-core engineering; titan-2 divertor engineering; titan-2 tritium systems; titan-2 safety design and radioactive-waste disposal; and titan-2 maintenance procedures.

  3. Witnessing Springtime on Titan

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-02-01

    Have you ever wondered what springtime is like on Saturns largest moon, Titan? A team of researchers has analyzed a decade of data from the Cassini spacecraft to determine how Titans gradual progression through seasons has affected its temperatures.Observing the Saturn SystemThough Titan orbits Saturn once every ~16 days, it is Saturns ~30-year march around the Sun that sets Titans seasons: each traditional season on Titan spans roughly 7.5 years. Thus, when the Cassini spacecraft first arrived at Saturn in 2004 to study the giant planet and its ring system and moons, Titans northern hemisphere was in early winter. A decade later, the season in the northern hemisphere had advanced to late spring.A team scientists led by Donald Jennings (Goddard Space Flight Center) has now used data from the Composite Infrared Spectrometer (CIRS) on board Cassini to analyze the evolution of Titans surface temperature between 2004 and 2014.Changing of SeasonsSurface brightness temperatures (with errors) on Titan are shown in blue for five time periods between 2004 and 2014. The location of maximum temperature migrates from 19S to 16N over the decade. Two climate models are also shown in green (high thermal inertia) and red (low thermal inertia). [Jennings et al. 2016]CIRS uses the decreased opacity of Titans atmosphere at 19 m to detect infrared emission from Titans surface at this wavelength. From this data, Jennings and collaborators determine Titans surface temperature for five time intervals between 2004 and 2014. They bin the data into 10 latitude bins that span from the south pole (90S) to the north pole (90N).The authors find that the maximum temperature on the moon stays stable over the ten-year period at 94 K, or a chilly -240F). But as time passes, the latitude with the warmest temperature shifts from 19S to 16N, marking the transition from early winter to late spring. Over the decade of monitoring, the surface temperature near the south pole decreased by ~2 K, and that

  4. Effect of Pb content and solution concentration of Pb{sub x}TiO{sub 3} seed layer on (100)-texture and ferroelectric/dielectric behavior of PZT (52/48) thin films

    SciTech Connect

    Zhong, Jian; Batra, Vaishali; Han, Hui; Kotru, Sushma; Pandey, Raghvendar K.

    2015-09-15

    The effect of Pb content and solution concentration of lead titanate (Pb{sub x}TiO{sub 3}) seed layer on the texture and electric properties of Pb{sub 1.1}(Zr{sub 0.52},Ti{sub 0.48})O{sub 3} (PZT) thin films was investigated. A variety of seed layers (y Pb{sub x}TiO{sub 3}) with varying solution concentration (y = 0.02, 0.05, 0.1, and 0.2 M) and Pb content (x = 1.0, 1.05, 1.1, and 1.2) was deposited on Pt/TiO{sub 2}/SiO{sub 2}/Si substrates using chemical-solution deposition method. PZT films were then deposited on these seed layers using the same process. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy investigations of the seed layers confirm change in crystal structure with variation in the solution properties. XRD studies of PZT films deposited on seed layers demonstrate that the seed layer helps in enhancing (100)-texture and suppressing (111)-texture. It was observed that PZT films prepared on seed layers with lower solution concentrations results in highly (100)-textured films, which further helps to improve the electric properties. The polarization and dielectric constant of the PZT films were seen to increase while the coercive field decreased with increase in (100)-texture. Irrespective of the seed layer solution concentration, higher Pb content in the seed layer deteriorates the PZT film properties. Ninety-five percent to ninety-six percent (100)-texture was obtained from thin PZT films deposited on seed layers of 0.02 M solution concentration with 1.05 and 1.10 Pb contents, which is higher than the values reported for thick PZT films. Optimization of both Pb content and solution concentration of the seed layer is a promising route to achieve highly (100)-textured PZT films with improved electric properties.

  5. Flexible PZT thin film tactile sensor for biomedical monitoring.

    PubMed

    Tseng, Hong-Jie; Tian, Wei-Cheng; Wu, Wen-Jong

    2013-01-01

    This paper presents the development of tactile sensors using the sol-gel process to deposit a PZT thin-film from 250 nm to 1 μm on a flexible stainless steel substrate. The PZT thin-film tactile sensor can be used to measure human pulses from several areas, including carotid, brachial, finger, ankle, radial artery, and the apical region. Flexible PZT tactile sensors can overcome the diverse topology of various human regions and sense the corresponding signals from human bodies. The measured arterial pulse waveform can be used to diagnose hypertension and cardiac failure in patients. The proposed sensors have several advantages, such as flexibility, reliability, high strain, low cost, simple fabrication, and low temperature processing. The PZT thin-film deposition process includes a pyrolysis process at 150 °C/500 °C for 10/5 min, followed by an annealing process at 650 °C for 10 min. Finally, the consistent pulse wave velocity (PWV) was demonstrated based on human pulse measurements from apical to radial, brachial to radial, and radial to ankle. It is characterized that the sensitivity of our PZT-based tactile sensor was approximately 0.798 mV/g. PMID:23698262

  6. Flexible PZT Thin Film Tactile Sensor for Biomedical Monitoring

    PubMed Central

    Tseng, Hong-Jie; Tian, Wei-Cheng; Wu, Wen-Jong

    2013-01-01

    This paper presents the development of tactile sensors using the sol-gel process to deposit a PZT thin-film from 250 nm to 1 μm on a flexible stainless steel substrate. The PZT thin-film tactile sensor can be used to measure human pulses from several areas, including carotid, brachial, finger, ankle, radial artery, and the apical region. Flexible PZT tactile sensors can overcome the diverse topology of various human regions and sense the corresponding signals from human bodies. The measured arterial pulse waveform can be used to diagnose hypertension and cardiac failure in patients. The proposed sensors have several advantages, such as flexibility, reliability, high strain, low cost, simple fabrication, and low temperature processing. The PZT thin-film deposition process includes a pyrolysis process at 150 °C/500 °C for 10/5 min, followed by an annealing process at 650 °C for 10 min. Finally, the consistent pulse wave velocity (PWV) was demonstrated based on human pulse measurements from apical to radial, brachial to radial, and radial to ankle. It is characterized that the sensitivity of our PZT-based tactile sensor was approximately 0.798 mV/g. PMID:23698262

  7. Work of PZT ceramics sounder for sound source artificial larynx

    NASA Astrophysics Data System (ADS)

    Sugio, Yuuichi; Kanetake, Ryota; Tanaka, Akimitsu; Ooe, Katsutoshi

    2007-04-01

    We aim to develop the easy-to-use artificial larynx with high tone quality. We focus on using a PZT ceramics sounder as its sound source, because it is small size, low power consumption, and harmless to humans. But conventional PZT ceramics sounder have the problem that it cannot generate an enough sound in the low frequency range, thus they cannot be used for artificial larynx. Then, we aim to develop the PZT ceramics sounder which can generate enough volume in the low frequency range. If we can lower the resonance frequency of the sounder, it can generate low pitch sound easily. Therefore I created the new diaphragm with low resonance frequency. In addition, we could obtain the high amplitude by changing method of driving. This time, we report on the characteristic comparison of this new PZT ceramics sounder and conventional one. Furthermore, for this new one, we analyzed the best alignment of PZT ceramics and the shape of the diaphragm to obtain low resonance frequency and big amplitude. In fact we analyzed the optimization of the structure. The analysis is done by computer simulation of ANSYS and Laser Doppler Vibrometer. In the future, we will add intonation to the generated sound by input wave form which is developed concurrently, and implant the sounder inside of the body by the method of fixing metal to biomolecule which is done too. And so high tone quality and convenient artificial larynx will be completed.

  8. The environment of Titan, 1975

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Information regarding the physical characteristics of Titan and atmospheric models necessary to support design and mission planning of spacecraft that are to orbit Titan, enter its atmosphere or land on its surface is given.

  9. Weather on Titan

    NASA Astrophysics Data System (ADS)

    Griffith, C. A.; Hall, J. L.; Geballe, T. R.

    2000-10-01

    Titan's atmosphere potentially sports a cycle similar to the hydrologic one on Earth with clouds, rain and seas, but with methane playing the terrestrial role of water. Over the past ten years many independent efforts indicated no strong evidence for cloudiness until some unique spectra were analyzed in 1998 (Griffith et al.). These surprising observations displayed enhanced fluxes of 14-200% on two nights at precisely the wavelengths (windows) that sense Titan's lower altitude where clouds might reside. The morphology of these enhancements in all 4 windows observed indicate that clouds covered ~6-9% of Titan's surface and existed at ~15 km altitude. Here I discuss new observations recorded in 1999 aimed to further characterize Titan's clouds. While we find no evidence for a massive cloud system similar to the one observed previously, 1%-4% fluctuations in flux occur daily. These modulations, similar in wavelength and morphology to the more pronounced ones observed earlier, suggest the presence of clouds covering <=1% of Titan's disk. The variations are too small to have been detected by most prior measurements. Repeated observations, spaced 30 minutes apart, indicate a temporal variability observable in the time scale of a couple of hours. The cloud heights hint that convection governs their evolutions. Their short lives point to the presence of rain. C. A. Griffith and J. L. Hall are supported by the NASA Planetary Astronomy Program NAG5-6790.

  10. Hypsometry of Titan

    USGS Publications Warehouse

    Lorenz, Ralph D.; Turtle, Elizabeth P.; Stiles, Bryan; Le Gall, Alice; Hayes, Alexander; Aharonson, Oded; Wood, Charles A.; Stofan, Ellen; Kirk, Randy

    2011-01-01

    Cassini RADAR topography data are used to evaluate Titan's hypsometric profile, and to make comparisons with other planetary bodies. Titan's hypsogram is unimodal and strikingly narrow compared with the terrestrial planets. To investigate topographic extremes, a novel variant on the classic hypsogram is introduced, with a logarithmic abscissa to highlight mountainous terrain. In such a plot, the top of the terrestrial hypsogram is quite distinct from those of Mars and Venus due to the 'glacial buzz-saw' that clips terrestrial topography above the snowline. In contrast to the positive skew seen in other hypsograms, with a long tail of positive relief due to mountains, there is an indication (weak, given the limited data for Titan so far) that the Titan hypsogram appears slightly negatively skewed, suggesting a significant population of unfilled depressions. Limited data permit only a simplistic comparison of Titan topography with other icy satellites but we find that the standard deviation of terrain height (albeit at different scales) is similar to those of Ganymede and Europa.

  11. Flight through Titan's atmosphere

    NASA Astrophysics Data System (ADS)

    de Pater, Imke; Ádámkovics, Máté; Gibbard, Seran; Roe, Henry G.; Griffith, Caitlin A.

    We assembled spectral image data cubes of Titan in H-band (1.413-1.808 μm), using adaptive optics on the 10-m W.M. Keck telescope, by stepping a spectrometer slit across Titan's disk. We constructed images of Titan at each wavelength by 'glueing' the spectra together, producing 1400 ultra-narrowband (~0.1nm) views of the satellite. With this method one can characterise Titan's atmosphere over the entire disk, in more specific vertical detail than possible with either narrowband imaging or slit spectroscopy at one position. Data were obtained of Titan's leading hemisphere on UT 20 February 2001. At the shorter wavelengths we probe all the way down to the surface, revealing the familiar bright and dark terrain, while at longer wavelengths we probe various altitudes in the atmosphere. The data have been assembled into a movie, showing the surface and different haze layers while stepping up in altitude. The transitions from the surface to the tropospheric haze, and through the tropopause into the upper atmospheric haze, are clearly recognised.

  12. Titan Orbiter Aerorover Mission

    NASA Technical Reports Server (NTRS)

    Sittler Jr., E. C.; Acuna, M.; Burchell, M. J.; Coates, A.; Farrell, W.; Flasar, M.; Goldstein, B. E.; Gorevan, S.; Hartle, R. E.; Johnson, W. T. K.

    2001-01-01

    We propose a combined Titan orbiter and Titan Aerorover mission with an emphasis on both in situ and remote sensing measurements of Titan's surface, atmosphere, ionosphere, and magnetospheric interaction. The biological aspect of the Titan environment will be emphasized by the mission (i.e., search for organic materials which may include simple organics to 'amono' analogues of amino acids and possibly more complex, lightening detection and infrared, ultraviolet, and charged particle interactions with Titan's surface and atmosphere). An international mission is assumed to control costs. NASA will provide the orbiter, launch vehicle, DSN coverage and operations, while international partners will provide the Aerorover and up to 30% of the cost for the scientific instruments through collaborative efforts. To further reduce costs we propose a single PI for orbiter science instruments and a single PI for Aerorover science instruments. This approach will provide single command/data and power interface between spacecraft and orbiter instruments that will have redundant central DPU and power converter for their instruments. A similar approach could be used for the Aerorover. The mission profile will be constructed to minimize conflicts between Aerorover science, orbiter radar science, orbiter radio science, orbiter imaging science, and orbiter fields and particles (FP) science. Additional information is contained in the original extended abstract.

  13. Barium titanate nanocomposite capacitor FY09 year end report.

    SciTech Connect

    Stevens, Tyler E.; DiAntonio, Christopher Brian; Yang, Pin; Chavez, Tom P.; Winter, Michael R.; Monson, Todd C.; Roesler, Alexander William; Fellows, Benjamin D.

    2009-11-01

    This late start RTBF project started the development of barium titanate (BTO)/glass nanocomposite capacitors for future and emerging energy storage applications. The long term goal of this work is to decrease the size, weight, and cost of ceramic capacitors while increasing their reliability. Ceramic-based nanocomposites have the potential to yield materials with enhanced permittivity, breakdown strength (BDS), and reduced strain, which can increase the energy density of capacitors and increase their shot life. Composites of BTO in glass will limit grain growth during device fabrication (preserving nanoparticle grain size and enhanced properties), resulting in devices with improved density, permittivity, BDS, and shot life. BTO will eliminate the issues associated with Pb toxicity and volatility as well as the variation in energy storage vs. temperature of PZT based devices. During the last six months of FY09 this work focused on developing syntheses for BTO nanoparticles and firing profiles for sintering BTO/glass composite capacitors.

  14. Optical characterization of ferroelectric PZT thin films by variable angle spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Shafiqur; Garcia, Carlos D.; Bhalla, Amar; Guo, Ruyan

    2014-09-01

    Ferroelectric thin films are used as high dielectric constant capacitors, infrared detectors, piezoelectric transducers, optical modulators, optical waveguides, and nonvolatile memory chips for dynamic random access memory (DRAM) etc. While ferroelectric and dielectric properties of these films have been extensively investigated, their optical properties have been comparatively less studied and of limited use in quantitative evaluation of multilayer thin films. In this work we explored the variable angle spectroscopic ellipsometry (VASE) technique for its effectiveness in physical property characterization. The VASE combined with its computer modeling tool enables nondestructive, nonintrusive, and contactless optical means for optical characterization. Crystalline Lead Zirconium Titanate PbZr0.52Ti0.48O3 (PZT) thin films, fabricated on SrTiO3 layer atop of Si substrates, were characterized using VASE (J.A. Woollam; Lincoln, NE, USA) by determining the ellipsometric parameters Ψ and Δ as a function of wavelengths (200-1000 nm) and incident angles (65°, 70°,75°) at room temperature. A physical representation of the multilayer system was constructed by a six layer model (analysis software WVASE32, J.A. Woollam) through a step-by-step method. Other physical properties characterized by several well-known techniques on structure, morphology and topographical features correspond well with the models developed using VASE alone. The technique and the methodology developed have shown promises in identifying the respective thickness and optical properties of multilayer thin film system, with limited input of processing or composition information.

  15. Improvement of FBG/PZT hybrid sensing system for composite materials

    NASA Astrophysics Data System (ADS)

    Komatsuzaki, Shinji; Kojima, Seiji; Hongo, Akihito; Takeda, Nobuo; Koshioka, Yasuhiro

    2008-03-01

    We have been developing a system for monitoring the health of aircraft structures made of composite materials. In this system, the Lamb waves that are generated by lead zirconium titanate PZT actuators travel through the composite material structures and are received by the embedded FBG sensors. To detect any Bragg wavelength change due to the reception of the Lamb wave, an arrayed waveguide grating (AWG) is used, which converts the Bragg wavelength change into an output power change. Since the conversion ratio is largely dependent on the initial Bragg wavelength, a temperture control was necessary for obtaining an optimum condition. However, we have developed a system that uses a denser AWG to eliminate the need for a temperature control. We suceeded in detecting 25 kHz to 1 MHz Lamb waves using our new system. We have also tried calculating the Bragg wavelength change of the obtained waveform, and confirmed that the Bragg wavelength change due to the reception of Lamb waves was less than 1 pico meter.

  16. Sol-gel derived PZT films doped with vanadium pentoxide

    SciTech Connect

    Shen Hongfang; Guo Qing; Zhao Zhiman; Cao Guozhong

    2009-11-15

    The present research investigated the sol-gel preparation, dielectric and ferroelectric properties of PZT films doped with 5 mol% vanadium oxide. Stable PZTV sols can be readily formed, and homogeneous, micrometer thick and pinhole-free PZTV films were obtained by using spin coating followed with rapid annealing. The X-ray diffraction patterns revealed that no parasitic or secondary phases were formed in the sol-gel PZT films with the addition of vanadium oxide. The material doped with vanadium pentoxide showed enhanced dielectric constant and remanent polarization with reduced loss tangent and coercive field.

  17. Titanic Weather Forecasting

    NASA Astrophysics Data System (ADS)

    2004-04-01

    New Detailed VLT Images of Saturn's Largest Moon Optimizing space missions Titan, the largest moon of Saturn was discovered by Dutch astronomer Christian Huygens in 1655 and certainly deserves its name. With a diameter of no less than 5,150 km, it is larger than Mercury and twice as large as Pluto. It is unique in having a hazy atmosphere of nitrogen, methane and oily hydrocarbons. Although it was explored in some detail by the NASA Voyager missions, many aspects of the atmosphere and surface still remain unknown. Thus, the existence of seasonal or diurnal phenomena, the presence of clouds, the surface composition and topography are still under debate. There have even been speculations that some kind of primitive life (now possibly extinct) may be found on Titan. Titan is the main target of the NASA/ESA Cassini/Huygens mission, launched in 1997 and scheduled to arrive at Saturn on July 1, 2004. The ESA Huygens probe is designed to enter the atmosphere of Titan, and to descend by parachute to the surface. Ground-based observations are essential to optimize the return of this space mission, because they will complement the information gained from space and add confidence to the interpretation of the data. Hence, the advent of the adaptive optics system NAOS-CONICA (NACO) [1] in combination with ESO's Very Large Telescope (VLT) at the Paranal Observatory in Chile now offers a unique opportunity to study the resolved disc of Titan with high sensitivity and increased spatial resolution. Adaptive Optics (AO) systems work by means of a computer-controlled deformable mirror that counteracts the image distortion induced by atmospheric turbulence. It is based on real-time optical corrections computed from image data obtained by a special camera at very high speed, many hundreds of times each second (see e.g. ESO Press Release 25/01 , ESO PR Photos 04a-c/02, ESO PR Photos 19a-c/02, ESO PR Photos 21a-c/02, ESO Press Release 17/02, and ESO Press Release 26/03 for earlier NACO

  18. Impact craters on Titan

    USGS Publications Warehouse

    Wood, Charles A.; Lorenz, Ralph; Kirk, Randy; Lopes, Rosaly; Mitchell, Karl; Stofan, Ellen; Cassini RADAR Team

    2010-01-01

    Five certain impact craters and 44 additional nearly certain and probable ones have been identified on the 22% of Titan's surface imaged by Cassini's high-resolution radar through December 2007. The certain craters have morphologies similar to impact craters on rocky planets, as well as two with radar bright, jagged rims. The less certain craters often appear to be eroded versions of the certain ones. Titan's craters are modified by a variety of processes including fluvial erosion, mass wasting, burial by dunes and submergence in seas, but there is no compelling evidence of isostatic adjustments as on other icy moons, nor draping by thick atmospheric deposits. The paucity of craters implies that Titan's surface is quite young, but the modeled age depends on which published crater production rate is assumed. Using the model of Artemieva and Lunine (2005) suggests that craters with diameters smaller than about 35 km are younger than 200 million years old, and larger craters are older. Craters are not distributed uniformly; Xanadu has a crater density 2-9 times greater than the rest of Titan, and the density on equatorial dune areas is much lower than average. There is a small excess of craters on the leading hemisphere, and craters are deficient in the north polar region compared to the rest of the world. The youthful age of Titan overall, and the various erosional states of its likely impact craters, demonstrate that dynamic processes have destroyed most of the early history of the moon, and that multiple processes continue to strongly modify its surface. The existence of 24 possible impact craters with diameters less than 20 km appears consistent with the Ivanov, Basilevsky and Neukum (1997) model of the effectiveness of Titan's atmosphere in destroying most but not all small projectiles.

  19. Diurnal variations of Titan

    NASA Astrophysics Data System (ADS)

    Cui, J.; Galand, M.; Yelle, R. V.; Vuitton, V.; Wahlund, J.-E.; Lavvas, P. P.; Mueller-Wodarg, I. C. F.; Kasprzak, W. T.; Waite, J. H.

    2009-04-01

    We present our analysis of the diurnal variations of Titan's ionosphere (between 1,000 and 1,400 km) based on a sample of Ion Neutral Mass Spectrometer (INMS) measurements in the Open Source Ion (OSI) mode obtained from 8 close encounters of the Cassini spacecraft with Titan. Though there is an overall ion depletion well beyond the terminator, the ion content on Titan's nightside is still appreciable, with a density plateau of ~700 cm-3 below ~1,300 km. Such a plateau is associated with the combination of distinct diurnal variations of light and heavy ions. Light ions (e.g. CH5+, HCNH+, C2H5+) show strong diurnal variation, with clear bite-outs in their nightside distributions. In contrast, heavy ions (e.g. c-C3H3+, C2H3CNH+, C6H7+) present modest diurnal variation, with significant densities observed on the nightside. We propose that the distinctions between light and heavy ions are associated with their different chemical loss pathways, with the former primarily through "fast" ion-neutral chemistry and the latter through "slow" electron dissociative recombination. The INMS data suggest day-to-night transport as an important source of ions on Titan's nightside, to be distinguished from the conventional scenario of auroral ionization by magnetospheric particles as the only ionizing source on the nightside. This is supported by the strong correlation between the observed night-to-day ion density ratios and the associated ion lifetimes. We construct a time-dependent ion chemistry model to investigate the effects of day-to-night transport on the ionospheric structures of Titan. The predicted diurnal variation has similar general characteristics to those observed, with some apparent discrepancies which could be reconciled by imposing fast horizontal thermal winds in Titan's upper atmosphere.

  20. Impact craters on Titan

    USGS Publications Warehouse

    Wood, C.A.; Lorenz, R.; Kirk, R.; Lopes, R.; Mitchell, Ken; Stofan, E.

    2010-01-01

    Five certain impact craters and 44 additional nearly certain and probable ones have been identified on the 22% of Titan's surface imaged by Cassini's high-resolution radar through December 2007. The certain craters have morphologies similar to impact craters on rocky planets, as well as two with radar bright, jagged rims. The less certain craters often appear to be eroded versions of the certain ones. Titan's craters are modified by a variety of processes including fluvial erosion, mass wasting, burial by dunes and submergence in seas, but there is no compelling evidence of isostatic adjustments as on other icy moons, nor draping by thick atmospheric deposits. The paucity of craters implies that Titan's surface is quite young, but the modeled age depends on which published crater production rate is assumed. Using the model of Artemieva and Lunine (2005) suggests that craters with diameters smaller than about 35 km are younger than 200 million years old, and larger craters are older. Craters are not distributed uniformly; Xanadu has a crater density 2-9 times greater than the rest of Titan, and the density on equatorial dune areas is much lower than average. There is a small excess of craters on the leading hemisphere, and craters are deficient in the north polar region compared to the rest of the world. The youthful age of Titan overall, and the various erosional states of its likely impact craters, demonstrate that dynamic processes have destroyed most of the early history of the moon, and that multiple processes continue to strongly modify its surface. The existence of 24 possible impact craters with diameters less than 20 km appears consistent with the Ivanov, Basilevsky and Neukum (1997) model of the effectiveness of Titan's atmosphere in destroying most but not all small projectiles. ?? 2009 Elsevier Inc.

  1. Titan's Winter Polar Vortex

    NASA Technical Reports Server (NTRS)

    Flasar, F.M.; Achterberg, R.K.; Schinder, P.J.

    2008-01-01

    Titan's atmosphere has provided an interesting study in contrasts and similarities with Earth's. While both have N$_2$ as the dominant constituent and comparable surface pressures $\\sim1$ bar, Titan's next most abundant molecule is CH$_4$, not O$_2$, and the dissociative breakup of CH$_4$ and N$_2$ by sunlight and electron impact leads to a suite of hydrocarbons and nitriles, and ultimately the photochemical smog that enshrouds the moon. In addition, with a 15.95-day period, Titan is a slow rotator compared to Earth. While the mean zonal terrestrial winds are geostrophic, Titan's are mostly cyclostrophic, whipping around the moon in as little as 1 day. Despite the different dynamical regime, Titan's winter stratosphere exhibits several characteristics that should be familiar to terrestrial meteorologists. The cold winter pole near the 1 -mbar level is circumscribed by strong winds (up to 190 m/s) that act as a barrier to mixing with airmasses at lower latitudes. There is evidence of enhancement of several organic species over the winter pole, indicating subsidence. The adiabatic heating associated with this subsidence gives rise to a warm anomaly at the 0.01-mbar level, raising the stratopause two scale heights above its location at equatorial latitudes. Condensate ices have been detected in Titan's lower stratosphere within the winter polar vortex from infrared spectra. Although not always unambiguously identified, their spatial distribution exhibits a sharp gradient, decreasing precipitously across the vortex away from the winter pole. The interesting question of whether there is important heterogeneous chemistry occurring within the polar vortex, analogous to that occurring in the terrestrial polar stratospheric clouds in the ozone holes, has not been addressed. The breakup of Titan's winter polar vortex has not yet been observed. On Earth, the polar vortex is nonlinearly disrupted by interaction with large-amplitude planetary waves. Large-scale waves have not

  2. Flying by Titan

    NASA Technical Reports Server (NTRS)

    Pelletier, Frederic J.; Antreasian, Peter G.; Ardalan, Shadan M.; Criddle, Kevin E.; Ionasescu, Rodica; Jacobson, Robert A.; Jones, Jeremy B.; Parcher, Daniel W.; Roth, Duane C.; Thompson, Paul F.; Vaughan, Andrew T.

    2008-01-01

    The Cassini spacecraft encounters the massive Titan about once every month. These encounters are essential to the mission as Titan is the only satellite of Saturn that can provide enough gravity assist to shape the orbit tour and allow outstanding science for many years. From a navigation point of view, these encounters provide many challenges, in particular those that fly close enough to the surface for the atmospheric drag to perturb the orbit. This paper discusses the dynamics models developed to successfully navigate Cassini and determine its trajectory. This includes the moon's gravity pull with its second degree zonal harmonics J2, the attitude thrust control perturbations and the acceleration of drag.

  3. Titan's "Hot Cross Bun": A Titan Laccolith?

    NASA Astrophysics Data System (ADS)

    Lopes, Rosaly M. C.; Stofan, E. R.; Wall, S. D.; Wood, C.; Kirk, R. L.; Lucas, A.; Mitchell, K. L.; Lunine, J. I.; Turtle, E. P.; Radebaugh, J.; Malaska, M.; Cassini RADAR Team

    2012-10-01

    Cassini’s RADAR instrument acquired Synthetic Aperture Radar data during the T83 flyby on May 22, 2012. The data showed a feature centered at 38.5N, 203W that resembles a “hot cross bun”. This type of feature has not been seen on Titan before, even though 52% of Titan’s surface has been imaged using SAR. The feature, approximately 100 km across, is mostly radar bright but the cross pattern, interpreted to be extensional fractures, located roughly at the center of the brighter area, appears darker at radar wavelengths (2.3 cm). Radar illumination of the image indicates that the fractures are lower in elevation than the surrounding bright region. The morphology of the region is markedly similar to that of a 30-km dome-shaped feature on Venus that lies at the summit of the Kunapipi volcano. The Venus feature is interpreted to be the result of intrusion of magma at the summit of the volcano [1]. A similar feature, interpreted as a laccolith, is seen on the Moon near the crater Ramsden [2]. The lunar feature, imaged by the Lunar Reconnaissance Orbiter, shows the cross-shaped depression over a 300 m high rise. No topographic data for the feature on Titan are available at this time, but the morphology seen by the SAR data suggests that the feature may have been formed by material pushing up from below. Laccoliths form when an igneous intrusion splits apart two strata, resulting in a domeline structure. This previously unknown type of structure on Titan may be yet another indication of cryovolcanism. [1] Stofan, E.R., et al, Icarus, 152, 75-95, 2001. [2] Wichman, R.W. and Schultz, P. H. (1996). Icarus, 122, Issue 1, July 1996, pages 193-199. doi:10.1006/icar.1996.0118

  4. Presentation and characterization of novel thick-film PZT microactuators

    NASA Astrophysics Data System (ADS)

    Chalvet, Vincent; Habineza, Didace; Rakotondrabe, Micky; Clévy, Cédric

    2016-04-01

    We propose in this paper the characterization of a new generation of piezoelectric cantilevers called thick-films piezoelectric actuators. Based on the bonding and thinning process of a bulk PZT layer onto a silicon layer, these cantilevers can provide better static and dynamic performances compared to traditional piezocantilevers, additionally to the small dimensions.

  5. A study of integrated position sensors for PZT resonant micromirrors

    NASA Astrophysics Data System (ADS)

    Gu-Stoppel, S.; Quenzer, H. J.; Heinrich, F.; Janes, J.; Benecke, W.

    2015-02-01

    PZT driven resonant micromirrors offer advantages of large scan angles and decreasing power consumption due to the benefits of resonant driving and high torque delivered by PZT actuators. Therefore they are entering into different application fields recently, for example as laser projection or head-up displays. For many uses position sensing of the micromirrors is necessary to set up closed loop controls. Thus, the development of integrated position sensors is aimed in this work. Investigation and evaluation of different position sensing principles have been performed. In previous works 1D and 2D PZT driven resonant micromirrors have been presented, which feature various spring suspensions and thinfilm PZT actuators as drivers. Due to the considerably different motion modes and resonant frequencies, which vary from 100 Hz up to 64 kHz, various position detection methods have been investigated. This work presents primarily fabrication and characterization results of the position sensors based on the direct piezoelectric effect, which will be compared to the position sensors using metallic strain gauge realized by the same fabrication technology. Analyses of the sensitivity, linearity and dynamic behavior of the sensors have been performed, by means of comparing the sensor signals and the micromirror position signals measured by a Position-Sensitive-Device. Advantages and drawbacks of the sensors are discussed and methods for eliminating the drawbacks are proposed.

  6. Titan Nitriles Awaiting Detection

    NASA Astrophysics Data System (ADS)

    Hudson, R. L.; Moore, M. H.

    2003-05-01

    The nitrogen-methane haze of Titan is known to harbor at least four molecules containing a nitrile (-CN) group: H-CN, NC-CN, CH3-CN, and HCC-CN. The low-temperature reaction chemistry of these molecules is of interest as the Cassini orbiter and Huygens probe approach the Saturnian system. As part of our preparation for Cassini-Huygens results we have undertaken an experimental study of the dominant chemical changes of nitrile molecules. Our results point to isomerization products formed by both low-temperature photochemistry and radiation chemistry. Among the new molecules we can predict are isonitriles (e.g. CH3-NC) and enimines (e.g. H2C=C=NH). We also expect, depending on the amount of H2O present, that cyanate ions (OCN-) can form on Titan. This presentation will include our latest results for Titan nitriles, as well a few nitriles not yet detected on Titan but present in either cometary comae or the interstellar medium. Since nitriles can form biological molecules, such as alpha-amino acids, purines, and pyrimidines, our results may also have astrobiological implications. -- The authors acknowledge NASA funding through the SARA and Planetary Atmospheres programs. RLH acknowledges support from NASA grant NAG-5-1843.

  7. Sinking with the Titanic

    NASA Astrophysics Data System (ADS)

    Bagnoli, Franco

    2015-03-01

    In the Titanic movie, when the rear part of the ship is about to sink, Jack Dawson (Leonardo DiCaprio) says to Rose DeWitt Bukater (Kate Winslet) to get ready to swim, because the sinking body will suck them into the abysses. Is this sucking phenomenon really happening? And, if so, why?

  8. The lakes of Titan

    USGS Publications Warehouse

    Stofan, E.R.; Elachi, C.; Lunine, J.I.; Lorenz, R.D.; Stiles, B.; Mitchell, K.L.; Ostro, S.; Soderblom, L.; Wood, C.; Zebker, H.; Wall, S.; Janssen, M.; Kirk, R.; Lopes, R.; Paganelli, F.; Radebaugh, J.; Wye, L.; Anderson, Y.; Allison, M.; Boehmer, R.; Callahan, P.; Encrenaz, P.; Flamini, E.; Francescetti, G.; Gim, Y.; Hamilton, G.; Hensley, S.; Johnson, W.T.K.; Kelleher, K.; Muhleman, D.; Paillou, P.; Picardi, G.; Posa, F.; Roth, L.; Seu, R.; Shaffer, S.; Vetrella, S.; West, R.

    2007-01-01

    The surface of Saturn's haze-shrouded moon Titan has long been proposed to have oceans or lakes, on the basis of the stability of liquid methane at the surface. Initial visible and radar imaging failed to find any evidence of an ocean, although abundant evidence was found that flowing liquids have existed on the surface. Here we provide definitive evidence for the presence of lakes on the surface of Titan, obtained during the Cassini Radar flyby of Titan on 22 July 2006 (T16). The radar imaging polewards of 70?? north shows more than 75 circular to irregular radar-dark patches, in a region where liquid methane and ethane are expected to be abundant and stable on the surface. The radar-dark patches are interpreted as lakes on the basis of their very low radar reflectivity and morphological similarities to lakes, including associated channels and location in topographic depressions. Some of the lakes do not completely fill the depressions in which they lie, and apparently dry depressions are present. We interpret this to indicate that lakes are present in a number of states, including partly dry and liquid-filled. These northern-hemisphere lakes constitute the strongest evidence yet that a condensable-liquid hydrological cycle is active in Titan's surface and atmosphere, in which the lakes are filled through rainfall and/or intersection with the subsurface 'liquid methane' table. ??2007 Nature Publishing Group.

  9. Determination of uranium in zircon

    USGS Publications Warehouse

    Cuttitta, F.; Daniels, G.J.

    1959-01-01

    A routine fluorimetric procedure is described for the determination of trace amounts of uranium in zircon. It employs the direct extraction of uranyl nitrate with ethyl acetate using phosphate as a retainer for zirconium. Submicrogram amounts or uranium are separated in the presence of 100,000 times the amount of zirconium. The modified procedure has been worked out using synthetic mixtures of known composition and zircon. Results of analyses have an accuracy of 97-98% of the contained uranium and a standard deviation of less than 2.5%. ?? 1959.

  10. Titanates and Titanate-Metal Compounds in Biological Contexts

    PubMed Central

    Chen, Yen-Wei; Drury, Jeanie L.; Chung, Whasun Oh; Hobbs, David T.; Wataha, John C.

    2015-01-01

    Metal ions are notorious environmental contaminants, some causing toxicity at exquisitely low (ppm-level) concentrations. Yet, the redox properties of metal ions make them attractive candidates for bio-therapeutics. Titanates are insoluble particulate compounds of titanium and oxygen with crystalline surfaces that bind metal ions; these compounds offer a means to scavenge metal ions in environmental contexts or deliver them in therapeutic contexts while limiting systemic exposure and toxicity. In either application, the toxicological properties of titanates are crucial. To date, the accurate measurement of the in vitro toxicity of titanates has been complicated by their particulate nature, which interferes with many assays that are optical density (OD)-dependent, and at present, little to no in vivo titanate toxicity data exist. Compatibility data garnered thus far for native titanates in vitro are inconsistent and lacking in mechanistic understanding. These data suggest that native titanates have little toxicity toward several oral and skin bacteria species, but do suppress mammalian cell metabolism in a cells-pecific manner. Titanate compounds bind several types of metal ions, including some common environmental toxins, and enhance delivery to bacteria or cells. Substantial work remains to address the practical applicability of titanates. Nevertheless, titanates have promise to serve as novel vehicles for metal-based therapeutics or as a new class of metal scavengers for environmental applications. PMID:26430701

  11. Titan III-C Launch

    NASA Technical Reports Server (NTRS)

    1970-01-01

    This photograph shows a Titan III-C launch vehicle. Titan vehicles are designed to carry payloads equal to the size and weight of those on the space shuttle. The Titan IV Centaur can put 10,000 pound payloads into geosynchronous orbit, 22,300 miles above Earth. For more information about Titan and Centaur, please see chapters 4 and 8, respectively, in Roger Launius and Dennis Jenkins' book To Reach the High Frontier published by The University Press of Kentucky in 2002.

  12. PZT thin films for piezoelectric MEMS mechanical energy harvesting

    NASA Astrophysics Data System (ADS)

    Yeager, Charles

    This thesis describes the optimization of piezoelectric Pb(ZrxTi 1-x)O3 (PZT) thin films for energy generation by mechanical energy harvesting, and self-powered micro-electro-mechanical systems (MEMS). For this purpose, optimization of the material was studied, as was the incorporation of piezoelectric films into low frequency mechanical harvesters. A systematic analysis of the energy harvesting figure of merit was made. As a figure of merit (e31,ƒ)2/epsilon r (transverse piezoelectric coefficient squared over relative permittivity) was utilized. PZT films of several tetragonal compositions were grown on CaF2, MgO, SrTiO3, and Si substrates, thereby separating the dependence of composition on domain orientation. To minimize artifacts associated with composition gradients, and to extend the temperature growth window, PZT films were grown by metal organic chemical vapor deposition (MOCVD). Using this method, epitaxial {001} films achieved c-domain textures above 90% on single crystal MgO and CaF2 substrates. This could be tailored via the thermal stresses established by the differences in thermal expansion coefficients of the film and the substrate. The single-domain e31,ƒ for PZT thin films was determined to exceed -12 C/m2 in the tetragonal phase field for x ≥ 0.19, nearly twice the phenomenologically modeled value. The utilization of c-domain PZT films is motivated by a figure of merit above 0.8 C2/m4 for (001) PZT thin films. Increases to the FoM via doping and hot poling were also quantified; a 1% Mn doping reduced epsilonr by 20% without decreasing the piezoelectric coefficient. Hot poling a device for one hour above 120°C also resulted in a 20% reduction in epsilonr ; furthermore, 1% Mn doping reduced epsilonr by another 12% upon hot poling. Two methods for fabricating thin film mechanical energy harvesting devices were investigated. It was found that phosphoric acid solutions could be used to pattern MgO crystals, but this was typically accompanied by

  13. Titan's Eccentricity Tides

    NASA Astrophysics Data System (ADS)

    Iess, L.; Jacobson, R.; Ducci, M.; Stevenson, D. J.; Lunine, J. I.; Armstrong, J. W.; Asmar, S.; Racioppa, P.; Rappaport, N. J.; Tortora, P.

    2011-12-01

    The large eccentricity (e=0.03) of Titan's orbit causes significant variations in the tidal field from Saturn and induces periodic stresses in the satellite body at the orbital period (about 16 days). Peak-to-peak variations of the tidal field (from pericenter to apocenter) are about 18% (6e). If Titan hosts a liquid layer (such as an internal ocean), the gravity field would exhibit significant periodic variations. The response of the body to fast variations of the external, perturbing field is controlled by the Love numbers, defined for each spherical harmonic as the ratio between the perturbed and perturbing potential. For Titan the largest effect is by far on the quadrupole field, and the corresponding Love number is indicated by k2 (assumed to be identical for all degree 2 harmonics). Models of Titan's interior generally envisage a core made up of silicates, surrounded by a layer of high pressure ice, possibly a liquid water or water-ammonia ocean, and an ice-I outer shell, with variations associated with the dehydration state of the core or the presence of mixed rock-ice layers. Previous analysis of Titan's tidal response [1] shows that k2 depends crucially on the presence or absence of an internal ocean. k2 was found to vary from about 0.03 for a purely rocky interior to 0.48 for a rigid rocky core surrounded by an ocean and a thin (20 km) ice shell. A large k2 entails changes in the satellite's quadrupole coefficients by a few percent, enough to be detected by accurate range rate measurements of the Cassini spacecraft. So far, of the many Cassini's flybys of Titan, six were used for gravity measurements. During gravity flybys the spacecraft is tracked from the antennas of NASA's Deep Space Network using microwave links at X- and Ka-band frequencies. A state-of-the-art instrumentation enables range rate measurements accurate to 10-50 micron/s at integration times of 60 s. The first four flybys provided the static gravity field and the moment of inertia factor

  14. Organic chemistry on Titan

    NASA Technical Reports Server (NTRS)

    Chang, S.; Scattergood, T.; Aronowitz, S.; Flores, J.

    1979-01-01

    Features taken from various models of Titan's atmosphere are combined in a working composite model that provides environmental constraints within which different pathways for organic chemical synthesis are determined. Experimental results and theoretical modeling suggest that the organic chemistry of the satellite is dominated by two processes: photochemistry and energetic particle bombardment. Photochemical reactions of CH4 in the upper atmosphere can account for the presence of C2 hydrocarbons. Reactions initiated at various levels of the atmosphere by cosmic rays, Saturn 'wind', and solar wind particle bombardment of a CH4-N2 atmospheric mixture can account for the UV-visible absorbing stratospheric haze, the reddish appearance of the satellite, and some of the C2 hydrocarbons. In the lower atmosphere photochemical processes will be important if surface temperatures are sufficiently high for gaseous NH3 to exist. It is concluded that the surface of Titan may contain ancient or recent organic matter (or both) produced in the atmosphere.

  15. RADAR Reveals Titan Topography

    NASA Technical Reports Server (NTRS)

    Kirk, R. L.; Callahan, P.; Seu, R.; Lorenz, R. D.; Paganelli, F.; Lopes, R.; Elachi, C.

    2005-01-01

    The Cassini Titan RADAR Mapper is a K(sub u)-band (13.78 GHz, lambda = 2.17 cm) linear polarized RADAR instrument capable of operating in synthetic aperture (SAR), scatterometer, altimeter and radiometer modes. During the first targeted flyby of Titan on 26 October, 2004 (referred to as Ta) observations were made in all modes. Evidence for topographic relief based on the Ta altimetry and SAR data are presented here. Additional SAR and altimetry observations are planned for the T3 encounter on 15 February, 2005, but have not been carried out at this writing. Results from the T3 encounter relevant to topography will be included in our presentation. Data obtained in the Ta encounter include a SAR image swath

  16. Crystalline titanate catalyst supports

    DOEpatents

    Anthony, R.G.; Dosch, R.G.

    1993-01-05

    A series of new crystalline titanates (CT) are shown to have considerable potential as catalyst supports. For Pd supported catalyst, the catalytic activity for pyrene hydrogenation was substantially different depending on the type of CT, and one was substantially more active than Pd on hydrous titanium oxide (HTO). For 1-hexene hydrogenation the activities of the new CTs were approximately the same as for the hydrous metal oxide supports.

  17. Changes on Titan's surface

    NASA Astrophysics Data System (ADS)

    Solomonidou, A.; Lopes, R. M. C.; Coustenis, A.; Malaska, M. J.; Sotin, C.; Rodriguez, S.; Janssen, M. A.; Drossart, P.; Lawrence, K. J.; Matsoukas, C. K.; Hirtzig, M.; Le Mouelic, S.; Jaumann, R.; Brown, R. H.; Bratsolis, E.

    2015-12-01

    Cassini's Visual and Infrared Mapping Spectrometer (VIMS) and the Titan Radar Mapper have investigated Titan's surface since 2004, unveiling a complex, dynamic and Earth-like surface. Understanding the distribution and interplay of geologic processes is important for constraining models of its interior, surface-atmospheric interactions, and climate evolution. We focus on understanding the origin of the major geomorphological units identified by Lopes et al. (2010, 2015) [1,2], Malaska et al. (2015) [3] and regions we studied in Solomonidou et al. (2014; 2015) [4,5]. Here, we investigate the nature of: Undifferentiated Plains, Hummocky/Mountainous terrains, candidate cryovolcanic sites, Labyrinth, and Dunes in terms of surface albedo behavior and spectral evolution with time to identify possible changes. Using a radiative transfer code, we find that temporal variations of surface albedo occur for some areas. Tui Regio and Sotra Patera, both candidate cryovolcanic regions, change with time, becoming darker and brighter respectively in surface albedo. In contrast, we find that the Undifferentiated Plains and the suggested evaporitic areas [6] in the equatorial regions do not present any significant changes. We are able to report the differences and similarities among the various regions and provide constraints on their chemical composition and specific processes of origin. Our results support the hypothesis that both endogenic and exogenic processes have played important roles in shaping Titan's geologic evolution. Such a variety of geologic processes and their relationship to the methane cycle make Titan important for astrobiology and habitability studies and particularly significant in solar system studies. [1] Lopes, R.M.C., et al.: Icarus, 205, 540-588, 2010; [2] Lopes, R.M.C., et al.: JGR, 118, 416-435, 2013; [3] Malaska, M., et al : Icarus, submitted, 2015;[4] Solomonidou et al.: JGR, 119, 1729-1747, 2014; [5] Solomonidou, A., et al.: In press, 2015; [6] Barnes

  18. Crystalline titanate catalyst supports

    SciTech Connect

    Anthony, R.G.; Dosch, R.G.

    1991-12-31

    A series of new crystalline titanates (CT) are shown to have considerable potential as catalyst supports. For Pd supported catalyst, the catalytic activity for pyrene hydrogenation was substantially different depending on the type of CT, and one was substantially more active than Pd on hydrous titanium oxide (HTO). For 1-hexene hydrogenation the activities of the new CTs were approximately the same as for the hydrous metal oxide supports.

  19. Crystalline titanate catalyst supports

    DOEpatents

    Anthony, Rayford G.; Dosch, Robert G.

    1993-01-01

    A series of new crystalline titanates (CT) are shown to have considerable potential as catalyst supports. For Pd supported catalyst, the catalytic activity for pyrene hydrogenation was substantially different depending on the type of CT, and one was substantially more active than Pd on hydrous titanium oxide (HTO). For 1-hexene hydrogenation the activities of the new CTs were approximately the same as for the hydrous metal oxide supports.

  20. Topological Modeling of Metamict Zircon

    NASA Astrophysics Data System (ADS)

    Hobbs, L. W.; Zhang, Y.; Yuan, X.

    2006-05-01

    Zircon (ZrSiO4) is the most studied metamict mineral and a leading model for candidate ceramic hosts designed to encapsulate highly radioactive nuclear waste and excess plutonium. It is also emblematic of compound oxide ceramics with a potential to phase separate in the amorphized state. Several groups have carried out ab initio or molecular dynamics (MD) simulations of melt-quenched or radiation-disordered zircon. A tendency for silica tetrahedra to polymerize, implying incipient phase separation, has been noted, but adequate descriptors of the amorphous state capable of distinguishing between different disordered arrangements have not been available. This contribution details critical modifications made to empirical potentials used in MD simulations and useful improvements in modeling efficiency that have facilitated constant pressure simulations of quenched and displacement cascade-amorphized zircon. The simulated end- states have been subjected to topological assessment algorithms for enumerating coordinations, bond lengths and bond angles; counting primitive rings and identifying structure-defining local primitive-ring clusters; and assessing degree of coordination-unit polymerization. The topologies of simulated melt, melt-quenched and cascade-amorphized disordered arrangements have been found to be different and distinguishable. A two-body Born-Mayer empirical potential with ZBL short-range repulsive term was fit to major structural, elastic, thermal and dielectric properties of crystalline zircon, but it was noted that the best crystalline fit, with non-stoichiometric partial ion charges, led to unrealistic coordinations in amorphized arrangements and uncontrolled expansions in constant pressure simulations because of silica polymerization. Therefore, stoichiometrically charge-balanced partial charges were instead chosen and optimized; the optimal choice of O-1.2, Si+2.4, Zr+2.4 led to realistic coordinations (Zr 7, Si 4) and well-behaved constant

  1. Organic chemistry on Titan

    NASA Technical Reports Server (NTRS)

    Chang, S.; Scattergood, T.; Aronowitz, S.; Flores, J.

    1978-01-01

    Observations of nonequilibrium phenomena on the Saturn satellite Titan indicate the occurrence of organic chemical evolution. Greenhouse and thermal inversion models of Titan's atmosphere provide environmental constraints within which various pathways for organic chemical synthesis are assessed. Experimental results and theoretical modeling studies suggest that the organic chemistry of the satellite may be dominated by two atmospheric processes: energetic-particle bombardment and photochemistry. Reactions initiated in various levels of the atmosphere by cosmic ray, Saturn wind, and solar wind particle bombardment of a CH4 - N2 atmospheric mixture can account for the C2-hydrocarbons, the UV-visible-absorbing stratospheric haze, and the reddish color of the satellite. Photochemical reactions of CH4 can also account for the presence of C2-hydrocarbons. In the lower Titan atmosphere, photochemical processes will be important if surface temperatures are sufficiently high for gaseous NH3 to exist. Hot H-atom reactions initiated by photo-dissociation of NH3 can couple the chemical reactions of NH3 and CH4 and produce organic matter.

  2. Landscape Evolution of Titan

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey

    2012-01-01

    Titan may have acquired its massive atmosphere relatively recently in solar system history. The warming sun may have been key to generating Titan's atmosphere over time, starting from a thin atmosphere with condensed surface volatiles like Triton, with increased luminosity releasing methane, and then large amounts of nitrogen (perhaps suddenly), into the atmosphere. This thick atmosphere, initially with much more methane than at present, resulted in global fluvial erosion that has over time retreated towards the poles with the removal of methane from the atmosphere. Basement rock, as manifested by bright, rough, ridges, scarps, crenulated blocks, or aligned massifs, mostly appears within 30 degrees of the equator. This landscape was intensely eroded by fluvial processes as evidenced by numerous valley systems, fan-like depositional features and regularly-spaced ridges (crenulated terrain). Much of this bedrock landscape, however, is mantled by dunes, suggesting that fluvial erosion no longer dominates in equatorial regions. High midlatitude regions on Titan exhibit dissected sedimentary plains at a number of localities, suggesting deposition (perhaps by sediment eroded from equatorial regions) followed by erosion. The polar regions are mainly dominated by deposits of fluvial and lacustrine sediment. Fluvial processes are active in polar areas as evidenced by alkane lakes and occasional cloud cover.

  3. Evolution of Titan's atmosphere

    NASA Astrophysics Data System (ADS)

    Lammer, H.; Povoden, G.; Selsis, F.; Ribas, I.; Tehrany, M. G.; Guinan, E. F.; Hanslmeier, A.; Bauer, S. J.

    2003-04-01

    We show that anomalies of heavy isotopes in Titan's atmosphere can be explained by using observational data of the radiation and particle environment of solar proxies. These observations indicate a larger solar wind flux and high solar EUV radiation of the early Sun during the first billion years are responsible for a fractionated atmospheric loss. For studying the evolution of the thermal escape of Titan's atmosphere we use a scaling law based on an approximate solution of the heat balance equation in the exosphere. Further, isotope fractionation by non-thermal atmospheric escape processes like dissociative recombination, impact dissociation, atmospheric sputtering and ion pick-up processes. We show that Titan lost an atmospheric mass We discuss also possible chemical reactions of methane and other out-gassing substances due to the high solar EUV fluxes powered thermospheric temperature 4 Gyr ago. This could have lead to molecules of higher mass like ethane and other organic compounds. The efficient production of such molecules was reduced by the decrease of the solar activity resulting in a kind of frozen state. At present only high energy processes like lightning discharges may give similar reactions.

  4. Dielectric properties of the multicomponent PZT-type solid solution

    NASA Astrophysics Data System (ADS)

    Bochenek, Dariusz; Niemiec, Przemysław; Adamczyk, Małgorzata; Machnik, Zbigniew; Dercz, Grzegorz

    2015-10-01

    In this paper the multicomponent PZT-type solid solution doped by barium, calcium, strontium, bismuth and germanium with composition: Pb0.975Ba0.01Ca0.01Sr0.005(Zr0.52Ti0.48)O3 + 1.4 wt.% Bi2O3 + 0.3 wt.% GeO obtained by hot uniaxial pressing method is described. The results of structural, dielectric, ferroelectric and electromechanical studies of these ceramics are presented. It has been stated that introduction to the basic composition PZT admixtures of the barium, calcium, strontium, bismuth and germanium has a positive effect on the electro-physic parameters of obtained ceramic samples. This material has good microstructure, with high value of the dielectric permittivity (with the high temperature of phase transition) as well as low dielectric losses. It allows considering this material as elements for low frequency and high temperature electromechanical transducers.

  5. Magnetoelectric Effects in hexagonal ferrite-PZT bilayers

    NASA Astrophysics Data System (ADS)

    Mathe, V. M.; Srinivasan, G.

    2008-03-01

    Magnetoelectric (ME) bilayers consisting of magnetostrictive and a piezoelectric layer are of interest for studies on the nature of ME interactions and useful technologies. Co2Z and Zn2Y are well known hexagonal ferrites with easy plane or uniaxial anisotropy. PZT has high piezoelectric coefficient. This study is on samples with Co2Z or Zn2Y as a magnetostrictive layer and PZT as a piezoelectric layer to form magnetoelectric bilayers. Low frequency (100 Hz) ME coefficient was measured over 0-17 kOe for various orientations of bilayers in a plane parallel to ac and bias magnetic fields. We measured a strong dependence of the ME voltage coefficients on magneitude and orientation of the bias field. The data are compared with theory. VLM gratefully acknowledge the award of a BOYSCAST fellowship and a FAST TRACK fellowship by DST, India. The research was supported by NSF grants.

  6. Guided wave damage detection with PZT-FBG sensing

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoyi; Tian, Zhenhua; Lin, Bin; Yu, Lingyu

    2016-04-01

    This paper presents guided waves based damage detection by using a hybrid PZT actuator and optic fiber Bragg grating (FBG) sensors. In the hybrid sensing, a piezoelectric wafer (PZT) is used to generate incident guided waves based on the piezoelectric principle. Meanwhile, multiple fiber Bragg grating sensors (FBG) are adopted as receivers to measure the high-frequency small-strain guided waves base on the full width half maximum (FWHM) principle. If the inspected structure has damage such as hole, crack and notch, the incident guided waves will be reflected or scattered by the damage. Through multiple FBG sensors at different locations, the damage induced waves can be acquired and further processed for damage detection. In this research, two configurations are explored, the rosette and line arrangements of multiple sensors. The sensing and wave source localization on aluminum plate are demonstrated. The results show that wave source can be successfully detected by using both the FBG rosette and the FBG array.

  7. Zircon Saturation Re-Revisited

    NASA Astrophysics Data System (ADS)

    Boehnke, P.; Trail, D.; Schmitt, A. K.; Watson, E. B.; Harrison, M.

    2011-12-01

    Zircon saturation in silicate melts has been utilized for magma thermometry and predicting the survival of zircon xenocrysts in crustal melts for nearly 30 years. The original calibration, which assumed only compositional (M = [2Ca+Na+K]/[AlxSi]) and temperature controls, was bolstered by subsequent experimental investigations and thermometry of volcanic rocks and glasses. These latter studies, while confirming the general predictions of the model, suggested that other environmental parameters (e.g., pressure, H 2O, halogens, [Fe], oxygen fugacity, etc.) might have second-order effects. Given the tremendous advances in micro-analytical capabilities over the intervening three decades, we have returned to this question with a view to obtaining a refined zircon solubility calibration as a function of P, T, [H2O] and FM (= [Na+K+2(Ca+Mg+Fe)]/[AlxSi]). Detailed SEM imaging of the original low-temperature crystallization experiments (1.2-2.1 kbar) revealed limitations of this approach and we chose instead to use a new experimental design in which shattered Mud Tank zircon is infiltrated by melts of selected composition and water contents. 10 kbar hydrothermal experiments (925o and 850oC) were run for sufficiently long durations (2 to 3 days) to ensure microscale diffusive equilibration of Zr released by zircon dissolution into the intercrystalline melt pools. Sectioned run products were analyzed by SIMS ion imaging of selected areas where glass is exposed in close proximity to or surrounded by Mud Tank zircon fragments. Ion imaging has the advantage of permitting high spatial resolution (3 μm) analysis of the glasses allowing assessment of Zr equilibration. Using synthetic glass standards, we found [Zr] in anhydrous glasses to be enhanced by ca. 20% relative to hydrous (at 6 wt.% H2O). Our new experiments and re-analysis of the earlier glasses broadly reproduce the original calibration, albeit with substantially enhanced (factor of five) precision compared to the

  8. Titan ballute aerocapture using the stochastic TitanGRAM model

    NASA Technical Reports Server (NTRS)

    Johnson, Wyatt R.

    2004-01-01

    Aerocapture using a towed, inflatable ballute system has been shown to provide a sifnificatn performance advantages compared to traditional technologies, including lower heating rates and accomodation of larger navigational uncertainties. This paper extends previous results by designing a ballute aerocapture separation algorithm that can operate in a more realistic Titan atmospheric model based on TitanGRAM.

  9. Quantitative comparison between the degree of domain orientation and nonlinear properties of a PZT ceramic during electrical and mechanical loading

    SciTech Connect

    Marsilius, Mie; Granzow, Torsten; Jones, Jacob L.

    2011-10-26

    The macroscopic electromechanical coupling properties of ferroelectric polycrystals are composed of linear and nonlinear contributions. The nonlinear contribution is typically associated with the extrinsic effects related to the creation and motion of domain walls. To quantitatively compare the macroscopic nonlinear properties of a lead zirconate titanate ceramic and the degree of domain orientation, in-situ neutron and high-energy x-ray diffraction experiments are performed and they provide the domain orientation density as a function of the external electric field and mechanical compression. Furthermore, the macroscopic strain under the application of external electrical and mechanical loads is measured and the nonlinear strain is calculated by means of the linear intrinsic piezoelectric effect and the linear intrinsic elasticity. The domain orientation density and the nonlinear strain show the same dependence on the external load. The scaling factor that relates to the two values is constant and is the same for both electrical and mechanical loadings.

  10. Enhance of ferroelectric properties by modifying Pb2+ side by Mg2+ in PZT (52/48) ceramics

    NASA Astrophysics Data System (ADS)

    Kour, P.; Kumar, Pawan; Kar, Manoranjan; Sinha, S. K.

    2013-02-01

    Magnesium substituted lead zirconate titanate Pb1-xMgxZr0.52Ti0.48O3 (x=0.02, 0.04, 0.06 & 0.08) have been prepared by the sol-gel method. The crystal structure and phase purity of the samples were studied by powder X-ray diffraction (XRD) technique. The ferroelectric hysteresis loop measurements were carried out at room temperature using ferroelectric loop tracer over a field range of 4.5kv/cm. The saturation polarization and coercivety and remnant polarization increase with the increase in magnesium concentration. The piezoelectric constant was measured by varying the polling field was found to be decrease with the increase in concentration of magnesium.

  11. Damage Detection Based on Power Dissipation Measured with PZT Sensors through the Combination of Electro-Mechanical Impedances and Guided Waves

    PubMed Central

    Sevillano, Enrique; Sun, Rui; Perera, Ricardo

    2016-01-01

    The use of piezoelectric ceramic transducers (such as Lead-Zirconate-Titanate—PZT) has become more and more widespread for Structural Health Monitoring (SHM) applications. Among all the techniques that are based on this smart sensing solution, guided waves and electro-mechanical impedance techniques have found wider acceptance, and so more studies and experimental works can be found containing these applications. However, even though these two techniques can be considered as complementary to each other, little work can be found focused on the combination of them in order to define a new and integrated damage detection procedure. In this work, this combination of techniques has been studied by proposing a new integrated damage indicator based on Electro-Mechanical Power Dissipation (EMPD). The applicability of this proposed technique has been tested through different experimental tests, with both lab-scale and real-scale structures. PMID:27164104

  12. Titan's methane clock

    NASA Astrophysics Data System (ADS)

    Nixon, C. A.; Jennings, D. E.; Romani, P. N.; Teanby, N. A.; Irwin, P. G. J.; Flasar, F. M.

    2010-04-01

    Measurements of the 12C/13C and D/H isotopic ratios in Titan's methane show intriguing differences from the values recorded in the giant planets. This implies that either (1) the atmosphere was differently endowed with material at the time of formation, or (2) evolutionary processes are at work in the moon's atmosphere - or some combination of the two. The Huygens Gas Chromatograph Mass Spectrometer Instrument (GCMS) found 12CH4/13CH4 = 82 +/- 1 (Niemann et al. 2005), some 7% lower than the giant planets' value of 88 +/- 7 (Sada et al. 1996), which closely matches the terrestrial inorganic standard of 89. The Cassini Composite Infrared Spectrometer (CIRS) has previously reported 12CH4/13CH4 of 77 +/-3 based on nadir sounding, which we now revise upwards to 80 +/- 4 based on more accurate limb sounding. The CIRS and GCMS results are therefore in agreement about an overall enrichment in 13CH4 of ~10%. The value of D/H in Titan's CH4 has long been controversial: historical measurements have ranged from about 8-15 x 10-5 (e.g. Coustenis et al. 1989, Coustenis et al. 2003). A recent measurement based on CIRS limb data by Bezard et al. (2007) puts the D/H in CH4 at (13 +/- 1) x 10-5, very much greater than in Jupiter and Saturn, ~2 x 10-5 (Mahaffy et al. 1998, Fletcher et al. 2009). To add complexity, the 12C/13C and D/H vary among molecules in Titan atmosphere, typically showing enhancement in D but depletion in 13C in the daughter species (H2, C2H2, C2H6), relative to the photochemical progenitor, methane. Jennings et al. (2009) have sought to interpret the variance in carbon isotopes as a Kinetic Isotope Effect (KIE), whilst an explanation for the D/H in all molecules remains elusive (Cordier et al. 2008). In this presentation we argue that evolution of isotopic ratios in Titan's methane over time forms a ticking 'clock', somewhat analogous to isotopic ratios in geochronology. Under plausible assumptions about the initial values and subsequent replenishment, various

  13. Piezoelectric characteristics of PZT thin films on polymer substrate

    NASA Astrophysics Data System (ADS)

    Kang, Min-Gyu; Do, Younh-Ho; Oh, Seung-Min; Rahayu, Rheza; Kim, Yiyein; Kang, Chong-Yun; Nahm, Sahn; Yoon, Seok-Jin

    2012-02-01

    The goal of piezoelectric energy harvesting is to improve the power efficiency of devices. One of the approaches for the improvement of power efficiency is to apply the large strain on the piezoelectric materials and then many scientists approached using thin films or nano-structured piezoelectric materials to obtain flexibility. However, the conventional thin film processes available for the fabrication of piezoelectric materials as PbZr0.52Ti0.48O3 (PZT) are not compatible with flexible electronics because they require high processing temperatures (>700^oC) to obtain piezoelectricity. Excimer laser annealing (ELA) is attractive heat process for the low-temperature crystallization, because of its material selectivity and short heating time. In this study, the amorphous PZT thin films were deposited on polymer substrate by rf-sputtering. To crystallize the amorphous films, the ELA was carried out with various conditions as function of the applied laser energy density, the number of pulse, and the repetition rate. To evaluate the piezoelectric characteristics, piezoelectric force microscopy (PFM) and electrometer are used. As a result, we obtained the crystallized PZT thin film on flexible substrate and obtained flexible piezoelectric energy harvester.

  14. Geometry adaptive control of a composite reflector using PZT actuator

    NASA Astrophysics Data System (ADS)

    Lan, Lan; Jiang, Shuidong; Zhou, Yang; Fang, Houfei; Tan, Shujun; Wu, Zhigang

    2015-04-01

    Maintaining geometrical high precision for a graphite fiber reinforced composite (GFRC) reflector is a challenging task. Although great efforts have been placed to improve the fabrication precision, geometry adaptive control for a reflector is becoming more and more necessary. This paper studied geometry adaptive control for a GFRC reflector with piezoelectric ceramic transducer (PZT) actuators assembled on the ribs. In order to model the piezoelectric effect in finite element analysis (FEA), a thermal analogy was used in which the temperature was applied to simulate the actuation voltage, and the piezoelectric constant was mimicked by a Coefficient of Thermal Expansion (CTE). PZT actuator's equivalent model was validated by an experiment. The deformations of a triangular GFRC specimen with three PZT actuators were also measured experimentally and compared with that of simulation. This study developed a multidisciplinary analytical model, which includes the composite structure, thermal, thermal deformation and control system, to perform an optimization analysis and design for the adaptive GFRC reflector by considering the free vibration, gravity deformation and geometry controllability.

  15. Titan after Cassini Huygens

    NASA Astrophysics Data System (ADS)

    Beauchamp, P. M.; Lunine, J.; Lebreton, J.; Coustenis, A.; Matson, D.; Reh, K.; Erd, C.

    2008-12-01

    In 2005, the Huygens Probe gave us a snapshot of a world tantalizingly like our own, yet frozen in its evolution on the threshold of life. The descent under parachute, like that of Huygens in 2005, is happening again, but this time in the Saturn-cast twilight of winter in Titan's northern reaches. With a pop, the parachute is released, and then a muffled splash signals the beginning of the first floating exploration of an extraterrestrial sea-this one not of water but of liquid hydrocarbons. Meanwhile, thousands of miles away, a hot air balloon, a "montgolfiere," cruises 6 miles above sunnier terrain, imaging vistas of dunes, river channels, mountains and valleys carved in water ice, and probing the subsurface for vast quantities of "missing" methane and ethane that might be hidden within a porous icy crust. Balloon and floater return their data to a Titan Orbiter equipped to strip away Titan's mysteries with imaging, radar profiling, and atmospheric sampling, much more powerful and more complete than Cassini was capable of. This spacecraft, preparing to enter a circular orbit around Saturn's cloud-shrouded giant moon, has just completed a series of flybys of Enceladus, a tiny but active world with plumes that blow water and organics from the interior into space. Specialized instruments on the orbiter were able to analyze these plumes directly during the flybys. Titan and Enceladus could hardly seem more different, and yet they are linked by their origin in the Saturn system, by a magnetosphere that sweeps up mass and delivers energy, and by the possibility that one or both worlds harbor life. It is the goal of the NASA/ESA Titan Saturn System Mission (TSSM) to explore and investigate these exotic and inviting worlds, to understand their natures and assess the possibilities of habitability in this system so distant from our home world. Orbiting, landing, and ballooning at Titan represent a new and exciting approach to planetary exploration. The TSSM mission

  16. Inelastic neutron scattering from zircon

    SciTech Connect

    Nipko, J.C.; Loong, C.K.

    1997-07-14

    A lattice dynamical investigation of zircon (ZrSiO{sub 4}) has been carried out to obtain a microscopic understanding of its thermodynamic properties, as well as to examine possible soft modes that may contribute to the phase transformation to scheelite type under high pressure. We have measured the neutron weighted phonon density of states of zircon from a polycrystalline sample. The neutron spectra reveal one-phonon excitations extending to 1130 cm{sup -1}, with phonon bands centered at 226, 298, 363, 540, 661, 726, 945, and 1081 cm{sup -1}. A quantitative analysis of the neutron results was carried out using a lattice dynamical rigid-ion model. 4 refs., 3 figs.

  17. Comparative face-shear piezoelectric properties of soft and hard PZT ceramics

    NASA Astrophysics Data System (ADS)

    Miao, Hongchen; Chen, Xi; Cai, Hairong; Li, Faxin

    2015-12-01

    The face-shear ( d 36 ) mode may be the most practical shear mode in piezoelectrics, while theoretically this mode cannot appear in piezoelectric ceramics because of its transversally isotropic symmetry. Recently, we realized piezoelectric coefficient d 36 up to 206pC/N in soft PbZr1-xTixO3 (PZT) ceramics via ferroelastic domain engineering [H. C. Miao and F. X. Li, Appl. Phys. Lett. 107, 122902 (2015)]. In this work, we further realized the face-shear mode in both hard and soft PZT ceramics including PZT-4 (hard), PZT-51(soft), and PZT-5H (soft) and investigated the electric properties systematically. The resonance methods are derived to measure the d 36 coefficients using both square patches and narrow bar samples, and the obtained values are consistent with that measured by a modified d 33 meter previously. For all samples, the pure d 36 mode can only appear near the resonance frequency, and the coupled d 36 - d 31 mode dominates off resonance. It is found that both the piezoelectric coefficient d 36 and the electromechanical coupling factor k 36 of soft PZT ceramics (PZT-5H and PZT-51) are considerably larger than those of the hard PZT ceramics (PZT-4). The obtained d 36 of 160-275pC/N, k 36 ˜ 0.24, and the mechanical quality factor Q 36 of 60-90 in soft PZT ceramics are comparable with the corresponding properties of the d 31 mode sample. Therefore, the d 36 mode in modified soft PZT ceramics is more promising for industrial applications such as face-shear resonators and shear horizontal wave generators.

  18. Titan's Methane Cycle is Closed

    NASA Astrophysics Data System (ADS)

    Hofgartner, J. D.; Lunine, J. I.

    2013-12-01

    Doppler tracking of the Cassini spacecraft determined a polar moment of inertia for Titan of 0.34 (Iess et al., 2010, Science, 327, 1367). Assuming hydrostatic equilibrium, one interpretation is that Titan's silicate core is partially hydrated (Castillo-Rogez and Lunine, 2010, Geophys. Res. Lett., 37, L20205). These authors point out that for the core to have avoided complete thermal dehydration to the present day, at least 30% of the potassium content of Titan must have leached into an overlying water ocean by the end of the core overturn. We calculate that for probable ammonia compositions of Titan's ocean (compositions with greater than 1% ammonia by weight), that this amount of potassium leaching is achievable via the substitution of ammonium for potassium during the hydration epoch. Formation of a hydrous core early in Titan's history by serpentinization results in the loss of one hydrogen molecule for every hydrating water molecule. We calculate that complete serpentinization of Titan's core corresponds to the release of more than enough hydrogen to reconstitute all of the methane atoms photolyzed throughout Titan's history. Insertion of molecular hydrogen by double occupancy into crustal clathrates provides a storage medium and an opportunity for ethane to be converted back to methane slowly over time--potentially completing a cycle that extends the lifetime of methane in Titan's surface atmosphere system by factors of several to an order of magnitude over the photochemically-calculated lifetime.

  19. Synthesis of nanosized sodium titanates

    DOEpatents

    Hobbs, David T.; Taylor-Pashow, Kathryn M. L.; Elvington, Mark C.

    2015-09-29

    Methods directed to the synthesis and peroxide-modification of nanosized monosodium titanate are described. Methods include combination of reactants at a low concentration to a solution including a nonionic surfactant. The nanosized monosodium titanate can exhibit high selectivity for sorbing various metallic ions.

  20. Sputtered highly oriented PZT thin films for MEMS applications

    NASA Astrophysics Data System (ADS)

    Kalpat, Sriram S.

    Recently there has been an explosion of interest in the field of micro-electro-mechanical systems (MEMS). MEMS device technology has become critical in the growth of various fields like medical, automotive, chemical, and space technology. Among the many applications of ferroelectric thin films in MEMS devices, microfluidics is a field that has drawn considerable amount of research from bio-technology industries as well as chemical and semiconductor manufacturing industries. PZT thin films have been identified as best suited materials for micro-actuators and micro-sensors used in MEMS devices. A promising application for piezoelectric thin film based MEMS devices is disposable drug delivery systems that are capable of sensing biological parameters, mixing and delivering minute and precise amounts of drugs using micro-pumps or micro mixers. These devices call for low driving voltages, so that they can be battery operated. Improving the performance of the actuator material is critical in achieving battery operated disposal drug delivery systems. The device geometry and power consumption in MEMS devices largely depends upon the piezoelectric constant of the films, since they are most commonly used to convert electrical energy into a mechanical response of a membrane or cantilever and vice versa. Phenomenological calculation on the crystal orientation dependence of piezoelectric coefficients for PZT single crystal have reported a significant enhancement of the piezoelectric d33 constant by more than 3 times along [001] in the rhombohedral phase as compared to the conventionally used orientation PZT(111) since [111] is the along the spontaneous polarization direction. This could mean considerable improvement in the MEMS device performance and help drive the operating voltages lower. The motivation of this study is to investigate the crystal orientation dependence of both dielectric and piezoelectric coefficients of PZT thin films in order to select the appropriate

  1. Solution Synthesis and Processing of PZT Materials for Neutron Generator Applications

    SciTech Connect

    Anderson, M.A.; Ewsuk, K.G.; Montoya, T.V.; Moore, R.H.; Sipola, D.L.; Tuttle, B.A.; Voigt, J.A.

    1998-12-01

    A new solution synthesis route has been developed for the preparation of lead-based ferroelectric materials (patent filed). The process produces controlled stoichiometry precursor powders by non-aqueous precipitation. For a given ferroelectric material to be prepared, a metal acetate/alkoxide solution containing constituent metal species in the appropriate ratio is mixed with an oxalic acid/n-propanol precipitant solution. An oxalate coprecipitate is instantly fonned upon mixing that quantitatively removes the metals from solution. Most of the process development was focused on the synthesis and processing of niobium-substituted lead zirconate titanate with a Zr-to-Ti ratio of 95:5 (PNZT 95/5) that has an application in neutron generator power supplies. The process was scaled to produce 1.6 kg of the PNZT 95/5 powder using either a sen-ii-batch or a continuous precipitation scheme. Several of the PNZT 95/5 powder lots were processed into ceramic slug form. The slugs in turn were processed into components and characterized. The physical properties and electrical performance (including explosive functional testing of the components met the requirements set for the neutron generator application. Also, it has been demonstrated that the process is highly reproducible with respect to the properties of the powders it produces and the properties of the ceramics prepared from its powders. The work described in this report was funded by Sandia's Laboratory Directed Research and Development Program.

  2. Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance

    USGS Publications Warehouse

    Grimes, Craig B.; John, Barbara E.; Kelemen, P.B.; Mazdab, F.K.; Wooden, J.L.; Cheadle, Michael J.; Hanghoj, K.; Schwartz, J.J.

    2007-01-01

    We present newly acquired trace element compositions for more than 300 zircon grains in 36 gabbros formed at the slow-spreading Mid-Atlantic and Southwest Indian Ridges. Rare earth element patterns for zircon from modern oceanic crust completely overlap with those for zircon crystallized in continental granitoids. However, plots of U versus Yb and U/Yb versus Hf or Y discriminate zircons crystallized in oceanic crust from continental zircon, and provide a relatively robust method for distinguishing zircons from these environments. Approximately 80% of the modern ocean crust zircons are distinct from the field defined by more than 1700 continental zircons from Archean and Phanerozoic samples. These discrimination diagrams provide a new tool for fingerprinting ocean crust zircons derived from reservoirs like that of modern mid-ocean ridge basalt (MORB) in both modern and ancient detrital zircon populations. Hadean detrital zircons previously reported from the Acasta Gneiss, Canada, and the Narryer Gneiss terrane, Western Australia, plot in the continental granitoid field, supporting hypotheses that at least some Hadean detrital zircons crystallized in continental crust forming magmas and not from a reservoir like modern MORB. ?? 2007 The Geological Society of America.

  3. Chem-prep PZT 95/5 for neutron generator applications : effects of lead stoichiometry on the microstructure and mechanical properties of PZT 95/5.

    SciTech Connect

    Yang, Pin; Watson, Chad Samuel

    2004-09-01

    The microstructure and mechanical properties of niobium-modified lead zirconate titanate (PNZT) 95/5 ceramics, where 95/5 refers to the ratio of lead zirconate to lead titanate, were evaluated as a function of lead (Pb) stoichiometry. Chemically-prepared PNZT 95/5 is produced at Sandia National Laboratories by the Ceramics and Glass Processing Department (14154) for use as voltage elements in ferroelectric neutron generator power supplies. PNZT 95/5 was prepared according to the nominal formulation of Pb{sub 0.991+x}(Zr{sub 0.955}Ti{sub 0.045}){sub 0.982}Nb{sub 0.018}O{sub 3+x}, where x (-0.0274 {approx}< x {approx}< 0.0297) refers to the mole fraction of Pb and O that deviated from the stoichiometric value. The Pb concentrations were determined from calcined powders; no adjustments were made to Pb compositions due to weight loss during sintering. The microstructure (second phases, fracture mode and grain size) varied appreciably with Pb stoichiometry, whereas the mechanical properties (hardness, fracture toughness, strength and Weibull parameters) exhibited modest variation. Specimens deficient in Pb, 2.74% (x = -0.0274) and 2.15% (x = -0.02150), had a high area fraction of a zirconia (ZrO{sub 2}) second phase on the order of 0.02. As the Pb content in solid solution increased the ZrO{sub 2} content decreased; no ZrO{sub 2} was observed for the specimen containing 2.97% excess Pb (x = 0.0297). Over the range of Pb stoichiometry most specimens fractured predominately transgranularly; however, 2.97% Pb excess PNZT 95/5 fractured predominately intergranularly. No systematic changes in hardness or Weibull modulus were observed as a function of Pb content. Fracture toughness decreased slightly from 1.8 MPa{center_dot}m{sup 1/2} for Pb deficient specimens to 1.6 MPa{center_dot}m{sup 1/2} for specimens with excess Pb. Although there are microstructural differences with changes in Pb content, the mechanical properties did not vary substantially. However, the average

  4. Metallic lead nanospheres discovered in ancient zircons.

    PubMed

    Kusiak, Monika A; Dunkley, Daniel J; Wirth, Richard; Whitehouse, Martin J; Wilde, Simon A; Marquardt, Katharina

    2015-04-21

    Zircon (ZrSiO4) is the most commonly used geochronometer, preserving age and geochemical information through a wide range of geological processes. However, zircon U-Pb geochronology can be affected by redistribution of radiogenic Pb, which is incompatible in the crystal structure. This phenomenon is particularly common in zircon that has experienced ultra-high temperature metamorphism, where ion imaging has revealed submicrometer domains that are sufficiently heterogeneously distributed to severely perturb ages, in some cases yielding apparent Hadean (>4 Ga) ages from younger zircons. Documenting the composition and mineralogy of these Pb-enriched domains is essential for understanding the processes of Pb redistribution in zircon and its effects on geochronology. Using high-resolution scanning transmission electron microscopy, we show that Pb-rich domains previously identified in zircons from East Antarctic granulites are 5-30 nm nanospheres of metallic Pb. They are randomly distributed with respect to zircon crystallinity, and their association with a Ti- and Al-rich silica melt suggests that they represent melt inclusions generated during ultra-high temperature metamorphism. Metallic Pb is exceedingly rare in nature and previously has not been reported in association with high-grade metamorphism. Formation of these metallic nanospheres within annealed zircon effectively halts the loss of radiogenic Pb from zircon. Both the redistribution and phase separation of radiogenic Pb in this manner can compromise the precision and accuracy of U-Pb ages obtained by high spatial resolution methods. PMID:25848043

  5. Metallic lead nanospheres discovered in ancient zircons

    PubMed Central

    Kusiak, Monika A.; Dunkley, Daniel J.; Wirth, Richard; Whitehouse, Martin J.; Wilde, Simon A.; Marquardt, Katharina

    2015-01-01

    Zircon (ZrSiO4) is the most commonly used geochronometer, preserving age and geochemical information through a wide range of geological processes. However, zircon U–Pb geochronology can be affected by redistribution of radiogenic Pb, which is incompatible in the crystal structure. This phenomenon is particularly common in zircon that has experienced ultra-high temperature metamorphism, where ion imaging has revealed submicrometer domains that are sufficiently heterogeneously distributed to severely perturb ages, in some cases yielding apparent Hadean (>4 Ga) ages from younger zircons. Documenting the composition and mineralogy of these Pb-enriched domains is essential for understanding the processes of Pb redistribution in zircon and its effects on geochronology. Using high-resolution scanning transmission electron microscopy, we show that Pb-rich domains previously identified in zircons from East Antarctic granulites are 5–30 nm nanospheres of metallic Pb. They are randomly distributed with respect to zircon crystallinity, and their association with a Ti- and Al-rich silica melt suggests that they represent melt inclusions generated during ultra-high temperature metamorphism. Metallic Pb is exceedingly rare in nature and previously has not been reported in association with high-grade metamorphism. Formation of these metallic nanospheres within annealed zircon effectively halts the loss of radiogenic Pb from zircon. Both the redistribution and phase separation of radiogenic Pb in this manner can compromise the precision and accuracy of U–Pb ages obtained by high spatial resolution methods. PMID:25848043

  6. Radiation damage effects in zircon

    NASA Astrophysics Data System (ADS)

    Trachenko, Kostya; Dove, Martin; Salje, Ekhard

    2002-03-01

    Zircon, ZrSiO_4, is important for geology and geochronology, and has been proposed as a host material to immobilize highly radioactive materials from dismantled weapons and nuclear waste from power stations [1]. In these applications zircon is exposed to alpha-irradiation. Computer simulations have started to be employed to simulate radiation damage in zircon [2], but the origin and microscopic mechanisms of the most important structural changes in zircon - unit cell expansion and large macroscopic swelling at higher doses, strong shear deformation of the crystalline lattice, and polymerization of SiOn units [3], remain unknown. Here, we perform the molecular dynamics simulation of highly energetic recoils in zircon. Basing on the simulation results, we propose the simple picture of the density change in the damaged region that consists of the depleted and densified matter. We find that the experimentally observed structural changes originate from the interaction of the damaged region with the surrounding crystalline lattice: the shear of the lattice around the damaged region causes shear deformation and expansion of the unit cells. The polymers of connected SiOn polyhedra are most commonly present in the densified shell at the periphery of the damaged region. [1] R C Ewing et al, J. Mater. Res. 10, 243 (1995); W J Weber et al, B E Burakov et al, in Scientific Basis for Nuclear Waste Management XIX, 25-32 and 33-40 (Plenum, New York, 1996); R C Ewing, et al in Crystalline Ceramics: Waste Forms for the Disposal of Weapons Plutonium, NATO Workshop Proceedings 65 (Academic Publishers, Dordrecht, The Netherlands, 1996). [2] B Park et al, Phys. Rev. B, 64, 174108 (1-16) (2001); J P Crocombette and D Ghaleb, J. Nucl. Mater., 295, 167 (2001); K Trachenko et al, J. Appl. Phys., 87, 7702 (2000); K Trachenko et al, J. Phys.: Cond. Matt., 13, 1947 (2001). [3] T Murakami et al, Am. Min., 76, 1510 (1991); H D Holland and D Gottfried, Acta Cryst. 8, 291 (1955).; W J Weber, J. Am

  7. Zinc titanate sorbents

    DOEpatents

    Gupta, Raghubir P.; Gangwal, Santosh K.; Jain, Suresh C.

    1998-01-01

    The present invention provides a zinc titanate sorbent material useful in desulfurization applications. The zinc titanate material is in the form of generally spherical particles of substantially uniform chemical distribution. The sorbent material is capable of absorbing sulfur compounds from a gaseous feed in an amount of at least about 15 weight percent based on the weight of the sorbent. The sorbent material is prepared by a process including: (a) forming a zinc oxide/titanium dioxide dry blend, (b) preparing a substantially uniform aqueous slurry comprising the zinc oxide/titanium dioxide dry blend, organic binder, and at least about 1 weight percent inorganic binder based on the solids weight of the slurry, (c) spray drying the slurry to produce substantially spherical particles, and (d) calcining the particles at a temperature of between about 750.degree. C. to about 950.degree. C. The dry blend is formed by mixing between about 0.5 to about 2 parts zinc oxide having a median particle size of less than about 0.5 .mu., and about 1 part titanium dioxide having a median particle size of less than about 1 .mu.. The slurry contains substantially no free silica and may be prepared by the process including (1) preparing an aqueous solution of organic binder, (2) adding the dry blend to the aqueous solution of organic binder, and (3) adding the inorganic binder to the solution of organic binder, and blend. Additional reagents, such as a surfactant, may also be incorporated into the sorbent material. The present invention also provides a process for desulfurizing a gaseous stream. The process includes passing a gaseous stream through a reactor containing an attrition resistant zinc titanate sorbent material of the present invention.

  8. Zinc titanate sorbents

    DOEpatents

    Gupta, R.P.; Gangwal, S.K.; Jain, S.C.

    1998-02-03

    The present invention provides a zinc titanate sorbent material useful in desulfurization applications. The zinc titanate material is in the form of generally spherical particles of substantially uniform chemical distribution. The sorbent material is capable of absorbing sulfur compounds from a gaseous feed in an amount of at least about 15 weight percent based on the weight of the sorbent. The sorbent material is prepared by a process including: (a) forming a zinc oxide/titanium dioxide dry blend, (b) preparing a substantially uniform aqueous slurry comprising the zinc oxide/titanium dioxide dry blend, organic binder, and at least about 1 weight percent inorganic binder based on the solids weight of the slurry, (c) spray drying the slurry to produce substantially spherical particles, and (d) calcining the particles at a temperature of between about 750 to about 950 C. The dry blend is formed by mixing between about 0.5 to about 2 parts zinc oxide having a median particle size of less than about 0.5 microns, and about 1 part titanium dioxide having a median particle size of less than about 1 micron. The slurry contains substantially no free silica and may be prepared by the process including (1) preparing an aqueous solution of organic binder, (2) adding the dry blend to the aqueous solution of organic binder, and (3) adding the inorganic binder to the solution of organic binder, and blend. Additional reagents, such as a surfactant, may also be incorporated into the sorbent material. The present invention also provides a process for desulfurizing a gaseous stream. The process includes passing a gaseous stream through a reactor containing an attrition resistant zinc titanate sorbent material of the present invention.

  9. Titan Airship Surveyor

    NASA Technical Reports Server (NTRS)

    Kerzhanovich, V.; Yavrouian, A.; Cutts, J.; Colozza, A.; Fairbrother, D.

    2001-01-01

    Saturn's moon Titan is considered to be one of the prime candidates for studying prebiotic materials - the substances that precede the formation of life but have disappeared from the Earth as a result of the evolution of life. A unique combination of a dense, predominantly nitrogen, atmosphere (more than four times that of the Earth), low gravity (six times less than on the Earth) and small temperature variations makes Titan the almost ideal planet for studies with lighter-than-air aerial platforms (aerobots). Moreover, since methane clouds and photochemical haze obscure the surface, low-altitude aerial platforms are the only practical means that can provide global mapping of the Titan surface at visible and infrared wavelengths. One major challenge in Titan exploration is the extremely cold atmosphere (approx. 90 K). However, current material technology the capability to operate aerobots at these very low temperatures. A second challenge is the remoteness from the Sun (10 AU) that makes the nuclear (radioisotopic) energy the only practical source of power. A third challenge is remoteness from the Earth (approx. 10 AU, two-way light-time approx. 160 min) which imposes restrictions on data rates and makes impractical any meaningful real-time control. A small-size airship (approx. 25 cu m) can carry a payload approximately 100 kg. A Stirling engine coupled to a radioisotope heat source would be the prime choice for producing both mechanical and electrical power for sensing, control, and communications. The cold atmospheric temperature makes Stirling machines especially effective. With the radioisotope power source the airship may fly with speed approximately 5 m/s for a year or more providing an excellent platform for in situ atmosphere measurements and a high-resolution remote sensing with unlimited access on a global scale. In a station-keeping mode the airship can be used for in situ studies on the surface by winching down an instrument package. Floating above the

  10. Titan's Carbon Conundrum

    NASA Astrophysics Data System (ADS)

    Nixon, C. A.; Jennings, D. E.; Teanby, N. A.; Vinatier, S.; BÉ Zard, B.; Coustenis, A.; Irwin, P. G.; Flasar, F. M.; Cassini Cirs Team

    2010-12-01

    As recently as a year ago, a consensus was emerging that carbon-13 in Titan's methane was enriched by some ~10% over the terrestrial value (12C/13C = ~77-82 on Titan versus 89 on Earth, Niemann et al 2005, Nixon et al 2008). At the same time, several measurements of 12C/13C in ethane, the main product of methane photolysis, appeared to show no enrichment (Nixon et al 2008, Jennings et al 2009). This led to the suggestion that a steady state equilibrium was being reached, with a Kinetic Isotope Effect (KIE) in a key reaction (C2H + CH4 → C2H2 + CH3) responsible for the slight enrichment in the atmospheric reservoir relative to both the incoming flux of methane and outgoing flux of ethane (Jennings et al 2009). This paradigm was overturned earlier this year when the Huygens GCMS team revised their measurement of 12CH4/13CH4 upwards to agree with the terrestrial value (Niemann et al, in preparation), eliminating any need for the KIE fractionation. However, this presents a new problem in the sense that the KIE effect is probably real - it is confirmed for the CH3D and 12CH4 reactions with ethynyl (Opansky and Leone 1996), so almost certainly for 13CH4-12CH4 pair as well - and so some fractionation of methane should be occurring. This is true regardless as to whether the atmospheric methane is being replenished or not - differing only in degree - provided the ethynyl abstraction reaction is the dominant path for methane loss as predicted by current models (Lavvas et al. 2008). In this forum we will present updated measurements by the CIRS team of the 12CH4/13CH4 derived from recent high signal-to-noise Titan observations, and discuss the degree of agreement with both the earlier published ratios, and the newer revised GCMS results. We will also discuss the implications for Titan's methane evolution over geologic time including clues from the D/H ratio. We conclude by highlighting the currently open questions and avenues for future work. Jennings, D.E. et al., J. Chem

  11. Titan Science Return Quantification

    NASA Technical Reports Server (NTRS)

    Weisbin, Charles R.; Lincoln, William

    2014-01-01

    Each proposal for a NASA mission concept includes a Science Traceability Matrix (STM), intended to show that what is being proposed would contribute to satisfying one or more of the agency's top-level science goals. But the information traditionally provided cannot be used directly to quantitatively compare anticipated science return. We added numerical elements to NASA's STM and developed a software tool to process the data. We then applied this methodology to evaluate a group of competing concepts for a proposed mission to Saturn's moon, Titan.

  12. Hydrothermal synthesis of sodium bismuth titanate and titanate nanofibers

    NASA Astrophysics Data System (ADS)

    Kundu, Animesh

    A hydrothermal processing method was developed for the synthesis of sodium bismuth titanate powders and thin films from suitable precursors at 150°C. Oxide precursors were best suited for preparing pure phase materials. The sodium bismuth titanate powders consisted of cube shaped crystals. A modified solution-reprecitation model involving partial dissolution of the precursors was proposed to explain the growth of these particles. The thin films were prepared on strontium titanate (100) substrate. A sample holder was specially designed and fabricated to secure the substrates in the reaction vessel. The result was a relatively smooth film of thickness ≤550 nm. The films were essentially single crystalline and had strong epitaxial relationship with the substrate. Titanate nanofibers (NaxH yTinO2n+1° zH2O) were known to form under similar hydrothermal conditions as sodium bismuth titanate powders. Detail research revealed that the pure hydroxide and oxide precursors tend to form sodium bismuth titanate powders or thin films. Titanate nanofibers were the predominant product when any other ions or organics were present in the precursor. Much faster reaction kinetics for the formation of nanofibers was observed when certain organic compounds were added deliberately with the precursors. Accordingly, a hydrothermal process was developed for converting the precursors to titanate nanofibers in a significantly shorter time than reported in the literature. A thin film consisting of vertically aligned nanofibers was prepared on titanium substrate at 150°C in as little as 30 minutes. Complete conversion of starting precursors to free standing nanofibers was achieved in ˜8 hours at 150°C. The as-prepared nanofibers were some form of sodium titanate. They were converted to hydrogen titanate by ion exchange. Differential Scanning calorimetric experiments were performed to understand the thermal evolution of the fibers. The hydrogen titanate fibers underwent structural

  13. Evaluating the Paleomagnetic Potential of Zircons

    NASA Astrophysics Data System (ADS)

    Fu, R. R.; Lima, E. A.; Weiss, B. P.; Glenn, D. R.; Kehayias, P.; Walsworth, R. L.

    2015-12-01

    Because zircon crystals commonly display high natural U/Pb ratios and excellent resistance to weathering, paleomagnetic data collected from zircons potentially enjoy the benefits of excellent age controls and minimal remagnetization from infiltrating fluids. We present rock magnetic and paleomagnetic experiments on two sets of zircons with contrasting geologic histories to determine the viability of zircons as paleomagnetic recorders. First, we characterize primary zircons from the Bishop Tuff, a pyroclastic deposit formed at 767±1 ka in a magnetic field of 43±3 µT. Magnetic field maps with ~10 µm resolution obtained with the nitrogen vacancy (NV) diamond magnetometer indicate that most ferromagnetic sources are situated within zircon interiors, suggesting a primary origin (Fig. 1A). Stepwise thermal demagnetization reveals well-defined components of magnetization blocked in most samples up to 580˚C, indicating the dominance of magnetite, which is the expected primary phase. The intensity of natural remanent magnetization (NRM) is typically 10-12 Am2. Ongoing Thellier-Thellier dual heating experiments will evaluate the accuracy of recovered paleointensities. Second, we study Hadean and Archean detrital zircons from the Jack Hills. In contrast to the Bishop Tuff samples, magnetic microscopy and stepwise thermal demagnetization demonstrate that the remanent magnetization of >80% of Jack Hills zircon are carried exclusively by secondary hematite situated on grain surfaces (Fig. 1B). NRM intensities range between 10-15 and 10-12 Am2 and decrease by a factor of several upon chemical removal of secondary hematite. Our analyses reveal a diversity of ferromagnetic mineralogies and distribution in natural zircons. While some zircon populations carry reliable paleomagnetic information, others are dominated by secondary ferromagnetic phases. Without the application of high-resolution magnetic microscopy techniques to identify the main ferromagnetic carrier, it is

  14. Titan's astrobiology: some new data

    NASA Astrophysics Data System (ADS)

    Raulin, Francois; Coll, Patrice; Buch, Arnaud; Cloix, Megane; Guan, Yuan Yong; Jerome, Murielle; Poch, Olivier; Ramirez, Sandra I.; Szopa, Cyril; Cottin, Hervé

    The Cassini-Huygens observations of Titan have strongly strengthened its astrobiological impor-tance, clearly showing that Titan is one of the key planetary bodies for astrobiological studies. Indeed the Cassini-Huygens data show that there are many similarities which can be found when comparing Titan and the early Earth, in spite of much lower temperatures for Titan. One of these similarities is the presence of an active and complex organic chemistry in Titan's environment, which occurs from the high atmosphere to the surface and very likely in the sub-surface. This organic chemistry involves several of the key compounds of terrestrial prebiotic chemistry, and it represents, by itself, a major astrobiological aspect of Titan. Moreover, the potential presence of an internal water-ocean makes Titan a potential habitable environment, of obvious astrobiological importance. In fact, after five years of close observation by remote sensing and in situ instrumentations from the Cassini-Huygens mission, Titan does not look any more like a frozen primitive Earth, but it looks like an evolving planet, geologically active, with cryo-volcanism, eolian erosion, clouds and precipitations, and a methane cycle analogous to the water cycle on Earth. But the new data also show that a complex organic chemistry is taking place in the very high atmospheric layers of the satellite, with the formation in the ionosphere of high molecular weight (up about 10 000 Daltons) ions. Are these ions abundant enough in the lower atmosphere zones to act as organic monomers which then grow by aggregation, sedimentation and condensation down to the surface? This is one of the key questions that chemical models have now to answer. Cassini-Huygens observations have shown that there is no large surface ocean on Titan, but large regional lakes which behave like evolving liquid media. Those lakes are probably accumulating complex organics of astrobiological interest, including organic aerosols, and could

  15. Titan: A Place with Atmosphere

    NASA Technical Reports Server (NTRS)

    McKay, Christopher P.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    Titan is the largest moon of the planet Saturn and is the only moon in the solar system with a substantial atmosphere. Its atmosphere is mostly made of nitrogen and has a pressure one and a half times larger than sea level pressure on Earth. In these respects Titan's atmosphere is the closest twin to Earth's. Methane is found in Titan's atmosphere and results in the formation of a organic smog layer in the atmosphere via chemistry that is similar to the current theories for the origin of life on Earth. Unfortunately, Titan is much too cold for water to be liquid and life is therefore unlikely, earth-like life that is. Titan's atmosphere has a greenhouse effect which is much stronger than the Earth's. However the organic smog layer produces an anti-greenhouse effect that cuts the greenhouse warming in half. The surface of Titan remains unknown, hidden by the thick smog layer, but it may be an ocean of liquid methane and ethane or maybe just lakes. When the NASA/ESA mission to the Saturn System, Cassini/Huygens reaches Saturn in a few years it will launch a probe that to the surface of Titan and show us this world that is strange and yet in many ways similar to our own.

  16. The Geology of Titan

    NASA Astrophysics Data System (ADS)

    Jaumann, Ralf

    Titan, the largest and most complex satellite in the solar system exhibits an organic dominated surface chemistry and shares surface features with other large icy satellites as well as the terrestrial planets. It is subject to tidal stresses, and its surface appears to have been modified tectonically. Cassini's global observations at infrared and radar wavelengths as well as local investigations by the instruments on the Huygens probe has revealed that Titan has the largest known abundance of organic material in the solar system apart from Earth, and that its active hydrological cycle is analogous to that of Earth, but with methane replacing water. The surface of Titan exhibits morphological features of different sizes and origins created by geological processes that span the entire dynamic range of aeolian, fluvial and tectonic activities, with likely evidence that cryovolcanism might exists where liquid water, perhaps in concert with ammonia, methane and carbon dioxide, makes its way to the surface from the interior [e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. Extended dune fields, lakes, mountainous terrain, dendritic erosion patterns and erosional remnants indicate dynamic surface processes. Valleys, small-scale gullies and rounded cobbles require erosion by extended energetic flow of liquids. There is strong evidence that liquid hydrocarbons are ponded on the surface in lakes, predominantly, but not exclusively, at high northern latitudes. A variety of features including extensive flows and caldera-like constructs are interpreted to be cryovolcanic in origin. Chains and isolated blocks of rugged terrain rising from smoother areas are best described as mountains and might be related to tectonic processes. Impact craters form on all solid bodies in the solar system, and have been detected on Titan. But very few have been observed so they must be rapidly destroyed or buried by other geologic processes The morphologies of the impact

  17. Touchdown on Titan

    NASA Technical Reports Server (NTRS)

    Morring, Frank, Jr.

    2004-01-01

    Europe's Huygens probe is on target for a Dec. 25 separation from the Cassini Saturn orbiter that has carried it like a baby for more than seven years. The probe will spend three weeks coasting to a plunge into Titan's thick atmosphere on the morning of Jan. 14. If all goes as planned, the 349-kg. Huygens will spend more than 2 hr. descending by parachute to the mysterious surface of the planet-sized moon, and hopefully devote yet more time to broadcasting data after it lands. Before the day is over, Huygens is programmed to beam about 30 megabytes of data - including some 1,100 images-back to Earth through Cassini, a trip that will take some 75 min. to complete over the 1- billion-km. distance that separates the two planets. Within that data should be answers to questions that date back to 1655, when Dutch astronomer Christiaan Huygens found the moon with a homemade telescope and named it for the family of giants the ancient Greeks believed once ruled the earth. In the Solar System, there is no other world like Titan, with a nitrogen and methane atmospheric and a cold, hidden surface darker than Earth under the full Moon.

  18. Titan's Emergence from Winter

    NASA Technical Reports Server (NTRS)

    Flasar, F. Michael; Achterberg, Richard; Jennings, Donald; Schinder, Paul

    2011-01-01

    We summarize the changes in Titans thermal structure derived from Cassini CIRS and radio-occultation data during the transition from winter to early spring. Titan's surface, and middle atmosphere show noticeable seasonal change, whereas that in most of the troposphere is mated. This can be understood in terms of the relatively small radiative relaxation time in the middle atmosphere and much larger time scale in the troposphere. The surface exhibits seasonal change because the heat capacity in an annual skin depth is much smaller than that in the lowest scale height of the troposphere. Surface temperatures rise 1 K at raid and high latitudes in the winter northern hemisphere and cool in the southern hemisphere. Changes in in the middle atmosphere are more complicated. Temperatures in the middle stratosphere (approximately 1 mbar) increase by a few kelvin at mid northern latitudes, but those at high latitudes first increase as that region moves out of winter shadow, and then decrease. This probably results from the combined effect of increased solar heating as the suit moves higher in the sky and the decreased adiabatic warming as the sinking motions associated with the cross-equatorial meridional cell weaken. Consistent with this interpretation, the warm temperatures observed higher up at the winter polar stratopause cool significantly.

  19. Mapping products of Titan's surface

    USGS Publications Warehouse

    Stephan, Katrin; Jaumann, Ralf; Karkoschka, Erich; Barnes, Jason W.; Tomasko, Martin G.; Turtle, Elizabeth P.; Le Corre, Lucille; Langhans, Mirjam; Le Mouelic, Stephane; Lorenz, Ralf D.; Perry, Jason

    2009-01-01

    Remote sensing instruments aboard the Cassini spacecraft have been observed the surface of Titan globally in the infrared and radar wavelength ranges as well as locally by the Huygens instruments revealing a wealth of new morphological features indicating a geologically active surface. We present a summary of mapping products of Titan's surface derived from data of the remote sensing instruments onboard the Cassini spacecraft (ISS, VIMS, RADAR) as well as the Huygens probe (DISR) that were achieved during the nominal Cassini mission including an overview of Titan's recent nomenclature.

  20. Zircon-rutile-ilmenite froth flotation process

    SciTech Connect

    Schmidt, R.; Denham, D.L. Jr.

    1992-04-21

    This patent describes a method for separating a mixture of minerals comprising at least zircon, ilmenite and rutile. It comprises adding an acid solution to the mixture to acidify to a pH of between about 2.0 and 6.0; adding starch to the mixture to depress the ilmenite and the rutile; adding a source of fluoride ions to the mixture to provide a negative surface charge on the zircon surface to activate the zircon; adding an amine cationic collector to the mixture to float the activated zircon; subjecting the mixture containing the added acid solution, the fluoride ions, the starch and the cationic collector, to froth flotation; and withdrawing a float product comprising the zircon and a sink product comprising the ilmenite and rutile.

  1. A Prototype PZT Matrix Transducer With Low-Power Integrated Receive ASIC for 3-D Transesophageal Echocardiography.

    PubMed

    Chen, Chao; Raghunathan, Shreyas B; Yu, Zili; Shabanimotlagh, Maysam; Chen, Zhao; Chang, Zu-yao; Blaak, Sandra; Prins, Christian; Ponte, Jacco; Noothout, Emile; Vos, Hendrik J; Bosch, Johan G; Verweij, Martin D; de Jong, Nico; Pertijs, Michiel A P

    2016-01-01

    This paper presents the design, fabrication, and experimental evaluation of a prototype lead zirconium titanate (PZT) matrix transducer with an integrated receive ASIC, as a proof of concept for a miniature three-dimensional (3-D) transesophageal echocardiography (TEE) probe. It consists of an array of 9 ×12 piezoelectric elements mounted on the ASIC via an integration scheme that involves direct electrical connections between a bond-pad array on the ASIC and the transducer elements. The ASIC addresses the critical challenge of reducing cable count, and includes front-end amplifiers with adjustable gains and micro-beamformer circuits that locally process and combine echo signals received by the elements of each 3 ×3 subarray. Thus, an order-of-magnitude reduction in the number of receive channels is achieved. Dedicated circuit techniques are employed to meet the strict space and power constraints of TEE probes. The ASIC has been fabricated in a standard 0.18-μm CMOS process and consumes only 0.44 mW/channel. The prototype has been acoustically characterized in a water tank. The ASIC allows the array to be presteered across ±37° while achieving an overall dynamic range of 77 dB. Both the measured characteristics of the individual transducer elements and the performance of the ASIC are in good agreement with expectations, demonstrating the effectiveness of the proposed techniques. PMID:26540683

  2. STRENGTH PROPERTIES OF POLED PZT SUBJECTED TO BIAXIAL FLEXURAL LOADING IN HIGH ELECTRIC FIELD

    SciTech Connect

    Wang, Hong; Lin, Hua-Tay; Wereszczak, Andrew A

    2010-01-01

    Failure of poled PZT has been experimentally studied using ball-on-ring (BoR) biaxial flexure strength tests with an electric field concurrently applied. The as-received and aged PZTs were tested in high electric fields of -3 to 4 times the coercive field. Both the sign and the magnitude of electric field had a significant effect on the strength of poled PZT. A surface flaw type with a depth of around 18 m was identified as the strength limiter and responsible for the failure of the tested PZT. With a value of 0.76 MPa m1/2 in the open circle condition, the fracture toughness of the poled PZT was affected by an applied electric field just as the strength was affected. These results and observations have the potential to serve probabilistic reliability analysis and design optimization of multilayer PZT piezo actuators.

  3. A new three-dimensional electromechanical impedance model for an embedded dual-PZT transducer

    NASA Astrophysics Data System (ADS)

    Wang, Dansheng; Li, Zhi; Zhu, Hongping

    2016-07-01

    In the past twenty years, the electromechanical (EM) impedance technique has been investigated extensively in the mechanical, aviation and civil engineering fields. Many different EM impedance models have been proposed to characterize the interaction between the surface-bonded PZT transducer and the host structure. This paper formulates a new three-dimensional EM impedance model characterizing the interaction between an embedded circle dual-PZT transducer and the host structure based on the effective impedance concept. The proposed model is validated by experimental results from a group of smart cement cubes, in which three circle dual-PZT transducers are embedded respectively. In addition, a new EM impedance measuring method for the dual-PZT transducer is also introduced. In the measuring method, only a common signal generator and an oscilloscope are needed, by which the exciting and receiving voltage signals are obtained respectively. Combined with fast Fourier transform the EM impedance signatures of the dual-PZT transducers are obtained.

  4. Seasonal Changes in Titan's Meteorology

    NASA Technical Reports Server (NTRS)

    Turtle, E. P.; DelGenio, A. D.; Barbara, J. M.; Perry, J. E.; Schaller, E. L.; McEwen, A. S.; West, R. A.; Ray, T. L.

    2011-01-01

    The Cassini Imaging Science Subsystem has observed Titan for 1/4 Titan year, and we report here the first evidence of seasonal shifts in preferred locations of tropospheric methane clouds. South \\polar convective cloud activity, common in late southern summer, has become rare. North \\polar and northern mid \\latitude clouds appeared during the approach to the northern spring equinox in August 2009. Recent observations have shown extensive cloud systems at low latitudes. In contrast, southern mid \\latitude and subtropical clouds have appeared sporadically throughout the mission, exhibiting little seasonality to date. These differences in behavior suggest that Titan s clouds, and thus its general circulation, are influenced by both the rapid temperature response of a low \\thermal \\inertia surface and the much longer radiative timescale of Titan s cold thick troposphere. North \\polar clouds are often seen near lakes and seas, suggesting that local increases in methane concentration and/or lifting generated by surface roughness gradients may promote cloud formation. Citation

  5. Titan's greenhouse and antigreenhouse effects

    NASA Technical Reports Server (NTRS)

    Mckay, Christopher P.; Pollack, James B.; Courtin, Regis

    1992-01-01

    Thermal mechanisms active in Titan's atmosphere are discussed in a brief review of data obtained during the Voyager I flyby in 1980. Particular attention is given to the greenhouse effect (GHE) produced by atmospheric H2, N2, and CH4; this GHE is stronger than that on earth, with CH4 and H2 playing roles similar to those of H2O and CO2 on earth. Also active on Titan is an antigreenhouse effect, in which dark-brown and orange organic aerosols block incoming solar light while allowing IR radiation from the Titan surface to escape. The combination of GHE and anti-GHE leads to a surface temperature about 12 C higher than it would be if Titan had no atmosphere.

  6. Planetary science: Huygens rediscovers Titan

    NASA Astrophysics Data System (ADS)

    Owen, Tobias

    2005-12-01

    The first analyses of data sent by the Huygens probe from Saturn's largest moon Titan are flooding in. They paint a picture of a `Peter Pan' world - potentially like Earth, but with its development frozen at an early stage.

  7. Ices in Titan's Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Anderson, Carrie

    2010-01-01

    Analyses of Cassini CIRS far-infrared limb spectra of Titan at 15N, 15S, and 58S reveal a broad emission feature between 70 and 270/cm, restricted to altitudes between 60 and 100 km. This emission feature is chemically different from Titan's photochemical aerosol, which has an emission feature peak around 145 cm-1. The shape of the observed broad emission feature resembles a mixture of the solid component of the two most abundant nitrites in Titan's stratosphere, that of HCN and HC3N. Following the saturation vapor pressure vertical profiles of HCN and HC3N, the 60 to 100 km altitude range corresponds closely to the vertical location where these nitriles are expected to condense out and form small, suspended ice particles. This is the first time ices in Titan's stratosphere have been identified at latitudes south of 50N. Results and physical implications will be discussed.

  8. Electric properties and phase transition behavior in lead lanthanum zirconate stannate titanate ceramics with low zirconate content

    NASA Astrophysics Data System (ADS)

    Zeng, Tao; Lou, Qi-Wei; Chen, Xue-Feng; Zhang, Hong-Ling; Dong, Xian-Lin; Wang, Gen-Shui

    2015-11-01

    The phase transitions, dielectric properties, and polarization versus electric field (P-E) hysteresis loops of Pb0.97La0.02(Zr0.42Sn0.58-xTix)O3 (0.13≤ x ≤0.18) (PLZST) bulk ceramics were systematically investigated. This study exhibited a sequence of phase transitions by analyzing the change of the P-E hysteresis loops with increasing temperature. The antiferroelectric (AFE) to ferroelectric (FE) phase boundary of PLZST with the Zr content of 0.42 was found to locate at the Ti content between 0.14 and 0.15. This work is aimed to improve the ternary phase diagram of lanthanum-doped PZST with the Zr content of 0.42 and will be a good reference for seeking high energy storage density in the PLZST system with low-Zr content. Project supported by the National Natural Science Foundation of China (Grant Nos. 51202273, 11204304, and 11304334) and the Science and Technology Commission of Shanghai Municipality, China (Grant No. 14DZ2261000).

  9. The thermosphere of Titan

    NASA Astrophysics Data System (ADS)

    Friedson, A. J.; Yung, Y. L.

    1984-01-01

    The vertical structure of Titan's thermosphere is calculated down to the mesopause as a function of local time based on Voyager 1 occultation data. The thermal time scales that characterize the diurnal behavior of the thermosphere are discussed, the input model atmosphere used to calculate the temperature profile is presented, and the dominant heating and cooling mechanisms in the thermosphere are examined. The temperature profiles obtained by integrating the heat transfer equation with and without electron heating are presented and discussed. The implications that derived exospheric temperatures have for the neutral hydrogen torus are investigated. The diurnal exospheric temperature is unlikely to exceed 225 K, averages between 187 and 197 K, and has a variational amplitude of 28 K or less. The vertical extent of the hydrogen cloud is too large to be explained in terms of simple thermal escape of hydrogen from the exosphere.

  10. Titan atmospheric models intercomparison

    NASA Astrophysics Data System (ADS)

    Pernot, P.

    2008-09-01

    Several groups over the world have developed independently models of the photochemistry of Titan. The Cassini mission reveals daily that the chemical complexity is beyond our expectations e. g. observation of heavy positive and negative ions..., and the models are updated accordingly. At this stage, there is no consensus on the various input parameters, and it becomes increasingly difficult to compare outputs form different models. An ISSI team of experts of those models will be gathered shortly to proceed to an intercomparison, i.e. to assess how the models behave, given identical sets of inputs (collectively defined). Expected discrepancies will have to be elucidated and reduced. This intercomparison will also be an occasion to estimate explicitly the importance of various physicalchemical processes on model predictions versus observations. More robust and validated models are expected from this study for the interpretation of Titanrelated data.

  11. Life on Titan

    NASA Astrophysics Data System (ADS)

    Potashko, Oleksandr

    Volcanoes engender life on heavenly bodies; they are pacemakers of life. All planets during their period of formation pass through volcanism hence - all planets and their satellites pass through the life. Tracks of life If we want to find tracks of life - most promising places are places with volcanic activity, current or past. In the case of just-in-time volcanic activity we have 100% probability to find a life. Therefore the most perspective “search for life” are Enceladus, Io and comets, further would be Venus, Jupiter’s satellites, Saturn’s satellites and first of all - Titan. Titan has atmosphere. It might be result of high volcanic activity - from one side, from other side atmosphere is a necessary condition development life from procaryota to eucaryota. Existence of a planet means that all its elements after hydrogen formed just there inside a planet. The forming of the elements leads to the formation of mineral and organic substances and further to the organic life. Development of the life depends upon many factors, e.g. the distance from star/s. The intensity of the processes of the element formation is inversely to the distance from the star. Therefore we may suppose that the intensity of the life in Mercury was very high. Hence we may detect tracks of life in Mercury, particularly near volcanoes. The distance from the star is only one parameter and now Titan looks very active - mainly due to interior reason. Its atmosphere compounds are analogous to comet tail compounds. Their collation may lead to interesting result as progress occurs at one of them. Volcanic activity is as a source of life origin as well a reason for a death of life. It depends upon the thickness of planet crust. In the case of small thickness of a crust the probability is high that volcanoes may destroy a life on a planet - like Noachian deluge. Destroying of the life under volcano influences doesn’t lead to full dead. As result we would have periodic Noachian deluge or

  12. The TITAN magnet configuration

    SciTech Connect

    Bathke, C.G.

    1987-01-01

    The TITAN study uses copper-alloy ohmic-heating coils (OHC) to startup inductively a reversed-field-pinch (RFP) fusion reactor. The plasma equilibrium is maintained with a pair of superconducting equilibrium-field coils (EFCs). A second pair of copper EFCs provides the necessary trimming of the equilibrium field during plasma transients. A compact toroidal-field-coil (TFC) set is provided by an integrated blanket/coil (IBC). The IBC concept also is applied to the toroidal-field divertor coils. Steady-state operation is achieved with oscillating-field current drive, which oscillates at low amplitude and frequency the OHCs, EFCs, the TFCs, and divertor coils about their steady-state currents. An integrated magnet design, which uses low-field, low technology coils, and the related design basis is given. 18 refs.

  13. The TITAN magnet configuration

    NASA Astrophysics Data System (ADS)

    Bathke, C. G.

    The TITAN study uses copper-alloy ohmic-heating coils (OHC) to start up inductively a reversed-field-pinch (RFP) fusion reactor. The plasma equilibrium is maintained with a pair of superconducting equilibrium-field coils (EFCs). A second pair of copper EFCs provides the necessary trimming of the equilibrium field during plasma transients. A compact toroidal-field-coil (TFC) set is provided by an integrated blanket/coil (IBC). The IBC concept also is applied to the toroidal-field divertor coils. Steady-state operation is achieved with oscillating-field current drive, which oscillates at low amplitude and frequency the OHCs, EFCs, the TFCs, and divertor coils about their steady-state currents. An integrated magnet design, which uses low-field, low technology coils, and the related design basis is given.

  14. Titan's rotation - Surface feature observed

    NASA Astrophysics Data System (ADS)

    Lemmon, M. T.; Karkoschka, E.; Tomasko, M.

    1993-06-01

    A surface feature or a near-surface fracture is suggested to account for the time variations in the 0.94, 1.08, and 1.28 micron atmospheric windows of Titan's geometric albedo, relative to its albedo in adjacent methane bands. These observations are noted to be consistent with synchronous rotation. They can also be explained by a 0.1-higher surface albedo on Titan's leading hemisphere.

  15. A biaxial PZT optical scanner for pico-projector applications

    NASA Astrophysics Data System (ADS)

    Ikegami, K.; Koyama, T.; Saito, T.; Yasuda, Y.; Toshiyoshi, H.

    2015-02-01

    We report a newly developed two-dimensional MEMS optical scanner based on the ADRIP (Arc Discharge Reactive Ion-Plating) deposited piezoelectric PZT film of typical 4 μm. A circular mirror of 1.2 mm in diameter is suspended within a pair of resonant mechanism that oscillates at 25 kHz for ±12° mechanical angle with a typical voltage of 10 V. A gimbal plate including the mirror is supported with another pair of meandering suspensions to tilt the plate in the orthogonal direction at 60 Hz for the off-resonant vertical motion of ±8° mechanical. Overall power consumption of the piezoelectric actuation was 100 mW or less. As a mechanical reinforce, a rib-structure was designed on the backside of the mirror by using a structural optimization tool TOSCA to suppress the dynamic curvature to 100 nm or less. A piezoelectric sensor was also integrated in the identical PZT film after optimizing the electrode shape to pick up the mechanical angle of the scanner and to give a trigger signal to the control system. A plug-in type pico-projector optics and electronics has been assembled in a 7.5 cm × 12 cm × 5 cm volume with RGB lasers to demonstrate a HD (high definition) class image projection of 720 horizontal lines. The fundamental resonance of the entire scanner mechanism was made to be 1 kHz or higher, thereby exhibiting a compatibility with vehicle applications.

  16. Poling process optimization of piezo nano composite PZT/polimer

    NASA Astrophysics Data System (ADS)

    Ridlo, M. Rosyid; Lestari, Titik; Mardiyanto, Oemry, Achiar

    2013-09-01

    The objective of poling process is to make the electric dipole directions to be parallel in the inside perovskite crystal of piezo materials. In simply way, poling was carried out by giving the two sides of a piezo material by highly electrical potential. More parallel of electrical dipoles, it is more strength the piezo characteristics. The optimization involved control of temperature, time depth and the electrical voltage. The samples was prepared by solgel method with precursor tetrabutyl titanat Ti(OC4H9)4, zirconium nitrat Zr(NO3)4ṡ5H2O, Pb(CH3COO)2ṡ3H2O and solution ethylene glycol. Molar ratio Pb:Zr:Ti = 1,1:0,52:0,48 with concidering lossed Pb. Result of solgel process is nano powder PZT. The formed nano powder PZT was then mixed with polimer PVDF and pressed 10 MPa at 150 °C with the size 15 mm in diameter. After poling, piezoelectric constant d33 was measured. The highest d33 = 45 pC/N was found at poling parameters V = 5 kV/ mm, T = 120 °C dan time depth = 1 hours.

  17. From Titan's chemistry and exobiology to Titan's astrobiology

    NASA Astrophysics Data System (ADS)

    Raulin, François

    2015-04-01

    When the IDS proposal « Titan's chemistry and exobiology » was submitted to ESA 25 years ago, in the frame of what will become the Cassini-Huygens mission, Titan was already seen as a quite interesting planetary object in the solar system for Exobiology. Several organic compounds of prebiotic interest were identified in its atmosphere, which was thus was expected to be chemically very active, especially in term of organic processes. Atmospheric aerosols seemed to play a key role in this chemistry. Moreover, the presence of an internal aqueous ocean, compatible with life was suspected. A few years later, when astrobiology was (re)invented, Titan became one of the most interesting planetary target for this new (but very similar to exobiology) field. With the Cassini-Huygens mission, the exo/astrobiological interest of Titan has become more and more important. However, the mission has been providing a vision of Titan quite different from what it was supposed. Its atmospheric organic chemistry is very complex and starts in much higher zones than it was believed before, involving high molecular weight species in the ionosphere. Titan's surface appears to be far from homogeneous: instead of been covered by a global methane-ethane ocean, it is very diversified, with dunes, lakes, bright and dark areas, impact and volcanic craters with potential cryovolcanic activity. These various geological areas are continuously feeded by atmospheric aerosols, which represent an important step in the complexity of Titan's organic chemistry, but probably not the final one. Indeed, after being deposited on the surface, in the potential cryovolvanic zones, these particles may react with water ice and form compounds of exo/astrobiological interest, such as amino acids, purine and pyrimidine bases. Moreover, The Cassini-Huygens data strongly support the potential presence of an internal water ocean, which becomes less and less hypothetical and of great interest for exobiology. These

  18. The TITAN reversed-field-pinch fusion reactor study

    SciTech Connect

    Not Available

    1990-01-01

    This report discusses research on the titan-1 fusion power core. The major topics covered are: titan-1 fusion-power-core engineering; titan-1 divertor engineering; titan-1 tritium systems; titan-1 safety design and radioactive-waste disposal; and titan-1 maintenance procedures.

  19. Elastic softening of zircon by radiation damage

    SciTech Connect

    Salje, Ekhard K. H.

    2006-09-25

    The bulk modulus and the shear modulus of zircon soften by ca. 50% when zircon is amorphized by radiation damage. A theoretical description of the experimental findings is presented which shows that the elastic response on a zircon ceramics with radiation damage follows Hashin-Shtrikman [J. Mech. Phys. Solids 11, 127 (1963)] behavior with very narrow bounds. The elastic response depends, in good approximation, on the square of the volume fraction f{sub a} of the amorphized regions. In a slightly coarser approximation one finds an almost linear interpolation of the bulk and the shear modulus between those of the crystalline state and those of the fully amorphous state.

  20. Zircon dating of oceanic crustal accretion.

    PubMed

    Lissenberg, C Johan; Rioux, Matthew; Shimizu, Nobumichi; Bowring, Samuel A; Mével, Catherine

    2009-02-20

    Most of Earth's present-day crust formed at mid-ocean ridges. High-precision uranium-lead dating of zircons in gabbros from the Vema Fracture Zone on the Mid-Atlantic Ridge reveals that the crust there grew in a highly regular pattern characterized by shallow melt delivery. Combined with results from previous dating studies, this finding suggests that two distinct modes of crustal accretion occur along slow-spreading ridges. Individual samples record a zircon date range of 90,000 to 235,000 years, which is interpreted to reflect the time scale of zircon crystallization in oceanic plutonic rocks. PMID:19179492

  1. The Surface Composition of Titan

    NASA Astrophysics Data System (ADS)

    Clark, R. N.; Pearson, N.; Brown, R. H.; Cruikshank, D. P.; Barnes, J. W.; Jaumann, R.; Soderblom, L. A.; Griffith, C. A.; Rodriguez, S.; Le Mouelic, S.; Lunine, J.; Sotin, C.; Baines, K. H.; Buratti, B. J.; Nicholson, P. D.; Nelson, R.; Stephan, K.

    2011-12-01

    Determining the surface composition of Titan has been inhibited by the lack of spectral properties of potential compounds. We have measured the 0.35 to 5-micron spectral reflectance of a wide range of compounds that might be relevant to Titan and trends are now coming to light with possible spectral matches for classes of materials. While some compounds have been identified and mapped on Titan's surface, such as liquid ethane + methane lakes and benzene, the compounds responsible for the main spectral properties have remained elusive (Clark et al, JGR 2010). Titan's surface is seen in the near infrared in only a few spectral windows, near 0.94, 1.1, 1.3, 1.6, 2.0, 2.68-2.78, and 4.9-5.1 microns in the Cassini Visual and Infrared Mapping Spectrometer (VIMS) spectral range. At shorter wavelengths, UV absorption in the spectra of Titan's haze constrains the surface composition because haze particles settle onto Titan's surface. The average apparent reflectance in the IR windows generally decreases with increasing wavelength except for the 2.7 and 5-micron windows which are at similar levels. The decrease has led researchers to infer a number of compounds responsible for the observed decreasing spectral shape; the most common being water ice. But ice is incompatible with the 2.78/2.68 micron I/F ratio. Many organic compounds have absorptions that are not seen in spectra of Titan, eliminating them as possible major components at the surface, including many polycyclic aromatic hydrocarbons (PAH) previously thought to be compatible with parts of Titan's spectrum. We find that ring compounds similar to benzene rings, but with some C-H bonds replaced by NH have a closer match to Titan's overall spectrum and can explain the relative intensities observed in the spectral windows, including the 2.68 and 2.78-micron double window, the low 3-5 micron reflectance, and increased absorption near 2.1-microns. Key among these compounds that show general properties that match Titan are

  2. Ti-in-Zircon Thermometer: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Fu, B.; Cavosie, A. J.; Clechenko, C. C.; Fournelle, J.; Kita, N. T.; Lackey, J.; Page, F.; Wilde, S. A.; Valley, J. W.

    2005-12-01

    The titanium in zircon thermometer has been applied to 167 zircons from diverse rock types. These rocks include metamorphosed anorthosite and gabbro (1.15 Ga, intrusion age), and unmetamorphosed granitic pegmatite (0.9 Ga) from the Adirondack Highlands; metaluminous and peraluminous granites (114-90 Ma) of the Sierra Nevada Batholith; megacrysts from kimberlite pipes in southern Africa, Brazil, and Siberia; and detrital zircons (4.4-3.9 Ga) of metaconglomerate from Jack Hills, Western Australia. Titanium concentration in zircon was analysed using a CAMECA IMS-1280 ion microprobe (see Page et al., this volume). Spot analyses were correlated to U-Pb SHRIMP pits especially for Adirondack and Jack Hills zircons. The majority of zircons have Ti-content less than 10 ppm. Variability, in excess of analytical precision, within individual zircons is observed in about one-third of crystals. In general, there is no systematic change in Ti from core to rim (identified by cathodoluminescence) of zircons, or with regard to age, U content, Th/U ratio, or U-Pb age concordance for these non-metamict grains. The average temperatures for zircon crystallization in different rock suites using the experimental/empirical calibration of Watson and Harrison (W&H, 2005, Science 308:841), assuming the presence of rutile and quartz, are estimated to be: anorthosite 735±41°C (1SD, n=24; Ti = 10±5 ppm); metagabbro 714±31°C (n=19; Ti = 8±4 ppm); Adirondack pegmatite 500±16°C (n=5; Ti = 0.3±0.1 ppm); metaluminous and peraluminous granites from Sierra Nevada 681±67°C (n=53; Ti = 6±5 ppm) and 613±75°C (n=68; Ti = 3±3 ppm); kimberlite megacrysts 740±64°C (n=169; Ti = 14±13 ppm) (Page et al., this volume); and detrital zircons from Jack Hills metaconglomerate 718±63°C (n=64; Ti = 10±9 ppm). Most of the host rocks contain ilmenite or titanite suggesting that α(TiO2)>0.5, but rutile activity is unknown for megacrysts and detrital zircons. Pegmatite contains no Ti-rich minerals

  3. Ferroelectric/electrode interfaces: Polarization switching and reliability of PZT capacitors in nonvolatile memories

    NASA Astrophysics Data System (ADS)

    Chen, Ye (Mike)

    The objective of this work was to investigate how the interface between electrode and PZT influences the PZT capacitor reliability. In order to conduct a well controlled experiment only the top-electrode PZT film interface was modified to study its effect on switching characteristics (i.e. hysteresis loop), voltage switching endurance and polarization retention of state of the art MOCVD grown film (nominally identical). The polycrystalline PZT film (50 -- 90 nm thick) are dominantly tetragonal with small fractions of the rhombohedral phase. XPS analyses of the as-deposited PZT film found the existence of a Pb-rich carbonate surface layer on all PZT film provided by industrial collaborators. Using materials characterizations such as in-situ XPS and ARXPS in tandem with electrical measurements it was determined that the Pb-rich surface layer appears to be an engineered sacrificial layer, which is beneficial in maximizing the switchable polarization and in improving the endurance and opposite-state retention behavior of PZT based FRAM capacitors with Pt electrode. This is because the excess Pb on the PZT surface and the Pb in the surface PZT reacts readily with the Pt during the Pt top electrode deposition creating a Pb-deficient non-ferroelectric interface layer between the top electrode and the PZT film. ARXPS analyses showed that this defective layer was approximately one nanometer thick and this is consistent with the hysteresis loop measurements that indicated a similar interface layer thickness. Inferior switching endurance and polarization retention was found in PZT film with an engineered initial thicker defective interface layer (via a HNO3-clean of the PZT surface prior to the top electrode deposition). This could be due to the fact that this defective interface layer may have thickened during the voltage cycling and/or retention bake. The thickening could be caused by greater carrier trapping and/or interface reaction between the Pb and the Pt. This

  4. Mapping of Titan: Results from the first Titan radar passes

    USGS Publications Warehouse

    Stofan, E.R.; Lunine, J.I.; Lopes, R.; Paganelli, F.; Lorenz, R.D.; Wood, C.A.; Kirk, R.; Wall, S.; Elachi, C.; Soderblom, L.A.; Ostro, S.; Janssen, M.; Radebaugh, J.; Wye, L.; Zebker, H.; Anderson, Y.; Allison, M.; Boehmer, R.; Callahan, P.; Encrenaz, P.; Flamini, E.; Francescetti, G.; Gim, Y.; Hamilton, G.; Hensley, S.; Johnson, W.T.K.; Kelleher, K.; Muhleman, D.; Picardi, G.; Posa, F.; Roth, L.; Seu, R.; Shaffer, S.; Stiles, B.; Vetrella, S.; West, R.

    2006-01-01

    The first two swaths collected by Cassini's Titan Radar Mapper were obtained in October of 2004 (Ta) and February of 2005 (T3). The Ta swath provides evidence for cryovolcanic processes, the possible occurrence of fluvial channels and lakes, and some tectonic activity. The T3 swath has extensive areas of dunes and two large impact craters. We interpret the brightness variations in much of the swaths to result from roughness variations caused by fracturing and erosion of Titan's icy surface, with additional contributions from a combination of volume scattering and compositional variations. Despite the small amount of Titan mapped to date, the significant differences between the terrains of the two swaths suggest that Titan is geologically complex. The overall scarcity of impact craters provides evidence that the surface imaged to date is relatively young, with resurfacing by cryovolcanism, fluvial erosion, aeolian erosion, and likely atmospheric deposition of materials. Future radar swaths will help to further define the nature of and extent to which internal and external processes have shaped Titan's surface. ?? 2006 Elsevier Inc. All rights reserved.

  5. Titan's Oxygen Chemistry: An Update

    NASA Astrophysics Data System (ADS)

    Hörst, S. M.; Klippenstein, S. J.; Lavvas, P.; Vuitton, V.; Yelle, R. V.

    2013-09-01

    Prior to the arrival of Cassini in the Saturn system, photochemical models were unable to simultaneously reproduce the observed abundances of CO, CO2, and H2O. The observations were explained by invoking an internal source of CO in addition to an external source of H2O or by assuming that the observed CO is the remnant of a larger primordial abundance. In 2008, we showed that the flux of O+ detected by the Cassini Plasma Spectrometer (CAPS) coupled with the previously known flux of H2O was sufficient to explain the oxygen bearing species in Titan's atmosphere [1]. This work demonstrated that it is no longer necessary to invoke outgassing from Titan's interior as a source for atmospheric CO or to assume that the observed CO is the remnant of a larger primordial abundance in Titan's atmosphere. Instead, it is most likely that the oxygen bearing species in Titan's atmosphere are the result of external input, most likely Enceladus. At the time, only one measurement of H2O existed, from the Infrared Space Observation (ISO) [2], which was roughly consistent with our model, as shown in Figure 1. Two recent observations, from the Cassini Composite Infrared Spectrometer (CIRS) [3] and Herschel [4], indicate that our 2008 model over predicts the abundance of water in Titan's atmosphere by an order of magnitude and the model of Moreno et al. 2012 was unable to simultaneously reproduce the abundance of all 3 species. The new observations indicate that photochemical models may be missing chemical and/or physical processes. It is therefore time to revisit the photochemical model, now with stronger constraints on the stratospheric H2O abundance, including the behavior as a function of altitude in the stratosphere, to ensure that the new observations do not point to a fundamental flaw in our understanding of Titan's atmosphere. We will present results from our recently updated model of Titan's oxygen chemistry.

  6. Zirconate pyrochlores under high pressure

    SciTech Connect

    Xiao, Haiyan; Zhang, Fuxiang; Gao, Fei; Ewing, Rodney C.; Weber, William J

    2010-01-01

    Ab initio total-energy calculations and x-ray diffraction measurements have been combined to study the phase stability of zirconate pyrochlores (A2Zr2O7; A=La, Nd and Sm) under pressures up to 50 GPa. Phase transformations to the defect-cotunnite structure are theoretically predicted at pressures of 22, 20 and 18 GPa, in excellent agreement with the experimentally determined values of 21, 22 and 18 GPa for La2Zr2O7, Nd2Zr2O7 and Sm2Zr2O7, respectively. Analysis of the elastic properties indicate that elastic anisotropy may be one of the driving forces for the pressure-induced cubic-to-noncubic phase transformation.

  7. Zirconate pyrochlores under high pressure

    SciTech Connect

    Xiao, Haiyan Y.; Zhang, F. X.; Gao, Fei; Lang, Maik; Ewing, Rodney C.; Weber, William J.

    2010-07-12

    Ab initio total-energy calculations and x-ray diffraction measurements have been combined to study the phase stability of zirconate pyrochlores (A2Zr2O7; A=La, Nd and Sm) under pressures up to 50 GPa. Phase transformations to the defect-cotunnite structure are theoretically predicted at pressures of 22, 20 and 18 GPa, in excellent agreement with the experimentally determined values of 21, 22 and 18 GPa for La2Zr2O7, Nd2Zr2O7 and Sm2Zr2O7, respectively. Analysis of the elastic properties indicates that elastic anisotropy may be one of the driving forces for the pressure-induced cubic-to-noncubic phase transformation.

  8. Refractory Materials of Zirconate. Part 2: Synthesis and some properties of strontium, zirconate, calcium zirconate and barium zirconate

    NASA Technical Reports Server (NTRS)

    Okubo, Tsutomo; Yonemochi, Osamu; Nakamura, Kazuo; Maeda, Minoru

    1988-01-01

    Chemical compounds SrZrO3, CaZrO3, and BaZrO3 were synthesized by solid reaction and arc fusion, and their properties examined. Results were as follows: (1) in the synthesis of CaZrO3 by solid reaction, ZrO2 solid solution with cubic form was produced, which then changed into CaZrO3; (2) the BaZrO3 was a cubic form and did not show any transformation, while SrZrO3 and CaZrO3 with an orthorhombic form transformed to a cubic form at high temperature; and (3) the solubility of BaZrO3 in acid and its vaporization rate at a high temperature were greater than those of zirconates.

  9. Economical Nanoactuator Alternatives to Lead Zirconium Titanate

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Elghoul, Gabe; Peters, Stephen

    2012-06-01

    This paper describes using inexpensive commercially available ceramic capacitors as a substitute for the lead containing and relatively expensive PZT based nano actuators. A sample PZT actuator is compared with actuators made from both X5R and Y5V type ceramic dielectric capacitors using white light interferometry and a spectrometer. This work is useful in that it can provide nano-motion capability to budget constrained undergraduate and graduate level research laboratories. Additionally, unlike the PZT material the alternative ceramic materials do not contain lead which is needed to create products compliant with the European Rohs (Restriction On Hazardous Substances) initiative.

  10. Model-Based, Closed-Loop Control of PZT Creep for Cavity Ring-Down Spectroscopy

    PubMed Central

    McCartt, A D; Ognibene, T J; Bench, G; Turteltaub, K W

    2014-01-01

    Cavity ring-down spectrometers typically employ a PZT stack to modulate the cavity transmission spectrum. While PZTs ease instrument complexity and aid measurement sensitivity, PZT hysteresis hinders the implementation of cavity-length-stabilized, data-acquisition routines. Once the cavity length is stabilized, the cavity’s free spectral range imparts extreme linearity and precision to the measured spectrum’s wavelength axis. Methods such as frequency-stabilized cavity ring-down spectroscopy have successfully mitigated PZT hysteresis, but their complexity limits commercial applications. Described herein is a single-laser, model-based, closed-loop method for cavity length control. PMID:25395738

  11. Peculiarities of Electrical Characteristics of Ferroelectric Memory Elements Based on PZT-Films

    NASA Astrophysics Data System (ADS)

    Delimova, L. A.; Gushchina, E. V.; Yuferev, V. S.; Ratnikov, V. V.; Zaitseva, N. V.; Sharenkova, N. V.; Seregin, D. S.; Vorotilov, K. A.; Sigov, A. S.

    2016-01-01

    Self-polarization directed from the top electrode to the bottom one is found in the ferroelectric Pt/PZT/Pt capacitor using the method of depolarizing hysteresis loops. We attribute the self-polarization to the flexoelectric effect caused by the mismatch between the lattice parameters of the bottom Pt film and PZT-film. This result is consistent with the measurements of photocurrent in the short-circuited structure that also indicate the presence of the downward polarization in the PZT-film.

  12. Preparation of PZT Thin Films on Stainless Steel Using Electrochemical Reduction

    NASA Astrophysics Data System (ADS)

    Koinuma, Michio; Ohmura, Hideki; Fujioka, Yoshiro; Matsumoto, Yasumichi; Yamada, Satoshi

    1998-03-01

    PZT perovskite films which were strongly adhered to stainless steel were prepared by electrochemical reduction in solutions containing TiO 2+, ZrO 2+, and Pb 2+ions. The composition of the PZT films was easily controlled by the composition in the solution and the applied cathodic potential during the electrolysis. Heat treatment at 600°C was necessary for crystallization, because the as-deposited oxide films were amorphous. Pb was deposited as a metal, while Zr and Ti were deposited as oxides and/or hydroxides during the electrolysis. The average of the dielectric constants of the PZT films prepared by the present method was more than 500.

  13. Isotopic Composition of Oxygen in Lunar Zircons

    NASA Technical Reports Server (NTRS)

    Nemchin, A. A.; Whitehouse, M. J.; Pidgeon, R. T.; Meyer, C.

    2005-01-01

    The recent discovery of heavy oxygen in zircons from the Jack Hills conglomerates Wilde et al. and Mojzsis et al. was interpreted as an indication of presence of liquid water on the surface of Early Earth. The distribution of ages of Jack Hills zircons and lunar zircons appears to be very similar and therefore analysis of oxygen in the lunar grains may provide a reference frame for further study of the early history of the Earth as well as give additional information regarding processes that operated on the Moon. In the present study we have analysed the oxygen isotopic composition of zircon grains from three lunar samples using the Swedish Museum of Natural History CAMECA 1270 ion microprobe. The samples were selected as likely tests for variations in lunar oxygen isotopic composition. Additional information is included in the original extended abstract.

  14. Physical properties of inorganic PMW-PNN-PZT ceramics

    NASA Astrophysics Data System (ADS)

    Sin, Sang-Hoon; Yoo, Ju-hyun; Kim, Yong-Jin; Baek, Sam-ki; Ha, Jun-Soo; No, Chung-Han; Song, Hyun-Seon; Shin, Dong-Chan

    2015-07-01

    In this work, inorganic Pb(Mg1/2W1/2)0.03(Ni1/3Nb2/3)x(Zr0.5Ti0.5)0.97-xO3 (x = 0.02 ∼ 0.12) composition ceramics were fabricated by the conventional solid state reaction method. And then their micro structure and ferroelectric properties were investigated according to the amount of PNN substitution. Small amounts of Li2CO3 and CaCO3 were used in order to decrease the sintering temperature of the ceramics. The 0.10 mol PNN-substituted PMW-PNN- PZT ceramics sintered at 920°C showed the excellent physical properties of piezoelectric constant (d33), electromechanical coupling factor (kp), mechanical quality coefficient (Qm), and dielectric constant of 566 pC/N, 0.61, 73, and 2183, respectively.

  15. Organic chemistry on Titan: Surface interactions

    NASA Technical Reports Server (NTRS)

    Thompson, W. Reid; Sagan, Carl

    1992-01-01

    The interaction of Titan's organic sediments with the surface (solubility in nonpolar fluids) is discussed. How Titan's sediments can be exposed to an aqueous medium for short, but perhaps significant, periods of time is also discussed. Interactions with hydrocarbons and with volcanic magmas are considered. The alteration of Titan's organic sediments over geologic time by the impacts of meteorites and comets is discussed.

  16. Structure of Titan's evaporites

    NASA Astrophysics Data System (ADS)

    Cordier, D.; Cornet, T.; Barnes, J. W.; MacKenzie, S. M.; Le Bahers, T.; Nna-Mvondo, D.; Rannou, P.; Ferreira, A. G.

    2016-05-01

    Numerous geological features that could be evaporitic in origin have been identified on the surface of Titan. Although they seem to be water-ice poor, their main properties - chemical composition, thickness, stratification - are essentially unknown. In this paper, which follows on a previous one focusing on the surface composition (Cordier, D., Barnes, J.W., Ferreira, A.G. [2013b]. Icarus 226(2),1431-1437), we provide some answers to these questions derived from a new model. This model, based on the up-to-date thermodynamic theory known as "PC-SAFT", has been validated with available laboratory measurements and specifically developed for our purpose. 1-D models confirm the possibility of an acetylene and/or butane enriched central layer of evaporitic deposit. The estimated thickness of this acetylene-butane layer could explain the strong RADAR brightness of the evaporites. The 2-D computations indicate an accumulation of poorly soluble species at the deposit's margin. Among these species, HCN or aerosols similar to tholins could play a dominant role. Our model predicts the existence of chemically trimodal "bathtub rings" which is consistent with what it is observed at the south polar lake Ontario Lacus. This work also provides plausible explanations to the lack of evaporites in the south polar region and to the high radar reflectivity of dry lakebeds.

  17. Large Particle Titanate Sorbents

    SciTech Connect

    Taylor-Pashow, K.

    2015-10-08

    This research project was aimed at developing a synthesis technique for producing large particle size monosodium titanate (MST) to benefit high level waste (HLW) processing at the Savannah River Site (SRS). Two applications were targeted, first increasing the size of the powdered MST used in batch contact processing to improve the filtration performance of the material, and second preparing a form of MST suitable for deployment in a column configuration. Increasing the particle size should lead to improvements in filtration flux, and decreased frequency of filter cleaning leading to improved throughput. Deployment of MST in a column configuration would allow for movement from a batch process to a more continuous process. Modifications to the typical MST synthesis led to an increase in the average particle size. Filtration testing on dead-end filters showed improved filtration rates with the larger particle material; however, no improvement in filtration rate was realized on a crossflow filter. In order to produce materials suitable for column deployment several approaches were examined. First, attempts were made to coat zirconium oxide microspheres (196 µm) with a layer of MST. This proved largely unsuccessful. An alternate approach was then taken synthesizing a porous monolith of MST which could be used as a column. Several parameters were tested, and conditions were found that were able to produce a continuous structure versus an agglomeration of particles. This monolith material showed Sr uptake comparable to that of previously evaluated samples of engineered MST in batch contact testing.

  18. The induced magnetosphere of Titan

    NASA Astrophysics Data System (ADS)

    Ness, N. F.; Acuna, M. H.; Behannon, K. W.

    1982-03-01

    No evidence was found for an intrinsic magnetic field, nor for the development of a bow shock wave, as the corotating Saturnian magnetoplasma convected past Titan during the Voyager 1 close encounter of November 12, 1980. The observation of a well-developed, induced bipolar magnetic tail is evidence, however, of a strong electrodynamic interaction. Three thin, current-carrying regions were crossed which correspond to the inbound and outbound tail magnetopause and an imbedded tail neutral sheet. The interaction is unique among those observed to date in the solar system, in that it is intermediate with respect to sonic and Alfvenic Mach numbers by comparison with Titan in the solar wind and Io in the Jovian magnetosphere. The draping of the Saturnian magnetic field around the ionosphere of Titan is suggested by results of the analysis of magnetic field data.

  19. Diurnal variations of Titan's ionosphere

    NASA Astrophysics Data System (ADS)

    Cui, J.; Galand, M.; Yelle, R. V.; Vuitton, V.; Wahlund, J.-E.; Lavvas, P. P.; Müller-Wodarg, I. C. F.; Cravens, T. E.; Kasprzak, W. T.; Waite, J. H.

    2009-06-01

    We present our analysis of the diurnal variations of Titan's ionosphere (between 1000 and 1300 km) based on a sample of Ion Neutral Mass Spectrometer (INMS) measurements in the Open Source Ion (OSI) mode obtained from eight close encounters of the Cassini spacecraft with Titan. Although there is an overall ion depletion well beyond the terminator, the ion content on Titan's nightside is still appreciable, with a density plateau of ˜700 cm-3 below ˜1300 km. Such a plateau is a combined result of significant depletion of light ions and modest depletion of heavy ones on Titan's nightside. We propose that the distinctions between the diurnal variations of light and heavy ions are associated with their different chemical loss pathways, with the former primarily through “fast” ion-neutral chemistry and the latter through “slow” electron dissociative recombination. The strong correlation between the observed night-to-day ion density ratios and the associated ion lifetimes suggests a scenario in which the ions created on Titan's dayside may survive well to the nightside. The observed asymmetry between the dawn and dusk ion density profiles also supports such an interpretation. We construct a time-dependent ion chemistry model to investigate the effect of ion survival associated with solid body rotation alone as well as superrotating horizontal winds. For long-lived ions, the predicted diurnal variations have similar general characteristics to those observed. However, for short-lived ions, the model densities on the nightside are significantly lower than the observed values. This implies that electron precipitation from Saturn's magnetosphere may be an additional and important contributor to the densities of the short-lived ions observed on Titan's nightside.

  20. Ion cyclotron waves at Titan

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Wei, H. Y.; Cowee, M. M.; Neubauer, F. M.; Dougherty, M. K.

    2016-03-01

    During the interaction of Titan's thick atmosphere with the ambient plasma, it was expected that ion cyclotron waves would be generated by the free energy of the highly anisotropic velocity distribution of the freshly ionized atmospheric particles created in the interaction. However, ion cyclotron waves are rarely observed near Titan, due to the long growth times of waves associated with the major ion species from Titan's ionosphere, such as CH4+ and N2+. In the over 100 Titan flybys obtained by Cassini to date, there are only two wave events, for just a few minutes during T63 flyby and for tens of minutes during T98 flyby. These waves occur near the gyrofrequencies of proton and singly ionized molecular hydrogen. They are left-handed, elliptically polarized, and propagate nearly parallel to the field lines. Hybrid simulations are performed to understand the wave growth under various conditions in the Titan environment. The simulations using the plasma and field conditions during T63 show that pickup protons with densities ranging from 0.01 cm-3 to 0.02 cm-3 and singly ionized molecular hydrogens with densities ranging from 0.015 cm-3 to 0.25 cm-3 can drive ion cyclotron waves with amplitudes of ~0.02 nT and of ~0.04 nT within appropriate growth times at Titan, respectively. Since the T98 waves were seen farther upstream than the T63 waves, it is possible that the instability was stronger and grew faster on T98 than T63.

  1. Titan and Enceladus mission (TANDEM)

    NASA Astrophysics Data System (ADS)

    Coustenis, A.

    2007-08-01

    Our understanding of Titan's atmosphere and surface has recently been enhanced by the data returned by the Cassini-Huygens mission. The Cassini orbiter will continue to be operational for about 3 more years during its extended mission. After this mission, any unanswered questions will forever remain unknown, unless we go back with an optimized orbital tour and advanced instrumentation. Considering the complementary nature of the geological, chemical and evolutionary history of Titan and Enceladus, we propose to carry out studies for a mission to perform an in situ exploration of these two objects in tandem. In our proposal we determine key science measurements, the types of samples that would be needed and the instrument suites for achieving the science goals. In particular, we develop conceptual designs for delivering the science payload, including orbiters, aerial platforms and probes, and define a launch/delivery/communication management architecture. This mission will require new technologies and capabilities so that the science goals can be achieved within the cost cap and acceptable risks. International participation will play a key role in achieving all the science goals of this mission. We will build this mission concept around a central core of single orbiter, a single Titan aerial probe and a core group of category 1 instruments. Aerobraking with Titan's atmosphere will be given serious consideration to minimize resource requirements and risk. This approach will allow a single orbiter to be used for both Enceladus science and Titan science with final orbit around Titan and later release of aerial probe(s) into Titan's atmosphere. The Titan aerial probe may be a Montgolfière balloon concept that will use the waster heat ~ 1000 watts from a single RTG power system. There will be a release of penetrator(s) on Enceladus also. This proposal addresses directly several of the scientific questions highlighted in the ESA Cosmic Vision 2015-2025 call, particularly

  2. Will Titan lose its veil?

    NASA Astrophysics Data System (ADS)

    Dimitrov, V.

    2007-08-01

    Methane CH4 is the only highly reactive and short-lived background component in Titan's atmosphere, so its overall reserve predetermines both features and duration of atmospheric chemical activity. Titan's global chemical activity is considered in terms of methane cycle. One cycle is defined as a period T0=7.0.1014s of complete photochemical destruction of methane's observable atmospheric content CH04 = 2.33.1017 kg. Cycle duration T0, number of the past NP =200±20, future NF =500±50 and total Nmax=NP+NF =700±70 cycles are the main quantitative indices of the global chemical activity [2]. The fact that the period T0 is much less than Titan's lifetime TT =1.42*1017s implies that the current content CH04 is continuously replenishing by methane global circulation. There are two sources of this replenishment, i.e. the outgassing of primordial methane reserve trapped in Titan's interior as the clathrate, and the (sub)ground liquidphase reduction of non-saturated final products of the atmospheric photochemical process. Internal reserve provides the dominant portion (>95%) of general recycling, while reducing reconversion is the minor constituent of the global balance. Yet, there is the problem of the availability of the off-the-shelf trapped methane. Overall admissible stock of the trapped methane depends on its internal allocation and falls in the range (CH4)max1,2=(15.3÷33.3).1020 kg, while continuous atmospheric activity during the whole Titan's life TSun 5.0.1017s needs only (CH4)crit=(CH04 ).Nmax = .(CH4)max 1.65.1020 kg. In turn, this bulk (CH4)crit depends on the clathrate cage-filling efficiency (molecular packing index) {kg CH4/kg clathrate} and can be provided if equals respectively to [1] crit1= (TSun/T0).[(CH4)0/[(CH4)max1] = 5.45.10-3 crit2= (TSun/T0).[(CH4)0/[(CH4)max2] = 2.51.10-3 Thus, the interrelation of overall trapped stock (CH4)max and crucial -values assigns the critical value (CH4)crit that in turn predetermines the very fate of Titan's veil

  3. The Titan Saturn System Mission

    NASA Astrophysics Data System (ADS)

    Coustenis, A.; Lunine, J.; Lebreton, J.; Matson, D.; Erd, C.; Reh, K.; Beauchamp, P.; Lorenz, R.; Waite, H.; Sotin, C.; Tssm Jsdt, T.

    2008-12-01

    A mission to return to Titan after Cassini-Huygens is a high priority for exploration. Recent Cassini-Huygens discoveries have revolutionized our understanding of the Titan system, rich in organics, containing a vast subsurface ocean of liquid water, surface repositories of organic compounds, and having the energy sources necessary to drive chemical evolution. With these recent discoveries, interest in Titan as the next scientific target in the outer Solar System is strongly reinforced. Cassini's discovery of active geysers on Enceladus adds an important second target in the Saturn system. The mission concept consists of a NASA-provided orbiter and an ESA-provided probe/lander and a Montgolfiere. The mission would launch on an Atlas 551 around 2020, travelling to Saturn on an SEP gravity assist trajectory, and reaching Saturn about 9.5 years later. The flight system would go into orbit around Saturn for about 2 years. During the first Titan flyby, the orbiter would release the lander to target a large northern polar sea, Kraken Mare, and the balloon system to a mid latitude region. During the tour phase, TSSM will perform Saturn system and Enceladus science, with at least 5 Enceladus flybys. Instruments aboard the orbiter will map Titan's surface at 50 m resolution in the 5 micron window, provide a global data set of topography and sound the immediate subsurface, sample complex organics, provide detailed observations of the atmosphere, and quantify the interaction of Titan with the Saturn magnetosphere. A subset of the instruments would provide spectra, imaging, plume sampling and particles and fields data on Enceladus. Instruments aboard the balloon will acquire high resolution vistas of the surface of Titan as the balloon cruises at 10 km altitude, as well as make compositional measurements of the surface, detailed sounding of crustal layering, and chemical measurements of aerosols. A magnetometer, will permit sensitive detection of induced or intrinsic fields

  4. Enhanced Output Power of PZT Nanogenerator by Controlling Surface Morphology of Electrode.

    PubMed

    Jung, Woo-Suk; Lee, Won-Hee; Ju, Byeong-Kwon; Yoon, Seok-Jin; Kang, Chong-Yun

    2015-11-01

    Piezoelectric power generation using Pb(Zr,Ti)O3(PZT) nanowires grown on Nb-doped SrTiO3(nb:STO) substrate has been demonstrated. The epitaxial PZT nanowires prepared by a hydrothermal method, with a diameter and length of approximately 300 nm and 7 μm, respecively, were vertically aligned on the substrate. An embossed Au top electrode was applied to maximize the effective power generation area for non-uniform PZT nanowires. The PZT nanogenerator produced output power density of 0.56 μW/cm2 with a voltage of 0.9 V and current of 75 nA. This research suggests that the morphology control of top electrode can be useful to improve the efficiency of piezoelectric power generation. PMID:26726616

  5. Electrical Properties of Tetragonal-PZT Thin Film Capacitors from 5 K to 300 K.

    NASA Astrophysics Data System (ADS)

    Daughton, D. R.; Evans, J. T.; Chapman, S. P.

    2015-03-01

    Rapid assessment of ferroelectric device characteristics is critical to improving ferroelectric materials processing as well as developing accurate ferroelectric device models. Here, we demonstrate automated electrical testing of thin PZT and Nb-doped PZT thin film devices at temperatures ranging from 300 K down to 5 K in a cryogenic probing environment. In this configuration, temperature-dependent dielectric constant, remanent polarization, coercive voltage, switching speed, and leakage are measured in a single pass on a single sample. From these measurements, it appears that tetragonal PZT does not have a phase boundary from room temperature down to 5 K. Retention tests conducted on several capacitors while transitioning from room temperature to 200 K, 100 K, and 6.5 K showed no loss of remanent polarization indicating 20/80 PZT and its niobium-doped cousins remain fully functional as memory devices down to 5 K.

  6. Properties of PZT-Based Piezoelectric Ceramics Between -150 and 250 C

    NASA Technical Reports Server (NTRS)

    Hooker, Matthew W.

    1998-01-01

    The properties of three PZT-based piezoelectric ceramics and one PLZT electrostrictive ceramic were measured as a function of temperature. In this work, the dielectric, ferroelectric polarization versus electric field, and piezoelectric properties of PZT-4, PZT-5A, PZT-5H, and PLZT-9/65/35 were measured over a temperature range of -150 to 250 C. In addition to these measurements, the relative thermal expansion of each composition was measured from 25 to 600 C and the modulus of rupture of each material was measured at room temperature. This report describes the experimental results and compares and contrasts the properties of these materials with respect to their applicability to intelligent aerospace systems.

  7. Airflow energy harvesters of metal-based PZT thin films by self-excited vibration

    NASA Astrophysics Data System (ADS)

    Suwa, E.; Tsujiura, Y.; Kurokawa, F.; Hida, H.; Kanno, I.

    2014-11-01

    We developed self-excited vibration energy harvesters of Pb(Zr,Ti)O3 (PZT) thin films using airflow. To enhance the self-excited vibration, we used 30-μm-thick stainless steel (SS304) foils as base cantilevers on which PZT thin films were deposited by rf-magnetron sputtering. To compensate for the initial bending of PZT/SS304 unimorph cantilever due to the thermal stress, we deposited counter PZT thin films on the back of the SS304 cantilever. We evaluated power-generation performance and vibration mode of the energy harvester in the airflow. When the angle of attack (AOA) was 20° to 30°, large vibration was generated at wind speeds over 8 m/s. By FFT analysis, we confirmed that stable self-excited vibration was generated. At the AOA of 30°, the output power reached 19 μW at wind speeds of 12 m/s.

  8. Fabrication and Characterization of PZT Thin-Film on Bulk Micromachined Si Motion Detectors

    SciTech Connect

    Clem, P.; Garino, T.J.; Laguna, G.; Tuttle, B.A.

    1999-01-07

    Motion detectors consisting of Pb(Zr{sub x}Ti{sub (1{minus}x)})O{sub 3} (PZT) thin films, between platinum electrodes, on micromachined silicon compound clamped-clamped or cantilever beam structures were fabricated using either hot KOH or High Aspect Ratio Silicon Etching (HARSE) to micromachine the silicon. The beams were designed such that a thicker region served as a test mass that produced stress at the top of the membrane springs that supported it when the object to which the detector was mounted moved. The PZT film devices were placed on these membranes to generate a charge or a voltage in response to the stress through the piezoelectric effect. Issues of integration of the PZT device fabrication process with the two etching processes are discussed. The effects of PZT composition and device geometry on the response of the detectors to motion is reported and discussed.

  9. Effects of Particle Size on the Piezoelectric Properties of 0-3 PZT/Cement Composites

    NASA Astrophysics Data System (ADS)

    Li, Zongjin; Gonga, Hongyu

    2008-02-01

    0-3 PZT/cement composites are kinds of new piezoelectric materials which are expected to find application in civil engineering for their high piezoelectric properties and good compatibility with concrete structures. In this study, the effect of particle size on the piezoelectric and dielectric properties of cement based 0-3 piezoelectric composites was investigated. The piezoelectric composites were prepared by mixing and pressing the white cement and PZT powder with different average particle size ranging from 3 μm to 482 μm. It was found that the piezoelectric strain factor (d33), dielectric constant (ɛr), and electromechanical coupling coefficient (Kt) increased with the increase of the PZT particle size. However, the composites with larger PZT particles had higher dielectric loss (tanδ) than the composites with smaller particles.

  10. Active buckling control of smart plate as diaphragm with PZT5 sensor/actuator patches

    NASA Astrophysics Data System (ADS)

    Viliani, N. S.; Pourrostami, H.; Mostafavi, S. M.; Hashemizadeh, F.; Safian, M. R.; Hashemi, M.

    2014-12-01

    In current study, buckling analyses of smart plate is presented. The various types of piezoelectric materials are under investigation for petrochemical industry and other applications. The PZT sensor output is used to determine the input to the PZT actuator using the feedback control algorithm for buckling control of FG plate. This study investigated the governing differential equations of motion of smart plate which includes FG plate as the membrane and PZT5 patches as actuator and sensor. The Fourier series method adopted to obtain the solution for the equation of motion. Also the effects of feedback gain and FGM volume fraction exponent on the critical buckling load for PZT-5A are studied. The potential application of current study can be found in optimal design of sensor's diaphragm. The variation of critical buckling load vs. feedback gain indicates that by increasing the feedback gain, the buckling load increases.

  11. Micro-Machined High-Frequency (80 MHz) PZT Thick Film Linear Arrays

    PubMed Central

    Zhou, Qifa; Wu, Dawei; Liu, Changgeng; Zhu, Benpeng; Djuth, Frank; Shung, K. Kirk

    2010-01-01

    This paper presents the development of a micro-machined high-frequency linear array using PZT piezoelectric thick films. The linear array has 32 elements with an element width of 24 μm and an element length of 4 mm. Array elements were fabricated by deep reactive ion etching of PZT thick films, which were prepared from spin-coating of PZT solgel composite. Detailed fabrication processes, especially PZT thick film etching conditions and a novel transferring-and-etching method, are presented and discussed. Array designs were evaluated by simulation. Experimental measurements show that the array had a center frequency of 80 MHz and a fractional bandwidth (−6 dB) of 60%. An insertion loss of −41 dB and adjacent element crosstalk of −21 dB were found at the center frequency. PMID:20889407

  12. CHARACTERIZATION OF POLED SINGLE-LAYER PZT FOR PIEZO STACK IN FUEL INJECTION SYSTEM

    SciTech Connect

    Wang, Hong; Matsunaga, Tadashi; Lin, Hua-Tay

    2010-01-01

    Poled single-layer PZT has been characterized in as-extracted and as-received states. PZT plate specimens in the former were extracted from a stack. Flexure strength of PZT was evaluated by using ball-on-ring and 4-point bend tests. Fractography showed that intergranular fractures dominated the fracture surface and that volume pores were the primary strength-limiting flaws. The electric field effect was investigated by testing the PZT in open circuit and coercive field levels. An asymmetrical response on the biaxial flexure strength with respect to the electric field direction was observed. These experimental results will assist reliability design of the piezo stack that is being considered in fuel injection system.

  13. On causes of the origin of systematic errors in latitude determination with the Moscow PZT.

    NASA Astrophysics Data System (ADS)

    Volchkov, A. A.; Gutsalo, G. A.

    Peculiarities of eye response during visual measurements of star positions on photographic plates are considered. It is shown that variations of the plate background density can be a source of systematic errors during latitude determinations with a PZT.

  14. Influence of defect structure on ferroelectric aging in donor-acceptor hybrid-doped PZT

    NASA Astrophysics Data System (ADS)

    Anil, A.; Vani, K.; Kumar, V.

    2016-06-01

    In the present work, we report the aging effect in manganese (Mn) and niobium (Nb) hybrid-doped PZT composition. Interestingly, it is observed that the ferroelectric aging depends on the acceptor/donor ratio. In hybrid-doped PZT, at high donor dopant concentrations, aging is not observed. The underlying mechanism is correlated with the defect chemistry of the system. It is also observed that tuning the defect chemistry is an effective strategy to realize piezoceramics with enhanced dielectric and piezoelectric characteristics.

  15. A Neutron Study of the Structure and Lattice Dynamics of Single Crystal PZT

    NASA Astrophysics Data System (ADS)

    Gehring, Peter

    2011-03-01

    The outstanding piezoelectric properties of PbZr 1-x Ti x O3 (PZT) perovskite ceramics have long been exploited in numerous device applications, making PZT arguably the most technologically important ferroelectric material in use today. Efforts to understand the piezoelectric mechanism have inspired a plethora of structural studies spanning decades, but solving the PZT phase diagram has proven to be famously problematic because single crystals have not been available save for Zr- and Ti-rich compositions that lie very near the end members PbZr O3 and PbTi O3 , where the piezoelectricity is weakest. Thus, whereas PZT has been the subject of thousands of powder and ceramic investigations, no consensus regarding the crystal structures of PZT exists. We report the first neutron diffraction study of single-crystal PZT with compositions x = 0.325 and 0.460. Our data refute the thesis that the ferroelectric phases of PZT within this composition range, all of which are highly piezoelectric, are purely monoclinic (Cc or Cm). The broadening of certain Bragg peaks can be interpreted in terms of coexisting rhombohedral and monoclinic domains, whereby monoclinic order is enhanced by Ti-doping. This is consistent with the theoretical proposal that the tendency to form macroscopic monoclinic phases facilitates the mechanism of polarization rotation by reducing the energy required to reorient the electric polarization. Dispersions of the lowest energy TO and TA phonon modes were measured on a single crystal of PZT with x = 0.325 in the paraelectric phase at 650 K. The TO mode energy drops at small wave-vectors suggesting that it is a soft mode associated with the ferroelectric phase transition at 590 K. Evidence of a second soft-mode, corresponding to a phase transition at 370 K at the R-point, is provided based on the redistribution of spectral weight as a function of temperature.

  16. Experimental evaluation of cMUT and PZT transducers in receive only mode for photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Warshavski, O.; Meynier, C.; Sénégond, N.; Chatain, P.; Felix, N.; Nguyen-Dinh, A.

    2016-03-01

    In photoacoustic imaging, the angular reception performance of ultrasonic transducers is a critical parameter to be considered for system designers. The quantitative comparison between cMUT and PZT emphasizes the difference between the transducer requirements and specifications between conventional ultrasound and photoacoustic imaging. In this present work, we show significant benefits of cMUT based array transducers over conventional PZT arrays for the improvement of quality in photoacoustic imaging systems.

  17. Molecular Dynamics Simulation of Disordered Zircon

    SciTech Connect

    Devanathan, Ram; Corrales, Louis R.; Weber, William J.; Chartier, Alain; Meis, Constantin

    2004-02-27

    The melting of zircon and the amorphous state produced by quenching from the melt were simulated by molecular dynamics using a new partial charge model combined with the Ziegler-Biersack-Littmark potential. The model has been established for the description of the crystalline and aperiodic structures of zircon in order to be used for the simulation of displacement cascades. It provides an excellent fit to the structure, and accounts with convenient precision the mechanical and thermodynamic properties of zircon. The calculated melting temperature is about 2100 K. The activation energy for self-diffusion of ions in the liquid state was determined to be 190-200 kJ/mole. Melt quenching was employed to produce two different disordered states with distinct densities and structures. In the high density disordered state, the zircon structure is intact but the bond angle distributions are broader, 4% of the Si units are polymerized, and the volume swelling is about 8%. In the low density amorphous state, the Zr and Si coordination numbers are lower, and the Zr-O and Si-O bond lengths are shorter than corresponding values for the crystal. In addition, a highly polymerized Si network, with average connectivity of two, is observed in the low density amorphous state. These features have all been experimentally observed in natural metamict zircon. The present findings, when considered in light of experimental radiation effects studies, suggest that the swelling in zircon arises initially from disorder in the zircon crystal, and at high doses the disordered crystal is unable to accommodate the volume expansion and transforms to the amorphous state.

  18. Strain mediated coupling in magnetron sputtered multiferroic PZT/Ni-Mn-In/Si thin film heterostructure

    SciTech Connect

    Singh, Kirandeep; Kaur, Davinder; Singh, Sushil Kumar

    2014-09-21

    The strain mediated electrical and magnetic properties were investigated in PZT/Ni-Mn-In heterostructure deposited on Si (100) by dc/rf magnetron sputtering. X-ray diffraction pattern revealed that (220) orientation of Ni-Mn-In facilitate the (110) oriented tertragonal phase growth of PZT layer in PZT/Ni-Mn-In heterostructure. A distinctive peak in dielectric constant versus temperature plots around martensitic phase transformation temperature of Ni-Mn-In showed a strain mediated coupling between Ni-Mn-In and PZT layers. The ferroelectric measurement taken at different temperatures exhibits a well saturated and temperature dependent P-E loops with a highest value of P{sub sat}~55 μC/cm² obtained during martensite-austenite transition temperature region of Ni-Mn-In. The stress induced by Ni-Mn-In layer on upper PZT film due to structural transformation from martensite to austenite resulted in temperature modulated Tunability of PZT/Ni-Mn-In heterostructure. A tunability of 42% was achieved at 290 K (structural transition region of Ni-Mn-In) in these heterostructures. I-V measurements taken at different temperatures indicated that ohmic conduction was the main conduction mechanism over a large electric field range in these heterostructures. Magnetic measurement revealed that heterostructure was ferromagnetic at room temperature with a saturation magnetization of ~123 emu/cm³. Such multiferroic heterostructures exhibits promising applications in various microelectromechanical systems.

  19. Impedance monitoring at tendon-anchorage via mountable PZT interface and temperature-effect compensation

    NASA Astrophysics Data System (ADS)

    Huynh, Thanh-Canh; Nguyen, Tuan-Cuong; Choi, Sang-Hoon; Kim, Jeong-Tae

    2016-04-01

    In this study, the pre-stress force in pre-stressed concrete (PSC) girders is monitored via mountable PZT interface under varying temperature. Firstly, an impedance-based technique using mountable PZT interface is proposed for pre-stress-loss monitoring in tendon-anchorage systems. A cross correlation-based temperature-effect compensation algorithm using an effective frequency shift (EFS) of impedance signatures is visited. Secondly, lab-scale experiments are performed on a PSC girder instrumented with a mountable PZT interface at tendon-anchorage. A series of temperature variation and pre-stress-loss events are simulated for the lab-scale PSC girder. Thirdly, the feasibility of the mountable PZT interface for pre-stress-loss monitoring in tendon-anchorage is experimentally verified under constant temperature conditions. Finally, the PZT interface device is examined for pre-stress-loss monitoring under temperature changes to validate its applicability. The temperature effect on impedance signatures is compensated by minimizing cross-correlation deviation between impedance patterns of the mountable PZT interface.

  20. Geochemical signatures and magmatic stability of terrestrial impact produced zircon

    NASA Astrophysics Data System (ADS)

    Wielicki, Matthew M.; Harrison, T. Mark; Schmitt, Axel K.

    2012-03-01

    Understanding the role of impacts on early Earth has major implications to near surface conditions, but the apparent lack of preserved terrestrial craters > 2 Ga does not allow a direct sampling of such events. Ion microprobe U-Pb ages, REE abundances and Ti-in-zircon thermometry for impact produced zircon are reported here. These results from terrestrial impactites, ranging in age from ~ 35 Ma to ~ 2 Ga, are compared with the detrital Hadean zircon population from Western Australia. Such comparisons may provide the only terrestrial constraints on the role of impacts during the Hadean and early Archean, a time predicted to have a high bolide flux. Ti-in-zircon thermometry indicates an average of 773 °C for impact-produced zircon, ~ 100 °C higher than the average for Hadean zircon crystals. The agreement between whole-rock based zircon saturation temperatures for impactites and Ti-in-zircon thermometry (at aTiO2 = 1) implies that Ti-in-zircon thermometry record actual crystallization temperatures for impact melts. Zircon saturation modeling of Archean crustal rock compositions undergoing thermal excursions associated with the Late Heavy Bombardment predicts equally high zircon crystallization temperatures. The lack of such thermal signatures in the Hadean zircon record implies that impacts were not a dominant mechanism of producing the preserved Hadean detrital zircon record.

  1. Hubble Observes Surface of Titan

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Scientists for the first time have made images of the surface of Saturn's giant, haze-shrouded moon, Titan. They mapped light and dark features over the surface of the satellite during nearly a complete 16-day rotation. One prominent bright area they discovered is a surface feature 2,500 miles across, about the size of the continent of Australia.

    Titan, larger than Mercury and slightly smaller than Mars, is the only body in the solar system, other than Earth, that may have oceans and rainfall on its surface, albeit oceans and rain of ethane-methane rather than water. Scientists suspect that Titan's present environment -- although colder than minus 289 degrees Fahrenheit, so cold that water ice would be as hard as granite -- might be similar to that on Earth billions of years ago, before life began pumping oxygen into the atmosphere.

    Peter H. Smith of the University of Arizona Lunar and Planetary Laboratory and his team took the images with the Hubble Space Telescope during 14 observing runs between Oct. 4 - 18. Smith announced the team's first results last week at the 26th annual meeting of the American Astronomical Society Division for Planetary Sciences in Bethesda, Md. Co-investigators on the team are Mark Lemmon, a doctoral candidate with the UA Lunar and Planetary Laboratory; John Caldwell of York University, Canada; Larry Sromovsky of the University of Wisconsin; and Michael Allison of the Goddard Institute for Space Studies, New York City.

    Titan's atmosphere, about four times as dense as Earth's atmosphere, is primarily nitrogen laced with such poisonous substances as methane and ethane. This thick, orange, hydrocarbon haze was impenetrable to cameras aboard the Pioneer and Voyager spacecraft that flew by the Saturn system in the late 1970s and early 1980s. The haze is formed as methane in the atmosphere is destroyed by sunlight. The hydrocarbons produced by this methane destruction form a smog similar to that found over large cities, but is much

  2. Possible temperate lakes on Titan

    NASA Astrophysics Data System (ADS)

    Vixie, Graham; Barnes, Jason W.; Jackson, Brian; Rodriguez, Sébastien; Le Mouélic, Stéphane; Sotin, Christophe; MacKenzie, Shannon; Wilson, Paul

    2015-09-01

    We analyze southern mid-latitude albedo-dark features on Titan observed by Cassini's Visual and Infrared Mapping Spectrometer (VIMS). In exploring the nature of these features we consider their morphology, albedo, and specular reflectivity. We suggest that they represent candidates for potential temperate lakes. The presence of lakes at the mid-latitudes would indicate that surface liquid can accumulate and remain stable away from Titan's poles. Candidate lakes were identified by looking for possible shorelines with lacustrine morphology. Then, we applied an atmospheric correction that empirically solved for their surface albedo. Finally, we looked for a specular reflection of the sky in the identified candidates. Using this prescription, we find two candidates that remain as potential temperature lakes. If candidate features do represent temperate lakes on Titan, they have implications for formation mechanisms such as clouds and rainfall or, in low elevation areas, percolation and subsurface flow. Clouds were observed near candidate lake locations on the T66 flyby and this latitude band showed many clouds during southern summer. Our techniques can be applied to areas of Titan that lack RADAR coverage to search for mid- and low-latitude lakes in the future.

  3. The organic aerosols of Titan

    NASA Astrophysics Data System (ADS)

    Khare, B. N.; Sagan, C.; Thompson, W. R.; Arakawa, E. T.; Suits, F.; Callcott, T. A.; Williams, M. W.; Shrader, S.; Ogino, H.; Willingham, T. O.; Nagy, B.

    A dark reddish organic solid, called tholin, is synthesized from simulated Titanian atmospheres by irradiation with high energy electrons in a plasma discharge. The visible reflection spectrum of this tholin is found to be similar to that of high altitude aerosols responsible for the albedo and reddish color of Titan. The real (n) and imaginary (k) parts of the complex refractive index of thin films of Titan tholin prepared by continuous D.C. discharge through a 0.9 N2/0.1 CH4 gas mixture at 0.2 mb is determined from x-ray to microwave frequencies. Values of n (⋍1.65) and k (⋍0.004 to 0.08) in the visible are consistent with deductions made by ground-based and spaceborne observations of Titan. Many infrared absorption features are present in k(λ), including the 4.6 μm nitrile band. Molecular analysis of the volatile component of this tholin was performed by sequential and non-sequential pyrolytic gas chromatography/mass spectrometry. More than one hundred organic compounds are released; tentative identifications include saturated and unsaturated aliphatic hydrocarbons, substituted polycyclic aromatics, nitriles, amines, pyrroles, pyrazines, pyridines, pyrimidines, and the purine, adenine. In addition, acid hydrolysis produces a racemic mixture of biological and non-biological amino acids. Many of these molecules are implicated in the origin of life on Earth, suggesting Titan as a contemporary laboratory environment for prebiological organic chemistry on a planetary scale.

  4. Organic chemistry in Titan's atmosphere

    NASA Technical Reports Server (NTRS)

    Scattergood, T.

    1982-01-01

    Laboratory photochemical simulations and other types of chemical simulations are discussed. The chemistry of methane, which is the major known constituent of Titan's atmosphere was examined with stress on what can be learned from photochemistry and particle irradiation. The composition of dust that comprises the haze layer was determined. Isotope fractionation in planetary atmospheres is also discussed.

  5. The organic aerosols of Titan

    NASA Technical Reports Server (NTRS)

    Khare, B. N.; Sagan, C.; Thompson, W. R.; Arakawa, E. T.; Suits, F.; Calcott, T. A.; Williams, M. W.; Shrader, S.; Ogino, H.; Willingham, T. O.

    1986-01-01

    A dark reddish organic solid, called tholin, is synthesized from simulated Titanian atmospheres by irradiation with high energy electrons in a plasma discharge. The visible reflection spectrum of this tholin is found to be similar to that of high altitude aerosols responsible for the albedo and reddish color of Titan. The real (n) and imaginary (k) parts of the complex refractive index of thin films of Titan prepared by continuous dc discharge through a 0.9 N2/0.1 CH4 gas mixture at 0.2 mb is determined from X-ray to microwave frequencies. Values of n (approx. 1.65) and k (approx. 0.004 to 0.08) in the visible are consistent with deductions made by groundbased and spaceborne observations of Titan. Many infrared absorption features are present in k(lambda), including the 4.6 micrometer nitrile band. Molecular analysis of the volatile components of this tholin was performed by sequential and nonsequential pyrolytic gas chromatography/mass spectrometry. More than one hundred organic compounds are released; tentative identifications include saturated and unsaturated aliphatic hydrocarbons, substituted polycylic aromatics, nitriles, amines, pyrroles, pyrazines, pyridines, pyrimidines, and the purine, adenine. In addition,acid hydrolysis produces a racemic mixture of biological and nonbiological amino acids. Many of these molecules are implicated in the origin of life on Earth, suggesting Titan as a contemporary laboratory environment for prebiological organic chemistry on a planetary scale.

  6. Titan's Polar Atmosphere

    NASA Astrophysics Data System (ADS)

    Flasar, F. M.; Achterberg, R. K.; Schinder, P. J.

    2015-12-01

    Cassini CIRS and Radio-Occultation measurements obtained in 2004-2015 have tracked the evolution of temperatures and winds in Titan's polar atmosphere, as the winter season shifted from the northern hemisphere to the southern. The dissolution of the strong circumpolar vortex initially seen in the northern hemisphere has been gradual. There is no evidence of the rapid distortion and disruption forced by planetary waves that can occur on Earth. Indeed, neither Cassini experiment has identified any thermal signature attributable to planetary-scale waves. The south-polar region has turned wintry fairly abruptly: temperature and zonal wind maps from CIRS data show that the 1-mbar temperatures at high southern latitudes in late autumn are already much colder than those at the corresponding latitudes in the north in midwinter, when the first extensive polar measurements were obtained. The south-polar region now has a strong circumpolar vortex, with maximum stratospheric winds occurring near 60° S, in contrast to the northern hemisphere in winter, where the polar vortex was much broader, extending to 20°-30° N. Potential vorticity maps now indicate steep meridional gradients at high southern latitudes, implying a barrier to efficient mixing between the polar region and lower latitudes. Radio-occultations have higher vertical resolution than CIRS, and they have recently probed latitudes as high as 65° in both hemispheres (latitudes closer to the pole are precluded because of the geometry of Earth occultations and the season). Above 80 km at these latitudes, where the radiative damping times are small enough that temperatures have large seasonal variations, the stratosphere in the north has warmed, and it has become much colder in the south. The abrupt transition region with negative vertical temperature gradient between 80 and 100 km, which was seen at high northern latitudes in winter, has weakened, but it is still visible. In the south, one can see the early stage of

  7. Radiation damage in zircon and monazite

    SciTech Connect

    Meldrum, A.; Boatner, L.A.; Weber, W.J.; Ewing, R.C.

    1998-07-01

    Monazite and zircon respond differently to ion irradiation and to thermal and irradiation-enhanced annealing. The damage process (i.e., elastic interactions leading to amorphization) in radioactive minerals (metamictization) is basically the same as for the ion-beam-irradiated samples with the exception of the dose rate which is much lower in the case of natural samples. The crystalline-to-metamict transition in natural samples with different degrees of damage, from almost fully crystalline to completely metamict, is compared to the sequence of microstructures observed for ion-beam-irradiated monazite and zircon. The damage accumulation process, representing the competing effects of radiation-induced structural disorder and subsequent annealing mechanisms (irradiation-enhanced and thermal) occurs at much higher temperatures for zircon than for monazite. The amorphization dose, expressed as displacements per atom, is considerably higher in the natural samples, and the atomic-scale process leading to metamictization appears to develop differently. Ion-beam-induced amorphization data were used to calculate the {alpha}-decay-event dose required for amorphization in terms of a critical radionuclide concentration, i.e., the concentration above which a sample of a given age will become metamict at a specific temperature. This equation was applied to estimate the reliability of U-Pb ages, to provide a qualitative estimate of the thermal history of high-U natural zircons, and to predict whether actinide-bearing zircon or monazite nuclear waste forms will become amorphous (metamict) over long timescales.

  8. Jurassic zircons from the Southwest Indian Ridge

    PubMed Central

    Cheng, Hao; Zhou, Huaiyang; Yang, Qunhui; Zhang, Lingmin; Ji, Fuwu; Dick, Henry

    2016-01-01

    The existence of ancient rocks in present mid-ocean ridges have long been observed but received less attention. Here we report the discovery of zircons with both reasonably young ages of about 5 Ma and abnormally old ages of approximate 180 Ma from two evolved gabbroic rocks that were dredged from the Southwest Indian Ridge (SWIR) in the Gallieni fracture zone. U–Pb and Lu–Hf isotope analyses of zircons were made using ion probe and conventional laser abrasion directly in petrographic thin sections. Young zircons and their host oxide gabbro have positive Hf isotope compositions (εHf = +15.7–+12.4), suggesting a highly depleted mantle beneath the SWIR. The spread εHf values (from−2.3 to−4.5) of abnormally old zircons, together with the unradiogenic Nd-Hf isotope of the host quartz diorite, appears to suggest an ancient juvenile magmatism along the rifting margin of the southern Gondwana prior to the opening of the Indian Ocean. A convincing explanation for the origin of the unusually old zircons is yet to surface, however, an update of the theory of plate tectonics would be expected with continuing discovery of ancient rocks in the mid-oceanic ridges and abyssal ocean basins. PMID:27185575

  9. Jurassic zircons from the Southwest Indian Ridge.

    PubMed

    Cheng, Hao; Zhou, Huaiyang; Yang, Qunhui; Zhang, Lingmin; Ji, Fuwu; Dick, Henry

    2016-01-01

    The existence of ancient rocks in present mid-ocean ridges have long been observed but received less attention. Here we report the discovery of zircons with both reasonably young ages of about 5 Ma and abnormally old ages of approximate 180 Ma from two evolved gabbroic rocks that were dredged from the Southwest Indian Ridge (SWIR) in the Gallieni fracture zone. U-Pb and Lu-Hf isotope analyses of zircons were made using ion probe and conventional laser abrasion directly in petrographic thin sections. Young zircons and their host oxide gabbro have positive Hf isotope compositions (εHf = +15.7-+12.4), suggesting a highly depleted mantle beneath the SWIR. The spread εHf values (from-2.3 to-4.5) of abnormally old zircons, together with the unradiogenic Nd-Hf isotope of the host quartz diorite, appears to suggest an ancient juvenile magmatism along the rifting margin of the southern Gondwana prior to the opening of the Indian Ocean. A convincing explanation for the origin of the unusually old zircons is yet to surface, however, an update of the theory of plate tectonics would be expected with continuing discovery of ancient rocks in the mid-oceanic ridges and abyssal ocean basins. PMID:27185575

  10. Jurassic zircons from the Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Cheng, Hao; Zhou, Huaiyang; Yang, Qunhui; Zhang, Lingmin; Ji, Fuwu; Dick, Henry

    2016-05-01

    The existence of ancient rocks in present mid-ocean ridges have long been observed but received less attention. Here we report the discovery of zircons with both reasonably young ages of about 5 Ma and abnormally old ages of approximate 180 Ma from two evolved gabbroic rocks that were dredged from the Southwest Indian Ridge (SWIR) in the Gallieni fracture zone. U–Pb and Lu–Hf isotope analyses of zircons were made using ion probe and conventional laser abrasion directly in petrographic thin sections. Young zircons and their host oxide gabbro have positive Hf isotope compositions (εHf = +15.7–+12.4), suggesting a highly depleted mantle beneath the SWIR. The spread εHf values (from‑2.3 to‑4.5) of abnormally old zircons, together with the unradiogenic Nd-Hf isotope of the host quartz diorite, appears to suggest an ancient juvenile magmatism along the rifting margin of the southern Gondwana prior to the opening of the Indian Ocean. A convincing explanation for the origin of the unusually old zircons is yet to surface, however, an update of the theory of plate tectonics would be expected with continuing discovery of ancient rocks in the mid-oceanic ridges and abyssal ocean basins.

  11. Temperate Lakes Discovered on Titan

    NASA Astrophysics Data System (ADS)

    Vixie, Graham; Barnes, Jason W.; Jackson, Brian; Wilson, Paul

    2012-04-01

    We have discovered two temperate lakes on Titan using Cassini's Visual and Infrared Mapping Spectrometer (VIMS). Three key features help to identify these surface features as lakes: morphology, albedo, and specular reflection. The presence of lakes at the mid-latitudes mean liquid can accumulate and remain stable outside of the poles. We first identify a lake surface by looking for possible shorelines with a lacustrine morphology. Then, we apply a simple atmospheric correction that produces an approximate surface albedo. Next, we prepare cylindrical projection maps of the brightness of the sky as seen from any points on the surface to identify specular reflections. Our techniques can then be applied to other areas, such as Arrakis Planitia, to test for liquid. Currently, all the known lakes on Titan are concentrated at the poles. Lakes have been suggested in the tropic zone by Griffith et al. Our discovery of non-transient, temperate lakes has important implications for Titan's hydrologic cycle. Clouds have been recorded accumulating in the mid-latitudes and areas have been darkened by rainfall but later brightened after evaporation (Turtle et al. 2011). Stable temperate lakes would affect total rainfall, liquid accumulation, evaporation rates, and infiltration. Polaznik Macula (Figure 1) is a great candidate for lake filling, evaporation rates, and stability. References: Griffith, C., et al.: "Evidence for Lakes on Titan's Tropical Surface". AAS/Division for Planetary Sciences Meeting Abstracts #42, Vol. 42, pp. 1077, 2010. Turtle, E. P., et al.: "Rapid and Extensive Surface Changes Near Titan's Equator: Evidence of April Showers". Science, Vol. 331, pp. 1414-, 2011. Figure 1: Polaznik Macula is the large, dark area central to the figure. The encircled dark blue areas represent positively identified lake regions in the T66 flyby. The light blue areas represent lake candidates still under analysis. The green circle marks a non-lake surface feature enclosed by a

  12. Nitrogen compounds in Titan's stratosphere

    NASA Astrophysics Data System (ADS)

    Coustenis, A.; Cirs Investigation Team

    Titan's atmosphere is essentially composed of molecular nitrogen (N2). The chemistry between the two mother molecules (N2 and CH4) leads to the formation of a certain number of nitriles observed in Titan's stratosphere as early as at the time of the Voyager 1 encounter in 1980. In the spectra taken by the Infrared Radiometer Interferometer Spectrometer (IRIS) the signatures of HCN, HC3N, C2N2 and C4N2 (in solid form) were found and reported. Subsequent observations from the ground better described the vertical profiles of these constituents and allowed for the detection of CH3CN (acetonitrile) in the mm range [3,4]. Recent data recorded by the Composite Infrared Spectrometer (CIRS) aboard the Cassini spacecraft during the Titan flybys (October 2004 - June 2006) give a handle on the temporal and latitudinal variations of these constituents. The nadir spectra characterize various regions on Titan from 85°S to 75°N with a variety of emission angles. We study the emission observed in the mid-infrared CIRS detector arrays (covering roughly the 600-1500 cm-1 spectral range with apodized resolutions of 2.54 or 0.53 cm-1 ). The composite spectrum shows several molecular signatures of nitriles. Information is retrieved on the meridional variations of the trace constituents and tied to predictions by dynamical-photochemical models [1,2,5]. The nitriles show a significant enhancement at high northern latitudes albeit not as marked as at the time of the Voyager encounter. We will give a review of our current understanding of the minor nitrile chemistry on Titan. References : [1] Coustenis et al., 2006. Icarus, in press. [2] Flasar et al., 2005. Science 308, 975. [3] Marten, A., et al., 2002, Icarus, 158, 532-544. [4] Marten, A. & Moreno, R., 2003. 35th Annual DPS Meeting, Monterey, Ca, BAAS, 35, 952. [5] Teanby et al., 2006. Icarus, 181, 243-255.

  13. Dunes reveal Titan's recent history

    NASA Astrophysics Data System (ADS)

    Savage, Christopher J.; Radebaugh, Jani

    2010-04-01

    Large fields of linear dunes are abundant on Titan, covering nearly 20% of the surface. They are among the youngest features and represent interactions between near-surface winds and sediment. This interaction may vary from area to area creating unique populations of eolian features identified by dune field parameters such as crest-to-crest spacing, dune width and orientation. These parameters respond to changes in near-surface conditions over periods of time ranging from minutes to many thousands of years depending on dune size and the duration of the changes. While pattern analysis of dune field parameters on Earth and, in this study, Titan reveals much about current climatic conditions, such as wind regimes and wetter vs. drier areas, many inferences about past conditions can also be made. Initial pattern analysis of linear dunes on Titan reveals a single population of linear dunes representing a large percentage of all observed dunes. This single population is the result of two leading possibilities: Either there has been only one long period of dune building, leading to very old cores that have been built upon over long periods of time, perhaps punctuated with few or many intervals of non-deposition; or the current conditions of dune building have persisted long enough to completely erase any evidence of previous conditions. We have not yet worked through all the input parameters to adjust Earth's time scales to Titan's, and thus it is not yet possible to give a precise age for Titan's dunes. However, if these large linear dunes are similar to Earth's large linear dunes, they may represent at least several thousand years of dune building.

  14. Direct Intracochlear Acoustic Stimulation Using a PZT Microactuator.

    PubMed

    Luo, Chuan; Omelchenko, Irina; Manson, Robert; Robbins, Carol; Oesterle, Elizabeth C; Cao, Guo Zhong; Shen, I Y; Hume, Clifford R

    2015-01-01

    Combined electric and acoustic stimulation has proven to be an effective strategy to improve hearing in some cochlear implant users. We describe an acoustic microactuator to directly deliver stimuli to the perilymph in the scala tympani. The 800 µm by 800 µm actuator has a silicon diaphragm driven by a piezoelectric thin film (e.g., lead-zirconium-titanium oxide or PZT). This device could also be used as a component of a bimodal acoustic-electric electrode array. In the current study, we established a guinea pig model to test the actuator for its ability to deliver auditory signals to the cochlea in vivo. The actuator was placed through the round window of the cochlea. Auditory brainstem response (ABR) thresholds, peak latencies, and amplitude growth were calculated for an ear canal speaker versus the intracochlear actuator for tone burst stimuli at 4, 8, 16, and 24 kHz. An ABR was obtained after removal of the probe to assess loss of hearing related to the procedure. In some animals, the temporal bone was harvested for histologic analysis of cochlear damage. We show that the device is capable of stimulating ABRs in vivo with latencies and growth functions comparable to stimulation in the ear canal. Further experiments will be necessary to evaluate the efficiency and safety of this modality in long-term auditory stimulation and its ability to be integrated with conventional cochlear implant arrays. PMID:26631107

  15. Direct Intracochlear Acoustic Stimulation Using a PZT Microactuator

    PubMed Central

    Luo, Chuan; Omelchenko, Irina; Manson, Robert; Robbins, Carol; Oesterle, Elizabeth C.; Cao, Guo Zhong; Hume, Clifford R.

    2015-01-01

    Combined electric and acoustic stimulation has proven to be an effective strategy to improve hearing in some cochlear implant users. We describe an acoustic microactuator to directly deliver stimuli to the perilymph in the scala tympani. The 800 µm by 800 µm actuator has a silicon diaphragm driven by a piezoelectric thin film (e.g., lead-zirconium-titanium oxide or PZT). This device could also be used as a component of a bimodal acoustic-electric electrode array. In the current study, we established a guinea pig model to test the actuator for its ability to deliver auditory signals to the cochlea in vivo. The actuator was placed through the round window of the cochlea. Auditory brainstem response (ABR) thresholds, peak latencies, and amplitude growth were calculated for an ear canal speaker versus the intracochlear actuator for tone burst stimuli at 4, 8, 16, and 24 kHz. An ABR was obtained after removal of the probe to assess loss of hearing related to the procedure. In some animals, the temporal bone was harvested for histologic analysis of cochlear damage. We show that the device is capable of stimulating ABRs in vivo with latencies and growth functions comparable to stimulation in the ear canal. Further experiments will be necessary to evaluate the efficiency and safety of this modality in long-term auditory stimulation and its ability to be integrated with conventional cochlear implant arrays. PMID:26631107

  16. Microfabrication technique for thick structure of metals and PZT

    NASA Astrophysics Data System (ADS)

    Shimizu, Toru; Murakoshi, Yoichi; Wang, Zhanjie; Maeda, Ryutaro; Sano, Toshio

    1999-03-01

    Micro fabrication techniques for thick structure are developed. One method is a micro fabrication method using injection molding. And another method is the coating method using hydro gel. First method is almost same technique which is named MIM or CIM. In the process, the powder is mixed with the binder and mixture is injection molded. the molded parts are extracted the binder using supercritical carbon dioxide, and sintered. Employing this process, micro pattern which has aspect ratio more than 5 can be molded by metal powder and PZT. In this method, a micro pattern made by laser ablation is used as a die. As compared with other micro fabrication techniques, this method can utilize the molding die repeatedly. Consequently, the producing cost of micro parts can be decreased by this method on actual production process. Second method is a technique which uses the PVA hydrogel. The powder is mixed with water which contains the PVA from 3 to 15 percent. The mixed compound is sandwiched with PE films.It is froze and a gel sheet which has thickness from 40 to 100 micrometers is obtained. Using the sheet, the ceramic and metal are coated on the Silicon wafer, and thick structure is fabricated.

  17. Octahedral tilting, monoclinic phase and the phase diagram of PZT

    NASA Astrophysics Data System (ADS)

    Cordero, F.; Trequattrini, F.; Craciun, F.; Galassi, C.

    2011-10-01

    Anelastic and dielectric spectroscopy measurements on PbZr1-xTixO3 (PZT) close to the morphotropic (MPB) and antiferroelectric boundaries provide new insight into some controversial aspects of its phase diagram. No evidence is found of a border separating monoclinic (M) from rhombohedral (R) phases, in agreement with recent structural studies supporting a coexistence of the two phases over a broad composition range x < 0.5, with the fraction of M increasing toward the MPB. It is also discussed why the observed maximum of elastic compliance appears to be due to a rotational instability of the polarization linearly coupled to shear strain. Therefore it cannot be explained by extrinsic softening from finely twinned R phase alone, but indicates the presence also of M phase, not necessarily homogeneous. A new diffuse transition is found within the ferroelectric phase near x ˜ 0.1, at a temperature TIT higher than the well established boundary TT to the phase with tilted octahedra. It is proposed that around TIT the octahedra start rotating in a disordered manner and finally become ordered below TT. In this interpretation, the onset temperature for octahedral tilting monotonically increases up to the antiferroelectric transition of PbZrO3, and the depression of TT(x) below x = 0.18 would be a consequence of the partial relief of the mismatch between the average cation radii with the initial stage of tilting below TIT.

  18. Optimization of PZT Diaphragm Pump for the Convective Gyroscope

    NASA Astrophysics Data System (ADS)

    Dau, Van Thanh; Dao, Dzung Viet; Dinh, Thien Xuan; Shiozawa, Tatsuo; Sugiyama, Susumu

    In this paper, we present the optimization of the PZT diaphragm pump for application in gas gyroscope. A circular flow inside the sealed case is simulated in detail by utilizing 3D compressible flow with the interaction of fluid-solid phase and the transient analysis is employed. The working principle and the effect of the jet-pump integrated inside the sensor are explained and validated by experiments using anemometry technique. The results verified that configuration of the pump is optimized and the peak velocity of the flow at the sensing element is 3.5m/sec after starting the pump 3.6ms. A novel structure of the sensing element of the gas gyroscope, consists of thermistor and heater, is also reported. The thermistor is heated by a separate heater, whose power is supplied independently form that of thermistor. This design allows low voltage on the thermistor, therefore the noise is reduced. Both heater and thermistor are optimized in order to reduce the thermal induced stress which occurred in the old thermistors at working temperatures. The thermal stress appeared in p-type silicon thermistors reduced the performance of sensor by 7.5%, which is calculated and experimentally confirmed.

  19. Severity evaluation of the transverse crack in a cylindrical part using a PZT wafer based on an interval energy approach

    NASA Astrophysics Data System (ADS)

    Xiao, Han; Zheng, Jiajia; Song, Gangbing

    2016-03-01

    Transverse cracks in cylindrical parts can be detected by using the ultrasound based pulse-echo method, which has been widely used in industrial applications. However, it is still a challenge to identify the echoes reflected by a crack and bottom surfaces of a cylindrical part due to the multi-path propagation and wave mode conversion. In this paper, an interval energy approach is proposed to evaluate the severity of the transverse crack in a cylindrical part. Lead zirconate titanate patch transducers are used to generate the ultrasound pulse and to detect the echoes. The echo signals are preprocessed and divided into two zones, the normal reflection zone and the crack reflection zone. Two energy factors evaluating the severity of the crack are computed based on the interval energy. When using this proposed method, it is not necessary to identify the echo sources since all the crack and boundary echoes are automatically taken into consideration by using the proposed method. The experimental results indicate that proposed approach is more suitable and sensitive to evaluate the transverse crack severity of cylindrical part than the traditional method.

  20. Fission track dating of kimberlitic zircons

    USGS Publications Warehouse

    Haggerty, S.E.; Raber, E.; Naeser, C.W.

    1983-01-01

    The only reliable method for dating kimberlites at present is the lengthy and specialized hydrothermal procedure that extracts 206Pb and 238U from low-uranium zircons. This paper describes a second successful method by fission track dating of large single-crystal zircons, 1.0-1.5 cm in dimension. The use of large crystals overcomes the limitations imposed in conventional fission track analysis which utilizes crushed fragments. Low track densities, optical track dispersion, and the random orientation of polished surfaces in the etch and irradiation cycle are effectively overcome. Fission track ages of zircons from five African kimberlites are reported, from the Kimberley Pool (90.3 ?? 6.5 m.y.), Orapa (87.4 ?? 5.7 and 92.4 ?? 6.1 m.y.), Nzega (51.1 ?? 3.8 m.y.), Koffiefontein (90.0 ?? 8.2 m.y.), and Val do Queve (133.4 ?? 11.5 m.y.). In addition we report the first radiometric ages (707.9 ?? 59.6 and 705.5 ?? 61.0 m.y.) of crustal zircons from kimberlites in northwest Liberia. The fission track ages agree well with earlier age estimates. Most of the zircons examined in this study are zoned with respect to uranium but linear correlations are established (by regression analysis) between zones of variable uranium content, and within zones of constant uranium content (by analysis of variance). Concordance between the fission track method and the U/Pb technique is established and we concluded that track fading from thermal annealing has not taken place. Kimberlitic zircons dated in this study, therefore, record the time of eruption. ?? 1983.

  1. Hubble Observes Surface of Titan

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Scientists for the first time have made images of the surface of Saturn's giant, haze-shrouded moon, Titan. They mapped light and dark features over the surface of the satellite during nearly a complete 16-day rotation. One prominent bright area they discovered is a surface feature 2,500 miles across, about the size of the continent of Australia.

    Titan, larger than Mercury and slightly smaller than Mars, is the only body in the solar system, other than Earth, that may have oceans and rainfall on its surface, albeit oceans and rain of ethane-methane rather than water. Scientists suspect that Titan's present environment -- although colder than minus 289 degrees Fahrenheit, so cold that water ice would be as hard as granite -- might be similar to that on Earth billions of years ago, before life began pumping oxygen into the atmosphere.

    Peter H. Smith of the University of Arizona Lunar and Planetary Laboratory and his team took the images with the Hubble Space Telescope during 14 observing runs between Oct. 4 - 18. Smith announced the team's first results last week at the 26th annual meeting of the American Astronomical Society Division for Planetary Sciences in Bethesda, Md. Co-investigators on the team are Mark Lemmon, a doctoral candidate with the UA Lunar and Planetary Laboratory; John Caldwell of York University, Canada; Larry Sromovsky of the University of Wisconsin; and Michael Allison of the Goddard Institute for Space Studies, New York City.

    Titan's atmosphere, about four times as dense as Earth's atmosphere, is primarily nitrogen laced with such poisonous substances as methane and ethane. This thick, orange, hydrocarbon haze was impenetrable to cameras aboard the Pioneer and Voyager spacecraft that flew by the Saturn system in the late 1970s and early 1980s. The haze is formed as methane in the atmosphere is destroyed by sunlight. The hydrocarbons produced by this methane destruction form a smog similar to that found over large cities, but is much

  2. Origin of Zircon in Ophiolitic Mantle Rocks

    NASA Astrophysics Data System (ADS)

    Robinson, P. T.; Yang, J.; Schmitt, A. K.; Li, J.; Ma, C.

    2011-12-01

    Zircon xenocrysts in ultramafic rocks are typically interpreted as grains picked up by intrusion of mantle rocks into crustal sequences and are taken as evidence of underlying continental crust. However, ultramafic rocks of the Luobusa and Dongqiao ophiolites of Tibet and the Semail ophiolite of Oman contain rounded zircon grains that are much older than the ophiolites themselves. In the Tibetan ophiolites the zircon is accompanied by diamonds, moissanite, corundum, coesite, kyanite, garnet and rutile and numerous highly reduced phases, including PGE and base-metal alloys and native elements. The zircon grains range from 20 to 300 μm across, and are mostly well rounded with very complex internal structures. A few grains are euhedral to subhedral and have concentric zoning suggesting an igneous origin. Many of the grains contain low-pressure inclusions of quartz, rutile, orthoclase, mica, ilmenite and apatite. 206Pb/238U SIMS dates for the Luobusa zircons range from 549±19 to 1657±58 Ma, whereas those for the Dongqiao ophiolites range from 484±49 to 2515±276 Ma. These ages are much older than the host ophiolites (~126 Ma and 147 Ma, respectively). Sixteen dates on zircons from the Semail ophiolite range in age from 84±4 to 1386±48 Ma. Four of these grains are euhedral to subhedral and have late Cretaceous ages essentially the same as the host ophiolite (92±4 to 99±5 Ma), but most are much older. The one younger age of 84 Ma probably reflects slight Pb loss. Many grains in all three ophiolites have distinct cores surrounded by much younger rims, which are still older than the host ophiolites. All of the studied zircons have REE and trace element compositions characteristic of continental crustal grains. Because ophiolites are tectonically emplaced slices of oceanic lithosphere, the possibility of crustal contamination during formation is highly unlikely. Thus, the old zircons in these ophiolites are interpreted as crustal xenocrysts, introduced into the

  3. Dissolution on Titan and on Earth: Towards the age of Titan's karstic landscapes

    NASA Astrophysics Data System (ADS)

    Cornet, T.; Cordier, D.; Le Bahers, T.; Bourgeois, O.; Fleurant, C.; Le Mouélic, S.; Altobelli, N.

    2015-10-01

    The morphology of Titan's lacustrine depressions led to comparisons with terrestrial depressions developed by karstic dissolution. We tested this hypothesis by computing dissolution rates of Titan's solids in liquid methane. We inferred from these rates the timescales needed to create dissolution landforms of a given depth. Dissolution would be a very efficient geological process to shape Titan's surface, on timescales generally shorter than 100 Myrs, consistent with the youth of Titan's surface (<1 Gyr).

  4. Nitrogen Chemistry in Titan's Upper Atmosphere

    NASA Technical Reports Server (NTRS)

    McKay, Christopher P.; Cuzzi, Jeffrey (Technical Monitor)

    1996-01-01

    In Titan's upper atmosphere N2 is dissociated to N by solar UV and high energy electrons. This flux of N provides for interesting organic chemistry in the lower atmosphere of Titan. Previously the main pathway for the loss of this N was thought to be the formation of HCN, followed by diffusion of this HCN to lower altitudes leading ultimately to condensation. However, recent laboratory simulations of organic chemistry in Titan's atmosphere suggest that formation of the organic haze may be an important sink for atmospheric N. Because estimates of the eddy diffusion profile on Titan have been based on the HCN profile, inclusion of this additional sink for N will affect estimates for all transport processes in Titan's atmosphere. This and other implications of this sink for the N balance on Titan are considered.

  5. Subterahertz excitations and magnetoelectric effects in hexaferrite-piezoelectric bilayers

    SciTech Connect

    Ustinov, Alexey B.; Srinivasan, G.

    2008-10-06

    A frequency-agile hexaferrite-piezoelectric composite for potential device applications at subterahertz frequencies is studied. The bilayer is composed of aluminum substituted barium hexagonal ferrite (BaAl{sub 2}Fe{sub 10}O{sub 19}) and lead zirconate titanate (PZT). A dc electric field applied to PZT results in mechanical deformation of the ferrite, leading to a frequency shift in ferromagnetic resonance. The bilayer demonstrates magnetoelectric interaction coefficient of about 0.37 Oe cm/kV.

  6. Poling of lead zirconate titanate ceramics and flexible piezoelectric composites by the corona discharge technique

    SciTech Connect

    Waller, D.; Safari, A.; Igbal, T.

    1989-02-01

    Poling of composites having a polymer matrix with 0-3 connectivity is difficult because the electric field within the high-dielectric-constant grains is far smaller than in the low-dielectric-constant polymer matrix. Therefore, very large electric fields are required to pole these types of composites. However, large electric fields often cause dielectric breakdown of the samples. In this study for improved poling, the corona discharge technique was used to pole piezoelectric ceramics, fired PXT composites, and 0.5PbTiO/sub 3/ . 0.5BiFeO/sub 3/ 0-3 polymer composites. An experimental setup for corona poling is described.

  7. Influence of lanthanum doping on the morphotropic phase boundary of lead zirconate titanate

    NASA Astrophysics Data System (ADS)

    Hinterstein, Manuel; Schoenau, Kristin A.; Kling, Jens; Fuess, Hartmut; Knapp, Michael; Kungl, Hans; Hoffmann, Michael J.

    2010-07-01

    A phase diagram for morphotropic (Pb0.985La0.01)(Zr1-xTix)O3 is proposed based on a combination of X-ray and neutron powder diffraction experiments and complemented by transmission electron microscopy. Dependent on composition three regions are characterized. The stability range of tetragonal microdomains for high Ti contents, the stability range of rhombohedral microdomains for low Ti contents, and an intermediate stability range of nanodomains. All three regions exhibit a corresponding low temperature configuration. Temperature dependent diffraction revealed that lanthanum doping reduces the sensitivity of the structure to changes in temperature and composition. A continuous transition from pseudorhombohedral to tetragonal symmetry with an intermediate two-phase region at the morphotropic phase boundary is observed. A similar transition of low temperature superstructure phases from pseudorhombohedral to pseudotetragonal with an intermediate monoclinic phase governed by a continuous change in the oxygen octahedral tilt system from a-a-a- over a-a-c- to a0a0c- is identified.

  8. Nonaqueous solution synthesis process for preparing oxide powders of lead zirconate titanate and related materials

    DOEpatents

    Voigt, James A.; Sipola, Diana L.; Tuttle, Bruce A.; Anderson, Mark T.

    1999-01-01

    A process for producing powders of perovskite-type compounds which comprises mixing a metal alkoxide solution with a lead acetate solution to form a homogeneous, clear metal solution, adding an oxalic acid/n-propanol solution to this metal solution to form an easily filterable, free-flowing precursor powder and then calcining this powder. This process provides fine perovskite-phase powders with ferroelectric properties which are particularly useful in a variety of electronic applications.

  9. Nonaqueous solution synthesis process for preparing oxide powders of lead zirconate titanate and related materials

    DOEpatents

    Voigt, J.A.; Sipola, D.L.; Tuttle, B.A.; Anderson, M.T.

    1999-06-01

    A process is disclosed for producing powders of perovskite-type compounds which comprises mixing a metal alkoxide solution with a lead acetate solution to form a homogeneous, clear metal solution, adding an oxalic acid/n-propanol solution to this metal solution to form an easily filterable, free-flowing precursor powder and then calcining this powder. This process provides fine perovskite-phase powders with ferroelectric properties which are particularly useful in a variety of electronic applications. 4 figs.

  10. Magnetoelectric composite materials based on lead zirconate titanate and nickel ferrite

    SciTech Connect

    Lupeiko, T.G.; Lopatin, S.S.; Lisnevskaya, I.V.; Zvyagintsev, B.I.

    1994-11-01

    Composite materials that consist of a piezoelectric phase and a magnetostrictive ferrite exhibit a magnetoelectric effect. In composites, this effect is a consequence of the collective mechanical interaction of phases, and it manifests itself via electrical polarization or magnetization in magnetic or electric fields. At present, magnetoelectric composites are more promising materials than single-phase magnetoelectrics; most of the latter exhibit magnetoelectric properties at temperatures of liquid helium or nitrogen. For the best single-phase ferromagnet Cr{sub 2}O{sub 3}, the magnetoelectric conversion factor if {Delta}E/{Delta}H = 25 x 10{sup {minus}3} V/A; the largest {Delta}E/{Delta}H ratios that were achieved for magnetoelectric ceramic materials prepared from powders of BaTiO{sub 3} and Ni{sub 0.97}Co{sub 0.03}Mn{sub 0.1}Fe{sub 1.9}O{sub 4} ferrite and for composites of the BaO-TiO{sub 2}-CoO-Fe{sub 2}O{sub 3} system prepared by unidirectional solidification of eutectic melts are 100 x 10{sup {minus}3} and 163 x 10{sup {minus}3} V/A, respectively. In addition to high {Delta}E/{Delta}H values, composites offer material designers the possibility of adjusting their piezoelectric and magnetostrictive components and of varying the ratios of these components over a wide range. This enables the design of magnetoelectric materials with controlled properties. In this paper, the authors report on the electrophysical and magnetoelectric properties of composites based on LZT and modified nickel ferrite and doped with bismuth, lanthanum, and niobium oxides.

  11. Electrodynamic properties of lead Zirconate-Titanate thin films in the terahertz frequency range

    NASA Astrophysics Data System (ADS)

    Komandin, G. A.; Porodinkov, O. E.; Iskhakova, L. D.; Spektor, I. E.; Volkov, A. A.; Vorotilov, K. A.; Seregin, D. S.; Sigov, A. S.

    2014-11-01

    The transmission/reflection spectra of bilayer structures consisting of thin amorphous and polycrystalline Pb(Zr0.52Ti0.48)O3 ferroelectric films deposited on dielectric substrates of magnesium oxide MgO and sapphire α-Al2O3 were measured in the frequency range of 5-4000 cm-1. Based on these spectra and using the dispersion analysis method, the spectra of complex dielectric permittivity ɛ*(ν) and dynamic conductivity σ'(ν) of the films were simulated, the electrodynamic parameters of the films were determined, and the dielectric dispersion responsible for the formation of static permittivity was found.

  12. TiME - The Titan Mare Explorer

    NASA Astrophysics Data System (ADS)

    Stofan, E.; Lorenz, R.; Lunine, J.; Bierhaus, E. B.; Clark, B.; Mahaffy, P. R.; Ravine, M.

    The Titan Mare Explorer (TiME) is a Discovery-class mission concept that underwent a detailed Phase A study in 2011-2012. The mission would splashdown a capsule on Titan's ethane sea Ligeia Mare as early as the summer of 2023, and would spend multiple Titan days performing science measurements and transmitting data directly back to Earth. This paper reviews briefly the mission concept.

  13. Amino acidis derived from Titan tholins

    NASA Technical Reports Server (NTRS)

    Khare, Bishun N.; Sagan, Carl; Ogino, Hiroshi; Nagy, Bartholomew; Er, Cevat

    1986-01-01

    The production of amino acids by acid treatment of Titan tholin is experimentally investigated. The synthesis of Titan tholin and the derivatization of amino acids to N-trifluoroacetyl isopropyl esters are described. The gas chromatography/mass spectroscopy analysis of the Titan tholins reveals the presence of glycine, alpha and beta alainine, and aspartic acid, and the total yield of amino acids is about 0.01.

  14. Cathodoluminescence of radiation-induced zircon

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Y.; Nishido, H.; Kayama, M.; Noumi, Y.

    2013-12-01

    Zircon occurs as a common accessory mineral in igneous, metamorphic and sedimentary rocks, and maintains much information on thermal history, metamorphic process and natural radiation dose accumulated in the mineral. U-Pb zircon dating (e.g., SHRIMP) is an important tool to interpret a history of the minerals at a micrometer-scale, where cathodoluminescence (CL) image has been used for identification of internal zones and domains having different chemical compositions and/or structures with a high spatial resolution. The CL of zircon is derived from various types of emission centers, which are derived from impurities such as rare earth elements (REE) and structural defects. In fact, the CL features of zircon are closely related to metamorphic process and radiation from contained radionuclides as well as geochemical condition of its formation. Most zircon has yellow emission, which seems to be assigned to UO2 centers or radiation-induced defect during metamictization of the lattice by alpha particles from the decay of U and Th. In this study, the radiation effects on zircon CL have been studied for He+ ion-implanted samples annealed at various temperatures to clarify radiation-induced defect centers involved with the yellow CL emission in zircon. Single crystals of zircon from Malawi (MZ), Takidani granodiorite (TZ) and Kurobegawa granite (KZ) were selected for He+ ion implantation experiments. The polished plates of the samples were implanted by He+ ion 4.0 MeV corresponding to energy of alpha particle from 238 U and 232Th. CL spectra in the range from 300 to 800 nm with 1 nm step were measured by a scanning electron microscopy-cathodoluminescence (SEM-CL). CL spectra of untreated and annealed zircon show emission bands at ~370 nm assigned to intrinsic defect centers and at ~480, ~580 and ~760 nm to trivalent Dy impurity centers (Cesbron et al., 1995; Gaft et al, 2005). CL emissions in the yellow-region were observed in untreated zircon. The TZ and KZ indicate

  15. Dissolution of PZT 52/48 in aqueous sulfuric acid environments

    NASA Astrophysics Data System (ADS)

    Calebrese, Steven

    With the recent interest for PZT use as a self-powered nanonsensor in extreme environments, such as an oil well, it is important to ensure the stability of the material under these conditions. Oil wells are known for being extremely caustic, with high temperature, low pH and high pressures. It has been shown that in the presence of sulfuric acid PZT is subject to chemical attack. This study attempts to identify the effects that pH and temperature have on the rate of the reaction. Sulfuric acid was used as a proxy for the H2S environment found in oil wells. Exposure of bulk PZT and thin film specimens to H2S was studied. PZT 52/48 thin films were fabricated via the sol gel process. PZT was exposed to both single drops of aqueous sulfuric acid and submerged in a bath of solution. During bath exposure potential on the substrate surface of thin film samples was recorded using a voltmeter vs. and Ag/AgCl reference electrode. Thin Film samples were exposed to a single drop of 0.1 N and 1 N aqueous sulfuric acid solutions at temperatures between 25° C and 92° C. It was optically observed that a white filmed appeared on the surface as a reaction product. At both concentrations, increases in temperature lead to an increase in reaction rate for droplet exposed samples. These reactions were found to follow Arrhenius behavior. The 1 N solution activation energy of film appearance was found to be 69100 J, and for 0.1 N solution was found to be 48300 J. It was expected that an increase in concentration would lead to an increase in reaction rate as well. However for single droplet exposure it was found that lower concentrations resulted in increased reaction rate. This may be due to the difference in interfacial energy between the solution and PZT surface as a result of the concentration of sulfuric acid. The potential on the substrate during bath exposure was between -0.22 V and 0.1 V. As a ferroelectric, PZT is expected to spontaneously polarize and variations in potential

  16. Can Titan generate tori in Saturn's magnetosphere?

    NASA Astrophysics Data System (ADS)

    Smith, H. T.; Johnson, R. E.; Rymer, A. M.; Mitchell, D. G.

    2011-12-01

    Prior to Cassini's arrival at Saturn, nitrogen ions were thought to dominate heavy plasma in Saturn's magnetosphere and that Titan's atmosphere was the source of this nitrogen. Therefore, the presence of a Titan nitrogen torus was anticipated. However, it is now known water-group ions dominate Saturn's heavy ion plasma. While nitrogen ions have been detected beyond the orbit of Rhea, they appear to be originating from the Enceladus plumes with little nitrogen plasma detected in the magnetosphere near Titan's orbit. These results appear inconsistent with the expectation that Titan's dense relatively unprotected atmosphere should provide a significant source of heavy particles to Saturn's magnetosphere. This inconsistency suggests that the plasma environment at Titan's orbit is much more complex than originally anticipated. In this talk, we expand on our previous research that categorizes the plasma environments near Titan to include all locations along Titan's orbit. Using these categories, we develop characteristic plasma spectra of each type of environment and use these results in a 3D Monte Carlo model to more accurately examine fate of nitrogen and methane escaping Titan's atmosphere. These results are compared to Cassini observations to determine if Titan is capable of generating tori.

  17. The Global Energy Balance of Titan

    NASA Technical Reports Server (NTRS)

    Li, Liming; Nixon, Conor A.; Achterberg, Richard K.; Smith, Mark A.; Gorius, Nicolas J. P.; Jiang, Xun; Conrath, Barney J.; Gierasch, Peter J.; Simon-Miller, Amy A.; Flasar, F. Michael; Baines, Kevin H.; Ingersoll, Andrew P.; West, Robert A.; Vasavada, Ashwin R.; Ewald, Shawn P.

    2011-01-01

    We report the first measurement of the global emitted power of Titan. Longterm (2004-2010) observations conducted by the Composite Infrared Spectrometer (CIRS) onboard Cassini reveal that the total emitted power by Titan is (2.84 plus or minus 0.01) x 10(exp 8) watts. Together with previous measurements of the global absorbed solar power of Titan, the CIRS measurements indicate that the global energy budget of Titan is in equilibrium within measurement error. The uncertainty in the absorbed solar energy places an upper limit on the energy imbalance of 5.3%.

  18. The magnetic memory of Titan's ionized atmosphere.

    PubMed

    Bertucci, C; Achilleos, N; Dougherty, M K; Modolo, R; Coates, A J; Szego, K; Masters, A; Ma, Y; Neubauer, F M; Garnier, P; Wahlund, J-E; Young, D T

    2008-09-12

    After 3 years and 31 close flybys of Titan by the Cassini Orbiter, Titan was finally observed in the shocked solar wind, outside of Saturn's magnetosphere. These observations revealed that Titan's flow-induced magnetosphere was populated by "fossil" fields originating from Saturn, to which the satellite was exposed before its excursion through the magnetopause. In addition, strong magnetic shear observed at the edge of Titan's induced magnetosphere suggests that reconnection may have been involved in the replacement of the fossil fields by the interplanetary magnetic field. PMID:18787164

  19. The organic aerosols of Titan

    NASA Technical Reports Server (NTRS)

    Khare, B. N.; Sagan, C.; Thompson, W. R.; Arakawa, E. T.; Suits, F.; Callcott, T. A.; Williams, M. W.; Shrader, S.; Ogino, H.; Willingham, T. O.

    1984-01-01

    The optical properties and chemical composition of thiolin, an organic solid synthesized by high-energy-electron irradiation in a plasma discharge (Sagan et al., 1984) to simulate the high-altitude aerosols of Titan, are investigated experimentally using monochromators, ellipsometers, and spectrometers (on thin films deposited by continuous dc discharge) and sequential and nonsequential pyrolytic gas chromatography/mass spectrometry (of the volatile component), respectively. The results are presented in tables and graphs and characterized. The real and imaginary elements of the complex refractive index in the visible are estimated as 1.65 and 0.004-0.08, respectively, in agreement with observations of Titan, and the IR absorption features include the nitrile band at 4.6 microns. The molecules identified in the volatile part of thiolin include complex species considered important in theoretical models of the origin of life on earth.

  20. Titan's geoid and hydrology: implications for Titan's geological evolution

    NASA Astrophysics Data System (ADS)

    Sotin, Christophe; Seignovert, Benoit; Lawrence, Kenneth; MacKenzie, Shannon; Barnes, Jason; Brown, Robert

    2014-05-01

    A 1x1 degree altitude map of Titan is constructed from the degree 4 gravity potential [1] and Titan's shape [2] determined by the Radio Science measurements and RADAR observations of the Cassini mission. The amplitude of the latitudinal altitude variations is equal to 300 m compared to 600 m for the amplitude of the latitudinal shape variations. The two polar caps form marked depressions with an abrupt change in topography at exactly 60 degrees at both caps. Three models are envisaged to explain the low altitude of the polar caps: (i) thinner ice crust due to higher heat flux at the poles, (ii) fossil shape acquired if Titan had higher spin rate in the past, and (iii) subsidence of the crust following the formation of a denser layer of clathrates as ethane rain reacts with the H2O ice crust [3]. The later model is favored because of the strong correlation between the location of the cloud system during the winter season and the latitude of the abrupt change in altitude. Low altitude polar caps would be the place where liquids would run to and eventually form large seas. Indeed, the large seas of Titan are found at the deepest locations at the North Pole. However, the lakes and terrains considered to be evaporite candidates due to their spectral characteristics in the infrared [4,5] seem to be perched. Lakes may have been filled during Titan's winter and then slowly evaporated leaving material on the surface. Interestingly, the largest evaporite deposits are located at the equator in a deep depression 150 m below the altitude of the northern seas. This observation seems to rule out the presence of a global subsurface hydrocarbon reservoir unless the evaporation rate at the equator is faster than the transport of fluids from the North Pole to the equator. This work has been performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. [1] Iess L. et al. (2012) Science, doi 10.1126/science.1219631. [2] Lorenz R.D. (2013

  1. Development of valve-less tube-type micropump with PZT actuator

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Kazuyoshi; Morishima, Akifumi; Takamata, Atsushi; Uetsuji, Yasutomo; Nakamachi, Eiji

    2008-12-01

    The medical devices such as a micropump to extract blood through a tube have a structure which needle and pump part are mutually separated. Therefore, it is not easy to make smaller than the conventional pump. In this research, we aim to develop the pump combined with a tube as a final purpose. In this study, ring type PZT elements are mounted on the surface of the silicone tube, and the stationary waves are generated in the tube by the vibration of those PZT on the tube verified by changing the AC voltage. The waves generated by the collision of large and small stationary waves are synthesized, and then the wave becomes a progressive wave with an elliptic motion in the tube. The flow function demonstrated by the tube type micropump was evaluated and the flow velocities were increased 2.78% and decreased 1.79%. On the other hand, we have a technique to produce a titanium microtube by using RF magnetron sputtering deposition technique. A Titanium micro tube with the size of a female mosquito's labium (60µm external and 25μm internal diameter) was produced by the sputter deposition method. In order to deposit PZT thin film on the titanium micro tube, the thin film process is used. The thin film deposition conditions of the PZT thin film are investigated and the characteristic of the PZT thin films are evaluated.

  2. PMN-PT–PZT composite films for high frequency ultrasonic transducer applications

    PubMed Central

    Hsu, Hsiu-Sheng; Benjauthrit, Vatcharee; Zheng, Fan; Chen, Rumin; Huang, Yuhong; Zhou, Qifa; Shung, K. Kirk

    2013-01-01

    We have successfully fabricated x(0.65PMN-0.35PT)–(1 − x)PZT (xPMN-PT–(1 − x)PZT), where x is 0.1, 0.3, 0.5, 0.7 and 0.9, thick films with a thickness of approximately 9 µm on platinized silicon substrate by employing a composite sol–gel technique. X-ray diffraction analysis and scanning electron microscopy revealed that these films are dense and creak-free with well-crystallized perovskite phase in the whole composition range. The dielectric constant can be controllably adjusted by using different compositions. Higher PZT content of xPMN-PT–(1 − x)PZT films show better ferroelectric properties. A representative 0.9PMN-PT–0.1PZT thick film transducer is built. It has 200 MHz center frequency with a −6 dB bandwidth of 38% (76 MHz). The measured two-way insertion loss is 65 dB. PMID:23750072

  3. Nonlinear magnetoelectric behavior of Terfenol-D/PZT-5A laminate composites

    NASA Astrophysics Data System (ADS)

    Wang, Yezuo; Atulasimha, Jayasimha; Prasoon, Ruchir

    2010-12-01

    In this paper, a comprehensive experimental study and modeling of the nonlinear behavior of Terfenol-D/PZT-5A magnetoelectric laminate composites is reported. Magnetostriction versus magnetic field of an individual Terfenol-D sample of dimensions length = 22 mm, width = 19 mm, thickness = 0.683 mm, and polarization versus electric field as well as strain versus electric field of an individual PZT-5A sample of dimensions length = 22 mm, width = 19 mm, thickness = 0.127 mm were characterized. These samples were bonded to form a symmetric PZT-5A/Terfenol-D/PZT-5A laminate composite to avoid bending-extension coupling. Electric response of this composite to magnetic input was comprehensively characterized to include major loop and minor loop behavior. A modeling approach that structurally couples the nonlinear magnetostrictive Terfenol-D behavior and linear PZT-5A behavior to predict the magnetoelectric response was developed and validated against experimental results. This analysis, with further refinements, could prove to be a useful tool to model and design magnetoelectric sensors.

  4. PMN-PT-PZT composite films for high frequency ultrasonic transducer applications.

    PubMed

    Hsu, Hsiu-Sheng; Benjauthrit, Vatcharee; Zheng, Fan; Chen, Rumin; Huang, Yuhong; Zhou, Qifa; Shung, K Kirk

    2012-06-01

    We have successfully fabricated x(0.65PMN-0.35PT)-(1 - x)PZT (xPMN-PT-(1 - x)PZT), where x is 0.1, 0.3, 0.5, 0.7 and 0.9, thick films with a thickness of approximately 9 µm on platinized silicon substrate by employing a composite sol-gel technique. X-ray diffraction analysis and scanning electron microscopy revealed that these films are dense and creak-free with well-crystallized perovskite phase in the whole composition range. The dielectric constant can be controllably adjusted by using different compositions. Higher PZT content of xPMN-PT-(1 - x)PZT films show better ferroelectric properties. A representative 0.9PMN-PT-0.1PZT thick film transducer is built. It has 200 MHz center frequency with a -6 dB bandwidth of 38% (76 MHz). The measured two-way insertion loss is 65 dB. PMID:23750072

  5. TECHNICAL NOTE: The development of a PZT-based microdrive for neural signal recording

    NASA Astrophysics Data System (ADS)

    Park, Sangkyu; Yoon, Euisung; Lee, Sukchan; Shin, Hee-sup; Park, Hyunjun; Kim, Byungkyu; Kim, Daesoo; Park, Jongoh; Park, Sukho

    2008-04-01

    A hand-controlled microdrive has been used to obtain neural signals from rodents such as rats and mice. However, it places severe physical stress on the rodents during its manipulation, and this stress leads to alertness in the mice and low efficiency in obtaining neural signals from the mice. To overcome this issue, we developed a novel microdrive, which allows one to adjust the electrodes by a piezoelectric device (PZT) with high precision. Its mass is light enough to install on the mouse's head. The proposed microdrive has three H-type PZT actuators and their guiding structure. The operation principle of the microdrive is based on the well known inchworm mechanism. When the three PZT actuators are synchronized, linear motion of the electrode is produced along the guiding structure. The electrodes used for the recording of the neural signals from neuron cells were fixed at one of the PZT actuators. Our proposed microdrive has an accuracy of about 400 nm and a long stroke of about 5 mm. In response to formalin-induced pain, single unit activities are robustly measured at the thalamus with electrodes whose vertical depth is adjusted by the microdrive under urethane anesthesia. In addition, the microdrive was efficient in detecting neural signals from mice that were moving freely. Thus, the present study suggests that the PZT-based microdrive could be an alternative for the efficient detection of neural signals from mice during behavioral states without any stress to the mice.

  6. Ferroelectric properties of PZT/BFO multilayer thin films prepared using the sol-gel method

    PubMed Central

    2012-01-01

    In this study, Pb(Zr0.52Ti0.48)O3/BiFeO3 [PZT/BFO] multilayer thin films were fabricated using the spin-coating method on a Pt(200 nm)/Ti(10 nm)/SiO2(100 nm)/p-Si(100) substrate alternately using BFO and PZT metal alkoxide solutions. The coating-and-heating procedure was repeated several times to form the multilayer thin films. All PZT/BFO multilayer thin films show a void-free, uniform grain structure without the presence of rosette structures. The relative dielectric constant and dielectric loss of the six-coated PZT/BFO [PZT/BFO-6] thin film were approximately 405 and 0.03%, respectively. As the number of coatings increased, the remanent polarization and coercive field increased. The values for the BFO-6 multilayer thin film were 41.3 C/cm2 and 15.1 MV/cm, respectively. The leakage current density of the BFO-6 multilayer thin film at 5 V was 2.52 × 10-7 A/cm2. PMID:22221519

  7. Dielectric and Piezoelectric Properties of PZT Composite Thick Films with Variable Solution to Powder Ratios

    PubMed Central

    Wu, Dawei; Zhou, Qifa; Shung, Koping Kirk.; Bharadwaja, Srowthi N.; Zhang, Dongshe; Zheng, Haixing

    2010-01-01

    The use of PZT films in sliver-mode high-frequency ultrasonic transducers applications requires thick, dense, and crack-free films with excellent piezoelectric and dielectric properties. In this work, PZT composite solutions were used to deposit PZT films >10 μm in thickness. It was found that the functional properties depend strongly on the mass ratio of PZT sol–gel solution to PZT powder in the composite solution. Both the remanent polarization, Pr, and transverse piezoelectric coefficient, e31,f, increase with increasing proportion of the sol–gel solution in the precursor. Films prepared using a solution-to-powder mass ratio of 0.5 have a remanent polarization of 8 μC/cm2, a dielectric constant of 450 (at 1 kHz), and e31,f = −2.8 C/m2. Increasing the solution-to-powder mass ratio to 6, the films were found to have remanent polarizations as large as 37 μC/cm2, a dielectric constant of 1250 (at 1 kHz) and e31,f = −5.8 C/m2. PMID:20376196

  8. Large electric-field control of perpendicular magnetic anisotropy in strained [Co/Ni] / PZT heterostructures

    NASA Astrophysics Data System (ADS)

    Gopman, Daniel; Dennis, Cindi; Chen, P. J.; Iunin, Yury; Shull, Robert

    We present a piezoelectric/ferromagnetic heterostructure with PMA - a Co/Ni multilayer sputtered directly onto a Pb(Zr,Ti)O3 (PZT) substrate. Chemical-mechanical polishing was used to reduce the roughness of PZT plates to below 2 nm rms, enabling optimal magnetoelectric coupling via the direct interface between PZT and sputtered Co/Ni films with large PMA (Keff = (95 +/-9 kJ/m3)) . We grew the following layer stack: Ta(3)/Pt(2)/[Co(0.15)/Ni(0.6)]x4/Co(0.15)/Pt(2)/Ta(3); numbers in parentheses indicate thicknesses in nm. Applied electric fields up to +/- 2 MV/m to the PZT generated 0.05% in-plane compression in the Co/Ni multilayer, enabling a large electric-field reduction of the PMA (ΔKeff >= 103 J/m3) and of the coercive field (35%). Our results demonstrate that: (i) heterostructures combining PZT and [Co/Ni] exhibit larger PMA (Keff ~105 J/m3) than previous magnetoelectric heterostructures based on Co/Pt and CoFeB, enabling thermally stable hybrid magnetoelectric/spintronic devices only tens of nm in diameter and (ii) electric-field control of the PMA is promising for more energy efficient switching of spintronic devices.

  9. Ti in zircon from the Boggy Plain zoned pluton: implications for zircon petrology and Hadean tectonics

    NASA Astrophysics Data System (ADS)

    Ickert, R. B.; Williams, I. S.; Wyborn, D.

    2011-08-01

    The understanding of zircon crystallization, and of the Ti-in-zircon thermometer, has been enhanced by Ti concentration measurements of zircon from a small, concentrically zoned pluton in south-eastern Australia, the Boggy Plain zoned pluton (BPZP). Zircon crystals from rocks ranging in composition from gabbro to aplite were analysed for U-Th-Pb dating and Ti concentrations by an ion microprobe. Geochronological data yield a 206Pb/238U age of 417.2 ± 2.0 Ma (95% confidence) and demonstrate the presence of older inherited or xenocrystic zircon. Titanium measurements ( n = 158) yield a mean Ti concentration of 11.7 ± 6.1 ppm (2SD) which corresponds to a mean crystallization temperature of 790°C for an α-TiO2 = 0.74 (estimated using mineral equilibria), or 760°C for an α-TiO2 = 1.0. Apparent zircon crystallization temperatures are similar in all intrusive phases, although the gabbro yields slightly higher values, indicating that crystallization occurred at the same temperature in all rock types. This finding is consistent with previous work on the BPZP, which indicates that liquid-crystal sorting (crystal fractionation) was the dominant control on chemical differentiation, and that late, differentiated liquids were similar in composition for all rock types. A simple forward model approximately predicts the range of crystallization temperatures, but not the shape of the distributions, due to sampling biases and complexities in the cooling and crystallization history of the pluton. The distribution of Ti concentrations has a mode at a higher Ti (higher temperature) than the sample set of Hadean detrital zircon. This is consistent with the hypothesis that the skew to low-T in the Hadean dataset is due to the presence of zircon that crystallized from wet anatectic melts.

  10. Cassini Imaging Results at Titan

    NASA Technical Reports Server (NTRS)

    McEwen, A.; Turtle, E.; Perry J.; Fussner, S.; Porco, C.; West, R.; Johnson, T.; Collins, G.; DelGenio, T.; Barbara, J.

    2005-01-01

    The Cassini Imaging Science Subsystem (ISS) images show striking albedo markings on the surface of Titan. In equatorial regions the albedo patterns have high contrast and exhibit prominent lineaments and linear/angular boundaries suggestive of tectonic influences or fracturing of brittle surficial materials. There are intriguing dark curving lines near the south pole. Here we present several working hypotheses to explain these patterns. We also briefly summarize atmospheric science results.

  11. Plutonium Stabilization in Zircon: Effects of Self-Radiation

    SciTech Connect

    Weber, William J.; Hess, Nancy J.; Williford, Ralph E.; Heinisch, Howard L.; Begg, Bruce D.; Conradson, Steven D.; Ewing, Rodney C.

    2000-07-10

    Zircon is the most thoroughly studied of all candidate ceramic phases for the stabilization of plutonium. Self-radiation damage from alpha-decay of the Pu can significantly affect the structure and properties of zircon. Two types of synthetic Pu-containing zircons, prepared in 1981, have provided an opportunity to characterize in detail the effects of Pu decay on the structure and properties of zircon and to make unique comparisons to observations of radiation effects in natural zircons. One set of zircon samples contained Pu-238; while the other set of samples contained Pu-239. In both instances, the Pu was substituted directly for Zr. The zircons containing Pu-238, with its 87.7 year half-life, provided a means of accelerating the alpha-decay rate by a factor of 250 when compared to the zircons containing Pu-239. Self-radiation from Pu decay in zircon results in the simultaneous accumulation of point defects and amorphous domains that eventually lead to a completely amorphous state. The swelling in zircon increases sigmoidally with dose and is well saturated at the highest dose. In all cases, the swelling can be accur-ately modeled based on the contributions from crystalline and amorphous components. Detailed X-ray absorption spectroscopy and X-ray diffraction methods have characterized the short-range and long-range structures of each zircon type. The amorphous state of zircon is consistent with the loss of long-range order and edge-sharing relationships between silica and zirconia polyhedra. Despite this, a distorted zircon structure and stoichiometry, which consists of silica and zirconia polyhedra that have rotated relative to each other, is retained over length scales up to 0.5 nm. Atomic-scale computer simulations have also been used to study defect accumulation and amorphization in zircon. The simulation results for the amorphous fraction as a function of alpha-decay dose are in excellent agreement with the experimental results.

  12. Detrital Zircon Record of Colorado River Incision

    NASA Astrophysics Data System (ADS)

    Kimbrough, D.; Grove, M.; Gehrels, G.; Dorsey, R.; House, K. P.; Howard, K.; Pearthree, P. A.; Spencer, J. E.; Mahoney, B.

    2007-05-01

    The Colorado River is a large, youthful, unequilibrated continental drainage system the base-level for which was established rather abruptly between 5 and 6 million years ago in conjunction with Gulf of California rifting and establishment of the modern river course through the western Grand Canyon and lower Colorado river region. New laser ablation ICPMS detrital zircon U-Pb analyses (~3000) from ~40 samples provide insight into details relating to the cause, timing and consequences of river inception. These samples encompass (1) the modern Colorado River delta, (2) major tributaries including the Green, "Grand", San Juan, Little Colorado and Gila rivers (3) late Miocene to Pliocene sediments along the lower Colorado (4) late Miocene to Pleistocene deltaic and fluvial sediments of the Imperial and Palm Spring Groups in the western Salton Trough, and (5) late Miocene- early Pliocene Bidahochi Formation of eastern Arizona. Data from the western Salton Trough and modern delta yield strata yield remarkably homogeneous age distributions that indicate there was little evolution in Colorado River sediment composition since 5.3 Ma. Detrital zircon is dominated by a mix of local southwest US cratonal basement (1.7 and 1.4 Ga) plus reworked supracrustal sequences of the Colorado Plateau that provide Neoproterozoic, 1.1 Ga, and early Paleozoic zircons. A relative paucity of Grenville-age grains in the earliest part of the delta sequence may reflect an early stage of the modern river prior to deep incision through Colorado Plateau erg deposits. The strong homogeneity of the detrital zircon record from late Miocene to the present is consistent with the `lake spillover model' for inception and integration of the modern Colorado River drainage. Abrupt integration of the lower Colorado River after 5.6 Ma is clearly recorded by detrital zircon ages from the laucustrine Bouse Formation and Bullhead alluvium aggradational package. Fluvial-laucustrine deposits of the Bidahochi

  13. Nitrile Compounds Observed on Titan

    NASA Astrophysics Data System (ADS)

    Marten, A.; Moreno, R.

    2003-05-01

    Heterodyne millimeter observations were performed on Titan with the IRAM Plateau-de-Bure Interferometer array in February-March 2003 near greatest eastern elongations. The most extended configuration of the array was used. The Titan's angular diameter, corresponding to the solid body value, was 0.8 arc sec. However, a larger diameter of about 1 arc sec needs to be considered in the analysis of emitted flux measurements. Two dual frequency receivers were utilized at 3- and 1.2-mm wavelengths, giving access to the 82-116 and 210-245 GHz spectral ranges. Therefore, to optimize our mapping program, observations were carried out in the HCN(1-0), HC3N(12-11), CH3CN(12-11), HC3N(25-24) and CO(2-1) transitions, near 88.6, 109.2, 220.7, 227.4 and 230.5 GHz, respectively. An angular resolution of 0.6 arc sec was obtained at shorter wavelengths, yielding disk-resolved spectra of Titan. Most of the HCN(1-0) and HC3N(12-11) data correspond to full-disk measurements since the equivalent synthesized beam of the array was larger than 1.3 arc sec at longer wavelengths. Narrow isolated lines of HC3N and CH3CN as well as the three components of HCN(1-0) were analyzed at a very high spectral resolution of 40 kHz. Lower values of 160 kHz and 2.5 MHz were chosen for recording broad-band spectra of HCN, CH3CN and CO. Disk-averaged spectra taken at the same frequencies with the IRAM single-dish 30-m telescope (Marten et al., 2002, Icarus, 158, 532) have been used for comparison. The vertical distributions of nitrile abundances inferred from those data served as a preliminary basis for radiative transfer computations considering a spherical geometry for Titan's atmosphere and an elliptical gaussian synthesized beam. Numerical calculations of HCN and CO spectra are found in remarkable agreement with the interferometric data. Significant differences exist for HC3N in the northern latitudes and CH3CN in midlatitude regions. Measured maps are presented at all observing frequencies along with

  14. Effect of Bi doping on morphotropic phase boundary and dielectric properties of PZT

    NASA Astrophysics Data System (ADS)

    Joshi, Shraddha; Acharya, Smita

    2016-05-01

    In our present attempt, Pb(1-x)BixZr0.52Ti0.48O3 [PBZT] {where x = 0, 0.05, 0.1} is synthesized by sol-gel route. Effect of Bi addition on structure, sinterability and dielectric properties are observed. The presence of morphotropic phase boundary (coexistence of tetragonal and rhombohedral symmetry) is confirmed by X-ray diffraction. Enhancement of sinterability after Bi doping is observed through a systematic sintering program. Frequency and temperature dependent dielectric constant are studied. Bi doping in PZT is found to enhance room temperature dielectric constant. However, at high temperature the dielectric constant of pure PZT is more than that of doped PZT.

  15. Enhanced ferroelectric polarization and potential morphotrophic phase boundary in PZT-based alloys

    NASA Astrophysics Data System (ADS)

    Parker, David; McGuire, Michael; Singh, David

    We present a combined theoretical and experimental study of alloys of the high performance piezoelectric PZT (PbZr0.5Ti0.5O3) with BZnT (BiZn0.5Ti0.5O3) and BZnZr (BiZn0.5Zr0.5O3), focussing on lattice instabilities, atomic displacements and ferroelectric polarization. From theory we find that the 75 - 25 PZT - BZnT alloy has substantially larger cation displacements, and hence ferroelectric polarization than the PZT base material, on the tetragonal side of the phase diagram. We also find a possible morphotrophic phase boundary in this system by comparing displacement patterns and optimized c/a ratios. Experiments indicate the feasibility of sample synthesis within this alloy system.

  16. PAC investigation on the Zr-rich region of the PZT phase diagram

    NASA Astrophysics Data System (ADS)

    Alonso, R. E.; Ayala, A. P.; López García, A. R.; Eiras, J. A.

    2007-02-01

    Previous studies using perturbed angular correlation (PAC) spectroscopy in the PbZr 1-xTi xO 3 (PZT) family of compounds show that whereas PbZrO 3 is characterized by a single probes site with a very well-defined hyperfine interaction, in PZT with x⩾0.1 the probes occupy two distributed sites. In this work, we investigate the Zr-rich region of the PZT phase diagram from x=0.02 up to x=0.08 using PAC in order to correlate the hyperfine parameters with the antiferroelectric-ferroelectric phase transition reported to occur at x=0.05. Two static electric quadrupole interactions, one of them fairly distributed, were detected over the whole Ti concentration range, and an abrupt change in the hyperfine parameters for 0.02< x<0.04 is observed. The behaviour of these parameters and the existence of two probe sites is discussed.

  17. Enhanced ferroelectric polarization and possible morphotrophic phase boundary in PZT-based alloys

    NASA Astrophysics Data System (ADS)

    Parker, David S.; Herklotz, Andreas; Ward, T. Z.; McGuire, Michael A.; Singh, David J.

    2016-05-01

    We present a combined theoretical and experimental study of alloys of the high performance piezoelectric PZT (PbZr0.5Ti0.5O3 ) with BZnT (BiZn0.5Ti0.5O3 ) and BZnZr (BiZn0.5Zr0.5O3 ), focusing on atomic displacements, ferroelectric polarization, and elastic stability. From theory we find that the 75-25 PZT-BZnT alloy has substantially larger cation displacements, and hence ferroelectric polarization than the PZT base material, on the tetragonal side of the phase diagram. We also find a possible morphotrophic phase boundary in this system by comparing displacement patterns and optimized c /a ratios. Elastic stability calculations find the structures to be essentially stable. Experiments indicate the feasibility of sample synthesis within this alloy system, although measurements do not find significant polarization, probably due to a large coercive field.

  18. An optimized strain demodulation method for PZT driven fiber Fabry-Perot tunable filter

    NASA Astrophysics Data System (ADS)

    Sheng, Wenjuan; Peng, G. D.; Liu, Yang; Yang, Ning

    2015-08-01

    An optimized strain-demodulation-method based on piezo-electrical transducer (PZT) driven fiber Fabry-Perot (FFP) filter is proposed and experimentally demonstrated. Using a parallel processing mode to drive the PZT continuously, the hysteresis effect is eliminated, and the system demodulation rate is increased. Furthermore, an AC-DC compensation method is developed to address the intrinsic nonlinear relationship between the displacement and voltage of PZT. The experimental results show that the actual demodulation rate is improved from 15 Hz to 30 Hz, the random error of the strain measurement is decreased by 95%, and the deviation between the test values after compensation and the theoretical values is less than 1 pm/με.

  19. Investigation of optical pump on dielectric tunability in PZT/PT thin film by THz spectroscopy.

    PubMed

    Ji, Jie; Luo, Chunya; Rao, Yunkun; Ling, Furi; Yao, Jianquan

    2016-07-11

    The dielectric spectra of single-layer PbTiO3 (PT), single-layer PbZrxTi1-xO3 (PZT) and multilayer PZT/PT thin films under an external optical field were investigated at room temperature by time-domain terahertz (THz) spectroscopy. Results showed that the real part of permittivity increased upon application of an external optical field, which could be interpreted as hardening of the soft mode and increasing of the damping coefficient and oscillator strength. Furthermore, the central mode was observed in the three films. Among the dielectric property of the three thin films studied, the tunability of the PZT/PT superlattice was the largest. PMID:27410799

  20. Temperature Field Analysis for PZT Pyroelectric Cells for Thermal Energy Harvesting

    PubMed Central

    Hsiao, Chun-Ching; Ciou, Jing-Chih; Siao, An-Shen; Lee, Chi-Yuan

    2011-01-01

    This paper proposes the idea of etching PZT to improve the temperature variation rate of a thicker PZT sheet in order to enhance the energy conversion efficiency when used as pyroelectric cells. A partially covered electrode was proven to display a higher output response than a fully covered electrode did. A mesh top electrode monitored the temperature variation rate and the electrode area. The mesh electrode width affected the distribution of the temperature variation rate in a thinner pyroelectric material. However, a pyroelectric cell with a thicker pyroelectric material was beneficial in generating electricity pyroelectrically. The PZT sheet was further etched to produce deeper cavities and a smaller electrode width to induce lateral temperature gradients on the sidewalls of cavities under homogeneous heat irradiation, enhancing the temperature variation rate. PMID:22346652

  1. Temperature field analysis for PZT pyroelectric cells for thermal energy harvesting.

    PubMed

    Hsiao, Chun-Ching; Ciou, Jing-Chih; Siao, An-Shen; Lee, Chi-Yuan

    2011-01-01

    This paper proposes the idea of etching PZT to improve the temperature variation rate of a thicker PZT sheet in order to enhance the energy conversion efficiency when used as pyroelectric cells. A partially covered electrode was proven to display a higher output response than a fully covered electrode did. A mesh top electrode monitored the temperature variation rate and the electrode area. The mesh electrode width affected the distribution of the temperature variation rate in a thinner pyroelectric material. However, a pyroelectric cell with a thicker pyroelectric material was beneficial in generating electricity pyroelectrically. The PZT sheet was further etched to produce deeper cavities and a smaller electrode width to induce lateral temperature gradients on the sidewalls of cavities under homogeneous heat irradiation, enhancing the temperature variation rate. PMID:22346652

  2. THE MONOCLINIC PHASE IN PZT: NEW LIGHT ON MORPHOTROPIC PHASE BOUNDARIES

    SciTech Connect

    NOHEDA,B.; GONZALO,J.A.; GUO,R.; PARK,S.E.; CROSS,L.E.; COX,D.E.; SHIRANE,G.

    2000-03-09

    A summary of the work recently carried out on the morphotropic phase boundary (MPB) of PZT is presented. By means of x-ray powder diffraction on ceramic samples of excellent quality, the MPB has been successfully characterized by changing temperature in a series of closely spaced compositions. As a result, an unexpected monoclinic phase has been found to exist in between the well-known tetragonal and rhombohedral PZT phases. A detailed structural analysis, together with the investigation of the field effect in this region of compositions, have led to an important advance in understanding the mechanisms responsible for the physical properties of PZT as well as other piezoelectric materials with similar morphotropic phase boundaries.

  3. A Flexible Ultrasound Transducer Array with Micro-Machined Bulk PZT

    PubMed Central

    Wang, Zhe; Xue, Qing-Tang; Chen, Yuan-Quan; Shu, Yi; Tian, He; Yang, Yi; Xie, Dan; Luo, Jian-Wen; Ren, Tian-Ling

    2015-01-01

    This paper proposes a novel flexible piezoelectric micro-machined ultrasound transducer, which is based on PZT and a polyimide substrate. The transducer is made on the polyimide substrate and packaged with medical polydimethylsiloxane. Instead of etching the PZT ceramic, this paper proposes a method of putting diced PZT blocks into holes on the polyimide which are pre-etched. The device works in d31 mode and the electromechanical coupling factor is 22.25%. Its flexibility, good conformal contacting with skin surfaces and proper resonant frequency make the device suitable for heart imaging. The flexible packaging ultrasound transducer also has a good waterproof performance after hundreds of ultrasonic electric tests in water. It is a promising ultrasound transducer and will be an effective supplementary ultrasound imaging method in the practical applications. PMID:25625905

  4. A flexible ultrasound transducer array with micro-machined bulk PZT.

    PubMed

    Wang, Zhe; Xue, Qing-Tang; Chen, Yuan-Quan; Shu, Yi; Tian, He; Yang, Yi; Xie, Dan; Luo, Jian-Wen; Ren, Tian-Ling

    2015-01-01

    This paper proposes a novel flexible piezoelectric micro-machined ultrasound transducer, which is based on PZT and a polyimide substrate. The transducer is made on the polyimide substrate and packaged with medical polydimethylsiloxane. Instead of etching the PZT ceramic, this paper proposes a method of putting diced PZT blocks into holes on the polyimide which are pre-etched. The device works in d31 mode and the electromechanical coupling factor is 22.25%. Its flexibility, good conformal contacting with skin surfaces and proper resonant frequency make the device suitable for heart imaging. The flexible packaging ultrasound transducer also has a good waterproof performance after hundreds of ultrasonic electric tests in water. It is a promising ultrasound transducer and will be an effective supplementary ultrasound imaging method in the practical applications. PMID:25625905

  5. Processing of Fine-Scale Piezoelectric Ceramic/Polymer Composites for Sensors and Actuators

    NASA Technical Reports Server (NTRS)

    Janas, V. F.; Safari, A.

    1996-01-01

    The objective of the research effort at Rutgers is the development of lead zirconate titanate (PZT) ceramic/polymer composites with different designs for transducer applications including hydrophones, biomedical imaging, non-destructive testing, and air imaging. In this review, methods for processing both large area and multifunctional ceramic/polymer composites for acoustic transducers were discussed.

  6. Titania bound sodium titanate ion exchanger

    DOEpatents

    DeFilippi, Irene C. G.; Yates, Stephen Frederic; Shen, Jian-Kun; Gaita, Romulus; Sedath, Robert Henry; Seminara, Gary Joseph; Straszewski, Michael Peter; Anderson, David Joseph

    1999-03-23

    This invention is method for preparing a titania bound ion exchange composition comprising admixing crystalline sodium titanate and a hydrolyzable titanium compound and, thereafter drying the titania bound crystalline sodium titanate and subjecting the dried titania bound ion exchange composition to optional compaction and calcination steps to improve the physical strength of the titania bound composition.

  7. Activity and stability studies of titanates and titanate-carbon nanotubes supported Ag anode catalysts for direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Mohamed, Mohamed Mokhtar; Khairy, M.; Eid, Salah

    2016-02-01

    Titanate-SWCNT; synthesized via exploiting the interaction between TiO2 anatase with oxygen functionalized SWCNT, supported Ag nanoparticles and Ag/titanate are characterized using XRD, TEM-EDX-SAED, N2 adsorption, Photoluminescence, Raman and FTIR spectroscopy. These samples are tested for methanol electrooxidation via using cyclic voltammetry (CV) and impedance measurements. It is shown that Ag/titanate nanotubes exhibited superior electrocatalytic performance for methanol oxidation (4.2 mA cm-2) than titanate-SWCNT, Ag/titanate-SWCNT and titanate. This study reveals the existence of a strong metal-support interaction in Ag/titanate as explored via formation of Ti-O-Ag bond at 896 cm-1 and increasing surface area and pore volume (103 m2 g-1, 0.21 cm3 g-1) compared to Ag/titanate-SWCNT (71 m2 g-1, 0.175 cm3 g-1) that suffers perturbation and defects following incorporation of SWCNT and Ag. Embedding Ag preferably in SWCNT rather than titanate in Ag/titanate-SWCNT disturbs the electron transfer compared to Ag/titanate. Charge transfer resistance depicted from Nyquist impedance plots is found in the order of titanate > Ag/titanate-SWCNT > titanate-SWCNT > Ag/titanate. Accordingly, Ag/titanate indicates a slower current degradation over time compared to rest of catalysts. Conductivity measurements indicate that it follows the order Ag/titanate > Ag/titanate-SWCNT > titanate > titanate-SWCNT declaring that SWCNT affects seriously the conductivity of Ag(titanate) due to perturbations caused in titanate and sinking of electrons committed by Ago through SWCNT.

  8. The Lakes and Seas of Titan

    NASA Astrophysics Data System (ADS)

    Hayes, Alexander G.

    2016-06-01

    Analogous to Earth's water cycle, Titan's methane-based hydrologic cycle supports standing bodies of liquid and drives processes that result in common morphologic features including dunes, channels, lakes, and seas. Like lakes on Earth and early Mars, Titan's lakes and seas preserve a record of its climate and surface evolution. Unlike on Earth, the volume of liquid exposed on Titan's surface is only a small fraction of the atmospheric reservoir. The volume and bulk composition of the seas can constrain the age and nature of atmospheric methane, as well as its interaction with surface reservoirs. Similarly, the morphology of lacustrine basins chronicles the history of the polar landscape over multiple temporal and spatial scales. The distribution of trace species, such as noble gases and higher-order hydrocarbons and nitriles, can address Titan's origin and the potential for both prebiotic and biotic processes. Accordingly, Titan's lakes and seas represent a compelling target for exploration.

  9. On the origin of Titan's atmosphere.

    PubMed

    Owen, T C

    2000-01-01

    The present atmosphere of Titan exhibits evidence of extensive evolution, in the form of rapid photochemical destruction of methane and a large fractionation of the nitrogen and oxygen isotopes. Attempts to recover the initial inventory of volatiles lead toward a model in which nitrogen was originally supplied as NH3, essentially unmodified from its relative abundance in the outer solar nebula. Titan's atmospheric methane, in contrast, appears to have been formed from carbon and other carbon compounds, either by gas phase reactions in the subnebula or by accretional heating during the formation of Titan. These conclusions can be tested by further studies of abundances and isotope ratios in Titan's atmosphere, augmented by studies of comets. The possible similarity of carbon and nitrogen inventories on Titan to those on the inner planets makes this investigation particularly intriguing. PMID:11543520

  10. Interaction of Titan's ionosphere with Saturn's magnetosphere.

    PubMed

    Coates, Andrew J

    2009-02-28

    Titan is the only Moon in the Solar System with a significant permanent atmosphere. Within this nitrogen-methane atmosphere, an ionosphere forms. Titan has no significant magnetic dipole moment, and is usually located inside Saturn's magnetosphere. Atmospheric particles are ionized both by sunlight and by particles from Saturn's magnetosphere, mainly electrons, which reach the top of the atmosphere. So far, the Cassini spacecraft has made over 45 close flybys of Titan, allowing measurements in the ionosphere and the surrounding magnetosphere under different conditions. Here we review how Titan's ionosphere and Saturn's magnetosphere interact, using measurements from Cassini low-energy particle detectors. In particular, we discuss ionization processes and ionospheric photoelectrons, including their effect on ion escape from the ionosphere. We also discuss one of the unexpected discoveries in Titan's ionosphere, the existence of extremely heavy negative ions up to 10000amu at 950km altitude. PMID:19073464

  11. Size and shape of Saturn's moon Titan

    USGS Publications Warehouse

    Zebker, Howard A.; Stiles, Bryan; Hensley, Scott; Lorenz, Ralph; Kirk, Randolph L.; Lunine, Jonathan

    2009-01-01

    Cassini observations show that Saturn's moon Titan is slightly oblate. A fourth-order spherical harmonic expansion yields north polar, south polar, and mean equatorial radii of 2574.32 ± 0.05 kilometers (km), 2574.36 ± 0.03 km, and 2574.91 ± 0.11 km, respectively; its mean radius is 2574.73 ± 0.09 km. Titan's shape approximates a hydrostatic, synchronously rotating triaxial ellipsoid but is best fit by such a body orbiting closer to Saturn than Titan presently does. Titan's lack of high relief implies that most—but not all—of the surface features observed with the Cassini imaging subsystem and synthetic aperture radar are uncorrelated with topography and elevation. Titan's depressed polar radii suggest that a constant geopotential hydrocarbon table could explain the confinement of the hydrocarbon lakes to high latitudes.

  12. Zircon 4He/3He thermochronometry

    NASA Astrophysics Data System (ADS)

    Tripathy-Lang, Alka; Fox, Matthew; Shuster, David L.

    2015-10-01

    Multiple thermochronometric methods are often required to constrain time-continuous rock exhumation for studying tectonic processes or development of km-scale topography at Earth's surface. Here, we explore 4He/3He thermochronometry of zircon as a method for constraining continuous time-temperature (t-T) paths of individual samples through a temperature range that is complementary to methods such as 40Ar/39Ar thermochronometry of K-feldspar and 4He/3He thermochronometry of apatite. For different cooling rates and diffusion domain size, the temperature sensitivity of zircon 4He/3He thermochronometry ranges from slightly less than 100 °C to slightly greater than 250 °C; a typical sample provides continuous thermal constraints over ∼100 °C within that range. Outside these temperatures, 4He in zircon will either be quantitatively retained or completely lost by volume diffusion. As proof-of-concept, we present stepwise release 4He/3He spectra and associated U and Th concentration maps measured by laser ablation ICP-MS analysis of individual crystal aliquots of Fish Canyon Tuff (FCT) zircon and of a more complex setting in the Sierra Nevada batholith that experienced reheating from a proximal basaltic intrusion, the Little Devil's Postpile (LDP). The FCT zircon 4He/3He release spectra are consistent with a 4He spatial distribution dominated by alpha-ejection from crystal surfaces. The spatial distributions of U and Th measured in the same crystals do not substantially influence 4He/3He release spectra that are predicted for the known thermal history, even when incorporating spatially variable diffusivity due to accumulation of radiation damage. Conversely, the LDP 4He/3He release spectra are strongly influenced by the observed parent nuclide zonation. A three-dimensional (3D) numerical model of 4He production and diffusion, which incorporates crystal geometry, U and Th zonation, and spatially variable He diffusion kinetics, substantially improves the fit between

  13. Titan Orbiter with Aerorover Mission (TOAM)

    NASA Technical Reports Server (NTRS)

    Sittler, E. C., Jr.; Cooper, J. F.; Mahaffy, P.; Esper, J.; Fairbrother, D.; Farley, R.; Pitman, J.; Kojiro, D. R.; Acuna, M.; Allen, M.; Bjoraker, G.; Brasunas, J.; Farrell, W.; Burchell, M. J.; Burger, M.; Chin, G.; Coates, A. J.; Farrell, W.; Flasar, M.; Gerlach, B.; Gorevan, S.; Hartle, R. E.; Im, Eastwood; Jennings, D.; Johnson, R. E.

    2007-01-01

    We propose to develop a new mission to Titan called Titan Orbiter with Aerorover Mission (TOAM). This mission is motivated by the recent discoveries of Titan, its atmosphere and its surface by the Huygens Probe, and a combination of in situ, remote sensing and radar mapping measurements of Titan by the Cassini orbiter. Titan is a body for which Astrobiology (i.e., prebiotic chemistry) will be the primary science goal of any future missions to it. TOAM is planned to use an orbiter and balloon technology (i.e., aerorover). Aerobraking will be used to put payload into orbit around Titan. One could also use aerobraking to put spacecraft into orbit around Saturn first for an Enceladus phase of the mission and then later use aerocapture to put spacecraft into orbit around Titan. The Aerorover will probably use a hot air balloon concept using the waste heat from the MMRTG approx. 1000 watts. Orbiter support for the Aerorover is unique to our approach for Titan. Our strategy to use an orbiter is contrary to some studies using just a single probe with balloon. Autonomous operation and navigation of the Aerorover around Titan will be required, which will include descent near to the surface to collect surface samples for analysis (i.e., touch and go technique). The orbiter can provide both relay station and GPS roles for the Aerorover. The Aerorover will have all the instruments needed to sample Titan's atmosphere, surface, possible methane lakes-rivers, use multi-spectral imagers for surface reconnaissance; to take close up surface images; take core samples and deploy seismometers during landing phase. Both active and passive broadband remote sensing techniques will be used for surface topography, winds and composition measurements.

  14. Titan as the Abode of Life

    NASA Technical Reports Server (NTRS)

    Mckay, Christopher P.

    2016-01-01

    Titan is the only world we know other than Earth that has a liquid on its surface. It has a thick atmosphere composed of nitrogen and methane with a thick organic haze. There are lakes, rain, and clouds of methane and ethane. Here, we address the question of carbon-based life living in Titan liquids. Photochemically produced organics, particularly acetylene, in Titan's atmosphere could be a source of biological energy when reacted with atmospheric hydrogen. Light levels on the surface of Titan are more than adequate for photosynthesis but the biochemical limitations due to the few elements available in the environment may lead only to simple ecosystems that only consume atmospheric nutrients. Life on Titan may make use of the trace metals and other inorganic elements produced by meteorites as they ablate in the atmosphere. It is conceivable that H2O molecules on Titan could be used in a biochemistry that is rooted in hydrogen bonds in a way that metals are used in enzymes by life on Earth. Previous theoretical work has shown possible membrane structures in Titan liquids, azotosomes, composed of small organic nitrogen compounds, such as acrylonitrile. The search for a plausible information molecule for life in Titan liquids remains an open research topic - polyethers have been considered and shown to be insoluble at Titan temperatures. Possible search strategies for life on Titan include looking for unusual concentrations of certain molecules reflecting biological selection. Homochirality is a special and powerful example of such biology selection. Environmentally, a depletion of hydrogen in the lower atmosphere may be a sign of metabolism. A discovery of life in liquid methane and ethane would be our first compelling indication that the Universe is full of diverse and wondrous life forms.

  15. Titan as the Abode of Life.

    PubMed

    McKay, Christopher P

    2016-01-01

    Titan is the only world we know, other than Earth, that has a liquid on its surface. It also has a thick atmosphere composed of nitrogen and methane with a thick organic haze. There are lakes, rain, and clouds of methane and ethane. Here, we address the question of carbon-based life living in Titan liquids. Photochemically produced organics, particularly acetylene, in Titan's atmosphere could be a source of biological energy when reacted with atmospheric hydrogen. Light levels on the surface of Titan are more than adequate for photosynthesis, but the biochemical limitations due to the few elements available in the environment may lead only to simple ecosystems that only consume atmospheric nutrients. Life on Titan may make use of the trace metals and other inorganic elements produced by meteorites as they ablate in its atmosphere. It is conceivable that H₂O molecules on Titan could be used in a biochemistry that is rooted in hydrogen bonds in a way that metals are used in enzymes by life on Earth. Previous theoretical work has shown possible membrane structures, azotosomes, in Titan liquids, azotosomes, composed of small organic nitrogen compounds, such as acrylonitrile. The search for a plausible information molecule for life in Titan liquids remains an open research topic-polyethers have been considered and shown to be insoluble at Titan temperatures. Possible search strategies for life on Titan include looking for unusual concentrations of certain molecules reflecting biological selection. Homochirality is a special and powerful example of such biology selection. Environmentally, a depletion of hydrogen in the lower atmosphere may be a sign of metabolism. A discovery of life in liquid methane and ethane would be our first compelling indication that the universe is full of diverse and wondrous life forms. PMID:26848689

  16. Processing science of barium titanate

    NASA Astrophysics Data System (ADS)

    Aygun, Seymen Murat

    Barium titanate and barium strontium titanate thin films were deposited on base metal foils via chemical solution deposition and radio frequency magnetron sputtering. The films were processed at elevated temperatures for densification and crystallization. Two unifying research goals underpin all experiments: (1) To improve our fundamental understanding of complex oxide processing science, and (2) to translate those improvements into materials with superior structural and electrical properties. The relationships linking dielectric response, grain size, and thermal budget for sputtered barium strontium titanate were illustrated. (Ba 0.6Sr0.4)TiO3 films were sputtered on nickel foils at temperatures ranging between 100-400°C. After the top electrode deposition, the films were co-fired at 900°C for densification and crystallization. The dielectric properties were observed to improve with increasing sputter temperature reaching a permittivity of 1800, a tunability of 10:1, and a loss tangent of less than 0.015 for the sample sputtered at 400°C. The data can be understood using a brick wall model incorporating a high permittivity grain interior with low permittivity grain boundary. However, this high permittivity value was achieved at a grain size of 80 nm, which is typically associated with strong suppression of the dielectric response. These results clearly show that conventional models that parameterize permittivity with crystal diameter or film thickness alone are insufficiently sophisticated. Better models are needed that incorporate the influence of microstructure and crystal structure. This thesis next explores the ability to tune microstructure and properties of chemically solution deposited BaTiO3 thin films by modulation of heat treatment thermal profiles and firing atmosphere composition. Barium titanate films were deposited on copper foils using hybrid-chelate chemistries. An in-situ gas analysis process was developed to probe the organic removal and the

  17. Spectral Characteristics of Titan's Surface

    NASA Astrophysics Data System (ADS)

    Griffith, Caitlin A.; Turner, Jake D.; Penteado, Paulo; Khamsi, Tymon B.; Soderblom, Jason M.

    2014-11-01

    Cassini/Huygens and ground-based measurements of Titan reveal an eroded surface, with lakes, dunes, and sinuous washes. These features, coupled with measurements of clouds and rain, indicate the transfer of methane between Titan’s surface and atmosphere. The presence of methane-damp lowlands suggests further that the atmospheric methane (which is continually depleted through photolysis) may be supplied by sub-surface reservoirs. The byproducts of methane photolysis condense onto the surface, leaving layers of organic sediments that record Titan’s past atmospheres.Thus knowledge of the source and history of Titan's atmosphere requires measurements of the large scale compositional makeup of Titan's surface, which is shrouded by a thick and hazy atmosphere. Towards this goal, we analyzed roughly 100,000 spectra recorded by Cassini’s Visual and Infrared Mapping Spectrometer (VIMS). Our study is confined to the latitude region (20S—20N) surrounding the landing site of the Huygens probe (at 10S, 192W), which supplied only measurement of the vertical profiles of the methane abundance and haze scattering characteristics. VIMS near-IR spectral images indicate subtle latitudinal and temporal variations in the haze characteristics in the tropics. We constrain these small changes with full radiative transfer analyses of each of the thousands of VIMS spectra, which were recorded of different terrains and at different lighting conditions. The resulting models of Titan’s atmosphere as a function of latitude and year indicate the seasonal migration of Titan’s tropical haze and enable the derivation of Titan’s surface albedo at 8 near-IR wavelength regions where Titan’s atmosphere is transparent enough to allow visibility to the surface. The resultant maps of Titan’s surface indicate a number of terrain types with distinct spectral characteristics that are suggestive of atmospheric and surficial processes, including the deposition of organic material, erosion of

  18. The energetics of Titan's ionosphere

    NASA Astrophysics Data System (ADS)

    Roboz, A.; Nagy, A. F.

    1994-02-01

    We have developed a comprehensive model to study the dynamics and energetics of the ionosphere of Titan. We solved the one-dimensional, time-dependent, coupled continuity and momentum equations for several ion species, together with single ion and electron energy equations, in order to calculate density, velocity, and temperature profiles. Calculations were carried out for several cases corresponding to different local times and configurations of the Titan-Saturn system. In our model the effects of horizontal magnetic fields were assumed to be negligible, except for their effect on reducing the electron and ion thermal conductivities and inhibiting vertical transport in the subram region. The ionospheric density peak was found to be at an altitude of about 1100 km, in accordance with earlier model calculations. The ionosphere is chemically controlled below an altitude of about 1500 km. Above this level, ion densities differ significantly from their chemical equilibrium values due to strong upward ion velocities. Heat is deposited in a narrow region around the ionospheric peak, resulting in temperature profiles increasing sharply and reaching nearly constant values of 800-1000 deg K for electrons and 300 deg K for ions in the topside, assuming conditions appropriate for the wake region. In the subram region magnetic correction factors make the electron heat conductivities negligible, resulting in electron temperatures increasing strongly with altitude and reaching values in the order of 5000 deg K at our upper boundary located at 2200 km. Ion chemical heating is found to play an important role in shaping the ion energy balance in Titan's ionosphere.

  19. Aerosol growth in Titan's ionosphere.

    PubMed

    Lavvas, Panayotis; Yelle, Roger V; Koskinen, Tommi; Bazin, Axel; Vuitton, Véronique; Vigren, Erik; Galand, Marina; Wellbrock, Anne; Coates, Andrew J; Wahlund, Jan-Erik; Crary, Frank J; Snowden, Darci

    2013-02-19

    Photochemically produced aerosols are common among the atmospheres of our solar system and beyond. Observations and models have shown that photochemical aerosols have direct consequences on atmospheric properties as well as important astrobiological ramifications, but the mechanisms involved in their formation remain unclear. Here we show that the formation of aerosols in Titan's upper atmosphere is directly related to ion processes, and we provide a complete interpretation of observed mass spectra by the Cassini instruments from small to large masses. Because all planetary atmospheres possess ionospheres, we anticipate that the mechanisms identified here will be efficient in other environments as well, modulated by the chemical complexity of each atmosphere. PMID:23382231

  20. Condensation in Titan's lower atmosphere

    NASA Astrophysics Data System (ADS)

    Lavvas, P.; Griffith, C. A.; Yelle, R. V.

    2011-10-01

    We present a self-consistent description of Titan's aerosols-clouds-gases system and compare our results with the optical properties retrieved from measurements made by the Descent Imager / Spectral Radiometer (DISR) experiment on the Huygens probe [4]. Our calculations include the condensation of methane, ethane and hydrogen cyanide on photochemical aerosols produced in the thermosphere. Our results suggest that the two distinct extinction layers observed by DISR below 80 km are produced by HCN and methane condensation, respectively, while for the Huygens' equatorial conditions simulated here, the contribution of ethane clouds to the total opacity is negligible