Science.gov

Sample records for zno single crystal

  1. Optical characteristics of ZnO single crystal grown by the hydrothermal method

    SciTech Connect

    Chen, G. Z.; Yin, J. G. E-mail: yjg@siom.ac.cn; Zhang, L. H.; Zhang, P. X.; Wang, X. Y.; Liu, Y. C.; Zhang, C. L.; Gu, S. L.; Hang, Y.

    2015-12-15

    ZnO single crystals have been grown by the hydrothermal method. Raman scattering and Photoluminescence spectroscopy (PL) have been used to study samples of ZnO that were unannealed or annealed in different ambient gases. It is suggested that the green emission may originate from defects related to copper in our samples.

  2. Optical characteristics of ZnO single crystal grown by the hydrothermal method

    NASA Astrophysics Data System (ADS)

    Chen, G. Z.; Yin, J. G.; Zhang, L. H.; Zhang, P. X.; Wang, X. Y.; Liu, Y. C.; Zhang, C. L.; Gu, S. L.; Hang, Y.

    2015-12-01

    ZnO single crystals have been grown by the hydrothermal method. Raman scattering and Photoluminescence spectroscopy (PL) have been used to study samples of ZnO that were unannealed or annealed in different ambient gases. It is suggested that the green emission may originate from defects related to copper in our samples.

  3. Bio-inspired synthesis of ZnO polyhedral single crystals under eggshell membrane direction

    NASA Astrophysics Data System (ADS)

    Su, Huilan; Song, Fang; Dong, Qun; Li, Tuoqi; Zhang, Xin; Zhang, Di

    2011-07-01

    A simple and versatile technique was developed to prepare hierarchical ZnO single crystals by introducing eggshell membrane (ESM) to a bio-inspired approach. Based on the control of nucleation and gestation, ZnO nanocrystallites could grow at three dimensions into polyhedral single crystals through a surface sol-gel process followed by a calcination treatment. Different from traditional wet chemical techniques, our synthetic process depends more on the restrictive or directing functions of the ESM biomacromolecules. The hierarchical ZnO nanostructures doped with polyhedral single crystallites could be desirable for catalysts, photoelectrochemical devices, especially solar cells.

  4. Determination of Na acceptor level in Na+ ion-implanted ZnO single crystal

    NASA Astrophysics Data System (ADS)

    Wang, Zheng; Liu, Huibin; He, Haiping; Huang, Jingyun; Chen, Lingxiang; Ye, Zhizhen

    2015-03-01

    Ion implantation was used to dope Na acceptor into ZnO single crystals. With three mixed implantation energies, uniform depth distribution of Na ion in the surface region (~300 nm) of ZnO bulk crystals is achieved. Via post-implantation annealing, a donor-acceptor pair recombination band is identified in the low-temperature photoluminescence spectra, from which the energy level of Na-related acceptor in single crystalline ZnO is estimated to be 300 meV. A p-n junction based on this ZnO-Na layer shows rectifying characteristics, confirming the p-type conductivity.

  5. Surface chemistry and surface electronic properties of ZnO single crystals and nanorods

    SciTech Connect

    Uhlrich, J. J.; Olson, D. C.; Hsu, J. W. P.; Kuech, T. F.

    2009-03-15

    The surface chemistry of ZnO single crystals of (0001) and (1010) orientations and ZnO nanorods was studied using x-ray and ultraviolet photoelectron spectroscopies. Air drying and UV-ozone preparations were studied in particular as chemical treatments that could be applied to poly(3-hexylthiophene) (P3HT)-ZnO solar cells to enhance performance. The UV-ozone treatment showed negligible effect by photoelectron spectroscopy on the ZnO single crystal surfaces, but brought about electronic shifts consistent with increased upward band bending by {approx}0.25 eV on the ZnO nanorod surface. Modest interface dipoles of {approx}0.15 and {approx}0.25 eV were measured between P3HT and the (1010) and (0001) single crystal orientations, respectively, with the dipole moment pointing from ZnO to the P3HT layer. The sol-gel films showed evidence of forming a small interface dipole in the opposite direction, which illustrates the difference in surface chemistry between the solution-grown ZnO and the ZnO single crystals.

  6. Nanosecond X-ray detector based on high resistivity ZnO single crystal semiconductor

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaolong; Chen, Liang; He, Yongning; Liu, Jinliang; Peng, Wenbo; Huang, Zhiyong; Qi, Xiaomeng; Pan, Zijian; Zhang, Wenting; Zhang, Zhongbing; Ouyang, Xiaoping

    2016-04-01

    The pulse radiation detectors are sorely needed in the fields of nuclear reaction monitoring, material analysis, astronomy study, spacecraft navigation, and space communication. In this work, we demonstrate a nanosecond X-ray detector based on ZnO single crystal semiconductor, which emerges as a promising compound-semiconductor radiation detection material for its high radiation tolerance and advanced large-size bulk crystal growth technique. The resistivity of the ZnO single crystal is as high as 1013 Ω cm due to the compensation of the donor defects (VO) and acceptor defects (VZn and Oi) after high temperature annealing in oxygen. The photoconductive X-ray detector was fabricated using the high resistivity ZnO single crystal. The rise time and fall time of the detector to a 10 ps pulse electron beam are 0.8 ns and 3.3 ns, respectively, indicating great potential for ultrafast X-ray detection applications.

  7. Synthesis of manganese doped ZnO single crystals and their magnetization studies

    NASA Astrophysics Data System (ADS)

    Jayakumar, O. D.; Gopalakrishnan, I. K.; Sudakar, C.; Kulshreshtha, S. K.

    2006-09-01

    We report the synthesis of rod shaped Mn (2.2 at%) doped ZnO single crystals using the surfactant AOT (sodium bis (2-ethylhexyl) sulpho succinate) assisted solid-state synthesis route. The X-ray diffraction and transmission electron microsopy analyses showed the formation of impurity free single crystals of Mn doped ZnO with wurtzite structure. XPS data revealed that Mn exists in +2 oxidation state. DC magnetization measurements as a function of field and temperature showed that the sample is ferromagnetic above room temperature.

  8. Photoelectrochemical Stability and Alteration Products of n-Type Single-Crystal ZnO Photoanodes

    DOE PAGESBeta

    Paulauskas, I. E.; Jellison, G. E.; Boatner, L. A.; Brown, G. M.

    2011-01-01

    The photoelectrochemical stability and surface-alteration characteristics of doped and undoped n-type ZnO single-crystal photoanode electrodes were investigated. The single-crystal ZnO photoanode properties were analyzed using current-voltage measurements plus spectral and time-dependent quantum-yield methods. These measurements revealed a distinct anodic peak and an accompanying cathodic surface degradation process at negative potentials. The features of this peak depended on time and the NaOH concentration in the electrolyte, but were independent of the presence of electrode illumination. Current measurements performed at the peak indicate that charging and discharging effects are apparently taking place at the semiconductor/electrolyte interface. This result is consistent with themore » significant reactive degradation that takes place on the ZnO single crystal photoanode surface and that ultimately leads to the reduction of the ZnO surface to Zn metal. The resulting Zn-metal reaction products create unusual, dendrite-like, surface alteration structural features that were analyzed using x-ray diffraction, energy-dispersive analysis, and scanning electron microscopy. ZnO doping methods were found to be effective in increasing the n-type character of the crystals. Higher doping levels result in smaller depletion widths and lower quantum yields, since the minority carrier diffusion lengths are very short in these materials.« less

  9. Photoelectrochemical Stability and Alteration Products of n-Type Single-Crystal ZnO Photoanodes

    SciTech Connect

    Paulauskas, Irene E.; Jellison Jr, Gerald Earle; Boatner, Lynn A; Brown, G. M.

    2011-01-01

    The photoelectrochemical stability and surface-alteration characteristics of both doped and undoped n-type ZnO single-crystal photoanode electrodes have been investigated. The single-crystal ZnO photoanode properties were analyzed using current-voltage measurements plus spectral and time-dependent quantum-yield methods. These measurements revealed the presence of a distinct anodic peak and an accompanying cathodic surface degradation process at negative potentials. The features of this peak were found to depend on time as well as the NaOH concentration in the electrolyte, but they were independent of the presence of electrode illumination. Current measurements performed at the peak indicate that charging and discharging effects are apparently taking place at the semiconductor/electrolyte interface. This result is consistent with the significant reactive degradation that takes place on the ZnO single crystal photoanode surface and that ultimately leads to the reduction of the ZnO surface to Zn metal. The resulting Zn-metal reaction products create unusual, dendrite-like, surface alteration structural features that were analyzed using x-ray diffraction, energy-dispersive analysis, and scanning electron microscopy. The ZnO doping methods employed here are also shown to be an effective way of increasing the n-type character of the crystals. Higher doping levels result in smaller depletion widths and lower quantum yields, since the minority carrier diffusion lengths are very short in these materials.

  10. X-ray Characterisation of Zinc Oxide (ZnO) Single Crystal Substrates

    SciTech Connect

    Dhanaraj, G.; Raghothamachar, B; Dudley, M

    2010-01-01

    Single crystal substrates of low defect density are paramount for fully realizing the numerous applications of zinc oxide (ZnO) wide bandgap semiconductors. While ZnO substrates are commercially available from various vendors, very little information is available on the structural properties of these substrates. Therefore, an extensive evaluation of available substrates would serve as a basis for the development of ZnO based devices and technologies. In this study, bulk ZnO single crystal substrates grown by different growth techniques have been characterised using synchrotron white beam X-ray topography and high resolution X-ray diffraction. The substrates exhibit a wide range of dislocation densities from as high as 10{sup 6} cm{sup -2} down to less than 1000 cm{sup -2} depending on the growth technique employed. The authors evaluation reveals that ZnO crystals grown by the hydrothermal technique possess the best structural quality with dislocation densities of 800-1000 cm{sup -2} and rocking curves with a full width half maximum of less than 12 arc seconds.

  11. ZnO nanoflowers with single crystal structure towards enhanced gas sensing and photocatalysis.

    PubMed

    Zhang, Sha; Chen, Hsueh-Shih; Matras-Postolek, Katarzyna; Yang, Ping

    2015-11-11

    In this paper, ZnO nanoflowers (NFs) were fabricated by thermal decomposition in an organic solvent and their application in gas sensors and photocatalysis was investigated. These single crystal ZnO NFs, which were observed for the first time, with an average size of ∼60 nm and were grown along the {100} facet. It was suggested that oleylamine used in the synthesis inhibited the growth and agglomeration of ZnO through the coordination of the oleylamine N atoms. The NFs exhibited excellent selectivity to acetone with a concentration of 25 ppm at 300 °C because they had a high specific surface area that provided more active sites and the surface adsorbed oxygen species for interaction with acetone. In addition, the ZnO NFs showed enhanced gas sensing response which was also ascribed to abundant oxygen vacancies at the junctions between petals of the NFs. Furthermore, ZnO-reduced graphene oxide (RGO) composites were fabricated by loading the ZnO NFs on the surface of the stratiform RGO sheet. In the photodegradation of rhodamine B tests, the composite revealed an enhanced photocatalytic performance compared with ZnO NFs under UV light irradiation. PMID:26507913

  12. Characterisation of irradiation-induced defects in ZnO single crystals

    NASA Astrophysics Data System (ADS)

    Prochazka, I.; Cizek, J.; Lukac, F.; Melikhova, O.; Valenta, J.; Havranek, V.; Anwand, W.; Skuratov, V. A.; Strukova, T. S.

    2016-01-01

    Positron annihilation spectroscopy (PAS) combined with optical methods was employed for characterisation of defects in the hydrothermally grown ZnO single crystals irradiated by 167 MeV Xe26+ ions to fluences ranged from 3×1012 to 1×1014 cm-2. The positron lifetime (LT), Doppler broadening as well as slow-positron implantation spectroscopy (SPIS) techniques were involved. The ab-initio theoretical calculations were utilised for interpretation of LT results. The optical transmission and photoluminescence measurements were conducted, too. The virgin ZnO crystal exhibited a single component LT spectrum with a lifetime of 182 ps which is attributed to saturated positron trapping in Zn vacancies associated with hydrogen atoms unintentionally introduced into the crystal during the crystal growth. The Xe ion irradiated ZnO crystals have shown an additional component with a longer lifetime of ≈ 360 ps which comes from irradiation-induced larger defects equivalent in size to clusters of ≈10 to 12 vacancies. The concentrations of these clusters were estimated on the basis of combined LT and SPIS data. The PAS data were correlated with irradiation induced changes seen in the optical spectroscopy experiments.

  13. High-resolution photoluminescence spectroscopy of Sn-doped ZnO single crystals

    DOE PAGESBeta

    Kumar, E. Senthil; Mohammadbeigi, F.; Boatner, Lynn A.; Watkins, S. P.

    2016-01-01

    Here, Group IV donors in ZnO are poorly understood, despite evidence that they are effective n-dopants. We present high-resolution photoluminescence spectroscopy studies of unintentionally doped and Sn doped ZnO single crystals grown by the chemical vapor transport method. Doped samples showed greatly increased emission from the I10 bound exciton transition which was recently proven to be related to the incorporation of Sn impurities based on radio-isotope studies. PL linewidths are exceptionally sharp for these samples, enabling clear identification of several donor species. Temperature dependent PL measurements of the I10 line emission energy and intensity dependence reveal a behavior similar tomore » other shallow donors in ZnO. Ionized donor bound exciton and two electron satellite transitions of the I10 transition are unambiguously identified and yield a donor binding energy of 71 meV. In contrast to recent reports of Ge-related donors in ZnO, the spectroscopic binding energy for the Sn-related donor bound exciton follows a linear relationship with donor binding energy (Haynes rule), confirming the shallow nature of this defect center, which we attribute to a SnZn double donor compensated by an unknown single acceptor.« less

  14. High-resolution photoluminescence spectroscopy of Sn-doped ZnO single crystals

    SciTech Connect

    Kumar, E. Senthil; Mohammadbeigi, F.; Boatner, Lynn A.; Watkins, S. P.

    2016-01-01

    Here, Group IV donors in ZnO are poorly understood, despite evidence that they are effective n-dopants. We present high-resolution photoluminescence spectroscopy studies of unintentionally doped and Sn doped ZnO single crystals grown by the chemical vapor transport method. Doped samples showed greatly increased emission from the I10 bound exciton transition which was recently proven to be related to the incorporation of Sn impurities based on radio-isotope studies. PL linewidths are exceptionally sharp for these samples, enabling clear identification of several donor species. Temperature dependent PL measurements of the I10 line emission energy and intensity dependence reveal a behavior similar to other shallow donors in ZnO. Ionized donor bound exciton and two electron satellite transitions of the I10 transition are unambiguously identified and yield a donor binding energy of 71 meV. In contrast to recent reports of Ge-related donors in ZnO, the spectroscopic binding energy for the Sn-related donor bound exciton follows a linear relationship with donor binding energy (Haynes rule), confirming the shallow nature of this defect center, which we attribute to a SnZn double donor compensated by an unknown single acceptor.

  15. Time-dependent mechanical-electrical coupled behavior in single crystal ZnO nanorods

    PubMed Central

    Kim, Yong-Jae; Yun, Tae Gwang; Choi, In-Chul; Kim, Sungwoong; Park, Won Il; Han, Seung Min; Jang, Jae-il

    2015-01-01

    Nanoscale time-dependent mechanical-electrical coupled behavior of single crystal ZnO nanorods was systematically explored, which is essential for accessing the long-term reliability of the ZnO nanorod-based flexible devices. A series of compression creep tests combined with in-situ electrical measurement was performed on vertically-grown single crystal ZnO nanorods. Continuous measurement of the current (I)-voltage (V) curves before, during, after the creep tests revealed that I is non-negligibly increased as a result of the time-dependent deformation. Analysis of the I-V curves based on the thermionic emission-diffusion theory allowed extraction of nanorod resistance, which was shown to decrease as time-dependent deformation. Finally, based on the observations in this study, a simple analytical model for predicting the reduction in nanorod resistance as a function of creep strain that is induced from diffusional mechanisms is proposed, and this model was demonstrated to be in an excellent agreement with the experimental results. PMID:25982962

  16. Time-dependent mechanical-electrical coupled behavior in single crystal ZnO nanorods.

    PubMed

    Kim, Yong-Jae; Yun, Tae Gwang; Choi, In-Chul; Kim, Sungwoong; Park, Won Il; Han, Seung Min; Jang, Jae-il

    2015-01-01

    Nanoscale time-dependent mechanical-electrical coupled behavior of single crystal ZnO nanorods was systematically explored, which is essential for accessing the long-term reliability of the ZnO nanorod-based flexible devices. A series of compression creep tests combined with in-situ electrical measurement was performed on vertically-grown single crystal ZnO nanorods. Continuous measurement of the current (I)-voltage (V) curves before, during, after the creep tests revealed that I is non-negligibly increased as a result of the time-dependent deformation. Analysis of the I-V curves based on the thermionic emission-diffusion theory allowed extraction of nanorod resistance, which was shown to decrease as time-dependent deformation. Finally, based on the observations in this study, a simple analytical model for predicting the reduction in nanorod resistance as a function of creep strain that is induced from diffusional mechanisms is proposed, and this model was demonstrated to be in an excellent agreement with the experimental results. PMID:25982962

  17. Hydrogen-related complexes in Li-diffused ZnO single crystals

    NASA Astrophysics Data System (ADS)

    Corolewski, Caleb D.; Parmar, Narendra S.; Lynn, Kelvin G.; McCluskey, Matthew D.

    2016-07-01

    Zinc oxide (ZnO) is a wide band gap semiconductor and a potential candidate for next generation white solid state lighting applications. In this work, hydrogen-related complexes in lithium diffused ZnO single crystals were studied. In addition to the well-known Li-OH complex, several other hydrogen defects were observed. When a mixture of Li2O and ZnO is used as the dopant source, zinc vacancies are suppressed and the bulk Li concentration is very high (>1019 cm-3). In that case, the predominant hydrogen complex has a vibrational frequency of 3677 cm-1, attributed to surface O-H species. When Li2CO3 is used, a structured blue luminescence band and O-H mode at 3327 cm-1 are observed at 10 K. These observations, along with positron annihilation measurements, suggest a zinc vacancy-hydrogen complex, with an acceptor level ˜0.3 eV above the valence-band maximum. This relatively shallow acceptor could be beneficial for p-type ZnO.

  18. Improved photocatalytic activity of single crystal ZnO nanorod derived from highly effective P/N heterojunction

    SciTech Connect

    Yan, Xiaoyan; Gong, Changwei; Wang, Jian; Liang, Liping; Zhao, Li; Zhang, Mingang; Chai, Yuesheng

    2013-10-15

    Graphical abstract: Schematic showing on photocatalytic degradation 2,4-DCP of ZnO NRs/BDD heterojunction. - Highlights: • Single-crystal ZnO nanorods based P/N heterojunction has been synthesized. • Vertical growth ZnO NRs on BDD can effectively photocatalytic decompose 2,4-DCP. • The rate constant of photocatalysis can be enhanced due to P/N heterojunction. - Abstract: Highly effective single-crystal ZnO nanorods based P/N heterojunction has been synthesized by a controllable crystal seed-induced hydrothermal vertical growth method, which facilitates the separation of the photogenerated electrons and holes due to its endogenous space charge region and suitable band structure. Therefore, photocatalytic activity for degradation of the toxic pollutants is markedly enhanced.

  19. C-H complex defects and their influence in ZnO single crystal

    NASA Astrophysics Data System (ADS)

    Xie, Hui; Zhao, You-Wen; Liu, Tong; Dong, Zhi-Yuan; Yang, Jun; Liu, Jing-Ming

    2015-10-01

    Infrared absorption local vibration mode (LVM) spectroscopy is used to study hydrogen related defects in n-type ZnO single crystal grown by a closed chemical vapor transport (CVT) method under Zn-rich growth conditions, in which carbon is used as a transport agent. Two C-H complex related absorption peaks at 2850 cm-1 and 2919 cm-1 are detected in the sample. The formation of the C-H complex implies an effect of carbon donor passivation and formation suppression of H donor in ZnO. The influence of the complex defects on the electrical property of the CVT-ZnO is discussed based on Hall measurement results and residual impurity analysis. Project supported by the National Natural Science Foundation of China (Grant No. 61474104).

  20. Morphological and structural characterization of single-crystal ZnO nanorod arrays on flexible and non-flexible substrates

    PubMed Central

    Farhat, Omar F; Halim, Mohd M; Abdullah, Mat J; Ali, Mohammed K M

    2015-01-01

    Summary We report a facile synthesis of zinc oxide (ZnO) nanorod arrays using an optimized, chemical bath deposition method on glass, PET and Si substrates. The morphological and structural properties of the ZnO nanorod arrays were investigated using various techniques such as field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) measurements, which revealed the formation of dense ZnO nanorods with a single crystal, hexagonal wurtzite structure. The aspect ratio of the single-crystal ZnO nanorods and the growth rate along the (002) direction was found to be sensitive to the substrate type. The lattice constants and the crystallite size of the fabricated ZnO nanorods were calculated based on the XRD data. The obtained results revealed that the increase in the crystallite size is strongly associated with the growth conditions with a minor dependence on the type of substrate. The Raman spectroscopy measurements confirmed the existence of a compressive stress in the fabricated ZnO nanorods. The obtained results illustrated that the growth of high quality, single-crystal ZnO nanorods can be realized by adjusting the synthesis conditions. PMID:25821712

  1. Silver migration and trapping in ion implanted ZnO single crystals

    NASA Astrophysics Data System (ADS)

    Azarov, Alexander; Vines, Lasse; Rauwel, Protima; Monakhov, Edouard; Svensson, Bengt G.

    2016-05-01

    Potentially, group-Ib elements (Cu, Ag, and Au) incorporated on Zn sites can be used for p-type doping of ZnO, and in the present paper, we use ion implantation to introduce Ag atoms in wurtzite ZnO single crystals. Monitoring the Li behavior, being a residual impurity in the crystals, as a tracer, we demonstrate that Zn interstitials assist the Ag diffusion and lead to Ag pile-up behind the implanted region after annealing above 800 °C. At even higher temperatures, a pronounced Ag loss from the sample surface occurs and concurrently the Ag atoms exhibit a trap-limited diffusion into the crystal bulk with an activation energy of ˜2.6 eV. The dominant traps are most likely Zn vacancies and substitutional Li atoms, yielding substitutional Ag atoms. In addition, formation of an anomalous multipeak Ag distribution in the implanted near-surface region after annealing can be attributed to local implantation-induced stoichiometry disturbances leading to trapping of the Ag atoms by O and Zn vacancies in the vicinity of the surface and in the end-of-range region, respectively.

  2. Origins of low resistivity in Al ion-implanted ZnO bulk single crystals

    SciTech Connect

    Oga, T.; Izawa, Y.; Kuriyama, K.; Kushida, K.; Kinomura, A.

    2011-06-15

    The origins of low resistivity in Al ion-implanted ZnO bulk single crystals are studied by combining Rutherford backscattering spectroscopy (RBS), nuclear reaction analysis (NRA), photoluminescence (PL), and Van der Pauw methods. The Al-ion implantation (peak concentration: 2.6 x 10{sup 20}cm{sup -3}) into ZnO is performed using a multiple-step energy. The resistivity decreases from {approx}10{sup 4{Omega}} cm for un-implanted ZnO to 1.4 x 10{sup -1{Omega}} cm for as-implanted, and reaches 6.0 x 10{sup -4{Omega}} cm for samples annealed at 1000 deg. C. RBS and NRA measurements for as-implanted ZnO suggest the existence of the lattice displacement of Zn (Zn{sub i}) and O (O{sub i}), respectively. After annealing at 1000 deg. C, the Zn{sub i} related defects remain and the O{sub i} related defects disappear. The origin of the low resistivity in the as-implanted sample is attributed to the Zn{sub i} ({approx}30 meV [Look et al., Phys. Rev. Lett. 82, 2552 (1999)]). In contrast, the origin of the low resistivity in the sample annealed at 1000 deg. C is assigned to both of the Zn{sub i} related defects and the electrically activated Al donor. A new PL emission appears at around 3.32 eV after annealing at 1000 deg. C, suggesting electrically activated Al donors.

  3. ZnO nanowires array grown on Ga-doped ZnO single crystal for dye-sensitized solar cells.

    PubMed

    Hu, Qichang; Li, Yafeng; Huang, Feng; Zhang, Zhaojun; Ding, Kai; Wei, Mingdeng; Lin, Zhang

    2015-01-01

    High quality ZnO nanowires arrays were homoepitaxial grown on Ga-doped ZnO single crystal (GZOSC), which have the advantages of high conductivity, high carrier mobility and high thermal stability. When it was employed as a photoanode in the DSSCs, the cell exhibited a 1.44% power-conversion efficiency under the illumination of one sun (AM 1.5G). The performance is superior to our ZnO nanowires/FTO based DSSCs under the same condition. This enhanced performance is mainly attributed to the perfect interface between the ZnO nanowires and the GZOSC substrate that contributes to lower carrier scattering and recombination rates compared with that grown on traditional FTO substrate. PMID:26099568

  4. ZnO nanowires array grown on Ga-doped ZnO single crystal for dye-sensitized solar cells

    PubMed Central

    Hu, Qichang; Li, Yafeng; Huang, Feng; Zhang, Zhaojun; Ding, Kai; Wei, Mingdeng; Lin, Zhang

    2015-01-01

    High quality ZnO nanowires arrays were homoepitaxial grown on Ga-doped ZnO single crystal (GZOSC), which have the advantages of high conductivity, high carrier mobility and high thermal stability. When it was employed as a photoanode in the DSSCs, the cell exhibited a 1.44% power-conversion efficiency under the illumination of one sun (AM 1.5G). The performance is superior to our ZnO nanowires/FTO based DSSCs under the same condition. This enhanced performance is mainly attributed to the perfect interface between the ZnO nanowires and the GZOSC substrate that contributes to lower carrier scattering and recombination rates compared with that grown on traditional FTO substrate. PMID:26099568

  5. Luminescence evolution of ZnO single crystal under low-energy electron beam irradiation

    SciTech Connect

    Dierre, B.; Sekiguchi, T.; Yuan, X. L.

    2008-08-15

    The effects of electron beam irradiation on the luminescence of ZnO single crystals were investigated by cathodoluminescence. We have found that the evolution of the intensity during the e-beam irradiation depends on the surface polarity. For O-face, the ultraviolet (UV) emission decreases exponentially and approaches an asymptotic value. For Zn-face, it first increases and then decreases. The decrease components are similar in both faces. If we halt the e-beam irradiation, the UV intensity recovers partially. These results suggest that the decrease in the UV evolution is related to metastable bulk defect reactions at the subsurface region while the increase is related to surface reaction such as electron-stimulated desorption.

  6. Glycine adsorption and photo-reaction over ZnO(000ī) single crystal

    NASA Astrophysics Data System (ADS)

    Gao, Y. K.; Traeger, F.; Wöll, C.; Idriss, H.

    2014-06-01

    The adsorption and reaction of the amino acid glycine (NH2CH2COOH) are studied experimentally on the polar single crystal surface of zinc oxide, ZnO(000ī), by X-ray photoelectron spectroscopy (XPS) under UV light in presence and absence of molecular O2. Deposition at 350 K mainly resulted in a largely deprotonated monolayer (NH2CH2COO-(a) + OH(s); where O is surface oxygen, (a) is for adsorbed and (s) is for surface species) identified by its XPS C1s binding energy at 289.3 eV (COO), 286.7 eV (CH2) and XPS O1s at 531.8 eV (COO). A decrease in the signals of all functional groups of the adsorbed glycine (monitored by their C1s, O1s, and N1s lines) is seen upon UV excitation in the absence and presence of O2 pressures up to 5 × 10- 6 mbar. The photoreaction cross sections extracted from the decrease in the C1s peaks were found to be = 2.6 × 10- 18 (COO(a)) and 1.4 × 10- 18(CH2) cm2. The photoactivity of the ZnO(000ī) surface under UHV-conditions is found to be comparable to that seen in direct photolysis of amino acids in solution.

  7. Analysis of strained surface layers of ZnO single crystals after irradiation with intense femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Schneider, Andreas; Wolverson, Daniel; Sebald, Kathrin; Hodges, Chris; Kuball, Martin; Voss, Tobias

    2013-05-01

    Structural modifications of ZnO single crystals that were created by the irradiation with femtosecond laser pulses at fluences far above the ablation threshold were investigated with micro-Raman spectroscopy. After light-matter interaction on the femtosecond time scale, rapid cooling and the pronounced thermal expansion anisotropy of ZnO are likely to cause residual strains of up to 1.8% and also result in the formation of surface cracks. This process relaxes the strain only partially and a strained surface layer remains. Our findings demonstrate the significant role of thermoelastic effects for the irradiation of solids with intense femtosecond laser pulses.

  8. Origin of green luminescence in hydrothermally grown ZnO single crystals

    SciTech Connect

    Čížek, J. Hruška, P.; Melikhova, O.; Procházka, I.; Valenta, J.; Novotný, M.; Bulíř, J.

    2015-06-22

    Combining photoluminescence and positron annihilation studies of hydrothermally grown ZnO crystals with stoichiometry varied by controlled annealing enabled us to clarify the origin of green luminescence. It was found that green luminescence in ZnO has multiple origins and consists of a band at 2.3(1) eV due to recombination of electrons of the conduction band by zinc vacancy acceptors coupled with hydrogen and a band at 2.47(2) eV related to oxygen vacancies. The as-grown ZnO crystals contain zinc vacancies associated with hydrogen and exhibit a green luminescence at 2.3(1) eV. Annealing in Zn vapor removed zinc vacancies and introduced oxygen vacancies. This led to disappearance of the green luminescence band at 2.3(1) eV and appearance of a green emission at higher energy of 2.47(2) eV. Moreover, the color of the crystal was changed from colorless to dark red. In contrast, annealing of the as-grown crystal in Cd vapor did not remove zinc vacancies and did not cause any significant change of green luminescence nor change in coloration.

  9. Current-induced giant polarization rotation using a ZnO single crystal doped with nitrogen ions

    PubMed Central

    Tate, Naoya; Kawazoe, Tadashi; Nomura, Wataru; Ohtsu, Motoichi

    2015-01-01

    Giant polarization rotation in a ZnO single crystal was experimentally demonstrated based on a novel phenomenon occurring at the nanometric scale. The ZnO crystal was doped with N+ and N2+ ions serving as p-type dopants. By applying an in-plane current using a unique arrangement of electrodes on the device, current-induced polarization rotation of the incident light was observed. From the results of experimental demonstrations and discussions, it was verified that this novel behavior originates from a specific distribution of dopants and the corresponding light–matter interactions in a nanometric space, which are allowed by the existence of such a dopant distribution. PMID:26246456

  10. Study of Thermally Induced Damage and its Recovery in ZnO Single Crystals by Elastic Resonant Ion Channeling

    NASA Astrophysics Data System (ADS)

    Dhar, S.; Pugel, D.; Hullavarad, S. S.; Vispute, R. D.; Ogale, S. B.; Venkatesan, T.

    2006-03-01

    ZnO is widely considered as the next generation wide-band gap material for optoelectronic device applications due to its excellent material properties. Although in recent years various studies on ZnO crystal have been made, very little is known about its response after thermal treatments. In this work, we studied the influence of thermal annealing on ZnO (0001) bulk single crystal in the temperature range of 30-1000 ^oC by elastic resonant ion channeling and Rutherford backscattering (RBS) techniques using a 3.05 MeV He beam. After an isochronal1 h anneal, RBS-Ion channeling analysis showed the evolution of disorder in the Zn sub-lattice of the crystal with increasing annealing temperature. The maximum disorder was observed at 200 ^oC above which it decreased. The induced disorder in the Zn sub-lattice at lower temperature (< 400 ^oC) can almost be recovered by further annealing above 800 ^oC. Elastic resonant ion channeling analysis, which monitors the oxygen in the near-surface region clearly revealed the evolution of thermally induced disorder in the oxygen sub-lattice with increasing temperature. In contrast to the disorder recovery of Zn sub-lattice, the disorder in oxygen sub-lattice did not recover completely. Possible mechanism on the disorder and its recovery will be discussed.

  11. Formation of a ZnO{sub 2} layer on the surface of single crystal ZnO substrates with oxygen atoms by hydrogen peroxide treatment

    SciTech Connect

    Kashiwaba, Y.; Abe, T.; Nakagawa, A.; Niikura, I.; Kashiwaba, Y.; Daibo, M.; Fujiwara, T.; Osada, H.

    2013-03-21

    Formation of a ZnO{sub 2} layer by H{sub 2}O{sub 2} treatment for single crystal ZnO (0001) substrates was studied. X-ray diffraction (XRD) peaks of ZnO{sub 2} with a pyrite structure were observed in XRD 2{theta}-{omega} scan patterns of the O-face of single crystal ZnO (0001) substrates with H{sub 2}O{sub 2} treatment, but these peaks were not observed in patterns of the Zn-face of ZnO (0001) substrates with H{sub 2}O{sub 2} treatment. XRD {omega} scan patterns of the ZnO (0002) plane of the O-face of single crystal ZnO (0001) substrates were broadened at the tail of the pattern by H{sub 2}O{sub 2} treatment, but such broadening was not observed in that plane of the Zn-face. Grain structure of ZnO{sub 2} layers was clearly observed in atomic force microscopy (AFM) images for the O-face of ZnO (0001) substrates with H{sub 2}O{sub 2} treatment. Spectra of X-ray photoelectron spectroscopy (XPS) of the O-face of ZnO (0001) substrates with H{sub 2}O{sub 2} treatment showed a definite peak shift of the O 1s peak. It is thought that a pyrite structure of ZnO{sub 2} is easily formed around an O atom of the O-face of ZnO (0001) substrates. Results of XRD measurements, the AFM image, and XPS measurement of the H{sub 2}O{sub 2}-treated single crystal ZnO (1010) substrate that has oxygen atoms on the surface appeared to be the same as those of the O-face of ZnO (0001) substrates.

  12. Rutherford backscattering and nuclear reaction analyses of hydrogen ion-implanted ZnO bulk single crystals

    NASA Astrophysics Data System (ADS)

    Kaida, T.; Kamioka, K.; Ida, T.; Kuriyama, K.; Kushida, K.; Kinomura, A.

    2014-08-01

    The origins of low resistivity in H ion-implanted ZnO bulk single crystals are studied by Rutherford backscattering spectrometry (RBS), nuclear reaction analysis (NRA) photoluminescence (PL), and Van der Pauw methods. The H-ion implantation (peak concentration: 1.45 × 1020 cm-3) into ZnO is performed using a 500 keV implanter. The resistivity decreases from 2.5 × 103 Ω cm for unimplanted ZnO to 6.5 Ω cm for as-implanted one. RBS measurements show that Zn interstitial as a shallow donor is not recognized in as-implanted samples. From photoluminescence measurements, the broad green band emission is observed in as-implanted samples. NRA measurements for as-implanted ZnO suggest the existence of the oxygen interstitial. The origins of the low resistivity in the as-implanted sample are attributed to both the H interstitial as a shallow donor and complex donor between H and disordered O. The activation energy of H related donors estimated from the temperature dependence of carrier concentration is 29 meV.

  13. The high temperature photoluminescence and optical absorption of undoped ZnO single crystals and thin films

    SciTech Connect

    Margueron, Samuel; Clarke, David R.

    2014-11-21

    The photoluminescence of undoped ZnO single crystals up to 1350 °C and the optical absorption of stress-relaxed, epitaxial ZnO thin films up to 1100 °C are reported. The photoluminescence intensity and power dependence with illumination flux are related to the crystal growth methods and stabilize after high temperature annealing. The observation of excitonic recombination at very high temperatures requires high illumination flux. It is found that the zero phonon line model reproduces the shift and the band gap narrowing as well as the free excitonic transition up to the cross-over with a defect level at 2.83 eV that occurs at 800 °C. A phenomenological model of the excitonic recombination band shape, taking account exciton-phonon losses and defect levels provides an excellent fit up to 2.2–2.4 eV (1100 °C). At these cross-over temperatures, an energy transfer is observed between the free exciton transition and defect transitions. However, at temperature above 1100 °C, the decrease of the band gap and the increase of thermal radiation, as well as the restrictions of our experimental set-up and particularly the illumination flux of the exciting laser, limit the analysis of the photoluminescence spectra measurements.

  14. Hydrogen released from bulk ZnO single crystals investigated by time-of-flight electron-stimulated desorption

    SciTech Connect

    Dierre, Benjamin; Sekiguchi, Takashi; Yuan, Xiaoli; Ueda, Kazuyuki

    2010-11-15

    Electron beam (e-beam) irradiation effects on ZnO single crystals have been investigated by using time-of-flight electron-stimulated desorption (TOF-ESD). The samples were irradiated by using a continuous 0.5 or 1.5 keV e-beam, while the TOF-ESD spectra were taken by using a pulsed 0.5 keV e-beam. For both the O-terminated and Zn-terminated surfaces, the major desorption is H{sup +} desorption. The main trend of H{sup +} desorption intensity and evolution as a function of irradiation time is similar for both faces. The H{sup +} peak is much higher after 1.5 keV irradiation than after 0.5 keV irradiation. The intensity of the H{sup +} peak decreases exponentially as a function of irradiation time and partially recovers after the irradiation is stopped. These observations suggest that the main contribution of the H{sup +} desorption is hydrogen released from the dissociation of H-related defects and complexes in the bulk region of the ZnO by e-beam irradiation. This finding can be used to explain the reported ultraviolet degradation of ZnO single crystals under electron irradiation observed by cathodoluminescence. The surfaces play a lesser role for the H{sup +} desorption, as there are differences of the decreasing rate between the two faces and additionally the intensity of the H{sup +} peak for both the unclean O-face and Zn-facesis smaller than that for clean faces. While the H{sup +} desorption is mainly dominated by the bulk region, O{sup +} desorption is more influenced by the surfaces. There are two kinds of O{sup +} desorbed from ZnO having 13.0 {mu}s TOF and 14.2 {mu}s TOF. The O{sup +} desorption depends on the surface polarity, the surface conditions and the energy used for irradiation.

  15. Origins of low resistivity and Ge donor level in Ge ion-implanted ZnO bulk single crystals

    SciTech Connect

    Kamioka, K.; Oga, T.; Izawa, Y.; Kuriyama, K.; Kushida, K.

    2013-12-04

    The energy level of Ge in Ge-ion implanted ZnO single crystals is studied by Hall-effect and photoluminescence (PL) methods. The variations in resistivity from ∼10{sup 3} Ωcm for un-implanted samples to ∼10{sup −2} Ωcm for as-implanted ones are observed. The resistivity is further decreased to ∼10{sup −3} Ωcm by annealing. The origins of the low resistivity are attributed to both the zinc interstitial (Zn{sub i}) related defects and the electrical activated Ge donor. An activation energy of Ge donors estimated from the temperature dependence of carrier concentration is 102 meV. In PL studies, the new peak at 372 nm (3.33 eV) related to the Ge donor is observed in 1000 °C annealed samples.

  16. Persistent photoconductivity and photo-responsible defect in 30 MeV-electron irradiated single crystal ZnO

    SciTech Connect

    Kuriyama, K.; Matsumoto, K.; Kushida, K.; Xu, Q.

    2010-01-04

    Persistent photoconductivity (PPC) in 30-MeV electron irradiated ZnO single crystals is studied by excitation using light emitting diodes (LEDs) with various wavelengths. The decay transient of the photoconductivity shows relaxation times in the range of a few ten days for the illumination at 90 K and a few hours at room temperature. An electron paramagnetic resonance (EPR) signal with g-value = 2.005 appears after illumination of blue LED, suggesting the transfer from the artificially introduced oxygen vacancy of 2+ charge state to the metastable + charge state. Once generated, the metastable state does not immediately decay into the 2+ charge state because of energetic barriers of approx190 meV, supporting the mechanism of PPC proposed by Van de Walle.

  17. Nature of red luminescence band in research-grade ZnO single crystals: A "self-activated" configurational transition

    NASA Astrophysics Data System (ADS)

    Chen, Y. N.; Xu, S. J.; Zheng, C. C.; Ning, J. Q.; Ling, F. C. C.; Anwand, W.; Brauer, G.; Skorupa, W.

    2014-07-01

    By implanting Zn+ ions into research-grade intentionally undoped ZnO single crystal for facilitating Zn interstitials (Zni) and O vacancies (VO) which is revealed by precise X-Ray diffraction rocking curves, we observe an apparent broad red luminescence band with a nearly perfect Gaussian lineshape. This red luminescence band has the zero phonon line at ˜2.4 eV and shows distinctive lattice temperature dependence which is well interpreted with the configurational coordinate model. It also shows a low "kick out" thermal energy and small thermal quenching energy. A "self-activated" optical transition between a shallow donor and the defect center of Zni-VO complex or VZnVO di-vacancies is proposed to be responsible for the red luminescence band. Accompanied with the optical transition, large lattice relaxation simultaneously occurs around the center, as indicated by the generation of multiphonons.

  18. Origins of low resistivity and Ge donor level in Ge ion-implanted ZnO bulk single crystals

    NASA Astrophysics Data System (ADS)

    Kamioka, K.; Oga, T.; Izawa, Y.; Kuriyama, K.; Kushida, K.

    2013-12-01

    The energy level of Ge in Ge-ion implanted ZnO single crystals is studied by Hall-effect and photoluminescence (PL) methods. The variations in resistivity from ˜103 Ωcm for un-implanted samples to ˜10-2 Ωcm for as-implanted ones are observed. The resistivity is further decreased to ˜10-3 Ωcm by annealing. The origins of the low resistivity are attributed to both the zinc interstitial (Zni) related defects and the electrical activated Ge donor. An activation energy of Ge donors estimated from the temperature dependence of carrier concentration is 102 meV. In PL studies, the new peak at 372 nm (3.33 eV) related to the Ge donor is observed in 1000 °C annealed samples.

  19. Thiol dosing of ZnO single crystals and nanorods: Surface chemistry and photoluminescence

    NASA Astrophysics Data System (ADS)

    Singh, Jagdeep; Im, Jisun; Watters, Evan J.; Whitten, James E.; Soares, Jason W.; Steeves, Diane M.

    2013-03-01

    Adsorption of thiols on ZnO(0001) and ZnO nanorods has been investigated using X-ray and ultraviolet photoelectron spectroscopies (XPS and UPS). Ultrahigh vacuum (UHV) dosing of sputter-cleaned ZnO(0001) with methanethiol (MT), 1-dodecanethiol (DDT), and 3-mercaptopropyltrimethoxysilane (MPTMS) leads to S2p peaks with a binding energy of 163.3 eV. Similar results for MPTMS are obtained for sputter-cleaned ZnO(0001) that is pre-dosed with water to form hydroxyl groups. In all cases, the absence of a free thiol S2p peak at 164.2 eV indicates that bonding to the surface occurs via the thiol end of the molecule. A DDT-dosed ZnO(0001) sample stored for 10 days in UHV and heated to temperatures as high as 150 °C exhibits minimal changes in its S/Zn atomic ratio, confirming chemisorption and the presence of a strong bond to the surface. UPS shows that MT adsorption on sputtered ZnO(0001) leads to a 0.7 eV increase in work function and perturbation of the MT molecular orbitals, again consistent with chemisorption. Dry ZnO nanorods have been exposed to MT while monitoring their photoluminescence. XPS and Raman spectroscopy confirm thiol adsorption. Relative to dry ZnO, adsorption causes a decrease in intensity of the visible emission peak, but the UV peak remains unchanged. These results indicate that Znsbnd S bond formation quenches radiative decay to the valence band from defect states, possibly by methanethiolate adsorption filling oxygen vacancies.

  20. ZnO dense nanowire array on a film structure in a single crystal domain texture for optical and photoelectrochemical applications

    NASA Astrophysics Data System (ADS)

    Zhong, Miao; Sato, Yukio; Kurniawan, Mario; Apostoluk, Aleksandra; Masenelli, Bruno; Maeda, Etsuo; Ikuhara, Yuichi; Delaunay, Jean-Jacques

    2012-12-01

    A single crystal domain texture quality (a unique in-plane and out-of-plane crystalline orientation over a large area) ZnO nanostructure of a dense nanowire array on a thick film has been homogeneously synthesized on a-plane sapphire substrates over large areas through a one-step chemical vapor deposition (CVD) process. The growth mechanism is clarified: a single crystal [0\\bar {2}1] oriented ZnAl2O4 buffer layer was formed at the ZnO film and the a-plane sapphire substrate interface via a diffusion reaction process during the CVD process, providing improved epitaxial conditions that enable the synthesis of the high crystalline quality ZnO nanowire array on a film structure. The high optoelectronic quality of the ZnO nanowire array on a film sample is evidenced by the free exitonic emissions in the low-temperature photoluminescence spectroscopy. A carrier density of ˜1017 cm-3 with an n-type conductivity of the ZnO nanowire array on a film sample is obtained by electrochemical impedance analysis. Finally, the ZnO nanowire array on a film sample is demonstrated to be an ideal template for a further synthesis of a single crystal quality ZnO-ZnGa2O4 core-shell nanowire array on a film structure. The fabricated ZnO-ZnGa2O4 sample revealed an enhanced anticorrosive ability and photoelectrochemical performance when used as a photoanode in a photoelectrochemical water splitting application.

  1. Characteristics of intermediate state related to anti-Stokes luminescence of ZnO single crystals

    SciTech Connect

    Fujii, Katsushi; Goto, Takenari; Yao, Takafumi

    2014-06-21

    Anti-Stokes luminescence from ZnO is supposed to be a two-step two-photon absorption process with an intermediate state. The intermediate state is assumed to be a localized state with two different excited and relaxed states. One of the localized states is believed to be the well-known 2.4 eV green luminescence; the other is difficult to observe experimentally. We found an interesting 2.25 eV deep luminescence from ZnO, which has been shown to relate to anti-Stokes luminescence. The 2.25 eV yellow luminescence was observable only below the band gap excitation and through a time-resolved observation after the excitation light was turned off. The intermediate states were found to be a photo-excited donor-acceptor pair and its lattice relaxation state. The characteristics and the role of the intermediate state of ZnO related to the anti-Stokes luminescence are discussed.

  2. Toward an understanding of intermediate- and short-range defects in ZnO single crystals. A combined experimental and theoretical study.

    PubMed

    Lima, R C; Macario, L R; Espinosa, J W M; Longo, V M; Erlo, R; Marana, N L; Sambrano, J R; dos Santos, M L; Moura, A P; Pizani, P S; Andrés, J; Longo, E; Varela, J A

    2008-09-25

    A joint use of experimental and theoretical techniques allows us to understand the key role of intermediate- and short-range defects in the structural and electronic properties of ZnO single crystals obtained by means of both conventional hydrothermal and microwave-hydrothermal synthesis methods. X-ray diffraction, Raman spectra, photoluminescence, scanning electronic and transmission electron microscopies were used to characterize the thermal properties, crystalline and optical features of the obtained nano and microwires ZnO structures. In addition, these properties were further investigated by means of two periodic models, crystalline and disordered ZnO wurtzite structure, and first principles calculations based on density functional theory at the B3LYP level. The theoretical results indicate that the key factor controlling the electronic behavior can be associated with a symmetry breaking process, creating localized electronic levels above the valence band. PMID:18652436

  3. Nuclear reaction analysis of Ge ion-implanted ZnO bulk single crystals: The evaluation of the displacement in oxygen lattices

    NASA Astrophysics Data System (ADS)

    Kamioka, K.; Oga, T.; Izawa, Y.; Kuriyama, K.; Kushida, K.; Kinomura, A.

    2014-08-01

    The displacement of oxygen lattices in Ge ion-implanted ZnO bulk single crystals is studied by nuclear reaction analysis (NAR), photoluminescence (PL), and Van der Pauw methods. The Ge ion-implantation (net concentration: 2.6 × 1020 cm-3) into ZnO is performed using a multiple-step energy. The high resistivity of ∼103 Ω cm in un-implanted samples remarkably decreased to ∼10-2 Ω cm after implanting Ge-ion and annealing subsequently. NRA measurements of as-implanted and annealed samples suggest the existence of the lattice displacement of O atoms acting as acceptor defects. As O related defects still remain after annealing, these defects are not attributed to the origin of the low resistivity in 800 and 1000 °C annealed ZnO.

  4. Deep level transient spectroscopy studies of n-type ZnO single crystals grown by different techniques.

    PubMed

    Scheffler, L; Kolkovsky, Vl; Lavrov, E V; Weber, J

    2011-08-24

    In the present study single-crystalline ZnO samples grown from the vapor phase, the melt, and a high-temperature aqueous solution (hydrothermal growth) are investigated before and after hydrogen plasma treatments, by means of deep level transient spectroscopy (DLTS) and high-resolution Laplace DLTS. Dominant DLTS peaks are found to appear in the range of 120-350 K for all materials. The DLTS spectra depend on the procedure of growth of the ZnO. The thermal stabilities of the defects in an oxygen atmosphere and in an oxygen-lean atmosphere are analyzed. The origin of the DLTS peaks is discussed. PMID:21813951

  5. Sodium doping in ZnO crystals

    SciTech Connect

    Parmar, N. S. Lynn, K. G.

    2015-01-12

    ZnO bulk single crystals were doped with sodium by thermal diffusion. Positron annihilations spectroscopy confirms the filling of zinc vacancies, to >6 μm deep in the bulk. Secondary-ion mass spectrometry measurement shows the diffusion of sodium up to 8 μm with concentration (1–3.5) × 10{sup 17 }cm{sup −3}. Broad photoluminescence excitation peak at 3.1 eV, with onset appearance at 3.15 eV in Na:ZnO, is attributed to an electronic transition from a Na{sub Zn} level at ∼(220–270) meV to the conduction band. Resistivity in Na doped ZnO crystals increases up to (4–5) orders of magnitude at room temperature.

  6. Electron-hole recombination on ZnO(0001) single-crystal surface studied by time-resolved soft X-ray photoelectron spectroscopy

    SciTech Connect

    Yukawa, R.; Yamamoto, S.; Ogawa, M.; Yamamoto, Sh.; Fujikawa, K.; Hobara, R.; Matsuda, I.; Ozawa, K.; Emori, M.; Sakama, H.; Kitagawa, S.; Daimon, H.

    2014-10-13

    Time-resolved soft X-ray photoelectron spectroscopy (PES) experiments were performed with time scales from picoseconds to nanoseconds to trace relaxation of surface photovoltage on the ZnO(0001) single crystal surface in real time. The band diagram of the surface has been obtained numerically using PES data, showing a depletion layer which extends to 1 μm. Temporal evolution of the photovoltage effect is well explained by a recombination process of a thermionic model, giving the photoexcited carrier lifetime of about 1 ps at the surface under the flat band condition. This lifetime agrees with a temporal range reported by the previous time-resolved optical experiments.

  7. Synthesis and luminescent property of single-crystal ZnO nanobelts by a simple low temperature evaporation route

    NASA Astrophysics Data System (ADS)

    Yang, Q.; Tang, K.; Zuo, J.; Qian, Y.

    2004-12-01

    Large-scale ZnO nanobelts in aligned fashion have been prepared via a simply conducted low temperature evaporation route using the oxidization of metallic zinc plates at 450±10 °C under ambient pressure. The produced nanobelt array has been structurally characterized by powder X-ray diffraction (XRD), scanning electron microscopy, and transmission electron microscopy (TEM). The microscope images show that the nanobelts are about 120-micron long, ranging on average from 80 to 160 micron, with about 30 nm in thickness. In addition to XRD, high-resolution TEM images and electron-diffraction patterns show that the nanobelts are single crystalline with wurtzite structure and mostly grow along the [0001] direction. The photoluminescence spectra of the single nanobelts show that the nanobelts have a dominant near-band-edge emission at about 388 nm with a very weak defect emission band centered at about 514 nm.

  8. Applicability check of ZnO crystals for device applications

    NASA Astrophysics Data System (ADS)

    Bhowmick, Mithun; Ullrich, Bruno; Ariza, David; Xi, Haowen

    2014-03-01

    There has always been vital interest in wide-band gap semiconductors for their applicability in short-wavelength photonic devices and in electronic devices operating in high frequency regime. Historically, ZnO was never favored as a potential material for the above applications primarily because of difficulty in growing it. This situation, however, has improved drastically in the past decade thereby renewing the attention on this material system. Hence, ZnO is being proposed for potential light emitting devices in the blue and UV regions of electromagnetic spectrum. ZnO single crystals are also being considered for high power transistors. In this work, we present investigations of optical properties of pure (99.99%) ZnO performing transmittance, reflectance, Raman, and photoluminescence measurements. The ZnO single crystals employed in this work, were obtained commercially. We present detailed analysis of the measured data through theoretical calculations. Our results identify the state-of-the-art application potential of commercially available ZnO, revealing its advantages and limitations when compared to similar materials such as GaN.

  9. Hydrogen interstitial in H-ion implanted ZnO bulk single crystals: Evaluation by elastic recoil detection analysis and electron paramagnetic resonance

    NASA Astrophysics Data System (ADS)

    Kaida, T.; Kamioka, K.; Nishimura, T.; Kuriyama, K.; Kushida, K.; Kinomura, A.

    2015-12-01

    The origins of low resistivity in H ion-implanted ZnO bulk single crystals are evaluated by elastic recoil detection analysis (ERDA), electron paramagnetic resonance (EPR), and Van der Pauw methods. The H-ion implantation (peak concentration: 5.0 × 1015 cm-2) into ZnO is performed using a 500 keV implanter. The maximum of the concentration of the implanted H estimated by a TRIM simulation is at 3600 nm in depth. The resistivity decreases from ∼103 Ω cm for un implanted ZnO to 6.5 Ω cm for as-implanted, 2.3 × 10-1 Ω cm for 200 °C annealed, and 3.2 × 10-1 Ω cm for 400 °C annealed samples. The ERDA measurements can evaluate the concentration of hydrogens which move to the vicinity of the surface (surface to 300 nm or 100 nm) because of the diffusion by the annealing at 200 °C and 400 °C. The hydrogen concentration near the surface estimated using the 2.0 MeV helium beam is ∼3.8 × 1013 cm-2 for annealed samples. From EPR measurements, the oxygen vacancy of +charge state (Vo+) is observed in as-implanted samples. The Vo+ related signal (g = 1.96) observed under no illumination disappears after successive illumination with a red LED and appears again with a blue light illumination. The activation energy of as-implanted, 200 °C annealed, and 400 °C annealed samples estimated from the temperature dependence of carrier concentration lies between 29 meV and 23 meV, suggesting the existence of H interstitial as a shallow donor level.

  10. Characterization of the lattice defects in Ge-ion implanted ZnO bulk single crystals by Rutherford Backscattering: Origins of low resistivity

    NASA Astrophysics Data System (ADS)

    Kamioka, K.; Oga, T.; Izawa, Y.; Kuriyama, K.; Kushida, K.

    2013-07-01

    A Ge ion implantation using a multiple-step energy into ZnO bulk single crystals is performed (net concentration: 2.6 × 1020 cm-3). The origins of low resistivity of the Ge implanted ZnO samples are studied by Rutherford backscattering spectroscopy (RBS), photoluminescence (PL). The resistivity measured by Van der Pauw method decreases from ˜103 Ωcm for the un-implanted samples to 1.45 × 10-2 Ωcm for the as-implanted samples, originating from the lattice displacement of Zn (Zni) (˜30 meV [Look et al., Phys. Rev. Lett. 82, 2552 (1999)]), the existence of which is revealed by the RBS measurements. In contrast, the 1000 °C annealed samples show the higher resistivity of 6.26 × 10-1 Ωcm, indicating that the Zni related defects decrease but still remain despite the annealing. A new PL emission appears at around 372 nm (3.33 eV) in the annealed samples, suggesting a Ge donor with an activation energy of 100 meV. This value corresponds to the activation energy (102 meV) of a Ge donor estimated from the temperature dependence of carrier concentration. These results suggest that the resistivity in the 1000 °C annealed samples results from both the Zni related defects and the electrically activated Ge donor.

  11. Physical vapor transport crystal growth of ZnO

    NASA Astrophysics Data System (ADS)

    Yang, Liu; Jianping, Ma; Fuli, Liu; Yuan, Zang; Yantao, Liu

    2014-03-01

    Zinc oxide (ZnO) has a wide band gap, high stability and a high thermal operating range that makes it a suitable material as a semiconductor for fabricating light emitting diodes (LEDs) and laser diodes, photodiodes, power diodes and other semiconductor devices. Recently, a new crystal growth for producing ZnO crystal boules was developed, which was physical vapor transport (PVT), at temperatures exceeding 1500 °C under a certain system pressure. ZnO crystal wafers in sizes up to 50 mm in diameter were produced. The conditions of ZnO crystal growth, growth rate and the quality of ZnO crystal were analyzed. Results from crystal growth and material characterization are presented and discussed. Our research results suggest that the novel crystal growth technique is a viable production technique for producing ZnO crystals and substrates for semiconductor device applications.

  12. Nature of red luminescence band in research-grade ZnO single crystals: A “self-activated” configurational transition

    SciTech Connect

    Chen, Y. N.; Xu, S. J. Zheng, C. C.; Ning, J. Q.; Ling, F. C. C.; Anwand, W.; Brauer, G.; Skorupa, W.

    2014-07-28

    By implanting Zn{sup +} ions into research-grade intentionally undoped ZnO single crystal for facilitating Zn interstitials (Zn{sub i}) and O vacancies (V{sub O}) which is revealed by precise X-Ray diffraction rocking curves, we observe an apparent broad red luminescence band with a nearly perfect Gaussian lineshape. This red luminescence band has the zero phonon line at ∼2.4 eV and shows distinctive lattice temperature dependence which is well interpreted with the configurational coordinate model. It also shows a low “kick out” thermal energy and small thermal quenching energy. A “self-activated” optical transition between a shallow donor and the defect center of Zn{sub i}-V{sub O} complex or V{sub Zn}V{sub O} di-vacancies is proposed to be responsible for the red luminescence band. Accompanied with the optical transition, large lattice relaxation simultaneously occurs around the center, as indicated by the generation of multiphonons.

  13. Epitaxial Growth and Properties of Cobalt-doped ZnO on α-Al₂O₃ Single-Crystal Substrates

    SciTech Connect

    Tuan, Allan C.; Bryan, John D.; Pakhomov, Alexandre; Shutthanandan, V.; Thevuthasan, Suntharampillai; McCready, David E.; Gaspar, Dan J.; Engelhard, Mark H.; Rogers, J. W.; Krishnan, Kannan M.; Gamelin, Daniel R.; Chambers, Scott A.

    2004-08-30

    Co-doped ZnO (CoxZn₁-xO) is of potential interest for spintronics due to the prediction of room-temperature ferromagnetism. We have grown epitaxial CoxZn₁-xO films on Al₂O₃(012) substrates by metalorganic chemical vapor deposition using a liquid precursor delivery system. High concentrations of Co (x < 0.35) can be uniformly incorporated into the film without phase segregation. Co is found to be in the ⁺² oxidation state, independent of x. This material can be grown n type by the deliberate incorporation of oxygen vacancies, but not by inclusion of ~1 at. % Al. Semiconducting films remain ferromagnetic up to 350 K. In contrast films without oxygen vacancies are insulating and nonmagnetic, suggesting that exchange interaction is mediated by itinerant carriers. The saturation and remanent magnetization on a per Co basis was very small (< 0.1 μB/Co), even in the best films. The dependence of saturation magnetization, as measured by optical magnetic circular dichroism, on magnetic field and temperature, agrees with the theoretical Brillouin function, demonstrating that the majority of the Co(II) ions behave as magnetically isolated S = 3/2 spins.

  14. Redshift in the optical absorption of ZnO single crystals in the presence of an intense midinfrared laser field.

    PubMed

    Ghimire, Shambhu; DiChiara, Anthony D; Sistrunk, Emily; Szafruga, Urszula B; Agostini, Pierre; DiMauro, Louis F; Reis, David A

    2011-10-14

    We report time-resolved electroabsorption of a weak probe in a 500 μm thick zinc-oxide crystal in the presence of a strong midinfrared pump in the tunneling limit. We observe a substantial redshift in the absorption edge that scales with the cube root of intensity up to 1 TW/cm(2) (0.38 eV cm(2/3) TW(-1/3)) after which it increases more slowly to 0.4 eV at a maximum applied intensity of 5 TW/cm(2). The maximum shift corresponds to more than 10% of the band gap. The change in scaling occurs in a regime of nonperturbative high-order harmonic generation where electrons undergo periodic Bragg scattering from the Brillouin zone boundaries. It also coincides with the limit where the electric field becomes comparable to the ratio of the band gap to the lattice spacing. PMID:22107430

  15. Structural properties of Cu2O epitaxial films grown on c-axis single crystal ZnO by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Gan, J.; Gorantla, S.; Riise, H. N.; Fjellvâg, Ø. S.; Diplas, S.; Løvvik, O. M.; Svensson, B. G.; Monakhov, E. V.; Gunnæs, A. E.

    2016-04-01

    Epitaxial Cu2O films grown by reactive and ceramic radio frequency magnetron sputtering on single crystalline ZnO (0001) substrates are investigated. The films are grown on both O- and Zn-polar surface of the ZnO substrates. The Cu2O films exhibit a columnar growth manner apart from a ˜5 nm thick CuO interfacial layer. In comparison to the reactively sputtered Cu2O, the ceramic-sputtered films are less strained and appear to contain nanovoids. Irrespective of polarity, the Cu2O grown by reactive sputtering is observed to have (111)Cu2O||(0001)ZnO epitaxial relationship, but in the case of ceramic sputtering the films are found to show additional (110)Cu2O reflections when grown on O-polar surface. The observed CuO interfacial layer can be detrimental for the performance of Cu2O/ZnO heterojunction solar cells reported in the literature.

  16. Sodium acceptor doping of ZnO crystals

    NASA Astrophysics Data System (ADS)

    Parmar, Narendra S.; Joni, I. Made; Lynn, Kelvin G.

    2016-02-01

    ZnO bulk single crystals were doped with sodium by thermal diffusion using sodium dispensers. Secondary-ion mass spectrometry measurement shows the diffusion of sodium with concentration ˜1×1018 cm-3 in near surface region. Photoluminescence (PL) measurements show donor acceptor pair (DAP) emission at 408 nm at room temperature which exhibits a blue-shift to 404 nm at 9 K. DC Hall measurements show the mixed conduction due to low Hall voltage in these samples. PL measurements and variable temperature resistivity measurements suggest that the sodium acceptor activation energy is ˜0.300 eV.

  17. Crystal growth of ZnO bulk by CVT method using PVA

    NASA Astrophysics Data System (ADS)

    Udono, H.; Sumi, Y.; Yamada, S.; Kikuma, I.

    2008-04-01

    Seeded crystal growth of Zinc oxide (ZnO) by the closed ampoule chemical vapor transport (CVT) is carried out using polyvinyl alcohol (PVA) as a transport agent. Under the conditions of TS=1100 °C, Δ T=10 K and the amount of PVA=0.13-0.91 mg/cm 3, single-crystalline ZnO was grown continuously on the ZnO seed-crystal, of which the surface was (0 0 0 1) Zn-face. The grown crystals had well-marked growth facets belonged to {1 0 1¯0} and {1 0 1¯ 1} faces. The color of the crystals was changed from pale yellow to dark orange-red depending on the amount of PVA. Typical electron density and the Hall mobility of the crystals were 1×10 17 cm -3 and 2×10 2 cm 2/V s at 300 K, respectively.

  18. Single ZnO nanocactus gas sensor formed by etching of ZnO nanorod

    NASA Astrophysics Data System (ADS)

    Ryong Ryu, Sung; Ram, S. D. Gopal; Cho, Hak-Dong; Lee, Dong Jin; Won Kang, Tae; Woo, Yongdeuk

    2015-06-01

    Etching of materials on the nanoscale is a challenging but necessary process in nanomaterials science. Gas sensing using a single ZnO nanocactus (NC), which was prepared by facile isotropic nanoetching of zinc oxide nanorods (NR) grown by chemical vapor deposition (CVD) using an organic photoresist (PR) by a thermochemical reaction, is reported in this work. PR consists of carboxylic acid groups (COOH) and cyclopentanone (C5H8O), which can react with zinc and oxygen atoms, respectively, on the surface of a ZnO NR. The thermochemical reaction is controllable by varying the concentration of PR and reaction time. A gas sensor was fabricated using a single NC. Gas sensing was tested using different gases such as CH4, NH3 and carbon monoxide (CO). It was estimated that the surface area of a ZnO NC in the case of 50% PR was found to increase four-fold. When compared with a single ZnO NR gas sensor, the sensitivity of a ZnO NC was found to increase four-fold. This increase in sensitivity is attributed to the increase in surface area of the ZnO NC. The formed single ZnO NC gas sensor has good stability, response and recovery time.Etching of materials on the nanoscale is a challenging but necessary process in nanomaterials science. Gas sensing using a single ZnO nanocactus (NC), which was prepared by facile isotropic nanoetching of zinc oxide nanorods (NR) grown by chemical vapor deposition (CVD) using an organic photoresist (PR) by a thermochemical reaction, is reported in this work. PR consists of carboxylic acid groups (COOH) and cyclopentanone (C5H8O), which can react with zinc and oxygen atoms, respectively, on the surface of a ZnO NR. The thermochemical reaction is controllable by varying the concentration of PR and reaction time. A gas sensor was fabricated using a single NC. Gas sensing was tested using different gases such as CH4, NH3 and carbon monoxide (CO). It was estimated that the surface area of a ZnO NC in the case of 50% PR was found to increase four

  19. Single Crystal Membranes

    NASA Technical Reports Server (NTRS)

    Stormont, R. W.; Morrison, A.

    1974-01-01

    Single crystal a- and c-axis tubes and ribbons of sodium beta-alumina and sodium magnesium beta-alumina were grown from sodium oxide rich melts. Additional experiments grew ribbon crystals containing sodium magnesium beta, beta double prime, beta triple prime, and beta quadruple prime. A high pressure crystal growth chamber, sodium oxide rich melts, and iridium for all surfaces in contact with the melt were combined with the edge-defined, film-fed growth technique to grow the single crystal beta-alumina tubes and ribbons. The crystals were characterized using metallographic and X-ray diffraction techniques, and wet chemical analysis was used to determine the sodium, magnesium, and aluminum content of the grown crystals.

  20. Chemically assisted vapour transport for bulk ZnO crystal growth

    NASA Astrophysics Data System (ADS)

    Santailler, Jean-Louis; Audoin, Claire; Chichignoud, Guy; Obrecht, Rémy; Kaouache, Belkhiri; Marotel, Pascal; Pelenc, Denis; Brochen, Stéphane; Merlin, Jérémy; Bisotto, Isabelle; Granier, Carole; Feuillet, Guy; Levy, François

    2010-11-01

    A chemically assisted vapour phase transport (CVT) method is proposed for the growth of bulk ZnO crystals. Thermodynamic computations have confirmed the possibility of using CO as a sublimation activator for enhancing the sublimation rate of the feed material in a large range of pressures (10 -3 to 1 atm) and temperatures (800-1200 °C). Growth runs in a specific and patented design yielded single ZnO crystals up to 46 mm in diameter and 8 mm in thickness, with growth rates up to 400 μm/h. These values are compatible with an industrial production rate. N type ZnO crystals ( μ=182 cm 2/(V s) and n=7 10 15 cm -3) obtained by this CVT method (Chemical Vapour Transport) present a high level of purity (10-30 times better than hydrothermal ZnO crystals), which may be an advantage for obtaining p-type doped layers ([Li] and [Al] <10 +15 cm -3). Structural (HR-XRD), defect density (EPD), electrical (Hall measurements) and optical (photoluminescence) properties are presented.

  1. Potassium acceptor doping of ZnO crystals

    NASA Astrophysics Data System (ADS)

    Parmar, Narendra S.; Corolewski, Caleb D.; McCluskey, Matthew D.; Lynn, K. G.

    2015-05-01

    ZnO bulk single crystals were doped with potassium by diffusion at 950°C. Positron annihilation spectroscopy confirms the filling of zinc vacancies and a different trapping center for positrons. Secondary ion mass spectroscopy measurements show the diffusion of potassium up to 10 μm with concentration ˜1 × 1016 cm-3. IR measurements show a local vibrational mode (LVM) at 3226 cm-1, at a temperature of 9 K, in a potassium doped sample that was subsequently hydrogenated. The LVM is attributed to an O-H bond-stretching mode adjacent to a potassium acceptor. When deuterium substitutes for hydrogen, a peak is observed at 2378 cm-1. The O-H peak is much broader than the O-D peak, perhaps due to an unusually low vibrational lifetime. The isotopic frequency ratio is similar to values found in other hydrogen complexes. Potassium doping increases the resistivity up to 3 orders of magnitude at room temperature. The doped sample has a donor level at 0.30 eV.

  2. Potassium acceptor doping of ZnO crystals

    SciTech Connect

    Parmar, Narendra S. Lynn, K. G.; Corolewski, Caleb D.; McCluskey, Matthew D.

    2015-05-15

    ZnO bulk single crystals were doped with potassium by diffusion at 950°C. Positron annihilation spectroscopy confirms the filling of zinc vacancies and a different trapping center for positrons. Secondary ion mass spectroscopy measurements show the diffusion of potassium up to 10 μm with concentration ∼1 × 10{sup 16} cm{sup −3}. IR measurements show a local vibrational mode (LVM) at 3226 cm{sup −1}, at a temperature of 9 K, in a potassium doped sample that was subsequently hydrogenated. The LVM is attributed to an O–H bond-stretching mode adjacent to a potassium acceptor. When deuterium substitutes for hydrogen, a peak is observed at 2378 cm{sup −1}. The O-H peak is much broader than the O-D peak, perhaps due to an unusually low vibrational lifetime. The isotopic frequency ratio is similar to values found in other hydrogen complexes. Potassium doping increases the resistivity up to 3 orders of magnitude at room temperature. The doped sample has a donor level at 0.30 eV.

  3. Polarized Raman scattering of single ZnO nanorod

    SciTech Connect

    Yu, J. L. Lai, Y. F. Wang, Y. Z.; Cheng, S. Y.

    2014-01-21

    Polarized Raman scattering measurement on single wurtzite c-plane (001) ZnO nanorod grown by hydrothermal method has been performed at room temperature. The polarization dependence of the intensity of the Raman scattering for the phonon modes A{sub 1}(TO), E{sub 1}(TO), and E{sub 2}{sup high} in the ZnO nanorod are obtained. The deviations of polarization-dependent Raman spectroscopy from the prediction of Raman selection rules are observed, which can be attributed to the structure defects in the ZnO nanorod as confirmed by the comparison of the transmission electron microscopy, photoluminescence spectra as well as the polarization dependent Raman signal of the annealed and unannealed ZnO nanorod. The Raman tensor elements of A{sub 1}(TO) and E{sub 1}(TO) phonon modes normalized to that of the E{sub 2}{sup high} phonon mode are |a/d|=0.32±0.01, |b/d|=0.49±0.02, and |c/d|=0.23±0.01 for the unannealed ZnO nanorod, and |a/d|=0.33±0.01, |b/d|=0.45±0.01, and |c/d|=0.20±0.01 for the annealed ZnO nanorod, which shows strong anisotropy compared to that of bulk ZnO epilayer.

  4. Single-crystal gallium nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Goldberger, Joshua; He, Rongrui; Zhang, Yanfeng; Lee, Sangkwon; Yan, Haoquan; Choi, Heon-Jin; Yang, Peidong

    2003-04-01

    Since the discovery of carbon nanotubes in 1991 (ref. 1), there have been significant research efforts to synthesize nanometre-scale tubular forms of various solids. The formation of tubular nanostructure generally requires a layered or anisotropic crystal structure. There are reports of nanotubes made from silica, alumina, silicon and metals that do not have a layered crystal structure; they are synthesized by using carbon nanotubes and porous membranes as templates, or by thin-film rolling. These nanotubes, however, are either amorphous, polycrystalline or exist only in ultrahigh vacuum. The growth of single-crystal semiconductor hollow nanotubes would be advantageous in potential nanoscale electronics, optoelectronics and biochemical-sensing applications. Here we report an `epitaxial casting' approach for the synthesis of single-crystal GaN nanotubes with inner diameters of 30-200nm and wall thicknesses of 5-50nm. Hexagonal ZnO nanowires were used as templates for the epitaxial overgrowth of thin GaN layers in a chemical vapour deposition system. The ZnO nanowire templates were subsequently removed by thermal reduction and evaporation, resulting in ordered arrays of GaN nanotubes on the substrates. This templating process should be applicable to many other semiconductor systems.

  5. Hydrothermal synthesis, characterizations and photoluminescence study of single crystalline hexagonal ZnO nanorods with three dimensional flowerlike microstructures

    NASA Astrophysics Data System (ADS)

    Kale, Rohidas B.; Hsu, Yung-Jung; Lin, Yi-Feng; Lu, Shih-Yuan

    2014-05-01

    A simple, low-cost, and environmentally benign hydrothermal approach has been successfully developed to synthesize uniform, large-scale well-crystallized ZnO nanorods with different aspect ratios that were united together to form three dimensional (3D) flowerlike structures. The method involved direct growth of ZnO 3D microstructures using aqueous solution of Zn(CH3COO)2 as the precursor and NaOH to adjust the pH of resultant solution. Surfactants or templates were not used during the entire synthetic process. Moreover, the morphology evolution of the ZnO nanorods with reaction time suggests a recrystallization-dissolution-growth mechanism that continuously takes place for prolonged interval of time. The XRD pattern of the as-grown ZnO nanorods and relevant analyses confirm the well crystallized hexagonal structure of the ZnO microstructures and no evidence of any other impurity phases. SEM observations reveal that the ZnO product grew in the form of nanorods that were united together to form 3D flowerlike morphology. The high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) shows that the ZnO nanorods were single crystalline and grew along the c-axis of the crystal plane. PL measurements of the as-synthesized nanorods exhibit excellent excitation features and strong band-edge UV luminescence even at room temperature. The uniform single crystalline, defect free, and high aspect ratio nanorods may find promising applications in optoelectronics and photo-catalysts. The growth habit of ZnO crystal is also illustrated. This method is suitable for large-scale production of ZnO microstructures and could be extended for syntheses of other metal oxides.

  6. Single photon emission from ZnO nanoparticles

    SciTech Connect

    Choi, Sumin; Ton-That, Cuong; Phillips, Matthew R.; Aharonovich, Igor; Johnson, Brett C.; Castelletto, Stefania

    2014-06-30

    Room temperature single photon emitters are very important resources for photonics and emerging quantum technologies. In this work, we study single photon emission from defect centers in 20 nm zinc oxide (ZnO) nanoparticles. The emitters exhibit bright broadband fluorescence in the red spectral range centered at 640 nm with polarized excitation and emission. The studied emitters showed continuous blinking; however, bleaching can be suppressed using a polymethyl methacrylate coating. Furthermore, hydrogen termination increased the density of single photon emitters. Our results will contribute to the identification of quantum systems in ZnO.

  7. Nonvolatile resistive switching in single crystalline ZnO nanowires.

    PubMed

    Yang, Yuchao; Zhang, Xiaoxian; Gao, Min; Zeng, Fei; Zhou, Weiya; Xie, Sishen; Pan, Feng

    2011-04-01

    We demonstrate nonvolatile resistive switching in single crystalline ZnO nanowires with high ON/OFF ratios and low threshold voltages. Unlike the mechanism of continuous metal filament formation along grain boundaries in polycrystalline films, the resistive switching in single crystalline ZnO nanowires is speculated to be induced by the formation of a metal island chain on the nanowire surface. Resistive memories based on bottom-up semiconductor nanowires hold potential for next generation ultra-dense nonvolatile memories. PMID:21394361

  8. Paramagnetism and antiferromagnetic interactions in single-phase Fe-implanted ZnO.

    PubMed

    Pereira, L M C; Wahl, U; Correia, J G; Van Bael, M J; Temst, K; Vantomme, A; Araújo, J P

    2013-10-16

    As the intrinsic origin of the high-temperature ferromagnetism often observed in wide-gap dilute magnetic semiconductors becomes increasingly debated, there is a growing need for comprehensive studies on the single-phase region of the phase diagram of these materials. Here we report on the magnetic and structural properties of Fe-doped ZnO prepared by ion implantation of ZnO single crystals. A detailed structural characterization shows that the Fe impurities substitute for Zn in ZnO in a wurtzite Zn(1-x)Fe(x)O phase which is coherent with the ZnO host. In addition, the density of beam-induced defects is progressively decreased by thermal annealing up to 900 ° C, from highly disordered after implantation to highly crystalline upon subsequent annealing. Based on a detailed analysis of the magnetometry data, we demonstrate that isolated Fe impurities occupying Zn-substitutional sites behave as localized paramagnetic moments down to 2 K, irrespective of the Fe concentration and the density of beam-induced defects. With increasing local concentration of Zn-substitutional Fe, strong nearest-cation-neighbor antiferromagnetic interactions favor the antiparallel alignment of the Fe moments. PMID:24025311

  9. Paramagnetism and antiferromagnetic interactions in single-phase Fe-implanted ZnO

    NASA Astrophysics Data System (ADS)

    Pereira, L. M. C.; Wahl, U.; Correia, J. G.; Van Bael, M. J.; Temst, K.; Vantomme, A.; Araújo, J. P.

    2013-10-01

    As the intrinsic origin of the high-temperature ferromagnetism often observed in wide-gap dilute magnetic semiconductors becomes increasingly debated, there is a growing need for comprehensive studies on the single-phase region of the phase diagram of these materials. Here we report on the magnetic and structural properties of Fe-doped ZnO prepared by ion implantation of ZnO single crystals. A detailed structural characterization shows that the Fe impurities substitute for Zn in ZnO in a wurtzite Zn1-xFexO phase which is coherent with the ZnO host. In addition, the density of beam-induced defects is progressively decreased by thermal annealing up to 900 ° C, from highly disordered after implantation to highly crystalline upon subsequent annealing. Based on a detailed analysis of the magnetometry data, we demonstrate that isolated Fe impurities occupying Zn-substitutional sites behave as localized paramagnetic moments down to 2 K, irrespective of the Fe concentration and the density of beam-induced defects. With increasing local concentration of Zn-substitutional Fe, strong nearest-cation-neighbor antiferromagnetic interactions favor the antiparallel alignment of the Fe moments.

  10. Bioengineering single crystal growth.

    PubMed

    Wu, Ching-Hsuan; Park, Alexander; Joester, Derk

    2011-02-16

    Biomineralization is a "bottom-up" synthesis process that results in the formation of inorganic/organic nanocomposites with unrivaled control over structure, superior mechanical properties, adaptive response, and the capability of self-repair. While de novo design of such highly optimized materials may still be out of reach, engineering of the biosynthetic machinery may offer an alternative route to design advanced materials. Herein, we present an approach using micro-contact-printed lectins for patterning sea urchin embryo primary mesenchyme cells (PMCs) in vitro. We demonstrate not only that PMCs cultured on these substrates show attachment to wheat germ agglutinin and concanavalin A patterns but, more importantly, that the deposition and elongation of calcite spicules occurs cooperatively by multiple cells and in alignment with the printed pattern. This allows us to control the placement and orientation of smooth, cylindrical calcite single crystals where the crystallographic c-direction is parallel to the cylinder axis and the underlying line pattern. PMID:21265521

  11. Tunable Surface Wettability of ZnO Nanoparticle Arrays for Controlling the Alignment of Liquid Crystals.

    PubMed

    Chung, Yueh-Feng; Chen, Mu-Zhe; Yang, Sheng-Hsiung; Jeng, Shie-Chang

    2015-05-13

    The control of the liquid crystal (LC) alignment is very important for both academic research and practical applications. LC molecules aligned on the ZnO nanoparticle arrays (ZnO NPAs) are demonstrated and the pretilt angles of LCs can be controlled by using ZnO NPAs with different surface wettability. The wettability of ZnO NPAs fabricated by the solution-based hydrothermal method can be controlled by changing the annealing temperature of the as-prepared ZnO NPAs. The measurements of the energy-dispersive spectra and photoluminescence have shown that the chemical properties of ZnO NPAs have been changed with the annealing temperature. Our results show that the pretilt angle of LCs can be tuned continuously from ∼0 to ∼90° as the contact angle of water on ZnO NPAs changes from 33 to 108°. PMID:25895105

  12. Effects of high-dose hydrogen implantation on defect formation and dopant diffusion in silver implanted ZnO crystals

    NASA Astrophysics Data System (ADS)

    Yaqoob, Faisal; Huang, Mengbing

    2016-07-01

    This work reports on the effects of a deep high-dose hydrogen ion implant on damage accumulation, defect retention, and silver diffusion in silver implanted ZnO crystals. Single-crystal ZnO samples were implanted with Ag ions in a region ˜150 nm within the surface, and some of these samples were additionally implanted with hydrogen ions to a dose of 2 × 1016 cm-2, close to the depth ˜250 nm. Rutherford backscattering/ion channeling measurements show that crystal damage caused by Ag ion implantation and the amount of defects retained in the near surface region following post-implantation annealing were found to diminish in the case with the H implantation. On the other hand, the additional H ion implantation resulted in a reduction of substitutional Ag atoms upon post-implantation annealing. Furthermore, the presence of H also modified the diffusion properties of Ag atoms in ZnO. We discuss these findings in the context of the effects of nano-cavities on formation and annihilation of point defects as well as on impurity diffusion and trapping in ZnO crystals.

  13. Identification of the zinc-oxygen divacancy in ZnO crystals

    NASA Astrophysics Data System (ADS)

    Holston, M. S.; Golden, E. M.; Kananen, B. E.; McClory, J. W.; Giles, N. C.; Halliburton, L. E.

    2016-04-01

    An electron paramagnetic resonance (EPR) spectrum in neutron-irradiated ZnO crystals is assigned to the zinc-oxygen divacancy. These divacancies are observed in the bulk of both hydrothermally grown and seeded-chemical-vapor-transport-grown crystals after irradiations with fast neutrons. Neutral nonparamagnetic complexes consisting of adjacent zinc and oxygen vacancies are formed during the irradiation. Subsequent illumination below ˜150 K with 442 nm laser light converts these ( VZn 2 - - VO2 + )0 defects to their EPR-active state ( VZn - - VO2 + )+ as electrons are transferred to donors. The resulting photoinduced S = 1/2 spectrum of the divacancy is holelike and has a well-resolved angular dependence from which a complete g matrix is obtained. Principal values of the g matrix are 2.00796, 2.00480, and 2.00244. The unpaired spin resides primarily on one of the three remaining oxygen ions immediately adjacent to the zinc vacancy, thus making the electronic structure of the ( VZn - - VO2 + )+ ground state similar to the isolated singly ionized axial zinc vacancy. The neutral ( VZn 2 - - VO2 + )0 divacancies dissociate when the ZnO crystals are heated above 250 °C. After heating above this temperature, the divacancy EPR signal cannot be regenerated at low temperature with light.

  14. Ionoluminescence study of Zn- and O- implanted ZnO crystals: An additional perspective

    NASA Astrophysics Data System (ADS)

    Epie, E. N.; Chu, W. K.

    2016-05-01

    An investigation into the role of native point defects on the optical properties of ZnO using ion implantation, rapid thermal annealing (RTA) and ionoluminescence (IL) is presented. Low-energy (60 keV) fixed-fluence (8 × 1015 cm-2) Zn- and O- implantation has been used to directly introduce native point defects into ZnO single crystals. It is shown that annealing of implanted samples in Ar at T = 1000 °C for 2 min amplifies the deep band emission (DBE) peak centered around 2.4 eV while at the same time revealing subtle differences not clearly resolved in similar implanted samples treated under prolonged annealing. Particularly, a relative shift in the DBE peak maxima of the O and Zn doped samples subjected to RTA is observed. Gaussian decomposition of the IL spectra show distinct enhancements of the red (1.62 eV) and yellow (2.15 eV) emission bands in the O- implanted sample and the green (2.36 eV) emission band in the Zn- implanted sample. Based on these results, and recent density functional theory (DFT) calculations, we have proposed a possible energy level scheme for some common ZnO native point defects.

  15. Multimode resistive switching in single ZnO nanoisland system.

    PubMed

    Qi, Jing; Olmedo, Mario; Zheng, Jian-Guo; Liu, Jianlin

    2013-01-01

    Resistive memory has attracted a great deal of attention as an alternative to contemporary flash memory. Here we demonstrate an interesting phenomenon that multimode resistive switching, i.e. threshold-like, self-rectifying and ordinary bipolar switching, can be observed in one self-assembled single-crystalline ZnO nanoisland with base diameter and height ranging around 30 and 40 nm on Si at different levels of current compliance. Current-voltage characteristics, conductive atomic force microscopy (C-AFM), and piezoresponse force microscopy results show that the threshold-like and self-rectifying types of switching are controlled by the movement of oxygen vacancies in ZnO nanoisland between the C-AFM tip and Si substrate while ordinary bipolar switching is controlled by formation and rupture of conducting nano-filaments. Threshold-like switching leads to a very small switching power density of 1 × 10(3) W/cm(2). PMID:23934276

  16. Selectively dissolution-recrystallization of ZnO crystals at the air-liquid interface

    NASA Astrophysics Data System (ADS)

    Hu, Xiulan; Masuda, Yoshitake; Ohji, Tatsuki; Kato, Kazumi

    2009-01-01

    Unique morphologies of ZnO crystals were grown firstly at the air-liquid interface. The formation of bamboo leaf- and morning glory-like morphologies depended on the exposed crystal face. ZnO nanosheets were formed by selective dissolution, random diffusion, and recrystallization with a preferential orientation at the edge of pre-existing ZnO nanowhiskers, due to the local deviation of the pH value, which are derived from the volatile and highly soluble ammonia molecules at different fine regions. The high-resolution TEM and selected area electron diffraction clarified the formation mechanism.

  17. A single-molecule approach to ZnO defect studies: Single photons and single defects

    SciTech Connect

    Jungwirth, N. R.; Pai, Y. Y.; Chang, H. S.; MacQuarrie, E. R.; Nguyen, K. X.; Fuchs, G. D.

    2014-07-28

    Investigations that probe defects one at a time offer a unique opportunity to observe properties and dynamics that are washed out of ensemble measurements. Here, we present confocal fluorescence measurements of individual defects in ZnO nanoparticles and sputtered films that are excited with sub-bandgap energy light. Photon correlation measurements yield both antibunching and bunching, indicative of single-photon emission from isolated defects that possess a metastable shelving state. The single-photon emission is in the range of ∼560–720 nm and typically exhibits two broad spectral peaks separated by ∼150 meV. The excited state lifetimes range from 1 to 13 ns, consistent with the finite-size and surface effects of nanoparticles and small grains. We also observe discrete jumps in the fluorescence intensity between a bright state and a dark state. The dwell times in each state are exponentially distributed and the average dwell time in the bright (dark) state does (may) depend on the power of the exciting laser. Taken together, our measurements demonstrate the utility of a single-molecule approach to semiconductor defect studies and highlight ZnO as a potential host material for single-defect based applications.

  18. Formation of quasi-single crystalline porous ZnO nanostructures with a single large cavity

    NASA Astrophysics Data System (ADS)

    Cho, Seungho; Kim, Semi; Jung, Dae-Won; Lee, Kun-Hong

    2011-09-01

    We report a method for synthesizing quasi-single crystalline porous ZnO nanostructures containing a single large cavity. The microwave-assisted route consists of a short (about 2 min) temperature ramping stage (from room temperature to 120 °C) and a stage in which the temperature is maintained at 120 °C for 2 h. The structures produced by this route were 200-480 nm in diameter. The morphological yields of this method were very high. The temperature- and time-dependent evolution of the synthesized powders and the effects of an additive, vitamin C, were studied. Spherical amorphous/polycrystalline structures (70-170 nm in diameter), which appeared transitorily, may play a key role in the formation of the single crystalline porous hollow ZnO nanostructures. Studies and characterization of the nanostructures suggested a possible mechanism for formation of the quasi-single crystalline porous ZnO nanostructures with an interior space.We report a method for synthesizing quasi-single crystalline porous ZnO nanostructures containing a single large cavity. The microwave-assisted route consists of a short (about 2 min) temperature ramping stage (from room temperature to 120 °C) and a stage in which the temperature is maintained at 120 °C for 2 h. The structures produced by this route were 200-480 nm in diameter. The morphological yields of this method were very high. The temperature- and time-dependent evolution of the synthesized powders and the effects of an additive, vitamin C, were studied. Spherical amorphous/polycrystalline structures (70-170 nm in diameter), which appeared transitorily, may play a key role in the formation of the single crystalline porous hollow ZnO nanostructures. Studies and characterization of the nanostructures suggested a possible mechanism for formation of the quasi-single crystalline porous ZnO nanostructures with an interior space. Electronic supplementary information (ESI) available: TEM images and the corresponding SAED image of a ZnO

  19. Development of single crystal membranes

    NASA Technical Reports Server (NTRS)

    Stormont, R. W.; Cocks, F. H.

    1972-01-01

    The design and construction of a high pressure crystal growth chamber was accomplished which would allow the growth of crystals under inert gas pressures of 2 MN/sq m (300 psi). A novel crystal growth technique called EFG was used to grow tubes and rods of the hollandite compounds, BaMgTi7O16, K2MgTi7O16, and tubes of sodium beta-alumina, sodium magnesium-alumina, and potassium beta-alumina. Rods and tubes grown are characterized using metallographic and X-ray diffraction techniques. The hollandite compounds are found to be two or three-phase, composed of coarse grained orientated crystallites. Single crystal c-axis tubes of sodium beta-alumina were grown from melts containing excess sodium oxide. Additional experiments demonstrated that crystals of magnesia doped beta-alumina and potassium beta-alumina also can be achieved by this EFG technique.

  20. Tunable Lattice Constant and Band Gap of Single- and Few-Layer ZnO.

    PubMed

    Lee, Junseok; Sorescu, Dan C; Deng, Xingyi

    2016-04-01

    Single and few-layer ZnO(0001) (ZnO(nL), n = 1-4) grown on Au(111) have been characterized via scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), and density functional theory (DFT) calculations. We find that the in-plane lattice constants of the ZnO(nL, n ≤ 3) are expanded compared to that of the bulk wurtzite ZnO(0001). The lattice constant reaches a maximum expansion of 3% in the ZnO(2L) and decreases to the bulk wurtzite ZnO value in the ZnO(4L). The band gap decreases monotonically with increasing number of ZnO layers from 4.48 eV (ZnO(1L)) to 3.42 eV (ZnO(4L)). These results suggest that a transition from a planar to the bulk-like ZnO structure occurs around the thickness of ZnO(4L). The work also demonstrates that the lattice constant and the band gap in ultrathin ZnO can be tuned by controlling the number of layers, providing a basis for further investigation of this material. PMID:27003692

  1. Surface-assisted unidirectional orientation of ZnO nanorods hybridized with nematic liquid crystals.

    PubMed

    Kubo, Shoichi; Taguchi, Rei; Hadano, Shingo; Narita, Mamiko; Watanabe, Osamu; Iyoda, Tomokazu; Nakagawa, Masaru

    2014-01-22

    Inorganic semiconductor nanorods are regarded as the primary components of optical and electrical nanoscale devices. In this paper, we demonstrate the unidirectional alignment of monolayered and dispersed ZnO nanorods on a rubbed polyimide alignment layer, which was achieved by a conventional liquid crystal alignment technique. The outermost surfaces of the ZnO nanorods (average diameter 7 nm; length 50 nm) were modified by polymerization initiator moieties, and nematic liquid crystalline (LC) methacrylate polymers were grown by atom transfer radical polymerization. By regulating the densities of the polymerization initiator moieties, we successfully hybridized LC-polymer-grafted ZnO nanorods and small nematic LC molecules. The LC-polymer-modified ZnO nanorods were hierarchically aligned on the substrate via cooperative molecular interactions among the liquid crystal mesogens, which induced molecular orientation on the rubbed polyimide alignment layer. PMID:24299205

  2. Growth of Single- and Bilayer ZnO on Au(111) and Interaction with Copper

    SciTech Connect

    Deng, Xingyi; Yao, Kun; Sun, Keju; Li, Wei-Xue; Lee, Junseok; Matranga, Christopher

    2013-05-02

    The stoichiometric single- and bi-layer ZnO(0001) have been prepared by reactive deposition of Zn on Au(111) and studied in detail with X-ray photoelectron spectroscopy, scanning tunneling microscopy, and density functional theory calculations. Both single- and bi-layer ZnO(0001) adopt a planar, graphite-like structure similar to freestanding ZnO(0001) due to the weak van der Waals interactions dominating their adhesion with the Au(111) substrate. At higher temperature, the single-layer ZnO(0001) converts gradually to bi-layer ZnO(0001) due to the twice stronger interaction between two ZnO layers than the interfacial adhesion of ZnO with Au substrate. It is found that Cu atoms on the surface of bi-layer ZnO(0001) are mobile with a diffusion barrier of 0.31 eV, and likely to agglomerate and form nanosized particles at low coverages; while Cu atoms tend to penetrate a single layer of ZnO(0001) with a barrier of 0.10 eV, resulting in a Cu free surface.

  3. Multimode Resistive Switching in Single ZnO Nanoisland System

    PubMed Central

    Qi, Jing; Olmedo, Mario; Zheng, Jian-Guo; Liu, Jianlin

    2013-01-01

    Resistive memory has attracted a great deal of attention as an alternative to contemporary flash memory. Here we demonstrate an interesting phenomenon that multimode resistive switching, i.e. threshold-like, self-rectifying and ordinary bipolar switching, can be observed in one self-assembled single-crystalline ZnO nanoisland with base diameter and height ranging around 30 and 40 nm on Si at different levels of current compliance. Current-voltage characteristics, conductive atomic force microscopy (C-AFM), and piezoresponse force microscopy results show that the threshold-like and self-rectifying types of switching are controlled by the movement of oxygen vacancies in ZnO nanoisland between the C-AFM tip and Si substrate while ordinary bipolar switching is controlled by formation and rupture of conducting nano-filaments. Threshold-like switching leads to a very small switching power density of 1 × 103 W/cm2. PMID:23934276

  4. Photosensitization of ZnO Crystals with Iodide-Capped PbSe Quantum Dots.

    PubMed

    King, Laurie A; Parkinson, B A

    2016-07-21

    Lead selenide (PbSe) quantum dots (QDs) are an attractive material for application in photovoltaic devices due to the ability to tune their band gap, efficient multiple exciton generation, and high extinction coefficients. However, PbSe QDs are quite unstable to oxidation in air. Recently there have been multiple studies detailing postsynthetic halide treatments to stabilize lead chalcogenide QDs. We exploit iodide-stabilized PbSe QDs in a model QD-sensitized solar cell configuration where zinc oxide (ZnO) single crystals are sensitized using cysteine as a bifunctional linker molecule. Sensitized photocurrents stable for >1 h can be measured in aqueous KI electrolyte that is usually corrosive to QDs under illumination. The spectral response of the sensitization extended out to 1700 nm, the farthest into the infrared yet observed. Hints of the existence of multiple exciton generation and collection as photocurrent, as would be expected in this system, are speculated and discussed. PMID:27398873

  5. Localized ultraviolet photoresponse in single bent ZnO micro/nanowires

    SciTech Connect

    Guo Wen; Yang Ya; Qi Junjie; Zhao Jing; Zhang Yue

    2010-09-27

    The localized ultraviolet photoresponse in single bent ZnO micro/nanowires bridging two Ohmic contacts has been investigated. The ZnO micro/nanowire has a higher photoresponse sensitivity of about 190% at the bent region (bending strain: about 4%) than that at the straight region (about 50%). The rise and decay time constants are almost the same in the straight and bent regions of the ZnO micro/nanowire. A possible mechanism has been proposed and discussed. The bent ZnO micro/nanowires could be potentially useful for fabricating the coupled piezoelectric and optoelectronic nanodevices.

  6. ZnO Nanoparticles and Nanowire Arrays with Liquid Crystals for Photovoltaic Apprications

    NASA Astrophysics Data System (ADS)

    Salamanca-Riba, Lourdes; Weadock, Nicholas; Martinez-Miranda, Luz

    2011-03-01

    Liquid crystals are small monodisperse molecules with high mobilities and are easy and cheap to process. In addition, some of their phases exhibit molecular orientation that can provide a path for the electrons, or holes, to move from one electrode to the other. We have mixed a smectic A liquid crystal (8CB) with varying concentrations of ZnO nanoparticles of ~ 5 nm in diameter and have observed a photovoltaic effect as a function of the concentration of ZnO. The liquid crystal is believed to enhance the alignment of the nanoparticles and aid in the diffusion of electrons through the particles to the collection electrode. We have also made PV cells of ZnO nanowire arrays grown on Au layers on Si substrates. The nanowire arrays are covered with 8CB liquid crystal for hole conduction. We compare the light absorption of the PV cells as a function of wavelength of the light for the ZnO nanoparticle and the ZnO nanowire cells. We present a detailed study of the structure of the two systems. Supported by the National Science Foundation under the University of Maryland MRSEC DMR 0520471.

  7. Stacking fault energy in some single crystals

    NASA Astrophysics Data System (ADS)

    Vora, Aditya M.

    2012-06-01

    The stacking fault energy of single crystals has been reported using the peak shift method. Presently studied all single crystals are grown by using a direct vapor transport (DVT) technique in the laboratory. The structural characterizations of these crystals are made by XRD. Considerable variations are shown in deformation (α) and growth (β) probabilities in single crystals due to off-stoichiometry, which possesses the stacking fault in the single crystal.

  8. Effects of interfacial layer structures on crystal structural properties of ZnO films

    SciTech Connect

    Park, J. S.; Minegishi, T.; Lee, S. H.; Im, I. H.; Park, S. H.; Hanada, T.; Goto, T.; Cho, M. W.; Yao, T.; Hong, S. K.; Chang, J. H.

    2008-01-15

    Single crystalline ZnO films were grown on Cr compound buffer layers on (0001) Al{sub 2}O{sub 3} substrates by plasma assisted molecular beam epitaxy. In terms of lattice misfit reduction between ZnO and substrate, the CrN and Cr{sub 2}O{sub 3}/CrN buffers are investigated. The structural and optical qualities of ZnO films suggest the feasibility of Cr compound buffers for high-quality ZnO films growth on (0001) Al{sub 2}O{sub 3} substrates. Moreover, the effects of interfacial structures on selective growth of different polar ZnO films are investigated. Zn-polar ZnO films are grown on the rocksalt CrN buffer and the formation of rhombohedral Cr{sub 2}O{sub 3} results in the growth of O-polar films. The possible mechanism of polarity conversion is proposed. By employing the simple patterning and regrowth procedures, a periodical polarity converted structure in lateral is fabricated. The periodical change of the polarity is clearly confirmed by the polarity sensitive piezo response microscope images and the opposite hysteretic characteristic of the piezo response curves, which are strict evidences for the validity of the polarity controlling method as well as the successful fabrication of the periodical polarity controlled ZnO structure.

  9. Single ZnO nanowire ultraviolet detector with free-recovered contact performance

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Wang, Liang; Li, Xin; Li, Zhenhu; Feng, Shuanglong; Lu, Wenqiang

    2016-06-01

    In this paper, a single ZnO nanowire ultraviolet detector was firstly fabricated by a single ZnO nanowire and silver paint, which can be free-recovered from a Schottky contact to an Ohmic contact. Key effect factors such as the illumination and bias voltage of the free-recovered performance were also investigated. Meanwhile, the reason for the recoverable contact was further confirmed in detail. This result is beneficial for developing the highly sensitive ZnO based ultraviolet detector.

  10. Zn(O, S) layers for chalcoyprite solar cells sputtered from a single target

    NASA Astrophysics Data System (ADS)

    Grimm, A.; Kieven, D.; Lauermann, I.; Lux-Steiner, M. Ch.; Hergert, F.; Schwieger, R.; Klenk, R.

    2012-09-01

    A simplified Cu(In, Ga)(S, Se)2/Zn(O, S)/ZnO:Al stack for chalcopyrite thin-film solar cells is proposed. In this stack the Zn(O, S) layer combines the roles of the traditional CdS buffer and undoped ZnO layers. It will be shown that Zn(O, S) films can be sputtered in argon atmosphere from a single mixed target without substrate heating. The photovoltaic performance of the simplified stack matches that of the conventional approach. Replacing the ZnO target with a ZnO/ZnS target may therefore be sufficient to omit the CdS buffer layer and avoid the associated complexity, safety and recycling issues, and to lower production cost.

  11. Microstructural, electrical and magnetic properties of erbium doped zinc oxide single crystals

    NASA Astrophysics Data System (ADS)

    Murmu, P. P.; Kennedy, J.; Ruck, B. J.; Rubanov, S.

    2015-11-01

    We report the structural, electrical and magnetic properties of erbium (Er) implanted zinc oxide (ZnO) single crystals. Rutherford backscattering and channeling results showed that the majority of Er atoms resided in Zn substitutional lattice sites. Annealing led to a fraction of Er atoms moving into random interstitial sites. Transmission electron microscopy micrographs revealed that doped Er atoms were located in the near-surface region, consistent with the results obtained from DYNAMIC-TRIM calculations. A non-linear Hall-voltage was observed near 100 K, which is associated with inhomogeneous transport in the material. The Er implanted and annealed ZnO exhibited persistent magnetic ordering to room temperature. Ferromagnetism was likely from the presence of intrinsic defects in ZnO, which mediates the magnetic ordering in Er implanted and annealed ZnO. [Figure not available: see fulltext.

  12. Optical injection probing of single ZnO tetrapod lasers

    SciTech Connect

    Szarko, Jodi M.; Song, Jae Kyu; Blackledge, Charles Wesley; Swart, Ingmar; Leone, Stephen R.; Li, Shihong; Zhao, Yiping

    2004-11-23

    The properties of zinc oxide (ZnO) nanotetrapod lasers are characterized by a novel ultrafast two-color pump/stimulated emission probe technique. Single legs of tetrapod species are isolated by a microscope objective, pumped by 267 nm pulses, and subjected to a time-delayed 400 nm optical injection pulse, which permits investigation of the ultrafast carrier dynamics in the nanosize materials. With the optical injection pulse included, a large increase in the stimulated emission at 400 nm occurs, which partially depletes the carriers at this wavelength and competes with the normal 390 nm lasing. At the 390 nm lasing wavelengths, the optical injection causes a decrease in the stimulated emission due to the energetic redistribution of the excited carrier depletion, which occurs considerably within the time scale of the subpicosecond duration of the injection pulse. The effects of the optical injection on the spectral gain are employed to probe the lasing dynamics, which shows that the full width at half maximum of the lasing time is 3 ps.

  13. Low switching voltage ZnO quantum dots doped polymer-dispersed liquid crystal film.

    PubMed

    Hsu, Chuan-Chun; Chen, Yi-Xuan; Li, Hui-Wen; Hsu, Jy-Shan

    2016-04-01

    This paper investigates the effects of ZnO nanoparticles (NPs) on the switching voltages of polymer dispersed liquid crystal (PDLC) films. The threshold and driving electric fields of PDLC film doped with 2.44 wt% ZnO NPs were 0.13 and 0.31 V/μm, respectively, with a contrast ratio of 26. The results of field emission scanning electron microscopy show that the size of the droplets in doped PDLC films increases with the doping concentration. The development of ZnO-doped PDLC films with low driving voltages greatly broadens the applicability of these devices. PMID:27137000

  14. Porous and single-crystalline ZnO nanobelts: fabrication with annealing precursor nanobelts, and gas-sensing and optoelectronic performance

    NASA Astrophysics Data System (ADS)

    Jin, Xiao-Bo; Li, Yi-Xiang; Su, Yao; Guo, Zheng; Gu, Cui-Ping; Huang, Jia-Rui; Meng, Fan-Li; Huang, Xing-Jiu; Li, Min-Qiang; Liu, Jin-Huai

    2016-09-01

    Porous and single-crystalline ZnO nanobelts have been prepared through annealing precursors of ZnSe · 0.5N2H4 well-defined and smooth nanobelts, which have been synthesized via a simple hydrothermal method. The composition and morphology evolutions with the calcination temperatures have been investigated in detail for as-prepared precursor nanobelts, suggesting that they can be easily transformed into ZnO nanobelts by preserving their initial morphology via calcination in air. In contrast, the obtained ZnO nanobelts are densely porous, owing to the thermal decomposition and oxidization of the precursor nanobelts. More importantly, the achieved porous ZnO nanobelts are single-crystalline, different from previously reported ones. Motivated by the intrinsic properties of the porous structure and good electronic transporting ability of single crystals, their gas-sensing performance has been further explored. It is demonstrated that porous ZnO single-crystalline nanobelts exhibit high response and repeatability toward volatile organic compounds, such as ethanol and acetone, with a short response/recovery time. Furthermore, their optoelectronic behaviors indicate that they can be promisingly employed to fabricate photoelectrochemical sensors.

  15. Porous and single-crystalline ZnO nanobelts: fabrication with annealing precursor nanobelts, and gas-sensing and optoelectronic performance.

    PubMed

    Jin, Xiao-Bo; Li, Yi-Xiang; Su, Yao; Guo, Zheng; Gu, Cui-Ping; Huang, Jia-Rui; Meng, Fan-Li; Huang, Xing-Jiu; Li, Min-Qiang; Liu, Jin-Huai

    2016-09-01

    Porous and single-crystalline ZnO nanobelts have been prepared through annealing precursors of ZnSe · 0.5N2H4 well-defined and smooth nanobelts, which have been synthesized via a simple hydrothermal method. The composition and morphology evolutions with the calcination temperatures have been investigated in detail for as-prepared precursor nanobelts, suggesting that they can be easily transformed into ZnO nanobelts by preserving their initial morphology via calcination in air. In contrast, the obtained ZnO nanobelts are densely porous, owing to the thermal decomposition and oxidization of the precursor nanobelts. More importantly, the achieved porous ZnO nanobelts are single-crystalline, different from previously reported ones. Motivated by the intrinsic properties of the porous structure and good electronic transporting ability of single crystals, their gas-sensing performance has been further explored. It is demonstrated that porous ZnO single-crystalline nanobelts exhibit high response and repeatability toward volatile organic compounds, such as ethanol and acetone, with a short response/recovery time. Furthermore, their optoelectronic behaviors indicate that they can be promisingly employed to fabricate photoelectrochemical sensors. PMID:27454792

  16. Titania single crystals with a curved surface

    NASA Astrophysics Data System (ADS)

    Yang, Shuang; Yang, Bing Xing; Wu, Long; Li, Yu Hang; Liu, Porun; Zhao, Huijun; Yu, Yan Yan; Gong, Xue Qing; Yang, Hua Gui

    2014-11-01

    Owing to its scientific and technological importance, crystallization as a ubiquitous phenomenon has been widely studied over centuries. Well-developed single crystals are generally enclosed by regular flat facets spontaneously to form polyhedral morphologies because of the well-known self-confinement principle for crystal growth. However, in nature, complex single crystalline calcitic skeleton of biological organisms generally has a curved external surface formed by specific interactions between organic moieties and biocompatible minerals. Here we show a new class of crystal surface of TiO2, which is enclosed by quasi continuous high-index microfacets and thus has a unique truncated biconic morphology. Such single crystals may open a new direction for crystal growth study since, in principle, crystal growth rates of all facets between two normal {101} and {011} crystal surfaces are almost identical. In other words, the facet with continuous Miller index can exist because of the continuous curvature on the crystal surface.

  17. Titania single crystals with a curved surface.

    PubMed

    Yang, Shuang; Yang, Bing Xing; Wu, Long; Li, Yu Hang; Liu, Porun; Zhao, Huijun; Yu, Yan Yan; Gong, Xue Qing; Yang, Hua Gui

    2014-01-01

    Owing to its scientific and technological importance, crystallization as a ubiquitous phenomenon has been widely studied over centuries. Well-developed single crystals are generally enclosed by regular flat facets spontaneously to form polyhedral morphologies because of the well-known self-confinement principle for crystal growth. However, in nature, complex single crystalline calcitic skeleton of biological organisms generally has a curved external surface formed by specific interactions between organic moieties and biocompatible minerals. Here we show a new class of crystal surface of TiO₂, which is enclosed by quasi continuous high-index microfacets and thus has a unique truncated biconic morphology. Such single crystals may open a new direction for crystal growth study since, in principle, crystal growth rates of all facets between two normal {101} and {011} crystal surfaces are almost identical. In other words, the facet with continuous Miller index can exist because of the continuous curvature on the crystal surface. PMID:25373513

  18. Facet-selective photodeposition of gold nanoparticles on faceted ZnO crystals for visible light photocatalysis.

    PubMed

    Wang, Xuewen; Wang, Wuyou; Miao, Yuanquan; Feng, Gang; Zhang, Rongbin

    2016-08-01

    Hexagonal prism-like ZnO crystals dominated with polar facets were synthesized using a hydrothermal method. The Gold (Au) nanoparticles were selectively photodeposited on the polar surfaces of faceted ZnO crystals as a result of anisotropic photocatalytic activities of the polar and nonpolar facets. The size of Au nanoparticles uniformly dispersed on the polar facets increased with increasing Au-loading amount. These Au-loaded ZnO crystals showed an additional visible light absorption band from 400nm to 800nm. The 0.1wt% Au-loaded ZnO crystals with visible light absorption peak at approximately 690nm exhibited the highest photocatalytic activity under visible light irradiation. PMID:27156091

  19. Homoepitaxial ZnO Film Growth

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, C-H; Lehoczky, S. L.; Harris, M. T.; Callahan, M. J.; McCarty, P.; George, M. A.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    ZnO films have high potential for many applications, such as surface acoustic wave filters, UV detectors, and light emitting devices due to its structural, electrical, and optical properties. High quality epitaxial films are required for these applications. The Al2O3 substrate is commonly used for ZnO heteroepitaxial growth. Recently, high quality ZnO single crystals are available for grow homoepitaxial films. Epitaxial ZnO films were grown on the two polar surfaces (O-face and Zn-face) of (0001) ZnO single crystal substrates using off-axis magnetron sputtering deposition. As a comparison, films were also deposited on (0001) Al2O3 substrates. It was found that the two polar ZnO surfaces have different photoluminescence (PL) spectrum, surface structure and morphology, which strongly influence the epitaxial film growth. The morphology and structure of homoepitaxial films grown on the ZnO substrates were different from heteroepitaxial films grown on the Al2O3. An interesting result shows that high temperature annealing of ZnO single crystals will improve the surface structure on the O-face surface rather than the opposite surface. The measurements of PL, low-angle incident x-ray diffraction, and atomic force microscopy of ZnO films indicate that the O-terminated surface is better for ZnO epitaxial film growth.

  20. Anisotropic third-order optical nonlinearity of a single ZnO micro/nanowire.

    PubMed

    Wang, Kai; Zhou, Jun; Yuan, Longyan; Tao, Yuting; Chen, Jian; Lu, Peixiang; Wang, Zhong Lin

    2012-02-01

    We report a systematic study about the anisotropic third-order optical nonlinearity of a single ZnO micro/nanowire by using the Z-scan method with a femtosecond laser. The two-photon absorption coefficient and nonlinear refraction index, which are measured as a function of polarization angle and sample orientation angle, exhibit oscillation curves with a period of π/2, indicating a highly polarized optical nonlinearity of the ZnO micro/nanowire. Further studies show that the polarized optical nonlinearity of the ZnO micro/nanowire is highly size-dependent. The results indicate that ZnO nanowire has great potential in applications of nanolasers, all-optical switching and polarization-sensitive photodetectors. PMID:22214490

  1. Imaging and characterization of piezoelectric potential in a single bent ZnO microwire

    SciTech Connect

    Wang, Chiang-Lun; Chen, Jhih-Wei; Chen, Yi-Chun; Wu, Chung-Lin; Tsai, Shu-Ju; Lin, Kai-Hsiang; Hsu, Hsu-Cheng

    2014-09-22

    We achieved direct visualization of the piezoelectric potentials in a single bent ZnO microwire (MW) using focused synchrotron radiation (soft x-ray) scanning photoelectron spectro-microscopy. Using radial-line scan across the bent section of ZnO MW, the characteristic core-level shifts were directly related to the spatial distribution of piezoelectric potentials perpendicular to the ZnO polar direction. Using piezoelectric modeling in ZnO, we delineated the band structure distortion and carrier concentration change from tensile to compressed sides by combining the spatial resolved cathodoluminescence characteristics in an individual microwire. This spectro-microscopic technique allows imaging and identification of the electric-mechanical couplings in piezoelectric micro-/nano-wire systems.

  2. Supersaturation of aqueous species and hydrothermal crystal growth of ZnO

    NASA Astrophysics Data System (ADS)

    Gelabert, M. C.

    2015-05-01

    Synthesis of ZnO crystals prepared with zinc acetate or chloride, disodium dihydrogen ethylenediaminetetraacetate (EDTA), potassium hydroxide and sodium triflate at 200 °C and variable pH 8-12 is reported. Crystals were imaged and size-analyzed with optical microscopy. Using aqueous speciation modeling software, supersaturation dependence on pH was calculated for five zinc species-Zn2+, Zn(OH)+, Zn(OH)2, Zn(OH)3- and Zn(OH)42- -to investigate connections between predominate crystal habits at different pH and dominant aqueous species. For zinc acetate and chloride systems, the zinc species with highest supersaturation was Zn(OH)42- throughout the pH 8-12 range, and the second highest was Zn2+ or Zn(OH)3-, with a crossover pH of 10.2-10.4 depending on counterion. The prominence of the tetrahydroxyl zinc species in ZnO crystal growth is supported by these calculations, and total supersaturation is inversely proportional to average crystal sizes, as expected. Optical microscopy and size analysis on products revealed crystals with a needle or prismatic habit throughout the studied pH range, and the change in aspect ratio correlates with supersaturation changes for the Zn2+ in this pH range, thus suggesting that growth rates along the [001] crystallographic direction are affected by small concentration changes of this ion.

  3. Single crystals for welding research

    SciTech Connect

    David, S.A.; Boatner, L.A.

    1991-01-01

    Most welds last for many years, but a few fail after a relatively short time. Knowing the reasons why welds fail is important because cracks in welds can threaten the safety of people in buildings, airplanes, ships, automobiles, and power plants. Bad welds can lead to costly, extended shutdowns of industrial facilities such as petroleum refineries. Thus, research on this very important fabrication technology is critical to the multibillion-dollar welding industry. Research at ORNL and elsewhere strives to determine the structural features that make some welds strong and others weak. The goals are to find cost-effective ways to characterize the structure and strength of a new weld, correctly predict whether it will last a long time, and determine the welding conditions most likely to produce high-quality welds. There is more to welding than meets the eye. The cracks that make welds fail result from the complexities of microstructures formed during welding. Thus weld microstructure is linked to weld properties such as mechanical strength. As the hot weld material cools from a liquid into a solid, the crystalline grains grow at different speeds and in different directions, forming a new microstructure. By using single crystals rather than polycrystalline alloys to study different weld microstructures, scientists at ORNL have developed a way to predict more accurately the microstructures of various welds. The results could guide welders in providing the right conditions (correct welding speed, heat input, and weld thickness) for producing safer, higher-quality, and longer-lasting welds.

  4. Ames Lab 101: Single Crystal Growth

    ScienceCinema

    Schlagel, Deborah

    2014-06-04

    Ames Laboratory scientist Deborah Schlagel talks about the Lab's research in growing single crystals of various metals and alloys. The single crystal samples are vital to researchers' understanding of the characteristics of a materials and what gives these materials their particular properties.

  5. Ames Lab 101: Single Crystal Growth

    SciTech Connect

    Schlagel, Deborah

    2013-09-27

    Ames Laboratory scientist Deborah Schlagel talks about the Lab's research in growing single crystals of various metals and alloys. The single crystal samples are vital to researchers' understanding of the characteristics of a materials and what gives these materials their particular properties.

  6. Ultratough single crystal boron-doped diamond

    DOEpatents

    Hemley, Russell J [Carnegie Inst. for Science, Washington, DC ; Mao, Ho-Kwang [Carnegie Inst. for Science, Washington, DC ; Yan, Chih-Shiue [Carnegie Inst. for Science, Washington, DC ; Liang, Qi [Carnegie Inst. for Science, Washington, DC

    2015-05-05

    The invention relates to a single crystal boron doped CVD diamond that has a toughness of at least about 22 MPa m.sup.1/2. The invention further relates to a method of manufacturing single crystal boron doped CVD diamond. The growth rate of the diamond can be from about 20-100 .mu.m/h.

  7. Adhesion of single crystals on modified surfaces in crystallization fouling

    NASA Astrophysics Data System (ADS)

    Mayer, Moriz; Augustin, Wolfgang; Scholl, Stephan

    2012-12-01

    In crystallization fouling it has been observed that during a certain initial phase the fouling is formed by a non-uniform layer consisting of a population of single crystals. These single crystals are frequently formed by inverse soluble salts such as CaCO3. During heterogeneous nucleation and heterogeneous growth an interfacial area between the crystal and the heat transfer surface occurs. The development of this interfacial area is the reason for the adhesion of each single crystal and of all individual crystals, once a uniform layer has been built up. The emerging interfacial area is intrinsic to the heterogeneous nucleation of crystals and can be explained by the thermodynamic principle of the minimum of the Gibbs free energy. In this study CaCO3 crystals were grown heterogeneously on untreated and on modified surfaces inside a flow channel. An untreated stainless steel (AISI 304) surface was used as a reference. Following surface modifications were investigated: enameled and electropolished stainless steel as well as diamond-like-carbon based coatings on stainless steel substrate. The adhesion was measured through a novel measurement technique using a micromanipulator to shear off single crystals from the substrate which was fixed to a spring table inside a SEM.

  8. Hall effect analysis of bulk ZnO comparing different crystal growth techniques

    NASA Astrophysics Data System (ADS)

    Yang, Xiaocheng; Giles, N. C.

    2009-03-01

    The relaxation time approximation was used to interpret Hall effect data from n-type ZnO bulk samples grown using the high-pressure melt, seeded-chemical-vapor transport, and hydrothermal techniques. These samples represent a range of free-carrier concentrations due to different amounts of donors and compensating acceptors. Treatment of intrinsic mechanisms includes polar-optical phonon scattering using an effective Tpo=750 K, piezoelectric potential scattering using P⊥=0.25, and deformation potential scattering using E1=3.8 eV. Intrinsic mobilities from 60 to 400 K for electrons and for holes in ZnO are predicted. For extrinsic behaviors, ionized and neutral impurities are included. Donor ionization energies for dilute concentrations were determined. Shallow group III donors (Al, Ga) are responsible for the free carriers in the high-pressure melt and seeded-chemical-vapor transport crystals. The hydrothermally grown sample is closely compensated and exhibits hopping conduction below 200 K. Free carriers in the hydrothermal ZnO crystal are generated by thermal activation of deep nickel donors with the Ni2+/3+ level at about 270 meV below the conduction band.

  9. Advanced piezoelectric single crystal based actuators

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaoning; Rehrig, Paul W.; Hackenberger, Wesley S.; Smith, Edward; Dong, Shuxiang; Viehland, Dwight; Moore, Jim, Jr.; Patrick, Brian

    2005-05-01

    TRS is developing new actuators based on single crystal piezoelectric materials such as Pb(Zn1/3Nb2/3)1-xTixO3 (PZN-PT) and Pb(Mg1/3Nb2/3)x-1TixO3 (PMN-PT) which exhibit very high piezoelectric coefficients (d33 = 1800-2200 pC/N) and electromechanical coupling factors (k33 > 0.9), respectively, for a variety of applications, including active vibration damping, active flow control, high precision positioning, ultrasonic motors, deformable mirrors, and adaptive optics. The d32 cut crystal plate actuators showed d32 ~ -1600 pC/N, inter-digital electroded (IDE) plate actuators showed effective d33 ~ 1100 pC/N. Single crystal stack actuators with stroke of 10 μm-100 μm were developed and tested at both room temperature and cryogenic temperatures. Flextensional single crystal piezoelectric actuators with either stack driver or plate driver were developed with stroke 70 μm - > 250 μm. For large stroke cryogenic actuation (> 1mm), a single crystal piezomotor was developed and tested at temperature of 77 K-300K and stroke of > 10mm and step resolution of 20 nm were achieved. In order to demonstrate the significance of developed single crystal actuators, modeling on single crystal piezoelectric deformable mirrors and helicopter flap control using single crystal actuators were conducted and the modeling results show that more than 20 wavelength wavefront error could be corrected by using the single crystal deformable mirrors and +/- 5.8 ° flap deflection will be obtained for a 36" flap using single crystal stack actuators.

  10. Photoresponse from single upright-standing ZnO nanorods explored by photoconductive AFM

    PubMed Central

    Beinik, Igor; Kratzer, Markus; Wachauer, Astrid; Wang, Lin; Piryatinski, Yuri P; Brauer, Gerhard; Chen, Xin Yi; Hsu, Yuk Fan; Djurišić, Aleksandra B

    2013-01-01

    Summary Background: ZnO nanostructures are promising candidates for the development of novel electronic devices due to their unique electrical and optical properties. Here, photoconductive atomic force microscopy (PC-AFM) has been applied to investigate transient photoconductivity and photocurrent spectra of upright-standing ZnO nanorods (NRs). With a view to evaluate the electronic properties of the NRs and to get information on recombination kinetics, we have also performed time-resolved photoluminescence measurements macroscopically. Results: Persistent photoconductivity from single ZnO NRs was observed for about 1800 s and was studied with the help of photocurrent spectroscopy, which was recorded locally. The photocurrent spectra recorded from single ZnO NRs revealed that the minimum photon energy sufficient for photocurrent excitation is 3.1 eV. This value is at least 100 meV lower than the band-gap energy determined from the photoluminescence experiments. Conclusion: The obtained results suggest that the photoresponse in ZnO NRs under ambient conditions originates preferentially from photoexcitation of charge carriers localized at defect states and dominates over the oxygen photodesorption mechanism. Our findings are in agreement with previous theoretical predictions based on density functional theory calculations as well as with earlier experiments carried out at variable oxygen pressure. PMID:23616940

  11. Morphology and crystal quality investigation of hydrothermally synthesized ZnO micro-rods

    SciTech Connect

    Sahoo, Trilochan; Tripathy, Suraj Kumar; Yu, Yeon Tae; Ahn, Haeng-Keun; Shin, Dong-Chan; Lee, In-Hwan

    2008-08-04

    Micro-structural and room and low temperature photoluminescence response of undoped one-dimensional ZnO were investigated. ZnO rods of different morphology and size were synthesized by controlling growth parameters through hydrothermal technique. The phase and microstructure analysis were carried out by X-ray diffraction and scanning electron microscopy. The room and low temperature photoluminescence spectra of the samples were studied. Near band edge sharp exciton emission peaks and broad defect-related peaks were observed. The ratio of band edge emission to deep level emission was controlled by tuning the initial concentration, pH and reaction time period. Optimal growth condition for growth of micro-rods with improved crystal quality was obtained with initial Zn{sup 2+} concentration of 0.5 M, at reaction temperature of 120 deg. C, pH of 9.9 and in a reaction time period of 6 h.

  12. Exciton recombination dynamics in single ZnO tetrapods

    SciTech Connect

    Fernandes-Silva, Lígia C.; Martín, Maria D.; Meulen, Herko P. van der; Calleja, José M.; Viña, Luis; Klopotowski, Lukasz

    2013-12-04

    We present the optical properties of individual ZnO tetrapods as a function of excitation power and temperature by time-integrated and time-resolved spectroscopy. At 10K, we identify the different excitonic transitions by both their characteristic energy and their excitation power dependence. When we increase the tetrapod temperature we observe that the emission intensity decrease and occur a red shift of the emission energies. Our time-resolved studies confirm the predominance of the radiative recombination at low temperatures (< 45 K). Increasing the temperature opens up the non-radiative channels, which are evidenced by a much faster decay time.

  13. Spatially resolved photoluminescence study of single ZnO tetrapods.

    PubMed

    Feng, L; Cheng, C; Lei, M; Wang, N; Loy, M M T

    2008-10-01

    ZnO tetrapods and nanowires were fabricated by a simple method of thermal evaporation of pure Zn powder in the air. These nanostructures, formed in different temperature regions of the same apparatus, displayed distinct photoluminescence (PL) characteristics. Spatially resolved PL measurements on legs of individual tetrapods show that the green luminescence (GL) decreases with decreasing leg diameter, and there was no detectable GL from nanowires grown simultaneously. These PL properties suggest that the green luminescence may not come from surface states, but rather from bulk defects. PMID:21832631

  14. Single Crystal Sapphire Optical Fiber Sensor Instrumentation

    SciTech Connect

    Anbo Wang; Russell May; Gary R. Pickrell

    2000-10-28

    The goal of this 30 month program is to develop reliable accurate temperature sensors based on single crystal sapphire materials that can withstand the temperatures and corrosive agents present within the gasifier environment. The research for this reporting period has been segregated into two parallel paths--corrosion resistance measurements for single crystal sapphire fibers and investigation of single crystal sapphire sensor configurations. The ultimate goal of this phase one segment is to design, develop and demonstrate on a laboratory scale a suitable temperature measurement device that can be field tested in phase two of the program.

  15. Photo-response of a nanopore device with a single embedded ZnO nanoparticle

    NASA Astrophysics Data System (ADS)

    Nguyen, Linh-Nam; Lin, Ming-Chou; Chen, Horng-Shyang; Lan, Yann-Wen; Wu, Cen-Shawn; Chang-Liao, Kuei-Shu; Chen, Chii-Dong

    2012-04-01

    The photo-response of a ZnO nanoparticle embedded in a nanopore made on a silicon nitride membrane is investigated. The ZnO nanoparticle is manipulated onto the nanopore and sandwiched between aluminum contact electrodes from both the top and bottom. The asymmetric device structure facilitates current-voltage rectification that enables photovoltaic capacity. Under illumination, the device shows open-circuit voltage as well as short-circuit current. The fill factor is found to increase at low temperatures and reaches 48.6% at 100 K. The nanopore structure and the manipulation technique provide a solid platform for exploring the electrical properties of single nanoparticles.

  16. Photovoltaic effect and charge storage in single ZnO nanowires

    SciTech Connect

    Liao Zhimin; Xu Jun; Zhang Jingmin; Yu Dapeng

    2008-07-14

    Asymmetric Schottky barriers between ZnO nanowire and metal electrode have been fabricated at the two ends of the nanowire. An obvious photocurrent generated from the device at zero voltage bias can be switched on/off with quick response by controlling the light irradiation. Moreover, the device can still afford a current at zero bias after switching off light illumination, which is ascribed to the charge storage effect in single ZnO nanowires. The underlying mechanisms related to the photovoltaic effect and charge storage were discussed.

  17. Homojunction p-n photodiodes based on As-doped single ZnO nanowire

    SciTech Connect

    Cho, H. D.; Zakirov, A. S.; Yuldashev, Sh. U.; Kang, T. W.; Ahn, C. W.; Yeo, Y. K.

    2013-12-04

    Photovoltaic device was successfully grown solely based on the single ZnO p-n homojunction nanowire. The ZnO nanowire p-n diode consists of an as-grown n-type segment and an in-situ arsenic doped p-type segment. This p-n homojunction acts as a good photovoltaic cell, producing a photocurrent almost 45 times larger than the dark current under reverse-biased condition. Our results demonstrate that present ZnO p-n homojunction nanowire can be used as a self-powered ultraviolet photodetector as well as a photovoltaic cell, which can also be used as an ultralow electrical power source for nano-scale electronic, optoelectronic, and medical devices.

  18. Constructing MnO2/single crystalline ZnO nanorod hybrids with enhanced photocatalytic and antibacterial activity

    NASA Astrophysics Data System (ADS)

    Yu, Weiwei; Liu, Tiangui; Cao, Shiyi; Wang, Chen; Chen, Chuansheng

    2016-07-01

    In order to improve the photocatalytic and antibacterial activity of ZnO nanorods, ZnO nanorods decorated with MnO2 nanoparticles (MnO2/ZnO nanorod hybrids) were prepared by using microwave assisted coprecipitation method under the influence of hydrogen peroxide, and the structure, photocatalytic activity and antibacterial property of the products were studied. Experimental results indicated that MnO2 nanoparticles are decorated on the surface of single crystalline ZnO nanorods. Moreover, the resultant MnO2/ZnO nanorod hybrids have been proven to possess good photocatalytic and antibacterial activity, which their degradated efficiency for Rhodamin B (RhB) is twice as the pure ZnO nanorods. Enhancement for photocatalytic and antibacterial activity is mainly attributed to the low band gap energy and excellent electrochemical properties of MnO2 nanoparticles.

  19. Photocurrent multiplication in organic single crystals

    NASA Astrophysics Data System (ADS)

    Hiramoto, Masahiro; Miki, Ayako; Yoshida, Manabu; Yokoyama, Masaaki

    2002-08-01

    A photocurrent multiplication of up to 200 times has been observed in single crystals of naphthalene tetracarboxylic anhydride sandwiched between metal electrodes. Photocurrent multiplication arises from photoinduced electron injection occurring at the crystal/metal interface. The high-speed response of the multiplied photocurrent reached 500 ms.

  20. Programmable ZnO nanowire transistors using switchable polarization of ferroelectric liquid crystal

    NASA Astrophysics Data System (ADS)

    Hong, Woong-Ki; Inn Sohn, Jung; Cha, SeungNam; Min Kim, Jong; Park, Jong-Bae; Seok Choi, Su; Coles, Harry J.; Welland, Mark E.

    2013-02-01

    We demonstrate modulations of electrical conductance and hysteresis behavior in ZnO nanowire transistors via electrically polarized switching of ferroelectric liquid crystal (FLC). After coating a nanowire channel in the transistors with FLCs, we observed large increases in channel conductance and hysteresis width, and a strong dependence of hysteresis loops on the polarization states associated with the orientation of electric dipole moments along the direction of the gate electric field. Furthermore, the reversible switching and retention characteristics provide the feasibility of creating a hybrid system with switch and memory functions.

  1. Study on Solid-Phase Crystallization of Amorphized Vanadium-Doped ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Watanabe, Akihiro; Chiba, Hiroshi; Kawashima, Tomoyuki; Washio, Katsuyoshi

    2016-04-01

    The effects of post-annealing and film thickness on the solid-phase crystallization (SPC) of amorphized vanadium-doped ZnO (VZO) thin films were investigated. The 2-500-nm-thick VZO (V of about 4 at.%) thin films were deposited on a c-face sapphire substrate at room temperature by RF magnetron sputtering and subsequently were annealed at an annealing temperature (T A) from 700°C to 900°C in a nitrogen atmosphere. From in-plane x-ray diffraction (XRD) measurements, the as-deposited VZO film had a faint in-plane orientation at the initial stage of deposition. However, the ZnO(100) XRD intensity weakened with increasing film thickness and no diffraction peak was seen over 35-nm thick. That is, the pseudo-amorphous film was fabricated. By annealing the 100-nm-thick VZO film over 700°C, the sixfold symmetry appeared. The ZnO(100) XRD intensity increased sharply at a T A of 800°C and was saturated at a higher T A. The c axis orientation reached a peak at a T A of 800°C according to the ZnO(002) XRD intensity. Concerning the effect of film thickness in the case of T A = 800°C, both the in-plane and c axis orientation improved up to 100-nm thick and deteriorated over it. At a T A ≥ 850°C or film thickness ≥200 nm, where the c axis orientation was deteriorated, the secondary phase-like Zn3V2O8 was formed. As a result, it is found that the careful selection of the T A and film thickness is necessary to avoid the formation of secondary phase-like Zn3V2O8 to fabricate the high-quality buffer layer via SPC.

  2. Growth of shaped single crystals of proteins

    NASA Astrophysics Data System (ADS)

    Moreno, Abel; Rondón, Deyanira; García-Ruiz, Juan Ma.

    1996-09-01

    We present a procedure for obtaining protein single crystals that fill the capillary tubes in which they grow. The implementation was typical of the gel acupuncture method and the four different proteins are used as examples: lysozyme (HEW), thaumatin I, ferritin and insulin. Rod- and prismatic-shaped protein single crystals of these four proteins were grown inside capillary tubes of 0.2, 0.3, 0.5 mm in diameter and, for the case of lysozyme, up to 1.2 mm in diameter. The maximum length measured along the long axes of the rod crystals was 1.6 mm again for lysozyme crystals. It was observed that, once the capillary tube was filled, the crystal continues to grow by diffusion of the precipitating agent throughout the porous network formed by the protein crystal structure. We also discuss the possibility of growing these cylinders of crystalline proteins by the addition of protein solution to the mother liquor through the upper end of the glass capillary while the precipitating agent diffuses through the protein crystal itself. X-ray diffraction patterns confirm the single crystal character of the protein rods.

  3. Single Crystals Grown Under Unconstrained Conditions

    NASA Astrophysics Data System (ADS)

    Sunagawa, Ichiro

    Based on detailed investigations on morphology (evolution and variation in external forms), surface microtopography of crystal faces (spirals and etch figures), internal morphology (growth sectors, growth banding and associated impurity partitioning) and perfection (dislocations and other lattice defects) in single crystals, we can deduce how and by what mechanism the crystal grew and experienced fluctuation in growth parameters through its growth and post-growth history under unconstrained condition. The information is useful not only in finding appropriate way to growing highly perfect and homogeneous single crystals, but also in deciphering letters sent from the depth of the Earth and the Space. It is also useful in discriminating synthetic from natural gemstones. In this chapter, available methods to obtain molecular information are briefly summarized, and actual examples to demonstrate the importance of this type of investigations are selected from both natural minerals (diamond, quartz, hematite, corundum, beryl, phlogopite) and synthetic crystals (SiC, diamond, corundum, beryl).

  4. Fatigue hardening in niobium single crystals.

    NASA Technical Reports Server (NTRS)

    Doner, M.; Diprimio, J. C.; Salkovitz, E. I.

    1973-01-01

    Nb single crystals of various orientations were cyclically deformed in tension-compression under strain control. At low strain amplitudes all crystals oriented for single slip and some oriented for multiple slip showed a two stage hardening. When present, the first stage was characterized with almost no cyclic work hardening. The rate of hardening in the second stage increased with strain amplitude and the amount of secondary slip. In crystals oriented for single slip kink bands developed on their side faces during rapid hardening stage which resulted in considerable amount of asterism in Laue spots. A cyclic stress-strain curve independent of prior history was found to exist which was also independent of crystal orientation. Furthermore, this curve differed only slightly from that of polycrystalline Nb obtained from data in literature.

  5. Synthesis of Uniformly Distributed Single- and Double-sided Zinc Oxide (ZnO) Nanocombs

    SciTech Connect

    Petford-Long, Amanda K.; Liu, Yuzi; Altintas Yildirim, Ozlem

    2015-11-15

    Uniformly distributed single- and double-sided zinc oxide (ZnO) nanocomb structures have been prepared by a vapor-liquid-solid technique from a mixture of ZnO nanoparticles and graphene nanoplatelets. The ZnO seed nanoparticles were synthesized via a simple precipitation method. The structure of the ZnO nanocombs could easily be controlled by tuning the carrier-gas flow rate during growth. Higher flow rate resulted in the formation of uniformly-distributed single-sided comb structures with nanonail-shaped teeth, as a result of the self-catalysis effect of the catalytically active Zn-terminated polar (0001) surface. Lower gas flow rate was favorable for production of double-sided comb structures with the two sets of teeth at an angle of similar to 110 degrees to each other along the comb ribbon, which was attributed to the formation of a bicrystal nanocomb ribbon. The formation of such a double-sided structure with nanonail-shaped teeth has not previously been reported.

  6. Localized surface plasmon resonance enhanced ultraviolet emission and F-P lasing from single ZnO microflower

    NASA Astrophysics Data System (ADS)

    Lin, Yi; Li, Jitao; Xu, Chunxiang; Fan, Xuemei; Wang, Baoping

    2014-10-01

    In this work, monodispersed ZnO microflowers are fabricated by a vapor phase transport method, and Au nanoparticles (NPs) are directly decorated on the surface of the ZnO microflowers. The micro-photoluminescence of a single ZnO microflower demonstrates that the near band-edge emission is tremendously enhanced while the defect-related emission is completely suppressed after Au decoration. The average enhancement factor reaches up to 65 fold. The enhancement mechanism is assumed to be the electron transfer from excited Au NPs to the ZnO microflower induced by the localized surface plasmon resonance based on the time-resolved photoluminescence. The enhanced F-P lasing from a single ZnO sample is further realized.

  7. Localized surface plasmon resonance enhanced ultraviolet emission and F-P lasing from single ZnO microflower

    SciTech Connect

    Lin, Yi; Li, Jitao; Xu, Chunxiang Fan, Xuemei; Wang, Baoping

    2014-10-06

    In this work, monodispersed ZnO microflowers are fabricated by a vapor phase transport method, and Au nanoparticles (NPs) are directly decorated on the surface of the ZnO microflowers. The micro-photoluminescence of a single ZnO microflower demonstrates that the near band-edge emission is tremendously enhanced while the defect-related emission is completely suppressed after Au decoration. The average enhancement factor reaches up to 65 fold. The enhancement mechanism is assumed to be the electron transfer from excited Au NPs to the ZnO microflower induced by the localized surface plasmon resonance based on the time-resolved photoluminescence. The enhanced F-P lasing from a single ZnO sample is further realized.

  8. Mild solvothermal synthesis and characterization of ZnO crystals with various morphologies on borosilicate glass substrate

    NASA Astrophysics Data System (ADS)

    Long, Tengfa; Takabatake, Kouta; Yin, Shu; Sato, Tsugio

    2009-01-01

    ZnO crystals with various morphologies were successfully prepared on borosilicate glass substrate in mild solution. Water and 50 vol% ethylene glycol aqueous solution were used as reaction solvents to investigate the crystal growth behavior. The effects of solvents and reaction time on the properties of crystals were investigated by Brunauer-Emmett-Teller (BET), scanning electron microscope (SEM), X-ray diffraction (XRD) analysis, photoluminescence spectroscopy, and photocatalytic characterization. The results indicated that the addition of ethylene glycol led to uniform crystal growth; however, the ZnO crystals synthesized in water possessed more excellent photoluminescence and photocatalytic activities. About 4.25%, 6.38% and 29.78% of 1 ppm NO x gas could be continuously removed under irradiation of light wavelength >510, >410 and >290 nm, respectively.

  9. Characterization of zinc selenide single crystals

    NASA Technical Reports Server (NTRS)

    Gerhardt, Rosario A.

    1996-01-01

    ZnSe single crystals of high quality and low impurity levels are desired for use as substrates in optoelectronic devices. This is especially true when the device requires the formation of homoepitaxial layers. While ZnSe is commercially available, it is at present extremely expensive due to the difficulty of growing single crystal boules with low impurity content and the resultant low yields. Many researchers have found it necessary to heat treat the crystals in liquid Zn in order to remove the impurities, lower the resistivity and activate the photoluminescence at room temperature. The physical vapor transport method (PVT) has been successfully used at MSFC to grow many single crystals of II-VI semiconducting materials including ZnSe. The main goal at NASA has been to try to establish the effect of gravity on the growth parameters. To this effect, crystals have been grown vertically upwards or horizontally. Both (111) and (110) oriented ZnSe crystals have been obtained via unseeded PVT growth. Preliminary characterization of the horizontally grown crystals has revealed that Cu is a major impurity and that the low temperature photoluminescence spectra is dominated by the copper peak. The ratio of the copper peak to the free exciton peak is being used to determine variations in composition throughout the crystal. It was the intent of this project to map the copper composition of various crystals via photoluminescence first, then measure their electrical resistivity and capacitance as a function of frequency before proceeding with a heat treatment designed to remove the copper impurities. However, equipment difficulties with the photoluminescence set up, having to establish a procedure for measuring the electrical properties of the as-grown crystals and time limitations made us re-evaluate the project goals. Vertically grown samples designated as ZnSe-25 were chosen to be measured electrically since they were not expected to show as much variation in their

  10. Electrical properties of ZnO single nanowires

    NASA Astrophysics Data System (ADS)

    Stiller, Markus; Barzola-Quiquia, José; Zoraghi, Mahsa; Esquinazi, Pablo

    2015-10-01

    We have investigated the electrical resistance R(T) of ZnO nanowires of ≈ 400 nm diameter as a function of temperature, between 30 K and 300 K, and frequency in the range 40 Hz to 30 MHz. The measurements were done on the as-prepared and after low-energy proton implantation at room temperature. The temperature dependence of the resistance of the wire, before proton implantation, can be well described by two processes in parallel. One process is the fluctuation induced tunneling conductance (FITC) and the other the usual thermally activated process. The existence of a tunneling conductance was also observed in the current-voltage (I-V) results, and can be well described by the FITC model. Impedance spectroscopy measurements in the as-prepared state and at room temperature, indicate and support the idea of two contributions of these two transport processes in the nanowires. Electron backscatter diffraction confirms the existence of different crystalline regions. After the implantation of H+ a third thermally activated process is found that can be explained by taking into account the impurity band splitting due to proton implantation.

  11. Neutron detection with single crystal organic scintillators

    NASA Astrophysics Data System (ADS)

    Zaitseva, Natalia P.; Newby, Jason; Hamel, Sebastien; Carman, Leslie; Faust, Michelle; Lordi, Vincenzo; Cherepy, Nerine J.; Stoeffl, Wolfgang; Payne, Stephen A.

    2009-08-01

    Detection of high-energy neutrons in the presence of gamma radiation background utilizes pulse-shape discrimination (PSD) phenomena in organics studied previously only with limited number of materials, mostly liquid scintillators and single crystal stilbene. The current paper presents the results obtained with broader varieties of luminescent organic single crystals. The studies involve experimental tools of crystal growth and material characterization in combination with the advanced computer modeling, with the final goal of better understanding the relevance between the nature of the organic materials and their PSD properties. Special consideration is given to the factors that may diminish or even completely obscure the PSD properties in scintillating crystals. Among such factors are molecular and crystallographic structures that determine exchange coupling and exciton mobility in organic materials and the impurity effect discussed on the examples of trans-stilbene, bibenzyl, 9,10- diphenylanthracene and diphenylacetylene.

  12. Neutron detection with single crystal organic scintillators

    SciTech Connect

    Zaitseva, N; Newby, J; Hamel, S; Carman, L; Faust, M; Lordi, V; Cherepy, N; Stoeffl, W; Payne, S

    2009-07-15

    Detection of high-energy neutrons in the presence of gamma radiation background utilizes pulse-shape discrimination (PSD) phenomena in organics studied previously only with limited number of materials, mostly liquid scintillators and single crystal stilbene. The current paper presents the results obtained with broader varieties of luminescent organic single crystals. The studies involve experimental tools of crystal growth and material characterization in combination with the advanced computer modeling, with the final goal of better understanding the relevance between the nature of the organic materials and their PSD properties. Special consideration is given to the factors that may diminish or even completely obscure the PSD properties in scintillating crystals. Among such factors are molecular and crystallographic structures that determine exchange coupling and exciton mobility in organic materials and the impurity effect discussed on the examples of trans-stilbene, bibenzyl, 9,10-diphenylanthracene and diphenylacetylene.

  13. Oxygen Incorporation in Rubrene Single Crystals

    PubMed Central

    Mastrogiovanni, Daniel D. T.; Mayer, Jeff; Wan, Alan S.; Vishnyakov, Aleksey; Neimark, Alexander V.; Podzorov, Vitaly; Feldman, Leonard C.; Garfunkel, Eric

    2014-01-01

    Single crystal rubrene is a model organic electronic material showing high carrier mobility and long exciton lifetime. These properties are detrimentally affected when rubrene is exposed to intense light under ambient conditions for prolonged periods of time, possibly due to oxygen up-take. Using photoelectron, scanning probe and ion-based methods, combined with an isotopic oxygen exposure, we present direct evidence of the light-induced reaction of molecular oxygen with single crystal rubrene. Without a significant exposure to light, there is no reaction of oxygen with rubrene for periods of greater than a year; the crystal's surface (and bulk) morphology and chemical composition remain essentially oxygen-free. Grand canonical Monte Carlo computations show no sorbtion of gases into the bulk of rubrene crystal. A mechanism for photo-induced oxygen inclusion is proposed. PMID:24786311

  14. Remarkable structural diversity and single-crystal-to-single-crystal transformations in sulfone functionalized lanthanide MOFs

    SciTech Connect

    Neofotistou, Eleftheria; Malliakas, Christos D.; Trikalitis, Pantelis N.

    2010-04-13

    We report the formation of novel open framework lanthanide (La, Ce, Pr and Dy) MOFs using the ligand 4,4{prime}-bibenzoic acid-2,2{prime}-sulfone. In the case of Ce and Pr, an unprecedented single-crystal-to-single-crystal transformation at room temperature was discovered.

  15. Single-Crystal-to-Single-Crystal Transformations in One Dimensional Ag-Eu Helical System

    SciTech Connect

    Cai, Yue-Peng; Zhout, Xiu-Xia; Zhout, Zheng-Yuan; Zhu, Shi-Zheng; Thallapally, Praveen K.; Liu, Jun

    2009-07-06

    Single-crystal-to-single-crystal transformation of 1-D 4d-4f coordination polymers have been investigated for the first time. It displays high selectivity for Mg2+ and can be used as magnesium ion-selective luminescent probe. More importantly, we observed the transformation of meso-helical chain to rac-helical chain as a function of temperature.

  16. Single ZnO Nanowire-Based Gas Sensors to Detect Low Concentrations of Hydrogen.

    PubMed

    Cardoza-Contreras, Marlene N; Romo-Herrera, José M; Ríos, Luis A; García-Gutiérrez, R; Zepeda, T A; Contreras, Oscar E

    2015-01-01

    Low concentrations of hazardous gases are difficult to detect with common gas sensors. Using semiconductor nanostructures as a sensor element is an alternative. Single ZnO nanowire gas sensor devices were fabricated by manipulation and connection of a single nanowire into a four-electrode aluminum probe in situ in a dual-beam scanning electron microscope-focused ion beam with a manipulator and a gas injection system in/column. The electrical response of the manufactured devices shows response times up to 29 s for a 121 ppm of H₂ pulse, with a variation in the nanowire resistance appreciable at room temperature and at 373.15 K of approximately 8% and 14% respectively, showing that ZnO nanowires are good candidates to detect low concentrations of H₂. PMID:26690158

  17. Single ZnO Nanowire-Based Gas Sensors to Detect Low Concentrations of Hydrogen

    PubMed Central

    Cardoza-Contreras, Marlene N.; Romo-Herrera, José M.; Ríos, Luis A.; García-Gutiérrez, R.; Zepeda, T. A.; Contreras, Oscar E.

    2015-01-01

    Low concentrations of hazardous gases are difficult to detect with common gas sensors. Using semiconductor nanostructures as a sensor element is an alternative. Single ZnO nanowire gas sensor devices were fabricated by manipulation and connection of a single nanowire into a four-electrode aluminum probe in situ in a dual-beam scanning electron microscope-focused ion beam with a manipulator and a gas injection system in/column. The electrical response of the manufactured devices shows response times up to 29 s for a 121 ppm of H2 pulse, with a variation in the nanowire resistance appreciable at room temperature and at 373.15 K of approximately 8% and 14% respectively, showing that ZnO nanowires are good candidates to detect low concentrations of H2. PMID:26690158

  18. Single crystals of metal solid solutions

    NASA Technical Reports Server (NTRS)

    Miller, J. F.; Austin, A. E.; Richard, N.; Griesenauer, N. M.; Moak, D. P.; Mehrabian, M. R.; Gelles, S. H.

    1974-01-01

    The following definitions were sought in the research on single crystals of metal solid solutions: (1) the influence of convection and/or gravity present during crystallization on the substructure of a metal solid solution; (2) the influence of a magnetic field applied during crystallization on the substructure of a metal solid solution; and (3) requirements for a space flight experiment to verify the results. Growth conditions for the selected silver-zinc alloy system are described, along with pertinent technical and experimental details of the project.

  19. Graphene single crystals: size and morphology engineering.

    PubMed

    Geng, Dechao; Wang, Huaping; Yu, Gui

    2015-05-13

    Recently developed chemical vapor deposition (CVD) is considered as an effective way to large-area and high-quality graphene preparation due to its ultra-low cost, high controllability, and high scalability. However, CVD-grown graphene film is polycrystalline, and composed of numerous grains separated by grain boundaries, which are detrimental to graphene-based electronics. Intensive investigations have been inspired on the controlled growth of graphene single crystals with the absence of intrinsic defects. As the two most concerned parameters, the size and morphology serve critical roles in affecting properties and understanding the growth mechanism of graphene crystals. Therefore, a precise tuning of the size and morphology will be of great significance in scale-up graphene production and wide applications. Here, recent advances in the synthesis of graphene single crystals on both metals and dielectric substrates by the CVD method are discussed. The review mainly covers the size and morphology engineering of graphene single crystals. Furthermore, recent progress in the growth mechanism and device applications of graphene single crystals are presented. Finally, the opportunities and challenges are discussed. PMID:25809643

  20. Single-Crystal Springs For Accelerometers

    NASA Technical Reports Server (NTRS)

    Vanzandt, Thomas R.; Kaiser, William J.; Kenny, Thomas W.

    1995-01-01

    Thermal noise reduced, enabling use of smaller proof masses. Spring-and-mass accelerometers in which springs made of single-crystal material being developed. In spring-and-mass accelerometer, proof mass attached to one end of spring, and acceleration of object at other end of spring measured in terms of deflection of spring, provided frequency spectrum of acceleration lies well below resonant frequency of spring-and-proof-mass system. Use of single-crystal spring materials instead of such polycrystalline spring materials as ordinary metals makes possible to construct highly sensitive accelerometers (including seismometers) with small proof masses.

  1. NEXAFS and XMCD studies of single-phase Co doped ZnO thin films.

    PubMed

    Singh, Abhinav Pratap; Kumar, Ravi; Thakur, P; Brookes, N B; Chae, K H; Choi, W K

    2009-05-01

    A study of the electronic structure and magnetic properties of Co doped ZnO thin films synthesized by ion implantation followed by swift heavy ion irradiation is presented using near-edge x-ray absorption fine structure (NEXAFS) and x-ray magnetic circular dichroism (XMCD) measurements. The spectral features of NEXAFS at the Co L(3,2)-edge show entirely different features than that of metallic Co clusters and other Co oxide phases. The atomic multiplet calculations are performed to determine the valence state, symmetry and the crystal field splitting, which show that in the present system Co is in the 2+ state and substituted at the Zn site in tetrahedral symmetry with 10Dq = -0.6 eV. The ferromagnetic character of these materials is confirmed through XMCD spectra. To rule out the possibilities of defect induced magnetism, the results are compared with Ar annealed and Ar-ion implanted pure ZnO thin films. The presented results confirm the substitution of Co at the Zn site in the ZnO matrix, which is responsible for room temperature ferromagnetism. PMID:21825451

  2. The interaction of 193-nm excimer laser irradiation with single-crystal zinc oxide: Neutral atomic zinc and oxygen emission

    SciTech Connect

    Kahn, E. H.; Langford, S. C.; Dickinson, J. T.; Boatner, Lynn A

    2013-01-01

    We report mass-resolved time-of-flight measurements of neutral particles from the surface of single-crystal ZnO during pulsed 193-nm irradiation at laser fluences below the threshold for avalanche breakdown. The major species emitted are atomic Zn and O. We examine the emissions of atomic Zn as a function of laser fluence and laser exposure. Defects at the ZnO surface appear necessary for the detection of these emissions. Our results suggest that the production of defects is necessary to explain intense sustained emissions at higher fluence. Rapid, clean surface etching and high atomic zinc kinetic energies seen at higher laser fluences are also discussed.

  3. Microhardness studies of sulfamic acid single crystal

    NASA Astrophysics Data System (ADS)

    Santhosh Kumar, A.; Joseph, Cyriac; Paulose, Reshmi; R, Rajesh; Joseph, Georgekutty; Louis, Godfrey

    2015-02-01

    Vicker's microhardness study of (100), (010) and (001) faces of a non-linear optical crystal sulfamic acid have been reported. Single crystals of sulfamic acid have been grown by slow evaporation method. The load dependence of the Vickers microhardness of sulfamic acid crystal were investigated and analyzed from the stand point of various theoretical models. Crystal samples in a, b and c-axes exhibit reverse indentation effect which is best described by Meyer's law, Hays-Kendall's approach and proportional specimen resistance (PSR) models. The negative values of load dependent quantities in Hays-Kendall's approach and PSR model suggest that the origin of indentation size effect is associated with the process of relaxation of indentation stresses.

  4. Detection of quantum well induced single degenerate-transition-dipoles in ZnO nanorods.

    PubMed

    Ghosh, Siddharth; Ghosh, Moumita; Seibt, Michael; Rao, G Mohan

    2016-02-01

    Quantifying and characterising atomic defects in nanocrystals is difficult and low-throughput using the existing methods such as high resolution transmission electron microscopy (HRTEM). In this article, using a defocused wide-field optical imaging technique, we demonstrate that a single ultrahigh-piezoelectric ZnO nanorod contains a single defect site. We model the observed dipole-emission patterns from optical imaging with a multi-dimensional dipole and find that the experimentally observed dipole pattern and model-calculated patterns are in excellent agreement. This agreement suggests the presence of vertically oriented degenerate-transition-dipoles in vertically aligned ZnO nanorods. The HRTEM of the ZnO nanorod shows the presence of a stacking fault, which generates a localised quantum well induced degenerate-transition-dipole. Finally, we elucidate that defocused wide-field imaging can be widely used to characterise defects in nanomaterials to answer many difficult questions concerning the performance of low-dimensional devices, such as in energy harvesting, advanced metal-oxide-semiconductor storage, and nanoelectromechanical and nanophotonic devices. PMID:26691877

  5. Nonlinear spectroscopy of C60 single crystal

    NASA Astrophysics Data System (ADS)

    Zamboni, Roberto; Muccini, Michele; Danieli, R.; Taliani, Carlo; Mohn, H.; Muller, W.; ter Meer, Hans-Ulrich

    1994-11-01

    Two-photon excitation measurements of C60 single crystal at 4 K have been performed. The TPE spectrum shows a sharp band at 1.846 eV which is assigned to the C60 lowest forbidden Frenkel singlet exciton of T1g symmetry. This assignment is supported by the analysis of Herzberg-Teller induced photoluminescence.

  6. Photo-response of a nanopore device with a single embedded ZnO nanoparticle.

    PubMed

    Nguyen, Linh-Nam; Lin, Ming-Chou; Chen, Horng-Shyang; Lan, Yann-Wen; Wu, Cen-Shawn; Chang-Liao, Kuei-Shu; Chen, Chii-Dong

    2012-04-01

    The photo-response of a ZnO nanoparticle embedded in a nanopore made on a silicon nitride membrane is investigated. The ZnO nanoparticle is manipulated onto the nanopore and sandwiched between aluminum contact electrodes from both the top and bottom. The asymmetric device structure facilitates current-voltage rectification that enables photovoltaic capacity. Under illumination, the device shows open-circuit voltage as well as short-circuit current. The fill factor is found to increase at low temperatures and reaches 48.6% at 100 K. The nanopore structure and the manipulation technique provide a solid platform for exploring the electrical properties of single nanoparticles. PMID:22470086

  7. Intrinsic dipole-field-driven mesoscale crystallization of core-shell ZnO mesocrystal microspheres.

    PubMed

    Liu, Z; Wen, X D; Wu, X L; Gao, Y J; Chen, H T; Zhu, J; Chu, P K

    2009-07-01

    Novel uniform-sized, core-shell ZnO mesocrystal microspheres have been synthesized on a large scale using a facile one-pot hydrothermal method in the presence of the water-soluble polymer poly(sodium 4-styrenesulfonate). The mesocrystal forms via a nonclassical crystallization process. The intrinsic dipole field introduced by the nanoplatelets as a result of selective adsorption of the polyelectrolyte on some polar surfaces of the nanoparticles acts as the driving force. In addition, it plays an important role throughout the mesoscale assembly process from the creation of the bimesocrystalline core to the apple-like structure and finally the microsphere. Our calculation based on a dipole model confirms the dipole-field-driven mechanism forming the apple-like structure. PMID:19518047

  8. Imaging Single ZnO Vertical Nanowire Laser Cavities using UV-Laser Scanning Confocal Microscopy

    SciTech Connect

    Gargas, D.J.; Toimil-Molares, M.E.; Yang, P.

    2008-11-17

    We report the fabrication and optical characterization of individual ZnO vertical nanowire laser cavities. Dilute nanowire arrays with interwire spacing>10 ?m were produced by a modified chemical vapor transport (CVT) method yielding an ideal platform for single nanowire imaging and spectroscopy. Lasing characteristics of a single vertical nanowire are presented, as well as high-resolution photoluminescence imaging by UV-laser scanning confocal microscopy. In addition, three-dimensional (3D) mapping of the photoluminescence emission performed in both planar and vertical dimensions demonstrates height-selective imaging useful for vertical nanowires and heteronanostructures emerging in the field of optoelectronics and nanophotonics.

  9. Infrared investigations of 4-hydroxycyanobenzene single crystals.

    PubMed

    Capria, E; Benevoli, L; Perucchi, A; Fraboni, B; Tessarolo, M; Lupi, Stefano; Fraleoni-Morgera, A

    2013-08-01

    4-Hydroxycyanobenzene (4HCB) single crystals (SCs) and polycrystals (PCs) have been analyzed by means of both unpolarized and linearly polarized (LP) infrared (IR) beams. Most of the signals found at room temperature (298 K) were assigned to well-defined vibrational modes. Using an LP-IR beam and keeping the beam polarization aligned with either the a or the b crystal axis, anisotropic spectra of SCs were also attributed. The differences between the LP and unpolarized spectra of SCs are discussed in view of spatially anisotropic vibronic couplings between the benzenic π electrons and the molecular functional groups (FGs), with reference to the overall lattice arrangement and the polarizability of the FGs. In addition, signals suggesting the low-concentration presence of tautomers within the crystal were detected. LP-IR measurements of SCs in the temperature range between 298 and 120 K are also reported and discussed, with particular reference to the hydrogen-bonding-related functional groups of 4HCB, allowing the assignment of OH bending signals that were otherwise not clearly attributable and the inference of an anisotropic shrinking of the crystals. Overall, the presented results show that LP-IR spectroscopy is a valuable tool for noncontact, nondestructive characterization of organic semiconducting single crystals. PMID:23829587

  10. Single crystal functional oxides on silicon

    PubMed Central

    Bakaul, Saidur Rahman; Serrao, Claudy Rayan; Lee, Michelle; Yeung, Chun Wing; Sarker, Asis; Hsu, Shang-Lin; Yadav, Ajay Kumar; Dedon, Liv; You, Long; Khan, Asif Islam; Clarkson, James David; Hu, Chenming; Ramesh, Ramamoorthy; Salahuddin, Sayeef

    2016-01-01

    Single-crystalline thin films of complex oxides show a rich variety of functional properties such as ferroelectricity, piezoelectricity, ferro and antiferromagnetism and so on that have the potential for completely new electronic applications. Direct synthesis of such oxides on silicon remains challenging because of the fundamental crystal chemistry and mechanical incompatibility of dissimilar interfaces. Here we report integration of thin (down to one unit cell) single crystalline, complex oxide films onto silicon substrates, by epitaxial transfer at room temperature. In a field-effect transistor using a transferred lead zirconate titanate layer as the gate insulator, we demonstrate direct reversible control of the semiconductor channel charge with polarization state. These results represent the realization of long pursued but yet to be demonstrated single-crystal functional oxides on-demand on silicon. PMID:26853112

  11. Novel ZnO microballs synthesized via pyrolysis of zinc-acetate in oxygen atmosphere

    NASA Astrophysics Data System (ADS)

    Xia, Xianhui; Zhu, Liping; Ye, Zhizhen; Yuan, Guodong; Zhao, Binghui; Qian, Qing

    2005-09-01

    Novel micrometer-sized ZnO balls have been synthesized on (1 1 1)-Si substrates via pyrolysis of zinc acetate in oxygen atmosphere. The ZnO microballs exhibit unique geometrical shapes with partly porous or hollow structures and their walls are composed of large size textured ZnO microcrystals. The growth mechanism of the ZnO microballs is proposed to be a process following the formation of ZnO film layer, ZnO branches and then ZnO microballs. The phase structure and crystalline structure of the as-grown ZnO microballs were investigated by X-ray diffraction (XRD) and high-resolution transmission electron microscope (HRTEM), respectively. The room-temperature photoluminescence (PL) spectrum shows prominent UV emission around 394 nm and weak green emission peaks indicating that there are few defects in the single crystal grains of the ZnO microballs.

  12. Single crystal complex oxide on flexible substrate

    NASA Astrophysics Data System (ADS)

    Bakaul, Saidur; Serrao, Claudy; Lee, Oukjae; Salahuddin, Sayeef

    Flexible ferroelectrics are needed for various applications such as biocompatible energy harvesting and flexible memory. In this sector, most of the current research is focused on organic piezoelectric materials which have advantage of flexibility but suffers severely from poor energy conversion and generation efficiency. On the contrary, owing to very high electromechanical coupling factor (representing energy conversion efficiency) complex oxides are the best choices as energy harvesting and transduction elements, especially for transforming mechanical energies into electronic energy. Still their usage in energy harvesting is very limited mainly due to the stringent growth conditions of single crystals, high temperature needed for crystallization and lack of flexibility and stretchability. We have shown that single crystal Pb0.8Zr0.2TiO3 can be epitaxially transferred on flexible plastic substrate. The transferred PZT shows 70 uC/cm2 remnant polarization and dielectric constant over 100 even when it is bent. These results suggest the possibility of single crystal complex oxide devices on flexible platform.

  13. Single-crystal disk drive miniactuators

    NASA Astrophysics Data System (ADS)

    Giovanardi, Marco; McKenney, Kevin B.; Rule, John A.; Yoshikawa, Shoko

    2001-08-01

    As hard disk drive areal densities increase at a compound annual growth rate (CAGR) of 60%, disk drives must position the head over increasingly small areas while moving more rapidly to reach the desired position. This results in an increase in vibration disturbance. To meet this demand, many hard disk drive manufactures have created prototype dual-stage actuators employing piezoelectric ceramics for the second stage. These are an attractive means of obtaining higher-bandwidth control due to the low inertia and size of the actuator element. As the technology improves, the next limiting factor will be the amount of displacement obtainable with traditional piezoceramic elements. Under the AXIS (Advanced Crystal Integrated System) Consortium program funded by DARPA, the application of PZN-PT single crystal piezoceramic as a second stage disk drive actuator was studied, based on the fact that the single crystal material provides larger stroke than its traditional PZT counterparts. The transverse (d31) strain of PZN-PT single crystal was measured to be about two times larger than that of PZT-5H ceramic. Both materials were integrated into a disk drive system and compared as second stage actuators. The methodologies used and the servo control techniques applied are also discussed in the paper.

  14. Size-dependent elastic properties of single-walled ZnO nanotubes: A first-principles study

    SciTech Connect

    Wen Yuhua; Zhang Yang; Wu Shunqing; Zhu Zizhong

    2011-04-15

    By means of first-principles calculations, we have investigated a size dependence of elastic modulus in single-walled ZnO nanotubes with armchair and zigzag forms. It is found that for these tubes the Young's modulus is increased dramatically with the increased diameters and inversely proportional to the Zn-O bond length. Further, the amount of charge transfer, calculated by the Bader analysis, is introduced to elucidate the strength of bonding between Zn and O atoms in these tubes.

  15. Experimental Investigation of Orthoenstatite Single Crystal Rheology

    NASA Astrophysics Data System (ADS)

    fraysse, G.; Girard, J.; Holyoke, C. W.; Raterron, P.

    2013-12-01

    The plasticity of enstatite, upper mantle second most abundant mineral, is still poorly constrained, mostly because of its high-temperature (T) transformation into proto- and clino-enstatite at low pressure (P). Mackwell (1991, GRL, 18, 2027) reports a pioneer study of protoenstatite (Pbcn) single-crystal rheology, but the results do not directly apply to the orthorhombic (Pbca) mantle phase. Ohuchi et al. (2011, Contri. Mineral. Petrol , 161, 961) carried out deformation experiments at P=1.3 GPa on oriented orthoenstatite crystals, investigating the activity of [001](100) and [001](010) dislocation slip systems; they report the first rheological laws for orthoenstatite crystals. However, strain and stress were indirectly constrained in their experiments, which questioned whether steady state conditions of deformation were achieved. Also, data reported for [001](100) slip system were obtained after specimens had transformed by twinning into clinoenstatite. We report here new data from deformation experiments carried out at high T and P ranging from 3.5 to 6.2 GPa on natural Fe-bearing enstatite single crystals, using the Deformation-DIA apparatus (D-DIA) that equipped the X17B2 beamline of the NSLS (NY, USA). The applied stress and specimen strain rates were measured in situ by X-ray diffraction and imaging techniques (e.g., Raterron & Merkel, 2009, J. Sync. Rad., 16, 748; Raterron et al., 2013, Rev. Sci. Instr., 84, 043906). Three specimen orientations were tested: i) with the compression direction along [101]c crystallographic direction, which forms a 45° angle with both [100] and [001] axes, to investigate [001](100) slip-system activity; ii) along [011]c direction to investigate [001](010) system activity; iii) and along enstatite [125] axis, to activate both slip systems together. Crystals were deformed two by two, to compare slip system activities, or against enstatite aggregates or orientated olivine crystals of known rheology for comparison. Run products

  16. Lightweight optical mirrors formed in single crystal substrate

    NASA Technical Reports Server (NTRS)

    Bly, Vincent T. (Inventor)

    2006-01-01

    This invention is directed to a process for manufacturing a lightweight mirror from a single crystal material, such as single crystal silicon. As a near perfect single crystal material, single crystal silicon has much lower internal stress than a conventional material. This means much less distortion of the optical surface during the light weighting process. After being ground and polished, a single crystal silicon mirror is light weighted by removing material from the back side using ultrasonic machining. After the light weighting process, the single crystal silicon mirror may be used as-is or further figured by conventional polishing or ion milling, depending on the application and the operating wavelength.

  17. Physical model construction for electrical anisotropy of single crystal zinc oxide micro/nanobelt using finite element method

    SciTech Connect

    Yu, Guangbin; Tang, Chaolong; Song, Jinhui E-mail: wqlu@cigit.ac.cn; Lu, Wenqiang E-mail: wqlu@cigit.ac.cn

    2014-04-14

    Based on conductivity characterization of single crystal zinc oxide (ZnO) micro/nanobelt (MB/NB), we further investigate the physical mechanism of nonlinear intrinsic resistance-length characteristic using finite element method. By taking the same parameters used in experiment, a model of nonlinear anisotropic resistance change with single crystal MB/NB has been deduced, which matched the experiment characterization well. The nonlinear resistance-length comes from the different electron moving speed in various crystal planes. As the direct outcome, crystallography of the anisotropic semiconducting MB/NB has been identified, which could serve as a simple but effective method to identify crystal growth direction of single crystal semiconducting or conductive nanomaterial.

  18. Shock Hugoniot of Single Crystal Copper

    SciTech Connect

    Chau, R; Stolken, J; Asoka-Kumar, P; Kumar, M; Holmes, N C

    2009-08-28

    The shock Hugoniot of single crystal copper is reported for stresses below 66 GPa. Symmetric impact experiments were used to measure the Hugoniots of three different crystal orientations of copper, [100], [110], [111]. The photonic doppler velocimetry (PDV) diagnostic was adapted into a very high precision time of arrival detector for these experiments. The measured Hugoniots along all three crystal directions were nearly identical to the experimental Hugoniot for polycrystalline Cu. The predicted orientation dependence of the Hugoniot from MD calculations was not observed. At the lowest stresses, the sound speed in Cu was extracted from the PDV data. The measured sound speeds are in agreement with values calculated from the elastic constants for Cu.

  19. Growth of Solid Solution Single Crystals

    NASA Technical Reports Server (NTRS)

    Lehoczky, Sandor L.; Szofran, Frank R.; Gillies, Donald C.; Watring, Dale A.

    1999-01-01

    The objective of the study is to establish the effects of processing semiconducting, solid solution, single crystals in a microgravity environment on the metallurgical, compositional, electrical, and optical characteristics of the crystals. The alloy system being investigated is the solid solution semiconductor Hg(1-x)Cd(x)Te, with x-values appropriate for infrared detector applications in the 8 to 14 mm wavelength region. Both melt and Te-solvent growth are being performed. The study consists of an extensive ground-based experimental and theoretical research effort followed by flight experimentation where appropriate. The ground-based portion of the investigation also includes the evaluation of the relative effectiveness of stabilizing techniques, such as applied magnetic fields, for suppressing convective flow during the melt growth of the crystals.

  20. The Creep of Single Crystals of Aluminum

    NASA Technical Reports Server (NTRS)

    Johnson, R D; Shober, F R; Schwope, A D

    1953-01-01

    The creep of single crystals of high-purity aluminum was investigated in the range of temperatures from room temperature to 400 F and at resolved-shear-stress levels of 200, 300, and 400 psi. The tests were designed in an attempt to produce data regarding the relation between the rate of strain and the mechanism of deformation. The creep data are analyzed in terms of shear strain rate and the results are discussed with regard to existing creep theories. Stress-strain curves were determined for the crystals in tinsel and constant-load-rate tests in the same temperature range to supplement the study of plastic deformation by creep with information regarding the part played by crystal orientation, differences in strain markings, and other variables in plastic deformation.

  1. ZnO:HCl single crystals: Thermodynamic analysis of CVT system, feature of growth and characterization

    NASA Astrophysics Data System (ADS)

    Colibaba, G. V.

    2016-06-01

    The full thermodynamic analysis of using HCl as a chemical vapor transport (CVT) agent (TA) for ZnO single crystals growth in closed growth chambers, including 16 chemical species, is carried out for wide temperature and loaded TA pressure ranges. The influence of the growth temperature, of the TA density and of the undercooling on the rate of ZnO mass transport was investigated theoretically and experimentally. It is shown that the mass transport is diffusion-limited at about 1050 °C, and it is limited by kinetics of the CVT reaction at lower temperatures. It is experimentally shown that using HCl favors obtaining void-free n-ZnO crystals with controllable electrical parameters, it reduces the effect of adhesiveness to the walls of the growth chamber. The characterization by the photoluminescence spectra, the transmission spectra and the electrical properties in the wide temperature range allowed analyzing energy spectra of Cl-containing stable defects in ZnO and electrical activity of Cl donors. Some methods of activation energy correction for Cl-containing centers are discussed.

  2. ZnO:HCl single crystals: Thermodynamic analysis of CVT system, feature of growth and characterization

    NASA Astrophysics Data System (ADS)

    Colibaba, G. V.

    2016-06-01

    The full thermodynamic analysis of using HCl as a chemical vapor transport (CVT) agent (TA) for ZnO single crystals growth in closed growth chambers, including 16 chemical species, is carried out for wide temperature and loaded TA pressure ranges. The influence of the growth temperature, of the TA density and of the undercooling on the rate of ZnO mass transport was investigated theoretically and experimentally. It is shown that the mass transport is diffusion-limited at about 1050 °C, and it is limited by kinetics of the CVT reaction at lower temperatures. It is experimentally shown that using HCl favors obtaining void-free n-ZnO crystals with controllable electrical parameters, it reduces the effect of adhesiveness to the walls of the growth chamber. The characterization by the photoluminescence spectra, the transmission spectra and the electrical properties in the wide temperature range allowed analyzing energy spectra of Cl-containing stable defects in ZnO and electrical activity of Cl donors. Some methods of activation energy correction for Cl-containing centers are discussed.

  3. Biomineralization of nanoscale single crystal hydroxyapatite.

    PubMed

    Omokanwaye, Tiffany; Wilson, Otto C; Gugssa, Ayelle; Anderson, Winston

    2015-11-01

    The chemical and physical characteristics of nanocrystalline hydroxyapatite particles which formed during the subcutaneous implantation of crab shell in Sprague-Dawley rats were studied using selected area electron diffraction (SAED) and high resolution transmission electron microscopy (HRTEM). The initial SAED characterization evidence indicated the presence of an amorphous calcium phosphate phase. The electron dense nanophase particles which formed in the wound healing zone displayed broad diffuse rings which usually indicate a low crystalline order or amorphous phase. High resolution transmission electron microscopy (HRTEM) revealed that these mineralized regions contained discrete single crystal particles less than 5nm in size. Micrographs taken at successively higher magnifications revealed very small nanoparticles with a hexagonal arrangement of ion channels with characteristic spacing of 0.54nm and 0.23nm. This study revealed that single crystal hydroxyapatite nanoparticles consisting of only a few unit cells formed via a biomineralization directed process. PMID:26249568

  4. Crack growth in single-crystal silicon

    NASA Technical Reports Server (NTRS)

    Chen, C. P.; Leipold, M. H.

    1986-01-01

    Crack growth in single-crystal silicon at room temperature in air was evaluated by double torsion (DT) load-relaxation method and monitored by acoustic emission (AE) technique. Both DT and AE methods indicated lack of subcritical crack growth in silicon. At the critical stress intensity factor, the crack front was found to be jumping several times in a 'mirror' region and then followed by fast crack growth in a 'hackle' region. Hackle marks were found to be associated with plastic deformation at the tip of the fast moving crack. No dislocation etch pits were found in the 'mirror' region, in which crack growth may result from interatomic bonds broken at the crack tip under stress without any plastic deformation. Acoustic emission appears to be spontaneously generated from both interatomic bonds broken and dislocation generation at the moving crack tip during the crack growth in single-crystal silicon.

  5. Loop polymer brushes from polymer single crystals

    NASA Astrophysics Data System (ADS)

    Zhou, Tian; Li, Christopher

    2014-03-01

    Loop polymer brushes represent a category of polymer brushes with both chain ends being tethered to a surface or interface with sufficiently high density. Due to this morphological difference, loop brushes exhibit distinct properties compared with traditional polymer brushes with single chain end being tethered. In our study, α, ω-functionalized polycaprolactone (PCL) single crystals were prepared as templates for polymer brush synthesis. By carefully controlling crystallization condition and immobilization, looped polymer brushes were successfully prepared. Comprehensive studies on the morphology and physical properties of these polymer brushes were carried out using Atomic Force Microscopy and FTIR. Advantages of using this method include exclusive loop morphology, high grafting density, controlled tethering sites and tunable loop size.

  6. Macrodeformation Twins in Single-Crystal Aluminum.

    PubMed

    Zhao, F; Wang, L; Fan, D; Bie, B X; Zhou, X M; Suo, T; Li, Y L; Chen, M W; Liu, C L; Qi, M L; Zhu, M H; Luo, S N

    2016-02-19

    Deformation twinning in pure aluminum has been considered to be a unique property of nanostructured aluminum. A lingering mystery is whether deformation twinning occurs in coarse-grained or single-crystal aluminum at scales beyond nanotwins. Here, we present the first experimental demonstration of macrodeformation twins in single-crystal aluminum formed under an ultrahigh strain rate (∼10^{6}  s^{-1}) and large shear strain (200%) via dynamic equal channel angular pressing. Large-scale molecular dynamics simulations suggest that the frustration of subsonic dislocation motion leads to transonic deformation twinning. Deformation twinning is rooted in the rate dependences of dislocation motion and twinning, which are coupled, complementary processes during severe plastic deformation under ultrahigh strain rates. PMID:26943543

  7. Optimizing Scale Adhesion on Single Crystal Superalloys

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Pint, Bruce A.

    2000-01-01

    To improve scale adhesion, single crystal superalloys have been desulfurized to levels below 1 ppmw by hydrogen annealing. A transition to fully adherent behavior has been shown to occur at a sulfur level of about 0.2 ppmw, as demonstrated for PWA 1480, PWA 1484, and Rene N5 single crystal superalloys in 1100-1150 C cyclic oxidation tests up to 2000 h. Small additions of yttrium (15 ppmw) also have been effective in producing adhesion for sulfur contents of about 5 ppmw. Thus the critical Y/S ratio required for adhesion was on the order of 3-to-1 by weight (1-to-1 atomic), in agreement with values estimated from solubility products for yttrium sulfides. While hydrogen annealing greatly improved an undoped alloy, yielding <= 0.01 ppmw S, it also produced benefits for Y-doped alloys without measurably reducing the sulfur content.

  8. Crack Growth in Single-Crystal Silicon

    NASA Technical Reports Server (NTRS)

    Chen, C. P.; Leipold, M. H.

    1986-01-01

    Report describes experiments on crack growth in single-crystal silicon at room temperature in air. Crack growth in (111) cleavage plane of wafers, 50 by 100 by 0.76 mm in dimension, cut from Czochralski singlecrystal silicon studied by double-torsion load-relaxation method and by acoustic-emission measurements. Scanning electron microscopy and X-ray topography also employed. Results aid in design and fabrication of silicon photovoltaic and microelectronic devices.

  9. Ionic diffusion in single crystals of vermiculite

    SciTech Connect

    Maraqah, H.R.

    1993-01-01

    Novel guest-host compounds, based on single crystal vermiculite, were synthesized by diffusive techniques through a new hydrogen vermiculite. Single crystals were chosen because of the ease of characterization. An investigation of the ion transport properties of these single crystals was done to determine the mechanism of conductivity including the predominant charge carrier. Measurements of the ionic conductivity using impedance spectroscopy and X-ray lattice parameters of the ion-exchanged samples strongly suggest that the native cations and not protons are the major current carriers. Single crystals of hydrogen vermiculite were synthesized at room temperature by ion exchange from sodium-vermiculite using 1 molar acetic acid for a one week. Subsequent ion exchange with other cations was found to be much enhanced. Thus transition metals were exchanged in about a week in contrast to the need of several months using previous methods. The ionic conductivity of hydrogen vermiculite was measured and shown to be much lower than that of many other monovalent cations in the same host lattice. Its enthalpy of motion is also much lower. These marked differences suggest that protonic species do not play a significant role in charge transport in these layered materials. These materials were characterized by x-ray powder diffraction, thermogravimetric analysis and acid-base titration. Hydrogen-vermiculite was found to react with organic bases, like methylamine, ethylamine, n-butylamine, n-hexylamine, n-octylamine, n-decylamine, aniline, acrylamide, methacrylaminde, urea, 1,10phenanthroline, and 1,1phenanthroline ferrous sulfate complex, to undergo ion exchange with metal cations like sodium, zinc, copper(II) ions and polymerization reactions could be performed in the galleries of the structure like pyrrole and aniline. Its behavior was compared with that of powdered montmorillonite.

  10. Study of the negative magneto-resistance of single proton-implanted lithium-doped ZnO microwires.

    PubMed

    Lorite, I; Zandalazini, C; Esquinazi, P; Spemann, D; Friedländer, S; Pöppl, A; Michalsky, T; Grundmann, M; Vogt, J; Meijer, J; Heluani, S P; Ohldag, H; Adeagbo, W A; Nayak, S K; Hergert, W; Ernst, A; Hoffmann, M

    2015-07-01

    The magneto-transport properties of single proton-implanted ZnO and of Li(7%)-doped ZnO microwires have been studied. The as-grown microwires were highly insulating and not magnetic. After proton implantation the Li(7%) doped ZnO microwires showed a non-monotonous behavior of the negative magneto-resistance (MR) at temperature above 150 K. This is in contrast to the monotonous NMR observed below 50 K for proton-implanted ZnO. The observed difference in the transport properties of the wires is related to the amount of stable Zn vacancies created at the near surface region by the proton implantation and Li doping. The magnetic field dependence of the resistance might be explained by the formation of a magnetic/non-magnetic heterostructure in the wire after proton implantation. PMID:26043764

  11. Study of the negative magneto-resistance of single proton-implanted lithium-doped ZnO microwires

    NASA Astrophysics Data System (ADS)

    Lorite, I.; Zandalazini, C.; Esquinazi, P.; Spemann, D.; Friedländer, S.; Pöppl, A.; Michalsky, T.; Grundmann, M.; Vogt, J.; Meijer, J.; Heluani, S. P.; Ohldag, H.; Adeagbo, W. A.; Nayak, S. K.; Hergert, W.; Ernst, A.; Hoffmann, M.

    2015-06-01

    The magneto-transport properties of single proton-implanted ZnO and of Li(7%)-doped ZnO microwires have been studied. The as-grown microwires were highly insulating and not magnetic. After proton implantation the Li(7%) doped ZnO microwires showed a non-monotonous behavior of the negative magneto-resistance (MR) at temperature above 150 K. This is in contrast to the monotonous NMR observed below 50 K for proton-implanted ZnO. The observed difference in the transport properties of the wires is related to the amount of stable Zn vacancies created at the near surface region by the proton implantation and Li doping. The magnetic field dependence of the resistance might be explained by the formation of a magnetic/non-magnetic heterostructure in the wire after proton implantation.

  12. An improved single crystal adsorption calorimeter

    NASA Astrophysics Data System (ADS)

    Stuck, A.; Wartnaby, C. E.; Yeo, Y. Y.; Stuckless, J. T.; Al-Sarraf, N.; King, D. A.

    1996-04-01

    Significant improvements to the single crystal adsorption calorimeter (SCAC) of Borroni-Bird and King are described. The calorimeter comprises a pulsed molecular beam source, an ultrathin single crystal and an infrared detector. It is calibrated using a chopped laser beam, and the amount of gas adsorbed or reacted per pulse is measured using the King and Wells reflection detector technique. Refinements in the molecular beam system, the optical calibration system, flux calibration system and sticking probability measurement technique have been made. The calorimeter response is accurately linear over a useful energy range; the detection limit is estimated as 10 kJ mol -1; and the accuracy in heats of adsorption for heats above ˜ 80 kJ mol -1 is estimated as ˜ 6%. Comparisons of calorimetric heats with isosteric heats and with desorption energies obtained for reversible systems, such as CO on Ni and Pt single crystal surfaces, generally yield good agreement and give support to the estimate for the absolute accuracy of the instrument.

  13. Single crystal diffraction by synchrotron radiation

    SciTech Connect

    Kvick, A.

    1988-01-01

    The tunability and access to short wavelengths in combination with high intensity and the low divergence of the x-ray radiation produced by synchrotron storage rings opens up new and challenging fields for single crystal diffraction. These areas include microcrystal diffraction, studies of time-dependent phenomena, element selective diffraction, studies of materials under extreme conditions, solution of the crystallographic phase problem either by the use of the wavelength dependency of the anomalous scattering or by direct experimental determination of the phases. Single crystal diffraction from proteins and macromolecules using photographic film as a detection medium has already reached considerable maturity, but high-precision data collections using diffractometers at storage rings are still not routine because of the severe requirements for beam stability over extended periods of time. Development work at institutions such as the National Synchrotron Light Source, The Photon Factory, SSRL, CHESS, Hasylab and Daresbury, however, suggest that synchrotron single-crystal diffraction will become an essential part of the research at the synchrotron storage rings in the near future. 9 refs., 2 figs.

  14. Anisotropy of sapphire single crystal sputtering

    SciTech Connect

    Minnebaev, K. F.; Tolpin, K. A.; Yurasova, V. E.

    2015-08-15

    We have studied the spatial distribution of particles sputtered from the base (0001) plane of a sapphire single crystal with trigonal crystalline lattice (α-Al{sub 2}O{sub 3}) that can be considered a superposition of two hexagonal close packed (hcp) structures–the ideal sublattice of oxygen and a somewhat deformed sublattice of aluminum. It is established that the particles sputtered from the base plane of sapphire are predominantly deposited along the sides of an irregular hexagon with spots at its vertices. The patterns of spots have been also studied for sputtering of particles from the (0001) face of a zinc single crystal with the hcp lattice. The spots of sputtered Zn atoms are arranged at the vertices of concentric equilateral hexagons. In both cases, the observed anisotropy of sputtering is related to focused collisions (direct and assisted focusing) and the channeling process. The chemical composition of spots has been determined in various regions of sputtered sapphire deposition. The results are discussed in comparison to analogous earlier data for secondary ion emission from an α-Al{sub 2}O{sub 3} single crystal.

  15. Single crystal cylinder transducers for sonar applications

    NASA Astrophysics Data System (ADS)

    Robinson, Harold; Stevens, Gerald; Buffman, Martin; Powers, James

    2005-04-01

    A segmented cylinder transducer constructed of single crystal lead magnesium niobate-lead titanate (PMN-PT) has been under development at NUWC and EDO Corporation for several years. The purpose of this development was to provide an extremely compact, high power broadband source. By virtue of their extraordinary material properties, ferroelectric single crystals are the ideal transduction material for developing such compact broadband systems. This presentation shall review the evolution of the transducer design as well as present the results of a successful in-water test conducted at NUWC in October of 2003. It shall be shown that design changes intended to eliminate spurious modes limiting the transducer bandwidth first observed in 2002 were successful, resulting in a transducer with a clean frequency response and an effective coupling factor of 0.85. The measured transducer admittance was in nearly exact agreement with theoretical predictions. The NUWC in-water tests demonstrated that the single crystal cylinder achieved an admittance bandwidth (based on the Stansfield criterion) of over 100%, while the tuned power factor was 0.8 or more over 2.5 octaves of frequency. Additionally, the transducer produced 12 dB higher source levels than a similarly sized PZT transducer. [Work sponsored by DARPA.

  16. Charge transport in single crystal organic semiconductors

    NASA Astrophysics Data System (ADS)

    Xie, Wei

    Organic electronics have engendered substantial interest in printable, flexible and large-area applications thanks to their low fabrication cost per unit area, chemical versatility and solution processability. Nevertheless, fundamental understanding of device physics and charge transport in organic semiconductors lag somewhat behind, partially due to ubiquitous defects and impurities in technologically useful organic thin films, formed either by vacuum deposition or solution process. In this context, single-crystalline organic semiconductors, or organic single crystals, have therefore provided the ideal system for transport studies. Organic single crystals are characterized by their high chemical purity and outstanding structural perfection, leading to significantly improved electrical properties compared with their thin-film counterparts. Importantly, the surfaces of the crystals are molecularly flat, an ideal condition for building field-effect transistors (FETs). Progress in organic single crystal FETs (SC-FETs) is tremendous during the past decade. Large mobilities ~ 1 - 10 cm2V-1s-1 have been achieved in several crystals, allowing a wide range of electrical, optical, mechanical, structural, and theoretical studies. Several challenges still remain, however, which are the motivation of this thesis. The first challenge is to delineate the crystal structure/electrical property relationship for development of high-performance organic semiconductors. This thesis demonstrates a full spectrum of studies spanning from chemical synthesis, single crystal structure determination, quantum-chemical calculation, SC-OFET fabrication, electrical measurement, photoelectron spectroscopy characterization and extensive device optimization in a series of new rubrene derivatives, motivated by the fact that rubrene is a benchmark semiconductor with record hole mobility ~ 20 cm2V-1s-1. With successful preservation of beneficial pi-stacking structures, these rubrene derivatives form

  17. Plasma enhanced multistate storage capability of single ZnO nanowire based memory

    NASA Astrophysics Data System (ADS)

    Lai, Yunfeng; Xin, Pucong; Cheng, Shuying; Yu, Jinling; Zheng, Qiao

    2015-01-01

    Multiple-state storage (MSS) is common for resistive random access memory, but the effects of plasma treatment on the MSS and the switching properties have been scarcely investigated. We have demonstrated a stable four-state storage capability of single zinc oxide nanowire (ZnO NW) treated by argon plasma. The electrical switching is attributed to the electron trapping and detrapping from the oxygen vacancies (Vos). The MSS relates to the electrical-thermal induced distribution of the Vos which determines electron transport behavior to show different resistance states. Additionally, programming (set and reset) voltages decrease with plasma treatment due to the thickness modulation of the interface barrier.

  18. Ultrafast spectroscopy of stimulated emission in single ZnO tetrapod nanowires

    NASA Astrophysics Data System (ADS)

    Djurisic, A. B.; Kwok, W. M.; Leung, Y. H.; Chan, W. K.; Phillips, D. L.; Lin, M. S.; Gwo, S.

    2006-01-01

    Stimulated emission from single ZnO tetrapod nanowires was studied by time-resolved photoluminescence (TRPL) spectroscopy. The samples were excited by a 300 fs pulse and the emission spectra collected as a function of time. The spectra exhibit a change in the position and the shape of the emission peak with time. The time evolution of the emission spectra was studied for different pump excitation fluences. The spectra exhibited a blue shift with increasing pump fluence, while for all pump fluences a red shift of the peaks with time was obtained. Possible reasons for the observed behaviour are discussed.

  19. Influence of ZnO nanostructures in liquid crystal interfaces for bistable switching applications

    NASA Astrophysics Data System (ADS)

    Pal, Kaushik; Zhan, Bihong; Madhu Mohan, M. L. N.; Schirhagl, Romana; Wang, Guoping

    2015-12-01

    The controlled fabrication of nanometer-scale objects is without doubt one of the central issues in current science and technology. In this article, we exhibit a simple, one-step bench top synthesis of zinc oxide nano-tetrapods and nano-spheres which were tailored by the facial growth of nano-wires (diameter ≈ 24 nm; length ≈ 118 nm) and nano-cubes (≈395 nm edge) to nano-sphere (diameter ≈ 585 nm) appeaded. The possibilities of inexpensive, simple solvo-chemical synthesis of nanostructures were considered. In this article, a successful attempt has been made that ZnO nano-structures dispersed on well aligned hydrogen bonded liquid crystals (HBLC) comprising azelaic acid (AC) with p-n-alkyloxy benzoic acid (nBAO) by varying the respective alkyloxy carbon number (n = 5). The dispersion of nanomaterials with HBLC is an effective route to enhance the existing functionalities. A series of these composite materials were analyzed by polarizing optical microscope's electro-optical switching. An interesting feature of AC + nBAO is the inducement of tilted smectic G phase with increasing carbon chain length. Phase diagrams of the above hybrid ZnO nanomaterial influenced LC complex and pure LC were constructed and compared. The switching times, the contrast ratio and spontaneous polarization of the nanostructures-HBLC composite film were carried out by systematic investigation. The sample preparation parameters, such as the curing time and curing intensity were optimized. The critical applied voltage to achieve the switching bi-stability of our device is only 4.5 V, which is approximately twice its threshold voltage for Freedericksz transition. This performance puts the hybrid structure at the top level in the state of the art in application oriented research in optics of liquid crystalline composite materials.

  20. A nanoporous two-dimensional polymer by single-crystal-to-single-crystal photopolymerization

    NASA Astrophysics Data System (ADS)

    Kissel, Patrick; Murray, Daniel J.; Wulftange, William J.; Catalano, Vincent J.; King, Benjamin T.

    2014-09-01

    In contrast to the wide number and variety of available synthetic routes to conventional linear polymers, the synthesis of two-dimensional polymers and unambiguous proof of their structure remains a challenge. Two-dimensional polymers—single-layered polymers that form a tiling network in exactly two dimensions—have potential for use in nanoporous membranes and other applications. Here, we report the preparation of a fluorinated hydrocarbon two-dimensional polymer that can be exfoliated into single sheets, and its characterization by high-resolution single-crystal X-ray diffraction analysis. The procedure involves three steps: preorganization in a lamellar crystal of a rigid monomer bearing three photoreactive arms, photopolymerization of the crystalline monomers by [4 + 4] cycloaddition, and isolation of individual two-dimensional polymer sheets. This polymer is a molecularly thin (~1 nm) material that combines precisely defined monodisperse pores of ~9 Å with a high pore density of 3.3 × 1013 pores cm-2. Atomic-resolution single-crystal X-ray structures of the monomer, an intermediate dimer and the final crystalline two-dimensional polymer were obtained and prove the single-crystal-to-single-crystal nature and molecular precision of the two-dimensional photopolymerization.

  1. Single crystal x-ray diffraction: optical and micro hardness studies on chalcone derivative single crystal

    NASA Astrophysics Data System (ADS)

    Crasta, Vincent; Ravindrachary, V.; Bhajantri, R. F.; Naveen, S.; Shridar, M. A.; Shashidhara Prasad, J.

    2005-08-01

    1-(4-methylphenyl)-3-(4- N, N dimethyl amino phenyl)-2-propen-1-one, a chalcone derivative nonlinear optical material has been synthesized by standard method. FT-IR and NMR spectral studies have been performed to confirm the molecular structure of the synthesized compound. The single crystals up to a dimension of 13 x 9 x 3 mm3 were grown by slow evaporation method. The grown crystals were transparent in the entire visible region and absorbs in the UV-region. The refractive index has been measured using a He-Ne laser. The grown crystals have been subjected to single crystal X-ray diffraction studies to determine the crystal structure and hence the cell parameters of the crystal. From this study it is found that this compound crystallizes in orthorhombic system with a space group P212121 and corresponding lattice parameters are, a = 7.3610(13) Å, b = 11.651(2) Å, c = 17.6490(17) Å. The Kurtz powder second harmonic generation test shows that the compound is a potential candidate for Photonic application. The micro hardness test on these crystals were carried out and the load dependence hardness was observed

  2. Shear mode properties of single crystal ferroelectrics

    NASA Astrophysics Data System (ADS)

    McLaughlin, E. A.; Robinson, H. C.

    2003-10-01

    Single crystal ferroelectrics or piezocrystals were recently introduced into the electroactive materials community. The 33-mode electromechanical coupling factor of piezocrystals is typically greater than 0.90, which is significantly larger than typical values for piezoelectric ceramics (0.62-0.74). For sonar projector applications this large k33 has been responsible for more than doubling the bandwidth of active sonar arrays over what is currently achievable with ceramics. Last year a crystal grower produced a cut of lead magnesium niobate-lead titanate (PMN-PT) single crystal with piezoelectric shear coefficient values of 7000 pm/V and shear coupling factors of 0.97. (For PZT5H, d15 is 730 pm/V.) This piezocrystal d15 coefficient implies significantly improved sensitivity and signal-to-noise ratio for accelerometers and hydrophones, while the high coupling promises bandwidth increases greater than those realized in 33-mode projectors using piezocrystals. This research studies the shear-mode behavior of PMN-PT piezocrystals for use in sensors and projectors. By measuring the response of the materials to high and low level electrical bias and excitation fields, frequency, and temperature, the materials' effective material properties as a function of these operational variables were determined. [Work sponsored by ONR and NUWC ILIR.

  3. Shock Compression of Ammonium Perchlorate Single Crystals

    NASA Astrophysics Data System (ADS)

    Gupta, Y. M.; Yuan, Gang; Feng, Ruqiang

    1997-07-01

    The shock response of ammonium perchlorate (AP) single crystals has been examined for uniaxial strain compression along the [210] and [001] directions. Quartz gauge and VISAR measurements have provided the wave profiles at the impact surface and after propagation through thin samples (1-3 mm thickness) for peak stresses ranging between 10 and 65 kbar. A two wave structure due to elastic-plastic deformation was observed for both orientations. The measured HEL values for the [210] and [001] orientations were about 4.3 and 3.5 kbar, respectively. Data for the two orientations reveal small stress relaxation effects and small differences due to crystal orientation effects. We have chosen to fit both sets of results with a simple elastic-perfectly plastic model used for isotropic materials. Reasonable agreement between the calculations and experimental results was obtained. Over the stress range examined to date, no evidence of chemical decomposition was observed for the time durations in our experiments.

  4. Single phase formation of Co-implanted ZnO thin films by swift heavy ion irradiation: Optical studies

    SciTech Connect

    Kumar, Ravi; Singh, Fouran; Angadi, Basavaraj; Choi, Ji-Won; Choi, Won-Kook; Jeong, Kwangho; Song, Jong-Han; Khan, M. Wasi; Srivastava, J. P.; Kumar, Ajay; Tandon, R. P.

    2006-12-01

    Low temperature photoluminescence and optical absorption studies on 200 MeV Ag{sup +15} ion irradiated Co-implanted ZnO thin films were studied. The Co clusters present in as implanted samples were observed to be dissolved using 200 MeV Ag{sup +15} ion irradiation with a fluence of 1x10{sup 12} ions/cm{sup 2}. The photoluminescence spectrum of pure ZnO thin film was characterized by the I{sub 4} peak due to the neutral donor bound excitons and the broad green emission. The Co-doped ZnO films show three sharp levels and two shoulders corresponding to 3t{sub 2g} and 2e{sub g} levels of crystal field splitted Co d orbitals, respectively. The ultraviolet-visible absorption spectroscopy also shows the systematic variation of band gap after 200 MeV Ag{sup +15} ion irradiation.

  5. Nonlinear excitation of polariton cavity modes in ZnO single nanocombs.

    PubMed

    Capeluto, M G; Grinblat, G; Tirado, M; Comedi, D; Bragas, A V

    2014-03-10

    Tunable second harmonic (SH) polaritons have been efficiently generated in ZnO nanocombs, when the material is excited close to half of the band-gap. The nonlinear signal couples to the nanocavity modes, and, as a result, Fabry-Pérot resonances with high Q factors of about 500 are detected. Due to the low effective volume of the confined modes, matter-light interaction is very much enhanced. This effect lowers the velocity of the SH polariton in the material by 50 times, and increases the SH confinement inside the nanocavity due to this higher refractive index. We also show that the SH phase-matching condition is achieved through LO-phonon mediation. Finally, birrefringence of the crystal produces a strong SH intensity dependence on the input polarization, with a high polarization contrast, which could be used as a mechanism for light switching in the nanoscale. PMID:24663874

  6. Oxygen binding by single crystals of hemoglobin.

    PubMed

    Rivetti, C; Mozzarelli, A; Rossi, G L; Henry, E R; Eaton, W A

    1993-03-23

    Reversible oxygen binding curves for single crystals of hemoglobin in the T quaternary structure have been measured using microspectrophotometry. Saturations were determined from complete visible spectra measured with light linearly polarized parallel to the a and c crystal axes. Striking differences were observed between the binding properties of hemoglobin in the crystal and those of hemoglobin in solution. Oxygen binding to the crystal is effectively noncooperative, the Bohr effect is absent, and there is no effect of chloride ion. Also, the oxygen affinity is lower than that of the T quaternary structure in solution. The absence of the Bohr effect supports Perutz's hypothesis on the key role of the salt bridges, which are known from X-ray crystallography to remain intact upon oxygenation. The low affinity and absence of the Bohr effect can be explained by a generalization of the MWC-PSK model (Monod, Wyman, & Changeux, 1965; Perutz, 1970; Szabo & Karplus, 1972) in which both high- and low-affinity tertiary conformations, with broken and unbroken salt bridges, respectively, are populated in the T quaternary structure. Because the alpha and beta hemes make different projections onto the two crystal axes, separate binding curves for the alpha and beta subunits could be calculated from the two measured binding curves. The approximately 5-fold difference between the oxygen affinities of the alpha and beta subunits is much smaller than that predicted from the crystallographic study of Dodson, Liddington, and co-workers, which suggested that oxygen binds only to the alpha hemes.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8457555

  7. Direct Shear of Olivine Single Crystals

    NASA Astrophysics Data System (ADS)

    Tielke, Jacob; Zimmerman, Mark; Kohlstedt, David

    2016-04-01

    Knowledge of the strength of individual dislocation slip systems in olivine is fundamental to understanding the flow behavior and the development of lattice-preferred orientation in olivine-rich rocks. The most direct measurements of the strengths of individual slip systems are from triaxial compression experiments on olivine single crystals. However, such experiments only allow for determination of flow laws for two of the four dominate slip systems in olivine. In order to measure the strengths of the (001)[100] and (100)[001] slip systems independently, we performed deformation experiments on single crystals of San Carlos olivine in a direct shear geometry. Experiments were carried out at temperatures of 1000° to 1300°C, a confining pressure of 300 MPa, shear stresses of 60 to 334 MPa, and resultant shear strain rates of 7.4 x 10‑6 to 6.7 x 10‑4 s‑1. At high-temperature (≥1200°C) and low-stress (≤200 MPa) conditions, the strain rate of crystals oriented for direct shear on either the (001)[100] or the (100)[001] slip system follows a power law relationship with stress, whereas at lower temperatures and higher stresses, strain rate depends exponentially on stress. The flow laws derived from the mechanical data in this study are consistent with a transition from the operation of a climb-controlled dislocation mechanism during power-law creep to the operation of a glide-controlled dislocation mechanism during exponential creep. In the climb-controlled regime, crystals oriented for shear on the (001)[100] slip system are weaker than crystals orientated for shear on the (100)[001] slip system. In contrast, in the glide-controlled regime the opposite is observed. Extrapolation of flow laws determined for crystals sheared in orientations favorable for slip on these two slip systems to upper mantle conditions reveals that the (001)[100] slip system is weaker at temperatures and stresses that are typical of the asthenospheric mantle, whereas the (100

  8. Chemical vapor deposition of graphene single crystals.

    PubMed

    Yan, Zheng; Peng, Zhiwei; Tour, James M

    2014-04-15

    As a two-dimensional (2D) sp(2)-bonded carbon allotrope, graphene has attracted enormous interest over the past decade due to its unique properties, such as ultrahigh electron mobility, uniform broadband optical absorption and high tensile strength. In the initial research, graphene was isolated from natural graphite, and limited to small sizes and low yields. Recently developed chemical vapor deposition (CVD) techniques have emerged as an important method for the scalable production of large-size and high-quality graphene for various applications. However, CVD-derived graphene is polycrystalline and demonstrates degraded properties induced by grain boundaries. Thus, the next critical step of graphene growth relies on the synthesis of large graphene single crystals. In this Account, we first discuss graphene grain boundaries and their influence on graphene's properties. Mechanical and electrical behaviors of CVD-derived polycrystalline graphene are greatly reduced when compared to that of exfoliated graphene. We then review four representative pathways of pretreating Cu substrates to make millimeter-sized monolayer graphene grains: electrochemical polishing and high-pressure annealing of Cu substrate, adding of additional Cu enclosures, melting and resolidfying Cu substrates, and oxygen-rich Cu substrates. Due to these pretreatments, the nucleation site density on Cu substrates is greatly reduced, resulting in hexagonal-shaped graphene grains that show increased grain domain size and comparable electrical properties as to exfoliated graphene. Also, the properties of graphene can be engineered by its shape, thickness and spatial structure. Thus, we further discuss recently developed methods of making graphene grains with special spatial structures, including snowflakes, six-lobed flowers, pyramids and hexagonal graphene onion rings. The fundamental growth mechanism and practical applications of these well-shaped graphene structures should be interesting topics and

  9. Ground-state zero-field splitting of Mn 2+ ions in ZnO and CdSe crystals

    NASA Astrophysics Data System (ADS)

    Kuang, Xiao-Yu

    1996-02-01

    ZnO and CdSe crystals have similar hexagonal wurtzite structures with a contraction along the c-axis of the crystal, but contrary electronic fine structures for ZnO:Mn 2+ ( D < 0) and CdSe:Mn 2+ ( D > 0) have been found in EPR experiments. We demonstrate that the ground-state splitting in ZnO:Mn 2+ is due to a trigonal ligand field, whereas the main physical mechanism of the splitting in CdSe:Mn 2+ can be attributed to the combined effect of a slight trigonal distortion and a covalence spin-orbit coupling interaction.

  10. Enhanced Dibutyl Phthalate Sensing Performance of a Quartz Crystal Microbalance Coated with Au-Decorated ZnO Porous Microspheres.

    PubMed

    Zhang, Kaihuan; Fan, Guokang; Hu, Ruifen; Li, Guang

    2015-01-01

    Noble metals addition on nanostructured metal oxides is an attractive way to enhance gas sensing properties. Herein, hierarchical zinc oxide (ZnO) porous microspheres decorated with cubic gold particles (Au particles) were synthesized using a facile hydrothermal method. The as-prepared Au-decorated ZnO was then utilized as the sensing film of a gas sensor based on a quartz crystal microbalance (QCM). This fabricated sensor was applied to detect dibutyl phthalate (DBP), which is a widely used plasticizer, and its coating load was optimized. When tested at room temperature, the sensor exhibited a high sensitivity of 38.10 Hz/ppb to DBP in a low concentration range from 2 ppb to 30 ppb and the calculated theoretical detection limit is below 1 ppb. It maintains good repeatability as well as long-term stability. Compared with the undecorated ZnO based QCM, the Au-decorated one achieved a 1.62-time enhancement in sensitivity to DBP, and the selectivity was also improved. According to the experimental results, Au-functionalized ZnO porous microspheres displayed superior sensing performance towards DBP, indicating its potential use in monitoring plasticizers in the gaseous state. Moreover, Au decoration of porous metal oxide nanostructures is proved to be an effective approach for enhancing the gas sensing properties and the corresponding mechanism was investigated. PMID:26343661

  11. Superior environment resistance of quartz crystal microbalance with anatase TiO2/ZnO nanorod composite films

    NASA Astrophysics Data System (ADS)

    Qiang, Wei; Wei, Li; Shaodan, Wang; Yu, Bai

    2015-08-01

    The precise measurement of quartz crystal microbalance (QCM) in the detection and weighing of organic gas molecules is achieved due to excellent superhydrophobicity of a deposited film composite. Photocatalysis is utilized as a method for the self-cleaning of organic molecules on the QCM for extended long-term stability in the precision of the instrument. In this paper, ZnO nanorod array is prepared via in situ methods on the QCM coated with Au film via hydrothermal process. Subsequently, a TiO2/ZnO composite film is synthesized by surface modification with TiO2 via sol-gel methods. Results show the anatase TiO2/ZnO nanorod composite film with a sharp, pencil-like structure exhibiting excellent superhydrophobicity (water contact angle of 155°), non-sticking water properties, and an autonomous cleaning property under UV irradiation. The anatase TiO2/ZnO nanorod composite film facilitates the precise measurement and extended lifetime of the QCM for the detection of organic gas molecules.

  12. Enhanced Dibutyl Phthalate Sensing Performance of a Quartz Crystal Microbalance Coated with Au-Decorated ZnO Porous Microspheres

    PubMed Central

    Zhang, Kaihuan; Fan, Guokang; Hu, Ruifen; Li, Guang

    2015-01-01

    Noble metals addition on nanostructured metal oxides is an attractive way to enhance gas sensing properties. Herein, hierarchical zinc oxide (ZnO) porous microspheres decorated with cubic gold particles (Au particles) were synthesized using a facile hydrothermal method. The as-prepared Au-decorated ZnO was then utilized as the sensing film of a gas sensor based on a quartz crystal microbalance (QCM). This fabricated sensor was applied to detect dibutyl phthalate (DBP), which is a widely used plasticizer, and its coating load was optimized. When tested at room temperature, the sensor exhibited a high sensitivity of 38.10 Hz/ppb to DBP in a low concentration range from 2 ppb to 30 ppb and the calculated theoretical detection limit is below 1 ppb. It maintains good repeatability as well as long-term stability. Compared with the undecorated ZnO based QCM, the Au-decorated one achieved a 1.62-time enhancement in sensitivity to DBP, and the selectivity was also improved. According to the experimental results, Au-functionalized ZnO porous microspheres displayed superior sensing performance towards DBP, indicating its potential use in monitoring plasticizers in the gaseous state. Moreover, Au decoration of porous metal oxide nanostructures is proved to be an effective approach for enhancing the gas sensing properties and the corresponding mechanism was investigated. PMID:26343661

  13. Growth rate study of canavalin single crystals

    NASA Technical Reports Server (NTRS)

    Demattei, R. C.; Feigelson, R. S.

    1989-01-01

    The dependence on supersaturation of the growth rate of single crystals of the protein canavalin is studied. In the supersaturation ranges studied, the rate-limiting step for growth is best described by a screw dislocation mechanism associated with interface attachment kinetics. Using a ln-ln plot, the growth-rate data is found to fit a predictive relationship of the form G = 0.012 x the supersaturation to the 6.66, which, together with the solubility curves, allows the growth rate to be estimated under a variety of conditions.

  14. Conduction mechanism of single-crystal alumina

    NASA Technical Reports Server (NTRS)

    Will, Fritz G.; Delorenzi, Horst G.; Janora, Kevin H.

    1992-01-01

    The fully guarded three-terminal technique was used to perform conductivity measurements on single-crystal alumina at temperatures of 400-1300 C. The conductivity was also determined as a function of time at various temperatures and applied fields. Further, the fractions of the current carried by Al and O ions (ionic transference numbers) were determined from long-term transference experiments in the temperature range 1100-1300 C. A mathematical model of the conduction mechanism is proposed, and model predictions are compared with experimental results.

  15. Redetermination of the crystal structure of β-zinc molybdate from single-crystal X-ray diffraction data.

    PubMed

    Mtioui-Sghaier, Olfa; Mendoza-Meroño, Rafael; Ktari, Lilia; Dammak, Mohamed; García-Granda, Santiago

    2015-07-01

    The crystal structure of the β-polymorph of ZnMoO4 was re-determined on the basis of single-crystal X-ray diffraction data. In comparison with previous powder X-ray diffraction studies [Katikaneani & Arunachalam (2005 ▸). Eur. J. Inorg. Chem. pp. 3080-3087; Cavalcante et al. (2013 ▸). Polyhedron, 54, 13-25], all atoms were refined with anisotropic displacement parameters, leading to a higher precision with respect to bond lengths and angles. β-ZnMoO4 adopts the wolframite structure type and is composed of distorted ZnO6 and MoO6 octa-hedra, both with point group symmetry 2. The distortion of the octa-hedra is reflected by variation of bond lengths and angles from 2.002 (3)-2.274 (4) Å, 80.63 (11)-108.8 (2)° for equatorial and 158.4 (2)- 162.81 (14)° for axial angles (ZnO6), and of 1.769 (3)-2.171 (3) Å, 73.39 (16)-104.7 (2), 150.8 (2)-164.89 (15)° (MoO6), respectively. In the crystal structure, the same type of MO6 octa-hedra share edges to built up zigzag chains extending parallel to [001]. The two types of chains are condensed by common vertices into a framework structure. The crystal structure can alternatively be described as derived from a distorted hexa-gonally closed packed arrangement of the O atoms, with Zn and Mo in half of the octa-hedral voids. PMID:26279891

  16. Redetermination of the crystal structure of β-zinc molybdate from single-crystal X-ray diffraction data

    PubMed Central

    Mtioui-Sghaier, Olfa; Mendoza-Meroño, Rafael; Ktari, Lilia; Dammak, Mohamed; García-Granda, Santiago

    2015-01-01

    The crystal structure of the β-polymorph of ZnMoO4 was re-determined on the basis of single-crystal X-ray diffraction data. In comparison with previous powder X-ray diffraction studies [Katikaneani & Arunachalam (2005 ▸). Eur. J. Inorg. Chem. pp. 3080–3087; Cavalcante et al. (2013 ▸). Polyhedron, 54, 13–25], all atoms were refined with anisotropic displacement parameters, leading to a higher precision with respect to bond lengths and angles. β-ZnMoO4 adopts the wolframite structure type and is composed of distorted ZnO6 and MoO6 octa­hedra, both with point group symmetry 2. The distortion of the octa­hedra is reflected by variation of bond lengths and angles from 2.002 (3)–2.274 (4) Å, 80.63 (11)–108.8 (2)° for equatorial and 158.4 (2)– 162.81 (14)° for axial angles (ZnO6), and of 1.769 (3)–2.171 (3) Å, 73.39 (16)–104.7 (2), 150.8 (2)–164.89 (15)° (MoO6), respectively. In the crystal structure, the same type of MO6 octa­hedra share edges to built up zigzag chains extending parallel to [001]. The two types of chains are condensed by common vertices into a framework structure. The crystal structure can alternatively be described as derived from a distorted hexa­gonally closed packed arrangement of the O atoms, with Zn and Mo in half of the octa­hedral voids. PMID:26279891

  17. Thermodynamic forces in single crystals with dislocations

    NASA Astrophysics Data System (ADS)

    Van Goethem, Nicolas

    2014-06-01

    A simple model for the evolution of macroscopic dislocation regions in a single crystal is presented. This model relies on maximal dissipation principle within Kröner's geometric description of the dislocated crystal. Mathematical methods and tools from shape optimization theory provide equilibrium relations at the dislocation front, similarly to previous work achieved on damage modelling (J Comput Phys 33(16):5010-5044, 2011). The deformation state variable is the incompatible strain as related to the dislocation density tensor by a relation involving the Ricci curvature of the crystal underlying elastic metric. The time evolution of the model variables follows from a novel interpretation of the Einstein-Hilbert flow in terms of dislocation microstructure energy. This flow is interpreted as the dissipation of non-conservative dislocations, due to the climb mechanism, modelled by an average effect of mesoscopic dislocations moving normal to their glide planes by adding or removing points defects. The model equations are a fourth-order tensor parabolic equation involving the operator "incompatibility," here appearing as a tensorial counterpart of the scalar Laplacian. This work encompasses and generalizes results previously announced (C R Acad Sci Paris Ser I 349:923-927, 2011), with in addition a series of physical interpretations to give a meaning to the newly introduced concepts.

  18. Fabrication of crystals from single metal atoms

    PubMed Central

    Barry, Nicolas P. E.; Pitto-Barry, Anaïs; Sanchez, Ana M.; Dove, Andrew P.; Procter, Richard J.; Soldevila-Barreda, Joan J.; Kirby, Nigel; Hands-Portman, Ian; Smith, Corinne J.; O’Reilly, Rachel K.; Beanland, Richard; Sadler, Peter J.

    2014-01-01

    Metal nanocrystals offer new concepts for the design of nanodevices with a range of potential applications. Currently the formation of metal nanocrystals cannot be controlled at the level of individual atoms. Here we describe a new general method for the fabrication of multi-heteroatom-doped graphitic matrices decorated with very small, ångström-sized, three-dimensional (3D)-metal crystals of defined size. We irradiate boron-rich precious-metal-encapsulated self-spreading polymer micelles with electrons and produce, in real time, a doped graphitic support on which individual osmium atoms hop and migrate to form 3D-nanocrystals, as small as 15 Å in diameter, within 1 h. Crystal growth can be observed, quantified and controlled in real time. We also synthesize the first examples of mixed ruthenium–osmium 3D-nanocrystals. This technology not only allows the production of ångström-sized homo- and hetero-crystals, but also provides new experimental insight into the dynamics of nanocrystals and pathways for their assembly from single atoms. PMID:24861089

  19. Cutting fluid study for single crystal silicon

    SciTech Connect

    Chargin, D.

    1998-05-05

    An empirical study was conducted to evaluate cutting fluids for Single Point Diamond Turning (SPDT) of single crystal silicon. The pH of distilled waster was adjusted with various additives the examine the effect of pH on cutting operations. Fluids which seemed to promote ductile cutting appeared to increase tool wear as well, an undesirable tradeoff. High Ph sodium hydroxide solutions showed promise for further research, as they yielded the best combination of reduced tool wear and good surface finish in the ductile regime. Negative rake tools were verified to improve the surface finish, but the negative rake tools used in the experiments also showed much higher wear than conventional 0{degree} rake tools. Effects of crystallographic orientation on SPDT, such as star patterns of fracture damage forming near the center of the samples, were observed to decrease with lower feedrates. Silicon chips were observed and photographed, indicative of a ductile materials removal process.

  20. Substrate Preparations in Epitaxial ZnO Film Growth

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, C.-H.; Lehoczky, S. L.; Harris, M. T.; Callahan, M. J.; George, M. A.

    2000-01-01

    Epitaxial ZnO films were grown on the two polar surfaces (O-face and Zn-face) of (0001) ZnO single crystal substrates using off-axis magnetron sputtering deposition. Annealing-temperature dependence of ZnO substrates was studied. ZnO films grown on sapphire substrates have also been investigated for comparison purposes and the annealing temperature of A1203 substrates is 1000 C. Substrates and films were characterized using photoluminescence (PL) spectrum, x-ray diffraction, atomic force microscope, energy dispersive spectrum, and electric transport measurements. It has been found that the ZnO film properties were different when films were grown on the two polarity surfaces of ZnO substrates and the A1203 substrates. An interesting result shows that high temperature annealing of ZnO single crystals will improve the surface structure on the O-face surface rather than the opposite surface. The measurements of homoepitaxial ZnO films indicate that the O-terminated surface is better for ZnO epitaxial film growth.

  1. Growth and surface topography of WSe2 single crystal

    NASA Astrophysics Data System (ADS)

    Dixit, Vijay; Vyas, Chirag; Pataniya, Pratik; Jani, Mihir; Pathak, Vishal; Patel, Abhishek; Pathak, V. M.; Patel, K. D.; Solanki, G. K.

    2016-05-01

    Tungsten Di-Selenide belongs to the family of TMDCs showing their potential applications in the fields of Optoelectronics and PEC solar cells. Here in the present investigation single crystals of WSe2 were grown by Direct Vapour Transport Technique in a dual zone furnace having temperature difference of 50 K between the two zones. These single crystals were characterized by EDAX which confirms the stiochiometry of the grown crystals. Surface topography of the crystal was studied by optical micrograph showing the left handed spirals on the surface of WSe2 crystals. Single crystalline nature of the crystals was confirmed by SAED.

  2. Oscillatory reactions on single crystal surfaces

    NASA Astrophysics Data System (ADS)

    Imbihl, R.

    1993-12-01

    Heterogeneous catalytic reactions exhibit under certain conditions kinetic oscillations which have been investigated both with polycrystalline materials and with single crystal surfaces as catalysts. The present paper reviews single-crystal experiments conducted under isothermal, low pressure conditions ( p < 10 -3 mbar). Two different reaction systems have been investigated: catalytic CO oxidation on various Pt and Pd orientations and catalytic NO reduction on Pt(100) using CO, H 2, or NH 3 as the reducing agent. The different reaction systems exhibit a wide variety of interesting phenomena which are well-known in nonlinear dynamics, for example, such as spatiotemporal pattern formation, the existence of Turing structures and the appearance of deterministic chaos, and chemical turbulence. The mechanistic steps leading to the observed phenomena have been investigated and appropriate mathematical models have been formulated and analyzed using bifurcation theory. The driving force for the rate oscillations has been shown to result from structural changes of the substrate in the case of catalytic CO oxidation on Pt surfaces, subsurface oxygen formation in the case of catalytic CO oxidation on Pd surfaces, and in the chemical reaction network described by a vacancy model in the case of the NO reduction reactions.

  3. Constitutive modeling for single crystal superalloys

    NASA Technical Reports Server (NTRS)

    Stouffer, D. C.; Jayaraman, N.; Sheh, M.; Alden, D.

    1986-01-01

    The inelastic response of single crystal gamma/gamma prime superalloys is quite different from the behavior of polycrystalline nickel base superalloys. Upto a critical temperature the yield stress of single crystal alloys is a function of the material orientation relative to the direction of the applied stress and the material exhibits significant tension/compression asymmetry. This behavior is primarily due to slip on the octahedral slip system. Above the critical temperature there is a sharp drop in the yield stress, cube slip becomes more predominant and the tension/compression asymmetry is reduced. Similar orientation and tension/compression asymmetry is observed in creep and secondary creep above the critical temperature is inferred to occur by octahedral slip. There are two exceptions to this behavior. First, loading near the (111) orientation exhibits cube slip at all temperatures, and; second, loading near the (001) orientation produces only octahedral slip at all temperatures. The constitutive model is based on separating the total global strain into elastic and inelastic components. This model is developed and briefly discussed.

  4. Elastic-plastic and phase transition of zinc oxide single crystal under shock compression

    SciTech Connect

    Liu, Xun; Mashimo, Tsutomu Li, Wei; Zhou, Xianming; Sekine, Toshimori

    2015-03-07

    The Hugoniot data for zinc oxide (ZnO) single crystals were measured up to 80 GPa along both the 〈112{sup ¯}0〉 (a-axis) and 〈0001〉 (c-axis) directions using a velocity interferometer system for any reflector and inclined-mirror method combined with a powder gun and two-stage light gas gun. The Hugoniot-elastic limits of ZnO were determined to be 10.5 and 11.5 GPa along the a- and c-axes, respectively. The wurtzite (B4) to rocksalt (B1) phase transition pressures along the a- and c-axes are 12.3 and 14.4 GPa, respectively. Shock velocity (U{sub s}) versus particle velocity (U{sub p}) relation of the final phase is given by the following relationship: U{sub s} (km/s) = 2.76 + 1.51U{sub p} (km/s). Based on the Debye-Grüneisen model and Birch-Murnaghan equation of state (EOS), we discuss the EOS of the B1 phase ZnO. The bulk modulus (K{sub 0}) and its pressure derivative (K{sub 0}′) are estimated to be K{sub 0} = 174 GPa and K{sub 0}′ = 3.9, respectively.

  5. Enhancement effects on excitonic photoluminescence intensity originating from misaligned crystal blocks and polycrystalline grains in a ZnO wafer

    NASA Astrophysics Data System (ADS)

    Takeuchi, Hideo

    2013-02-01

    We have systematically investigated a relation between excitonic photoluminescence intensity and crystal quality in a (0001)-oriented ZnO wafer. We visualize the crystal quality of a whole wafer using a circular polariscopic measurement and a reflection-type X-ray topograph measurement. The reflection-type X-ray topograph exhibits regions of grain-like patterns that result from internal strains. The circular polariscopic map shows that the internal strains induce local stresses. The θ-2 θ X-ray diffraction pattern indicates the presence of misaligned crystal blocks and polycrystalline grains. We have measured photoluminescence spectra and found that the presence of misaligned crystal blocks and polycrystalline grains leads to enhancement of the excitonic photoluminescence intensity. The present phenomenon is attributed to the suppression of exciton diffusion caused by the grain and domain boundaries that connect with the grain-like patterns in the X-ray topograph.

  6. Crystal synthesis and effects of epitaxial perovskite manganite underlayer conditions on characteristics of ZnO nanostructured heterostructures

    NASA Astrophysics Data System (ADS)

    Liang, Yuan-Chang; Hu, Chia-Yen; Zhong, Hua; Wang, Jyh-Liang

    2013-02-01

    This study presents the synthesis of high-density aligned wurtzite ZnO nanostructures using thermal evaporation on perovskite (La,Sr)MnO3(LSMO) epitaxy to form a heterostructure without the assistance of metallic catalysis. LSMO epitaxial films are RF-sputtered with various crystal qualities to examine the correlation between the interface and electrical characteristics of the heterostructures. The ZnO nanostructures-LSMO epitaxial heterostructures show electrical rectifying behavior without inserting an ultrathin insulating layer at the hetero-interface. Misfit strain, intrinsic strain, and crystal defects are major factors in causing a phase separation in the as-prepared manganite LSMO epitaxial films. The coexistence of a charge-ordered insulating domain and a ferromagnetic metallic domain causes inhomogeneous electrical contact at the ZnO-LSMO heterointerfaces, further deteriorating the junction characteristics. A high-temperature annealing procedure and moderate LSMO epitaxy film thickness are required for the construction of an efficient ZnO nanostructures-LSMO epitaxy junction.

  7. Can singly charged oxygen vacancies induce ferromagnetism in biaxial strained ZnO?

    NASA Astrophysics Data System (ADS)

    Gai, Yanqin; Jiang, Jiaping; Wu, Yuxi; Tang, Gang

    2016-04-01

    The electronic and magnetic properties of the singly charged oxygen vacancy ({{V}{{O}}}+) in undoped ZnO under biaxial strains are investigated by density functional theory calculations. A net magnetic moment (MM) of 0.561 μB is obtained for {{V}{{O}}}+ in ZnO under no strains, but the magnetic interaction between them is antiferromagnetic. The formation energy of V O and {{V}{{O}}}+, the MM induced by {{V}{{O}}}+, as well as the coupling type and strength between {{V}{{O}}}+{{s}} vary with the application of biaxial strains. Compressive strains can enhance the concentrations of V O and {{V}{{O}}}+, enlarge the MM, and strengthen the antiferromagnetic interactions between them at lower V O concentrations. However, at higher V O concentrations, the coupling varies from sizable antiferromagnetic to negligible weak ferromagnetic, and then becomes paramagnetic with the increase of compression. Antiferromagnetic results are further confirmed by the local density approximation with Hubbard U (LDA + U) calculations.

  8. Single-crystalline ZnO sheet Source-Gated Transistors

    PubMed Central

    Dahiya, A. S.; Opoku, C.; Sporea, R. A.; Sarvankumar, B.; Poulin-Vittrant, G.; Cayrel, F.; Camara, N.; Alquier, D.

    2016-01-01

    Due to their fabrication simplicity, fully compatible with low-cost large-area device assembly strategies, source-gated transistors (SGTs) have received significant research attention in the area of high-performance electronics over large area low-cost substrates. While usually based on either amorphous or polycrystalline silicon (α-Si and poly-Si, respectively) thin-film technologies, the present work demonstrate the assembly of SGTs based on single-crystalline ZnO sheet (ZS) with asymmetric ohmic drain and Schottky source contacts. Electrical transport studies of the fabricated devices show excellent field-effect transport behaviour with abrupt drain current saturation (IDSSAT) at low drain voltages well below 2 V, even at very large gate voltages. The performance of a ZS based SGT is compared with a similar device with ohmic source contacts. The ZS SGT is found to exhibit much higher intrinsic gain, comparable on/off ratio and low off currents in the sub-picoamp range. This approach of device assembly may form the technological basis for highly efficient low-power analog and digital electronics using ZnO and/or other semiconducting nanomaterial. PMID:26757945

  9. Spatially and angularly resolved cathodoluminescence study of single ZnO nanorods.

    PubMed

    Li, Chengyao; Gao, Min; Zhang, Xiaoxian; Peng, Lian-Mao; Chen, Qing

    2010-11-01

    Single ZnO nanorods were studied with cathodoluminescence at high spatial and angular resolution. A newly developed luminescence detector consisting a fiber probe controlled by a nano-manipulator is attached to a scanning electron microscope to carry out the cathodoluminescence measurements. Excitonic emission from the sidewalls and redshifted near band edge emission guided along the nanorod axis are observed as the fiber probe axis is aligned to be perpendicular and parallel to the nanorod axis, respectively, demonstrating the angular resolving power of the experimental setup and waveguiding behavior of the nanorods. High spatial resolution cathodoluminescence measurement shows that the near band edge emission can propagate parallel and perpendicular to the nanorod axis and an increased propagation distance results in more redshift of the guided luminescence. In addition, the high spatial resolution and temperature dependent cathodoluminescence measurements demonstrate the important role of free exciton-longitudinal optical phonon interaction in the waveguiding behavior and the propagation of the near band edge emission in ZnO nanorods. PMID:21137887

  10. Single-crystalline ZnO sheet Source-Gated Transistors.

    PubMed

    Dahiya, A S; Opoku, C; Sporea, R A; Sarvankumar, B; Poulin-Vittrant, G; Cayrel, F; Camara, N; Alquier, D

    2016-01-01

    Due to their fabrication simplicity, fully compatible with low-cost large-area device assembly strategies, source-gated transistors (SGTs) have received significant research attention in the area of high-performance electronics over large area low-cost substrates. While usually based on either amorphous or polycrystalline silicon (α-Si and poly-Si, respectively) thin-film technologies, the present work demonstrate the assembly of SGTs based on single-crystalline ZnO sheet (ZS) with asymmetric ohmic drain and Schottky source contacts. Electrical transport studies of the fabricated devices show excellent field-effect transport behaviour with abrupt drain current saturation (IDS(SAT)) at low drain voltages well below 2 V, even at very large gate voltages. The performance of a ZS based SGT is compared with a similar device with ohmic source contacts. The ZS SGT is found to exhibit much higher intrinsic gain, comparable on/off ratio and low off currents in the sub-picoamp range. This approach of device assembly may form the technological basis for highly efficient low-power analog and digital electronics using ZnO and/or other semiconducting nanomaterial. PMID:26757945

  11. Single-crystalline ZnO sheet Source-Gated Transistors

    NASA Astrophysics Data System (ADS)

    Dahiya, A. S.; Opoku, C.; Sporea, R. A.; Sarvankumar, B.; Poulin-Vittrant, G.; Cayrel, F.; Camara, N.; Alquier, D.

    2016-01-01

    Due to their fabrication simplicity, fully compatible with low-cost large-area device assembly strategies, source-gated transistors (SGTs) have received significant research attention in the area of high-performance electronics over large area low-cost substrates. While usually based on either amorphous or polycrystalline silicon (α-Si and poly-Si, respectively) thin-film technologies, the present work demonstrate the assembly of SGTs based on single-crystalline ZnO sheet (ZS) with asymmetric ohmic drain and Schottky source contacts. Electrical transport studies of the fabricated devices show excellent field-effect transport behaviour with abrupt drain current saturation (IDSSAT) at low drain voltages well below 2 V, even at very large gate voltages. The performance of a ZS based SGT is compared with a similar device with ohmic source contacts. The ZS SGT is found to exhibit much higher intrinsic gain, comparable on/off ratio and low off currents in the sub-picoamp range. This approach of device assembly may form the technological basis for highly efficient low-power analog and digital electronics using ZnO and/or other semiconducting nanomaterial.

  12. Growing single crystals in silica gel

    NASA Technical Reports Server (NTRS)

    Rubin, B.

    1970-01-01

    Two types of chemical reactions for crystal growing are discussed. The first is a metathetical reaction to produce calcium tartrate tetrahydrate crystals, the second is a decomplexation reaction to produce cuprous chloride crystals.

  13. Piezoelectric single crystals for ultrasonic transducers in biomedical applications.

    PubMed

    Zhou, Qifa; Lam, Kwok Ho; Zheng, Hairong; Qiu, Weibao; Shung, K Kirk

    2014-10-01

    Piezoelectric single crystals, which have excellent piezoelectric properties, have extensively been employed for various sensors and actuators applications. In this paper, the state-of-art in piezoelectric single crystals for ultrasonic transducer applications is reviewed. Firstly, the basic principles and design considerations of piezoelectric ultrasonic transducers will be addressed. Then, the popular piezoelectric single crystals used for ultrasonic transducer applications, including LiNbO3 (LN), PMN-PT and PIN-PMN-PT, will be introduced. After describing the preparation and performance of the single crystals, the recent development of both the single-element and array transducers fabricated using the single crystals will be presented. Finally, various biomedical applications including eye imaging, intravascular imaging, blood flow measurement, photoacoustic imaging, and microbeam applications of the single crystal transducers will be discussed. PMID:25386032

  14. Experimental dynamic metamorphism of mineral single crystals

    USGS Publications Warehouse

    Kirby, S.H.; Stern, L.A.

    1993-01-01

    This paper is a review of some of the rich and varied interactions between non-hydrostatic stress and phase transformations or mineral reactions, drawn mainly from results of experiments done on mineral single crystals in our laboratory or our co-authors. The state of stress and inelastic deformation can enter explicitly into the equilibrium phase relations and kinetics of mineral reactions. Alternatively, phase transformations can have prominent effects on theology and on the nature of inelastic deformation. Our examples represent five types of structural phase changes, each of which is distinguished by particular mechanical effects. In increasing structural complexity, these include: (1) displacive phase transformations involving no bond-breaking, which may produce anomalous brittle behavior. A primary example is the a-?? quartz transition which shows anomalously low fracture strength and tertiary creep behavior near the transition temperature; (2) martensitic-like transformations involving transformation strains dominated by shear deformation. Examples include the orthoenstatite ??? clinoenstatite and w u ??rtzite ??? sphalerite transformations; (3) coherent exsolution or precipitation of a mineral solute from a supersaturated solid-solution, with anisotropy of precipitation and creep rates produced under nonhydrostatic stress. Examples include exsolution of corundum from MgO ?? nAl2O3 spinels and Ca-clinopyroxene from orthopyroxene; (4) order-disorder transformations that are believed to cause anomalous plastic yield strengthening, such as MgO - nAl2O3 spinels; and (5) near-surface devolatilization of hydrous silicate single-crystals that produces a fundamental brittleness thought to be connected with dehydration at microcracks at temperatures well below nominal macroscopic dehydration temperatures. As none of these interactions between single-crystal phase transformations and non-hydrostatic stress is understood in detail, this paper serves as a challenge to

  15. Solar cell structure incorporating a novel single crystal silicon material

    DOEpatents

    Pankove, Jacques I.; Wu, Chung P.

    1983-01-01

    A novel hydrogen rich single crystal silicon material having a band gap energy greater than 1.1 eV can be fabricated by forming an amorphous region of graded crystallinity in a body of single crystalline silicon and thereafter contacting the region with atomic hydrogen followed by pulsed laser annealing at a sufficient power and for a sufficient duration to recrystallize the region into single crystal silicon without out-gassing the hydrogen. The new material can be used to fabricate semiconductor devices such as single crystal silicon solar cells with surface window regions having a greater band gap energy than that of single crystal silicon without hydrogen.

  16. Plasma enhanced multistate storage capability of single ZnO nanowire based memory

    SciTech Connect

    Lai, Yunfeng Xin, Pucong; Cheng, Shuying; Yu, Jinling; Zheng, Qiao

    2015-01-19

    Multiple-state storage (MSS) is common for resistive random access memory, but the effects of plasma treatment on the MSS and the switching properties have been scarcely investigated. We have demonstrated a stable four-state storage capability of single zinc oxide nanowire (ZnO NW) treated by argon plasma. The electrical switching is attributed to the electron trapping and detrapping from the oxygen vacancies (V{sub o}s). The MSS relates to the electrical-thermal induced distribution of the V{sub o}s which determines electron transport behavior to show different resistance states. Additionally, programming (set and reset) voltages decrease with plasma treatment due to the thickness modulation of the interface barrier.

  17. Submicron diameter single crystal sapphire optical fiber

    SciTech Connect

    Hill, Cary; Homa, Daniel; Liu, Bo; Yu, Zhihao; Wang, Anbo; Pickrell, Gary

    2014-10-02

    In this work, a submicron-diameter single crystal sapphire optical fiber was demonstrated via wet acid etching at elevated temperatures. Etch rates on the order 2.3 µm/hr were achievable with a 3:1 molar ratio sulfuric-phosphoric acid solution maintained at a temperature of 343°C. A sapphire fiber with an approximate diameter of 800 nm was successfully fabricated from a commercially available fiber with an original diameter of 50 µm. The simple and controllable etching technique provides a feasible approach to the fabrication of unique waveguide structures via traditional silica masking techniques. The ability to tailor the geometry of sapphire optical fibers is the first step in achieving optical and sensing performance on par with its fused silica counterpart.

  18. Single-crystal AlN nanonecklaces.

    PubMed

    Wang, Huatao; Xie, Zhipeng; Wang, Yiguang; Yang, Weiyou; Zeng, Qingfeng; Xing, Feng; An, Linan

    2009-01-14

    Distinct single-crystal aluminum nitride nanonecklaces with uniform [1011] faceted beads are synthesized via catalyst-assisted nitriding of Al. The detailed morphology and structure of the nanonecklaces have been characterized. The growth process has been investigated by comparing the products obtained at different synthesis times. The results reveal that the formation of the nanonecklaces is via a process consisting of facet formation and bead unification. The formation of the [1011] facets is due to the presence of a liquid phase that lowers the surface tension of otherwise high-energy [1011] planes. The bead unification is driven by minimizing the energy contributed by surface energy and electrostatic energy. The unique morphology of the nanonecklaces could be useful for studying fundamental physical phenomena and fabricating nanodevices. PMID:19417280

  19. Electrical switching in cadmium boracite single crystals

    NASA Technical Reports Server (NTRS)

    Takahashi, T.; Yamada, O.

    1981-01-01

    Cadmium boracite single crystals at high temperatures ( 300 C) were found to exhibit a reversible electric field-induced transition between a highly insulative and a conductive state. The switching threshold is smaller than a few volts for an electrode spacing of a few tenth of a millimeter corresponding to an electric field of 100 to 1000 V/cm. This is much smaller than the dielectric break-down field for an insulator such as boracite. The insulative state reappears after voltage removal. A pulse technique revealed two different types of switching. Unstable switching occurs when the pulse voltage slightly exceeds the switching threshold and is characterized by a pre-switching delay and also a residual current after voltage pulse removal. A stable type of switching occurs when the voltage becomes sufficiently high. Possible device applications of this switching phenomenon are discussed.

  20. Lattice effects in YVO 3 single crystal

    NASA Astrophysics Data System (ADS)

    Marquina, C.; Sikora, M.; Ibarra, M. R.; Nugroho, A. A.; Palstra, T. T. M.

    2005-04-01

    In this paper we report on the lattice effects in the Mott insulator yttrium orthovanadate (YVO3). Linear thermal expansion and magnetostriction experiments have been performed on a single crystal, in the temperature range from 5 K to room temperature. The YVO3 orders antiferromagnetically at TN=116 K and orbital ordering was reported to appear below TOO=196 K. A first-order structural phase transition takes place at TS=77 K, accompanied by changes in the antiferromagnetic type of ordering as well as in the orbital-ordering type. Our results reveal that the thermal expansion measurement technique is a very powerful tool in order to clearly detect the existence of the above-mentioned transitions. The magnetostriction results point to the stability of the low-temperature-magnetic ground state under such high applied magnetic field.

  1. Low-cobalt single crystal Rene 150

    NASA Technical Reports Server (NTRS)

    Scheuermann, C. M.

    1982-01-01

    The effects of cobalt content on a single crystal version of the advanced, high gamma prime content turbine airfoil alloy Rene 150 were investigated. Cobalt contents under investigation include 12 wt.% (composition level of Rene 150), 6 wt.%, and 0 wt.%. Preliminary test results are presented and compared with the properties of standard DS Rene 150. DTA results indicate that the liquidus goes through a maximum of about 1435 C near 6 wt.% Co. The solidus remains essentially constant at 1390 C with decreasing Co content. The gamma prime solvus appears to go through a minimum of about 1235 C near 6 wt.% Co content. Preliminary as-cast tensile and stress rupture results are presented along with heat treat schedules and future test plans.

  2. Hydrogen Annealing Of Single-Crystal Superalloys

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Schaeffer, John C.; Murphy, Wendy

    1995-01-01

    Annealing at temperature equal to or greater than 2,200 degrees F in atmosphere of hydrogen found to increase ability of single-crystal superalloys to resist oxidation when subsequently exposed to oxidizing atmospheres at temperatures almost as high. Supperalloys in question are principal constituents of hot-stage airfoils (blades) in aircraft and ground-based turbine engines; also used in other high-temperature applications like chemical-processing plants, coal-gasification plants, petrochemical refineries, and boilers. Hydrogen anneal provides resistance to oxidation without decreasing fatigue strength and without need for coating or reactive sulfur-gettering constituents. In comparison with coating, hydrogen annealing costs less. Benefits extend to stainless steels, nickel/chromium, and nickel-base alloys, subject to same scale-adhesion and oxidation-resistance considerations, except that scale is chromia instead of alumina.

  3. Single-crystal superalloy drives turbine advances

    SciTech Connect

    Harris, K.

    1995-04-01

    In searching for ways to improve power-to-weight ratios and fuel efficiency, gas turbine engine manufacturers invest heavily in the development and testing of new alloys. Their goal is to find turbine airfoil materials that can handle the higher operating temperatures, increased component stresses, and faster rotational speeds that are needed to increase turbine performance. Major turbine engine manufacturers find they can achieve these objectives through ultra-high performance, single-crystal superalloys -- a group of nickel-base materials that exhibit outstanding strength and surface stability at temperatures up to 85{percent} of their melting points. One such superalloy is CMSX-4, co-engineered by ingot maker Cannon-Muskegon and turbine engine manufacturers Rolls-Royce and Allison Engine Company. It is currently being used in such applications as Allison`s advanced airfoil programs.

  4. Submicron diameter single crystal sapphire optical fiber

    DOE PAGESBeta

    Hill, Cary; Homa, Daniel; Liu, Bo; Yu, Zhihao; Wang, Anbo; Pickrell, Gary

    2014-10-02

    In this work, a submicron-diameter single crystal sapphire optical fiber was demonstrated via wet acid etching at elevated temperatures. Etch rates on the order 2.3 µm/hr were achievable with a 3:1 molar ratio sulfuric-phosphoric acid solution maintained at a temperature of 343°C. A sapphire fiber with an approximate diameter of 800 nm was successfully fabricated from a commercially available fiber with an original diameter of 50 µm. The simple and controllable etching technique provides a feasible approach to the fabrication of unique waveguide structures via traditional silica masking techniques. The ability to tailor the geometry of sapphire optical fibers ismore » the first step in achieving optical and sensing performance on par with its fused silica counterpart.« less

  5. Method of Making Lightweight, Single Crystal Mirror

    NASA Technical Reports Server (NTRS)

    Bly, Vincent T. (Inventor)

    2015-01-01

    A method of making a mirror from a single crystal blank may include fine grinding top and bottom surfaces of the blank to be parallel. The blank may then be heat treated to near its melting temperature. An optical surface may be created on an optical side of the blank. A protector may be bonded to the optical surface. With the protector in place, the blank may be light weighted by grinding a non-optical surface of the blank using computer controlled grinding. The light weighting may include creating a structure having a substantially minimum mass necessary to maintain distortion of the mirror within a preset limit. A damaged layer of the non-optical surface caused by light weighting may be removed with an isotropic etch and/or repaired by heat treatment. If an oxide layer is present, the entire blank may then be etched using, for example, hydrofluoric acid. A reflecting coating may be deposited on the optical surface.

  6. Crystal growth of large size Dy3Al5O12 garnet single crystals

    NASA Astrophysics Data System (ADS)

    Kimura, Hideo; Sakamoto, Masaru; Numazawa, Takenori; Sato, Mitsunori; Maeda, Hiroshi

    1990-01-01

    Crystal growth conditions using the Czochralski technique were examined in order to be able to grow large-size disprosium-aluminum-garnet single crystals; these are useful as a working material in a practical magnetic refrigeration system. Using the best conditions, large-size bubble-free Dy3Al5O12 single crystals 50 mm in diameter were grown from a stoichiometric melt composition using a seed of Y3Al5O12 single crystal.

  7. Effect of ZnO nanofillers treated with triethoxy caprylylsilane on the isothermal and non-isothermal crystallization of poly(lactic acid).

    PubMed

    Bussiere, Pierre Olivier; Therias, Sandrine; Gardette, Jean-Luc; Murariu, Marius; Dubois, Philippe; Baba, Mohamed

    2012-09-21

    The crystallization of PLA-silane surface-treated ZnO nanocomposites was investigated by DSC and compared to that of neat PLA. Several modes of crystallization were considered: isothermal and non-isothermal cold crystallization and also isothermal and non-isothermal melt crystallization. The kinetics of cold crystallization were studied using different methods, namely the Avrami and Ozawa-Flynn-Wall models, to calculate activation energies and kinetic constants. In contrast to what is typically observed when the foreign particles are added in a polymer matrix, the silane surface-treated ZnO delayed the crystallization of PLA and made it more difficult to start. The nucleation activity of the ZnO nanoparticles, ϕ, was calculated and found to be greater than 1 (ϕ = 1.7). This indicated that ZnO played an anti-nucleating role in the crystallization of PLA nanocomposites. This effect has been linked mainly to the interactions between the silane groups onto the surface of nanoparticles and PLA macromolecules. These interactions which reduce the mobility of polymer chains have been evidenced by rheological experiments. PMID:22858912

  8. A simple low-cost single-crystal NMR setup

    NASA Astrophysics Data System (ADS)

    Vinding, Mads S.; Kessler, Tommy O.; Vosegaard, Thomas

    2016-08-01

    A low-cost single-crystal NMR kit is presented along with a web-based post-processing software. The kit consists of a piezo-crystal motor and a goniometer for the crystal, both embedded in a standard wide-bore NMR probe with a 3D printed scaffold. The NMR pulse program controls the angle setting automatically, and the post-processing software incorporates a range of orientation-angle discrepancies present in the kit and other single-crystal setups. Results with a NaNO3 single-crystal show a high degree of reproducibility and excellent agreement with previous findings for the anisotropic quadrupolar interaction.

  9. Piezoelectric single crystals for ultrasonic transducers in biomedical applications

    PubMed Central

    Zhou, Qifa; Lam, Kwok Ho; Zheng, Hairong; Qiu, Weibao; Shung, K. Kirk

    2014-01-01

    Piezoelectric single crystals, which have excellent piezoelectric properties, have extensively been employed for various sensors and actuators applications. In this paper, the state–of–art in piezoelectric single crystals for ultrasonic transducer applications is reviewed. Firstly, the basic principles and design considerations of piezoelectric ultrasonic transducers will be addressed. Then, the popular piezoelectric single crystals used for ultrasonic transducer applications, including LiNbO3 (LN), PMN–PT and PIN–PMN–PT, will be introduced. After describing the preparation and performance of the single crystals, the recent development of both the single–element and array transducers fabricated using the single crystals will be presented. Finally, various biomedical applications including eye imaging, intravascular imaging, blood flow measurement, photoacoustic imaging, and microbeam applications of the single crystal transducers will be discussed. PMID:25386032

  10. Effect of Thermal Annealing on the Characteristics of Phosphorus-Implanted ZnO Crystals

    NASA Astrophysics Data System (ADS)

    Jeong, T. S.; Yu, J. H.; Mo, H. S.; Kim, T. S.; Lim, K. Y.; Youn, C. J.; Hong, K. J.; Kim, H. S.

    2014-07-01

    A P-doped ZnO surface layer on undoped ZnO wafers was prepared by phosphorus (P) ion implantation. Hall effect measurement revealed p-type conduction in such layers annealed at 800°C. This indicates that acceptor levels are present in P-doped ZnO, even though the ZnO is still n-type. Micro-Raman scattering in - z( xy) z geometry was conducted on P-implanted ZnO. The E {2/high} mode shift observed toward the high-energy region was related to compressive stress as a result of P-ion implantation. This compressive stress led to the appearance of an A 1(LO) peak, which is an inactive mode. This A 1(LO) peak relaxed during thermal annealing in ambient oxygen at temperatures higher than 700°C. The P2p3/2 peak observed at 135.6 eV by x-ray photoelectron spectroscopy is associated with chemical bond formation leading to 2(P2O5) molecules. This indicates that implanted P ions substituted Zn sites in the ZnO layer. In photoluminescence spectroscopy, the P-related peaks observed at energies ranging between 3.1 and 3.5 eV originated from (A0, X) emission, because of PZn-2VZn complexes acting as shallow acceptors. The acceptor level was observed to be 126.9 meV above the valence band edge. Observation of this P-related emission indicates that ion implantation results in acceptor levels in the P-doped ZnO layer. This suggests that the P2O5 bonds are responsible for the p-type activity of P-implanted ZnO.

  11. Ultratough CVD single crystal diamond and three dimensional growth thereof

    DOEpatents

    Hemley, Russell J.; Mao, Ho-kwang; Yan, Chih-shiue

    2009-09-29

    The invention relates to a single-crystal diamond grown by microwave plasma chemical vapor deposition that has a toughness of at least about 30 MPa m.sup.1/2. The invention also relates to a method of producing a single-crystal diamond with a toughness of at least about 30 MPa m.sup.1/2. The invention further relates to a process for producing a single crystal CVD diamond in three dimensions on a single crystal diamond substrate.

  12. Adopting Novel Strategies in Achieving High-Performance Single-Layer Network Structured ZnO Nanorods Thin Film Transistors.

    PubMed

    Park, Ji-Hyeon; Park, Jee Ho; Biswas, Pranab; Kwon, Do Kyun; Han, Sun Woong; Baik, Hong Koo; Myoung, Jae-Min

    2016-05-11

    High-performance, solution-processed transparent and flexible zinc oxide (ZnO) nanorods (NRs)-based single layer network structured thin film transistors (TFTs) were developed on polyethylene terephthalate (PET) substrate at 100 °C. Keeping the process-temperature under 100 °C, we have improved the device performance by introducing three low temperature-based techniques; regrowing ZnO to fill the void spaces in a single layer network of ZnO NRs, passivating the back channel with polymer, and adopting ZrO2 as the high-k dielectric. Notably, high-k amorphous ZrO2 was synthesized and deposited using a novel method at an unprecedented temperature of 100 °C. Using these methods, the TFTs exhibited a high mobility of 1.77 cm(2)/V·s. An insignificant reduction of 2.18% in mobility value after 3000 cycles of dynamic bending at a radius of curvature of 20 mm indicated the robust mechanical nature of the flexible ZnO NRs SLNS TFTs. PMID:27096706

  13. Multifunctional Charge-Transfer Single Crystals through Supramolecular Assembly.

    PubMed

    Xu, Beibei; Luo, Zhipu; Wilson, Andrew J; Chen, Ke; Gao, Wenxiu; Yuan, Guoliang; Chopra, Harsh Deep; Chen, Xing; Willets, Katherine A; Dauter, Zbigniew; Ren, Shenqiang

    2016-07-01

    Centimeter-sized segregated stacking TTF-C60 single crystals are crystallized by a mass-transport approach combined with solvent-vapor evaporation for the first time. The intermolecular charge-transfer interaction in the long-range ordered superstructure enables the crystals to demonstrate external stimuli-controlled multifunctionalities and angle/electrical-potential-dependent luminescence. PMID:27146726

  14. Large single domain 123 material produced by seeding with single crystal rare earth barium copper oxide single crystals

    DOEpatents

    Todt, Volker; Miller, Dean J.; Shi, Donglu; Sengupta, Suvankar

    1998-01-01

    A method of fabricating bulk YBa.sub.2 Cu.sub.3 O.sub.x where compressed powder oxides and/or carbonates of Y and Ba and Cu present in mole ratios to form YBa.sub.2 Cu.sub.3 O.sub.x are heated in the presence of a Nd.sub.1+x Ba.sub.2-x Cu.sub.3 O.sub.y seed crystal to a temperature sufficient to form a liquid phase in the YBa.sub.2 Cu.sub.3 O.sub.x while maintaining the seed crystal solid. The materials are slowly cooled to provide a YBa.sub.2 Cu.sub.3 O.sub.x material having a predetermined number of domains between 1 and 5. Crack-free single domain materials can be formed using either plate shaped seed crystals or cube shaped seed crystals with a pedestal of preferential orientation material.

  15. Growth of Homoepitaxial ZnO Semiconducting Films

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, Ching-Hua; Lehoczky, S. L.; Harris, M. T.; George, Michael A.; McCarty, P.

    1999-01-01

    As a high temperature semiconductor, ZnO has been used for many applications such as wave-guide, solar cells, and surface acoustic wave devices. Since the ZnO material has an energy gap of 3.3 eV at room temperature and an excitonic binding energy (60 meV) that is possible to make excitonic lasering at room temperature a recent surge of interest is to synthesize ZnO films for electro-optical devices. These applications require films with a smooth surface, good crystal quality, and low defect density. Homoepitaxial films have been studied in terms of morphology, crystal structure, and electrical and optical properties. ZnO single crystals are grown by the hydrothermal method. Substrates are mechanically polished and annealed in air for four hours before deposited films. The annealing temperature-dependence of ZnO substrates is studied. Films are synthesized by the off-axis reactive sputtering deposition. The films have very smooth surface with a roughness crystal substrate. The film quality is determined by measuring the film resistivity, the Hall mobility, carrier densities and the energy band gap. The properties of ZnO films grown of (0001) ZnO and (0001) sapphire substrates will be also compared and discussed in the presentation.

  16. Microstructure and superconductivity of MgB2 single crystals

    SciTech Connect

    Kim, Kijoon H.P.; Jung, C.U.; Kang, B.W.; Kim, Kyung Hee; Lee, Hyun-Sook; Lee, Sung-Ik; Tamura, N.; Caldwell, W.A.; Patel, J.R.

    2004-07-19

    The hexagonal-disc-shaped MgB2 single crystals were synthesized under the high-pressure conditions. The crystal symmetry, lattice constants as well as the Laue pattern of these single crystals were obtained from X-ray micro-diffraction. A crystallographic mapping showed that the edge and the c-axis of hexagonal-disc shape exactly matched the [1 0 1 bar 0] and [0 0 0 1] directions of the MgB2 phase. This clearly confirmed that above well-shaped single crystals could be excellent samples to study the unsolved direction dependencies of the physical properties.

  17. Advanced single crystal for SSME turbopumps

    NASA Technical Reports Server (NTRS)

    Fritzemeier, L. G.

    1989-01-01

    The objective of this program was to evaluate the influence of high thermal gradient casting, hot isostatic pressing (HIP) and alternate heat treatments on the microstructure and mechanical properties of a single crystal nickel base superalloy. The alloy chosen for the study was PWA 1480, a well characterized, commercial alloy which had previously been chosen as a candidate for the Space Shuttle Main Engine high pressure turbopump turbine blades. Microstructural characterization evaluated the influence of casting thermal gradient on dendrite arm spacing, casting porosity distribution and alloy homogeneity. Hot isostatic pressing was evaluated as a means of eliminating porosity as a preferred fatigue crack initiation site. The alternate heat treatment was chosen to improve hydrogen environment embrittlement resistance and for potential fatigue life improvement. Mechanical property evaluation was aimed primarily at determining improvements in low cycle and high cycle fatigue life due to the advanced processing methods. Statistically significant numbers of tests were conducted to quantitatively demonstrate life differences. High thermal gradient casting improves as-cast homogeneity, which facilitates solution heat treatment of PWA 1480 and provides a decrease in internal pore size, leading to increases in low cycle and high cycle fatigue lives.

  18. Double bragg reflections in single crystals and textured polycrystals

    NASA Astrophysics Data System (ADS)

    Skrytnyy, V. I.; Yaltsev, V. N.

    2016-04-01

    Analysis of the detection of the double Bragg reflections (DBR) in single crystals and polycrystals is carried out. Technique of the detection of the double Bragg reflection in single crystals and textured polycrystalline samples using X-ray synchrotron radiation is proposed.

  19. A Quick Method for Determining the Density of Single Crystals.

    ERIC Educational Resources Information Center

    Roman, Pascual; Gutierrez-Zorrilla, Juan M.

    1985-01-01

    Shows how the Archimedes method is used to determine the density of a single crystal of ammonium oxalate monohydrate. Also shows how to calculate the density of other chemicals when they are available as single crystals. Experimental procedures and materials needed are included. (JN)

  20. Crucibleless crystal growth and Radioluminescence study of calcium tungstate single crystal fiber

    NASA Astrophysics Data System (ADS)

    Silva, M. S.; Jesus, L. M.; Barbosa, L. B.; Ardila, D. R.; Andreeta, J. P.; Silva, R. S.

    2014-11-01

    In this article, single phase and high optical quality scheelite calcium tungstate single crystal fibers were grown by using the crucibleless laser heated pedestal growth technique. The as-synthesized calcium tungstate powders used for shaping seed and feed rods were investigated by X-ray diffraction technique. As-grown crystals were studied by Raman spectroscopy and Radioluminescence measurements. The results indicate that in both two cases, calcined powder and single crystal fiber, only the expected scheelite CaWO4 phase was observed. It was verified large homogeneity in the crystal composition, without the presence of secondary phases. The Radioluminescence spectra of the as-grown single crystal fibers are in agreement with that present in Literature for bulk single crystals, presented a single emission band centered at 420 nm when irradiated with β-rays.

  1. Thermally induced single crystal to single crystal transformation leading to polymorphism

    NASA Astrophysics Data System (ADS)

    Saha, Rajat; Biswas, Susobhan; Dey, Sanjoy Kumar; Sen, Arijit; Roy, Madhusudan; Steele, Ian M.; Dey, Kamalendu; Ghosh, Ashutosh; Kumar, Sanjay

    2014-09-01

    The robust complex [La(1,10-phen)2(NO3)3] (1,10-phen = 1,10-phenanthroline) exhibits thermally induced single crystal to single crystal transformation from one polymorphic phase to another. The complex crystallizes in monoclinic C2/c space group with C2 molecular symmetry at 293 K while at 100 K it shows P21/c space group with C1 molecular symmetry. Supramolecular investigation shows that at 100 K the complex forms 2D achiral sheets whereas at 293 K forms two different homochiral 2D sheets. Low temperature DSC analysis indicates that this structural transformation occurs at 246 K and also this transformation is reversible in nature. We have shown that thermally induced coherent movement of ligands changes the molecular symmetry of the complex and leads to polymorphism. Photoluminescence property of complex has been studied in both solid state and in methanolic solution at room temperature. The effect of the presence low-lying LUMO orbital of π-character in the complex is elucidated by theoretical calculation using DFT method.

  2. Characterization of planar pn heterojunction diodes constructed with Cu2O nanoparticle films and single ZnO nanowires.

    PubMed

    Kwak, Kiyeol; Cho, Kyoungah; Kim, Sangsig

    2013-05-01

    In this study, we fabricate planar pn heterojunction diodes composed of Cu2O nanoparticle (NP) films and single ZnO nanowires (NWs) on SiO2 (300 nm)/Si substrates and investigate their characteristics in the dark and under the illumination of white light and 325 nm wavelength light. The diode at bias voltages of +/- 1 V shows rectification ratios of 10 (in the dark) and 34 (under the illumination of white light). On the other hand, the diode exposed to the 325 nm wavelength light exhibits Ohmic characteristics which are associated with efficient photocurrent generation in both the Cu2O NP film and the single ZnO NW. PMID:23858873

  3. Reshock and release response of aluminum single crystal

    NASA Astrophysics Data System (ADS)

    Huang, H.; Asay, J. R.

    2007-03-01

    Reshock and release experiments were performed on single crystal aluminum along three orientations and on polycrystalline 1050 aluminum with 50μm grain size at shock stresses of 13 and 21GPa to investigate the mechanisms for previously observed quasielastic recompression behavior. Particle velocity profiles obtained during reshocking both single crystals and polycrystalline aluminum from initial shock stresses of 13-21GPa show similar quasielastic recompression behavior. Quasielastic release response is also observed in all single crystals, but the magnitude of the effect is crystal orientation dependent, with [111] and [110] exhibiting more ideal elastic-plastic release for unloading from the shocked state than for the [100] orientation and polycrystalline aluminum. The quasielastic response of 1050 aluminum is intermediate to that of the [100] and [111] orientations. Comparison of the wave profiles obtained for both unloading and reloading of single crystals and polycrystalline 1050 aluminum from shocked states suggests that the observed quasielastic response of polycrystalline aluminum results from the averaging response of single crystals for shock propagation along different orientations, and that the response of 1050 aluminum with large grain boundaries is not significantly different from the results obtained on single crystal aluminum. The yield strength of the single crystals and 1050 aluminum is found to increase with shock stress, which is consistent with previous results [H. Huang and I. R. Asay, J. Appl. Phys. 98, 033524 (2005)].

  4. Evolution of crystal structure during the initial stages of ZnO atomic layer deposition

    DOE PAGESBeta

    Boichot, R.; Tian, L.; Richard, M. -I.; Crisci, A.; Chaker, A.; Cantelli, V.; Coindeau, S.; Lay, S.; Ouled, T.; Guichet, C.; et al

    2016-01-05

    In this study, a complementary suite of in situ synchrotron X-ray techniques is used to investigate both structural and chemical evolution during ZnO growth by atomic layer deposition. Focusing on the first 10 cycles of growth, we observe that the structure formed during the coalescence stage largely determines the overall microstructure of the film. Furthermore, by comparing ZnO growth on silicon with a native oxide with that on Al2O3(001), we find that even with lattice-mismatched substrates and low deposition temperatures, the crystalline texture of the films depend strongly on the nature of the interfacial bonds.

  5. Ferroelectric polarization reversal in single crystals

    NASA Technical Reports Server (NTRS)

    Stadler, Henry L.

    1992-01-01

    Research on the reversal of polarization in ferroelectric crystals is reviewed. Particular attention is given to observation methods for polarization reversal, BaTiO3 polarization reversal, crystal thickness dependence of polarization reversal, and domain wall movement during polarization reversal in TGS.

  6. Study of single crystals of metal solid solutions

    NASA Technical Reports Server (NTRS)

    Doty, J. P.; Reising, J. A.

    1973-01-01

    The growth of single crystals of relatively high melting point metals such as silver, copper, gold, and their alloys was investigated. The purpose was to develop background information necessary to support a space flight experiment and to generate ground based data for comparison. The ground based data, when compared to the data from space grown crystals, are intended to identify any effects which zero-gravity might have on the basic process of single crystal growth of these metals. The ultimate purposes of the complete investigation are to: (1) determine specific metals and alloys to be investigated; (2) grow single metal crystals in a terrestrial laboratory; (3) determine crystal characteristics, properties, and growth parameters that will be effected by zero-gravity; (4) evaluate terrestrially grown crystals; (5) grow single metal crystals in a space laboratory such as Skylab; (6) evaluate the space grown crystals; (7) compare for zero-gravity effects of crystal characteristics, properties, and parameters; and (8) make a recommendation as to production of these crystals as a routine space manufacturing proceses.

  7. Structural homogeneity of photorefractive LiNbO3 crystals doped with 0.03-4.5 mol % of ZnO

    NASA Astrophysics Data System (ADS)

    Sidorov, N. V.; Palatnikov, M. N.; Teplyakova, N. A.; Gabain, A. A.; Efremov, I. N.

    2016-04-01

    Using the electronic spectroscopy method, the laser-conoscopy method, and the Raman light-scattering method, we have studied the structural homogeneity of LiNbO3 crystals doped with 0.03-4.5 mol % of ZnO. We have found that, as the laser radiation power is increased to 90 mW, the conoscopic patterns of crystals show additional distortions, which are attributed to the manifestation of the photorefractive effect. For the LiNbO3 crystal doped with 4.5 mol % of ZnO, in which the photorefractive effect is low, we have revealed a considerable shift (compared to the remaining crystals) of the optical absorption edge toward the shortwavelength range, which indicates a high structural homogeneity of this crystal. We have shown that, in the LiNbO3 crystal doped by 0.05 mol % ZnO, due to the displacement of NbLi and Li□ structural defects by Zn2+ cations, the crystal structure is ordered and, simultaneously, the number of defects with localized electrons decreases.

  8. Physical properties of superconducting single crystal iron sulfide

    NASA Astrophysics Data System (ADS)

    Rodriguez, Efrain E.; Borg, Christopher K. H.; Zhou, Xiuquan; Paglione, Johnpierre; University of Maryland Collaboration

    Recently, the simple binary tetragonal iron sulfide, FeS, was found to be a superconductor with a Tc = 5 K. We have prepared single crystals of tetragonal iron sulfide through hydrothermal de-intercalation of KxFe2-yS2. The KxFe2-yS2 single crystal precursors were grown by slow cooling of stoichiometric melts of K, Fe and S. The silver, plate-like FeS single crystals were highly crystalline with a superconducting transition temperature (Tc) of 4 K. The high quality of the FeS crystals revealed highly anisotropic nature of the magnetic and electronic properties intrinsic to FeS. The physical properties and thermal stability of single crystal FeS will be discussed in detail.

  9. Energy scavenging based on a single-crystal PMN-PT nanobelt

    NASA Astrophysics Data System (ADS)

    Wu, Fan; Cai, Wei; Yeh, Yao-Wen; Xu, Shiyou; Yao, Nan

    2016-03-01

    Self-powered nanodevices scavenging mechanical energy require piezoelectric nanostructures with high piezoelectric coefficients. Here we report the fabrication of a single-crystal (1 - x)Pb(Mg1/3Nb2/3)O3 - xPbTiO3 (PMN-PT) nanobelt with a superior piezoelectric constant (d33 = ~550 pm/V), which is approximately ~150%, 430%, and 2100% of the largest reported values for previous PMN-PT, PZT and ZnO nanostructures, respectively. The high d33 of the single-crystalline PMN-PT nanobelt results from the precise orientation control during its fabrication. As a demonstration of its application in energy scavenging, a piezoelectric nanogenerator (PNG) is built on the single PMN-PT nanobelt, generating a maximum output voltage of ~1.2 V. This value is ~4 times higher than that of a single-CdTe PNG, ~13 times higher than that of a single-ZnSnO3 PNG, and ~26 times higher than that of a single-ZnO PNG. The profoundly increased output voltage of a lateral PNG built on a single PMN-PT nanobelt demonstrates the potential application of PMN-PT nanostructures in energy harvesting, thus enriching the material choices for PNGs.

  10. Energy scavenging based on a single-crystal PMN-PT nanobelt.

    PubMed

    Wu, Fan; Cai, Wei; Yeh, Yao-Wen; Xu, Shiyou; Yao, Nan

    2016-01-01

    Self-powered nanodevices scavenging mechanical energy require piezoelectric nanostructures with high piezoelectric coefficients. Here we report the fabrication of a single-crystal (1 - x)Pb(Mg1/3Nb2/3)O3 - xPbTiO3 (PMN-PT) nanobelt with a superior piezoelectric constant (d33 = ~550 pm/V), which is approximately ~150%, 430%, and 2100% of the largest reported values for previous PMN-PT, PZT and ZnO nanostructures, respectively. The high d33 of the single-crystalline PMN-PT nanobelt results from the precise orientation control during its fabrication. As a demonstration of its application in energy scavenging, a piezoelectric nanogenerator (PNG) is built on the single PMN-PT nanobelt, generating a maximum output voltage of ~1.2 V. This value is ~4 times higher than that of a single-CdTe PNG, ~13 times higher than that of a single-ZnSnO3 PNG, and ~26 times higher than that of a single-ZnO PNG. The profoundly increased output voltage of a lateral PNG built on a single PMN-PT nanobelt demonstrates the potential application of PMN-PT nanostructures in energy harvesting, thus enriching the material choices for PNGs. PMID:26928788