These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Determination of Na acceptor level in Na+ ion-implanted ZnO single crystal  

NASA Astrophysics Data System (ADS)

Ion implantation was used to dope Na acceptor into ZnO single crystals. With three mixed implantation energies, uniform depth distribution of Na ion in the surface region (~300 nm) of ZnO bulk crystals is achieved. Via post-implantation annealing, a donor-acceptor pair recombination band is identified in the low-temperature photoluminescence spectra, from which the energy level of Na-related acceptor in single crystalline ZnO is estimated to be 300 meV. A p-n junction based on this ZnO-Na layer shows rectifying characteristics, confirming the p-type conductivity.

Wang, Zheng; Liu, Huibin; He, Haiping; Huang, Jingyun; Chen, Lingxiang; Ye, Zhizhen

2015-03-01

2

Encapsulation of nanoparticles into single-crystal ZnO nanorods and microrods  

PubMed Central

Summary One-dimensional single crystal incorporating functional nanoparticles of other materials could be an interesting platform for various applications. We studied the encapsulation of nanoparticles into single-crystal ZnO nanorods by exploiting the crystal growth of ZnO in aqueous solution. Two types of nanodiamonds with mean diameters of 10 nm and 40 nm, respectively, and polymer nanobeads with size of 200 nm have been used to study the encapsulation process. It was found that by regrowing these ZnO nanorods with nanoparticles attached to their surfaces, a full encapsulation of nanoparticles into nanorods can be achieved. We demonstrate that our low-temperature aqueous solution growth of ZnO nanorods do not affect or cause degradation of the nanoparticles of either inorganic or organic materials. This new growth method opens the way to a plethora of applications combining the properties of single crystal host and encapsulated nanoparticles. We perform micro-photoluminescence measurement on a single ZnO nanorod containing luminescent nanodiamonds and the spectrum has a different shape from that of naked nanodiamonds, revealing the cavity effect of ZnO nanorod. PMID:24778975

Notarianni, Marco; Rintoul, Llew; Motta, Nunzio

2014-01-01

3

X-ray Characterisation of Zinc Oxide (ZnO) Single Crystal Substrates  

SciTech Connect

Single crystal substrates of low defect density are paramount for fully realizing the numerous applications of zinc oxide (ZnO) wide bandgap semiconductors. While ZnO substrates are commercially available from various vendors, very little information is available on the structural properties of these substrates. Therefore, an extensive evaluation of available substrates would serve as a basis for the development of ZnO based devices and technologies. In this study, bulk ZnO single crystal substrates grown by different growth techniques have been characterised using synchrotron white beam X-ray topography and high resolution X-ray diffraction. The substrates exhibit a wide range of dislocation densities from as high as 10{sup 6} cm{sup -2} down to less than 1000 cm{sup -2} depending on the growth technique employed. The authors evaluation reveals that ZnO crystals grown by the hydrothermal technique possess the best structural quality with dislocation densities of 800-1000 cm{sup -2} and rocking curves with a full width half maximum of less than 12 arc seconds.

Dhanaraj, G.; Raghothamachar, B; Dudley, M

2010-01-01

4

Morphological and structural characterization of single-crystal ZnO nanorod arrays on flexible and non-flexible substrates  

PubMed Central

Summary We report a facile synthesis of zinc oxide (ZnO) nanorod arrays using an optimized, chemical bath deposition method on glass, PET and Si substrates. The morphological and structural properties of the ZnO nanorod arrays were investigated using various techniques such as field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) measurements, which revealed the formation of dense ZnO nanorods with a single crystal, hexagonal wurtzite structure. The aspect ratio of the single-crystal ZnO nanorods and the growth rate along the (002) direction was found to be sensitive to the substrate type. The lattice constants and the crystallite size of the fabricated ZnO nanorods were calculated based on the XRD data. The obtained results revealed that the increase in the crystallite size is strongly associated with the growth conditions with a minor dependence on the type of substrate. The Raman spectroscopy measurements confirmed the existence of a compressive stress in the fabricated ZnO nanorods. The obtained results illustrated that the growth of high quality, single-crystal ZnO nanorods can be realized by adjusting the synthesis conditions. PMID:25821712

Farhat, Omar F; Halim, Mohd M; Abdullah, Mat J; Ali, Mohammed K M

2015-01-01

5

Impedance analysis of secondary phases in a Co-implanted ZnO single crystal.  

PubMed

Co ions with 100 keV energy with a fluence of 1 × 10(15) cm(-2) are implanted into ZnO(0001) single crystals at 300 °C under vacuum. The resulting Co-implanted ZnO single crystals and the subsequent 750 °C and 900 °C annealed samples are analysed with respect to their structural, optical, electronic, magnetic and ac electrical properties. Photoluminescence and X-ray photoelectron spectroscopy results indicate the signatures of the Co(2+) state and its substitution at the tetrahedrally coordinated Zn-sites. X-ray diffraction and X-ray photoelectron spectroscopy identify the presence of the ZnCo2O4 and Co3O4 phases in the 900 °C annealed sample. By comparing the resistance response of the identified phases towards different magnetic environments, the impedance spectroscopy results successfully identify two magnetic phases (ZnCo2O4 and Co3O4) and a paramagnetic (CoZn) phase for the 750 °C and 900 °C annealed samples, implying the extrinsic nature of room temperature ferromagnetism. The observed ferromagnetism in each sample is not of single origin, instead the mutual effects of the secondary phases embedded in the paramagnetic host matrix are in competition with each other. PMID:24963819

Younas, M; Zou, L L; Nadeem, M; Naeem-ur-Rehman; Su, S C; Wang, Z L; Anwand, W; Wagner, A; Hao, J H; Leung, C W; Lortz, R; Ling, F C C

2014-08-14

6

Optical signatures of photoinduced Zn vacancies in ZnO single crystal  

SciTech Connect

193-nm excimer laser interaction with ZnO single-crystal at 0.05–500?KW/cm{sup 2} intensities is investigated under ultra high vacuum conditions by time resolved photoluminescence (PL) spectroscopy. A dominant 3.18?eV PL emission band at 295?K is observed. This band shows unusually long 0.52?±?0.01??s lifetime, indicating a defect mediated emission mechanism. The demonstrated negative thermal quenching for this band confirms its free electron to acceptor type transition. The involved acceptor is attributed to zinc vacancy with ?100?meV shallow acceptor state. This study finds that 193-nm interactions produce Zn vacancies in transient states at 0.05–50?KW/cm{sup 2} excitation intensities and in stable state at 500 KW/cm{sup 2} or above intensities. The transient zinc vacancy production at such low intensities further validates the Frenkel pair creation as mechanism for creating these defects in ZnO single-crystal.

Khan, Enamul H., E-mail: enamul-khan@wsu.edu [Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164-2814 (United States)

2014-01-07

7

Glycine adsorption and photo-reaction over ZnO(000?) single crystal  

NASA Astrophysics Data System (ADS)

The adsorption and reaction of the amino acid glycine (NH2CH2COOH) are studied experimentally on the polar single crystal surface of zinc oxide, ZnO(000?), by X-ray photoelectron spectroscopy (XPS) under UV light in presence and absence of molecular O2. Deposition at 350 K mainly resulted in a largely deprotonated monolayer (NH2CH2COO-(a) + OH(s); where O is surface oxygen, (a) is for adsorbed and (s) is for surface species) identified by its XPS C1s binding energy at 289.3 eV (COO), 286.7 eV (CH2) and XPS O1s at 531.8 eV (COO). A decrease in the signals of all functional groups of the adsorbed glycine (monitored by their C1s, O1s, and N1s lines) is seen upon UV excitation in the absence and presence of O2 pressures up to 5 × 10- 6 mbar. The photoreaction cross sections extracted from the decrease in the C1s peaks were found to be = 2.6 × 10- 18 (COO(a)) and 1.4 × 10- 18(CH2) cm2. The photoactivity of the ZnO(000?) surface under UHV-conditions is found to be comparable to that seen in direct photolysis of amino acids in solution.

Gao, Y. K.; Traeger, F.; Wöll, C.; Idriss, H.

2014-06-01

8

Analysis of strained surface layers of ZnO single crystals after irradiation with intense femtosecond laser pulses  

SciTech Connect

Structural modifications of ZnO single crystals that were created by the irradiation with femtosecond laser pulses at fluences far above the ablation threshold were investigated with micro-Raman spectroscopy. After light-matter interaction on the femtosecond time scale, rapid cooling and the pronounced thermal expansion anisotropy of ZnO are likely to cause residual strains of up to 1.8% and also result in the formation of surface cracks. This process relaxes the strain only partially and a strained surface layer remains. Our findings demonstrate the significant role of thermoelastic effects for the irradiation of solids with intense femtosecond laser pulses.

Schneider, Andreas; Sebald, Kathrin; Voss, Tobias [Semiconductor Optics, Institute of Solid State Physics, University of Bremen, D-28359 Bremen (Germany)] [Semiconductor Optics, Institute of Solid State Physics, University of Bremen, D-28359 Bremen (Germany); Wolverson, Daniel [Nanoscience Group, Department of Physics, University of Bath, BA2 7AY Bath (United Kingdom)] [Nanoscience Group, Department of Physics, University of Bath, BA2 7AY Bath (United Kingdom); Hodges, Chris; Kuball, Martin [Center for Device Thermography and Reliability (CDTR), H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom)] [Center for Device Thermography and Reliability (CDTR), H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom)

2013-05-27

9

Effect of cryogenic temperature deposition on Au contacts to bulk, single-crystal n-type ZnO  

NASA Astrophysics Data System (ADS)

Au contacts were deposited on bulk, n-type single-crystal ZnO at either 77 K or 300 K.The room temperature deposition produced contacts with ohmic characteristics. By sharp contrast, the cryogenic deposition produced rectifying characteristics with barrier heights around 0.4 eV. The differences in contact behavior were stable to anneal temperatures of ˜300 °C. There were no differences in near-surface stoichiometry for the different deposition temperatures, while the low temperature contacts showed a more uniform appearance. With further optimization of the pre-deposition cleaning process, this may be a useful method for engineering barrier heights on ZnO.

Wright, J. S.; Khanna, Rohit; Voss, L. F.; Stafford, L.; Gila, B. P.; Norton, D. P.; Pearton, S. J.; Wang, Hung-Ta; Jang, S.; Anderson, T.; Chen, J. J.; Kang, B. S.; Ren, F.; Shen, H.; LaRoche, Jeffrey R.; Ip, Kelly

2007-02-01

10

Double-sided ZnO nanorod arrays on single-crystal Ag holed microdisks with enhanced photocataltytic efficiency.  

PubMed

Novel hierarchical heterostructures of double-sided ZnO nanorod (NR) arrays grown on single-crystal Ag holed microdisks (HMDs) have been prepared through a two-step aqueous strategy including ZnO seed loading and the subsequent heteroepitaxial growth of ZnO NRs on Ag HMDs. By simply adjusting the synthetic parameters, ZnO NRs with variable NR diameters (20-200 nm), lengths (100-1.8 ?m) and unusual shapes (concave, tubular and sharp tips) on Ag HMDs have been realized, which endows the Ag/ZnO heterostructures with versatile morphologies. The novel Ag/ZnO heterostructures consisting of integrated 1D semiconductor/2D metal nanostructured blocks with high specific surface area (SSA) and opened spatial architectures may promise important applications related to photoelectric fields. As expected, in photocatalytic measurements, the typical Ag HMD/ZnO NR heterostructure exhibits superior catalytic activity over other catalysts of bare ZnO NRs, ZnO NR arrays or heterostructured Ag nanowires (NWs)/ZnO NRs. The synergistic effect of the unique Ag HMD/ZnO NR heterostructures contributing to the high catalytic performance has been discussed in detail. PMID:23575896

Zuo, Yuanhui; Qin, Yao; Jin, Chao; Li, Ying; Shi, Donglu; Wu, Qingsheng; Yang, Jinhu

2013-05-21

11

Deep level transient spectroscopic study of oxygen-implanted ZnO single crystal  

NASA Astrophysics Data System (ADS)

ZnO single crystal samples were implanted by oxygen with the energy of 150keV. After the pretreatment of hydrogen peroxide [1], Schottky contacts were fabricated with Au film deposited by thermal evaporation. Deep level defects were studied by deep level transient spectroscopy (DLTS). The activation energy of the 0.29eV deep trap was observed in the as-implanted sample and samples anneal at 350 ^oC , 650 ^oC and 750 ^oC. Three peaks were identified in the DLTS spectra of the 900 ^oC sample, with the activation energies of 0.11eV, 0.25eV and 0.37eV respectively. The thermal evolutions of the deep levels up to the temperature of 1200 ^oC were also investigated. [4pt] [1] Q. L. Gu, C. C. Ling, X. D. Chen, C. K. Cheng, A. M. C. Ng, C. D. Beling, S. Fung, A. B. Djurisi'c, L. W. Lu, G. Brauer and H. C. Ong, Appl. Phys. Lett. 90, 122101, (2007).

Ye, Ziran; Ding, Guangwei; Fan, Jincheng; Chung Ling, Chi

2011-03-01

12

Formation of a ZnO{sub 2} layer on the surface of single crystal ZnO substrates with oxygen atoms by hydrogen peroxide treatment  

SciTech Connect

Formation of a ZnO{sub 2} layer by H{sub 2}O{sub 2} treatment for single crystal ZnO (0001) substrates was studied. X-ray diffraction (XRD) peaks of ZnO{sub 2} with a pyrite structure were observed in XRD 2{theta}-{omega} scan patterns of the O-face of single crystal ZnO (0001) substrates with H{sub 2}O{sub 2} treatment, but these peaks were not observed in patterns of the Zn-face of ZnO (0001) substrates with H{sub 2}O{sub 2} treatment. XRD {omega} scan patterns of the ZnO (0002) plane of the O-face of single crystal ZnO (0001) substrates were broadened at the tail of the pattern by H{sub 2}O{sub 2} treatment, but such broadening was not observed in that plane of the Zn-face. Grain structure of ZnO{sub 2} layers was clearly observed in atomic force microscopy (AFM) images for the O-face of ZnO (0001) substrates with H{sub 2}O{sub 2} treatment. Spectra of X-ray photoelectron spectroscopy (XPS) of the O-face of ZnO (0001) substrates with H{sub 2}O{sub 2} treatment showed a definite peak shift of the O 1s peak. It is thought that a pyrite structure of ZnO{sub 2} is easily formed around an O atom of the O-face of ZnO (0001) substrates. Results of XRD measurements, the AFM image, and XPS measurement of the H{sub 2}O{sub 2}-treated single crystal ZnO (1010) substrate that has oxygen atoms on the surface appeared to be the same as those of the O-face of ZnO (0001) substrates.

Kashiwaba, Y. [Department of Electronic Engineering, Sendai National College of Technology, 4-16-1 Ayashi-chuo, Sendai 989-3128 (Japan); Abe, T.; Nakagawa, A.; Niikura, I.; Kashiwaba, Y.; Daibo, M.; Fujiwara, T.; Osada, H. [Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan)

2013-03-21

13

Hydrogen released from bulk ZnO single crystals investigated by time-of-flight electron-stimulated desorption  

SciTech Connect

Electron beam (e-beam) irradiation effects on ZnO single crystals have been investigated by using time-of-flight electron-stimulated desorption (TOF-ESD). The samples were irradiated by using a continuous 0.5 or 1.5 keV e-beam, while the TOF-ESD spectra were taken by using a pulsed 0.5 keV e-beam. For both the O-terminated and Zn-terminated surfaces, the major desorption is H{sup +} desorption. The main trend of H{sup +} desorption intensity and evolution as a function of irradiation time is similar for both faces. The H{sup +} peak is much higher after 1.5 keV irradiation than after 0.5 keV irradiation. The intensity of the H{sup +} peak decreases exponentially as a function of irradiation time and partially recovers after the irradiation is stopped. These observations suggest that the main contribution of the H{sup +} desorption is hydrogen released from the dissociation of H-related defects and complexes in the bulk region of the ZnO by e-beam irradiation. This finding can be used to explain the reported ultraviolet degradation of ZnO single crystals under electron irradiation observed by cathodoluminescence. The surfaces play a lesser role for the H{sup +} desorption, as there are differences of the decreasing rate between the two faces and additionally the intensity of the H{sup +} peak for both the unclean O-face and Zn-facesis smaller than that for clean faces. While the H{sup +} desorption is mainly dominated by the bulk region, O{sup +} desorption is more influenced by the surfaces. There are two kinds of O{sup +} desorbed from ZnO having 13.0 {mu}s TOF and 14.2 {mu}s TOF. The O{sup +} desorption depends on the surface polarity, the surface conditions and the energy used for irradiation.

Dierre, Benjamin; Sekiguchi, Takashi [Advanced Electronic Materials Center, National Institute for Materials Science (NIMS), Tsukuba 305-0044 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-0003 (Japan); Yuan, Xiaoli [Advanced Electronic Materials Center, National Institute for Materials Science (NIMS), Tsukuba 305-0044 (Japan); Ueda, Kazuyuki [Nano High-Tech Research Center, Graduate School of Engineering, Toyota Technological Institute, Nagoya 468-8511 (Japan)

2010-11-15

14

Surface characterization of Cu-ion implanted single crystal and thin film ZnO for catalytic applications  

NASA Astrophysics Data System (ADS)

Single crystals and thin films of zinc oxide were implanted with copper ions in order to study the catalytic properties of a mixed Cu-ZnO system. ZnO is widely used as a catalyst in the methanol synthesis reaction, and copper has been noted to have a synergistic effect on the rates and yields of reaction. The samples were characterized by x-ray photoelectron spectroscopy (XPS) before and after implantation, and surface copper concentration in the implanted specimens was determined. Implanted samples were heated under oxidizing and reducing atmospheres and re-examined by XPS to determine the oxidation state of the implanted copper species. XPS results demonstrated that the oxidation state of the copper could be manipulated, although there was a corresponding decrease in the concentration of the surface copper ions, relative to temperature and time of heating.

Brodkin, J. S.; Chadwick, D.

1995-05-01

15

Thiol dosing of ZnO single crystals and nanorods: Surface chemistry and photoluminescence  

NASA Astrophysics Data System (ADS)

Adsorption of thiols on ZnO(0001) and ZnO nanorods has been investigated using X-ray and ultraviolet photoelectron spectroscopies (XPS and UPS). Ultrahigh vacuum (UHV) dosing of sputter-cleaned ZnO(0001) with methanethiol (MT), 1-dodecanethiol (DDT), and 3-mercaptopropyltrimethoxysilane (MPTMS) leads to S2p peaks with a binding energy of 163.3 eV. Similar results for MPTMS are obtained for sputter-cleaned ZnO(0001) that is pre-dosed with water to form hydroxyl groups. In all cases, the absence of a free thiol S2p peak at 164.2 eV indicates that bonding to the surface occurs via the thiol end of the molecule. A DDT-dosed ZnO(0001) sample stored for 10 days in UHV and heated to temperatures as high as 150 °C exhibits minimal changes in its S/Zn atomic ratio, confirming chemisorption and the presence of a strong bond to the surface. UPS shows that MT adsorption on sputtered ZnO(0001) leads to a 0.7 eV increase in work function and perturbation of the MT molecular orbitals, again consistent with chemisorption. Dry ZnO nanorods have been exposed to MT while monitoring their photoluminescence. XPS and Raman spectroscopy confirm thiol adsorption. Relative to dry ZnO, adsorption causes a decrease in intensity of the visible emission peak, but the UV peak remains unchanged. These results indicate that Znsbnd S bond formation quenches radiative decay to the valence band from defect states, possibly by methanethiolate adsorption filling oxygen vacancies.

Singh, Jagdeep; Im, Jisun; Watters, Evan J.; Whitten, James E.; Soares, Jason W.; Steeves, Diane M.

2013-03-01

16

Thermal degradation of electrical properties and morphology of bulk single-crystal ZnO surfaces  

Microsoft Academic Search

Bulk ZnO substrates were rapid thermal annealed in either air or N2 at temperatures up to 500°C. The root-mean-square roughness of the surface as measured by atomic force microscopy begins to increase even after 200°C anneals in N2 or 300°C in air. The Schottky barrier height, PhiB, obtained from Pt\\/Au diodes fabricated on these surfaces shows a decrease in effective

Rohit Khanna; K. Ip; Y. W. Heo; D. P. Norton; S. J. Pearton; F. Ren

2004-01-01

17

Platinum Schottky contacts on single-crystal ZnO with hydrogen peroxide treatment  

NASA Astrophysics Data System (ADS)

Platinum (Pt) Schottky contacts (SCs) on hydrothermal grown Zn-terminated (0001) ZnO substrates with the different hydrogen peroxide (H2O2) treatment time are investigated. Under the treatment in room temperature, effective SCs are made for 45 min and longer time and the electrical characteristics show the dependence on treatment time. The irregular humps on ZnO surface with roughness measured by atomic force microscope differ as the treatment time and roughness exhibits the large variation between 0.368 and 3.566 nm, indicating the etching effect and near-surface defects related to the lattice imperfections. The evaluated barrier height has the value at 0.89-0.96 eV with the saturation current density in the range of 2.21×10-10-3.31×10-9 A/cm2. The effective donor concentration calculated from capacitance-voltage (C-V) measurement decreases as treatment time, implying the widening of the space charge region after H2O2 treatment. The improved SC characteristics are attributed to the product of the wider bandgap and low-conductivity ZnO2 via grazing-incidence x-ray diffraction analysis. The rectifying behavior has the threshold dependence on the treatment time and has the reverse trend toward the surface asperities.

Tsai, Chia-Hung; Lin, Shi-Xiong; Hung, Chen-I.; Liu, Chien-Chih; Houng, Mau-Phon

2009-11-01

18

Low-temperature hopping and absence of spin-dependent transport in single crystals of cobalt-doped ZnO  

NASA Astrophysics Data System (ADS)

Long needle-shaped single crystals of Zn1-xCoxO were grown at low temperatures using a molten salt solvent technique, up to x=0.10 . The conduction process at low temperatures is determined to be Mott variable range hopping. Both pristine and cobalt-doped crystals clearly exhibit a crossover from negative to positive magnetoresistance as the temperature is decreased. The positive magnetoresistance of the Zn1-xCoxO single crystals increases with increased Co concentration and reaches up to 20% at low temperatures (2.5 K) and high fields (>1T) . Superconducting quantum interference device magnetometry confirms that the Zn1-xCoxO crystals are predominantly paramagnetic in nature and the magnetic response is independent of Co concentration. The results indicate that cobalt doping of single crystalline ZnO introduces localized electronic states and isolated Co2+ ions into the host matrix but that the magnetotransport and magnetic properties are decoupled.

Sharma, N.; Granville, S.; Kashyap, S. C.; Ansermet, J.-Ph.

2010-09-01

19

Nature of red luminescence band in research-grade ZnO single crystals: A “self-activated” configurational transition  

SciTech Connect

By implanting Zn{sup +} ions into research-grade intentionally undoped ZnO single crystal for facilitating Zn interstitials (Zn{sub i}) and O vacancies (V{sub O}) which is revealed by precise X-Ray diffraction rocking curves, we observe an apparent broad red luminescence band with a nearly perfect Gaussian lineshape. This red luminescence band has the zero phonon line at ?2.4 eV and shows distinctive lattice temperature dependence which is well interpreted with the configurational coordinate model. It also shows a low “kick out” thermal energy and small thermal quenching energy. A “self-activated” optical transition between a shallow donor and the defect center of Zn{sub i}-V{sub O} complex or V{sub Zn}V{sub O} di-vacancies is proposed to be responsible for the red luminescence band. Accompanied with the optical transition, large lattice relaxation simultaneously occurs around the center, as indicated by the generation of multiphonons.

Chen, Y. N.; Xu, S. J., E-mail: sjxu@hku.hk; Zheng, C. C.; Ning, J. Q.; Ling, F. C. C. [Department of Physics, HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), HKU-CAS Joint Laboratory on New Materials, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Anwand, W.; Brauer, G. [Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, D-01328 Dresden (Germany); Skorupa, W. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, D-01328 Dresden (Germany)

2014-07-28

20

Photoluminescence and polarized photodetection of single ZnO nanowires  

Microsoft Academic Search

Single crystal ZnO nanowires are synthesized and configured as field-effect transistors. Photoluminescence and photoconductivity measurements show defect-related deep electronic states giving rise to green-red emission and absorption. Photocurrent temporal response shows that current decay time is significantly prolonged in vacuum due to a slower oxygen chemisorption process. The photoconductivity of ZnO nanowires is strongly polarization dependent. Collectively, these results demonstrate

Zhiyong Fan; Pai-Chun Chang; Jia G. Lu; Erich C. Walter; Reginald M. Penner; Chien-Hung Lin; Henry P. Lee

2004-01-01

21

Persistent Photoconductivity in electron-irradiated ZnO bulk single crystals: Evaluation of the metastable conductive state by the dual light illumination  

NASA Astrophysics Data System (ADS)

Persistent Photoconductivity (PPC) in 30 MeV electron-irradiated n-type ZnO single crystals is studied under the dual light illumination (DLI: the infrared light excitation after the blue illumination). Below 160 K, the remarkable reduction in PPC is observed by the subsequent infrared illumination, suggesting the release of electrons from the perturbed-host state (PHS) as a metastable conductive state to the nonconductive state ( VO+ and/or VO0) via the higher unoccupied states inside the conduction band. Above 160 K, the slight increase in photocurrent is observed by the subsequent illumination, suggesting the photoexcitation of electrons not relevant to the PHS. These results depend on the electron concentration in the PHS.

Oga, T.; Izawa, Y.; Kuriyama, K.; Kushida, K.; Xu, Q.

2011-11-01

22

Doping and planar defects in the formation of single-crystal ZnO nanorings X. Y. Kong,2  

E-print Network

-inversion domain boundaries. For a nanobelt that self-coils into a nanoring, we found that the head-to-head and tail-to-tail polar-inversion domain boundaries are paired, thus, the polarity of the nanobelt structure family has a few important mem- bers, such as ZnO, GaN, AlN, ZnS, and CdSe, which are important

Wang, Zhong L.

23

Ultraviolet whispering-gallery-mode lasing in ZnO micro/nano sphere crystal  

NASA Astrophysics Data System (ADS)

We report ultraviolet (UV) whispering-gallery-mode (WGM) lasing in a zinc oxide (ZnO) micro/nanosphere crystal fabricated by simply ablating a ZnO sintered target, which was much more productive method without any time-consuming crystal-growth process. The lasing spectral mode spacing was controlled by changing the diameters, and single-mode lasing was realized from a ZnO nanosphere. Experimental results were in good agreement with predictions from WGM theories. Since the ZnO sphere can operate as an active WGM refractometric sensor for small molecules in UV region, high sensitivity enhanced by high quality factor, refractive index, and wavelength dispersion can be expected.

Okazaki, Kota; Shimogaki, Tetsuya; Fusazaki, Koshi; Higashihata, Mitsuhiro; Nakamura, Daisuke; Koshizaki, Naoto; Okada, Tatsuo

2012-11-01

24

Evolution of ZnO nano-crystals grown on a profiled sapphire(0001) substrate with Au nano-crystals  

Microsoft Academic Search

This paper reports the structural evolution of ZnO nano-crystals deposited on profiled Au\\/sapphire(0001) substrates by radio frequency sputtering. In contrast to the typical catalytic growth of ZnO nano-crystals with Au seeds, ZnO was initially formed as nano-discs on top of the Au nano-crystals, and their eventual shape became a replica of the cuboctahedral Au nano-crystals. The ZnO nano-discs transformed into

S. H. Seo; Hyon Chol Kang

25

Photoluminescence study of single ZnO nanostructures: Size effect  

NASA Astrophysics Data System (ADS)

Spatially resolved photoluminescence (PL) investigations were carried out on ZnO single nanowires, tetrapods, and nanocrystals. The fractional intensity for bound exciton (BX) transitions was shown to be correlated with the size in all these ZnO nanostructures. This size dependency is attributed to the inhomogeneous density distribution of the defects as binding sites for BX in the ZnO nanostructures, in good agreement with a simple model calculation.

Feng, L.; Cheng, C.; Yao, B. D.; Wang, N.; Loy, M. M. T.

2009-08-01

26

Single Crystal Membranes  

NASA Technical Reports Server (NTRS)

Single crystal a- and c-axis tubes and ribbons of sodium beta-alumina and sodium magnesium beta-alumina were grown from sodium oxide rich melts. Additional experiments grew ribbon crystals containing sodium magnesium beta, beta double prime, beta triple prime, and beta quadruple prime. A high pressure crystal growth chamber, sodium oxide rich melts, and iridium for all surfaces in contact with the melt were combined with the edge-defined, film-fed growth technique to grow the single crystal beta-alumina tubes and ribbons. The crystals were characterized using metallographic and X-ray diffraction techniques, and wet chemical analysis was used to determine the sodium, magnesium, and aluminum content of the grown crystals.

Stormont, R. W.; Morrison, A.

1974-01-01

27

Gyroid Single Crystal Diffraction  

NASA Astrophysics Data System (ADS)

A “single crystal” of a block copolymer / homopolymer blend with the Gyroid morphology was obtained by slow solvent casting. The block copolymer was an I2S2 star shaped block copolymer, which has two polystyrene arms and two polyisoprene arms connected at a single junction point. The homopolymer was low MW polyisoprene. The sample was studied by SAXS and TEM. SAXS of this sample produced single crystal diffraction patterns of several different zones with as many as 128 diffraction peaks in a single diffraction pattern, and 148 total unique diffraction peaks. Analysis of this data provides the most unambiguous proof to date of the Ia3d symmetry and Gyroid structure.

Yang, L.; Hong, S.; Gido, S. P.; Uhrig, D.; Mays, J. W.

2001-03-01

28

SINGLE CRYSTAL NEUTRON DIFFRACTION.  

SciTech Connect

Single-crystal neutron diffraction measures the elastic Bragg reflection intensities from crystals of a material, the structure of which is the subject of investigation. A single crystal is placed in a beam of neutrons produced at a nuclear reactor or at a proton accelerator-based spallation source. Single-crystal diffraction measurements are commonly made at thermal neutron beam energies, which correspond to neutron wavelengths in the neighborhood of 1 Angstrom. For high-resolution studies requiring shorter wavelengths (ca. 0.3-0.8 Angstroms), a pulsed spallation source or a high-temperature moderator (a ''hot source'') at a reactor may be used. When complex structures with large unit-cell repeats are under investigation, as is the case in structural biology, a cryogenic-temperature moderator (a ''cold source'') may be employed to obtain longer neutron wavelengths (ca. 4-10 Angstroms). A single-crystal neutron diffraction analysis will determine the crystal structure of the material, typically including its unit cell and space group, the positions of the atomic nuclei and their mean-square displacements, and relevant site occupancies. Because the neutron possesses a magnetic moment, the magnetic structure of the material can be determined as well, from the magnetic contribution to the Bragg intensities. This latter aspect falls beyond the scope of the present unit; for information on magnetic scattering of neutrons see Unit 14.3. Instruments for single-crystal diffraction (single-crystal diffractometers or SCDs) are generally available at the major neutron scattering center facilities. Beam time on many of these instruments is available through a proposal mechanism. A listing of neutron SCD instruments and their corresponding facility contacts is included in an appendix accompanying this unit.

KOETZLE,T.F.

2001-03-13

29

Arnold Schwarzenegger SINGLE CRYSTAL SILICON  

E-print Network

Arnold Schwarzenegger Governor SINGLE CRYSTAL SILICON SHEET GROWTH Prepared For: California Energy CRYSTAL SILICON SHEET GROWTH EISG AWARDEE ENERGY MATERIALS RESEARCH 132 Chalmers Drive Rochester Hills, MI

30

Single photon emission from ZnO nanoparticles  

SciTech Connect

Room temperature single photon emitters are very important resources for photonics and emerging quantum technologies. In this work, we study single photon emission from defect centers in 20?nm zinc oxide (ZnO) nanoparticles. The emitters exhibit bright broadband fluorescence in the red spectral range centered at 640?nm with polarized excitation and emission. The studied emitters showed continuous blinking; however, bleaching can be suppressed using a polymethyl methacrylate coating. Furthermore, hydrogen termination increased the density of single photon emitters. Our results will contribute to the identification of quantum systems in ZnO.

Choi, Sumin; Ton-That, Cuong; Phillips, Matthew R.; Aharonovich, Igor, E-mail: igor.aharonovich@uts.edu.au [School of Physics and Advanced Materials, University of Technology Sydney, Ultimo, New South Wales 2007 (Australia); Johnson, Brett C. [Centre for Quantum Computation and Communication Technology, School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Castelletto, Stefania [School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Melbourne, Victoria 3000 (Australia)

2014-06-30

31

Single photon emission from ZnO nanoparticles  

NASA Astrophysics Data System (ADS)

Room temperature single photon emitters are very important resources for photonics and emerging quantum technologies. In this work, we study single photon emission from defect centers in 20 nm zinc oxide (ZnO) nanoparticles. The emitters exhibit bright broadband fluorescence in the red spectral range centered at 640 nm with polarized excitation and emission. The studied emitters showed continuous blinking; however, bleaching can be suppressed using a polymethyl methacrylate coating. Furthermore, hydrogen termination increased the density of single photon emitters. Our results will contribute to the identification of quantum systems in ZnO.

Choi, Sumin; Johnson, Brett C.; Castelletto, Stefania; Ton-That, Cuong; Phillips, Matthew R.; Aharonovich, Igor

2014-06-01

32

Crystal growth of ZnO  

NASA Astrophysics Data System (ADS)

Centimeter-sized crystals of zinc oxide have been grown by the top-seeded solution growth method and traveling-solvent floating-zone method using a mixed solvent of V 2O 5+B 2O 3 and MoO 3+V 2O 5. The crystals were brown, pale yellow and white semi-transparent in color depending on the solvent used. The characterization of the crystals by scanning electron microscopy X-ray energy-dispersion spectroscopy is reported.

Oka, Kunihiko; Shibata, Hajime; Kashiwaya, Satoshi

2002-04-01

33

Formation of Piezoelectric Single-Crystal Nanorings and William L. Hughes and Zhong L. Wang*  

E-print Network

-induced electrostatic energy decreases upon rolling into a circular ring due to the neutralization of the dipole moment by rolling up single-crystal ZnO nanobelts. We have proposed a mechanism for the formation of nanorings.7 (ring

Wang, Zhong L.

34

Paramagnetism and antiferromagnetic interactions in single-phase Fe-implanted ZnO  

E-print Network

As the intrinsic origin of the high temperature ferromagnetism often observed in wide-gap dilute magnetic semiconductors becomes increasingly debated, there is a growing need for comprehensive studies on the single-phase region of the phase diagram of these materials. Here we report on the magnetic and structural properties of Fe-doped ZnO prepared by ion implantation of ZnO single crystals. A detailed structural characterization shows that the Fe impurities substitute for Zn in ZnO in a wurtzite Zn1?xFexO phase which is coherent with the ZnO host. In addition, the density of beam-induced defects is progressively decreased by thermal annealing up to 900 ?C, from highly disordered after implantation to highly crystalline upon subsequent annealing. Based on a detailed analysis of the magnetometry data, we demonstrate that isolated Fe impurities occupying Zn substitutional sites behave as localized paramagnetic moments down to 2 K, irrespective of the Fe concentration and the density of beam-induced defects....

Pereira, Lino Miguel da Costa; Correia, João Guilherme; Van Bael, M J; Temst, Kristiaan; Vantomme, André; Araújo, João Pedro

2013-01-01

35

Deep-level emission in ZnO nanowires and bulk crystals: Excitation-intensity dependence versus crystalline quality  

SciTech Connect

The excitation-intensity dependence of the excitonic near-band-edge emission (NBE) and deep-level related emission (DLE) bands in ZnO nanowires and bulk crystals is studied, which show distinctly different power laws. The behavior can be well explained with a rate-equation model taking into account deep donor and acceptor levels with certain capture cross sections for electrons from the conduction band and different radiative lifetimes. In addition, a further crucial ingredient of this model is the background n-type doping concentration inherent in almost all ZnO single crystals. The interplay of the deep defects and the background free-electron concentration in the conduction band at room temperature reproduces the experimental results well over a wide range of excitation intensities (almost five orders of magnitude). The results demonstrate that for many ZnO bulk samples and nanostructures, the relative intensity R?=?I{sub NBE}/I{sub DLE} can be adjusted over a wide range by varying the excitation intensity, thus, showing that R should not be taken as an indicator for the crystalline quality of ZnO samples unless absolute photoluminescence intensities under calibrated excitation conditions are compared. On the other hand, the results establish an all-optical technique to determine the relative doping levels in different ZnO samples by measuring the excitation-intensity dependence of the UV and visible luminescence bands.

Hou, Dongchao; Voss, Tobias [Institute of Solid State Physics, University of Bremen, Bremen (Germany); Ronning, Carsten [Institute of Solid State Physics, University of Jena, Jena (Germany); Menzel, Andreas; Zacharias, Margit [Institute of Microsystems Engineering, IMTEK, University of Freiburg, Freiburg (Germany)

2014-06-21

36

Multimode Resistive Switching in Single ZnO Nanoisland System  

PubMed Central

Resistive memory has attracted a great deal of attention as an alternative to contemporary flash memory. Here we demonstrate an interesting phenomenon that multimode resistive switching, i.e. threshold-like, self-rectifying and ordinary bipolar switching, can be observed in one self-assembled single-crystalline ZnO nanoisland with base diameter and height ranging around 30 and 40?nm on Si at different levels of current compliance. Current-voltage characteristics, conductive atomic force microscopy (C-AFM), and piezoresponse force microscopy results show that the threshold-like and self-rectifying types of switching are controlled by the movement of oxygen vacancies in ZnO nanoisland between the C-AFM tip and Si substrate while ordinary bipolar switching is controlled by formation and rupture of conducting nano-filaments. Threshold-like switching leads to a very small switching power density of 1 × 103?W/cm2. PMID:23934276

Qi, Jing; Olmedo, Mario; Zheng, Jian-Guo; Liu, Jianlin

2013-01-01

37

Preparation of vertically aligned ZnO crystal rods in aqueous solution at external electric field  

NASA Astrophysics Data System (ADS)

In this study, an external electric field was used to facilitate the growth of vertically aligned ZnO crystal rods on the surface of indium tin oxide (ITO) glass substrates in an aqueous solution. We used Zn(NO3) and C6H12N4 as precursor and reagent. We found that the external electric field generated by DC potential of 5 kV between two electrodes that were placed outside the bottle could facilitate the growth of homogeneous, high density and vertically aligned ZnO crystal rods. Position of the substrate during the growth of crystal was found to be important to obtain well aligned crystal. The crystals that were grown near the negative electrode had the best properties. Photoluminescence measurement at room temperature revealed sharp peaks at around 360 and 380 nm and a broad peak around 420 nm that indicated good properties of ZnO crystals grown with external electric field.

Prijamboedi, B.; Maryanti, E.; Haryati, T.

2014-06-01

38

Surface acoustic wave devices on bulk ZnO crystals at low temperature  

NASA Astrophysics Data System (ADS)

Surface acoustic wave (SAW) devices based on thin films of ZnO are a well established technology. However, SAW devices on bulk ZnO crystals are not practical at room temperature due to the significant damping caused by finite electrical conductivity of the crystal. Here, by operating at low temperatures, we demonstrate effective SAW devices on the (0001) surface of bulk ZnO crystals, including a delay line operating at SAW wavelengths of ? = 4 and 6 ?m and a one-port resonator at a wavelength of ? = 1.6 ?m. We find that the SAW velocity is temperature dependent, reaching v ? 2.68 km/s at 10 mK. Our resonator reaches a maximum quality factor of Qi ? 1.5 × 105, demonstrating that bulk ZnO is highly viable for low temperature SAW applications. The performance of the devices is strongly correlated with the bulk conductivity, which quenches SAW transmission above 200 K.

Magnusson, E. B.; Williams, B. H.; Manenti, R.; Nam, M.-S.; Nersisyan, A.; Peterer, M. J.; Ardavan, A.; Leek, P. J.

2015-02-01

39

A single-molecule approach to ZnO defect studies: Single photons and single defects  

SciTech Connect

Investigations that probe defects one at a time offer a unique opportunity to observe properties and dynamics that are washed out of ensemble measurements. Here, we present confocal fluorescence measurements of individual defects in ZnO nanoparticles and sputtered films that are excited with sub-bandgap energy light. Photon correlation measurements yield both antibunching and bunching, indicative of single-photon emission from isolated defects that possess a metastable shelving state. The single-photon emission is in the range of ?560–720?nm and typically exhibits two broad spectral peaks separated by ?150?meV. The excited state lifetimes range from 1 to 13?ns, consistent with the finite-size and surface effects of nanoparticles and small grains. We also observe discrete jumps in the fluorescence intensity between a bright state and a dark state. The dwell times in each state are exponentially distributed and the average dwell time in the bright (dark) state does (may) depend on the power of the exciting laser. Taken together, our measurements demonstrate the utility of a single-molecule approach to semiconductor defect studies and highlight ZnO as a potential host material for single-defect based applications.

Jungwirth, N. R.; Pai, Y. Y.; Chang, H. S.; MacQuarrie, E. R.; Nguyen, K. X.; Fuchs, G. D. [Cornell University, Ithaca, New York 14853 (United States)

2014-07-28

40

Single Crystal Silicon Instrument Mirrors  

NASA Technical Reports Server (NTRS)

The goals for the fabrication of single crystal silicon instrument mirrors include the following: 1) Develop a process for fabricating lightweight mirrors from single crystal silicon (SCS); 2) Modest lightweighting: 3X to 4X less than equivalent solid mirror; 3) High surface quality, better than lambda/40 RMS @ 633nm; 4) Significantly less expensive than current technology; and 5) Negligible distortion when cooled to cryogenic temperatures.

Bly, Vince

2007-01-01

41

A multistep single-crystal-to-single-crystal bromodiacetylene dimerization.  

PubMed

Packing constraints and precise placement of functional groups are the reason that organic molecules in the crystalline state often display unusual physical or chemical properties not observed in solution. Here we report a single-crystal-to-single-crystal dimerization of a bromodiacetylene that involves unusually large atom displacements as well as the cleavage and formation of several bonds. Density functional theory computations support a mechanism in which the dimerization is initiated by a [2 + 1] photocycloaddition favoured by the nature of carbon-carbon short contacts in the crystal structure. The reaction proceeded up to the theoretical degree of conversion without loss of crystallinity, and it was also performed on a preparative scale with good yield. Moreover, it represents the first synthetic pathway to (E)-1,2-dibromo-1,2-diethynylethenes, which could serve as synthetic intermediates for the preparation of molecular carbon scaffolds. Our findings both extend the scope of single-crystal-to-single-crystal reactions and highlight their potential as a synthetic tool for complex transformations. PMID:23511422

Hoheisel, Tobias N; Schrettl, Stephen; Marty, Roman; Todorova, Tanya K; Corminboeuf, Clémence; Sienkiewicz, Andrzej; Scopelliti, Rosario; Schweizer, W Bernd; Frauenrath, Holger

2013-04-01

42

Formation of quasi-single crystalline porous ZnO nanostructures with a single large cavity  

NASA Astrophysics Data System (ADS)

We report a method for synthesizing quasi-single crystalline porous ZnO nanostructures containing a single large cavity. The microwave-assisted route consists of a short (about 2 min) temperature ramping stage (from room temperature to 120 °C) and a stage in which the temperature is maintained at 120 °C for 2 h. The structures produced by this route were 200-480 nm in diameter. The morphological yields of this method were very high. The temperature- and time-dependent evolution of the synthesized powders and the effects of an additive, vitamin C, were studied. Spherical amorphous/polycrystalline structures (70-170 nm in diameter), which appeared transitorily, may play a key role in the formation of the single crystalline porous hollow ZnO nanostructures. Studies and characterization of the nanostructures suggested a possible mechanism for formation of the quasi-single crystalline porous ZnO nanostructures with an interior space.We report a method for synthesizing quasi-single crystalline porous ZnO nanostructures containing a single large cavity. The microwave-assisted route consists of a short (about 2 min) temperature ramping stage (from room temperature to 120 °C) and a stage in which the temperature is maintained at 120 °C for 2 h. The structures produced by this route were 200-480 nm in diameter. The morphological yields of this method were very high. The temperature- and time-dependent evolution of the synthesized powders and the effects of an additive, vitamin C, were studied. Spherical amorphous/polycrystalline structures (70-170 nm in diameter), which appeared transitorily, may play a key role in the formation of the single crystalline porous hollow ZnO nanostructures. Studies and characterization of the nanostructures suggested a possible mechanism for formation of the quasi-single crystalline porous ZnO nanostructures with an interior space. Electronic supplementary information (ESI) available: TEM images and the corresponding SAED image of a ZnO nanostructure synthesized from the reaction without l(+)-ascorbic acid at the 85 °C time point (Fig. S1). See DOI: 10.1039/c1nr10609k

Cho, Seungho; Kim, Semi; Jung, Dae-Won; Lee, Kun-Hong

2011-09-01

43

Growth of Single- and Bilayer ZnO on Au(111) and Interaction with Copper  

SciTech Connect

The stoichiometric single- and bi-layer ZnO(0001) have been prepared by reactive deposition of Zn on Au(111) and studied in detail with X-ray photoelectron spectroscopy, scanning tunneling microscopy, and density functional theory calculations. Both single- and bi-layer ZnO(0001) adopt a planar, graphite-like structure similar to freestanding ZnO(0001) due to the weak van der Waals interactions dominating their adhesion with the Au(111) substrate. At higher temperature, the single-layer ZnO(0001) converts gradually to bi-layer ZnO(0001) due to the twice stronger interaction between two ZnO layers than the interfacial adhesion of ZnO with Au substrate. It is found that Cu atoms on the surface of bi-layer ZnO(0001) are mobile with a diffusion barrier of 0.31 eV, and likely to agglomerate and form nanosized particles at low coverages; while Cu atoms tend to penetrate a single layer of ZnO(0001) with a barrier of 0.10 eV, resulting in a Cu free surface.

Deng, Xingyi; Yao, Kun; Sun, Keju; Li, Wei-Xue; Lee, Junseok; Matranga, Christopher

2013-05-30

44

Crystal ball single event display  

SciTech Connect

The Single Event Display (SED) is a routine that is designed to provide information graphically about a triggered event within the Crystal Ball. The SED is written entirely in FORTRAN and uses the CERN-based HICZ graphing package. The primary display shows the amount of energy deposited in each of the NaI crystals on a Mercator-like projection of the crystals. Ten different shades and colors correspond to varying amounts of energy deposited within a crystal. Information about energy clusters is displayed on the crystal map by outlining in red the thirteen (or twelve) crystals contained within a cluster and assigning each cluster a number. Additional information about energy clusters is provided in a series of boxes containing useful data about the energy distribution among the crystals within the cluster. Other information shown on the event display include the event trigger type and data about {pi}{sup o}`s and {eta}`s formed from pairs of clusters as found by the analyzer. A description of the major features is given, along with some information on how to install the SED into the analyzer.

Grosnick, D.; Gibson, A. [Valparaiso Univ., IN (United States). Dept. of Physics and Astronomy; Allgower, C. [Argonne National Lab., IL (United States). High Energy Physics Div.; Alyea, J. [Valparaiso Univ., IN (United States). Dept. of Physics and Astronomy]|[Argonne National Lab., IL (United States). High Energy Physics Div.

1997-10-15

45

Photon tunnelling microscopy of polyethylene single crystals  

E-print Network

Photon tunnelling microscopy of polyethylene single crystals Mohan Srinivasarao* and Richard S:photon tunnellingmicroscopy;single crystals; polyethylene) INTRODUCTION The study of morphology of polymers is an area

Srinivasarao, Mohan

46

Effects of interfacial layer structures on crystal structural properties of ZnO films  

SciTech Connect

Single crystalline ZnO films were grown on Cr compound buffer layers on (0001) Al{sub 2}O{sub 3} substrates by plasma assisted molecular beam epitaxy. In terms of lattice misfit reduction between ZnO and substrate, the CrN and Cr{sub 2}O{sub 3}/CrN buffers are investigated. The structural and optical qualities of ZnO films suggest the feasibility of Cr compound buffers for high-quality ZnO films growth on (0001) Al{sub 2}O{sub 3} substrates. Moreover, the effects of interfacial structures on selective growth of different polar ZnO films are investigated. Zn-polar ZnO films are grown on the rocksalt CrN buffer and the formation of rhombohedral Cr{sub 2}O{sub 3} results in the growth of O-polar films. The possible mechanism of polarity conversion is proposed. By employing the simple patterning and regrowth procedures, a periodical polarity converted structure in lateral is fabricated. The periodical change of the polarity is clearly confirmed by the polarity sensitive piezo response microscope images and the opposite hysteretic characteristic of the piezo response curves, which are strict evidences for the validity of the polarity controlling method as well as the successful fabrication of the periodical polarity controlled ZnO structure.

Park, J. S.; Minegishi, T.; Lee, S. H.; Im, I. H.; Park, S. H.; Hanada, T.; Goto, T.; Cho, M. W.; Yao, T.; Hong, S. K.; Chang, J. H. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); School of Nanoscience and Technology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Major of Nano Semiconductor, Korea Maritime University, Youngdo-ku, Pusan 606-791 (Korea, Republic of)

2008-01-15

47

Nondestructive In Situ Identification of Crystal Orientation of Anisotropic ZnO  

E-print Network

Nondestructive In Situ Identification of Crystal Orientation of Anisotropic ZnO Nanostructures, a fast, unambiguous, and nondestructive technique for identification of the crystalline orientation- opment and testing of devices for new applications. As known, Raman scattering is an excel- lent

Wang, Zhong L.

48

Nanoscale Calorimetry of Isolated Polyethylene Single Crystals  

E-print Network

Nanoscale Calorimetry of Isolated Polyethylene Single Crystals A. T. KWAN, M. YU. EFREMOV, E. A-film differential scanning calorimetry to investigate the melt- ing of isolated polyethylene single crystals of lamellar single crystals of polyethylene (PE). We obtain thickness, diffraction, and calorimetry data

Allen, Leslie H.

49

Octadecanethiol Island Formation on Single Crystal Zinc Oxide Surfaces  

NASA Astrophysics Data System (ADS)

Organic photovoltaic devices, containing ZnO nanorod electron acceptor arrays intercalated with organic polymers, could lead to low-cost solar cells. Surface modifications of ZnO with octadecanethiol (ODT) monolayers have been shown to improve charge transfer in such devices. The present work is an effort to understand these monolayers through studies of ODT on single crystals of ZnO with well-defined oxygen-terminated or zinc-terminated surfaces. Both bare and ODT- functionalized surfaces were characterized with atomic force microscopy, Fourier transform infrared spectroscopy, x-ray photoemission spectroscopy, and water contact angle measurements. ODT seemed to form islands of multilayers on zinc-terminated surfaces and islands of monolayers on oxygen- terminated surfaces. While ODT was expected to preferentially bond along defects and terraces on oxygen-terminated surfaces, this was not observed. ODT was also expected to more effectively bond to the zinc-terminated surface, which was observed. This work was supported by the National Science Foundation Division of Materials Research DMR-0606054, DMR-0907409, and the Renewable Energy Materials Research Science and Engineering Center at the Colorado School of Mines.

Yocom, Andrea; Collins, Reuben; Furtak, Thomas; Baker, Darick; Ohno, Timothy

2010-03-01

50

Octadecanethiol Island Formation on Single Crystal Zinc Oxide Surfaces  

NASA Astrophysics Data System (ADS)

Organic photovoltaic devices, comprised of zinc oxide (ZnO) nanorod electron acceptor arrays intercalated with organic polymers, could lead to low-cost renewable energy generation. Surface modifications of ZnO with octadecanethiol (ODT) monolayers can help to improve charge transfer in such devices. In the present work, single crystals of ZnO provided well-defined oxygen-terminated and zinc-terminated surfaces on which to learn fundamentally about the attachment and growth of ODT. Both bare zinc oxide and ODT-functionalized surfaces were characterized with atomic force microscopy, Fourier transform infrared spectroscopy, x-ray photoemission spectroscopy, and contact angle analysis. ODT seemed to form islands of multilayers on zinc-terminated surfaces, while it formed islands of monolayers on oxygen-terminated surfaces. While ODT was expected to preferentially bond along defects and terraces on oxygen-terminated surfaces, this was not observed. ODT was also expected to more effectively bond to the zinc-terminated surface, which was observed. Finally, surface preparation treatments designed to leave atomically-flat oxygen terminated surfaces were developed. This work was made possible by the National Science Foundation Division of Materials Research and the Renewable Energy Materials Research Science and Engineering Center at the Colorado School of Mines.

Yocom, Andrea

2009-10-01

51

Homoepitaxial ZnO Film Growth  

NASA Technical Reports Server (NTRS)

ZnO films have high potential for many applications, such as surface acoustic wave filters, UV detectors, and light emitting devices due to its structural, electrical, and optical properties. High quality epitaxial films are required for these applications. The Al2O3 substrate is commonly used for ZnO heteroepitaxial growth. Recently, high quality ZnO single crystals are available for grow homoepitaxial films. Epitaxial ZnO films were grown on the two polar surfaces (O-face and Zn-face) of (0001) ZnO single crystal substrates using off-axis magnetron sputtering deposition. As a comparison, films were also deposited on (0001) Al2O3 substrates. It was found that the two polar ZnO surfaces have different photoluminescence (PL) spectrum, surface structure and morphology, which strongly influence the epitaxial film growth. The morphology and structure of homoepitaxial films grown on the ZnO substrates were different from heteroepitaxial films grown on the Al2O3. An interesting result shows that high temperature annealing of ZnO single crystals will improve the surface structure on the O-face surface rather than the opposite surface. The measurements of PL, low-angle incident x-ray diffraction, and atomic force microscopy of ZnO films indicate that the O-terminated surface is better for ZnO epitaxial film growth.

Zhu, Shen; Su, C-H; Lehoczky, S. L.; Harris, M. T.; Callahan, M. J.; McCarty, P.; George, M. A.; Rose, M. Franklin (Technical Monitor)

2000-01-01

52

Energy harvesting from millimetric ZnO single wire piezo-generators  

NASA Astrophysics Data System (ADS)

This work reports on investigations into the possibility of harvesting energy from the piezoelectric response of millimetric ZnO rods to movement. SEM & PL studies of hydrothermally grown ZnO rods revealed sizes ranging from 1 - 3 mm x 100 - 400 microns and suggested that each was a wurtzite monocrystal. Studies of current & voltage responses as a function of time during bending with a probe arm gave responses coherent with those reported elsewhere in the literature for ZnO nanowires or micro-rod single wire generators. The larger scale of these rods provided some advantages over such nano- and microstructures in terms of contacting ease, signal level & robustness.

Rogers, D. J.; Carroll, C.; Bove, P.; Sandana, V. E.; Goubert, L.; Largeteau, A.; Teherani, F. Hosseini; Demazeau, G.; McClintock, R.; Drouhin, H.-J.; Razeghi, M.

2012-02-01

53

Materialization of single multicomposite nanowire: entrapment of ZnO nanoparticles in polyaniline nanowire  

PubMed Central

We present materialization of single multicomposite nanowire (SMNW)-entrapped ZnO nanoparticles (NPs) via an electrochemical growth method, which is a newly developed fabrication method to grow a single nanowire between a pair of pre-patterned electrodes. Entrapment of ZnO NPs was controlled via different conditions of SMNW fabrication such as an applied potential and mixture ratio of NPs and aniline solution. The controlled concentration of ZnO NP results in changes in the physical properties of the SMNWs, as shown in transmission electron microscopy images. Furthermore, the electrical conductivity and elasticity of SMNWs show improvement over those of pure polyaniline nanowire. The new nano-multicomposite material showed synergistic effects on mechanical and electrical properties, with logarithmical change and saturation increasing ZnO NP concentration. PMID:21711928

2011-01-01

54

Titania single crystals with a curved surface  

NASA Astrophysics Data System (ADS)

Owing to its scientific and technological importance, crystallization as a ubiquitous phenomenon has been widely studied over centuries. Well-developed single crystals are generally enclosed by regular flat facets spontaneously to form polyhedral morphologies because of the well-known self-confinement principle for crystal growth. However, in nature, complex single crystalline calcitic skeleton of biological organisms generally has a curved external surface formed by specific interactions between organic moieties and biocompatible minerals. Here we show a new class of crystal surface of TiO2, which is enclosed by quasi continuous high-index microfacets and thus has a unique truncated biconic morphology. Such single crystals may open a new direction for crystal growth study since, in principle, crystal growth rates of all facets between two normal {101} and {011} crystal surfaces are almost identical. In other words, the facet with continuous Miller index can exist because of the continuous curvature on the crystal surface.

Yang, Shuang; Yang, Bing Xing; Wu, Long; Li, Yu Hang; Liu, Porun; Zhao, Huijun; Yu, Yan Yan; Gong, Xue Qing; Yang, Hua Gui

2014-11-01

55

Protein single crystal growth under microgravity  

NASA Astrophysics Data System (ADS)

Crystal growth conditions for proteins under microgravity were investigated with two model compounds (?-galactosidase and lysozyme). The single crystals obtained have been found to be significantly larger than those prepared in the same environment on earth.

Littke, Walter; John, Christina

1986-08-01

56

Three-dimensional Bragg coherent diffraction imaging of an extended ZnO crystal1  

PubMed Central

A complex three-dimensional quantitative image of an extended zinc oxide (ZnO) crystal has been obtained using Bragg coherent diffraction imaging integrated with ptychography. By scanning a 2.5?µm-long arm of a ZnO tetrapod across a 1.3?µm X-ray beam with fine step sizes while measuring a three-dimensional diffraction pattern at each scan spot, the three-dimensional electron density and projected displacement field of the entire crystal were recovered. The simultaneously reconstructed complex wavefront of the illumination combined with its coherence properties determined by a partial coherence analysis implemented in the reconstruction process provide a comprehensive characterization of the incident X-ray beam. PMID:22829708

Huang, Xiaojing; Harder, Ross; Leake, Steven; Clark, Jesse; Robinson, Ian

2012-01-01

57

tert-Butyl(tert-butoxy)zinc Hydroxides: Hybrid Models for Single-Source Precursors of ZnO Nanocrystals.  

PubMed

Alkylzinc alkoxides, [RZnOR']4 , have received much attention as efficient precursors of ZnO nanocrystals (NCs), and their "Zn4 O4 " heterocubane core has been regarded as a "preorganized ZnO". A comprehensive investigation of the synthesis and characterization of a new family of tert-butyl(tert-butoxy)zinc hydroxides, [(tBu)4 Zn4 (?3 -OtBu)x (?3 -OH)4-x ], as model single-source precursors of ZnO NCs is reported. The direct reaction between well-defined [tBuZnOH]6 (16 ) and [tBuZnOtBu]4 (24 ) in various molar ratios allows the isolation of new mixed cubane aggregates as crystalline solids in a high yield: [(tBu)4 Zn4 (?3 -OtBu)3 (?3 -OH)] (3), [(tBu)4 Zn4 (?3 -OtBu)2 (?3 -OH)2 ] (4), [(tBu)4 Zn4 (?3 -OtBu)(?3 -OH)3 ] (5). The resulting products were characterized in solution by (1) H?NMR and IR spectroscopy, and in the solid state by single-crystal X-ray diffraction. The thermal transformations of 2-5 were monitored by in situ variable-temperature powder X-ray diffraction and thermogravimetric measurements. The investigation showed that the Zn?OH groups appeared to be a desirable feature for the solid-state synthesis of ZnO NCs that significantly decreased the decomposition temperature of crystalline precursors 3-5. PMID:25689691

Soko?owski, Kamil; Justyniak, Iwona; Bury, Wojciech; Grzonka, Justyna; Kaszkur, Zbigniew; M?kolski, ?ukasz; Dutkiewicz, Micha?; Lewalska, Agnieszka; Krajewska, El?bieta; Kubicki, Dominik; Wójcik, Katarzyna; Kurzyd?owski, Krzysztof J; Lewi?ski, Janusz

2015-03-27

58

Strain-related optical properties of ZnO crystals due to nanoindentation on various surface orientations  

NASA Astrophysics Data System (ADS)

Nanoindentations were performed on various crystallographic orientations of single crystal ZnO using a cono-spherical diamond tip with a radius of curvature of 260 nm. The crystal orientations were the (112¯0) a-plane, (101¯0) m-plane, and (0001) c-plane (Zn-face). The optical properties associated with nanoindentation have been investigated by cathodoluminescence. The load-displacement curves show that the c-plane is the most resistive to deformation, followed by the m-plane, and the a-plane. A large number of non-radiative defects are created directly below the indentation, regardless of the crystal orientation. Nanoindentation on the a- and m-plane crystals activates slip along the (0001) basal planes, creating a band of non-radiative defects as well as tensile strain along the basal planes. Compressive strain is observed perpendicularly to the basal planes due to an absence of easy-glide mechanisms in these directions. The nanoindentation on the c-plane crystal results in regions under tensile strain extending away from the indentation along the six-fold a-directions.

Juday, R.; Silva, E. M.; Huang, J. Y.; Caldas, P. G.; Prioli, R.; Ponce, F. A.

2013-05-01

59

Improvement in microstructure and crystal alignment of ZnO films grown by metalorganic chemical vapor deposition using a seed layer  

Microsoft Academic Search

An epitaxially aligned ZnO nano-seed layer was used to improve the microstructure and crystal alignment in metalorganic chemical vapor deposited ZnO films on Al2O3 (0001) substrates. Comparative investigations were performed on the properties of the ZnO films grown with and without the seed layer. The ZnO film grown directly on the substrate without applying the seed layer shows an irregular,

Jae Young Park; Dong Ju Lee; Byung-Teak Lee; Jong Ha Moon; Sang Sub Kim

2005-01-01

60

Improvement in microstructure and crystal alignment of ZnO films grown by metalorganic chemical vapor deposition using a seed layer  

Microsoft Academic Search

An epitaxially aligned ZnO nano-seed layer was used to improve the microstructure and crystal alignment in metalorganic chemical vapor deposited ZnO films on Al2O3 (0 0 0 1) substrates. Comparative investigations were performed on the properties of the ZnO films grown with and without the seed layer. The ZnO film grown directly on the substrate without applying the seed layer

Jae Young Park; Dong Ju Lee; Byung-Teak Lee; Jong Ha Moon; Sang Sub Kim

2005-01-01

61

Electrical and optical properties of ZnO bulk crystals with and without lithium grown by the hydrothermal technique  

NASA Astrophysics Data System (ADS)

Lithium is usually added into the solution to improve ZnO hydrothermal growth; however, lithium doping affects the properties of the resulting crystals. Optical and electrical properties of hydrothermal ZnO bulk crystals without lithium, have been studied by photoluminescence and Hall-effect measurements. High quality ZnO crystals without lithium were grown in H2O/D2O and in NH3-H2O solutions. The crystals grown from H2O/D2O are conductive with resistivities of 0.6-0.7 ?cm and mobilities of ~ 100 cm2/Vs, while lithium doped ZnO crystals typically have resistivities of ~ 103?-cm and mobilities of ~ 200 cm2/Vs, but can be varied from dozens to 1010 ?-cm depending on lithium concentration. Lithium-free but nitrogen doped crystals grown in NH3-H2O solution have resistivities of 1×100 ?-cm and sometimes show p-type conduction; the resistivity increases to ~ 1×108 ?-cm after annealing at 600° C in air. Lithium and nitrogen co-doped ZnO crystals have resistivities of 108-1012 ?-cm and are semi-insulating after annealling. Electronic irradiation also increases the ZnO resistivity. For lithium-doped samples, a 3.357 eV peak can be seen in the photoluminescence spectra. This is close to the donor-exciton peaks in indium-doped ZnO where 3.3586 eV and 3.357 eV were found on the C+ and C- faces, respectively. More studies are needed to identify lithium-related complexes (defects).

Wang, Buguo; Claflin, Bruce; Callahan, Michael; Fang, Z.-.; Look, David

2014-03-01

62

Growth of high temperature superconducting single crystals  

Microsoft Academic Search

YBa2-xSrxCu3O7-y and YBa2Cu3O7 high-Tc superconducting single crystal up to 2.5×2×1 mm having orthorhombic lattices and transition temperatures of 84 and 94 K, respectively, have been grown. Conductivity anisotropy has been confirmed. The grown single crystals exhibit superconducting properties even without additional thermal treatment.

A. P. Voronov; V. M. Dmitriev; M. B. Kosmyna; S. F. Prokopovich; V. P. Seminozhenko

1988-01-01

63

Ames Lab 101: Single Crystal Growth  

SciTech Connect

Ames Laboratory scientist Deborah Schlagel talks about the Lab's research in growing single crystals of various metals and alloys. The single crystal samples are vital to researchers' understanding of the characteristics of a materials and what gives these materials their particular properties.

Schlagel, Deborah

2013-09-27

64

Ultraprecision diamond turning of aluminium single crystals  

Microsoft Academic Search

Ultraprecision diamond turning is an important technology to generate a high surface finish in precision components and optics. In this paper, the diamond turning of aluminium single crystal rods with crystallographic axes normal to , and is analysed. The effect of the crystallographic anisotropy on the machining of these single crystals is investigated in the light of the mechanics of

S. To; W. B. Lee; C. Y. Chan

1997-01-01

65

Single crystal growth of actinide compounds  

Microsoft Academic Search

During recent years, the importance of solid state actinide research has been increasingly recognized. Further progress in actinide solid state physics depends on the availability of pure and perfect single crystals. Actinide compounds have large magnetic anisotropy with anisotropy fields of 8 × 107 A.m-1 or higher. Investigation of the mechanism responsible for such unique behaviour requires large single crystals

J. C. Spirlet; W. Müller; J. van Audenhove

1985-01-01

66

Ames Lab 101: Single Crystal Growth  

ScienceCinema

Ames Laboratory scientist Deborah Schlagel talks about the Lab's research in growing single crystals of various metals and alloys. The single crystal samples are vital to researchers' understanding of the characteristics of a materials and what gives these materials their particular properties.

Schlagel, Deborah

2014-06-04

67

Protein Single Crystal Growth under Microgravity  

NASA Astrophysics Data System (ADS)

The preparation of suitably large protein single crystals is essentially the rate-determining step of protein x-ray structure determinations. Attempts to produce single crystals with two model compounds--? -galactosidase and lysozyme--under conditions of microgravity were successful. Crystals formed by salting out from solutions kept free of convection were 27 and 1000 times larger in volume, respectively, than those produced in the same apparatus but exposed to terrestrial gravitation.

Littke, Walter; John, Christina

1984-07-01

68

Ferromagnetism in cobalt-implanted ZnO D. P. Norton,a)  

E-print Network

November 2003 The magnetic and structural properties of cobalt-implanted ZnO single crystals are reported in single-crystal Al2O3 .23­28 In this letter, we report on the magnetic and structural properties of bulk results show that the nanocrystals are epitaxial with respect to the ZnO host matrix. The magnetic

Pennycook, Steve

69

Exciton recombination dynamics in single ZnO tetrapods  

SciTech Connect

We present the optical properties of individual ZnO tetrapods as a function of excitation power and temperature by time-integrated and time-resolved spectroscopy. At 10K, we identify the different excitonic transitions by both their characteristic energy and their excitation power dependence. When we increase the tetrapod temperature we observe that the emission intensity decrease and occur a red shift of the emission energies. Our time-resolved studies confirm the predominance of the radiative recombination at low temperatures (< 45 K). Increasing the temperature opens up the non-radiative channels, which are evidenced by a much faster decay time.

Fernandes-Silva, Lígia C. [Departamento de Física de Materiales, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Martín, Maria D.; Meulen, Herko P. van der; Calleja, José M.; Viña, Luis [Departamento de Física de Materiales, Universidad Autónoma de Madrid, E-28049 Madrid, Spain and Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Klopotowski, Lukasz [Polish Academy of Sciences, Institute of Physics, 02-668 Warsaw (Poland)

2013-12-04

70

Homojunction p-n photodiodes based on As-doped single ZnO nanowire  

NASA Astrophysics Data System (ADS)

Photovoltaic device was successfully grown solely based on the single ZnO p-n homojunction nanowire. The ZnO nanowire p-n diode consists of an as-grown n-type segment and an in-situ arsenic doped p-type segment. This p-n homojunction acts as a good photovoltaic cell, producing a photocurrent almost 45 times larger than the dark current under reverse-biased condition. Our results demonstrate that present ZnO p-n homojunction nanowire can be used as a self-powered ultraviolet photodetector as well as a photovoltaic cell, which can also be used as an ultralow electrical power source for nano-scale electronic, optoelectronic, and medical devices.

Cho, H. D.; Zakirov, A. S.; Yuldashev, Sh. U.; Ahn, C. W.; Yeo, Y. K.; Kang, Ð.¢. W.

2013-12-01

71

Homojunction p-n photodiodes based on As-doped single ZnO nanowire  

SciTech Connect

Photovoltaic device was successfully grown solely based on the single ZnO p-n homojunction nanowire. The ZnO nanowire p-n diode consists of an as-grown n-type segment and an in-situ arsenic doped p-type segment. This p-n homojunction acts as a good photovoltaic cell, producing a photocurrent almost 45 times larger than the dark current under reverse-biased condition. Our results demonstrate that present ZnO p-n homojunction nanowire can be used as a self-powered ultraviolet photodetector as well as a photovoltaic cell, which can also be used as an ultralow electrical power source for nano-scale electronic, optoelectronic, and medical devices.

Cho, H. D.; Zakirov, A. S.; Yuldashev, Sh. U.; Kang, T. W. [Quantum-Functional Semiconductor Research Center, Dongguk Univ.-Seoul, Seoul 100-715 (Korea, Republic of); Ahn, C. W. [Nano-materials Lab. National Nanofab Center at KAIST, 335 Gwahangno, Daejeon 305-806 (Korea, Republic of); Yeo, Y. K. [Department of Engineering Physics, Air Force Institute of Technology,Wright-Patterson AFB, OH 45433 (United States)

2013-12-04

72

Defects in the reduced rutile single crystal  

NASA Astrophysics Data System (ADS)

In this paper, the UV-VIS optical absorption spectra of oxidized and reduced rutile single crystals are measured by means of spectrophotometer and two absorption peaks around 430 and 730 nm are found. These spectral data are analyzed by using the crystal field theory. Based on these studies, we suggest that the reduced crystal contain the defect center [Ti 3+-O v], with the oxygen vacancy (O v) on one of the nearest neighbor sites of the central Ti 3+ ion.

Lu, Tie-Cheng; Wu, Shao-Yi; Lin, Li-Bin; Zheng, Wen-Chen

2001-09-01

73

Programmable ZnO nanowire transistors using switchable polarization of ferroelectric liquid crystal  

NASA Astrophysics Data System (ADS)

We demonstrate modulations of electrical conductance and hysteresis behavior in ZnO nanowire transistors via electrically polarized switching of ferroelectric liquid crystal (FLC). After coating a nanowire channel in the transistors with FLCs, we observed large increases in channel conductance and hysteresis width, and a strong dependence of hysteresis loops on the polarization states associated with the orientation of electric dipole moments along the direction of the gate electric field. Furthermore, the reversible switching and retention characteristics provide the feasibility of creating a hybrid system with switch and memory functions.

Hong, Woong-Ki; Inn Sohn, Jung; Cha, SeungNam; Min Kim, Jong; Park, Jong-Bae; Seok Choi, Su; Coles, Harry J.; Welland, Mark E.

2013-02-01

74

Localized surface plasmon resonance enhanced ultraviolet emission and F-P lasing from single ZnO microflower  

NASA Astrophysics Data System (ADS)

In this work, monodispersed ZnO microflowers are fabricated by a vapor phase transport method, and Au nanoparticles (NPs) are directly decorated on the surface of the ZnO microflowers. The micro-photoluminescence of a single ZnO microflower demonstrates that the near band-edge emission is tremendously enhanced while the defect-related emission is completely suppressed after Au decoration. The average enhancement factor reaches up to 65 fold. The enhancement mechanism is assumed to be the electron transfer from excited Au NPs to the ZnO microflower induced by the localized surface plasmon resonance based on the time-resolved photoluminescence. The enhanced F-P lasing from a single ZnO sample is further realized.

Lin, Yi; Li, Jitao; Xu, Chunxiang; Fan, Xuemei; Wang, Baoping

2014-10-01

75

Fatigue hardening in niobium single crystals.  

NASA Technical Reports Server (NTRS)

Nb single crystals of various orientations were cyclically deformed in tension-compression under strain control. At low strain amplitudes all crystals oriented for single slip and some oriented for multiple slip showed a two stage hardening. When present, the first stage was characterized with almost no cyclic work hardening. The rate of hardening in the second stage increased with strain amplitude and the amount of secondary slip. In crystals oriented for single slip kink bands developed on their side faces during rapid hardening stage which resulted in considerable amount of asterism in Laue spots. A cyclic stress-strain curve independent of prior history was found to exist which was also independent of crystal orientation. Furthermore, this curve differed only slightly from that of polycrystalline Nb obtained from data in literature.

Doner, M.; Diprimio, J. C.; Salkovitz, E. I.

1973-01-01

76

Anisotropic Shock Propagation in Single Crystals  

SciTech Connect

Most single-crystal shock experiments have been performed in high-symmetry directions while the nature of shock propagation in low-symmetry directions remains relatively unstudied. It is well known that small-amplitude, linear acoustic waves propagating in low-symmetry directions can focus and/or form caustics (Wolfe, 1995). In this report we provide evidence for similar focusing behavior in nonlinear (shock) waves propagating in single crystals of silicon and diamond. Using intense lasers, we have driven non-planar (divergent geometry) shock waves through single-crystals of silicon or diamond and into an isotropic backing plate. On recovery of the backing plates we observe a depression showing evidence of anisotropic plastic strain with well-defined crystallographic registration. We observe 4-, 2-, and 3-fold symmetric impressions for [100], [110], and [111] oriented crystals respectively.

Eggert, J; Hicks, D; Celliers, P; Bradley, D; Cox, J; Unites, W; Collins, G; McWilliams, R; Jeanloz, R; Bruygoo, S; Loubeyre, P

2005-05-26

77

Performance of Single Crystal Niobium Cavities  

SciTech Connect

We have fabricated and tested a total of six single cell niobium cavities, made from single crystal, high purity niobium. Two of the three cavities of the TESLA shape (1300 MHz) were made from Heraeus niobium by extending a smaller single crystal by rolling and annealing steps; the third cavity was made by spinning from CBMM material. The three other cavities of the scaled "Low Loss" (LL) shape (two) and "High Gradient" (HG) shape (one) resonated at 2.3 GHz and were fabricated from "as received" single crystals, both from Heraeus and CBMM niobium. After appropriate surface treatments by buffered chemical polishing and electropolishing most cavities performed quite nicely and peak surface magnetic fields of ~ 160 mT or above corresponding to accelerating gradients between 38 MV/m and 45 MV/m were reached. This paper reports about the performance of these cavities.

Kneisel, Peter; Ciovati, Gianluigi; Singer, Waldemar; Singer, Xenia; Reschke, Detlef; Brinkmann, A.

2008-07-01

78

Characterization of zinc selenide single crystals  

NASA Technical Reports Server (NTRS)

ZnSe single crystals of high quality and low impurity levels are desired for use as substrates in optoelectronic devices. This is especially true when the device requires the formation of homoepitaxial layers. While ZnSe is commercially available, it is at present extremely expensive due to the difficulty of growing single crystal boules with low impurity content and the resultant low yields. Many researchers have found it necessary to heat treat the crystals in liquid Zn in order to remove the impurities, lower the resistivity and activate the photoluminescence at room temperature. The physical vapor transport method (PVT) has been successfully used at MSFC to grow many single crystals of II-VI semiconducting materials including ZnSe. The main goal at NASA has been to try to establish the effect of gravity on the growth parameters. To this effect, crystals have been grown vertically upwards or horizontally. Both (111) and (110) oriented ZnSe crystals have been obtained via unseeded PVT growth. Preliminary characterization of the horizontally grown crystals has revealed that Cu is a major impurity and that the low temperature photoluminescence spectra is dominated by the copper peak. The ratio of the copper peak to the free exciton peak is being used to determine variations in composition throughout the crystal. It was the intent of this project to map the copper composition of various crystals via photoluminescence first, then measure their electrical resistivity and capacitance as a function of frequency before proceeding with a heat treatment designed to remove the copper impurities. However, equipment difficulties with the photoluminescence set up, having to establish a procedure for measuring the electrical properties of the as-grown crystals and time limitations made us re-evaluate the project goals. Vertically grown samples designated as ZnSe-25 were chosen to be measured electrically since they were not expected to show as much variation in their composition through their cross-section as the horizontally grown samples.

Gerhardt, Rosario A.

1996-01-01

79

Development of single crystal filaments. Final report  

SciTech Connect

The program just completed addresses a route to a more efficient longer-lasting electric light bulb filament. All current filaments for light bulbs are metallic in nature. They are subject to embrittlement with age (large grain growth) and relatively high vapor pressures which limits their operating temperature. There is evidence which suggests advantages to using high temperature refractory single crystal fibers as a filament for a light bulb. These refractory materials may include materials such as hafnium or tantalum carbide which have melting points about 500{degrees}C higher than tungsten. Another advantage is that single crystal fibers have a very high degree of crystalline perfection with very few voids and dislocations. Without these imperfections, the atomic mobility at high temperatures is highly restricted. Thus single crystal fibers are very stable at high temperature and will last longer. The efficiencies result from running these single crystal ceramic fiber filaments at higher temperatures and the higher emissivity of the carbide filaments compared to tungsten. The amount of visible light is proportional to the 4the power of the temperature thus a 500{degrees}C higher operating give about a 3-fold increase in radiation in the visible range. The program accomplishments can be summarized as follows: (1) Single crystal fibers of JfC sufficient crystal quality for light bulb filament applications were made. (2) The HfC fiber furnace growth chamber, power control and data collection system was developed for the laboratory scale plant. (3) method for mounting and apparatuses for testing the single crystal fiber filaments were developed and built.

Milewski, J.V.; Shoultz, R.A.; Bourque-McConnell, M.M.

1995-04-01

80

Czochralski single crystal growth, modeling, and characterization of ilmenite  

Microsoft Academic Search

Ilmenite is a wide band gap material, and could be used for electronic applications. Since ilmenite is stoichiometric at its melting point, the single crystals are grown using Czochralski crystal growth method. Earlier research in ilmenite uses ceramic material, and smaller size single crystals. In this research large size single crystals of ilmenite are grown. To grow large size single

Jayakumar Muthusami

1998-01-01

81

Neutron detection with single crystal organic scintillators  

SciTech Connect

Detection of high-energy neutrons in the presence of gamma radiation background utilizes pulse-shape discrimination (PSD) phenomena in organics studied previously only with limited number of materials, mostly liquid scintillators and single crystal stilbene. The current paper presents the results obtained with broader varieties of luminescent organic single crystals. The studies involve experimental tools of crystal growth and material characterization in combination with the advanced computer modeling, with the final goal of better understanding the relevance between the nature of the organic materials and their PSD properties. Special consideration is given to the factors that may diminish or even completely obscure the PSD properties in scintillating crystals. Among such factors are molecular and crystallographic structures that determine exchange coupling and exciton mobility in organic materials and the impurity effect discussed on the examples of trans-stilbene, bibenzyl, 9,10-diphenylanthracene and diphenylacetylene.

Zaitseva, N; Newby, J; Hamel, S; Carman, L; Faust, M; Lordi, V; Cherepy, N; Stoeffl, W; Payne, S

2009-07-15

82

In Situ Confocal Raman Mapping Study of a Single Ti-Assisted ZnO Nanowire  

Microsoft Academic Search

In this work, we succeeded in preparing in-plane zinc oxide nanowires using a Ti-grid assisted by the chemical vapor deposition\\u000a method. Optical spatial mapping of the Confocal Raman spectra was used to investigate the phonon and geometric properties\\u000a of a single ZnO nanowire. The local optical results reveal a red shift in the non-polar E\\u000a 2 high frequency mode and

Ashish C. Gandhi; Hsuan-Jung Hung; Po-Hsun Shih; Chia-Liang Cheng; Yuan-Ron Ma; Sheng Yun Wu

2010-01-01

83

Single crystals of metal solid solutions  

NASA Technical Reports Server (NTRS)

The following definitions were sought in the research on single crystals of metal solid solutions: (1) the influence of convection and/or gravity present during crystallization on the substructure of a metal solid solution; (2) the influence of a magnetic field applied during crystallization on the substructure of a metal solid solution; and (3) requirements for a space flight experiment to verify the results. Growth conditions for the selected silver-zinc alloy system are described, along with pertinent technical and experimental details of the project.

Miller, J. F.; Austin, A. E.; Richard, N.; Griesenauer, N. M.; Moak, D. P.; Mehrabian, M. R.; Gelles, S. H.

1974-01-01

84

Growth of Ga-doped ZnO nanowires by two-step vapor phase method  

SciTech Connect

A two-step route is presented to dope Ga into ZnO nanowires and also fabricate heterostructures of Ga-doped ZnO nanowires on ZnO. The content of Ga in ZnO nanowires is about 7 at. % from energy-dispersive x-ray analysis. The single crystal Ga doped ZnO nanowires with the diameter of 40 nm and the length of 300-500 nm are well aligned on the ZnO bulk. The growth direction is along [001]. Raman scattering analysis shows that the doping of Ga into ZnO nanowires depresses Raman E{sub 1L} mode of ZnO, manifesting that Ga sites in ZnO are Zn sites (Ga{sub Zn}). The formation mechanism of Zn{sub 1-x}Ga{sub x}O nanowires/ZnO heterostructures is proposed.

Xu, C.; Kim, M.; Chun, J.; Kim, D. [Physics Department and Electron Spin Science Center, Pohang University of Science and Technology, San 31, Hyoja-Dong, Namku, Kyungbuk 790-784 (Korea, Republic of)

2005-03-28

85

An ultrahigh vacuum single crystal adsorption microcalorimeter  

NASA Astrophysics Data System (ADS)

The design of an ultrahigh vacuum microcalorimeter enabling calorimetric heats of adsorption to be obtained on single crystal surfaces as a detailed function of coverage is discussed. The system comprises a pulsed supersonic molecular beam source, an ultrathin metal single crystal, and remote infrared temperature sensing. Sticking probabilities and coverages are determined pulsewise by the King and Wells method, and heat capacity calibrations are conducted in situ by laser beam pulsing. Results for CO and O2 on Ni{110} demonstrate excellent sensitivity to adsorption of ˜10-13 moles of gas (˜0.01 monolayer). The heat capacity of the calorimeter is 4.2 ?J K-1.

Borroni-Bird, C. E.; King, D. A.

1991-09-01

86

NEXAFS and XMCD studies of single-phase Co doped ZnO thin films.  

PubMed

A study of the electronic structure and magnetic properties of Co doped ZnO thin films synthesized by ion implantation followed by swift heavy ion irradiation is presented using near-edge x-ray absorption fine structure (NEXAFS) and x-ray magnetic circular dichroism (XMCD) measurements. The spectral features of NEXAFS at the Co L(3,2)-edge show entirely different features than that of metallic Co clusters and other Co oxide phases. The atomic multiplet calculations are performed to determine the valence state, symmetry and the crystal field splitting, which show that in the present system Co is in the 2+ state and substituted at the Zn site in tetrahedral symmetry with 10Dq = -0.6 eV. The ferromagnetic character of these materials is confirmed through XMCD spectra. To rule out the possibilities of defect induced magnetism, the results are compared with Ar annealed and Ar-ion implanted pure ZnO thin films. The presented results confirm the substitution of Co at the Zn site in the ZnO matrix, which is responsible for room temperature ferromagnetism. PMID:21825451

Singh, Abhinav Pratap; Kumar, Ravi; Thakur, P; Brookes, N B; Chae, K H; Choi, W K

2009-05-01

87

Charge transport in single crystal organic semiconductors  

NASA Astrophysics Data System (ADS)

Organic electronics have engendered substantial interest in printable, flexible and large-area applications thanks to their low fabrication cost per unit area, chemical versatility and solution processability. Nevertheless, fundamental understanding of device physics and charge transport in organic semiconductors lag somewhat behind, partially due to ubiquitous defects and impurities in technologically useful organic thin films, formed either by vacuum deposition or solution process. In this context, single-crystalline organic semiconductors, or organic single crystals, have therefore provided the ideal system for transport studies. Organic single crystals are characterized by their high chemical purity and outstanding structural perfection, leading to significantly improved electrical properties compared with their thin-film counterparts. Importantly, the surfaces of the crystals are molecularly flat, an ideal condition for building field-effect transistors (FETs). Progress in organic single crystal FETs (SC-FETs) is tremendous during the past decade. Large mobilities ~ 1 - 10 cm2V-1s-1 have been achieved in several crystals, allowing a wide range of electrical, optical, mechanical, structural, and theoretical studies. Several challenges still remain, however, which are the motivation of this thesis. The first challenge is to delineate the crystal structure/electrical property relationship for development of high-performance organic semiconductors. This thesis demonstrates a full spectrum of studies spanning from chemical synthesis, single crystal structure determination, quantum-chemical calculation, SC-OFET fabrication, electrical measurement, photoelectron spectroscopy characterization and extensive device optimization in a series of new rubrene derivatives, motivated by the fact that rubrene is a benchmark semiconductor with record hole mobility ~ 20 cm2V-1s-1. With successful preservation of beneficial pi-stacking structures, these rubrene derivatives form high-quality single crystals and exhibit large ambipolar mobilities. Nevertheless, a gap remains between the theory-predicted properties and this preliminary result, which itself is another fundamental challenge. This is further addressed by appropriate device optimization, and in particular, contact engineering approach to improve the charge injection efficiencies. The outcome is not only the achievement of new record ambipolar mobilities in one of the derivatives, namely, 4.8 cm2V-1s-1 for holes and 4.2 cm2V-1s-1 for electrons, but also provides a comprehensive and rational pathway towards the realization of high-performance organic semiconductors. Efforts to achieve high mobility in other organic single crystals are also presented. The second challenge is tuning the transition of electronic ground states, i.e., semiconducting, metallic and superconducting, in organic single crystals. Despite an active research area since four decades ago, we aim to employ the electrostatic approach instead of chemical doping for reversible and systematic control of charge densities within the same crystal. The key material in this study is the high-capacitance electrolyte, such as ionic liquids (ILs), whose specific capacitance reaches ~ ?F/cm2, thus allowing accumulation of charge carrier above 1013 cm-2 when novel transport phenomena, such as insulator-metal transition and superconductivity, are likely to occur. This thesis addresses the electrical characterization, device physics and transport physics in electrolyte-gated single crystals, in the device architecture known as the electrical double layer transistor (EDLT). A detailed characterization scheme is first demonstrated for accurate determination of several key parameters, e.g., carrier mobility and charge density, in organic EDLTs. Further studies, combining both experiments and theories, are devoted to understanding the unusual charge density dependent channel conductivity and gate-to-channel capacitance behaviors. In addition, Hall effect and temperature-dependent measurements are employed for more in-depth unders

Xie, Wei

88

Microhardness studies of sulfamic acid single crystal  

NASA Astrophysics Data System (ADS)

Vicker's microhardness study of (100), (010) and (001) faces of a non-linear optical crystal sulfamic acid have been reported. Single crystals of sulfamic acid have been grown by slow evaporation method. The load dependence of the Vickers microhardness of sulfamic acid crystal were investigated and analyzed from the stand point of various theoretical models. Crystal samples in a, b and c-axes exhibit reverse indentation effect which is best described by Meyer's law, Hays-Kendall's approach and proportional specimen resistance (PSR) models. The negative values of load dependent quantities in Hays-Kendall's approach and PSR model suggest that the origin of indentation size effect is associated with the process of relaxation of indentation stresses.

Santhosh Kumar, A.; Joseph, Cyriac; Paulose, Reshmi; R, Rajesh; Joseph, Georgekutty; Louis, Godfrey

2015-02-01

89

Single crystal articles having reduced anisotropy  

SciTech Connect

This paper describes a method of modifying the nickel base superalloy composition Ni-5Co-10Cr-4W-5Al-1.5Ti-12Ta such that single crystal castings made therefrom have reduced anisotropy. It comprises: adding an effective amount of hafnium to the alloy composition.

Shah, D.M.; Duhl, D.N.

1990-04-10

90

Imaging Single ZnO Vertical Nanowire Laser Cavities using UV-Laser Scanning Confocal Microscopy  

SciTech Connect

We report the fabrication and optical characterization of individual ZnO vertical nanowire laser cavities. Dilute nanowire arrays with interwire spacing>10 ?m were produced by a modified chemical vapor transport (CVT) method yielding an ideal platform for single nanowire imaging and spectroscopy. Lasing characteristics of a single vertical nanowire are presented, as well as high-resolution photoluminescence imaging by UV-laser scanning confocal microscopy. In addition, three-dimensional (3D) mapping of the photoluminescence emission performed in both planar and vertical dimensions demonstrates height-selective imaging useful for vertical nanowires and heteronanostructures emerging in the field of optoelectronics and nanophotonics.

Gargas, D.J.; Toimil-Molares, M.E.; Yang, P.

2008-11-17

91

Physical model construction for electrical anisotropy of single crystal zinc oxide micro/nanobelt using finite element method  

SciTech Connect

Based on conductivity characterization of single crystal zinc oxide (ZnO) micro/nanobelt (MB/NB), we further investigate the physical mechanism of nonlinear intrinsic resistance-length characteristic using finite element method. By taking the same parameters used in experiment, a model of nonlinear anisotropic resistance change with single crystal MB/NB has been deduced, which matched the experiment characterization well. The nonlinear resistance-length comes from the different electron moving speed in various crystal planes. As the direct outcome, crystallography of the anisotropic semiconducting MB/NB has been identified, which could serve as a simple but effective method to identify crystal growth direction of single crystal semiconducting or conductive nanomaterial.

Yu, Guangbin [The Higher Educational Key Laboratory for Measuring and Control Technology and Instrumentations of Heilongjiang Province, Harbin University of Science and Technology, Harbin 150080 (China); Tang, Chaolong [Department of Metallurgical and Materials Engineering, Center for Materials for Information Technology (MINT), University of Alabama, Tuscaloosa, Alabama 35487 (United States); Song, Jinhui, E-mail: jhsong@eng.ua.edu, E-mail: wqlu@cigit.ac.cn [The Higher Educational Key Laboratory for Measuring and Control Technology and Instrumentations of Heilongjiang Province, Harbin University of Science and Technology, Harbin 150080 (China); Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714 (China); Department of Metallurgical and Materials Engineering, Center for Materials for Information Technology (MINT), University of Alabama, Tuscaloosa, Alabama 35487 (United States); Lu, Wenqiang, E-mail: jhsong@eng.ua.edu, E-mail: wqlu@cigit.ac.cn [Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714 (China)

2014-04-14

92

Synthesis of PS colloidal crystal templates and ordered ZnO porous thin films by dip-drawing method  

NASA Astrophysics Data System (ADS)

Polystyrene spheres (PS) were synthesized by an emulsifier-free emulsion polymerization technique and the PS colloidal crystal templates were assembled orderly on clean glass substrates by dip-drawing method from emulsion of PS. Porous ZnO thin films were prepared by filling the ZnO sol into the spaces among the close-packed PS templates and then annealing to remove the PS templates. The effects of ZnO precursor sol concentration and dipping time in sol on the porous structure of the thin films were studied. The results showed an ordered ZnO porous thin film with designed pore size that depended on the sol concentration and PS size could be obtained. And the shrinkage of pore diameter was about 30-43%. X-ray diffraction (XRD) spectra indicated the thin film was wurtzite structure. The transmittance spectrum showed that optical transmittance decreased with the decrease of wavelength, but kept above 80% optical transmittances beyond the wavelength of 550 nm. Optical band gap of the porous ZnO thin film (fired at 500 °C) was 3.22 eV.

Liu, Zhifeng; Jin, Zhengguo; Li, Wei; Qiu, Jijun; Zhao, Juan; Liu, Xiaoxin

2006-05-01

93

An enzyme immobilization platform for biosensor designs of direct electrochemistry using flower-like ZnO crystals and nano-sized gold particles  

Microsoft Academic Search

A novel immobilization platform has been developed for fabricating enzyme-based biosensors of direct electrochemistry by synergistically using ZnO crystals and nano-sized gold particles (Nanogold). ZnO crystals were synthesized with flower-like structure to be casted on the electrode mediated by chitosan so as to provide larger surface area for anchoring horseradish peroxidase (HRP)-labeled Nanogold. The resultant enzyme biosensor was tested for

Yuwei Zhang; Yun Zhang; Hua Wang; Bani Yan; Guoli Shen; Ruqin Yu

2009-01-01

94

Pressurized melt growth of ZnO boules  

NASA Astrophysics Data System (ADS)

Single crystal zinc oxide is a wide band gap semiconductor with great potential for a variety of commercial applications including substrates, UV photodetectors, acoustic wave devices, light emitting diodes, laser diodes, and high frequency electronic devices. ZnO is unique in that it has a very high exciton binding energy (60 meV) enabling stability at higher device operating temperatures, and it is highly resistant to radiation damage compared even to GaN. Bulk growth of ZnO single crystals is being conducted using the following primary methods: hydrothermal solution growth, seeded sublimation growth, and pressurized melt growth. Cermet, Inc. has employed the pressurized melt growth approach with much success. ZnO dissociates upon heating into a defective ZnO1-x structure, which is addressed by providing an overpressure of oxygen in the growth environment. Single crystals nucleate and grow from the stoichiometric ZnO melt, which is contained in a thin layer of cooled, polycrystalline ZnO, eliminating crucible-introduced impurities. From these large ingots, high quality (~104 defects cm-2, linewidths as low as 49 arcsec), high purity ZnO crystals have been crystallized, oriented, and shaped into round or square boules and eventually processed into epitaxial-ready substrates. The pressurized melt growth approach is highly scalable and can accommodate high growth rates (up to 1 cm h-1), which are two criteria that are appealing to industrial productioin of high quality substrates.

Nause, J.; Nemeth, B.

2005-04-01

95

Transverse acoustic actuation of Ni-Mn-Ga single crystals  

E-print Network

Two methods for the transverse acoustic actuation of {110}-cut Ni-Mn-Ga single crystals are discussed. In this actuation mode, crystals are used that have the {110}- type twinning planes parallel to the base of the crystal. ...

Simon, Jesse Matthew

2007-01-01

96

Selective area growth of well-ordered ZnO nanowire arrays with controllable polarity.  

PubMed

Controlling the polarity of ZnO nanowires in addition to the uniformity of their structural morphology in terms of position, vertical alignment, length, diameter, and period is still a technological and fundamental challenge for real-world device integration. In order to tackle this issue, we specifically combine the selective area growth on prepatterned polar c-plane ZnO single crystals using electron-beam lithography, with the chemical bath deposition. The formation of ZnO nanowires with a highly controlled structural morphology and a high optical quality is demonstrated over large surface areas on both polar c-plane ZnO single crystals. Importantly, the polarity of ZnO nanowires can be switched from O- to Zn-polar, depending on the polarity of prepatterned ZnO single crystals. This indicates that no fundamental limitations prevent ZnO nanowires from being O- or Zn-polar. In contrast to their catalyst-free growth by vapor-phase deposition techniques, the possibility to control the polarity of ZnO nanowires grown in solution is remarkable, further showing the strong interest in the chemical bath deposition and hydrothermal techniques. The single O- and Zn-polar ZnO nanowires additionally exhibit distinctive cathodoluminescence spectra. To a broader extent, these findings open the way to the ultimate fabrication of well-organized heterostructures made from ZnO nanowires, which can act as building blocks in a large number of electronic, optoelectronic, and photovoltaic devices. PMID:24720628

Consonni, Vincent; Sarigiannidou, Eirini; Appert, Estelle; Bocheux, Amandine; Guillemin, Sophie; Donatini, Fabrice; Robin, Ivan-Christophe; Kioseoglou, Joseph; Robaut, Florence

2014-05-27

97

SSME single-crystal turbine blade dynamics  

NASA Technical Reports Server (NTRS)

A study was performrd to determine the dynamic characteristics of the Space Shuttle Main Engine high pressure fuel turbopump (HPFTP) blades made of single crystal (SC) material. The first and second stage drive turbine blades of HPFTP were examined. The nonrotating natural frequencies were determined experimentally and analytically. The experimental results of the SC second stage blade were used to verify the analytical procedures. The study examined the SC first stage blade natural frequencies with respect to crystal orientation at typical operating conditions. The SC blade dynamic response was predicted to be less than the directionally solidified base. Crystal axis orientation optimization indicated that the third mode interference will exist in any SC orientation.

Moss, Larry A.

1988-01-01

98

Shock Hugoniot of Single Crystal Copper  

SciTech Connect

The shock Hugoniot of single crystal copper is reported for stresses below 66 GPa. Symmetric impact experiments were used to measure the Hugoniots of three different crystal orientations of copper, [100], [110], [111]. The photonic doppler velocimetry (PDV) diagnostic was adapted into a very high precision time of arrival detector for these experiments. The measured Hugoniots along all three crystal directions were nearly identical to the experimental Hugoniot for polycrystalline Cu. The predicted orientation dependence of the Hugoniot from MD calculations was not observed. At the lowest stresses, the sound speed in Cu was extracted from the PDV data. The measured sound speeds are in agreement with values calculated from the elastic constants for Cu.

Chau, R; Stolken, J; Asoka-Kumar, P; Kumar, M; Holmes, N C

2009-08-28

99

Single crystal growth of SiC and electronic devices  

Microsoft Academic Search

Single crystal growth of silicon carbide (Sic) and application to electronic devices are reviewed. In the crystal growth, bulk and homoepitaxial growth are picked up, and crystal quality and electrical properties are described. For electronic devices, various device processes are argued. Power devices based on Sic are stressed in this review.Bulk single crystals of SiC can be grown by a

Akira Itoh; Hiroyuki Matsunami

1997-01-01

100

Optimizing Scale Adhesion on Single Crystal Superalloys  

NASA Technical Reports Server (NTRS)

To improve scale adhesion, single crystal superalloys have been desulfurized to levels below 1 ppmw by hydrogen annealing. A transition to fully adherent behavior has been shown to occur at a sulfur level of about 0.2 ppmw, as demonstrated for PWA 1480, PWA 1484, and Rene N5 single crystal superalloys in 1100-1150 C cyclic oxidation tests up to 2000 h. Small additions of yttrium (15 ppmw) also have been effective in producing adhesion for sulfur contents of about 5 ppmw. Thus the critical Y/S ratio required for adhesion was on the order of 3-to-1 by weight (1-to-1 atomic), in agreement with values estimated from solubility products for yttrium sulfides. While hydrogen annealing greatly improved an undoped alloy, yielding <= 0.01 ppmw S, it also produced benefits for Y-doped alloys without measurably reducing the sulfur content.

Smialek, James L.; Pint, Bruce A.

2000-01-01

101

Unidirectional seeded single crystal growth from solution of benzophenone  

Microsoft Academic Search

A novel crystal growth method has been established for the growth of single crystal with selective orientation at room temperature. Using volatile solvent, the saturated solution containing the material to be crystallized was taken in an ampoule and allowed to crystallize by slow solvent evaporation assisted with a ring heater. The orientation of the growing crystal was imposed by means

K. Sankaranarayanan; P. Ramasamy

2005-01-01

102

Plasma enhanced multistate storage capability of single ZnO nanowire based memory  

NASA Astrophysics Data System (ADS)

Multiple-state storage (MSS) is common for resistive random access memory, but the effects of plasma treatment on the MSS and the switching properties have been scarcely investigated. We have demonstrated a stable four-state storage capability of single zinc oxide nanowire (ZnO NW) treated by argon plasma. The electrical switching is attributed to the electron trapping and detrapping from the oxygen vacancies (Vos). The MSS relates to the electrical-thermal induced distribution of the Vos which determines electron transport behavior to show different resistance states. Additionally, programming (set and reset) voltages decrease with plasma treatment due to the thickness modulation of the interface barrier.

Lai, Yunfeng; Xin, Pucong; Cheng, Shuying; Yu, Jinling; Zheng, Qiao

2015-01-01

103

Single crystal growth of organic photoconductors: phthalocyanine  

Microsoft Academic Search

An effective method of growing single crystals of organic photoconductors such as phthalocyanine in the presence of doping\\u000a impurity such as iodine by vacuum sublimation is discussed in this paper. This method is very useful especially when an organic\\u000a material does not have a melting point but decomposes above a particular temperature. So far, doping has been done by exposing

Francis P Xavier; George J Goldsmith

1996-01-01

104

A nanoporous two-dimensional polymer by single-crystal-to-single-crystal photopolymerization  

NASA Astrophysics Data System (ADS)

In contrast to the wide number and variety of available synthetic routes to conventional linear polymers, the synthesis of two-dimensional polymers and unambiguous proof of their structure remains a challenge. Two-dimensional polymers—single-layered polymers that form a tiling network in exactly two dimensions—have potential for use in nanoporous membranes and other applications. Here, we report the preparation of a fluorinated hydrocarbon two-dimensional polymer that can be exfoliated into single sheets, and its characterization by high-resolution single-crystal X-ray diffraction analysis. The procedure involves three steps: preorganization in a lamellar crystal of a rigid monomer bearing three photoreactive arms, photopolymerization of the crystalline monomers by [4?+?4] cycloaddition, and isolation of individual two-dimensional polymer sheets. This polymer is a molecularly thin (~1?nm) material that combines precisely defined monodisperse pores of ~9?Å with a high pore density of 3.3?×?1013 pores?cm-2. Atomic-resolution single-crystal X-ray structures of the monomer, an intermediate dimer and the final crystalline two-dimensional polymer were obtained and prove the single-crystal-to-single-crystal nature and molecular precision of the two-dimensional photopolymerization.

Kissel, Patrick; Murray, Daniel J.; Wulftange, William J.; Catalano, Vincent J.; King, Benjamin T.

2014-09-01

105

Substrate Preparations in Epitaxial ZnO Film Growth  

NASA Technical Reports Server (NTRS)

Epitaxial ZnO films were grown on the two polar surfaces (O-face and Zn-face) of (0001) ZnO single crystal substrates using off-axis magnetron sputtering deposition. Annealing-temperature dependence of ZnO substrates was studied. ZnO films grown on sapphire substrates have also been investigated for comparison purposes and the annealing temperature of A1203 substrates is 1000 C. Substrates and films were characterized using photoluminescence (PL) spectrum, x-ray diffraction, atomic force microscope, energy dispersive spectrum, and electric transport measurements. It has been found that the ZnO film properties were different when films were grown on the two polarity surfaces of ZnO substrates and the A1203 substrates. An interesting result shows that high temperature annealing of ZnO single crystals will improve the surface structure on the O-face surface rather than the opposite surface. The measurements of homoepitaxial ZnO films indicate that the O-terminated surface is better for ZnO epitaxial film growth.

Zhu, Shen; Su, C.-H.; Lehoczky, S. L.; Harris, M. T.; Callahan, M. J.; George, M. A.

2000-01-01

106

A spontaneous single-crystal-to-single-crystal polymorphic transition involving major packing changes.  

PubMed

4,6-O-Benzylidene-?-d-galactosyl azide crystallizes into two morphologically distinct polymorphs depending on the solvent. While the ? form appeared as thick rods and crystallized in P21 space group (monoclinic) with a single molecule in the asymmetric unit, the ? form appeared as thin fibers and crystallized in P1 space group (triclinic) with six molecules in the asymmetric unit. Both the polymorphs appeared to melt at the same temperature. Differential scanning calorimetry analysis revealed that polymorph ? irreversibly undergoes endothermic transition to polymorph ? much before its melting point, which accounts for their apparently same melting points. Variable temperature powder X-ray diffraction (PXRD) experiments provided additional proof for the polymorphic transition. Single-crystal XRD analyses revealed that ? to ? transition occurs in a single-crystal-to-single-crystal (SCSC) fashion not only under thermal activation but also spontaneously at room temperature. The SCSC nature of this transition is surprising in light of the large structural differences between these polymorphs. Polarized light microscopy experiments not only proved the SCSC nature of the transition but also suggested nucleation and growth mechanism for the transition. PMID:25585170

Krishnan, Baiju P; Sureshan, Kana M

2015-02-01

107

Single phase formation of Co-implanted ZnO thin films by swift heavy ion irradiation: Optical studies  

SciTech Connect

Low temperature photoluminescence and optical absorption studies on 200 MeV Ag{sup +15} ion irradiated Co-implanted ZnO thin films were studied. The Co clusters present in as implanted samples were observed to be dissolved using 200 MeV Ag{sup +15} ion irradiation with a fluence of 1x10{sup 12} ions/cm{sup 2}. The photoluminescence spectrum of pure ZnO thin film was characterized by the I{sub 4} peak due to the neutral donor bound excitons and the broad green emission. The Co-doped ZnO films show three sharp levels and two shoulders corresponding to 3t{sub 2g} and 2e{sub g} levels of crystal field splitted Co d orbitals, respectively. The ultraviolet-visible absorption spectroscopy also shows the systematic variation of band gap after 200 MeV Ag{sup +15} ion irradiation.

Kumar, Ravi; Singh, Fouran; Angadi, Basavaraj; Choi, Ji-Won; Choi, Won-Kook; Jeong, Kwangho; Song, Jong-Han; Khan, M. Wasi; Srivastava, J. P.; Kumar, Ajay; Tandon, R. P. [Materials Science Division, Inter-University Accelerator Centre, P.O. Box 10502, Aruna Asaf Ali Marg, New Delhi 110067 (India); Thin Films Materials Research Center, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul 130-650 (Korea, Republic of); Institute of Physics and Applied Physics, Yonsei University, Shincheon-dong 134, Seoul 120-749 (Korea, Republic of); Advanced Analysis Center, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul 130-650 (Korea, Republic of); Department of Physics, Aligarh Muslim University, Aligarh 202002 (India); Department of Physics and Astrophysics, Delhi University, Delhi 110007 (India)

2006-12-01

108

Polycrystalline ZnO and Mn-doped ZnO nanorod arrays with variable dopant content via a template based synthesis from Zn(II) and Mn(II) Schiff base type single source molecular precursors  

NASA Astrophysics Data System (ADS)

The synthesis and full characterisation of pure and Mn-doped polycrystalline zinc oxide nanorods with tailored dopant content are obtained via a single source molecular precursor approach using two Schiff base type coordination compounds is reported. The infiltration of precursor solutions into the cylindrical pores of a polycarbonate template and their thermal conversion into a ceramic green body followed by dissolution of the template gives the desired ZnO and Mn-doped ZnO nanomaterial as compact rods. The ZnO nanorods have a mean diameter between 170 and 180 nm or 60-70 nm, depending on the template pore size employed, comprising a length of 5-6 ?m. These nanorods are composed of individual sub-5 nm ZnO nanocrystals. Exact doping of these hierarchically structured ZnO nanorods was achieved by introducing Mn(II) into the ZnO host lattice with the precursor complex Diaquo-bis[2-(meth-oxyimino)-propanoato]manganese, which allows to tailor the exact Mn(II) doping content of the ZnO rods. Investigation of the Mn-doped ZnO samples by XRD, TEM, XPS, PL and EPR, reveals that manganese occurs exclusively in its oxidation state + II and is distributed within the volume as well as on the surface of the ZnO host.

Pashchanka, Mikhail; Hoffmann, Rudolf C.; Burghaus, Olaf; Corzilius, Björn; Cherkashinin, Gennady; Schneider, Jörg J.

2011-01-01

109

Roflumilast - A reversible single-crystal to single-crystal phase transition at 50 °C  

NASA Astrophysics Data System (ADS)

Roflumilast is a selective phosphodiesterase type 4 inhibitor and is marketed under the brand names Daxas®, Daliresp® and Libertec®. A phase transition of the drug substance roflumilast was observed at 50 °C. The low temperature form, the high temperature form and the phase transition were characterised by differential scanning calorimetry, variable temperature powder X-ray diffraction and single crystal X-ray diffraction, Raman spectroscopy and solid state NMR spectroscopy. The phase transition of roflumilast at 50 °C is completely reversible, the high temperature form cannot be stabilised by quench cooling and the phase transition does not influence the quality of the active pharmaceutical ingredient (API) and the drug product. It was observed to be a single crystal to single crystal phase transition.

Viertelhaus, Martin; Holst, Hans Christof; Volz, Jürgen; Hummel, Rolf-Peter

2013-01-01

110

Electrochemical Sc 2O 3 single crystal growth  

Microsoft Academic Search

Scandium oxide single crystals were successfully grown electrochemically by applying the Sc3+ ion-conducting Sc2(MoO4)3 solid electrolyte at 1223K. The single crystal growth can be regulated by the electrolysis condition, and the crystal size can be intentionally controlled by adjusting the electrolysis period. Although the single crystal growth of such refractory oxides as Sc2O3 is considerably difficult by the conventional thermal

Toshiyuki Masui; Young Woon Kim; Nobuhito Imanaka; Gin-ya Adachi

2004-01-01

111

Chemical vapor deposition of graphene single crystals.  

PubMed

As a two-dimensional (2D) sp(2)-bonded carbon allotrope, graphene has attracted enormous interest over the past decade due to its unique properties, such as ultrahigh electron mobility, uniform broadband optical absorption and high tensile strength. In the initial research, graphene was isolated from natural graphite, and limited to small sizes and low yields. Recently developed chemical vapor deposition (CVD) techniques have emerged as an important method for the scalable production of large-size and high-quality graphene for various applications. However, CVD-derived graphene is polycrystalline and demonstrates degraded properties induced by grain boundaries. Thus, the next critical step of graphene growth relies on the synthesis of large graphene single crystals. In this Account, we first discuss graphene grain boundaries and their influence on graphene's properties. Mechanical and electrical behaviors of CVD-derived polycrystalline graphene are greatly reduced when compared to that of exfoliated graphene. We then review four representative pathways of pretreating Cu substrates to make millimeter-sized monolayer graphene grains: electrochemical polishing and high-pressure annealing of Cu substrate, adding of additional Cu enclosures, melting and resolidfying Cu substrates, and oxygen-rich Cu substrates. Due to these pretreatments, the nucleation site density on Cu substrates is greatly reduced, resulting in hexagonal-shaped graphene grains that show increased grain domain size and comparable electrical properties as to exfoliated graphene. Also, the properties of graphene can be engineered by its shape, thickness and spatial structure. Thus, we further discuss recently developed methods of making graphene grains with special spatial structures, including snowflakes, six-lobed flowers, pyramids and hexagonal graphene onion rings. The fundamental growth mechanism and practical applications of these well-shaped graphene structures should be interesting topics and deserves more attention in the near future. Following that, recent efforts in fabricating large single-crystal monolayer graphene on other metal substrates, including Ni, Pt, and Ru, are also described. The differences in growth conditions reveal different growth mechanisms on these metals. Another key challenge for graphene growth is to make graphene single crystals on insulating substrates, such as h-BN, SiO2, and ceramic. The recently developed plasma-enhanced CVD method can be used to directly synthesize graphene single crystals on h-BN substrates and is described in this Account as well. To summarize, recent research in synthesizing millimeter-sized monolayer graphene grains with different pretreatments, graphene grain shapes, metal catalysts, and substrates is reviewed. Although great advancements have been achieved in CVD synthesis of graphene single crystals, potential challenges still exist, such as the growth of wafer-sized graphene single crystals to further facilitate the fabrication of graphene-based devices, as well as a deeper understanding of graphene growth mechanisms and growth dynamics in order to make graphene grains with precisely controlled thicknesses and spatial structures. PMID:24527957

Yan, Zheng; Peng, Zhiwei; Tour, James M

2014-04-15

112

Elastic-plastic and phase transition of zinc oxide single crystal under shock compression  

NASA Astrophysics Data System (ADS)

The Hugoniot data for zinc oxide (ZnO) single crystals were measured up to 80 GPa along both the ? 11 2 ¯ 0 ? (a-axis) and ?0001? (c-axis) directions using a velocity interferometer system for any reflector and inclined-mirror method combined with a powder gun and two-stage light gas gun. The Hugoniot-elastic limits of ZnO were determined to be 10.5 and 11.5 GPa along the a- and c-axes, respectively. The wurtzite (B4) to rocksalt (B1) phase transition pressures along the a- and c-axes are 12.3 and 14.4 GPa, respectively. Shock velocity (Us) versus particle velocity (Up) relation of the final phase is given by the following relationship: Us (km/s) = 2.76 + 1.51Up (km/s). Based on the Debye-Grüneisen model and Birch-Murnaghan equation of state (EOS), we discuss the EOS of the B1 phase ZnO. The bulk modulus (K0) and its pressure derivative (K0') are estimated to be K0 = 174 GPa and K0' = 3.9, respectively.

Liu, Xun; Mashimo, Tsutomu; Li, Wei; Zhou, Xianming; Sekine, Toshimori

2015-03-01

113

Enhancement effects on excitonic photoluminescence intensity originating from misaligned crystal blocks and polycrystalline grains in a ZnO wafer  

NASA Astrophysics Data System (ADS)

We have systematically investigated a relation between excitonic photoluminescence intensity and crystal quality in a (0001)-oriented ZnO wafer. We visualize the crystal quality of a whole wafer using a circular polariscopic measurement and a reflection-type X-ray topograph measurement. The reflection-type X-ray topograph exhibits regions of grain-like patterns that result from internal strains. The circular polariscopic map shows that the internal strains induce local stresses. The ?-2 ? X-ray diffraction pattern indicates the presence of misaligned crystal blocks and polycrystalline grains. We have measured photoluminescence spectra and found that the presence of misaligned crystal blocks and polycrystalline grains leads to enhancement of the excitonic photoluminescence intensity. The present phenomenon is attributed to the suppression of exciton diffusion caused by the grain and domain boundaries that connect with the grain-like patterns in the X-ray topograph.

Takeuchi, Hideo

2013-02-01

114

Growth rate study of canavalin single crystals  

NASA Technical Reports Server (NTRS)

The dependence on supersaturation of the growth rate of single crystals of the protein canavalin is studied. In the supersaturation ranges studied, the rate-limiting step for growth is best described by a screw dislocation mechanism associated with interface attachment kinetics. Using a ln-ln plot, the growth-rate data is found to fit a predictive relationship of the form G = 0.012 x the supersaturation to the 6.66, which, together with the solubility curves, allows the growth rate to be estimated under a variety of conditions.

Demattei, R. C.; Feigelson, R. S.

1989-01-01

115

Triplet exciton dynamics in rubrene single crystals  

NASA Astrophysics Data System (ADS)

The decay of the photoluminescence excited in rubrene single crystals by picosecond pulses is measured over 7 orders of magnitude and more than 4 time decades. We identify the typical decay dynamics due to triplet-triplet interaction. We show that singlet exciton fission and triplet fusion quantum yields in rubrene are both very large, and we directly determine a triplet exciton lifetime of 100±20 ?s, which explains the delayed buildup of a large photocurrent that has been reported earlier for low excitation densities.

Ryasnyanskiy, Aleksandr; Biaggio, Ivan

2011-11-01

116

Metallisation of single crystal diamond radiation detectors  

NASA Astrophysics Data System (ADS)

Properties such as a large band gap, high thermal conductivity and resistance to radiation damage make diamond an extremely attractive candidate for detectors in next generation particle physics experiments. This paper presents our technique for metallisation of a single crystal diamond grown by chemical vapour deposition (CVD) for use as a radiation detector, suitable for operation in places such as the Large Hadron Collider. The front and back side of the diamond are metalised with aluminium and gold on top of titanium respectively, after which the diamond is mounted and read out via a charge sensitive preamplifier. The device is found to collect charge at an efficiency of 97%.

Ong, Lucas; Ganesan, Kumaravelu; Alves, Andrew; Barberio, Elisabetta

2012-10-01

117

Growth of strontium tartrate tetrahydrate single crystals in silica gels  

Microsoft Academic Search

Growth of single crystals of strontium tartrate tetrahydrate by controlled diffusion in silica gels has been narrated. In the field of material science, there is always a keen and competitive race to grow perfect single crystals with sufficient purity and perfection. Successful attempts to larger as well as more perfect crystals of SrTr are described in this paper and thus

A. R. Patel; S. K. Arora

1976-01-01

118

Electron Optical Studies of Barium Titanate Single Crystal Films  

Microsoft Academic Search

Thin single crystal films of barium titanate prepared by chemical thinning of single crystal plates are studied by transmission electron microscopy and electron diffraction. The films as thin as 1000 Å are found to have the same lattice parameters as the bulk crystals, giving no evidence for the existence of the anomalous surface layer proposed by Känzig et al. The

Michiyoshi Tanaka; Goro Honjo

1964-01-01

119

Cutting fluid study for single crystal silicon  

SciTech Connect

An empirical study was conducted to evaluate cutting fluids for Single Point Diamond Turning (SPDT) of single crystal silicon. The pH of distilled waster was adjusted with various additives the examine the effect of pH on cutting operations. Fluids which seemed to promote ductile cutting appeared to increase tool wear as well, an undesirable tradeoff. High Ph sodium hydroxide solutions showed promise for further research, as they yielded the best combination of reduced tool wear and good surface finish in the ductile regime. Negative rake tools were verified to improve the surface finish, but the negative rake tools used in the experiments also showed much higher wear than conventional 0{degree} rake tools. Effects of crystallographic orientation on SPDT, such as star patterns of fracture damage forming near the center of the samples, were observed to decrease with lower feedrates. Silicon chips were observed and photographed, indicative of a ductile materials removal process.

Chargin, D.

1998-05-05

120

Fabrication of crystals from single metal atoms  

NASA Astrophysics Data System (ADS)

Metal nanocrystals offer new concepts for the design of nanodevices with a range of potential applications. Currently the formation of metal nanocrystals cannot be controlled at the level of individual atoms. Here we describe a new general method for the fabrication of multi-heteroatom-doped graphitic matrices decorated with very small, ångström-sized, three-dimensional (3D)-metal crystals of defined size. We irradiate boron-rich precious-metal-encapsulated self-spreading polymer micelles with electrons and produce, in real time, a doped graphitic support on which individual osmium atoms hop and migrate to form 3D-nanocrystals, as small as 15?Å in diameter, within 1?h. Crystal growth can be observed, quantified and controlled in real time. We also synthesize the first examples of mixed ruthenium-osmium 3D-nanocrystals. This technology not only allows the production of ångström-sized homo- and hetero-crystals, but also provides new experimental insight into the dynamics of nanocrystals and pathways for their assembly from single atoms.

Barry, Nicolas P. E.; Pitto-Barry, Anaïs; Sanchez, Ana M.; Dove, Andrew P.; Procter, Richard J.; Soldevila-Barreda, Joan J.; Kirby, Nigel; Hands-Portman, Ian; Smith, Corinne J.; O'Reilly, Rachel K.; Beanland, Richard; Sadler, Peter J.

2014-05-01

121

Fabrication of crystals from single metal atoms  

PubMed Central

Metal nanocrystals offer new concepts for the design of nanodevices with a range of potential applications. Currently the formation of metal nanocrystals cannot be controlled at the level of individual atoms. Here we describe a new general method for the fabrication of multi-heteroatom-doped graphitic matrices decorated with very small, ångström-sized, three-dimensional (3D)-metal crystals of defined size. We irradiate boron-rich precious-metal-encapsulated self-spreading polymer micelles with electrons and produce, in real time, a doped graphitic support on which individual osmium atoms hop and migrate to form 3D-nanocrystals, as small as 15?Å in diameter, within 1?h. Crystal growth can be observed, quantified and controlled in real time. We also synthesize the first examples of mixed ruthenium–osmium 3D-nanocrystals. This technology not only allows the production of ångström-sized homo- and hetero-crystals, but also provides new experimental insight into the dynamics of nanocrystals and pathways for their assembly from single atoms. PMID:24861089

Barry, Nicolas P. E.; Pitto-Barry, Anaïs; Sanchez, Ana M.; Dove, Andrew P.; Procter, Richard J.; Soldevila-Barreda, Joan J.; Kirby, Nigel; Hands-Portman, Ian; Smith, Corinne J.; O’Reilly, Rachel K.; Beanland, Richard; Sadler, Peter J.

2014-01-01

122

Thermodynamic forces in single crystals with dislocations  

NASA Astrophysics Data System (ADS)

A simple model for the evolution of macroscopic dislocation regions in a single crystal is presented. This model relies on maximal dissipation principle within Kröner's geometric description of the dislocated crystal. Mathematical methods and tools from shape optimization theory provide equilibrium relations at the dislocation front, similarly to previous work achieved on damage modelling (J Comput Phys 33(16):5010-5044, 2011). The deformation state variable is the incompatible strain as related to the dislocation density tensor by a relation involving the Ricci curvature of the crystal underlying elastic metric. The time evolution of the model variables follows from a novel interpretation of the Einstein-Hilbert flow in terms of dislocation microstructure energy. This flow is interpreted as the dissipation of non-conservative dislocations, due to the climb mechanism, modelled by an average effect of mesoscopic dislocations moving normal to their glide planes by adding or removing points defects. The model equations are a fourth-order tensor parabolic equation involving the operator "incompatibility," here appearing as a tensorial counterpart of the scalar Laplacian. This work encompasses and generalizes results previously announced (C R Acad Sci Paris Ser I 349:923-927, 2011), with in addition a series of physical interpretations to give a meaning to the newly introduced concepts.

Van Goethem, Nicolas

2014-06-01

123

Irradiation growth of zirconium single crystals  

NASA Astrophysics Data System (ADS)

Irradiation growth of zirconium single crystals has been studied during neutron irradiation at 353 K and 553 K at fluences up to 2× 10 25 n/m 2. The results may be summarized as follows: (a) there was an expansion parallel to the a-axis and a c-axis contraction; (b) the growth strains were small (~10 -4), (c) growth saturated at fluences less than ~5× 10 24 n/m 2, (d) the growth behaviour was only weakly dependent on temperature for the range studied, (e) there was a calculated volume increase of the same order as the growth strain, and (f) single crystals prepared from stock of iodide and zone-refined purity showed similar growth behaviour at 553 K. The a-axis expansion is attributed to the annihilation of an excess of interstitials at < a>-type dislocations and interstitial loops. The c-axis contraction may be caused by: (1) elastic relaxation around vacancies or small vacancy clusters, (2) non-linear elastic effects at the dislocation cores of small < a>-type loops, or (3) sub-microscopic vacancy loops with < c>-component Burgers vectors. Comparison with data from polycrystalline zirconium confirms that grain boundaries can play an important role in the irradiation growth of zirconium.

Carpenter, G. J. C.; Murgatroyd, R. A.; Rogerson, A.; Watters, J. F.

1981-10-01

124

Materials Science and Engineering B 138 (2007) 224227 Synthesis of single crystalline europium-doped ZnO nanowires  

E-print Network

Materials Science and Engineering B 138 (2007) 224­227 Synthesis of single crystalline europium; ZnO; Europium doping; XPS 1. Introduction Synthesizing one-dimensional (1D) nanostructures in semi and studies of the luminescent properties of europium (Eu)-doped semicon- ductors in various morphologies

Kim, Bongsoo

2007-01-01

125

Supporting Information Imaging Single ZnO Vertical Nanowire Laser Cavities using UV-laser Scanning Confocal  

E-print Network

National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 Figure S1. a) 3D-rendered scanningSupporting Information Imaging Single ZnO Vertical Nanowire Laser Cavities using UV-laser Scanning excitation at 325 nm. PL emission centered at 385 nm. b) Experimental setup of UV laser scanning confocal

Yang, Peidong

126

Solar cell structure incorporating a novel single crystal silicon material  

DOEpatents

A novel hydrogen rich single crystal silicon material having a band gap energy greater than 1.1 eV can be fabricated by forming an amorphous region of graded crystallinity in a body of single crystalline silicon and thereafter contacting the region with atomic hydrogen followed by pulsed laser annealing at a sufficient power and for a sufficient duration to recrystallize the region into single crystal silicon without out-gassing the hydrogen. The new material can be used to fabricate semiconductor devices such as single crystal silicon solar cells with surface window regions having a greater band gap energy than that of single crystal silicon without hydrogen.

Pankove, Jacques I. (Princeton, NJ); Wu, Chung P. (Trenton, NJ)

1983-01-01

127

Growing single crystals in silica gel  

NASA Technical Reports Server (NTRS)

Two types of chemical reactions for crystal growing are discussed. The first is a metathetical reaction to produce calcium tartrate tetrahydrate crystals, the second is a decomplexation reaction to produce cuprous chloride crystals.

Rubin, B.

1970-01-01

128

Experimental dynamic metamorphism of mineral single crystals  

USGS Publications Warehouse

This paper is a review of some of the rich and varied interactions between non-hydrostatic stress and phase transformations or mineral reactions, drawn mainly from results of experiments done on mineral single crystals in our laboratory or our co-authors. The state of stress and inelastic deformation can enter explicitly into the equilibrium phase relations and kinetics of mineral reactions. Alternatively, phase transformations can have prominent effects on theology and on the nature of inelastic deformation. Our examples represent five types of structural phase changes, each of which is distinguished by particular mechanical effects. In increasing structural complexity, these include: (1) displacive phase transformations involving no bond-breaking, which may produce anomalous brittle behavior. A primary example is the a-?? quartz transition which shows anomalously low fracture strength and tertiary creep behavior near the transition temperature; (2) martensitic-like transformations involving transformation strains dominated by shear deformation. Examples include the orthoenstatite ??? clinoenstatite and w u ??rtzite ??? sphalerite transformations; (3) coherent exsolution or precipitation of a mineral solute from a supersaturated solid-solution, with anisotropy of precipitation and creep rates produced under nonhydrostatic stress. Examples include exsolution of corundum from MgO ?? nAl2O3 spinels and Ca-clinopyroxene from orthopyroxene; (4) order-disorder transformations that are believed to cause anomalous plastic yield strengthening, such as MgO - nAl2O3 spinels; and (5) near-surface devolatilization of hydrous silicate single-crystals that produces a fundamental brittleness thought to be connected with dehydration at microcracks at temperatures well below nominal macroscopic dehydration temperatures. As none of these interactions between single-crystal phase transformations and non-hydrostatic stress is understood in detail, this paper serves as a challenge to field structural geologists to test whether interactions of these types occur in nature, and to theoreticians to reach a deeper understanding of the complex relations between phase transformations, the local state of stress and associated deformation and deformation rates. ?? 1993.

Kirby, S.H.; Stern, L.A.

1993-01-01

129

Experimental dynamic metamorphism of mineral single crystals  

NASA Astrophysics Data System (ADS)

This paper is a review of some of the rich and varied interactions between non-hydrostatic stress and phase transformations or mineral reactions, drawn mainly from results of experiments done on mineral single crystals in our laboratory or our co-authors. The state of stress and inelastic deformation can enter explicitly into the equilibrium phase relations and kinetics of mineral reactions. Alternatively, phase transformations can have prominent effects on theology and on the nature of inelastic deformation. Our examples represent five types of structural phase changes, each of which is distinguished by particular mechanical effects. In increasing structural complexity, these include: (1) displacive phase transformations involving no bond-breaking, which may produce anomalous brittle behavior. A primary example is the a- ? quartz transition which shows anomalously low fracture strength and tertiary creep behavior near the transition temperature; (2) martensitic-like transformations involving transformation strains dominated by shear deformation. Examples include the orthoenstatite ? clinoenstatite and w ürtzite ? sphalerite transformations; (3) coherent exsolution or precipitation of a mineral solute from a supersaturated solid-solution, with anisotropy of precipitation and creep rates produced under nonhydrostatic stress. Examples include exsolution of corundum from MgO · nAl 2O 3 spinels and Ca-clinopyroxene from orthopyroxene; (4) order-disorder transformations that are believed to cause anomalous plastic yield strengthening, such as MgO - nAl2O3 spinels; and (5) near-surface devolatilization of hydrous silicate single-crystals that produces a fundamental brittleness thought to be connected with dehydration at microcracks at temperatures well below nominal macroscopic dehydration temperatures. As none of these interactions between single-crystal phase transformations and non-hydrostatic stress is understood in detail, this paper serves as a challenge to field structural geologists to test whether interactions of these types occur in nature, and to theoreticians to reach a deeper understanding of the complex relations between phase transformations, the local state of stress and associated deformation and deformation rates.

Kirby, Stephen H.; Stern, Laura A.

1993-09-01

130

Mechanical properties of single crystal YAg  

SciTech Connect

YAg, a rare earth-precious metal 'line compound', is one member of the family of B2 rare earth intermetallic compounds that exhibit high ductilities. Tensile tests of polycrystalline YAg specimens have produced elongations as high as 27% before failure. In the present work, single crystal specimens of YAg with the B2, CsCl-type crystal structure were tensile tested at room temperature. Specimens with a tensile axis orientation of [0 1 1-bar] displayed slip lines on the specimen faces corresponding to slip on the {l_brace}1 1 0{r_brace}<0 1 0> with a critical resolved shear stress of 13 MPa. A specimen with a tensile axis orientation of [1 0 0] showed no slip lines and began to crack at a stress of 300 MPa. The test specimens also displayed some slip lines whose position corresponded to slip on the {l_brace}1 0 0{r_brace}<0 1 0>; these slip lines were found near intersections of {l_brace}1 1 0{r_brace}<0 1 0> slip lines, which suggests that the {l_brace}1 0 0{r_brace}<0 1 0> may be a secondary slip system in YAg. Transmission electron microscope (TEM) examination of the crystals was performed after tensile testing and the dislocations observed were analyzed by g {center_dot} b=0 out of contrast analysis. This TEM analysis indicated that the predominant Burgers vector for the dislocations present was <1 1 1> with some <0 1 1> dislocations also being observed. This finding is inconsistent with the <0 1 0> slip direction determined by slip line analysis, and possible explanations for this surprising finding are presented.

Russell, A.M.; Zhang, Z.; Lograsso, T.A.; Lo, C.C.H.; Pecharsky, A.O.; Morris, J.R.; Ye, Y.; Gschneidner, K.A.; Slager, A.J

2004-08-02

131

Photoluminescence Properties and Morphologies of Submicron-Sized ZnO Crystals Prepared by Ultrasonic Spray Pyrolysis  

NASA Astrophysics Data System (ADS)

Spectral features of the near-band-edge photoluminescence (PL) of submicron-sized ZnO crystals such as nanoplatelets, nanowires, and nanorods grown by an ultrasonic spray pyrolysis (USP) technique were investigated. The measurements of time-integrated and time-resolved PL spectra were performed in the temperature range of 8-300 K under various excitation densities by using the fourth harmonics (4.66 eV) of a Nd:YAG laser. Exciton-related emission bands were clearly observed in the ZnO crystals having different morphologies. In nanoplatelets, an emission band originating from radiative recombination of donor-acceptor pairs was also found at around 3.17 eV, indicating the existence of acceptor centers. The binding energies of donor and acceptor were about 53 and 200 meV, respectively. In nanowires, the intensity of an emission band peaking at 3.32 eV obeyed a quadratic dependency on the density of excitation. This fact shows that an inelastic exciton-exciton scattering process is efficient in the nanowires because of high crystal quality.

Htay, Myo Than; Itoh, Minoru; Hashimoto, Yoshio; Ito, Kentaro

2008-01-01

132

Growth of Homoepitaxial ZnO Semiconducting Films  

NASA Technical Reports Server (NTRS)

As a high temperature semiconductor, ZnO has been used for many applications such as wave-guide, solar cells, and surface acoustic wave devices. Since the ZnO material has an energy gap of 3.3 eV at room temperature and an excitonic binding energy (60 meV) that is possible to make excitonic lasering at room temperature a recent surge of interest is to synthesize ZnO films for electro-optical devices. These applications require films with a smooth surface, good crystal quality, and low defect density. Homoepitaxial films have been studied in terms of morphology, crystal structure, and electrical and optical properties. ZnO single crystals are grown by the hydrothermal method. Substrates are mechanically polished and annealed in air for four hours before deposited films. The annealing temperature-dependence of ZnO substrates is studied. Films are synthesized by the off-axis reactive sputtering deposition. The films have very smooth surface with a roughness crystal substrate. The film quality is determined by measuring the film resistivity, the Hall mobility, carrier densities and the energy band gap. The properties of ZnO films grown of (0001) ZnO and (0001) sapphire substrates will be also compared and discussed in the presentation.

Zhu, Shen; Su, Ching-Hua; Lehoczky, S. L.; Harris, M. T.; George, Michael A.; McCarty, P.

1999-01-01

133

Dynamic characteristics of single crystal SSME blades  

NASA Technical Reports Server (NTRS)

The Space Shuttle Main Engine (SSME) High Pressure Fuel Turbopump (HPFTP) blades are currently manufactured using a directionally solidified (DS) material, MAR-M-246+Hf. However, a necessity to reduce the occurrence of fatigue cracking within the DS blades has lead to an interest in the use of a single crystal (SC) material, PWA-1480. A study was initiated to determine the dynamic characteristics of the HPFTP blades made of SC material and find possible critical engine order excitations. This study examined both the first and second stage drive turbine blades of the HPFTP. The dynamic characterization was done analytically as well as experimentally. The analytical study examined the SC first stage HPFTP blade dynamic characteristics under typical operating conditions. The blades were analyzed using MSC/NASTRAN and a finite element model. Two operating conditions, 27500 RPM and 35000 RPM, were investigated.

Moss, L. A.; Smith, T. E.

1987-01-01

134

Hydrogen Annealing Of Single-Crystal Superalloys  

NASA Technical Reports Server (NTRS)

Annealing at temperature equal to or greater than 2,200 degrees F in atmosphere of hydrogen found to increase ability of single-crystal superalloys to resist oxidation when subsequently exposed to oxidizing atmospheres at temperatures almost as high. Supperalloys in question are principal constituents of hot-stage airfoils (blades) in aircraft and ground-based turbine engines; also used in other high-temperature applications like chemical-processing plants, coal-gasification plants, petrochemical refineries, and boilers. Hydrogen anneal provides resistance to oxidation without decreasing fatigue strength and without need for coating or reactive sulfur-gettering constituents. In comparison with coating, hydrogen annealing costs less. Benefits extend to stainless steels, nickel/chromium, and nickel-base alloys, subject to same scale-adhesion and oxidation-resistance considerations, except that scale is chromia instead of alumina.

Smialek, James L.; Schaeffer, John C.; Murphy, Wendy

1995-01-01

135

Thermal debracketing of single crystal sapphire brackets.  

PubMed

Because of their optical clarity, single crystal sapphire brackets provide an esthetic advantage over many other types of orthodontic brackets. However, debonding of these brackets has caused iatrogenic damage to enamel. Thermal debonding has been proposed for use in removing sapphire brackets without causing damage to teeth. This study determined the temperature required at the enamel/resin interface to thermally debond sapphire brackets from etched bovine enamel using 23 different commercially available orthodontic resins and one experimental product. The results indicate a wide range of debonding temperatures for the various resins. As a group, the powder-liquid materials had a statistically lower debonding temperature than the two-paste, the no-mix products, or the light-cured materials, for which the temperatures were all similar. This paper presents relative information a clinician can use in selecting an orthodontic bonding resin to minimize thermal damage to the teeth while debonding sapphire brackets. PMID:1554162

Rueggeberg, F A; Lockwood, P E

1992-01-01

136

Low-cobalt single crystal Rene 150  

NASA Technical Reports Server (NTRS)

The effects of cobalt content on a single crystal version of the advanced, high gamma prime content turbine airfoil alloy Rene 150 were investigated. Cobalt contents under investigation include 12 wt.% (composition level of Rene 150), 6 wt.%, and 0 wt.%. Preliminary test results are presented and compared with the properties of standard DS Rene 150. DTA results indicate that the liquidus goes through a maximum of about 1435 C near 6 wt.% Co. The solidus remains essentially constant at 1390 C with decreasing Co content. The gamma prime solvus appears to go through a minimum of about 1235 C near 6 wt.% Co content. Preliminary as-cast tensile and stress rupture results are presented along with heat treat schedules and future test plans.

Scheuermann, C. M.

1982-01-01

137

Electrical switching in cadmium boracite single crystals  

NASA Astrophysics Data System (ADS)

Cadmium boracite single crystals at high temperatures ( 300 C) were found to exhibit a reversible electric field-induced transition between a highly insulative and a conductive state. The switching threshold is smaller than a few volts for an electrode spacing of a few tenth of a millimeter corresponding to an electric field of 100 to 1000 V/cm. This is much smaller than the dielectric break-down field for an insulator such as boracite. The insulative state reappears after voltage removal. A pulse technique revealed two different types of switching. Unstable switching occurs when the pulse voltage slightly exceeds the switching threshold and is characterized by a pre-switching delay and also a residual current after voltage pulse removal. A stable type of switching occurs when the voltage becomes sufficiently high. Possible device applications of this switching phenomenon are discussed.

Takahashi, T.; Yamada, O.

138

Electrical switching in cadmium boracite single crystals  

NASA Technical Reports Server (NTRS)

Cadmium boracite single crystals at high temperatures ( 300 C) were found to exhibit a reversible electric field-induced transition between a highly insulative and a conductive state. The switching threshold is smaller than a few volts for an electrode spacing of a few tenth of a millimeter corresponding to an electric field of 100 to 1000 V/cm. This is much smaller than the dielectric break-down field for an insulator such as boracite. The insulative state reappears after voltage removal. A pulse technique revealed two different types of switching. Unstable switching occurs when the pulse voltage slightly exceeds the switching threshold and is characterized by a pre-switching delay and also a residual current after voltage pulse removal. A stable type of switching occurs when the voltage becomes sufficiently high. Possible device applications of this switching phenomenon are discussed.

Takahashi, T.; Yamada, O.

1981-01-01

139

Rainbow Radiating Single-Crystal Ag Nanowire Nanoantenna Taejoon Kang,  

E-print Network

Rainbow Radiating Single-Crystal Ag Nanowire Nanoantenna Taejoon Kang, Wonjun Choi, Ilsun Yoon rainbow antenna radiation in the Fresnel region. Detailed antenna radiation properties, such as radiating

Kim, Bongsoo

140

Effect of Thermal Annealing on the Characteristics of Phosphorus-Implanted ZnO Crystals  

NASA Astrophysics Data System (ADS)

A P-doped ZnO surface layer on undoped ZnO wafers was prepared by phosphorus (P) ion implantation. Hall effect measurement revealed p-type conduction in such layers annealed at 800°C. This indicates that acceptor levels are present in P-doped ZnO, even though the ZnO is still n-type. Micro-Raman scattering in - z( xy) z geometry was conducted on P-implanted ZnO. The E {2/high} mode shift observed toward the high-energy region was related to compressive stress as a result of P-ion implantation. This compressive stress led to the appearance of an A 1(LO) peak, which is an inactive mode. This A 1(LO) peak relaxed during thermal annealing in ambient oxygen at temperatures higher than 700°C. The P2p3/2 peak observed at 135.6 eV by x-ray photoelectron spectroscopy is associated with chemical bond formation leading to 2(P2O5) molecules. This indicates that implanted P ions substituted Zn sites in the ZnO layer. In photoluminescence spectroscopy, the P-related peaks observed at energies ranging between 3.1 and 3.5 eV originated from (A0, X) emission, because of PZn-2VZn complexes acting as shallow acceptors. The acceptor level was observed to be 126.9 meV above the valence band edge. Observation of this P-related emission indicates that ion implantation results in acceptor levels in the P-doped ZnO layer. This suggests that the P2O5 bonds are responsible for the p-type activity of P-implanted ZnO.

Jeong, T. S.; Yu, J. H.; Mo, H. S.; Kim, T. S.; Lim, K. Y.; Youn, C. J.; Hong, K. J.; Kim, H. S.

2014-07-01

141

New Fluorinated Terphenyl Isothiocyanate Liquid Crystal Single Compounds and Mixtures  

E-print Network

New Fluorinated Terphenyl Isothiocyanate Liquid Crystal Single Compounds and Mixtures Amanda Parish fluorinated NCS terphenyl single compounds and mixtures based solely on laterally fluorinated aromatic rigid) alignment interfaces [14]. The high melting temperature can be combated through the lateral fluorination

Wu, Shin-Tson

142

Thermally Triggered Solid-State Single-Crystal-to-Single-Crystal Structural Transformation Accompanies Property Changes.  

PubMed

The 1D complex [(CuL0.5 H2 O)?H2 O]n (1) (H4 L=2,2'-bipyridine-3,3',6,6'-tetracarboxylic acid) undergoes an irreversible thermally triggered single-crystal-to-single-crystal (SCSC) transformation to produce the 3D anhydrous complex [CuL0.5 ]n (2). This SCSC structural transformation was confirmed by single-crystal X-ray diffraction analysis, thermogravimetric (TG) analysis, powder X-ray diffraction (PXRD) patterns, variable-temperature powder X-ray diffraction (VT-PXRD) patterns, and IR spectroscopy. Structural analyses reveal that in complex 2, though the initial 1D chain is still retained as in complex 1, accompanied with the Cu-bound H2 O removed and new O(carboxyl)?Cu bond forming, the coordination geometries around the Cu(II) ions vary from a distorted trigonal bipyramid to a distorted square pyramid. With the drastic structural transition, significant property changes are observed. Magnetic analyses show prominent changes from antiferromagnetism to weak ferromagnetism due to the new formed Cu1-O-C-O-Cu4 bridge. The catalytic results demonstrate that, even though both solid-state materials present high catalytic activity for the synthesis of 2-imidazolines derivatives and can be reused, the activation temperature of complex 1 is higher than that of complex 2. In addition, a possible pathway for the SCSC structural transformations is proposed. PMID:25663637

Li, Quan-Quan; Ren, Chun-Yan; Huang, Yang-Yang; Li, Jian-Li; Liu, Ping; Liu, Bin; Liu, Yang; Wang, Yao-Yu

2015-03-16

143

Single crystal growth and characterization of the nonlinear optical crystal l-arginine hydrofluoride  

Microsoft Academic Search

In this communication, single crystal growth of the nonlinear optical crystal l-arginine hydrofluoride C6H14N4O2. HF (here after abbreviated as LAHF) of dimensions up to 20×15×3mm3 is reported. Crystals have been grown by the temperature lowering method and also by slow evaporation method at constant temperature 30°C from its aqueous solution with pH at 2.2. As-grown single crystals were then characterized

Tanusri Pal; Tanusree Kar

2002-01-01

144

Large single domain 123 material produced by seeding with single crystal rare earth barium copper oxide single crystals  

DOEpatents

A method of fabricating bulk YBa.sub.2 Cu.sub.3 O.sub.x where compressed powder oxides and/or carbonates of Y and Ba and Cu present in mole ratios to form YBa.sub.2 Cu.sub.3 O.sub.x are heated in the presence of a Nd.sub.1+x Ba.sub.2-x Cu.sub.3 O.sub.y seed crystal to a temperature sufficient to form a liquid phase in the YBa.sub.2 Cu.sub.3 O.sub.x while maintaining the seed crystal solid. The materials are slowly cooled to provide a YBa.sub.2 Cu.sub.3 O.sub.x material having a predetermined number of domains between 1 and 5. Crack-free single domain materials can be formed using either plate shaped seed crystals or cube shaped seed crystals with a pedestal of preferential orientation material.

Todt, Volker (Lemont, IL); Miller, Dean J. (Darien, IL); Shi, Donglu (Oak Park, OH); Sengupta, Suvankar (Columbus, OH)

1998-01-01

145

Crucibleless crystal growth and Radioluminescence study of calcium tungstate single crystal fiber  

NASA Astrophysics Data System (ADS)

In this article, single phase and high optical quality scheelite calcium tungstate single crystal fibers were grown by using the crucibleless laser heated pedestal growth technique. The as-synthesized calcium tungstate powders used for shaping seed and feed rods were investigated by X-ray diffraction technique. As-grown crystals were studied by Raman spectroscopy and Radioluminescence measurements. The results indicate that in both two cases, calcined powder and single crystal fiber, only the expected scheelite CaWO4 phase was observed. It was verified large homogeneity in the crystal composition, without the presence of secondary phases. The Radioluminescence spectra of the as-grown single crystal fibers are in agreement with that present in Literature for bulk single crystals, presented a single emission band centered at 420 nm when irradiated with ?-rays.

Silva, M. S.; Jesus, L. M.; Barbosa, L. B.; Ardila, D. R.; Andreeta, J. P.; Silva, R. S.

2014-11-01

146

Fast-Response Single Cell Gap Transflective Liquid Crystal Displays  

Microsoft Academic Search

A single cell gap transflective liquid crystal display (TR-LCD) using dual fringing field switching mode is proposed, in which a positive dielectric anisotropy liquid crystal is vertically aligned and driven by fringing fields from both substrates. By optimizing the electrode width and gap of the transmissive and reflective regions, this TR-LCD exhibits a fast response time, high optical efficiency, single

Meizi Jiao; Shin-Tson Wu; Wing-Kit Choi

2009-01-01

147

Mercuric iodide single crystals for nuclear radiation detectors  

Microsoft Academic Search

Large size HgI2 single crystals were grown using the modified temperature oscillation method with low dislocation densities in a relatively stable temperature environment. Radiation detectors were fabricated from the single crystals which showed good energy resolution with small polarization

Weitang Li; Zhenghui Li; Shifu Zhu; Shujun Yin; Beijun Zhao; Guanxiong Chen; Shi Yin; Hong Yuan; Huapeng Xu

1996-01-01

148

Mercuric iodide single crystal for nuclear radiation detectors  

Microsoft Academic Search

Large size HgI2 single crystals are grown using the modified temperature oscillation method with low dislocation densities in a relatively stable temperature environment. Radiation detectors are fabricated from the single crystals which show good energy resolution with small polarization

Weitang Li; Zhenghui Li; Shifu Zhu; Shujun Yin; Beijun Zhao; Guanxiong Chen; Shi Yin; Hong Yuan; Huapeng Xu

1995-01-01

149

A Quick Method for Determining the Density of Single Crystals.  

ERIC Educational Resources Information Center

Shows how the Archimedes method is used to determine the density of a single crystal of ammonium oxalate monohydrate. Also shows how to calculate the density of other chemicals when they are available as single crystals. Experimental procedures and materials needed are included. (JN)

Roman, Pascual; Gutierrez-Zorrilla, Juan M.

1985-01-01

150

Tensor tomography of residual stresses of hexagonal single crystals  

NASA Astrophysics Data System (ADS)

A method for determining residual stresses in elongated transparent blanks of hexagonal single crystals the optical axis of which is directed along the crystal is proposed. It is assumed that the residual deformation tensor is of thermal character and is characterized by a fictitious temperature. Characteristic parameters of polarized light have been measured by the tomographic method in the plane orthogonal to the single crystal axis.

Puro, A. E.

2014-09-01

151

Magnetic field controlled FZ single crystal growth of intermetallic compounds  

Microsoft Academic Search

Intermetallic rare-earth-transition-metal compounds with their coexistence of magnetic ordering and superconductivity are still of great scientific interest. The crystal growth of bulk single crystals is very often unsuccessful due to an unfavorable solid–liquid interface geometry enclosing concave fringes. The aim of the work is the contactless control of heat and material transport during floating-zone single crystal growth of intermetallic compounds.

R. Hermann; G. Behr; G. Gerbeth; J. Priede; H.-J. Uhlemann; F. Fischer; L. Schultz

2005-01-01

152

Semiconductor single crystal external ring resonator cavity laser and gyroscope  

SciTech Connect

A ring laser is described comprising: a semiconductor single crystal external ring resonator cavity having a plurality of reflecting surfaces defined by the planes of the crystal and establishing a closed optical path; and a discrete laser medium disposed in said semiconductor single crystal external ring resonator cavity for generating coherent light in said cavity, wherein said resonator cavity is decoupled from the laser medium.

Spitzer, M.P.

1993-08-31

153

First-principle studies on the conductive behaviors of Ga, N single-doped and Ga–N codoped ZnO  

Microsoft Academic Search

We have performed first-principle calculations on the conductive behaviors of Ga, N single-doped and Ga–N codoped ZnO. According to the results, in the Ga single-doped case, with the comparatively smaller effective masses of electrons and the positive impurity formation energy, the fermi-level shifts upward into the conduction band, thus the n-type ZnO with good conductivity can be obtained. In both

P. Li; Sh. H. Deng; L. Zhang; Y. B. Li; X. Y. Zhang; J. R. Xu

2010-01-01

154

Fatigue behavior of a single crystal nickel-base superalloy  

SciTech Connect

Many investigations indicate that high cycle fatigue cracks, in general, initiate at pores, inclusions, and grain boundaries in materials. The fatigue strength limit of a single crystal superalloy increases markedly compared to that of a conventional cast alloy, because the number of pores and inclusions in a single crystal superalloy are less than those of both conventionally cast and directionally solidified superalloys. Also, grain boundaries are eliminated in the single crystal superalloy. The fatigue fracture of a single crystal superalloy usually appears to be brittle. Therefore, it is necessary to study the micro-fracture mechanism. This paper presents an investigation of the fracture characteristics and micro-mechanism of fracture in a single crystal superalloy during high cycle fatigue.

Zhang, J.H.; Xu, Y.B.; Wang, Z.G.; Hu, Z.Q. [Academy of Sciences, Shenyang (China). State Key Lab. for Fatigue and Fracture of Materials] [Academy of Sciences, Shenyang (China). State Key Lab. for Fatigue and Fracture of Materials

1995-06-15

155

``Physical'' adsorption on single crystal zinc oxide  

NASA Astrophysics Data System (ADS)

Weak "physical" adsorption of CO 2, CO, O 2, Xe and H 2 was studied on ZnO(101¯0) in a molecular flow system (UHV conditions, 95 ? T ? 241 K, 1.3 × 10 -6 ? 1.3 × 10 -4 Pa). Freundlich type of adsorption isotherms is found. Surprisingly broad, distributions of adsorption energies are determined in a thermodynamic analysis of equilibrium coverages as function of pressure and temperature. From an additional peak shape analysis of thermal desorption spectra, distributions of activation energies of thermal desorption are also estimated.

Esser, P.; Göpel, W.

1980-07-01

156

Thermally induced single crystal to single crystal transformation leading to polymorphism.  

PubMed

The robust complex [La(1,10-phen)2(NO3)3] (1,10-phen=1,10-phenanthroline) exhibits thermally induced single crystal to single crystal transformation from one polymorphic phase to another. The complex crystallizes in monoclinic C2/c space group with C2 molecular symmetry at 293K while at 100K it shows P21/c space group with C1 molecular symmetry. Supramolecular investigation shows that at 100K the complex forms 2D achiral sheets whereas at 293K forms two different homochiral 2D sheets. Low temperature DSC analysis indicates that this structural transformation occurs at 246K and also this transformation is reversible in nature. We have shown that thermally induced coherent movement of ligands changes the molecular symmetry of the complex and leads to polymorphism. Photoluminescence property of complex has been studied in both solid state and in methanolic solution at room temperature. The effect of the presence low-lying LUMO orbital of ?-character in the complex is elucidated by theoretical calculation using DFT method. PMID:24813281

Saha, Rajat; Biswas, Susobhan; Dey, Sanjoy Kumar; Sen, Arijit; Roy, Madhusudan; Steele, Ian M; Dey, Kamalendu; Ghosh, Ashutosh; Kumar, Sanjay

2014-09-15

157

Luminescence and scintillation properties of Y 3 A l5 O 12 :Ce single crystals and single-crystal films  

Microsoft Academic Search

Luminescence and scintillation properties of Y3Al5O12:Ce single crystals grown from the melt by the Czochralski and horizontal directed crystallization methods in various gas\\u000a media and Y3Al5O12:Ce single-crystal films grown by liquid-phase epitaxy from a melt solution based on a PbO-B2O3 flux have been comparatively analyzed. The strong dependence of scintillation properties of Y3Al5O12:Ce single crystals on their growth conditions and

Yu. V. Zorenko; V. P. Savchin; V. I. Gorbenko; T. I. Voznyak; T. E. Zorenko; V. M. Puzikov; A. Ya. Dan’ko; S. V. Nizhankovskii

2011-01-01

158

The interaction of 193?nm excimer laser radiation with single-crystal zinc oxide: Generation of long lived highly excited particles with evidence of Zn Rydberg formation  

SciTech Connect

In past studies, we have observed copious emissions of ionic and atomic Zn from single-crystal ZnO accompanying irradiation of single-crystal ZnO with 193-nm excimer laser irradiation at fluences below the onset of optical breakdown. The Zn{sup +} and ground state Zn° are studied using time-of-flight techniques and are mass selected using a quadrupole mass spectrometer. Simultaneously, we have observed emitted particles that are detectable with a Channeltron electron multiplier but cannot be mass selected. It is a reasonable hypothesis that these particles correspond to a neutral atom or molecule in highly excited long lived states. We provide strong evidence that they correspond to high lying Rydberg states of atomic Zn. We propose a production mechanism involving laser excitation via a two photon resonance excitation of Zn°.

Khan, Enamul H.; Langford, S. C.; Dickinson, J. T., E-mail: jtd@wsu.edu [Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164-2814 (United States); Boatner, L. A. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

2014-08-28

159

New Configuration of a Transflective Liquid Crystal Display Having a Single Cell Gap and a Single Liquid Crystal Mode  

Microsoft Academic Search

We report on a new tranflective liquid crystal display (LCD) mode having a single cell gap and a single LC mode. For this display mode, a low twisted nematic liquid crystal cell, having the twist angle of 60°, is used for both transmissive and reflective applications. The measured electro-optic characteristics of our transflective cell agree well with numerical simulation results.

Jinyool Kim; Dong-Woo Kim; Chang-Jae Yu; Sin-Doo Lee

2004-01-01

160

On single doping and co-doping of spray pyrolysed ZnO films: Structural, electrical and optical characterisation  

Microsoft Academic Search

In this paper we present studies on ZnO thin films (prepared using Chemical Spray pyrolysis (CSP) technique) doped in two different ways; in one set, ‘single doping’ using indium was done while in the second set, ‘co-doping’ using indium and fluorine was adopted. In the former case, effect of in-situ as well as ex-situ doping using In was analyzed. Structural

T. V. Vimalkumar; N. Poornima; K. B. Jinesh; C. Sudha Kartha; K. P. Vijayakumar

2011-01-01

161

Study of single crystals of metal solid solutions  

NASA Technical Reports Server (NTRS)

The growth of single crystals of relatively high melting point metals such as silver, copper, gold, and their alloys was investigated. The purpose was to develop background information necessary to support a space flight experiment and to generate ground based data for comparison. The ground based data, when compared to the data from space grown crystals, are intended to identify any effects which zero-gravity might have on the basic process of single crystal growth of these metals. The ultimate purposes of the complete investigation are to: (1) determine specific metals and alloys to be investigated; (2) grow single metal crystals in a terrestrial laboratory; (3) determine crystal characteristics, properties, and growth parameters that will be effected by zero-gravity; (4) evaluate terrestrially grown crystals; (5) grow single metal crystals in a space laboratory such as Skylab; (6) evaluate the space grown crystals; (7) compare for zero-gravity effects of crystal characteristics, properties, and parameters; and (8) make a recommendation as to production of these crystals as a routine space manufacturing proceses.

Doty, J. P.; Reising, J. A.

1973-01-01

162

Morphology control, defect engineering and photoactivity tuning of ZnO crystals by graphene oxide--a unique 2D macromolecular surfactant.  

PubMed

Zinc oxide (ZnO) nanostructured materials have received significant attention because of their unique physicochemical and electronic properties. In particular, the functional properties of ZnO are strongly dependent on its morphology and defect structure, particularly for a semiconductor ZnO-based photocatalyst. Here, we demonstrate a simple strategy for simultaneous morphology control, defect engineering and photoactivity tuning of semiconductor ZnO by utilizing the unique surfactant properties of graphene oxide (GO) in a liquid phase. By varying the amount of GO added during the synthesis process, the morphology of ZnO gradually evolves from a one dimensional prismatic rod to a hexagonal tube-like architecture while GO is converted into reduced GO (RGO). In addition, the introduction of GO can create oxygen vacancies in the lattice of ZnO crystals. As a result, the absorption edge of the wide band gap semiconductor ZnO is effectively extended to the visible light region, which thus endows the RGO-ZnO nanocomposites with visible light photoactivity; in contrast, the bare ZnO nanorod is only UV light photoactive. The synergistic integration of the unique morphology and the presence of oxygen vacancies imparts the RGO-ZnO nanocomposite with remarkably enhanced visible light photoactivity as compared to bare ZnO and its counterpart featuring different structural morphologies and the absence of oxygen vacancies. Our promising results highlight the versatility of the 2D GO as a solution-processable macromolecular surfactant to fabricate RGO-semiconductor nanocomposites with tunable morphology, defect structure and photocatalytic performance in a system-materials-engineering way. PMID:24513962

Pan, Xiaoyang; Yang, Min-Quan; Xu, Yi-Jun

2014-03-28

163

Crystal Structure of A-amylose: a Revisit from Synchrotron Microdiffraction Analysis of Single Crystals  

E-print Network

1 Crystal Structure of A-amylose: a Revisit from Synchrotron Microdiffraction Analysis of Single;2 Abstract The three-dimensional structure of A-amylose crystals, as a model of the crystal domains of A the resolution of important new fine details. These include a distortion of the amylose double helices resulting

Paris-Sud XI, Université de

164

Hard Polarized Photon Emission in Single Crystals by High Energy Electrons for Planar Crystal Orientations  

E-print Network

The radiation emission spectra of polarized photons emitted from charge particle in single crystal are obtained in semiclassical theory in Baer-Katkov-Strakhovenko approximation for planar crystal orientation. The range of applicability of this approximation is estimated by comparing the results with calculations in exact semiclassical theory. Optimal crystal orientations for producing unpolarized and polarized photon beams are also founded.

S. M. Darbinian; N. L. Ter-Isaakian

1999-09-07

165

Physicochemical principles of high-temperature crystallization and single crystal growth methods  

Microsoft Academic Search

The mechanisms of crystal growth are reviewed, with attention given to the physicochemical reactions taking place in the melt near the phase boundary; phenomena determining physical and chemical kinetics directly at the growth front; solid-phase processes occurring within the crystal. Methods for growing refractory single crystals are discussed with particular reference to the Verneuil method, zone melting, Czhochralskii growth, horizontal

Kh. S. Bagdasarov

1987-01-01

166

Journal of Crystal Growth 286 (2006) 6165 ZnO growth on Si with low-temperature ZnO buffer layers by  

E-print Network

; A1. Photoluminescence; A1. X-ray diffraction; A3. Molecular beam epitaxy; B1. ZnO buffer layer; B2 of Electrical Engineering, University of California, Riverside, CA 92521, USA b Nano-Device Laboratory grown on Si(1 0 0) substrates with low-temperature (LT) ZnO buffer layers by an electron cyclotron

Yang, Zheng

167

Method for harvesting single crystals from a peritectic melt  

DOEpatents

A method of preparing single crystals. The method of preparation involves preparing precursor materials of a particular composition, heating the precursor material to achieve a peritectic mixture of peritectic liquid and crystals, cooling the peritectic mixture to quench directly the mixture on a porous, wettable inert substrate to wick off the peritectic liquid, leaving single crystals on the porous substrate. Alternatively, the peritectic mixture can be cooled to a solid mass and reheated on a porous, inert substrate to melt the matrix of peritectic fluid while leaving the crystals unmelted, allowing the wicking away of the peritectic liquid.

Todt, Volker R. (Lemont, IL); Sengupta, Suvankar (Columbus, OH); Shi, Donglu (Cincinnati, OH)

1996-01-01

168

Method for harvesting rare earth barium copper oxide single crystals  

DOEpatents

A method of preparing high temperature superconductor single crystals. The method of preparation involves preparing precursor materials of a particular composition, heating the precursor material to achieve a peritectic mixture of peritectic liquid and crystals of the high temperature superconductor, cooling the peritectic mixture to quench directly the mixture on a porous, wettable inert substrate to wick off the peritectic liquid, leaving single crystals of the high temperature superconductor on the porous substrate. Alternatively, the peritectic mixture can be cooled to a solid mass and reheated on a porous, inert substrate to melt the matrix of peritectic fluid while leaving the crystals melted, allowing the wicking away of the peritectic liquid.

Todt, Volker R. (Lemont, IL); Sengupta, Suvankar (Columbus, OH); Shi, Donglu (Cincinnati, OH)

1996-01-01

169

Ion crystal transducer for strong coupling between single ions and single photons  

E-print Network

A new approach for realization of a quantum interface between single photons and single ions in an ion crystal is proposed and analyzed. In our approach the coupling between a single photon and a single ion is enhanced via the collective degrees of freedom of the ion crystal. Applications including single-photon generation, a memory for a quantum repeater, and a deterministic photon-photon, photon-phonon, or photon-ion entangler are discussed.

L. Lamata; D. R. Leibrandt; I. L. Chuang; J. I. Cirac; M. D. Lukin; V. Vuletic; S. F. Yelin

2011-07-11

170

PAC Studies of Implanted 111Ag in Single-Crystalline ZnO  

NASA Astrophysics Data System (ADS)

The local environment of implanted 111Ag ( t 1/2 = 7.45 d) in single-crystalline [0001] ZnO was evaluated by means of the perturbed angular correlation (PAC) technique. Following the 60 keV low dose (1 × 1013 cm-2) 111Ag implantation, the PAC measurements were performed for the as-implanted state and following 30 min air annealing steps, at temperatures ranging from 200 to 1050°C. The results revealed that 42% of the probes are located at defect-free SZn sites ( ? Q ˜ 32 MHz, ? = 0) in the as-implanted state and that this fraction did not significantly change with annealing. Moreover, a progressive lattice recovery in the near vicinity of the probes was observed. Different EFGs assigned to point defects were furthermore measured and a general modification of their parameters occurred after 600°C. The 900°C annealing induced the loss of 30% of the 111Ag atoms, 7% of which were located in regions of high defects concentration.

Rita, E.; Correia, J. G.; Wahl, U.; Alves, E.; Lopes, A. M. L.; Soares, J. C.

2004-11-01

171

Ferroelectric polarization reversal in single crystals  

NASA Technical Reports Server (NTRS)

Research on the reversal of polarization in ferroelectric crystals is reviewed. Particular attention is given to observation methods for polarization reversal, BaTiO3 polarization reversal, crystal thickness dependence of polarization reversal, and domain wall movement during polarization reversal in TGS.

Stadler, Henry L.

1992-01-01

172

A Single Crystal Niobium RF Cavity of the TESLA Shape  

NASA Astrophysics Data System (ADS)

A fabrication method for single crystal niobium cavities of the TESLA shape was proposed on the basis of metallographic investigations and electron beam welding tests on niobium single crystals. These tests showed that a cavity can be produced without grain boundaries even in the welding area. An appropriate annealing allows the outgassing of hydrogen and stress relaxation of the material without destruction of the single crystal. A prototype single crystal single cell cavity was build. An accelerating gradient of 37.5 MV/m was reached after approximately 110 ?m of Buffered Chemical Polishing (BCP) and in situ baking at 120°C for 6 hrs with a quality factor exceeding 2×1010 at 1.8 K. The developed fabrication method can be extended to fabrication of multi cell cavities.

Singer, W.; Singer, X.; Kneisel, P.

2007-08-01

173

A study of crystal growth by solution technique. [triglycine sulfate single crystals  

NASA Technical Reports Server (NTRS)

The advantages and mechanisms of crystal growth from solution are discussed as well as the effects of impurity adsorption on the kinetics of crystal growth. Uncertainities regarding crystal growth in a low gravity environment are examined. Single crystals of triglycine sulfate were grown using a low temperature solution technique. Small components were assembled and fabricated for future space flights. A space processing experiment proposal accepted by NASA for the Spacelab-3 mission is included.

Lal, R. B.

1979-01-01

174

High quality factor single-crystal diamond mechanical resonators  

NASA Astrophysics Data System (ADS)

Single-crystal diamond is a promising material for microelectromechanical systems (MEMs) because of its low mechanical loss, compatibility with extreme environments, and built-in interface to high-quality spin centers. But its use has been limited by challenges in processing and growth. We demonstrate a wafer bonding-based technique to form diamond on insulator, from which we make single-crystal diamond micromechanical resonators with mechanical quality factors as high as 338 000 at room temperature. Variable temperature measurements down to 10 K reveal a nonmonotonic dependence of quality factor on temperature. These resonators enable integration of single-crystal diamond into MEMs technology for classical and quantum applications.

Ovartchaiyapong, P.; Pascal, L. M. A.; Myers, B. A.; Lauria, P.; Bleszynski Jayich, A. C.

2012-10-01

175

Crystal growth and characterization of monometallic NLO single crystals of Cd(IO 3) 2  

Microsoft Academic Search

This work aims to study the growth and physicochemical properties of second-order nonlinear optical active inorganic crystal of cadmium iodate (CDI). Efforts have been made to grow an improved size single crystal of CDI by the slow-cooling technique. The XRD data of CDI are determined by single-crystal XRD analysis. CDI is further characterized by UV–vis–NIR spectroscopy, TGA, dielectric, ac conductivity,

S. M. Ravi Kumar; N. Melikechi; S. Selvakumar; P. Sagayaraj

2009-01-01

176

Single crystal Processing and magnetic properties of gadolinium nickel  

SciTech Connect

GdNi is a rare earth intermetallic material that exhibits very interesting magnetic properties. Spontaneous magnetostriction occurs in GdNi at T{sub C}, on the order of 8000ppm strain along the c-axis and only until very recently the mechanism causing this giant magnetostriction was not understood. In order to learn more about the electronic and magnetic structure of GdNi, single crystals are required for anisotropic magnetic property measurements. Single crystal processing is quite challenging for GdNi though since the rare-earth transition-metal composition yields a very reactive intermetallic compound. Many crystal growth methods are pursued in this study including crucible free methods, precipitation growths, and specially developed Bridgman crucibles. A plasma-sprayed Gd{sub 2}O{sub 3} W-backed Bridgman crucible was found to be the best means of GdNi single crystal processing. With a source of high-quality single crystals, many magnetization measurements were collected to reveal the magnetic structure of GdNi. Heat capacity and the magnetocaloric effect are also measured on a single crystal sample. The result is a thorough report on high quality single crystal processing and the magnetic properties of GdNi.

Shreve, Andrew John [Ames Laboratory

2012-11-02

177

Stability of Detached Grown Germanium Single Crystals  

NASA Technical Reports Server (NTRS)

Detachment of the melt meniscus from the crucible during semiconductor Bridgman growth experiments has been observed in recent years, especially under microgravity experiments. Under earth conditions, the hydrostatic pressure counteracts the mechanism, whereby it is more difficult to achieve detached Bridgman growth. Attempts to get stable detached growth under terrestrial conditions have been discussed in the literature and have been the subject of recent experiments in our own group. The advantage of crystals grown without wall contact is obvious: In general, they possess a higher crystal quality than conventional Bridgman grown crystals with wall contact. However, due to the interaction of different parameters such as the wetting behavior of the melt with the crucible, and the dependence of the growth angle with the shape of the melt meniscus, the mechanism leading to detachment is very complicated and not completely understood. We have grown several doped and undoped Germanium crystals with the detached Bridgman and the normal Bridgman growth technique. Pyrolytic boron nitride containers were used for all growth experiments. In the detached grown crystals the typical gap thickness between the pBN crucible and the crystal is in the range of 10 to 100 micrometers, which was determined by performing profilometer measurements. Etch pit density measurements were also performed and a comparison between detached and attached grown crystals will be given. An interesting feature was detected on the surface of a detached grown crystal. Strong surface striations with an average axial distance of 0.5 mm were observed around the whole circumference. The maximum fluctuation of the gap thickness is in the range of 5-10 micrometers. These variations of the detached gap along the crystal axis can be explained by a kind of stiction of the melt/crucible interface and thus by a variation of the meniscus shape. This phenomenon leading to the fluctuation of the gap thickness will be discussed in detail.

Schweizer, M.; Volz, M. P.; Cobb, S. D.; Vujisic, L.; Szofran, F. R.; Rose, M. Franklin (Technical Monitor)

2001-01-01

178

Stability of Detached Grown Germanium Single Crystals  

NASA Technical Reports Server (NTRS)

Detachment of the melt meniscus from the crucible during semiconductor Bridgman growth experiments has been observed in recent years especially, under microgravity experiments. Under earth conditions, the hydrostatic pressure counteracts the mechanism, whereby it is more difficult to achieve detached Bridgman growth. Attempts to get stable detached growth under terrestrial conditions have been discussed in the literature and have been the subject of recent experiments in our own group. The advantage of crystals grown without wall contact is obvious: In general, they possess a higher crystal quality than conventional Bridgman grown crystals with wall contact. However, due to the interaction of different parameters such as the wetting behavior of the melt with the crucible, and the dependence of the growth angle with the shape of the melt meniscus, the mechanism leading to detachment is very complicated and not completely understood. We have grown several doped and undoped Germanium crystals with the detached Bridgman and the normal Bridgman growth technique. Pyrolytic boron nitride containers were used for all growth experiments. In the detached grown crystals the typical gap thickness between the pBN crucible and the crystal is in the range of 10 to 100 microns, which was determined by performing profilometer measurements. Etch pit density measurements were also performed and a comparison between detached and attached grown crystals will be given. An interesting feature was detected on the surface of a detached grown crystal. Strong surface striations with an average axial distance of 0.5mm were observed around the whole circumference. The maximum fluctuation of the gap thickness is in the range of 5-10 microns. These variations of the detached gap along the crystal axis can be explained by a kind of stiction of the melt/crucible interface and thus by a variation of the meniscus shape. This phenomenon leading to the fluctuation of the gap thickness will be discussed in detail.

Schweizer, M.; Volz, M. P.; Cobb, S. D.; Motakef, S.; Szofran, F. R.; Curreri, Peter A. (Technical Monitor)

2002-01-01

179

Growth and characterization of organic material 4-dimethylaminobenzaldehyde single crystal  

NASA Astrophysics Data System (ADS)

The organic material 4-dimethylaminobenzaldehyde single crystals were grown by slow evaporation technique. The grown crystal was confirmed by the single crystal and powder X-ray diffraction analyses. The functional groups of the crystal have been identified from the Fourier Transform Infrared (FTIR) and FT-Raman studies. The optical property of the grown crystal was analyzed by UV-Vis-NIR and photoluminescence (PL) spectral measurements. The thermal behavior of the grown crystal was analyzed by thermogravimetric (TG) and differential thermal analyses (DTA). Dielectric measurements were carried out with different frequencies by using parallel plate capacitor method. The third order nonlinear optical properties of 4-dimethylaminobenzaldehyde was measured by the Z-scan technique using 532 nm diode pumped continuous wave (CW) Nd:YAG laser.

Jebin, R. P.; Suthan, T.; Rajesh, N. P.; Vinitha, G.; Madhusoodhanan, U.

2015-01-01

180

Growth and characterization of ammonium acid phthalate single crystals  

NASA Astrophysics Data System (ADS)

Ammonium acid phthalate (AAP) has been synthesized and single crystals were grown by slow evaporation solution growth technique. The unit cell parameters were confirmed by single crystal X-ray diffraction analysis and it belongs to orthorhombic system with the space group of Pcab. The high resolution X-ray diffraction studies revealed the crystalline perfection of the grown crystal. The various functional groups of AAP were identified by FT-IR and Raman spectral analyses. Thermal stability of the grown crystals was studied by TGA/DTA. The optical properties of the grown crystals were analyzed by UV-Vis-NIR and photoluminescence spectral studies. The mechanical property of the grown crystal was studied by Vickers microhardness measurement. The growth features of AAP were analyzed by chemical etching.

Arunkumar, A.; Ramasamy, P.

2013-04-01

181

Growing intermetallic single crystals using in situ decanting  

SciTech Connect

High temperature metallic solution growth is one of the most successful and versatile methods for single crystal growth, and is particularly suited for exploratory synthesis. The method commonly utilizes a centrifuge at room temperature and is very successful for the synthesis of single crystal phases that can be decanted from the liquid below the melting point of the silica ampoule. In this paper, we demonstrate the extension of this method that enables single crystal growth and flux decanting inside the furnace at temperatures above 1200°C. This not only extends the number of available metallic solvents that can be used in exploratory crystal growth but also can be particularly well suited for crystals that have a rather narrow exposed solidification surface in the equilibrium alloy phase diagram.

Petrovic, Cedomir; Canfield, Paul; Mellen, Jonathan

2012-05-16

182

Large Single Crystal growth of Bi2212 superconducting oxide  

Microsoft Academic Search

A floating zone method was used to study the effects of the growth velocity and starting composition of the feed rod on the crystal growth behaviour of Bi-2212 superconducting materials. It shows that a necessary condition for large single crystal growth is that the solid-liquid interface of a rod maintains a planar interface during crystal growth. The planar solid-liquid interface

Genda Gu; Gangyong Xu; John Tranquada

2006-01-01

183

On the growth of calcium tartrate tetrahydrate single crystals  

Microsoft Academic Search

Calcium tartrate single crystals were grown using silica gel as the growth medium. Calcium formate mixed with formic acid\\u000a was taken as the supernatant solution. It was observed that the nucleation density was reduced and the size of the crystals\\u000a was improved to a large extent compared to the conventional way of growing calcium tartrate crystals with calcium chloride.\\u000a The

X. Sahaya Shajan; C. Mahadevan

2004-01-01

184

Designed three-dimensional freestanding single-crystal carbon architectures.  

PubMed

Single-crystal carbon nanomaterials have led to great advances in nanotechnology. The first single-crystal carbon nanomaterial, fullerene, was fabricated in a zero-dimensional form. One-dimensional carbon nanotubes and two-dimensional graphene have since followed and continue to provide further impetus to this field. In this study, we fabricated designed three-dimensional (3D) single-crystal carbon architectures by using silicon carbide templates. For this method, a designed 3D SiC structure was transformed into a 3D freestanding single-crystal carbon structure that retained the original SiC structure by performing a simple single-step thermal process. The SiC structure inside the 3D carbon structure is self-etched, which results in a 3D freestanding carbon structure. The 3D carbon structure is a single crystal with the same hexagonal close-packed structure as graphene. The size of the carbon structures can be controlled from the nanoscale to the microscale, and arrays of these structures can be scaled up to the wafer scale. The 3D freestanding carbon structures were found to be mechanically stable even after repeated loading. The relationship between the reversible mechanical deformation of a carbon structure and its electrical conductance was also investigated. Our method of fabricating designed 3D freestanding single-crystal graphene architectures opens up prospects in the field of single-crystal carbon nanomaterials and paves the way for the development of 3D single-crystal carbon devices. PMID:25329767

Park, Ji-Hoon; Cho, Dae-Hyun; Moon, Youngkwon; Shin, Ha-Chul; Ahn, Sung-Joon; Kwak, Sang Kyu; Shin, Hyeon-Jin; Lee, Changgu; Ahn, Joung Real

2014-11-25

185

Single-drop optimization of protein crystallization  

PubMed Central

A completely new crystal-growth device has been developed that permits charting a course across the phase diagram to produce crystalline samples optimized for diffraction experiments. The utility of the device is demonstrated for the production of crystals for the traditional X-ray diffraction data-collection experiment, of microcrystals optimal for data-collection experiments at a modern microbeam insertion-device synchrotron beamline and of nanocrystals required for data collection on an X-ray laser beamline. PMID:22869140

Meyer, Arne; Dierks, Karsten; Hilterhaus, Dierk; Klupsch, Thomas; Mühlig, Peter; Kleesiek, Jens; Schöpflin, Robert; Einspahr, Howard; Hilgenfeld, Rolf; Betzel, Christian

2012-01-01

186

Single-drop optimization of protein crystallization.  

PubMed

A completely new crystal-growth device has been developed that permits charting a course across the phase diagram to produce crystalline samples optimized for diffraction experiments. The utility of the device is demonstrated for the production of crystals for the traditional X-ray diffraction data-collection experiment, of microcrystals optimal for data-collection experiments at a modern microbeam insertion-device synchrotron beamline and of nanocrystals required for data collection on an X-ray laser beamline. PMID:22869140

Meyer, Arne; Dierks, Karsten; Hilterhaus, Dierk; Klupsch, Thomas; Mühlig, Peter; Kleesiek, Jens; Schöpflin, Robert; Einspahr, Howard; Hilgenfeld, Rolf; Betzel, Christian

2012-08-01

187

Halide electrodeposition on single-crystal electrodes  

NASA Astrophysics Data System (ADS)

In this dissertation, we investigate in depth by computational and theoretical methods the processes and behavior of submonolayer electrochemical deposition of Br onto single-crystal Ag(100) electrodes. Although this system has little direct industrial application, it provides a test bed for developing theoretical and computational techniques which can be used to study systems of more applied interest. Br electrodeposited onto a Ag(100) substrate at room temperature displays a disordered phase at low electrochemical potentials. At higher electrochemical potentials, the adlayer undergoes a disorder-order phase transition to a c(2 x 2) ordered phase. The phase transition, the equilibrium properties of the adlayer, and the dynamics of the ordering and disordering processes are studied by a variety computational techniques, including static and dynamic lattice-gas models, an off-lattice equilibrium model, and Langevin simulations. Using a two-dimensional lattice-gas approximation for the adlayer, Monte Carlo simulations are used to explore the equilibrium properties of the Br adlayer under different values of the electrochemical potential. The model predicts the existence of low-temperature phases which are not stable at room temperature. The effects of these low-temperature phases on the room-temperature properties of the adlayer are discussed. Starting from the lattice-gas model developed for equilibrium simulations, a dynamic Monte Carlo simulation program is constructed, and the phase-ordering, disordering, and hysteresis behaviors are studied. The phase-ordering process is in the dynamic universality class known as Model A (Lifshitz-Allen-Cahn dynamics), but the disordering behavior is not as easily classified. Dynamic simulations of cyclic-voltammetry experiments show hysteresis due to kinetic limitations associated with the ordering and disordering processes. To further investigate the properties of the adlayer, the lattice-gas approximation was relaxed and replaced by a corrugation-potential approximation. Within this two-dimensional off-lattice model, the equilibrium properties were found to be similar to those of the lattice-gas model. However, the off-lattice model obviously allows calculations of additional quantities, such as the average lateral displacement from the adsorption site. Langevin dynamic simulations of the off-lattice model were also performed to test the validity of the assumptions used in the dynamic Monte Carlo simulations. However, these dynamic simulations were far too computationally intensive to allow off-lattice simulations of the ordering, disordering, and hysteresis behaviors. As a first step towards developing accelerated simulation methods for off-lattice simulations, we construct an advanced dynamic algorithm for continuum spin systems.

Mitchell, Steven James

2001-07-01

188

Brittlestar-Inspired Microlens Arrays Made of Calcite Single Crystals.  

PubMed

Unique concave microlens arrays (MLAs) made of calcite single crystals with tunable crystal orientations can be readily fabricated by template-assisted epitaxial growth in solution without additives under ambient conditions. While the non-birefringent calcite (001) MLA showed excellent imaging performance like brittlestar's microlens arrays, the birefringent calcite (104) MLA exhibited remarkable polarization-dependent optical properties. PMID:25366272

Ye, Xiaozhou; Zhang, Fei; Ma, Yurong; Qi, Limin

2014-11-01

189

Electron-hole fluid in ZnSe single crystals  

NASA Astrophysics Data System (ADS)

Recombination emission and light amplification spectra were obtained for cubic single crystals of ZnSe under intense optical excitation. Experimental results point to the existence of electron-hole plasma droplets in the semiconductor crystals. Electron-hole droplet parameters are examined; reasons for distortions of equilibrium electron and hole concentrations in droplets and of droplet binding energy are discussed.

Baltrameiunas, R.; Kuokshtis, E.

1980-10-01

190

Numerical simulation of single crystal growth by submerged heater method  

Microsoft Academic Search

A novel method of crystal growth which utilizes an axial submerged heater is proposed and numerically simulated. Single crystals should be grown by directional solidification in vertical bottom seeded crucibles. Submerged in the melt, the heater supplies the heat axially downward, enclosing and stratifying a small active portion of the melt.

Aleksandar G. Ostrogorsky

1990-01-01

191

Synthesis and physical characterization of thermoelectric single crystals  

E-print Network

There is much current interest in thermoelectric devices for sustainable energy. This thesis describes a research project on the synthesis and physical characterization of thermoelectric single crystals. 1In?Se?-[delta] ...

Porras Pérez Guerrero, Juan Pablo

2012-01-01

192

On the deformation mechanisms in single crystal Hadfield manganese steels  

SciTech Connect

Austenitic manganese steel, so called Hadfield manganese steel, is frequently used in mining and railroad frog applications requiring excessive deformation and wear resistance. Its work hardening ability is still not completely understood. Previous studies attributed the work-hardening characteristics of this material to dynamic strain aging or an imperfect deformation twin, a so-called pseudotwin. Unfortunately, these previous studies have all focused on polycrystalline Hadfield steels. To properly study the mechanisms of deformation in the absence of grain boundary or texture effects, single crystal specimens are required. The purpose of this work is the following: (1) observe the inelastic stress-strain behavior of Hadfield single crystals in orientations where twinning and slip are individually dominating or when they are competing deformation mechanisms; and (2) determine the microyield points of Hadfield single crystals and use micro-mechanical modeling to predict the stress-strain response of a single crystal undergoing micro-twinning.

Karaman, I.; Sehitoglu, H.; Gall, K. [Univ. of Illinois, Urbana, IL (United States). Dept. of Mechanical and Industrial Engineering] [Univ. of Illinois, Urbana, IL (United States). Dept. of Mechanical and Industrial Engineering; Chumlyakov, Y.I. [Siberian Physical and Technical Inst., Tomsk (Russian Federation). Physics of Plasticity and Strength of Materials Lab.] [Siberian Physical and Technical Inst., Tomsk (Russian Federation). Physics of Plasticity and Strength of Materials Lab.

1998-02-13

193

Aluminum Migration and Intrinsic Defect Interaction in Single-Crystal Zinc Oxide  

NASA Astrophysics Data System (ADS)

Vacancy-mediated migration of Al in single-crystal zinc oxide (ZnO) is investigated using secondary-ion mass spectrometry (SIMS) combined with hybrid density-functional theory (DFT) calculations. A thin film of Al-doped ZnO is deposited by sputtering onto the single-crystal bulk material and heat treated at temperatures in the range of 900 °C - 1300 °C . The migration of Al is found to be Zn-vacancy mediated. In order to elucidate the physical processes involved, an alternative model based on reactive diffusion is developed. The model includes the time evolution of the concentration of Al atoms on the Zn site (AlZn ), Zn vacancies (vZn), and a complex between the two, where the influence of the charge state of vZn on its formation energy is incorporated through the free carrier concentration. The modeling results exhibit close agreement with the experimental data and the AlZnvZn complex is found to diffuse with an activation energy of 2.6 eV and a preexponential factor of 4 ×10-2 cm2 s-1 . The model is supported by the results from hybrid DFT calculations combined with thermodynamical modeling, which also suggest that a complex between AlZn and vZn is promoted in n -doped material. The charge state of this complex is effectively -1 , and it thus acts as a compensating acceptor, limiting full utilization of the shallow AlZn donor. Furthermore, the DFT calculations also predict a high formation energy for both substitutional Al on the O site (AlO ) and interstitial Al (Ali), and are therefore of minor importance for Al migration in ZnO. The close coupling between the hybrid DFT calculations and the developed diffusion model enable benchmarking of the accuracy of several parameters extracted from the DFT calculations. Furthermore, since the diffusion model hinges strongly on defect concentrations, it couples directly to results from measurements by other experimental techniques than those used in this paper and provides an opportunity for independent verification of the estimated values by future studies.

Johansen, K. M.; Vines, L.; Bjørheim, T. S.; Schifano, R.; Svensson, B. G.

2015-02-01

194

Crystallization of Highly Oriented ZnO Microrods on Carboxylic Acid-Terminated SAMs  

E-print Network

that is environmentally friendly. ZnO has several fundamental advantages over its competitors (Si, GaAs, CdS, ZnSe, and Ga. Eng. B 2001, 80, 383-387. (2) Chopra, K. L., Das, S. R., Eds. Thin Film Solar Cells; Plenum: New York,11,12 as UV and microwave absorbers,1,10 as gas sensors,1,13-15 and for making transparent conducting films.1

Ocko, Ben

195

Electrical and Optical Properties of Porphyrin Single Crystals  

Microsoft Academic Search

In this work, we investigate the transport and optical properties of single crystal 5,10,15,20-tetrakis (4-N-ethylpyridyl) porphyrin salts, [H2TEPyP·4I]. The electrical conductivity exhibits high anisotropy, in that the conductivity along the stacking column, which is equal to 3.2 × 10?· cm, is three orders of magnitude larger than that perpendicular to the stacking column. The absorption spectra of the single crystals

Y. C. Chen; M. W. Lee; L. L. Li; K. J. Lin

2008-01-01

196

Synthesis and Single-Crystal Growth of Ca  

SciTech Connect

For the study of the quasi-two-dimensional Mott transition system Ca{sub 2-x}Sr{sub x}RuO{sub 4}, we have succeeded in synthesizing polycrystalline samples and also growing single crystals by a floating-zone method. Details of the preparations for the entire solution range are described. The structural, transport, and magnetic properties of both polycrystalline and single-crystal samples are fully in agreement.

Nakatsuji, Satoru; Maeno, Yoshiteru

2001-01-01

197

Optical characteristics of anisotropic CdP2 single crystals  

NASA Astrophysics Data System (ADS)

The refined results of the specified dispersion of refractive indexes, birefringence, optical activity of anisotropic (beta) -CdP2 single crystals and the components of both the gyration tensor G33 and the optical activity tensor (gamma) 123 in a wide spectral band of polarized light under normal conditions are presented. The influence of temperature and radiation intensity of neodymium and ruby lasers on these characteristics of CdP2 single crystals is studied and analyzed.

Borshch, Volodymyr V.; Gnatyuk, Volodymyr A.; Kovalenko, S. A.; Kuzmenko, M. G.; Yarernko, R. V.

2001-05-01

198

Bulk GaN single-crystals growth  

Microsoft Academic Search

Gallium nitride powder was prepared from gallium and ammonia at temperatures of 1000–1200°C. Parameters of the crystallographic lattice as well as photoluminescence and Raman spectra were determined for the obtained powder. As a result of GaN powder sublimation, GaN single crystals of 3×2×0.2mm were received, at temperatures 1200–1250°C. Single crystals of gallium nitride were also synthesised in a reaction of

Grzegorz Kamler; Janusz Zachara; S?awomir Podsiad?o; Leszek Adamowicz; Wojciech G?bicki

2000-01-01

199

Large single domain 123 material produced by seeding with single crystal rare earth barium copper oxide single crystals  

DOEpatents

A method of fabricating bulk YBa{sub 2}Cu{sub 3}O{sub x} where compressed powder oxides and/or carbonates of Y and Ba and Cu present in mole ratios to form YBa{sub 2}Cu{sub 3}O{sub x} are heated in the presence of a Nd{sub 1+x}Ba{sub 2{minus}x}Cu{sub 3}O{sub y} seed crystal to a temperature sufficient to form a liquid phase in the YBa{sub 2}Cu{sub 3}O{sub x} while maintaining the seed crystal solid. The materials are slowly cooled to provide a YBa{sub 2}Cu{sub 3}O{sub x} material having a predetermined number of domains between 1 and 5. Crack-free single domain materials can be formed using either plate shaped seed crystals or cube shaped seed crystals with a pedestal of preferential orientation material. 7 figs.

Todt, V.; Miller, D.J.; Shi, D.; Sengupta, S.

1998-07-07

200

Differences Between Individual ZSM-5 Crystals in Forming Hollow Single Crystals and Mesopores During Base Leaching.  

PubMed

After base treatment of ZSM-5 crystals below 100?nm in size, TEM shows hollow single crystals with a 10?nm shell. SEM images confirm that the shell is well- preserved even after prolonged treatment. Determination of the Si/Al ratios with AAS and XPS in combination with argon sputtering reveals aluminum zoning of the parent zeolite, and the total pore volume increases in the first two hours of base treatment. In corresponding TEM images, the amount of hollow crystals are observed to increase during the first two hours of base treatment, and intact crystals are visible even after 10?h of leaching; these observations indicate different dissolution rates between individual crystals. TEM of large, commercially available ZSM-5 crystals shows inhomogeneous distribution of mesopores among different crystals, which points to the existence of structural differences between individual crystals. Only tetrahedrally coordinated aluminum is detected with (27) Al MAS NMR after the base leaching of nano-sized ZSM-5. PMID:25720305

Fodor, Daniel; Krumeich, Frank; Hauert, Roland; van Bokhoven, Jeroen A

2015-04-13

201

Vapor crystal growth studies of single crystals of mercuric iodide (3-IML-1)  

NASA Technical Reports Server (NTRS)

A single crystal of mercuric iodide (HgI2) will be grown during the International Microgravity Lab. (IML-1) mission. The crystal growth process takes place by sublimation of HgI2 from an aggregate of purified material, transport of the molecules in the vapor from the source to the crystal, and condensation on the crystal surface. The objectives of the experiment are as follow: to grow a high quality crystal of HgI2 of sufficient size so that its properties can be extensively analyzed; and to study the vapor transport process, specifically the rate of diffusion transport at greatly reduced gravity where convection is minimized.

Vandenberg, Lodewijk

1992-01-01

202

Measurement of single crystal surface parameters  

NASA Technical Reports Server (NTRS)

The sticking coefficient and thermal desorption spectra of Cs from the (110) plane of W was investigated. A sticking coefficient of unity for the monolayer region was measured for T 250 K. Several distinct binding states were observed in the thermal desorption spectrum. Work function and electron reflection measurements were made on the (110) and (100) crystal faces of Mo. Both LEED and Auger were used to determine the orientation and cleanliness of the crystal surfaces. The work function values obtained for the (110) and (100) planes of Mo were 4.92 and 4.18 eV respectively.

Swanson, L. W.; Bell, A. E.; Strayer, R. W.

1972-01-01

203

Growth of single crystals by vapor transport  

NASA Technical Reports Server (NTRS)

The primary objectives of the program were to establish basic vapor transport and crystal growth properties and to determine thermodynamic, kinetic and structural parameters relevant to chemical vapor transport systems for different classes of materials. An important aspect of these studies was the observation of the effects of gravity-caused convection on the mass transport rate and crystal morphology. These objectives were accomplished through extensive vapor transport, thermochemical and structural studies on selected Mn-chalcogenides, II-VI and IV-VI compounds.

Wiedemeier, H.

1978-01-01

204

Optical and photoelectrochemical study of WTe2 single crystals  

NASA Astrophysics Data System (ADS)

Single crystals of Tungsten Ditelluride (WTe2) having a layered structure grown by chemical vapor transport method using iodine as the transporting agent are studied here. The optical response of these crystals has been obtained by UV-Vis-NIR spectroscopy at room temperature. Results of optical spectra have been analyzed on the basis of three dimensional models. Photoelectrochemical (PEC) characterization of WTe 2 single crystals have been carried out. Photo response measurements were obtained at different intensities of light source to illuminate the photoanode. The effect of intensity in the efficiency of PEC solar cell has been studied. The implications of the results have been discussed.

Desai, P. F.; Patel, D. D.; Bhavsar, D. N.; Jani, A. R.

2013-06-01

205

CeSi 2? ? single crystals: growth features and properties  

Microsoft Academic Search

Single crystals of CeSix (x=1.79–1.85) with an orthorhombic structure have been grown by floating zone methods both with RF induction and optical heating at feed rod compositions CeSiy (y=1.76–1.89). High-perfection single crystals were achieved for a narrow composition interval y=1.81–1.82. A slight axial segregation of Si in the crystal and 2nd phase inclusions of Si (y>1.82) and of CeSi (y<1.80),

D. Souptel; G. Behr; W. Löser; A. Teresiak; S. Drotziger; C. Pfleiderer

2004-01-01

206

Anisotropy of nickel-base superalloy single crystals  

NASA Technical Reports Server (NTRS)

The effects of crystal orientation on the mechanical properties of single crystals of the nickel-based superalloy Mar-M247 are investigated. Tensile tests at temperatures from 23 to 1093 C and stress rupture tests at temperatures from 760 to 1038 C were performed for 52 single crystals at various orientations. During tensile testing between 23 and 760 C, single crystals with high Schmid factors were found to be favorably oriented for slip and to exhibit lower strength and higher ductility than those with low Schmid factors. Crystals which required large rotations to become oriented for cross slip were observed to have the shortest stress rupture lives at 760 C, while those which required little or no rotation had the longest lives. In addition, stereographic triangles obtained for Mar-M247 and Mar-M200 single crystals reveal that crystals with orientations near the -111 had the highest lives, those near the 001 had high lives, and those near the 011 had low lives.

Mackay, R. A.; Maier, R. D.; Dreshfield, R. L.

1980-01-01

207

Fatigue Failure Criteria for Single Crystal Nickel Superalloys  

NASA Technical Reports Server (NTRS)

High Cycle Fatigue (HCF) induced failures in aircraft gas-turbine and rocket engine turbopump blades is a pervasive problem. Single crystal turbine blades are being utilized in rocket engine turbopumps and jet engines throughout industry and NASA because of their superior creep, stress rupture, melt resistance and thermomechanical fatigue capabilities over polycrystalline alloys. Single-crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the pan geometry a significant factor in the overall analysis. The failure modes of single crystal turbine blades is complicated to predict due to the material orthotropy and variations in crystal orientations. A fatigue failure criteria based on the maximum shear stress amplitude [delta t max] on the 30 slip systems, is presented for single crystal nickel superalloys (FCC crystal). This criteria reduces the scatter in uniaxial LCF test data, for four different specimen orientations, for PWA 1484 at 1200 F in air, quite well. A power law curve fit of the failure parameter, delta t max, vs. cycles to failure is presented.

Arakere, Nagaraj K.

1999-01-01

208

Solvent-induced single-crystal-to-single-crystal transformation in multifunctional chiral dysprosium(III) compounds.  

PubMed

Two new enantiomeric ionic chiral dysprosium(III) compounds were designed and synthesized. These compounds show simultaneously the optical activity, ferroelectric effects, nonlinear-optical effects, and slow magnetic relaxation behavior. More interestingly, these compounds exhibit reversible single-crystal-to-single-crystal transformations associated with the release or absorption of solvent molecules. The structure transformations are accompanied by distinct changes in the physical properties. PMID:22862848

Liu, Jian; Zhang, Xiao-Peng; Wu, Tao; Ma, Bin-Bin; Wang, Tian-Wei; Li, Cheng-Hui; Li, Yi-Zhi; You, Xiao-Zeng

2012-08-20

209

Elastic Moduli, Pressure Derivatives, and Temperature Derivatives of Single-Crystal Olivine and Single-Crystal Forsterite  

Microsoft Academic Search

Ultrasonic wave velocities in single-crystal forsteritc (F) and single-crystal olivine (0) have been measured as a function of pressure and of temperature near ambient conditions. Shear and longitudinal velocities were measured in eighteen independent modes, so that each of the nine elastic constants could be calculated by at least two independent equations. The adiabatic stiffness constants c{j (in Mb), their

Mineo Kumazawa; Orson L. Anderson

1969-01-01

210

Crystal growth, structural and optical characterization of a semi-organic single crystal for frequency conversionapplications  

NASA Astrophysics Data System (ADS)

Single crystals of semi-organic L-histidine hydrobromide have been grown by slow evaporation technique from a mixture of L-histidine and hydrobromic acid in aqueous solution at ambient temperature. From high-resolution X-ray diffraction analysis, the crystalline perfection of the grown crystal has been studied. Single crystal X-ray diffraction analyses, Nuclear Magnetic Resonance spectral analysis, Thermo-Gravimetry (TG), Differential Thermal Analysis (DTA) and hardness test have been employed to characterize the as-grown crystals. The UV cutoff wavelength of the grown crystal is below 300 nm and has a wide transparency window, which is suitable for second harmonic generation of laser in the blue region. Nonlinear optical characteristics have been studied using Q switched Nd:YAG laser ( ?=1064 nm). The second harmonic generation conversion efficiency of the grown crystals confirms their suitability for frequency conversion applications.

Anandan, P.; Parthipan, G.; Saravanan, T.; Mohan Kumar, R.; Bhagavannarayana, G.; Jayavel, R.

2010-12-01

211

Zinc paddlewheel dimers containing a strong ?···? stacking supramolecular synthon: designed single-crystal to single-crystal phase changes and gas/solid guest exchange.  

PubMed

The ligand 4-(1,8-naphthalimido)benzoate, L(C4)(-), containing a linear link between the strong ?···? stacking 1,8-naphthalimide supramolecular synthon and the carboxylate donor group, reacts with Zn(O(2)CCH(3))(2)(H(2)O)(2) in the presence of dimethylsulfoxide (DMSO) to yield [Zn(2)(L(C4))(4)(DMSO)(2)]·2(CH(2)Cl(2)). This compound contains the "paddlewheel" Zn(2)(O(2)CR)(4) secondary building unit (SBU) that organizes the rigid phenylene and naphthalimide rings of the carboxylate ligands in a square arrangement. The supramolecular architecture is dominated by ?···? stacking interactions between naphthalimide rings of one dimer with four adjacent dimers, essentially at right angles, forming an open three-dimensional network structure. Two symmetry equivalent networks of this type interpenetrate generating overall a densely packed three-dimensional, 2-fold interpenetrated architecture in which the CH(2)Cl(2) solvate molecules are trapped in isolated pockets. Upon cooling, single crystals of [Zn(2)(L(C4))(4)(DMSO)(2)]·2(CH(2)Cl(2)) undergo two distinct crystallographic phase transitions, as characterized by X-ray diffraction at different temperatures, without loss of crystallinity. These two new phases have supramolecular structures very similar to the room temperature structure, but changes in the ordering of the CH(2)Cl(2) solvate cause shifting of the naphthalimide rings and a lowering of the symmetry. Crystals of [Zn(2)(L(C4))(4)(DMSO)(2)]·2(CH(2)Cl(2)) undergo a single-crystal to single-crystal gas/solid guest exchange upon exposure to atmospheric moisture, or faster if placed under vacuum or heated under dry gas to 100 °C, followed by atmospheric moisture, to yield [Zn(2)(L(C4))(4)(DMSO)(2)]·3.9(H(2)O). The molecular and supramolecular structures of this new compound are very similar to the dichloromethane adduct, with now the water molecules encapsulated into the framework. The remarkable feature of both the phase changes and exchange of solvates is that this robust network is not porous; local distortions (ring slippage and tilting changes) of the ?···? stacking interactions of the naphthalimide rings that organize these structures allow these changes to take place without the loss of crystallinity. The complexes [Zn(2)(L(C4))(4)(DMSO)(2)]·2(CH(2)Cl(2)) and [Zn(2)(L(C4))(4)(DMSO)(2)]·3.9(H(2)O) show green emission in the solid state. PMID:22029900

Reger, Daniel L; Debreczeni, Agota; Smith, Mark D

2011-11-21

212

Effect of Crystal Orientation on Fatigue Failure of Single Crystal Nickel Base Turbine Blade Superalloys  

NASA Technical Reports Server (NTRS)

High cycle fatigue (HCF) induced failures in aircraft gas turbine and rocket engine turbopump blades is a pervasive problem. Single crystal nickel turbine blades are being utilized in rocket engine turbopumps and jet engines throughout industry because of their superior creep, stress rupture, melt resistance, and thermomechanical fatigue capabilities over polycrystalline alloys. Currently the most widely used single crystal turbine blade superalloys are PWA 1480/1493, PWA 1484, RENE' N-5 and CMSX-4. These alloys play an important role in commercial, military and space propulsion systems. Single crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the part geometry a significant factor in the overall analysis. The failure modes of single crystal turbine blades are complicated to predict due to the material orthotropy and variations in crystal orientations. Fatigue life estimation of single crystal turbine blades represents an important aspect of durability assessment. It is therefore of practical interest to develop effective fatigue failure criteria for single crystal nickel alloys and to investigate the effects of variation of primary and secondary crystal orientation on fatigue life. A fatigue failure criterion based on the maximum shear stress amplitude /Delta(sub tau)(sub max))] on the 24 octahedral and 6 cube slip systems, is presented for single crystal nickel superalloys (FCC crystal). This criterion reduces the scatter in uniaxial LCF test data considerably for PWA 1493 at 1200 F in air. Additionally, single crystal turbine blades used in the alternate advanced high-pressure fuel turbopump (AHPFTP/AT) are modeled using a large-scale three-dimensional finite element model. This finite element model is capable of accounting for material orthotrophy and variation in primary and secondary crystal orientation. Effects of variation in crystal orientation on blade stress response are studied based on 297 finite element model runs. Fatigue lives at critical points in the blade are computed using finite element stress results and the failure criterion developed. Stress analysis results in the blade attachment region are also presented. Results presented demonstrates that control of secondary and primary crystallographic orientation has the potential to significantly increase a component S resistance to fatigue crack growth with- out adding additional weight or cost. [DOI: 10.1115/1.1413767

Arakere, N. K.; Swanson, G.

2002-01-01

213

SINGLE CRYSTAL NIOBIUM TUBES FOR PARTICLE COLLIDERS ACCELERATOR CAVITIES  

SciTech Connect

The objective of this research project is to produce single crystal niobium (Nb) tubes for use as particle accelerator cavities for the Fermi laboratory’s International Linear Collider project. Single crystal Nb tubes may have superior performance compared to a polycrystalline tubes because the absence of grain boundaries may permit the use of higher accelerating voltages. In addition, Nb tubes that are subjected to the high temperature, high vacuum crystallization process are very pure and well annealed. Any impurity with a significantly higher vapor pressure than Nb should be decreased by the relatively long exposure at high temperature to the high vacuum environment. After application of the single crystal process, the surfaces of the Nb tubes are bright and shiny, and the tube resembles an electro polished Nb tube. For these reasons, there is interest in single crystal Nb tubes and in a process that will produce single crystal tubes. To convert a polycrystalline niobium tube into a single crystal, the tube is heated to within a few hundred ?C of the melting temperature of niobium, which is 2477 ?C. RF heating is used to rapidly heat the tube in a narrow zone and after reaching the operating temperature, the hot zone is slowly passed along the length of the tube. For crystallization tests with Nb tubes, the traverse rate was in the range of 1-10 cm per hour. All the crystallization tests in this study were performed in a water-cooled, stainless steel chamber under a vacuum of 5 x10-6 torr or better. In earliest tests of the single crystal growth process, the Nb tubes had an OD of 1.9 cm and a wall thickness of 0.15 mm. With these relatively small Nb tubes, the single crystal process was always successful in producing single crystal tubes. In these early tests, the operating temperature was normally maintained at 2200 ?C, and the traverse rate was 5 cm per hour. In the next test series, the Nb tube size was increased to 3.8 cm OD and the wall thickness was increased 0.18 mm and eventually to 0.21 mm. Again, with these larger tubes, single crystal tubes were usually produced by the crystallization process. The power supply was generally operated at full output during these tests, and the traverse rate was 5 cm per hour. In a few tests, the traverse rate was increased to 10 cm per hour, and at the faster traverse rate, single crystal growth was not achieved. In these tests with a faster traverse rate, it was thought that the tube was not heated to a high enough temperature to achieve single crystal growth. In the next series of tests, the tube OD was unchanged at 3.8 cm and the wall thickness was increased to 0.30 mm. The increased wall thickness made it difficult to reach an operating temperature above 2,000 ?C, and although the single crystal process caused a large increase in the crystal grains, no single crystal tubes were produced. It was assumed that the operating temperature in these tests was not high enough to achieve single crystal growth. In FY 2012, a larger power supply was purchased and installed. With the new power supply, temperatures above the melting point of Nb were easily obtained regardless of the tube thickness. A series of crystallization tests was initiated to determine if indeed the operating temperature of the previous tests was too low to achieve single crystal growth. For these tests, the Nb tube OD remained at 3.8 cm and the wall thickness was 0.30 mm. The first test had an operating temperature of 2,000 ?C. and the operating temperature was increased by 50 ?C increments for each successive test. The final test was very near the Nb melting temperature, and indeed, the Nb tube eventually melted in the center of the tube. These tests showed that higher temperatures did yield larger grain sizes if the traverse rate was held constant at 5 cm per hour, but no single crystal tubes were produced even at the highest operating temperature. In addition, slowing the traverse rate to as low as 1 cm per hour did not yield a single crystal tube regardless of operating temperature. At this time, it

MURPHY, JAMES E [University of Nevada, Reno] [University of Nevada, Reno

2013-02-28

214

Single Crystal Growth of Se-Te Alloys onto Tellurium from the Melts  

Microsoft Academic Search

The method to obtain single crystals of Se-Te alloys is developed. In this method, it is possible to grow a single crystal of an alloy from the melt, using a single crystal of tellurium as a seed for a Bridgmanlike method. The crystal is grown epitaxially onto tellurium. The obtained crystals is homogeneous except the layer of a few mm

Tadashi Shiosaki; Akira Kawabata

1971-01-01

215

THE PALEOMAGNETISM OF SINGLE SILICATE CRYSTALS: RECORDING GEOMAGNETIC FIELD  

E-print Network

THE PALEOMAGNETISM OF SINGLE SILICATE CRYSTALS: RECORDING GEOMAGNETIC FIELD STRENGTH DURING MIXED of the geomagnetic reversal chronology of the last 160 million years are well established. The relationship between of in situ and laboratory-induced alteration. Here we review an alternative approach. Single plagioclase

Jellinek, Mark

216

Raman spectra of deuteriated taurine single crystals  

NASA Astrophysics Data System (ADS)

The polarized Raman spectra of partially deuteriated taurine [(ND 3+) 0.65(NH 3+) 0.35(CH 2) 2SO 3-] crystals from x( zz) x and x( zy) x scattering geometries of the A g and B g irreducible representations of the factor group C 2h are reported. The temperature-dependent Raman spectra of partially deuteriated taurine do not reveal any evidence of the structural phase transition undergone by normal taurine at about 250 K, but an anomaly observed in the 180 cm -1 band at ˜120 K implies a different dynamic for this band (which is involved in a pressure-induced phase transition) in the deuteriated crystal.

Souza, J. M. de; Lima, R. J. C.; Freire, P. T. C.; Sasaki, J. M.; Melo, F. E. A.; Filho, J. Mendes; Jones, Derry W.

2005-05-01

217

Stress-induced single-polarization single-transverse mode photonic crystal fiber with low nonlinearity  

Microsoft Academic Search

We report on the design of a single-polarization single-transverse mode large mode area photonic crystal fiber. By including index-matched stress applying elements in the photonic cladding an ultra-broadband single polarization window is obtained while a large mode field area of ~700 mum is maintained. Based on that design, an Yb-doped double-clad photonic crystal fiber is realized that combines low nonlinearity

T. Schreiber; F. Röser; O. Schmidt; J. Limpert; R. Iliew; F. Lederer; A. Petersson; C. Jacobsen; K. P. Hansen; J. Broeng; A. Tünnermann

2005-01-01

218

Atomic beam scattering from single crystal surfaces  

NASA Astrophysics Data System (ADS)

Application of atom-scattering to a variety of surface problems is expanding rapidly, owing in large part to the extreme surface- sensitivity of this probe. Helium is particularly useful because of its low mass and chemical inertness. Beams with velocity spreads of less than one percent and wavelength of the order of one Angstrom can be formed by nozzle expansion. The scattered flux from a clean, well-ordered crystal surface contains elastic and inelastic, coherent and incoherent, components. The coherent elastic component (i.e., the specular and diffracted beams) contains information about the crystallographic structure of the outer- most atomic layer of the crystal and about the interaction potential between the crystal and the scattered particle. The latter manifests itself in the form of resonances between the incoming free-particle state, and the two-dimensional Bloch states bound in the potential well at the surface. Elastic scattering theory has reached the point where the resonance signatures in the various diffracted beams can be predicted accurately. Crystallographic information resides in the diffracted beam intensities. Theoretical interpretation is less well advanced, though some progress has been made with “hard-wall” models. Experimental studies of reconstructed surfaces and chemisorbed overlayers appear very promising. In inelastic scattering, energy resolution has been achieved by both time-of-flight and diffraction methods. High-resolution studies on alkali halide surfaces have led to experimental determination of Rayleighwave dispersion relations over the full Brillouin zone. Preliminary results have also been obtained on some metals.

Frankl, Daniel R.

219

Crystal rotation in Cu single crystal micropillars: In situ Laue and electron backscatter diffraction  

Microsoft Academic Search

In situ microdiffraction experiments were conducted on focused ion beam machined single crystal Cu pillars oriented for double slip. During deformation, the crystal undergoes lattice rotation on both the primary and critical slip system. In spite of the initial homogeneous microstructure of the Cu pillar, rotation sets in already at yield and is more important at the top of the

R. Maaß; S. van Petegem; D. Grolimund; H. van Swygenhoven; D. Kiener; G. Dehm

2008-01-01

220

Method of making macrocrystalline or single crystal semiconductor material  

NASA Technical Reports Server (NTRS)

A macrocrystalline or single crystal semiconductive material is formed from a primary substrate including a single crystal or several very large crystals of a relatively low melting material. This primary substrate is deposited on a base such as steel or ceramic, and it may be formed from such metals as zinc, cadmium, germanium, aluminum, tin, lead, copper, brass, magnesium silicide, or magnesium stannide. These materials generally have a melting point below about 1000 C and form on the base crystals the size of fingernails or greater. The primary substrate has an epitaxial relationship with a subsequently applied layer of material, and because of this epitaxial relationship, the material deposited on the primary substrate will have essentially the same crystal size as the crystals in the primary substrate. If required, successive layers are formed, each of a material which has an epitaxial relationship with the previously deposited layer, until a layer is formed which has an epitaxial relationship with the semiconductive material. This layer is referred to as the epitaxial substrate, and its crystals serve as sites for the growth of large crystals of semiconductive material. The primary substrate is passivated to remove or otherwise convert it into a stable or nonreactive state prior to deposition of the seconductive material.

Shlichta, P. J. (inventor); Holliday, R. J. (inventor)

1986-01-01

221

Crystal growth, magnetism, transport and superconductivity of two dimensional sodium cobalt oxide single crystals  

Microsoft Academic Search

The objective of this work was to study the single crystal growth of NaxCoO2 by the optical floating zone technique and the intrinsic properties of the high quality single crystal samples thus produced. The properties of the superconductors derived from it will also be reported. This thesis, after a literature review on the NaxCoO2 family and the superconductors derived from

Dapeng Chen

2008-01-01

222

Low-cost single-crystal turbine blades, volume 2  

NASA Technical Reports Server (NTRS)

The overall objectives of Project 3 were to develop the exothermic casting process to produce uncooled single-crystal (SC) HP turbine blades in MAR-M 247 and higher strength derivative alloys and to validate the materials process and components through extensive mechanical property testing, rig testing, and 200 hours of endurance engine testing. These Program objectives were achieved. The exothermic casting process was successfully developed into a low-cost nonproperietary method for producing single-crystal castings. Single-crystal MAR-M 247 and two derivatives DS alloys developed during this project, NASAIR 100 and SC Alloy 3, were fully characterized through mechanical property testing. SC MAR-M 247 shows no significant improvement in strength over directionally solidified (DS) MAR-M 247, but the derivative alloys, NASAIR 100 and Alloy 3, show significant tensile and fatigue improvements. Firtree testing, holography, and strain-gauge rig testing were used to determine the effects of the anisotropic characteristics of single-crystal materials. No undesirable characteristics were found. In general, the single-crystal material behaved similarly to DS MAR-M 247. Two complete engine sets of SC HP turbine blades were cast using the exothermic casting process and fully machined. These blades were successfully engine-tested.

Strangman, T. E.; Dennis, R. E.; Heath, B. R.

1984-01-01

223

Method for harvesting rare earth barium copper oxide single crystals  

DOEpatents

A method of preparing high temperature superconductor single crystals is disclosed. The method of preparation involves preparing precursor materials of a particular composition, heating the precursor material to achieve a peritectic mixture of peritectic liquid and crystals of the high temperature superconductor, cooling the peritectic mixture to quench directly the mixture on a porous, wettable inert substrate to wick off the peritectic liquid, leaving single crystals of the high temperature superconductor on the porous substrate. Alternatively, the peritectic mixture can be cooled to a solid mass and reheated on a porous, inert substrate to melt the matrix of peritectic fluid while leaving the crystals melted, allowing the wicking away of the peritectic liquid. 2 figs.

Todt, V.R.; Sengupta, S.; Shi, D.

1996-04-02

224

Modelling of Heat Transfer in Single Crystal Growth  

E-print Network

An attempt is made to review the heat transfer and the related problems encountered in the simulation of single crystal growth. The peculiarities of conductive, convective and radiative heat transfer in the different melt, solution, and vapour growth methods are discussed. The importance of the adequate description of the optical crystal properties (semitransparency, specular reflecting surfaces) and their effect on the heat transfer is stresses. Treatment of the unknown phase boundary fluid/crystal as well as problems related to the assessment of the quality of the grown crystals (composition, thermal stresses, point defects, disclocations etc.) and their coupling to the heat transfer/fluid flow problems is considered. Differences between the crystal growth simulation codes intended for the research and for the industrial applications are indicated. The problems of the code verification and validation are discussed; a brief review of the experimental techniques for the study of heat transfer and flow structu...

Zhmakin, Alexander I

2014-01-01

225

Single-crystal growth, crystal and electronic structure of NaCoO 2  

Microsoft Academic Search

Single crystals of NaCoO2 have been successfully synthesized for the first time by a flux method at 1323K. A single-crystal X-ray diffraction study confirmed the trigonal R3?m space group and the lattice parameters a=2.8897(15)A?, c=15.609(3)A?. The crystal structure has been refined to the conventional values R=1.9% and wR=2.1% for 309 independent observed reflections. The electron density distribution of NaCoO2 has

Yasuhiko Takahashi; Yoshito Gotoh; Junji Akimoto

2003-01-01

226

Optical properties of tungsten disulfide single crystals doped with gold  

Microsoft Academic Search

Single crystals of WS2 doped with gold have been grown by the chemical vapour transport method using iodine as a transporting agent. X-ray diffraction (XRD) pattern analysis revealed presence of mixed three-layer rhombohedral (3R) and two-layer hexagonal (2H) polytypes for the doped crystals while the undoped one shows only 2H form. Hall measurements indicate that the samples are p-type in

D. O. Dumcenco; H. P. Hsu; Y. S. Huang; C. H. Liang; K. K. Tiong; C. H. Du

2008-01-01

227

Growth and characterization of lithium yttrium borate single crystals  

NASA Astrophysics Data System (ADS)

Single crystals of 0.1% Ce doped Li6Y(BO3)3 have been grown using the Czochralski technique. The photoluminescence study of these crystals shows a broad emission at ˜ 420 nm corresponding to Ce3+ emission from 5d?4f energy levels. The decay profile of this emission shows a fast response of ˜ 28 ns which is highly desirable for detector applications.

Singh, A. K.; Singh, S. G.; Tyagi, M.; Desai, D. G.; Sen, Shashwati

2014-04-01

228

Orientation effects in nanoindentation of single crystal copper  

Microsoft Academic Search

Numerical simulations and experimental results of nanoindentation on single crystal copper in three crystallographic orientations [(100), (011) and (111)] using a spherical indenter (3.4?m radius) were reported. The simulations were conducted using a commercial finite element code (ABAQUS) with a user-defined subroutine (VUMAT) that incorporates large deformation crystal plasticity constitutive model. This model can take full account of the crystallographic

Y. Liu; S. Varghese; J. Ma; M. Yoshino; H. Lu; R. Komanduri

2008-01-01

229

Growth and characterization of lithium yttrium borate single crystals  

SciTech Connect

Single crystals of 0.1% Ce doped Li{sub 6}Y(BO{sub 3}){sub 3} have been grown using the Czochralski technique. The photoluminescence study of these crystals shows a broad emission at ? 420 nm corresponding to Ce{sub 3+} emission from 5d?4f energy levels. The decay profile of this emission shows a fast response of ? 28 ns which is highly desirable for detector applications.

Singh, A. K.; Singh, S. G.; Tyagi, M.; Desai, D. G.; Sen, Shashwati [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai- 400085 (India)

2014-04-24

230

Piezotronic-Effect Enhanced Drug Metabolism and Sensing on a Single ZnO Nanowire Surface with the Presence of Human Cytochrome P450.  

PubMed

Cytochromes P450 (CYPs) enzymes are involved in catalyzing the metabolism of various endogenous and exogenous compounds. A rapid analysis of drug metabolism reactions by CYPs is required because they can metabolize 95% of current drugs in drug development and effective therapies. Here, we describe a study of piezotronic-effect enhanced drug metabolism and sensing by utilizing a single ZnO nanowire (ZnO NW) device. Owing to the unique hydrophobic feature of a ZnO NW that provides a desirable "microenvironment" for the immobilization of biomolecules, our device can effectively stimulate the tolbutamide metabolism by decorating a ZnO NW with cytochrome P4502C9/CYPs reductase (CYP2C9/CPR) microsomes. By applying an external compressive strain to the ZnO nanowire, the piezotronic effect, which plays a primary role in tuning the transport behavior of a ZnO NW utilizing the created piezoelectric polarization charges at the local interface, can effectively enhance the performance of the device. A theoretical model is proposed using an energy band diagram to explain the experimental data. This study provides a potential approach to study drug metabolism and trace drug detection based on the piezotronic effect. PMID:25758259

Wang, Ning; Gao, Caizhen; Xue, Fei; Han, Yu; Li, Tao; Cao, Xia; Zhang, Xueji; Zhang, Yue; Wang, Zhong Lin

2015-03-24

231

Effect of Crystal Orientation on Analysis of Single-Crystal, Nickel-Based Turbine Blade Superalloys  

NASA Technical Reports Server (NTRS)

High-cycle fatigue-induced failures in turbine and turbopump blades is a pervasive problem. Single-crystal nickel turbine blades are used because of their superior creep, stress rupture, melt resistance, and thermomechanical fatigue capabilities. Single-crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the part geometry a significant and complicating factor. A fatigue failure criterion based on the maximum shear stress amplitude on the 24 octahedral and 6 cube slip systems is presented for single-crystal nickel superalloys (FCC crystal). This criterion greatly reduces the scatter in uniaxial fatigue data for PWA 1493 at 1,200 F in air. Additionally, single-crystal turbine blades used in the Space Shuttle main engine high pressure fuel turbopump/alternate turbopump are modeled using a three-dimensional finite element (FE) model. This model accounts for material orthotrophy and crystal orientation. Fatigue life of the blade tip is computed using FE stress results and the failure criterion that was developed. Stress analysis results in the blade attachment region are also presented. Results demonstrate that control of crystallographic orientation has the potential to significantly increase a component's resistance to fatigue crack growth without adding additional weight or cost.

Swanson, G. R.; Arakere, N. K.

2000-01-01

232

Skylab experiments on semiconductors and alkali halides. [single crystal growth  

NASA Technical Reports Server (NTRS)

The space processing experiments performed during the Skylab missions included one on single crystal growth of germanium selenide and telluride, one on pure and doped germanium crystals, two on pure and doped indium antimonide, one on gallium-indium-antimony systems, and one on a sodium chloride-sodium fluoride eutectic. In each experiment, three ampoules of sample were processed in the multipurpose electric furnace within the Skylab Materials Processing Facility. All were successful in varying degrees and gave important information about crystal growth removed from the effects of earth surface gravity.

Lundquist, C. A.

1974-01-01

233

Lithium niobate single-crystal and photo-functional device  

DOEpatents

Provided are lithium niobate single-crystal that requires a low voltage of not larger than 10 kV/nm for its ferroelectric polarization inversion and of which the polarization can be periodically inverted with accuracy even at such a low voltage, and a photo-functional device comprising the crystal. The crystal has a molar fraction of Li.sub.2 O/(Nb.sub.2 O.sub.5 +Li.sub.2 O) of falling between 0.49 and 0.52. The photo-functional device can convert a laser ray being incident thereon.

Gopalan, Venkatraman (State College, PA); Mitchell, Terrence E. (Los Alamos, NM); Kitamura, Kenji (Tsukuba, JP); Furukawa, Yasunori (Tsukuba, JP)

2001-01-01

234

Growth and characterization of 4-methyl benzene sulfonamide single crystals  

NASA Astrophysics Data System (ADS)

Single crystals of 4-methyl benzene sulfonamide (4MBS) were successfully grown from aqueous solution by low temperature solution growth technique. The grown crystal was characterized by single crystal XRD and powder XRD methods to obtain the lattice parameters and the diffraction planes of the crystal. UV-vis-NIR absorption spectrum was used to measure the range of optical transmittance and optical band gap energy. The optical transmission range was measured as 250-1200 nm. FTIR spectral studies were carried out to identify the presence of functional groups in the grown crystal. The thermal behavior of the crystal was investigated from thermo gravimetric analysis (TGA) and differential scanning calorimetry (DSC) study. The absence of SHG was noticed by Kurtz and Perry powder technique. The third order NLO behavior of the material was confirmed by measuring the nonlinear optical properties using Z-scan technique and it was found that the crystal is capable of exhibiting saturation absorption and self-defocusing performance.

Thirumalaiselvam, B.; Kanagadurai, R.; Jayaraman, D.; Natarajan, V.

2014-11-01

235

The Load Capability of Piezoelectric Single Crystal Actuators  

NASA Technical Reports Server (NTRS)

Piezoelectric lead magnesium niobate-lead titanate (PMN-PT) single crystal is one of the most promising materials for electromechanical device applications due to its high electrical field induced strain and high electromechanical coupling factor. PMN-PT single crystal-based multilayer stack actuators and multilayer stack-based flextensional actuators have exhibited high stroke and high displacement-voltage ratios. The actuation capabilities of these two actuators were evaluated using a newly developed method based upon a laser vibrometer system under various loading conditions. The measured displacements as a function of mechanical loads at different driving voltages indicate that the displacement response of the actuators is approximately constant under broad ranges of mechanical load. The load capabilities of these PMN-PT single crystal-based actuators and the advantages of the capability for applications will be discussed.

Xu, Tian-Bing; Su, Ji; Jiang, Xiaoning; Rehrig, Paul W.; Hackenberger, Wesley S.

2007-01-01

236

The Load Capability of Piezoelectric Single Crystal Actuators  

NASA Technical Reports Server (NTRS)

Piezoelectric lead magnesium niobate-lead titanate (PMN-PT) single crystal is one of the most promising materials for electromechanical device applications due to its high electrical field induced strain and high electromechanical coupling factor. PMN-PT single crystal-based multilayer stack actuators and multilayer stack-based flextensional actuators have exhibited high stroke and high displacement-voltage ratios. The actuation capabilities of these two actuators were evaluated using a newly developed method based upon a laser vibrometer system under various loading conditions. The measured displacements as a function of mechanical loads at different driving voltages indicate that the displacement response of the actuators is approximately constant under broad ranges of mechanical load. The load capabilities of these PMN-PT single crystal-based actuators and the advantages of the capability for applications will be discussed.

Xu, Tian-Bing; Su, Ji; Jiang, Xiaoning; Rehrig, Paul W.; Hackenberger, Wesley S.

2006-01-01

237

Synthesis and properties of erbium oxide single crystals  

SciTech Connect

Erbium oxide (Er{sub 2}O{sub 3}, erbia) is a highly stable cubic rare earth oxide with a high melting point of 2,430 C. Because of this, it may have potential applications where high temperature stability and corrosion resistance are required. However, relatively little is known about the properties of this oxide ceramic. The authors have employed a xenon optical floating zone unit with a temperature capability of 3,000 C to grow high quality single crystals of erbia. The conditions for single crystal growth of erbia have been established. The mechanical properties of erbia single crystals have been initially examined using microhardness indentation as a function of temperature.

Petrovic, J.J.; Romero, R.S.; Mendoza, D.; Kukla, A.M.; Hoover, R.C.; McClellan, K.J.

1999-04-01

238

Single Crystal Synthesis and STM Studies of High Temperature Superconductors  

NASA Technical Reports Server (NTRS)

This is a final report for the work initiated in September of 1994 under the grant NAG8-1085 - NASA/OMU, on the fabrication of bulk and single crystal synthesis, specific heat measuring and STM studies of high temperature superconductors. Efforts were made to fabricate bulk and single crystals of mercury based superconducting material. A systematic thermal analysis on the precursors for the corresponding oxides and carbonates were carried out to synthesized bulk samples. Bulk material was used as seed in an attempt to grow single crystals by a two-step self flux process. On the other hand bulk samples were characterized by x-ray diffraction, electrical resistivity and magnetic susceptibility, We studied the specific heat behavior in the range from 80 to 300 K. Some preliminary attempts were made to study the atomic morphology of our samples. As part of our efforts we built an ac susceptibility apparatus for measuring the transition temperature of our sintered samples.

Barrientos, Alfonso

1997-01-01

239

Growth of solid solution single crystals  

NASA Technical Reports Server (NTRS)

Based on the thermophysical properties of Hg sub 1-x Cd sub x Te alloys, the reasons are discussed for the failure of conventional Bridgman-Stockbarger growth methods to produce high quality homogeneous crystals in the presence of Earth's gravity. The deleterious effects are considered which arise from the dependence of the thermophysical properties on temperature and composition and from the large amount of heat carried by the fused silica ampules. An improved growth method, developed to optimize heat flow conditions, is described and experimental results are presented. The problems associated with growth in a gravitational environment are discussed. The anticipated advantages of growth in microgravity are given and the implications of the requirements for spaceflight experiments are summarized.

Lehoczky, S. L.; Szofran, F. R.

1987-01-01

240

Growth of solid solution single crystals  

NASA Technical Reports Server (NTRS)

Based on the thermophysical properties of Hg sub 1-x Cd sub x Te alloys, the reasons are discussed for the failure of conventional Bridgman-Stockbarger growth methods to produce high quality homogeneous crystals in the prescence of Earth's gravity. The deleterious effects are considered which arise from the dependence of the thermophysical properties on temperature and composition and from the large amount of heat carried by the fused silica ampules. An improved growth method, developed to optimize heat flow conditions, is described and experimental results are presented. The problems associated with growth in a gravitational environment are discussed. The anticipated advantages of growth in microgravity are given and the implications of the requirements for spaceflight experiments are summarized.

Lehoczky, S. L.; Szofran, F. R.

1988-01-01

241

Anisotropy of nickel-base superalloy single crystals  

NASA Technical Reports Server (NTRS)

The influence of orientation on the tensile and stress rupture behavior of 52 Mar-M247 single crystals was studied. Tensile tests were performed at temperatures between 23 and 1093 C; stress rupture behavior was examined between 760 and 1038 C. The mechanical behavior of the single crystals was rationalized on the basis of the Schmid factor contours for the operative slip systems and the lattice rotations which the crystals underwent during deformation. The tensile properties correlated well with the appropriate Schmid factor contours. The stress rupture lives at lower testing temperatures were greatly influenced by the lattice rotations required to produce cross slip. A unified analysis was attained for the stress rupture life data generated for the Mar-M247 single crystals at 760 and 774 C under a stress of 724 MPa and the data reported for Mar-M200 single crystals tested at 760 C under a stress of 689 MPa. Based on this analysis, the stereographic triangle was divided into several regions which were rank ordered according to stress rupture life for this temperature regime.

Mackay, R. A.; Dreshfield, R. L.; Maier, R. D.

1980-01-01

242

Apparatus And Method For Producing Single Crystal Metallic Objects  

DOEpatents

A mold is provided for enabling casting of single crystal metallic articles including a part-defining cavity, a sorter passage positioned vertically beneath and in fluid communication with the part-defining cavity, and a seed cavity positioned vertically beneath and in fluid communication with the sorter passage. The sorter passage includes a shape suitable for encouraging a single crystal structure in solidifying molten metal. Additionally, a portion of the mold between the sorter passage and the part-defining cavity includes a notch for facilitating breakage of a cast article proximate the notch during thermal stress build-up, so as to prevent mold breakage or the inclusion of part defects.

Huang, Shyh-Chin (Latham, NY); Gigliotti, Jr., Michael Francis X. (Scotia, NY); Rutkowski, Stephen Francis (Duanesburg, NY); Petterson, Roger John (Fultonville, NY); Svec, Paul Steven (Scotia, NY)

2006-03-14

243

Two-photon-induced singlet fission in rubrene single crystal  

NASA Astrophysics Data System (ADS)

The two-photon-induced singlet fission was observed in rubrene single crystal and studied by use of femtosecond pump-probe spectroscopy. The location of two-photon excited states was obtained from the nondegenerate two-photon absorption (TPA) spectrum. Time evolution of the two-photon-induced transient absorption spectra reveals the direct singlet fission from the two-photon excited states. The TPA absorption coefficient of rubrene single crystal is 52 cm/GW at 740 nm, as obtained from Z-scan measurements. Quantum chemical calculations based on time-dependent density functional theory support our experimental data.

Ma, Lin; Galstyan, Gegham; Zhang, Keke; Kloc, Christian; Sun, Handong; Soci, Cesare; Michel-Beyerle, Maria E.; Gurzadyan, Gagik G.

2013-05-01

244

Two-photon-induced singlet fission in rubrene single crystal.  

PubMed

The two-photon-induced singlet fission was observed in rubrene single crystal and studied by use of femtosecond pump-probe spectroscopy. The location of two-photon excited states was obtained from the nondegenerate two-photon absorption (TPA) spectrum. Time evolution of the two-photon-induced transient absorption spectra reveals the direct singlet fission from the two-photon excited states. The TPA absorption coefficient of rubrene single crystal is 52 cm?GW at 740 nm, as obtained from Z-scan measurements. Quantum chemical calculations based on time-dependent density functional theory support our experimental data. PMID:23676057

Ma, Lin; Galstyan, Gegham; Zhang, Keke; Kloc, Christian; Sun, Handong; Soci, Cesare; Michel-Beyerle, Maria E; Gurzadyan, Gagik G

2013-05-14

245

Preparation of single-crystal copper ferrite nanorods and nanodisks  

SciTech Connect

This article, for the first time, reports the preparation of single-crystal copper ferrite nanorods and nanodisks. Using amorphous copper ferrite nanoparticles synthesized by reverse micelle as reaction precursor, single-crystal copper ferrite nanorods were synthesized via hydrothermal method in the presence of surfactant polyethylene glycol (PEG), however, copper ferrite nanodisks were prepared through the same procedures except the surfactant PEG. The resulting nanomaterials have been characterized by powder X-ray diffraction (XRD), selected electron area diffraction (SEAD), and transmission electron microscopy (TEM). The bulk composition of the samples was determined by means of X-ray photoelectron spectroscopy (XPS)

Du Jimin [Center for Molecular Sciences, CAS Key Laboratory of Colloid, Interfacial and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Beiyijie, Zhongguancun, Beijing 100080 (China); Liu Zhimin [Center for Molecular Sciences, CAS Key Laboratory of Colloid, Interfacial and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Beiyijie, Zhongguancun, Beijing 100080 (China)]. E-mail: liuzm@iccas.ac.cn; Wu Weize [Center for Molecular Sciences, CAS Key Laboratory of Colloid, Interfacial and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Beiyijie, Zhongguancun, Beijing 100080 (China); Li Zhonghao [Center for Molecular Sciences, CAS Key Laboratory of Colloid, Interfacial and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Beiyijie, Zhongguancun, Beijing 100080 (China); Han Buxing [Center for Molecular Sciences, CAS Key Laboratory of Colloid, Interfacial and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Beiyijie, Zhongguancun, Beijing 100080 (China)]. E-mail: hanbx@iccas.ac.cn; Huang Ying [Center for Molecular Sciences, CAS Key Laboratory of Colloid, Interfacial and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Beiyijie, Zhongguancun, Beijing 100080 (China)

2005-06-15

246

Single Gap Transflective Liquid Crystal Display with Dual Orientation of Liquid Crystal  

Microsoft Academic Search

We propose a single-cell-gap transflective liquid crystal display (LCD) with dual orientation of LC at an initial state. Owing to hybrid alignment in the reflective region, the effective cell retardation value becomes half of that in the transmissive region where the LCs are homogenously aligned. Consequently, a transflective display driven by a vertical or fringe electric field with a single

Young Jin Lim; Je Hoon Song; Yong Bae Kim; Seung Hee Lee

2004-01-01

247

Electrically pumped lasing from single ZnO micro/nanowire and poly(3,4-ethylenedioxythiophene):poly(styrenexulfonate) hybrid heterostructures  

NASA Astrophysics Data System (ADS)

We report electrically driven ultraviolet lasing by electrical injection in a single ZnO micro/nanowire. Heterojunctions were fabricated by contacting poly(3,4-ethylenedioxythiophene): poly(styrenexulfonate) (PEDOT:PSS) with one end of a single ZnO wire. At an excitation injection of ˜1 A/cm2, the electroluminescence spectrum showed a near-ultraviolet lasing action. This phenomenon was understood based on whispering-gallery mode, which results from trajectories that traverse a polygonal cross-section near the edges of the cylinder. The reduction of some modes was associated with the surface states or defects and the resonance below the intrinsic exciton emission of ZnO is related to electron accumulation at the polymer/ZnO interface.

Zhang, Qi; Qi, Junjie; Li, Xin; Yi, Fang; Wang, Zengze; Zhang, Yue

2012-07-01

248

Growth of Solid Solution Single Crystals  

NASA Technical Reports Server (NTRS)

The solidification of a solid solution semiconductor, having a wide separation between liquidus and serious has been extensively studied in ground based, high magnetic field and Spacelab experiments. Two alloys of mercury cadmium telluride have been studied; mercury cadmium telluride with 80.0 mole percent of HgTe and 84.8 mole percent respectively. These alloys are extremely difficult to grow by directional solidification on earth due to high solutal and thermal density differences that give rise to fluid flow and consequent loss of interface shape and composition. Diffusion controlled growth is therefore impossible to achieve in conventional directional solidification. The ground based experiments consisted of growing crystals in several different configurations of heat pipe furnaces, NASA's Advanced Automated Directional Solidification Furnace (AADSF), and a similar furnace incorporated in a superconducting magnet capable of operating at up to 5T. The first microgravity experiment took place during the flight of STS-62 in March 1994, with the AADSF installed on the second United States Microgravity Payload (USMP-2). The alloy was solidified at 3/4 inch per day over a 9 day period, and for the first time a detailed evaluation was performed of residual acceleration effects. The second flight experiment took place in the fourth United States Microgravity Payload Mission (USMP-4) in November 1997. Due to contamination of the furnace system by a previously processed sample, the sample was not received until May 1998, and the preliminary analysis shows that the conditions prevailing during the experiment were quite different from the requirements requested prior to the mission. Early results are indicating that the sample may not accomplish the desired objectives. As with the USMP-2 mission, the results of the ground based experiments were compared with the crystal grown in orbit under microgravity conditions. On the earth, it has been demonstrated that the application of the magnetic field leads to a significant reduction in fluid flow, with improved homogeneity of composition. The field strength required to suppress flow increases with diameter of the material. The 8 mm diameter sample used here was less than the upper diameter limit for a ST magnet. The configuration for USMP-4 was changed so that the material was seeded and other processing techniques were also modified. It was decided to examine the effects of a strong magnetic field under the modified configuration and parameters. A further change from USMP-2 was that a different composition of material was grown, namely with 0.152 mole fraction of cadmium telluride rather than the 0.200 of the USMP-2 experiment. The objective was to grow highly homogeneous, low defect density material of a composition at which the conduction band and the valence band of the material impinge against each other. As indicated, the furnace was contaminated during the mission. As a result of solid debris remaining in the furnace bore, the cartridge in this experiment, denoted as SL1-417, was significantly bent during the insertion phase. During translation the cartridge scraped against the plate which isolates the hot and cold zones of the furnace. Thermocouples indicated that a thermal assymetry resulted. The scraping in the slow translation or crystal growth part of the processing was not smooth and it is probable that the jitter was sufficient to give rise to convection in the melt. Early measurements of composition from the surface of the sample have shown that the composition varies in an oscillatory manner.

Lehoczky, Sandor L.; Szofran, F. R.; Gillies, Donald C.; Watring, D. A.

1999-01-01

249

Room temperature single-photon Source:Single-dye molecule fluorescence in Liquid Crystal host  

Microsoft Academic Search

We report on new approaches toward an implementation of an efficient, room temperature, deterministically polarized, single-photon source (SPS) on demand-a key hardware element for quantum information and quantum communication. Operation of a room temperature SPS is demonstrated via photon antibunching in the fluorescence from single terrylene-dye molecules embedded in a cholesteric liquid crystal host. Using oxygen-depleted liquid crystal hosts, dye-bleaching

Svetlana G. Lukishova; Ansgar W. Schmid; Andrew J. McNamara; Robert W. Boyd; Carlos R. Stroud

2003-01-01

250

Dynamics of ZnO nanowires immersed in in-plane switching liquid crystal cells  

NASA Astrophysics Data System (ADS)

We investigated both numerically and experimentally the dynamics of individual zinc oxide nanowires immersed in an in-plane switching 4-Cyano-4'-pentylbiphenyl liquid crystal cell under switching electric fields. Comparing the motion of nanowires captured by a high-speed video camera with the simulated results allows the interaction among nanowires, liquid crystals, and external electric field to be studied. Our results show that in the nematic phase, the relaxation and response of a nanowire are both controlled by the dielectrophoretic torque induced by the external electric field and the elastic torque arising from the liquid crystals.

Tao, Yin; Tam, Yiu Ho

2013-11-01

251

ZnO nanoparticles embedded in sapphire fabricated by ion implantation and annealing  

Microsoft Academic Search

ZnO nanoparticles were fabricated in sapphire (alpha-Al2O3 single crystal) by Zn ion implantation (48 keV) at an ion fluence of 1 × 1017 cm-2 and subsequent thermal annealing in a flowing oxygen atmosphere. Transmission electron microscopy (TEM) analysis revealed that metallic Zn nanoparticles of 3-10 nm in dimensions formed in the as-implanted sample and that ZnO nanoparticles of 10-12 nm

X. Xiang; X. T. Zu; S. Zhu; Q. M. Wei; C. F. Zhang; K. Sun; L. M. Wang

2006-01-01

252

Contact properties and surface reaction kinetics of single ZnO nanowire devices fabricated by dielectrophoresis  

NASA Astrophysics Data System (ADS)

This work describes the development of ZnO nanowire (NW) devices for ultraviolet detection and cost-effective gas sensing. A dielectrophoresis (DEP) flow cell fabricated for the integration of NWs on different substrates is presented. The system includes the possibility to set characteristic parameters such as alternating current (AC) frequency, amplitude or flow speed in order to control NW trapping on specific sites defined by micro-gapped electrodes. The electrical characteristics of the rectifying metal/NW contact fabricated by DEP are investigated in darkness and under direct illumination of the metal-NW interface through the ZnO NW. A significant downshift of the turn-on voltage is observed in the current-voltage characteristics during the illumination with photon energies higher than the ZnO bandgap. The reduction is attributed to a barrier height lowering induced by interface charge emission. The effects of AC bias on the thermal drift of the DC average current in NW devices are also discussed. Finally, the reaction kinetics of ethanol and water vapors on the NW surface are compared through the analysis of the DC current under direct exposure to gas flows. Device responses to more complex compound mixtures such as coffee or mint are also monitored over time, showing different performance in both cases.

Pau, J. L.; García Núñez, C.; García Marín, A.; Guerrero, C.; Rodríguez, P.; Borromeo, S.; Piqueras, J.

2014-03-01

253

Bulk crystal growth and characterization of non-linear optical bisthiourea zinc chloride single crystal by unidirectional growth method  

Microsoft Academic Search

The unidirectional crystal growth method has been employed for the bulk growth of semi-organic non-linear optical bisthiourea zinc chloride single crystal along a-axis with high solute-crystal conversion efficiency. Single crystal X-ray diffraction studies confirm the orthorhombic structure. Optical studies reveal very high transmission of the crystal along the growth axis. Dielectric study shows that the dielectric constant decreases with increase

R. Uthrakumar; C. Vesta; C. Justin Raj; S. Krishnan; S. Jerome Das

2010-01-01

254

Growth and spectroscopic properties of samarium oxalate single crystals  

NASA Astrophysics Data System (ADS)

Single crystals of samarium oxalate decahydrate were synthesized using single diffusion gel technique and the conditions influencing the size, shape and quality were optimized. Highly transparent crystals of size 3×2×1 mm3 with a well defined hexagonal morphology were grown during a time period of two weeks. X ray powder diffraction analysis revealed that the grown crystals crystallize in the monoclinic system with space group P21/c and the proposed chemical formula and linkage of water molecules were confirmed using thermogravimetric analysis. The various functional groups of the oxalate ligand and the water of crystallization were identified by Fourier transform infrared spectroscopy. Spectroscopic investigations such as electric dipole transition probability, magnetic dipole transition probability and branching ratios of all possible transitions from 4G5/2 level of Sm3+ ions were estimated from the absorption spectra using JO theory. The spectroscopic analysis suggested that the crystal has a strong and efficient orange red emission. This is confirmed from the photoluminescence spectrum with a wavelength peak at 595 nm and hence this promising emission can be effectively used for optical amplification.

Vimal, G.; Mani, Kamal P.; Jose, Gijo; Biju, P. R.; Joseph, Cyriac; Unnikrishnan, N. V.; Ittyachen, M. A.

2014-10-01

255

Relaxor-PT Single crystals: Observations and Developments  

PubMed Central

Relaxor-PT based ferroelectric single crystals Pb(Zn1/3Nb2/3)O3–PbTiO3 (PZNT) and Pb(Mg1/3Nb2/3)O3–PbTiO3 (PMNT) attracted lot of attentions in last decade due to their ultra high electromechanical coupling factors and piezoelectric coefficients. However, owing to a strongly curved morphotropic phase boundary (MPB), the usage temperature of these perovskite single crystals is limited by TRT - the rhombohedral to tetragonal phase transition temperature, which occurs at significantly lower temperatures than the Curie temperature TC. Furthermore, the low mechanical quality factors and coercive fields of these crystals, usually being on the order of ~70 and 2–3kV/cm, respectively, restrict their usage in high power applications. Thus, it is desirable to have high performance crystals with high temperature usage range and high power characteristics. In this survey, different binary and ternary crystal systems were explored, with respect to their temperature usage range, general trends of dielectric and piezoelectric properties of relaxor-PT crystal systems were discussed related to their TC/TRT. In addition, two approaches were proposed to improve mechanical Q values, including acceptor dopant strategy, analogous to “hard” polycrystalline ceramics, and anisotropic domain engineering configurations. PMID:20889397

Zhang, Shujun; Shrout, Thomas R.

2011-01-01

256

Growth of Homoepitaxial ZnO Semiconducting Films  

NASA Technical Reports Server (NTRS)

As a high temperature wide-band-gap (3.3 eV at room temperature) semiconductor, ZnO has been used for many applications such as wave-guides, solar cells, and surface acoustic wave devices, Since ZnO has a 60 meV excitonic binding energy that makes it possible to produce excitonic lasing at room temperature, a recent surge of interest is to synthesize ZnO films for UV/blue/green laser diodes. These applications require films with a smooth surface, good crystal quality, and low defect density. Thus, homoepitaxial film growth is the best choice. Homoepitaxial films have been studied in terms of morphology, crystal structure, and electrical and optical properties. ZnO single crystal substrates grown by the hydrothermal method are mechanically polished and annealed in air for four hours before the films are deposited. The annealing temperature-dependence on ZnO substrate morphology and electrical properties is investigated. Films are synthesized by off-axis reactive sputtering deposition. This produces films that have very smooth surfaces with roughness less than or equal to 5 nm on a 5 microns x 5 microns area. The full width at half maximum of film theta rocking curves measured by the x-ray diffraction is slightly larger than that of the crystal substrate. Films are also characterized by measuring resistivity, optical transmittance, and photoluminescence. The properties of ZnO films grown on (0001) ZnO and (0001) sapphire substrates will also be compared and discussed.

Zhu, Shen; Su, C.-H.; Lehoczky, S. L.; Harris, M. T.; George, M. A.; McCarty, P.

1999-01-01

257

Fretting Stresses in Single Crystal Superalloy Turbine Blade Attachments  

NASA Technical Reports Server (NTRS)

Single crystal nickel base superalloy turbine blades are being utilized in rocket engine turbopumps and turbine engines because of their superior creep, stress rupture, melt resistance and thermomechanical fatigue capabilities over polycrystalline alloys. Currently the most widely used single crystal nickel base turbine blade superalloys are PWA 1480/1493 and PWA 1484. These alloys play an important role in commercial, military and space propulsion systems. High Cycle Fatigue (HCF) induced failures in aircraft gas turbine and rocket engine turbopump blades is a pervasive problem. Blade attachment regions are prone to fretting fatigue failures. Single crystal nickel base superalloy turbine blades are especially prone to fretting damage because the subsurface shear stresses induced by fretting action at the attachment regions can result in crystallographic initiation and crack growth along octahedral planes. Furthermore, crystallographic crack growth on octahedral planes under fretting induced mixed mode loading can be an order of magnitude faster than under pure mode I loading. This paper presents contact stress evaluation in the attachment region for single crystal turbine blades used in the NASA alternate Advanced High Pressure Fuel Turbo Pump (HPFTP/AT) for the Space Shuttle Main Engine (SSME). Single crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the part geometry a significant factor in the overall analysis. Blades and the attachment region are modeled using a large-scale 3D finite element (FE) model capable of accounting for contact friction, material orthotrophy, and variation in primary and secondary crystal orientation. Contact stress analysis in the blade attachment regions is presented as a function of coefficient of friction and primary and secondary crystal orientation, Stress results are used to discuss fretting fatigue failure analysis of SSME blades. Attachment stresses are seen to reach peak values at locations where fretting cracks have been observed. Fretting stresses at the attachment region are seen to vary significantly as a function of crystal orientation. Attempts to adapt techniques used for estimating fatigue life in the airfoil region, for life calculations in the attachment region, are presented. An effective model for predicting crystallographic crack initiation under mixed mode loading is required for life prediction under fretting action.

Arakere, Nagaraj K.; Swanson, Gregory

2000-01-01

258

Polymer single crystal membrane from liquid/liquid interface  

NASA Astrophysics Data System (ADS)

Vesicles, mimicking the structure of cell membrane at the molecular scale, are small membrane-enclosed sacks that can store or transport substances. The weak mechanical properties and the nature of environment-sensitivity of the current available vesicles: liposomes, polymersomes, colloidsomes limit their applications as an excellent candidate for targeting delivery of drugs/genes in biomedical engineering and treatment. Recently, we developed an emulsion-based method to grow curved polymer single crystals. Varying the polymer concentration and/or the emulsification conditions (such as surfactant concentration, water-oil volume ratio), curved crystals with different sizes and different openness could be obtained. This growing process was attributed to polymer crystal growth along the liquid/liquid interface. In addition, the liquid/liquid interfacial crystal growth is promising for synthesis of enclosed hollow sphere.

Wang, Wenda; Li, Christopher

2013-03-01

259

Liquid impact erosion of single-crystal and coated material  

NASA Astrophysics Data System (ADS)

Lithium fluoride in its single-crystal form is an interesting material for investigating the development of fracture by multiple liquid impact owing to its well-characterized crystal structure. The development of fracture during liquid impact is attributed to the extension of short circumferential cracks produced around the loaded area by the passing Rayleigh stress wave after the impact event. The damage threshold of single-crystal lithium fluoride is developed using the multiple-impact jet apparatus (MIJA) as a result of identifying the characteristic fracture annulus associated with liquid impact during a controlled experimental procedure. The observation of damage produced in solids by liquid impact has practical significance in the problems associated with supersonic aircraft flying through rain and in the erosion of turbine blades. The addition of coatings to the surface provides a form of protection at higher speeds but may not completely inhibit damage.

Jackson, M. J.; Telling, R. H.; Field, J. E.

2006-04-01

260

Engineering chromium related single photon emitters in single crystal diamond  

E-print Network

Color centers in diamond as single photon emitters, are leading candidates for future quantum devices due to their room temperature operation and photostability. The recently discovered chromium related centers are particularly attractive since they possess narrow bandwidth emission and a very short lifetime. In this paper we investigate the fabrication methodologies to engineer these centers in monolithic diamond. We show that the emitters can be successfully fabricated by ion implantation of chromium in conjunction with oxygen or sulfur. Furthermore, our results indicate that the background nitrogen concentration is an important parameter, which governs the probability of success to generate these centers.

Aharonovich, I; Johnson, B C; McCallum, J C; Prawer, S

2010-01-01

261

Engineering chromium related single photon emitters in single crystal diamond  

E-print Network

Color centers in diamond as single photon emitters, are leading candidates for future quantum devices due to their room temperature operation and photostability. The recently discovered chromium related centers are particularly attractive since they possess narrow bandwidth emission and a very short lifetime. In this paper we investigate the fabrication methodologies to engineer these centers in monolithic diamond. We show that the emitters can be successfully fabricated by ion implantation of chromium in conjunction with oxygen or sulfur. Furthermore, our results indicate that the background nitrogen concentration is an important parameter, which governs the probability of success to generate these centers.

I Aharonovich; S Castelletto; B C Johnson; J C McCallum; S Prawer

2010-09-29

262

Field-assisted bonding of single crystal quartz  

Microsoft Academic Search

A technique to produce strong, hermetic bonds between plates of single crystal quartz using a modified field-assisted bonding process is presented. Field-assisted bonding is a technique traditionally used to join glass to metals at temperatures well below normal glass softening temperatures. To promote reactivity between quartz within an electrical field at temperatures well below quartz transformation temperatures, thin films of

Randall D. Watkins; Clinton D. Tuthill; Richard M. Curlee; Dale R. Koehler; Charles F. Joerg

1989-01-01

263

A Study of Single Crystal Fatigue Failure Criteria  

NASA Technical Reports Server (NTRS)

This paper presents the results of a study whose objective was to study the applicability of different failure equations in modeling low cycle fatigue (LCF) test data for single crystal test specimens. A total of four failure criteria were considered in this study. One of the failure equations was developed by Pratt & Whitney and is based on normal and shear strains on the primary crystallographic slip planes of the single crystal material. Other failure equations considered are based on isotropic criteria. Because these failure equations were originally developed for isotropic materials such as structural steel, they were modified to be applicable to the single crystal slip systems of the LCF specimen material. By observing how closely the various equations were able to reduce the scatter in the LCF test data, the applicability of those equations in modeling the LCF test data was assessed. It is desired to subsequently use the failure equation with the highest correlation in the development of a new single crystal failure criterion for the Alternative Turbopump Development (ATD) for the space shuttle main engine (SSME) High Pressure Fuel Turbopump (HPFTP).

Sayyah, Tarek; Swanson, Gregory R.; Schonberg, William P.

2000-01-01

264

Low temperature magnetic transitions of single crystal HoBi  

SciTech Connect

We present resistivity, specific heat and magnetization measurements in high quality single crystals of HoBi, with a residual resistivity ratio of 126. We find, from the temperature and field dependence of the magnetization, an antiferromagnetic transition at 5.7 K, which evolves, under magnetic fields, into a series of up to five metamagnetic phases.

Fente, A. [Universidad Autonoma de Madrid; Suderow, H. [Universidad Autonoma de Madrid; Vieira, S. [Universidad Autonoma de Madrid; Nemes, N. M. [Instituto de Ciencia de Materiales de Madrid; Garcia-Hernandez, M. [Instituto de Ciencia de Materiales de Madrid; Budko, Sergei L. [Ames Laboratory; Canfield, Paul C. [Ames Laboratory

2013-09-04

265

Deformation behaviour of aluminium single crystals in ultraprecision diamond turning  

Microsoft Academic Search

The physical properties of the machined layer of single crystal aluminium after diamond turning were assessed by X-ray diffraction (XRD) to demonstrate the nature and extent of the plastic deformation process that had occurred in the workpiece. In the range of depth of cut investigated, the microstrain was found to vary with the crystallography of the machined surface, whereas the

S. To; W. B. Lee

2001-01-01

266

NANO-SCALE CALORIMETRY OF ISOLATED POLYETHYLENE SINGLE CRYSTALS  

E-print Network

#12;NANO-SCALE CALORIMETRY OF ISOLATED POLYETHYLENE SINGLE CRYSTALS BY ALEX TAN KWAN B.S., Stanford) device, the nanocalorimeter, it was possible to investigate the melting of isolated polyethylene (PE, a simple Ni-foil calorimeter, to measure the heat capacity of a thin polyethylene film to verify

Allen, Leslie H.

267

Low-cost single-crystal turbine blades, volume 1  

NASA Technical Reports Server (NTRS)

The exothermic casting process was successfully developed into a low cost nonproprietary method for producing single crystal (SC) castings. Casting yields were lower than expected, on the order of 20 percent, but it is felt that the casting yield could be significantly improved with minor modifications to the process. Single crystal Mar-M 247 and two derivative SC alloys were developed. NASAIR 100 and SC Alloy 3 were fully characterized through mechanical property testing. SC Mar-M 247 shows no significant improvement in strength over directionally solidified (DS) Mar-M 247, but the derivative alloys, NASAIR 100 and Alloy 3, show significant tensile and fatigue improvements. The 1000 hr/238 MPa (20 ksi) stress rupture capability compared to DS Mar-M 247 was improved over 28 C. Firtree testing, holography, and strain gauge rig testing were used to evaluate the effects of the anisotropic characteristics of single crystal materials. In general, the single crystal material behaved similarly to DS Mar-M 247. Two complete engine sets of SC HP turbine blades were cast using the exothermic casting process and fully machined.

Strangman, T. E.; Heath, B.; Fujii, M.

1983-01-01

268

Some Debye temperatures from single-crystal elastic constant data  

USGS Publications Warehouse

The mean velocity of sound has been calculated for 14 crystalline solids by using the best recent values of their single-crystal elastic stiffness constants. These mean sound velocities have been used to obtain the elastic Debye temperatures ??De for these materials. Models of the three wave velocity surfaces for calcite are illustrated. ?? 1966 The American Institute of Physics.

Robie, R.A.; Edwards, J.L.

1966-01-01

269

Nonlinearities in single-crystal silicon micromechanical resonators  

Microsoft Academic Search

The fundamental performance limit of single-crystal silicon resonators set by device nonlinearities in characterized. Using Leeson's model for near carrier phase noise, the nonlinearity is shown to set the scaling limit in miniaturizing oscillators. A circuit model based on discretization of distributed mass and nonlinear elasticity is introduced to accurately simulate the large amplitude vibrations. Based on published data for

V. Kaajakari; T. Mattila; J. Kiihamaki; H. Kattelus; A. Oja; H. Seppa

2003-01-01

270

Tutorial: Organic Single Crystals 101 Prof. Vitaly Podzorov  

E-print Network

11 Tutorial: Organic Single Crystals 101 Prof. Vitaly Podzorov Institute for Advanced Materials://www.physics.rutgers.edu/~podzorov/index.php http://iamdn.rutgers.edu/ Fall MRS 2012 Nov. 25, 2012 (Boston, MA) Fall MRS-2012 Tutorial (V. Podzorov) #12;22 This tutorial and detailed technical notes can be downloaded from: http

Glashausser, Charles

271

The Electrical Resistivity of FeSn Single Crystals  

Microsoft Academic Search

The electrical resistivity of single crystal FeSn (hex B 35) has been measured for current parallel and perpendicular to the c-axis in the temperature range 4.2-420 K. The critical exponent is determined for I\\/\\/c at the antiferromagnetic ordering temperature TN = 364 K.

Bengt Stenström

1972-01-01

272

Insulating surface layer on single crystal K3C60  

NASA Astrophysics Data System (ADS)

Using angle-dependent photoemission spectra of core and valence levels we show that metallic, single crystal K3C60 is terminated by an insulating or weakly-conducting surface layer. We attribute this to the effects of strong intermolecular correlations combined with the average surface charge state. Several controversies on the electronic structure are thereby resolved.

Schiessling, J.; Kjeldgaard, L.; Käämbre, T.; Marenne, I.; Qian, L.; O'Shea, J. N.; Schnadt, J.; Garnier, M. G.; Nordlund, D.; Nagasono, M.; Glover, C. J.; Rubensson, J.-E.; Mårtensson, N.; Rudolf, P.; Nordgren, J.; Brühwiler, P. A.

2004-10-01

273

High cycle fatigue crack initiation in single crystals and polycrystals  

Microsoft Academic Search

The objective of this research is to analyze the high-cycle fatigue crack initiation in both monocrystalline and polycrystalline ductile metals. Persistent slip bands have been observed in both single crystals and polycrystals in numerous high-cycle fatigue tests. Extrusions and intrusions at the free surface of fatigued specimens are the favorable sites for fatigue crack initiation. In the present study, the

Ningjun Teng

1997-01-01

274

Photo-Induced Magnetic Effects in FZ YIG Single Crystal  

Microsoft Academic Search

Highly pure single crystals of YIG were obtained by an FZ method, and a remarkable photoinduced change in permeability was observed. The permeability of samples held at a temperature of 77K was decreased by more than 90% by illumination. The photoinduced change remained, to some extent, at temperatures up to about 260 K. By annealing at 1100°C (in an oxygen

K. Hisatake; I. Matsubara; K. Maeda; T. Fujihara; I. Sasaki; T. Nakano

1988-01-01

275

Coherence and Polarization Effects in Mössbauer Absorption by Single Crystals  

Microsoft Academic Search

The polarization dependence of the absorption cross section must generally be taken into account in calculating Mössbauer absorption spectra of single crystals which exhibit hyperfine splittings. A method for doing this in an experimentally interesting class of cases is described. In these cases, the incident radiation beam can be divided into two components, each having its own complex index of

R. M. Housley; R. W. Grant; U. Gonser

1969-01-01

276

Unified constitutive model for single crystal deformation behavior with applications  

NASA Technical Reports Server (NTRS)

Single crystal materials are being used in gas turbine airfoils and are candidates for other hot section components because of their increased temperature capabilities and resistance to thermal fatigue. Development of a constitutive model which assesses the inelastic behavior of these materials has been studied in 2 NASA programs: Life Prediction and Constitutive Models for Engine Hot Section Anisotropic Materials and Biaxial Constitutive Equation Development for Single Crystals. The model has been fit to a large body of constitutive data for single crystal PWA 1480 material. The model uses a unified approach for computing total inelastic strains (creep plus plasticity) on crystallographic slip systems reproducing observed directional and strain rate effects as a natural consequence of the summed slip system quantities. The model includes several of the effects that have been reported to influence deformation in single crystal materials, such as shear stress, latent hardening, and cross slip. The model is operational in a commercial Finite Element code and is being installed in a Boundary Element Method code.

Walker, K. P.; Meyer, T. G.; Jordan, E. H.

1988-01-01

277

Ultrasonic characterization of single crystal langatate  

NASA Astrophysics Data System (ADS)

Langatate (LGT), a synthetic piezoelectric crystal with chemical composition La3Ga5.5Ta0.5O14, has recently received significant interest in the sensor and frequency control communities as a possible alternative to quartz owing to its higher piezoelectric coupling, structural stability up to 1400°C and presence of temperature compensated acoustic wave (AW) orientations. With these exciting properties, LGT is expected to find applications in AW sensor, timing, and frequency control. This thesis focuses on the characterization of the acoustic wave material properties of LGT up to 120°C. Such a characterization is critical for the design and fabrication of LGT acoustic wave devices. The elastic and piezoelectric constants were determined through measurements of bulk acoustic wave phase velocities by two independent methods, the pulse echo overlap technique and a combined resonance technique. The extracted constants and temperature coefficients enabled the identification of a range of particularly interesting LGT surface acoustic wave (SAW) orientations with Euler angles (90°, 23°, 118-124°) that exhibits predicted electromechanical coupling up to 0.7% and reduced or zero temperature coefficient of delay (TCD). The consistency of the determined constants and temperature coefficients was established using SAW measurements of seven crystallographic orientations at temperatures ranging up to 120°C. Measured SAW phase velocities and TCDs were found to be in agreement with predictions based on the determined constants. Two of the seven SAW orientations exhibited temperature compensation within 40°C of room temperature, agreeing with predictions. Deposition of SiAlON films on top of LGT SAW devices for surface protection in chemically and mechanically harsh environments was also investigated. SiAlON films deposited by reactive RF magnetron co-sputtering of Al and Si targets were controlled to within a few percent for film thickness and composition. SiAlON thin film clastic constants were extracted using differential SAW delay line methods and were found to be: C11,s = 160 +/- 30 GPa and C44,s = 55 +/- 5 GPa. SiAlON films up to 800 nm in thickness were shown to have no measurable effect on the TCD of LGT SAW delay lines.

Sturtevant, Blake T.

278

Growth of large single crystals of MgO  

SciTech Connect

The progressive identification of new high-technology applications and requirements for MgO single crystals in the commercial realm, as well as in DOE and other government-agency project areas, has resulted in an increased demand and international market for this material. Specifically, the demand for MgO crystals in large sizes and quantities is presently increasing due to existing and developing applications that include: (a) MgO substrates for the formation of electro-optic thin films and devices, (b) epitaxial substrates for high-temperature thin-film superconducting devices MgO optical components - including high-temperature windows, lenses, and prisms, and (d) specialty MgO crucibles and evaporation sources for thin-film production. In the course of CRADA ORNL92-0091, carried out with Commercial Crystal Laboratories of Naples, Florida as the commercial participant, we have made major progress in increasing the size of single crystals of MgO produced by means of the submerged-arc-fusion technique-thereby increasing the commercial utility of this material. Prior to the accomplishments realized in the course of this CRADA, the only commercially available single crystals of MgO were produced in Japan, Israel, and Russia. The results achieved in the course of CRADA ORNL92-0091 have now led to the establishment of a domestic commercial source of MgO single-crystal substrates and components, and the U.S. is no longer totally dependent on foreign sources of this increasingly important material.

Boatner, L.A. [Oak Ridge National Lab., TN (United States); Urbanik, M. [Commercial Crystal Laboratories, Inc., Naples, FL (United States)

1997-06-12

279

On single doping and co-doping of spray pyrolysed ZnO films: Structural, electrical and optical characterisation  

NASA Astrophysics Data System (ADS)

In this paper we present studies on ZnO thin films (prepared using Chemical Spray pyrolysis (CSP) technique) doped in two different ways; in one set, 'single doping' using indium was done while in the second set, 'co-doping' using indium and fluorine was adopted. In the former case, effect of in-situ as well as ex-situ doping using In was analyzed. Structural (XRD studies), electrical ( I- V measurements) and optical characterizations (through absorption, transmission and photoluminescence studies) of the films were done. XRD analysis showed that, for spray-deposited ZnO films, ex-situ doping using Indium resulted in preferred (0 0 2) plane orientation, while in-situ doping caused preferred orientation along (1 0 0), (0 0 2), (1 0 1) planes; however for higher percentage of in-situ doping, orientation of grains changed from (0 0 2) plane to (1 0 1) plane. The co-doped films had (0 0 2) and (1 0 1) planes. Lowest resistivity (2 × 10 -3 ? cm) was achieved for the films, doped with 1% Indium through in-situ method. Photoluminescence (PL) emissions of ex-situ doped and co-doped samples had two peaks; one was the 'near band edge' emission (NBE) and the other was the 'blue-green' emission. But interestingly the PL emission of in-situ doped samples exhibited only the 'near band edge' emission. Optical band gap of the films increased with doping percentage, in all cases of doping.

Vimalkumar, T. V.; Poornima, N.; Jinesh, K. B.; Kartha, C. Sudha; Vijayakumar, K. P.

2011-08-01

280

Crystal growth, spectral and laser properties of Nd:LSAT single crystal  

NASA Astrophysics Data System (ADS)

Nd:(La, Sr)(Al, Ta)O3 (Nd:LSAT) crystal was grown by the Czochralski method. The absorption and fluorescence spectra of Nd:LSAT crystal at room temperature were investigated. With a fiber-coupled diode laser as pump source, the continuous-wave (CW) laser action of Nd:LSAT crystal was demonstrated. The result of diode-pumped laser operation of Nd:LSAT crystal single crystal is reported for what is to our knowledge the first time. The maximum output power at 1064 nm was obtained to be 165 mW under the incident pump power of 3 W, with the slope efficiency 10.9%.

Hu, P. C.; Yin, J. G.; Zhao, C. C.; Gong, J.; He, X. M.; Zhang, L. H.; Liang, X. Y.; Hang, Y.

2011-10-01

281

Effect of Ga-doping on the properties of ZnO nanowire  

NASA Astrophysics Data System (ADS)

Arrays of single-crystal zinc oxide (ZnO) nanowires have been synthesized on silicon substrates by vapor-liquid-solid growth techniques. The effect of growth conditions including substrate temperature and Ar gas flow rate on growth properties of ZnO nanowire arrays were studied. Structural and optical characterization was performed using scanning electron microscopy (SEM) and photoluminescence (PL) spectroscopy. SEM images of the ZnO nanowire arrays grown at various Ar gas flow rates indicated that the alignment and structural features of ZnO nanowires were affected by the gas flow rate. The PL of the ZnO nanowire arrays exhibited strong ultraviolet (UV) emission at 380 nm and green emission around 510 nm. Moreover, the green emission reduced in Ga-doped sample.

Ishiyama, Takeshi; Nakane, Takaya; Fujii, Tsutomu

2015-02-01

282

Room temperature defect related electroluminescence from ZnO homojunctions grown by ultrasonic spray pyrolysis  

NASA Astrophysics Data System (ADS)

ZnO homojunction light-emitting diode was grown on single-crystal GaAs (100) substrate by ultrasonic spray pyrolysis. This diode was comprised of N-In codoped p-type ZnO and unintentionally doped n-type ZnO film. Ohmic contact on n-type ZnO layer and GaAs substrate was formed by Zn /Au and Au /Ge/Ni alloyed metal electrodes, respectively. An electroluminescence emission associated with defects was observed from the ZnO homojunction under forward current injection at room temperature. The I-V characteristics of the homojunction showed a threshold voltage of ˜4V under forward bias.

Du, G. T.; Liu, W. F.; Bian, J. M.; Hu, L. Z.; Liang, H. W.; Wang, X. S.; Liu, A. M.; Yang, T. P.

2006-07-01

283

Instability of the single-crystal growth of large-diameter silicon crystals with dislocations  

Microsoft Academic Search

Metallographic, SEM, and X-ray investigations were carried out to elucidate the character and sequence of changes in the growth mechanism and structure of large-diameter (80-150 mm) Czochralski-grown silicon crystals of 111 and 100 line orientations after the termination of growth without dislocations. The single-crystal growth was found to be unstable and to be disrupted by the formation of twins or

N. I. Bletskan; A. N. Buzynin; N. A. Butylkina; Iu. S. Dementev; Iu. M. Litvinov; A. E. Lukianov; V. N. Stepchenkov

1984-01-01

284

Metal insulator semiconductor structure single crystal silicon liquid crystal light valve  

NASA Astrophysics Data System (ADS)

Detailed description of the structure, operation, fabrication, and performance of a fast-response metal- insulator-semiconductor structure single crystal silicon liquid crystal light valve (MIS-Si-LCLV) is given. A 45 degree(s) twisted nematic liquid crystal configuration has been utilized. A MIS-Si-LCLV is demonstrated with a limiting resolution of 40 lp/mm over a 45 mm aperture and contrast ratios of > 50:1, input light sensitivities at (lambda) equals 930 nm ((Delta) (lambda) equals 40 nm) of better than 30 (mu) W/cm2 and response times as fast as 20 ms have been measured.

Gao, JiaoBo; Ye, Ke-fei; Feng, Yue-you

1996-09-01

285

3D numerical simulation of heat transfer during horizontal direct crystallization of corundum single crystals  

NASA Astrophysics Data System (ADS)

This paper describes the numerical simulation of heat transfer in a system for growing corundum single-crystal plates (leucosapphire and ruby) of size 200×200 mm. A mathematical model accounting for the radiative and conductive heat transfer has been developed. Three-dimensional computations have been made with minor simplifications of the furnace geometry. The thermal fields at various positions of the crystal container and the effect of various setup units and their design on the temperature distribution are analyzed. The computed crystallization front shape is compared with the available experimental data. Numerical analysis was used to optimize the hot zone design.

Lukanina, M. A.; Hodosevitch, K. V.; Kalaev, V. V.; Semenov, V. B.; Sytin, V. N.; Raevsky, V. L.

2006-01-01

286

Towards controlled manipulation and assembly of ZnO nanowires for nanoscale imaging applications  

NASA Astrophysics Data System (ADS)

In this letter the authors develop a technique enabling both facile alignment and placement of ZnO nanorods onto the support electrodes in a highly controlled manner and with high yield. The approach takes advantage of the surface tension effect and the formation of nonvanishing electrical dipoles at the metal-semiconductor and semiconductor/semiconductor interfaces in highly nonpolar solvents. Experimental tests confirmed excellent mechanical resilience of single crystal ZnO nanorods and overall stability of the engineered assemblies. Finally, use of ZnO nanorods as tips for high-resolution atomic force microscope nanoscale imaging is demonstrated.

Kouklin, N.; Sen, S.

2006-09-01

287

Optimization of the Crystal Surface Temperature Distribution in the Single-Crystal Growth Process by the Czochralski Method  

Microsoft Academic Search

The optimization of the crystal surface temperature distribution is performed for single-crystal growth in the Czochralski process. In the optimization problem, we seek an optimal solution in the sense that the index of crystalline defects is minimized while the single-crystal growth rate is maximized. In the objective function, the von Mises stress is considered a driving force that induces crystalline

Ja Hoon Jeong

2002-01-01

288

Microwave Induced Direct Bonding of Single Crystal Silicon Wafers  

NASA Technical Reports Server (NTRS)

We have heated polished doped single-crystal silicon wafers in a single mode microwave cavity to temperatures where surface to surface bonding occurred. The absorption of microwaves and heating of the wafers is attributed to the inclusion of n-type or p-type impurities into these substrates. A cylindrical cavity TM (sub 010) standing wave mode was used to irradiate samples of various geometry's at positions of high magnetic field. This process was conducted in vacuum to exclude plasma effects. This initial study suggests that the inclusion of impurities in single crystal silicon significantly improved its microwave absorption (loss factor) to a point where heating silicon wafers directly can be accomplished in minimal time. Bonding of these substrates, however, occurs only at points of intimate surface to surface contact. The inclusion of a thin metallic layer on the surfaces enhances the bonding process.

Budraa, N. K.; Jackson, H. W.; Barmatz, M.

1999-01-01

289

Magnetic heat capacity in lanthanum manganite single crystals  

NASA Astrophysics Data System (ADS)

The heat capacity of single crystal La0.7D0.3MnO3, where D=Ca, Sr, has been measured through the Curie point in fields up to 70 kOe. The magnetic contribution of the Ca sample exhibits a sharp heat capacity peak at TC?218 K in zero field. The peak broadens and decreases in height with increasing field but, unlike an ordinary ferromagnet, the peak shifts substantially in temperature. As a consequence, the heat capacity data cannot be collapsed into a single scaling function. These features indicate that the transition is not an ordinary second-order ferromagnetic transition. Preliminary heat capacity data from the Sr-doped single crystal, with TC?360 K, do not exhibit the same shift in peak position with applied field. We attribute the difference in behavior between Ca- and Sr-doped samples to a change in the nature of the phase transition as TC lowers.

Lin, P.; Chun, S. H.; Salamon, M. B.; Tomioka, Y.; Tokura, Y.

2000-05-01

290

Growth and characterization of terbium fumarate heptahydrate single crystals  

NASA Astrophysics Data System (ADS)

The growth of terbium fumarate heptahydrate single crystals was achieved by single gel diffusion technique using silica gel as a medium of growth. The effect of various growth parameters on the nucleation rate of these crystals was studied. The crystals were characterized by different physico-chemical techniques of characterization. Powder X-ray diffraction pattern showed that terbium fumarate is a crystalline compound. Fourier transform infrared spectroscopy was performed for the identification of water and other functional groups present in the compound. UV-vis and photoluminescence spectrophotometric experiments were carried out to study the optical properties of the grown crystals. Elemental analysis suggested the chemical formula of the crystals to be Tb2(C4H2O4)3·7H2O. The presence of seven molecules of water was also supported by the thermogravimetric analysis. The hydrated compound was found to be thermally stable upto a temperature of about 110 °C and its anhydrous form up to the temperature of 410 °C. The thermal decomposition of the compound in the nitrogen atmosphere leads to the formation of terbium oxide as the final product. An attempt was made to relate the experimental results with the classical nucleation theory.

Want, B.; Shah, M. D.

2014-03-01

291

Single crystal to single crystal transition in (10, 3)-d framework with pyrazine-2-carboxylate ligand: Synthesis, structures and magnetism  

SciTech Connect

Assembling of pyrazine-2-carboxylate (Pzc) acid with nickel chlorine under solvothermal condition with MeOH as solvent gave a porous complex 1 {l_brace}[Ni(Pzc)ClH{sub 2}O]{center_dot}MeOH{r_brace}{sub n} with 1D channels. In 1 the ligands and metal ions are connected by three of each other and a rare (10,3)-d topology net is gained. The MeOH molecules filled in the 1D channels as guests. It is interesting that 1 undergoes a single-crystal-to-single-crystal transformation to another complex 2 when the guest MeOH molecules in the channels are exchanged by water molecules. Magnetic study indicates anti-ferromagnetic couplings exist in the two complexes and the guest exchange in the complex has little influence on the magnetism. - Graphical abstract: A porous complex 1 with rare (10,3)-d net was gained, and 1 underwent a single-crystal-to-single-crystal transformation to another phase 2. Highlights: Black-Right-Pointing-Pointer New (10,3)-d net was obtained with pyrazine-2-carboxylate ligands as a triangular node. Black-Right-Pointing-Pointer The complex 1 has a 1D channel filled with methanol molecules as guests. Black-Right-Pointing-Pointer 1 could undergo SCSC structural transition to 2 after guests exchanged. Black-Right-Pointing-Pointer Antiferromagnetic interactions were found in 1 and 2.

Yang, Qian [School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384 (China) [School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384 (China); Department of Chemistry, Tianjin Key Lab on Metal and Molecule-based Material Chemistry, Nankai University, Tianjin 300071 (China); Zhao, Jiong-Peng, E-mail: horryzhao@yahoo.com [School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384 (China)] [School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384 (China); Liu, Zhong-Yi [College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387 (China)] [College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387 (China)

2012-12-15

292

Angle-dependent photodegradation over ZnO nanowire arrays on flexible paper substrates  

PubMed Central

In this study, we grew zinc oxide (ZnO) nanowire arrays on paper substrates using a two-step growth strategy. In the first step, we formed single-crystalline ZnO nanoparticles of uniform size distribution (ca. 4 nm) as seeds for the hydrothermal growth of the ZnO nanowire arrays. After spin-coating of these seeds onto paper, we grew ZnO nanowire arrays conformally on these substrates. The crystal structure of a ZnO nanowire revealed that the nanowires were single-crystalline and had grown along the c axis. Further visualization through annular bright field scanning transmission electron microscopy revealed that the hydrothermally grown ZnO nanowires possessed Zn polarity. From photocatalytic activity measurements of the ZnO nanowire (NW) arrays on paper substrate, we extracted rate constants of 0.415, 0.244, 0.195, and 0.08 s-1 for the degradation of methylene blue at incident angles of 0°, 30°, 60°, and 75°, respectively; that is, the photocatalytic activity of these ZnO nanowire arrays was related to the cosine of the incident angle of the UV light. Accordingly, these materials have promising applications in the design of sterilization systems and light-harvesting devices. PMID:25593556

2014-01-01

293

Crystal morphology characteristics of the domain structure and superconducting properties of 123 single crystals  

Microsoft Academic Search

The characteristics of the domain structure of YBa(2-x)Sr(x)Cu3O(7-delta) single crystals are investigated for x = 0, 0.2, 0.4. and 0.5. A domain structure analysis is also carried out for TmBa(1.5)Sr(0.5)Cu3O(7-delta) single crystals. Various types of domain structure in these materials are identified, and a relationship is established between the domain structure type and the characteristics of the superconducting transition.

A. I. Otko; A. A. Nosenko; O. P. Bal'Va; M. B. Kosmyna; S. F. Prokopovich; A. S. Chernyi

1991-01-01

294

Subsurface Stress Fields In Single Crystal (Anisotropic) Contacts  

NASA Technical Reports Server (NTRS)

Single crystal superalloy turbine blades used in high pressure turbomachinery are subject to conditions of high temperature, triaxial steady and alternating stresses, fretting stresses in the blade attachment and damper contact locations, and exposure to high-pressure hydrogen. The blades are also subjected to extreme variations in temperature during start-up and shutdown transients. The most prevalent HCF failure modes observed in these blades during operation include crystallographic crack initiation/propagation on octahedral planes, and noncrystallographic initiation with crystallographic growth. Numerous cases of crack initiation and crack propagation at the blade leading edge tip, blade attachment regions, and damper contact locations have been documented. Understanding crack initiation/propagation under mixed-mode loading conditions is critical for establishing a systematic procedure for evaluating HCF life of single crystal turbine blades. This paper presents analytical and numerical techniques for evaluating two and three dimensional subsurface stress fields in anisotropic contacts. The subsurface stress results are required for evaluating contact fatigue life at damper contacts and dovetail attachment regions in single crystal nickel-base superalloy turbine blades. An analytical procedure is , presented, for evaluating the subsurface stresses in the elastic half-space, using a complex potential method outlined by Lekhnitskii. Numerical results are presented for cylindrical and spherical anisotropic contacts, using finite element analysis. Effects of crystal orientation on stress response and fatigue life are examined.

Arakere, Nagaraj K.; Knudsen, Erik C.; Duke, Greg; Battista, Gilda; Swanson, Greg

2004-01-01

295

Single-crystal CsBr infrared fibers  

NASA Astrophysics Data System (ADS)

A study of the crystal growth, optical losses, and mechanical behavior of single-crystal CsBr infrared fibers is presented. The fibers were grown with a modified pull down technique and showed total losses in the range 2-5 dB/m at 10.6 microns, as well as excess scattering loss from surface imperfections such as growth striations, subgrain boundaries, and flaws. The main absorption loss at the CO2 wavelength is attributed to SO4(2-) ions contained in the raw materials. Because of their yield strength in addition to their flexibility, the (001)-oriented fibers are considered the best mechanically.

Mimura, Y.; Okamura, Y.; Ota, C.

1982-08-01

296

Release melting of shock-loaded single crystal Cu  

NASA Astrophysics Data System (ADS)

We investigate the melting of shock-loaded single crystal Cu during release from solid shock states with molecular dynamics simulations. Cu is subjected to planar shock loading along ?100? with a piston velocity (up) of 2-3 km s-1 into the plastic regime. For up?2.5 km s-1 (above 170 GPa), release melting occurs continuously, and a sustained fully released state (liquid) can be achieved. The shocked crystal may undergo noticeable superheating before release melting. The release path can be regarded as an isentrope regardless of release melting.

Xie, Yun; Han, Li-Bo; An, Qi; Zheng, Lianqing; Luo, Sheng-Nian

2009-03-01

297

Subsurface Stress Fields in FCC Single Crystal Anisotropic Contacts  

NASA Technical Reports Server (NTRS)

Single crystal superalloy turbine blades used in high pressure turbomachinery are subject to conditions of high temperature, triaxial steady and alternating stresses, fretting stresses in the blade attachment and damper contact locations, and exposure to high-pressure hydrogen. The blades are also subjected to extreme variations in temperature during start-up and shutdown transients. The most prevalent high cycle fatigue (HCF) failure modes observed in these blades during operation include crystallographic crack initiation/propagation on octahedral planes, and non-crystallographic initiation with crystallographic growth. Numerous cases of crack initiation and crack propagation at the blade leading edge tip, blade attachment regions, and damper contact locations have been documented. Understanding crack initiation/propagation under mixed-mode loading conditions is critical for establishing a systematic procedure for evaluating HCF life of single crystal turbine blades. This paper presents analytical and numerical techniques for evaluating two and three dimensional subsurface stress fields in anisotropic contacts. The subsurface stress results are required for evaluating contact fatigue life at damper contacts and dovetail attachment regions in single crystal nickel-base superalloy turbine blades. An analytical procedure is presented for evaluating the subsurface stresses in the elastic half-space, based on the adaptation of a stress function method outlined by Lekhnitskii. Numerical results are presented for cylindrical and spherical anisotropic contacts, using finite element analysis (FEA). Effects of crystal orientation on stress response and fatigue life are examined. Obtaining accurate subsurface stress results for anisotropic single crystal contact problems require extremely refined three-dimensional (3-D) finite element grids, especially in the edge of contact region. Obtaining resolved shear stresses (RSS) on the principal slip planes also involves considerable post-processing work. For these reasons it is very advantageous to develop analytical solution schemes for subsurface stresses, whenever possible.

Arakere, Nagaraj K.; Knudsen, Erik; Swanson, Gregory R.; Duke, Gregory; Ham-Battista, Gilda

2004-01-01

298

Ohmic-rectifying conversion of Ni contacts on ZnO and the possible determination of ZnO thin film surface polarity.  

PubMed

The current-voltage characteristics of Ni contacts with the surfaces of ZnO thin films as well as single crystal (0001) ZnO substrate are investigated. The ZnO thin film shows a conversion from Ohmic to rectifying behavior when annealed at 800°C. Similar findings are also found on the Zn-polar surface of (0001) ZnO. The O-polar surface, however, only shows Ohmic behavior before and after annealing. The rectifying behavior observed on the Zn-polar and ZnO thin film surfaces is associated with the formation of nickel zinc oxide (Ni1-xZnxO, where x?=?0.1, 0.2). The current-voltage characteristics suggest that a p-n junction is formed by Ni1-xZnxO (which is believed to be p-type) and ZnO (which is intrinsically n-type). The rectifying behavior for the ZnO thin film as a result of annealing suggests that its surface is Zn-terminated. Current-voltage measurements could possibly be used to determine the surface polarity of ZnO thin films. PMID:24466144

Saw, Kim Guan; Tneh, Sau Siong; Tan, Gaik Leng; Yam, Fong Kwong; Ng, Sha Shiong; Hassan, Zainuriah

2014-01-01

299

Ohmic-Rectifying Conversion of Ni Contacts on ZnO and the Possible Determination of ZnO Thin Film Surface Polarity  

PubMed Central

The current-voltage characteristics of Ni contacts with the surfaces of ZnO thin films as well as single crystal (0001) ZnO substrate are investigated. The ZnO thin film shows a conversion from Ohmic to rectifying behavior when annealed at 800°C. Similar findings are also found on the Zn-polar surface of (0001) ZnO. The O-polar surface, however, only shows Ohmic behavior before and after annealing. The rectifying behavior observed on the Zn-polar and ZnO thin film surfaces is associated with the formation of nickel zinc oxide (Ni1-xZnxO, where x?=?0.1, 0.2). The current-voltage characteristics suggest that a p-n junction is formed by Ni1-xZnxO (which is believed to be p-type) and ZnO (which is intrinsically n-type). The rectifying behavior for the ZnO thin film as a result of annealing suggests that its surface is Zn-terminated. Current-voltage measurements could possibly be used to determine the surface polarity of ZnO thin films. PMID:24466144

Saw, Kim Guan; Tneh, Sau Siong; Tan, Gaik Leng; Yam, Fong Kwong; Ng, Sha Shiong; Hassan, Zainuriah

2014-01-01

300

Role of grain boundaries in ZnO  

NASA Astrophysics Data System (ADS)

ZnO is used in a wide variety of applications owing to the electrical properties. Polycrystalline ZnO ceramics have long been used such as varistor, and ZnO films are currently intensively studied for transparent conductor applications. Grain boundary (GB) in ZnO varistor is believed to be the origin of nonlinear current-voltage characteristics, and GB in ZnO films possibly affects the electrical conductivity. It is therefore important to understand the role of ZnO GB on the electrical properties, which should be closely related with the structure in atomic scale. With these viewpoints, we have studied the atomistic structure of ZnO GBs, where the orientation relations of adjacent crystals are well defined. Single GBs studied were obtained by fabricating ZnO bicrystals and the GBs were characterized by scanning transmission electron microscopy (STEM) and theoretical calculations. It is found that coordination number of ions change in ZnO GBs; there are underfold or overfold coordinated ions that are unusual in bulk inside. It is calculated that these atomistic structures alters the electronic structure but would not create deep states in the band gap. On the other hand, when praseodymium (Pr), which is known to be a key dopant element to obtain nonlinear (I-V) characteristics, is added to the GBs, Pr strongly localizes to the GBs and occupies specific atomic sites. Pr facilitates the formation of the acceptorlike defects such as zinc vacancies, which we think that is an important role of Pr on generation of nonlinear (I-V) characteristics. Furthermore, atomic arrangement and localization behavior of Pr are studied for several GBs to obtain fundamental understanding about GB structure formation.

Sato, Yukio; Ikuhara, Yuichi

2014-03-01

301

Synthesis of high surface area ZnO powder by continuous precipitation  

SciTech Connect

Graphical abstract: High surface area ZnO powders are synthesized by a low temperature continuous precipitation under ultrasonication. Urea is used as precipitating agent so that no contamination of ZnO powder emanating from precipitating agent, such as, alkalis, is observed. pH and type of precursor greatly affects the surface area and other properties. In this manuscript, we report a very simple and effective continuous precipitation to synthesize high surface area ZnO powder. Highlights: Black-Right-Pointing-Pointer The synthesis of high surface area ZnO powder was achieved at 90 Degree-Sign C in a continuous precipitation unit. Black-Right-Pointing-Pointer Continuous precipitation unit was ultrasonicated to improve final product homogeneity. Black-Right-Pointing-Pointer Precipitation intermediate, hydrozincite, was led to high surface area ZnO powder. Black-Right-Pointing-Pointer The synthesized ZnO nanoparticles had a rather uniform mesoporous structure. -- Abstract: Synthesis of high surface area ZnO powder was achieved by continuous precipitation using zinc ions and urea at low temperature of 90 Degree-Sign C. The powder precipitated resulted in high-purity single-phase ZnO powder when calcined at 280 Degree-Sign C for 3 h in air. The solution pH and the precipitation duration strongly affected the surface area of the calcined ZnO powder. Detailed structural characterizations demonstrated that the synthesized ZnO powder were single crystalline with wurtzite hexagonal phase. The powdered samples precipitated by homogeneous precipitation crystallized directly to hydrozincite without any intermediate phase formation. The phase structures, morphologies and properties of the final ZnO powders were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), dynamic light scattering particle size analysis (DLS), and nitrogen physisorption in order to determine the specific surface area (BET) and the pore size distribution (BJH).

Boz, Ismail, E-mail: ismailb@istanbul.edu.tr [Istanbul University, Faculty of Engineering, Department of Chemical Engineering, Avcilar, Istanbul 34320 (Turkey)] [Istanbul University, Faculty of Engineering, Department of Chemical Engineering, Avcilar, Istanbul 34320 (Turkey); Kaluza, Stefan [Laboratory of Industrial Chemistry, Ruhr-University Bochum, Universitaetsstr. 150, Bochum 44780 (Germany)] [Laboratory of Industrial Chemistry, Ruhr-University Bochum, Universitaetsstr. 150, Bochum 44780 (Germany); Boroglu, Mehtap Safak [Istanbul University, Faculty of Engineering, Department of Chemical Engineering, Avcilar, Istanbul 34320 (Turkey)] [Istanbul University, Faculty of Engineering, Department of Chemical Engineering, Avcilar, Istanbul 34320 (Turkey); Muhler, Martin [Laboratory of Industrial Chemistry, Ruhr-University Bochum, Universitaetsstr. 150, Bochum 44780 (Germany)] [Laboratory of Industrial Chemistry, Ruhr-University Bochum, Universitaetsstr. 150, Bochum 44780 (Germany)

2012-05-15

302

Fatigue behavior of a single-crystal superalloy  

NASA Technical Reports Server (NTRS)

A single-crystal superalloy, PWA 1480 is under consideration as a replacement material for the turbine blades of the high pressure fuel turbopump (HPFTP) of the space shuttle main engine (SSME). Three separate experimental programs were conducted to characterize the fatigue behavior of this alloy. Fatigue tests were conducted at room temperature (in air) and at 1000 F (in vacuum) on smooth specimens machined from both cast bars and slabs. The data from all of these programs are consolidated to provide a broader characterization of the fatigue behavior of the single crystal PWA 1480. The zero-mean-stress fatigue relationships are expressed in terms of stress range versus cyclic life lines on log-log plots. Characterization of the fatigue behavior of (001) oriented PWA 1480 single crystal under conditions of tensile mean stress was performed by using the unified approach proposed by Heidmann. In this approach the fatigue life is modified by a mean stress parameter so that a single life relationship can be used to represent both zero and tensile mean stress data.

Kalluri, Sreeramesh; Mcgaw, Michael A.

1989-01-01

303

Growth of (Na, K, Li)(Nb, Ta)O 3 single crystals by solid state crystal growth  

Microsoft Academic Search

A single crystal of (Na, K, Li)(Nb, Ta)O3 has been grown for the first time by the solid state crystal growth process. A seed crystal of ?001?-oriented KTaO3 was embedded in a matrix of (Na, K, Li)(Nb, Ta)O3 powder, which was then densified by hot-pressing. During annealing of the hot-pressed sample, a single crystal of (Na, K, Li)(Nb, Ta)O3 of

John G. Fisher; Andreja Ben?an; Janez Bernard; Janez Holc; Marija Kosec; Sophie Vernay; Daniel Rytz

2007-01-01

304

Optimization of the parameters affecting the shape and position of crystal–melt interface in YAG single crystal growth  

Microsoft Academic Search

In Czochralski method, the shape of crystal–melt interface and its position play a major role on the quality of single crystals. In the Czochralski crystal growth process having a nearly flat interface, a single crystal with less structural defect, uniform physical properties and homogenous chemical composition is obtained.In the present study, firstly a 2-D fluid flow and solidification model was

Morteza Asadian; S. H. Seyedein; M. R. Aboutalebi; A. Maroosi

2009-01-01

305

The interaction of 193-nm excimer laser irradiation with single-crystal zinc oxide: Positive ion emission  

SciTech Connect

We examine UV laser-induced ion emission from a wide bandgap semiconductor, single-crystal ZnO, at fluences well below both the damage threshold and plasma formation. At fluences below 200 mJ/cm{sup 2}, we observe only Zn{sup +}, and the Zn{sup +} intensity decreases monotonically during exposure. At higher fluences, after an initial decrease, the emission is sustained; in addition O{sup +} and O{sub 2}{sup +} are observed. We explain: how Zn ions of several eV in energy can be produced on the surface of a semiconductor, how sustained emission can be maintained, and the origin of an anomalous emission of slow Zn{sup +} ions -- the latter is shown to arise from photoionization of atomic Zn, also emitted by this radiation.

Khan, Enamul H.; Langford, S. C.; Dickinson, J. T. [Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164-2814 (United States); Boatner, L. A. [Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

2012-03-15

306

The interaction of 193-nm excimer laser irradiation with single-crystal zinc oxide: Positive ion emission  

SciTech Connect

We examine UV laser-induced ion emission from a wide bandgap semiconductor, single-crystal ZnO, at fluences well below both the damage threshold and plasma formation. At fluences below 200 mJ/cm2, we observe only Zn+, and the Zn+ intensity decreases monotonically during exposure. At higher fluences, after an initial decrease, the emission is sustained; in addition O+ and O2+ are observed. We explain: how Zn ions of several eV in energy can be produced on the surface of a semiconductor, how sustained emission can be maintained, and the origin of an anomalous emission of slow Zn+ ions the latter is shown to arise from photoionization of atomic Zn, also emitted by this radiation.

Kahn, E. H. [Washington State University; Langford, S. C. [Washington State University; Boatner, Lynn A [ORNL; Dickinson, J. T. [Washington State University

2012-01-01

307

The interaction of 193-nm excimer laser irradiation with single-crystal zinc oxide: Positive ion emission  

NASA Astrophysics Data System (ADS)

We examine UV laser-induced ion emission from a wide bandgap semiconductor, single-crystal ZnO, at fluences well below both the damage threshold and plasma formation. At fluences below 200 mJ/cm2, we observe only Zn+, and the Zn+ intensity decreases monotonically during exposure. At higher fluences, after an initial decrease, the emission is sustained; in addition O+ and O2+ are observed. We explain: how Zn ions of several eV in energy can be produced on the surface of a semiconductor, how sustained emission can be maintained, and the origin of an anomalous emission of slow Zn+ ions — the latter is shown to arise from photoionization of atomic Zn, also emitted by this radiation.

Khan, Enamul H.; Langford, S. C.; Dickinson, J. T.; Boatner, L. A.

2012-03-01

308

Hydrogen centers and the conductivity of I n2O3 single crystals  

NASA Astrophysics Data System (ADS)

A series of infrared absorption experiments and complementary theory have been performed to determine the properties of OH and OD centers in I n2O3 single crystals. Annealing I n2O3 samples in H2 or D2 at temperatures near 450 °C produces an n -type layer ?0.06 mm thick with an n -type doping of 1.6 ×1019c m-3 . The resulting free-carrier absorption is correlated with an OH center with a vibrational frequency of 3306 c m-1 that we associate with interstitial H+. Additional O-H (O-D) vibrational lines are assigned to metastable configurations of the interstitial H+(D+) center and complexes of H (D) with In vacancies. Unlike other oxides studied recently where H trapped at an oxygen vacancy is the dominant shallow donor (ZnO and Sn O2 , for example), interstitial H+ is found to be the dominant H-related shallow donor in I n2O3 .

Yin, Weikai; Smithe, Kirby; Weiser, Philip; Stavola, Michael; Fowler, W. Beall; Boatner, Lynn; Pearton, Stephen J.; Hays, David C.; Koch, Sandro G.

2015-02-01

309

Crystal growth, structure analysis and characterisation of 2 - (1, 3 - dioxoisoindolin - 2 - yl) acetic acid single crystal  

NASA Astrophysics Data System (ADS)

Single crystal of dielectric material 2 - (1, 3 - dioxoisoindolin - 2 - yl) acetic acid has been grown by slow evaporation solution growth method. The grown crystal was harvested in 25 days. The crystal structure was analyzed by Single crystal X - ray diffraction. UV-vis-NIR analysis was performed to examine the optical property of the grown crystal. The thermal property of the grown crystal was studied by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The dielectric measurements were carried out and the dielectric constant was calculated and plotted at all frequencies.

Sankari, R. Siva; Perumal, Rajesh Narayana

2014-04-01

310

Effect of Crystal Orientation on Fatigue Failure of Single Crystal Nickel Base Turbine Blade Superalloys  

NASA Technical Reports Server (NTRS)

High Cycle Fatigue (HCF) induced failures in aircraft gas-turbine engines is a pervasive problem affecting a wide range of components and materials. HCF is currently the primary cause of component failures in gas turbine aircraft engines. Turbine blades in high performance aircraft and rocket engines are increasingly being made of single crystal nickel superalloys. Single-crystal Nickel-base superalloys were developed to provide superior creep, stress rupture, melt resistance and thermomechanical fatigue capabilities over polycrystalline alloys previously used in the production of turbine blades and vanes. Currently the most widely used single crystal turbine blade superalloys are PWA 1480/1493 and PWA 1484. These alloys play an important role in commercial, military and space propulsion systems. PWA1493, identical to PWA1480, but with tighter chemical constituent control, is used in the NASA SSME (Space Shuttle Main Engine) alternate turbopump, a liquid hydrogen fueled rocket engine. Objectives for this paper are motivated by the need for developing failure criteria and fatigue life evaluation procedures for high temperature single crystal components, using available fatigue data and finite element modeling of turbine blades. Using the FE (finite element) stress analysis results and the fatigue life relations developed, the effect of variation of primary and secondary crystal orientations on life is determined, at critical blade locations. The most advantageous crystal orientation for a given blade design is determined. Results presented demonstrates that control of secondary and primary crystallographic orientation has the potential to optimize blade design by increasing its resistance to fatigue crack growth without adding additional weight or cost.

Arakere, Nagaraj K.; Swanson, Gregory R.

2000-01-01

311

Engineering domain configurations for enhanced piezoelectricity in barium titanate single crystals  

E-print Network

Engineering domain configurations for enhanced piezoelectricity in barium titanate single crystals piezoelectric responses of barium titanate single crystals under different crystallographic orientations, and use it to explain the ultrahigh piezoelectric response recently observed in a 270 cut barium titanate

Li, Jiangyu

312

Copper doping of ZnO crystals by transmutation of {sup 64}Zn to {sup 65}Cu: An electron paramagnetic resonance and gamma spectroscopy study  

SciTech Connect

Transmutation of {sup 64}Zn to {sup 65}Cu has been observed in a ZnO crystal irradiated with neutrons. The crystal was characterized with electron paramagnetic resonance (EPR) before and after the irradiation and with gamma spectroscopy after the irradiation. Major features in the gamma spectrum of the neutron-irradiated crystal included the primary 1115.5?keV gamma ray from the {sup 65}Zn decay and the positron annihilation peak at 511?keV. Their presence confirmed the successful transmutation of {sup 64}Zn nuclei to {sup 65}Cu. Additional direct evidence for transmutation was obtained from the EPR of Cu{sup 2+} ions (where {sup 63}Cu and {sup 65}Cu hyperfine lines are easily resolved). A spectrum from isolated Cu{sup 2+} (3d{sup 9}) ions acquired after the neutron irradiation showed only hyperfine lines from {sup 65}Cu nuclei. The absence of {sup 63}Cu lines in this Cu{sup 2+} spectrum left no doubt that the observed {sup 65}Cu signals were due to transmuted {sup 65}Cu nuclei created as a result of the neutron irradiation. Small concentrations of copper, in the form of Cu{sup +}-H complexes, were inadvertently present in our as-grown ZnO crystal. These Cu{sup +}-H complexes are not affected by the neutron irradiation, but they dissociate when a crystal is heated to 900?°C. This behavior allowed EPR to distinguish between the copper initially in the crystal and the copper subsequently produced by the neutron irradiation. In addition to transmutation, a second major effect of the neutron irradiation was the formation of zinc and oxygen vacancies by displacement. These vacancies were observed with EPR.

Recker, M. C.; McClory, J. W., E-mail: John.McClory@afit.edu; Holston, M. S.; Golden, E. M.; Giles, N. C. [Department of Engineering Physics, Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio 45433 (United States); Halliburton, L. E. [Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506 (United States)

2014-06-28

313

Ultrafast dynamics of excitons in tetracene single crystals  

SciTech Connect

Ultrafast exciton dynamics in free standing 200 nm thin tetracene single crystals were studied at room temperature by femtosecond transient absorption spectroscopy in the visible spectral range. The complex spectrally overlapping transient absorption traces of single crystals were systematically deconvoluted. From this, the ultrafast dynamics of the ground, excited, and transition states were identified including singlet exciton fission into two triplet excitons. Fission is generated through both, direct fission of higher singlet states S{sub n} on a sub-picosecond timescale, and thermally activated fission of the singlet exciton S{sub 1} on a 40 ps timescale. The high energy Davydov component of the S{sub 1} exciton is proposed to undergo fission on a sub-picoseconds timescale. At high density of triplet excitons their mutual annihilation (triplet-triplet annihilation) occurs on a <10 ps timescale.

Birech, Zephania; Schwoerer, Heinrich, E-mail: heso@sun.ac.za [Laser Research Institute, Stellenbosch University, Stellenbosch 7600 (South Africa)] [Laser Research Institute, Stellenbosch University, Stellenbosch 7600 (South Africa); Schwoerer, Markus [Department of Physics, University of Bayreuth, Bayreuth (Germany)] [Department of Physics, University of Bayreuth, Bayreuth (Germany); Schmeiler, Teresa; Pflaum, Jens [Experimental Physics VI, University of Würzburg and Bavarian Center for Applied Energy Research, Würzburg (Germany)] [Experimental Physics VI, University of Würzburg and Bavarian Center for Applied Energy Research, Würzburg (Germany)

2014-03-21

314

Constitutive modeling of superalloy single crystals with verification testing  

NASA Technical Reports Server (NTRS)

The goal is the development of constitutive equations to describe the elevated temperature stress-strain behavior of single crystal turbine blade alloys. The program includes both the development of a suitable model and verification of the model through elevated temperature-torsion testing. A constitutive model is derived from postulated constitutive behavior on individual crystallographic slip systems. The behavior of the entire single crystal is then arrived at by summing up the slip on all the operative crystallographic slip systems. This type of formulation has a number of important advantages, including the prediction orientation dependence and the ability to directly represent the constitutive behavior in terms which metallurgists use in describing the micromechanisms. Here, the model is briefly described, followed by the experimental set-up and some experimental findings to date.

Jordan, Eric; Walker, Kevin P.

1985-01-01

315

Plastic Deformation of Aluminum Single Crystals at Elevated Temperatures  

NASA Technical Reports Server (NTRS)

This report describes the results of a comprehensive study of plastic deformation of aluminum single crystals over a wide range of temperatures. The results of constant-stress creep tests have been reported for the temperature range from 400 degrees to 900 degrees F. For these tests, a new capacitance-type extensometer was designed. This unit has a range of 0.30 inch over which the sensitivity is very nearly linear and can be varied from as low a sensitivity as is desired to a maximum of 20 microinches per millivolt with good stability. Experiments were carried out to investigate the effect of small amounts of prestraining, by two different methods, on the creep and tensile properties of these aluminum single crystals. From observations it has been concluded that plastic deformation takes place predominantly by slip which is accompanied by the mechanisms of kinking and polygonization.

Johnson, R D; Young, A P; Schwope, A D

1956-01-01

316

Aging and memory effect in magnetoelectric gallium ferrite single crystals  

NASA Astrophysics Data System (ADS)

Here, we present a time and temperature dependent magnetization study to understand the spin dynamics in flux grown single crystals of gallium ferrite (GaFeO3), a known magnetoelectric, ferroelectric and ferrimagnet. Results of the magnetic measurements conducted in the field-cooled (FC) and zero-field-cooled (ZFC) protocols in the heating and cooling cycles were reminiscent of a "memory" effect. Subsequent time dependent magnetic relaxation measurements carried out in ZFC mode at 30 K with an intermittent cooling to 20 K in the presence of a small field show that the magnetization in the final wait period tends to follow its initial state which was present before the cooling break taken at 20 K. These observations provide an unambiguous evidence of single crystal gallium ferrite having a spin glass like phase.

Singh, Vijay; Mukherjee, Somdutta; Mitra, Chiranjib; Garg, Ashish; Gupta, Rajeev

2015-02-01

317

Ultrafast dynamics of excitons in tetracene single crystals  

NASA Astrophysics Data System (ADS)

Ultrafast exciton dynamics in free standing 200 nm thin tetracene single crystals were studied at room temperature by femtosecond transient absorption spectroscopy in the visible spectral range. The complex spectrally overlapping transient absorption traces of single crystals were systematically deconvoluted. From this, the ultrafast dynamics of the ground, excited, and transition states were identified including singlet exciton fission into two triplet excitons. Fission is generated through both, direct fission of higher singlet states Sn on a sub-picosecond timescale, and thermally activated fission of the singlet exciton S1 on a 40 ps timescale. The high energy Davydov component of the S1 exciton is proposed to undergo fission on a sub-picoseconds timescale. At high density of triplet excitons their mutual annihilation (triplet-triplet annihilation) occurs on a <10 ps timescale.

Birech, Zephania; Schwoerer, Markus; Schmeiler, Teresa; Pflaum, Jens; Schwoerer, Heinrich

2014-03-01

318

Ultrafast dynamics of excitons in tetracene single crystals.  

PubMed

Ultrafast exciton dynamics in free standing 200 nm thin tetracene single crystals were studied at room temperature by femtosecond transient absorption spectroscopy in the visible spectral range. The complex spectrally overlapping transient absorption traces of single crystals were systematically deconvoluted. From this, the ultrafast dynamics of the ground, excited, and transition states were identified including singlet exciton fission into two triplet excitons. Fission is generated through both, direct fission of higher singlet states S(n) on a sub-picosecond timescale, and thermally activated fission of the singlet exciton S1 on a 40 ps timescale. The high energy Davydov component of the S1 exciton is proposed to undergo fission on a sub-picoseconds timescale. At high density of triplet excitons their mutual annihilation (triplet-triplet annihilation) occurs on a <10 ps timescale. PMID:24655187

Birech, Zephania; Schwoerer, Markus; Schmeiler, Teresa; Pflaum, Jens; Schwoerer, Heinrich

2014-03-21

319

Strontium–barium niobate single crystals, growth and ferroelectric properties  

Microsoft Academic Search

Single crystals of strontium–barium niobate SrxBa1?xNb2O6 (SBN) undoped and doped with Ce or Cr were grown by the Czochralski method. The inductive heating system was used. In order to improve conditions of growth, a crucible-base cooling was introduced. Single crystals of the following nominal compositions have been obtained: Sr0.4Ba0.6Nb2O6, Sr0.5Ba0.5Nb2O6, Sr0.61Ba0.39Nb2O6 (congruent melting) and Sr0.75Ba0.25Nb2O6, designated hereafter as SBN40, SBN50,

T. Lukasiewicz; M. A. Swirkowicz; J. Dec; W. Hofman; W. Szyrski

2008-01-01

320

Challenges for Single-crystal (SX) Crack Cladding  

NASA Astrophysics Data System (ADS)

The formation of cracks in single-crystal (SX) turbine blades is a common problem for aero-engines. If cracks are located under the tip-area, the blade-repair is not possible. Anew method to repair these cracks is to clad with single-crystal-technology.To reduce the loss of material and working time,notches are used to remove the affected crack zone. The usednotch geometries must be weldable and also permit the material solidification in the same oriented plane as the original microstructure. For that, a thermal gradient has to be introduced in order to guide the grain growth. The process characteristics of laser cladding, such as small local heat input and controlled material supply, make it an efficient process to fill the notch. However, there are challenges to achieve a SX structure without cracks and pores. The unstable energy distribution may result in a polycrystalline structure. Current achievements and further challenges are presented in this paper.

Rottwinkel, Boris; Schweitzer, Luiz; Noelke, Christian; Kaierle, Stefan; Wesling, Volker

321

High-Quality, Thin-Film Germanium Single Crystals  

NASA Technical Reports Server (NTRS)

Germanium (Ge) has crystallographic characteristics similar to GaAs and compatible with heteroepitaxial growth of GaAs. Further, since efficient heteroface cells already grown on thick Ge single crystals, Ge is excellent substrate candidate for thin-film cells. Required is single-crystal Ge thin film. Method developed for epitaxially growing highquality 10-um Ge thin films on ,100. NaCl substrates by plasma-enhanced chemical-vapor deposition (PECVD) and then separating Ge films by either melt-away or differential-thermal shear stress techniques. Free-standing films used for growth of AlxGa1-xAs/GaAs heteroface cells by similar techniques.

Outlaw, R. A.; Hopson, J., P.

1986-01-01

322

Strong second harmonic generation in SiC, ZnO, GaN two-dimensional hexagonal crystals from first-principles many-body calculations.  

PubMed

The second harmonic generation (SHG) intensity spectrum of SiC, ZnO, GaN two-dimensional hexagonal crystals is calculated by using a real-time first-principles approach based on Green's function theory [Attaccalite et al., Phys. Rev. B: Condens. Matter Mater. Phys. 2013 88, 235113]. This approach allows one to go beyond the independent particle description used in standard first-principles nonlinear optics calculations by including quasiparticle corrections (by means of the GW approximation), crystal local field effects and excitonic effects. Our results show that the SHG spectra obtained using the latter approach differ significantly from their independent particle counterparts. In particular they show strong excitonic resonances at which the SHG intensity is about two times stronger than within the independent particle approximation. All the systems studied (whose stabilities have been predicted theoretically) are transparent and at the same time exhibit a remarkable SHG intensity in the range of frequencies at which Ti:sapphire and Nd:YAG lasers operate; thus they can be of interest for nanoscale nonlinear frequency conversion devices. Specifically the SHG intensity at 800 nm (1.55 eV) ranges from about 40-80 pm V(-1) in ZnO and GaN to 0.6 nm V(-1) in SiC. The latter value in particular is 1 order of magnitude larger than values in standard nonlinear crystals. PMID:25766901

Attaccalite, C; Nguer, A; Cannuccia, E; Grüning, M

2015-04-14

323

Properties of salt-grown uranium single crystals.  

SciTech Connect

Recently single crystals of {alpha}-uranium were grown from a liquid salt bath. The electrical, magnetic and thermal properties of these crystals have been surveyed. The ratio of the room temperature resistivity of these crystals to the saturation value at low temperature is three times larger than any previously reported demonstrating that the crystals are of higher purity and quality than those in past work. The resistive signatures of the CDW transitions at 43, 37 and 22 K are obvious to the naked eye. The transition at 22 K exhibits temperature hysteresis that increases with magnetic field. In addition the superconducting transition temperature from resistivity is 820 mK and the critical field is 80 mT. Contrary to earlier work where the Debye temperature ranged from 186 to 218 K, the Debye temperature extracted from the heat capacity is 254 K in good agreement with the predicted value of 250 K. Magnetoresistance, Hall effect and magnetic susceptibility measurements are underway. In time, measurements made on these crystals may help us to understand the origin of superconductivity and its relation to the CDW transitions in pure uranium.

Cooley, J. C. (Jason C.); Hanrahan, R. J. (Robert J.); Hults, W. L. (William L.); Lashley, J. C. (Jason C.); Manley, M. E. (Michael E.); Mielke, C. H. (Charles H.); Smith, J. L. (James L.); Thoma, D. J. (Dan J.); Clark, R. G. (Robert G.); Hamilton, A. R.; O'Brien, J. L. (Jeremy L.); Gay, E. C. (Eddie C.); Lumpkin, N. E.; McPheeters, C. C. (Charles C.); Willit, J.; Schmiedeshoff, G. M. (George M.); Touton, S. (Sharon); Woodfield, B. F. (Brian F.); Lang, B. E. (Brian E.); Boerio-Goates, Juliana

2001-01-01

324

Diffusion in single crystals of melilite. I - Oxygen  

Microsoft Academic Search

Oxygen-diffusion coefficients in melilite lattices were estimated by analyzing the structure of O-18 profiles determined in single crystals of gehlenite using SIMS. The lattice diffusion O-coefficients were found to be 2 to 4 orders of magnitude lower than those previously reported by Hayashi and Muehlenbachs (1986) for melilite solid solutions. The reason for these high diffusion rates in melilite solid

Hisayoshi Yurimoto; Masana Morioka; Hiroshi Nagasawa

1989-01-01

325

Evaluation of Gamma-Ray Response of Tm: Single Crystals  

Microsoft Academic Search

Tm3+ doped BaF2 single crystal scintillator has been investigated. Undoped, 0.1, 0.5, and 1% Tm -doped BaF2 are compared in terms of their decay time, light yield, non-proportionality and energy resolution. The fast component of Tm doped BaF2 is characterized by a 5 ~ 6 ns decay time and it can be related to the Tm3+ 5d - 4f VUV

Naoto Abe; Yuui Yokota; Takayuki Yanagida; Noriaki Kawaguchi; Jan Pejchal; Akira Yoshikawa

2010-01-01

326

Electrical resistivity studies of Cr - Ir alloy single crystals  

Microsoft Academic Search

Electrical resistivity has been measured for four Cr - Ir alloy single crystals for concentrations between 0.07 and 0.25 at.% Ir in the temperature range 4 to 1200 K. Well defined magnetic anomalies were observed at the Néel temperature 0953-8984\\/8\\/49\\/035\\/img1 of each alloy as well as at the incommensurate - commensurate (I - C) spin-density-wave (SDW) phase transition temperature of

J. Martynova; H. L. Alberts; P. Smit

1996-01-01

327

The Temperature of a Single Crystal Diamond Tool in Turning  

Microsoft Academic Search

The temperature on the rake face of a single crystal diamond tool in precision turning is investigated experimentally and theoretically. The infrared rays radiated from the contact area between the chip and rake face, and transmitted through the diamond tool, are accepted by a chalcogenide fiber and led to a two-color detector which consists of InSb and HgCdTe detectors. The

Takashi Ueda; Masahiko Sato; Kazuo Nakayama

1998-01-01

328

Single crystal silicon as a low-temperature structural material  

NASA Astrophysics Data System (ADS)

In neutron scattering applications, it is frequently desirable to construct a sample container from a material that is strong but has very little neutron absorption of scattering. Single crystal silicon is very good by these criteria but it is difficult to work with because of its brittleness. A technique for gluing silicon was developed that yields high strength joints at low temperatures and allows very compact designs for sample containers.

Roach, P. R.

1984-07-01

329

Dislocation generation at surfaces of tin single crystals  

Microsoft Academic Search

Single crystals of 99.999% purityß-tin grown from the melt were shown by X-ray topography to contain dislocations with Burgers vectors of [001] type and of 1\\/2 type. Specimen plates cut roughly parallel to (311) were chemically thinned from 1.25 mm to 100µm thickness and in two cases characteristic dislocation structures were generated at their surfaces. A specimen thinned in concentrated

R. Fiedler; A. R. Lang

1972-01-01

330

Water dissolved in Olivine: A single-crystal infrared study  

Microsoft Academic Search

Polarized infrared spectra of the hydrogen impurities in an olivine single crystal, approximately (Mg0.9Fe0.1)2SiO4, from the Zargabad Island, Red Sea, are reported in the range 4200-3000 cm-1. In the O-H stretching frequency region, two groups of IR absorption bands occur which show the same pleochroism and the same temperature-induced shift between room temperature and 80 K. Each of these IR

Friedemann Freund; Gert Oberheuser

1986-01-01

331

Elastic and Piezoelectric Coefficients of Single-Crystal Barium Titanate  

Microsoft Academic Search

Mechanical resonance and antiresonance frequencies were measured on barium titanate single-crystal elements maintained under electric dc bias from -50°C to +150°C. A complete set of elastic, piezoelectric, and dielectric constants of the tetragonal modification at 25°C is obtained. The elastic compliances show substantial deviation from cubic symmetry. Measurements in the orthorhombic state show longitudinal compliance four times higher than in

Don Berlincourt; Hans Jaffe

1958-01-01

332

Modification of single-crystal sapphire by ion implantation  

Microsoft Academic Search

Some studies have shown that single-crystal sapphire can exhibit a dramatic loss of compressive strength (over 90%) at high temperatures, limiting its use as a shatter-resistant optical window. Other studies have shown that the mechanical behavior of sapphire can be improved by ion implantation, hardening the near-surface region and introducing a compressive stress state, perhaps leading to an increase in

J. D. Demaree; J. K. Hirvonen; S. R. Kirkpatrick; A. R. Kirkpatrick

1997-01-01

333

Pockels effect in yttrium aluminum borate single crystals  

Microsoft Academic Search

Experimental measurements of linear electro-optical coefficients are reported for YAl3(BO3)4 (YAB) single crystals for the two principal tensor components xyz and yyy at the wavelength of a CW semiconducting GaAlAs laser emitting at 1040 nm. We have found the values of the Pockels coefficients\\u000a to be equal to 0.21 ± 0.06 and 0.56 ± 0.08 pm\\/V for 123 and 222

A. H. Reshak; A. Majchrowski; W. Imiolek

2008-01-01

334

Electron spectroscopy of single crystal and polycrystalline cerium oxide surfaces  

Microsoft Academic Search

Valence band photoemission (XPS), valence band electron energy loss spectroscopy (EELS), Ce3d and 4d XPS, O1s XPS and O1s X-ray absorption (XAS) have been investigated for oxidized and sputtered single crystal CeO2 films and for oxidized Ce foil. Features were identified that distinguish between the Ce4+ or Ce3+ oxidation states. Ce4+ was identified by the highest binding energy peaks in

D. R Mullins; S. H Overbury; D. R Huntley

1998-01-01

335

Method for thermal processing alumina-enriched spinel single crystals  

DOEpatents

A process for age-hardening alumina-rich magnesium aluminum spinel to obtain the desired combination of characteristics of hardness, clarity, flexural strength and toughness comprises selection of the time-temperature pair for isothermal heating followed by quenching. The time-temperature pair is selected from the region wherein the precipitate groups have the characteristics sought. The single crystal spinel is isothermally heated and will, if heated long enough pass from its single phase through two pre-precipitates and two metastable precipitates to a stable secondary phase precipitate within the spinel matrix. Quenching is done slowly at first to avoid thermal shock, then rapidly. 12 figs.

Jantzen, C.M.

1995-05-09

336

Method for thermal processing alumina-enriched spinel single crystals  

DOEpatents

A process for age-hardening alumina-rich magnesium aluminum spinel to obtain the desired combination of characteristics of hardness, clarity, flexural strength and toughness comprises selection of the time-temperature pair for isothermal heating followed by quenching. The time-temperature pair is selected from the region wherein the precipitate groups have the characteristics sought. The single crystal spinel is isothermally heated and will, if heated long enough pass from its single phase through two pre-precipitates and two metastable precipitates to a stable secondary phase precipitate within the spinel matrix. Quenching is done slowly at first to avoid thermal shock, then rapidly.

Jantzen, Carol M. (Aiken, SC)

1995-01-01

337

Diamond turning of Si and Ge single crystals  

SciTech Connect

Single-point diamond turning studies have been completed on Si and Ge crystals. A new process model was developed for diamond turning which is based on a critical depth of cut for plastic flow-to-brittle fracture transitions. This concept, when combined with the actual machining geometry for single-point turning, predicts that {open_quotes}ductile{close_quotes} machining is a combined action of plasticity and fracture. Interrupted cutting experiments also provide a meant to directly measure the critical depth parameter for given machining conditions.

Blake, P.; Scattergood, R.O.

1988-12-01

338

Physical properties of CuAlO 2 single crystal  

NASA Astrophysics Data System (ADS)

CuAlO 2 single crystal elaborated by the flux method is a narrow band gap semiconductor crystallizing in the delafossite structure (SG R3¯m). Oxygen insertion in the layered lattice generates p-type conductivity where most holes are trapped in surface-polaron states. The detailed photoelectrochemical characterization and electrochemical impedance spectroscopy (EIS) have been reported for the first time on the single crystal. The study is confined in the basal plan and reversible oxygen insertion is evidenced from the intensity potential characteristics. The oxide is characterized by an excellent chemical stability; the semi-logarithmic plot gave a corrosion potential of-0.82 V SCE and an exchange current density of 0.022 ?A cm -2 in KCl (0.5 M) electrolyte. The capacitance measurement ( C-2- V) shows a linear behavior from which a flat band potential of +0.42 V SCE and a doping density NA of 10 16 cm -3 have been determined. The valence band, located at 5.24 eV (0.51 V SCE) below vacuum, is made up of Cu-3d orbital. The Nyquist plot exhibits a pseudo-semicircle whose center is localized below the real axis with an angle of 20°. This can be attributed to a single relaxation time of the electrical equivalent circuit and a constant phase element (CPE). The absence of straight line indicates that the process is under kinetic control.

Brahimi, R.; Bellal, B.; Bessekhouad, Y.; Bouguelia, A.; Trari, M.

2008-09-01

339

Modeling single-crystal microstructure evolution due to shock loading  

NASA Astrophysics Data System (ADS)

An existing high strain rate viscoplastic (HSRVP) model is extended to address single-crystal anisotropic, elastic-plastic material response and is implemented into a steady plastic wave formulation in the weak shock regime. The single-crystal HSRVP model tracks the nucleation, multiplication, annihilation, and trapping of dislocations, as well as thermally activated and phonon drag limited glide kinetics. The steady plastic wave formulation is used to model the elastic-plastic response with respect to a propagating longitudinal wave, and assumes that the magnitudes of quasi-transverse waves are negligible. This steady wave analysis does not require specification of artificial viscosity, which can give rise to spurious dissipative effects. The constitutive model and its numerical implementation are applied to single-crystal pure Al and results are compared with existing experimental data. Dislocation density evolution, lattice reorientation, and macroscopic velocity-time histories are tracked for different initial orientations subjected to varying peak shock pressures. Results suggest that initial material orientation can significantly influence microstructure evolution, which can be captured using the modified Taylor factor.

Lloyd, J. T.; Clayton, J. D.; Austin, R. A.; McDowell, D. L.

2014-05-01

340

Subsurface Stress Fields in Single Crystal (Anisotropic) Contacts  

NASA Technical Reports Server (NTRS)

Single crystal superalloy turbine blades used in high pressure turbomachinery are subject to conditions of high temperature, triaxial steady and fatigue stresses, fretting stresses in the blade attachment and damper contact locations, and exposure to high-pressure hydrogen. The blades are also subjected to extreme variations in temperature during start-up and shutdown transients. The most prevalent HCF failure modes observed in these blades during operation include crystallographic crack initiation/propagation on octahedral planes, and noncrystallographic initiation with crystallographic growth. Numerous cases of crack initiation and crack propagation at the blade leading edge tip, blade attachment regions, and damper contact locations have been documented. Understanding crack initiation/propagation under mixed-mode loading conditions is critical for establishing a systematic procedure for evaluating HCF life of single crystal turbine blades. Techniques for evaluating two and three dimensional subsurface stress fields in anisotropic contacts are presented in this report. Figure 1 shows typical damper contact locations in a turbine blade. The subsurface stress results are used for evaluating contact fatigue life at damper contacts and dovetail attachment regions in single crystal nickel-base superalloy turbine blades.

Arakere, Nagaraj K.

2003-01-01

341

Single crystal plasticity by modeling dislocation density rate behavior  

SciTech Connect

The goal of this work is to formulate a constitutive model for the deformation of metals over a wide range of strain rates. Damage and failure of materials frequently occurs at a variety of deformation rates within the same sample. The present state of the art in single crystal constitutive models relies on thermally-activated models which are believed to become less reliable for problems exceeding strain rates of 10{sup 4} s{sup -1}. This talk presents work in which we extend the applicability of the single crystal model to the strain rate region where dislocation drag is believed to dominate. The elastic model includes effects from volumetric change and pressure sensitive moduli. The plastic model transitions from the low-rate thermally-activated regime to the high-rate drag dominated regime. The direct use of dislocation density as a state parameter gives a measurable physical mechanism to strain hardening. Dislocation densities are separated according to type and given a systematic set of interactions rates adaptable by type. The form of the constitutive model is motivated by previously published dislocation dynamics work which articulated important behaviors unique to high-rate response in fcc systems. The proposed material model incorporates thermal coupling. The hardening model tracks the varying dislocation population with respect to each slip plane and computes the slip resistance based on those values. Comparisons can be made between the responses of single crystals and polycrystals at a variety of strain rates. The material model is fit to copper.

Hansen, Benjamin L [Los Alamos National Laboratory; Bronkhorst, Curt [Los Alamos National Laboratory; Beyerlein, Irene [Los Alamos National Laboratory; Cerreta, E. K. [Los Alamos National Laboratory; Dennis-Koller, Darcie [Los Alamos National Laboratory

2010-12-23

342

Acquisition of Single Crystal Growth and Characterization Equipment  

SciTech Connect

Final Report for DOE Grant No. DE-FG02-04ER46178 'Acquisition of Single Crystal Growth and Characterization Equipment'. There is growing concern in the condensed matter community that the need for quality crystal growth and materials preparation laboratories is not being met in the United States. It has been suggested that there are too many researchers performing measurements on too few materials. As a result, many user facilities are not being used optimally. The number of proficient crystal growers is too small. In addition, insufficient attention is being paid to the enterprise of finding new and interesting materials, which is the driving force behind much of condensed matter research and, ultimately, technology. While a detailed assessment of this situation is clearly needed, enough evidence of a problem already exists to compel a general consensus that the situation must be addressed promptly. This final report describes the work carried out during the last four years in our group, in which a state-of-the-art single crystal growth and characterization facility was established for the study of novel oxides and intermetallic compounds of rare earth, actinide and transition metal elements. Research emphasis is on the physics of superconducting (SC), magnetic, heavy fermion (HF), non-Fermi liquid (NFL) and other types of strongly correlated electron phenomena in bulk single crystals. Properties of these materials are being studied as a function of concentration of chemical constituents, temperature, pressure, and magnetic field, which provide information about the electronic, lattice, and magnetic excitations at the root of various strongly correlated electron phenomena. Most importantly, the facility makes possible the investigation of material properties that can only be achieved in high quality bulk single crystals, including magnetic and transport phenomena, studies of the effects of disorder, properties in the clean limit, and spectroscopic and scattering studies through efforts with numerous collaborators. These endeavors will assist the effort to explain various outstanding theoretical problems, such as order parameter symmetries and electron-pairing mechanisms in unconventional superconductors, the relationship between superconductivity and magnetic order in certain correlated electron systems, the role of disorder in non-Fermi liquid behavior and unconventional superconductivity, and the nature of interactions between localized and itinerant electrons in these materials. Understanding the mechanisms behind strongly correlated electron behavior has important technological implications.

Maple, M. Brian; Zocco, Diego A.

2008-12-09

343

Large pyramid shaped single crystals of BiFeO{sub 3} by solvothermal synthesis method  

SciTech Connect

Synthesis parameters are optimized in order to grow single crystals of multiferroic BiFeO{sub 3}. 2 to 3 mm size pyramid (tetrahedron) shaped single crystals were successfully obtained by solvothermal method. Scanning electron microscopy with EDAX confirmed the phase formation. Raman scattering spectra of bulk BiFeO3 single crystals have been measured which match well with reported spectra.

Sornadurai, D.; Ravindran, T. R.; Paul, V. Thomas; Sastry, V. Sankara [Condensed Matter Physics Division, Materials Science Group, Physical Metallurgy Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu (India); Condensed Matter Physics Division, Materials Science Group (India)

2012-06-05

344

High-power diode-pumped Er3+ :YAG single-crystal fiber laser  

E-print Network

High-power diode-pumped Er3+ :YAG single-crystal fiber laser Igor Martial,1,2,* Julien Didierjean,2 describe an efficient laser emission from a directly grown Er3+ :YAG single-crystal fiber Er:YAG single-crystal fiber laser. Using an off-axis pumping scheme, CW output powers up to 7.3 W can

Paris-Sud XI, Université de

345

A LIFETIME PREDICTION MODEL FOR SINGLE CRYSTAL SUPERALLOYS SUBJECTED TO THERMOMECHANICAL  

E-print Network

A LIFETIME PREDICTION MODEL FOR SINGLE CRYSTAL SUPERALLOYS SUBJECTED TO THERMOMECHANICAL CREEP for Single Crystal Superalloys operated at high temperatures and subjected to creep, fatigue and oxidation of nickel based single crystal superalloys. These materials are optimized for creep resistance but are prone

Paris-Sud XI, Université de

346

Operation of multiple 90 switching systems in barium titanate single crystals under electromechanical loading  

E-print Network

Operation of multiple 90° switching systems in barium titanate single crystals under Hysteresis evolution of a 5 5 2 mm3 barium titanate single crystal during a combined electromechanical of barium titanate BaTiO3 single crystals under combined electrical and mechanical loadings was examined

Shu, Yi-Chung

347

ZnO nanorods for electronic and photonic device applications  

NASA Astrophysics Data System (ADS)

We report on catalyst-free growth of ZnO nanorods and their nano-scale electrical and optical device applications. Catalyst-free metalorganic vapor-phase epitaxy (MOVPE) enables fabrication of size-controlled high purity ZnO single crystal nanorods. Various high quality nanorod heterostructures and quantum structures based on ZnO nanorods were also prepared using the MOVPE method and characterized using scanning electron microscopy, transmission electron microscopy, and optical spectroscopy. From the photoluminescence spectra of ZnO/Zn 0.8Mg 0.2O nanorod multi-quantum-well structures, in particular, we observed a systematic blue-shift in their PL peak position due to quantum confinement effect of carriers in nanorod quantum structures. For ZnO/ZnMgO coaxial nanorod heterostructures, photoluminescence intensity was significantly increased presumably due to surface passivation and carrier confinement. In addition to the growth and characterizations of ZnO nanorods and their quantum structures, we fabricated nanoscale electronic devices based on ZnO nanorods. We report on fabrication and device characteristics of metal-oxidesemiconductor field effect transistors (MOSFETs), Schottky diodes, and metal-semiconductor field effect transistors (MESFETs) as examples of the nanodevices. In addition, electroluminescent devices were fabricated using vertically aligned ZnO nanorods grown p-type GaN substrates, exhibiting strong visible electroluminescence.

Yi, Gyu-Chul; Yoo, Jinkyoung; Park, Won Il; Jung, Sug Woo; An, Sung Jin; Kim, H. J.; Kim, D. W.

2005-11-01

348

Crystal growth and electrical properties of lead indium niobate lead titanate binary single crystal  

NASA Astrophysics Data System (ADS)

The largest Pb(In 1/2Nb 1/2)O 3-PbTiO 3(PIN-PT) binary system single crystal (about 20 mmx10 mm×5 mm, 4.5 g) near the morphotropic phase boundary composition with well-developed (1 0 0) planes was grown by the flux method using PbO-PbF 2-B 2O 3 flux. The PIN-PT(72/28) single crystal was found by simultaneous microdifferential thermal analysis and thermogravimetric analysis to show a peritectic melting at 1283°C with a partial decomposition of the perovskite crystal into a pyrochlore phase, followed by a liquidus point at 1294°C. The electromechanical coupling coefficient in rectangular bar mode, k33'=78%, for phased array ultrasonic transducers was obtained by using the rhombohedral PIN-PT(72/28) single crystal oriented along the [0 0 1] axis. k33'=78% is the highest value reported so far among all the piezoelectric materials with a Tc>250°C and is almost independent of temperature, and even at 200°C decreased only by about 5%. The piezoelectric constant d33=700pC/N was obtained. The relative permittivity ? r decreases after poling. For instance, the ? r value of 2650 before poling, decreases to 1500 after poling.

Yasuda, N.; Ohwa, H.; Kume, M.; Hayashi, K.; Hosono, Y.; Yamashita, Y.

2001-07-01

349

Photoluminescence of ZnO infiltrated into a three-dimensional photonic crystal  

SciTech Connect

The effect of the photonic band gap (stopband) of the photonic crystal, the synthesized SiO{sub 2} opal with embedded zinc oxide, on its luminescence in the violet spectral region is studied. It is shown that the position of the photonic band gap in the luminescence and reflectance spectra of the infiltrated opal depends on the diameter of the constituent nanoglobules, the volume fraction of zinc oxide, and on the signal's acceptance angle. It is found that, for the ZnO-opal nanocomposites, the emission intensity is decreased and the luminescence decay time is increased in the spatial directions, in which the photonic band gap coincides in spectral position with the luminescence peak of zinc oxide. The change in the decay time can be attributed to the change in the local density of photonic states in the photonic band gap.

Gruzintsev, A. N. [Russian Academy of Sciences, Institute of Microelectronic Technology and Ultra-High-Purity Materials (Russian Federation)], E-mail: gran@iptm.ru; Emelchenko, G. A.; Masalov, V. M. [Russian Academy of Sciences, Institute of Solid State Physics (Russian Federation)

2009-08-15

350

Controlling the microstructure of ZnO nanoparticles embedded in Sapphire by Zn ion implantation and subsequent annealing  

Microsoft Academic Search

(0001) ?-Al2O3 single crystals (sapphire) were implanted with Zn ions of 60keV at a fluence of 1×1017ions\\/cm2. Transmission electron microscopy and optical absorption spectroscopy studies show the formation of ZnO nanoparticles in the sapphire substrate after the implanted sample was annealed at 700°C in oxygen ambient. The photoluminescence spectrum of the annealed sample indicates the formation of ZnO nanoparticles with

J. X. Xu; X. H. Xiao; F. Ren; C. Z. Jiang

2010-01-01

351

Strong luminescence and efficient energy transfer in Eu3+/Tb3+-codoped ZnO nanocrystals  

NASA Astrophysics Data System (ADS)

Single crystalline Eu3+/Tb3+-codoped ZnO nanocrystals have been synthesized by using a simple co-precipitation method. Successful doping is realized so that strong green and red luminescence can be efficiently excited by ultraviolet and near ultraviolet radiation, demonstrating an efficient energy transfer from ZnO host to rare earth ions. The energy transfer from the ZnO host to Tb3+ in ZnO: Tb3+ samples and ZnO host to Eu3+ in the ZnO: Eu3+ samples under UV excitation are investigated. It is found that the red 5D0 ? 7F2 emission of Eu3+ ions decreases with increasing temperature but the green 5D4 ? 7F5 emission of Tb3+ ions increases with increasing temperature, implying a different energy transfer processes in the two samples. Moreover, energy transfer from Tb3+ ions to Eu3+ ions in ZnO nanocrystals is also observed by analyzing luminescence spectra and the decay curves. By adjusting the doping concentration, the Eu3+/Tb3+-codoped ZnO phosphors emit green and red luminescence with chromaticity coordinates near white light region, high color purity and high intensity, indicating that they are promising light-conversion materials and have potential in field emission display devices and liquid crystal display backlights.

Luo, L.; Huang, F. Y.; Dong, G. S.; Fan, H. H.; Li, K. F.; Cheah, K. W.; Chen, J.

2014-11-01

352

Birefringence measurement of liquid single crystal elastomer swollen with low molecular weight liquid crystal  

NASA Astrophysics Data System (ADS)

We experimentally measured the birefringence of a liquid single crystal elastomer (LSCE) swollen with a low molecular weight liquid crystal (LMWLC), 5CB, by polarizing microscopy as a function of temperature. The optical intensity of swollen LSCE shows significant intensity changes at temperatures TNI, TA and TB that indicates a variety of different transitions. A temperature TNI is known as the apparent nematic-isotropic transition for outside LMWLC, TA and TB are interpreted as the nematic-isotropic transition for LMWLC inside the LSCE and for the swollen LSCE, respectively.

Yusuf, Yusril; Sumisaki, Yusuke; Kai, Shoichi

2003-11-01

353

Hystereses of volume changes in liquid single crystal elastomers swollen with low molecular weight liquid crystal  

NASA Astrophysics Data System (ADS)

The hystereses of volume changes in liquid single crystal elastomers (LSCEs) swollen with a low molecular weight liquid crystal (LMWLC), 5CB, are studied as a function of temperature. The swollen LSCE shows significant hystereses in the volume changes at temperatures TNI and TA during the processes on heating and on cooling, where the temperature TNI is the apparent nematic-isotropic transition for outside LMWLC and TA the nematic-isotropic transition for LMWLC inside the LSCE. No significant hysteresis at TB however can be observed which is the nematic-isotropic phase transition temperature for equilibrium shape of the swollen LSCE (networks).

Yusuf, Yusril; Cladis, P. E.; Brand, Helmut R.; Finkelmann, Heino; Kai, Shoichi

2004-05-01

354

Anisotropic properties of RFe_2Ge2 single crystals  

NASA Astrophysics Data System (ADS)

We have grown RFe_2Ge2 single crystals for R = Y and ten members of the lanthanide series (Pr, Nd, Sm, Gd-Tm, Lu) using Sn flux as the solvent. The method yields clean, high quality crystal plates as evidenced by residual resistivities and RRR values in the range of 3-12 ?? cm and 20-70 respectively. The crystals are also virtually free of magnetic impurities or secondary phases, allowing the study of the intrinsic anisotropic magnetic behavior of each compound. Characterization was made with X-Ray diffraction, temperature and field dependent magnetization, specific heat and resistivity. Strong anisotropies arising mostly from CEF effects were observed for all magnetic rare earths except Gd. Anti-ferromagnetic ordering occurred at temperatures between 16.5 K (Nd) and 1.25 K (Ho) and for some members there are further well-defined metamagnetic transitions. The calculated effective moments per rare earth atom tend to be larger than the expected values at high temperatures while smaller at low temperatures, probably indicating temperature-dependent contributions of d-band electrons to the magnetic behavior. We acknowledge the help of R. A. Ribeiro and C. Petrovic in the X-Ray diffraction measurements, and K. Myers in the early development and characterization of the crystals. Ames Laboratory is operated for the US Department of Energy by Iowa State University under Contract No. W-7405-Eng-82. This work was supported by the Director for Energy Research, Office of Basic Energy Sciences.

Avila, M. A.; Bud'Ko, S. L.; Canfield, P. C.

2003-03-01

355

Plastic deformation of Ni{sub 3}Nb single crystals  

SciTech Connect

Temperature dependence of yield stress and operative slip system in Ni{sub 3}Nb single crystals with the D0{sub a} structure was investigated in comparison with that in an analogous L1{sub 2} structure. Compression tests were performed at temperatures between 20 C and 1,200 C for specimens with loading axes perpendicular to (110), (331) and (270). (010)[100] slip was operative for three orientations, while (010)[001] slip for (331) and {l{underscore}brace}211{r{underscore}brace}{lt}{bar 1}{bar 0} 7 13{gt} twin for (270) orientations were observed, depending on deformation temperature. The critical resolved shear stress (CRSS) for the (010)[100] slip anomaly increased with increasing temperature showing a maximum peak between 400 C and 800 C depending on crystal orientation. The CRSS showed orientation dependence and no significant strain rate dependence in the temperature range for anomalous strengthening. The [100] dislocations with a screw character were aligned on the straight when the anomalous strengthening occurred. The anomalous strengthening mechanism for (010)[100] slip in Ni{sub 3}Nb single crystals is discussed on the basis of a cross slip model which has been widely accepted for some L1{sub 2}-type compounds.

Hagihara, Kouji; Nakano, Takayoshi; Umakoshi, Yukichi

1999-07-01

356

ESR Study on Irradiated Ascorbic Acid Single Crystal  

SciTech Connect

Food irradiation is a 'cold' process for preserving food and has been established as a safe and effective method of food processing and preservation after more than five decades of research and development. The small temperature increase, absence of residue and effectiveness of treatment of pre-packed food are the main advantages. In food industry, ascorbic acid and its derivatives are frequently used as antioxidant agents. However, irradiation is expected to produces changes in the molecules of food components and of course in the molecules of the agents added as preservation agents such as ascorbic acid. These changes in the molecular structures could cause decreases in the antioxidant actions of these agents. Therefore, the radiation resistance of these agents must be known to determine the amount of radiation dose to be delivered. Electron spin resonance (ESR) is one of the leading methods for identification of intermediates produced after irradiation. ESR spectrum of irradiated solid powder of ascorbic acid is fairly complex and determinations of involved radical species are difficult. In the present work, single crystals of ascorbic acid irradiated by gamma radiation are used to determine molecular structures of radiation induced radicalic species and four radicalic species related in pair with P21 crystal symmetry are found to be responsible from experimental ESR spectrum of gamma irradiated single crystal of ascorbic acid.

Tuner, H.; Korkmaz, M. [Hacettepe University, Department of Physics Engineering, Ankara, 06800 (Turkey)

2007-04-23

357

Lithium containing chalcogenide single crystals for neutron detection  

NASA Astrophysics Data System (ADS)

Lithium containing semiconductor-grade chalcogenide single crystals were grown using the vertical Bridgman method. The source material was synthesized from elementary precursors in two steps, (i) preparing the metal alloy LiIn or LiGa, and (ii) reaction with chalcogen - Se or Te. In a number of experiments, enriched 6Li isotope was used for synthesis and growth. The composition and structure of the synthesized materials was verified using powder X-Ray diffraction. The energy band gaps of the crystals were determined using optical absorption measurements. The resistivity of LiInSe2 and LiGaSe2, obtained using current-voltage measurements is on the order of 108-1011 ? cm. Photoconductivity measurement of a yellow LiInSe2 sample showed a peak in the photocurrent around 445 nm. Nuclear radiation detectors were fabricated from single crystal wafers and the responses to alpha particles, neutrons and gammas were measured and presented. It suggests that this material is a promising candidate for neutron detection applications.

Tupitsyn, E.; Bhattacharya, P.; Rowe, E.; Matei, L.; Cui, Y.; Buliga, V.; Groza, M.; Wiggins, B.; Burger, A.; Stowe, A.

2014-05-01

358

Strain incompatibility and residual strains in ferroelectric single crystals  

PubMed Central

Residual strains in ferroelectrics are known to adversely affect the material properties by aggravating crack growth and fatigue degradation. The primary cause for residual strains is strain incompatibility between different microstructural entities. For example, it was shown in polycrystalline ferroelectrics that residual strains are caused due to incompatibility between the electric-field-induced strains in grains with different crystallographic orientations. However, similar characterization of cause-effect in multidomain ferroelectric single crystals is lacking. In this article, we report on the development of plastic residual strains in [111]-oriented domain engineered BaTiO3 single crystals. These internal strains are created due to strain incompatibility across 90° domain walls between the differently oriented domains. The average residual strains over a large crystal volume measured by in situ neutron diffraction is comparable to previous X-ray measurements of localized strains near domain boundaries, but are an order of magnitude lower than electric-field-induced residual strains in polycrystalline ferroelectrics. PMID:23226595

Pramanick, A.; Jones, J. L.; Tutuncu, G.; Ghosh, D.; Stoica, A. D.; An, K.

2012-01-01

359

Strength anomaly in B2 FeAl single crystals  

SciTech Connect

Strength and deformation microstructure of B2 Fe-39 and 48%Al single crystals (composition given in atomic percent), which were fully annealed to remove frozen-in vacancies, have been investigated at temperatures between room temperature and 1073K. The hardness of as-homogenized Fe-48Al is higher than that of as-homogenized Fe-39Al while after additional annealing at 698K the hardness of Fe-48Al becomes lower than that of Fe-39Al. Fe-39Al single crystals slowly cooled after homogenizing at a high temperature were deformed in compression as a function of temperature and crystal orientation. A peak of yield strength appears around 0.5T{sub m} (T{sub m} = melting temperature). The orientation dependence of the critical resolved shear stress does not obey Schmid`s law even at room temperature and is quite different from that of b.c.c. metals and B2 intermetallics at low temperatures. At the peak temperature slip transition from <111>-type to <001>-type is found to occur macroscopically and microscopically, while it is observed in TEM that some of the [111] dislocations decompose into [101] and [010] on the (1096I) plane below the peak temperature. The physical sources for the positive temperature dependence of yield stress of B2 FeAl are discussed based on the obtained results.

Yoshimi, K.; Hanada, S.; Yoo, M.H. [Oak Ridge National Lab., TN (United States); Matsumoto, N. [Tohoku Univ. (Japan). Graduate School

1994-12-31

360

Electrical conduction and polarization of calcite single crystals  

NASA Astrophysics Data System (ADS)

The electrical conductivity and polarization properties of calcite single crystals with three orientations, namely, a (00.1) plane perpendicular to the crystallographic c axis (10.0) plane parallel to the crystallographic c axis, and a (10.4) cleavage plane, were studied by both complex impedance and thermally stimulated depolarization current (TSDC) measurements. Conductivities for (00.1)-, (10.0)-, and (10.4)-oriented single calcite crystals at 400-600 °C were 1.16 × 10-7 - 1.05 × 10-5, 7.40 × 10-8 - 4.27 × 10-6, and 4.27 × 10-7 - 2.86 × 10-5 ?-1 m-1, respectively, and the activation energies for conduction were 112, 103, and 101 kJ mol-1, respectively. The TSDC spectra verified the electrical polarizability of calcite crystals. The activation energy for depolarization, estimated from TSDC spectra, of the (00.1)-, (10.0)-, and (10.4)-oriented calcite substrates were 112, 119, and 114 kJ mol-1, respectively. Considering the correlation between the processes of conduction and electric polarization, we proposed the mechanisms of conduction and polarization in calcite on the assumption of oxide ion transport.

Wada, Norio; Horiuchi, Naohiro; Wang, Wei; Hiyama, Tetsuo; Nakamura, Miho; Nagai, Akiko; Yamashita, Kimihiro

2012-10-01

361

Initial testing of a Compact Crystal Positioning System for the TOPAZ Single-Crystal Diffractometer at the Spallation Neutron Source  

Microsoft Academic Search

A precise, versatile, and automated method of orienting a sub-millimeter crystal in a focused neutron beam is required for efficient operation of the TOPAZ Single Crystal Diffractometer at the Spallation Neutron Source at Oak Ridge National Laboratory. To fulfill this need, a Compact Crystal Positioning System (CCPS) has been developed in collaboration with Square One Systems Design in Jackson, Wyoming.

Matthew Frost; Christina Hoffmann; Jack Thomison; Mark Overbay; Michael Austin; Peter Carman; Robert Viola; Echo Miller; Lisa Mosier

2010-01-01

362

Initial testing of a Compact Crystal Positioning System for the TOPAZ Single-Crystal Diffractometer at the Spallation Neutron Source  

Microsoft Academic Search

A precise, versatile, and automated method of orienting a sub-millimeter crystal in a focused neutron beam is required for e cient operation of the TOPAZ Single Crystal Di ractometer at the Spallation Neutron Source at Oak Ridge National Laboratory. To ful ll this need, a Compact Crystal Positioning System (CCPS) has been developed in collaboration with Square One Systems Design

Matthew J Frost; Michael D Austin; Robert Viola; Jack Thomison; Peter Carmen; Christina Hoffmann; Echo M Miller; Lisa B Mosier; Mark A Overbay

2009-01-01

363

Electronic properties of graphene-single crystal diamond heterostructures  

SciTech Connect

Single crystal diamond has been used as a substrate to support single layer graphene grown by chemical vapor deposition methods. It is possible to chemically functionalise the diamond surface, and in the present case H-, F-, O-, and N-group have been purposefully added prior to graphene deposition. The electronic properties of the resultant heterostructures vary strongly; a p-type layer with good mobility and a band gap of ?0.7?eV is created when H-terminated diamond layers are used, whilst a layer with more metallic-like character (high carrier density and low carrier mobility) arises when N(O)-terminations are introduced. Since it is relatively easy to pattern these functional groups on the diamond surface, this suggests that this approach may offer an exciting route to 2D device structures on single layer graphene sheets.

Zhao, Fang; Thuong Nguyen, Thuong; Golsharifi, Mohammad; Amakubo, Suguru; Jackman, Richard B., E-mail: r.jackman@ucl.ac.uk [London Centre for Nanotechnology and Department of Electronic and Electrical Engineering, University College London, 17-19 Gordon Street, London WC1H 0AH (United Kingdom); Loh, K. P. [Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore 117543 (Singapore)

2013-08-07

364

Single crystal growth of the spinel-type LiMn 2O 4  

Microsoft Academic Search

Single crystals of the spinel-type LiMn2O4 have been successfully grown by a solvent evaporation flux method at 1173K. The maximum size of the octahedral-shaped single crystal is 0.09×0.09×0.09mm3 along the octahedral edges. The single-crystal X-ray diffraction study confirmed the cubic Fd3?m space group and the lattice parameter of a=8.2483(6)A? of the as-grown single crystal at 297K. The preliminary single-crystal low

Junji Akimoto; Yasuhiko Takahashi; Yoshito Gotoh; Susumu Mizuta

2001-01-01

365

Crystal structures of carbonates up to Mbar pressures determined by single crystal synchrotron radiation diffraction  

NASA Astrophysics Data System (ADS)

The recent improvements at synchrotron beamlines, currently allow single crystal diffraction experiments at extreme pressures and temperatures [1,2] on very small single crystal domains. We successfully applied such technique to determine the crystal structure adopted by carbonates at mantle pressures. The knowledge of carbon-bearing phases is in fact fundamental for any quantitative modelling of global carbon cycle. The major technical difficulty arises after first order transitions or decomposition reactions, since original crystal (apx. 10x10x5 ?m3) is transformed in much smaller crystalline domains often with random orientation. The use of 3D reciprocal space visualization software and the improved resolution of new generation flat panel detectors, however, allow both identification and integration of each single crystal domain, with suitable accuracy for ab-initio structure solution, performed with direct and charge-flipping methods and successive structure refinements. The results obtained on carbonates, indicate two major crystal-chemistry trends established at high pressures. The CO32- units, planar and parallel in ambient pressure calcite and dolomite structures, becomes non parallel in calcite- and dolomite-II and III phases, allowing more flexibility in the structures with possibility to accommodate strain arising from different cation sizes (Ca and Mg in particular). Dolomite-III is therefore also observed to be thermodynamically stable at lower mantle pressures and temperatures, differently from dolomite, which undergoes decomposition into pure end-members in upper mantle. At higher pressure, towards Mbar (lowermost mantle and D'' region) in agreement with theoretical calculations [3,4] and other experimental results [5], carbon coordination transform into 4-fold CO4 units, with different polymerisation in the structure depending on carbonate composition. The second important crystal chemistry feature detected is related to Fe2+ in Fe-bearing magnesite, which spontaneously oxidises at HP/HT, forming Fe3+ carbonates, Fe3+ oxides and reduced carbon (diamonds). Single crystal diffraction approach allowed full structure determination of these phases, yielding to the discovery of few unpredicted structures, such as Mg2Fe2C4O13 and Fe13O19, which can be well reproduced in different experiments. Mg2Fe2C4O13 carbonate present truncated chain C4O13 groups, and Fe13O19 oxide, whose stoichiometry is intermediate between magnetite and hematite, is a one-layer structure, with features encountered in superconducting materials. The results fully support the ideas of unexpected complexities in the mineralogy of the lowermost mantle, and single crystal technique, once properly optimized in ad-hoc synchrotron beamlines, is fundamental for extracting accurate structural information, otherwise rarely accessible with other experimental techniques. References: [1] Merlini M., Hanfland M. (2013). Single crystal diffraction at Mbar conditions by synchrotron radiation. High Pressure Research, in press. [2] Dubrovinsky et al., (2010). High Pressure Research, 30, 620-633. [3] Arapan et al. (1997). Phys. Rev. Lett., 98, 268501. [4] Oganov et al. (2008) EPSL, 273, 38-47. [5] Boulard et al. (2011) PNAS, 108, 5184-5187.

Merlini, M.

2013-12-01

366

Properties of ZnO single quantum wells in ZnMgO nanocolumns grown on Si (1 1 1)  

NASA Astrophysics Data System (ADS)

In this paper, we report a method of growing of the catalyst-free self-organized ZnMgO nanocolumns with single quantum well on Si (1 1 1) substrates by plasma-assisted molecular beam epitaxy technique (PA-MBE). The structures were grown without buffer layers. Optical properties of the ZnMgO/ZnO/ZnMgO quantum wells were studied by photo (PL)- and cathodoluminescence (CL) spectroscopy. A detailed analysis of the optical properties has been carried out, including quantum confinement effect and temperature dependence of excitonic emission. The structures reveal intense near band edge emission in PL as well as in CL. Blue shift of excitonic emission from the wells in comparison to bulk ZnO due to the quantum confinement effect is observed. Cross-sectional SEM-CL mapping shows that the ZnO/ZnMgO single quantum wells with different well widths are located in ZnMgO nanocolumns. The crystalline quality of the heterostructure was characterized by X-ray diffraction (XRD). No phase separation in ZnO/ZnMgO quantum structures was found.

Pietrzyk, M. A.; Stachowicz, M.; Wierzbicka, A.; Reszka, A.; Przezdziecka, E.; Kozanecki, A.

2015-04-01

367

Polarised IR-microscope spectra of guanidinium hydrogensulphate single crystal.  

PubMed

Polarised IR-microscope spectra of C(NH(2))(3)*HSO(4) small single crystal samples were measured at room temperature. The spectra are discussed on the basis of oriented gas model approximation and group theory. The stretching nuOH vibration of the hydrogen bond with the Ocdots, three dots, centeredO distance of 2.603A gives characteristic broad AB-type absorption in the IR spectra. The changes of intensity of the AB bands in function of polariser angle are described. Detailed assignments for bands derived from stretching and bending modes of sulphate anions and guanidinium cations were performed. The observed intensities of these bands in polarised infrared spectra were correlated with theoretical calculation of directional cosines of selected transition dipole moments for investigated crystal. The vibrational studies seem to be helpful in understanding of physical and chemical properties of described compound and also in design of new complexes with exactly defined behaviors. PMID:16458584

Drozd, M; Baran, J

2006-07-01

368

Crystal oscillators using negative voltage gain, single pole response amplifiers  

NASA Technical Reports Server (NTRS)

A simple and inexpensive crystal oscillator is provided which employs negative voltage gain, single pole response amplifiers. The amplifiers may include such configurations as gate inverters, operational amplifiers and conventional bipolar transistor amplifiers, all of which operate at a frequency which is on the roll-off portion of their gain versus frequency curve. Several amplifier feedback circuit variations are employed to set desired bias levels and to allow the oscillator to operate at the crystal's fundamental frequency or at an overtone of the fundamental frequency. The oscillator is made less expensive than comparable oscillators by employing relatively low frequency amplifiers and operating them at roll-off, at frequencies beyond which they are customarily used. Simplicity is provided because operation at roll-off eliminates components ordinarily required in similar circuits to provide sufficient phase-shift in the feedback circuitry for oscillation to occur.

Kleinberg, Leonard L. (Inventor)

1989-01-01

369

Capillarity creates single-crystal calcite nanowires from amorphous calcium carbonate.  

PubMed

Single-crystal calcite nanowires are formed by crystallization of morphologically equivalent amorphous calcium carbonate (ACC) particles within the pores of track etch membranes. The polyaspartic acid stabilized ACC is drawn into the membrane pores by capillary action, and the single-crystal nature of the nanowires is attributed to the limited contact of the intramembrane ACC particle with the bulk solution. The reaction environment then supports transformation to a single-crystal product. PMID:22069168

Kim, Yi-Yeoun; Hetherington, Nicola B J; Noel, Elizabeth H; Kröger, Roland; Charnock, John M; Christenson, Hugo K; Meldrum, Fiona C

2011-12-23

370

Single crystal growth and characterization of binary stoichiometric and Al-rich Ni 3Al  

Microsoft Academic Search

Binary stoichiometric Ni3Al (Ni–25at% Al) single crystals and Al-rich single-crystal-like (Ni–26at% Al, Ni–27at% Al) alloys that do not contain any ternary additions have been successfully grown for the first time, by using the floating zone method. The quality of the crystals was examined by the Laue X-ray back-reflection method and optical microscopy. The stoichiometric single crystals had good crystallinity. The

D. Golberg; M Demura; T Hirano

1998-01-01

371

Effects of Nitrogen on Crystal Growth of Sputter-Deposited ZnO Films for Transparent Conducting Oxide  

NASA Astrophysics Data System (ADS)

We have studied the effects of the N2 gas flow rate on the surface morphology of ZnO films deposited by the sputtering of a ZnO target using Ar/N2. Height-height correlation function (HHCF) analysis indicates that introducing a small amount of N2 (<5 sccm) to the sputtering atmosphere enhances adatom migration, leading to a larger grain size in the ZnO films associated with an increase in the lateral correlation length. The HHCF analysis also reveals that films deposited with and without N2 exhibit a self-affine fractal surface structure. We demonstrate that utilizing such ZnO films deposited using Ar/N2 as buffer layers, the crystallinity of ZnO:Al (AZO) films on the buffer layers can be greatly improved. The electrical resistivity of 100-nm-thick AZO films decreases from 1.8×10-3 to 4.0×10-4 ?.cm by utilizing a ZnO buffer layers prepared at N2 flow rate of 5 sccm.

Suhariadi, Iping; Oshikawa, Kouichiro; Kuwahara, Kazunari; Matsushima, Kouichi; Yamashita, Daisuke; Uchida, Giichiro; Koga, Kazunari; Shiratani, Masaharu; Itagaki, Naho

2013-11-01

372

Spontaneous phase transformation and exfoliation of rectangular single-crystal zinc hydroxy dodecylsulfate nanomembranes.  

PubMed

Free-standing two-dimensional (2D) nanostructures, exemplified by graphene and semiconductor nanomembranes, exhibit exotic electrical and mechanical properties and have great potential in electronic applications where devices need to be flexible or conformal to nonplanar surfaces. Based on our previous development of a substrate-free synthesis of large-area, free-standing zinc hydroxy dodecylsulfate (ZHDS) hexagonal nanomembranes, herein, we report a spontaneous phase transformation of ZHDS nanomembranes under extended reaction time. The hexagonal ZHDS sheets transformed into rectangular single crystal nanomembranes with sizes of hundreds of micrometers. They contain long-range-ordered zinc vacancies that can be fitted into an orthorhombic superlattice. A surplus of dodecylsulfate ions and a deficit of Zn(2+) diffusion near the water surface are believed to be the factors that drive the phase transformation. The phase transformation starts with the formation of zinc vacancies at the topmost layer of the hexagonal hillock, and propagates along the spiral growth path of the initial hexagonal sheets, which bears a great resemblance to the classic "periodic slip process". Mechanical property characterization of ZHDS nanomembranes by nanoindentation shows they behave much like structural polymers mechanically due to the incorporation of surfactant molecules. We also developed a one-step exfoliation and dehydration method that converts ZHDS nanomembranes to ZnO nanosheets using n-butylamine. This work provides a further understanding of the growth and stability of ZnO-based nanomembranes, as well as advisory insight for the further development on solution-based synthesis of free-standing, single-crystalline 2D nanostructures. PMID:23730895

Wang, Fei; Jakes, Joseph E; Geng, Dalong; Wang, Xudong

2013-07-23

373

Analysis of synthetic diamond single crystals by X-ray topography and double-crystal diffractometry  

SciTech Connect

Structural features of diamond single crystals synthesized under high pressure and homoepitaxial films grown by chemical vapor deposition (CVD) have been analyzed by double-crystal X-ray diffractometry and topography. The conditions of a diffraction analysis of diamond crystals using Ge monochromators have been optimized. The main structural defects (dislocations, stacking faults, growth striations, second-phase inclusions, etc.) formed during crystal growth have been revealed. The nitrogen concentration in high-pressure/high-temperature (HPHT) diamond substrates is estimated based on X-ray diffraction data. The formation of dislocation bundles at the film-substrate interface in the epitaxial structures has been revealed by plane-wave topography; these dislocations are likely due to the relaxation of elastic macroscopic stresses caused by the lattice mismatch between the substrate and film. The critical thicknesses of plastic relaxation onset in CVD diamond films are calculated. The experimental techniques for studying the real diamond structure in optimizing crystal-growth technology are proven to be highly efficient.

Prokhorov, I. A., E-mail: igor.prokhorov@mail.ru [Russian Academy of Sciences, Research Center “Space Materials Science”, Shubnikov Institute of Crystallography, Kaluga Branch (Russian Federation); Ralchenko, V. G.; Bolshakov, A. P.; Polskiy, A. V.; Vlasov, A. V. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation); Subbotin, I. A.; Podurets, K. M.; Pashaev, E. M.; Sozontov, E. A. [National Research Centre “Kurchatov Institute” (Russian Federation)

2013-12-15

374

Field emission properties of single crystal chromium disilicide nanowires  

SciTech Connect

The composition, crystal structure, and field emission properties of high-crystallinity chromium disilicide (CrSi{sub 2}) nanowires synthesized by a vapor deposition method have been studied. High resolution transmission electron microscopy, energy dispersive spectroscopy, and selected area electron diffraction studies confirm the single-crystalline structure and composition of the CrSi{sub 2} nanowires. Field emission measurements show that an emission current density of 0.1 {mu}A/cm{sup 2} was obtained at a turn-on electric field intensity of 2.80 V/{mu}m. The maximum emission current measured was 1.86 mA/cm{sup 2} at 3.6 V/{mu}m. The relation between the emission current density and the electric field obtained follows the Fowler-Nordheim equation, with an enhancement coefficient of 1140. The electrical conductivity of single nanowires was measured by using four-point-probe specialized microdevices at different temperatures, and the calculated values are close to those reported in previous studies for highly conductive single crystal bulk CrSi{sub 2}. The thermal tolerance of the nanowires was studied up to a temperature of 1100 Degree-Sign C. The stability of the field emission current, the I-E values, their thermal tolerance, and high electrical conductivity make CrSi{sub 2} nanowires a promising material for field emission applications.

Valentin, L. A.; Carpena-Nunez, J.; Yang, D.; Fonseca, L. F. [Department of Physics, University of Puerto Rico, Rio Piedras Campus, P.O. Box 70377, San Juan, 00931 (Puerto Rico)

2013-01-07

375

Magnetic heat capacity in lanthanum manganite single crystals  

SciTech Connect

The heat capacity of single crystal La{sub 0.7}D{sub 0.3}MnO{sub 3}, where D=Ca, Sr, has been measured through the Curie point in fields up to 70 kOe. The magnetic contribution of the Ca sample exhibits a sharp heat capacity peak at T{sub C}(approx =)218 K in zero field. The peak broadens and decreases in height with increasing field but, unlike an ordinary ferromagnet, the peak shifts substantially in temperature. As a consequence, the heat capacity data cannot be collapsed into a single scaling function. These features indicate that the transition is not an ordinary second-order ferromagnetic transition. Preliminary heat capacity data from the Sr-doped single crystal, with T{sub C}{approx_equal}360 K, do not exhibit the same shift in peak position with applied field. We attribute the difference in behavior between Ca- and Sr-doped samples to a change in the nature of the phase transition as T{sub C} lowers. (c) 2000 American Institute of Physics.

Lin, P. [Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801 (United States)] [Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801 (United States); Chun, S. H. [Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801 (United States)] [Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801 (United States); Salamon, M. B. [Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801 (United States)] [Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801 (United States); Tomioka, Y. [Joint Research Center for Atom Technology, 1-1-4 Higashi, Tsukuba 305-0046, (Japan)] [Joint Research Center for Atom Technology, 1-1-4 Higashi, Tsukuba 305-0046, (Japan); Tokura, Y. [Joint Research Center for Atom Technology, 1-1-4 Higashi, Tsukuba 305-0046, (Japan)] [Joint Research Center for Atom Technology, 1-1-4 Higashi, Tsukuba 305-0046, (Japan)

2000-05-01

376

2-Aminoethanol-mediated wet chemical synthesis of ZnO nanostructures  

NASA Astrophysics Data System (ADS)

The synthesis of ZnO nanostructures via co-precipitation of Zn(NO3)2·2H2O in 2-aminoethanol under different reaction conditions is presented. The effect of temperature and time on crystal structure, size, morphology, and optical properties of ZnO nanopowders is studied. XRD analyses demonstrate that single crystalline wurtzite ZnO nanostructures are instantaneously formed at higher temperature, or at low temperature with growth times equal to 2 h. However, the mean crystallite size increases as a function of reaction temperature and growth time. XRD and SEM results reveal that ZnO nuclei grow along favored crystallographic planes [wurtzite (101)] in 2-aminoethanol to form single crystalline nanorods. The optical band-gap energies of ZnO crystallites measured from their UV absorption spectra increase from 3.31 to 3.52 eV with decreasing particle size. ZnO nanopowders also exhibit good photoluminescent characteristics with strong UV and weak visible (violet, blue) light emissions corresponding to surface defects and oxygen vacancies in ZnO products.

Naz, Tehmina; Afzal, Adeel; Siddiqi, Humaira M.; Akhtar, Javeed; Habib, Amir; Banski, Mateusz; Podhorodecki, Artur

2015-04-01

377

2-Aminoethanol-mediated wet chemical synthesis of ZnO nanostructures  

NASA Astrophysics Data System (ADS)

The synthesis of ZnO nanostructures via co-precipitation of Zn(NO3)2·2H2O in 2-aminoethanol under different reaction conditions is presented. The effect of temperature and time on crystal structure, size, morphology, and optical properties of ZnO nanopowders is studied. XRD analyses demonstrate that single crystalline wurtzite ZnO nanostructures are instantaneously formed at higher temperature, or at low temperature with growth times equal to 2 h. However, the mean crystallite size increases as a function of reaction temperature and growth time. XRD and SEM results reveal that ZnO nuclei grow along favored crystallographic planes [wurtzite (101)] in 2-aminoethanol to form single crystalline nanorods. The optical band-gap energies of ZnO crystallites measured from their UV absorption spectra increase from 3.31 to 3.52 eV with decreasing particle size. ZnO nanopowders also exhibit good photoluminescent characteristics with strong UV and weak visible (violet, blue) light emissions corresponding to surface defects and oxygen vacancies in ZnO products.

Naz, Tehmina; Afzal, Adeel; Siddiqi, Humaira M.; Akhtar, Javeed; Habib, Amir; Banski, Mateusz; Podhorodecki, Artur

2014-07-01

378

Experiment MA-028 crystal growth. [low gravity manufacturing of single crystals from Apollo/Soyuz Test Project  

NASA Technical Reports Server (NTRS)

A crystal growth experiment is reported on orbital space flights. The experiment was performed during the Apollo-Soyuz Test Project. The Crystal Growth Experiment assessed a novel process for growing single crystals of insoluble substances by allowing two or more reactant solutions to diffuse toward each other through a region of pure solvent in zero gravity. The experiment was entirely successful and yielded crystals of about the expected size, quality, and number.

Lind, D. M.

1976-01-01

379

Isomeric ionic lithium isonicotinate three-dimensional networks and single-crystal-to-single-crystal rearrangements generating microporous materials.  

PubMed

Reaction between LiOH and isonicotinic acid (inicH) in the appropriate solvent or mixture of solvents affords a family of variously solvated forms of a simple ionic lithium salt, viz., Li(+)inic(-)·S (where S = 0.5 morpholine, 0.5 dioxane, 0.25 n-hexanol, 0.5 N-methylpyrrolidinone, 0.5 N,N-dimethylformamide, 0.5 n-propanol, 0.5 cyclohexanol, 0.5 pyridine, 0.5 t-butanol, 0.5 ethanol, and 0.5 methanol). Three-dimensional Li(+)inic(-) frameworks containing solvent-filled channels are present in all of these except for the MeOH and EtOH solvates. The nondirectional character of the electrostatic interactions between the Li(+) and inic(-) ions bestows an element of "plasticity" upon the framework, manifested in the observation of no less than five different framework structures within the family. Unusual single-crystal-to-single-crystal transformations accompany desolvation of Li(+)inic(-)·S in which the Li(+)inic(-) framework undergoes a major rearrangement (from a structure containing "8484 chains" to one with "6666 chains"). The "before and after" structures are strongly suggestive of the mechanism and the driving force for these solid state framework rearrangements: processes which further demonstrate the "plasticity" of the ionic Li(inic) framework. A solid-state mechanism for these desolvation processes that accounts very satisfactorily for the formation of the channels and for the diverse geometrical/topological aspects of the transformation is proposed. The reverse process allows the regeneration of the solvated 8484 form. When the 6666 Li(+)inic(-) form is immersed in carbon disulfide, a single-crystal-to-single-crystal transformation occurs to generate Li(+)inic(-)·0.25CS2. The hydrate, Li(+)inic(-)·2H2O which consists of discrete Li(inic)·H2O chains obtained by recrystallizing the salt from water, can also be obtained by hydration of the 6666 form. A dense 3D network with the formula, Li(inic) can be obtained in a reversible process by the removal of the water from the hydrated form and also by crystallization from a t-amyl alcohol solution. PMID:24811943

Abrahams, Brendan F; Dharma, A David; Grannas, Martin J; Hudson, Timothy A; Maynard-Casely, Helen E; Oliver, Graham R; Robson, Richard; White, Keith F

2014-05-19

380

Polarity Effects of Substrate Surface in Epitaxial ZnO Film Growth  

NASA Technical Reports Server (NTRS)

Epitaxial ZnO films were grown on the two polar surfaces (0-face and Zn-face) of (0001) ZnO single crystal substrates using off-axis magnetron sputtering deposition. As a comparison, films are also deposited on the (000 I) Al203 substrates. It is found that the two polar surfaces have different photoluminescence (PL) spectrum, surface structure and morphology, which are strongly inference the epitaxial film growth. The morphology and structure of epitaxial films on the ZnO substrates are different from the film on the Al203 substrates. An interesting result shows that high temperature annealing of ZnO single crystals will improve the surface structure on the O-face surface rather than the opposite Surface. The measurements of PL, low-angle incident x-ray diffraction, and atomic force microscopy of ZnO films indicate that the O-terminated surface is better for ZnO epitaxial film growth using reactive sputtering deposition.

Zhu, Shen; Su, C.-H.; Lehoczky, S. L.; Harris, M. T.; Callahan, M. J.; George, M. A.; McCarty, P.

1999-01-01

381

Shock response of He bubbles in single crystal Cu  

NASA Astrophysics Data System (ADS)

With large-scale molecular dynamics simulations, we investigate shock response of He nanobubbles in single crystal Cu. For sufficient bubble size or internal pressure, a prismatic dislocation loop may form around a bubble in unshocked Cu. The internal He pressure helps to stabilize the bubble against plastic deformation. However, the prismatic dislocation loops may partially heal but facilitate nucleation of new shear and prismatic dislocation loops. For strong shocks, the internal pressure also impedes internal jetting, while a bubble assists local melting; a high speed jet breaks a He bubble into pieces dispersed among Cu. Near-surface He bubbles may burst and form high velocity ejecta containing atoms and small fragments, while the ejecta velocities do not follow the three-dimensional Maxwell-Boltzmann distributions expected for thermal equilibrium. The biggest fragment size deceases with increasing shock strength. With a decrease in ligament thickness or an increase in He bubble size, the critical shock strength required for bubble bursting decreases, while the velocity range, space extension and average velocity component along the shock direction, increase. Small bubbles are more efficient in mass ejecting. Compared to voids and perfect single crystal Cu, He bubbles have pronounced effects on shock response including bubble/void collapse, Hugoniot elastic limit (HEL), deformation mechanisms, and surface jetting. HEL is the highest for perfect single crystal Cu with the same orientations, followed by He bubbles without pre-existing prismatic dislocation loops, and then voids. Complete void collapse and shear dislocations occur for embedded voids, as opposed to partial collapse, and shear and possibly prismatic dislocations for He bubbles. He bubbles lower the threshhold shock strength for ejecta formation, and increase ejecta velocity and ejected mass.

Li, B.; Wang, L.; E, J. C.; Ma, H. H.; Luo, S. N.

2014-12-01

382

Synthesis of Au-decorated V2O5@ZnO heteronanostructures and enhanced plasmonic photocatalytic activity.  

PubMed

A ternary plasmonic photocatalyst consisting of Au-decorated V2O5@ZnO heteronanorods was successfully fabricated by an innovative four-step process: thermal evaporation of ZnO powders, CVD of intermediate on ZnO, solution deposition of Au NPs, and final thermal oxidization. SEM, TEM, EDX, XPS, and XRD analyses revealed that the interior cores and exterior shells of the as-prepared heteronanorods were single-crystal wurtzite-type ZnO and polycrystalline orthorhombic V2O5, respectively, with a large quantity of Au NPs inlaid in the V2O5 shell. The optical properties of the ternary photocatalyst were investigated in detail and compared with those of bare ZnO and V2O5@ZnO. UV-vis absorption spectra of ZnO, V2O5@ZnO, and Au-decorated V2O5@ZnO showed gradually enhanced absorption in the visible region. In addition, gradually decreased emission intensity was also observed in the photoluminescence (PL) spectra, revealing enhanced charge separation efficiency. Because of these excellent qualities, the photocatalytic behavior of the ternary photocatalyst was studied in the photodegradation of methylene blue under UV-vis irradiation, which showed an enhanced photodegradation rate nearly 7 times higher than that of bare ZnO and nearly 3 times higher than that of V2O5@ZnO, mainly owing to the enlarged light absorption region, the effective electron-hole separation at the V2O5-ZnO and V2O5-Au interfaces, and strong localization of plasmonic near-field effects. PMID:25140838

Yin, Haihong; Yu, Ke; Song, Changqing; Huang, Rong; Zhu, Ziqiang

2014-09-10

383

Upconverted fluorescence in Nd3+-doped barium chloride single crystals  

NASA Astrophysics Data System (ADS)

Upon excitation at 796 nm, Nd3+-doped BaCl2 single crystals show several upconverted fluorescence bands in the visible spectral range, with the most intense bands at 530, 590 and 660 nm, in addition to the typical fluorescence bands in the infrared spectral range. The power dependence of the infrared fluorescence and the two-photon upconversion fluorescence intensities as well as the corresponding radiative lifetimes have been investigated. No 'saturation' of the fluorescence intensities was observed upon increasing the excitation power.

Ahrens, B; Miclea, P T; Schweizer, S

2009-03-01

384

EPR studies of gamma-irradiated taurine single crystals  

NASA Astrophysics Data System (ADS)

An EPR study of gamma-irradiated taurine [C 2H 7NO 3S] single crystal was carried out at room temperature. The EPR spectra were recorded in the three at mutually perpendicular planes. There are two magnetically distinct sites in monoclinic lattice. The principle values of g and hyperfine constants for both sites were calculated. The results have indicated the presence of 32?O -2 and 33?O -2 radicals. The hyperfine values of 33?O -2 radical were used to obtain O-S-O bond angle for both sites.

Bulut, A.; Karabulut, B.; Tapramaz, R.; Köksal, F.

2000-04-01

385

High temperature hardness of bulk single crystal GaN  

SciTech Connect

The hardness of single crystal GaN (gallium nitride) at elevated temperature is measured for the first time and compared with other materials. A Vickers indentation method was used to determine the hardness of crack-free GaN samples under an applied load of 0.5 N in the temperature range 20--1,200 C. The hardness is 10.8 GPa at room temperature, which is comparable to that of Si. At elevated temperatures GaN shows higher hardness than Si and GaAs. A high mechanical stability for GaN at high temperature is deduced.

Yonenaga, I.; Hoshi, T.; Usui, A.

2000-07-01

386

Mechanical properties of ZnSe : Cr2+ single crystals  

NASA Astrophysics Data System (ADS)

The microhardness of single-crystal samples of ZnSe: Cr2+ with a chromium concentration in the range from 3.3 × 1017 to 4.0 × 1019 cm-3 has been studied. The microhardness as a function of the load on the indenter on the faces (111), (1bar 10), and (001) of the ZnSe: Cr2+ and ZnSe samples has been measured. It has been established that doping of zinc selenide with chromium leads to a decrease in the anisotropy of the mechanical properties and stabilization of the cubic sphalerite structure.

Fedorenko, O. A.; Zagoruiko, Yu. A.; Kovalenko, N. O.

2012-11-01

387

Constitutive modeling of creep of single crystal superalloys  

E-print Network

[43] on another ?rst generation single crys- tal nickel based superalloy MAR-M 247 at temperature 774 oC showed that crystals having orientations within 25o of the orientation exhibited signi?cantly longer creep lives when their orientations were... closer to the / boundary of the stereographic triangle than to the / boundary. These observations were in accordance with the results for the creep of MAR-M200 ([37, 41]), the only dif- ference being that MAR-M 247 showed best creep...

Prasad, Sharat Chand

2006-10-30

388

Photoconductivity of iodine-doped single crystals of phthalocyanine  

Microsoft Academic Search

Single crystals of metal-free phthalocyanine (H2Pc) and of copper phthalocyanine (CuPc) were grown in the presence of iodine vapour. The presence of iodine enhances the spectral\\u000a dependence of photoconductivity of H2Pc in the visible region but of CuPc in the near-IR region. The dark current is decreased but the photocurrent is increased\\u000a by one order of magnitude in iodine-doped H2Pc

Francis P Xavier; George J Goldsmith

1995-01-01

389

Channeling study of high-Tc superconducting single crystal sublattices  

Microsoft Academic Search

Backscattering of H, 4He, 3He ions, X-ray radiation and the nuclear reactions 16O(4He, 4He)16O, 18O(p, alpha)15N, 16O(3He, 4He)15O, 7Li(p, alpha)4He, etc., in combination with orientation effects have been used to investigate the structure and properties of the single crystals Nd2-xCexCuO4(T'-phase) and La2-xSrxCuO4 (T-phase). The possibility of a selective study of cation and onion sublattices, as well as oxygen O1, O2

N. A. Shakun; A. Yu. Grinchenko; A. S. Deev; V. I. Makarov; V. A. Olejnik; P. A. Svetashov; R. P. Slabospitsky; N. F. Shul'Ga

1992-01-01

390

A macroscopic model for magnetic shape-memory single crystals  

NASA Astrophysics Data System (ADS)

A rate-independent model for the quasi-static magneto-elastic evolution of a magnetic shape-memory single crystal is presented. In particular, the purely mechanical Souza-Auricchio model for shape-memory alloys is here combined with classical micro-magnetism by suitably associating magnetization and inelastic strain. By balancing the effect of conservative and dissipative actions, a nonlinear evolution PDE system of rate-independent type is obtained. We prove the existence of so-called energetic solutions to this system. Moreover, we discuss several limits for the model corresponding to parameter asymptotics by means of a rigorous ?-convergence argument.

Bessoud, Anne-Laure; Kružík, Martin; Stefanelli, Ulisse

2013-04-01

391

Polarization-dependent exciton dynamics in tetracene single crystals  

E-print Network

We conduct polarization-dependent ultrafast spectroscopy to study the dynamics of singlet fission in tetracene single crystals. The spectrotemporal species for singlet and triplet excitons in transient absorption spectra are found to be strongly dependent on probe polarization. By carefully analyzing the polarization dependence, the signals contributed by different transitions related to singlet excitons have been disentangled, which is further applied to construct the correlation between dynamics of singlet and triplet excitons. The anisotropy of exciton dynamics provides an alternative approach to tackle the long-standing challenge in understanding the mechanism of singlet fission in organic semiconductors.

Zhang, Bo; Xu, Yanqing; Wang, Rui; He, Bin; Liu, Yunlong; Zhang, Shimeng; Wang, Xiaoyong; Xiao, Min

2014-01-01

392

Polarization-dependent exciton dynamics in tetracene single crystals.  

PubMed

We conduct polarization-dependent ultrafast spectroscopy to study the dynamics of singlet fission (SF) in tetracene single crystals. The spectrotemporal species for singlet and triplet excitons in transient absorption spectra are found to be strongly dependent on probe polarization. By carefully analyzing the polarization dependence, the signals contributed by different transitions related to singlet excitons have been disentangled, which is further applied to construct the correlation between dynamics of singlet and triplet excitons. The anisotropy of exciton dynamics provides an alternative approach to tackle the long-standing challenge in understanding the mechanism of singlet fission in organic semiconductors. PMID:25554147

Zhang, Bo; Zhang, Chunfeng; Xu, Yanqing; Wang, Rui; He, Bin; Liu, Yunlong; Zhang, Shimeng; Wang, Xiaoyong; Xiao, Min

2014-12-28

393

Polarization-dependent exciton dynamics in tetracene single crystals  

NASA Astrophysics Data System (ADS)

We conduct polarization-dependent ultrafast spectroscopy to study the dynamics of singlet fission (SF) in tetracene single crystals. The spectrotemporal species for singlet and triplet excitons in transient absorption spectra are found to be strongly dependent on probe polarization. By carefully analyzing the polarization dependence, the signals contributed by different transitions related to singlet excitons have been disentangled, which is further applied to construct the correlation between dynamics of singlet and triplet excitons. The anisotropy of exciton dynamics provides an alternative approach to tackle the long-standing challenge in understanding the mechanism of singlet fission in organic semiconductors.

Zhang, Bo; Zhang, Chunfeng; Xu, Yanqing; Wang, Rui; He, Bin; Liu, Yunlong; Zhang, Shimeng; Wang, Xiaoyong; Xiao, Min

2014-12-01

394

Silica based polishing of {100} and {111} single crystal diamond  

NASA Astrophysics Data System (ADS)

Diamond is one of the hardest and most difficult to polish materials. In this paper, the polishing of {111} and {100} single crystal diamond surfaces by standard chemical mechanical polishing, as used in the silicon industry, is demonstrated. A Logitech Tribo Chemical Mechanical Polishing system with Logitech SF1 Syton and a polyurethane/polyester polishing pad was used. A reduction in roughness from 0.92 to 0.23 nm root mean square and 0.31 to 0.09 nm rms for {100} and {111} samples respectively was observed.

Thomas, Evan L. H.; Mandal, Soumen; Brousseau, Emmanuel B.; Williams, Oliver A.

2014-06-01

395

Acoustic and thermal properties of strontium pyroniobate single crystals  

NASA Astrophysics Data System (ADS)

High resolution Brillouin scattering and modulated differential scanning calorimetry (MDSC) experiments were performed to study the acoustic and thermal properties of strontium pyroniobate (Sr2Nb2O7) single crystals. The anomalous temperature dependence of the longitudinal acoustic phonon mode frequency corresponding to c22 elastic stiffness coefficient was observed in the neighbourhood of the normal-incommensurate phase transition temperature Ti (491 K). The specific heat measured by MDSC showed an anomaly around 487+/-2 K. The changes in enthalpy and entropy of the phase transition were estimated as 147 J mol-1 and 0.71 J mol-1 K-1, respectively.

Shabbir, G.; Kojima, S.

2003-04-01

396

Single-crystal elasticity of fayalite to 12 GPa  

Microsoft Academic Search

Single-crystal elastic constants of a natural Fe-rich olivine (Fe0.94Mn0.06)2SiO4 were determined by Brillouin scattering to 12.1 GPa. The aggregate bulk modulus, shear modulus, and their pressure derivatives are KS0 = 136.3 (2) GPa, G0 = 51.2 (2) GPa, (?KS\\/?P)T0 = 4.9 (1), (?G\\/?P)0 = 1.8 (1), and (?2G\\/?P2)0 = ?0.11 (1) GPa?1. The numbers in parentheses are 1? uncertainties on

Sergio Speziale; Thomas S. Duffy; Ross J. Angel

2004-01-01

397

Titanium vacancies in nonstoichiometric TiO2 single crystal  

NASA Astrophysics Data System (ADS)

The semiconducting properties of single-crystal TiO2 and their changes during prolonged oxidation at elevated temperatures and under controlled oxygen activity were monitored using measurements of electrical conductivity and thermo-electric power. Two kinetic regimes were revealed: Regime I - rapid oxidation, associated with the transport of oxygen vacancies, and Regime II - prolonged oxidation, which corresponds to the transport of titanium vacancies. The present data represent the first documented evidence for the formation and transport of titanium vacancies in TiO2. This finding allows the processing of p-type TiO2 without the incorporation of aliovalent foreign ions.

Nowotny, M. K.; Bak, T.; Nowotny, J.; Sorrell, C. C.

2005-09-01

398

Deformation behavior of PZN-6%PT single crystal during nanoindentation  

Microsoft Academic Search

The deformation behavior of [001]- and [011]-cut single crystal solid solution of Pb(Zn1\\/3Nb2\\/3)O3–6% PbTiO3 (PZN–6%PT) in both unpoled and poled states has been investigated by nanoindentation. Nanoindentation experiments reveal that material pile-up and local damage around the indentation impressions are observed at ultra-low loads. These pile-ups and local damage cause a pop-in event (i.e. a sudden increase in displacement at

M. F. Wong; K. Zeng

2008-01-01

399

Single crystal NMR studies of high temperature superconductors  

SciTech Connect

The authors report Cu NMR studies in the normal state of a single crystal of the T/sub c/ = 90 K superconductor YBa/sub 2/Cu/sub 3/O/sub 7/minus/delta/. The authors have measured the magnetic shift tensor, the electric field gradient tensor, the nuclear spin-lattice relaxation rate tensor, and the time dependence and functional form of the transverse decay. From these data they obtain information about the charge state and magnetic state of the Cu atoms, and the existence and size of the electronic exchange coupling between spins of adjacent Cu atoms. 18 refs., 3 figs., 2 tabs.

Pennington, C.H.; Durand, D.J.; Zax, D.B.; Slichter, C.P.; Rice, J.P.; Bukowski, E.D.; Ginsberg, D.M.

1989-01-01

400

Annealing of deformed olivine single-crystals under 'dry' conditions  

NASA Astrophysics Data System (ADS)

Knowledge of rheological properties of Earth's materials is essential to understand geological processes. Open questions are the water content and crystallographic orientation dependences of dislocation creep rate, because the dominant slip system changes with increasing water content, which suggest different dislocations have different water content dependence. This project focuses on olivine, which is the most abundant mineral of the upper mantle. It is also considered to be the weakest phase and hence should control the rheology of the upper mantle. Several slip systems were reported for olivine, which are [100](010), [001](010), [001](100) and [100](001), each of which appear under different water content and stress conditions [1]. For this purpose we started to obtain data for 'dry' conditions, providing basic knowledge to understand the effect of water. Variation in dislocation creep rate according to change in physical conditions can be estimated by dislocation recovery experiments [2]. In this technique, deformed crystals are annealed, in which the dislocation density is expected to decrease due to coalescence of two dislocations. Dislocation densities are measured before and after the annealing. Dislocation mobility, which should be directly proportional to the dislocation creep rate, is estimated based on the change in dislocation density and duration of annealing. This technique has significant advantages partly because informations of strain rate and deviatoric stress, which are difficult to measure, are unnecessary, and partly because dislocation annealing is conducted under quasi-hydrostatic conditions, which allows wide ranges of P and T conditions. The first step of the experiments is to deform a single crystal of olivine. For this purpose, we developed an assembly, which deforms a single crystal in simple-shear geometry and prevent breakage, sub-grain formation and recrystallization of the crystal. Olivine single-crystals were placed in the high-pressure assembly so that a particular slip system is activated. The assemblies were compressed to 3 GPa. The shear deformation was conducted at 1600 K. EBSD measurements indicate that the recovered crystals are single crystals and sub-grain formation did not occur in most cases. The second step is to anneal the samples under the same P-T conditions as those of the deformation experiments. Annealing experiments are also performed at ambient pressures at 1600 K. Dislocation density was measured by means of the oxidation decoration technique [3]. The samples were firstly polished and then oxidized at 1200 K for 50 min. The dislocations are preferably oxidized, so that presence of dislocation can be observed using SEM. First Results indicate that the dislocation density decreased by annealing by 1/4 with an annealing period of 10 h for dislocations with b = [001]. References [1] H. Jung and S. I. Karato. Water-induced fabric transitions in olivine. Science, 293(5534):1460-1463, 2001. [2] S. I. Karato, D. C. Rubie, and H. Yan. Dislocation recovery in olivine under deep upper mantle conditions: Implications for creep and diffusion. Journal of Geophysical Research, 98(B6):9761-9768, 1993. [3] D. L. Kohlstedt, C. Goetze, W. B. Durham, and J. V. Sande. New technique for decorating dislocations in olivine. Science, 191(4231):1045-1046, March 1976.

Blaha, Stephan; Katsura, Tomoo

2013-04-01

401

CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES: Structural and Electrical Properties of Single Crystalline Ga-Doped ZnO Thin Films Grown by Molecular Beam Epitaxy  

NASA Astrophysics Data System (ADS)

High-quality Ga-doped ZnO (ZnO:Ga) single crystalline films with various Ga concentrations are grown on a-plane sapphire substrates using molecular-beam epitaxy. The site configuration of doped Ga atoms is studied by means of x-ray absorption spectroscopy. It is found that nearly all Ga can substitute into ZnO lattice as electrically active donors, a generating high density of free carriers with about one electron per Ga dopant when the Ga concentration is no more than 2%. However, further increasing the Ga doping concentration leads to a decrease of the conductivity due to partial segregation of Ga atoms to the minor phase of the spinel ZnGa2O4 or other intermediate phase. It seems that the maximum solubility of Ga in the ZnO single crystalline film is about 2 at.% and the lowest resistivity can reach 1.92 × 10-4 ?·cm at room temperature, close to the best value reported. In contrast to ZnO:Ga thin film with 1% or 2% Ga doping, the film with 4% Ga doping exhibits a metal semiconductor transition at 80 K. The scattering mechanism of conducting electrons in single crystalline ZnO:Ga thin film is discussed.

Lu, Zhong-Lin; Zou, Wen-Qin; Xu, Ming-Xiang; Zhang, Feng-Ming; Du, You-Wei

2009-11-01

402

Facile synthesis of porous single crystalline ZnO nanoplates and their application in photocatalytic reduction of Cr(VI) in the presence of phenol.  

PubMed

Porous single crystalline ZnO nanoplates were successfully synthesized through a facile and cost-effective hydrothermal process at low temperature condition, followed by annealing of the zinc carbonate hydroxide hydrate precursors. The as-prepared products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Brunauer-Emmett-Teller (BET) measurements. The porous single crystalline ZnO nanoplates are with 12nm thickness and pore ranging from 10nm to several tens of nanometers. The porous structure of the ZnO nanoplates caused large amount of surface defects which worked as photogenerated holes' shallow trappers and largely restrained the recombination of photogenerated electrons and holes, resulting in a significantly high photocatalytic activity and durability toward the photoreduction of Cr(VI) under UV irradiation. Moreover, a synergistic effect, that is, increased photocatalytic reduction of Cr(VI) and degradation of phenol, can be observed. Furthermore, the synergistic photocatalytic mechanism has also been discussed. Those results present an enlightenment to employ porous single crystalline nanomaterials to remove Cr(VI) and organic pollutants simultaneously. PMID:24922098

Jin, Zhen; Zhang, Yong-Xing; Meng, Fan-Li; Jia, Yong; Luo, Tao; Yu, Xin-Yao; Wang, Jin; Liu, Jin-Huai; Huang, Xing-Jiu

2014-07-15

403

Mobility of indium on the ZnO(0001) surface  

NASA Astrophysics Data System (ADS)

The mobility of indium on the Zn-polar (0001) surface of single crystal ZnO wafers was investigated using real-time x-ray photoelectron spectroscopy. A sudden transition in the wettability of the ZnO(0001) surface was observed at ˜520 °C, with indium migrating from the ( 000 1 ¯ ) underside of the wafer, around the non-polar ( 1 1 ¯ 00 ) and ( 11 2 ¯ 0 ) sidewalls, to form a uniform self-organized (˜20 Å) adlayer. The In adlayer was oxidized, in agreement with the first principles calculations of Northrup and Neugebauer that In2O3 precipitation can only be avoided under a combination of In-rich and Zn-rich conditions. These findings suggest that unintentional In adlayers may form during the epitaxial growth of ZnO on indium-bonded substrates.

Heinhold, R.; Reeves, R. J.; Williams, G. T.; Evans, D. A.; Allen, M. W.

2015-02-01

404

Defect studies of thin ZnO films prepared by pulsed laser deposition  

NASA Astrophysics Data System (ADS)

Thin ZnO films were grown by pulsed laser deposition on four different substrates: sapphire (0 0 0 1), MgO (1 0 0), fused silica and nanocrystalline synthetic diamond. Defect studies by slow positron implantation spectroscopy (SPIS) revealed significantly higher concentration of defects in the studied films when compared to a bulk ZnO single crystal. The concentration of defects in the films deposited on single crystal sapphire and MgO substrates is higher than in the films deposited on amorphous fused silica substrate and nanocrystalline synthetic diamond. Furthermore, the effect of deposition temperature on film quality was investigated in ZnO films deposited on synthetic diamond substrates. Defect studies performed by SPIS revealed that the concentration of defects firstly decreases with increasing deposition temperature, but at too high deposition temperatures it increases again. The lowest concentration of defects was found in the film deposited at 450° C.

Vl?ek, M.; ?ížek, J.; Procházka, I.; Novotný, M.; Bulí?, J.; Lan?ok, J.; Anwand, W.; Brauer, G.; Mosnier, J.-P.

2014-04-01

405

A simple route to vertical array of quasi-1D ZnO nanofilms on FTO surfaces: 1D-crystal growth of nanoseeds under ammonia-assisted hydrolysis process  

NASA Astrophysics Data System (ADS)

A simple method for the synthesis of ZnO nanofilms composed of vertical array of quasi-1D ZnO nanostructures (quasi-NRs) on the surface was demonstrated via a 1D crystal growth of the attached nanoseeds under a rapid hydrolysis process of zinc salts in the presence of ammonia at room temperature. In a typical procedure, by simply controlling the concentration of zinc acetate and ammonia in the reaction, a high density of vertically oriented nanorod-like morphology could be successfully obtained in a relatively short growth period (approximately 4 to 5 min) and at a room-temperature process. The average diameter and the length of the nanostructures are approximately 30 and 110 nm, respectively. The as-prepared quasi-NRs products were pure ZnO phase in nature without the presence of any zinc complexes as confirmed by the XRD characterisation. Room-temperature optical absorption spectroscopy exhibits the presence of two separate excitonic characters inferring that the as-prepared ZnO quasi-NRs are high-crystallinity properties in nature. The mechanism of growth for the ZnO quasi-NRs will be proposed. Due to their simplicity, the method should become a potential alternative for a rapid and cost-effective preparation of high-quality ZnO quasi-NRs nanofilms for use in photovoltaic or photocatalytics applications. PACS: 81.07.Bc; 81.16.-c; 81.07.Gf.

Ali Umar, Akrajas; Abd Rahman, Mohd Yusri; Taslim, Rika; Mat Salleh, Muhamad; Oyama, Munetaka

2011-10-01

406

A simple route to vertical array of quasi-1D ZnO nanofilms on FTO surfaces: 1D-crystal growth of nanoseeds under ammonia-assisted hydrolysis process  

PubMed Central

A simple method for the synthesis of ZnO nanofilms composed of vertical array of quasi-1D ZnO nanostructures (quasi-NRs) on the surface was demonstrated via a 1D crystal growth of the attached nanoseeds under a rapid hydrolysis process of zinc salts in the presence of ammonia at room temperature. In a typical procedure, by simply controlling the concentration of zinc acetate and ammonia in the reaction, a high density of vertically oriented nanorod-like morphology could be successfully obtained in a relatively short growth period (approximately 4 to 5 min) and at a room-temperature process. The average diameter and the length of the nanostructures are approximately 30 and 110 nm, respectively. The as-prepared quasi-NRs products were pure ZnO phase in nature without the presence of any zinc complexes as confirmed by the XRD characterisation. Room-temperature optical absorption spectroscopy exhibits the presence of two separate excitonic characters inferring that the as-prepared ZnO quasi-NRs are high-crystallinity properties in nature. The mechanism of growth for the ZnO quasi-NRs will be proposed. Due to their simplicity, the method should become a potential alternative for a rapid and cost-effective preparation of high-quality ZnO quasi-NRs nanofilms for use in photovoltaic or photocatalytics applications. PACS: 81.07.Bc; 81.16.-c; 81.07.Gf. PMID:22027275

2011-01-01

407

Fabrication of ZnO photonic crystals by nanosphere lithography using inductively coupled-plasma reactive ion etching with CH{sub 4}/H{sub 2}/Ar plasma on the ZnO/GaN heterojunction light emitting diodes  

SciTech Connect

This article reports fabrication of n-ZnO photonic crystal/p-GaN light emitting diode (LED) by nanosphere lithography to further booster the light efficiency. In this article, the fabrication of ZnO photonic crystals is carried out by nanosphere lithography using inductively coupled plasma reactive ion etching with CH{sub 4}/H{sub 2}/Ar plasma on the n-ZnO/p-GaN heterojunction LEDs. The CH{sub 4}/H{sub 2}/Ar mixed gas gives high etching rate of n-ZnO film, which yields a better surface morphology and results less plasma-induced damages of the n-ZnO film. Optimal ZnO lattice parameters of 200 nm and air fill factor from 0.35 to 0.65 were obtained from fitting the spectrum of n-ZnO/p-GaN LED using a MATLAB code. In this article, we will show our recent result that a ZnO photonic crystal cylinder has been fabricated using polystyrene nanosphere mask with lattice parameter of 200 nm and radius of hole around 70 nm. Surface morphology of ZnO photonic crystal was examined by scanning electron microscope.

Chen, Shr-Jia; Chang, Chun-Ming; Kao, Jiann-Shiun; Chen, Fu-Rong; Tsai, Chuen-Horng [Engineering and System Science, National Tsing Hua University, Hsinchu, 30013 Taiwan (China); Instrument Technology Research Center, National Applied Research Laboratories, Hsinchu, 300 Taiwan (China); Engineering and System Science, National Tsing Hua University, Hsinchu, 30013 Taiwan (China)

2010-07-15

408

Electrical Properties and Surface Microtopographic Studies of Tungsten Disulfide Single Crystals Grown by CVT Technique  

Microsoft Academic Search

The single crystals of tungsten disulphide (WS2) were grown by chemical vapor transport (CVT) technique, using iodine as the transporting agent. The stoichiometric composition and the crystallographic lattice parameters of the grown crystals were determined by EDAX and X?ray diffraction (XRD) techniques, respectively. The Hall effect measurement and the Seebeck coefficient variation with temperature confirmed that the single crystals were

Sunil Chaki; Ajay Agarwal

2008-01-01

409

P-137 / P. Xu P-137: Photoaligned Transflective Liquid Crystal Display with Single Cell Gap  

E-print Network

Transflective liquid crystal display (LCD) with single cell gap consisting optically compensated bend (OCBP-137 / P. Xu P-137: Photoaligned Transflective Liquid Crystal Display with Single Cell Gap using brightness and high contrast could be obtained. 1. Introduction Recently, transflective liquid crystal

410

DESIGN NOTE: Single-crystal growth by the submerged heater method  

Microsoft Academic Search

A novel method of single-crystal growth from the melt is proposed. Single crystals are grown by directional solidification in vertical bottom-seeded crucibles. The heat is supplied to the melt by an axial submerged heater located close to the growth interface. The crucible is insulated radially. The portion of the melt enclosed between the heater and the growing crystal is thermally

A. G. Ostrogorsky

1990-01-01

411

Germanium–silicon single crystal growth by the axial heat processing (AHP) technique  

Microsoft Academic Search

Bulk Germanium–Silicon single crystal alloys have been grown using a novel crystal growth technique called Axial Heat Processing (AHP). The technique includes an immersed baffle which divides melt into two regions, decreases the melt height, and distributes the heat over the entire growth interface. Two silicon doped germanium single crystals with 12 atomic percent concentration have been grown by the

Aidin Dario; Hasan Ozgen Sicim; Ercan Balikci

2011-01-01

412

Sm^Nd dating of spatially controlled domains of garnet single crystals: a new method of  

E-print Network

Sm^Nd dating of spatially controlled domains of garnet single crystals: a new method of high of the method using the core and bulk ages of garnet single crystals, according to the Sm^Nd decay system exposure of the Salinian terrane, California. We have micro-sampled the garnet crystals over specific

Ganguly, Jibamitra

413

Ultra-fast Microwave Synthesis of ZnO Nanowires and their Dynamic Response Toward Hydrogen Gas  

PubMed Central

Ultra-fast and large-quantity (grams) synthesis of one-dimensional ZnO nanowires has been carried out by a novel microwave-assisted method. High purity Zinc (Zn) metal was used as source material and placed on microwave absorber. The evaporation/oxidation process occurs under exposure to microwave in less than 100 s. Field effect scanning electron microscopy analysis reveals the formation of high aspect-ratio and high density ZnO nanowires with diameter ranging from 70 to 80 nm. Comprehensive structural analysis showed that these ZnO nanowires are single crystal in nature with excellent crystal quality. The gas sensor made of these ZnO nanowires exhibited excellent sensitivity, fast response, and good reproducibility. Furthermore, the method can be extended for the synthesis of other oxide nanowires that will be the building block of future nanoscale devices. PMID:20596440

2009-01-01

414

Piezoelectric properties of lithium modified silver niobate perovskite single crystals  

NASA Astrophysics Data System (ADS)

We report the growth and the piezoelectric properties of lead-free perovskite single crystals of Ag1-xLixNbO3. It possesses a rhombohedral structure with high ferroelectric phase transition (Tc=548K for x =0.086) and large spontaneous polarization (Ps˜40?C/cm2 for x =0.062) along the ?111?c direction of pseudocubic perovskite structure for x >0.05-0.06. High quasistatic d33˜210pC/N and low dielectric constant have lead to a very large value of piezoelectric voltage constant g33˜53.9×10-3Vm/N for the ?001?c-cut crystal of this simple perovskite. It has been shown that Li substitution might enhance the piezoelectric coefficient of the crystal. The excellent piezo-/ferroelectricity of this system are considered to be facilitated by the strong polarization nature of both Ag and Li in the perovskite structure. Our findings may stimulate further interests in the development of lead-free piezoelectrics.

Fu, Desheng; Endo, Makoto; Taniguchi, Hiroki; Taniyama, Tomoyasu; Koshihara, Shin-ya; Itoh, Mitsuru

2008-04-01

415

Pockels effect in yttrium aluminum borate single crystals  

NASA Astrophysics Data System (ADS)

Experimental measurements of linear electro-optical coefficients are reported for YAl3(BO3)4 (YAB) single crystals for the two principal tensor components xyz and yyy at the wavelength of a CW semiconducting GaAlAs laser emitting at 1040 nm. We have found the values of the Pockels coefficients to be equal to 0.21 ± 0.06 and 0.56 ± 0.08 pm/V for 123 and 222 Pockels components, respectively. Additional measurements performed for the thin-cut samples with the thickness varying within the 100 500 ?m have confirmed the values of the corresponding parameters. We have eliminated a contribution of the piezooptical coefficients as well as for other disturbing factors. We have established that the crystals with a different number of defects do not show any differences, which indicate the principal role of the borate clusters on the observed effects. The temperature changes are very low (due to a low ionic contribution), and do not exceed 5 6%, which indicates the low contribution of the electron-phonon to the Pockels effect. Because the YAB crystals possess a very large photothermal damage (more than 15 GW/cm2) and are only slightly temperature dependent. Hence, they may be proposed as promising materials for high-power laser electro-optic modulators.

Reshak, A. H.; Majchrowski, A.; Imiolek, W.

2008-10-01

416

Single-polarization single-mode photonic crystal fiber based on index-matching coupling with a single silica material  

NASA Astrophysics Data System (ADS)

We propose and analyze a novel design of single-polarization single-mode photonic crystal fiber based on index-matching coupling by using a finite-element method. The proposed fiber is designed such that there is a large differential loss between two polarizations of the fundamental mode by reducing two air holes in the cladding region which is composed of hexagonal structured air holes in pure silica. From the numerical analysis it is shown that single-polarization single-mode operation wavelength region can be tuned by adjusting the diameters of two defect air holes. In the proposed design, the spectral region over which the differential loss ratio is larger than 100 can be wider than 150 nm around the wavelength 1.55 or 1.31 ?m. Another novel design that allows simultaneous single-polarization single-mode guidance in two wavelength windows centered at 1.55 and 1.31 ?m is also proposed.

Lee, Sun-Goo; Lim, Sun Do; Lee, Kwanil; Lee, Sang Bae

2011-01-01

417

Synthesis, crystal growth, structural, thermal, optical and mechanical properties of solution grown 4-methylpyridinium 4-hydroxybenzoate single crystal.  

PubMed

Organic nonlinear optical material, 4-methylpyridinium 4-hydroxybenzoate (4MPHB) was synthesized and single crystal was grown by slow evaporation solution growth method. Single crystal and powder X-ray diffraction analyses confirm the structure and crystalline perfection of 4MPHB crystal. Infrared, Raman and NMR spectroscopy techniques were used to elucidate the functional groups present in the compound. TG-DTA analysis was carried out in nitrogen atmosphere to study the decomposition stages, endothermic and exothermic reactions. UV-visible and Photoluminescence spectra were recorded for the grown crystal to estimate the transmittance and band gap energy respectively. Linear refractive index, birefringence, and SHG efficiency of the grown crystal were studied. Laser induced surface damage threshold and mechanical properties of grown crystal were studied to assess the suitability of the grown crystals for device applications. PMID:24184578

Sudhahar, S; Krishna Kumar, M; Sornamurthy, B M; Mohan Kumar, R

2014-01-24

418

Synthesis, crystal growth, structural, thermal, optical and mechanical properties of solution grown 4-methylpyridinium 4-hydroxybenzoate single crystal  

NASA Astrophysics Data System (ADS)

Organic nonlinear optical material, 4-methylpyridinium 4-hydroxybenzoate (4MPHB) was synthesized and single crystal was grown by slow evaporation solution growth method. Single crystal and powder X-ray diffraction analyses confirm the structure and crystalline perfection of 4MPHB crystal. Infrared, Raman and NMR spectroscopy techniques were used to elucidate the functional groups present in the compound. TG-DTA analysis was carried out in nitrogen atmosphere to study the decomposition stages, endothermic and exothermic reactions. UV-visible and Photoluminescence spectra were recorded for the grown crystal to estimate the transmittance and band gap energy respectively. Linear refractive index, birefringence, and SHG efficiency of the grown crystal were studied. Laser induced surface damage threshold and mechanical properties of grown crystal were studied to assess the suitability of the grown crystals for device applications.

Sudhahar, S.; Krishna Kumar, M.; Sornamurthy, B. M.; Mohan Kumar, R.

2014-01-01

419

Joint Development of a Fourth Generation Single Crystal Superalloy  

NASA Technical Reports Server (NTRS)

A new, fourth generation, single crystal superalloy has been jointly developed by GE Aircraft Engines, Pratt & Whitney, and NASA. The focus of the effort was to develop a turbine airfoil alloy with long-term durability for use in the High Speed Civil Transport. In order to achieve adequate long-time strength improvements at moderate temperatures and retain good microstructural stability, it was necessary to make significant composition changes from 2nd and 3rd generation single crystal superalloys. These included lower chromium levels, higher cobalt and rhenium levels and the inclusion of a new alloying element, ruthenium. It was found that higher Co levels were beneficial to reducing both TCP precipitation and SRZ formation. Ruthenium caused the refractory elements to partition more strongly to the ' phase, which resulted in better overall alloy stability. The final alloy, EPM 102, had significant creep rupture and fatigue improvements over the baseline production alloys and had acceptable microstructural stability. The alloy is currently being engine tested and evaluated for advanced engine applications.

Walston, S.; Cetel, A.; MacKay, R.; OHara, K.; Duhl, D.; Dreshfield, R.

2004-01-01

420

Tribological properties of sintered polycrystalline and single crystal silicon carbide  

NASA Technical Reports Server (NTRS)

Tribological studies and X-ray photoelectron spectroscopy analyses were conducted with sintered polycrystalline and single crystal silicon carbide surfaces in sliding contact with iron at various temperatures to 1500 C in a vacuum of 30 nPa. The results indicate that there is a significant temperature influence on both the friction properties and the surface chemistry of silicon carbide. The main contaminants on the as received sintered polycrystalline silicon carbide surfaces are adsorbed carbon, oxygen, graphite, and silicon dioxide. The surface revealed a low coefficient of friction. This is due to the presence of the graphite on the surface. At temperatures of 400 to 600 C graphite and copious amount of silicon dioxide were observed on the polycrystalline silicon carbide surface in addition to silicon carbide. At 800 C, the amount of the silicon dioxide decreased rapidly and the silicon carbide type silicon and carbon peaks were at a maximum intensity in the XPS spectra. The coefficients of friction were high in the temperature range 400 to 800 C. Small amounts of carbon and oxygen contaminants were observed on the as received single crystal silicon carbide surface below 250 C. Silicon carbide type silicon and carbon peaks were seen on the silicon carbide in addition to very small amount of graphite and silicon dioxide at temperatures of 450 to 800 C.

Miyoshi, K.; Buckley, D. H.; Srinivasan, M.

1982-01-01

421

Single Crystal Si Passive Optical Components for mm-Astronomy  

NASA Astrophysics Data System (ADS)

Construction of ultrasensitive, cryogenic-focal-planes for mm-radiation detection requires simultaneous maximization of detector quantum efficiency and minimization of stray light effects, e.g., optical ``ghosting''. To achieve this task in the focal plane detector arrays of the Atacama Cosmology Telescope, integration of two technologies are envisioned; (1) an antireflective (AR) coating for reducing ghosting from the reflected component and increasing absorption at the focal plane, and (2) a backside absorber for suppressing reflections of the transmitted component. We propose a novel approach, involving single crystal Si components, to fabricate AR coatings and backside absorbers. AR coatings are made from Si dielectric honeycombs, in which their dielectric constant may be tuned via honeycomb dimension and wall thickness. Backside absorbers consist of AR Si honeycomb coated-resistors, and the resistors consist of P-implanted Si wafers. This approach enables us to circumvent the mechanical complexities arising from thermal expansion effects, because the detector array, back-short, and AR coating are fabricated out of the same material. We also extend the functionality of single crystal Si in the field of mm-radiation detection by fabricating curved, low-loss, broadband waveguides. These waveguides may enable compact structures for applications requiring variable pathlength, e.g., interferometric spectroscopy.

Brown, Ari; Chervenak, James; Chuss, David; Wollack, Edward; Henry, Ross; Moseley, S. Harvey

2006-03-01

422

Self-assembled single-crystal silicon circuits on plastic  

NASA Astrophysics Data System (ADS)

We demonstrate the use of self-assembly for the integration of freestanding micrometer-scale components, including single-crystal, silicon field-effect transistors (FETs) and diffusion resistors, onto flexible plastic substrates. Preferential self-assembly of multiple microcomponent types onto a common platform is achieved through complementary shape recognition and aided by capillary, fluidic, and gravitational forces. We outline a microfabrication process that yields single-crystal, silicon FETs in a freestanding, powder-like collection for use with self-assembly. Demonstrations of self-assembled FETs on plastic include logic inverters and measured electron mobility of 592 cm2/V-s. Finally, we extend the self-assembly process to substrates each containing 10,000 binding sites and realize 97% self-assembly yield within 25 min for 100-?m-sized elements. High-yield self-assembly of micrometer-scale functional devices as outlined here provides a powerful approach for production of macroelectronic systems. macroelectronics | plastic electronics | self-assembly

Stauth, Sean A.; Parviz, Babak A.

2006-09-01

423

Process for Making Single-Domain Magnetite Crystals  

NASA Technical Reports Server (NTRS)

A process for making chemically pure, single-domain magnetite crystals substantially free of structural defects has been invented as a byproduct of research into the origin of globules in a meteorite found in Antarctica and believed to have originated on Mars. The globules in the meteorite comprise layers of mixed (Mg, Fe, and Ca) carbonates, magnetite, and iron sulfides. Since the discovery of the meteorite was announced in August 1996, scientists have debated whether the globules are of biological origin or were formed from inorganic materials by processes that could have taken place on Mars. While the research that led to the present invention has not provided a definitive conclusion concerning the origin of the globules, it has shown that globules of a different but related chemically layered structure can be grown from inorganic ingredients in a multistep precipitation process. As described in more detail below, the present invention comprises the multistep precipitation process plus a subsequent heat treatment. The multistep precipitation process was demonstrated in a laboratory experiment on the growth of submicron ankerite crystals, overgrown by submicron siderite and pyrite crystals, overgrown by submicron magnesite crystals, overgrown by submicron siderite and pyrite. In each step, chloride salts of appropriate cations (Ca, Fe, and Mg) were dissolved in deoxygenated, CO2- saturated water. NaHCO3 was added as a pH buffer while CO2 was passed continuously through the solution. A 15-mL aliquot of the resulting solution was transferred into each of several 20 mL, poly(tetrafluoroethylene)-lined hydrothermal pressure vessels. The vessels were closed in a CO2 atmosphere, then transferred into an oven at a temperature of 150 C. After a predetermined time, the hydrothermal vessels were removed from the oven and quenched in a freezer. Supernatant solutions were decanted, and carbonate precipitates were washed free of soluble salts by repeated decantations with deionized water.

Golden, D. C.; Ming, Douglas W.; Morris, Richard V.; Lofgren, Gary E.; McKay, Gordan A.; Schwandt, Craig S.; Lauer, Howard V., Jr.; Socki, Richard A.

2004-01-01

424

Growth and properties of Lithium Salicylate single crystals  

SciTech Connect

An attractive feature of {sup 6}Li containing fluorescence materials that determines their potential application in radiation detection is the capture reaction with slow ({approx}< 100 keV) neutrons: {sup 6}Li + n = {sup 4}He + {sup 3}H + 4.8MeV. The use of {sup 6}Li-salicylate (LiSal, LiC{sub 6}H{sub 5}O{sub 3}) for thermal neutron detection was previously studied in liquid and polycrystalline scintillators. The studies showed that both liquid and polycrystalline LiSal scintillators could be utilized in pulse shape discrimination (PSD) techniques that enable separation of neutrons from the background gamma radiation. However, it was found that the efficiency of neutron detection using LiSal in liquid solutions was severely limited by its low solubility in commonly used organic solvents like, for example, toluene or xylene. Better results were obtained with neutron detectors containing the compound in its crystalline form, such as pressed pellets, or microscopic-scale (7-14 micron) crystals dispersed in various media. The expectation drown from these studies was that further improvement of pulse height, PSD, and efficiency characteristics could be reached with larger and more transparent LiSal crystals, growth of which has not been reported so far. In this paper, we present the first results on growth and characterization of relatively large, a cm-scale size, single crystals of LiSal with good optical quality. The crystals were grown both from aqueous and anhydrous (methanol) media, mainly for neutron detection studies. However, the results on growth and structural characterization may be interesting for other fields where LiSal, together with other alkali metal salicylates, is used for biological, medical, and chemical (as catalyst) applications.

Zaitseva, N; Newby, J; Hull, G; Saw, C; Carman, L; Cherepy, N; Payne, S

2009-02-13

425

Q-switching with single crystal photo-elastic modulators  

NASA Astrophysics Data System (ADS)

An overview is given about experiments with a new method for Q-switching lasers at a constant pulse repetition frequency. It uses inside the laser resonator a Single Crystal Photo-Elastic Modulator (SCPEM). This consists of one piezo-electric crystal electrically excited on a mechanical resonance frequency. In resonance mechanical stresses are induced that lead via the photo-elastic effect to a strongly modulated birefringence. Polarized light going through such an oscillating crystal will experience a significant modulation of its polarization and of transmission through a polarizer. Suitable materials should not be optically active, as it is for example the case for SiO2, and should allow the excitation of a longitudinal oscillation with an electric field perpendicular to the travelling direction of the light. Crystals of the group 3m, like LiTaO3 and LiNbO3, proved to be ideally suited for SCPEMS for the NIR- and VIS-region. For the infrared GaAs can be used. We demonstrated SCPEM-Q-switching for a Nd:YAG-fiber, a Nd:YVO4-slab- and a Nd:YAG-rod-laser with typical pulse repetition rates of 100-200kHz, pulse enhancement factors of ~100 and pulse durations ~1/100 of the period time. Typically the average power during pulsed operation is nearly the same as the cw-power, when the modulator is switched off. The most stable results were achieved up to now with the Nd:YVO4-slab-laser at 10W average power, 1.1 kW peak power, 127 kHz pulse repetition rate, and 70ns pulse durations.

Bammer, F.; Petkovsek, R.

2010-09-01

426

Q-switching with single crystal photo-elastic modulators  

NASA Astrophysics Data System (ADS)

An overview is given about experiments with a new method for Q-switching lasers at a constant pulse repetition frequency. It uses inside the laser resonator a Single Crystal Photo-Elastic Modulator (SCPEM). This consists of one piezo-electric crystal electrically excited on a mechanical resonance frequency. In resonance mechanical stresses are induced that lead via the photo-elastic effect to a strongly modulated birefringence. Polarized light going through such an oscillating crystal will experience a significant modulation of its polarization and of transmission through a polarizer. Suitable materials should not be optically active, as it is for example the case for SiO2, and should allow the excitation of a longitudinal oscillation with an electric field perpendicular to the travelling direction of the light. Crystals of the group 3m, like LiTaO3 and LiNbO3, proved to be ideally suited for SCPEMS for the NIR- and VIS-region. For the infrared GaAs can be used. We demonstrated SCPEM-Q-switching for a Nd:YAG-fiber, a Nd:YVO4-slab- and a Nd:YAG-rod-laser with typical pulse repetition rates of 100-200kHz, pulse enhancement factors of 100 and pulse durations {1/100 of the period time. Typically the average power during pulsed operation is nearly the same as the cw-power, when the modulator is switched off. The most stable results were achieved up to now with the Nd:YVO4-slab-laser at 10W average power, 1.1 kW peak power, 127 kHz pulse repetition rate, and 70ns pulse durations.

Bammer, F.; Petkovsek, R.

2011-02-01

427

Tantalum Shear Modulus from Homogenization of Single Crystal Data  

SciTech Connect

Elastic constants for tantalum single crystals have been calculated by Orlikowski, et al. [1] for a broad range of temperatures and pressures. These moduli can be utilized directly in continuum crystal simulations or dislocation dynamics calculations where the individual grains of the polycrystalline material are explicitly represented. For simulations on a larger size scale, the volume of material represented by the quadrature points of the simulation codes includes many grains, and average moduli are needed. Analytic bounding and averaging schemes exist, but since these do not account for nonuniform stress and strain within the interacting grains, the upper and lower bounds tend to diverge as the crystal anisotropy increases. Local deformation and stress equilibrium accommodate the anisotropic response of the individual grains. One method of including grain interactions in shear modulus averaging calculations is through a highly-descretized finite element model of a polycrystal volume. This virtual test sample (VTS) can be probed to determine the average response of the polycrystal. The desire to obtain isotropic moduli imposes attributes on the VTS. The grains should be equiax and the crystal orientation distribution function should be random. For these simulations, a cube, 300 {micro}m on a side, was discretized with 1 million finite elements on a regular rectangular mesh. The mesh was seeded with 1000 grains generated using a constrained-random placement algorithm, Figure 1. Since the orientations were simply painted in the mesh, the grain boundaries are irregular. The orientation distribution function is shown as pole figure in Figure 2. It has the appearance of being random. Analysis of the simulation results will be used to determine if the randomness of the texture and number of grains are adequate.

Becker, R

2007-09-14

428

Polarised IR and Raman spectra of monoglycine nitrate single crystal  

NASA Astrophysics Data System (ADS)

Polarised Raman spectra of the monoglycine (monoglycinium) nitrate (hereafter MGN) single crystal are reported. Additionally, the polarised specular reflection spectra for the (1 0 0) single crystal sample (E|| Y( b) and E|| Z( c)) were measured in the region 3600-80 cm -1. The spectra of the imaginary parts of the refractive indices are computed by the Kramers-Kronig transformation (Opus). The polarised spectra are discussed with respect to the diffraction crystal structure and recent literature data on normal co-ordinate analysis for the glycinium cation ( +NH 3CH 2COOH). The stretching vibrations of the NH3+ groups are explained by considering their hydrogen bonds. The intensity of the Raman bands arising from the stretching vibrations of the CH 2 group are explained assuming that each C sbnd H bond stretches independently. This finding is unusual and suggests that the C(2) sbnd H(5) bond is involved in the hydrogen bonding (improper hydrogen bond). The deformation vibrations of the CH 2 group are explained assuming scissoring, twisting, wagging and rocking type of vibrations. The band at 871 cm -1 exhibits the CC stretching character of the CCN skeleton, whereas the band at ca. 1050 cm -1 shows the ?aCCN character. The stretching ?OH vibrations of the C sbnd O sbnd H⋯O hydrogen bond gives rise to a band at ca. 3087 cm -1, clearly seen in the Y( xx) Z Raman spectrum. Its ?OH mode appears at 896 cm -1. The ?OH vibration is coupled to other vibrations, although the IR band at ca. 1375 (E|| Y) likely arises from this mode. It was impossible to define a character of the glycinium cations deformation vibrations giving rise to the bands observed in between 680 and 490 cm -1, on the basis of their polarisation properties. The polarisation properties of the internal modes of the nitrate ions are discussed.

Baran, Jan A.; Drozd, Marek A.; Ratajczak, Henryk

2010-07-01

429

XRD analysis on ZnO and Au film crystal orientation in ZnO/Au/SiO2 structure  

NASA Astrophysics Data System (ADS)

The orientation of the Zn/Au/Si structure was examined by XRD. The experiment showed that the ZnO/Au/Si films deposited by magnetron sputtering were possessed of a preferred orientation in C axis perpendicular to the film surface. The (111) of Au film was possessed of a preferred <111> orientation which was perpendicular to the film surface also. The XRD (theta) approximately 2 (theta) scan irradiated that there were only (001) peaks in excellent orientated ZnO films. The rock cure scan demonstrated that the C axis of ZnO film was not exactly perpendicular to the surface, the angular divergence was about 2 degree(s), and the space divergence angle about 1.5 degree(s). Expert the (kkk) main peaks of Au film there were weak diffraction peaks, such as (002), (022), and (311) peaks. The phenomena indicated that in Au film there was not only (111) plane in parallel to the surface of substrate. As there was only 12% dis-matching between Au (111) and ZnO (001), the Au (111) oriented film was facilitated for the ZnO (001) orientation in C axis and deposing parameters adjustment.

Qin, Huibin; Yu, Hong; Chen, Yunxang

2000-05-01

430

Lamellar and Bulk Single Crystals Grown in Annealed Films of Vinylidene Fluoride and Trifluoroethylene Copolymers  

NASA Astrophysics Data System (ADS)

Thick lamellar single crystals and large bulk single crystals are found to grow in films of vinylidene fluoride and trifluoroethylene copolymers when they are annealed at temperatures between the Curie point and melting point. The morphologies of these crystals are studied using SEM, TEM, and X-ray diffraction. The lamellar crystals are thick (0.1 ?m) enough to be characterized as extended chain crystals. They are stacked together with their planes perpendicular to the film surface. The bulk single crystals exhibit various crystal habits with the maximum size 12× 10× 10 ?m3. They are developed on the lamellar crystals from which the constituent molecules seem to be supplied. The growth of the crystals is discussed on the basis of the diffusive displacement of the molecules along the chain axis which becomes violent above the Curie temperature.

Ohigashi, Hiroji; Akama, Shuyo; Koga, Keiko

1988-11-01

431

Facile solution route to vertically aligned, selective growth of ZnO nanostructure arrays.  

PubMed

For any future cost-effective applications of inorganic nanostructures, in particular, hybrid photovoltaic cells, it is essential that these inorganic nanomaterials be solution processable and selectively printable. This letter reports the selective growth of single-crystal ZnO nanostructures based on the microcontact printing of an inorganic nanocrystal seeding film. The pattern-transfer quality is dependent on the concentration of the inking solution. Variable yet controllable anisotropic growth of ZnO nanowires has been demonstrated on the transferred patterns of ZnO nanocrystal films. The patterning and growth of these highly ordered arrays of ZnO nanostructures employ a simple soft lithography technique and mild reaction conditions at low temperature and in the absence of harmful organic additives. PMID:17941655

Wang, Cheng Hung; Wong, Andrew See Weng; Ho, Ghim Wei

2007-11-20

432

The influence of cobalt on the physical properties of ZnO nanostructures  

NASA Astrophysics Data System (ADS)

ZnO and cobalt doped ZnO (ZnO:Co) nanoparticles with different doping concentrations have been synthesized using the coprecipitation method at room temperature. The crystal structure, phase purity and morphologic features were examined using x-ray diffraction (XRD) and a scanning electron microscope (SEM). The prepared nanoparticles exhibit a single phase ZnO wurtzite structure and show that cobalt ions, in the oxidation state of Co2+, incorporated Zn2+ ions into the ZnO matrix without changing its wurtzite structure with a spherical shape. The energy band gap of ZnO:Co nanoparticles decreased with the increase in dopant content, resulting in red shift of the wavelength and an increase in particle size. The magnetic characterization reveals that magnetization increased with the increase in dopant concentration at room temperature. The electrical behaviour shows an increase in resistance with the increase in dopant levels.

Zia, A.; Shah, N. A.; Ahmed, S.; Khan, E. U.

2014-10-01

433

Structural and optical properties of MgO doped ZnO  

SciTech Connect

Samples of ZnO, Zn{sub 0.5}Mg{sub 0.5}O and MgO were prepared by co-precipitation method. X-ray diffraction (XRD) pattern infers that the sample of ZnO is in single-phase wurtzite structure (hexagonal phase, space group P6{sub 3}mc), MgO crystallizes in cubic Fd3m space group and Zn{sub 0.5}Mg{sub 0.5}O represents mixed nature of ZnO and MgO lattices. Similar features were observed from Raman spectroscopy. The energy band gaps estimated from UV-Vis spectroscopy are found to be 4.21 and 3.42 eV for ZnO and Zn{sub 0.5}Mg{sub 0.5}O samples respectively.

Verma, Kavita; Shukla, S.; Varshney, Dinesh, E-mail: vdinesh33@rediffmail.com [School of Physics, Vigyan Bhavan, Devi Ahilya University, Khandwa Road Campus, Indore-452001 (India); Varshney, M. [Department of Physics, M. B. Khalsa College, Raj Mohallah, Indore-452002 (India); Asthana, A. [Department of Chemistry, Govt. B. V. T. PG Autonomous College, Durg- 491001 (India)

2014-04-24

434

Production of Semiconducting III–V Single Crystals: Current Status and Outlook  

Microsoft Academic Search

The current status of and outlook for the worldwide production of semiconducting III–V single crystals, primarily gallium arsenide, are examined. Particular emphasis is placed on improving production technologies and reaching head positions in the vertical crystallization technology.

A. V. Markov

2003-01-01

435

A preliminary review of organic materials single crystal growth by the Czochralski technique  

NASA Technical Reports Server (NTRS)

The growth of single crystals of organic compounds by the Czochralski method is reviewed. From the literature it is found that single crystals of benzil, a nonlinear optical material with a d sub 11 value of 11.2 + or - 1.5 x d sub 11 value of alpha quartz, has fewer dislocations than generally contained in Bridgman crystals. More perfect crystals were grown by repeated Czochralski growth. This consists of etching away the defect-containing portion of a Czochralski grown crystal and using it as a seed for further growth. Other compounds used to grow single crystals are benzophenone, 12-tricosanone (laurone), and salol. The physical properties, growth apparatus, and processing conditions presented in the literature are discussed. Moreover, some of the possible advantages of growing single crystals of organic compounds in microgravity to obtain more perfect crystals than on Earth are reviewed.

Penn, B. G.; Shields, A. W.; Frazier, D. O.

1988-01-01

436

Imatinib (Gleevec@) conformations observed in single crystals, protein-Imatinib co-crystals and molecular dynamics: Implications for drug selectivity  

NASA Astrophysics Data System (ADS)

Structure and dynamics of the Leukemia drug, Imatinib, were examined using X-ray crystallography and molecular dynamics studies. Comparison of conformations observed in single crystals with several reported co-crystals of protein-drug complexes suggests existence of two conserved conformations of Imatinib, extended and compact (or folded), corresponding to two binding modes of interaction with the receptor. Furthermore, these conformations are conserved throughout a dynamics simulation. The present study attempts to draw a parallel on conformations and binding patterns of interactions, obtained from small-molecule single-crystal and macromolecule co-crystal studies, and provides structural insights for understanding the high selectivity of this drug molecule.

Golzarroshan, B.; Siddegowda, M. S.; Li, Hong qi; Yathirajan, H. S.; Narayana, B.; Rathore, R. S.

2012-06-01

437

Ductile behaviour in single-point diamond-turning of single-crystal silicon  

Microsoft Academic Search

Single-crystal silicon is usually considered to be extremely brittle and exhibit little ductility in machining. In work reported in the literature during indentation tests, cracks appeared around the impression at loads as small as 5g and the crystallographic direction was found to have a strong influence on the crack initiation and propagation; however, spiral and flake-like swarf were observed in

C. L Chao; K. J Ma; D. S Liu; C. Y Bai; T. L Shy

2002-01-01

438

Synthesis, characterization and optical properties of sheet-like ZnO  

SciTech Connect

Highlights: {yields} Sheet-like ZnO with regular hexagon shape was synthesized with a two-step method. {yields} Sheet-like ZnO predecessor was synthesized at low temperature in open system. {yields} The diameter and thickness of ZnO sheet can be controlled conveniently. {yields} This low-cost and environmentally benign approach is controllable and reproducible. {yields} Sheet-like ZnO may have potential application in optical and electrical devices. -- Abstract: Sheet-like ZnO with regular hexagon shape and uniform diameter has been successfully synthesized through a two-step method without any metal catalyst. First, the sheet-like ZnO precursor was synthesized in a weak alkaline carbamide environment with stirring in a constant temperature water-bath by the homogeneous precipitation method, then sheet-like ZnO was obtained by calcining at 600 {sup o}C for 2 h. The structures and optical properties of sheet-like ZnO have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL) and UV-vis-NIR spectrophotometer. The results reveal that the product is highly crystalline with hexagonal wurtzite phase and has appearance of hexagon at (0 0 0 1) plane. The HRTEM images confirm that the individual sheet-like ZnO is single crystal. The PL spectrum exhibits a narrow ultraviolet emission at 397 nm and a broad visible emission centering at 502 nm. The band gap of sheet-like ZnO is about 3.15 eV.

Liu, Changzhen [Faculty of Material Science and Chemistry Engineering, Engineering Research Center of Nano-Geo Materials of Ministry of Education, China University of Geosciences, Wuhan 430074 (China)] [Faculty of Material Science and Chemistry Engineering, Engineering Research Center of Nano-Geo Materials of Ministry of Education, China University of Geosciences, Wuhan 430074 (China); Meng, Dawei, E-mail: dwmeng@cug.edu.cn [Faculty of Material Science and Chemistry Engineering, Engineering Research Center of Nano-Geo Materials of Ministry of Education, China University of Geosciences, Wuhan 430074 (China) [Faculty of Material Science and Chemistry Engineering, Engineering Research Center of Nano-Geo Materials of Ministry of Education, China University of Geosciences, Wuhan 430074 (China); State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China); Wu, Xiuling [Faculty of Material Science and Chemistry Engineering, Engineering Research Center of Nano-Geo Materials of Ministry of Education, China University of Geosciences, Wuhan 430074 (China) [Faculty of Material Science and Chemistry Engineering, Engineering Research Center of Nano-Geo Materials of Ministry of Education, China University of Geosciences, Wuhan 430074 (China); State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China); Wang, Yongqian; Yu, Xiaohong; Zhang, Zhengjie [Faculty of Material Science and Chemistry Engineering, Engineering Research Center of Nano-Geo Materials of Ministry of Education, China University of Geosciences, Wuhan 430074 (China)] [Faculty of Material Science and Chemistry Engineering, Engineering Research Center of Nano-Geo Materials of Ministry of Education, China University of Geosciences, Wuhan 430074 (China); Liu, Xiaoyang [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China)] [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China)

2011-09-15

439

Regrinding and relapping of single-point, single-crystal diamond turning and boring tools  

SciTech Connect

Single-crystal, single-point diamond tools have been successfully ground and lapped to specific geometries with chip-free cutting edges for producing mirror-like surfaces on nonferrous materials. It was found that the grinding and lapping facility required a special controlled environment and specially constructed grinding and lapping machines. Cleanliness was found to be of utmost importance. Special inspection techniques were used to ensure very accurate and repeatable measurements. Exceptional care is required in handling, grinding, lapping, inspecting, and packaging to prevent cutting edge chippage on the diamond.

Duke, W.L.; Lovell, R.T.

1982-12-01

440

A novel single-polarization single-mode photonic crystal fiber coupler  

NASA Astrophysics Data System (ADS)

A vectorial finite element method is adopted to investigate this novel single-mode single-polarization (SPSM) photonic crystal fiber coupler which has asymmetric dual-core and two lines of enlarged air holes. we demonstrate that the SPSM region of the designed fiber can be more than 250nm wide for a set of optimized air-hole parameters and show that the width of the SPSM region could change slightly by little adjustment of the large inner air holes. The coupling length between the odd and even x-polarization modes are also investigated through fine-tuning the large and small air-hole diameters.

Li, Honglei; Lou, Shuqin; Feng, Suchun; Guo, Tieying; Yao, Lei; Wang, Liwen; Chen, Weiguo; Jian, Shuisheng

2009-08-01