Science.gov

Sample records for zooplankton population model

  1. Lake acidification: Effects on crustacean zooplankton populations

    SciTech Connect

    Havens, K.E. ); Yan, N.D. ); Keller, W. )

    1993-08-01

    The ranked acid sensitivities of six common crustacean zooplankton taxa were determined from a multilake field survey in Ontario and from laboratory bioassays. The two approaches gave the same ranking (from most to least sensitive): Daphnia galeata mendotae, Daphnia retrocurva, and Skistodiaptomus oregonensis > Diaphanosoma birgei > Mesocyclops edax > Bosmina longirostris. This finding suggests that acidification has caused the widespread damage which has been documented for the zooplankton of Ontario and northeastern US lakes. 24 refs., 3 figs., 2 tabs.

  2. Interactions between Predation and Resources Shape Zooplankton Population Dynamics

    PubMed Central

    Nicolle, Alice; Hansson, Lars-Anders; Brodersen, Jakob; Nilsson, P. Anders; Brönmark, Christer

    2011-01-01

    Identifying the relative importance of predation and resources in population dynamics has a long tradition in ecology, while interactions between them have been studied less intensively. In order to disentangle the effects of predation by juvenile fish, algal resource availability and their interactive effects on zooplankton population dynamics, we conducted an enclosure experiment where zooplankton were exposed to a gradient of predation of roach (Rutilus rutilus) at different algal concentrations. We show that zooplankton populations collapse under high predation pressure irrespective of resource availability, confirming that juvenile fish are able to severely reduce zooplankton prey when occurring in high densities. At lower predation pressure, however, the effect of predation depended on algal resource availability since high algal resource supply buffered against predation. Hence, we suggest that interactions between mass-hatching of fish, and the strong fluctuations in algal resources in spring have the potential to regulate zooplankton population dynamics. In a broader perspective, increasing spring temperatures due to global warming will most likely affect the timing of these processes and have consequences for the spring and summer zooplankton dynamics. PMID:21304980

  3. Effects of alewife predation on zooplankton populations in Lake Michigan

    USGS Publications Warehouse

    Wells, LaRue

    1970-01-01

    The zooplankton populations in southeastern Lake Michigan underwent striking, size-related changes between 1954 and 1966. Forms that decline sharply were the largest cladocerans (Leptodora kindtii, Daphnia galeata, and D. retrocurva), the largest calanoid copepods (Limnocalanus macrurus, Epischura lacustris, and Diaptomus sicilis), and the largest cyclopoid copepod (Mesocyclops edax). Two of these, D. galeata and M. edax (both abundant in 1954), became extremely rare. Certain medium-sized or small species increased in numbers: Daphnia longiremis, Holopedium gibberum, Polyphemus pediculus, Bosmina longirostris, Bosmina coregoni, Ceriodaphnia sp., Cyclops bicuspidatus, Cyclops vernalis, and Diaptomus ashlandi. Evidence is strong that the changes were due to selective predation by alewives. The alewife was uncommon in southeastern Lake Michigan in 1954 but had increased to enormous proportions by 1966; there was a massive dieoff in spring 1967, and abundance remained relatively low in 1968. The composition of zooplankton populations in 1968 generally had shifted back toward that of 1954, although D. galeata and M. edax remained rare. The average size, and size at onset of maturity, of D. retrocurva decreased noticeably between 1954 and 1966 but increased between 1966 and 1968.

  4. Interactions between Predation and Resources Shape Zooplankton Population Dynamics

    E-print Network

    is high, which may be an alternative explanation to the dramatic crash of the zooplankton community communities [1] and the relative strength of each of them has been evaluated in numerous studies (e.g. [2, starvation, followed by low fecundity, is one possible explanation for the zooplankton crash (e.g. [13

  5. Gelatinous zooplankton in the Belgian part of the North Sea and the adjacent Schelde estuary: Spatio-temporal distribution patterns and population dynamics

    NASA Astrophysics Data System (ADS)

    Vansteenbrugge, Lies; Van Regenmortel, Tina; De Troch, Marleen; Vincx, Magda; Hostens, Kris

    2015-03-01

    Many ocean ecosystems are thought to be heading towards a dominance of gelatinous organisms. However, gelatinous zooplankton has been largely understudied and the absence of quantitative long-term data for the studied area impedes drawing conclusions on potential increasing densities. This study gives a comprehensive overview of the spatio-temporal distribution patterns of gelatinous zooplankton in terms of diversity and density in the Belgian part of the North Sea and the adjacent Schelde estuary, based on monthly and seasonal samples between March 2011 and February 2012. Three Scyphozoa, three Ctenophora and 27 Hydrozoa taxa were identified, including three non-indigenous species: Mnemiopsis leidyi, Nemopsis bachei and Lovenella assimilis. In general, one gelatinous zooplankton assemblage was found across locations and seasons. Average gelatinous zooplankton densities reached up to 18 ind·m-3 near the coast, gradually declining towards the open sea. In the brackish Schelde estuary, average densities remained below 3 ind·m-3. Highest gelatinous zooplankton densities were recorded in summer and autumn. Overall, hydromedusae were the most important group both in terms of diversity and density. The ctenophore Pleurobrachia pileus and the hydromedusa Clytia sp. were present in every season and at every location. Gelatinous zooplankton densities never outnumbered the non-gelatinous zooplankton densities recorded from the WP3 samples. The spatial and temporal distribution patterns seemed to be mainly driven by temperature (season) and salinity (location). Other environmental parameters including (larger) non-gelatinous zooplankton densities (as an important food source) were not retained in the most parsimonious DistLM model.In terms of population dynamics, Beroe sp. seemed to follow the three reproductive cycles of its prey P. pileus and the presence of M. leidyi, which were abundant in a broad size spectrum in summer and autumn. In general, gelatinous zooplankton diversity was higher, but densities were in the same order of magnitude compared to adjacent areas in the North Sea. This study provides a baseline against which a potential increase in gelatinous zooplankton in the Belgian part of the North Sea and the Schelde estuary can be measured.

  6. Population dynamics of pond zooplankton, I. Diaptomus pallidus Herrick

    USGS Publications Warehouse

    Armitage, K.B.; Saxena, B.; Angino, E.E.

    1973-01-01

    The simultaneous and lag relationships between 27 environmental variables and seven population components of a perennial calanoid copepod were examined by simple and partial correlations and stepwise regression. The analyses consistently explained more than 70% of the variation of a population component. The multiple correlation coefficient (R) usually was highest in no lag or in 3-week or 4-week lag except for clutch size in which R was highest in 1-week lag. Population control, egg-bearing, and clutch size were affected primarily by environmental components categorized as weather; food apparently was relatively minor in affecting population control or reproduction. ?? 1973 Dr. W. Junk B.V. Publishers.

  7. Role of Zooplankton Diversity in Vibrio cholerae Population Dynamics and in the Incidence of Cholera in the Bangladesh Sundarbans ?

    PubMed Central

    de Magny, Guillaume Constantin; Mozumder, Pronob K.; Grim, Christopher J.; Hasan, Nur A.; Naser, M. Niamul; Alam, Munirul; Sack, R. Bradley; Huq, Anwar; Colwell, Rita R.

    2011-01-01

    Vibrio cholerae, a bacterium autochthonous to the aquatic environment, is the causative agent of cholera, a severe watery, life-threatening diarrheal disease occurring predominantly in developing countries. V. cholerae, including both serogroups O1 and O139, is found in association with crustacean zooplankton, mainly copepods, and notably in ponds, rivers, and estuarine systems globally. The incidence of cholera and occurrence of pathogenic V. cholerae strains with zooplankton were studied in two areas of Bangladesh: Bakerganj and Mathbaria. Chitinous zooplankton communities of several bodies of water were analyzed in order to understand the interaction of the zooplankton population composition with the population dynamics of pathogenic V. cholerae and incidence of cholera. Two dominant zooplankton groups were found to be consistently associated with detection of V. cholerae and/or occurrence of cholera cases, namely, rotifers and cladocerans, in addition to copepods. Local differences indicate there are subtle ecological factors that can influence interactions between V. cholerae, its plankton hosts, and the incidence of cholera. PMID:21764957

  8. Impact of climate change on zooplankton communities, seabird populations and arctic terrestrial ecosystem—A scenario

    NASA Astrophysics Data System (ADS)

    Stempniewicz, Lech; B?achowiak-Samo?yk, Katarzyna; W?s?awski, Jan M.

    2007-11-01

    Many arctic terrestrial ecosystems suffer from a permanent deficiency of nutrients. Marine birds that forage at sea and breed on land can transport organic matter from the sea to land, and thus help to initiate and sustain terrestrial ecosystems. This organic matter initiates the emergence of local tundra communities, increasing primary and secondary production and species diversity. Climate change will influence ocean circulation and the hydrologic regime, which will consequently lead to a restructuring of zooplankton communities between cold arctic waters, with a dominance of large zooplankton species, and Atlantic waters in which small species predominate. The dominance of large zooplankton favours plankton-eating seabirds, such as the little auk ( Alle alle), while the presence of small zooplankton redirects the food chain to plankton-eating fish, up through to fish-eating birds (e.g., guillemots Uria sp.). Thus, in regions where the two water masses compete for dominance, such as in the Barents Sea, plankton-eating birds should dominate the avifauna in cold periods and recess in warmer periods, when fish-eaters should prevail. Therefore under future anthropogenic climate scenarios, there could be serious consequences for the structure and functioning of the terrestrial part of arctic ecosystems, due in part to changes in the arctic marine avifauna. Large colonies of plankton-eating little auks are located on mild mountain slopes, usually a few kilometres from the shore, whereas colonies of fish-eating guillemots are situated on rocky cliffs at the coast. The impact of guillemots on the terrestrial ecosystems is therefore much smaller than for little auks because of the rapid washing-out to sea of the guano deposited on the seabird cliffs. These characteristics of seabird nesting sites dramatically limit the range of occurrence of ornithogenic soils, and the accompanying flora and fauna, to locations where talus-breeding species occur. As a result of climate warming favoring the increase of ichthyiofagous cliff-nesting seabirds, we can expect that large areas of ornithogenic tundra around the colonies of plankton-eating seabirds situated far from the sea may disappear, while areas of tundra in the vicinity of cliffs inhabited by fish-eating seabirds, with low total production and supporting few large herbivores, will likely increase, but only imperceptibly. This may lead to habitat fragmentation with negative consequences for populations of tundra-dependent birds and mammals, and the possibility of a substantial decrease in biodiversity of tundra plant and animal communities.

  9. Grazing experiments and model simulations of the role of zooplankton in Phaeocystis food webs

    NASA Astrophysics Data System (ADS)

    Verity, P. G.

    2000-08-01

    A combined empirical and modelling study was conducted to further examine the potential importance of grazing by zooplankton in pelagic food webs in which Phaeocystis is a significant or dominant component. Laboratory experiments were designed to measure ingestion of Phaeocystis and other potential prey items which co-occur with Phaeocystis. Grazers included copepods and ciliates, and prey included Phaeocystis colonies and solitary cells, diatoms, ciliates, bacteria, and detritus. These data were expressed in the model currency of nitrogen units, and fit to hyperbolic tangent equations which included minimum prey thresholds. These equations and literature data were used to constrain a food web model whose purpose was to investigate trophic interactions rather than to mimic actual events. Nevertheless, the model output was similar to the general pattern and magnitude of development of Phaeocystis-diatom communities in some environments where they occur, e.g. north Norwegian waters. The model included three forms of nitrogen, three phytoplankton groups, bacteria, two zooplankton groups, and detritus, with detailed flows between compartments. An important component of the model was inclusion of variable prey preferences for zooplankton. The experiments and model simulations suggest several salient conclusions. Phaeocystis globosa colonies were eaten by a medium-sized copepod species, but ingestion appeared to be strongly dependent upon a proper size match between grazer and prey. If not, colonies were eaten little if at all. Phaeocystis solitary cells were ingested rapidly by ciliate microzooplankton, in agreement with prior literature observations. In contrast, detritus was eaten comparatively slowly by both ciliates and copepods. Both types of zooplankton exhibited apparent minimum prey thresholds below which grazing did not occur or was inconsequential. Model simulations implied that transitions between life cycle stages of Phaeocystis may potentially be important to phytoplankton-zooplankton interactions, and that relative rates of ingestion of Phaeocystis by various zooplankton may have significant impacts upon material fluxes through and out of Phaeocystis-diatom ecosystems. Indirect effects of trophic interactions appear to be equally significant as direct effects.

  10. Biomass, growth, and development of populations of herbivorous zooplankton in the southeastern Bering Sea during spring

    SciTech Connect

    Vidal, J.; Smith, S.L.

    1985-09-01

    Two distinct communities of herbivorous zooplankton, separated by an oceanographic front, inhabit the continental shelf and slope of the southeastern Bering Sea during spring. The community over the outer shelf and slope is dominated by populations of large-sized oceanic copepods (mainly Neocalanus ssp.) that develop early in spring and attain maximum biomass and growth rates by mid- to late spring. Total biomass and growth rates of herbivores follow the spring outburst of phytoplankton; during April and May biomass increases from less than or equal to1 to approx.14 g C m/sup -2/ on the slope and to approx.10 g C m/sup -2/ on the outer shelf, and maximum growth rates >500 and approx.300 mg C m/sup -2/ day/sup -1/ occure on the slope and outer shelf, respectively in May. The dominant species, N. plumchrus, grows from copepodid I and V between late March and early May, and after attaining maximum body weight in late May and early June it begins its downward migration. The inshore community on the middle shelf is dominated by the euphausiid Thysanoessa raschi in April and May and by the copepod Calanus marshallae in late May and early June. Total biomass (less than or equal to g C m/sup -2/) and growth rates (less than or equal to50 mg C m/sup -2/) of the inshore community are substantially lower than those of the offshore community and show a delayed response to the spring bloom of phytoplankton; both biomass and growth rates increase about one month after the bloom. Small herbivorous copepods contributed little to the total biomass and growth rates of either community and the cumulative community growth rates during April and May decreases from 18.3 g C m/sup -2/ on the slope to 2.5 g C m/sup -2/ on the middle shelf. 79 refs., 15 figs., 7 tabs.

  11. Is there enough zooplankton to feed forage fish populations off Peru? An acoustic (positive) answer

    NASA Astrophysics Data System (ADS)

    Ballón, Michael; Bertrand, Arnaud; Lebourges-Dhaussy, Anne; Gutiérrez, Mariano; Ayón, Patricia; Grados, Daniel; Gerlotto, François

    2011-12-01

    The Northern Humboldt Current system (NHCS) produces more fish per unit area than any other region in the world. Although the system produces enough macrozooplankton to sustain its high production of forage fish, the paucity of information on macrozooplankton hampers research into the system. In this study, we estimated the biomass of the epipelagic crustacean macrozooplankton from the NHCS during both austral summer and spring 2005. To do this, we developed a bi-frequency acoustic method and extracted high-resolution information on the biomass and the patterns of distribution of crustacean macrozooplankton, fish and other marine compartments. We found that, although macrozooplankton comprises a number of distinct organisms, the euphausiids were the zooplankton group that better fitted the patterns from independent net sampling zooplankton data. Also, the similarities between the nocturnal patterns of size and biomass macrozooplankton distribution from this study and the known patterns of euphausiids, in particular Euphausia mucronata, suggest that euphausiids were the main constituent of the estimated nocturnal acoustic macrozooplankton biomass even if other organisms such as large copepods may have contributed considerably to the macrozooplankton biomass. The total macrozooplankton biomass was estimated to about 105 g m -2, i.e., two to five times more than previous estimates. This direct biomass estimation of macrozooplankton is in agreement with the new findings in trophic ecology indicating that forage fish consume mainly macrozooplankton. This high biomass also supports the current hypotheses explaining the NHCS high fish production. Using the method, we are able to revisit present-day and historical acoustic databases and extract high-resolution data on macrozooplankton, a key ecological compartment of the ecosystem. Since zooplankton is the link between the physically driven primary producers and the biologically driven tertiary consumers, this information is essential to achieve a mechanistic understanding of the system, from physics to top predators.

  12. Sound scattering by several zooplankton groups. II. Scattering models

    E-print Network

    Stanton, Tim

    and Dezhang Chu Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution the experiments. The models for the fluidlike animals euphausiids in this case ranged from the simplest case and discontinuities of the shell. The model for gas-bearing animals siphonophores is a hybrid model which is composed

  13. Discrete modeling of dynamics of zooplankton community at the different stages of an antropogeneous eutrophication.

    PubMed

    Zholtkevych, G N; Bespalov, G Yu; Nosov, K V; Abhishek, Mahalakshmi

    2013-12-01

    Mathematical modeling is a convenient way for characterization of complex ecosystems. This approach was applied to study the dynamics of zooplankton in Lake Sevan (Armenia) at different stages of anthropogenic eutrophication with the use of a novel method called discrete modeling of dynamical systems with feedback (DMDS). Simulation demonstrated that the application of this method helps in characterization of inter- and intra-component relationships in a natural ecosystem. This method describes all possible pairwise inter-component relationships like "plus-plus," "minus-minus," "plus-minus," "plus-zero," "minus-zero," and "zero-zero" that occur in most ecosystems. Based on the results, a working hypothesis was formulated. It was found that the sensitivity to weak external influence in zooplanktons was the greatest during the mid period of eutrophication in Lake Sevan, whereas in the final stages of eutrophication, an outbreak in the biomass production of cyanobacteria was evident. To support this approach, a weak external disturbance in the form of magnetic storm was used to see its effect on species Daphnia longispina sevanica. A statistically significant correlation between the frequency of magnetic storms and the number of this species was revealed and an increase in the number of toxic cyanobacteria species as a consequence of eutrophication. This paper, for the first time, suggests a DMDS method, to diagnose impact of anthropogenic eutrophication on environment. PMID:23934229

  14. Living on the edge: populations of two zooplankton species living closer to agricultural fields are more resistant to a common insecticide.

    PubMed

    Bendis, Randall J; Relyea, Rick A

    2014-12-01

    Ecological communities across the globe are exposed to diverse natural and anthropogenic stressors and disturbances that can lead to community-wide impacts. Contaminants are a group of anthropogenic disturbances that are ubiquitous in the environment and can trigger trophic cascades, increased susceptibility to pathogens, reduced biodiversity, and altered ecosystems. In these ecosystems, substantial attention has been given to evolved resistance in targeted pest species, but little attention has been given to the evolution of resistance in nontarget species in nature. For the present study, the authors used laboratory toxicity tests to determine if 2 common, co-occurring species of freshwater zooplankton (Simocephalus vetulus and Daphnia pulex) showed population-level variation in sensitivity to a common insecticide (chlorpyrifos). For both species, it was found that populations living near agricultural fields--a proxy for pesticide use--were more resistant to chlorpyrifos than populations collected from ponds far from agriculture. This finding is consistent with the evolution of resistance to pesticides. To the authors' knowledge, only 1 previous study (using Daphnia magna) has demonstrated this relationship. Collectively, these results suggest that evolved resistance may be common in zooplankton populations located near agriculture. Moreover, because zooplankton play a key role in aquatic food webs, it is expected that population variation in resistance would dramatically alter aquatic food webs, particularly with exposure to low concentrations of insecticides. PMID:25220688

  15. STRUCTURED POPULATION MODELS OF HERBIVEROUS ZOOPLANKTON. (R823588)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  16. A New Trait-Based Auto-Emergent Model for Zooplankton and Confrontation with Size-Structured Observations from the Bay of Biscay

    NASA Astrophysics Data System (ADS)

    Vandromme, Pieter; Sourisseau, Marc; Huret, Martin

    2013-04-01

    Zooplankton plays a significant role in marine ecosystems bridging the gap between primary producers and top consumers and interacting with the particle flux through complex dynamics. Scarcity of data and complexity of observing zooplankton make it difficult to integrate it in biogeochemical models where it is most often formulated in a simpler manner, i.e. classic box models with usually two compartments (micro and meso/macro zooplankton). Recent advances in automatic sizing, counting and identification allow better estimates of the dynamics and distribution of zooplankton, notably through the measurement of its size structure, and for zooplankton size matter. Most zooplankton physiological rates as well as predator:prey interactions can be significantly relied to individuals size through allometric relations. Such size-dependency was used in recent models. Yet, these models were neither confronted to observations nor integrated in 3D biogeochemical models. Here we propose a newly developed model of zooplankton dynamics based on size-dependent allometric relations but which allows various diet types regardless of the size. A size and a degree of herbivory is randomly drawn for each zooplankton species generated within the model (up to 400 here, limited by actual computational costs). By generating random degree of herbivory zooplankton species of same size could have various diet (from herbivore to carnivore). Other parameters leading to various reproductive strategies or vertical migration could also be drawn randomly (not tested here). The zooplankton model is coupled to the 3D biogeochemical model MARS3D on a test case representing a simplified view of the Bay of Biscay (i.e., continental shelf, estuary, tides). The model shows auto-emergent properties with the selection of size/diet most adapted to local conditions (here offshore vs. coastal, estuary…). Then, patterns of the modeled size-structure of the zooplankton are confronted to the ones observed during Spring-time cruises in the Bay of Biscay. The usefulness of the proposed zooplankton model for large scale biogeochemical models is further discussed.

  17. Three-dimensional modeling of acoustic backscattering from fluid-like zooplankton

    NASA Astrophysics Data System (ADS)

    Lavery, Andone C.; Stanton, Timothy K.; McGehee, Duncan E.; Chu, Dezhang

    2002-03-01

    Scattering models that correctly incorporate organism size and shape are a critical component for the remote detection and classification of many marine organisms. In this work, an acoustic scattering model has been developed for fluid-like zooplankton that is based on the distorted wave Born approximation (DWBA) and that makes use of high-resolution three-dimensional measurements of the animal's outer boundary shape. High-resolution computerized tomography (CT) was used to determine the three-dimensional digitizations of animal shape. This study focuses on developing the methodology for incorporating high-resolution CT scans into a scattering model that is generally valid for any body with fluid-like material properties. The model predictions are compared to controlled laboratory measurements of the acoustic backscattering from live individual decapod shrimp. The frequency range used was 50 kHz to 1 MHz and the angular characteristics of the backscattering were investigated with up to a 1° angular resolution. The practical conditions under which it is necessary to make use of high-resolution digitizations of shape are assessed.

  18. Zooplankton interactions with toxic phytoplankton: Some implications for food web studies and algal defence strategies of feeding selectivity behaviour, toxin dilution and phytoplankton population diversity

    NASA Astrophysics Data System (ADS)

    Barreiro, A.; Guisande, C.; Maneiro, I.; Vergara, A. R.; Riveiro, I.; Iglesias, P.

    2007-11-01

    This study focuses on the interactions between toxic phytoplankton and zooplankton grazers. The experimental conditions used are an attempt to simulate situations that have, so far, received little attention. We presume the phytoplankton community to be a set of species where a population of a toxic species is intrinsically diverse by the presence of coexisting strains with different toxic properties. The other species in the community may not always be high-quality food for herbivorous zooplankton. Zooplankton populations may have developed adaptive responses to sympatric toxic phytoplankton species. Zooplankton grazers may perform a specific feeding behaviour and its consequences on fitness will depend on the species ingested, the effect of toxins, and the presence of mechanisms of toxin dilution and compensatory feeding. Our target species are a strain of the dinoflagellate Alexandrium minutum and a sympatric population of the copepod Acartia clausi. Mixed diets were used with two kinds of A. minutum cells: non-toxic and toxic. The flagellate Rhodomonas baltica and the non-toxic dinoflagellate Alexandrium tamarense were added as accompanying species. The effect of each alga was studied in separate diets. The toxic A. minutum cells were shown to have negative effects on egg production, hatching success and total reproductive output, while, in terms of its effect on fitness, the non-toxic A. minutum was the best quality food offered. R. baltica and A. tamarense were in intermediate positions. In the mixed diets, copepods showed a strong preference for toxic A. minutum cells and a weaker one for A. tamarense cells, while non-toxic A. minutum was slightly negatively selected and R. baltica strongly negatively selected. Although the level of toxins accumulated by copepods was very similar, in both the diet with only toxic A. minutum cells and in the mixed diet, the negative effects on fitness in the mixed diet could be offset by toxin dilution mechanisms. The implications of these findings are the fact that mesozooplankton may not play an important role in phytoplankton blooms development. Phytoplankton endotoxin production does not seem to be an evolutionary stable strategy as a defence against some herbivores.

  19. Hydroacoustic estimation of zooplankton biomass at two shoal complexes in the Apostle Islands Region of Lake Superior

    USGS Publications Warehouse

    Holbrook, B.V.; Hrabik, T.R.; Branstrator, D.K.; Yule, D.L.; Stockwell, J.D.

    2006-01-01

    Hydroacoustics can be used to assess zooplankton populations, however, backscatter must be scaled to be biologically meaningful. In this study, we used a general model to correlate site-specific hydroacoustic backscatter with zooplankton dry weight biomass estimated from net tows. The relationship between zooplankton dry weight and backscatter was significant (p < 0.001 ) and explained 76% of the variability in the dry weight data. We applied this regression to hydroacoustic data collected monthly in 2003 and 2004 at two shoals in the Apostle Island Region of Lake Superior. After applying the regression model to convert hydroacoustic backscatter to zooplankton dry weight biomass, we used geostatistics to analyze the mean and variance, and ordinary kriging to create spatial zooplankton distribution maps. The mean zooplankton dry weight biomass estimates from plankton net tows and hydroacoustics were not significantly different (p = 0.19) but the hydroacoustic data had a significantly lower coefficient of variation (p < 0.001). The maps of zooplankton distribution illustrated spatial trends in zooplankton dry weight biomass that were not discernable from the overall means.

  20. Oxygenation of anoxic sediments triggers hatching of zooplankton eggs.

    PubMed

    Broman, Elias; Brüsin, Martin; Dopson, Mark; Hylander, Samuel

    2015-10-22

    Many coastal marine systems have extensive areas with anoxic sediments and it is not well known how these conditions affect the benthic-pelagic coupling. Zooplankton lay their eggs in the pelagic zone, and some sink and lie dormant in the sediment, before hatched zooplankton return to the water column. In this study, we investigated how oxygenation of long-term anoxic sediments affects the hatching frequency of dormant zooplankton eggs. Anoxic sediments from the brackish Baltic Sea were sampled and incubated for 26 days with constant aeration whereby, the sediment surface and the overlying water were turned oxic. Newly hatched rotifers and copepod nauplii (juveniles) were observed after 5 and 8 days, respectively. Approximately 1.5 × 10(5) nauplii m(-2) emerged from sediment turned oxic compared with 0.02 × 10(5) m(-2) from controls maintained anoxic. This study demonstrated that re-oxygenation of anoxic sediments activated a large pool of buried zooplankton eggs, strengthening the benthic-pelagic coupling of the system. Modelling of the studied anoxic zone suggested that a substantial part of the pelagic copepod population can derive from hatching of dormant eggs. We suggest that this process should be included in future studies to understand population dynamics and carbon flows in marine pelagic systems. PMID:26468249

  1. The effects of juvenile American shad planktivory on zooplankton production in Columbia River food webs

    USGS Publications Warehouse

    Haskell, Craig A.; Tiffan, Kenneth F.; Rondorf, Dennis W.

    2013-01-01

    Columbia River reservoirs support a large population of nonnative American Shad Alosa sapidissima that consume the zooplankton that native fishes also rely on. We hypothesized that the unprecedented biomass of juvenile American Shad in John Day Reservoir is capable of altering the zooplankton community if these fish consume a large portion of the zooplankton production. We derived taxon-specific estimates of zooplankton production using field data and a production model from the literature. Empirical daily ration was estimated for American Shad and expanded to population-level consumption using abundance and biomass data from hydroacoustic surveys. Daphnia spp. production was high in early summer but declined to near zero by September as shad abundance increased. American Shad sequentially consumed Daphnia spp., copepods, and Bosmina spp., which tracked the production trends of these taxa. American Shad evacuation rates ranged from 0.09 to 0.24/h, and daily rations ranged from 0.008 to 0.045 g·g?1·d?1 (dry weight) over all years. We observed peak American Shad biomass (45.2 kg/ha) in 1994, and daily consumption (1.6 kg/ha) approached 30% (5.3 kg/ha) of zooplankton production. On average, American Shad consumed 23.6% of the available zooplankton production (range, <1–83%). The changes in the zooplankton community are consistent with a top-down effect of planktivory by American Shad associated with their unprecedented biomass and consumption, but the effects are likely constrained by temperature, nutrient flux, and the seasonal production patterns of zooplankton in John Day Reservoir. American Shad add to the planktivory exerted by other species like Neomysis mercedis to reduce the capacity of the reservoir to support other planktivorous fishes. The introduction of American Shad and other nonnative species will continue to alter the food web in John Day Reservoir, potentially affecting native fishes, including Pacific salmon Oncorhynchus spp.

  2. Statistical Mechanics of Zooplankton.

    PubMed

    Hinow, Peter; Nihongi, Ai; Strickler, J Rudi

    2015-01-01

    Statistical mechanics provides the link between microscopic properties of many-particle systems and macroscopic properties such as pressure and temperature. Observations of similar "microscopic" quantities exist for the motion of zooplankton, as well as many species of other social animals. Herein, we propose to take average squared velocities as the definition of the "ecological temperature" of a population under different conditions on nutrients, light, oxygen and others. We test the usefulness of this definition on observations of the crustacean zooplankton Daphnia pulicaria. In one set of experiments, D. pulicaria is infested with the pathogen Vibrio cholerae, the causative agent of cholera. We find that infested D. pulicaria under light exposure have a significantly greater ecological temperature, which puts them at a greater risk of detection by visual predators. In a second set of experiments, we observe D. pulicaria in cold and warm water, and in darkness and under light exposure. Overall, our ecological temperature is a good discriminator of the crustacean's swimming behavior. PMID:26270537

  3. Statistical Mechanics of Zooplankton

    PubMed Central

    Hinow, Peter; Nihongi, Ai; Strickler, J. Rudi

    2015-01-01

    Statistical mechanics provides the link between microscopic properties of many-particle systems and macroscopic properties such as pressure and temperature. Observations of similar “microscopic” quantities exist for the motion of zooplankton, as well as many species of other social animals. Herein, we propose to take average squared velocities as the definition of the “ecological temperature” of a population under different conditions on nutrients, light, oxygen and others. We test the usefulness of this definition on observations of the crustacean zooplankton Daphnia pulicaria. In one set of experiments, D. pulicaria is infested with the pathogen Vibrio cholerae, the causative agent of cholera. We find that infested D. pulicaria under light exposure have a significantly greater ecological temperature, which puts them at a greater risk of detection by visual predators. In a second set of experiments, we observe D. pulicaria in cold and warm water, and in darkness and under light exposure. Overall, our ecological temperature is a good discriminator of the crustacean’s swimming behavior. PMID:26270537

  4. Latitudinal comparisons of equatorial Pacific zooplankton

    NASA Astrophysics Data System (ADS)

    Roman, M. R.; Dam, H. G.; Le Borgne, R.; Zhang, X.

    Zooplankton biomass and rates of ingestion, egestion and production in the equatorial Pacific Ocean along 140°W and 180° exhibit maximum values in the High-Nutrient Low-Chlorophyll (HNLC) zone associated with equatorial upwelling (5°S-5°N) as compared to the more oligotrophic regions to the north and south. Zooplankton biomass and rates are not usually highest on the equator, but increase "downstream" of the upwelling center as the zooplankton populations exhibit a delayed response to enhanced phytoplankton production. The vertical distribution of zooplankton biomass in the equatorial HNLC area tends to be concentrated in surface waters and is more uniform with depth in oligotrophic regions to the north and south of the equatorial upwelling zone. In general, the amount of mesozooplankton (>200 ?m) carbon biomass is approximately 25% of estimated phytoplankton biomass and 30% of bacterial biomass in the HNLC area of the equatorial Pacific Ocean. Zooplankton grazing on phytoplankton is low in the equatorial Pacific Ocean, generally <5% of the total chlorophyll-a standing stock grazed per day. Based on estimates of metabolic demand, it is apparent that zooplankton in the equatorial Pacific Ocean are omnivores, consuming primarily microzooplankton and detritus. Estimated zooplankton growth rates in the warm waters of the HNLC equatorial Pacific Ocean are high, ranging from 0.58 d -1 for 64-200 ?m zooplankton to 0.08 d -1 for 1000-2000 ?m zooplankton. Thus, the numerical and functional response of equatorial zooplankton to increases in phytoplankton production are more rapid than normally occurs in sub-tropical and temperate waters. Potential zooplankton fecal pellet production, estimated from metabolic demand, is approximately 1.6 times the estimated gravitational carbon flux at 150 m in the zone of equatorial upwelling (5°S-5°N) and 1.1 times the export flux in the more oligotrophic regions to the north and south. The active flux of carbon by diel migrant zooplankton in the HNLC zone is a minor fraction of the gravitational flux (2% at 140°W, 4% at 180°) but increases in the more oligotrophic regions to the north and south where there is a deeper mixed layer and a greater relative proportion of diel migrant zooplankton.

  5. Jacques W. de Blok, 1923-2004 pp iii A model of zooplankton diel vertical migration off the Canary Islands: implication for active carbon flux

    NASA Astrophysics Data System (ADS)

    Putzeys, S.; Hernández-León, S.

    2005-04-01

    A mathematical model of the diel vertical migration of zooplankton off the Canary Islands is presented. It simulates the time and space variations of zooplankton biomass and allows calculations of metabolism over the diel cycle in the water column from 0 to 1000 m depth. The results are used to estimate the active carbon flux due to respiration by diel vertical migrants. This model depends mainly on the influence of absolute light intensity and of the rate of irradiance change. Swimming responses to the properties of the light field described the diel vertical migration of zooplankton. The simulated vertical distribution of animals in near-surface waters (75-112 m) during the night and in deeper layers during the day (428-436 m) was in good agreement with the in situ data used to initialise the model. The daytime respiration at depth obtained was compared with in situ estimations of respiration from ETS (electron transfer system) activity in a previous study and from published empirical equations relating temperature and metabolism of epiplanktonic zooplankton. We found that the latter procedure tends to overestimate active flux while the opposite was observed with ETS-derived assessments. Our results show that carbon consumption in the shallow layers estimated from metabolic rates and the subsequent production of large faecal pellets should be considered in the assessment of active carbon flux in the ocean.

  6. Modeling the direct and indirect effects of copper on phytoplankton-zooplankton interactions.

    PubMed

    Prosnier, Loïc; Loreau, Michel; Hulot, Florence D

    2015-05-01

    Predicting the effects of pollution at the community level is difficult because of the complex impacts of ecosystem dynamics and properties. To predict the effects of copper on a plant-herbivore interaction in a freshwater ecosystem, we built a model that focuses on the interaction between an alga, Scenedesmus sp., and a herbivore, Daphnia sp. The model assumes logistic growth for Scenedesmus and a type II functional response for Daphnia. Internal copper concentrations in Scenedesmus and Daphnia are calculated using a biodynamic model. We include two types of direct effects of copper on Scenedesmus and Daphnia that results from hormesis: a deficiency effect at low concentration and a toxic effect at high concentration. We perform a numerical analysis to predict the combined effects of copper and nutrient enrichment on the Scenedesmus-Daphnia interaction. Results show three types of outcomes depending on copper concentration. First, low (4 ?g L(-1)) and high (50 ?g L(-1)) copper concentrations cause deficiency and toxicity, respectively, leading to the extinction of all populations; for less extreme concentrations (between 4 and 5 ?g L(-1) and between 16.5 and 50 ?g L(-1)), only the consumer population becomes extinct. The two populations survive with intermediate concentrations. Second, when population dynamics present oscillations, copper has a stabilizing effect and reduces or suppresses oscillations. Third, copper, on account of its stabilizing effect, opposes the destabilizing effect of nutrient enrichment. Our model shows that (1) Daphnia is affected by copper at lower concentrations when community interactions are taken into account than when analyzed alone, and (2) counterintuitive effects may arise from the interaction between copper pollution and nutrient enrichment. Our model also suggests that single-value parameters such as NOEC and LOEC, which do not take community interactions into account to characterize pollutants effects, are unable to determine pollutant effects in complex ecosystems. More generally, our model underscores the importance of ecosystem-scale studies to predict the effects of pollutants. PMID:25781394

  7. Zooplankton in the Arctic outflow

    NASA Astrophysics Data System (ADS)

    Soloviev, K. A.; Dritz, A. V.; Nikishina, A. B.

    2009-04-01

    Climate changes in the Arctic cause the changes in the current system that may have cascading effect on the structure of plankton community and consequently on the interlinked and delicately balanced food web. Zooplankton species are by definition incapable to perform horizontal moving. Their transport is connected with flowing water. There are zooplankton species specific for the definite water masses and they can be used as markers for the different currents. That allows us to consider zooplankton community composition as a result of water mixing in the studied area. Little is known however about the mechanisms by which spatial and temporal variability in advection affect dynamics of local populations. Ice conditions are also very important in the function of pelagic communities. Melting time is the trigger to all "plankton blooming" processes, and the duration of ice-free conditions determines the food web development in the future. Fram Strait is one of the key regions for the Arctic: the cold water outflow comes through it with the East Greenland Current and meets warm Atlantic water, the West Spitsbergen Current, producing complicated hydrological situation. During 2007 and 2008 we investigated the structure functional characteristics of zooplankton community in the Fram Strait region onboard KV "Svalbard" (April 2007, April and May 2008) and RV "Jan Mayen" (May 2007, August 2008). This study was conducted in frame of iAOOS Norway project "Closing the loop", which, in turn, was a part of IPY. During this cruises multidisciplinary investigations were performed, including sea-ice observations, CTD and ADCP profiling, carbon flux, nutrients and primary production measurements, phytoplankton sampling. Zooplankton was collected with the Hydro-Bios WP2 net and MultiNet Zooplankton Sampler, (mouth area 0.25 m2, mesh size 180 um).Samples were taken from the depth strata of 2000-1500, 1500-1000, 1000-500,500-200, 200-100, 100-60, 60-30, 30-0 m. Gut fluorescence content were measured in dominant species to investigate effect of Chl a concentration and phytoplankton composition on ingestion rate. Egg production experiments were carried out under different food conditions. Rare deep water zooplankton species were also investigated to increase our knowledge in the Arctic biodiversity. Copepods Calanus finmarchicus is known as a marker of the Atlantic water mass, Calanus glacialis and Calanus hyperboreus, vice versa, are the coldwater Arctic species. In our study we investigated three Calanus species distribution and analyzed their ecological status. Changes in zooplankton composition results in the alteration of energy transfer within the pelagic food web ("cold" and "warm" scenarios) with potential consequences for growth and survival of seabirds Little Auk (Alle alle) and Black-legged kittiwake (Rissa tridactyla). We discuss the advection effect on the zooplankton community, compare the population development phases with phytoplankton bloom phases (match-mismatch), estimate grazing impact on phytoplankton community and consider different life strategies for the three different Calanus species.

  8. Modeling Honey Bee Populations

    PubMed Central

    Torres, David J.; Ricoy, Ulises M.; Roybal, Shanae

    2015-01-01

    Eusocial honey bee populations (Apis mellifera) employ an age stratification organization of egg, larvae, pupae, hive bees and foraging bees. Understanding the recent decline in honey bee colonies hinges on understanding the factors that impact each of these different age castes. We first perform an analysis of steady state bee populations given mortality rates within each bee caste and find that the honey bee colony is highly susceptible to hive and pupae mortality rates. Subsequently, we study transient bee population dynamics by building upon the modeling foundation established by Schmickl and Crailsheim and Khoury et al. Our transient model based on differential equations accounts for the effects of pheromones in slowing the maturation of hive bees to foraging bees, the increased mortality of larvae in the absence of sufficient hive bees, and the effects of food scarcity. We also conduct sensitivity studies and show the effects of parameter variations on the colony population. PMID:26148010

  9. Zooplankton mortality in 3D ecosystem modelling considering variable spatial-temporal fish consumptions in the North Sea

    NASA Astrophysics Data System (ADS)

    Maar, Marie; Rindorf, Anna; Møller, Eva Friis; Christensen, Asbjørn; Madsen, Kristine S.; van Deurs, Mikael

    2014-05-01

    We tested the feasibility of imposing mesozooplankton mortality into a 3D model based on estimated consumption rates of the dominant planktivorous fish in the North Sea-Kattegat area. The spatial biomass distribution of Atlantic herring (Clupea harengus), horse mackerel (Trachurus trachurus), Atlantic mackerel (Scomber scombrus), sandeel (Ammodytidae) and European sprat (Sprattus sprattus) was derived from quarterly scientific trawl surveys and Danish commercial catches. Spatio-temporal indices of mortality were created based on the estimated biomasses and ingestion rates from the literature. The fish larvae grazing pressure was obtained from a spatial, size-based larval community model. In this model, larvae, herring and sandeel were the most important fish predators on mesozooplankton, but these groups had different spatial and temporal (seasonal) distributions. Fish larvae were particularly dominant in the eastern and southern areas in early summer. Herring and sandeel had the highest consumption in the central and north-western areas and were more important in late summer. The fish index changed the perceived annual, seasonal and spatial patterns in modelled mesozooplankton biomass, production and mortality. In the present study, the index was kept relatively simple and can be further developed with respect to the description of fish as well carnivorous zooplankton ingestion rates. The data input required to create the fish index is (i) planktivorous fish stock biomasses and (ii) relative fish spawning distribution information and (iii) physics (ocean currents and temperatures) for the region and situation of interest. The fish index seems promising as a realistic mortality term for lower trophic levels in 3D ecosystem models in areas with available data on fish stocks to improve management of marine resources.

  10. Global Dynamics of Zooplankton and Harmful Algae in Flowing Habitats

    E-print Network

    Hsu, Sze-Bi

    Global Dynamics of Zooplankton and Harmful Algae in Flowing Habitats Sze-Bi Hsu Feng-Bin Wang Xiao from the dynamics of harmful algae and zooplankton in flowing- water habitats where a main channel. For the system modeling the dynamics of algae and their toxin that contains little limiting nutrient, we

  11. Phytoplankton-zooplankton dynamics in periodic environments taking into account eutrophication.

    PubMed

    Luo, Jinhuo

    2013-10-01

    In this paper, we derive and analyze a mathematical model for the interactions between phytoplankton and zooplankton in a periodic environment, in which the growth rate and the intrinsic carrying-capacity of phytoplankton are changing with respect to time and nutrient concentration. A threshold value: "Predator's average growth rate" is introduced and it is proved that the phytoplankton-zooplankton ecosystem is permanent (both populations survive cronically) and possesses a periodic solution if and only if the value is positive. We use TP (Total Phosphorus) concentration to mark the degree of eutrophication. Based on experimental data, we fit the growth rate function and the environmental carrying capacity function with temperature and nutrient concentration as independent variables. Using measured data of temperature on water bodies we fit a periodic temperature function of time, and this leads the growth rate and intrinsic carrying-capacity of phytoplankton to be periodic functions of time. Thus we establish a periodic system with TP concentration as parameter. The simulation results reveal a high diversity of population levels of the ecosystem that are mainly sensitive to TP concentration and the death-rate of zooplankton. It illustrates that the eruption of algal bloom is mainly resulted from the increasing of nutrient concentration while zooplankton only plays a role to alleviate the scale of algal bloom, which might be used to explain the mechanism of algal bloom occurrence in many natural waters. What is more, our results provide a better understanding of the traditional manipulation method. PMID:23791607

  12. Vertical distribution of zooplankton: density dependence and evidence for an ideal free distribution with costs

    PubMed Central

    Lampert, Winfried

    2005-01-01

    Background In lakes with a deep-water algal maximum, herbivorous zooplankton are faced with a trade-off between high temperature but low food availability in the surface layers and low temperature but sufficient food in deep layers. It has been suggested that zooplankton (Daphnia) faced with this trade-off distribute vertically according to an "Ideal Free Distribution (IFD) with Costs". An experiment has been designed to test the density (competition) dependence of the vertical distribution as this is a basic assumption of IFD theory. Results Experiments were performed in large, indoor mesocosms (Plankton Towers) with a temperature gradient of 10°C and a deep-water algal maximum established below the thermocline. As expected, Daphnia aggregated at the interface between the two different habitats when their density was low. The distribution spread asymmetrically towards the algal maximum when the density increased until 80 % of the population dwelled in the cool, food-rich layers at high densities. Small individuals stayed higher in the water column than large ones, which conformed with the model for unequal competitors. Conclusion The Daphnia distribution mimics the predictions of an IFD with costs model. This concept is useful for the analysis of zooplankton distributions under a large suite of environmental conditions shaping habitat suitability. Fish predation causing diel vertical migrations can be incorporated as additional costs. This is important as the vertical location of grazing zooplankton in a lake affects phytoplankton production and species composition, i.e. ecosystem function. PMID:15813974

  13. Modeling Exponential Population Growth

    ERIC Educational Resources Information Center

    McCormick, Bonnie

    2009-01-01

    The concept of population growth patterns is a key component of understanding evolution by natural selection and population dynamics in ecosystems. The National Science Education Standards (NSES) include standards related to population growth in sections on biological evolution, interdependence of organisms, and science in personal and social…

  14. Estimating In Situ Zooplankton Non-Predation Mortality in an Oligo-Mesotrophic Lake from Sediment Trap Data: Caveats and Reality Check

    PubMed Central

    Dubovskaya, Olga P.; Tang, Kam W.; Gladyshev, Michail I.; Kirillin, Georgiy; Buseva, Zhanna; Kasprzak, Peter; Tolomeev, Aleksandr P.; Grossart, Hans-Peter

    2015-01-01

    Background Mortality is a main driver in zooplankton population biology but it is poorly constrained in models that describe zooplankton population dynamics, food web interactions and nutrient dynamics. Mortality due to non-predation factors is often ignored even though anecdotal evidence of non-predation mass mortality of zooplankton has been reported repeatedly. One way to estimate non-predation mortality rate is to measure the removal rate of carcasses, for which sinking is the primary removal mechanism especially in quiescent shallow water bodies. Objectives and Results We used sediment traps to quantify in situ carcass sinking velocity and non-predation mortality rate on eight consecutive days in 2013 for the cladoceran Bosmina longirostris in the oligo-mesotrophic Lake Stechlin; the outcomes were compared against estimates derived from in vitro carcass sinking velocity measurements and an empirical model correcting in vitro sinking velocity for turbulence resuspension and microbial decomposition of carcasses. Our results show that the latter two approaches produced unrealistically high mortality rates of 0.58-1.04 d-1, whereas the sediment trap approach, when used properly, yielded a mortality rate estimate of 0.015 d-1, which is more consistent with concurrent population abundance data and comparable to physiological death rate from the literature. Ecological implications Zooplankton carcasses may be exposed to water column microbes for days before entering the benthos; therefore, non-predation mortality affects not only zooplankton population dynamics but also microbial and benthic food webs. This would be particularly important for carbon and nitrogen cycles in systems where recurring mid-summer decline of zooplankton population due to non-predation mortality is observed. PMID:26146995

  15. Rapid local adaptation mediates zooplankton community assembly in experimental mesocosms.

    PubMed

    Pantel, Jelena H; Duvivier, Cathy; Meester, Luc De

    2015-10-01

    Adaptive evolution can occur over similar timescales as ecological processes such as community assembly, but its particular effects on community assembly and structure and their magnitude are poorly understood. In experimental evolution trials, Daphnia magna were exposed to varying environments (presence and absence of fish and artificial macrophytes) for 2 months. Then, in a common gardening experiment, we compared zooplankton community composition when either experimentally adapted or D. magna from the original population were present. Local adaptation of D. magna significantly altered zooplankton community composition, leading to a suppression of abundances for some zooplankton taxa and facilitation for others. The effect size of D. magna adaptation was similar to that of adding fish or macrophytes to mesocosms, two important drivers of zooplankton community structure. Our results suggest that substantial amounts of variation in community composition in natural systems may be unexplained if evolutionary dynamics are ignored. PMID:26251339

  16. Zooplankton of West Madagascar

    NASA Astrophysics Data System (ADS)

    Bemiasa, John; Remanevy, Sitraka

    2014-05-01

    During six week survey (August - October 2009) in Western and Northern coast of Madagascar, the R/V 'Dr. Fridtjof Nansen' has carried out a study of the pelagic ecosystem. In collaboration with Agulhas & Somali Current Large Marine Ecosystems project (ASCLME) and South West Indian Ocean Fisheries Project (SWIOFP), the aim of the survey was to establish the physical, chemical and biological characteristics of the Western Madagascar shelf region as a whole. Zooplankton samples were collected with Hydrobios Multinet at all environmental stations ranging from 200 m depth to the surface. The Multinet was equipped with 5 nets for depth-stratified sampling. The nets were fitted with 180 µm mesh size and the water flow through the nets was measured. The Multinet was deployed and retrieved at a rate of ~ 1.5 m per second and was obliquely hauled. The five nets were triggered at the pre-selected depth intervals 0-25m, 25-50m, 50-80m, 80-120m and 120-200m. All samples were stored in marked bottles and preserved with buffered formaldehyde of 4% for further analysis. As results,the zooplankton abundance was influenced by physico-chemical factors. During the study period 34 Family of zooplankton were identified which are dominated by Copepoda (58,69%) followed by Radiolaria (12,06%), Appendicularia (6,47%), Sagitta (5,11%), Larvae (4,57%), Ostracoda (3,13%), pelagic Foraminifera (2,15%). Family of zooplankton with abundance <1% were also recorded, namely Salpidae (0,94%), Euphausiacea (0,44%), Tintinnidae (0,39%), Annélidae Polychètes (0,34%), Mysidacea (0,21%), Ptéropodae (0,13%). Highest number of zooplankton were found at the depth below the maximum of fluorescence during the day. Copepods distribution depends on site and depth. During this study, the number of identified species is always superior to 50 for all sampling sites. The findings of the present study will help to improve the scientific knowledge of the marine ecosystem of the west coast of Madagascar.

  17. Global dynamics of zooplankton and harmful algae in flowing habitats

    NASA Astrophysics Data System (ADS)

    Hsu, Sze-Bi; Wang, Feng-Bin; Zhao, Xiao-Qiang

    This paper is devoted to the study of two advection-dispersion-reaction models arising from the dynamics of harmful algae and zooplankton in flowing-water habitats where a main channel is coupled to a hydraulic storage zone, representing an ensemble of fringing coves on the shoreline. For the system modeling the dynamics of algae and their toxin that contains little limiting nutrient, we establish a threshold type result on the global attractivity in terms of the basic reproduction ratio for algae. For the model with zooplankton that eat the algae and are inhibited by the toxin produced by algae, we show that there exists a coexistence steady state and the zooplankton is uniformly persistent provided that two basic reproduction ratios for algae and zooplankton are greater than unity.

  18. Modeling Population Growth and Extinction

    ERIC Educational Resources Information Center

    Gordon, Sheldon P.

    2009-01-01

    The exponential growth model and the logistic model typically introduced in the mathematics curriculum presume that a population grows exclusively. In reality, species can also die out and more sophisticated models that take the possibility of extinction into account are needed. In this article, two extensions of the logistic model are considered,…

  19. Some population growth model Keny Chatain

    E-print Network

    Wohrer, Adrien

    Some population growth model Keny Chatain 15 f´evrier 2015 In this project, we studied various implementations of population growth models. After considering a model in which population growth is proportional to depend on population size. 1 An exponential growth model Here, we suppose that population size

  20. The zooplankton of the north sea

    NASA Astrophysics Data System (ADS)

    Fransz, H. G.; Colebrook, J. M.; Gamble, J. C.; Krause, M.

    This review summarizes available knowledge on herbivorous and omnivorous zooplankton of the North Sea. After an introductory chapter on history and general approach of zooplankton studies, the four main contributions review distribution patterns, cycles and trends in temporal variation, trophic interactions and population dyamics and production. The distribution of zooplankton species in relation to hydrography and origin of watermasses is described for copepods. It highlights the influence of Atlantic Ocean influx from the northwest, which to a large extent dominates the species composition and its seasonal variation in the summer-stratified waters. In contrast, the more neritic communities in the southeast region mainly depend on the local populations of the species abundant in coastal mixed waters. The chapter on cycles and trends in temporal variation discusses the differences in seasonal variation with respect to species, area, and community structure in terms of herbivores, omnivores and carnivores. The year-to-year changes are considered as dependent on the overwintering stocks and strategies. Patterns in long-term variation appearing from long-term data series are related to climatic changes, leading to two hypotheses with respect to the effects of changes in wind regime. The chapter on trophic interactions deals with the utilization of primary particulate production by planktonic herbivores and its variation in time and space. Emphasis is put on differences between north and south, which are partly due to differences in species composition, community structure and seasonal variation already discussed in foregoing chapters. The various aspects of copepod grazing are reviewed, but also the role of microzooplankton as both grazers and food organisms is brought to attention. The last chapter deals with population dynamics and production of key species. Seasonal fluctuations in abundance and biomass are discussed and related to underlying population processes and characteristics such as reproduction and life strategy, growth and development, and mortality. Secondary-production estimates inferred from biomass and growth rate estimates are discussed.

  1. Optimal Foraging by Zooplankton

    NASA Astrophysics Data System (ADS)

    Garcia, Ricardo; Moss, Frank

    2007-03-01

    We describe experiments with several species of the zooplankton, Daphnia, while foraging for food. They move in sequences: hop-pause-turn-hop etc. While we have recorded hop lengths, hop times, pause times and turning angles, our focus is on histograms representing the distributions of the turning angles. We find that different species, including adults and juveniles, move with similar turning angle distributions described by exponential functions. Random walk simulations and a theory based on active Brownian particles indicate a maximum in food gathering efficiency at an optimal width of the turning angle distribution. Foraging takes place within a fixed size food patch during a fixed time. We hypothesize that the exponential distributions were selected for survival over evolutionary time scales.

  2. Zooplankton and the total phosphorus chlorophyll a relationship: hierarchical Bayesian

    E-print Network

    Notre Dame, University of

    Zooplankton and the total phosphorus ­ chlorophyll a relationship: hierarchical Bayesian analysis: Zooplankton grazing is important in resolving residual variation around the total phosphorus ­ chlorophyll found consistent effects of total zooplankton biomass, but not zooplankton length, on chlorophyll a

  3. Biodiversity and ecosystem function in the Gulf of Maine: pattern and role of zooplankton and pelagic nekton.

    PubMed

    Johnson, Catherine L; Runge, Jeffrey A; Curtis, K Alexandra; Durbin, Edward G; Hare, Jonathan A; Incze, Lewis S; Link, Jason S; Melvin, Gary D; O'Brien, Todd D; Van Guelpen, Lou

    2011-01-01

    This paper forms part of a broader overview of biodiversity of marine life in the Gulf of Maine area (GoMA), facilitated by the GoMA Census of Marine Life program. It synthesizes current data on species diversity of zooplankton and pelagic nekton, including compilation of observed species and descriptions of seasonal, regional and cross-shelf diversity patterns. Zooplankton diversity in the GoMA is characterized by spatial differences in community composition among the neritic environment, the coastal shelf, and deep offshore waters. Copepod diversity increased with depth on the Scotian Shelf. On the coastal shelf of the western Gulf of Maine, the number of higher-level taxonomic groups declined with distance from shore, reflecting more nearshore meroplankton. Copepod diversity increased in late summer, and interdecadal diversity shifts were observed, including a period of higher diversity in the 1990s. Changes in species diversity were greatest on interannual scales, intermediate on seasonal scales, and smallest across regions, in contrast to abundance patterns, suggesting that zooplankton diversity may be a more sensitive indicator of ecosystem response to inter annual climate variation than zoo plankton abundance. Local factors such as bathymetry, proximity of the coast, and advection probably drive zooplankton and pelagic nekton diversity patterns in the GoMA, while ocean-basin scale diversity patterns probably contribute to the increase in diversity at the Scotian Shelf break, a zone of mixing between the cold-temperate community of the shelf and the warm-water community offshore. Pressing research needs include establishment of a comprehensive system for observing change in zooplankton and pelagic nekton diversity, enhanced observations of "underknown" but important functional components of the ecosystem, population and metapopulation studies, and development of analytical modeling tools to enhance understanding of diversity patterns and drivers. Ultimately, sustained observations and modeling analysis of biodiversity must be effectively communicated to managers and incorporated into ecosystem approaches for management of GoMA living marine resources. PMID:21304990

  4. Quantifying Preferences and Responsiveness of Marine Zooplankton to Changing Environmental Conditions using Microfluidics

    PubMed Central

    Merten, Christoph A.; Arendt, Detlev

    2015-01-01

    Global environmental change significantly affects marine species composition. However, analyzing the impact of these changes on marine zooplankton communities was so far mostly limited to assessing lethal doses through mortality assays and hence did not allow a direct assessment of the preferred conditions, or preferendum. Here, we use a microfluidic device to characterize individual behavior of actively swimming zooplankton, and to quantitatively determine their ecological preferendum. For the annelid zooplankton model Platynereis dumerilii we observe a broader pH preferendum than for the copepod Euterpina acutifrons, and reveal previously unrecognized sub-populations with different pH preferenda. For Platynereis, the minimum concentration difference required to elicit a response (responsiveness) is ~1 ?M for H+ and ~13.7 mM for NaCl. Furthermore, using laser ablations we show that olfactomedin-expressing sensory cells mediate chemical responsiveness in the Platynereis foregut. Taken together, our microfluidic approach allows precise assessment and functional understanding of environmental perception on planktonic behaviour. PMID:26517120

  5. Fission Models of Population Variability

    PubMed Central

    Thompson, E. A.

    1979-01-01

    Most models in population genetics are models of allele frequency, making implicit or explicit assumptions of equilibrium or constant population size. In recent papers, we have attempted to develop more appropriate models for the analysis of rare variant data in South American Indian tribes; these are branching process models for the total number of replicates of a variant allele. The spatial distribution of a variant may convey information about its history and characteristics, and this paper extends previous models to take this factor into consideration. A model of fission into subdivisions is superimposed on the previous branching process, and variation between subdivisions is considered. The case where fission is nonrandom and the locations of like alleles are initially positively associated, as would happen were a tribal cluster or village to split on familial lines, is also analyzed. The statistics developed are applied to Yanomama Indian data on rare genetic variants. Due to insufficient time depth, no definitive new inferences can be drawn, but the analysis shows that this model provides results consistent with previous conclusions, and demonstrates the general type of question that may be answered by the approach taken here. In particular, striking confirmation of a higher-than-average growth rate, and hence smaller-than-previously-estimated age, is obtained for the Yan2 serum albumen variant. PMID:535728

  6. Robust population management under uncertainty for structured population models

    E-print Network

    Rebarber, Richard

    of uncertainties on long-term population growth or decay.4 Many decisions for threatened and endangered species model (determined by the data) for the population in question predicts long-term growth.9 Our goal. If a population growth rate of 3% or greater is desired, the acceptable error in19 adult survival decreases

  7. Role of zooplankton dynamics for Southern Ocean phytoplankton biomass and global biogeochemical cycles

    NASA Astrophysics Data System (ADS)

    Le Quéré, C.; Buitenhuis, E. T.; Moriarty, R.; Alvain, S.; Aumont, O.; Bopp, L.; Chollet, S.; Enright, C.; Franklin, D. J.; Geider, R. J.; Harrison, S. P.; Hirst, A.; Larsen, S.; Legendre, L.; Platt, T.; Prentice, I. C.; Rivkin, R. B.; Sathyendranath, S.; Stephens, N.; Vogt, M.; Sailley, S.; Vallina, S. M.

    2015-07-01

    Global ocean biogeochemistry models currently employed in climate change projections use highly simplified representations of pelagic food webs. These food webs do not necessarily include critical pathways by which ecosystems interact with ocean biogeochemistry and climate. Here we present a global biogeochemical model which incorporates ecosystem dynamics based on the representation of ten plankton functional types (PFTs); six types of phytoplankton, three types of zooplankton, and heterotrophic bacteria. We improved the representation of zooplankton dynamics in our model through (a) the explicit inclusion of large, slow-growing zooplankton, and (b) the introduction of trophic cascades among the three zooplankton types. We use the model to quantitatively assess the relative roles of iron vs. grazing in determining phytoplankton biomass in the Southern Ocean High Nutrient Low Chlorophyll (HNLC) region during summer. When model simulations do not represent crustacean macrozooplankton grazing, they systematically overestimate Southern Ocean chlorophyll biomass during the summer, even when there was no iron deposition from dust. When model simulations included the developments of the zooplankton component, the simulation of phytoplankton biomass improved and the high chlorophyll summer bias in the Southern Ocean HNLC region largely disappeared. Our model results suggest that the observed low phytoplankton biomass in the Southern Ocean during summer is primarily explained by the dynamics of the Southern Ocean zooplankton community rather than iron limitation. This result has implications for the representation of global biogeochemical cycles in models as zooplankton faecal pellets sink rapidly and partly control the carbon export to the intermediate and deep ocean.

  8. Matrix population models from 20 studies of perennial plant populations

    USGS Publications Warehouse

    Ellis, Martha M.; Williams, Jennifer L.; Lesica, Peter; Bell, Timothy J.; Bierzychudek, Paulette; Bowles, Marlin; Crone, Elizabeth E.; Doak, Daniel F.; Ehrlen, Johan; Ellis-Adam, Albertine; McEachern, Kathryn; Ganesan, Rengaian; Latham, Penelope; Luijten, Sheila; Kaye, Thomas N.; Knight, Tiffany M.; Menges, Eric S.; Morris, William F.; den Nijs, Hans; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F.; Shelly, J. Stephen; Stanley, Amanda; Thorpe, Andrea; Tamara, Ticktin; Valverde, Teresa; Weekley, Carl W.

    2012-01-01

    Demographic transition matrices are one of the most commonly applied population models for both basic and applied ecological research. The relatively simple framework of these models and simple, easily interpretable summary statistics they produce have prompted the wide use of these models across an exceptionally broad range of taxa. Here, we provide annual transition matrices and observed stage structures/population sizes for 20 perennial plant species which have been the focal species for long-term demographic monitoring. These data were assembled as part of the 'Testing Matrix Models' working group through the National Center for Ecological Analysis and Synthesis (NCEAS). In sum, these data represent 82 populations with >460 total population-years of data. It is our hope that making these data available will help promote and improve our ability to monitor and understand plant population dynamics.

  9. Matrix population models from 20 studies of perennial plant populations

    USGS Publications Warehouse

    Ellis, Martha M.; Williams, Jennifer L.; Lesica, Peter; Bell, Timothy J.; Bierzychudek, Paulette; Bowles, Marlin; Crone, Elizabeth E.; Doak, Daniel F.; Ehrlen, Johan; Ellis-Adam, Albertine; McEachern, Kathryn; Ganesan, Rengaian; Latham, Penelope; Luijten, Sheila; Kaye, Thomas N.; Knight, Tiffany M.; Menges, Eric S.; Morris, William F.; den Nijs, Hans; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F.; Shelly, J. Stephen; Stanley, Amanda; Thorpe, Andrea; Tamara, Ticktin; Valverde, Teresa; Weekley, Carl W.

    2012-01-01

    Demographic transition matrices are one of the most commonly applied population models for both basic and applied ecological research. The relatively simple framework of these models and simple, easily interpretable summary statistics they produce have prompted the wide use of these models across an exceptionally broad range of taxa. Here, we provide annual transition matrices and observed stage structures/population sizes for 20 perennial plant species which have been the focal species for long-term demographic monitoring. These data were assembled as part of the "Testing Matrix Models" working group through the National Center for Ecological Analysis and Synthesis (NCEAS). In sum, these data represent 82 populations with >460 total population-years of data. It is our hope that making these data available will help promote and improve our ability to monitor and understand plant population dynamics.

  10. Zooplankton Distribution in Four Western Norwegian Fjords

    NASA Astrophysics Data System (ADS)

    Gorsky, G.; Flood, P. R.; Youngbluth, M.; Picheral, M.; Grisoni, J.-M.

    2000-01-01

    A multi-instrumental array constructed in the Laboratoire d'Ecologie du Plancton Marin in Villefranche sur mer, France, named the Underwater Video Profiler (UVP), was used to investigate the vertical distribution of zooplankton in four western Norwegian fjords in the summer 1996. Six distinct zoological groups were monitored. The fauna included: (a) small crustaceans (mainly copepods), (b) ctenophores (mainly lobates), (c) siphonophores (mainly physonects), (d) a scyphomedusa Periphylla periphylla, (e) chaetognaths and (f) appendicularians. The use of the non-disturbing video technique demonstrated that the distribution of large zooplankton is heterogeneous vertically and geographically. Furthermore, the abundance of non-migrating filter feeders in the deep basins of the fjords indicates that there is enough food (living and non-living particulate organic matter) to support their dietary needs. This adaptation may be considered as a strategy for survival in fjords. Specifically, living in dark, deep water reduces visual predation and population loss encountered in the upper layer due to advective processes.

  11. Resurrecting the ghost of competition past with dormant zooplankton eggs.

    PubMed

    Steiner, Christopher F; Cáceres, Carla E; Smith, Sigrid D P

    2007-03-01

    A common prediction of evolutionary theory is that the strength of interspecific competition should decline over time among sympatric populations of competing species. Here we provide experimental evidence of historical declines in competition effects among competing zooplankton populations. Using diapausing eggs, we resurrected clones of three species of zooplankton obtained from different periods of community assembly in a single lake. We show that clones of Daphnia ambigua obtained from early in assembly when D. ambigua was dominant became extinct in competition with clones of Daphnia pulicaria and Daphnia dentifera (the current lake dominants). In contrast, D. ambigua clones obtained from later in the lake's history experienced weaker competition effects and persisted with D. dentifera. While we cannot rule out the role of intraspecific competition within D. ambigua, our results are in line with the view that natural selection favors reduced interaction strength among co-occurring species, facilitating coexistence and population persistence. PMID:17238127

  12. A three-dimensional biophysical model of Karenia brevis dynamics on the west Florida shelf: A look at physical transport and potential zooplankton grazing controls

    NASA Astrophysics Data System (ADS)

    Milroy, Scott P.; Dieterle, Dwight A.; He, Ruoying; Kirkpatrick, Gary J.; Lester, Kristen M.; Steidinger, Karen A.; Vargo, Gabriel A.; Walsh, John J.; Weisberg, Robert H.

    2008-01-01

    The development of accurate predictive models of toxic dinoflagellate blooms is of great ecological importance, particularly in regions that are most susceptible to their detrimental effects. This is especially true along the west Florida shelf (WFS) and coast, where episodic bloom events of the toxic dinoflagellate Karenia brevis often wreak havoc on the valuable commercial fisheries and tourism industries of west Florida. In an effort to explain the dynamics at work within the maintenance and termination phases of a red tide, a simple three-dimensional coupled biophysical model was used in the analysis of the October 1999 red tide offshore Sarasota, Florida. Results of the numerical experiments indicate that: (1) measured and modeled flowfields were capable of transporting the observed offshore inoculum of K. brevis to within 16 km of the coastal boundary; (2) background concentrations (1000 cells L -1) of K. brevis could grow to a red tide of over 2×10 6 cells L -1 in little more than a month, assuming an estuarine initiation site with negligible offshore advection, no grazing losses, negligible competition from other phytoplankton groups, and no nutrient limitation; (3) maximal grazing pressure could not prevent the initiation of a red tide or cause its termination, assuming no other losses to algal biomass and a zooplankton community ingestion rate similar to that of Acartia tonsa; and (4) the light-cued ascent behavior of K. brevis served as an aggregational mechanism, concentrating K. brevis at the 55 ?E m -2 s -1 isolume when mean concentrations of K. brevis exceeded 100,000 cells L -1. Further improvements in model fidelity will be accomplished by the future inclusion of phytoplankton competitors, disparate nutrient availability and limitation schemes, a more realistic rendering of the spectral light field and the attendant effects of photo-inhibition and compensation, and a mixed community of vertically-migrating proto- and metazoan grazers. These model refinements are currently under development and shall be used to aid progress toward an operational model of red tide forecasting along the WFS.

  13. Modeling population dynamics: A quantile approach.

    PubMed

    Chavas, Jean-Paul

    2015-04-01

    The paper investigates the modeling of population dynamics, both conceptually and empirically. It presents a reduced form representation that provides a flexible characterization of population dynamics. It leads to the specification of a threshold quantile autoregression (TQAR) model, which captures nonlinear dynamics by allowing lag effects to vary across quantiles of the distribution as well as with previous population levels. The usefulness of the model is illustrated in an application to the dynamics of lynx population. We find statistical evidence that the quantile autoregression parameters vary across quantiles (thus rejecting the AR model as well as the TAR model) as well as with past populations (thus rejecting the quantile autoregression QAR model). The results document the nature of dynamics and cycle in the lynx population over time. They show how both the period of the cycle and the speed of population adjustment vary with population level and environmental conditions. PMID:25661501

  14. Amerciamysis bahia Stochastic Matrix Population Model for Laboratory Populations

    EPA Science Inventory

    The population model described here is a stochastic, density-independent matrix model for integrating the effects of toxicants on survival and reproduction of the marine invertebrate, Americamysis bahia. The model was constructed using Microsoft® Excel 2003. The focus of the mode...

  15. Algal viruses hitchhiking on zooplankton across phytoplankton blooms.

    PubMed

    Frada, Miguel J; Vardi, Assaf

    2015-01-01

    Viruses infecting marine phytoplankton are key biogeochemical 'engines' of the oceans, regulating the dynamics of algal populations and the fate of their extensive blooms. In addition they are important ecological and evolutionary drivers of microbial diversification. Yet, little is known about mechanisms influencing viral dispersal in aquatic systems, enabling the rapid infection and demise of vast phytoplankton blooms. In a recent study we showed that migrating zooplankton as copepods that graze on marine phytoplankton can act as transmission vectors for algal viruses. We demonstrated that these grazers can concentrate virions through topical adsorption and by ingesting infected cells and then releasing back to the medium, via detachment or defecation, high viral titers that readily infect host populations. We proposed that this zooplankton-driven process can potentially boost viral dispersal over wide oceanic scales and enhance bloom termination. Here, we highlight key results and further discuss the ecological and evolutionary consequences of our findings. PMID:26479489

  16. Algal viruses hitchhiking on zooplankton across phytoplankton blooms

    PubMed Central

    Frada, Miguel J; Vardi, Assaf

    2015-01-01

    Viruses infecting marine phytoplankton are key biogeochemical ‘engines’ of the oceans, regulating the dynamics of algal populations and the fate of their extensive blooms. In addition they are important ecological and evolutionary drivers of microbial diversification. Yet, little is known about mechanisms influencing viral dispersal in aquatic systems, enabling the rapid infection and demise of vast phytoplankton blooms. In a recent study we showed that migrating zooplankton as copepods that graze on marine phytoplankton can act as transmission vectors for algal viruses. We demonstrated that these grazers can concentrate virions through topical adsorption and by ingesting infected cells and then releasing back to the medium, via detachment or defecation, high viral titers that readily infect host populations. We proposed that this zooplankton-driven process can potentially boost viral dispersal over wide oceanic scales and enhance bloom termination. Here, we highlight key results and further discuss the ecological and evolutionary consequences of our findings. PMID:26479489

  17. Habitat Heterogeneity Determines Climate Impact on Zooplankton Community Structure and Dynamics

    PubMed Central

    Otto, Saskia A.; Diekmann, Rabea; Flinkman, Juha; Kornilovs, Georgs; Möllmann, Christian

    2014-01-01

    Understanding and predicting species distribution in space and time and consequently community structure and dynamics is an important issue in ecology, and particularly in climate change research. A crucial factor determining the composition and dynamics of animal populations is habitat heterogeneity, i.e., the number of structural elements in a given locality. In the marine pelagic environment habitat heterogeneity is represented by the distribution of physical oceanographic parameters such as temperature, salinity and oxygen that are closely linked to atmospheric conditions. Little attention has been given, however, to the role of habitat heterogeneity in modulating the response of animal communities to external climate forcing. Here we investigate the long-term dynamics of Acartia spp., Temora longicornis, and Pseudocalanus acuspes, three dominant zooplankton species inhabiting different pelagic habitats in the Central Baltic Sea (CBS). We use the three copepods as indicator species for changes in the CBS zooplankton community and apply non-linear statistical modeling techniques to compare spatial population trends and to identify their drivers. We demonstrate that effects of climate variability and change depend strongly on species-specific habitat utilization, being more direct and pronounced at the upper water layer. We propose that the differential functional response to climate-related drivers in relation to strong habitat segregation is due to alterations of the species’ environmental niches. We stress the importance of understanding how anticipated climate change will affect ecological niches and habitats in order to project spatio-temporal changes in species abundance and distribution. PMID:24614110

  18. Habitat heterogeneity determines climate impact on zooplankton community structure and dynamics.

    PubMed

    Otto, Saskia A; Diekmann, Rabea; Flinkman, Juha; Kornilovs, Georgs; Möllmann, Christian

    2014-01-01

    Understanding and predicting species distribution in space and time and consequently community structure and dynamics is an important issue in ecology, and particularly in climate change research. A crucial factor determining the composition and dynamics of animal populations is habitat heterogeneity, i.e., the number of structural elements in a given locality. In the marine pelagic environment habitat heterogeneity is represented by the distribution of physical oceanographic parameters such as temperature, salinity and oxygen that are closely linked to atmospheric conditions. Little attention has been given, however, to the role of habitat heterogeneity in modulating the response of animal communities to external climate forcing. Here we investigate the long-term dynamics of Acartia spp., Temora longicornis, and Pseudocalanus acuspes, three dominant zooplankton species inhabiting different pelagic habitats in the Central Baltic Sea (CBS). We use the three copepods as indicator species for changes in the CBS zooplankton community and apply non-linear statistical modeling techniques to compare spatial population trends and to identify their drivers. We demonstrate that effects of climate variability and change depend strongly on species-specific habitat utilization, being more direct and pronounced at the upper water layer. We propose that the differential functional response to climate-related drivers in relation to strong habitat segregation is due to alterations of the species' environmental niches. We stress the importance of understanding how anticipated climate change will affect ecological niches and habitats in order to project spatio-temporal changes in species abundance and distribution. PMID:24614110

  19. Evaluation of the zooplankton community of Livingston Reservoir, Texas, as related to paddlefish food resources 

    E-print Network

    Moore, Casey Kenneth

    1993-01-01

    abundances near the Trinity River inflow and Livingston dam. Zooplankton were evenly distributed among the openwater and backwater stations. Cladocerans and copepods exhibited strong diel vertical migrations. A bioenergetics model was developed to predict...

  20. Zooplankton community changes confound the biodilution theory of methylmercury accumulation in a recovering mercury-contaminated lake.

    PubMed

    Todorova, Svetoslava; Driscoll, Charles T; Matthews, David A; Effler, Steven W

    2015-04-01

    In this study, the biodilution hypothesis of methylmercury (MeHg) accumulation was examined in a Hg-contaminated ecosystem that has undergone concurrent changes in nutrient loading and zooplankton community composition. Using a long-term record of 17 years (between 1980 and 2009), we demonstrate that zooplankton MeHg concentrations in Onondaga Lake, NY, are strongly driven by changes in the zooplankton community and body size. MeHg concentrations in zooplankton increased with an increase in body size and biomass. The highest concentrations of MeHg were observed under eutrophic and hypereutrophic conditions when large-bodied Daphnia species, Daphnia pulicaria and Daphnia galeata mendotae, were present. Bioconcentration rather than biodilution was governing the accumulation of MeHg in zooplankton without apparent growth dilution or zooplankton biomass dilution. Algal-bloom dilution controlled the variability in the MeHg concentration only under hypereutrophic conditions when Ceriodaphnia predominated the cladoceran population. Our study demonstrates that changes in zooplankton community composition confound the biodilution theory in Onondaga Lake and that the presence of large-bodied zooplankton species drives elevated MeHg concentrations. PMID:25741879

  1. Zooplankton data: Vertical distributions of zooplankton in the Norweigian and Greenland Seas during summer, 1989

    SciTech Connect

    Lane, P.V.Z.; Smith, S.L.; Schwarting, E.M.

    1993-08-01

    Recent studies of zooplankton populations in the Greenland Sea have focused on processes at the Marginal Ice Zone (MIZ) and the areas immediately adjacent to it under the ice and in open water. These studies have shown a relatively short period of intense secondary productivity which is closely linked temporally and spatially to phytoplankton blooms occurring near the ice edge in spring and early summer. During the summer of 1989 we participated in a project focusing on benthic and water column processes in the basins of the Norwegian and Greenland Seas. This study allowed us to compare biological processes at the MIZ with those occurring in the open waters of the Greenland Sea, and to compare processes at both of these locations with those in the Norwegian Sea. The data presented in this report are the results of zooplankton net tows covering the upper 1000 meters of the water column over the Norwegian Sea basin and the Greenland Sea basin, and the upper 500 meters of open water adjacent to the MIZ in the Greenland Sea. Sampling was conducted between 12 and 29 July 1989.

  2. Constraining population synthesis models via the binary neutron star population

    E-print Network

    R. O'Shaughnessy; C. Kim; T. Frakgos; V. Kalogera; K. Belczynski

    2005-06-13

    The observed sample of double neutron-star (NS-NS) binaries presents a challenge to population-synthesis models of compact object formation: the parameters entering into these models must be carefully chosen so as to match (i) the observed star formation rate and (ii) the formation rate of NS-NS binaries, which can be estimated from the observed sample and the selection effects related to the discoveries with radio-pulsar surveys. In this paper, we select from an extremely broad family of possible population synthesis models those few (2%) which are consistent with the observed sample of NS-NS binaries. To further sharpen the constraints the observed NS-NS population places upon our understanding of compact-object formation processes, we separate the observed NS-NS population into two channels: (i) merging NS-NS binaries, which will inspiral and merge through the action of gravitational waves within $10 $ Gyr, and (ii) wide NS-NS binaries, consisting of all the rest. With the subset of astrophysically consistent models, we explore the implications for the rates at which double black hole (BH-BH), black hole-neutron star (BH-NS), and NS-NS binaries will merge through the emission of gravitational waves.

  3. Population Modelling with M&M's[R

    ERIC Educational Resources Information Center

    Winkel, Brian

    2009-01-01

    Several activities in which population dynamics can be modelled by tossing M&M's[R] candy are presented. Physical activities involving M&M's[R] can be modelled by difference equations and several population phenomena, including death and immigration, are studied. (Contains 1 note.)

  4. Modeling wildlife populations with HexSim

    EPA Science Inventory

    HexSim is a framework for constructing spatially-explicit, individual-based computer models designed for simulating terrestrial wildlife population dynamics and interactions. HexSim is useful for a broad set of modeling applications including population viability analysis for on...

  5. Ecosystem model-based approach for modelling the dynamics of 137Cs transfer to marine plankton populations: application to the western North Pacific Ocean after the Fukushima nuclear power plant accident

    NASA Astrophysics Data System (ADS)

    Belharet, M.; Estournel, C.; Charmasson, S.

    2015-06-01

    Huge amounts of radionuclides, especially 137Cs, were released into the western North Pacific Ocean after the Fukushima nuclear power plant (FNPP) accident that occurred on 11 March 2011, resulting in contamination of the marine biota. In this study we developed a radioecological model to estimate 137Cs concentrations in phytoplankton and zooplankton populations representing the lower levels of the pelagic trophic chain. We coupled this model to a lower trophic level ecosystem model and an ocean circulation model to take into account the site-specific environmental conditions in the area. The different radioecological parameters of the model were estimated by calibration, and a sensitivity analysis to parameter uncertainties was carried out, showing a high sensitivity of the model results, especially to the 137Cs concentration in seawater, to the rates of uptake from water and to the radionuclide assimilation efficiency for zooplankton. The results of the 137Cs concentrations in planktonic populations simulated in this study were then validated through comparison with the some data available in the region after the accident. The model results have shown that the maximum concentrations in plankton after the accident were about two to four orders of magnitude higher than those observed before the accident depending on the distance from FNPP. Finally, the maximum 137Cs absorbed dose rate for phyto- and zooplankton populations was estimated to be about 10-2 ?Gy h-1, and was, therefore, lower than the 10 ?Gy h-1 benchmark value defined in the ERICA assessment approach from which a measurable effect on the marine biota can be observed.

  6. The Career Counseling with Underserved Populations Model

    ERIC Educational Resources Information Center

    Pope, Mark

    2011-01-01

    Providing effective career counseling to culturally diverse individuals is not the same as helping those from majority cultures. The Career Counseling With Underserved Populations model aids career counselors in supporting underserved populations as they strive to address their important career counseling issues.

  7. Next Generation Sequencing Reveals the Hidden Diversity of Zooplankton Assemblages

    PubMed Central

    Harmer, Rachel A.; Somerfield, Paul J.; Atkinson, Angus

    2013-01-01

    Background Zooplankton play an important role in our oceans, in biogeochemical cycling and providing a food source for commercially important fish larvae. However, difficulties in correctly identifying zooplankton hinder our understanding of their roles in marine ecosystem functioning, and can prevent detection of long term changes in their community structure. The advent of massively parallel next generation sequencing technology allows DNA sequence data to be recovered directly from whole community samples. Here we assess the ability of such sequencing to quantify richness and diversity of a mixed zooplankton assemblage from a productive time series site in the Western English Channel. Methodology/Principle Findings Plankton net hauls (200 µm) were taken at the Western Channel Observatory station L4 in September 2010 and January 2011. These samples were analysed by microscopy and metagenetic analysis of the 18S nuclear small subunit ribosomal RNA gene using the 454 pyrosequencing platform. Following quality control a total of 419,041 sequences were obtained for all samples. The sequences clustered into 205 operational taxonomic units using a 97% similarity cut-off. Allocation of taxonomy by comparison with the National Centre for Biotechnology Information database identified 135 OTUs to species level, 11 to genus level and 1 to order, <2.5% of sequences were classified as unknowns. By comparison a skilled microscopic analyst was able to routinely enumerate only 58 taxonomic groups. Conclusions Metagenetics reveals a previously hidden taxonomic richness, especially for Copepoda and hard-to-identify meroplankton such as Bivalvia, Gastropoda and Polychaeta. It also reveals rare species and parasites. We conclude that Next Generation Sequencing of 18S amplicons is a powerful tool for elucidating the true diversity and species richness of zooplankton communities. While this approach allows for broad diversity assessments of plankton it may become increasingly attractive in future if sequence reference libraries of accurately identified individuals are better populated. PMID:24244737

  8. A Population Health Model for Integrated Assessment Models

    SciTech Connect

    Pitcher, Hugh M.; Ebi, Kristie L.; Brenkert, Antoinette L.

    2008-05-01

    This paper presents the initial results of a project to develop a population health model so we can extend the scenarios included in the IPCC's Special Report on Emissions Scenarios to include population health status.

  9. Modeling Small Stellar Populations Using Starburst99

    NASA Astrophysics Data System (ADS)

    Vazquez, Gerardo Arturo; Leitherer, Claus

    2015-08-01

    Stellar populations synthesis models have proven to be excellent tools to learn about galaxy evolution. However, modeling small stellar populations (lower than 105 M?) has been an intriguing and continuous to be a field of intensive research. In this work, we have developed a new approach to form stars from clusters first, where massive stars are formed from fractions of mass of small stellar clusters. This new approximation is based on the empirical power law (mc-2) for the mass function of clusters between 20-1100 M? found in recent years and the maximum stellar mass that can be formed in a cluster. Incorporating this new approach to form clusters has made us upgrade the way we integrate the stellar properties and the way that the isochrone is produced with a new technique. To produce the new models we have used the most recent version of Starburst99 that incorporates the most recent stellar evolution models with rotation. On the verge of solving nearby stellar populations and observing small stellar populations across the universe, this new approach brings a new scope on trying to disentangle the nature of hyper and supermassive stars in small stellar populations. In this work we present this new approach and the results when these models are applied to very energetic stellar populations such as the cluster in NGC 3603. Our most important result is that we have modeled the ionizing power of this cluster and some others by forming enough supermassive stars in a cluster of ~104 M?.

  10. Population-expression models of immune response

    NASA Astrophysics Data System (ADS)

    Stromberg, Sean P.; Antia, Rustom; Nemenman, Ilya

    2013-06-01

    The immune response to a pathogen has two basic features. The first is the expansion of a few pathogen-specific cells to form a population large enough to control the pathogen. The second is the process of differentiation of cells from an initial naive phenotype to an effector phenotype which controls the pathogen, and subsequently to a memory phenotype that is maintained and responsible for long-term protection. The expansion and the differentiation have been considered largely independently. Changes in cell populations are typically described using ecologically based ordinary differential equation models. In contrast, differentiation of single cells is studied within systems biology and is frequently modeled by considering changes in gene and protein expression in individual cells. Recent advances in experimental systems biology make available for the first time data to allow the coupling of population and high dimensional expression data of immune cells during infections. Here we describe and develop population-expression models which integrate these two processes into systems biology on the multicellular level. When translated into mathematical equations, these models result in non-conservative, non-local advection-diffusion equations. We describe situations where the population-expression approach can make correct inference from data while previous modeling approaches based on common simplifying assumptions would fail. We also explore how model reduction techniques can be used to build population-expression models, minimizing the complexity of the model while keeping the essential features of the system. While we consider problems in immunology in this paper, we expect population-expression models to be more broadly applicable.

  11. Melatonin Signaling Controls Circadian Swimming Behavior in Marine Zooplankton

    PubMed Central

    Tosches, Maria Antonietta; Bucher, Daniel; Vopalensky, Pavel; Arendt, Detlev

    2014-01-01

    Summary Melatonin, the “hormone of darkness,” is a key regulator of vertebrate circadian physiology and behavior. Despite its ubiquitous presence in Metazoa, the function of melatonin signaling outside vertebrates is poorly understood. Here, we investigate the effect of melatonin signaling on circadian swimming behavior in a zooplankton model, the marine annelid Platynereis dumerilii. We find that melatonin is produced in brain photoreceptors with a vertebrate-type opsin-based phototransduction cascade and a light-entrained clock. Melatonin released at night induces rhythmic burst firing of cholinergic neurons that innervate locomotor-ciliated cells. This establishes a nocturnal behavioral state by modulating the length and the frequency of ciliary arrests. Based on our findings, we propose that melatonin signaling plays a role in the circadian control of ciliary swimming to adjust the vertical position of zooplankton in response to ambient light. PMID:25259919

  12. A Stochastic Population Dynamics Model

    E-print Network

    Givens, Geof H.

    based on the deterministic model used for testing Aborig­ inal Whaling Management Procedures, which Group for the Development of an Aboriginal Whaling Management Procedure (AWMP). The group agreed is not individual­based: there is no accounting of in­ dividual whales to decide death, pregnancy, or other life

  13. FUNCTIONAL BIOASSAYS UTILIZING ZOOPLANKTON: A COMPARISON

    EPA Science Inventory

    Functional zooplankton bioassays based on ingestion, reproduction and respiration are described, with methods for a new ingestion bioassay included. ll bioassays are compared using three indices, including the variability of controls, the range of experimental responses, and a li...

  14. EFFECTS OF CHRONIC STRESS ON WILDLIFE POPULATIONS: A POPULATION MODELING APPROACH AND CASE STUDY

    EPA Science Inventory

    This chapter describes a matrix modeling approach to characterize and project risks to wildlife populations subject to chronic stress. Population matrix modeling was used to estimate effects of one class of environmental contaminants, dioxin-like compounds (DLCs), to populations ...

  15. Bivalves: From individual to population modelling

    NASA Astrophysics Data System (ADS)

    Saraiva, S.; van der Meer, J.; Kooijman, S. A. L. M.; Ruardij, P.

    2014-11-01

    An individual based population model for bivalves was designed, built and tested in a 0D approach, to simulate the population dynamics of a mussel bed located in an intertidal area. The processes at the individual level were simulated following the dynamic energy budget theory, whereas initial egg mortality, background mortality, food competition, and predation (including cannibalism) were additional population processes. Model properties were studied through the analysis of theoretical scenarios and by simulation of different mortality parameter combinations in a realistic setup, imposing environmental measurements. Realistic criteria were applied to narrow down the possible combination of parameter values. Field observations obtained in the long-term and multi-station monitoring program were compared with the model scenarios. The realistically selected modeling scenarios were able to reproduce reasonably the timing of some peaks in the individual abundances in the mussel bed and its size distribution but the number of individuals was not well predicted. The results suggest that the mortality in the early life stages (egg and larvae) plays an important role in population dynamics, either by initial egg mortality, larvae dispersion, settlement failure or shrimp predation. Future steps include the coupling of the population model with a hydrodynamic and biogeochemical model to improve the simulation of egg/larvae dispersion, settlement probability, food transport and also to simulate the feedback of the organisms' activity on the water column properties, which will result in an improvement of the food quantity and quality characterization.

  16. PM POPULATION EXPOSURE AND DOSE MODELS

    EPA Science Inventory

    The overall objective of this study is the development of a refined probabilistic exposure and dose model for particulate matter (PM) suitable for predicting PM10 and PM2.5 population exposures. This modeling research will be conducted both in-house by EPA scientists and through...

  17. Bayesian population modeling of drug dosing adherence.

    PubMed

    Fellows, Kelly; Stoneking, Colin J; Ramanathan, Murali

    2015-10-01

    Adherence is a frequent contributing factor to variations in drug concentrations and efficacy. The purpose of this work was to develop an integrated population model to describe variation in adherence, dose-timing deviations, overdosing and persistence to dosing regimens. The hybrid Markov chain-von Mises method for modeling adherence in individual subjects was extended to the population setting using a Bayesian approach. Four integrated population models for overall adherence, the two-state Markov chain transition parameters, dose-timing deviations, overdosing and persistence were formulated and critically compared. The Markov chain-Monte Carlo algorithm was used for identifying distribution parameters and for simulations. The model was challenged with medication event monitoring system data for 207 hypertension patients. The four Bayesian models demonstrated good mixing and convergence characteristics. The distributions of adherence, dose-timing deviations, overdosing and persistence were markedly non-normal and diverse. The models varied in complexity and the method used to incorporate inter-dependence with the preceding dose in the two-state Markov chain. The model that incorporated a cooperativity term for inter-dependence and a hyperbolic parameterization of the transition matrix probabilities was identified as the preferred model over the alternatives. The simulated probability densities from the model satisfactorily fit the observed probability distributions of adherence, dose-timing deviations, overdosing and persistence parameters in the sample patients. The model also adequately described the median and observed quartiles for these parameters. The Bayesian model for adherence provides a parsimonious, yet integrated, description of adherence in populations. It may find potential applications in clinical trial simulations and pharmacokinetic-pharmacodynamic modeling. PMID:26319548

  18. Spatial uncertainty analysis of population models

    SciTech Connect

    Jager, Yetta; King, Anthony Wayne; Schumaker, Nathan; Ashwood, Tom L; Jackson, Barbara L

    2004-01-01

    This paper describes an approach for conducting spatial uncertainty analysis of spatial population models, and illustrates the ecological consequences of spatial uncertainty for landscapes with different properties. Spatial population models typically simulate birth, death, and migration on an input map that describes habitat. Typically, only a single reference map is available, but we can imagine that a collection of other, slightly different, maps could be drawn to represent a particular species' habitat. As a first approximation, our approach assumes that spatial uncertainty (i.e., the variation among values assigned to a location by such a collection of maps) is constrained by characteristics of the reference map, regardless of how the map was produced. Our approach produces lower levels of uncertainty than alternative methods used in landscape ecology because we condition our alternative landscapes on local properties of the reference map. Simulated spatial uncertainty was higher near the borders of patches. Consequently, average uncertainty was highest for reference maps with equal proportions of suitable and unsuitable habitat, and no spatial autocorrelation. We used two population viability models to evaluate the ecological consequences of spatial uncertainty for landscapes with different properties. Spatial uncertainty produced larger variation among predictions of a spatially explicit model than those of a spatially implicit model. Spatially explicit model predictions of final female population size varied most among landscapes with enough clustered habitat to allow persistence. In contrast, predictions of population growth rate varied most among landscapes with only enough clustered habitat to support a small population, i.e., near a spatially mediated extinction threshold. We conclude that spatial uncertainty has the greatest effect on persistence when the amount and arrangement of suitable habitat are such that habitat capacity is near the minimum required for persistence.

  19. A one dimensional model of population growth

    NASA Astrophysics Data System (ADS)

    Ribeiro, Fabiano L.; Ribeiro, Kayo N.

    2015-09-01

    In this work, a one dimensional population growth model is proposed. The model, based on the cooperative and competitive individual-individual distance-dependent interaction, allows us to get a full analytical solution. With this analytical approach, it was possible to investigate the dynamics of the population according to some parameters, as intrinsic growth rate, strength of the interaction between individuals, and the distance-dependent interaction. As a consequence of the individuals' interaction, a rich phase diagram to which the population has access was observed. The phases observed are: convergence to carrying capacity, exponential growth, divergence at finite time, and extinction. Moreover, it was also observed that some phases are strictly dependent on the initial condition. For instance, in the cooperative regime with negative intrinsic growth rate, the population can diverge or become extinct according to the initial population size. The phases accessible to the population can be seen as a macroscopic behavior which emerges from the interaction among the individuals (the microscopic level).

  20. An approach for modelling populations with continuous structured models

    SciTech Connect

    Hallam, T.G. . Dept. of Mathematics); Lassiter, R.R. . Environmental Research Lab.); Li, Jia ); McKinney, W. . Dept. of Mathematics)

    1990-01-01

    The main purpose of this article is to describe the formulation of an appropriate mathematical representation of a population based on physiological attributes relevant to the individual species considered and to the problem under investigation. There are two main parts of the article. The first discusses the relationship between model hypotheses and model conclusions. We will discuss some problems of applicability that arise from employing classical age or size structured models as representations of a population. We describe certain properties of the dynamic behavior of these continuous, structured populations to demonstrate that it is often necessary to include additional physiological variables other than just age and size if one wishes to obtain biologically realistic deterministic population dynamics. We apply the method of characteristics for solving hyperbolic partial differential equations to the population model and discuss problems of interpretation. The second part of the article focuses on the computation of solutions of physiologically structured models. Here we will indicate the motivation and describe the protocol for formulating a dynamic population that was employed in an investigation of effects of toxic chemicals on aquatic populations. Illustrations of the numerical solution of the population model are presented. The protocol is presented because it is generic and the approach seems to be applicable with modification to many environments. 26 refs., 6 figs.

  1. Population mixture model for nonlinear telomere dynamics

    NASA Astrophysics Data System (ADS)

    Itzkovitz, Shalev; Shlush, Liran I.; Gluck, Dan; Skorecki, Karl

    2008-12-01

    Telomeres are DNA repeats protecting chromosomal ends which shorten with each cell division, eventually leading to cessation of cell growth. We present a population mixture model that predicts an exponential decrease in telomere length with time. We analytically solve the dynamics of the telomere length distribution. The model provides an excellent fit to available telomere data and accounts for the previously unexplained observation of telomere elongation following stress and bone marrow transplantation, thereby providing insight into the nature of the telomere clock.

  2. Extrinsic and intrinsic controls of zooplankton diversity in lakes

    E-print Network

    Hessen, Dag O.; Faafeng, Bjø rn A.; Smith, Val H.; Bakkestuen, Vegar; Walseng, Bjø rn

    2006-02-01

    ) structure were identified by regression analysis as the major predictors of zooplankton diversity, while a positive correlation was observed between species richness and total zooplankton biomass. However, in spite of a large number of variables included...

  3. LIMNETIC ZOOPLANKTON OF LAKES IN KATMAI NATIONAL MONUMENT, ALASKA

    EPA Science Inventory

    The limnetic zooplankton in lakes of the Naknek River system in southwestern Alaska was sampled extensively during 1962-63. The numerically dominant forms of limnetic zooplankton were Diaptomus, Cyclops, Daphnia, Bosmina, coregoni, Kellicotia, and Conochilus. Some littoral and be...

  4. Turbulence and zooplankton production: insights from PROVESS

    NASA Astrophysics Data System (ADS)

    Visser, André W.; Stips, Adolf

    2002-06-01

    Zooplankton are directly influenced by turbulence in both a passive and an active manner. Passively, zooplankton are at the mercy of turbulence in how it affects their vertical mixing, encounter rate, detection abilities and feeding current efficiency. Many zooplankton species, however, are actively able to mitigate the effects of turbulence by modifying their behaviour, e.g. vertical migration, prey switching and habituation to hydromechanical stimuli. Both theoretical treatments of these processes and field observations from the northern North Sea are examined. Field observations show that some copepod species actively migrate to avoid high turbulence levels in surface waters. Furthermore, observations show a negative relationship between turbulence and zooplankton ingestion rates. This supports the paradigm of a dome-shaped response for zooplankton production with environmental turbulence. A theoretical treatment shows that the reaction distance, R, for an ambush-feeding copepod feeding on swimming organisms follows R ? ?-1/6 where ? is the turbulent dissipation rate, a result that shows close agreement with previously reported experimental results.

  5. Sensitivity Equations for a Size-Structured Population Model

    E-print Network

    -structured population models. The growth and mortality rates of the shrimp population are affected by severalSensitivity Equations for a Size-Structured Population Model H. T. Banks, Stacey L. Ernstberger-structured population model and derive sensitivity partial differential equations for the sensitivities of solutions

  6. USING POPULATION MODELS TO EVALUATE RISK IN POPULATION OF BIRDS

    EPA Science Inventory

    Wildlife populations are exposed to varying habitat structure and quality, as well as an array of human-induced environmental stressors. Predicting the consequences to a real population of one perturbation (e.g. a pesticide application) without considering other human activities ...

  7. Regulation of Mnemiopsis leidyi dynamics by potential changes in temperature and zooplankton conditions in the Black Sea.

    NASA Astrophysics Data System (ADS)

    Salihoglu, B.; Fach, B.; Oguz, T.

    2009-04-01

    Providing a comprehensive understanding of the effects that cause formations of ctenophore blooms in the Black Sea is the main objective of this study. In order to analyse ctenophore dynamics in the Black Sea a zero-dimensional population based model of the ctenophore Mnemiopsis leidyi is developed. The stage resolving ctenophore model combines the modified form of stage resolving approach of Fennel, 2001 with the growth dynamics model of Kremer, 1976; Kremer and Reeve, 1989 under 4 stages of model-ctenophore. These stages include the different growth characteristics of egg, juvenile, transitional and adult stages. The dietary patterns of the different stages follows the observations obtained from the literature. The model is able to represent consistent development patterns, while reflecting the physiological complexity of a population of Mnemiopsis leidyi. Model results suggest that different nutritional requirement of each stage may serve as the bottlenecks for population growth and only when growth conditions are favorable for both larval and lobate stages, the high overall population growth rates may occur. Model is also used to analyse the influence of climatic changes on Mnemiopsis leidyi reproduction and outburst. This study presents and discussed how potential changes in temperature and zooplankton conditions in the Black Sea may regulate Mnemiopsis leidyi dynamics.

  8. Stellar population models at high spectral resolution

    NASA Astrophysics Data System (ADS)

    Maraston, C.; Strömbäck, G.

    2011-12-01

    We present new, high-to-intermediate spectral resolution stellar population models, based on four popular libraries of empirical stellar spectra, namely Pickles, ELODIE, STELIB and MILES. These new models are the same as our previous models, but with higher resolution and based on empirical stellar spectra, while keeping other ingredients the same including the stellar energetics, the atmospheric parameters and the treatment of the thermally pulsating asymptotic giant branch and the horizontal branch morphology. We further compute very high resolution (R= 20 000) models based on the theoretical stellar library MARCS which extends to the near-infrared. We therefore provide merged high-resolution stellar population models, extending from ˜1000 to 25 000 Å, using our previously published high-resolution theoretical models which extended to the ultraviolet. We compare how these libraries perform in stellar population models and highlight spectral regions where discrepancies are found. We confirm our previous findings that the flux around the V band is lower (in a normalized sense) in models based on empirical libraries than in those based on the BaSeL-Kurucz library, which results in a bluer B-V colour. Most noticeably the theoretical library MARCS gives results fully consistent with the empirical libraries. This same effect is also found in other models using MILES, namely Vazdekis et al. and Conroy & Gunn, even though the latter authors reach the opposite conclusion. The bluer predicted B-V colour (by 0.05 mag in our models) is in better agreement with both the colours of luminous red galaxies and globular cluster data. We test the models on their ability to reproduce, through full spectral fitting, the ages and metallicities of Galactic globular clusters as derived from colour-magnitude diagram (CMD) fitting and find overall good agreement. We also discuss extensively the Lick indices calculated directly on the integrated MILES-based spectral energy distributions (SEDs) and compare them with element ratio-sensitive index models. We find a good agreement between the two models, if the metallicity-dependent chemical pattern of the Milky Way stars is properly taken into account in this comparison. As a consequence, the ages and metallicities of Galactic globular clusters are not well reproduced when one uses straight the MILES-based indices, because subtle chemical effects on individual lines dominate the age derivation. The best agreement with the ages of the calibrating globular clusters is found with either element ratio-sensitive absorption-line models or the full SED fitting, for which no particular weight is given to selected lines.

  9. Population Models for Massive Globular Clusters

    NASA Astrophysics Data System (ADS)

    Lee, Young-Wook; Joo, Seok-Joo; Han, Sang-Il; Na, Chongsam; Lim, Dongwook; Roh, Dong-Goo

    2015-03-01

    Increasing number of massive globular clusters (GCs) in the Milky Way are now turned out to host multiple stellar populations having different heavy element abundances enriched by supernovae. Recent observations have further shown that [CNO/Fe] is also enhanced in metal-rich subpopulations in most of these GCs, including ? Cen and M22 (Marino et al. 2011, 2012). In order to reflect this in our population modeling, we have expanded the parameter space of Y 2 isochrones and horizontal-branch (HB) evolutionary tracks to include the cases of normal and enhanced nitrogen abundances ([N/Fe] = 0.0, 0.8, and 1.6). The observed variations in the total CNO content were reproduced by interpolating these nitrogen enhanced stellar models. Our test simulations with varying N and O abundances show that, once the total CNO sum ([CNO/Fe]) is held constant, both N and O have almost identical effects on the HR diagram (see Fig. 1).

  10. Population and Climate Change:Population and Climate Change: Coupling Population Models withCoupling Population Models with

    E-print Network

    Maryland at College Park, University of

    to ­ abate pollution ­ conserve resources ­ increase land yield ­ protect agricultural land #12;Standard POLLUTION of SINKS Sinks: Oceans, Atmosphere Land Population óTechnology Population growth rate Energy Use) · Outputs (pollution) · Stocks of Natural Capital · Dissipation of Energy (i.e., a Perpetual Motion Machine

  11. Increasing zooplankton size diversity enhances the strength of top-down control on phytoplankton in the East China Sea

    NASA Astrophysics Data System (ADS)

    Ye, L.; Chang, C.; García-Comas, C.; Gong, G.; Hsieh, C.

    2012-12-01

    Body size is one of the fundamental characteristics of organisms linking many ecosystem properties and functions. Recent studies suggest that environmental changes alter the size structure of pelagic food webs; however, ecosystem consequences of such changes remain unclear. Here we tested our main hypothesis that increasing zooplankton size diversity enhances top-down control on phytoplankton in the East China Sea (H1), as well as five conventional hypotheses explaining the top-down control: shallower zooplankton size spectrum enhances the strength of top-down control (H2); nutrient enrichment lessens the strength of top-down control (H3); increasing zooplankton taxonomic diversity enhances the strength of top-down control (H4); increasing fish predation is linked to decreasing the strength of top-down control of zooplankton on phytoplankton (H5); increasing temperature intensifies the strength of top-down control (H6). While the results of our univariate analyses support H1, H2, H3, and H4, more in depth analyses indicate that zooplankton size diversity is the most important factor in determining the strength of top-down control on phytoplankton in East China Sea. Our results suggest a new potential mechanism that increasing predator size diversity enhances the strength of top-down control on prey through diet niche partitioning. This mechanism can be explained by the concept of optimal predator-prey body-mass ratio concept. Suppose each size group of zooplankton predators has its own optimal phytoplankton prey size, increasing size diversity of zooplankton would promote diet niche partitioning of predators and thus elevates the top-down control.Fig. 1 Scatter plots the relationship between zooplankton/phytoplankton biomass ratio versus (A) zooplankton size diversity, (B) slope of zooplankton size spectrum, (C) Zoolankton Shannon diversity, (D) NO3, (E) PO4, (F) SiO3, (G) water temperature, and (H) fish larvae density in the East China Sea. Table 1. Results of the generalized linear mixed-effect model in investigating the effect of each factor on the spatiotemporal dynamics of zooplankton/phytoplankton biomass ratio in the East China Sea, with sampling cruises as a random effect. A lower value of AIC represents better goodness of fit of the model. The p-value was estimated based on MCMC sampling.

  12. Theoretical Population Biology 71 (2007) 502523 The probability distribution under a population divergence model of the

    E-print Network

    Jakobsson, Mattias

    2007-01-01

    Theoretical Population Biology 71 (2007) 502­523 The probability distribution under a population divergence model of the number of genetic founding lineages of a population or species Mattias Jakobsson 14 January 2007 Abstract The composition of genetic variation in a population or species is shaped

  13. Mathematics and physics Biology Modelling a population Immunology Modelling T cell immunology

    E-print Network

    Wirosoetisno, Djoko

    Mathematics and physics Biology Modelling a population Immunology Modelling T cell immunology;Mathematics and physics Biology Modelling a population Immunology Mathematics is a special science! #12;Mathematics and physics Biology Modelling a population Immunology Classical mechanics (Newton) Figure

  14. Climate change heats matrix population models.

    PubMed

    Herrando-Pérez, Salvador

    2013-11-01

    Metabolic theory predicts that demographic rates can be expressed as a function of environmental temperature. Amarasekare & Coutinho (2013) build a novel matrix model where demographic rates (fertility, mortality, development) vary according to expected rates of climate warming. They challenge recent studies that claim low population viability of tropical species based on rmax estimated from the Euler-Lotka equation, because the latter assumes a constant stage distribution that is unrealistic under fast rates of warming and for organisms with long development. In those cases, the measurement of the temperature responses of life-history traits could be based in niche theory. PMID:24102137

  15. UV radiation and freshwater zooplankton: damage, protection and recovery

    PubMed Central

    Rautio, Milla; Tartarotti, Barbara

    2011-01-01

    While many laboratory and field studies show that zooplankton are negatively affected when exposed to high intensities of ultraviolet radiation (UVR), most studies also indicate that zooplankton are well adapted to cope with large variations in their UVR exposure in the pelagic zone of lakes. The response mechanisms of zooplankton are diverse and efficient and may explain the success and richness of freshwater zooplankton in optically variable waters. While no single behavioural or physiological protection mechanism seems to be superior, and while several unexplained and contradictory patterns exist in zooplankton UVR ecology, recent increases in our understanding are consistent with UVR playing an important role for zooplankton. This review examines the variability in freshwater zooplankton responses to UVR, with a focus on crustacean zooplankton (Cladocera and Copepoda). We present an overview of UVR-induced damages, and the protection and recovery mechanisms freshwater zooplankton use when exposed to UVR. We review the current knowledge of UVR impact on freshwater zooplankton at species and community levels, and discuss briefly how global change over the last three decades has influenced the UVR milieu in lakes. PMID:21516254

  16. Effects of piscivore-mediated habitat use on growth, diet and zooplankton consumption of roach: an

    E-print Network

    Effects of piscivore-mediated habitat use on growth, diet and zooplankton consumption of roach, Limnological Institute, Konstanz, Germany SUMMARY 1. We used an individual based modelling approach for roach; (ii) analyse the relevance of these habitat shifts for the diet, activity costs and growth of roach

  17. Tidal exchange of zooplankton between Lough Hyne and the adjacent coast

    NASA Astrophysics Data System (ADS)

    Rawlinson, K. A.; Davenport, J.; Barnes, D. K. A.

    2005-01-01

    Plankton samples collected in November 2002, February, May and August 2003 were used to examine seasonal variation in tidal exchange of zooplankton biomass, abundance and species composition between Lough Hyne Marine Nature Reserve and the adjacent Atlantic coast. Micro- to mesozooplankton were collected by pump over 24-h sampling periods during spring and neap tides from the narrow channel connecting the semi-enclosed water body to the Atlantic. Sample biomass (dry weight) and total zooplankton abundance peaked in the summer and were lowest in winter, showing a positive relationship with temperature. Zooplankton biomass, total abundance and numbers of holo- and meroplankton revealed import during some diel cycles and export in others. However, the tidal import of these planktonic components was generally dominant, especially during May. The greatest import of numbers of holoplankters and meroplanktonic larvae occurred during May and August, respectively. There was no significant variation in sample biomass between periods of light and dark, but some variation in zooplankton abundance could be explained by this diel periodicity. Significant differences in sample assemblage composition between flood and ebb tide samples were always observed, except during winter neap tides. There was a net import of the copepods Temora longicornis and Oithona helgolandica and the larval stages of Mytilus edulis during spring and summer. Proceraea cornuta and Capitellid trochophores were imported during winter, and a hydrozoan of the genus Obelia during the spring spring tides. Seasonal export from the lough was shown by Pseudopolydora pulchra larvae (autumn and spring), Serpulid trochophores (autumn) and veligers of the bivalve Anomia ephippium (summer). It is suggested that the direction of tidal exchange of meroplanktonic taxa is related to the distribution of the adult populations. Copepod naupliar stages dominated the assemblages except during May spring tides when the copepod Pseudocalanus elongatus made up over 22% of the abundance. The general import of micro- to mesozooplankton may, in part, explain the higher densities of this size-class of zooplankton within the semi-enclosed system of Lough Hyne.

  18. ECOGRAPHV 21: 327-,135. Copenhagen 1998 Community structure of crustacean zooplankton in subarctic

    E-print Network

    Vincent, Warwick F.

    ECOGRAPHV 21: 327-,135. Copenhagen 1998 Community structure of crustacean zooplankton in subarctic of crustacean zooplankton in subarctic ponds - elTects of altitude and physical heterogeneity. Bcography 21: 327 335. Crustacean zooplankton (Cladocera. Copcpoda) distribution patterns, commutiity composition

  19. A Population Model for the Academic Ecosystem

    E-print Network

    Wu, Yan; Chiu, Dah Ming

    2015-01-01

    In recent times, the academic ecosystem has seen a tremendous growth in number of authors and publications. While most temporal studies in this area focus on evolution of co-author and citation network structure, this systemic inflation has received very little attention. In this paper, we address this issue by proposing a population model for academia, derived from publication records in the Computer Science domain. We use a generalized branching process as an overarching framework, which enables us to describe the evolution and composition of the research community in a systematic manner. Further, the observed patterns allow us to shed light on researchers' lifecycle encompassing arrival, academic life expectancy, activity, productivity and offspring distribution in the ecosystem. We believe such a study will help develop better bibliometric indices which account for the inflation, and also provide insights into sustainable and efficient resource management for academia.

  20. Dynamic analysis of a parasite population model

    NASA Astrophysics Data System (ADS)

    Sibona, G. J.; Condat, C. A.

    2002-03-01

    We study the dynamics of a model that describes the competitive interaction between an invading species (a parasite) and its antibodies in an living being. This model was recently used to examine the dynamical competition between Tripanosoma cruzi and its antibodies during the acute phase of Chagas' disease. Depending on the antibody properties, the model yields three types of outcomes, corresponding, respectively, to healing, chronic disease, and host death. Here, we study the dynamics of the parasite-antibody interaction with the help of simulations, obtaining phase trajectories and phase diagrams for the system. We show that, under certain conditions, the size of the parasite inoculation can be crucial for the infection outcome and that a retardation in the stimulated production of an antibody species may result in the parasite gaining a definitive advantage. We also find a criterion for the relative sizes of the parameters that are required if parasite-generated decoys are indeed to help the invasion. Decoys may also induce a qualitatively different outcome: a limit cycle for the antibody-parasite population phase trajectories.

  1. On dispersal and population growth for multistate matrix models

    E-print Network

    Li, Chi-Kwong

    On dispersal and population growth for multistate matrix models Chi-Kwong Li and Sebastian J models, population growth 1 Introduction Denote by (A) the spectral radius of a square matrix A, concentration, or expected size) and di is the per-capita growth rate of the population in the i-th patch

  2. Linking Dynamical and Population Genetic Models of Persistent Viral Infection

    E-print Network

    Kelly, John K.; Williamson, Scott; Orive, Maria E.; Smith, Marilyn S.; Holt, Robert D.

    2003-07-01

    This article develops a theoretical framework to link dynamical and population genetic models of persistent viral infection. This linkage is useful because, while the dynamical and population genetic theories have developed independently...

  3. AN INDIVIDUAL-BASED MODEL OF COTTUS POPULATION DYNAMICS

    EPA Science Inventory

    We explored population dynamics of a southern Appalachian population of Cottus bairdi using a spatially-explicit, individual-based model. The model follows daily growth, mortality, and spawning of individuals as a function of flow and temperature. We modeled movement of juveniles...

  4. Zooplankton Community Metabolic Requirements and the Effect on Particle

    E-print Network

    Buesseler, Ken

    zone, calculate respiration rate Compare zooplankton C demand to loss of C with depth Neutrally Buoyant excretion respiration detritivory Base of euphotic egestion fragmentation excretion respiration (death) xx20 + O2 CO2 + H respiration #12;Zooplankton vertical biomass profiles OHA K2 Deployment 1 Deployment

  5. Limnetic crustacean zooplankton of Lake Oahe, May-October 1969

    USGS Publications Warehouse

    Selgeby, James H.

    1974-01-01

    The limnetic crustacean zooplankton of Lake Oahe was dominated by copepods. Cyclops bicuspidatus thomasi was the dominant crustacean throughout the lake. Mesocyclops edax, Diaptomus ashlandi and Daphnia pulex were major components of the zooplankton in the deep, downstream portion of the lake while Bosmina longirostris and Daphnia retrocurva were important constituents in the river-like, upstream section of the lake.

  6. Spatial effects in discrete generation population models C. Carrillo

    E-print Network

    Fife, Paul

    in this paper). In these studies, growth occurs at a sedentary stage in the life history of the population #12;A second stage in the life history of the population, clearly differentiated from the growth stageSpatial effects in discrete generation population models C. Carrillo and P. Fife Dedicated

  7. SMALL POPULATIONS REQUIRE SPECIFIC MODELING APPROACHES FOR ASSESSING RISK

    EPA Science Inventory

    All populations face non-zero risks of extinction. However, the risks for small populations, and therefore the modeling approaches necessary to predict them, are different from those of large populations. These differences are currently hindering assessment of risk to small pop...

  8. Integrated Population Models and Habitat Metrics for Wildlife Management

    E-print Network

    Integrated Population Models and Habitat Metrics for Wildlife Management Thèse James Nowak Doctorat continue. Dans la réalité, les gestionnaires doivent gérer les populations et développer des objectifs de populations en dépit de leur connaissance imparfaites et des manques de données chronique. L'émergence de

  9. Landscape Modeling of Lygus hesperus Populations.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lygus is a key pest in several of the 200 crops grown in the geographically distinct San Joaquin Valley. Spring weather patterns drive population build-up on host-plants. Habitat maps were created from survey sites in cropping regions of Kern County, CA. Population simulations were used to predict a...

  10. Upslope transport of near-bed zooplankton

    NASA Astrophysics Data System (ADS)

    Zimmer, Cheryl Ann

    2009-09-01

    Zooplankton residing just above the deep-sea floor is an important component of the benthic/benthopelagic food chain. Consuming planktonic particulates and organisms, holoplankton and meroplankton are prey for fish and large invertebrates. Mechanisms controlling their abundances have been explored over relatively long time scales (months to years). Here, zooplankton were sampled every 2 h for 2.2 d using a moored, automated, serial zooplankton pump. The physical regime (currents and temperature) 1-100 m above bottom was measured during an inclusive 24-d period. The study site was located on the upper continental slope (750 m) of the Mid-Atlantic Bight, between the productive shelf and more impoverished rise and abyss. The coupled biological and physical records indicated tidally driven, net upslope transport of the holoplankton. The copepod (74.5% of collections) time series showed marked periodicity with a peak frequency of ˜13 h, approximately the diurnal tide (Fourier analysis). Local maxima corresponded with minimal water temperatures. Moreover, tidal cross-slope flow was highly coherent and 90° out of phase with temperature. Thus, maximal copepod concentrations, originating in colder deeper water, would be transported up the slope by the tide. Estimated net displacement of ˜1 km/d would deliver the animals to continental-shelf depths within a couple weeks. Time series of the much less abundant larvaceans (urochordates) (15.3%) and polychaete larvae (8.9%) showed periodicities with peak frequencies of 8-9 h. Statistical significance of the periodic signals could not be determined due to low numbers. Revealing holoplankton dynamics on scales of hours, this study may contribute to understanding of, for example, copepod feeding and aggregation near the deep-sea floor.

  11. Population modelling to compare chronic external radiotoxicity between individual and population endpoints in four taxonomic groups.

    PubMed

    Alonzo, Frédéric; Hertel-Aas, Turid; Real, Almudena; Lance, Emilie; Garcia-Sanchez, Laurent; Bradshaw, Clare; Vives I Batlle, Jordi; Oughton, Deborah H; Garnier-Laplace, Jacqueline

    2016-02-01

    In this study, we modelled population responses to chronic external gamma radiation in 12 laboratory species (including aquatic and soil invertebrates, fish and terrestrial mammals). Our aim was to compare radiosensitivity between individual and population endpoints and to examine how internationally proposed benchmarks for environmental radioprotection protected species against various risks at the population level. To do so, we used population matrix models, combining life history and chronic radiotoxicity data (derived from laboratory experiments and described in the literature and the FREDERICA database) to simulate changes in population endpoints (net reproductive rate R0, asymptotic population growth rate ?, equilibrium population size Neq) for a range of dose rates. Elasticity analyses of models showed that population responses differed depending on the affected individual endpoint (juvenile or adult survival, delay in maturity or reduction in fecundity), the considered population endpoint (R0, ? or Neq) and the life history of the studied species. Among population endpoints, net reproductive rate R0 showed the lowest EDR10 (effective dose rate inducing 10% effect) in all species, with values ranging from 26 ?Gy h(-1) in the mouse Mus musculus to 38,000 ?Gy h(-1) in the fish Oryzias latipes. For several species, EDR10 for population endpoints were lower than the lowest EDR10 for individual endpoints. Various population level risks, differing in severity for the population, were investigated. Population extinction (predicted when radiation effects caused population growth rate ? to decrease below 1, indicating that no population growth in the long term) was predicted for dose rates ranging from 2700 ?Gy h(-1) in fish to 12,000 ?Gy h(-1) in soil invertebrates. A milder risk, that population growth rate ? will be reduced by 10% of the reduction causing extinction, was predicted for dose rates ranging from 24 ?Gy h(-1) in mammals to 1800 ?Gy h(-1) in soil invertebrates. These predictions suggested that proposed reference benchmarks from the literature for different taxonomic groups protected all simulated species against population extinction. A generic reference benchmark of 10 ?Gy h(-1) protected all simulated species against 10% of the effect causing population extinction. Finally, a risk of pseudo-extinction was predicted from 2.0 ?Gy h(-1) in mammals to 970 ?Gy h(-1) in soil invertebrates, representing a slight but statistically significant population decline, the importance of which remains to be evaluated in natural settings. PMID:26630040

  12. Using fish population models in hydro project evaluation

    SciTech Connect

    Power, M.V.; McKinley, R.S.

    1997-04-01

    Technical details of the use of population-level fisheries models in evaluating the environmental impacts of hydroelectric projects are described. Population models are grouped into four types, and evaluated in terms of usefulness of results, prediction uncertainty, and data requirements. The four types of models identified are stock-recruitment, Leslie matrix, life-cycle, and individual-based. Each model is discussed in some detail, with sample results and comparisons between models.

  13. Biological processes in the water column of the South Atlantic Bight: Zooplankton responses: Progress report, June 1988--June 1989

    SciTech Connect

    Paffenhoefer, G.A.

    1989-02-07

    It is our objective to determine the major processes governing the abundance, composition and disruption of zooplankton as part of the interdisciplinary southeastern US continental shelf program of the Department of Energy. We will study the effects of physical processes such as along- and cross shelf advection and frontogenesis, on the development and fate of zooplankton populations during winter. Our proposed research consists of shipboard sampling, laboratory experiments and in situ determination of zooplankton abundance over time. The last objective represents a novel approach because the observations are (a) non-destructive with great spatial resolution, and (b) occur on current meter arrays at similar scales as measurements of current velocity and direction. Results to date show prolonged residence times of upwelled water masses on the middle and inner shelf during summer which results in the development of massive copepod and tunicate populations. During spring, the extent of displacement of nearshore zooplankton was a function of wind stress. Our results can be used to predict the impact of energy-related technology on the ecosystem of the southeastern continental shelf. 8 refs., 6 figs.

  14. PC BEEPOP - A PERSONAL COMPUTER HONEY BEE POPULATION DYNAMICS MODEL

    EPA Science Inventory

    PC BEEPOP is a computer model that simulates honey bee (Apis mellifera L.) colony population dynamics. he model consists of a system of interdependent elements, including colony condition, environmental variability, colony energetics, and contaminant exposure. t includes a mortal...

  15. PC BEEPOP - AN ECTOXICOLOGICAL SIMULATION MODEL FOR HONEY BEE POPULATIONS

    EPA Science Inventory

    PC BEEPOP is a computer model that simulates honey bee colony population dynamics. he model consists of a feedback system of interdependent elements, including colony condition, environmental variability, and contaminant exposures. t includes a mortality module (BEEKILL) and a ch...

  16. Some Mathematical Models from Population Genetics Alison Etheridge

    E-print Network

    Some Mathematical Models from Population Genetics Alison Etheridge March 13, 2009 Contents 1 Mutation and Random genetic drift 4 1.1 The Wright-Fisher model and the Kingman coalescent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 1 #12;Historical Background The main purpose of theoretical population genetics is to understand

  17. PERSPECTIVE Applying population-genetic models in theoretical evolutionary epidemiology

    E-print Network

    Day, Troy

    IDEA AND PERSPECTIVE Applying population-genetic models in theoretical evolutionary epidemiology epidemiology of infectious diseases. We highlight four ways in which population-genetic models provide benefits evolution; (ii) they explicitly draw out the mechanistic way in which the epidemiological dynamics feed

  18. Zooplankton distribution in the western Arctic during summer 2002: Hydrographic habitats and implications for food chain dynamics

    NASA Astrophysics Data System (ADS)

    Lane, Peter V. Z.; Llinás, Leopoldo; Smith, Sharon L.; Pilz, Dora

    Global warming is presently a widely accepted phenomenon with a broad range of anticipated impacts on marine ecosystems. Alterations in temperature, circulation and ice cover in Arctic seas may result in changes in food chain dynamics, beginning with planktonic processes. As part of the Shelf-Basin Interactions (SBI) program, we conducted zooplankton surveys during summer 2002 to assess the biomass, distribution and abundance of copepods and other pelagic zooplankton over the Chukchi and Beaufort shelves, slope regions and the adjacent Canada Basin. The motivation for our fieldwork was the question, "Will global change, particularly warming, result in more large-sized zooplankton which support a pelagic food web of fish, birds, and certain mammals over the Chukchi and Beaufort shelves or in more smaller-sized zooplankton which will diminish the fish, birds and mammals and favor sedentary benthic organisms?" The objectives of the present study were 1) to census the regional zooplankton community and establish a baseline for comparisons with historical and future studies and 2) to determine whether large-bodied copepods associated with deep waters of the Bering Sea or the Canada Basin were transported to the shelves in sufficient numbers to modify the food web in a region where smaller copepods often dominate the zooplankton numerically. Spatial distributions of zooplankton communities were clearly associated with hydrographic habitats determined by the chemical, physical and biological characteristics of the upper water layer. Smaller taxa dominated the shelf communities while offshore zooplankton assemblages were characterized by large-bodied copepods. The mesozooplankton community was numerically dominated by copepod nauplii and small-bodied juveniles, including Pseudocalanus spp. and Oithona similis. We observed very few large-bodied copepods from the Bering Sea. However, much of the shelf region surveyed included relatively numerous Calanus glacialis juveniles and adults, suggesting that these copepods were advected onto the shelf and possibly reproducing there. Juvenile stages of the large-bodied copepod Calanus hyperboreus were found in relative abundance on the Chukchi shelf in the vicinity of Hanna Canyon. These observations suggest that large-bodied, deep-water species from the basin are advected onto the Chukchi Shelf where they may impact the fate of shelf-derived primary production and alter the food webs of the shelves. Regional comparisons of abundances of selected taxa enumerated in the present study with sample data from the early 1950s suggested that some taxa were more abundant in the SBI region in 2002 than ca. 50 years ago. Long-term changes in planktonic populations are expected to have significant implications for shelf-basin exchange of biogenic material in the Chukchi and Beaufort Seas and the adjacent Arctic Basin.

  19. Zooplankton functional groups on the continental shelf of the yellow sea

    NASA Astrophysics Data System (ADS)

    Sun, Song; Huo, Yuanzi; Yang, Bo

    2010-06-01

    Zooplankton plays a vital role in marine ecosystems. Variations in the zooplankton species composition, biomass, and secondary production will change the structure and function of the ecosystem. How to describe this process and make it easier to be modeled in the Yellow Sea ecosystem is the main purpose of this paper. The zooplankton functional groups approach, which is considered a good method of linking the structure of food webs and the energy flow in the ecosystems, is used to describe the main contributors of secondary produciton of the Yellow Sea ecosystem. The zooplankton can be classified into six functional groups: giant crustaceans, large copepods, small copepods, chaetognaths, medusae, and salps. The giant crustaceans, large copepods, and small copepods groups, which are the main food resources for fish, are defined depending on the size spectrum. Medusae and chaetognaths are the two gelatinous carnivorous groups, which compete with fish for food. The salps group, acting as passive filter-feeders, competes with other species feeding on phytoplankton, but their energy could not be efficiently transferred to higher trophic levels. From the viewpoint of biomass, which is the basis of the food web, and feeding activities, the contributions of each functional group to the ecosystem were evaluated; the seasonal variations, geographical distribution patterns, and species composition of each functional group were analyzed. The average zooplankton biomass was 2.1 g dry wt m -2 in spring, to which the giant crustaceans, large copepods, and small copepods contributed 19, 44, and 26%, respectively. High biomasses of the large copepods and small copepods were distributed at the coastal waters, while the giant crustaceans were mainly located at offshore area. In summer, the mean biomass was 3.1 g dry wt m -2, which was mostly contributed by the giant crustaceans (73%), and high biomasses of the giant crustaceans, large copepods, and small copepods were all distributed in the central part of the Yellow Sea. During autumn, the mean biomass was 1.8 g dry wt m -2, which was similarly constituted by the giant crustaceans, large copepods, and small copepods (36, 33, and 23%, respectively), and high biomasses of the giant crustaceans and large copepods occurred in the central part of the Yellow Sea, while the small copepods were mainly located at offshore stations. The giant crustaceans and large copepods dominated the zooplankton biomass (2.9 g dry wt m -2) in winter, contributing respectively 57 and 27%, and they, as well as the small copepods, were all mainly located in the central part of the Yellow Sea. The chaetognaths group was mainly located in the northern part of the Yellow Sea during all seasons, but contributed less to the biomass compared with the other groups. The medusae and salps groups were distributed unevenly, with sporadic dynamics, mainly along the coastline and at the northern part of the Yellow Sea. No more than 10 species belonging to the respective functional groups dominated the zooplankton biomass and controlled the dynamics of the zooplankton community. The clear picture of the seasonal and spatial variations of each zooplankton functional group makes the complicated Yellow Sea ecosystem easier to be understood and modeled.

  20. Changes in the nearshore and offshore zooplankton communities in Lake Ontario: 1981-88

    USGS Publications Warehouse

    Johannsson, Ora E.; Mills, Edward L.; O'Gorman, Robert

    1991-01-01

    We examined trends and factors influencing changes in nearshore and offshore zooplankton abundance and composition in Lake Ontario between 1981 and 1988. In the nearshore (southshore and eastern basin), zooplankton abundance decreased and shifts occurred in the relative abundances of Bosmina longirostris and Daphnia retrocurva (eastern basin) and Daphnia retrocurva and Daphnia galeata mendotae (southshore). These changes could have resulted from increased vertebrate predation or reduced food resources which intensified the effects of predation. In the offshore, the first appearance (FA) of the larger, less common cladoceran species occurred earlier in the season as of 1985. FA was correlated with cumulative epilimnetic temperature (CET) and the catch per unit effort (CPUE) of alewife (Alosa pseudoharengus) a?Y165 mm caught in U.S. waters in the spring. In 1987, when CET was high and CPUE of alewife a?Y165 mm was low, large populations of these cladocerans developed in June and July. Bythotrephes cederstroemi, a recent invader in the Great Lakes, was abundant only in 1987 when the CPUE of alewife was lowest. Changes in zooplankton abundance, development, and composition along the nearshore-offshore gradient reflected effects of temperature, habitat, and planktivory on the community.

  1. Spatial interaction among nontoxic phytoplankton, toxic phytoplankton, and zooplankton: emergence in space and time.

    PubMed

    Roy, Shovonlal

    2008-10-01

    In homogeneous environments, by overturning the possibility of competitive exclusion among phytoplankton species, and by regulating the dynamics of overall plankton population, toxin-producing phytoplankton (TPP) potentially help in maintaining plankton diversity-a result shown recently. Here, I explore the competitive effects of TPP on phytoplankton and zooplankton species undergoing spatial movements in the subsurface water. The spatial interactions among the species are represented in the form of reaction-diffusion equations. Suitable parametric conditions under which Turing patterns may or may not evolve are investigated. Spatiotemporal distributions of species biomass are simulated using the diffusivity assumptions realistic for natural planktonic systems. The study demonstrates that spatial movements of planktonic systems in the presence of TPP generate and maintain inhomogeneous biomass distribution of competing phytoplankton, as well as grazer zooplankton, thereby ensuring the persistence of multiple species in space and time. The overall results may potentially explain the sustainability of biodiversity and the spatiotemporal emergence of phytoplankton and zooplankton species under the influence of TPP combined with their physical movement in the subsurface water. PMID:19669506

  2. Evidence of microplastics in samples of zooplankton from Portuguese coastal waters.

    PubMed

    Frias, J P G L; Otero, V; Sobral, P

    2014-04-01

    Records of high concentrations of plastic and microplastic marine debris floating in the ocean have led to investigate the presence of microplastics in samples of zooplankton from Portuguese coastal waters. Zooplankton samples collected at four offshore sites, in surveys conducted between 2002 and 2008, with three different sampling methods, were used in this preliminary study. A total of 152 samples were processed and microplastics were identified in 93 of them, corresponding to 61% of the total. Costa Vicentina, followed by Lisboa, were the regions with higher microplastic concentrations (0.036 and 0.033 no. m?³) and abundances (0.07 and 0.06 cm³ m?³), respectively. Microplastic: zooplankton ratios were also higher in these two regions, which is probably related to the proximity of densely populated areas and inputs from the Tejo and Sado river estuaries. Microplastics polymers were identified using Micro Fourier Transformed Infrared Spectroscopy (?-FTIR), as polyethylene (PE), polypropylene (PP) and polyacrylates (PA). The present work is the first report on the composition of microplastic particles collected with plankton nets in Portuguese coastal waters. Plankton surveys from regular monitoring campaigns conducted worldwide may be used to monitor plastic particles in the oceans and constitute an important and low cost tool to address marine litter within the scope of the Marine Strategy Framework Directive (2008/56/EC). PMID:24461782

  3. Distinguishing between population bottleneck and population subdivision by a Bayesian model choice

    E-print Network

    Richner, Heinz

    Population Genetics (CMPG), Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, CH-3012 important to contrast these two alternative scenarios in a model choice procedure to prevent wrong

  4. Characterization of Lake Michigan coastal lakes using zooplankton assemblages

    USGS Publications Warehouse

    Whitman, Richard L.; Nevers, Meredith B.; Goodrich, Maria L.; Murphy, Paul C.; Davis, Bruce M.

    2004-01-01

    Zooplankton assemblages and water quality were examined bi-weekly from 17 April to 19 October 1998 in 11 northeastern Lake Michigan coastal lakes of similar origin but varied in trophic status and limnological condition. All lakes were within or adjacent to Sleeping Bear Dunes National Lakeshore, Michigan. Zooplankton (principally microcrustaceans and rotifers) from triplicate Wisconsin net (80 I?m) vertical tows taken at each lake's deepest location were analyzed. Oxygen-temperature-pH-specific conductivity profiles and surface water quality were concurrently measured. Bray-Curtis similarity analysis showed small variations among sample replicates but large temporal differences. The potential use of zooplankton communities for environmental lake comparisons was evaluated by means of BIOENV (Primer 5.1) and principal component analyses. Zooplankton analyzed at the lowest identified taxonomic level yielded greatest sensitivity to limnological variation. Taxonomic and ecological aggregations of zooplankton data performed comparably, but less well than the finest taxonomic analysis. Secchi depth, chlorophyll a, and sulfate concentrations combined to give the best correlation with patterns of variation in the zooplankton data set. Principal component analysis of these variables revealed trophic status as the most influential major limnological gradient among the study lakes. Overall, zooplankton abundance was an excellent indicator of variation in trophic status.

  5. A spatial ecosystem and populations dynamics model (SEAPODYM) Modeling of tuna and tuna-like populations

    NASA Astrophysics Data System (ADS)

    Lehodey, Patrick; Senina, Inna; Murtugudde, Raghu

    2008-09-01

    An enhanced version of the spatial ecosystem and population dynamics model SEAPODYM is presented to describe spatial dynamics of tuna and tuna-like species in the Pacific Ocean at monthly resolution over 1° grid-boxes. The simulations are driven by a bio-physical environment predicted from a coupled ocean physical-biogeochemical model. This new version of SEAPODYM includes expanded definitions of habitat indices, movements, and natural mortality based on empirical evidences. A thermal habitat of tuna species is derived from an individual heat budget model. The feeding habitat is computed according to the accessibility of tuna predator cohorts to different vertically migrating and non-migrating micronekton (mid-trophic) functional groups. The spawning habitat is based on temperature and the coincidence of spawning fish with presence or absence of predators and food for larvae. The successful larval recruitment is linked to spawning stock biomass. Larvae drift with currents, while immature and adult tuna can move of their own volition, in addition to being advected by currents. A food requirement index is computed to adjust locally the natural mortality of cohorts based on food demand and accessibility to available forage components. Together these mechanisms induce bottom-up and top-down effects, and intra- (i.e. between cohorts) and inter-species interactions. The model is now fully operational for running multi-species, multi-fisheries simulations, and the structure of the model allows a validation from multiple data sources. An application with two tuna species showing different biological characteristics, skipjack ( Katsuwonus pelamis) and bigeye ( Thunnus obesus), is presented to illustrate the capacity of the model to capture many important features of spatial dynamics of these two different tuna species in the Pacific Ocean. The actual validation is presented in a companion paper describing the approach to have a rigorous mathematical parameter optimization [Senina, I., Sibert, J., Lehodey, P., 2008. Parameter estimation for basin-scale ecosystem-linked population models of large pelagic predators: application to skipjack tuna. Progress in Oceanography]. Once this evaluation and parameterization is complete, it may be possible to use the model for management of tuna stocks in the context of climate and ecosystem variability, and to investigate potential changes due to anthropogenic activities including global warming and fisheries pressures and management scenarios.

  6. Zooplankton may serve as transmission vectors for viruses infecting algal blooms in the ocean.

    PubMed

    Frada, Miguel José; Schatz, Daniella; Farstey, Viviana; Ossolinski, Justin E; Sabanay, Helena; Ben-Dor, Shifra; Koren, Ilan; Vardi, Assaf

    2014-11-01

    Marine viruses are recognized as a major driving force regulating phytoplankton community composition and nutrient cycling in the oceans. Yet, little is known about mechanisms that influence viral dispersal in aquatic systems, other than physical processes, and that lead to the rapid demise of large-scale algal blooms in the oceans. Here, we show that copepods, abundant migrating crustaceans that graze on phytoplankton, as well as other zooplankton can accumulate and mediate the transmission of viruses infecting Emiliania huxleyi, a bloom-forming coccolithophore that plays an important role in the carbon cycle. We detected by PCR that >80% of copepods collected during a North Atlantic E. huxleyi bloom carried E. huxleyi virus (EhV) DNA. We demonstrated by isolating a new infectious EhV strain from a copepod microbiome that these viruses are infectious. We further showed that EhVs can accumulate in high titers within zooplankton guts during feeding or can be adsorbed to their surface. Subsequently, EhV can be dispersed by detachment or via viral-dense fecal pellets over a period of 1 day postfeeding on EhV-infected algal cells, readily infecting new host populations. Intriguingly, the passage through zooplankton guts prolonged EhV's half-life of infectivity by 35%, relative to free virions in seawater, potentially enhancing viral transmission. We propose that zooplankton, swimming through topographically adjacent phytoplankton micropatches and migrating daily over large areas across physically separated water masses, can serve as viral vectors, boosting host-virus contact rates and potentially accelerating the demise of large-scale phytoplankton blooms. PMID:25438947

  7. Nonparametric identification of population models: an MCMC approach.

    PubMed

    Neve, Marta; De Nicolao, Giuseppe; Marchesi, Laura

    2008-01-01

    The paper deals with the nonparametric identification of population models, that is models that explain jointly the behavior of different subjects drawn from a population, e.g., responses of different patients to a drug. The average response of the population and the individual responses are modeled as continuous-time Gaussian processes with unknown hyperparameters. Within a Bayesian paradigm, the posterior expectation and variance of both the average and individual curves are computed by means of a Markov Chain Monte Carlo scheme. The model and the estimation procedure are tested on both simulated and experimental pharmacokinetic data. PMID:18232345

  8. IBSEM: An Individual-Based Atlantic Salmon Population Model

    PubMed Central

    Castellani, Marco; Heino, Mikko; Gilbey, John; Araki, Hitoshi; Svåsand, Terje; Glover, Kevin A.

    2015-01-01

    Ecology and genetics can influence the fate of individuals and populations in multiple ways. However, to date, few studies consider them when modelling the evolutionary trajectory of populations faced with admixture with non-local populations. For the Atlantic salmon, a model incorporating these elements is urgently needed because many populations are challenged with gene-flow from non-local and domesticated conspecifics. We developed an Individual-Based Salmon Eco-genetic Model (IBSEM) to simulate the demographic and population genetic change of an Atlantic salmon population through its entire life-cycle. Processes such as growth, mortality, and maturation are simulated through stochastic procedures, which take into account environmental variables as well as the genotype of the individuals. IBSEM is based upon detailed empirical data from salmon biology, and parameterized to reproduce the environmental conditions and the characteristics of a wild population inhabiting a Norwegian river. Simulations demonstrated that the model consistently and reliably reproduces the characteristics of the population. Moreover, in absence of farmed escapees, the modelled populations reach an evolutionary equilibrium that is similar to our definition of a ‘wild’ genotype. We assessed the sensitivity of the model in the face of assumptions made on the fitness differences between farm and wild salmon, and evaluated the role of straying as a buffering mechanism against the intrusion of farm genes into wild populations. These results demonstrate that IBSEM is able to capture the evolutionary forces shaping the life history of wild salmon and is therefore able to model the response of populations under environmental and genetic stressors. PMID:26383256

  9. Evolutionary Computation Models Population Genetics: Part 2

    E-print Network

    Altenberg, Lee

    (offspring number) E Fertility (offspring number of particular mating types) When multi-parameter fitness.), generate a Transmission function, the probability distribution of offspring types from any combination (one, two, etc., sometimes the whole population) of parent types. The relationship between the transmission

  10. A quantitative model of honey bee colony population dynamics.

    PubMed

    Khoury, David S; Myerscough, Mary R; Barron, Andrew B

    2011-01-01

    Since 2006 the rate of honey bee colony failure has increased significantly. As an aid to testing hypotheses for the causes of colony failure we have developed a compartment model of honey bee colony population dynamics to explore the impact of different death rates of forager bees on colony growth and development. The model predicts a critical threshold forager death rate beneath which colonies regulate a stable population size. If death rates are sustained higher than this threshold rapid population decline is predicted and colony failure is inevitable. The model also predicts that high forager death rates draw hive bees into the foraging population at much younger ages than normal, which acts to accelerate colony failure. The model suggests that colony failure can be understood in terms of observed principles of honey bee population dynamics, and provides a theoretical framework for experimental investigation of the problem. PMID:21533156

  11. Augmenting superpopulation capture-recapture models with population assignment data

    USGS Publications Warehouse

    Wen, Zhi; Pollock, Kenneth; Nichols, James; Waser, Peter

    2011-01-01

    Ecologists applying capture-recapture models to animal populations sometimes have access to additional information about individuals' populations of origin (e.g., information about genetics, stable isotopes, etc.). Tests that assign an individual's genotype to its most likely source population are increasingly used. Here we show how to augment a superpopulation capture-recapture model with such information. We consider a single superpopulation model without age structure, and split each entry probability into separate components due to births in situ and immigration. We show that it is possible to estimate these two probabilities separately. We first consider the case of perfect information about population of origin, where we can distinguish individuals born in situ from immigrants with certainty. Then we consider the more realistic case of imperfect information, where we use genetic or other information to assign probabilities to each individual's origin as in situ or outside the population. We use a resampling approach to impute the true population of origin from imperfect assignment information. The integration of data on population of origin with capture-recapture data allows us to determine the contributions of immigration and in situ reproduction to the growth of the population, an issue of importance to ecologists. We illustrate our new models with capture-recapture and genetic assignment data from a population of banner-tailed kangaroo rats Dipodomys spectabilis in Arizona.

  12. Augmenting superpopulation capture-recapture models with population assignment data.

    PubMed

    Wen, Zhi; Pollock, Kenneth; Nichols, James; Waser, Peter

    2011-09-01

    Ecologists applying capture-recapture models to animal populations sometimes have access to additional information about individuals' populations of origin (e.g., information about genetics, stable isotopes, etc.). Tests that assign an individual's genotype to its most likely source population are increasingly used. Here we show how to augment a superpopulation capture-recapture model with such information. We consider a single superpopulation model without age structure, and split each entry probability into separate components due to births in situ and immigration. We show that it is possible to estimate these two probabilities separately. We first consider the case of perfect information about population of origin, where we can distinguish individuals born in situ from immigrants with certainty. Then we consider the more realistic case of imperfect information, where we use genetic or other information to assign probabilities to each individual's origin as in situ or outside the population. We use a resampling approach to impute the true population of origin from imperfect assignment information. The integration of data on population of origin with capture-recapture data allows us to determine the contributions of immigration and in situ reproduction to the growth of the population, an issue of importance to ecologists. We illustrate our new models with capture-recapture and genetic assignment data from a population of banner-tailed kangaroo rats?Dipodomys spectabilis?in Arizona. PMID:21155745

  13. Migrant biomass and respiratory carbon flux by zooplankton and micronekton in the subtropical northeast Atlantic Ocean (Canary Islands)

    NASA Astrophysics Data System (ADS)

    Ariza, A.; Garijo, J. C.; Landeira, J. M.; Bordes, F.; Hernández-León, S.

    2015-05-01

    Diel Vertical Migration (DVM) in marine ecosystems is performed by zooplankton and micronekton, promoting a poorly accounted export of carbon to the deep ocean. Major efforts have been made to estimate carbon export due to gravitational flux and to a lesser extent, to migrant zooplankton. However, migratory flux by micronekton has been largely neglected in this context, due to its time-consuming and difficult sampling. In this paper, we evaluated gravitational and migratory flux due to the respiration of zooplankton and micronekton in the northeast subtropical Atlantic Ocean (Canary Islands). Migratory flux was addressed by calculating the biomass of migrating components and measuring the electron transfer system (ETS) activity in zooplankton and dominant species representing micronekton (Euphausia gibboides, Sergia splendens and Lobianchia dofleini). Our results showed similar biomass in both components. The main taxa contributing to DVM within zooplankton were juvenile euphausiids, whereas micronekton were mainly dominated by fish, followed by adult euphausiids and decapods. The contribution to respiratory flux of zooplankton (3.4 ± 1.9 mg C m-2 d-1) was similar to that of micronekton (2.9 ± 1.0 mg C m-2 d-1). In summary, respiratory flux accounted for 53% (range 23-71) of the gravitational flux measured at 150 m depth (11.9 ± 5.8 mg C m-2 d-1). However, based on larger migratory ranges and gut clearance rates, micronekton are expected to be the dominant component that contributes to carbon export in deeper waters. Micronekton estimates in this paper as well as those in existing literature, although variable due to regional differences and difficulties in calculating their biomass, suggest that carbon fluxes driven by this community are important for future models of the biological carbon pump.

  14. Population extinction in an inhomogeneous host-pathogen model

    NASA Astrophysics Data System (ADS)

    Bagarti, Trilochan

    2016-01-01

    We study inhomogeneous host-pathogen dynamics to model the global amphibian population extinction in a lake basin system. The lake basin system is modeled as quenched disorder. In this model we show that once the pathogen arrives at the lake basin it spreads from one lake to another, eventually spreading to the entire lake basin system in a wave like pattern. The extinction time has been found to depend on the steady state host population and pathogen growth rate. Linear estimate of the extinction time is computed. The steady state host population shows a threshold behavior in the interaction strength for a given growth rate.

  15. Feeding of Acanthocylops robustus on zooplankton

    NASA Astrophysics Data System (ADS)

    Yu-Feng, Yang; Brandl, Zden?k

    1996-03-01

    Feeding of freshwater cyclopoid copepod Acanthocyclops robustus on zooplankton was examined by a senes of feeding experiments during August-September of 1993. Study results showed A. robustus can capture and eat all type items provided from the Starý Haklovský fishpond, a shallow eutrophic water body near Bud?jovice City, Czech Republic. Selection by the predator was determined largely by prey body-size and density, but was also affected by prey types. Variable but significant changes in feeding rates were found in various size distribution and concentration of prey types. Percentages of small (80-235?m) and large (445-610?m) prey consumed were 42.47 and 3.85%, respectively. Starvation did not cause statistically significant difference. The feeding on Ceriodaphnia quadrangula showed significant difference between large and small prey. Feeding rate increased with increasing prey concentration.

  16. A probabilistic model to evaluate population dietary recommendations.

    PubMed

    Chalabi, Zaid; Ferguson, Elaine; Stanley, Robert; Briend, André

    2014-07-28

    Food-based dietary recommendations (FBR) play an essential role in promoting a healthy diet. To support the process of formulating a set of population-specific FBR, a probabilistic model was developed specifically to predict the changes in the percentage of a population at risk of inadequate nutrient intakes after the adoption of alternative sets of FBR. The model simulates the distribution of the number of servings per week from food groups or food items at baseline and after the hypothetical successful adoption of alternative sets of FBR, while ensuring that the population's energy intake distribution remains similar. The simulated changes from baseline in median nutrient intakes and the percentage of the population at risk of inadequate nutrient intakes are calculated and compared across the alternative sets of FBR. The model was illustrated using a hypothetical population of 12- to 18-month-old breast-feeding children consuming a cereal-based diet low in animal source foods. PMID:24779993

  17. A Population Model of Vasopressin Secretion 

    E-print Network

    Durie, Ruth Frances

    2008-06-24

    possibilities for quantification and therefore evaluation. The main outcomes from this work are construction of a simple model system in which features can be benchmarked; that a integrate and fire model modified to include bistability can explain the firing...

  18. Theoretical Population Biology 70 (2006) 2642 A master equation for a spatial population model with pair interactions

    E-print Network

    Young, William R.

    2006-01-01

    Theoretical Population Biology 70 (2006) 26­42 A master equation for a spatial population model 2006 Abstract We derive a closed master equation for an individual-based population model in continuous-hat kernel, reducing the diffusion can increase the total population. For a Gaussian kernel, reduced

  19. A Role for M-Matrices in Modelling Population Growth

    ERIC Educational Resources Information Center

    James, Glyn; Rumchev, Ventsi

    2006-01-01

    Adopting a discrete-time cohort-type model to represent the dynamics of a population, the problem of achieving a desired total size of the population under a balanced growth (contraction) and the problem of maintaining the desired size, once achieved, are studied. Properties of positive-time systems and M-matrices are used to develop the results,…

  20. Hierarchical Bayesian Spatio-Temporal Models for Population Spread

    E-print Network

    is a serious concern. Given the increasing economic, environmental, and human health impact of such invasionsHierarchical Bayesian Spatio-Temporal Models for Population Spread Christopher K. Wikle and Mevin, Columbia, MO 65211; wikle@stat.missouri.edu 1 #12;1 Introduction The spread of populations has long been

  1. Models of the World human population growth- critical analysis

    E-print Network

    Golosovsky, Michael

    2009-01-01

    We analyze mathematical models of the global human population growth and compare them to actual dynamics of the world population and of the world surplus product. We consider a possibility that the so-called world's demographic transition is not a dynamic crossover but a phase transition that affects all aspects of our life.

  2. Limited-Information Modeling of Loggerhead Turtle Population Size

    E-print Network

    Hitchcock, David B.

    applications, Gibbs sampling, Mark-recapture, Renewal process. 1 Introduction The loggerhead sea turtleLimited-Information Modeling of Loggerhead Turtle Population Size John M. Grego University of South June 28, 2012 Abstract We attempt to estimate the size of a population of female loggerhead turtles

  3. Epidemiological modeling of HIV in populations with different sexual structures

    E-print Network

    Planqué, Bob

    Epidemiological modeling of HIV in populations with different sexual structures Student: S. Y, Mathematics VU University Amsterdam 2010 #12;#12;Contents Introduction 1 1 Preliminaries 3 1.1 What are HIV literature dealing with the effect of HIV on a population's size . . . . 8 2 Influence of the bisexuals 17 2

  4. A general consumer-resource population model

    USGS Publications Warehouse

    Lafferty, Kevin D.; DeLeo, Giulio; Briggs, Cheryl J.; Dobson, Andrew P.; Gross, Thilo; Kuris, Armand M.

    2015-01-01

    Food-web dynamics arise from predator-prey, parasite-host, and herbivore-plant interactions. Models for such interactions include up to three consumer activity states (questing, attacking, consuming) and up to four resource response states (susceptible, exposed, ingested, resistant). Articulating these states into a general model allows for dissecting, comparing, and deriving consumer-resource models. We specify this general model for 11 generic consumer strategies that group mathematically into predators, parasites, and micropredators and then derive conditions for consumer success, including a universal saturating functional response. We further show how to use this framework to create simple models with a common mathematical lineage and transparent assumptions. Underlying assumptions, missing elements, and composite parameters are revealed when classic consumer-resource models are derived from the general model.

  5. Surrogate population models for large-scale neural simulations.

    PubMed

    Tripp, Bryan P

    2015-06-01

    Because different parts of the brain have rich interconnections, it is not possible to model small parts realistically in isolation. However, it is also impractical to simulate large neural systems in detail. This article outlines a new approach to multiscale modeling of neural systems that involves constructing efficient surrogate models of populations. Given a population of neuron models with correlated activity and with specific, nonrandom connections, a surrogate model is constructed in order to approximate the aggregate outputs of the population. The surrogate model requires less computation than the neural model, but it has a clear and specific relationship with the neural model. For example, approximate spike rasters for specific neurons can be derived from a simulation of the surrogate model. This article deals specifically with neural engineering framework (NEF) circuits of leaky-integrate-and-fire point neurons. Weighted sums of spikes are modeled by interpolating over latent variables in the population activity, and linear filters operate on gaussian random variables to approximate spike-related fluctuations. It is found that the surrogate models can often closely approximate network behavior with orders-of-magnitude reduction in computational demands, although there are certain systematic differences between the spiking and surrogate models. Since individual spikes are not modeled, some simulations can be performed with much longer steps sizes (e.g., 20 ms). Possible extensions to non-NEF networks and to more complex neuron models are discussed. PMID:25774544

  6. Spatial models of Northern Bobwhite populations for conservation planning

    USGS Publications Warehouse

    Twedt, D.J.; Wilson, R.R.; Keister, A.S.

    2007-01-01

    Since 1980, northern bobwhite (Colinus virginianus) range-wide populations declined 3.9% annually. Within the West Gulf Coastal Plain Bird Conservation Region in the south-central United States, populations of this quail species have declined 6.8% annually. These declines sparked calls for land use change and prompted implementation of various conservation practices. However, to effectively reverse these declines and restore northern bobwhite to their former population levels, habitat conservation and management efforts must target establishment and maintenance of sustainable populations. To provide guidance for conservation and restoration of habitat capable of supporting sustainable northern bobwhite populations in the West Gulf Coastal Plain, we modeled their spatial distribution using landscape characteristics derived from 1992 National Land Cover Data and bird detections, from 1990 to 1994, along 10-stop Breeding Bird Survey route segments. Four landscape metrics influenced detections of northern bobwhite: detections were greater in areas with more grassland and increased aggregation of agricultural lands, but detections were reduced in areas with increased density of land cover edge and grassland edge. Using these landscape metrics, we projected the abundance and spatial distribution of northern bobwhite populations across the entire West Gulf Coastal Plain. Predicted populations closely approximated abundance estimates from a different cadre of concurrently collected data but model predictions did not accurately reflect bobwhite detections along species-specific call-count routes in Arkansas and Louisiana. Using similar methods, we also projected northern bobwhite population distribution circa 1980 based on Land Use Land Cover data and bird survey data from 1976 to 1984. We compared our 1980 spatial projections with our spatial estimate of 1992 populations to identify areas of population change. Additionally, we used our projection of the spatial distribution and abundance of bobwhite to predict areas of population sustainability. Our projections of population change and sustainability provide guidance for targeting habitat conservation and rehabilitation efforts for restoration of northern bobwhite populations in the West Gulf Coastal Plain.

  7. Spatial models of northern bobwhite populations for conservation planning

    USGS Publications Warehouse

    Twedt, D.J.; Wilson, R.R.; Keister, A.S.

    2007-01-01

    Since 1980, northern bobwhite (Colinus virginianus) range-wide populations declined 3.9% annually. Within the West Gulf Coastal Plain Bird Conservation Region in the south-central United States, populations of this quail species have declined 6.8% annually. These declines sparked calls for land use change and prompted implementation of various conservation practices. However, to effectively reverse these declines and restore northern bobwhite to their former population levels, habitat conservation and management efforts must target establishment and maintenance of sustainable populations. To provide guidance for conservation and restoration of habitat capable of supporting sustainable northern bobwhite populations in the West Gulf Coastal Plain, we modeled their spatial distribution using landscape characteristics derived from 1992 National Land Cover Data and bird detections, from 1990 to 1994, along 10-stop Breeding Bird Survey route segments. Four landscape metrics influenced detections of northern bobwhite: detections were greater in areas with more grassland and increased aggregation of agricultural lands, but detections were reduced in areas with increased density of land cover edge and grassland edge. Using these landscape metrics, we projected the abundance and spatial distribution of northern bobwhite populations across the entire West Gulf Coastal Plain. Predicted populations closely approximated abundance estimates from a different cadre of concurrently collected data but model predictions did not accurately reflect bobwhite detections along species-specific call-count routes in Arkansas and Louisiana. Using similar methods, we also projected northern bobwhite population distribution circa 1980 based on Land Use Land Cover data and bird survey data from 1976 to 1984. We compared our 1980 spatial projections with our spatial estimate of 1992 populations to identify areas of population change. Additionally, we used our projection of the spatial distribution and abundance of bobwhite to predict areas of population sustainability. Our projections of population change and sustainability provide guidance for targeting habitat conservation and rehabilitation efforts for restoration of northern bobwhite populations in the West Gulf Coastal Plain.

  8. Parasitic chytrids sustain zooplankton growth during inedible algal bloom

    PubMed Central

    Rasconi, Serena; Grami, Boutheina; Niquil, Nathalie; Jobard, Marlène; Sime-Ngando, Télesphore

    2014-01-01

    This study assesses the quantitative impact of parasitic chytrids on the planktonic food web of two contrasting freshwater lakes during different algal bloom situations. Carbon-based food web models were used to investigate the effects of chytrids during the spring diatom bloom in Lake Pavin (oligo-mesotrophic) and the autumn cyanobacteria bloom in Lake Aydat (eutrophic). Linear inverse modeling was employed to estimate undetermined flows in both lakes. The Monte Carlo Markov chain linear inverse modeling procedure provided estimates of the ranges of model-derived fluxes. Model results confirm recent theories on the impact of parasites on food web function through grazers and recyclers. During blooms of “inedible” algae (unexploited by planktonic herbivores), the epidemic growth of chytrids channeled 19–20% of the primary production in both lakes through the production of grazer exploitable zoospores. The parasitic throughput represented 50% and 57% of the zooplankton diet, respectively, in the oligo-mesotrophic and in the eutrophic lakes. Parasites also affected ecological network properties such as longer carbon path lengths and loop strength, and contributed to increase the stability of the aquatic food web, notably in the oligo-mesotrophic Lake Pavin. PMID:24904543

  9. Arctic Whale Ecology Study (ARCWEST)/ Chukchi Acoustics, Oceanography, and Zooplankton

    E-print Network

    Arctic Whale Ecology Study (ARCWEST)/ Chukchi Acoustics, Oceanography, and Zooplankton Study Collective SUMMARY The 2014 Arctic Whale Ecology Study (ARCWEST)/Chukchi Acoustics, Oceanography currents, and prey availability are altered by climate change, parallel changes in baleen whale species

  10. Ecology of Zooplankton of the Cape Thompson Area Alaska

    E-print Network

    Tash, Jerry C.; Armitage, Kenneth

    1967-01-01

    to form eggs. Analysis of community structure among zooplankton showed: 10 species with affinities and 7 interrelated recurrent groups occurred in the lakes; 3 species with affinities and 1 recurrent group occurred in the lagoons; 4 species with affinities...

  11. Modeling X-linked ancestral origins in multiparental populations.

    PubMed

    Zheng, Chaozhi

    2015-05-01

    The models for the mosaic structure of an individual's genome from multiparental populations have been developed primarily for autosomes, whereas X chromosomes receive very little attention. In this paper, we extend our previous approach to model ancestral origin processes along two X chromosomes in a mapping population, which is necessary for developing hidden Markov models in the reconstruction of ancestry blocks for X-linked quantitative trait locus mapping. The model accounts for the joint recombination pattern, the asymmetry between maternally and paternally derived X chromosomes, and the finiteness of population size. The model can be applied to various mapping populations such as the advanced intercross lines (AIL), the Collaborative Cross (CC), the heterogeneous stock (HS), the Diversity Outcross (DO), and the Drosophila synthetic population resource (DSPR). We further derive the map expansion, density (per Morgan) of recombination breakpoints, in advanced intercross populations with L inbred founders under the limit of an infinitely large population size. The analytic results show that for X chromosomes the genetic map expands linearly at a rate (per generation) of two-thirds times 1 - 10/(9L) for the AIL, and at a rate of two-thirds times 1 - 1/L for the DO and the HS, whereas for autosomes the map expands at a rate of 1 - 1/L for the AIL, the DO, and the HS. PMID:25740936

  12. Modeling X-Linked Ancestral Origins in Multiparental Populations

    PubMed Central

    Zheng, Chaozhi

    2015-01-01

    The models for the mosaic structure of an individual’s genome from multiparental populations have been developed primarily for autosomes, whereas X chromosomes receive very little attention. In this paper, we extend our previous approach to model ancestral origin processes along two X chromosomes in a mapping population, which is necessary for developing hidden Markov models in the reconstruction of ancestry blocks for X-linked quantitative trait locus mapping. The model accounts for the joint recombination pattern, the asymmetry between maternally and paternally derived X chromosomes, and the finiteness of population size. The model can be applied to various mapping populations such as the advanced intercross lines (AIL), the Collaborative Cross (CC), the heterogeneous stock (HS), the Diversity Outcross (DO), and the Drosophila synthetic population resource (DSPR). We further derive the map expansion, density (per Morgan) of recombination breakpoints, in advanced intercross populations with L inbred founders under the limit of an infinitely large population size. The analytic results show that for X chromosomes the genetic map expands linearly at a rate (per generation) of two-thirds times 1 – 10/(9L) for the AIL, and at a rate of two-thirds times 1 – 1/L for the DO and the HS, whereas for autosomes the map expands at a rate of 1 – 1/L for the AIL, the DO, and the HS. PMID:25740936

  13. Zooplankton data report: the Marginal Ice Zone Experiment MIZEX, 1984

    SciTech Connect

    Smith, S.L.; Lane, P.V.Z.; Schwarting, E.M.

    1986-03-01

    The Marginal Ice Zone Experiment (MIZEX 84) concentrated on atmospheric, oceanic, and ice interactions in the Fram Strait region of the Greenland Sea, specifically the effect of the retreating ice margin on the productivity in the area and the use of zooplanktonic species as indicators of Arctic and North Atlantic water masses. The data in this report are the quantitative analyses of zooplankton collected while aboard the research vessel Polarstern.

  14. Impacts of fish predation on an Ohio River zooplankton community

    E-print Network

    Thorp, James H.

    2002-01-01

    , however, for few female copepods we examined were carrying eggs. Also, the relatively short time-frame of this experiment would limit a numerical response by the copepods, even though the high river water temperatures at this time (Table I) would have...). The relationship between zooplankton biomass and water residence time has been recently examined in rivers of various sizes. In a comparison of 31 north temperate rivers, Basu and Pick (Basu and Pick, 1996) found that zooplankton biomass was directly proportional...

  15. Evolution in population dynamics via nonlocal reaction diffusion models

    E-print Network

    Jeanjean, Louis

    are interested in biological invasions involving darwinian evolution. First we consider a population structured, immediate extinction.This sheds light on the biological relevance of such models. (Joint work with R. Carles

  16. Encoding Through Patterns: Regression Tree–Based Neuronal Population Models

    E-print Network

    Pipa, Gordon

    Although the existence of correlated spiking between neurons in a population is well known, the role such correlations play in encoding stimuli is not. We address this question by constructing pattern-based encoding models ...

  17. How predictable : modeling rates of change in individuals and populations

    E-print Network

    Krumme, Katherine

    2013-01-01

    This thesis develops methodologies to measure rates of change in individual human behavior, and to capture statistical regularities in change at the population level, in three pieces: i) a model of individual rate of change ...

  18. MASSCLEAN Multiple Stellar Populations Models of Stellar Clusters

    NASA Astrophysics Data System (ADS)

    Popescu, Bogdan; Hanson, Margaret M.

    2015-08-01

    The age and mass of unresolved or partially resolved stellar clusters can only be estimated using their integrated-light properties of magnitude and colors. Traditional Simple Stellar Population (SSP) models interpret these integrated properties assuming an infinite mass limit. This can lead to catastrophic failures in both age and mass determination when applied to real stellar clusters, particularly with total mass below 104 Msun. New, more sophisticated mass-dependent SSP models provide more accurate age and mass estimates, in better agreement with cluster age determinations using deep photometry Color-Magnitude Diagrams (CMD). But even these modern, mass-dependent SSP models can fail to estimate age and mass if the cluster contains a second stellar population. Our newest mass-dependent Multiple Stellar Populations (MSP) models show the influence of a second population of stars on the integrated light of these complex stellar clusters and their age estimates shows stronger agreement with CMD-derived stellar cluster ages.

  19. Modeling oscillations and spiral waves in Dictyostelium populations

    NASA Astrophysics Data System (ADS)

    Noorbakhsh, Javad; Schwab, David J.; Sgro, Allyson E.; Gregor, Thomas; Mehta, Pankaj

    2015-06-01

    Unicellular organisms exhibit elaborate collective behaviors in response to environmental cues. These behaviors are controlled by complex biochemical networks within individual cells and coordinated through cell-to-cell communication. Describing these behaviors requires new mathematical models that can bridge scales—from biochemical networks within individual cells to spatially structured cellular populations. Here we present a family of "multiscale" models for the emergence of spiral waves in the social amoeba Dictyostelium discoideum. Our models exploit new experimental advances that allow for the direct measurement and manipulation of the small signaling molecule cyclic adenosine monophosphate (cAMP) used by Dictyostelium cells to coordinate behavior in cellular populations. Inspired by recent experiments, we model the Dictyostelium signaling network as an excitable system coupled to various preprocessing modules. We use this family of models to study spatially unstructured populations of "fixed" cells by constructing phase diagrams that relate the properties of population-level oscillations to parameters in the underlying biochemical network. We then briefly discuss an extension of our model that includes spatial structure and show how this naturally gives rise to spiral waves. Our models exhibit a wide range of novel phenomena. including a density-dependent frequency change, bistability, and dynamic death due to slow cAMP dynamics. Our modeling approach provides a powerful tool for bridging scales in modeling of Dictyostelium populations.

  20. Modeling oscillations and spiral waves in Dictyostelium populations.

    PubMed

    Noorbakhsh, Javad; Schwab, David J; Sgro, Allyson E; Gregor, Thomas; Mehta, Pankaj

    2015-06-01

    Unicellular organisms exhibit elaborate collective behaviors in response to environmental cues. These behaviors are controlled by complex biochemical networks within individual cells and coordinated through cell-to-cell communication. Describing these behaviors requires new mathematical models that can bridge scales-from biochemical networks within individual cells to spatially structured cellular populations. Here we present a family of "multiscale" models for the emergence of spiral waves in the social amoeba Dictyostelium discoideum. Our models exploit new experimental advances that allow for the direct measurement and manipulation of the small signaling molecule cyclic adenosine monophosphate (cAMP) used by Dictyostelium cells to coordinate behavior in cellular populations. Inspired by recent experiments, we model the Dictyostelium signaling network as an excitable system coupled to various preprocessing modules. We use this family of models to study spatially unstructured populations of "fixed" cells by constructing phase diagrams that relate the properties of population-level oscillations to parameters in the underlying biochemical network. We then briefly discuss an extension of our model that includes spatial structure and show how this naturally gives rise to spiral waves. Our models exhibit a wide range of novel phenomena. including a density-dependent frequency change, bistability, and dynamic death due to slow cAMP dynamics. Our modeling approach provides a powerful tool for bridging scales in modeling of Dictyostelium populations. PMID:26172740

  1. Multiscale modeling of oscillations and spiral waves in Dictyostelium populations

    E-print Network

    Javad Noorbakhsh; David Schwab; Allyson Sgro; Thomas Gregor; Pankaj Mehta

    2014-09-12

    Unicellular organisms exhibit elaborate collective behaviors in response to environmental cues. These behaviors are controlled by complex biochemical networks within individual cells and coordinated through cell-to-cell communication. Describing these behaviors requires new mathematical models that can bridge scales -- from biochemical networks within individual cells to spatially structured cellular populations. Here, we present a family of multiscale models for the emergence of spiral waves in the social amoeba Dictyostelium discoideum. Our models exploit new experimental advances that allow for the direct measurement and manipulation of the small signaling molecule cAMP used by Dictyostelium cells to coordinate behavior in cellular populations. Inspired by recent experiments, we model the Dictyostelium signaling network as an excitable system coupled to various pre-processing modules. We use this family of models to study spatially unstructured populations by constructing phase diagrams that relate the properties of population-level oscillations to parameters in the underlying biochemical network. We then extend our models to include spatial structure and show how they naturally give rise to spiral waves. Our models exhibit a wide range of novel phenomena including a density dependent frequency change, bistability, and dynamic death due to slow cAMP dynamics. Our modeling approach provides a powerful tool for bridging scales in modeling of Dictyostelium populations.

  2. Parameter Estimates in Differential Equation Models for Population Growth

    ERIC Educational Resources Information Center

    Winkel, Brian J.

    2011-01-01

    We estimate the parameters present in several differential equation models of population growth, specifically logistic growth models and two-species competition models. We discuss student-evolved strategies and offer "Mathematica" code for a gradient search approach. We use historical (1930s) data from microbial studies of the Russian biologist,…

  3. Modelling of Polydispersed Flows using Two Population Balance Approaches

    NASA Astrophysics Data System (ADS)

    Cheung, Sherman C. P.; Duan, Xinyue; Yeoh, Guan H.; Tu, Jiyuan; Krepper, Eckhard; Lucas, Dirk

    2010-03-01

    Polydispersed bubbly flows with wide range of bubble size are commonly encountered in many industrial fields. The use of population balance models coupled with the two-fluid model presents the most viable way of handling such complex flow structures. The main focus of this paper is to access the capabilities of two population balance models—namely Average Bubble Number Density (ABND) and Inhomogeneous MUlti-SIze-Group (MUSIG) model; in resolving the dynamical changes of void fraction and bubble size distribution under polydispersed flow conditions. Numerical predictions are validated against two polydispersed flow measurements. Special attentions are directed towards the performance of the two models in capturing the behavioral transition of "wall peak" to "core peak" void fraction profile. Applicability and drawbacks of the two population balance models for industrial applications are also discussed.

  4. Population dynamics of pond zooplankton II Daphnia ambigua Scourfield

    USGS Publications Warehouse

    Angino, E.E.; Armitage, K.B.; Saxena, B.

    1973-01-01

    Calcium was the most important of 27 environmental components affecting density for a 50 week period. Simultaneous stepwise regression accounted for more variability in total number/1 and in the number of ovigerous females/1 than did any of the lag analyses; 1-week lag accounted for the greatest amount of variability in clutch size. Total number and clutch size were little affected by measures of food. ?? 1973 Dr. W. Junk b.v. Publishers.

  5. Demographics of reintroduced populations: estimation, modeling, and decision analysis

    USGS Publications Warehouse

    Converse, Sarah J.; Moore, Clinton T.; Armstrong, Doug P.

    2013-01-01

    Reintroduction can be necessary for recovering populations of threatened species. However, the success of reintroduction efforts has been poorer than many biologists and managers would hope. To increase the benefits gained from reintroduction, management decision making should be couched within formal decision-analytic frameworks. Decision analysis is a structured process for informing decision making that recognizes that all decisions have a set of components—objectives, alternative management actions, predictive models, and optimization methods—that can be decomposed, analyzed, and recomposed to facilitate optimal, transparent decisions. Because the outcome of interest in reintroduction efforts is typically population viability or related metrics, models used in decision analysis efforts for reintroductions will need to include population models. In this special section of the Journal of Wildlife Management, we highlight examples of the construction and use of models for informing management decisions in reintroduced populations. In this introductory contribution, we review concepts in decision analysis, population modeling for analysis of decisions in reintroduction settings, and future directions. Increased use of formal decision analysis, including adaptive management, has great potential to inform reintroduction efforts. Adopting these practices will require close collaboration among managers, decision analysts, population modelers, and field biologists.

  6. L-Lake zooplankton: L-Lake/Steel Creek Biological Monitoring Program, November 1985--December 1991

    SciTech Connect

    Bowers, J.A.; Bowen, M.

    1992-03-01

    The L- Lake Biological Monitoring Program was designed to meet environmental regulatory requirements associated with the restart of L-Reactor and address portions of Section 316(a) of the Clean Water Act, which requires an applicant for a discharge permit to provide scientific evidence that the discharge causes no significant impact on the indigenous ecosystem. The Department of Energy (DOE) must demonstrate that the discharge of L-Reactor affluent into L Lake will not inhibit the eventual establishment of a ``Balanced Biological Community`` (BBC) in at least 50% of the lake. This report details results of monitoring zooplankton populations in L-Lake.

  7. A model of northern pintail productivity and population growth rate

    USGS Publications Warehouse

    Flint, P.L.; Grand, J.B.; Rockwell, R.F.

    1998-01-01

    Our objective was to synthesize individual components of reproductive ecology into a single estimate of productivity and to assess the relative effects of survival and productivity on population dynamics. We used information on nesting ecology, renesting potential, and duckling survival of northern pintails (Anas acuta) collected on the Yukon-Kuskokvim Delta (Y-K Delta), Alaska, 1991-95, to model the number of ducklings produced under a range of nest success and duckling survival probabilities. Using average values of 25% nest success, 11% duckling survival, and 56% renesting probability from our study population, we calculated that all young in our population were produced by 13% of the breeding females, and that early-nesting females produced more young than later-nesting females. Further, we calculated, on average, that each female produced only 0.16 young females/nesting season. We combined these results with estimates of first-year and adult survival to examine the growth rate (??) of the population and the relative contributions of these demographic parameters to that growth rate. Contrary to aerial survey data, the population projection model suggests our study population is declining rapidly (?? = 0.6969). The relative effects on population growth rate were 0.1175 for reproductive success, 0.1175 for first-year survival, and 0.8825 for adult survival. Adult survival had the greatest influence on ?? for our population, and this conclusion was robust over a range of survival and productivity estimates. Given published estimates of annual survival for adult females (61%), our model suggested nest success and duckling survival need to increase to approximately 40% to achieve population stability. We discuss reasons for the apparent discrepancy in population trends between our model and aerial surveys in terms of bias in productivity and survival estimates.

  8. The vertical distribution of zooplankton in the eastern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Hopkins, Thomas L.

    1982-09-01

    The zooplankton community in the eastern Gulf of Mexico was investigated to determine the quantity and taxonomic composition of forage available to higher trophic levels and to provide a data base for future trophodynamic modelling. Standing stock (1.2 g m -2, dw) in the upper 1000 m is in the range for oligotrophic low-latitude boundary currents but is greater than in central gyre areas. Abundance decreases exponentially with depth, over half the biomass occuring in the upper 200 m. Diel variations are apparent, the greatest differences in biomass occuring in the upper 50 m and at 300 to 350 m. Copepods were dominant, contributing over 80% of the number and half the net-caught biomass. The zooplankton community is diverse, 21 genera individually exceeding 1% of the biomass in the 0 to 100-m layer. Grazers (herbivores, detritivores, omnivores) were 66% of the 0 to 1000-m standing stock and carnivores 34%, their biomass in the epipelagic zone above the base of the thermocline (150 m) at night increasing 46 and 57%, respectively. Zooplankton biomass available as forage for higher trophic levels is most concentrated in the upper 50 m, whereas, paradoxically, the zooplanktivorous micronekton, the myctophid fishes in particular, are centered deeper, primarily between 50 and 150 m.

  9. Hydrothermal venting at endeavour ridge: effect on zooplankton biomass throughout the water column

    NASA Astrophysics Data System (ADS)

    Burd, Brenda J.; Thomson, Richard E.

    1994-09-01

    Bio-acoustical data reveal that the hydrothermal plume emanating from the main vent field near 2100 m depth on Endeavour Ridge (47°57'N, 129°06'W) affects the distribution and migration of zooplankton throughout the entire water column. Net samples taken in July of 1991 and 1992 show that the standing stock of macrozooplankton integrated over the water column was considerably higher within several kilometers of the main vent site than at locations tens of kilometers from the vent site. Community analysis reveals that there were distinct shallow (<800 m depth) and deep (>800 m depth) faunal assemblages in the vent region. Shallow fauna infiltrated the deep zooplankton acoustic scattering layers in the immediate vicinity of Endeavour Ridge, producing a mixed assemblage of animals, including large numbers of juvenile filter-feeding copepods and their predators that normally inhabit the shallow layer. In contrast, the deep acoustic scattering layers found 11 km to the southeast and 15 km to the north of the central vent field in 1991, and 50 km to the west of the central vent field in 1992, were composed of distinctly deep-sea fauna. The enhanced, vertically-integrated biomass over the vent region appears to result from vertical migration of zooplankton. A simple circulation model indicates that fauna can make the round-trip journey between the top of the plume and the upper ocean without being advected beyond the range of the detectable hydrothermal effluent.

  10. A decade of predatory control of zooplankton species composition of Lake Michigan

    USGS Publications Warehouse

    Makarewicz, Joseph C.; Bertram, Paul; Lewis, Theodore; Brown, Edward H., Jr.

    1995-01-01

    From 1983 to 1992, 71 species representing 38 genera from the Calanoida, Cladocera, Cyclopoida, Mysidacea, Rotifera, Mollusca and Harpacticoida comprised the offshore zooplankton community of Lake Michigan. Our data demonstrate that the composition and abundance of the calanoid community after 1983 is not unlike that of 1960s and that species diversity of the calanoid community is more diverse than the cladoceran community in the 1990s as compared to the early 1980s. Even though the relative biomass of the cladocerans has remained similar over the 1983-1993 period, the species diversity and evenness of the Cladocera community in the early 1990s is unlike anything that has been previously reported for Lake Michigan. Cladocera dominance is centered in one species, Daphnia galeata mendotae, and only three species of Cladocera were observed in the pelagic region of the lake in 1991 and 1992. Nutrient levels, phytoplankton biomass, and the abundance of planktivorous alewife and bloater chub and Bythotrephes are examined as possible causes of these changes in zooplankton species composition. The increase in Rotifera biomass, but not Crustacea, was correlated with an increase in relative biomass of unicellular algae. Food web models suggest Bythotrephes will cause Lake Michigan's plankton to return to a community similar to that of the 1970s; that is Diaptomus dominated. Such a change has occurred. However, correlational analysis suggest that alewife and bloater chubs (especially juveniles) are affecting size and biomass of larger species of zooplankton as well as Bythotrephes.

  11. Stable isotope analysis of 1987-1991 zooplankton samples and bowhead whale tissues. Final report

    SciTech Connect

    Schell, D.M.

    1992-06-01

    Stable isotope analyses of bowhead whale tissue samples and bowhead whale prey organisms collected over the years 1987 to 1991 were used to provide detail on the isotope ratio gradients evident in the arctic Alaskan zooplankton and to verify previous findings regarding the growth rates and age determination techniques developed for bowhead whales. Zooplankton of the Bering and Chukchi seas are enriched in (13)C relative to the eastern Beaufort Sea. The analysis of baleen from bowhead whales taken between 1987 to 1990 indicate that the whales are slow-growing and the young animals between year one and about six to seven years of age, undergo a period of little or no linear growth. The authors estimate that bowheads require 16-18 years to reach the length of sexual maturity, i.e., 13-14 m. From baleen Delta(13C) cycles, a 20 year record of the isotope ratios in the phytoplankton of the northern Bering and Chukchi seas was constructed. The long-term record has been compared with the temperature anomalies in surface waters of the Bering Sea. The Delta(13C) of the zooplankton is inversely correlated with temperature and refutes current models attempting to relate ocean temperature, and atmospheric carbon dioxide levels with the Delta(13C) of ocean sediment organic matter.

  12. Population-level effects in Amphiascus tenuiremis: contrasting matrix- and individual-based population models.

    PubMed

    Lundström Belleza, Elin; Brinkmann, Markus; Preuss, Thomas G; Breitholtz, Magnus

    2014-12-01

    Environmental risk assessment (ERA) is generally based on individual-level endpoints, even though protection goals in ERA intend higher biological levels. Population models have the potential to translate individual-level endpoints to population-level responses and range from simple demographic equations to highly complex individual based models (IBMs). The aims of the current study were to develop a matrix model (MM) with the structure and parameterization proposed in the draft OECD guideline "Harpacticoid copepod development and reproduction test with Amphiascus tenuiremis", and an IBM with the same data requirements. Experimental data from lindane exposure from validation studies of the OECD guideline was projected to the population level. Lindane does not only cause effects on survival and reproduction, but also on the time it takes to develop from larvae to adults. The two model approaches were contrasted in terms of their ability to properly project these effects on development. The MM projected smaller effects of the lindane treatments on population growth rate compared to the IBM since in its proposed structure, it did not include the delay in development explicitly. Population-level EC10 for population growth rate in the IBM was at the same level as the most sensitive individual-level endpoint, whereas the EC10 from the MM was not as sensitive. Based on these findings, our conclusion is that the IBM (or an improved MM) should be used for datasets including shifts in development, whereas the simpler MM is sufficient for datasets where only mortality and reproduction are affected, or as a screening tool in lower-tier population-level ERA. PMID:25456235

  13. Estimation of population size using open capture-recapture models

    USGS Publications Warehouse

    McDonald, T.L.; Amstrup, Steven C.

    2001-01-01

    One of the most important needs for wildlife managers is an accurate estimate of population size. Yet, for many species, including most marine species and large mammals, accurate and precise estimation of numbers is one of the most difficult of all research challenges. Open-population capture-recapture models have proven useful in many situations to estimate survival probabilities but typically have not been used to estimate population size. We show that open-population models can be used to estimate population size by developing a Horvitz-Thompson-type estimate of population size and an estimator of its variance. Our population size estimate keys on the probability of capture at each trap occasion and therefore is quite general and can be made a function of external covariates measured during the study. Here we define the estimator and investigate its bias, variance, and variance estimator via computer simulation. Computer simulations make extensive use of real data taken from a study of polar bears (Ursus maritimus) in the Beaufort Sea. The population size estimator is shown to be useful because it was negligibly biased in all situations studied. The variance estimator is shown to be useful in all situations, but caution is warranted in cases of extreme capture heterogeneity.

  14. A hierarchical model for estimating change in American Woodcock populations

    USGS Publications Warehouse

    Sauer, J.R.; Link, W.A.; Kendall, W.L.; Kelley, J.R.; Niven, D.K.

    2008-01-01

    The Singing-Ground Survey (SGS) is a primary source of information on population change for American woodcock (Scolopax minor). We analyzed the SGS using a hierarchical log-linear model and compared the estimates of change and annual indices of abundance to a route regression analysis of SGS data. We also grouped SGS routes into Bird Conservation Regions (BCRs) and estimated population change and annual indices using BCRs within states and provinces as strata. Based on the hierarchical model?based estimates, we concluded that woodcock populations were declining in North America between 1968 and 2006 (trend = -0.9%/yr, 95% credible interval: -1.2, -0.5). Singing-Ground Survey results are generally similar between analytical approaches, but the hierarchical model has several important advantages over the route regression. Hierarchical models better accommodate changes in survey efficiency over time and space by treating strata, years, and observers as random effects in the context of a log-linear model, providing trend estimates that are derived directly from the annual indices. We also conducted a hierarchical model analysis of woodcock data from the Christmas Bird Count and the North American Breeding Bird Survey. All surveys showed general consistency in patterns of population change, but the SGS had the shortest credible intervals. We suggest that population management and conservation planning for woodcock involving interpretation of the SGS use estimates provided by the hierarchical model.

  15. Response of zooplankton to improving water quality in the Scheldt estuary (Belgium)

    NASA Astrophysics Data System (ADS)

    Mialet, B.; Gouzou, J.; Azémar, F.; Maris, T.; Sossou, C.; Toumi, N.; Van Damme, S.; Meire, P.; Tackx, M.

    2011-05-01

    Data obtained from 14 years of monthly samplings (1996-2009) were used to investigate the response of the crustacean zooplankton community to improving water quality in the Scheldt estuary. A strong reduction of poor water quality indicators, such as NH 4+ and BOD 5, as well as an increase in oxygen and in chlorophyll a concentrations were observed during the study period. During the study period, important changes were observed in the zooplankton community composition and spatial distribution. From 2007 onwards, most of the calanoid population, previously mainly found in the brackish water reach of the estuary, moved to the freshwater, where they reached higher abundances than previously observed. Simultaneously, cyclopoids populations strongly decreased in freshwater while cladocerans did not change their abundance, except during years with high chlorophyll a concentrations. Redundancy analyses (RDA) showed that the variability within the calanoid population can be explained by the improvement in water quality. Variability within the cyclopoids and cladoceran community is mainly explained by chlorinity and chlorophyll a concentrations. Their presence in the most polluted upstream area until 2007 suggests they are more tolerant to poor water quality than calanoids. Several hypotheses to explain the disappearance of cyclopoids after the move of calanoids to the freshwater are presented and discussed.

  16. Can overwintering versus diapausing strategy in Daphnia determine match-mismatch events in zooplankton-algae interactions?

    PubMed

    de Senerpont Domis, Lisette N; Mooij, Wolf M; Hülsmann, Stephan; van Nes, Egbert H; Scheffer, Marten

    2007-01-01

    Mismatches between predator and prey due to climate change have now been documented for a number of systems. Ultimately, a mismatch may have far-reaching consequences for ecosystem functioning as decoupling of trophic relationships results in trophic cascades. Here, we examine the potential for climate change induced mismatches between zooplankton and algae during spring succession, with a focus on Daphnia and its algal food. Whereas the development of an overwintering population of daphnids may parallel shifts in phytoplankton phenology due to climate warming, changes in the photoperiod-temperature interaction may cause the emerging population of daphnids to hatch too late and mismatch their phytoplankton prey. A decoupling of the trophic relationship between the keystone herbivore Daphnia and its algal prey can result in the absence of a spring clear water phase. We extended an existing minimal model of seasonal dynamics of Daphnia and algae and varied the way the Daphnia population is started in spring, i.e., from free swimming individuals or from hatching resting eggs. Our model results show that temperature affects the timing of peak abundance in Daphnia and algae, and subsequently the timing of the clear water phase. When a population is started from a small inoculum of hatching resting eggs, extreme climate warming (+6 degrees C) results in a decoupling of trophic relationships and the clear water phase fails to occur. In the other scenarios, the trophic relationships between Daphnia and its algal food source remain intact. Analysis of 36 temperate lakes showed that shallow lakes have a higher potential for climate induced match-mismatches, as the probability of active overwintering daphnids decreases with lake depth. Future research should point out whether lake depth is a direct causal factor in determining the presence of active overwintering daphnids or merely indicative for underlying causal factors such as fish predation and macrophyte cover. PMID:17024385

  17. An aerial sightability model for estimating ferruginous hawk population size

    USGS Publications Warehouse

    Ayers, L.W.; Anderson, S.H.

    1999-01-01

    Most raptor aerial survey projects have focused on numeric description of visibility bias without identifying the contributing factors or developing predictive models to account for imperfect detection rates. Our goal was to develop a sightability model for nesting ferruginous hawks (Buteo regalis) that could account for nests missed during aerial surveys and provide more accurate population estimates. Eighteen observers, all unfamiliar with nest locations in a known population, searched for nests within 300 m of flight transects via a Maule fixed-wing aircraft. Flight variables tested for their influence on nest-detection rates included aircraft speed, height, direction of travel, time of day, light condition, distance to nest, and observer experience level. Nest variables included status (active vs. inactive), condition (i.e., excellent, good, fair, poor, bad), substrate type, topography, and tree density. A multiple logistic regression model identified nest substrate type, distance to nest, and observer experience level as significant predictors of detection rates (P < 0.05). The overall model was significant (??26 = 124.4, P < 0.001, n = 255 nest observations), and the correct classification rate was 78.4%. During 2 validation surveys, observers saw 23.7% (14/59) and 36.5% (23/63) of the actual population. Sightability model predictions, with 90% confidence intervals, captured the true population in both tests. Our results indicate standardized aerial surveys, when used in conjunction with the predictive sightability model, can provide unbiased population estimates for nesting ferruginous hawks.

  18. Characterization of intermittency in zooplankton behaviour in turbulence.

    PubMed

    Michalec, François-Gaël; Schmitt, François G; Souissi, Sami; Holzner, Markus

    2015-10-01

    We consider Lagrangian velocity differences of zooplankters swimming in still water and in turbulence. Using cumulants, we quantify the intermittency properties of their motion recorded using three-dimensional particle tracking velocimetry. Copepods swimming in still water display an intermittent behaviour characterized by a high probability of small velocity increments, and by stretched exponential tails. Low values arise from their steady cruising behaviour while heavy tails result from frequent relocation jumps. In turbulence, we show that at short time scales, the intermittency signature of active copepods clearly differs from that of the underlying flow, and reflects the frequent relocation jumps displayed by these small animals. Despite these differences, we show that copepods swimming in still and turbulent flow belong to the same intermittency class that can be modelled by a log-stable model with non-analytical cumulant generating function. Intermittency in swimming behaviour and relocation jumps may enable copepods to display oriented, collective motion under strong hydrodynamic conditions and thus, may contribute to the formation of zooplankton patches in energetic environments. PMID:26490249

  19. A Diffusion Model in Population Genetics with Mutation and Dynamic

    E-print Network

    O'Leary, Michael

    A Diffusion Model in Population Genetics with Mutation and Dynamic Fitness Mike O'Leary Department of Mathematics Towson University May 24, 2008 Mike O'Leary (Towson University) A Diffusion Model in Genetics May determine the long-time behavior of the total genetic variance? Portions of this work are joint with Judith

  20. Student-Teacher Population Growth Model. Working Paper.

    ERIC Educational Resources Information Center

    Zabrowski, Edward K.; And Others

    This mathematical model of the educational system calculates information on population groups by sex, race, age, and educational level. The model can be used to answer questions about what would happen to the flows of students and teachers through the formal educational system if these flows are changed at various stages. The report discusses the…

  1. Modelling microbial population dynamics in nitritation processes Elisabetta Giusti a

    E-print Network

    . A modified Activated Sludge Model No. 3 (ASM3) with two-step nitrification-denitrifi- cation. Environmental January 2011 Accepted 1 February 2011 Available online 3 March 2011 Keywords: Microbial kinetics Activated sludge modelling Parameter estimation Population dynamics Nitritation a b s t r a c t In the wastewater

  2. FISHERY-ORIENTED MODEL OF MARYLAND OYSTER POPULATIONS

    EPA Science Inventory

    We used time series data to calibrate a model of oyster population dynamics for Maryland's Chesapeake Bay. Model parameters were fishing mortality, natural mortality, recruitment, and carrying capacity. We calibrated for the Maryland bay as a whole and separately for 3 salinity z...

  3. A POPULATION EXPOSURE MODEL FOR PARTICULATE MATTER: SHEDS-PM

    EPA Science Inventory

    The US EPA National Exposure Research Laboratory (NERL) has developed a population exposure and dose model for particulate matter (PM) that will be publicly available in Fall 2002. The Stochastic Human Exposure and Dose Simulation (SHEDS-PM) model uses a probabilistic approach ...

  4. Inference from a Deterministic Population Dynamics Model for Bowhead Whales

    E-print Network

    Givens, Geof H.

    techniques. Meth­ ods for comparing competing population dynamics models are developed, based) in making decisions about bowhead whales, Balaena mysticetus, is the replacement yield, RY. Information to many simulation models in other areas of science and policy­making. Software to implement these methods

  5. A finite population model of molecular evolution: theory and computation.

    PubMed

    Dixit, Narendra M; Srivastava, Piyush; Vishnoi, Nisheeth K

    2012-10-01

    This article is concerned with the evolution of haploid organisms that reproduce asexually. In a seminal piece of work, Eigen and coauthors proposed the quasispecies model in an attempt to understand such an evolutionary process. Their work has impacted antiviral treatment and vaccine design strategies. Yet, predictions of the quasispecies model are at best viewed as a guideline, primarily because it assumes an infinite population size, whereas realistic population sizes can be quite small. In this paper we consider a population genetics-based model aimed at understanding the evolution of such organisms with finite population sizes and present a rigorous study of the convergence and computational issues that arise therein. Our first result is structural and shows that, at any time during the evolution, as the population size tends to infinity, the distribution of genomes predicted by our model converges to that predicted by the quasispecies model. This justifies the continued use of the quasispecies model to derive guidelines for intervention. While the stationary state in the quasispecies model is readily obtained, due to the explosion of the state space in our model, exact computations are prohibitive. Our second set of results are computational in nature and address this issue. We derive conditions on the parameters of evolution under which our stochastic model mixes rapidly. Further, for a class of widely used fitness landscapes we give a fast deterministic algorithm which computes the stationary distribution of our model. These computational tools are expected to serve as a framework for the modeling of strategies for the deployment of mutagenic drugs. PMID:23057826

  6. STELLAR POPULATION MODELS AND INDIVIDUAL ELEMENT ABUNDANCES. I. SENSITIVITY OF STELLAR EVOLUTION MODELS

    E-print Network

    Lee, Hyun-chul

    STELLAR POPULATION MODELS AND INDIVIDUAL ELEMENT ABUNDANCES. I. SENSITIVITY OF STELLAR EVOLUTION spectra but little has been done to address similar issues in the stellar evolution models that underlie most stellar population models. Stellar evolution models will primarily be influenced by changes

  7. Pharmacodynamic models of age-structured cell populations.

    PubMed

    Krzyzanski, Wojciech

    2015-10-01

    The purpose of this work is to review basic pharmacodynamic (PD) models describing drug effects on cell populations and expand them to age-structured models using the theory of physiologically structured populations. The plasma drug concentrations are interpreted as the environment affecting the cell production and mortality rates. An explicit solution to model equations provides the age density distribution that serves to establish a relationship between the cell lifespan distribution and the hazard of cell removal. Given the lifespan distributions, the age distributions for most commonly applied PD models of cell responses including basic cell turnover, transit compartments, and basic lifespan models have been derived both for the baseline conditions and drug treatment. The steady-state age distribution for basic indirect response models is exponential, and it is uniform for the basic lifespan model. As an example of more complex cell population, the age distribution of human red blood cells has been simulated based on a recent model of red blood cell survival. The age distribution for cells in the transit compartment model is the sum of the gamma functions. Means and variances of age distributions for all discussed models were calculated. A brief discussion of numerical challenges and possible future model developments is presented. PMID:26377617

  8. Modeling X-ray binary populations in elliptical galaxies.

    NASA Astrophysics Data System (ADS)

    Fragos, Tassos; Kalogera, V.; Fabbiano, G.

    2009-09-01

    X-ray binaries are unique astrophysical laboratories as they carry information about many complex physical processes such as star formation, compact object formation, and evolution of interacting binary systems. Motivated by deep Chandra observations of extra-galactic populations of X-ray binaries, I will present theoretical models for the formation and evolution of populations of low-mass X-ray binaries (LMXBs) in the two elliptical galaxies NGC 3379 and NGC 4278. The models are calculated with the recently updated StarTrack code, assuming only a primordial galactic field LMXB population. StarTrack is an advanced population synthesis code that has been tested and calibrated using detailed binary star calculations and incorporates all the important physical processes of binary evolution. The simulations are targeted to modeling and understanding the origin of the X-ray luminosity functions (XLFs) of point sources in these galaxies. For the first time we explore the population XLF in luminosities below 10E37 erg/s, as probed by the most recent observational results. Furthermore, I will present a physically motivated and self-consistent prescription for the modeling of transient neutron star LMXB properties, such as duty cycle, outburst duration and recurrence time, and compare the model transient LMXB population to the Chandra X-ray survey of the two ellipticals, which revealed several transient sources. Finally, I will briefly talk about an ongoing project towards developing a new advanced computational tool for the study of X-ray binary populations formed in both galactic fields and dense stellar clusters.

  9. Changes in fatty acid and hydrocarbon composition of zooplankton assemblages related to environmental conditions

    SciTech Connect

    Lambert, R.M.

    1989-01-01

    Changes in zooplankton fatty acid and hydrocarbon patterns are described in relation to changes in environmental conditions and species composition. The regulation of zooplankton abundance by sea nettle-ctenophore interaction was examined in a small Rhode Island coastal pond. Sea nettles were nettles were able to eliminate ctenophores from the pond and subsequently zooplankton abundance increased. During one increase in zooplankton abundance, it was found that polyunsaturated fatty acids decreased while monounsaturated fatty acids increased. It was concluded that this shift in biochemical pattern was due to food limitation. In addition, zooplankton fatty acids were used in multivariate discriminant analysis to classify whether zooplankton were from coastal or estuarine environments. Zooplankton from coastal environments were characterized by higher monounsaturate fatty acids. Zooplankton hydrocarbon composition was affected by species composition and by pollution inputs. The presence of Calanus finmarchicus was detected by increased levels of pristane.

  10. Measurements of acoustic scattering from zooplankton and oceanic microstructure using a broadband echosounder

    E-print Network

    constituents have different scattering characteristics (Lavery et al., 2007), or turbulence patches in Measurements of acoustic scattering from zooplankton and oceanic microstructure using a broadband. Measurements of acoustic scattering from zooplankton and oceanic microstructure using a broadband echosounder

  11. Resource Requirements of the Pacific Leatherback Turtle Population

    PubMed Central

    Jones, T. Todd; Bostrom, Brian L.; Hastings, Mervin D.; Van Houtan, Kyle S.; Pauly, Daniel; Jones, David R.

    2012-01-01

    The Pacific population of leatherback sea turtles (Dermochelys coriacea) has drastically declined in the last 25 years. This decline has been linked to incidental capture by fisheries, egg and meat harvesting, and recently, to climate variability and resource limitation. Here we couple growth rates with feeding experiments and food intake functions to estimate daily energy requirements of leatherbacks throughout their development. We then estimate mortality rates from available data, enabling us to raise food intake (energy requirements) of the individual to the population level. We place energy requirements in context of available resources (i.e., gelatinous zooplankton abundance). Estimated consumption rates suggest that a single leatherback will eat upward of 1000 metric tonnes (t) of jellyfish in its lifetime (range 924–1112) with the Pacific population consuming 2.1×106 t of jellyfish annually (range 1.0–3.7×106) equivalent to 4.2×108 megajoules (MJ) (range 2.0–7.4×108). Model estimates suggest 2–7 yr-old juveniles comprise the majority of the Pacific leatherback population biomass and account for most of the jellyfish consumption (1.1×106 t of jellyfish or 2.2×108 MJ per year). Leatherbacks are large gelatinous zooplanktivores with consumption to biomass ratios of 96 (up to 192 if feeding strictly on low energy density Cnidarians); they, therefore, have a large capacity to impact gelatinous zooplankton landscapes. Understanding the leatherback's needs for gelatinous zooplankton, versus the availability of these resources, can help us better assess population trends and the influence of climate induced resource limitations to reproductive output. PMID:23071518

  12. Stochastic resonance in a generalized Von Foerster population growth model

    SciTech Connect

    Lumi, N.; Mankin, R.

    2014-11-12

    The stochastic dynamics of a population growth model, similar to the Von Foerster model for human population, is studied. The influence of fluctuating environment on the carrying capacity is modeled as a multiplicative dichotomous noise. It is established that an interplay between nonlinearity and environmental fluctuations can cause single unidirectional discontinuous transitions of the mean population size versus the noise amplitude, i.e., an increase of noise amplitude can induce a jump from a state with a moderate number of individuals to that with a very large number, while by decreasing the noise amplitude an opposite transition cannot be effected. An analytical expression of the mean escape time for such transitions is found. Particularly, it is shown that the mean transition time exhibits a strong minimum at intermediate values of noise correlation time, i.e., the phenomenon of stochastic resonance occurs. Applications of the results in ecology are also discussed.

  13. A model for evaluation of satellite population management alternatives

    NASA Astrophysics Data System (ADS)

    Penny, R. E., Jr.; Jones, R. K.

    1983-12-01

    A Q-GERT model was developed to simulate the satellite environment, including the untracked man-made population, and to calculate a probability of collision for any satellite of interest. Provision for launches, explosions, collisions (including ASAT), retrieval, reposition, and decay was made. The model is structured to easily vary the rates at which these activities occur and to observe changes in the satellite population through which a satellite of interest must travel. Variance of the rates, and the resultant change in probability of collision allows evaluation of satellite population management alternatives such as reducing launch rates or increasing retrieval of spent, but still capable of exploding, satellites. The model is proposed for use by both the USAF SPACE COMMAND and NASA.

  14. Impact of zooplankton grazing on Alexandrium blooms in the offshore Gulf of Maine

    NASA Astrophysics Data System (ADS)

    Turner, Jefferson T.; Borkman, David G.

    2005-09-01

    Zooplankton grazing was investigated by shipboard experiments during natural blooms of Alexandrium spp. in the offshore Gulf of Maine in spring and/or summer of 1998, 2000, and 2001. Grazing studies were done in conjunction with studies of accumulation of Alexandrium toxins in the zooplankton, as part of the ECOHAB-Gulf of Maine regional program. Several species of copepods, marine cladocerans, and appendicularians were allowed to graze upon natural phytoplankton assemblages, at ambient temperatures (14-17 °C). Grazing was measured by quantitative microscopic analyses of disappearance of phytoplankton cells in initial, control, and experimental food suspensions. Thus, we were able to examine grazing upon Alexandrium in comparison to grazing on other co-occurring phytoplankton taxa. Even during Alexandrium "blooms," this dinoflagellate was a minor component of the overall phytoplankton assemblage. It was present at stations where grazing experiments were conducted at levels of 0.12-7.57×10 3 cells l -1, or 0.03-3.93% of total phytoplankton cells. Maximum ingestion of Alexandrium accounted for only up to 3.2% of total cells ingested. Phytoplankton assemblages were dominated by athecate microflagellates, and to a lesser extent by diatoms and non-toxic dinoflagellates. Microflagellates were present at abundances of 159.62-793.93 cells ml -1, or 60.6-95.56% of total cells. Grazing on microflagellates accounted for 35.59-98.21% of total grazing. Grazing on Alexandrium spp. and microflagellates was generally non-selective, with these taxa being ingested in similar proportions to their availability in food assemblages. Grazing on diatoms was selective, with diatoms being disproportionately ingested, compared to their proportions in food assemblages. There were no apparent adverse effects of Alexandrium on grazers during incubations of 18-24 h, and grazer survival was 100%. Estimated daily zooplankton grazing impact on Alexandrium spp. field populations by field populations of experimental grazers averaged 5.79% (range=0-117%). Extrapolating experimentally determined grazing rates to total zooplankton assemblages increased potential grazing impact to 0-667.77% (mean=114.7%). However, these potential impacts are likely overestimations, because toxin accumulation data indicated that many of the most-abundant zooplankters ( Oithona similis copepodites and copepod nauplii) likely graze only minimally upon Alexandrium spp. Thus, antipredation effects of high concentrations of Alexandrium on some grazers reported from some laboratory studies may only occur rarely in nature, because of low individual zooplankter grazing rates on Alexandrium, and dilution of grazing upon it by grazing on other food sources such as abundant microflagellates and diatoms.

  15. Zooplankton Successions in Neighboring Lakes with Contrasting Impacts of Amphibian and Fish Predators

    NASA Astrophysics Data System (ADS)

    Schabetsberger, Robert; Grill, Susanne; Hauser, Gabriele; Wukits, Petra

    2006-06-01

    Two pairs of neighboring subalpine lakes located in the Northern Calcareous Alps of Austria were investigated. Each pair comprised a deeper lake containing European minnows (Phoxinus phoxinus ), and a corresponding shallower lake harboring Alpine newts (Triturus alpestris ) as top predators. Plankton successions within fish and amphibian lakes differed markedly from each other. Throughout the year rotifers numerically dominated within the minnow lakes, while pigmented copepods (Genera Heterocope, Acanthodiaptomus , Arctodiaptomus , Mixodiaptomus ) and Daphnia were prominent in the amphibian lakes, at least early during the ice-free period. We argue that size-selective predation by minnows was the ultimate reason for this predominance of smaller zooplankton. While one of the minnow lakes was characterized by a succession of spatially and temporally segregated rotifer species, the other minnow lake permitted the development of populations of small-sized Bosmina and Ceriodaphnia during summer, probably due to the existence of a strong oxycline allowing zooplankton crustaceans to avoid predation from shore-based shoals of minnows. Once trout were introduced into this lake, minnows were visibly reduced in abundance. Bosmina and Ceriodaphnia disappeared and Daphnia together with a predacious copepod (Heterocope ) emerged either from egg banks or arrived from nearby source populations. We argue that the crustacean communities within the fishless lakes were adapted to the comparatively weak predation rates of Alpine newts.

  16. Effects of hydrology on zooplankton communities in high-mountain ponds, Mount Rainier National Park, USA

    USGS Publications Warehouse

    Girdner, Scott; Larson, Gary L.

    1995-01-01

    Ten high-mountain ponds in Mount Rainier National Park, Washington State, were studied from ice-out in June through September1992 to investigate the influences of fluctuating pond volumes on zooplankton communities. All of the ponds were at maximum volume immediately after ice-out. The temporary pond with the shortest wet phase was inhabited by rotifer taxa with short generation times and a crustacean taxon with the ability to encyst as drought-resistant resting bodies at immature stages of development. Dominant zooplankton taxa in three other temporary ponds and six permanent ponds were similar. Rotifer densities typically were lower in temporary ponds relative to those in permanent ponds, although Brachionus urceolaris was abundant shortly before the temporary ponds dried. Large volume loss was associated with large declines in total abundances of crustacean populations. Daphnia rosea was not present in temporary ponds following fall recharge. In deep-permanent ponds, copepods had slower developmental rates, smaller temporal changes in total abundances of crustacean populations and two additional large-bodied crustacean taxa were present relative to the characteristics of crustacean communities in shallow-permanent ponds. Owing to their small sizes and sensitivity to environmental change, collectively ponds such as these may provide an early signal of long-term climate change in aquatic systems.

  17. Population based models of cortical drug response: insights from anaesthesia

    PubMed Central

    Bojak, Ingo; Liley, David T. J.

    2008-01-01

    A great explanatory gap lies between the molecular pharmacology of psychoactive agents and the neurophysiological changes they induce, as recorded by neuroimaging modalities. Causally relating the cellular actions of psychoactive compounds to their influence on population activity is experimentally challenging. Recent developments in the dynamical modelling of neural tissue have attempted to span this explanatory gap between microscopic targets and their macroscopic neurophysiological effects via a range of biologically plausible dynamical models of cortical tissue. Such theoretical models allow exploration of neural dynamics, in particular their modification by drug action. The ability to theoretically bridge scales is due to a biologically plausible averaging of cortical tissue properties. In the resulting macroscopic neural field, individual neurons need not be explicitly represented (as in neural networks). The following paper aims to provide a non-technical introduction to the mean field population modelling of drug action and its recent successes in modelling anaesthesia. PMID:19003456

  18. Modeling Climate Change and Sturgeon Populations in the Missouri River

    USGS Publications Warehouse

    Wildhaber, Mark L.

    2010-01-01

    The U.S. Geological Survey (USGS) Columbia Environmental Research Center (CERC), in collaboration with researchers from the University of Missouri and Iowa State University, is conducting research to address effects of climate change on sturgeon populations (Scaphirhynchus spp.) in the Missouri River. The CERC is conducting laboratory, field, and modeling research to identify causative factors for the responses of fish populations to natural and human-induced environmental changes and using this information to understand sensitivity of sturgeon populations to potential climate change in the Missouri River drainage basin. Sturgeon response information is being used to parameterize models predicting future population trends. These models will provide a set of tools for natural resource managers to assess management strategies in the context of global climate change. This research complements and builds on the ongoing Comprehensive Sturgeon Research Program (CSRP) at the CERC. The CSRP is designed to provide information critical to restoration of the Missouri River ecosystem and the endangered pallid sturgeon (S. albus). Current research is being funded by USGS through the National Climate Change Wildlife Science Center (NCCWSC) and the Science Support Partnership (SSP) Program that is held by the USGS and the U.S. Fish and Wildlife Service. The national mission of the NCCWSC is to improve the capacity of fish and wildlife agencies to respond to climate change and to address high-priority climate change effects on fish and wildlife. Within the national context, the NCCWSC research on the Missouri River focuses on temporal and spatial downscaling and associated uncertainty in modeling climate change effects on sturgeon species in the Missouri River. The SSP research focuses on improving survival and population estimates for pallid sturgeon population models.

  19. Influence of a multiyear event of low salinity on the zooplankton from Mexican eco-regions of the California Current

    NASA Astrophysics Data System (ADS)

    Lavaniegos, Bertha E.

    2009-12-01

    Data are presented from the southern part of the California Current System (CCS) for the period 1997-2007, derived from the IMECOCAL monitoring program. Apart from El Niño 1997 to 1998, and La Niña 1998-1999 the strongest perturbation occurred in 2002 due to an intrusion of subarctic water affecting all the CCS. The response of zooplankton biomass to the strong cooling and freshening of the upper layer was an immediate drop followed by a progressive recovery between 2003 and 2007. Though the low salinity influence ended in 2006, the increased zooplankton trend continued, reinforced by increased upwelling activity beginning 2005 off north Baja California region (30-32°N) and beginning 2006 off central Baja California (24-30°N). Multiple regression analysis was done between regional variables and Upwelling Index (UI) and two basin-scale proxies: the North Pacific Gyre Oscillation (NPGO), and Pacific Decadal Oscillation (PDO). The significant influence of the NPGO on surface salinity, salinity stratification, zooplankton volume and secondary consumers (zooplankton carnivores) suggests a basin scale control on these variables more than local mechanisms. The signature of the NPGO was also evident in the base of the trophic web, but more related to the group of crustacean herbivores in the north eco-region, and the tunicates in central Baja California. In this last region, the effect from NPGO on the zooplankton volume and tunicates was antagonist with UI indicative of similar importance of basin and local processes. However, when the time interval is limited to the post-subarctic intrusion (2003-2007) the significance of multiple regression models and physical variables was lost. Therefore, though data and bio-physical coupling analysis off Baja California suggest a better relation with NPGO compared to PDO, it is still not sufficient to explain the magnitude of the perturbation observed in 2002.

  20. Birth-death branching models. Application to African elephant populations.

    PubMed

    Corbacho, Casimiro; Molina, Manuel; Mota, Manuel; Ramos, Alfonso

    2013-09-01

    Branching models have a long history of biological applications, particularly in population dynamics. In this work, our interest is the development of mathematical models to describe the demographic dynamics of socially structured animal populations, focusing our attention on lineages, usually matrilines, as the basic structure in the population. Significant efforts have been made to develop models based on the assumption that all individuals behave identically with respect to reproduction. However, the reproduction phase has a large random component that involves not only demographic but also environmental factors that change across range distribution of species. In the present work, we introduce new classes of birth-death branching models which take such factors into account. We assume that both, the offspring probability distribution and the death probabilities may be different in each generation, changing either predictably or unpredictably in relation to habitat features. We consider the genealogical tree generated by observation of the process until a pre-set generation. We determine the probability distributions of the random variables representing the number of dead or living individuals having at least one ancestor alive, living individuals whose ancestors are all dead, and dead individuals whose ancestors are all dead, explicitly obtaining their principal moments. Also, we derive the probability distributions corresponding to the partial and total numbers of such biological variables, obtaining in particular the distribution of the total number of matriarchs in the genealogical tree. We apply the proposed models to describe the demographic dynamics of African elephant populations living in different habitats. PMID:23648183

  1. GIS-Based Population Model Applied to Nevada Transportation Routes

    SciTech Connect

    Mills, G.S.; Neuhauser, K.S.

    1999-03-04

    Recently, a model based on geographic information system (GIS) processing of US Census Block data has made high-resolution population analysis for transportation risk analysis technically and economically feasible. Population density bordering each kilometer of a route may be tabulated with specific route sections falling into each of three categories (Rural, Suburban or Urban) identified for separate risk analysis. In addition to the improvement in resolution of Urban areas along a route, the model provides a statistically-based correction to population densities in Rural and Suburban areas where Census Block dimensions may greatly exceed the 800-meter scale of interest. A semi-automated application of the GIS model to a subset of routes in Nevada (related to the Yucca Mountain project) are presented, and the results compared to previous models including a model based on published Census and other data. These comparisons demonstrate that meaningful improvement in accuracy and specificity of transportation risk analyses is dependent on correspondingly accurate and geographically-specific population density data.

  2. YONSEI EVOLUTIONARY POPULATION SYNTHESIS (YEPS) MODEL. I. SPECTROSCOPIC EVOLUTION OF SIMPLE STELLAR POPULATIONS

    SciTech Connect

    Chung, Chul; Yoon, Suk-Jin; Lee, Sang-Yoon; Lee, Young-Wook

    2013-01-15

    We present a series of papers on the 2012 version of the Yonsei Evolutionary Population Synthesis (YEPS) model, which was constructed based on over 20 years of research. This first paper delineates the spectroscopic aspect of integrated light from stellar populations older than 1 Gyr. The standard YEPS is based on the most up-to-date Yonsei-Yale stellar evolutionary tracks and BaSel 3.1 flux libraries, and provides absorption line indices of the Lick/IDS system and high-order Balmer lines for simple stellar populations as functions of stellar parameters, such as metallicity, age, and {alpha}-element mixture. Special care has been taken to incorporate a systematic contribution from horizontal-branch (HB) stars, which alters the temperature-sensitive Balmer lines significantly, resulting in up to a 5 Gyr difference in the age estimation of old, metal-poor stellar populations. We also find that HBs exert an appreciable effect not only on the Balmer lines but also on the metallicity-sensitive lines, including the magnesium index. This is critical in explaining the intriguing bimodality found in index distributions of globular clusters in massive galaxies and to accurately derive spectroscopic metallicities from various indices. A full set of the spectroscopic and photometric YEPS model data of the entire parameter space is currently downloadable at http://web.yonsei.ac.kr/cosmic/data/YEPS.htm.

  3. Modeling X-ray Binary Populations in Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Fragos, T.; Kalogera, V.

    2010-12-01

    We present theoretical models for populations of low-mass X-ray binaries in two elliptical galaxies NGC3379 and NGC4278. The models are calculated with the recently updated StarTrack code [1], and are targeted to modeling and understanding the origin of the X-ray luminosity functions (XLF) in these galaxies. For the first time we explore the population XLF down to luminosities of 3×1036 erg s-1, as probed by the most recent observational results [2]. We consider models for the formation and evolution of low-mass X-ray binaries (LMXB) in galactic fields with different common envelope efficiencies, stellar wind prescriptions and initial mass functions. We identify models that produce an XLF in excellent agreement with the observations both in shape and number of systems at a specific luminosity. We also find that the treatment of the outburst luminosity of transient systems remains a crucial parameter for the determination of the XLF as the modeled populations are dominated by transient X-ray systems. Finally, we propose a physically motivated and self-consistent prescription for the modeling of transient neutron star (NS) LMXB properties, such as duty cycle (DC), outburst duration and recurrence time. We compare the transient LMXB population to the Chandra X-ray survey of the two elliptical galaxies NGC3379 and NGC4278, which revealed several transient sources [3, 4]. Our comparison suggests that transient LMXBs are very rare in globular clusters (GC), and thus the number of identified transient LMXBs may be used as a tracer of the relative contribution of field and GC LMXB populations.

  4. Thermal habitat constraints on zooplankton species associated with Atlantic cod (Gadus morhua) on the US Northeast Continental Shelf

    NASA Astrophysics Data System (ADS)

    Friedland, Kevin D.; Kane, Joe; Hare, Jonathan A.; Lough, R. Gregory; Fratantoni, Paula S.; Fogarty, Michael J.; Nye, Janet A.

    2013-09-01

    The US Northeast Continental Shelf is experiencing a period of increasing temperature levels and range, which impacts the quantity of thermal habitats within the ecosystem. With increasing temperatures, the amount of warmer, surface water thermal habitats (16-27 °C) has increased while there has been a reciprocal decline in cooler water habitats (5-15 °C). These cooler water habitats are the most abundant and comprise the core habitats of the ecosystem. The coldest thermal habitats (1-4 °C), however, have increased slightly in amount or have remained constant, reflecting a discontinuity in the progression of warming along a latitudinal gradient. This discontinuity may be the result of recent changes in the circulation of water masses in the northern Gulf of Maine, potentially associated with the Labrador Current. The contraction of core thermal habitats appears to have had biological consequences on multiple trophic levels. In particular, two zooplankton species associated with the larval feeding of Atlantic cod, Gadus morhua, have declined in abundance in the same areas where cod populations have exhibited continually poor recruitment. The zooplankton species group Pseudocalanus spp., which is associated with winter-spawning cod, has declined on Georges Bank and in the Eastern Gulf of Maine. The zooplankton Centropages typicus has declined in the Gulf of Maine during late summer into fall, potentially affecting spring-spawning cod in that area. These observations are consistent with the hypothesis that portions of the population complex of cod have lower reproductive output due to changes in zooplankton abundance, which we associate with the distribution of temperatures within the ecosystem.

  5. Avoiding Extinction in a Managed Single Species Population Model by means of Anticipative Control

    E-print Network

    Burke, Mark

    Avoiding Extinction in a Managed Single Species Population Model by means of Anticipative Control which end in a population collapse and consequent extinction. In a managed environment, it might population models, Allee effect, extinction, anticipative control 1 ANTICIPATORY SYSTEMS Traditionally

  6. Logistic Growth The logistic equation is a model of limited population growth. The exponential growth model

    E-print Network

    Ikenaga, Bruce

    9­28­1998 Logistic Growth The logistic equation is a model of limited population growth and K grow almost exponentially at first. Growth slows as N nears the limiting population K. As t !1, N, and the carrying capacity of the cabinet is K = 10000. The population reaches its maximum growth rate in 4 days

  7. Zooplankton species composition, abundance and biomass on the eastern Bering Sea shelf during summer: The potential role of water-column stability and nutrients in structuring the zooplankton community

    NASA Astrophysics Data System (ADS)

    Coyle, Kenneth O.; Pinchuk, Alexei I.; Eisner, Lisa B.; Napp, Jeffrey M.

    2008-08-01

    The southeastern Bering Sea sustains one of the largest fisheries in the United States, as well as wildlife resources that support valuable tourist and subsistence economies. The fish and wildlife populations in turn are sustained by a food web linking primary producers to apex predators through the zooplankton community. Recent shifts in climate toward warmer conditions may threaten these resources by altering productivity and trophic relationships in the ecosystem on the southeastern Bering Sea shelf. We examined the zooplankton community near the Pribilof Islands and on the middle shelf of the southeastern Bering Sea in summer of 1999 and 2004 to document differences and similarities in species composition, abundance and biomass by region and year. Between August 1999 and August 2004, the summer zooplankton community of the middle shelf shifted from large to small species. Significant declines were observed in the biomass of large scyphozoans ( Chrysaora melanaster), large copepods ( Calanus marshallae), arrow worms ( Sagitta elegans) and euphausiids ( Thysanoessa raschii, T. inermis) between 1999 and 2004. In contrast, significantly higher densities of the small copepods ( Pseudocalanus spp., Oithona similis) and small hydromedusae ( Euphysa flammea) were observed in 2004 relative to 1999. Stomach analyses of young-of-the-year (age 0) pollock ( Theragra chalcogramma) from the middle shelf indicated a dietary shift from large to small copepods in 2004 relative to 1999. The shift in the zooplankton community was accompanied by a 3-fold increase in water-column stability in 2004 relative to 1999, primarily due to warmer water above the thermocline, with a mean temperature of 7.3 °C in 1999 and 12.6 °C in 2004. The elevated water-column stability and warmer conditions may have influenced the zooplankton composition by lowering summer primary production and selecting for species more tolerant of a warm, oligotrophic environment. A time series of temperature from the middle shelf indicates that the warmer conditions in 2004 are part of a trend rather than an expression of interannual variability. These results suggest that if climate on the Bering Sea shelf continues to warm, the zooplankton community may shift from large to small taxa which could strongly impact apex predators and the economies they support.

  8. High mortality of Red Sea zooplankton under ambient solar radiation.

    PubMed

    Al-Aidaroos, Ali M; El-Sherbiny, Mohsen M O; Satheesh, Sathianeson; Mantha, Gopikrishna; Agust?, Susana; Carreja, Beatriz; Duarte, Carlos M

    2014-01-01

    High solar radiation along with extreme transparency leads to high penetration of solar radiation in the Red Sea, potentially harmful to biota inhabiting the upper water column, including zooplankton. Here we show, based on experimental assessments of solar radiation dose-mortality curves on eight common taxa, the mortality of zooplankton in the oligotrophic waters of the Red Sea to increase steeply with ambient levels of solar radiation in the Red Sea. Responses curves linking solar radiation doses with zooplankton mortality were evaluated by exposing organisms, enclosed in quartz bottles, allowing all the wavelengths of solar radiation to penetrate, to five different levels of ambient solar radiation (100%, 21.6%, 7.2%, 3.2% and 0% of solar radiation). The maximum mortality rates under ambient solar radiation levels averaged (±standard error of the mean, SEM) 18.4±5.8% h(-1), five-fold greater than the average mortality in the dark for the eight taxa tested. The UV-B radiation required for mortality rates to reach ½ of maximum values averaged (±SEM) 12±5.6 h(-1)% of incident UVB radiation, equivalent to the UV-B dose at 19.2±2.7 m depth in open coastal Red Sea waters. These results confirm that Red Sea zooplankton are highly vulnerable to ambient solar radiation, as a consequence of the combination of high incident radiation and high water transparency allowing deep penetration of damaging UV-B radiation. These results provide evidence of the significance of ambient solar radiation levels as a stressor of marine zooplankton communities in tropical, oligotrophic waters. Because the oligotrophic ocean extends across 70% of the ocean surface, solar radiation can be a globally-significant stressor for the ocean ecosystem, by constraining zooplankton use of the upper levels of the water column and, therefore, the efficiency of food transfer up the food web in the oligotrophic ocean. PMID:25309996

  9. Spatial-temporal scales of synchrony in marine zooplankton biomass and abundance patterns: A world-wide comparison

    NASA Astrophysics Data System (ADS)

    Batchelder, Harold P.; Mackas, David L.; O'Brien, Todd D.

    2012-05-01

    Large scale synchrony in the fluctuations of abundance or biomass of marine fish populations in regions on opposite sides of an ocean basin or in different oceans have been viewed as externally forced by correlated environmental stochasticity (e.g., common external forcing), most often as atmospheric teleconnections of basin-to-global scale atmospheric forcing, such as the Arctic Oscillation, North Atlantic Oscillation or the Pacific Decadal Oscillation. Specific causal mechanisms have been difficult to unequivocally discover, but possible mechanisms include influences on habitat temperatures, productivity operating through bottom-up (trophodynamic) mechanisms or direct climate influence on the fish populations (top-down mechanisms). For small pelagic fishes (sardines and anchovies) in widely separated large marine ecosystems that lack obvious ocean interconnectivity, it has been argued that the teleconnections may be atmospheric, acting on the fishes directly and propagating to the ecosystem from the middle out (wasp-waist species). Zooplankton biomass or abundance time series data from >100 sites world-wide are used to examine the spatial scales of coherent temporal synchrony. If spatially correlated environmental factors (like climate) are important for creating synchrony in fish populations via bottom-up effects (trophic interactions involving fish prey, e.g., zooplankton), then we would expect to observe synchrony in fluctuations of zooplankton biomass/numbers at spatial scales similar to those found for fish species. Zooplankton biomass/abundance have 50% spatial decorrelation scales of ca. 700-1400 km and scales of significant coherence that extend to separation distances of ca. 3000 km. These are also the spatial scales of environmental (sea surface temperature) synchrony from our global analysis. These scales are slightly greater than the 50% decorrelation scales of ca. 150-700 km for recruitment synchrony in Atlantic marine fish and survival and recruitment synchrony of Northeast Pacific salmonids (150-1000 km depending on species). However, the spatial scales of synchrony of annual zooplankton biomass anomalies in the Humboldt Current, California Current and Kuroshio ecosystems of the Pacific are much too small (ca. 2000 km) to be directly causal of the basin-scale (7000-15,000 km) synchrony exhibited by sardine and/or anchovy populations in those ecosystems.

  10. Modeling Population Exposures to Silver Nanoparticles Present in Consumer Products

    PubMed Central

    Royce, Steven G.; Mukherjee, Dwaipayan; Cai, Ting; Xu, Shu S.; Alexander, Jocelyn A.; Mi, Zhongyuan; Calderon, Leonardo; Mainelis, Gediminas; Lee, KiBum; Lioy, Paul J.; Tetley, Teresa D.; Chung, Kian Fan; Zhang, Junfeng; Georgopoulos, Panos G.

    2014-01-01

    Exposures of the general population to manufactured nanoparticles (MNPs) are expected to keep rising due to increasing use of MNPs in common consumer products (PEN 2014). The present study focuses on characterizing ambient and indoor population exposures to silver MNPs (nAg). For situations where detailed, case-specific exposure-related data are not available, as in the present study, a novel tiered modeling system, Prioritization/Ranking of Toxic Exposures with GIS (Geographic Information System) Extension (PRoTEGE), has been developed: it employs a product Life Cycle Analysis (LCA) approach coupled with basic human Life Stage Analysis (LSA) to characterize potential exposures to chemicals of current and emerging concern. The PRoTEGE system has been implemented for ambient and indoor environments, utilizing available MNP production, usage, and properties databases, along with laboratory measurements of potential personal exposures from consumer spray products containing nAg. Modeling of environmental and microenvironmental levels of MNPs employs Probabilistic Material Flow Analysis combined with product LCA to account for releases during manufacturing, transport, usage, disposal, etc. Human exposure and dose characterization further employs screening Microenvironmental Modeling and Intake Fraction methods combined with LSA for potentially exposed populations, to assess differences associated with gender, age, and demographics. Population distributions of intakes, estimated using the PRoTEGE framework, are consistent with published individual-based intake estimates, demonstrating that PRoTEGE is capable of capturing realistic exposure scenarios for the US population. Distributions of intakes are also used to calculate biologically-relevant population distributions of uptakes and target tissue doses through human airway dosimetry modeling that takes into account product MNP size distributions and age-relevant physiological parameters. PMID:25745354

  11. Survival, extinction and ergodicity in a spatially continuous population model

    E-print Network

    Berestycki, Nathanaël

    Survival, extinction and ergodicity in a spatially continuous population model N. Berestycki, A of varying intensity allows for the possibility of large-scale extinction and recoloni- sation, ergodicity, survival, extinction, diffusion approximation 1 #12;of the number of offspring of each individual

  12. SOC in a population model with global control

    NASA Astrophysics Data System (ADS)

    Bröker, Hans-Martin; Grassberger, Peter

    We study a plant population model introduced recently by Wallinga (OIKOS 74 (1995) 377). It is similar to the contact process (‘simple epidemic’, ‘directed percolation’), but instead of using an infection or recovery rate as control parameter, the population size is controlled directly and globally by removing excess plants. We show that the model is very closely related to directed percolation (DP). Anomalous scaling laws appear in the limit of large populations, small densities, and long times. These laws, associated critical exponents, and even some non-universal parameters, can be related to those of DP. As in invasion percolation and in other models where the rôles of control and order parameters are interchanged, the critical value pc of the wetting probability p is obtained in the scaling limit as singular point in the distribution of removal rates. We show that a mean field type approximation leads to a model studied by Zhang et al. (J. Stat. Phys. 58 (1990) 849). Finally, we verify the claim of Wallinga that family extinction in a marginally surviving population is governed by DP scaling laws, and speculate on applications to human mitochondrial DNA.

  13. Population genetics of Setaria viridis, a new model system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An extensive survey of the standing genetic variation in natural populations is among the priority steps in developing a species into a model system. In recent years, green foxtail (Setaria viridis), along with its domesticated form foxtail millet (S. italica), has rapidly become a promising new mod...

  14. Modeling the Evolutionary Dynamics of Plasmids in Spatial Populations

    E-print Network

    Modeling the Evolutionary Dynamics of Plasmids in Spatial Populations Brian D. Connelly, Luis Zaman of Computation--Self-modifying machines General Terms Experimentation, Theory Keywords Artificial life, plasmid the relationship between selection for plasmid- encoded adaptations and the costs of plasmid carriage in spatial

  15. Models for Interacting Populations of Memes: Competition and Niche Behavior

    E-print Network

    Models for Interacting Populations of Memes: Competition and Niche Behavior Michael L. Best Media on Latent Semantic Indexing, to study the dynamics of memes on the Net. Our analysis discovers replicating memes within posts to the USENET News (or NetNews) system. We cluster the posts to NetNews into clouds

  16. Lie algebra method for solving biological population model

    NASA Astrophysics Data System (ADS)

    Shang, Yilun

    2013-12-01

    In this paper, the Lie algebraic method is applied to solve biological population models described by time-inhomogeneous birth-death processes. Notwithstanding no obvious symmetry, the solution is expressed by matrix exponentials through suitably generated low-dimensional Lie algebras. This methodology may offer useful insights for other biological and ecological applications.

  17. Synthetic stellar populations: single stellar populations, stellar interior models and primordial protogalaxies

    NASA Astrophysics Data System (ADS)

    Jimenez, Raul; MacDonald, James; Dunlop, James S.; Padoan, Paolo; Peacock, John A.

    2004-03-01

    We present a new set of stellar interior and synthesis models for predicting the integrated emission from stellar populations in star clusters and galaxies of arbitrary age and metallicity. This work differs from existing spectral synthesis codes in a number of important ways, namely (1) the incorporation of new stellar evolutionary tracks, with sufficient resolution in mass to sample rapid stages of stellar evolution; (2) a physically consistent treatment of evolution in the Hertzsprung-Russell (HR) diagram, including the approach to the main sequence and the effects of mass loss on the giant and horizontal branch phases. Unlike several existing models, ours yield consistent ages when used to date a coeval stellar population from a wide range of spectral features and colour indexes. We use Hipparcos data to support the validity of our new evolutionary tracks. We rigorously discuss degeneracies in the age-metallicity plane and show that inclusion of spectral features blueward of 4500 Å suffices to break any remaining degeneracy and that with moderate S/N spectra (10 per 20-Å resolution element) age and metallicity are not degenerate. We also study sources of systematic errors in deriving the age of a single stellar population and conclude that they are not larger than 10-15 per cent. We illustrate the use of single stellar populations by predicting the colours of primordial protogalaxies and show that one can first find them and then deduce the form of the initial mass function (IMF) for the early generation of stars in the Universe. Finally, we provide accurate analytic fitting formulae for ultrafast computation of colours of single stellar populations.

  18. Parsimonious snow model explains reindeer population dynamics and ranging behavior

    NASA Astrophysics Data System (ADS)

    Kohler, J.; Aanes, R.; Hansen, B. B.; Loe, L.; Severinsen, T.; Stien, A.

    2008-12-01

    Winter snow is a key factor affecting polar ecosystems. One example is the strong negative correlation of winter precipitation with fluctuations in population in some high-arctic animal populations. Ice layers within and at the base of the snowpack have particularly deleterious effects on such populations. Svalbard reindeer have small home ranges and are vulnerable to local "locked pasture" events due to ground-ice formation. When pastures are locked, reindeer are faced with the decision of staying, living off a diminishing fat store, or trying to escape beyond the unknown spatial borders of the ice. Both strategies may inhibit reproduction and increase mortality, leading to population declines. Here we assess the impact of winter snow and ice on the population dynamics of an isolated herd of Svalbard reindeer near Ny-Ålesund, monitored annually since 1978, with a retrospective analysis of the winter snowpack. Because there are no long-term observational records of snow or snow properties, such as ice layers, we must recourse to snowpack modeling. A parsimonious model of snow and ground-ice thickness is driven with daily temperature and precipitation data collected at a nearby weather station. The model uses the degree-day concept and has three adjustable parameters which are tuned to correlate model snow and ground-ice thicknesses to the limited observations available: April snow accumulation measurements on two local glaciers, and a limited number of ground-ice observations made in recent years. Parameter values used are comparable to those reported elsewhere. We find that modeled mean winter ground-ice thickness explains a significant percentage of the observed variance in reindeer population growth rate. Adding other explanatory parameters, such as modeled mean winter snowpack thickness or previous years' population size does not significanly improve the relation. Furthermore, positioning data from a small subset of reindeer show that model icing events are highly correlated to an immediate increase in range displacement between 5-day observations, suggesting that Svalbard reindeer use space opportunistically in winter, a behavioral trait that may buffer some of the negative effects of the expected climate change in the Arctic.

  19. CISNET: A Population-Based Policy Model for Colorectal Cancer

    Cancer.gov

    In the first CISNET project we developed a population-based Monte Carlo simulation model that evaluates national trends in the incidence and mortality of colorectal cancer (CRC). The HSPH-CISNET Model incorporates age-, sex-, and race-specific trends in CRC risk factors, screening, and treatment, as well as the effects of risk factors and screening on the underlying natural history of colorectal disease and the effectiveness of treatment for patients with diagnosed CRC.

  20. Predicting population dynamics with analytical, simulation and supercomputer models

    SciTech Connect

    Onstad, D.W.

    1987-07-01

    A set of epizootiological models describing the influence of a microsporidian disease on the population dynamics of an herbivorous insect demonstrate the similarities and differences between the three major approaches now available for ecological modeling. Simulation modeling allows the incorporation of randomness or the timing of discrete events in the temporal dynamics. More complex models incorporating both temporal and spatial dynamics in variable and heterogeneous environments require the use of supercomputers. Under a number of realistic circumstances, the qualitative predictions of the approaches may differ.

  1. Modeling the population lens effect in thermal lens spectrometry.

    PubMed

    Silva, J R; Malacarne, L C; Baesso, M L; Lima, S M; Andrade, L H C; Jacinto, C; Hehlen, M P; Astrath, N G C

    2013-02-15

    We report a theoretical model and experimental results for laser-induced lensing in solids. The model distinguishes and quantifies the contributions from population and thermal effects. Laser-induced lensing in ytterbium-doped fluorozirconate glass ZBLAN:Yb(3+) is measured, and the thermal and optical properties obtained from analyzing the data with the proposed model agree well with published values. Photothermal techniques are used extensively for the investigation of laser and laser-cooling materials, and the model developed here enables the interpretation of convoluted laser-induced lensing signals that have contributions from different sources. PMID:23455089

  2. Population Ecology: A Simple Model of a Grasshopper Population In a text on Population Ecology, Begon (1996, p. 6) describes the life cycle of the field grasshopper

    E-print Network

    Ford, Andrew

    Population Ecology: A Simple Model of a Grasshopper Population In a text on Population Ecology, Begon (1996, p. 6) describes the life cycle of the field grasshopper (Chorthippus brunneus). The grasshopper is an annual species in which each generation lasts for just one year and there is no overlap

  3. Can modeling improve estimation of desert tortoise population densities?

    USGS Publications Warehouse

    Nussear, K.E.; Tracy, C.R.

    2007-01-01

    The federally listed desert tortoise (Gopherus agassizii) is currently monitored using distance sampling to estimate population densities. Distance sampling, as with many other techniques for estimating population density, assumes that it is possible to quantify the proportion of animals available to be counted in any census. Because desert tortoises spend much of their life in burrows, and the proportion of tortoises in burrows at any time can be extremely variable, this assumption is difficult to meet. This proportion of animals available to be counted is used as a correction factor (g0) in distance sampling and has been estimated from daily censuses of small populations of tortoises (6-12 individuals). These censuses are costly and produce imprecise estimates of g0 due to small sample sizes. We used data on tortoise activity from a large (N = 150) experimental population to model activity as a function of the biophysical attributes of the environment, but these models did not improve the precision of estimates from the focal populations. Thus, to evaluate how much of the variance in tortoise activity is apparently not predictable, we assessed whether activity on any particular day can predict activity on subsequent days with essentially identical environmental conditions. Tortoise activity was only weakly correlated on consecutive days, indicating that behavior was not repeatable or consistent among days with similar physical environments. ?? 2007 by the Ecological Society of America.

  4. Probability bounds analysis for nonlinear population ecology models.

    PubMed

    Enszer, Joshua A; Andrei M?ce?, D; Stadtherr, Mark A

    2015-09-01

    Mathematical models in population ecology often involve parameters that are empirically determined and inherently uncertain, with probability distributions for the uncertainties not known precisely. Propagating such imprecise uncertainties rigorously through a model to determine their effect on model outputs can be a challenging problem. We illustrate here a method for the direct propagation of uncertainties represented by probability bounds though nonlinear, continuous-time, dynamic models in population ecology. This makes it possible to determine rigorous bounds on the probability that some specified outcome for a population is achieved, which can be a core problem in ecosystem modeling for risk assessment and management. Results can be obtained at a computational cost that is considerably less than that required by statistical sampling methods such as Monte Carlo analysis. The method is demonstrated using three example systems, with focus on a model of an experimental aquatic food web subject to the effects of contamination by ionic liquids, a new class of potentially important industrial chemicals. PMID:26150119

  5. Modelling Spread of Oncolytic Viruses in Heterogeneous Cell Populations

    NASA Astrophysics Data System (ADS)

    Ellis, Michael; Dobrovolny, Hana

    2014-03-01

    One of the most promising areas in current cancer research and treatment is the use of viruses to attack cancer cells. A number of oncolytic viruses have been identified to date that possess the ability to destroy or neutralize cancer cells while inflicting minimal damage upon healthy cells. Formulation of predictive models that correctly describe the evolution of infected tumor systems is critical to the successful application of oncolytic virus therapy. A number of different models have been proposed for analysis of the oncolytic virus-infected tumor system, with approaches ranging from traditional coupled differential equations such as the Lotka-Volterra predator-prey models, to contemporary modeling frameworks based on neural networks and cellular automata. Existing models are focused on tumor cells and the effects of virus infection, and offer the potential for improvement by including effects upon normal cells. We have recently extended the traditional framework to a 2-cell model addressing the full cellular system including tumor cells, normal cells, and the impacts of viral infection upon both populations. Analysis of the new framework reveals complex interaction between the populations and potential inability to simultaneously eliminate the virus and tumor populations.

  6. Late-summer zooplankton community structure, abundance, and distribution in the Hudson Bay system (Canada) and their relationships with environmental conditions, 2003-2006

    NASA Astrophysics Data System (ADS)

    Estrada, Rafael; Harvey, Michel; Gosselin, Michel; Starr, Michel; Galbraith, Peter S.; Straneo, Fiammetta

    2012-08-01

    Zooplankton communities were examined for the first time in three different hydrographic regions of the Hudson Bay system (HBS) in early August to early September from 2003 to 2006. Sampling was conducted at 50 stations distributed along different transects located in Hudson Bay (HB), Hudson Strait (HS), and Foxe Basin (FB). Variations in zooplankton biomass, abundance, taxonomic composition, and diversity in relation to environmental variables were studied using multivariate techniques. During all sampling years, the total zooplankton biomass was on average four times lower in HB than in HS and FB. Clustering samples by their relative species compositions revealed no interannual variation in zooplankton community but showed a marked interregional variability between the three regions. Water column stratification explained the greatest proportion (25%) of this spatial variability. According to redundancy analysis (RDA), the zooplankton taxa that contribute most to the separation of the three regions are Microcalanus spp., Oithona similis, Oncaea borealis, Aeginopsis laurentii, Sagitta elegans, Fritillaria sp., and larvae of cnidaria, chaetognatha, and pteropoda in HB; hyperiid amphipods in FB; and Pseudocalanus spp. CI-CV, Calanus glacialis CI-CVI, Calanus finmarchicus CI-CVI, Calanus hyperboreus CV-CVI, Acartia longiremis CI-CV, Metridia longa N3-N6 CI-CIII CVIf, Eukrohnia hamata, larvae of echinodermata, mollusca, cirripedia, appendicularia, and polychaeta in the northwestern and southeastern HS transects. For the HB transect, the RDA analyzed allowed us to distinguish three regions (HB west, central, and east) with different environmental gradients and zooplankton assemblages, in particular higher concentration of Pseudocalanus spp. nauplii and CI-CVI, as well as benthic macrozooplankton and meroplankton larvae in western HB. In HS, Calanoid species (mainly C. finmarchicus and C. glacialis) were mostly observed at the north shore stations associated with the weakly stratified Arctic-North Atlantic waters coming from southwestern Davis Strait (inflow). In general, the RDA models tested among the HBS regions were very consistent with its general surface circulation pattern for summer conditions in terms of environmental variables and distinct zooplankton assemblages. Overall, zooplankton biomass and diversity indices (H?, J?, and S) were lower in the most stratified environment (i.e., HB) than in the deeper (FB) and more dynamic (HS) regions. The results of this work clearly show that the spatial differentiation and structure of the zooplankton communities are strongly influenced by the hydrodynamic conditions in the HBS that, trough their actions on temperature, salinity, stratification, mixing conditions and depth strata, lead to the spatial differentiation of these communities.

  7. Does salinity change determine zooplankton variability in the saline Qarun Lake (Egypt)?

    NASA Astrophysics Data System (ADS)

    El-Shabrawy, Gamal M.; Anufriieva, Elena V.; Germoush, Mousa O.; Goher, Mohamed E.; Shadrin, Nickolai V.

    2015-11-01

    Zooplankton and 14 abiotic variables were studied during August 2011 at 10 stations in Lake Qarun, Egypt. Stations with the lowest salinity and highest nutrient concentrations and turbidity were close to the discharge of waters from the El-Bats and El-Wadi drainage systems. A total of 15 holozooplankton species were identified. The salinity in Lake Qarun increased and fluctuated since 1901: 12 g/L in 1901; 8.5 g/L in 1905; 12.0 g/L in 1922; 30.0 g/L in 1985; 38.7 g/L in 1994; 35.3 g/L in 2006, and 33.4 g/L in 2011. The mean concentration of nutrients (nitrate, nitrite and orthophosphate) gradually increased from 35, 0.16 and 0.38 µg/L, respectively, in 1953-1955 to 113, 16.4, and 30.26 µg/L in 2011. From 1999-2003 some decrease of species diversity occurred. Average total zooplankton density was 30 000 ind./m3 in 1974-1977; 356 125 ind./m3 in 1989; 534 000 ind./m3 in 1994-1995; from 965 000 to 1 452 000 ind./m3 in 2006, and 595 000 ind./m3 in 2011. A range of long-term summer salinity variability during the last decades was very similar to a range of salinity spatial variability in summer 2011. There is no significant correlation between zooplankton abundance and salinity in spatial and long-term changes. We conclude that salinity fluctuations since at least 1955 did not directly drive the changes of composition and abundance of zooplankton in the lake. A marine community had formed in the lake, and it continues to change. One of the main drivers of this change is a regular introduction and a pressure of alien species on the existent community. Eutrophication also plays an important role. The introduction of Mnemiopsis leidyi, first reported in 2014, may lead to a start of a new stage of the biotic changes in Lake Qarun, when eutrophication and the population dynamics of this ctenophore will be main drivers of the ecosystem change.

  8. A frictional population model of seismicity rate change

    USGS Publications Warehouse

    Gomberg, J.; Reasenberg, P.; Cocco, M.; Belardinelli, M.E.

    2005-01-01

    We study models of seismicity rate changes caused by the application of a static stress perturbation to a population of faults and discuss our results with respect to the model proposed by Dieterich (1994). These models assume distribution of nucleation sites (e.g., faults) obeying rate-state frictional relations that fail at constant rate under tectonic loading alone, and predicts a positive static stress step at time to will cause an immediate increased seismicity rate that decays according to Omori's law. We show one way in which the Dieterich model may be constructed from simple general idead, illustratted using numerically computed synthetic seismicity and mathematical formulation. We show that seismicity rate change predicted by these models (1) depend on the particular relationship between the clock-advanced failure and fault maturity, (2) are largest for the faults closest to failure at to, (3) depend strongly on which state evolution law faults obey, and (4) are insensitive to some types of population hetrogeneity. We also find that if individual faults fail repeatedly and populations are finite, at timescales much longer than typical aftershock durations, quiescence follows at seismicity rate increase regardless of the specific frictional relations. For the examined models the quiescence duration is comparable to the ratio of stress change to stressing rate ????/??,which occurs after a time comparable to the average recurrence interval of the individual faults in the population and repeats in the absence of any new load may pertubations; this simple model may partly explain observations of repeated clustering of earthquakes. Copyright 2005 by the American Geophysical Union.

  9. Estimating genetic parameters in natural populations using the "animal model".

    PubMed Central

    Kruuk, Loeske E B

    2004-01-01

    Estimating the genetic basis of quantitative traits can be tricky for wild populations in natural environments, as environmental variation frequently obscures the underlying evolutionary patterns. I review the recent application of restricted maximum-likelihood "animal models" to multigenerational data from natural populations, and show how the estimation of variance components and prediction of breeding values using these methods offer a powerful means of tackling the potentially confounding effects of environmental variation, as well as generating a wealth of new areas of investigation. PMID:15306404

  10. Inbreeding Estimation from Population Data: Models, Procedures and Implications

    PubMed Central

    Spielman, Richard S.; Neel, James V.; Li, Francis H. F.

    1977-01-01

    Four different estimation procedures for models of population structure are compared. The parameters of the models are shown to be equivalent and, in most cases, easily expressed in terms of the parameters Wright calls "F-statistics." We have estimated the parameters of each of these models with data on nine codominant allele pairs in 47 Yanomama villages, and we find that the different estimators for a given parameter all yield more or less equivalent results. F-statistics are often equated to inbreeding coefficients that are defined as the probability of identity by descent from alleles taken to be unique in some founding population. However, we are led to infer from computer simulation and general historical considerations that all estimates from genotype frequencies greatly underestimate the inbreeding coefficient for alleles in the founding population of American Indians in the western hemisphere. We surmise that in the highly subdivided tribal populations which prevailed until the recent advent of civilization, the probability of identity by descent for homologous alleles was roughly 0.5. We consider some consequences of working with the customary, much lower, estimates—0.005 to 0.01—if, on the time scale of human evolution, these represent only a very recent departure from the inbreeding intensity that prevailed before civilization. PMID:863234

  11. A stochastic population model of mid-continental mallards

    USGS Publications Warehouse

    Koford, R.R.; Sauer, J.R.; Johnson, D.H.; Nichols, J.D.; Samuel, M.D.

    1992-01-01

    We developed a simulation model that integrates infonnation on factors affecting the population dynamics of mallards in the mid-continental region of the United States. In the model we vary age, body mass, and reproductive and molt status of simulated females. Females use several types of nesting and foraging habitat in 15 geographic areas. Deterministic and stochastic events cause mortality or attribute changes on a daily basis, depending on current attributes, habitat, area, calendar date, wetland conditions, temperature, and various mortality agents. Because the model encompasses the entire year, it can be used to examine cross-seasonal effects. A simulated increase in nest success from 0.14 to 0.17 changed the annual rate of population growth from -6% to -1 %. A simulated 75% reduction in lead poisoning changed the rate from -6% to -3%.

  12. ORDEM2010 and MASTER-2009 Modeled Small Debris Population Comparison

    NASA Technical Reports Server (NTRS)

    Krisko, Paula H.; Flegel, S.

    2010-01-01

    The latest versions of the two premier orbital debris engineering models, NASA s ORDEM2010 and ESA s MASTER-2009, have been publicly released. Both models have gone through significant advancements since inception, and now represent the state-of-the-art in orbital debris knowledge of their respective agencies. The purpose of these models is to provide satellite designers/operators and debris researchers with reliable estimates of the artificial debris environment in near-Earth orbit. The small debris environment within the size range of 1 mm to 1 cm is of particular interest to both human and robotic spacecraft programs. These objects are much more numerous than larger trackable debris but are still large enough to cause significant, if not catastrophic, damage to spacecraft upon impact. They are also small enough to elude routine detection by existing observation systems (radar and telescope). Without reliable detection the modeling of these populations has always coupled theoretical origins with supporting observational data in different degrees. This paper details the 1 mm to 1 cm orbital debris populations of both ORDEM2010 and MASTER-2009; their sources (both known and presumed), current supporting data and theory, and methods of population analysis. Fluxes on spacecraft for chosen orbits are also presented and discussed within the context of each model.

  13. Development of zooplankton culture subsystem for a closed ecological recirculating aquaculture system (CERAS)

    NASA Astrophysics Data System (ADS)

    Omori, Katsunori; Oguchi, Mitsuo; Takeuchi, Toshio

    2006-01-01

    Ten parthenogenetic females of Moina macrocopa were placed in small cells with different flow conditions. The cells were opened after three-days of cultivation, and the water fleas in each cell were counted. It appeared that M. macrocopa were cultured effectively in a relatively slow current, 10 cm/min., but the population growth was not significantly influenced by the difference in flow direction. Subsequent, filtration efficiencies of filters with various pore sizes were compared. Four available porous hollow-fiber membrane modules, ACP-1010, AHP-1010, PSP-103, and PMP-102 (Asahi-Kasei Corp.), were tested. The module with the larger pore size initially filtered a greater amount of water but clogged up sooner. ACP-1010, which has the smallest pores, was considered to be suitable to filter condensed algal water due to its durability and stable filtration. An improved zooplankton culture device (IZCD) was designed and constructed based on these examinations. IZCD is a 13.2L airtight device characterized by a short and thick rearing tank and alternate filtration with paired fine hollow-fiber membrane modules. It must be tested and revised to be used in research into the optimal conditions for a zooplankton culture in a closed environment.

  14. Seasonal and Areal Distribution of Zooplankton in Coastal Waters

    E-print Network

    Elizabeth), moderate in the central area (Cape Elizabeth to Mt. Desert Island), and low in the eastern. Desert), and eastern (Mt. Desert to Machias Bay)--were sannpled seasonally on cruises of the research sector (Mt. Desert Island to Machias Bay). Zooplankton volumes were generally lower in 1966 than in 1965

  15. Seasonal and Areal Distribution of Zooplankton in Coastal Waters

    E-print Network

    in the eastern sector (Mt. Desert Island to Machias Bay, Maine). Zooplankton volumes were generally lower in 1964 Ann to Cape Elizabeth), central (Cape Elizabeth to Mt. Desert Island), and eastern (Mt. Desert Island Elizabeth, Maine); moderate in the central area (Cape Elizabeth to Mt. Desert Island, Maine); and low

  16. A stage-based model of manatee population dynamics

    USGS Publications Warehouse

    Runge, M.C.; Langtimm, C.A.; Kendall, W.L.

    2004-01-01

    A stage-structured population model for the Florida manatee (Trichechus manatus latirostris) was developed that explicitly incorporates uncertainty in parameter estimates. The growth rates calculated with this model reflect the status of the regional populations over the most recent 10-yr period. The Northwest and Upper St. Johns River regions have growth rates (8) of 1.037 (95% interval, 1.016?1.056) and 1.062 (1.037?1.081), respectively. The Southwest region has a growth rate of 0.989 (0.946?1.024), suggesting this population has been declining at about 1.1% per year. The estimated growth rate in the Atlantic region is 1.010 (0.988?1.029), but there is some uncertainty about whether adult survival rates have been constant over the last 10 yr; using the mean survival rates from the most recent 5-yr period, the estimated growth rate in this region is 0.970 (0.938?0.998). Elasticity analysis indicates that the most effective management actions should seek to increase adult survival rates. Decomposition of the uncertainty in the growth rates indicates that uncertainty about population status can best be reduced through increased monitoring of adult survival rate.

  17. Synergistic Interaction between Selective Drugs in Cell Populations Models

    PubMed Central

    Doldán-Martelli, Victoria; Míguez, David G.

    2015-01-01

    The design of selective drugs and combinatorial drug treatments are two of the main focuses in modern pharmacology. In this study we use a mathematical model of chimeric ligand-receptor interaction to show that the combination of selective drugs is synergistic in nature, providing a way to gain optimal selective potential at reduced doses compared to the same drugs when applied individually. We use a cell population model of proliferating cells expressing two different amounts of a target protein to show that both selectivity and synergism are robust against variability and heritability in the cell population. The reduction in the total drug administered due to the synergistic performance of the selective drugs can potentially result in reduced toxicity and off-target interactions, providing a mechanism to improve the treatment of cell-based diseases caused by aberrant gene overexpression, such as cancer and diabetes. PMID:25671700

  18. Enrichment in a General Class of Stoichiometric Producer-Consumer Population Growth Models

    E-print Network

    Peckham, Bruce B.

    -Consumer Population Growth Models Harlan Stecha, c, Bruce Peckhama and John Pastor b is stoichometric in that it includes the growth constraints imposed by species of stoichiometric producer-consumer population models. Such models recognize that biomass

  19. Genealogical constructions of population models Alison M. Etheridge Thomas G. Kurtz

    E-print Network

    Kurtz, Tom

    Genealogical constructions of population models Alison M. Etheridge Thomas G. Kurtz Department, Moran model, lookdown construction, genealogies, voter model, generators, stochastic equations, Lambda number of individuals in the population is used to infer the `genealogical trees' that relate those genes

  20. Wave trains in a model of gypsy moth population dynamics

    NASA Astrophysics Data System (ADS)

    Wilder, J. W.; Vasquez, D. A.; Christie, I.; Colbert, J. J.

    1995-12-01

    A recent model of gypsy moth [Lymantria dispar (Lepidoptera: Lymantriidae)] populations led to the observation of traveling waves in a one-dimensional spatial model. In this work, these waves are studied in more detail and their nature investigated. It was observed that when there are no spatial effects the model behaves chaotically under certain conditions. Under the same conditions, when diffusion is allowed, traveling waves develop. The biomass densities involved in the model, when examined at one point in the spatial domain, are found to correspond to a limit cycle lying on the surface of the chaotic attractor of the spatially homogeneous model. Also observed are wave trains that have modulating maxima, and which when examined at one point in the spatial domain show a quasiperiodic temporal behavior. This complex behavior is determined to be due to the interaction of the traveling wave and the chaotic background dynamics.

  1. Population Dynamics Models in Plant--Insect Herbivore--Pesticide Interactions

    E-print Network

    Population Dynamics Models in Plant--Insect Herbivore--Pesticide Interactions B.M. Adams # , H control on insect herbivore populations. Furthermore, risks associated with traditional pesticides often. Ecologists have long considered increasing plant diversity to regulate insect herbivore populations

  2. (1) Likelihood mode of inference: definitions and results (i) Reference population and model.

    E-print Network

    Frangakis, Constantine

    (1) Likelihood mode of inference: definitions and results (i) Reference population and model. (a) Reference population P a large group of subjects, ¡ £¢¥¤§¦¨¦¨¦¨¤© , with ¢¤ "! ¤$# &% . (b) Parameters characteristics of the reference population P. Examples: ')( ¢ © 01 32 ( ¢¤ 4576 median "! 98@# 6

  3. Individual-based model of young-of-the-year striped bass population dynamics. II. Factors affecting recruitment in the Potomac River, Maryland

    SciTech Connect

    Cowan, J.H. ); Rose, K.A. ); Rutherford, E.S.; Houde, E.D. )

    1993-05-01

    An individual-based model of the population dynamics of young-of-the-year striped bass Morone saxatilis in the Potomac River, Maryland, was used to test the hypothesis that historically high recruitment variability can be explained by changes in environmental and biological factors that result in relatively small changes in growth and mortality rates of striped bass larvae. The four factors examined were (1) size distribution of female parents, (2) zooplankton prey density during the development of striped bass larvae, (3) density of completing larval white perch M. americana, and (4) temperature during larval development. Simulation results suggest that variations in female size and in prey for larvae alone could cause 10-fold variability in recruitment. But no single factor alone caused changes in vital rates of age-0 fish that could account for the 145-fold variability in the Potomac River index of juvenile recruitment. However, combined positive or negative effects of two or more factors resulted in more than a 150-fold simulated recruitment variability, suggesting that combinations of factors can account for the high observed annual variability in striped bass recruitment success. Higher cumulative mortality of feeding larvae and younger life stages than of juveniles was common to all simulations. supporting the contention that striped bass year-class strength is determined prior to metamorphosis. 76 refs., 7 figs., 4 tabs.

  4. Modeling evolutionary games in populations with demographic structure.

    PubMed

    Li, Xiang-Yi; Giaimo, Stefano; Baudisch, Annette; Traulsen, Arne

    2015-09-01

    Classic life history models are often based on optimization algorithms, focusing on the adaptation of survival and reproduction to the environment, while neglecting frequency dependent interactions in the population. Evolutionary game theory, on the other hand, studies frequency dependent strategy interactions, but usually omits life history and the demographic structure of the population. Here we show how an integration of both aspects can substantially alter the underlying evolutionary dynamics. We study the replicator dynamics of strategy interactions in life stage structured populations. Individuals have two basic strategic behaviours, interacting in pairwise games. A player may condition behaviour on the life stage of its own, or that of the opponent, or the matching of life stages between both players. A strategy is thus defined as the set of rules that determines a player?s life stage dependent behaviours. We show that the diversity of life stage structures and life stage dependent strategies can promote each other, and the stable frequency of basic strategic behaviours can deviate from game equilibrium in populations with life stage structures. PMID:26055649

  5. Spring bloom dynamics and zooplankton biomass response on the US Northeast Continental Shelf

    NASA Astrophysics Data System (ADS)

    Friedland, Kevin D.; Leaf, Robert T.; Kane, Joe; Tommasi, Desiree; Asch, Rebecca G.; Rebuck, Nathan; Ji, Rubao; Large, Scott I.; Stock, Charles; Saba, Vincent S.

    2015-07-01

    The spring phytoplankton bloom on the US Northeast Continental Shelf is a feature of the ecosystem production cycle that varies annually in timing, spatial extent, and magnitude. To quantify this variability, we analyzed remotely-sensed ocean color data at two spatial scales, one based on ecologically defined sub-units of the ecosystem (production units) and the other on a regular grid (0.5°). Five units were defined: Gulf of Maine East and West, Georges Bank, and Middle Atlantic Bight North and South. The units averaged 47×103 km2 in size. The initiation and termination of the spring bloom were determined using change-point analysis with constraints on what was identified as a bloom based on climatological bloom patterns. A discrete spring bloom was detected in most years over much of the western Gulf of Maine production unit. However, bloom frequency declined in the eastern Gulf of Maine and transitioned to frequencies as low as 50% along the southern flank of the Georges Bank production unit. Detectable spring blooms were episodic in the Middle Atlantic Bight production units. In the western Gulf of Maine, bloom duration was inversely related to bloom start day; thus, early blooms tended to be longer lasting and larger magnitude blooms. We view this as a phenological mismatch between bloom timing and the "top-down" grazing pressure that terminates a bloom. Estimates of secondary production were available from plankton surveys that provided spring indices of zooplankton biovolume. Winter chlorophyll biomass had little effect on spring zooplankton biovolume, whereas spring chlorophyll biomass had mixed effects on biovolume. There was evidence of a "bottom up" response seen on Georges Bank where spring zooplankton biovolume was positively correlated with the concentration of chlorophyll. However, in the western Gulf of Maine, biovolume was uncorrelated with chlorophyll concentration, but was positively correlated with bloom start and negatively correlated with magnitude. This observation is consistent with both a "top-down" mechanism of control of the bloom and a "bottom-up" effect of bloom timing on zooplankton grazing. Our inability to form a consistent model of these relationships across adjacent systems underscores the need for further research.

  6. CALIBRATING STELLAR POPULATION MODELS WITH MAGELLANIC CLOUD STAR CLUSTERS

    SciTech Connect

    Noeel, N. E. D.; Carollo, C. M.; Greggio, L.; Renzini, A.; Maraston, C.

    2013-07-20

    Stellar population models are commonly calculated using star clusters as calibrators for those evolutionary stages that depend on free parameters. However, discrepancies exist among different models, even if similar sets of calibration clusters are used. With the aim of understanding these discrepancies, and of improving the calibration procedure, we consider a set of 43 Magellanic Cloud (MC) clusters, taking age and photometric information from the literature. We carefully assign ages to each cluster based on up-to-date determinations, ensuring that these are as homogeneous as possible. To cope with statistical fluctuations, we stack the clusters in five age bins, deriving for each of them integrated luminosities and colors. We find that clusters become abruptly red in optical and optical-infrared colors as they age from {approx}0.6 to {approx}1 Gyr, which we interpret as due to the development of a well-populated thermally pulsing asymptotic giant branch (TP-AGB). We argue that other studies missed this detection because of coarser age binnings. Maraston and Girardi et al. models predict the presence of a populated TP-AGB at {approx}0.6 Gyr, with a correspondingly very red integrated color, at variance with the data; Bruzual and Charlot and Conroy models run within the error bars at all ages. The discrepancy between the synthetic colors of Maraston models and the average colors of MC clusters results from the now obsolete age scale adopted. Finally, our finding that the TP-AGB phase appears to develop between {approx}0.6 and 1 Gyr is dependent on the adopted age scale for the clusters and may have important implications for stellar evolution.

  7. Using a State-Space Model of the British Song Thrush Turdus philomelos Population to

    E-print Network

    Thomas, Len

    into the population dynamics of declining populations are discussed. 1 Introduction Many wild bird populations have the Causes of a Population Decline Stephen R. Baillie, Stephen P. Brooks, Ruth King, and Len Thomas Abstract of population declines, using the Song Thrush as an example. A series of integrated state-space models were

  8. Modelling Lipid Competition Dynamics in Heterogeneous Protocell Populations

    PubMed Central

    Shirt-Ediss, Ben; Ruiz-Mirazo, Kepa; Mavelli, Fabio; Solé, Ricard V.

    2014-01-01

    Recent experimental work in the field of synthetic protocell biology has shown that prebiotic vesicles are able to ‘steal’ lipids from each other. This phenomenon is driven purely by asymmetries in the physical state or composition of the vesicle membranes, and, when lipid resource is limited, translates directly into competition amongst the vesicles. Such a scenario is interesting from an origins of life perspective because a rudimentary form of cell-level selection emerges. To sharpen intuition about possible mechanisms underlying this behaviour, experimental work must be complemented with theoretical modelling. The aim of this paper is to provide a coarse-grain mathematical model of protocell lipid competition. Our model is capable of reproducing, often quantitatively, results from core experimental papers that reported distinct types vesicle competition. Additionally, we make some predictions untested in the lab, and develop a general numerical method for quickly solving the equilibrium point of a model vesicle population. PMID:25024020

  9. Modelling lipid competition dynamics in heterogeneous protocell populations.

    PubMed

    Shirt-Ediss, Ben; Ruiz-Mirazo, Kepa; Mavelli, Fabio; Solé, Ricard V

    2014-01-01

    Recent experimental work in the field of synthetic protocell biology has shown that prebiotic vesicles are able to 'steal' lipids from each other. This phenomenon is driven purely by asymmetries in the physical state or composition of the vesicle membranes, and, when lipid resource is limited, translates directly into competition amongst the vesicles. Such a scenario is interesting from an origins of life perspective because a rudimentary form of cell-level selection emerges. To sharpen intuition about possible mechanisms underlying this behaviour, experimental work must be complemented with theoretical modelling. The aim of this paper is to provide a coarse-grain mathematical model of protocell lipid competition. Our model is capable of reproducing, often quantitatively, results from core experimental papers that reported distinct types vesicle competition. Additionally, we make some predictions untested in the lab, and develop a general numerical method for quickly solving the equilibrium point of a model vesicle population. PMID:25024020

  10. The Impact of Fish Predation and Cyanobacteria on Zooplankton Size Structure in 96 Subtropical Lakes

    PubMed Central

    Zhang, Jing; Xie, Ping; Tao, Min; Guo, Longgen; Chen, Jun; Li, Li; XueZhen Zhang; Zhang, Lu

    2013-01-01

    Zooplankton are relatively small in size in the subtropical regions. This characteristic has been attributed to intense predation pressure, high nutrient loading and cyanobacterial biomass. To provide further information on the effect of predation and cyanobacteria on zooplankton size structure, we analyzed data from 96 shallow aquaculture lakes along the Yangtze River. Contrary to former studies, both principal components analysis and multiple regression analysis showed that the mean zooplankton size was positively related to fish yield. The studied lakes were grouped into three types, namely, natural fishing lakes with low nutrient loading (Type1), planktivorous fish-dominated lakes (Type 2), and eutrophic lakes with high cyanobacterial biomass (Type 3). A marked difference in zooplankton size structure was found among these groups. The greatest mean zooplankton size was observed in Type 2 lakes, but zooplankton density was the lowest. Zooplankton abundance was highest in Type 3 lakes and increased with increasing cyanobacterial biomass. Zooplankton mean size was negatively correlated with cyanobacterial biomass. No obvious trends were found in Type 1 lakes. These results were reflected by the normalized biomass size spectrum, which showed a unimodal shape with a peak at medium sizes in Type 2 lakes and a peak at small sizes in Type 3 lakes. These results indicated a relative increase in medium-sized and small-sized species in Types 2 and 3 lakes, respectively. Our results suggested that fish predation might have a negative effect on zooplankton abundance but a positive effect on zooplankton size structure. High cyanobacterial biomass most likely caused a decline in the zooplankton size and encouraged the proliferation of small zooplankton. We suggest that both planktivorous fish and cyanobacteria have substantial effects on the shaping of zooplankton community, particularly in the lakes in the eastern plain along the Yangtze River where aquaculture is widespread and nutrient loading is high. PMID:24124552

  11. Fast algorithm for population-based protein structural model analysis

    PubMed Central

    Zhang, Jingfen; Xu, Dong

    2013-01-01

    De novo protein structure prediction often generates a large population of candidates (models), and then selects near-native models through clustering. Existing structural model clustering methods are time consuming due to pairwise distance calculation between models. In this paper, we present a novel method for fast model clustering without losing the clustering accuracy. Instead of the commonly used pairwise root mean square deviation and TM-score values, we propose two new distance measures, Dscore1 and Dscore2, based on the comparison of the protein distance matrices for describing the difference and the similarity among models, respectively. The analysis indicates that both the correlation between Dscore1 and root mean square deviation and the correlation between Dscore2 and TM-score are high. Compared to the existing methods with calculation time quadratic to the number of models, our Dscore1-based clustering achieves a linearly time complexity while obtaining almost the same accuracy for near-native model selection. By using Dscore2 to select representatives of clusters, we can further improve the quality of the representatives with little increase in computing time. In addition, for large size (~500 k) models, we can give a fast data visualization based on the Dscore distribution in seconds to minutes. Our method has been implemented in a package named MUFOLD-CL, available at http://mufold.org/clustering.php. PMID:23184517

  12. Comparison of multifrequency acoustic and in situ measurements of zooplankton abundances in Knight Inlet, British Columbia.

    PubMed

    Trevorrow, Mark V; Mackas, David L; Benfield, Mark C

    2005-06-01

    An investigation of midwater zooplankton aggregations in a coastal fjord was conducted in November 2002. This study focused on quantitative comparisons between a calibrated, three-frequency (38, 120, and 200 kHz) vessel-based echo-sounder, a multinet towed zooplankton sampler (BIONESS), and a high-resolution underwater camera (ZOOVIS). Daytime layers of euphausiids and amphipods near 70-90-m depth were observed in lower parts of the inlet, especially concentrated by tidal flows around a sill. Quantitative backscatter measurements of euphausiids and amphipods, combined with in situ size and abundance estimates, and using an assumed tilt-angle distribution, were in agreement with averaged fluid-cylinder scattering models produced by Stanton and Chu [ICES J. Mar. Sci. 57, 793-807, (2000)]. Acoustic measurements of physonect siphonophores in the upper inlet were found to have a strong 38-kHz scattering strength, in agreement with a damped bubble scattering model using a diameter of 0.4 mm. In relatively dense euphausiid layers, ZOOVIS abundance estimates were found to be a factor of 2 to 4 higher than the acoustic estimates, potentially due to deviations from assumed euphausiid orientation. Nocturnal near-surface euphausiid scattering exhibited a strong (15 dB) and rapid (seconds) sensitivity to vessel lights, interpreted as due to changing animal orientation. PMID:16018461

  13. Population genetics of Setaria viridis, a new model system.

    PubMed

    Huang, Pu; Feldman, Maximilian; Schroder, Stephan; Bahri, Bochra A; Diao, Xianmin; Zhi, Hui; Estep, Matt; Baxter, Ivan; Devos, Katrien M; Kellogg, Elizabeth A

    2014-10-01

    An extensive survey of the standing genetic variation in natural populations is among the priority steps in developing a species into a model system. In recent years, green foxtail (Setaria viridis), along with its domesticated form foxtail millet (S. italica), has rapidly become a promising new model system for C4 grasses and bioenergy crops, due to its rapid life cycle, large amount of seed production and small diploid genome, among other characters. However, remarkably little is known about the genetic diversity in natural populations of this species. In this study, we survey the genetic diversity of a worldwide sample of more than 200 S. viridis accessions, using the genotyping-by-sequencing technique. Two distinct genetic groups in S. viridis and a third group resembling S. italica were identified, with considerable admixture among the three groups. We find the genetic variation of North American S. viridis correlates with both geography and climate and is representative of the total genetic diversity in this species. This pattern may reflect several introduction/dispersal events of S. viridis into North America. We also modelled demographic history and show signal of recent population decline in one subgroup. Finally, we show linkage disequilibrium decay is rapid (<45 kb) in our total sample and slow in genetic subgroups. These results together provide an in-depth understanding of the pattern of genetic diversity of this new model species on a broad geographic scale. They also provide key guidelines for on-going and future work including germplasm preservation, local adaptation, crossing designs and genomewide association studies. PMID:25185718

  14. Attachment of Vibrio cholerae serogroup O1 to zooplankton and phytoplankton of Bangladesh waters.

    PubMed Central

    Tamplin, M L; Gauzens, A L; Huq, A; Sack, D A; Colwell, R R

    1990-01-01

    Vibrio cholerae serogroup O1, the causative agent of cholera, is capable of surviving in aquatic environments for extended periods and is considered an autochthonous species in estuarine and brackish waters. These environments contain numerous elements that may affect its ecology. The studies reported here examined physical interactions between V. cholerae O1 and natural plankton populations of a geographical region in Bangladesh where cholera is an endemic disease. Results showed that four of five clinical V. cholerae O1 strains and endogenous bacterial flora were attached preferentially to zooplankton molts (exuviae) rather than to whole specimens. One strain attached in approximately equal numbers to both exuviae and whole specimens. V. cholerae O1 also attached to several phytoplankton species. The results show that V. cholerae O1 can bind to diverse plankton species collected from an area where cholera is an endemic disease, with potentially significant effects on its ecology. Images PMID:2383016

  15. USING MODELS TO EXTRAPOLATE POPULATION-LEVEL EFFECTS FROM LABORATORY TOXICITY TESTS IN SUPPORT OF POPULATION RISK ASSESSMENTS

    EPA Science Inventory

    Using models to extrapolate population-level effects from laboratory toxicity tests in support of population risk assessments. Munns, W.R., Jr.*, Anne Kuhn, Matt G. Mitro, and Timothy R. Gleason, U.S. EPA ORD NHEERL, Narragansett, RI, USA. Driven in large part by management goa...

  16. Prediction Model for Gastric Cancer Incidence in Korean Population

    PubMed Central

    Kim, Sohee; Shin, Aesun; Yang, Hye-Ryung; Park, Junghyun; Choi, Il Ju; Kim, Young-Woo; Kim, Jeongseon; Nam, Byung-Ho

    2015-01-01

    Background Predicting high risk groups for gastric cancer and motivating these groups to receive regular checkups is required for the early detection of gastric cancer. The aim of this study is was to develop a prediction model for gastric cancer incidence based on a large population-based cohort in Korea. Method Based on the National Health Insurance Corporation data, we analyzed 10 major risk factors for gastric cancer. The Cox proportional hazards model was used to develop gender specific prediction models for gastric cancer development, and the performance of the developed model in terms of discrimination and calibration was also validated using an independent cohort. Discrimination ability was evaluated using Harrell’s C-statistics, and the calibration was evaluated using a calibration plot and slope. Results During a median of 11.4 years of follow-up, 19,465 (1.4%) and 5,579 (0.7%) newly developed gastric cancer cases were observed among 1,372,424 men and 804,077 women, respectively. The prediction models included age, BMI, family history, meal regularity, salt preference, alcohol consumption, smoking and physical activity for men, and age, BMI, family history, salt preference, alcohol consumption, and smoking for women. This prediction model showed good accuracy and predictability in both the developing and validation cohorts (C-statistics: 0.764 for men, 0.706 for women). Conclusions In this study, a prediction model for gastric cancer incidence was developed that displayed a good performance. PMID:26186332

  17. Mathematical modeling of glassy-winged sharpshooter population.

    PubMed

    Yoon, Jeong-Mi; Hrynkiv, Volodymyr; Morano, Lisa; Nguyen, Anh Tuan; Wilder, Sara; Mitchell, Forrest

    2014-06-01

    Pierce's disease (PD) is a fatal disease of grapevines which results from an infection by the plant pathogen Xyllela fastidiosa. This bacterium grows in the xylem (water-conducting) vessels of the plant blocking movement of water. PD can kill vines in one year and poses a serious threat to both the California and the expanding Texas wine industries. Bacteria are vectored from one vine to the next by a number of xylem feeding insect species. Of these, the Glassy-winged Sharpshooter (GWSS) is considered to be the primary xylem feeding insect in Texas vineyards. An extensive database of the xylem-feeding population frequencies was collected by USDA-APHIS for Texas vineyards over multiple years. This project focused on a subset of data, GWSS frequencies within 25 vineyards in Edwards Plateau located in central Texas. The proposed model investigates the natural population dynamics and the decline in GWSS, likely the result of pest management campaigns on the insects within the region. The model is a delay Gompertz differential equation with harvesting and immigration terms, and we use the data to estimate the model parameters. PMID:24506556

  18. Modelling Lipid Competition Dynamics in Heterogeneous Protocell Populations

    E-print Network

    Ben Shirt-Ediss; Kepa Ruiz-Mirazo; Fabio Mavelli; Ricard V. Solé

    2014-01-30

    In addressing the origins of Darwinian evolution, recent experimental work has been focussed on the discovery of simple physical effects which would provide a relevant selective advantage to protocells competing with each other for a limited supply of lipid. In particular, data coming from Szostak's lab suggest that the transition from simple prebiotically plausible lipid membranes to more complex and heterogeneous ones, closer to real biomembranes, may have been driven by changes in the fluidity of the membrane and its affinity for the available amphiphilic compound, which in turn would involve changes in vesicle growth dynamics. Earlier work from the same group reported osmotically-driven competition effects, whereby swelled vesicles grow at the expense of isotonic ones. In this paper, we try to expand on these experimental studies by providing a simple mathematical model of a population of competing vesicles, studied at the level of lipid kinetics. In silico simulations of the model are able to reproduce qualitatively and often quantitatively the experimentally reported competition effects in both scenarios. We also develop a method for numerically solving the equilibrium of a population of competing model vesicles, which is quite general and applicable to different vesicle kinetics schemes.

  19. The model of fungal population dynamics affected by nystatin

    NASA Astrophysics Data System (ADS)

    Voychuk, Sergei I.; Gromozova, Elena N.; Sadovskiy, Mikhail G.

    Fungal diseases are acute problems of the up-to-day medicine. Significant increase of resistance of microorganisms to the medically used antibiotics and a lack of new effective drugs follows in a growth of dosage of existing chemicals to solve the problem. Quite often such approach results in side effects on humans. Detailed study of fungi-antibiotic dynamics can identify new mechanisms and bring new ideas to overcome the microbial resistance with a lower dosage of antibiotics. In this study, the dynamics of the microbial population under antibiotic treatment was investigated. The effects of nystatin on the population of Saccharomyces cerevisiae yeasts were used as a model system. Nystatin effects were investigated both in liquid and solid media by viability tests. Dependence of nystatin action on osmotic gradient was evaluated in NaCl solutions. Influences of glucose and yeast extract were additionally analyzed. A "stepwise" pattern of the cell death caused by nystatin was the most intriguing. This pattern manifested in periodical changes of the stages of cell death against stages of resistance to the antibiotic. The mathematical model was proposed to describe cell-antibiotic interactions and nystatin viability effects in the liquid medium. The model implies that antibiotic ability to cause a cells death is significantly affected by the intracellular compounds, which came out of cells after their osmotic barriers were damaged

  20. Late stages of stellar evolution in population models

    NASA Astrophysics Data System (ADS)

    Maraston, Claudia

    2015-04-01

    My contribution to Roger's celebration symposium focuses on the treatment of late stellar evolutionary phases in stellar population models, reviewing the state of art and discussing some very recent developments, ranging from local stellar clusters up to distant galaxies at high redshift. I shall focus in particular on the Thermally Pulsating Asymptotic Giant Branch, about which a vivid discussion has been ongoing since a few years. I shall present renewed evidence in favour of a sizable contribution from this phase for matching the observed spectral energy distribution of distant massive galaxies. I shall also discuss the possible reasons why such a conclusion has been controversial in the recent literature. Stellar population models are the magic tool to shape the physics of galaxies out of their observed light, and enter virtually all papers presented at this symposium. In a collective effort to properly treat all relevant aspects of the modelling, we split the discussion into six contributions given by experts in the field, as our present to Roger and his outstanding career.

  1. Increased zooplankton PAH concentrations across hydrographic fronts in the East China Sea.

    PubMed

    Hung, Chin-Chang; Ko, Fung-Chi; Gong, Gwo-Ching; Chen, Kuo-Shu; Wu, Jian-Ming; Chiang, Hsin-Lun; Peng, Sen-Chueh; Santschi, Peter H

    2014-06-15

    The Changjiang has transported large quantities of polycyclic aromatic hydrocarbons (PAHs) to the East China Sea (ECS), but information of these pollutants in zooplankton is limited. To understand PAHs pollution in zooplankton in the ECS, total concentrations of PAHs in zooplankton from surface waters were measured. Values of PAHs ranged from 2 to 3500 ng m(-3) in the ECS, with highest PAHs levels located at the salinity front between the Changjiang Diluted Water (CDW) and the mid-shelf waters. In contrast, concentrations of zooplankton PAHs in the mid-shelf and outer-shelf waters were significantly lower (2-23 ng m(-3)) than those in the CDW. These results demonstrate that PAHs are conspicuously accumulated in zooplankton at the salinity front between the CDW and the mid-shelf waters. These higher levels of PAHs in zooplankton at the salinity front may be further biomagnified in marine organisms of higher trophic levels through their feeding activities. PMID:24775063

  2. Bacterial bioluminescence as a lure for marine zooplankton and fish

    PubMed Central

    Zarubin, Margarita; Belkin, Shimshon; Ionescu, Michael; Genin, Amatzia

    2012-01-01

    The benefits of bioluminescence for nonsymbiotic marine bacteria have not been elucidated fully. One of the most commonly cited explanations, proposed more than 30 y ago, is that bioluminescence augments the propagation and dispersal of bacteria by attracting fish to consume the luminous material. This hypothesis, based mostly on the prevalence of luminous bacteria in fish guts, has not been tested experimentally. Here we show that zooplankton that contacts and feeds on the luminescent bacterium Photobacterium leiognathi starts to glow, and demonstrate by video recordings that glowing individuals are highly vulnerable to predation by nocturnal fish. Glowing bacteria thereby are transferred to the nutritious guts of fish and zooplankton, where they survive digestion and gain effective means for growth and dispersal. Using bioluminescence as bait appears to be highly beneficial for marine bacteria, especially in food-deprived environments of the deep sea. PMID:22203999

  3. Chemical Response of the Toxic Dinoflagellate Karenia mikimotoi Against Grazing by Three Species of Zooplankton.

    PubMed

    Dang, Lin-Xi; Li, Yue; Liu, Fei; Zhang, Yong; Yang, Wei-Dong; Li, Hong-Ye; Liu, Jie-Sheng

    2015-01-01

    We investigated the toxicity of Karenia mikimotoi toward three model grazers, the cladoceran Moina mongolica, the copepod Pseudodiaptomus annandalei, and the crustacean Artemia salina, and explored its chemical response upon zooplankton grazing. An induction experiment, where K. mikimotoi was exposed to grazers or waterborne cues from the mixed cultures revealed that K. mikimotoi might be toxic or nutritionally inadequate toward the three grazers. In general, direct exposure to the three grazers induced the production of hemolytic toxins and the synthesis of eicosapentaenoic acid (EPA). Both EPA and the hemolytic toxins from K. mikimotoi decreased the survival rate of the three grazers. In addition, the survival rates of M. mongolica, P. annandalei, and A. salina in the presence of induced K. mikimotoi that had previously been exposed to a certain grazer were lower than their counterparts caused by fresh K. mikimotoi, suggesting that exposure to some grazers might increase the toxicity of K. mikimotoi. The chemical response and associated increased resistance to further grazing suggested that K. mikimotoi could produce deterrents to protect against grazing by zooplankton and that the substances responsible might be hemolytic toxins and EPA. PMID:25523905

  4. Biomass of zooplankton estimated by acoustical sensors in the Arabian sea. Final report

    SciTech Connect

    Holliday, D.V.

    1996-11-22

    The long term goal of our overall research program is the development of data-based models to predict ecological relationships of zooplankton, phytoplankton and the physical environment in the sea. The overall objective of the work carried out within the scope of this particular contract was to acoustically measure the dynamics of zooplankton and micronekton in the northern Arabian Sea during several seasons. The scientific focus was to examine the impact, if any, of the two annual monsoons that are thought to drive the ecosystem response in the area. This particular project involved the design and construction of two sensors which were then deployed in the Arabian Sea by several of our co-PIVs in the ONR ARI on Forced Upper Ocean Dynamics during the time period in which the JGOFS program also focused their efforts on the northern Arabian Sea. This contract involved only the development, calibration and maintenance of the instrumentation. The data processing, other than that which has been necessary for the purposes of quality assurance, was not induded in our original proposal.

  5. Zooplankton fecal pellets link fossil fuel and phosphate deposits

    USGS Publications Warehouse

    Porter, K.G.; Robbins, E.I.

    1981-01-01

    Fossil zooplankton fecal pellets found in thinly bedded marine and lacustrine black shales associated with phosphate, oil, and coal deposits, link the deposition of organic matter and biologically associated minerals with planktonic ecosystems. The black shales were probably formed in the anoxic basins of coastal marine waters, inland seas, and rift valley lakes where high productivity was supported by runoff, upwelling, and outwelling. Copyright ?? 1981 AAAS.

  6. Ingestion of Microplastics by Zooplankton in the Northeast Pacific Ocean.

    PubMed

    Desforges, Jean-Pierre W; Galbraith, Moira; Ross, Peter S

    2015-10-01

    Microplastics are increasingly recognized as being widespread in the world's oceans, but relatively little is known about ingestion by marine biota. In light of the potential for microplastic fibers and fragments to be taken up by small marine organisms, we examined plastic ingestion by two foundation species near the base of North Pacific marine food webs, the calanoid copepod Neocalanus cristatus and the euphausiid Euphausia pacifia. We developed an acid digestion method to assess plastic ingestion by individual zooplankton and detected microplastics in both species. Encounter rates resulting from ingestion were 1 particle/every 34 copepods and 1/every 17 euphausiids (euphausiids > copepods; p = 0.01). Consistent with differences in the size selection of food between these two zooplankton species, the ingested particle size was greater in euphausiids (816 ± 108 ?m) than in copepods (556 ± 149 ?m) (p = 0.014). The contribution of ingested microplastic fibres to total plastic decreased with distance from shore in euphausiids (r (2) = 70, p = 0.003), corresponding to patterns in our previous observations of microplastics in seawater samples from the same locations. This first evidence of microplastic ingestion by marine zooplankton indicate that species at lower trophic levels of the marine food web are mistaking plastic for food, which raises fundamental questions about potential risks to higher trophic level species. One concern is risk to salmon: We estimate that consumption of microplastic-containing zooplankton will lead to the ingestion of 2-7 microplastic particles/day by individual juvenile salmon in coastal British Columbia, and ?91 microplastic particles/day in returning adults. PMID:26066061

  7. Dosage optimization of treatments using population pharmacokinetic modeling and simulation.

    PubMed

    Guidi, M; Arab-Alameddine, Mona; Rotger, Margalida; Aouri, Manel; Telenti, Amalio; Decosterd, Laurent A; Buclin, Thierry; Csajka, Chantal

    2012-01-01

    Pharmacokinetic variability in drug levels represent for some drugs a major determinant of treatment success, since sub-therapeutic concentrations might lead to toxic reactions, treatment discontinuation or inefficacy. This is true for most antiretroviral drugs, which exhibit high inter-patient variability in their pharmacokinetics that has been partially explained by some genetic and non-genetic factors. The population pharmacokinetic approach represents a very useful tool for the description of the dose-concentration relationship, the quantification of variability in the target population of patients and the identification of influencing factors. It can thus be used to make predictions and dosage adjustment optimization based on Bayesian therapeutic drug monitoring (TDM). This approach has been used to characterize the pharmacokinetics of nevirapine (NVP) in 137 HIV-positive patients followed within the frame of a TDM program. Among tested covariates, body weight, co-administration of a cytochrome (CYP) 3A4 inducer or boosted atazanavir as well as elevated aspartate transaminases showed an effect on NVP elimination. In addition, genetic polymorphism in the CYP2B6 was associated with reduced NVP clearance. Altogether, these factors could explain 26% in NVP variability. Model-based simulations were used to compare the adequacy of different dosage regimens in relation to the therapeutic target associated with treatment efficacy. In conclusion, the population approach is very useful to characterize the pharmacokinetic profile of drugs in a population of interest. The quantification and the identification of the sources of variability is a rational approach to making optimal dosage decision for certain drugs administered chronically. PMID:22867538

  8. Population differentiation in Daphnia alters community assembly in experimental ponds.

    PubMed

    Pantel, Jelena H; Leibold, Mathew A; Juenger, Thomas E

    2011-03-01

    Most studies of community assembly ignore how genetic differentiation within species affects their colonization and extinction. However, genetic differentiation in ecologically relevant traits may be substantial enough to alter the colonization and extinction processes that drive community assembly. We measured significant molecular genetic and quantitative trait differentiation among three Daphnia pulex × pulicaria populations in southwestern Michigan ponds and investigated whether this differentiation could alter the assembly of pond zooplankton communities in experimental mesocosms. In this study, we monitored the invasion success of different D. pulex × pulicaria populations after their introduction into an established zooplankton community. We also monitored the invasion success of a diverse array of zooplankton species into different D. pulex × pulicaria populations. Zooplankton community composition depended on the D. pulex × pulicaria source population. Daphnia pulex × pulicaria from one population failed to invade zooplankton communities, while those from other populations successfully invaded similar communities. If population differentiation in other species plays a role in community assembly similar to that demonstrated in our study, assembly may be more sensitive to evolutionary processes than has been previously generally considered. PMID:21460540

  9. The two populations’ cellular automata model with predation based on the Penna model

    NASA Astrophysics Data System (ADS)

    He, Mingfeng; Lin, Jing; Jiang, Heng; Liu, Xin

    2002-09-01

    In Penna's single-species asexual bit-string model of biological ageing, the Verhulst factor has too strong a restraining effect on the development of the population. Danuta Makowiec gave an improved model based on the lattice, where the restraining factor of the four neighbours take the place of the Verhulst factor. Here, we discuss the two populations’ Penna model with predation on the planar lattice of two dimensions. A cellular automata model containing movable wolves and sheep has been built. The results show that both the quantity of the wolves and the sheep fluctuate in accordance with the law that one quantity increases while the other one decreases.

  10. HHOOWW MMAANNYY PPEEOOPPLLEE AARREE IINN YYOOUURR FFUUTTUURREE?? ELEMENTARY MODELS OF POPULATION GROWTH

    E-print Network

    Ashline, George

    think this is a realistic model of the future? Who would predict such population growth and on what that he based his vision of the future on an exponential model of human population growth. ThroughoutHHOOWW MMAANNYY PPEEOOPPLLEE AARREE IINN YYOOUURR FFUUTTUURREE?? ELEMENTARY MODELS OF POPULATION

  11. AN ENERGETICS MODEL FOR THE EXPLOITED YELLOWFIN TUNA, THUNNUS ALBACARES, POPULATION IN

    E-print Network

    AN ENERGETICS MODEL FOR THE EXPLOITED YELLOWFIN TUNA, THUNNUS ALBACARES, POPULATION IN THE EASTERN yellowfin tuna, Thunnus albacares, population in the eastern Pacific Ocean is developed. Hydrodynamic into a simplistic three process model. This model is interfaced with a population simulator (TUNPj1)P) and minimal

  12. On a size-structured two-phase population model with infinite states-at-birth

    E-print Network

    Hinow, Peter

    -structured two-phase population model #12;Definitions A C0 semigroup T (t) is called contractive if ||T (t)|| et(L). Peter Hinow Size-structured two-phase population model #12;Equivalent definition of dispersivity Let LOn a size-structured two-phase population model with infinite states-at-birth Peter Hinow Institute

  13. Selenium in San Francisco Bay zooplankton: Potential effects of hydrodynamics and food web interactions

    USGS Publications Warehouse

    Purkerson, D.G.; Doblin, M.A.; Bollens, S.M.; Luoma, S.N.; Cutter, G.A.

    2003-01-01

    The potential toxicity of elevated selenium (Se) concentrations in aquatic ecosystems has stimulated efforts to measure Se concentrations in benthos, nekton, and waterfowl in San Francisco Bay (SF Bay). In September 1998, we initiated a 14 mo field study to determine the concentration of Se in SF Bay zooplankton, which play a major role in the Bay food web, but which have not previously been studied with respect to Se. Monthly vertical plankton tows were collected at several stations throughout SF Bay, and zooplankton were separated into two operationally defined size classes for Se analyses: 73-2,000 ??m, and ???2,000 ??m. Selenium values ranged 1.02-6.07 ??g Se g-1 dry weight. No spatial differences in zooplankton Se concentrations were found. However, there were inter- and intra-annual differences. Zooplankton Se concentrations were enriched in the North Bay in Fall 1999 when compared to other seasons and locations within and outside SF Bay. The abundance and biovolume of the zooplankton community varied spatially between stations, but not seasonally within each station. Smaller herbivorous-omnivorous zooplankton had higher Se concentrations than larger omnivorous-carnivorous zooplankton. Selenium concentrations in zooplankton were negatively correlated with the proportion of total copepod biovolume comprising the large carnivorous copepod Tortanus dextrilobatus, but positively correlated with the proportion of copepod biovolume comprising smaller copepods of the family Oithonidae, suggesting an important role of trophic level and size in regulating zooplankton Se concentrations.

  14. Mathematical model of temephos resistance in Aedes aegypti mosquito population

    NASA Astrophysics Data System (ADS)

    Aldila, D.; Nuraini, N.; Soewono, E.; Supriatna, A. K.

    2014-03-01

    Aedes aegypti is the main vector of dengue disease in many tropical and sub-tropical countries. Dengue became major public concern in these countries due to the unavailability of vaccine or drugs for dengue disease in the market. Hence, the only way to control the spread of DF and DHF is by controlling the vectors carrying the disease, for instance with fumigation, temephos or genetic manipulation. Many previous studies conclude that Aedes aegypti may develop resistance to many kind of insecticide, including temephos. Mathematical model for transmission of temephos resistance in Aedes aegypti population is discussed in this paper. Nontrivial equilibrium point of the system and the corresponding existence are shown analytically. The model analysis have shown epidemiological trends condition that permits the coexistence of nontrivial equilibrium is given analytically. Numerical results are given to show parameter sensitivity and some cases of worsening effect values for illustrating possible conditions in the field.

  15. Sexual Reproduction in a Simple Growth Population Model

    NASA Astrophysics Data System (ADS)

    Lemos, Carlos Gentil Oro; Santos, Marcio

    2012-05-01

    One of the most important characteristics in the survival of a species is related to the kind of reproduction responsible for the offspring generation. However, only in the last years the role played by sexual reproduction has been investigated. Then, for a better understanding of this kind of process we introduce, in this work, a surface reaction model that describes the role of the sexual reproduction. In our model two different elements of the species, representing male and female, can interact to reproduce a new element. The sex of this new element is chosen with a given probability and in order to take into account the mortality rate we introduce another kind of individual. The value of the spatial density of this element remains constant during the time evolution of the system. The model is studied using Monte Carlo simulations and mean field approximation. Depending on the values of the control parameters of the model, the system can attain two stationary states: In one of them the population survives and in the other it can be extinguished. Besides, accordingly to our results, the phase diagram of the model shows a discontinuous transition between these two states.

  16. Three-dimensional acoustic visualization of zooplankton patchiness

    NASA Astrophysics Data System (ADS)

    Greene, Charles H.; Wiebe, Peter H.; Pelkie, Chris; Benfield, Mark C.; Popp, Jacqueline M.

    Acoustic data were collected and visualized to characterize the 3-dimensional patchiness of zooplankton at a thermally stratified site on Georges Bank. The work was carried out as part of a field study conducted to examine the effects of springtime water-column stratification on the distributions of zooplankton and larval fish on the Bank. The acoustic data were acquired as the ship steamed a survey grid relative to the track of a surface drifter with a subsurface drogue. Although quite irregular in geographical coordinate space, the ship's track relative to the moving water closely matched the intended grid pattern once the drifter's movement in the tidal flow was taken into account. After changing coordinate systems to compensate for tidal advection, the acoustic data set was transformed from its curtain-like distribution in 3-dimensional space to a volumetric distribution. Two-dimensional point kriging was performed on the irregularly spaced data from each 2-m-thick depth stratum to produce a series of 2-dimensional, regularly spaced data grids. These data grids were then stacked to construct the 3-dimensional data grid required for volumetric visualization. A similar procedure was followed with the error variance values produced at each grid point through kriging to construct a 3-dimensional, volumetric distribution of the error variance. To examine zooplankton patchiness within the surveyed volume of water, isosurfaces corresponding to specific levels of acoustic backscatter were highlighted in the visualization. The 3-dimensional distribution of error variance was used to control the opacity of the isosurfaces to provide an objective, visual approach for displaying the statistical confidence one can have in the patches detected. In this survey, the ship steamed directly over a large, southwest- to northeast-oriented patch of zooplankton on at least three different passes. It also steamed over several smaller patches. The vertically compressed nature of the patches and their high degree of spatial heterogeneity in the horizontal plane are characteristic of the zooplankton distributions found in the deeper, seasonally stratified portions of Georges Bank.

  17. Biomass of zooplankton in the eastern Arctic Ocean - A base line study

    NASA Astrophysics Data System (ADS)

    Kosobokova, Ksenia; Hirche, Hans-Jürgen

    2009-09-01

    Only a few historical assessments of the zooplankton biomass in the Arctic Ocean exist are difficult to compare due to methodological differences including incomplete sampling of the water column. We present assessments of the zooplankton biomass for 66 locations scattered over the Eurasian and Makarov Basins of the Arctic Ocean and analyze regional variability and factors affecting the biomass distribution. The study is based on material from several summer expeditions of RV Polarstern (1993-1998) that was collected and processed using consistent methods, i.e. stratified sampling of the entire water column from the bottom to the surface with very similar gear and standardized calculation of biomass. Total zooplankton biomass varied strongly from 1.9 to 23.9 g DW m -2 dry mass. Regional variability was mainly related to the circulation pattern, but local food availability was also important. A belt of elevated biomass along the Eurasian continental margin was associated with the advection of Atlantic pelagic populations within the Arctic Ocean Boundary Current along the Siberian shelves and returning branches along mid-ocean ridges. Biomass was highest in the core of the Atlantic inflow and remained rather stable along the continental margins, but species composition changed, pointing to different adaptation levels to local conditions by advected species. Biomass gradually decreased towards the shelves and basins and was lowest in the centers of the basins north of 85°N. In the slope region, three Calanus species ( C. hyperboreus, C. glacialis, C. finmarchicus) and Metridia longa contributed most to the biomass, chaetognaths ( Eukrohnia hamata) were also important. In the basins, C. hyperboreus was dominant, copepods made up to 97% of total biomass. Vertical distribution was similar at all stations with biomass maxima in the upper 50 m layer except for stations near Fram Strait and northern Kara Sea, the gateways of Atlantic water to the Arctic Ocean, where maxima where between 25 and 100 m. As there was only very little interannual variability of temperature and current velocity in the regions of the Atlantic inflow we suggest that the majority of our samples, collected in 1993 and 1995, represents the phase of the 1990s warm event in the Nordic Seas.

  18. Nuisance Source Population Modeling for Radiation Detection System Analysis

    SciTech Connect

    Sokkappa, P; Lange, D; Nelson, K; Wheeler, R

    2009-10-05

    A major challenge facing the prospective deployment of radiation detection systems for homeland security applications is the discrimination of radiological or nuclear 'threat sources' from radioactive, but benign, 'nuisance sources'. Common examples of such nuisance sources include naturally occurring radioactive material (NORM), medical patients who have received radioactive drugs for either diagnostics or treatment, and industrial sources. A sensitive detector that cannot distinguish between 'threat' and 'benign' classes will generate false positives which, if sufficiently frequent, will preclude it from being operationally deployed. In this report, we describe a first-principles physics-based modeling approach that is used to approximate the physical properties and corresponding gamma ray spectral signatures of real nuisance sources. Specific models are proposed for the three nuisance source classes - NORM, medical and industrial. The models can be validated against measured data - that is, energy spectra generated with the model can be compared to actual nuisance source data. We show by example how this is done for NORM and medical sources, using data sets obtained from spectroscopic detector deployments for cargo container screening and urban area traffic screening, respectively. In addition to capturing the range of radioactive signatures of individual nuisance sources, a nuisance source population model must generate sources with a frequency of occurrence consistent with that found in actual movement of goods and people. Measured radiation detection data can indicate these frequencies, but, at present, such data are available only for a very limited set of locations and time periods. In this report, we make more general estimates of frequencies for NORM and medical sources using a range of data sources such as shipping manifests and medical treatment statistics. We also identify potential data sources for industrial source frequencies, but leave the task of estimating these frequencies for future work. Modeling of nuisance source populations is only useful if it helps in understanding detector system performance in real operational environments. Examples of previous studies in which nuisance source models played a key role are briefly discussed. These include screening of in-bound urban traffic and monitoring of shipping containers in transit to U.S. ports.

  19. Modelling the cyclic behaviour in a DTB crystallizer—a two-population balance model approach

    NASA Astrophysics Data System (ADS)

    Menon, A. R.; Kramer, H. J. M.; Grievink, J.; Jansens, P. J.

    2005-02-01

    A novel approach is introduced here to improve the description of the dynamic behaviour of industrial crystallizers using a two-population balance model to discriminate between primary and secondary nuclei. A heterogeneous primary nucleation model is implemented in a rigorous crystallizer model framework to explain the sustained oscillatory behaviour observed in industrial draft-tube baffle (DTB) crystallizers. The distinction between primary and secondary nuclei in the modelling framework is realized by using two different growth rates within the dispersed phase. The total crystal population is split up into two distinct and interacting populations, one representing the primary (no strain) population of crystals and the other the secondary (strained) population. Such a two-population balance model exhibits the sustained cyclic response for a 1100L DTB crystallizer, for an ammonium-sulphate water system. Including the degree of heterogeneity (?) and the two parameters; surface integration rate constant (kr) and condition for deformation (?s) from the growth model, the primary nucleation model framework has three unknown parameters which are fitted using measured transients from experiments performed on the pilot-plant crystallizers. The effect of the heterogeneity factor (?) on the dynamics of the process, suggests that the parameter ? is very sensitive and hence, plays a very critical role in predicting the start-up and dynamics of the process. Validation of the model with the experimental data shows that the inclusion of a primary nucleation event definitely increases the descriptive capability of the model, thus justifying it's inclusion as a critical factor. The simulation results give a very good description of the start-up phase of the crystallizer operation, the dynamics of the process as well as the final steady-state values.

  20. A Stochastic Age-Structured Population Model of Striped Bass (Morone saxatilis) in the Potomac River'

    E-print Network

    Cohen, Joel E.

    . For such a stochastic model, two measures of the long-term population growth rate are the average growth rate of the population size and the growth rate of the average population size. We compute both measures analytically of the growth rate of the average population size. We illustrate some statistical tests of the correctness

  1. Complex Transition to Cooperative Behavior in a Structured Population Model

    PubMed Central

    Miranda, Luciano; de Souza, Adauto J. F.; Ferreira, Fernando F.; Campos, Paulo R. A.

    2012-01-01

    Cooperation plays an important role in the evolution of species and human societies. The understanding of the emergence and persistence of cooperation in those systems is a fascinating and fundamental question. Many mechanisms were extensively studied and proposed as supporting cooperation. The current work addresses the role of migration for the maintenance of cooperation in structured populations. This problem is investigated in an evolutionary perspective through the prisoner's dilemma game paradigm. It is found that migration and structure play an essential role in the evolution of the cooperative behavior. The possible outcomes of the model are extinction of the entire population, dominance of the cooperative strategy and coexistence between cooperators and defectors. The coexistence phase is obtained in the range of large migration rates. It is also verified the existence of a critical level of structuring beyond that cooperation is always likely. In resume, we conclude that the increase in the number of demes as well as in the migration rate favor the fixation of the cooperative behavior. PMID:22761736

  2. Basic Concepts in Population Modeling, Simulation, and Model-Based Drug Development: Part 3—Introduction to Pharmacodynamic Modeling Methods

    PubMed Central

    Upton, R N; Mould, D R

    2014-01-01

    Population pharmacodynamic (PD) models describe the time course of drug effects, relating exposure to response, and providing a more robust understanding of drug action than single assessments. PD models can test alternative dose regimens through simulation, allowing for informed assessment of potential dose regimens and study designs. This is the third paper in a three-part series, providing an introduction into methods for developing and evaluating population PD models. Example files are available in the Supplementary Data. PMID:24384783

  3. Neutral genomic regions refine models of recent rapid human population growth

    E-print Network

    Keinan, Alon

    Neutral genomic regions refine models of recent rapid human population growth Elodie Gazavea,1 , Li of recent rapid growth in effective population size, although estimates have varied greatly among studies of individuals have considered recent population growth in fitting models to the observed site frequency spectrum

  4. An agent-based modelling approach to estimate error in gyrodactylid population growth

    E-print Network

    Wilensky, Uri

    An agent-based modelling approach to estimate error in gyrodactylid population growth Raúl Ramírez: Gyrodactylus salaris Demographic stochasticity Gyrodactylid performance Infection dynamics Population growth- ever, gave unrealistically low population growth rates when used as parameters in the model, and a sche

  5. Evolution of the population of Microtus Epiroticus: the Yoccoz-Birkeland model.

    E-print Network

    (see definition 2.1): the population does not extinguish. Finally we give numerical evidenceEvolution of the population of Microtus Epiroticus: the Yoccoz-Birkeland model. J. J. Nieto M. J by a model proposed by Yoccoz and Birkeland to describe the evolution of the population of Microtus

  6. The Impact of Experimental Setup on Prepaid Churn Modeling: Data, Population and Outcome Definition

    E-print Network

    Putten, Peter van der

    The Impact of Experimental Setup on Prepaid Churn Modeling: Data, Population and Outcome Definition study of prepaid churn modeling by varying on three dimensions: data, outcome definition and population definition, population and data parameters. Their focus is mostly on #12;the data mining algorithm used

  7. Stability in Model Populations m onographs in p opulation b iology 3 1

    E-print Network

    Mueller, Laurence D.

    000 Modeling the Dynamics of Lucilia cuprina Populations 000 Chapter 5--Tribolium 000 Life History of Tribolium in the Laboratory 000 Pre-Adult Stages 000 Adult Stage 000 A Model of Tribolium Population A Heuristic Framework for Viewing Population Dynamics and Stability 000 Lucilia cuprina, Tribolium

  8. EVALUATING HABITAT AS A SURROGATE FOR POPULATION VIABILITY USING A SPATIALLY EXPLICIT POPULATION MODEL

    EPA Science Inventory

    Because data for conservation planning are always limited, surrogates are often substituted for intractable measurements such as species richness or population viability. We examined the ability of habitat quality to act as a surrogate for population performance for both Red-sho...

  9. EVALUATION OF THE EFFICACY OF EXTRAPOLATION POPULATION MODELING TO PREDICT THE DYNAMICS OF AMERICAMYSIS BAHIA POPULATIONS IN THE LABORATORY

    EPA Science Inventory

    An age-classified projection matrix model has been developed to extrapolate the chronic (28-35d) demographic responses of Americamysis bahia (formerly Mysidopsis bahia) to population-level response. This study was conducted to evaluate the efficacy of this model for predicting t...

  10. A Simple Model of Optimal Population Coding for Sensory Systems

    PubMed Central

    Doi, Eizaburo; Lewicki, Michael S.

    2014-01-01

    A fundamental task of a sensory system is to infer information about the environment. It has long been suggested that an important goal of the first stage of this process is to encode the raw sensory signal efficiently by reducing its redundancy in the neural representation. Some redundancy, however, would be expected because it can provide robustness to noise inherent in the system. Encoding the raw sensory signal itself is also problematic, because it contains distortion and noise. The optimal solution would be constrained further by limited biological resources. Here, we analyze a simple theoretical model that incorporates these key aspects of sensory coding, and apply it to conditions in the retina. The model specifies the optimal way to incorporate redundancy in a population of noisy neurons, while also optimally compensating for sensory distortion and noise. Importantly, it allows an arbitrary input-to-output cell ratio between sensory units (photoreceptors) and encoding units (retinal ganglion cells), providing predictions of retinal codes at different eccentricities. Compared to earlier models based on redundancy reduction, the proposed model conveys more information about the original signal. Interestingly, redundancy reduction can be near-optimal when the number of encoding units is limited, such as in the peripheral retina. We show that there exist multiple, equally-optimal solutions whose receptive field structure and organization vary significantly. Among these, the one which maximizes the spatial locality of the computation, but not the sparsity of either synaptic weights or neural responses, is consistent with known basic properties of retinal receptive fields. The model further predicts that receptive field structure changes less with light adaptation at higher input-to-output cell ratios, such as in the periphery. PMID:25121492

  11. A simple model of optimal population coding for sensory systems.

    PubMed

    Doi, Eizaburo; Lewicki, Michael S

    2014-08-01

    A fundamental task of a sensory system is to infer information about the environment. It has long been suggested that an important goal of the first stage of this process is to encode the raw sensory signal efficiently by reducing its redundancy in the neural representation. Some redundancy, however, would be expected because it can provide robustness to noise inherent in the system. Encoding the raw sensory signal itself is also problematic, because it contains distortion and noise. The optimal solution would be constrained further by limited biological resources. Here, we analyze a simple theoretical model that incorporates these key aspects of sensory coding, and apply it to conditions in the retina. The model specifies the optimal way to incorporate redundancy in a population of noisy neurons, while also optimally compensating for sensory distortion and noise. Importantly, it allows an arbitrary input-to-output cell ratio between sensory units (photoreceptors) and encoding units (retinal ganglion cells), providing predictions of retinal codes at different eccentricities. Compared to earlier models based on redundancy reduction, the proposed model conveys more information about the original signal. Interestingly, redundancy reduction can be near-optimal when the number of encoding units is limited, such as in the peripheral retina. We show that there exist multiple, equally-optimal solutions whose receptive field structure and organization vary significantly. Among these, the one which maximizes the spatial locality of the computation, but not the sparsity of either synaptic weights or neural responses, is consistent with known basic properties of retinal receptive fields. The model further predicts that receptive field structure changes less with light adaptation at higher input-to-output cell ratios, such as in the periphery. PMID:25121492

  12. Modelling targets for anticancer drug control optimization in physiologically structured cell population models

    NASA Astrophysics Data System (ADS)

    Billy, Frédérique; Clairambault, Jean; Fercoq, Olivier; Lorenzi, Tommaso; Lorz, Alexander; Perthame, Benoît

    2012-09-01

    The main two pitfalls of therapeutics in clinical oncology, that limit increasing drug doses, are unwanted toxic side effects on healthy cell populations and occurrence of resistance to drugs in cancer cell populations. Depending on the constraint considered in the control problem at stake, toxicity or drug resistance, we present two different ways to model the evolution of proliferating cell populations, healthy and cancer, under the control of anti-cancer drugs. In the first case, we use a McKendrick age-structured model of the cell cycle, whereas in the second case, we use a model of evolutionary dynamics, physiologically structured according to a continuous phenotype standing for drug resistance. In both cases, we mention how drug targets may be chosen so as to accurately represent the effects of cytotoxic and of cytostatic drugs, separately, and how one may consider the problem of optimisation of combined therapies.

  13. Demographic population model for American shad: will access to additional habitat upstream of dams increase population sizes?

    USGS Publications Warehouse

    Harris, Julianne E.; Hightower, Joseph E.

    2012-01-01

    American shad Alosa sapidissima are in decline in their native range, and modeling possible management scenarios could help guide their restoration. We developed a density-dependent, deterministic, stage-based matrix model to predict the population-level results of transporting American shad to suitable spawning habitat upstream of dams on the Roanoke River, North Carolina and Virginia. We used data on sonic-tagged adult American shad and oxytetracycline-marked American shad fry both above and below dams on the Roanoke River with information from other systems to estimate a starting population size and vital rates. We modeled the adult female population over 30 years under plausible scenarios of adult transport, effective fecundity (egg production), and survival of adults (i.e., to return to spawn the next year) and juveniles (from spawned egg to age 1). We also evaluated the potential effects of increased survival for adults and juveniles. The adult female population size in the Roanoke River was estimated to be 5,224. With no transport, the model predicted a slow population increase over the next 30 years. Predicted population increases were highest when survival was improved during the first year of life. Transport was predicted to benefit the population only if high rates of effective fecundity and juvenile survival could be achieved. Currently, transported adults and young are less likely to successfully out-migrate than individuals below the dams, and the estimated adult population size is much smaller than either of two assumed values of carrying capacity for the lower river; therefore, transport is not predicted to help restore the stock under present conditions. Research on survival rates, density-dependent processes, and the impacts of structures to increase out-migration success would improve evaluation of the potential benefits of access to additional spawning habitat for American shad.

  14. Basic Concepts in Population Modeling, Simulation, and Model-Based Drug Development

    PubMed Central

    Mould, D R; Upton, R N

    2012-01-01

    Modeling is an important tool in drug development; population modeling is a complex process requiring robust underlying procedures for ensuring clean data, appropriate computing platforms, adequate resources, and effective communication. Although requiring an investment in resources, it can save time and money by providing a platform for integrating all information gathered on new therapeutic agents. This article provides a brief overview of aspects of modeling and simulation as applied to many areas in drug development. PMID:23835886

  15. OPTIMUM HARVESTING MODELS FOR FISHERY POPULATIONS CORINNE WENTWORTH

    E-print Network

    Rowell, Eric C.

    of harvesting. Fisherman work to provide fish for a growing human population but because of this some fish populations have been dangerously declining. It is important to balance ecological and economic needs is the balance between harvesting and its ecological implications. Worldwide, fish populations are in various

  16. Assessment of Zooplankton Size Fractionation for Monitoring Fry and Fingerling Culture Ponds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methodology was formulated for use in the rapid assessment of zooplankton in channel catfish ponds. Understanding zooplankton prey size is useful for effective pond management. Size fractionation using differential sieve sizes was an effective means of separating size classes in live material, whe...

  17. COMPOSITION, ABUNDANCE, AND DISTRIBUTION OF ZOOPLANKTON IN THE NEW YORK BIGHT, SEPTEMBER 1974-SEPTEMBER 1975

    E-print Network

    , we examine seasonal and onshore-offshore trends in occurrence and abun- dance of zooplankton taxa during autumn 1974 and summer 1975, an offshore (>50 m water depth) zooplankton abundance maximum in March dominated by the pteropodLimacina retroversa, a second offshore maximum in May characterized

  18. The response of zooplankton and phytoplankton from the North American Great Lakes to filtration

    E-print Network

    Filtration of ballast water was investigated as a means of minimizing the introduction of nonindigenous reserved. Keywords: Ballast water; Filtration; Great Lakes; Phytoplankton; Treatment; Zooplankton wwwThe response of zooplankton and phytoplankton from the North American Great Lakes to filtration

  19. Zooplankton community structure in a cyclonic and mode-water eddy in the Sargasso Sea

    E-print Network

    McGillicuddy Jr., Dennis J.

    eddies can influence zooplankton behavior and alter zooplankton community structure which can affect food-web the scope of physical influence is what is known as the ``internal Contents lists available at ScienceDirect journal homepage: www.elsevier.com/locate/dsri Deep-Sea Research I ARTICLE IN PRESS 0967-0637/$ - see

  20. Effects of an invasive consumer on zooplankton communities are unaltered by nutrient inputs

    E-print Network

    Arnott, Shelley

    Effects of an invasive consumer on zooplankton communities are unaltered by nutrient inputs JAMES S and the zooplankton community were altered by their multiple-stressor interaction. 3. Added nutrients had no effect of the primary stressors driving global environ- mental change and biodiversity loss are nutrient enrich- ment

  1. Effect of Main-stem Dams on Zooplankton Communities of the Missouri River (USA)

    EPA Science Inventory

    We examined the distribution and abundance of zooplankton from 146 sites on the Missouri River and found large shifts in the dominance of major taxa between management zones of this regulated river. Crustacean zooplankton were dominant in the inter-reservoir zone of the river, an...

  2. CONSTANT, NOCTURNAL OR NO AERATION: EFFECTS ON WATER QUALITY AND ZOOPLANKTON IN HEAVILY FERTILIZED NURSERY PONDS.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sunshine bass fingerling production depends upon an initial high concentration of rotifers followed by high densities in crustacean zooplankton in culture ponds. Increased fertilization promotes increased amounts of zooplankton but often causes poor water quality which aeration may alleviate. The e...

  3. SPATIAL PATTERNS IN ASSEMBLAGE STRUCTURES OF PELAGIC FORAGE FISH AND ZOOPLANKTON IN WESTERN LAKE SUPERIOR

    EPA Science Inventory

    This manuscript reports on the spatial distribution of zooplankton and forage fish in western Lake Superior. Fish and zooplankton assemblages are shown to differ substantially in abundance and size structure both between the open lake and nearshore regions and between two differe...

  4. Interannual variability and species turnover of crustacean zooplankton in Shield lakes

    E-print Network

    Arnott, Shelley

    Interannual variability and species turnover of crustacean zooplankton in Shield lakes Shelley E turnover rates and richness of the zooplankton annually over a 12-year period in eight lakes in south-central Ontario. Although species richness varied little among years (CV = 13%), apparent species turnover rates

  5. PHYTOPLANKTON AND ZOOPLANKTON SEASONAL DYNAMICS IN A SUBTROPICAL ESTUARY: IMPORTANCE OF CYANOBACTERIA

    EPA Science Inventory

    Murrell, Michael C. and Emile M. Lores. 2004. Phytoplankton and Zooplankton Seasonal Dynamics in a Subtropical Estuary: Importance of Cyanobacteria. J. Plankton Res. 26(3):371-382. (ERL,GB 1190).

    A seasonal study of phytoplankton and zooplankton was conducted from 1999-20...

  6. POPULATION-BASED EXPOSURE MODELING FOR AIR POLLUTANTS AT EPA'S NATIONAL EXPOSURE RESEARCH LABORATORY

    EPA Science Inventory

    The US EPA's National Exposure Research Laboratory (NERL) has been developing, applying, and evaluating population-based exposure models to improve our understanding of the variability in personal exposure to air pollutants. Estimates of population variability are needed for E...

  7. Do Zooplankton Tow Samples Taken on Different Days Along the Same Transect in Kane`ohe Bay Vary in Composition?

    E-print Network

    Do Zooplankton Tow Samples Taken on Different Days Along the Same Transect in Kane`ohe Bay Vary. Our narrowed focus was to learn about the zooplankton community in Kane`ohe Bay. We readied for our zooplankton- netting Expeditions to Moku o Lo`e led by HIMB. We used the Grade 7 Aloha `Aina Coral Reefs- Kane

  8. Diel Vertical Dynamics of Gelatinous Zooplankton (Cnidaria, Ctenophora and Thaliacea) in a Subtropical Stratified Ecosystem (South Brazilian Bight).

    PubMed

    Nogueira Júnior, Miodeli; Brandini, Frederico Pereira; Codina, Juan Carlos Ugaz

    2015-01-01

    The diel vertical dynamics of gelatinous zooplankton in physically stratified conditions over the 100-m isobath (~110 km offshore) in the South Brazilian Bight (26°45'S; 47°33'W) and the relationship to hydrography and food availability were analyzed by sampling every six hours over two consecutive days. Zooplankton samples were taken in three depth strata, following the vertical structure of the water column, with cold waters between 17 and 13.1°C, influenced by the South Atlantic Central Water (SACW) in the lower layer (>70 m); warm (>20°C) Tropical Water in the upper 40 m; and an intermediate thermocline with a deep chlorophyll-a maximum layer (0.3-0.6 mg m-3). Two distinct general patterns were observed, emphasizing the role of (i) physical and (ii) biological processes: (i) a strong influence of the vertical stratification, with most zooplankton absent or little abundant in the lower layer. The influence of the cold SACW on the bottom layer apparently restricted the vertical occupation of most species, which typically inhabit epipelagic warm waters. Even among migratory species, only a few (Aglaura hemistoma, Abylopsis tetragona eudoxids, Beroe sp., Thalia democratica, Salpa fusiformis) crossed the thermocline and reached the bottom layer. (ii) A general tendency of partial migrations, with variable intensity depending on the different species and developmental stages; populations tended to be more widely distributed through the water column during daylight, and to become more aggregated in the upper layer during the night, which can be explained based on the idea of the "hunger-satiation hypothesis", maximizing feeding and minimizing the chances of being predated. PMID:26637179

  9. Diel Vertical Dynamics of Gelatinous Zooplankton (Cnidaria, Ctenophora and Thaliacea) in a Subtropical Stratified Ecosystem (South Brazilian Bight)

    PubMed Central

    Nogueira Júnior, Miodeli; Brandini, Frederico Pereira; Codina, Juan Carlos Ugaz

    2015-01-01

    The diel vertical dynamics of gelatinous zooplankton in physically stratified conditions over the 100-m isobath (~110 km offshore) in the South Brazilian Bight (26°45’S; 47°33’W) and the relationship to hydrography and food availability were analyzed by sampling every six hours over two consecutive days. Zooplankton samples were taken in three depth strata, following the vertical structure of the water column, with cold waters between 17 and 13.1°C, influenced by the South Atlantic Central Water (SACW) in the lower layer (>70 m); warm (>20°C) Tropical Water in the upper 40 m; and an intermediate thermocline with a deep chlorophyll-a maximum layer (0.3–0.6 mg m-3). Two distinct general patterns were observed, emphasizing the role of (i) physical and (ii) biological processes: (i) a strong influence of the vertical stratification, with most zooplankton absent or little abundant in the lower layer. The influence of the cold SACW on the bottom layer apparently restricted the vertical occupation of most species, which typically inhabit epipelagic warm waters. Even among migratory species, only a few (Aglaura hemistoma, Abylopsis tetragona eudoxids, Beroe sp., Thalia democratica, Salpa fusiformis) crossed the thermocline and reached the bottom layer. (ii) A general tendency of partial migrations, with variable intensity depending on the different species and developmental stages; populations tended to be more widely distributed through the water column during daylight, and to become more aggregated in the upper layer during the night, which can be explained based on the idea of the “hunger-satiation hypothesis”, maximizing feeding and minimizing the chances of being predated. PMID:26637179

  10. Discrete bivariate population balance modelling of heteroaggregation processes.

    PubMed

    Rollié, Sascha; Briesen, Heiko; Sundmacher, Kai

    2009-08-15

    Heteroaggregation in binary particle mixtures was simulated with a discrete population balance model in terms of two internal coordinates describing the particle properties. The considered particle species are of different size and zeta-potential. Property space is reduced with a semi-heuristic approach to enable an efficient solution. Aggregation rates are based on deterministic models for Brownian motion and stability, under consideration of DLVO interaction potentials. A charge-balance kernel is presented, relating the electrostatic surface potential to the property space by a simple charge balance. Parameter sensitivity with respect to the fractal dimension, aggregate size, hydrodynamic correction, ionic strength and absolute particle concentration was assessed. Results were compared to simulations with the literature kernel based on geometric coverage effects for clusters with heterogeneous surface properties. In both cases electrostatic phenomena, which dominate the aggregation process, show identical trends: impeded cluster-cluster aggregation at low particle mixing ratio (1:1), restabilisation at high mixing ratios (100:1) and formation of complex clusters for intermediate ratios (10:1). The particle mixing ratio controls the surface coverage extent of the larger particle species. Simulation results are compared to experimental flow cytometric data and show very satisfactory agreement. PMID:19423121

  11. Ability of matrix models to explain the past and predict the future of plant populations.

    USGS Publications Warehouse

    McEachern, Kathryn; Crone, Elizabeth E.; Ellis, Martha M.; Morris, William F.; Stanley, Amanda; Bell, Timothy; Bierzychudek, Paulette; Ehrlen, Johan; Kaye, Thomas N.; Knight, Tiffany M.; Lesica, Peter; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F.; Ticktin, Tamara; Valverde, Teresa; Williams, Jennifer I.; Doak, Daniel F.; Ganesan, Rengaian; Thorpe, Andrea S.; Menges, Eric S.

    2013-01-01

    Uncertainty associated with ecological forecasts has long been recognized, but forecast accuracy is rarely quantified. We evaluated how well data on 82 populations of 20 species of plants spanning 3 continents explained and predicted plant population dynamics. We parameterized stage-based matrix models with demographic data from individually marked plants and determined how well these models forecast population sizes observed at least 5 years into the future. Simple demographic models forecasted population dynamics poorly; only 40% of observed population sizes fell within our forecasts' 95% confidence limits. However, these models explained population dynamics during the years in which data were collected; observed changes in population size during the data-collection period were strongly positively correlated with population growth rate. Thus, these models are at least a sound way to quantify population status. Poor forecasts were not associated with the number of individual plants or years of data. We tested whether vital rates were density dependent and found both positive and negative density dependence. However, density dependence was not associated with forecast error. Forecast error was significantly associated with environmental differences between the data collection and forecast periods. To forecast population fates, more detailed models, such as those that project how environments are likely to change and how these changes will affect population dynamics, may be needed. Such detailed models are not always feasible. Thus, it may be wiser to make risk-averse decisions than to expect precise forecasts from models.

  12. Networks and Models with Heterogeneous Population Structure in Epidemiology

    NASA Astrophysics Data System (ADS)

    Kao, R. R.

    Heterogeneous population structure can have a profound effect on infectious disease dynamics, and is particularly important when investigating “tactical” disease control questions. At times, the nature of the network involved in the transmission of the pathogen (bacteria, virus, macro-parasite, etc.) appears to be clear; however, the nature of the network involved is dependent on the scale (e.g. within-host, between-host, or between-population), the nature of the contact, which ranges from the highly specific (e.g. sexual acts or needle sharing at the person-to-person level) to almost completely non-specific (e.g. aerosol transmission, often over long distances as can occur with the highly infectious livestock pathogen foot-and-mouth disease virus—FMDv—at the farm-to-farm level, e.g. Schley et al. in J. R. Soc. Interface 6:455-462, 2008), and the timescale of interest (e.g. at the scale of the individual, the typical infectious period of the host). Theoretical approaches to examining the implications of particular network structures on disease transmission have provided critical insight; however, a greater challenge is the integration of network approaches with data on real population structures. In this chapter, some concepts in disease modelling will be introduced, the relevance of selected network phenomena discussed, and then results from real data and their relationship to network analyses summarised. These include examinations of the patterns of air traffic and its relation to the spread of SARS in 2003 (Colizza et al. in BMC Med., 2007; Hufnagel et al. in Proc. Natl. Acad. Sci. USA 101:15124-15129, 2004), the use of the extensively documented Great Britain livestock movements network (Green et al. in J. Theor. Biol. 239:289-297, 2008; Robinson et al. in J. R. Soc. Interface 4:669-674, 2007; Vernon and Keeling in Proc. R. Soc. Lond. B, Biol. Sci. 276:469-476, 2009) and the growing interest in combining contact structure data with phylogenetics to identify real contact patterns as they directly relate to diseases of interest (Cottam et al. in PLoS Pathogens 4:1000050, 2007; Hughes et al. in PLoS Pathogens 5:1000590, 2009).

  13. Cladoceran zooplankton abundance under clear and snow-covered ice

    USGS Publications Warehouse

    DeBates, T.J.; Chipps, S.R.; Ward, M.C.; Werlin, K.B.; Lorenzen, P.B.

    2003-01-01

    We described the distribution of cladoceran zooplankton under the ice in a natural, glacial lake. Local light availability apparently altered the spatial distribution of cladocerans. Light levels measured under snow-covered areas (0.178 lux) were an order of magnitude less than those measured at the same depth under clear ice (1.750 lux). Cladoceran density under snow-covered areas was significantly higher (Bosmina spp.=3.34/L; Daphnia spp.=0.61/L) than cladoceran abundance under clear ice (Bosmina spp.=0.91/L; Daphnia spp.=0.19/L).

  14. Population viability analysis: using a modeling tool to assess the viability of tapir populations in fragmented landscapes.

    PubMed

    Medici, Emília Patrícia; Desbiez, Arnaud Leonard Jean

    2012-12-01

    A population viability analysis (PVA) was conducted of the lowland tapir populations in the Atlantic Forest of the Pontal do Paranapanema region, Brazil, including Morro do Diabo State Park (MDSP) and surrounding forest fragments. Results from the model projected that the population of 126 tapirs in MDSP is likely to persist over the next 100 years; however, 200 tapirs would be required to maintain a viable population. Sensitivity analysis showed that sub-adult mortality and adult mortality have the strongest influence on the dynamics of lowland tapir populations. High road-kill has a major impact on the MDSP tapir population and can lead to population extinction. Metapopulation modeling showed that dispersal of tapirs from MDSP to the surrounding fragments can be detrimental to the overall metapopulation, as fragments act as sinks. Nevertheless, the model showed that under certain conditions the maintenance of the metapopulation dynamics might be determinant for the persistence of tapirs in the region, particularly in the smaller fragments. The establishment of corridors connecting MDSP to the forest fragments models resulted in an increase in the stochastic growth rate, making tapirs more resilient to threats and catastrophes, but only if rates of mortality were not increased when using corridors. The PVA showed that the conservation of tapirs in the Pontal region depends on: the effective protection of MDSP; maintenance and, whenever possible, enhancement of the functional connectivity of the landscape, reducing mortality during dispersal and threats in the unprotected forest fragments; and neutralization of all threats affecting tapirs in the smaller forest fragments. PMID:23253367

  15. An agent-based computational model for tuberculosis spreading on age-structured populations

    NASA Astrophysics Data System (ADS)

    Graciani Rodrigues, C. C.; Espíndola, Aquino L.; Penna, T. J. P.

    2015-06-01

    In this work we present an agent-based computational model to study the spreading of the tuberculosis (TB) disease on age-structured populations. The model proposed is a merge of two previous models: an agent-based computational model for the spreading of tuberculosis and a bit-string model for biological aging. The combination of TB with the population aging, reproduces the coexistence of health states, as seen in real populations. In addition, the universal exponential behavior of mortalities curves is still preserved. Finally, the population distribution as function of age shows the prevalence of TB mostly in elders, for high efficacy treatments.

  16. Well-posedness of a density model for a population of theta neurons.

    PubMed

    Dumont, Grégory; Henry, Jacques; Tarniceriu, Carmen Oana

    2014-04-17

    Population density models used to describe the evolution of neural populations in a phase space are closely related to the single neuron model that describes the individual trajectories of the neurons of the population and which gives in particular the phase-space where the computations are made. Based on a transformation of the quadratic integrate and fire single neuron model, the so called theta-neuron model is obtained and we shall introduce in this paper a corresponding population density model for it. Existence and uniqueness of a solution will be proved and some numerical simulations are presented. PMID:24742324

  17. Modeling the dynamics of natural rotifer populations: phase-parametric analysis

    E-print Network

    Faina S. Berezovskaya; Georgy P. Karev; Terry W. Snell

    2005-05-24

    A model of the dynamics of natural rotifer populations is described as a discrete nonlinear map depending on three parameters, which reflect characteristics of the population and environment. Model dynamics and their change by variation of these parameters were investigated by methods of bifurcation theory. A phase-parametric portrait of the model was constructed and domains of population persistence (stable equilibrium, periodic and a-periodic oscillations of population size) as well as population extinction were identified and investigated. The criteria for population persistence and approaches to determining critical parameter values are described. The results identify parameter values that lead to population extinction under various environmental conditions. They further illustrate that the likelihood of extinction can be substantially increased by small changes in environmental quality, which shifts populations into new dynamical regimes.

  18. Multiple attractors and resonance in periodically forced population models

    NASA Astrophysics Data System (ADS)

    Henson, Shandelle M.

    2000-06-01

    Oscillating discrete autonomous dynamical systems admit multiple oscillatory solutions in the advent of periodic forcing. The multiple cycles are out of phase, and some of their averages may resonate with the forcing amplitude while others attenuate. In application to population biology, populations with stable inherent oscillations in constant habitats are predicted to develop multiple attracting oscillatory final states in the presence of habitat periodicity. The average total population size may resonate or attenuate with the amplitude of the environmental fluctuation depending on the initial population size. The theory has been tested successfully in the laboratory by subjecting cultures of the flour beetle Tribolium to habitat periodicity of various amplitudes.

  19. Data Driven Approach for High Resolution Population Distribution and Dynamics Models

    SciTech Connect

    Bhaduri, Budhendra L; Bright, Eddie A; Rose, Amy N; Liu, Cheng; Urban, Marie L; Stewart, Robert N

    2014-01-01

    High resolution population distribution data are vital for successfully addressing critical issues ranging from energy and socio-environmental research to public health to human security. Commonly available population data from Census is constrained both in space and time and does not capture population dynamics as functions of space and time. This imposes a significant limitation on the fidelity of event-based simulation models with sensitive space-time resolution. This paper describes ongoing development of high-resolution population distribution and dynamics models, at Oak Ridge National Laboratory, through spatial data integration and modeling with behavioral or activity-based mobility datasets for representing temporal dynamics of population. The model is resolved at 1 km resolution globally and describes the U.S. population for nighttime and daytime at 90m. Integration of such population data provides the opportunity to develop simulations and applications in critical infrastructure management from local to global scales.

  20. A “Rosetta Stone” for metazoan zooplankton: DNA barcode analysis of species diversity of the Sargasso Sea (Northwest Atlantic Ocean)

    NASA Astrophysics Data System (ADS)

    Bucklin, Ann; Ortman, Brian D.; Jennings, Robert M.; Nigro, Lisa M.; Sweetman, Christopher J.; Copley, Nancy J.; Sutton, Tracey; Wiebe, Peter H.

    2010-12-01

    Species diversity of the metazoan holozooplankton assemblage of the Sargasso Sea, Northwest Atlantic Ocean, was examined through coordinated morphological taxonomic identification of species and DNA sequencing of a ˜650 base-pair region of mitochondrial cytochrome oxidase I (mtCOI) as a DNA barcode (i.e., short sequence for species recognition and discrimination). Zooplankton collections were made from the surface to 5,000 meters during April, 2006 on the R/V R.H. Brown. Samples were examined by a ship-board team of morphological taxonomists; DNA barcoding was carried out in both ship-board and land-based DNA sequencing laboratories. DNA barcodes were determined for a total of 297 individuals of 175 holozooplankton species in four phyla, including: Cnidaria (Hydromedusae, 4 species; Siphonophora, 47); Arthropoda (Amphipoda, 10; Copepoda, 34; Decapoda, 9; Euphausiacea, 10; Mysidacea, 1; Ostracoda, 27); and Mollusca (Cephalopoda, 8; Heteropoda, 6; Pteropoda, 15); and Chaetognatha (4). Thirty species of fish (Teleostei) were also barcoded. For all seven zooplankton groups for which sufficient data were available, Kimura-2-Parameter genetic distances were significantly lower between individuals of the same species (mean=0.0114; S.D. 0.0117) than between individuals of different species within the same group (mean=0.3166; S.D. 0.0378). This difference, known as the barcode gap, ensures that mtCOI sequences are reliable characters for species identification for the oceanic holozooplankton assemblage. In addition, DNA barcodes allow recognition of new or undescribed species, reveal cryptic species within known taxa, and inform phylogeographic and population genetic studies of geographic variation. The growing database of "gold standard" DNA barcodes serves as a Rosetta Stone for marine zooplankton, providing the key for decoding species diversity by linking species names, morphology, and DNA sequence variation. In light of the pivotal position of zooplankton in ocean food webs, their usefulness as rapid responders to environmental change, and the increasing scarcity of taxonomists, the use of DNA barcodes is an important and useful approach for rapid analysis of species diversity and distribution in the pelagic community.

  1. EVALUATION OF OPTICALLY ACQUIRED ZOOPLANKTON SIZE-SPECTRUM DATA AS A POTENTIAL TOOL FOR ASSESSMENT OF CONDITION IN THE GREAT LAKES

    EPA Science Inventory

    An optical zooplankton counter (OPC) potentially provides as assessment tool for zooplankton condition in ecosystems that is rapid, economical, and spatially extensive. We collected zooplankton data with an optical zooplankton counter in 20 near-shore regions of four of the Laure...

  2. Chain pooling to minimize prediction error in subset regression. [Monte Carlo studies using population models

    NASA Technical Reports Server (NTRS)

    Holms, A. G.

    1974-01-01

    Monte Carlo studies using population models intended to represent response surface applications are reported. Simulated experiments were generated by adding pseudo random normally distributed errors to population values to generate observations. Model equations were fitted to the observations and the decision procedure was used to delete terms. Comparison of values predicted by the reduced models with the true population values enabled the identification of deletion strategies that are approximately optimal for minimizing prediction errors.

  3. An Individual-Based Model of Zebrafish Population Dynamics Accounting for Energy Dynamics

    PubMed Central

    Beaudouin, Rémy; Goussen, Benoit; Piccini, Benjamin; Augustine, Starrlight; Devillers, James; Brion, François; Péry, Alexandre R. R.

    2015-01-01

    Developing population dynamics models for zebrafish is crucial in order to extrapolate from toxicity data measured at the organism level to biological levels relevant to support and enhance ecological risk assessment. To achieve this, a dynamic energy budget for individual zebrafish (DEB model) was coupled to an individual based model of zebrafish population dynamics (IBM model). Next, we fitted the DEB model to new experimental data on zebrafish growth and reproduction thus improving existing models. We further analysed the DEB-model and DEB-IBM using a sensitivity analysis. Finally, the predictions of the DEB-IBM were compared to existing observations on natural zebrafish populations and the predicted population dynamics are realistic. While our zebrafish DEB-IBM model can still be improved by acquiring new experimental data on the most uncertain processes (e.g. survival or feeding), it can already serve to predict the impact of compounds at the population level. PMID:25938409

  4. EA Models and Population Fixed-Points Versus Mutation Rates for Functions of Unitation

    E-print Network

    Wright, Alden H.

    @cs.umt.edu ABSTRACT Using a dynamic systems model for the Simple Genetic Algorithm due to Vose[1], we analyze theory of evolutionary algorithms, infinite population models, unitation functions, fixed points, genetic algorithms. 1. INTRODUCTION The Vose infinite population model [1] of simple genetic algorithms is a dynamic

  5. PHYSICAL REVIEW E 91, 062711 (2015) Modeling oscillations and spiral waves in Dictyostelium populations

    E-print Network

    Mehta, Pankaj

    2015-01-01

    cell-to-cell communication. Describing these behaviors requires new mathematical models that can bridge of models to study spatially unstructured populations of "fixed" cells by constructing phase diagrams approach provides a powerful tool for bridging scales in modeling of Dictyostelium populations. DOI: 10

  6. Cellulose Biodegradation Models; An Example of Cooperative Interactions in Structured Populations

    E-print Network

    Miroshnikov, Alexey

    bio-degradation by micro-organisms. Those models rely on complex chemical mechanisms, involve of micro-organisms. We then use the corresponding models in the context of multiple-trait populations of this article is to derive models for structured populations of micro-organisms living of cellulose degradation

  7. An evaluation of parametric and nonparametric models of fish population response

    E-print Network

    An evaluation of parametric and nonparametric models of fish population response Submitted by 1999 #12;An Evaluation of Parametric and Nonparametric Models of Fish Population Response Timothy C, classification trees, a nearest neighbor technique, and a modular neural network. We evaluated model performance

  8. Zooplankton Feeding on the Nuisance Flagellate Gonyostomum semen

    PubMed Central

    Johansson, Karin S. L.; Vrede, Tobias; Lebret, Karen; Johnson, Richard K.

    2013-01-01

    The large bloom-forming flagellate Gonyostomum semen has been hypothesized to be inedible to naturally occurring zooplankton due to its large cell size and ejection of long slimy threads (trichocysts) induced by physical stimulation. In a grazing experiment using radiolabelled algae and zooplankton collected from lakes with recurring blooms of G. semen and lakes that rarely experience blooms, we found that Eudiaptomus gracilis and Holopedium gibberum fed on G. semen at high rates, whereas Daphnia cristata and Ceriodaphnia spp. did not. Grazing rates of E. gracilis were similar between bloom-lakes and lakes with low biomass of G. semen, indicating that the ability to feed on G. semen was not a result of local adaptation. The high grazing rates of two of the taxa in our experiment imply that some of the nutrients and energy taken up by G. semen can be transferred directly to higher trophic levels, although the predominance of small cladocerans during blooms may limit the importance of G. semen as a food resource. Based on grazing rates and previous observations on abundances of E. gracilis and H. gibberum, we conclude that there is a potential for grazer control of G. semen and discuss why blooms of G. semen still occur. PMID:23667489

  9. A stochastic population model to evaluate Moapa dace (Moapa coriacea) population growth under alternative management scenarios

    USGS Publications Warehouse

    Perry, Russell W.; Jones, Edward; Scoppettone, G. Gary

    2015-01-01

    Increasing or decreasing the total carrying capacity of all stream segments resulted in changes in equilibrium population size that were directly proportional to the change in capacity. However, changes in carrying capacity to some stream segments but not others could result in disproportionate changes in equilibrium population sizes by altering density-dependent movement and survival in the stream network. These simulations show how our IBM can provide a useful management tool for understanding the effect of restoration actions or reintroductions on carrying capacity, and, in tur

  10. Mathematical and numerical comparisons of five single-population growth models.

    PubMed

    Mickens, Ronald E

    2016-12-01

    We investigate the properties of five mathematical models used to represent the growth of a single population. By imposing a common set of (normalizing) initial conditions, we are able to calculate and explicitly compare the time intervals required to reach specific values of population levels. Based on these results, we conclude that one must be careful when applying these models to interpret the dynamics of single-population growth. An additional implication is that they provide evidence that such caution should also be extended to the incorporation of these models into the formulation of interacting, multi-population models, which are used, for example, to study the spread of disease. PMID:26606947

  11. Fracture populations on the Reykjanes Peninsula, Iceland: Comparison with experimental clay models of oblique rifting

    E-print Network

    Fracture populations on the Reykjanes Peninsula, Iceland: Comparison with experimental clay models have used high-resolution scanned air photos and field measurements to analyze fracture population on the evolution of fracture populations on the Reykjanes Peninsula, SW Iceland. The peninsula is oriented

  12. A population density approach that facilitates large-scale modeling of neural networks: extension to

    E-print Network

    Nykamp, Duane Q.

    for efficiently simulating complex networks of integrate-and- fire neurons was specialized to the case in which. In the population density approach, integrate-and-fire point-neurons are grouped into large populations of similar by the firing rates of its presynaptic populations. In our original model (Nykamp and Tranchina, 2000), we

  13. A coalescent model for the effect of advantageous mutations on the genealogy of a population

    E-print Network

    Durrett, Richard

    A coalescent model for the effect of advantageous mutations on the genealogy of a population in this paper is to describe the coalescent processes that arise when we consider the genealogy of a population individuals at random from this population at time zero. To describe the genealogy of the sample, we

  14. Evaluating effects of stress on orchid populations with integral projection models Kimberly Kellett, Richard P. Shefferson

    E-print Network

    Shefferson, Richard P.

    Evaluating effects of stress on orchid populations with integral projection models Kimberly Kellett (defoliation and heavy shading) on a natural population of the threatened lady-slipper orchid Cypripedium for species with small populations and complicated demography, such as orchids (Easterling and Ellner 2000

  15. MODELLING THE EFFECT OF HUMAN-CAUSED MORTALITY ON A LION SUB-POPULATION USING SPREADSHEETS

    E-print Network

    van Vuuren, Jan H.

    MODELLING THE EFFECT OF HUMAN-CAUSED MORTALITY ON A LION SUB-POPULATION USING SPREADSHEETS By Eric subjected to human-caused mortality under deterministic and stochastic environmental conditions. Population years at least one adult female was killed annually from a sub-population of five boundary prides

  16. Spatially explicit, individual-based, behavioural models of the annual cycle of two migratory goose populations

    E-print Network

    Black, Jeff

    Spatially explicit, individual-based, behavioural models of the annual cycle of two migratory goose populations of arctic-breeding geese, the Svalbard population of the barnacle goose Branta leucop- sis and the dark-bellied race of the brent goose Branta bernicla, were developed. Both populations have been

  17. Mating behavior, population growth, and the operational sex ratio: a periodic two-sex model approach.

    PubMed

    Jenouvrier, Stéphanie; Caswell, Hal; Barbraud, Christophe; Weimerskirch, Henri

    2010-06-01

    We present a new approach to modeling two-sex populations, using periodic, nonlinear two-sex matrix models. The models project the population growth rate, the population structure, and any ratio of interest (e.g., operational sex ratio). The periodic formulation permits inclusion of highly seasonal behavioral events. A periodic product of the seasonal matrices describes annual population dynamics. The model is nonlinear because mating probability depends on the structure of the population. To study how the vital rates influence population growth rate, population structure, and operational sex ratio, we used sensitivity analysis of frequency-dependent nonlinear models. In nonlinear two-sex models the vital rates affect growth rate directly and also indirectly through effects on the population structure. The indirect effects can sometimes overwhelm the direct effects and are revealed only by nonlinear analysis. We find that the sensitivity of the population growth rate to female survival is negative for the emperor penguin, a species with highly seasonal breeding behavior. This result could not occur in linear models because changes in population structure have no effect on per capita reproduction. Our approach is applicable to ecological and evolutionary studies of any species in which males and females interact in a seasonal environment. PMID:20408757

  18. Modeling Grade IV Gas Emboli using a Limited Failure Population Model with Random Effects

    NASA Technical Reports Server (NTRS)

    Thompson, Laura A.; Conkin, Johnny; Chhikara, Raj S.; Powell, Michael R.

    2002-01-01

    Venous gas emboli (VGE) (gas bubbles in venous blood) are associated with an increased risk of decompression sickness (DCS) in hypobaric environments. A high grade of VGE can be a precursor to serious DCS. In this paper, we model time to Grade IV VGE considering a subset of individuals assumed to be immune from experiencing VGE. Our data contain monitoring test results from subjects undergoing up to 13 denitrogenation test procedures prior to exposure to a hypobaric environment. The onset time of Grade IV VGE is recorded as contained within certain time intervals. We fit a parametric (lognormal) mixture survival model to the interval-and right-censored data to account for the possibility of a subset of "cured" individuals who are immune to the event. Our model contains random subject effects to account for correlations between repeated measurements on a single individual. Model assessments and cross-validation indicate that this limited failure population mixture model is an improvement over a model that does not account for the potential of a fraction of cured individuals. We also evaluated some alternative mixture models. Predictions from the best fitted mixture model indicate that the actual process is reasonably approximated by a limited failure population model.

  19. [Gypsy moth Lymantria dispar L. in the South Urals: Patterns in population dynamics and modelling].

    PubMed

    Soukhovolsky, V G; Ponomarev, V I; Sokolov, G I; Tarasova, O V; Krasnoperova, P A

    2015-01-01

    The analysis is conducted on population dynamics of gypsy moth from different habitats of the South Urals. The pattern of cyclic changes in population density is examined, the assessment of temporal conjugation in time series of gypsy moth population dynamics from separate habitats of the South Urals is carried out, the relationships between population density and weather conditions are studied. Based on the results obtained, a statistical model of gypsy moth population dynamics in the South Urals is designed, and estimations are given of regulatory and modifying factors effects on the population dynamics. PMID:26201216

  20. The distribution and vertical flux of fecal pellets from large zooplankton in Monterey bay and coastal California

    NASA Astrophysics Data System (ADS)

    Dagg, Michael J.; Jackson, George A.; Checkley, David M.

    2014-12-01

    We sampled zooplankton and fecal pellets in the upper 200 m of Monterey Bay and nearby coastal regions in California, USA. On several occasions, we observed high concentrations of large pellets that appeared to be produced during night-time by dielly migrating euphausiids. High concentrations of pellets were found in near-surface waters only when euphausiids co-occurred with high concentrations of large (>10 ?m) phytoplankton. Peak concentrations of pellets at mid-depth (100 or 150 m) during the day were consistent with the calculated sinking speeds of pellets produced near the surface at night. At these high flux locations (HI group), pellet concentrations declined below mid-depth. In contrast, at locations where the phytoplankton assemblage was dominated by small phytoplankton cells (<10 ?m), pellet production and flux were low (LO group) whether or not euphausiid populations were high. Protozooplankton concentrations did not affect this pattern. We concluded that the day and night differences in pellet concentration and flux in the HI profiles were mostly due to sinking of dielly-pulsed inputs in the surface layer, and that small zooplankton (Oithona, Oncaea), heterotrophic dinoflagellates, and bacterial activity probably caused some pellet degradation or consumption below 100 m. We estimated that consumption of sinking pellets by large copepods was insignificant. High fluxes of pellets were episodic because they required both high concentrations of large phytoplankton and large stocks of euphausiids. Under these conditions, flux events overwhelmed retention mechanisms, resulting in large exports of organic matter from the upper 200 m.

  1. Is Ambient Light during the High Arctic Polar Night Sufficient to Act as a Visual Cue for Zooplankton?

    PubMed Central

    Cohen, Jonathan H.; Berge, Jørgen; Moline, Mark A.; Sørensen, Asgeir J.; Last, Kim; Falk-Petersen, Stig; Renaud, Paul E.; Leu, Eva S.; Grenvald, Julie; Cottier, Finlo; Cronin, Heather; Menze, Sebastian; Norgren, Petter; Varpe, Øystein; Daase, Malin; Darnis, Gerald; Johnsen, Geir

    2015-01-01

    The light regime is an ecologically important factor in pelagic habitats, influencing a range of biological processes. However, the availability and importance of light to these processes in high Arctic zooplankton communities during periods of 'complete' darkness (polar night) are poorly studied. Here we characterized the ambient light regime throughout the diel cycle during the high Arctic polar night, and ask whether visual systems of Arctic zooplankton can detect the low levels of irradiance available at this time. To this end, light measurements with a purpose-built irradiance sensor and coupled all-sky digital photographs were used to characterize diel skylight irradiance patterns over 24 hours at 79°N in January 2014 and 2015. Subsequent skylight spectral irradiance and in-water optical property measurements were used to model the underwater light field as a function of depth, which was then weighted by the electrophysiologically determined visual spectral sensitivity of a dominant high Arctic zooplankter, Thysanoessa inermis. Irradiance in air ranged between 1–1.5 x 10-5 ?mol photons m-2 s-1 (400–700 nm) in clear weather conditions at noon and with the moon below the horizon, hence values reflect only solar illumination. Radiative transfer modelling generated underwater light fields with peak transmission at blue-green wavelengths, with a 465 nm transmission maximum in shallow water shifting to 485 nm with depth. To the eye of a zooplankter, light from the surface to 75 m exhibits a maximum at 485 nm, with longer wavelengths (>600 nm) being of little visual significance. Our data are the first quantitative characterisation, including absolute intensities, spectral composition and photoperiod of biologically relevant solar ambient light in the high Arctic during the polar night, and indicate that some species of Arctic zooplankton are able to detect and utilize ambient light down to 20–30m depth during the Arctic polar night. PMID:26039111

  2. Is Ambient Light during the High Arctic Polar Night Sufficient to Act as a Visual Cue for Zooplankton?

    PubMed

    Cohen, Jonathan H; Berge, Jørgen; Moline, Mark A; Sørensen, Asgeir J; Last, Kim; Falk-Petersen, Stig; Renaud, Paul E; Leu, Eva S; Grenvald, Julie; Cottier, Finlo; Cronin, Heather; Menze, Sebastian; Norgren, Petter; Varpe, Øystein; Daase, Malin; Darnis, Gerald; Johnsen, Geir

    2015-01-01

    The light regime is an ecologically important factor in pelagic habitats, influencing a range of biological processes. However, the availability and importance of light to these processes in high Arctic zooplankton communities during periods of 'complete' darkness (polar night) are poorly studied. Here we characterized the ambient light regime throughout the diel cycle during the high Arctic polar night, and ask whether visual systems of Arctic zooplankton can detect the low levels of irradiance available at this time. To this end, light measurements with a purpose-built irradiance sensor and coupled all-sky digital photographs were used to characterize diel skylight irradiance patterns over 24 hours at 79°N in January 2014 and 2015. Subsequent skylight spectral irradiance and in-water optical property measurements were used to model the underwater light field as a function of depth, which was then weighted by the electrophysiologically determined visual spectral sensitivity of a dominant high Arctic zooplankter, Thysanoessa inermis. Irradiance in air ranged between 1-1.5 x 10-5 ?mol photons m-2 s-1 (400-700 nm) in clear weather conditions at noon and with the moon below the horizon, hence values reflect only solar illumination. Radiative transfer modelling generated underwater light fields with peak transmission at blue-green wavelengths, with a 465 nm transmission maximum in shallow water shifting to 485 nm with depth. To the eye of a zooplankter, light from the surface to 75 m exhibits a maximum at 485 nm, with longer wavelengths (>600 nm) being of little visual significance. Our data are the first quantitative characterisation, including absolute intensities, spectral composition and photoperiod of biologically relevant solar ambient light in the high Arctic during the polar night, and indicate that some species of Arctic zooplankton are able to detect and utilize ambient light down to 20-30m depth during the Arctic polar night. PMID:26039111

  3. An empirical model for estimating annual consumption by freshwater fish populations

    USGS Publications Warehouse

    Liao, H.; Pierce, C.L.; Larscheid, J.G.

    2005-01-01

    Population consumption is an important process linking predator populations to their prey resources. Simple tools are needed to enable fisheries managers to estimate population consumption. We assembled 74 individual estimates of annual consumption by freshwater fish populations and their mean annual population size, 41 of which also included estimates of mean annual biomass. The data set included 14 freshwater fish species from 10 different bodies of water. From this data set we developed two simple linear regression models predicting annual population consumption. Log-transformed population size explained 94% of the variation in log-transformed annual population consumption. Log-transformed biomass explained 98% of the variation in log-transformed annual population consumption. We quantified the accuracy of our regressions and three alternative consumption models as the mean percent difference from observed (bioenergetics-derived) estimates in a test data set. Predictions from our population-size regression matched observed consumption estimates poorly (mean percent difference = 222%). Predictions from our biomass regression matched observed consumption reasonably well (mean percent difference = 24%). The biomass regression was superior to an alternative model, similar in complexity, and comparable to two alternative models that were more complex and difficult to apply. Our biomass regression model, log10(consumption) = 0.5442 + 0.9962??log10(biomass), will be a useful tool for fishery managers, enabling them to make reasonably accurate annual population consumption predictions from mean annual biomass estimates. ?? Copyright by the American Fisheries Society 2005.

  4. Generalized breakup and coalescence models for population balance modelling of liquid-liquid flows

    E-print Network

    Traczyk, Marcin; Thompson, Chris

    2015-01-01

    Population balance framework is a useful tool that can be used to describe size distribution of droplets in a liquid-liquid dispersion. Breakup and coalescence models provide closures for mathematical formulation of the population balance equation (PBE) and are crucial for accu- rate predictions of the mean droplet size in the flow. Number of closures for both breakup and coalescence can be identified in the literature and most of them need an estimation of model parameters that can differ even by several orders of magnitude on a case to case basis. In this paper we review the fundamental assumptions and derivation of breakup and coalescence ker- nels. Subsequently, we rigorously apply two-stage optimization over several independent sets of experiments in order to identify model parameters. Two-stage identification allows us to estab- lish new parametric dependencies valid for experiments that vary over large ranges of important non-dimensional groups. This be adopted for optimization of parameters in breakup...

  5. Zooplankton community analysis in the Changjiang River estuary by single-gene-targeted metagenomics

    NASA Astrophysics Data System (ADS)

    Cheng, Fangping; Wang, Minxiao; Li, Chaolun; Sun, Song

    2014-07-01

    DNA barcoding provides accurate identification of zooplankton species through all life stages. Single-gene-targeted metagenomic analysis based on DNA barcode databases can facilitate longterm monitoring of zooplankton communities. With the help of the available zooplankton databases, the zooplankton community of the Changjiang (Yangtze) River estuary was studied using a single-gene-targeted metagenomic method to estimate the species richness of this community. A total of 856 mitochondrial cytochrome oxidase subunit 1 (cox1) gene sequences were determined. The environmental barcodes were clustered into 70 molecular operational taxonomic units (MOTUs). Forty-two MOTUs matched barcoded marine organisms with more than 90% similarity and were assigned to either the species (similarity>96%) or genus level (similarity<96%). Sibling species could also be distinguished. Many species that were overlooked by morphological methods were identified by molecular methods, especially gelatinous zooplankton and merozooplankton that were likely sampled at different life history phases. Zooplankton community structures differed significantly among all of the samples. The MOTU spatial distributions were influenced by the ecological habits of the corresponding species. In conclusion, single-gene-targeted metagenomic analysis is a useful tool for zooplankton studies, with which specimens from all life history stages can be identified quickly and effectively with a comprehensive database.

  6. The zooplankton community of the Mpenjati Estuary, a South African temporarily open/closed system

    NASA Astrophysics Data System (ADS)

    Kibirige, I.; Perissinotto, R.

    2003-12-01

    The aim of this study was to examine spatial and temporal variability in zooplankton abundance and biomass, both during the closed (dry season) and open (wet season) phases of the Mpenjati Estuary, South Africa. On average, nighttime abundance values were 1-3 orders of magnitude higher than daytime values. A total of 51 and 36 zooplankton taxa were identified during the open and closed phases, respectively. The estuarine species Pseudodiaptomus hessei, Acartia natalensis and Gastrosaccus brevifissura dominated the assemblage during both phases. During the open phase marine zooplankton species entered the estuary and increased the zooplankton species diversity. At the same time, the biomass of the estuarine zooplankton species decreased substantially due to scouring of the sediment, increase in salinity and turbulence, and possibly also in grazing pressure. Conversely, during the closed phase the zooplankton diversity decreased, since no marine organisms entered the estuary, but the biomass of typical estuarine species increased due to the stability of the estuary. The fluctuations in the zooplankton community structure between the closed and the open phases suggest that the opening and the closing of the estuary are very important processes in determining the food web of the estuary.

  7. Eutrophication and warming effects on long-term variation of zooplankton in Lake Biwa

    NASA Astrophysics Data System (ADS)

    Hsieh, C. H.; Sakai, Y.; Ban, S.; Ishikawa, K.; Ishikawa, T.; Ichise, S.; Yamamura, N.; Kumagai, M.

    2011-01-01

    We compiled and analyzed long-term (1961-2005) zooplankton community data in response to environmental variations in Lake Biwa. Environmental data indicate that Lake Biwa had experienced eutrophication (according to total phosphorus concentration) in the late 1960s and recovered to a normal trophic status around 1985, and then exhibited warming since 1990. Total zooplankton abundance showed a significant correlation with total phytoplankton biomass. Following a classic pattern, cladoceran/calanoid and cyclopoid/calanoid abundance ratio was related positively to eutrophication. Zooplankton community exhibited a significant response to the boom and bust of phytoplankton biomass as a consequence of eutrophication-reoligotriphication and warming. Moreover, our analyses suggest that the Lake Biwa ecosystem exhibited a hierarchical response across trophic levels; that is, higher trophic levels may show a more delayed response or no response to eutrophication than lower ones. We tested the hypothesis that phytoplankton community can better explain the variation of zooplankton community than bulk environmental variables, considering that phytoplankton community may directly affects zooplankton succession through predator-prey interactions. Using a variance partition approach, however, we did not find strong evidence to support this hypothesis. We further aggregate zooplankton according to their feeding types (herbivorous, carnivorous, omnivorous, and parasitic) and taxonomic groups, and analyzed the aggregated data. While the pattern remains similar, the results are less clear comparing with the results based on finely resolved data. Our research explored the efficacy of using zooplankton as bio-indicators to environmental changes at various data resolutions.

  8. Vertical distribution and diel patterns of zooplankton abundance and biomass at Conch Reef, Florida Keys (USA)

    PubMed Central

    Heidelberg, Karla B.; O'Neil, Keri L.; Bythell, John C.; Sebens, Kenneth P.

    2010-01-01

    Zooplankton play an important role in the trophic dynamics of coral reef ecosystems. Detailed vertical and temporal distribution and biomass of zooplankton were evaluated at four heights off the bottom and at six times throughout the diel cycle over a coral reef in the Florida Keys (USA). Zooplankton abundance averaged 4396 ± 1949 SD individuals m?3, but temporal and spatial distributions varied for individual zooplankton taxa by time of day and by height off the bottom. Copepods comprised 93–96% of the abundance in the samples. Taxon-based zooplankton CHN values paired with abundance data were used to estimate biomass. Average daily biomass ranged from 3.1 to 21.4 mg C m?3 and differed by both height off the bottom and by time of day. While copepods were the numerically dominant organisms, their contribution to biomass was only 35% of the total zooplankton biomass. Our findings provide important support for the new emerging paradigm of how zooplankton are distributed over reefs. PMID:20046854

  9. Phytoplankton Composition and Abundance in Restored Malta?ski Reservoir under the Influence of Physico-Chemical Variables and Zooplankton Grazing Pressure

    PubMed Central

    Kozak, Anna; Go?dyn, Ryszard; Dondajewska, Renata

    2015-01-01

    In this paper we present the effects of environmental factors and zooplankton food pressure on phytoplankton in the restored man-made Malta?ski Reservoir (MR). Two methods of restoration: biomanipulation and phosphorus inactivation have been applied in the reservoir. Nine taxonomical groups of phytoplankton represented in total by 183 taxa were stated there. The richest groups in respect of taxa number were green algae, cyanobacteria and diatoms. The diatoms, cryptophytes, chrysophytes, cyanobacteria, green algae and euglenophytes dominated in terms of abundance and/or biomass. There were significant changes among environmental parameters resulting from restoration measures which influenced the phytoplankton populations in the reservoir. These measures led to a decrease of phosphorus concentration due to its chemical inactivation and enhanced zooplankton grazing as a result of planktivorous fish stocking. The aim of the study is to analyse the reaction of phytoplankton to the restoration measures and, most importantly, to determine the extent to which the qualitative and quantitative composition of phytoplankton depends on variables changing under the influence of restoration in comparison with other environmental variables. We stated that application of restoration methods did cause significant changes in phytoplankton community structure. The abundance of most phytoplankton taxa was negatively correlated with large zooplankton filter feeders, and positively with zooplankton predators and concentrations of ammonium nitrogen and partly of phosphates. However, restoration was insufficient in the case of decreasing phytoplankton abundance. The effects of restoration treatments were of less importance for the abundance of phytoplankton than parameters that were independent of the restoration. This was due to the continuous inflow of large loads of nutrients from the area of the river catchment. PMID:25906352

  10. Trophic ecology and vertical patterns of carbon and nitrogen stable isotopes in zooplankton from oxygen minimum zone regions

    NASA Astrophysics Data System (ADS)

    Williams, Rebecca L.; Wakeham, Stuart; McKinney, Rick; Wishner, Karen F.

    2014-08-01

    The unique physical and biogeochemical characteristics of oxygen minimum zones (OMZs) influence plankton ecology, including zooplankton trophic webs. Using carbon and nitrogen stable isotopes, this study examined zooplankton trophic webs in the Eastern Tropical North Pacific (ETNP) OMZ. ?13C values were used to indicate zooplankton food sources, and ?15N values were used to indicate zooplankton trophic position and nitrogen cycle pathways. Vertically stratified MOCNESS net tows collected zooplankton from 0 to 1000 m at two stations along a north-south transect in the ETNP during 2007 and 2008, the Tehuantepec Bowl and the Costa Rica Dome. Zooplankton samples were separated into four size fractions for stable isotope analyses. Particulate organic matter (POM), assumed to represent a primary food source for zooplankton, was collected with McLane large volume in situ pumps. The isotopic composition and trophic ecology of the ETNP zooplankton community had distinct spatial and vertical patterns influenced by OMZ structure. The most pronounced vertical isotope gradients occurred near the upper and lower OMZ oxyclines. Material with lower ?13C values was apparently produced in the upper oxycline, possibly by chemoautotrophic microbes, and was subsequently consumed by zooplankton. Between-station differences in ?15N values suggested that different nitrogen cycle processes were dominant at the two locations, which influenced the isotopic characteristics of the zooplankton community. A strong depth gradient in zooplankton ?15N values in the lower oxycline suggested an increase in trophic cycling just below the core of the OMZ. Shallow POM (0-110 m) was likely the most important food source for mixed layer, upper oxycline, and OMZ core zooplankton, while deep POM was an important food source for most lower oxycline zooplankton (except for samples dominated by the seasonally migrating copepod Eucalanus inermis). There was no consistent isotopic progression among the four zooplankton size classes for these bulk mixed assemblage samples, implying overlapping trophic webs within the total size range considered.

  11. Spatial and temporal variability of zooplankton off New Caledonia (Southwestern Pacific) from acoustics and net measurements

    NASA Astrophysics Data System (ADS)

    Smeti, Houssem; Pagano, Marc; Menkes, Christophe; Lebourges-Dhaussy, Anne; Hunt, Brian P. V.; Allain, Valerie; Rodier, Martine; de Boissieu, Florian; Kestenare, Elodie; Sammari, Cherif

    2015-04-01

    Spatial and temporal distribution of zooplankton off New Caledonia in the eastern Coral Sea was studied during two multidisciplinary cruises in 2011, during the cool and the hot seasons. Acoustic measurements of zooplankton were made using a shipborne acoustic Doppler current profiler (S-ADCP), a scientific echosounder and a Tracor acoustic profiling system (TAPS). Relative backscatter from ADCP was converted to biomass estimates using zooplankton weights from net-samples collected during the cruises. Zooplankton biomass was estimated using four methods: weighing, digital imaging (ZooScan), ADCP and TAPS. Significant correlations were found between the different biomass estimators and between the backscatters of the ADCP and the echosounder. There was a consistent diel pattern in ADCP derived biomass and echosounder backscatter resulting from the diel vertical migration (DVM) of zooplankton. Higher DVM amplitudes were associated with higher abundance of small zooplankton and cold waters to the south of the study area, while lower DVM amplitudes in the north were associated with warmer waters and higher abundance of large organisms. Zooplankton was largely dominated by copepods (71-73%) among which calanoids prevailed (40-42%), with Paracalanus spp. as the dominant species (16-17%). Overall, zooplankton exhibited low abundance and biomass (mean night dry biomass of 4.7 ± 2.2 mg m3 during the cool season and 2.4 ± 0.4 mg m3 during the hot season) but high richness and diversity (Shannon index ˜4). Substantially enhanced biomass and abundance appeared to be episodically associated with mesoscale features contributing to shape a rather patchy zooplankton distribution.

  12. Horizontal distribution of Fukushima-derived radiocesium in zooplankton in the northwestern Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Kitamura, M.; Kumamoto, Y.; Kawakami, H.; Cruz, E. C.; Fujikura, K.

    2013-08-01

    The magnitude of the 9.0 Tohoku earthquake and the ensuing tsunami on 11 March 2011, inflicted heavy damage on the Fukushima Dai-ichi nuclear power plant (FNPP1). Fission products were emitted, falling over a broad range in the Northern Hemisphere, and water contaminated with radionuclides leaked into the ocean. In this study, we described the horizontal distribution of the Fukushima-derived radiocesium in zooplankton and in seawater in the western North Pacific Ocean (500-2100 km from the FNPP1) 10 months after the accident. 134Cs and 137Cs were detected in zooplankton and seawater from all the stations. Because of its short half-life, the 134Cs detected in our samples could only be derived from the FNPP1 accident. The highest 137Cs activity in zooplankton was the same order of magnitude as it was one month after the accident, and average activity was one or two orders of magnitude higher than 137Cs activities observed before the accident around Japan. Horizontally, the radiocesium activity concentrations in zooplankton were high at around 25° N while those in surface seawater were high at around the transition area between the Kuroshio and the Oyashio currents (36-40° N). We observed subsurface radiocesium maxima in density range of the North Pacific Subtropical Mode Water and the occurrence of many diel vertical migratory zooplankton. These suggested that the high activity concentrations in the subtropical zooplankton at around 25° N were connected to the subsurface radiocesium and active vertical migration of zooplankton. However, the high activity concentrations of radiocesium in subsurface seawater did not necessarily correlate with the higher radiocesium activity in zooplankton. Activity concentrations of radiocesium in zooplankton might be influenced not only by the environmental radiocesium activity concentrations but also by other factors, which are still unknown.

  13. Stable Isotope and Signature Fatty Acid Analyses Suggest Reef Manta Rays Feed on Demersal Zooplankton

    PubMed Central

    Couturier, Lydie I. E.; Rohner, Christoph A.; Richardson, Anthony J.; Marshall, Andrea D.; Jaine, Fabrice R. A.; Bennett, Michael B.; Townsend, Kathy A.; Weeks, Scarla J.; Nichols, Peter D.

    2013-01-01

    Assessing the trophic role and interaction of an animal is key to understanding its general ecology and dynamics. Conventional techniques used to elucidate diet, such as stomach content analysis, are not suitable for large threatened marine species. Non-lethal sampling combined with biochemical methods provides a practical alternative for investigating the feeding ecology of these species. Stable isotope and signature fatty acid analyses of muscle tissue were used for the first time to examine assimilated diet of the reef manta ray Manta alfredi, and were compared with different zooplankton functional groups (i.e. near-surface zooplankton collected during manta ray feeding events and non-feeding periods, epipelagic zooplankton, demersal zooplankton and several different zooplankton taxa). Stable isotope ?15N values confirmed that the reef manta ray is a secondary consumer. This species had relatively high levels of docosahexaenoic acid (DHA) indicating a flagellate-based food source in the diet, which likely reflects feeding on DHA-rich near-surface and epipelagic zooplankton. However, high levels of ?6 polyunsaturated fatty acids and slightly enriched ?13C values in reef manta ray tissue suggest that they do not feed solely on pelagic zooplankton, but rather obtain part of their diet from another origin. The closest match was with demersal zooplankton, suggesting it is an important component of the reef manta ray diet. The ability to feed on demersal zooplankton is likely linked to the horizontal and vertical movement patterns of this giant planktivore. These new insights into the habitat use and feeding ecology of the reef manta ray will assist in the effective evaluation of its conservation needs. PMID:24167562

  14. Effect of Dreissena mussels on the distribution of zooplankton as exemplified by the Main Kakhovka Canal

    SciTech Connect

    Grigorovich, I.A.; Shevtsova, L.V.

    1995-06-01

    In summer the abundance of zooplankton in the Main Kakhovka Canal varied in the range of 1,500-18,500 indiv.m{sup -3}, with a biomass of 15-240 mg m{sup -3}. From the upper reach of the canal to the end, the zooplankton become less diverse and there is a decrease in both abundance and biomass. In the initial sections of the canal, copepods predominated, owing to their considerable influxes from other sources, i.e., Kakhovka Reservoir. Whereas in the second half of the canal, the dominant complexes of zooplankton changed and consisted primarily of cladocerans and Dreissena veligers. With high abundance of Dreissena polymorpha (Pallas) and D. bugensis (Andrusov) (mean biomass was 4.2 kg m{sup -2}), with the maximum ca. 17.8 kg m{sup -2}, mussels had a significant effect on the spatial distribution of planktonic invertebrates. In different areas of the canal the measurable quantitive replenishment of zooplankton was proceeded by planktonic larvae of Dreissena. Being active filterers, Dreissena mollusks undermine food resources of filter-feeding zooplankton by accelerating sedimentation of suspended matter, including organic substances, by a factor of 1.4-3.0. Dreissena can control zooplankton density by consumption of some of the species. With predominating rotifers and juveniles cladocerans in the plankton, the total abundance of zooplankton influenced by Dreissena bugensis had decreased by 53% after 12 h, whereas the amount of dominant species, Euchlanis dilatata and Bosmina longirostris, had declined respectively by 92% and 64%. Dreissena individuals 14-18 mm long, are the predominant size group of mussels in the Main Kakhovka Canal and can filter off planktonic invertebrates with body lengths between 20 and 400 m. Zooplankton species of such size can pass through the bronchial siphon of Dreissena and so they are vulnerable to consumption by mussels. There is an inverse relationship between the biomass of zooplankton and the biomass of adult Dreissena mussels.

  15. A one-population Amari model with periodic microstructure

    NASA Astrophysics Data System (ADS)

    Svanstedt, Nils; Wyller, John; Malyutina, Elena

    2014-06-01

    We review the derivation of the homogenized one-population Amari equation by means of the two-scale convergence technique of Nguetseng in the case of periodic microvariation in the connectivity function. A key point in this derivation is Visintin's theorem for two-scale convergence of convolution integrals. We construct single bump solutions of the resulting homogenized equation using a pinning function technique for the case where the solutions are independent of the local variable and the firing rate function is modelled as a unit step function. The parameter measuring the degree of heterogeneity plays the role of a control parameter. The connectivity functions are periodically modulated in both the synaptic footprint and in the spatial scale. A framework for analysing the stability of these structures is formulated. This framework is based on spectral theory for Hilbert-Schmidt integral operators and it deforms to the standard Evans function approach for the translational invariant case in the limit of no heterogeneity. The upper and lower bounds of the growth/decay rates of the perturbations imposed on the bump states can be expressed in terms of the operator norm of the actual Hilbert-Schmidt operator. Intervals for which the pinning function is increasing correspond to unstable bumps, while complementary intervals where the pinning function decreases correspond to stable bumps, just as in the translational invariant case. Examples showing the properties of the bumps are discussed in detail when the connectivity kernels are given in terms of an exponential decaying function, a wizard hat function and a damped oscillating function.

  16. Evaluation of a system to automatically sample zooplankton from the discharge of dams

    SciTech Connect

    Rosen, R.A.

    1982-02-01

    Automatic plankton samplers installed at two dams on the Connecticut River continuously monitored crustacean zooplankton from October 1977 through 1979 and allowed a significant reduction in man-hours involved in an extensive sampling program. Automatic samplers efficiently sampled most species and size classes of crustacean zooplankton in a similar, but not consistently identical manner as a commonly used towed-net plankton sampler. The smallest sized zooplankton were captured more efficiently than the largest. Mesh selection and sampler avoidance exerted different influences on automatic samplers and towed nets. Future use of the samplers and direct comparison of results to results obtained by other methods was supported.

  17. Nutrients, Recycling, and Biological Populations in Upwelling Ecosystems

    SciTech Connect

    Whitledge, T.E.

    1980-01-01

    Nutrient recycling has been studied in the upwelling areas of Baja California, Northwest Africa, and Peru. Regeneration by biological populations in these areas contributes significant quantities of recycled nitrogen which is utilized in productivity processes. Each area has a different combination of organisms which leads to differences in the relative contributions of zooplankton, nekton, or benthos to the nutrient cycles. Comparisons of ammonium regeneration rates of zooplankton and nekton-micronekton populations in the three upwelling areas show that zooplankton recycle relatively less nitrogen in the Baja California and Peru systems than nekton. In the Northwest Africa upwelling region, however, zooplankton, fish, and benthic inputs are all substantial. In recent years the Peruvian upwelling system has been altered with the decline of the anchoveta population and an increase in the importance of zooplankton in nutrient recycling. The distribution of recycled nitrogen (ammonium and urea) in transects across the shelf at 10°S and 15°S indicates that regeneration is relatively more important at 10°S in the region of the wide shelf. In both areas the distribution of ammonium and urea are not entirely coincident thereby indicating differences in their production and/or utilization.

  18. CONSTRUCTING, PERTURBATION ANALYSIIS AND TESTING OF A MULTI-HABITAT PERIODIC MATRIX POPULATION MODEL

    EPA Science Inventory

    We present a matrix model that explicitly incorporates spatial habitat structure and seasonality and discuss preliminary results from a landscape level experimental test. Ecological risk to populations is often modeled without explicit treatment of spatially or temporally distri...

  19. Modeling and responding to pandemic influenza : importance of population distributional attributes and non-pharmaceutical interventions

    E-print Network

    Nigmatulina, Karima Robert

    2009-01-01

    After reviewing prevalent approaches to the modeling pandemic influenza transmission, we present a simple distributional model that captures the most significant population attributes that alter the dynamics of the outbreak. ...

  20. A stochastic model for population migration and the growth of human settlements during the Neolithic

    E-print Network

    Moss, David

    A stochastic model for population migration and the growth of human settlements during, Manchester M60 1QD, UK (Dated: June 12, 2008) We present a stochastic two-population model that describes the migration and growth of semi- sedentary foragers and sedentary farmers along a river valley during

  1. Posterior predictive checks to quantify lack-of-fit in admixture models of latent population structure

    PubMed Central

    Mimno, David; Blei, David M.; Engelhardt, Barbara E.

    2015-01-01

    Admixture models are a ubiquitous approach to capture latent population structure in genetic samples. Despite the widespread application of admixture models, little thought has been devoted to the quality of the model fit or the accuracy of the estimates of parameters of interest for a particular study. Here we develop methods for validating admixture models based on posterior predictive checks (PPCs), a Bayesian method for assessing the quality of fit of a statistical model to a specific dataset. We develop PPCs for five population-level statistics of interest: within-population genetic variation, background linkage disequilibrium, number of ancestral populations, between-population genetic variation, and the downstream use of admixture parameters to correct for population structure in association studies. Using PPCs, we evaluate the quality of the admixture model fit to four qualitatively different population genetic datasets: the population reference sample (POPRES) European individuals, the HapMap phase 3 individuals, continental Indians, and African American individuals. We found that the same model fitted to different genomic studies resulted in highly study-specific results when evaluated using PPCs, illustrating the utility of PPCs for model-based analyses in large genomic studies. PMID:26071445

  2. Stochastic model for population migration and the growth of human settlements during the Neolithic transition

    E-print Network

    Fedotov, Sergei

    Stochastic model for population migration and the growth of human settlements during the Neolithic; published 12 August 2008 We present a stochastic two-population model that describes the migration and growth of semisedentary foragers and sedentary farmers along a river valley during the Neolithic

  3. A PARTIAL DIFFERENTIAL EQUATION MODEL OF FISH POPULATION DYNAMICS AND ITS APPLICATION IN IMPINGEMENT IMPACT ANALYSIS

    EPA Science Inventory

    The report gives results of a study to: (1) develop a mathematical model describing fish populations as a function of life process dynamics and facilities that impose additional mortality on fish populations; and (2) improve objective impingement impact prediction. The model acco...

  4. Endemic threshold results in an age-duration-structured population model for HIV infection

    E-print Network

    Inaba, Hisashi

    Endemic threshold results in an age-duration-structured population model for HIV infection Hisashi-8914, Japan Received 23 June 2004; received in revised form 5 July 2005; accepted 3 December 2005 Abstract In this paper we consider an age-duration-structured population model for HIV infection in a homosex- ual

  5. A Nonlinear Model of Age and Size-Structured Populations with Applications to Cell Cycles

    E-print Network

    James, Alex

    A Nonlinear Model of Age and Size-Structured Populations with Applications to Cell Cycles S. J at a given size. Keywords: age-structure; size-structure; populations; cell cycle; mathematical model. 1 #12;1 Introduction An in-depth understanding of the perturbations to the cell cycle of in vitro cancer cell

  6. A PROBABILISTIC POPULATION EXPOSURE MODEL FOR PM10 AND PM 2.5

    EPA Science Inventory

    A first generation probabilistic population exposure model for Particulate Matter (PM), specifically for predicting PM10, and PM2.5, exposures of an urban, population has been developed. This model is intended to be used to predict exposure (magnitude, frequency, and duration) ...

  7. THE INFLUENCE OF MODEL TIME STEP ON THE RELATIVE SENSITIVIY OF POPULATION GROWTH RATE TO REPRODUCTION

    EPA Science Inventory

    In recent years there has been an increasing interest in using population models in environmental assessments. Matrix population models represent a valuable tool for extrapolating from life stage-specific stressor effects on survival and reproduction to effects on finite populati...

  8. Eco-Evo PVAs: Incorporating Eco-Evolutionary Processes into Population Viability Models

    EPA Science Inventory

    We synthesize how advances in computational methods and population genomics can be combined within an Ecological-Evolutionary (Eco-Evo) PVA model. Eco-Evo PVA models are powerful new tools for understanding the influence of evolutionary processes on plant and animal population pe...

  9. Tuning stochastic matrix models with hydrologic data to predict the population dynamics of a riverine fish

    USGS Publications Warehouse

    Sakaris, P.C.; Irwin, E.R.

    2010-01-01

    We developed stochastic matrix models to evaluate the effects of hydrologic alteration and variable mortality on the population dynamics of a lotie fish in a regulated river system. Models were applied to a representative lotic fish species, the flathead catfish (Pylodictis olivaris), for which two populations were examined: a native population from a regulated reach of the Coosa River (Alabama, USA) and an introduced population from an unregulated section of the Ocmulgee River (Georgia, USA). Size-classified matrix models were constructed for both populations, and residuals from catch-curve regressions were used as indices of year class strength (i.e., recruitment). A multiple regression model indicated that recruitment of flathead catfish in the Coosa River was positively related to the frequency of spring pulses between 283 and 566 m3/s. For the Ocmulgee River population, multiple regression models indicated that year class strength was negatively related to mean March discharge and positively related to June low flow. When the Coosa population was modeled to experience five consecutive years of favorable hydrologic conditions during a 50-year projection period, it exhibited a substantial spike in size and increased at an overall 0.2% annual rate. When modeled to experience five years of unfavorable hydrologic conditions, the Coosa population initially exhibited a decrease in size but later stabilized and increased at a 0.4% annual rate following the decline. When the Ocmulgee River population was modeled to experience five years of favorable conditions, it exhibited a substantial spike in size and increased at an overall 0.4% annual rate. After the Ocmulgee population experienced five years of unfavorable conditions, a sharp decline in population size was predicted. However, the population quickly recovered, with population size increasing at a 0.3% annual rate following the decline. In general, stochastic population growth in the Ocmulgee River was more erratic and variable than population growth in the Coosa River. We encourage ecologists to develop similar models for other lotic species, particularly in regulated river systems. Successful management of fish populations in regulated systems requires that we are able to predict how hydrology affects recruitment and will ultimately influence the population dynamics of fishes. ?? 2010 by the Ecological Society of America.

  10. A Stochastic Model for the Interbreeding of Two Populations Continuously Sharing the Same Habitat.

    PubMed

    Serva, Maurizio

    2015-12-01

    We propose and solve a stochastic mathematical model of general applicability to interbreeding populations which share the same habitat. Resources are limited so that the total population size is fixed by environmental factors. Interbreeding occurs during all the time of coexistence until one of the two population disappears by a random fluctuation. None of the two populations has a selective advantage. We answer the following questions: How long the two populations coexist and how genetically similar they become before the extinction of one of the two? how much the genetic makeup of the surviving population changes by the contribution of the disappearing one? what it is the number of interbreeding events given the observed introgression of genetic material? The model was originally motivated by a paleoanthropological problem concerning the interbreeding of Neanderthals and African modern humans in Middle East which is responsible for the fraction of Neanderthal genes (1-4 %) in present Eurasian population. PMID:26585747

  11. An individual-based model for population viability analysis of humpback chub in Grand Canyon

    USGS Publications Warehouse

    Pine, William Pine, III; Healy, Brian; Smith, Emily Omana; Trammell, Melissa; Speas, Dave; Valdez, Rich; Yard, Mike; Walters, Carl; Ahrens, Rob; Vanhaverbeke, Randy; Stone, Dennis; Wilson, Wade

    2013-01-01

    We developed an individual-based population viability analysis model (females only) for evaluating risk to populations from catastrophic events or conservation and research actions. This model tracks attributes (size, weight, viability, etc.) for individual fish through time and then compiles this information to assess the extinction risk of the population across large numbers of simulation trials. Using a case history for the Little Colorado River population of Humpback Chub Gila cypha in Grand Canyon, Arizona, we assessed extinction risk and resiliency to a catastrophic event for this population and then assessed a series of conservation actions related to removing specific numbers of Humpback Chub at different sizes for conservation purposes, such as translocating individuals to establish other spawning populations or hatchery refuge development. Our results suggested that the Little Colorado River population is generally resilient to a single catastrophic event and also to removals of larvae and juveniles for conservation purposes, including translocations to establish new populations. Our results also suggested that translocation success is dependent on similar survival rates in receiving and donor streams and low emigration rates from recipient streams. In addition, translocating either large numbers of larvae or small numbers of large juveniles has generally an equal likelihood of successful population establishment at similar extinction risk levels to the Little Colorado River donor population. Our model created a transparent platform to consider extinction risk to populations from catastrophe or conservation actions and should prove useful to managers assessing these risks for endangered species such as Humpback Chub.

  12. The accuracy of matrix population model projections for coniferous trees in the Sierra Nevada, California

    USGS Publications Warehouse

    van Mantgem, P.J.; Stephenson, N.L.

    2005-01-01

    1 We assess the use of simple, size-based matrix population models for projecting population trends for six coniferous tree species in the Sierra Nevada, California. We used demographic data from 16 673 trees in 15 permanent plots to create 17 separate time-invariant, density-independent population projection models, and determined differences between trends projected from initial surveys with a 5-year interval and observed data during two subsequent 5-year time steps. 2 We detected departures from the assumptions of the matrix modelling approach in terms of strong growth autocorrelations. We also found evidence of observation errors for measurements of tree growth and, to a more limited degree, recruitment. Loglinear analysis provided evidence of significant temporal variation in demographic rates for only two of the 17 populations. 3 Total population sizes were strongly predicted by model projections, although population dynamics were dominated by carryover from the previous 5-year time step (i.e. there were few cases of recruitment or death). Fractional changes to overall population sizes were less well predicted. Compared with a null model and a simple demographic model lacking size structure, matrix model projections were better able to predict total population sizes, although the differences were not statistically significant. Matrix model projections were also able to predict short-term rates of survival, growth and recruitment. Mortality frequencies were not well predicted. 4 Our results suggest that simple size-structured models can accurately project future short-term changes for some tree populations. However, not all populations were well predicted and these simple models would probably become more inaccurate over longer projection intervals. The predictive ability of these models would also be limited by disturbance or other events that destabilize demographic rates. ?? 2005 British Ecological Society.

  13. A toy model for hostility between two populations in dependency on their internal frustration

    NASA Astrophysics Data System (ADS)

    Wieder, Thomas

    2014-10-01

    Hostility between two populations n and m is described in terms of a first-order differential equation system for the population sizes n(t) and m(t) over time t. Each population is subdivided into two subpopulations 'Doves' and 'Hawks'. Hawks represent the strategy aggression against the other population. The number of hawks which actually exert aggression depends on the overall frustration within their population. Conversely, aggression causes the conversion from doves to hawks in the attacked population. Thus, a system of flows among the subpopulation is established. The actual behaviour of n(t) and m(t) over time t depends on the coefficients chosen for the differential system and in particular on the temporal development of the frustration parameters. No calculation or simulation of actual population sizes is intended. The only goal of the paper is to establish a model which describes an never ending conflict between both populations caused by internal frustrations.

  14. Computer simulation models as tools for identifying research needs: A black duck population model

    USGS Publications Warehouse

    Ringelman, J.K.; Longcore, J.R.

    1980-01-01

    Existing data on the mortality and production rates of the black duck (Anas rubripes) were used to construct a WATFIV computer simulation model. The yearly cycle was divided into 8 phases: hunting, wintering, reproductive, molt, post-molt, and juvenile dispersal mortality, and production from original and renesting attempts. The program computes population changes for sex and age classes during each phase. After completion of a standard simulation run with all variable default values in effect, a sensitivity analysis was conducted by changing each of 50 input variables, 1 at a time, to assess the responsiveness of the model to changes in each variable. Thirteen variables resulted in a substantial change in population level. Adult mortality factors were important during hunting and wintering phases. All production and mortality associated with original nesting attempts were sensitive, as was juvenile dispersal mortality. By identifying those factors which invoke the greatest population change, and providing an indication of the accuracy required in estimating these factors, the model helps to identify those variables which would be most profitable topics for future research.

  15. Discrete two-sex models of population dynamics: On modelling the mating function

    NASA Astrophysics Data System (ADS)

    Bessa-Gomes, Carmen; Legendre, Stéphane; Clobert, Jean

    2010-09-01

    Although sexual reproduction has long been a central subject of theoretical ecology, until recently its consequences for population dynamics were largely overlooked. This is now changing, and many studies have addressed this issue, showing that when the mating system is taken into account, the population dynamics depends on the relative abundance of males and females, and is non-linear. Moreover, sexual reproduction increases the extinction risk, namely due to the Allee effect. Nevertheless, different studies have identified diverse potential consequences, depending on the choice of mating function. In this study, we investigate the consequences of three alternative mating functions that are frequently used in discrete population models: the minimum; the harmonic mean; and the modified harmonic mean. We consider their consequences at three levels: on the probability that females will breed; on the presence and intensity of the Allee effect; and on the extinction risk. When we consider the harmonic mean, the number of times the individuals of the least abundant sex mate exceeds their mating potential, which implies that with variable sex-ratios the potential reproductive rate is no longer under the modeller's control. Consequently, the female breeding probability exceeds 1 whenever the sex-ratio is male-biased, which constitutes an obvious problem. The use of the harmonic mean is thus only justified if we think that this parameter should be re-defined in order to represent the females' breeding rate and the fact that females may reproduce more than once per breeding season. This phenomenon buffers the Allee effect, and reduces the extinction risk. However, when we consider birth-pulse populations, such a phenomenon is implausible because the number of times females can reproduce per birth season is limited. In general, the minimum or modified harmonic mean mating functions seem to be more suitable for assessing the impact of mating systems on population dynamics.

  16. Modelling of integral spectra of galaxies by the method of population synthesis.

    NASA Astrophysics Data System (ADS)

    Zenina, O. A.

    A detailed description of a population synthesis method for modelling the content of stellar populations in complex systems, galaxies and star clusters, from their integral spectra is given. As the original database for modelling, two banks of reference observational stellar spectra, of Pickles and Jacoby, have been selected. The method allows to define the following physical characteristics of a stellar system: detailed composition of a stellar population, average metallicity of the system and metallicities of populations it comprises, age of the last star formation in the system and contribution of young stellar component to the light flux, turn-off point of the main sequence, mass-to-luminosity ratio of the apparent stellar component of the galaxy. Using a population synthesis package of programs "SYNTHES" calculations have been performed for two normal galaxies, NGC 205 and NGC 628. Further possibilities and prospects of the proposed technique for population modelling are discussed.

  17. Simulation modeling of the effects of oil spills on population dynamics of northern fur seals

    SciTech Connect

    Reed, M.; French, D.; Calambokidia, J.; Cubbage, J.

    1987-03-01

    Population dynamics and migration models were developed and combined with an oil-spill simulation model to determine the effects of oil spills on the Pribilof Island fur seal (Callorhinus ursinus) population. In the population-dynamics model, mortality of pups on land and juveniles up to two years of age is density dependent, while that of older seals is age- and sex-specific and constant at all population sizes. Movement patterns of seals within the Bering Sea are functions of date, sexual status, and age. Two hypothetical 10,000 barrel oil spill simulations were performed. Depending on the assumed oil-induced mortality rate in the range 25%-100%, effective recovery of the population from these spills, i.e., the number of years before the oil-affected population numbers, took 0 to 25 years.

  18. Improving Bayesian Population Dynamics Inference: A Coalescent-Based Model for Multiple Loci

    PubMed Central

    Gill, Mandev S.; Lemey, Philippe; Faria, Nuno R.; Rambaut, Andrew; Shapiro, Beth; Suchard, Marc A.

    2013-01-01

    Effective population size is fundamental in population genetics and characterizes genetic diversity. To infer past population dynamics from molecular sequence data, coalescent-based models have been developed for Bayesian nonparametric estimation of effective population size over time. Among the most successful is a Gaussian Markov random field (GMRF) model for a single gene locus. Here, we present a generalization of the GMRF model that allows for the analysis of multilocus sequence data. Using simulated data, we demonstrate the improved performance of our method to recover true population trajectories and the time to the most recent common ancestor (TMRCA). We analyze a multilocus alignment of HIV-1 CRF02_AG gene sequences sampled from Cameroon. Our results are consistent with HIV prevalence data and uncover some aspects of the population history that go undetected in Bayesian parametric estimation. Finally, we recover an older and more reconcilable TMRCA for a classic ancient DNA data set. PMID:23180580

  19. Two populations and models of gamma ray bursts

    NASA Technical Reports Server (NTRS)

    Katz, J. I.

    1993-01-01

    Gamma-ray burst statistics are best explained by a source population at cosmological distances, while spectroscopy and intensity histories of some individual bursts imply an origin on Galactic neutron stars. To resolve this inconsistency I suggest the presence of two populations, one at cosmological distances and the other Galactic. I build on ideas of Shemi and Piran (1990) and of Rees and Mesozaros (1992) involving the interaction of fireball debris with surrounding clouds to explain the observed intensity histories in bursts at cosmological distances. The distances to the Galactic population are undetermined because they are too few to affect the statistics of intensity and direction; I explain them as resulting from magnetic reconnection in neutron star magnetospheres. An appendix describes the late evolution of the debris as a relativistic blast wave.

  20. Two populations and models of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Katz, J. I.

    1994-01-01

    Gamma-ray burst statistics are best explained by a source population at cosmological distances, while spectroscopy and intensity histories of some individual bursts imply an origin on Galactic neutron stars. To resolve this inconsistency I suggest the presence of two populations, one at cosmological distances and the other Galactic. I build on ideas of Shemi & Piran (1990) and of Rees & Meszaros (1992) involving the interaction of fireball debris with surrounding clouds to explain the observed intensity histories in burst at cosmological distances. The distances to the Galactic population are undetermined because they are two few to affect the statistics of intensity and direction; I explain them as resulting from magnetic reconnection in neutron star magnetospheres. An appendix describes the late evolution of the debris as a relativistic blast wave.

  1. Spatial distribution of micro- and meso-zooplankton in the seasonal ice zone of east Antarctica during 1983-1995

    NASA Astrophysics Data System (ADS)

    Ojima, Motoha; Takahashi, Kunio T.; Tanimura, Atsushi; Odate, Tsuneo; Fukuchi, Mitsuo

    2015-09-01

    Historically, most studies about the geographic distribution of zooplankton in the Southern Ocean have been focused on the macro-sized zooplankton (2-20 mm), such as the Antarctic krill and larger-sized copepods. On the other hand, despite the high abundance and biomass, the distribution patterns of micro- (20-200 ?m) and meso-sized (200 ?m-2 mm) zooplankton communities are little understood. In this study, we investigated the distribution patterns of larger micro-zooplankton (100-200 ?m) and meso-zooplankton communities in the seasonal ice zone in the Cosmonaut Sea near Syowa Station and examined the effects of environmental factors and water properties on these communities. The investigation was based on samples collected with 100 ?m mesh nets, which are appropriate to estimate the quantitative abundance and community structure of micro- and meso-zooplankton species between 1983 and 1995. Cluster analysis of the samples revealed that the distribution of macro-zooplankton species was influenced by the temperature and salinity of ocean fronts. Among the meso-zooplankton, cyclopoid and small calanoid copepods tended to be ubiquitously distributed. However, among the micro-zooplankton, the distributions of foraminiferans and tintinnids were associated with sea ice extent. The distribution of micro- and meso-zooplankton communities could be used to estimate the impact of environmental changes on the marine ecosystem in the Southern Ocean.

  2. Histology of Herniations through the Body Wall and Cuticle of Zooplankton from the Laurentian Great Lakes

    E-print Network

    Histology of Herniations through the Body Wall and Cuticle of Zooplankton from the Laurentian Great a histologic and cyto- logic analysis of the protrusions and found that they are composed of apparently

  3. Research Article Water residence time as a driving force of zooplankton structure

    E-print Network

    Sommaruga, Ruben

    years and assessed the importance of water residence time for zooplankton dynamics. Crustacean abundance (t), and therefore we further investigated the functional relationship of crustacean dominance) determined crustacean biomass dominance while values below determined rotiferan dominance. Our results

  4. Distribution, patchiness, and behavior of Antarctic zooplankton, assessed using multi-frequency acoustic techniques

    E-print Network

    Lawson, Gareth L

    2006-01-01

    The physical and biological forces that drive zooplankton distribution and patchiness in an antarctic continental shelf region were examined, with particular emphasis on the Antarctic krill, Euphausia superba. This was ...

  5. Population dynamics of species-rich ecosystems: the mixture of matrix population models approach

    E-print Network

    Rossi, Vivien

    the method to a data set from a tropical rain forest in French Guiana. The mixture matrix model classified, clustering, mixture models, reversible jump Markov chain Monte Carlo, tropical rain forests, species capture­ recapture methods (Besbeas et al. 2002). In species-rich ecosystems like tropical rain forests

  6. Progress in spatially explicit modeling for predicting tuna population dynamics

    E-print Network

    Hawai'i at Manoa, University of

    biomass ESSIC ­ NCEP ­ ERA40 #12;PAGE 5 © 2008 Connaître aujourd'hui, mieux vivre demain Population age structure: · 1 larvae cohort · 2 juvenile cohort · 4 young (3 ­ 11 months ) ·12 adult cohorts Spatial domain: Pacific ocean 90E-69W; 54S-64N Simulation time period: 1975-2001 Skipjack tuna analysis Complete fishing

  7. Modeling Endemic Bark Beetle Populations in Southwestern Ponderosa Pine Forests 

    E-print Network

    Garza, Christopher

    2015-02-20

    at the spatial distribution and susceptibility of host trees in southwestern US forested landscapes. To do this, I (1) analyzed 21 years of field data to examine the population dynamics of bark beetles and the factors that affect them, (2) created a statistical...

  8. POPULATION-BASED EXPOSURE AND DOSE MODELING FOR AIR POLLUTANTS

    EPA Science Inventory

    This task will address EPA's need to better understand the variability in personal exposure to air pollutants for the purpose of assessing what populations are at risk for adverse health outcomes due to air pollutant exposures. To improve our understanding of exposures to air po...

  9. A small-world-based population encoding model of the primary visual cortex.

    PubMed

    Shi, Li; Niu, Xiaoke; Wan, Hong; Shang, Zhigang; Wang, Zhizhong

    2015-06-01

    A wide range of evidence has shown that information encoding performed by the visual cortex involves complex activities of neuronal populations. However, the effects of the neuronal connectivity structure on the population's encoding performance remain poorly understood. In this paper, a small-world-based population encoding model of the primary visual cortex (V1) is established on the basis of the generalized linear model (GLM) to describe the computation of the neuronal population. The model mainly consists of three sets of filters, including a spatiotemporal stimulus filter, a post-spike history filter, and a set of coupled filters with the coupling neurons organizing as a small-world network. The parameters of the model were fitted with neuronal data of the rat V1 recorded with a micro-electrode array. Compared to the traditional GLM, without considering the small-world structure of the neuronal population, the proposed model was proved to produce more accurate spiking response to grating stimuli and enhance the capability of the neuronal population to carry information. The comparison results proved the validity of the proposed model and further suggest the role of small-world structure in the encoding performance of local populations in V1, which provides new insights for understanding encoding mechanisms of a small scale population in visual system. PMID:25753903

  10. Modeling tradeoffs in avian life history traits and consequences for population growth

    USGS Publications Warehouse

    Clark, M.E.; Martin, T.E.

    2007-01-01

    Variation in population dynamics is inherently related to life history characteristics of species, which vary markedly even within phylogenetic groups such as passerine birds. We computed the finite rate of population change (??) from a matrix projection model and from mark-recapture observations for 23 bird species breeding in northern Arizona. We used sensitivity analyses and a simulation model to separate contributions of different life history traits to population growth rate. In particular we focused on contrasting effects of components of reproduction (nest success, clutch size, number of clutches, and juvenile survival) versus adult survival on ??. We explored how changes in nest success or adult survival coupled to costs in other life history parameters affected ?? over a life history gradient provided by our 23 Arizona species, as well as a broader sample of 121 North American passerine species. We further examined these effects for more than 200 passeriform and piciform populations breeding across North America. Model simulations indicate nest success and juvenile survival exert the largest effects on population growth in species with moderate to high reproductive output, whereas adult survival contributed more to population growth in long-lived species. Our simulations suggest that monitoring breeding success in populations across a broad geographic area provides an important index for identifying neotropical migratory populations at risk of serious population declines and a potential method for identifying large-scale mechanisms regulating population dynamics. ?? 2007 Elsevier B.V. All rights reserved.

  11. Modeling complex spatial dynamics of two-population interaction in urbanization process

    E-print Network

    Chen, Yanguang

    2013-01-01

    This paper is mainly devoted to lay an empirical foundation for further research on complex spatial dynamics of two-population interaction. Based on the US population census data, a rural and urban population interaction model is developed. Subsequently a logistic equation on percentage urban is derived from the urbanization model so that spatial interaction can be connected mathematically with logistic growth. The numerical experiment by using the discretized urban-rural population interaction model of urbanization shows a period-doubling bifurcation and chaotic behavior, which is identical in patterns to those from the simple mathematical models of logistic growth in ecology. This suggests that the complicated dynamics of logistic growth may come from some kind of the nonlinear interaction. The results from this study help to understand urbanization, urban-rural population interaction, chaotic dynamics, and spatial complexity of geographical systems.

  12. Analysis and Management of Animal Populations: Modeling, Estimation and Decision Making

    USGS Publications Warehouse

    Williams, B.K.; Nichols, J.D.; Conroy, M.J.

    2002-01-01

    This book deals with the processes involved in making informed decisions about the management of animal populations. It covers the modeling of population responses to management actions, the estimation of quantities needed in the modeling effort, and the application of these estimates and models to the development of sound management decisions. The book synthesizes and integrates in a single volume the methods associated with these themes, as they apply to ecological assessment and conservation of animal populations. KEY FEATURES * Integrates population modeling, parameter estimation and * decision-theoretic approaches to management in a single, cohesive framework * Provides authoritative, state-of-the-art descriptions of quantitative * approaches to modeling, estimation and decision-making * Emphasizes the role of mathematical modeling in the conduct of science * and management * Utilizes a unifying biological context, consistent mathematical notation, * and numerous biological examples

  13. Model investigations of the North Atlantic spring bloom initiation

    NASA Astrophysics Data System (ADS)

    Kuhn, Angela M.; Fennel, Katja; Mattern, Jann Paul

    2015-11-01

    The spring bloom - a massive growth of phytoplankton that occurs annually during the spring season in mid and high latitudes - plays an important role in carbon export to the deep ocean. The onset of this event has been explained from bottom-up and top-down perspectives, exemplified by the "critical-depth" and the "dilution-recoupling" hypotheses, respectively. Both approaches differ in their key expectations about how seasonal fluctuations of the mixed layer affect the plankton community. Here we assess whether the assumptions inherent to these hypotheses are met inside a typical onedimensional Nutrient-Phytoplankton-Zooplankton-Detritus (NPZD) model, optimized to best represent climatological annual cycles of satellite-based phytoplankton biomass in the Subpolar North Atlantic. The optimized model is used in idealized experiments that isolate the effects of mixed layer fluctuations and zooplankton grazing, in order to elucidate their significance. We analyzed the model sensitivity qualitatively and using a second-order Taylor series decomposition of the model equations. Our results show that the conceptual bases of both bottom-up and top-down approaches are required to explain the process of blooming; however, neither of their bloom initiation mechanisms fully applies in the experiments. We find that a spring bloom can develop in the absence of mixed layer fluctuations, and both its magnitude and timing seem to strongly depend on nutrient and light availability. Furthermore, although zooplankton populations modulate the phytoplankton concentrations throughout the year, directly prescribed and physically driven changes in zooplankton grazing do not produce significant time shifts in bloom initiation, as hypothesized. While recognizing its limitations, our study emphasizes the processes that require further testing in order to discern among competing hypotheses.

  14. Are the numbers adding up? Exploiting discrepancies among complementary population models

    PubMed Central

    Stenglein, Jennifer L; Zhu, Jun; Clayton, Murray K; Van Deelen, Timothy R

    2015-01-01

    Large carnivores are difficult to monitor because they tend to be sparsely distributed, sensitive to human activity, and associated with complex life histories. Consequently, understanding population trend and viability requires conservationists to cope with uncertainty and bias in population data. Joint analysis of combined data sets using multiple models (i.e., integrated population model) can improve inference about mechanisms (e.g., habitat heterogeneity and food distribution) affecting population dynamics. However, unobserved or unobservable processes can also introduce bias and can be difficult to quantify. We developed a Bayesian hierarchical modeling approach for inference on an integrated population model that reconciles annual population counts with recruitment and survival data (i.e., demographic processes). Our modeling framework is flexible and enables a realistic form of population dynamics by fitting separate density-dependent responses for each demographic process. Discrepancies estimated from shared parameters among different model components represent unobserved additions (i.e., recruitment or immigration) or removals (i.e., death or emigration) when annual population counts are reliable. In a case study of gray wolves in Wisconsin (1980–2011), concordant with policy changes, we estimated that a discrepancy of 0% (1980–1995), ?2% (1996–2002), and 4% (2003–2011) in the annual mortality rate was needed to explain annual growth rate. Additional mortality in 2003–2011 may reflect density-dependent mechanisms, changes in illegal killing with shifts in wolf management, and nonindependent censoring in survival data. Integrated population models provide insights into unobserved or unobservable processes by quantifying discrepancies among data sets. Our modeling approach is generalizable to many population analysis needs and allows for identifying dynamic differences due to external drivers, such as management or policy changes. PMID:25691964

  15. Stellar Population Models and Individual Element Abundances I: Sensitivity of Stellar Evolution Models

    E-print Network

    A. Dotter; B. Chaboyer; J. W. Ferguson; H. -c. Lee; G. Worthey; E. Baron; D. Jevremovic

    2007-06-06

    Integrated light from distant galaxies is often compared to stellar population models via the equivalent widths of spectral features--spectral indices--whose strengths rely on the abundances of one or more elements. Such comparisons hinge not only on the overall metal abundance but also on relative abundances. Studies have examined the influence of individual elements on synthetic spectra but little has been done to address similar issues in the stellar evolution models that underlie most stellar population models. Stellar evolution models will primarily be influenced by changes in opacities. In order to explore this issue in detail, twelve sets of stellar evolution tracks and isochrones have been created at constant heavy element mass fraction Z that self-consistently account for varying heavy element mixtures. These sets include scaled-solar, alpha-enhanced, and individual cases where the elements C, N, O, Ne, Mg, Si, S, Ca, Ti, and Fe have been enhanced above their scaled-solar values. The variations that arise between scaled-solar and the other cases are examined with respect to the H-R diagram and main sequence lifetimes.

  16. Responses of Phyto- and Zooplankton Communities to Prymnesium polylepis (Prymnesiales) Bloom in the Baltic Sea

    PubMed Central

    Gorokhova, Elena; Hajdu, Susanna; Larsson, Ulf

    2014-01-01

    A large bloom of Prymnesium polylepis occurred in the Baltic Sea during the winter 2007 – spring 2008. Based on numerous reports of strong allelopathic effects on phytoplankton exerted by P. polylepis and its toxicity to grazers, we hypothesized that during this period negative correlations will be observed between P. polylepis and (1) main phytoplankton groups contributing to the spring bloom (i.e., diatoms and dinoflagellates), and (2) zooplankton growth and abundance. To test these hypotheses, we analyzed inter-annual variability in phytoplankton and zooplankton dynamics as well as growth indices (RNA?DNA ratio) in dominant zooplankton in relation to the Prymnesium abundance and biomass. Contrary to the hypothesized relationships, no measurable negative responses to P. polylepis were observed for either the total phytoplankton stocks or the zooplankton community. The only negative response, possibly associated with P. polylepis occurrence, was significantly lower abundance of dinoflagellates both during and after the bloom in 2008. Moreover, contrary to the expected negative effects, there were significantly higher total phytoplankton abundance as well as significantly higher winter abundance and winter-spring RNA?DNA ratio in dominant zooplankton species in 2008, indicating that P. polylepis bloom coincided with favourable feeding conditions for zooplankton. Thus, primary consumers, and consequently also zooplanktivores (e.g., larval fish and mysids), may benefit from haptophyte blooms, particularly in winter, when phytoplankton is scarce. PMID:25393031

  17. Persistence of an unusual pelagic zooplankton assemblage in a clear mountain lake

    USGS Publications Warehouse

    Larson, Gary L.; Hoffman, Robert L.; McIntire, C.D.

    2002-01-01

    The planktonic zooplankton assemblage in Mowich Lake, Mount Rainier National Park (MORA), was composed almost entirely of rotifers in 1966 and 1967. Adult pelagic crustacean taxa were rare. Their paucity was attributed to predation by kokanee salmon (Oncorhynchus nerka), which had been stocked in 1961. During a park-wide survey of 24 lakes in 1988, Mowich Lake was the only one that did not contain at least one planktonic crustacean species. Given the apparent persistence of the unusual pelagic zooplankton assemblage in Mowich Lake, the first objective of this study was to document the interannual variation in the taxonomic structure of the zooplankton assemblages in the lake from 1988 through 1999. A second objective was to determine if it was possible to predict the taxonomic composition of the pelagic crustacean zooplankton assemblage in Mowich Lake prior to the stocking of kokanee salmon. The Mowich Lake zooplankton assemblages in 1988a??1999 were consistent with those in 1966 and 1967. Crustacean taxa were extremely rare, but they included most of the primary taxa collected from 23 MORA lakes surveyed in 1988. Nonetheless, the 1988 collections showed that the September rotifer assemblage in Mowich Lake was similar to 10 of the 24 lakes sampled. Seven of the 10 lakes were dominated by cladocerans, primarily Daphnia rosea and Holopedium gibberum. Therefore, it appeared that either one or both of these species may have numerically dominated the crustacean zooplankton assemblage in the lake prior to 1961.

  18. Persistence of an unusual pelagic zooplankton assemblage in a clear, mountain lake

    USGS Publications Warehouse

    Larson, G.L.; Hoffman, R.L.; David, McIntire C.

    2002-01-01

    The planktonic zooplankton assemblage in Mowich Lake, Mount Rainier National Park (MORA), was composed almost entirely of rotifers in 1966 and 1967. Adult pelagic crustacean taxa were rare. Their paucity was attributed to predation by kokanee salmon (Oncorhynchus nerka), which had been stocked in 1961. During a park-wide survey of 24 lakes in 1988, Mowich Lake was the only one that did not contain at least one planktonic crustacean species. Given the apparent persistence of the unusual pelagic zooplankton assemblage in Mowich Lake, the first objective of this study was to document the interannual variation in the taxonomic structure of the zooplankton assemblages in the lake from 1988 through 1999. A second objective was to determine if it was possible to predict the taxonomic composition of the pelagic crustacean zooplankton assemblage in Mowich Lake prior to the stocking of kokanee salmon. The Mowich Lake zooplankton assemblages in 1988-1999 were consistent with those in 1966 and 1967. Crustacean taxa were extremely rare, but they included most of the primary taxa collected from 23 MORA lakes surveyed in 1988. Nonetheless, the 1988 collections showed that the September rotifer assemblage in Mowich Lake was similar to 10 of the 24 lakes sampled. Seven of the 10 lakes were dominated by cladocerans, primarily Daphnia rosea and Holopedium gibberum. Therefore, it appeared that either one or both of these species may have numerically dominated the crustacean zooplankton assemblage in the lake prior to 1961.

  19. Lake Ontario zooplankton in 2003 and 2008: community changes and vertical redistribution

    USGS Publications Warehouse

    Rudstam, Lars G.; Holeck, Kristen T.; Bowen, Kelly L.; Watkins, James M.; Weidel, Brian C.; Luckey, Frederick J.

    2014-01-01

    Lake-wide zooplankton surveys are critical for documenting and understanding food web responses to ecosystem change. Surveys in 2003 and 2008 during the binational intensive field year in Lake Ontario found that offshore epilimnetic crustacean zooplankton declined by a factor of 12 (density) and factor of 5 (biomass) in the summer with smaller declines in the fall. These declines coincided with an increase in abundance of Bythotrephes and are likely the result of direct predation by, or behavioral responses to this invasive invertebrate predator. Whole water column zooplankton density also declined from 2003 to 2008 in the summer and fall (factor of 4), but biomass only declined in the fall (factor of 2). The decline in biomass was less than the decline in density because the average size of individual zooplankton increased. This was due to changes in the zooplankton community composition from a cyclopoid/bosminid dominated community in 2003 to a calanoid dominated community in 2008. The increase in calanoid copepods was primarily due to the larger species Limnocalanus macrurus and Leptodiaptomus sicilis. These coldwater species were found in and below the thermocline associated with a deep chlorophyll layer. In 2008, most of the zooplankton biomass resided in or below the thermocline during the day. Increased importance of copepods in deeper, colder water may favor cisco and rainbow smelt over alewife because these species are better adapted to cold temperatures than Alewife.

  20. Abundance and diversity of zooplankton in semi intensive prawn (Macrobrachium rosenbergii) farm.

    PubMed

    Shil, Jadobendro; Ghosh, Alokesh Kumar; Rahaman, S M Bazlur

    2013-12-01

    The present study was carried out on the seasonal abundance and diversity of zooplankton in a semi- intensive prawn farm of Bagerhat district from July to December, 2008. Plankton samples were collected by conical shaped monofilament nylon net (Plankton net) and Lugol's solution was used for preservation. The zooplankton abundance was influenced by physico-chemical factors. During the study period 11 genera of zooplankton under 5 orders were recorded from the study ponds namely Copepoda, Rotifera, Cladocera, Ostracoda and Crustacean Larvae. Among all groups copepod was the dominant order. The percentages of Copepoda, Rotifera, Cladocera, Ostracoda and Crustacean Larvae in semi-intensive culture system were 54%, 28%, 12%, 4% and 2% respectively. But the genera Brachionus under the order of Rotifer was dominant among all other genera. Cyclops and Helidiaptomus under the order of Copepod were the 2nd dominant genera. Numbers of zooplankton species were recorded to be the highest in summer season and minimum at early winter season. Highest number of zooplankton found at the month of October. Total zooplankton shows significant positive relationship with water temperature ((r?=?+0.384), Dissolve Oxygen(r?=?+0.113), pH(r?=?+0.320), Free CO2 (r?=?+0.319), Alkalinity(r?=?+0.269), Hardness (r?=?+0.402) and negative relationship with Salinity(r?=?-0.486), Transparency(r?=?-0.693). The findings of the present study will help to improve the management strategies of shrimp culture system. PMID:23667823

  1. Importance of light, temperature, zooplankton, and fish in predicting the nighttime vertical distribution of Mysis diluviana

    USGS Publications Warehouse

    Murphy, Marilyn K.; Robert O'Gorman; Boscarino, Brent T.; Rudstam, Lars G.; Eillenberger, June L.

    2009-01-01

    The opossum shrimp Mysis diluviana (formerly M. relicta) performs large amplitude diel vertical migrations in Lake Ontario and its nighttime distribution is in?uenced by temperature, light and the distribution of its predators and prey. At one location in southeastern Lake Ontario, we measured the vertical distribution of mysids, mysid predators (i.e. planktivorous ?shes) and mysid prey (i.e. zooplankton), in addition to light and temperature, on 8 occasions from May to September, 2004 and 2005. We use these data to test 3 different predictive models of mysid habitat selection, based on: (1) laboratoryderived responses of mysids to different light and temperature gradients in the absence of predator or prey cues; (2) growth rate of mysids, as estimated with a mysid bioenergetics model, given known prey densities and temperatures at different depths in the water column; (3) ratio of growth rates (g) and mortality risk (?) associated with the distribution of predatory ?shes. The model based on light and temperature preferences was a better predictor of mysid vertical distribution than the models based on growth rate and g:?on all 8 occasions. Although mysid temperature and light preferences probably evolved as mechanisms to reduce predation while increasing foraging intake, the response to temperature and light alone predicts mysid vertical distribution across seasons in Lake Ontario.

  2. Importance of light, temperature, zooplankton and fish in predicting the nighttime vertical distribution of Mysis diluviana

    USGS Publications Warehouse

    Boscarino, B.T.; Rusdtam, L.G.; Eillenberger, J.L.; O'Gorman, R.

    2009-01-01

    The opossum shrimp Mysis diluviana (formerly M. relicta) performs large amplitude diel vertical migrations in Lake Ontario and its nighttime distribution is influenced by temperature, light and the distribution of its predators and prey. At one location in southeastern Lake Ontario, we measured the vertical distribution of mysids, mysid predators (i.e. planktivorous fishes) and mysid prey (i.e. zooplankton), in addition to light and temperature, on 8 occasions from May to September, 2004 and 2005. We use these data to test 3 different predictive models of mysid habitat selection, based on: (1) laboratory-derived responses of mysids to different light and temperature gradients in the absence of predator or prey cues; (2) growth rate of mysids, as estimated with a mysid bioenergetics model, given known prey densities and temperatures at different depths in the water column; (3) ratio of growth rates (g) and mortality risk (??) associated with the distribution of predatory fishes. The model based on light and temperature preferences was a better predictor of mysid vertical distribution than the models based on growth rate and g:?? on all 8 occasions. Although mysid temperature and light preferences probably evolved as mechanisms to reduce predation while increasing foraging intake, the response to temperature and light alone predicts mysid vertical distribution across seasons in Lake Ontario. ?? Inter-Research 2009.

  3. A Potts Model for Night Light and Human Population

    E-print Network

    Máté, Gabriell

    2015-01-01

    The Potts model was one of the most popular physics models of the twentieth century in an interdisciplinary context. It has been applied to a large variety of problems. Many generalizations exists and a whole range of models were inspired by this statistical physics tool. Here we present how a generic Potts model can be used to study complex data. As a demonstration, we engage our model in the analysis of night light patterns of human settlements observed on space photographs.

  4. Impact of zooplankton grazing on the excystation, viability, and infectivity of the protozoan pathogens Cryptosporidium parvum and Giardia lamblia.

    PubMed

    Connelly, S J; Wolyniak, E A; Dieter, K L; Williamson, C E; Jellison, K L

    2007-11-01

    Very little is known about the ability of the zooplankton grazer Daphnia pulicaria to reduce populations of Giardia lamblia cysts and Cryptosporidium parvum oocysts in surface waters. The potential for D. pulicaria to act as a biological filter of C. parvum and G. lamblia was tested under three grazing pressures (one, two, or four D. pulicaria grazers per 66 ml). (Oo)cysts (1 x 10(4) per 66 ml) were added to each grazing bottle along with the algal food Selenastrum capricornutum (6.6 x 10(4) cells per 66 ml) to stimulate normal grazing. Bottles were rotated (2 rpm) to prevent settling of (oo)cysts and algae for 24 h (a light:dark cycle of 16 h:8 h) at 20 degrees C. The impact of D. pulicaria grazing on (oo)cysts was assessed by (i) (oo)cyst clearance rates, (ii) (oo)cyst viability, (iii) (oo)cyst excystation, and (iv) oocyst infectivity in cell culture. Two D. pulicaria grazers significantly decreased the total number of C. parvum oocysts by 52% and G. lamblia cysts by 44%. Furthermore, two D. pulicaria grazers significantly decreased C. parvum excystation and infectivity by 5% and 87%, respectively. Two D. pulicaria grazers significantly decreased the viability of G. lamblia cysts by 52%, but analysis of G. lamblia excystation was confounded by observed mechanical disruption of the cysts after grazing. No mechanical disruption of the C. parvum oocysts was observed, presumably due to their smaller size. The data provide strong evidence that zooplankton grazers have the potential to substantially decrease the population of infectious C. parvum and G. lamblia in freshwater ecosystems. PMID:17873076

  5. A new ODE tumor growth modeling based on tumor population dynamics

    NASA Astrophysics Data System (ADS)

    Oroji, Amin; Omar, Mohd bin; Yarahmadian, Shantia

    2015-10-01

    In this paper a new mathematical model for the population of tumor growth treated by radiation is proposed. The cells dynamics population in each state and the dynamics of whole tumor population are studied. Furthermore, a new definition of tumor lifespan is presented. Finally, the effects of two main parameters, treatment parameter (q), and repair mechanism parameter (r) on tumor lifespan are probed, and it is showed that the change in treatment parameter (q) highly affects the tumor lifespan.

  6. The evolution of wealth transmission in human populations: a stochastic model

    E-print Network

    Augustins, G; Ferdy, J-B; Ferrer, R; Godelle, B; Pitard, E; Rousset, F

    2014-01-01

    Reproductive success and survival are influenced by wealth in human populations. Wealth is transmitted to offsprings and strategies of transmission vary over time and among populations, the main variation being how equally wealth is transmitted to children. Here we propose a model where we simulate both the dynamics of wealth in a population and the evolution of a trait that determines how wealth is transmitted from parents to offspring, in a darwinian context.

  7. The evolution of wealth transmission in human populations: a stochastic model

    NASA Astrophysics Data System (ADS)

    Augustins, G.; Etienne, L.; Ferdy, J.-B.; Ferrer, R.; Godelle, B.; Pitard, E.; Rousset, F.

    2014-03-01

    Reproductive success and survival are influenced by wealth in human populations. Wealth is transmitted to offsprings and strategies of transmission vary over time and among populations, the main variation being how equally wealth is transmitted to children. Here we propose a model where we simulate both the dynamics of wealth in a population and the evolution of a trait that determines how wealth is transmitted from parents to offspring, in a darwinian context.

  8. Maryland's Special Populations Cancer Network: cancer health disparities reduction model.

    PubMed

    Baquet, Claudia R; Mack, Kelly M; Bramble, Joy; DeShields, Mary; Datcher, Delores; Savoy, Mervin; Hummel, Kery; Mishra, Shiraz I; Brooks, Sandra E; Boykin-Brown, Stephanie

    2005-05-01

    Cancer in Maryland is a serious health concern for minority and underserved populations in rural and urban areas. This report describes the National Cancer Institute (NCI) supported Maryland Special Populations Cancer Network (MSPN), a community-academic partnership. The MSPN's priority populations include African Americans, Native Americans, and other medically underserved residents of rural and urban areas. The MSPN has established a community infrastructure through formal collaborations with several community partners located in Baltimore City, the rural Eastern Shore, and Southern and Western Maryland, and among the Piscataway Conoy Tribe and the other 27 Native American Tribes in Maryland. Key partners also include the University of Maryland Eastern Shore and the University of Maryland Statewide Health Network. The MSPN has implemented innovative and successful programs in cancer health disparities research, outreach, and training; clinical trials education, health disparities policy, and resource leveraging. The MSPN addresses the goal of the NCI and the Department of Health and Human Services (DHHS) to reduce and eventually eliminate cancer health disparities. Community-academic partnerships are the foundation of this successful network. PMID:15937382

  9. Validation of population-based disease simulation models: a review of concepts and methods

    PubMed Central

    2010-01-01

    Background Computer simulation models are used increasingly to support public health research and policy, but questions about their quality persist. The purpose of this article is to review the principles and methods for validation of population-based disease simulation models. Methods We developed a comprehensive framework for validating population-based chronic disease simulation models and used this framework in a review of published model validation guidelines. Based on the review, we formulated a set of recommendations for gathering evidence of model credibility. Results Evidence of model credibility derives from examining: 1) the process of model development, 2) the performance of a model, and 3) the quality of decisions based on the model. Many important issues in model validation are insufficiently addressed by current guidelines. These issues include a detailed evaluation of different data sources, graphical representation of models, computer programming, model calibration, between-model comparisons, sensitivity analysis, and predictive validity. The role of external data in model validation depends on the purpose of the model (e.g., decision analysis versus prediction). More research is needed on the methods of comparing the quality of decisions based on different models. Conclusion As the role of simulation modeling in population health is increasing and models are becoming more complex, there is a need for further improvements in model validation methodology and common standards for evaluating model credibility. PMID:21087466

  10. On uses, misuses and potential abuses of fractal analysis in zooplankton behavioral studies: A review, a critique and a few recommendations

    NASA Astrophysics Data System (ADS)

    Seuront, Laurent

    2015-08-01

    Fractal analysis is increasingly used to describe, and provide further understanding to, zooplankton swimming behavior. This may be related to the fact that fractal analysis and the related fractal dimension D have the desirable properties to be independent of measurement scale and to be very sensitive to even subtle behavioral changes that may be undetectable to other behavioral variables. As early claimed by Coughlin et al. (1992), this creates "the need for fractal analysis" in behavioral studies, which has hence the potential to become a valuable tool in zooplankton behavioral ecology. However, this paper stresses that fractal analysis, as well as the more elaborated multifractal analysis, is also a risky business that may lead to irrelevant results, without paying extreme attention to a series of both conceptual and practical steps that are all likely to bias the results of any analysis. These biases are reviewed and exemplified on the basis of the published literature, and remedial procedures are provided not only for geometric and stochastic fractal analyses, but also for the more complicated multifractal analysis. The concept of multifractals is finally introduced as a direct, objective and quantitative tool to identify models of motion behavior, such as Brownian motion, fractional Brownian motion, ballistic motion, Lévy flight/walk and multifractal random walk. I finally briefly review the state of this emerging field in zooplankton behavioral research.

  11. Model-Based Individualized Treatment of Chemotherapeutics: Bayesian Population Modeling and Dose Optimization

    PubMed Central

    Jayachandran, Devaraj; Laínez-Aguirre, José; Rundell, Ann; Vik, Terry; Hannemann, Robert; Reklaitis, Gintaras; Ramkrishna, Doraiswami

    2015-01-01

    6-Mercaptopurine (6-MP) is one of the key drugs in the treatment of many pediatric cancers, auto immune diseases and inflammatory bowel disease. 6-MP is a prodrug, converted to an active metabolite 6-thioguanine nucleotide (6-TGN) through enzymatic reaction involving thiopurine methyltransferase (TPMT). Pharmacogenomic variation observed in the TPMT enzyme produces a significant variation in drug response among the patient population. Despite 6-MP’s widespread use and observed variation in treatment response, efforts at quantitative optimization of dose regimens for individual patients are limited. In addition, research efforts devoted on pharmacogenomics to predict clinical responses are proving far from ideal. In this work, we present a Bayesian population modeling approach to develop a pharmacological model for 6-MP metabolism in humans. In the face of scarcity of data in clinical settings, a global sensitivity analysis based model reduction approach is used to minimize the parameter space. For accurate estimation of sensitive parameters, robust optimal experimental design based on D-optimality criteria was exploited. With the patient-specific model, a model predictive control algorithm is used to optimize the dose scheduling with the objective of maintaining the 6-TGN concentration within its therapeutic window. More importantly, for the first time, we show how the incorporation of information from different levels of biological chain-of response (i.e. gene expression-enzyme phenotype-drug phenotype) plays a critical role in determining the uncertainty in predicting therapeutic target. The model and the control approach can be utilized in the clinical setting to individualize 6-MP dosing based on the patient’s ability to metabolize the drug instead of the traditional standard-dose-for-all approach. PMID:26226448

  12. Modeling of LEO Orbital Debris Populations in Centimeter and Millimeter Size Regimes

    NASA Technical Reports Server (NTRS)

    Xu, Y.-L.; Hill, . M.; Horstman, M.; Krisko, P. H.; Liou, J.-C.; Matney, M.; Stansbery, E. G.

    2010-01-01

    The building of the NASA Orbital Debris Engineering Model, whether ORDEM2000 or its recently updated version ORDEM2010, uses as its foundation a number of model debris populations, each truncated at a minimum object-size ranging from 10 micron to 1 m. This paper discusses the development of the ORDEM2010 model debris populations in LEO (low Earth orbit), focusing on centimeter (smaller than 10 cm) and millimeter size regimes. Primary data sets used in the statistical derivation of the cm- and mm-size model populations are from the Haystack radar operated in a staring mode. Unlike cataloged objects of sizes greater than approximately 10 cm, ground-based radars monitor smaller-size debris only in a statistical manner instead of tracking every piece. The mono-static Haystack radar can detect debris as small as approximately 5 mm at moderate LEO altitudes. Estimation of millimeter debris populations (for objects smaller than approximately 6 mm) rests largely on Goldstone radar measurements. The bi-static Goldstone radar can detect 2- to 3-mm objects. The modeling of the cm- and mm-debris populations follows the general approach to developing other ORDEM2010-required model populations for various components and types of debris. It relies on appropriate reference populations to provide necessary prior information on the orbital structures and other important characteristics of the debris objects. NASA's LEO-to-GEO Environment Debris (LEGEND) model is capable of furnishing such reference populations in the desired size range. A Bayesian statistical inference process, commonly adopted in ORDEM2010 model-population derivations, changes a priori distribution into a posteriori distribution and thus refines the reference populations in terms of data. This paper describes key elements and major steps in the statistical derivations of the cm- and mm-size debris populations and presents results. Due to lack of data for near 1-mm sizes, the model populations of 1- to 3.16-mm objects are an empirical extension from larger debris. The extension takes into account the results of micro-debris (from 10 micron to 1 mm) population modeling that is based on shuttle impact data, in the hope of making a smooth transition between micron and millimeter size regimes. This paper also includes a brief discussion on issues and potential future work concerning the analysis and interpretation of Goldstone radar data.

  13. Population density models of integrate-and-fire neurons with jumps: well-posedness.

    PubMed

    Dumont, Grégory; Henry, Jacques

    2013-09-01

    In this paper we study the well-posedness of different models of population of leaky integrate-and-fire neurons with a population density approach. The synaptic interaction between neurons is modeled by a potential jump at the reception of a spike. We study populations that are self excitatory or self inhibitory. We distinguish the cases where this interaction is instantaneous from the one where there is a repartition of conduction delays. In the case of a bounded density of delays both excitatory and inhibitory population models are shown to be well-posed. But without conduction delay the solution of the model of self excitatory neurons may blow up. We analyze the different behaviours of the model with jumps compared to its diffusion approximation. PMID:22714650

  14. GIS and plume dispersion modeling for population exposure assessment 

    E-print Network

    Archer, Jeffrey Keith

    1998-01-01

    The use of Pollutant Plume Dispersion Models is widespread in the evaluation of point sources of air pollution. These models provide valuable insight into the concentration and dispersion of hazardous materials throughout ...

  15. FITPOP, a heuristic simulation model of population dynamics and genetics with special reference to fisheries

    USGS Publications Warehouse

    McKenna, James E., Jr.

    2000-01-01

    Although, perceiving genetic differences and their effects on fish population dynamics is difficult, simulation models offer a means to explore and illustrate these effects. I partitioned the intrinsic rate of increase parameter of a simple logistic-competition model into three components, allowing specification of effects of relative differences in fitness and mortality, as well as finite rate of increase. This model was placed into an interactive, stochastic environment to allow easy manipulation of model parameters (FITPOP). Simulation results illustrated the effects of subtle differences in genetic and population parameters on total population size, overall fitness, and sensitivity of the system to variability. Several consequences of mixing genetically distinct populations were illustrated. For example, behaviors such as depression of population size after initial introgression and extirpation of native stocks due to continuous stocking of genetically inferior fish were reproduced. It also was shown that carrying capacity relative to the amount of stocking had an important influence on population dynamics. Uncertainty associated with parameter estimates reduced confidence in model projections. The FITPOP model provided a simple tool to explore population dynamics, which may assist in formulating management strategies and identifying research needs.

  16. Modeling the population dynamics of Culex quinquefasciatus (Diptera: Culcidae), along an elevational gradient in Hawaii

    USGS Publications Warehouse

    Ahumada, Jorge A.; LaPointe, D.; Samuel, Michael D.

    2004-01-01

    We present a population model to understand the effects of temperature and rainfall on the population dynamics of the southern house mosquito, Culex quinquefasciatus Say, along an elevational gradient in Hawaii. We use a novel approach to model the effects of temperature on population growth by dynamically incorporating developmental rate into the transition matrix, by using physiological ages of immatures instead of chronological age or stages. We also model the effects of rainfall on survival of immatures as the cumulative number of days below a certain rain threshold. Finally, we incorporate density dependence into the model as competition between immatures within breeding sites. Our model predicts the upper altitudinal distributions of Cx. quinquefasciatus on the Big Island of Hawaii for self-sustaining mosquito and migrating summer sink populations at 1,475 and 1,715 m above sea level, respectively. Our model predicts that mosquitoes at lower elevations can grow under a broader range of rainfall parameters than middle and high elevation populations. Density dependence in conjunction with the seasonal forcing imposed by temperature and rain creates cycles in the dynamics of the population that peak in the summer and early fall. The model provides a reasonable fit to the available data on mosquito abundance for the east side of Mauna Loa, Hawaii. The predictions of our model indicate the importance of abiotic conditions on mosquito dynamics and have important implications for the management of diseases transmitted by Cx. quinquefasciatus in Hawaii and elsewhere.

  17. DEVELOPMENT AND APPLICATION OF POPULATION MODELS TO SUPPORT EPA'S ECOLOGICAL RISK ASSESSMENT PROCESSES FOR PESTICIDES

    EPA Science Inventory

    As part of a broader exploratory effort to develop ecological risk assessment approaches to estimate potential chemical effects on non-target populations, we describe an approach for developing simple population models to estimate the extent to which acute effects on individual...

  18. Population-based threshold models describe weed germination and emergence patterns across varying

    E-print Network

    Bradford, Kent

    Population-based threshold models describe weed germination and emergence patterns across varying and success of control measures often hinges on the timing of weed emergence. We used population of herbicide-resistant and -susceptible Echinochloa phyllopogon, a weed of temperate paddy rice, and applied

  19. Linking adverse outcome pathways and population models: Current state of the science and future directions

    EPA Science Inventory

    Analysis of population impacts of chemical stressors through the use of modeling provides a linkage between endpoints observed in the individual and ecological risk to the population as a whole. In this presentation, we describe the evolution of an approach developed in our labor...

  20. A spatial Dirichlet process mixture model for clustering population genetics data

    E-print Network

    Reich, Brian J.

    A spatial Dirichlet process mixture model for clustering population genetics data Brian J. Reich1 Abstract Identifying homogeneous groups of individuals is an important problem in population genet- ics that uses both genetic and spatial information to classify individuals into homogeneous clusters for further

  1. The Expansion of National Educational Systems: Tests of a Population Ecology Model

    ERIC Educational Resources Information Center

    Nielsen, Francois; Hannan, Michael T.

    1977-01-01

    This paper investigates the expansion of enrollments in national systems of education during the 1950-1970 period from the point of view of the population ecology of organizations. A simplified dynamic model of the growth of a population of educational organizations is estimated using various techniques for pooling time series of data. (Author/JM)

  2. ANALYSIS OF A PARABOLIC CROSS-DIFFUSION POPULATION MODEL WITHOUT SELF-DIFFUSION

    E-print Network

    Jüngel, Ansgar

    equations, strong cross-diffusion, weak competition, relative en- tropy, global-in-time existence of weakANALYSIS OF A PARABOLIC CROSS-DIFFUSION POPULATION MODEL WITHOUT SELF-DIFFUSION LI CHEN Institut f to a strongly coupled parabolic sys- tem arising in population dynamics is shown. The cross-diffusion terms

  3. Incorporating Eco-Evolutionary Processes into Population Models:Design and Applications

    EPA Science Inventory

    Eco-evolutionary population models are powerful new tools for exploring howevolutionary processes influence plant and animal population dynamics andvice-versa. The need to manage for climate change and other dynamicdisturbance regimes is creating a demand for the incorporation of...

  4. Simple Biophysical Model Predicts Faster Accumulation of Hybrid Incompatibilities in Small Populations Under Stabilizing Selection

    PubMed Central

    Khatri, Bhavin S.; Goldstein, Richard A.

    2015-01-01

    Speciation is fundamental to the process of generating the huge diversity of life on Earth. However, we are yet to have a clear understanding of its molecular-genetic basis. Here, we examine a computational model of reproductive isolation that explicitly incorporates a map from genotype to phenotype based on the biophysics of protein–DNA binding. In particular, we model the binding of a protein transcription factor to a DNA binding site and how their independent coevolution, in a stabilizing fitness landscape, of two allopatric lineages leads to incompatibilities. Complementing our previous coarse-grained theoretical results, our simulations give a new prediction for the monomorphic regime of evolution that smaller populations should develop incompatibilities more quickly. This arises as (1) smaller populations have a greater initial drift load, as there are more sequences that bind poorly than well, so fewer substitutions are needed to reach incompatible regions of phenotype space, and (2) slower divergence when the population size is larger than the inverse of discrete differences in fitness. Further, we find longer sequences develop incompatibilities more quickly at small population sizes, but more slowly at large population sizes. The biophysical model thus represents a robust mechanism of rapid reproductive isolation for small populations and large sequences that does not require peak shifts or positive selection. Finally, we show that the growth of DMIs with time is quadratic for small populations, agreeing with Orr’s model, but nonpower law for large populations, with a form consistent with our previous theoretical results. PMID:26434721

  5. Simple Biophysical Model Predicts Faster Accumulation of Hybrid Incompatibilities in Small Populations Under Stabilizing Selection.

    PubMed

    Khatri, Bhavin S; Goldstein, Richard A

    2015-12-01

    Speciation is fundamental to the process of generating the huge diversity of life on Earth. However, we are yet to have a clear understanding of its molecular-genetic basis. Here, we examine a computational model of reproductive isolation that explicitly incorporates a map from genotype to phenotype based on the biophysics of protein-DNA binding. In particular, we model the binding of a protein transcription factor to a DNA binding site and how their independent coevolution, in a stabilizing fitness landscape, of two allopatric lineages leads to incompatibilities. Complementing our previous coarse-grained theoretical results, our simulations give a new prediction for the monomorphic regime of evolution that smaller populations should develop incompatibilities more quickly. This arises as (1) smaller populations have a greater initial drift load, as there are more sequences that bind poorly than well, so fewer substitutions are needed to reach incompatible regions of phenotype space, and (2) slower divergence when the population size is larger than the inverse of discrete differences in fitness. Further, we find longer sequences develop incompatibilities more quickly at small population sizes, but more slowly at large population sizes. The biophysical model thus represents a robust mechanism of rapid reproductive isolation for small populations and large sequences that does not require peak shifts or positive selection. Finally, we show that the growth of DMIs with time is quadratic for small populations, agreeing with Orr's model, but nonpower law for large populations, with a form consistent with our previous theoretical results. PMID:26434721

  6. Inoculation Strategies for Polio: Modeling the Effects of a Growing Population on Public Health Outcomes

    E-print Network

    Rowell, Eric C.

    Inoculation Strategies for Polio: Modeling the Effects of a Growing Population on Public Health for global eradication of Polio by 2018, but the disease remains endemic in three countries. Using and sufficient conditions were found for elimination of Polio in such a population in the event of an outbreak. 1

  7. A population density approach that facilitates largescale modeling of neural networks: extension to

    E-print Network

    Nykamp, Duane Q.

    for e#ciently simulating complex networks of integrate­and­ fire neurons was specialized to the case is followed in detail. In the population density approach, integrate­and­fire point­neurons are grouped process whose rate is determined by the firing rates of its presynaptic populations. In our original model

  8. DEVELOPING A HABITAT-BASED POPULATION VIABILITY MODEL FOR SAGE-GROUSE

    E-print Network

    Aldridge, Cameron

    DEVELOPING A HABITAT-BASED POPULATION VIABILITY MODEL FOR SAGE-GROUSE IN SOUTHEASTERN ALBERTA FINAL PROJECT REPORT FOR 2002 SAGE-GROUSE FUNDING PARTNERS Cameron L. Aldridge Department of Biological Sciences@ualberta.ca November 30, 2002 #12;ii ABSTRACT The Alberta Sage-Grouse population has declined by 66-92% over the last

  9. DEVELOPING A HABITAT-BASED POPULATION VIABILITY MODEL FOR SAGE-GROUSE

    E-print Network

    Aldridge, Cameron

    DEVELOPING A HABITAT-BASED POPULATION VIABILITY MODEL FOR SAGE-GROUSE IN SOUTHEASTERN ALBERTA FINAL PROJECT REPORT FOR 2003 SAGE-GROUSE FUNDING PARTNERS Cameron L. Aldridge Department of Biological Sciences@ualberta.ca November 30, 2003 #12;ii ABSTRACT The endangered Alberta Sage-Grouse population has declined by 66-92% over

  10. DEVELOPING A HABITAT-BASED POPULATION VIABILITY MODEL FOR SAGE GROUSE

    E-print Network

    Aldridge, Cameron

    DEVELOPING A HABITAT-BASED POPULATION VIABILITY MODEL FOR SAGE GROUSE IN SOUTHEASTERN ALBERTA FINAL PROJECT REPORT FOR 2001 SAGE GROUSE FUNDING PARTNERS Cameron L. Aldridge Department of Biological Sciences@ualberta.ca December, 2001 #12;ii ABSTRACT The Alberta Sage Grouse population has declined by 66-92% over the last 30

  11. Management and Conservation Article Sensitivity Analyses of a Population Projection Model of

    E-print Network

    Clark, William R.

    -Necked Pheasants WILLIAM R. CLARK,1 Department of Ecology, Evolution, and Organismal Biology, Iowa State University on population dynamics of ring-necked pheasant (Phasianus colchicus) in North America, but there has not been, elasticity, finite rate of increase, matrix population model, nest success, Phasianus colchicus, pheasant

  12. A MID-ATLANTIC AND A NATIONAL POPULATION MODEL OF NORTHERN BOBWHITE DEMOGRAPHIC SENSITIVITY

    E-print Network

    Sandercock, Brett K.

    A MID-ATLANTIC AND A NATIONAL POPULATION MODEL OF NORTHERN BOBWHITE DEMOGRAPHIC SENSITIVITY (LSA) was only recently developed to examine demographic sensitivity of the finite rate of population change. We compare local demographic parameters of bobwhite versus a national compilation to identify

  13. Exploring a Financial Product Model with a Two-Population Genetic Algorithm

    E-print Network

    Kimbrough, Steven Orla

    Exploring a Financial Product Model with a Two-Population Genetic Algorithm Steven O. Kimbrough two-population genetic algorithm (GA) has been remarkably successful in finding good, feasible is motivated by the fact that, while evolution programs (EPs) in general and genetic algorithms in particular

  14. SUBLETHAL NARCOSIS AND POPULATION PERSISTENCE: A MODELING STUDY ON GROWTH EFFECTS

    EPA Science Inventory

    This study of a Daphnia population model suggests that sublethal effects of nonpolar narcotics on growth of individual organisms can result in ultimate extinction of the population at chronic chemical concentrations near the effect concentration that leads to a 50% reduction in i...

  15. Universal Screening for Emotional and Behavioral Problems: Fitting a Population-Based Model

    ERIC Educational Resources Information Center

    Schanding, G. Thomas, Jr.; Nowell, Kerri P.

    2013-01-01

    Schools have begun to adopt a population-based method to conceptualizing assessment and intervention of students; however, little empirical evidence has been gathered to support this shift in service delivery. The present study examined the fit of a population-based model in identifying students' behavioral and emotional functioning using a…

  16. ECOLOGICAL THEORY. A general consumer-resource population model.

    PubMed

    Lafferty, Kevin D; DeLeo, Giulio; Briggs, Cheryl J; Dobson, Andrew P; Gross, Thilo; Kuris, Armand M

    2015-08-21

    Food-web dynamics arise from predator-prey, parasite-host, and herbivore-plant interactions. Models for such interactions include up to three consumer activity states (questing, attacking, consuming) and up to four resource response states (susceptible, exposed, ingested, resistant). Articulating these states into a general model allows for dissecting, comparing, and deriving consumer-resource models. We specify this general model for 11 generic consumer strategies that group mathematically into predators, parasites, and micropredators and then derive conditions for consumer success, including a universal saturating functional response. We further show how to use this framework to create simple models with a common mathematical lineage and transparent assumptions. Underlying assumptions, missing elements, and composite parameters are revealed when classic consumer-resource models are derived from the general model. PMID:26293960

  17. Integration of Density Dependence and Concentration Response Models Provides an Ecologically Relevant Assessment of Populations Exposed to Toxicants

    EPA Science Inventory

    The assessment of toxic exposure on wildlife populations involves the integration of organism level effects measured in toxicity tests (e.g., chronic life cycle) and population models. These modeling exercises typically ignore density dependence, primarily because information on ...

  18. 3.11 Predator-Prey models Let )(tx be the population density of prey, )(ty be the population density of

    E-print Network

    Hsu, Sze-Bi

    §3.11 Predator-Prey models Let )(tx be the population density of prey, )(ty be the population density of predator at time t . The general model for predator-prey interaction is following ),( yxxf dt assume the prey grows exponentially in the absence of predation. The prey is consumed by predator

  19. Stability patterns for a size-structured population model and its stage-structured counterpart.

    PubMed

    Zhang, Lai; Pedersen, Michael; Lin, Zhigui

    2015-09-01

    In this paper we compare a general size-structured population model, where a size-structured consumer feeds upon an unstructured resource, to its simplified stage-structured counterpart in terms of equilibrium stability. Stability of the size-structured model is understood in terms of an equivalent delayed system consisting of a renewal equation for the consumer population birth rate and a delayed differential equation for the resource. Results show that the size- and stage-structured models differ considerably with respect to equilibrium stability, although the two models have completely identical equilibrium solutions. First, when adult consumers are superior foragers to juveniles, the size-structured model is more stable than the stage-structured model while the opposite occurs when juveniles are the superior foragers. Second, relatively large juvenile (adult) mortality tends to stabilise (destabilise) the size-structured model but destabilise (stabilise) the stage-structured model. Third, the stability pattern is sensitive to the adult-offspring size ratio in the size-structured model but much less sensitive in the stage-structured model. Finally, unless the adult-offspring size ratio is sufficiently small, the stage-structured model cannot satisfactorily capture the dynamics of the size-structured model. We conclude that caution must be taken when the stage-structured population model is applied, although it can consistently translate individual life history and stage-specific differences to the population level. PMID:26187293

  20. A model simulation of white-winged dove population dynamics in the Tamaulipan Biotic Province 

    E-print Network

    Martinez, Cristina Ann

    2002-01-01

    I present the development, evaluation, and sensitivity analysis of a simulation model representing two components of population dynamics-natality and mortality-for the white-winged dove (Zenaida asiatica asiatica; WWDO). I also discuss the role...

  1. ESTIMATING AVIAN POPULATION TRENDS USING A DETECTION-CORRECTED ABUNDANCE MODEL

    EPA Science Inventory

    Paper presents a new model for controlling detection heterogeneity in temporally stratified bird counts. The method will allow researchers to control for variation in observer ability in large-scale studies of avian population trends.

  2. POPULATION MODELS FOR ASSESSING RISKS OF MULTIPLE STRESSORS TO THE COMMON LOON

    EPA Science Inventory

    As part of a demonstration project focusing on the Common Loon (Gavia immer), the U.S. Environmental Protection Agency's National Health and Environmental Effects Research Laboratory is using a matrix population modeling framework to integrate demographic information for extrapol...

  3. North Atlantic summers have warmed more than winters since 1353, and the response of marine zooplankton

    PubMed Central

    Kamenos, Nicholas A.

    2010-01-01

    Modeling and measurements show that Atlantic marine temperatures are rising; however, the low temporal resolution of models and restricted spatial resolution of measurements (i) mask regional details critical for determining the rate and extent of climate variability, and (ii) prevent robust determination of climatic impacts on marine ecosystems. To address both issues for the North East Atlantic, a fortnightly resolution marine climate record from 1353–2006 was constructed for shallow inshore waters and compared to changes in marine zooplankton abundance. For the first time summer marine temperatures are shown to have increased nearly twice as much as winter temperatures since 1353. Additional climatic instability began in 1700 characterized by ?5–65 year climate oscillations that appear to be a recent phenomenon. Enhanced summer-specific warming reduced the abundance of the copepod Calanus finmarchicus, a key food item of cod, and led to significantly lower projected abundances by 2040 than at present. The faster increase of summer marine temperatures has implications for climate projections and affects abundance, and thus biomass, near the base of the marine food web with potentially significant feedback effects for marine food security. PMID:21148422

  4. North Atlantic summers have warmed more than winters since 1353, and the response of marine zooplankton.

    PubMed

    Kamenos, Nicholas A

    2010-12-28

    Modeling and measurements show that Atlantic marine temperatures are rising; however, the low temporal resolution of models and restricted spatial resolution of measurements (i) mask regional details critical for determining the rate and extent of climate variability, and (ii) prevent robust determination of climatic impacts on marine ecosystems. To address both issues for the North East Atlantic, a fortnightly resolution marine climate record from 1353-2006 was constructed for shallow inshore waters and compared to changes in marine zooplankton abundance. For the first time summer marine temperatures are shown to have increased nearly twice as much as winter temperatures since 1353. Additional climatic instability began in 1700 characterized by ?5-65 year climate oscillations that appear to be a recent phenomenon. Enhanced summer-specific warming reduced the abundance of the copepod Calanus finmarchicus, a key food item of cod, and led to significantly lower projected abundances by 2040 than at present. The faster increase of summer marine temperatures has implications for climate projections and affects abundance, and thus biomass, near the base of the marine food web with potentially significant feedback effects for marine food security. PMID:21148422

  5. A general modeling framework for genome ancestral origins in multiparental populations.

    PubMed

    Zheng, Chaozhi; P Boer, Martin; van Eeuwijk, Fred A

    2014-09-01

    The next generation of QTL (quantitative trait loci) mapping populations have been designed with multiple founders, where one to a number of generations of intercrossing are introduced prior to the inbreeding phase to increase accumulated recombinations and thus mapping resolution. Examples of such populations are Collaborative Cross (CC) in mice and Multiparent Advanced Generation Inter-Cross (MAGIC) lines in Arabidopsis. The genomes of the produced inbred lines are fine-grained random mosaics of the founder genomes. In this article, we present a novel framework for modeling ancestral origin processes along two homologous autosomal chromosomes from mapping populations, which is a major component in the reconstruction of the ancestral origins of each line for QTL mapping. We construct a general continuous time Markov model for ancestral origin processes, where the rate matrix is deduced from the expected densities of various types of junctions (recombination breakpoints). The model can be applied to monoecious populations with or without self-fertilizations and to dioecious populations with two separate sexes. The analytic expressions for map expansions and expected junction densities are obtained for mapping populations that have stage-wise constant mating schemes, such as CC and MAGIC. Our studies on the breeding design of MAGIC populations show that the intercross mating schemes do not matter much for large population size and that the overall expected junction density, and thus map resolution, are approximately proportional to the inverse of the number of founders. PMID:25236451

  6. Springtime zooplankton size structure over the continental shelf of the Bay of Biscay

    NASA Astrophysics Data System (ADS)

    Vandromme, P.; Nogueira, E.; Huret, M.; Lopez-Urrutia, Á.; González-Nuevo González, G.; Sourisseau, M.; Petitgas, P.

    2014-10-01

    Linking lower and higher trophic levels requires special focus on the essential role played by mid-trophic levels, i.e., the zooplankton. One of the most relevant pieces of information regarding zooplankton in terms of flux of energy lies in its size structure. In this study, an extensive data set of size measurements is presented, covering parts of the western European continental shelf and slope, from the Galician coast to the Ushant front, during the springs from 2005 to 2012. Zooplankton size spectra were estimated using measurements carried out in situ with the Laser Optical Plankton Counter (LOPC) and with an image analysis of WP2 net samples (200 ?m mesh size) performed following the ZooScan methodology. The LOPC counts and sizes particles within 100-2000 ?m of spherical equivalent diameter (ESD), whereas the WP2/ZooScan allows for counting, sizing and identification of zooplankton from ~ 400 ?m ESD. The difference between the LOPC (all particles) and the WP2/ZooScan (zooplankton only) was assumed to provide the size distribution of non-living particles, whose descriptors were related to a set of explanatory variables (including physical, biological and geographic descriptors). A statistical correction based on these explanatory variables was further applied to the LOPC size distribution in order to remove the non-living particles part, and therefore estimate the size distribution of zooplankton. This extensive data set provides relevant information about the zooplankton size distribution variability, productivity and trophic transfer efficiency in the pelagic ecosystem of the Bay of Biscay at a regional and interannual scale.

  7. Eutrophication and warming effects on long-term variation of zooplankton in Lake Biwa

    NASA Astrophysics Data System (ADS)

    Hsieh, C. H.; Sakai, Y.; Ban, S.; Ishikawa, K.; Ishikawa, T.; Ichise, S.; Yamamura, N.; Kumagai, M.

    2011-05-01

    We compiled and analyzed long-term (1961-2005) zooplankton community data in response to environmental variations in Lake Biwa. Environmental data indicate that Lake Biwa had experienced eutrophication (according to the total phosphorus concentration) in the late 1960s and recovered to a normal trophic status around 1985, and then has exhibited warming since 1990. Total zooplankton abundance showed a significant correlation with total phytoplankton biomass. Following a classic pattern, the cladoceran/calanoid and cyclopoid/calanoid abundance ratio was related positively to eutrophication. The zooplankton community exhibited a significant response to the boom and bust of phytoplankton biomass as a consequence of eutrophication-reoligotriphication and warming. Moreover, our analyses suggest that the Lake Biwa ecosystem exhibited a hierarchical response across trophic levels; that is, higher trophic levels may show a more delayed response or no response to eutrophication than lower ones. We tested the hypothesis that the phytoplankton community can better explain the variation of the zooplankton community than bulk environmental variables, considering that the phytoplankton community may directly affect the zooplankton succession through predator-prey interactions. Using a variance partition approach, however, we did not find strong evidence to support this hypothesis. We further aggregated zooplankton according to their feeding types (herbivorous, carnivorous, omnivorous, and parasitic) and taxonomic groups, and analyzed the aggregated data. While the pattern remains similar, the results are less clear comparing the results based on finely resolved data. Our research suggests that zooplankton can be bio-indicators of environmental changes; however, the efficacy depends on data resolution.

  8. Effects of physical processes on structure and transport of thin zooplankton layers in the coastal ocean

    USGS Publications Warehouse

    McManus, M.A.; Cheriton, O.M.; Drake, P.J.; Holliday, D.V.; Storlazzi, C.D.; Donaghay, P.L.; Greenlaw, C.F.

    2005-01-01

    Thin layers of plankton are recurrent features in a variety of coastal systems. These layers range in thickness from a few centimeters to a few meters. They can extend horizontally for kilometers and have been observed to persist for days. Densities of organisms found within thin layers are far greater than those above or below the layer, and as a result, thin layers may play an important role in the marine ecosystem. The paramount objective of this study was to understand the physical processes that govern the dynamics of thin layers of zooplankton in the coastal ocean. We deployed instruments to measure physical processes and zooplankton distribution in northern Monterey Bay; during an 11 d period of persistent upwelling-favorable winds, 7 thin zooplankton layers were observed. These zooplankton layers persisted throughout daylight hours, but were observed to dissipate during evening hours. These layers had an average vertical thickness of 1.01 m. No layers were found in regions where the Richardson number was <0.25. In general, when the Richardson number is <0.25 the water column is unstable, and incapable of supporting thin layers. Thin zooplankton layers were also located in regions of reduced flow. In addition, our observations show that the vertical depth distribution of thin zooplankton layers is modulated by high-frequency internal waves, with periods of 18 to 20 min. Results from this study clearly show an association between physical structure, physical processes and the presence of thin zooplankton layers in Monterey Bay. With this new understanding we may identify other coastal regions that have a high probability of supporting thin layers. ?? Inter-Research 2005.

  9. Modeling a beaver population on the Prescott Peninsula, Massachusetts: Feasibility of LANDSAT as an input

    NASA Technical Reports Server (NTRS)

    Finn, J. T.; Howard, R.

    1981-01-01

    A preliminary dynamic model of beaver spatial distribution and population growth was developed. The feasibility of locating beaver ponds on LANDSAT digital tapes, and of using this information to provide initial conditions of beaver spatial distribution for the model, and to validate model predictions is discussed. The techniques used to identify beaver ponds on LANDSAT are described.

  10. Motivation Modelling the CMD Making Inference Results Conclusion Ages of stellar populations from color-magnitude

    E-print Network

    Wolfe, Patrick J.

    Motivation Modelling the CMD Making Inference Results Conclusion Ages of stellar populations from Baines 093008 #12;Motivation Modelling the CMD Making Inference Results Conclusion Context & Example) guide to the Astronomy behind it. Paul Baines 093008 #12;#12;Motivation Modelling the CMD Making

  11. Numerical investigation of the recruitment process in open marine population models

    NASA Astrophysics Data System (ADS)

    Angulo, O.; López-Marcos, J. C.; López-Marcos, M. A.; Martínez-Rodríguez, J.

    2011-01-01

    The changes in the dynamics, produced by the recruitment process in an open marine population model, are investigated from a numerical point of view. The numerical method considered, based on the representation of the solution along the characteristic lines, approximates properly the steady states of the model, and is used to analyze the asymptotic behavior of the solutions of the model.

  12. Dynamical properties of the Penna aging model applied to the population of wolves

    NASA Astrophysics Data System (ADS)

    Makowiec, Danuta

    1997-02-01

    The parameters of th Penna bit-string model of aging of biological systems are systematically tested to better understand the model itself as well as the results arising from applying this model to studies of the development of the stationary population of Alaska wolves.

  13. POPULATION EXPOSURES TO PARTICULATE MATTER: A COMPARISON OF EXPOSURE MODEL PREDICTIONS AND MEASUREMENT DATA

    EPA Science Inventory

    The US EPA National Exposure Research Laboratory (NERL) is currently developing an integrated human exposure source-to-dose modeling system (HES2D). This modeling system will incorporate models that use a probabilistic approach to predict population exposures to environmental ...

  14. Population-scale modelling of cellular chemotaxis and aggregation

    NASA Astrophysics Data System (ADS)

    Fozard, J. A.; King, J. R.

    2008-02-01

    Motivated by chemotaxis of, and especially aggregation within, populations of cells, we examine an extension of the Becker-Doring aggregation equations in which monomers undergo diffusion and advection in one spatial dimension, as well as attaching themselves to clusters of all sizes. We restrict our attention to irreversible aggregation, particularly for power-law rate coefficients. We examine the large-time behaviour of the initial-value problem on an infinite domain, both in the purely diffusive case and with advection. We also determine the large-time behaviour on a semi-infinite domain, with a non-zero Dirichlet condition imposed on the monomer concentration at the boundary. The asymptotic results are confirmed by numerical simulations.

  15. Bayesian Modeling of Population Variability -- Practical Guidance and Pitfalls

    SciTech Connect

    Dana L. Kelly; Corwin L. Atwood

    2008-05-01

    With the advent of easy-to-use open-source software for Markov chain Monte Carlo (MCMC) simulation, hierarchical Bayesian analysis is gaining in popularity. This paper presents practical guidance for hierarchical Bayes analysis of typical problems in probabilistic safety assessment (PSA). The guidance is related to choosing parameterizations that accelerate convergence of the MCMC sampling and to illustrating the potential sensitivity of the results to the functional form chosen for the first-stage prior. This latter issue has significant ramifications because the mean of the average population variability curve (PVC) from hierarchical Bayes (or the mean of the point estimate distribution from empirical Bayes) can be very sensitive to this choice in cases where variability is large. Numerical examples are provided to illustrate the issues discussed.

  16. Geospatial Modeling of Asthma Population in Relation to Air Pollution

    NASA Technical Reports Server (NTRS)

    Kethireddy, Swatantra R.; Tchounwou, Paul B.; Young, John H.; Luvall, Jeffrey C.; Alhamdan, Mohammad

    2013-01-01

    Current observations indicate that asthma is growing every year in the United States, specific reasons for this are not well understood. This study stems from an ongoing research effort to investigate the spatio-temporal behavior of asthma and its relatedness to air pollution. The association between environmental variables such as air quality and asthma related health issues over Mississippi State are investigated using Geographic Information Systems (GIS) tools and applications. Health data concerning asthma obtained from Mississippi State Department of Health (MSDH) for 9-year period of 2003-2011, and data of air pollutant concentrations (PM2.5) collected from USEPA web resources, and are analyzed geospatially to establish the impacts of air quality on human health specifically related to asthma. Disease mapping using geospatial techniques provides valuable insights into the spatial nature, variability, and association of asthma to air pollution. Asthma patient hospitalization data of Mississippi has been analyzed and mapped using quantitative Choropleth techniques in ArcGIS. Patients have been geocoded to their respective zip codes. Potential air pollutant sources of Interstate highways, Industries, and other land use data have been integrated in common geospatial platform to understand their adverse contribution on human health. Existing hospitals and emergency clinics are being injected into analysis to further understand their proximity and easy access to patient locations. At the current level of analysis and understanding, spatial distribution of Asthma is observed in the populations of Zip code regions in gulf coast, along the interstates of south, and in counties of Northeast Mississippi. It is also found that asthma is prevalent in most of the urban population. This GIS based project would be useful to make health risk assessment and provide information support to the administrators and decision makers for establishing satellite clinics in future.

  17. Models for the analysis of radon-exposed populations.

    PubMed Central

    Lubin, J. H.

    1988-01-01

    Radon-222 is a radioactive decay product of radium-226 and uranium-238, which are found throughout the crust of the earth. Studies of underground miners clearly show that exposure to radon and its decay products increases the risk of developing lung cancer. Data on standardized mortality ratios from eight cohort studies indicate that the radon-lung cancer relationship is statistically homogeneous, even though cohorts are from different types of mines and from different countries. Regression methods for cohort data based on a Poisson probability model permit a thorough consideration of risk patterns. In this report, we review these methods, wherein the disease rate in each cell of a multi-way table is modeled as a function of the cross-classifying variables. The National Academy of Sciences' Committee on the Biological Effects of Ionizing Radiation uses the Poisson regression approach to develop a model for age-specific lung cancer risk which depends on cumulative exposure, age at risk, and time since exposure. This model is reviewed and its implications discussed. The most important determinant of lung cancer is cigarette smoking. This paper discusses relative risk models for analysis of joint exposure to radon and tobacco products. The review of available studies suggests that the joint relationship of radon and smoking with lung cancer is consistent with a multiplicative model, but a submultiplicative relationship is most likely. An additive model is rejected. PMID:3051700

  18. Models for the analysis of radon-exposed populations

    SciTech Connect

    Lubin, J.H.

    1988-05-01

    Radon-222 is a radioactive decay product of radium-226 and uranium-238, which are found throughout the crust of the earth. Studies of underground miners clearly show that exposure to radon and its decay products increases the risk of developing lung cancer. Data on standardized mortality ratios from eight cohort studies indicate that the radon-lung cancer relationship is statistically homogeneous, even though cohorts are from different types of mines and from different countries. Regression methods for cohort data based on a Poisson probability model permit a thorough consideration of risk patterns. In this report, we review these methods, wherein the disease rate in each cell of a multi-way table is modeled as a function of the cross-classifying variables. The National Academy of Sciences' Committee on the Biological Effects of Ionizing Radiation uses the Poisson regression approach to develop a model for age-specific lung cancer risk which depends on cumulative exposure, age at risk, and time since exposure. This model is reviewed and its implications discussed. The most important determinant of lung cancer is cigarette smoking. This paper discusses relative risk models for analysis of joint exposure to radon and tobacco products. The review of available studies suggests that the joint relationship of radon and smoking with lung cancer is consistent with a multiplicative model, but a submultiplicative relationship is most likely. An additive model is rejected. 58 references.

  19. Small zooplankton sensing their environment: feeding, mating, and predator avoidance

    NASA Astrophysics Data System (ADS)

    Nihongi, Ai

    2004-03-01

    Since zooplankton play a significant role at the base of the food web in aquatic environments, it is important to understand their feeding behaviors, mating behaviors, and predator avoidance. First, I will present the water flow regime of Daphnia. Using a high-speed video, I filmed how water with algae particles enters and leaves Daphnia, how the water flows within Daphnia and how the appendages of Daphnia work to produce the water flow. Second, I will discuss mate-searching behaviors of freshwater calanoid copepods and Daphnia. Male and female zooplankters have to encounter each other for successful mating in 3D environment. I have observed the behaviors of freshwater calanoid copepods from Lake Michigan. As a result, they showed different behaviors from other species studied. Likewise, I have observed differences in mate-searching behaviors of D. pulex and D. magna. Last, I will show the results of predator-prey interactions in D. pulex with kairomone, a chemical cue, from predatory fish using 3-D near infrared optical system. As experimental conditions, we used the following treatments: (a) no light/ no kairomone, (b) no light/ kairomone, (c) light/ no kairomone, and (d) light/ kairomone. While it appears that light and kairomone have an interactive effect on the swimming behaviors of Daphnia, light seems to be the most influential factor. The observed frequent spinning movements of D. pulex in a darkened tank with a predatory fish, fathead minnow (Pimephales promelas), were successful predator avoidance maneuvers.

  20. A PROBABILISTIC MODELING FRAMEWORK FOR PREDICTING POPULATION EXPOSURES TO BENZENE

    EPA Science Inventory

    The US Environmental Protection Agency (EPA) is modifying their probabilistic Stochastic Human Exposure Dose Simulation (SHEDS) model to assess aggregate exposures to air toxics. Air toxics include urban Hazardous Air Pollutants (HAPS) such as benzene from mobile sources, part...

  1. Droop models of nutrient-plankton interaction with intratrophic predation

    E-print Network

    Baglama, James

    Droop models of nutrient-plankton interaction with intratrophic predation S. R.-J. Jang1 , J of nutrient-phytoplankton-zooplankton interaction with intratrophic predation of zooplankton are introduced presented. For the deter- ministic models it is shown analytically that intratrophic predation has no effect

  2. A two or three compartments hyperbolic reaction-diffusion model for the aquatic food chain.

    PubMed

    Barbera, Elvira; Consolo, Giancarlo; Valenti, Giovanna

    2015-06-01

    Two hyperbolic reaction-diffusion models are built up in the framework of Extended Thermodynamics in order to describe the spatio-temporal interactions occurring in a two or three compartments aquatic food chain. The first model focuses on the dynamics between phytoplankton and zooplankton, whereas the second one accounts also for the nutrient. In these models, infections and influence of illumination on photosynthesis are neglected. It is assumed that the zooplankton predation follows a Holling type-III functional response, while the zooplankton mortality is linear. Owing to the hyperbolic structure of our equations, the wave processes occur at finite velocity, so that the paradox of instantaneous diffusion of biological quantities, typical of parabolic systems, is consequently removed. The character of steady states and travelling waves, together with the occurrence of Hopf bifurcations, is then discussed through linear stability analysis. The governing equations are also integrated numerically to validate the analytical results herein obtained and to extract additional information on the population dynamics. PMID:25811556

  3. A Bacteria-based Experimental Platform to Test Parameters Raised by Mathematical Models on Population Dynamics

    NASA Astrophysics Data System (ADS)

    Lage, Claudia; Cardoso, Janine; Czary, Ivan; Leitao, Alvaro; Boatto, Stefanella

    2010-09-01

    Bacterial populations are current models to assay biological effects of a number of different treatments on the basis of a high-number statistics. One typical bacterial inoculum grows at doubling rates as fast as some 30 min per generation, reaching up to ˜109 cells per ml of medium in a few hours. Given the features of such experimental protocol, it is easy to test the impact of environmental modifications during bacteria growth, by scoring doubling rates time, final cell concentration, oxygen consumption, mutagenesis rates, cell viability under different selective pressures, etc. The drawing of a actual dose-response or kinetic curves can feed parameters on a given mathematical model on population dynamics by weighting each equation term. The purpose of this talk is to present experimental schemes with bacterial populations so as to serve as parallel two-hands testing of different mathematical models on populations dynamics.

  4. A model of survival times for predator populations: the case of the army ants.

    PubMed

    Britton, N F; Partridge, L W; Franks, N R

    1999-05-01

    We develop a method to estimate the expected time of survival of a predator population as a function of the size of the habitat island on which it lives and the dynamic parameters of the population and its prey. The model may be thought of either as a patch occupancy model for a structured population or as a model of metapopulation type. The method is applied to a keystone predator species, the neotropical army ant Eciton burchelli. Predictions are made as to how many of the islands and habitat islands in and around Gatun Lake in the Panama Canal, most of which were formed when the canal was dug, can be expected to support such a population today, and these are compared with data. PMID:17883227

  5. Perspective: The Climate-Population-Infrastructure Modeling and Simulation Fertile Area for New Research

    SciTech Connect

    Allen, Melissa R; Fernandez, Steven J; Walker, Kimberly A; Fu, Joshua S

    2014-01-01

    Managing the risks posed by climate change and extreme weather to energy production and delivery is a challenge to communities worldwide. As climate conditions change, populations will shift, and demand will re-locate; and networked infrastructures will evolve to accommodate new load centers, and, hopefully, minimize vulnerability to natural disaster. Climate effects such as sea level rise, increased frequency and intensity of natural disasters, force populations to move locations. Displaced population creates new demand for built infrastructure that in turn generates new economic activity that attracts new workers and associated households to the new locations. Infrastructures and their interdependencies will change in reaction to climate drivers as the networks expand into new population areas and as portions of the networks are abandoned as people leave. Thus, infrastructures will evolve to accommodate new load centers while some parts of the network are underused, and these changes will create emerging vulnerabilities. Forecasting the location of these vulnerabilities by combining climate predictions and agent based population movement models shows promise for defining these future population distributions and changes in coastal infrastructure configurations. By combining climate and weather data, engineering algorithms and social theory it has been only recently possible to examine electricity demand response to increased climactic temperatures, population relocation in response to extreme cyclonic events, consequent net population changes and new regional patterns in electricity demand. These emerging results suggest a research agenda of coupling these disparate modelling approaches to understand the implications of climate change for protecting the nation s critical infrastructure.

  6. Modeling the Pre-Industrial Roots of Modern Super-Exponential Population Growth

    PubMed Central

    Stutz, Aaron Jonas

    2014-01-01

    To Malthus, rapid human population growth—so evident in 18th Century Europe—was obviously unsustainable. In his Essay on the Principle of Population, Malthus cogently argued that environmental and socioeconomic constraints on population rise were inevitable. Yet, he penned his essay on the eve of the global census size reaching one billion, as nearly two centuries of super-exponential increase were taking off. Introducing a novel extension of J. E. Cohen's hallmark coupled difference equation model of human population dynamics and carrying capacity, this article examines just how elastic population growth limits may be in response to demographic change. The revised model involves a simple formalization of how consumption costs influence carrying capacity elasticity over time. Recognizing that complex social resource-extraction networks support ongoing consumption-based investment in family formation and intergenerational resource transfers, it is important to consider how consumption has impacted the human environment and demography—especially as global population has become very large. Sensitivity analysis of the consumption-cost model's fit to historical population estimates, modern census data, and 21st Century demographic projections supports a critical conclusion. The recent population explosion was systemically determined by long-term, distinctly pre-industrial cultural evolution. It is suggested that modern globalizing transitions in technology, susceptibility to infectious disease, information flows and accumulation, and economic complexity were endogenous products of much earlier biocultural evolution of family formation's embeddedness in larger, hierarchically self-organizing cultural systems, which could potentially support high population elasticity of carrying capacity. Modern super-exponential population growth cannot be considered separately from long-term change in the multi-scalar political economy that connects family formation and intergenerational resource transfers to wider institutions and social networks. PMID:25141019

  7. The Temporal Spectrum of Adult Mosquito Population Fluctuations: Conceptual and Modeling Implications

    PubMed Central

    Jian, Yun; Silvestri, Sonia; Brown, Jeff; Hickman, Rick; Marani, Marco

    2014-01-01

    An improved understanding of mosquito population dynamics under natural environmental forcing requires adequate field observations spanning the full range of temporal scales over which mosquito abundance fluctuates in natural conditions. Here we analyze a 9-year daily time series of uninterrupted observations of adult mosquito abundance for multiple mosquito species in North Carolina to identify characteristic scales of temporal variability, the processes generating them, and the representativeness of observations at different sampling resolutions. We focus in particular on Aedes vexans and Culiseta melanura and, using a combination of spectral analysis and modeling, we find significant population fluctuations with characteristic periodicity between 2 days and several years. Population dynamical modelling suggests that the observed fast fluctuations scales (2 days-weeks) are importantly affected by a varying mosquito activity in response to rapid changes in meteorological conditions, a process neglected in most representations of mosquito population dynamics. We further suggest that the range of time scales over which adult mosquito population variability takes place can be divided into three main parts. At small time scales (indicatively 2 days-1 month) observed population fluctuations are mainly driven by behavioral responses to rapid changes in weather conditions. At intermediate scales (1 to several month) environmentally-forced fluctuations in generation times, mortality rates, and density dependence determine the population characteristic response times. At longer scales (annual to multi-annual) mosquito populations follow seasonal and inter-annual environmental changes. We conclude that observations of adult mosquito populations should be based on a sub-weekly sampling frequency and that predictive models of mosquito abundance must include behavioral dynamics to separate the effects of a varying mosquito activity from actual changes in the abundance of the underlying population. PMID:25478861

  8. Atlantic bluefin tuna: a novel multistock spatial model for assessing population biomass.

    PubMed

    Taylor, Nathan G; McAllister, Murdoch K; Lawson, Gareth L; Carruthers, Tom; Block, Barbara A

    2011-01-01

    Atlantic bluefin tuna (Thunnus thynnus) is considered to be overfished, but the status of its populations has been debated, partly because of uncertainties regarding the effects of mixing on fishing grounds. A better understanding of spatial structure and mixing may help fisheries managers to successfully rebuild populations to sustainable levels while maximizing catches. We formulate a new seasonally and spatially explicit fisheries model that is fitted to conventional and electronic tag data, historic catch-at-age reconstructions, and otolith microchemistry stock-composition data to improve the capacity to assess past, current, and future population sizes of Atlantic bluefin tuna. We apply the model to estimate spatial and temporal mixing of the eastern (Mediterranean) and western (Gulf of Mexico) populations, and to reconstruct abundances from 1950 to 2008. We show that western and eastern populations have been reduced to 17% and 33%, respectively, of 1950 spawning stock biomass levels. Overfishing to below the biomass that produces maximum sustainable yield occurred in the 1960s and the late 1990s for western and eastern populations, respectively. The model predicts that mixing depends on season, ontogeny, and location, and is highest in the western Atlantic. Assuming that future catches are zero, western and eastern populations are predicted to recover to levels at maximum sustainable yield by 2025 and 2015, respectively. However, the western population will not recover with catches of 1750 and 12,900 tonnes (the "rebuilding quotas") in the western and eastern Atlantic, respectively, with or without closures in the Gulf of Mexico. If future catches are double the rebuilding quotas, then rebuilding of both populations will be compromised. If fishing were to continue in the eastern Atlantic at the unregulated levels of 2007, both stocks would continue to decline. Since populations mix on North Atlantic foraging grounds, successful rebuilding policies will benefit from trans-Atlantic cooperation. PMID:22174745

  9. Ultraviolet Radiation from Evolved Stellar Populations -- I. Models

    E-print Network

    B. Dorman; R. Rood; R. O'Connell

    1993-11-09

    This series of papers comprises a systematic exploration of the hypothesis that the far ultraviolet radiation from star clusters and elliptical galaxies originates from extremely hot horizontal-branch (HB) stars and their post-HB progeny. This first paper presents an extensive grid of calculations of stellar models from the Zero Age Horizontal Branch through to a point late in post-HB evolution or a point on the white dwarf cooling track. We use the term `Extreme Horizontal Branch' (EHB) to refer to HB sequences of constant mass that do not reach the thermally-pulsing stage on the AGB. These models evolve after core helium exhaustion

  10. Zooplankton Atlas of the Southern Ocean: The SCAR SO-CPR Survey (1991-2008)

    NASA Astrophysics Data System (ADS)

    McLeod, David J.; Hosie, Graham W.; Kitchener, John A.; Takahashi, Kunio T.; Hunt, Brian P. V.

    2010-08-01

    The SCAR Southern Ocean Continuous Plankton Recorder (SO-CPR) Survey produces one of the largest and most accessed zooplankton data sets in the world. These data serve as a reference for other Southern Ocean monitoring programmes such as those run by the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) and the developing Southern Ocean Observing System (SOOS). It has been instrumental in providing baseline data on zooplankton composition, communities, and distribution patterns on the ocean basin scale. The SO-CPR Survey is publishing the first detailed geographical atlas of the near-surface Southern Ocean zooplankton. This atlas is based on 22,553 CPR samples collected from 1991 to 2008 from voyages operated by Australia, Japan, Germany, New Zealand, USA and Russia. The Atlas documents the distribution and abundance of the 50 most abundant zooplankton taxa amongst the 200+ taxa sampled. The maps are printed in alphabetical order of the genera within each taxon and nomenclature is based on the Register of Antarctic Marine Species (RAMS) developed by the SCAR Marine Biodiversity Information Network (SCAR-MarBIN). The SO-CPR Atlas will operate as a ready reference to researchers interested in the distribution of zooplankton in the Southern Ocean, for example knowing the distribution of grazers in relation to phytoplankton production or the availability of prey for higher predators.

  11. The Bag-Sampler: A Simple Device for Collecting Zooplankton in Shallow Vegetated Ponds

    NASA Astrophysics Data System (ADS)

    Frisch, Dagmar; Wohltmann, Andreas

    2005-12-01

    Zooplankton in temporary ponds is often collected with gear originally designed for lakes, and mostly unsuitable for sampling shallow habitats. We describe a new simple and inexpensive device for sampling zooplankton in very shallow, vegetated temporary ponds. We tested the sampling efficiency by comparing species composition and density of cyclopoid copepods, an important component of the zooplankton, by sampling with both the new bag sampler and a plastic beaker frequently employed for collections of zooplankton in small waterbodies. With the bag sampler we collected a larger number of species and higher densities of copepods due to its higher efficiency in vegetated areas and near the sediment. The beaker appeared to sample almost only the water surface. The samples collected with the bag sampler revealed a distinct distribution of copepod life cycle stages in a shallow pond, which differed between depths and microhabitats. Additional advantages of the bag sampler are its small size and weight, and the possibility of fast exchange of sample bags between sample locations, thus preventing accidental faunal exchange between sample locations. We conclude that the bag sampler is a device especially useful for sampling zooplankton of shallow ponds and wetlands rich in vegetation, for diversity studies as well as for quantitative sampling.

  12. Combined effect of predatory zooplankton and allelopathic aquatic macrophytes on algal suppression.

    PubMed

    Zuo, Shengpeng; Wan, Kun; Ma, Sumin

    2015-01-01

    The present study evaluated the combined effects of four typical predatory zooplankton and allelopathic aquatic macrophytes on algal control in a microcosm system. It would determine the effects of diverse species and biological restoration on the growth of harmful water-bloom microalgae in great lakes polluted by excess nutrients. It was found that the mixtures of each zooplankton and the floating plant Nymphoides peltatum had stronger inhibitory effects on harmful water-bloom microalgae than the individual species in clean or eutrophic water bodies. In addition, a community of four zooplankton types had a synergistic effect on algal inhibition. Algal suppression by the zooplankton community was enhanced significantly when the macrophyte was co-cultured in the microcosm. Furthermore, Chlorella pyrenoidosa was more susceptible than Microcystis aeruginosa when exposed to grazing by zooplankton and the allelopathic potential of the macrophyte. Algal inhibition was also weaker in eutrophic conditions compared with the control. These findings indicate that diverse species may enhance algal inhibition. Therefore, it is necessary to restore biological diversity and rebuild an ecologically balanced food chain or web to facilitate the control of harmful algal blooms in eutrophic lakes. PMID:25409583

  13. Effects of the Distribution of a Toxic Microcystis Bloom on the Small Scale Patchiness of Zooplankton

    PubMed Central

    Reichwaldt, Elke S.; Song, Haihong; Ghadouani, Anas

    2013-01-01

    Toxic cyanobacterial blooms can strongly affect freshwater food web structures. However, little is known about how the patchy occurrence of blooms within systems affects the spatial distribution of zooplankton communities. We studied this by analysing zooplankton community structures in comparison with the spatially distinct distribution of a toxic Microcystis bloom in a small, shallow, eutrophic lake. While toxic Microcystis was present at all sites, there were large spatial differences in the level of cyanobacterial biomass and in the zooplankton communities; sites with persistently low cyanobacterial biomass displayed a higher biomass of adult Daphnia and higher zooplankton diversity than sites with persistently high cyanobacterial biomass. While wind was the most likely reason for the spatially distinct occurrence of the bloom, our data indicate that it was the differences in cyanobacterial biomass that caused spatial differences in the zooplankton community structures. Overall, our study suggests that even in small systems with extensive blooms ‘refuge sites’ exist that allow large grazers to persist, which can be an important mechanism for a successful re-establishment of the biodiversity in an ecosystem after periods of cyanobacterial blooms. PMID:23840516

  14. Zooplankton respiration and the export of carbon at depth in the Amundsen Gulf (Arctic Ocean)

    NASA Astrophysics Data System (ADS)

    Darnis, GéRald; Fortier, Louis

    2012-04-01

    In arctic seas, lipids accumulated by zooplankton migrants in the surface layer in spring-summer are respired at depth during the winter. The resulting active downward transport of carbon by the 200-1000 and >1000 ?m mesozooplankton fractions was quantified based on 41 biomass and respiration profiles from October 2007 to July 2008 in the Amundsen Gulf (Canadian Arctic Ocean). The small fraction, dominated by CII-CIII Calanus glacialis, represented on average 12% of the overall zooplankton biomass and contributed little to the active transport of carbon by respiration. From April to July, total zooplankton ingested 17-28% of the estimated gross primary production (GPP) in the surface 100 m, and 36-59% of GPP over the entire water column. The large fraction, comprised mainly of CIV, CV and adults Calanus hyperboreus and C. glacialis that accumulate large lipid reserves, was responsible for 89% of grazing. The downward migration of large zooplankton in late summer coincided with a sharp decline in specific respiration rates signaling the start of diapause and the endogenous fuelling of metabolism. From October to April, Calanus migration-respiration actively transported 3.1 g C m-2 beyond 100 m, a flux that represented 85 to 132% of the gravitational POC fluxes at 100 m from October to July. Our results stress the importance of including active transport by large zooplankton migrants in carbon budgets of the Arctic Ocean.

  15. Refining reproductive parameters for modelling sustainability and extinction in hunted primate populations in the Amazon.

    PubMed

    Bowler, Mark; Anderson, Matt; Montes, Daniel; Pérez, Pedro; Mayor, Pedro

    2014-01-01

    Primates are frequently hunted in Amazonia. Assessing the sustainability of hunting is essential to conservation planning. The most-used sustainability model, the 'Production Model', and more recent spatial models, rely on basic reproductive parameters for accuracy. These parameters are often crudely estimated. To date, parameters used for the Amazon's most-hunted primate, the woolly monkey (Lagothrix spp.), come from captive populations in the 1960s, when captive births were rare. Furthermore, woolly monkeys have since been split into five species. We provide reproductive parameters calculated by examining the reproductive organs of female Poeppig's woolly monkeys (Lagothrix poeppigii), collected by hunters as part of their normal subsistence activity. Production was 0.48-0.54 young per female per year, and an interbirth interval of 22.3 to 25.2 months, similar to parameters from captive populations. However, breeding was seasonal, which imposes limits on the maximum reproductive rate attainable. We recommend the use of spatial models over the Production Model, since they are less sensitive to error in estimated reproductive rates. Further refinements to reproductive parameters are needed for most primate taxa. Methods like ours verify the suitability of captive reproductive rates for sustainability analysis and population modelling for populations under differing conditions of hunting pressure and seasonality. Without such research, population modelling is based largely on guesswork. PMID:24714614

  16. Development of a practical modeling framework for estimating the impact of wind technology on bird populations

    SciTech Connect

    Morrison, M.L.; Pollock, K.H.

    1997-11-01

    One of the most pressing environmental concerns related to wind project development is the potential for avian fatalities caused by the turbines. The goal of this project is to develop a useful, practical modeling framework for evaluating potential wind power plant impacts that can be generalized to most bird species. This modeling framework could be used to get a preliminary understanding of the likelihood of significant impacts to birds, in a cost-effective way. The authors accomplish this by (1) reviewing the major factors that can influence the persistence of a wild population; (2) briefly reviewing various models that can aid in estimating population status and trend, including methods of evaluating model structure and performance; (3) reviewing survivorship and population projections; and (4) developing a framework for using models to evaluate the potential impacts of wind development on birds.

  17. Population Growth Change Population Size or Density

    E-print Network

    Caraco, Thomas

    1 Population Growth Change Population Size or Density Model Measurable Quantity (Observable Unbounded Growth Useful: Small Population Ecological Invasion, Dynamics of Rarity #12;8 2. b ) Estimate Population Size: N Consider Single Population Assume Identical Individuals 1. Plants, Sessile

  18. HIGHER EDUCATION--A POPULATION FLOW FEEDBACK MODEL.

    ERIC Educational Resources Information Center

    REISMAN, ARNOLD

    A MATHEMATICAL MODEL IS DEVELOPED TO STUDY THE PRODUCTION OF DOCTORAL, MASTER'S, AND BACHELOR'S DEGREES AND THEIR FEEDBACK INTO HIGHER EDUCATION. FEEDBACK IS DETERMINED BY A SET OF "BASIC BALANCE EQUATIONS" WHICH STATE THAT THE TOTAL RATE OF FLOW INTO A CATEGORY LESS THE RATE OF OUTFLOW IS EQUAL TO THE RATE OF ACCUMULATION OR GROWTH IN A GIVEN…

  19. Modeling apple snail population dynamics on the Everglades landscape

    USGS Publications Warehouse

    Darby, Phil; DeAngelis, Donald L.; Romanach, Stephanie; Suir, Kevin J.; Bridevaux, Joshua L.

    2015-01-01

    Comparisons of model output to empirical data indicate the need for more data to better understand, and eventually parameterize, several aspects of snail ecology in support of EverSnail. A primary value of EverSnail is its capacity to describe the relative response of snail abundance to alternative hydrologic scenarios considered for Everglades water management and restoration.

  20. ECOLOGICAL ENDPOINT MODELING: EFFECTS OF SEDIMENT ON FISH POPULATIONS

    EPA Science Inventory

    Sediment is one of the main stressors of concern for TMDLs (Total Maximum Daily Loads) for streams, and often it is a concern because of its impact on biological endpoints. The National Research Council (NRC) has recommended that the EPA promote the development of models that ca...

  1. POPULATION-LEVEL RESPONSE OF THE COMMON LOON TO MERCURY IN TWO CANADIAN PROVINCES: A MATRIX MODELING APPROACH

    EPA Science Inventory

    We used data collected from Common Loon Gavia immer populations in two Canadian provinces to demonstrate a matrix population modeling approach for evaluating population-level responses to stressors and to understand how these populations may have responded to mercury contaminatio...

  2. Stochastic stable population growth in integral projection models: theory and application.

    PubMed

    Ellner, Stephen P; Rees, Mark

    2007-02-01

    Stochastic matrix projection models are widely used to model age- or stage-structured populations with vital rates that fluctuate randomly over time. Practical applications of these models rest on qualitative properties such as the existence of a long term population growth rate, asymptotic log-normality of total population size, and weak ergodicity of population structure. We show here that these properties are shared by a general stochastic integral projection model, by using results in (Eveson in D. Phil. Thesis, University of Sussex, 1991, Eveson in Proc. Lond. Math. Soc. 70, 411-440, 1993) to extend the approach in (Lange and Holmes in J. Appl. Prob. 18, 325-344, 1981). Integral projection models allow individuals to be cross-classified by multiple attributes, either discrete or continuous, and allow the classification to change during the life cycle. These features are present in plant populations with size and age as important predictors of individual fate, populations with a persistent bank of dormant seeds or eggs, and animal species with complex life cycles. We also present a case-study based on a 6-year field study of the Illyrian thistle, Onopordum illyricum, to demonstrate how easily a stochastic integral model can be parameterized from field data and then applied using familiar matrix software and methods. Thistle demography is affected by multiple traits (size, age and a latent "quality" variable), which would be difficult to accommodate in a classical matrix model. We use the model to explore the evolution of size- and age-dependent flowering using an evolutionarily stable strategy (ESS) approach. We find close agreement between the observed flowering behavior and the predicted ESS from the stochastic model, whereas the ESS predicted from a deterministic version of the model is very different from observed flowering behavior. These results strongly suggest that the flowering strategy in O. illyricum is an adaptation to random between-year variation in vital rates. PMID:17123085

  3. Modeling the Potential Effects of New Tobacco Products and Policies: A Dynamic Population Model for Multiple Product Use and Harm

    PubMed Central

    Vugrin, Eric D.; Rostron, Brian L.; Verzi, Stephen J.; Brodsky, Nancy S.; Brown, Theresa J.; Choiniere, Conrad J.; Coleman, Blair N.; Paredes, Antonio; Apelberg, Benjamin J.

    2015-01-01

    Background Recent declines in US cigarette smoking prevalence have coincided with increases in use of other tobacco products. Multiple product tobacco models can help assess the population health impacts associated with use of a wide range of tobacco products. Methods and Findings We present a multi-state, dynamical systems population structure model that can be used to assess the effects of tobacco product use behaviors on population health. The model incorporates transition behaviors, such as initiation, cessation, switching, and dual use, related to the use of multiple products. The model tracks product use prevalence and mortality attributable to tobacco use for the overall population and by sex and age group. The model can also be used to estimate differences in these outcomes between scenarios by varying input parameter values. We demonstrate model capabilities by projecting future cigarette smoking prevalence and smoking-attributable mortality and then simulating the effects of introduction of a hypothetical new lower-risk tobacco product under a variety of assumptions about product use. Sensitivity analyses were conducted to examine the range of population impacts that could occur due to differences in input values for product use and risk. We demonstrate that potential benefits from cigarette smokers switching to the lower-risk product can be offset over time through increased initiation of this product. Model results show that population health benefits are particularly sensitive to product risks and initiation, switching, and dual use behaviors. Conclusion Our model incorporates the variety of tobacco use behaviors and risks that occur with multiple products. As such, it can evaluate the population health impacts associated with the introduction of new tobacco products or policies that may result in product switching or dual use. Further model development will include refinement of data inputs for non-cigarette tobacco products and inclusion of health outcomes such as morbidity and disability. PMID:25815840

  4. Modeling the Potential Effects of New Tobacco Products and Policies: A Dynamic Population Model for Multiple Product Use and Harm

    DOE PAGESBeta

    Vugrin, Eric D.; Rostron, Brian L.; Verzi, Stephen J.; Brodsky, Nancy S.; Brown, Theresa J.; Choiniere, Conrad J.; Coleman, Blair N.; Paredes, Antonio; Apelberg, Benjamin J.

    2015-03-27

    Background Recent declines in US cigarette smoking prevalence have coincided with increases in use of other tobacco products. Multiple product tobacco models can help assess the population health impacts associated with use of a wide range of tobacco products. Methods and Findings We present a multi-state, dynamical systems population structure model that can be used to assess the effects of tobacco product use behaviors on population health. The model incorporates transition behaviors, such as initiation, cessation, switching, and dual use, related to the use of multiple products. The model tracks product use prevalence and mortality attributable to tobacco use formore »the overall population and by sex and age group. The model can also be used to estimate differences in these outcomes between scenarios by varying input parameter values. We demonstrate model capabilities by projecting future cigarette smoking prevalence and smoking-attributable mortality and then simulating the effects of introduction of a hypothetical new lower-risk tobacco product under a variety of assumptions about product use. Sensitivity analyses were conducted to examine the range of population impacts that could occur due to differences in input values for product use and risk. We demonstrate that potential benefits from cigarette smokers switching to the lower-risk product can be offset over time through increased initiation of this product. Model results show that population health benefits are particularly sensitive to product risks and initiation, switching, and dual use behaviors. Conclusion Our model incorporates the variety of tobacco use behaviors and risks that occur with multiple products. As such, it can evaluate the population health impacts associated with the introduction of new tobacco products or policies that may result in product switching or dual use. Further model development will include refinement of data inputs for non-cigarette tobacco products and inclusion of health outcomes such as morbidity and disability.« less

  5. Modeling the Potential Effects of New Tobacco Products and Policies: A Dynamic Population Model for Multiple Product Use and Harm

    SciTech Connect

    Vugrin, Eric D.; Rostron, Brian L.; Verzi, Stephen J.; Brodsky, Nancy S.; Brown, Theresa J.; Choiniere, Conrad J.; Coleman, Blair N.; Paredes, Antonio; Apelberg, Benjamin J.

    2015-03-27

    Background Recent declines in US cigarette smoking prevalence have coincided with increases in use of other tobacco products. Multiple product tobacco models can help assess the population health impacts associated with use of a wide range of tobacco products. Methods and Findings We present a multi-state, dynamical systems population structure model that can be used to assess the effects of tobacco product use behaviors on population health. The model incorporates transition behaviors, such as initiation, cessation, switching, and dual use, related to the use of multiple products. The model tracks product use prevalence and mortality attributable to tobacco use for the overall population and by sex and age group. The model can also be used to estimate differences in these outcomes between scenarios by varying input parameter values. We demonstrate model capabilities by projecting future cigarette smoking prevalence and smoking-attributable mortality and then simulating the effects of introduction of a hypothetical new lower-risk tobacco product under a variety of assumptions about product use. Sensitivity analyses were conducted to examine the range of population impacts that could occur due to differences in input values for product use and risk. We demonstrate that potential benefits from cigarette smokers switching to the lower-risk product can be offset over time through increased initiation of this product. Model results show that population health benefits are particularly sensitive to product risks and initiation, switching, and dual use behaviors. Conclusion Our model incorporates the variety of tobacco use behaviors and risks that occur with multiple products. As such, it can evaluate the population health impacts associated with the introduction of new tobacco products or policies that may result in product switching or dual use. Further model development will include refinement of data inputs for non-cigarette tobacco products and inclusion of health outcomes such as morbidity and disability.

  6. Analysis of SI models with multiple interacting populations using subpopulations.

    PubMed

    Thomas, Evelyn K; Gurski, Katharine F; Hoffman, Kathleen A

    2015-02-01

    Computing endemic equilibria and basic reproductive numbers for systems of differential equations describing epidemiological systems with multiple connections between subpopulations is often algebraically intractable. We present an alternative method which deconstructs the larger system into smaller subsystems and captures the interactions between the smaller systems as external forces using an approximate model. We bound the basic reproductive numbers of the full system in terms of the basic reproductive numbers of the smaller systems and use the alternate model to provide approximations for the endemic equilibrium. In addition to creating algebraically tractable reproductive numbers and endemic equilibria, we can demonstrate the influence of the interactions between subpopulations on the basic reproductive number of the full system. The focus of this paper is to provide analytical tools to help guide public health decisions with limited intervention resources. PMID:25811329

  7. Land Use as a Driver of Patterns of Rodenticide Exposure in Modeled Kit Fox Populations.

    PubMed

    Nogeire, Theresa M; Lawler, Joshua J; Schumaker, Nathan H; Cypher, Brian L; Phillips, Scott E

    2015-01-01

    Although rodenticides are increasingly regulated, they nonetheless cause poisonings in many non-target wildlife species. Second-generation anticoagulant rodenticide use is common in agricultural and residential landscapes. Here, we use an individual-based population model to assess potential population-wide effects of rodenticide exposures on the endangered San Joaquin kit fox (Vulpes macrotis mutica). We estimate likelihood of rodenticide exposure across the species range for each land cover type based on a database of reported pesticide use and literature. Using a spatially-explicit population model, we find that 36% of modeled kit foxes are likely exposed, resulting in a 7-18% decline in the range-wide modeled kit fox population that can be linked to rodenticide use. Exposures of kit foxes in low-density developed areas accounted for 70% of the population-wide exposures to rodenticides. We conclude that exposures of non-target kit foxes could be greatly mitigated by reducing the use of second-generation anticoagulant rodenticides in low-density developed areas near vulnerable populations. PMID:26244655

  8. Land Use as a Driver of Patterns of Rodenticide Exposure in Modeled Kit Fox Populations

    PubMed Central

    Nogeire, Theresa M.; Lawler, Joshua J.; Schumaker, Nathan H.; Cypher, Brian L.; Phillips, Scott E.

    2015-01-01

    Although rodenticides are increasingly regulated, they nonetheless cause poisonings in many non-target wildlife species. Second-generation anticoagulant rodenticide use is common in agricultural and residential landscapes. Here, we use an individual-based population model to assess potential population-wide effects of rodenticide exposures on the endangered San Joaquin kit fox (Vulpes macrotis mutica). We estimate likelihood of rodenticide exposure across the species range for each land cover type based on a database of reported pesticide use and literature. Using a spatially-explicit population model, we find that 36% of modeled kit foxes are likely exposed, resulting in a 7-18% decline in the range-wide modeled kit fox population that can be linked to rodenticide use. Exposures of kit foxes in low-density developed areas accounted for 70% of the population-wide exposures to rodenticides. We conclude that exposures of non-target kit foxes could be greatly mitigated by reducing the use of second-generation anticoagulant rodenticides in low-density developed areas near vulnerable populations. PMID:26244655

  9. Model of fasciculation and sorting in mixed populations of axons

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Debasish; Borowski, Peter; Zapotocky, Martin

    2011-08-01

    We extend a recently proposed model [Chaudhuri , Europhys. Lett.EULEEJ0295-507510.1209/0295-5075/87/20003 87, 20003 (2009)] aiming to describe the formation of fascicles of axons during neural development. The growing axons are represented as paths of interacting directed random walkers in two spatial dimensions. To mimic turnover of axons, whole paths are removed and new walkers are injected with specified rates. In the simplest version of the model, we use strongly adhesive short-range inter-axon interactions that are identical for all pairs of axons. We generalize the model to adhesive interactions of finite strengths and to multiple types of axons with type-specific interactions. The dynamic steady state is characterized by the position-dependent distribution of fascicle size and fascicle composition. With distance in the direction of axon growth, the mean fascicle size and emergent time scales grow monotonically, while the degree of sorting of fascicles by axon type has a maximum at a finite distance. To understand the emergence of slow time scales, we develop an analytical framework to analyze the interaction between neighboring fascicles.

  10. Ecological Modelling 258 (2013) 101121 Contents lists available at SciVerse ScienceDirect

    E-print Network

    Arhonditsis, George B.

    2013-01-01

    Washington: A mechanistic approach to physiology in a eutrophication model Gurbir Perhara, , George B acids Zooplankton Growth limitation Stoichiometry Management-oriented models Eutrophication a b s t r and applied ecology. In this study, we enhance an existing eutrophication model with a zooplankton somatic

  11. A Connectionist Modeling Approach to Rapid Analysis of Emergent Social Cognition Properties in Large-Populations

    SciTech Connect

    Perumalla, Kalyan S; Schryver, Jack C

    2009-01-01

    Traditional modeling methodologies, such as those based on rule-based agent modeling, are exhibiting limitations in application to rich behavioral scenarios, especially when applied to large population aggregates. Here, we propose a new modeling methodology based on a well-known "connectionist approach," and articulate its pertinence in new applications of interest. This methodology is designed to address challenges such as speed of model development, model customization, model reuse across disparate geographic/cultural regions, and rapid and incremental updates to models over time.

  12. SALMOD: a population model for salmonids: user's manual. Version W3

    USGS Publications Warehouse

    Bartholow, John; Heasley, John; Laake, Jeff; Sandelin, Jeff; Coughlan, Beth A.K.; Moos, Alan

    2002-01-01

    SALMOD is a computer model that simulates the dynamics of freshwater salmonid populations, both anadromous and resident. The conceptual model was developed in a workshop setting (Williamson et al. 1993) using fish experts concerned with Trinity River chinook restoration. The model builds on the foundation laid by similar models (see Cheslak and Jacobson 1990). The model’s premise that that egg and fish mortality are directly related to spatially and temporally variable micro- and macrohabitat limitations, which themselves are related to the timing and amount of streamflow and other meteorological variables. Habitat quality and capacity are characterized by the hydraulic and thermal properties of individual mesohabitats, which we use as spatial “computation units” in the model. The model tracks a population of spatially distinct cohorts that originate as gees and grow from one life stage to another as a function of local water temperature. Individual cohorts either remain in the computational unit in which they emerged or move, in whole or in part, to nearby units (see McCormick et al. 1998). Model processes include spawning (with red superimposition and incubation losses), growth (including egg maturation), mortality, and movement (freshet-induced, habitat-induced, and seasonal). Model processes are implemented such that the user (modeler) has the ability to more-or-less program the model on the fly to create the dynamics thought to animate the population. SALMOD then tabulates the various causes of mortality and the whereabouts of fish.

  13. Size-related response of zooplankton to hydroclimatic variability and water-quality in an organically polluted estuary of the Basque coast (Bay of Biscay)

    NASA Astrophysics Data System (ADS)

    Intxausti, Lander; Villate, Fernando; Uriarte, Ibon; Iriarte, Arantza; Ameztoy, Iban

    2012-06-01

    Seasonal, interannual and spatial variabilities were analysed for the > 100 ?m and > 200 ?m zooplankton assemblages in the estuary of Bilbao throughout 1997-2000, and related to hydroclimatic and water-quality factors. Seasonal and interannual patterns of abundance differed between assemblages, and only the abundance of the > 100 ?m zooplankton was correlated with temperature. The large-sized zooplankton decreased more drastically than the small-sized zooplankton with decreasing salinity, and showed highest correlations with dissolved oxygen and water transparency. Seasonal changes were the major variability mode of zooplankton composition in both assemblages. Interannual changes associated to phytoplankton biomass and temperature were more evident in the small-sized zooplankton, whilst spatial differences related to oxygen depletion were more evident in the large-sized zooplankton. This indicates that small zooplankton was more sensitive to climate-related factors, while large zooplankton was more sensitive to water quality. Small copepods, cirriped larvae, appendicularians and Noctiluca were the main taxa responsible for the interannual variations in the > 100 ?m assemblage. In the > 200 ?m assemblage, large copepods were the main zooplankton responsible for the spatial variability related to oxygen depletion. Cnidarians and cladocerans responded mainly to decreases in salinity, and polychaete larvae were found to be unaffected by the decrease in dissolved oxygen and salinity. Results suggest that size-related differential responses of zooplankton should be considered when zooplankton monitoring is performed to assess the effect of climate forcing and pollution in coastal and estuarine environments.

  14. Divergence thresholds and divergent biodiversity estimates: can metabarcoding reliably describe zooplankton communities?

    PubMed Central

    Brown, Emily A; Chain, Frédéric J J; Crease, Teresa J; MacIsaac, Hugh J; Cristescu, Melania E

    2015-01-01

    DNA metabarcoding is a promising method for describing communities and estimating biodiversity. This approach uses high-throughput sequencing of targeted markers to identify species in a complex sample. By convention, sequences are clustered at a predefined sequence divergence threshold (often 3%) into operational taxonomic units (OTUs) that serve as a proxy for species. However, variable levels of interspecific marker variation across taxonomic groups make clustering sequences from a phylogenetically diverse dataset into OTUs at a uniform threshold problematic. In this study, we use mock zooplankton communities to evaluate the accuracy of species richness estimates when following conventional protocols to cluster hypervariable sequences of the V4 region of the small subunit ribosomal RNA gene (18S) into OTUs. By including individually tagged single specimens and “populations” of various species in our communities, we examine the impact of intra- and interspecific diversity on OTU clustering. Communities consisting of single individuals per species generated a correspondence of 59–84% between OTU number and species richness at a 3% divergence threshold. However, when multiple individuals per species were included, the correspondence between OTU number and species richness dropped to 31–63%. Our results suggest that intraspecific variation in this marker can often exceed 3%, such that a single species does not always correspond to one OTU. We advocate the need to apply group-specific divergence thresholds when analyzing complex and taxonomically diverse communities, but also encourage the development of additional filtering steps that allow identification of artifactual rRNA gene sequences or pseudogenes that may generate spurious OTUs. PMID:26078859

  15. Constructing an urban population model for medical insurance scheme using microsimulation techniques.

    PubMed

    Xiong, Linping; Zhang, Lulu; Tang, Weidong; Ma, Yuqin

    2012-01-01

    China launched a pilot project of medical insurance reform in 79 cities in 2007 to cover urban nonworking residents. An urban population model was created in this paper for China's medical insurance scheme using microsimulation model techniques. The model made it clear for the policy makers the population distributions of different groups of people, the potential urban residents entering the medical insurance scheme. The income trends of units of individuals and families were also obtained. These factors are essential in making the challenging policy decisions when considering to balance the long-term financial sustainability of the medical insurance scheme. PMID:22481973

  16. A cognitive-consistency based model of population wide attitude change.

    SciTech Connect

    Lakkaraju, Kiran; Speed, Ann Elizabeth

    2010-06-01

    Attitudes play a significant role in determining how individuals process information and behave. In this paper we have developed a new computational model of population wide attitude change that captures the social level: how individuals interact and communicate information, and the cognitive level: how attitudes and concept interact with each other. The model captures the cognitive aspect by representing each individuals as a parallel constraint satisfaction network. The dynamics of this model are explored through a simple attitude change experiment where we vary the social network and distribution of attitudes in a population.

  17. Effects of infection on honey bee population dynamics: a model.

    PubMed

    Betti, Matt I; Wahl, Lindi M; Zamir, Mair

    2014-01-01

    We propose a model that combines the dynamics of the spread of disease within a bee colony with the underlying demographic dynamics of the colony to determine the ultimate fate of the colony under different scenarios. The model suggests that key factors in the survival or collapse of a honey bee colony in the face of an infection are the rate of transmission of the infection and the disease-induced death rate. An increase in the disease-induced death rate, which can be thought of as an increase in the severity of the disease, may actually help the colony overcome the disease and survive through winter. By contrast, an increase in the transmission rate, which means that bees are being infected at an earlier age, has a drastic deleterious effect. Another important finding relates to the timing of infection in relation to the onset of winter, indicating that in a time interval of approximately 20 days before the onset of winter the colony is most affected by the onset of infection. The results suggest further that the age of recruitment of hive bees to foraging duties is a good early marker for the survival or collapse of a honey bee colony in the face of infection, which is consistent with experimental evidence but the model provides insight into the underlying mechanisms. The most important result of the study is a clear distinction between an exposure of the honey bee colony to an environmental hazard such as pesticides or insecticides, or an exposure to an infectious disease. The results indicate unequivocally that in the scenarios that we have examined, and perhaps more generally, an infectious disease is far more hazardous to the survival of a bee colony than an environmental hazard that causes an equal death rate in foraging bees. PMID:25329468

  18. Effects of Infection on Honey Bee Population Dynamics: A Model

    PubMed Central

    Betti, Matt I.; Wahl, Lindi M.; Zamir, Mair

    2014-01-01

    We propose a model that combines the dynamics of the spread of disease within a bee colony with the underlying demographic dynamics of the colony to determine the ultimate fate of the colony under different scenarios. The model suggests that key factors in the survival or collapse of a honey bee colony in the face of an infection are the rate of transmission of the infection and the disease-induced death rate. An increase in the disease-induced death rate, which can be thought of as an increase in the severity of the disease, may actually help the colony overcome the disease and survive through winter. By contrast, an increase in the transmission rate, which means that bees are being infected at an earlier age, has a drastic deleterious effect. Another important finding relates to the timing of infection in relation to the onset of winter, indicating that in a time interval of approximately 20 days before the onset of winter the colony is most affected by the onset of infection. The results suggest further that the age of recruitment of hive bees to foraging duties is a good early marker for the survival or collapse of a honey bee colony in the face of infection, which is consistent with experimental evidence but the model provides insight into the underlying mechanisms. The most important result of the study is a clear distinction between an exposure of the honey bee colony to an environmental hazard such as pesticides or insecticides, or an exposure to an infectious disease. The results indicate unequivocally that in the scenarios that we have examined, and perhaps more generally, an infectious disease is far more hazardous to the survival of a bee colony than an environmental hazard that causes an equal death rate in foraging bees. PMID:25329468

  19. Generalized aphid population growth models with immigration and cumulative-size dependent dynamics.

    PubMed

    Matis, James H; Kiffe, Thomas R; Matis, Timothy I; Chattopadhyay, C

    2008-10-01

    Mechanistic models in which the per-capita death rate of a population is proportional to cumulative past size have been shown to describe adequately the population size curves for a number of aphid species. Such previous cumulative-sized based models have not included immigration. The inclusion of immigration is suggested biologically as local aphid populations are initiated by migration of winged aphids and as reproduction is temperature-dependent. This paper investigates two models with constant immigration, one with continuous immigration and the other with restricted immigration. Cases of the latter are relatively simple to fit to data. The results from these two immigration models are compared for data sets on the mustard aphid in India. PMID:18715544

  20. When phenology matters: age-size truncation alters population response to trophic mismatch.

    PubMed

    Ohlberger, Jan; Thackeray, Stephen J; Winfield, Ian J; Maberly, Stephen C; Vøllestad, L Asbjørn

    2014-10-22

    Climate-induced shifts in the timing of life-history events are a worldwide phenomenon, and these shifts can de-synchronize species interactions such as predator-prey relationships. In order to understand the ecological implications of altered seasonality, we need to consider how shifts in phenology interact with other agents of environmental change such as exploitation and disease spread, which commonly act to erode the demographic structure of wild populations. Using long-term observational data on the phenology and dynamics of a model predator-prey system (fish and zooplankton in Windermere, UK), we show that age-size truncation of the predator population alters the consequences of phenological mismatch for offspring survival and population abundance. Specifically, age-size truncation reduces intraspecific density regulation due to competition and cannibalism, and thereby amplifies the population sensitivity to climate-induced predator-prey asynchrony, which increases variability in predator abundance. High population variability poses major ecological and economic challenges as it can diminish sustainable harvest rates and increase the risk of population collapse. Our results stress the importance of maintaining within-population age-size diversity in order to buffer populations against phenological asynchrony, and highlight the need to consider interactive effects of environmental impacts if we are to understand and project complex ecological outcomes. PMID:25165767