A Structural Connection between Linear and 0-1 Integer Linear Formulations
ERIC Educational Resources Information Center
Adlakha, V.; Kowalski, K.
2007-01-01
The connection between linear and 0-1 integer linear formulations has attracted the attention of many researchers. The main reason triggering this interest has been an availability of efficient computer programs for solving pure linear problems including the transportation problem. Also the optimality of linear problems is easily verifiable…
Evaluating the impact of AND/OR search on 0-1 integer linear programming
Dechter, R.
2010-01-01
AND/OR search spaces accommodate advanced algorithmic schemes for graphical models which can exploit the structure of the model. We extend and evaluate the depth-first and best-first AND/OR search algorithms to solving 0-1 Integer Linear Programs (0-1 ILP) within this framework. We also include a class of dynamic variable ordering heuristics while exploring an AND/OR search tree for 0-1 ILPs. We demonstrate the effectiveness of these search algorithms on a variety of benchmarks, including real-world combinatorial auctions, random uncapacitated warehouse location problems and MAX-SAT instances. PMID:21052484
Investigating Integer Restrictions in Linear Programming
ERIC Educational Resources Information Center
Edwards, Thomas G.; Chelst, Kenneth R.; Principato, Angela M.; Wilhelm, Thad L.
2015-01-01
Linear programming (LP) is an application of graphing linear systems that appears in many Algebra 2 textbooks. Although not explicitly mentioned in the Common Core State Standards for Mathematics, linear programming blends seamlessly into modeling with mathematics, the fourth Standard for Mathematical Practice (CCSSI 2010, p. 7). In solving a…
Detection of code spread OFDM based on 0-1 integer quadratic programming
NASA Astrophysics Data System (ADS)
Elghariani, Ali; Zoltowski, Michael D.
2012-05-01
In this paper we introduce Integer Quadratic Programming (MIQP) approach to optimally detect QPSK Code Spread OFDM (CS-OFDM) by formulating the problem as a combinatorial optimization problem. The Branch and Bound (BB) algorithm is utilized to solve this integer quadratic programming problem. Furthermore, we propose combined preprocessing steps that can be applied prior to BB so that the computational complexity of the optimum receiver is reduced. The first step in this combination is to detect as much as possible symbols using procedures presented in [9], which is basically based on the gradient of quadratic function. The second step detects the undetected symbols from the first step using MMSE estimator. The result of the latter step will be used to predict the initial upper bound of the BB algorithm. Simulation results show that the proposed preprocessing combination when applied prior to BB provides optimal performance with a significantly reduced computational complexity.
Split diversity in constrained conservation prioritization using integer linear programming
Chernomor, Olga; Minh, Bui Quang; Forest, Félix; Klaere, Steffen; Ingram, Travis; Henzinger, Monika; von Haeseler, Arndt
2015-01-01
Phylogenetic diversity (PD) is a measure of biodiversity based on the evolutionary history of species. Here, we discuss several optimization problems related to the use of PD, and the more general measure split diversity (SD), in conservation prioritization. Depending on the conservation goal and the information available about species, one can construct optimization routines that incorporate various conservation constraints. We demonstrate how this information can be used to select sets of species for conservation action. Specifically, we discuss the use of species' geographic distributions, the choice of candidates under economic pressure, and the use of predator–prey interactions between the species in a community to define viability constraints. Despite such optimization problems falling into the area of NP hard problems, it is possible to solve them in a reasonable amount of time using integer programming. We apply integer linear programming to a variety of models for conservation prioritization that incorporate the SD measure. We exemplarily show the results for two data sets: the Cape region of South Africa and a Caribbean coral reef community. Finally, we provide user-friendly software at http://www.cibiv.at/software/pda. PMID:25893087
Accurate construction of consensus genetic maps via integer linear programming.
Wu, Yonghui; Close, Timothy J; Lonardi, Stefano
2011-01-01
We study the problem of merging genetic maps, when the individual genetic maps are given as directed acyclic graphs. The computational problem is to build a consensus map, which is a directed graph that includes and is consistent with all (or, the vast majority of) the markers in the input maps. However, when markers in the individual maps have ordering conflicts, the resulting consensus map will contain cycles. Here, we formulate the problem of resolving cycles in the context of a parsimonious paradigm that takes into account two types of errors that may be present in the input maps, namely, local reshuffles and global displacements. The resulting combinatorial optimization problem is, in turn, expressed as an integer linear program. A fast approximation algorithm is proposed, and an additional speedup heuristic is developed. Our algorithms were implemented in a software tool named MERGEMAP which is freely available for academic use. An extensive set of experiments shows that MERGEMAP consistently outperforms JOINMAP, which is the most popular tool currently available for this task, both in terms of accuracy and running time. MERGEMAP is available for download at http://www.cs.ucr.edu/~yonghui/mgmap.html. PMID:20479505
A Mixed Integer Linear Program for Airport Departure Scheduling
NASA Technical Reports Server (NTRS)
Gupta, Gautam; Jung, Yoon Chul
2009-01-01
Aircraft departing from an airport are subject to numerous constraints while scheduling departure times. These constraints include wake-separation constraints for successive departures, miles-in-trail separation for aircraft bound for the same departure fixes, and time-window or prioritization constraints for individual flights. Besides these, emissions as well as increased fuel consumption due to inefficient scheduling need to be included. Addressing all the above constraints in a single framework while allowing for resequencing of the aircraft using runway queues is critical to the implementation of the Next Generation Air Transport System (NextGen) concepts. Prior work on airport departure scheduling has addressed some of the above. However, existing methods use pre-determined runway queues, and schedule aircraft from these departure queues. The source of such pre-determined queues is not explicit, and could potentially be a subjective controller input. Determining runway queues and scheduling within the same framework would potentially result in better scheduling. This paper presents a mixed integer linear program (MILP) for the departure-scheduling problem. The program takes as input the incoming sequence of aircraft for departure from a runway, along with their earliest departure times and an optional prioritization scheme based on time-window of departure for each aircraft. The program then assigns these aircraft to the available departure queues and schedules departure times, explicitly considering wake separation and departure fix restrictions to minimize total delay for all aircraft. The approach is generalized and can be used in a variety of situations, and allows for aircraft prioritization based on operational as well as environmental considerations. We present the MILP in the paper, along with benefits over the first-come-first-serve (FCFS) scheme for numerous randomized problems based on real-world settings. The MILP results in substantially reduced
IESIP - AN IMPROVED EXPLORATORY SEARCH TECHNIQUE FOR PURE INTEGER LINEAR PROGRAMMING PROBLEMS
NASA Technical Reports Server (NTRS)
Fogle, F. R.
1994-01-01
IESIP, an Improved Exploratory Search Technique for Pure Integer Linear Programming Problems, addresses the problem of optimizing an objective function of one or more variables subject to a set of confining functions or constraints by a method called discrete optimization or integer programming. Integer programming is based on a specific form of the general linear programming problem in which all variables in the objective function and all variables in the constraints are integers. While more difficult, integer programming is required for accuracy when modeling systems with small numbers of components such as the distribution of goods, machine scheduling, and production scheduling. IESIP establishes a new methodology for solving pure integer programming problems by utilizing a modified version of the univariate exploratory move developed by Robert Hooke and T.A. Jeeves. IESIP also takes some of its technique from the greedy procedure and the idea of unit neighborhoods. A rounding scheme uses the continuous solution found by traditional methods (simplex or other suitable technique) and creates a feasible integer starting point. The Hook and Jeeves exploratory search is modified to accommodate integers and constraints and is then employed to determine an optimal integer solution from the feasible starting solution. The user-friendly IESIP allows for rapid solution of problems up to 10 variables in size (limited by DOS allocation). Sample problems compare IESIP solutions with the traditional branch-and-bound approach. IESIP is written in Borland's TURBO Pascal for IBM PC series computers and compatibles running DOS. Source code and an executable are provided. The main memory requirement for execution is 25K. This program is available on a 5.25 inch 360K MS DOS format diskette. IESIP was developed in 1990. IBM is a trademark of International Business Machines. TURBO Pascal is registered by Borland International.
Parametric integer linear programming: a synthesis of branch and bound with cutting planes
Rountree, S.L.K.; Gillett, B.E.
1980-01-01
A branch and bound algorithm is designed to solve the general integer linear programing problem with parametric right-hand sides. The right-hand sides have the form b + THETA d, where b and d are conformable vectors, d consists of nonegative constants, and THETA varies from zero to one. The method consists of first determining all possible right-hand side ineger constants and appending this set of integer constants to the initial tableau to form an expanded problem with a finite number of family members. The implicit enumeration method gives a lower bound on the integer solutions. The branch and bound method is used with fathoming tests that allow one family member possibly to fathom other family members. A cutting plane option applies a finite number of cuts to each node before branching. In addition, the cutting plane method is invoked whenever some members are feasible at a node and others are infeasible. The branching and cutting process is repeated until the entire family of problems has been solved. 3 tables.
Li, Zukui; Ding, Ran; Floudas, Christodoulos A.
2011-01-01
Robust counterpart optimization techniques for linear optimization and mixed integer linear optimization problems are studied in this paper. Different uncertainty sets, including those studied in literature (i.e., interval set; combined interval and ellipsoidal set; combined interval and polyhedral set) and new ones (i.e., adjustable box; pure ellipsoidal; pure polyhedral; combined interval, ellipsoidal, and polyhedral set) are studied in this work and their geometric relationship is discussed. For uncertainty in the left hand side, right hand side, and objective function of the optimization problems, robust counterpart optimization formulations induced by those different uncertainty sets are derived. Numerical studies are performed to compare the solutions of the robust counterpart optimization models and applications in refinery production planning and batch process scheduling problem are presented. PMID:21935263
An improved exploratory search technique for pure integer linear programming problems
NASA Technical Reports Server (NTRS)
Fogle, F. R.
1990-01-01
The development is documented of a heuristic method for the solution of pure integer linear programming problems. The procedure draws its methodology from the ideas of Hooke and Jeeves type 1 and 2 exploratory searches, greedy procedures, and neighborhood searches. It uses an efficient rounding method to obtain its first feasible integer point from the optimal continuous solution obtained via the simplex method. Since this method is based entirely on simple addition or subtraction of one to each variable of a point in n-space and the subsequent comparison of candidate solutions to a given set of constraints, it facilitates significant complexity improvements over existing techniques. It also obtains the same optimal solution found by the branch-and-bound technique in 44 of 45 small to moderate size test problems. Two example problems are worked in detail to show the inner workings of the method. Furthermore, using an established weighted scheme for comparing computational effort involved in an algorithm, a comparison of this algorithm is made to the more established and rigorous branch-and-bound method. A computer implementation of the procedure, in PC compatible Pascal, is also presented and discussed.
Power Minimization for Dual- and Triple-Supply Digital Circuits via Integer Linear Programming
NASA Astrophysics Data System (ADS)
Ahn, Ki-Yong; Kyung, Chong-Min
This paper proposes an Integer Linear Programming (ILP)-based power minimization method by partitioning into regions, first, with three different VDD's(PM3V), and, secondly, with two different VDD's(PM2V). To reduce the solving time of triple-VDD case (PM3V), we also proposed a partitioned ILP method(p-PM3V). The proposed method provides 29% power saving on the average in the case of triple-VDD compared to the case of single VDD. Power reduction of PM3V compared to Clustered Voltage Scaling (CVS) was about 18%. Compared to the unpartitioned ILP formulation(PM3V), the partitioned ILP method(p-PM3V) reduced the total solution time by 46% at the cost of additional power consumption within 1.3%.
An Application of Parametric Mixed-Integer Linear Programming to Hydropower Development
NASA Astrophysics Data System (ADS)
Turgeon, André
1987-03-01
The problem consists in selecting the sites on the river where reservoirs and hydroelectric power plants are to be built and then determining the type and size of the projected installations. The solution obviously depends on the amount of money the utility is willing to invest, which itself is a function of what the new installations will produce. It is therefore necessary to solve the problem for all possible amounts of firm energy produced, since it is not known at the outset which production level the utility will select. This is done in the paper by a parametric mixed-integer linear programming (MILP) method whose efficiency derives from the fact that the branch-and-bound algorithm for selecting the sites to be developed (and consuming most of the computer time) is solved a minimum number of times. Between the points where the MILP problem is solved, LP parametric analysis is applied.
First, Eric L; Gounaris, Chrysanthos E; Floudas, Christodoulos A
2012-01-23
Reaction mappings are of fundamental importance to researchers studying the mechanisms of chemical reactions and analyzing biochemical pathways. We have developed an automated method based on integer linear optimization, ILP, to identify optimal reaction mappings that minimize the number of bond changes. An alternate objective function is also proposed that minimizes the number of bond order changes. In contrast to previous approaches, our method produces mappings that respect stereochemistry. We also show how to locate multiple reaction mappings efficiently and determine which of those mappings correspond to distinct reaction mechanisms by automatically detecting molecular symmetries. We demonstrate our techniques through a number of computational studies on the GRI-Mech, KEGG LIGAND, and BioPath databases. The computational studies indicate that 99% of the 8078 reactions tested can be addressed within 1 CPU hour. The proposed framework has been incorporated into the Web tool DREAM ( http://selene.princeton.edu/dream/ ), which is freely available to the scientific community. PMID:22098204
NASA Astrophysics Data System (ADS)
Bahri, Susila
2016-04-01
In this research, the minimization of the fire station model is constructed. The maximum time data required by the firefighter is used to construct the minimization model of the fire station in Padang. The model is used to determine the minimum number of the available fire station in Padang town. By using Matlab 2013a, the solution of the model can be found based on the Branch and Bound method. It denotes that the fire station must be built in Lubuk Begalung and Kuranji sub-districts.
A Mixed Integer Linear Program for Solving a Multiple Route Taxi Scheduling Problem
NASA Technical Reports Server (NTRS)
Montoya, Justin Vincent; Wood, Zachary Paul; Rathinam, Sivakumar; Malik, Waqar Ahmad
2010-01-01
Aircraft movements on taxiways at busy airports often create bottlenecks. This paper introduces a mixed integer linear program to solve a Multiple Route Aircraft Taxi Scheduling Problem. The outputs of the model are in the form of optimal taxi schedules, which include routing decisions for taxiing aircraft. The model extends an existing single route formulation to include routing decisions. An efficient comparison framework compares the multi-route formulation and the single route formulation. The multi-route model is exercised for east side airport surface traffic at Dallas/Fort Worth International Airport to determine if any arrival taxi time savings can be achieved by allowing arrivals to have two taxi routes: a route that crosses an active departure runway and a perimeter route that avoids the crossing. Results indicate that the multi-route formulation yields reduced arrival taxi times over the single route formulation only when a perimeter taxiway is used. In conditions where the departure aircraft are given an optimal and fixed takeoff sequence, accumulative arrival taxi time savings in the multi-route formulation can be as high as 3.6 hours more than the single route formulation. If the departure sequence is not optimal, the multi-route formulation results in less taxi time savings made over the single route formulation, but the average arrival taxi time is significantly decreased.
Poos, Alexandra M; Maicher, André; Dieckmann, Anna K; Oswald, Marcus; Eils, Roland; Kupiec, Martin; Luke, Brian; König, Rainer
2016-06-01
Understanding telomere length maintenance mechanisms is central in cancer biology as their dysregulation is one of the hallmarks for immortalization of cancer cells. Important for this well-balanced control is the transcriptional regulation of the telomerase genes. We integrated Mixed Integer Linear Programming models into a comparative machine learning based approach to identify regulatory interactions that best explain the discrepancy of telomerase transcript levels in yeast mutants with deleted regulators showing aberrant telomere length, when compared to mutants with normal telomere length. We uncover novel regulators of telomerase expression, several of which affect histone levels or modifications. In particular, our results point to the transcription factors Sum1, Hst1 and Srb2 as being important for the regulation of EST1 transcription, and we validated the effect of Sum1 experimentally. We compiled our machine learning method leading to a user friendly package for R which can straightforwardly be applied to similar problems integrating gene regulator binding information and expression profiles of samples of e.g. different phenotypes, diseases or treatments. PMID:26908654
Poos, Alexandra M.; Maicher, André; Dieckmann, Anna K.; Oswald, Marcus; Eils, Roland; Kupiec, Martin; Luke, Brian; König, Rainer
2016-01-01
Understanding telomere length maintenance mechanisms is central in cancer biology as their dysregulation is one of the hallmarks for immortalization of cancer cells. Important for this well-balanced control is the transcriptional regulation of the telomerase genes. We integrated Mixed Integer Linear Programming models into a comparative machine learning based approach to identify regulatory interactions that best explain the discrepancy of telomerase transcript levels in yeast mutants with deleted regulators showing aberrant telomere length, when compared to mutants with normal telomere length. We uncover novel regulators of telomerase expression, several of which affect histone levels or modifications. In particular, our results point to the transcription factors Sum1, Hst1 and Srb2 as being important for the regulation of EST1 transcription, and we validated the effect of Sum1 experimentally. We compiled our machine learning method leading to a user friendly package for R which can straightforwardly be applied to similar problems integrating gene regulator binding information and expression profiles of samples of e.g. different phenotypes, diseases or treatments. PMID:26908654
Automatic design of synthetic gene circuits through mixed integer non-linear programming.
Huynh, Linh; Kececioglu, John; Köppe, Matthias; Tagkopoulos, Ilias
2012-01-01
Automatic design of synthetic gene circuits poses a significant challenge to synthetic biology, primarily due to the complexity of biological systems, and the lack of rigorous optimization methods that can cope with the combinatorial explosion as the number of biological parts increases. Current optimization methods for synthetic gene design rely on heuristic algorithms that are usually not deterministic, deliver sub-optimal solutions, and provide no guaranties on convergence or error bounds. Here, we introduce an optimization framework for the problem of part selection in synthetic gene circuits that is based on mixed integer non-linear programming (MINLP), which is a deterministic method that finds the globally optimal solution and guarantees convergence in finite time. Given a synthetic gene circuit, a library of characterized parts, and user-defined constraints, our method can find the optimal selection of parts that satisfy the constraints and best approximates the objective function given by the user. We evaluated the proposed method in the design of three synthetic circuits (a toggle switch, a transcriptional cascade, and a band detector), with both experimentally constructed and synthetic promoter libraries. Scalability and robustness analysis shows that the proposed framework scales well with the library size and the solution space. The work described here is a step towards a unifying, realistic framework for the automated design of biological circuits. PMID:22536398
Integer Linear Programming for Constrained Multi-Aspect Committee Review Assignment
Karimzadehgan, Maryam; Zhai, ChengXiang
2011-01-01
Automatic review assignment can significantly improve the productivity of many people such as conference organizers, journal editors and grant administrators. A general setup of the review assignment problem involves assigning a set of reviewers on a committee to a set of documents to be reviewed under the constraint of review quota so that the reviewers assigned to a document can collectively cover multiple topic aspects of the document. No previous work has addressed such a setup of committee review assignments while also considering matching multiple aspects of topics and expertise. In this paper, we tackle the problem of committee review assignment with multi-aspect expertise matching by casting it as an integer linear programming problem. The proposed algorithm can naturally accommodate any probabilistic or deterministic method for modeling multiple aspects to automate committee review assignments. Evaluation using a multi-aspect review assignment test set constructed using ACM SIGIR publications shows that the proposed algorithm is effective and efficient for committee review assignments based on multi-aspect expertise matching. PMID:22711970
Li, Y P; Huang, G H
2006-11-01
In this study, an interval-parameter two-stage mixed integer linear programming (ITMILP) model is developed for supporting long-term planning of waste management activities in the City of Regina. In the ITMILP, both two-stage stochastic programming and interval linear programming are introduced into a general mixed integer linear programming framework. Uncertainties expressed as not only probability density functions but also discrete intervals can be reflected. The model can help tackle the dynamic, interactive and uncertain characteristics of the solid waste management system in the City, and can address issues concerning plans for cost-effective waste diversion and landfill prolongation. Three scenarios are considered based on different waste management policies. The results indicate that reasonable solutions have been generated. They are valuable for supporting the adjustment or justification of the existing waste flow allocation patterns, the long-term capacity planning of the City's waste management system, and the formulation of local policies and regulations regarding waste generation and management. PMID:16678336
NASA Astrophysics Data System (ADS)
Noor-E-Alam, Md.; Doucette, John
2015-08-01
Grid-based location problems (GBLPs) can be used to solve location problems in business, engineering, resource exploitation, and even in the field of medical sciences. To solve these decision problems, an integer linear programming (ILP) model is designed and developed to provide the optimal solution for GBLPs considering fixed cost criteria. Preliminary results show that the ILP model is efficient in solving small to moderate-sized problems. However, this ILP model becomes intractable in solving large-scale instances. Therefore, a decomposition heuristic is proposed to solve these large-scale GBLPs, which demonstrates significant reduction of solution runtimes. To benchmark the proposed heuristic, results are compared with the exact solution via ILP. The experimental results show that the proposed method significantly outperforms the exact method in runtime with minimal (and in most cases, no) loss of optimality.
DRIESSEN,BRIAN; SADEGH,NADER
2000-04-25
This work presents a method of finding near global optima to minimum-time trajectory generation problem for systems that would be linear if it were not for the presence of Coloumb friction. The required final state of the system is assumed to be maintainable by the system, and the input bounds are assumed to be large enough so that they can overcome the maximum static Coloumb friction force. Other than the previous work for generating minimum-time trajectories for non redundant robotic manipulators for which the path in joint space is already specified, this work represents, to the best of the authors' knowledge, the first approach for generating near global optima for minimum-time problems involving a nonlinear class of dynamic systems. The reason the optima generated are near global optima instead of exactly global optima is due to a discrete-time approximation of the system (which is usually used anyway to simulate such a system numerically). The method closely resembles previous methods for generating minimum-time trajectories for linear systems, where the core operation is the solution of a Phase I linear programming problem. For the nonlinear systems considered herein, the core operation is instead the solution of a mixed integer linear programming problem.
Baliban, Richard C.; DiMaggio, Peter A.; Plazas-Mayorca, Mariana D.; Young, Nicolas L.; Garcia, Benjamin A.; Floudas, Christodoulos A.
2010-01-01
A novel algorithm, PILOT_PTM, has been developed for the untargeted identification of post-translational modifications (PTMs) on a template sequence. The algorithm consists of an analysis of an MS/MS spectrum via an integer linear optimization model to output a rank-ordered list of PTMs that best match the experimental data. Each MS/MS spectrum is analyzed by a preprocessing algorithm to reduce spectral noise and label potential complimentary, offset, isotope, and multiply charged peaks. Postprocessing of the rank-ordered list from the integer linear optimization model will resolve fragment mass errors and will reorder the list of PTMs based on the cross-correlation between the experimental and theoretical MS/MS spectrum. PILOT_PTM is instrument-independent, capable of handling multiple fragmentation technologies, and can address the universe of PTMs for every amino acid on the template sequence. The various features of PILOT_PTM are presented, and it is tested on several modified and unmodified data sets including chemically synthesized phosphopeptides, histone H3-(1–50) polypeptides, histone H3-(1–50) tryptic fragments, and peptides generated from proteins extracted from chromatin-enriched fractions. The data sets consist of spectra derived from fragmentation via collision-induced dissociation, electron transfer dissociation, and electron capture dissociation. The capability of PILOT_PTM is then benchmarked using five state-of-the-art methods, InsPecT, Virtual Expert Mass Spectrometrist (VEMS), Modi, Mascot, and X!Tandem. PILOT_PTM demonstrates superior accuracy on both the small and large scale proteome experiments. A protocol is finally developed for the analysis of a complete LC-MS/MS scan using template sequences generated from SEQUEST and is demonstrated on over 270,000 MS/MS spectra collected from a total chromatin digest. PMID:20103568
Lee, Dongyul; Lee, Chaewoo
2014-01-01
The advancement in wideband wireless network supports real time services such as IPTV and live video streaming. However, because of the sharing nature of the wireless medium, efficient resource allocation has been studied to achieve a high level of acceptability and proliferation of wireless multimedia. Scalable video coding (SVC) with adaptive modulation and coding (AMC) provides an excellent solution for wireless video streaming. By assigning different modulation and coding schemes (MCSs) to video layers, SVC can provide good video quality to users in good channel conditions and also basic video quality to users in bad channel conditions. For optimal resource allocation, a key issue in applying SVC in the wireless multicast service is how to assign MCSs and the time resources to each SVC layer in the heterogeneous channel condition. We formulate this problem with integer linear programming (ILP) and provide numerical results to show the performance under 802.16 m environment. The result shows that our methodology enhances the overall system throughput compared to an existing algorithm. PMID:25276862
Lee, Chaewoo
2014-01-01
The advancement in wideband wireless network supports real time services such as IPTV and live video streaming. However, because of the sharing nature of the wireless medium, efficient resource allocation has been studied to achieve a high level of acceptability and proliferation of wireless multimedia. Scalable video coding (SVC) with adaptive modulation and coding (AMC) provides an excellent solution for wireless video streaming. By assigning different modulation and coding schemes (MCSs) to video layers, SVC can provide good video quality to users in good channel conditions and also basic video quality to users in bad channel conditions. For optimal resource allocation, a key issue in applying SVC in the wireless multicast service is how to assign MCSs and the time resources to each SVC layer in the heterogeneous channel condition. We formulate this problem with integer linear programming (ILP) and provide numerical results to show the performance under 802.16 m environment. The result shows that our methodology enhances the overall system throughput compared to an existing algorithm. PMID:25276862
Ryan, Jason C; Banerjee, Ashis Gopal; Cummings, Mary L; Roy, Nicholas
2014-06-01
Planning operations across a number of domains can be considered as resource allocation problems with timing constraints. An unexplored instance of such a problem domain is the aircraft carrier flight deck, where, in current operations, replanning is done without the aid of any computerized decision support. Rather, veteran operators employ a set of experience-based heuristics to quickly generate new operating schedules. These expert user heuristics are neither codified nor evaluated by the United States Navy; they have grown solely from the convergent experiences of supervisory staff. As unmanned aerial vehicles (UAVs) are introduced in the aircraft carrier domain, these heuristics may require alterations due to differing capabilities. The inclusion of UAVs also allows for new opportunities for on-line planning and control, providing an alternative to the current heuristic-based replanning methodology. To investigate these issues formally, we have developed a decision support system for flight deck operations that utilizes a conventional integer linear program-based planning algorithm. In this system, a human operator sets both the goals and constraints for the algorithm, which then returns a proposed schedule for operator approval. As a part of validating this system, the performance of this collaborative human-automation planner was compared with that of the expert user heuristics over a set of test scenarios. The resulting analysis shows that human heuristics often outperform the plans produced by an optimization algorithm, but are also often more conservative. PMID:23934675
Li, Jing; Jiang, Tao
2005-01-01
We study the problem of reconstructing haplotype configurations from genotypes on pedigree data with missing alleles under the Mendelian law of inheritance and the minimum-recombination principle, which is important for the construction of haplotype maps and genetic linkage/association analyses. Our previous results show that the problem of finding a minimum-recombinant haplotype configuration (MRHC) is in general NP-hard. This paper presents an effective integer linear programming (ILP) formulation of the MRHC problem with missing data and a branch-and-bound strategy that utilizes a partial order relationship and some other special relationships among variables to decide the branching order. Nontrivial lower and upper bounds on the optimal number of recombinants are introduced at each branching node to effectively prune the search tree. When multiple solutions exist, a best haplotype configuration is selected based on a maximum likelihood approach. The paper also shows for the first time how to incorporate marker interval distance into a rule-based haplotyping algorithm. Our results on simulated data show that the algorithm could recover haplotypes with 50 loci from a pedigree of size 29 in seconds on a Pentium IV computer. Its accuracy is more than 99.8% for data with no missing alleles and 98.3% for data with 20% missing alleles in terms of correctly recovered phase information at each marker locus. A comparison with a statistical approach SimWalk2 on simulated data shows that the ILP algorithm runs much faster than SimWalk2 and reports better or comparable haplotypes on average than the first and second runs of SimWalk2. As an application of the algorithm to real data, we present some test results on reconstructing haplotypes from a genome-scale SNP dataset consisting of 12 pedigrees that have 0.8% to 14.5% missing alleles. PMID:16108713
Zhang, Huiling; Huang, Qingsheng; Bei, Zhendong; Wei, Yanjie; Floudas, Christodoulos A
2016-03-01
In this article, we present COMSAT, a hybrid framework for residue contact prediction of transmembrane (TM) proteins, integrating a support vector machine (SVM) method and a mixed integer linear programming (MILP) method. COMSAT consists of two modules: COMSAT_SVM which is trained mainly on position-specific scoring matrix features, and COMSAT_MILP which is an ab initio method based on optimization models. Contacts predicted by the SVM model are ranked by SVM confidence scores, and a threshold is trained to improve the reliability of the predicted contacts. For TM proteins with no contacts above the threshold, COMSAT_MILP is used. The proposed hybrid contact prediction scheme was tested on two independent TM protein sets based on the contact definition of 14 Å between Cα-Cα atoms. First, using a rigorous leave-one-protein-out cross validation on the training set of 90 TM proteins, an accuracy of 66.8%, a coverage of 12.3%, a specificity of 99.3% and a Matthews' correlation coefficient (MCC) of 0.184 were obtained for residue pairs that are at least six amino acids apart. Second, when tested on a test set of 87 TM proteins, the proposed method showed a prediction accuracy of 64.5%, a coverage of 5.3%, a specificity of 99.4% and a MCC of 0.106. COMSAT shows satisfactory results when compared with 12 other state-of-the-art predictors, and is more robust in terms of prediction accuracy as the length and complexity of TM protein increase. COMSAT is freely accessible at http://hpcc.siat.ac.cn/COMSAT/. PMID:26756402
Alexopoulos, Leonidas G.; Klamt, Steffen
2013-01-01
Cross-referencing experimental data with our current knowledge of signaling network topologies is one central goal of mathematical modeling of cellular signal transduction networks. We present a new methodology for data-driven interrogation and training of signaling networks. While most published methods for signaling network inference operate on Bayesian, Boolean, or ODE models, our approach uses integer linear programming (ILP) on interaction graphs to encode constraints on the qualitative behavior of the nodes. These constraints are posed by the network topology and their formulation as ILP allows us to predict the possible qualitative changes (up, down, no effect) of the activation levels of the nodes for a given stimulus. We provide four basic operations to detect and remove inconsistencies between measurements and predicted behavior: (i) find a topology-consistent explanation for responses of signaling nodes measured in a stimulus-response experiment (if none exists, find the closest explanation); (ii) determine a minimal set of nodes that need to be corrected to make an inconsistent scenario consistent; (iii) determine the optimal subgraph of the given network topology which can best reflect measurements from a set of experimental scenarios; (iv) find possibly missing edges that would improve the consistency of the graph with respect to a set of experimental scenarios the most. We demonstrate the applicability of the proposed approach by interrogating a manually curated interaction graph model of EGFR/ErbB signaling against a library of high-throughput phosphoproteomic data measured in primary hepatocytes. Our methods detect interactions that are likely to be inactive in hepatocytes and provide suggestions for new interactions that, if included, would significantly improve the goodness of fit. Our framework is highly flexible and the underlying model requires only easily accessible biological knowledge. All related algorithms were implemented in a freely
Doolittle, R.
1994-11-15
The title integer anatomy is intended to convey the idea of a systematic method for displaying the prime decomposition of the integers. Just as the biological study of anatomy does not teach us all things about behavior of species neither would we expect to learn everything about the number theory from a study of its anatomy. But, some number-theoretic theorems are illustrated by inspection of integer anatomy, which tend to validate the underlying structure and the form as developed and displayed in this treatise. The first statement to be made in this development is: the way structure of the natural numbers is displayed depends upon the allowed operations.
Linear arrays of InGaAs/InP avalanche photodiodes for 1.0-1.7 micron
NASA Technical Reports Server (NTRS)
Ackley, D. E.; Hladky, J.; Lange, M. J.; Mason, S.; Erickson, G.; Olsen, G. H.; Ban, V. S.; Forrest, S. R.; Staller, C.
1990-01-01
Separate absorption and multiplication InGaAs/InP avalanche photodiodes (SAM-APDs) with a floating guard ring structure that is well-suited to array applications have been successfully demonstrated. Individual APDs have breakdown voltages greater than 80 V, multiplications over 40 at 100 nA dark current, and uniform spatial gain profiles. Uniform I-V characteristics and gains have been measured over linear dimensions as large as 1.2 cm. Gains over 10 at low multiplied dark currents were measured on 21 consecutive devices at the wafer level.
NASA Astrophysics Data System (ADS)
Huang, Shiu-Ming; Yu, Shih-Hsun; Chou, Mitch
2016-08-01
A non-saturating linear magnetoresistance (MR) is observed in Cu0.1Bi2Se3 in a wide range of temperatures. The crossover magnetic field, B*, deviating from the linear MR, increases as the temperature increases. The experimental results show that the normalized B*, inverse MR slope and mobility follow the same temperature dependence that is consistent with the model constructed by Parich and Littlewood (PL model). The mechanism of the T 2 dependent B* is systematically and comprehensively discussed through existing theories, and might be due to the electron‑electron scattering in a highly uniform system with a few low mobility defects.
NASA Astrophysics Data System (ADS)
Guo, P.; Huang, G. H.; Li, Y. P.
2010-01-01
In this study, an inexact fuzzy-chance-constrained two-stage mixed-integer linear programming (IFCTIP) approach is developed for flood diversion planning under multiple uncertainties. A concept of the distribution with fuzzy boundary interval probability is defined to address multiple uncertainties expressed as integration of intervals, fuzzy sets and probability distributions. IFCTIP integrates the inexact programming, two-stage stochastic programming, integer programming and fuzzy-stochastic programming within a general optimization framework. IFCTIP incorporates the pre-regulated water-diversion policies directly into its optimization process to analyze various policy scenarios; each scenario has different economic penalty when the promised targets are violated. More importantly, it can facilitate dynamic programming for decisions of capacity-expansion planning under fuzzy-stochastic conditions. IFCTIP is applied to a flood management system. Solutions from IFCTIP provide desired flood diversion plans with a minimized system cost and a maximized safety level. The results indicate that reasonable solutions are generated for objective function values and decision variables, thus a number of decision alternatives can be generated under different levels of flood flows.
Armutlu, Pelin; Ozdemir, Muhittin E; Uney-Yuksektepe, Fadime; Kavakli, I Halil; Turkay, Metin
2008-01-01
Background A priori analysis of the activity of drugs on the target protein by computational approaches can be useful in narrowing down drug candidates for further experimental tests. Currently, there are a large number of computational methods that predict the activity of drugs on proteins. In this study, we approach the activity prediction problem as a classification problem and, we aim to improve the classification accuracy by introducing an algorithm that combines partial least squares regression with mixed-integer programming based hyper-boxes classification method, where drug molecules are classified as low active or high active regarding their binding activity (IC50 values) on target proteins. We also aim to determine the most significant molecular descriptors for the drug molecules. Results We first apply our approach by analyzing the activities of widely known inhibitor datasets including Acetylcholinesterase (ACHE), Benzodiazepine Receptor (BZR), Dihydrofolate Reductase (DHFR), Cyclooxygenase-2 (COX-2) with known IC50 values. The results at this stage proved that our approach consistently gives better classification accuracies compared to 63 other reported classification methods such as SVM, Naïve Bayes, where we were able to predict the experimentally determined IC50 values with a worst case accuracy of 96%. To further test applicability of this approach we first created dataset for Cytochrome P450 C17 inhibitors and then predicted their activities with 100% accuracy. Conclusion Our results indicate that this approach can be utilized to predict the inhibitory effects of inhibitors based on their molecular descriptors. This approach will not only enhance drug discovery process, but also save time and resources committed. PMID:18834515
Rajgaria, R.; Wei, Y.; Floudas, C. A.
2010-01-01
An integer linear optimization model is presented to predict residue contacts in β, α + β, and α/β proteins. The total energy of a protein is expressed as sum of a Cα – Cα distance dependent contact energy contribution and a hydrophobic contribution. The model selects contacts that assign lowest energy to the protein structure while satisfying a set of constraints that are included to enforce certain physically observed topological information. A new method based on hydrophobicity is proposed to find the β-sheet alignments. These β-sheet alignments are used as constraints for contacts between residues of β-sheets. This model was tested on three independent protein test sets and CASP8 test proteins consisting of β, α + β, α/β proteins and was found to perform very well. The average accuracy of the predictions (separated by at least six residues) was approximately 61%. The average true positive and false positive distances were also calculated for each of the test sets and they are 7.58 Å and 15.88 Å, respectively. Residue contact prediction can be directly used to facilitate the protein tertiary structure prediction. This proposed residue contact prediction model is incorporated into the first principles protein tertiary structure prediction approach, ASTRO-FOLD. The effectiveness of the contact prediction model was further demonstrated by the improvement in the quality of the protein structure ensemble generated using the predicted residue contacts for a test set of 10 proteins. PMID:20225257
2013-01-01
that these constraints can often lead to significant reductions in the gap between the optimal solution and its non-integral linear programming bound relative to the prior art as well as often substantially faster processing of moderately hard problem instances. Conclusion We provide an indication of the conditions under which such an optimal enumeration approach is likely to be feasible, suggesting that these strategies are usable for relatively large numbers of taxa, although with stricter limits on numbers of variable sites. The work thus provides methodology suitable for provably optimal solution of some harder instances that resist all prior approaches. PMID:23343437
ERIC Educational Resources Information Center
Dirks, Michael K.
1984-01-01
The abacus method for instruction on addition, subtraction, and multiplication with integers is explained. How to represent the integers for each operation is detailed with words and illustrations. (MNS)
ERIC Educational Resources Information Center
Pong, Wai Yan
2007-01-01
We begin by answering the question, "Which natural numbers are sums of consecutive integers?" We then go on to explore the set of lengths (numbers of summands) in the decompositions of an integer as such sums.
ERIC Educational Resources Information Center
Siegel, Jonathan W.; Siegel, P. B.
2011-01-01
Integers are sometimes used in physics problems to simplify the mathematics so the arithmetic does not distract students from the physics concepts. This is particularly important in exams where students should not have to spend a lot of time using their calculators. Common uses of integers in physics problems include integer solutions to…
ERIC Educational Resources Information Center
Griffiths, Martin
2011-01-01
One of the author's undergraduate students recently asked him whether it was possible to generate a random positive integer. After some thought, the author realised that there were plenty of interesting mathematical ideas inherent in her question. So much so in fact, that the author decided to organise a workshop, open both to undergraduates and…
Meyers, C A; Schulz, A S
2009-01-07
The integer equal flow problem is an NP-hard network flow problem, in which all arcs in given sets R{sub 1}, ..., R{sub {ell}} must carry equal flow. We show this problem is effectively inapproximable, even if the cardinality of each set R{sub k} is two. When {ell} is fixed, it is solvable in polynomial time.
Aerospace Applications of Integer and Combinatorial Optimization
NASA Technical Reports Server (NTRS)
Padula, S. L.; Kincaid, R. K.
1995-01-01
Research supported by NASA Langley Research Center includes many applications of aerospace design optimization and is conducted by teams of applied mathematicians and aerospace engineers. This paper investigates the benefits from this combined expertise in formulating and solving integer and combinatorial optimization problems. Applications range from the design of large space antennas to interior noise control. A typical problem, for example, seeks the optimal locations for vibration-damping devices on an orbiting platform and is expressed as a mixed/integer linear programming problem with more than 1500 design variables.
Aerospace applications on integer and combinatorial optimization
NASA Technical Reports Server (NTRS)
Padula, S. L.; Kincaid, R. K.
1995-01-01
Research supported by NASA Langley Research Center includes many applications of aerospace design optimization and is conducted by teams of applied mathematicians and aerospace engineers. This paper investigates the benefits from this combined expertise in formulating and solving integer and combinatorial optimization problems. Applications range from the design of large space antennas to interior noise control. A typical problem. for example, seeks the optimal locations for vibration-damping devices on an orbiting platform and is expressed as a mixed/integer linear programming problem with more than 1500 design variables.
NASA Astrophysics Data System (ADS)
Patel, Jay Prakash; Senyshyn, Anatoliy; Fuess, Hartmut; Pandey, Dhananjai
2013-09-01
Magnetization, dielectric, and calorimetric studies on Bi0.8 Pb0.2 Fe0.9 Nb0.1O3 (BF-0.2PFN) reveal very weak ferromagnetism but strong dielectric anomaly at the antiferromagnetic transition temperature (TN) characteristic of magnetoelectric coupling. We correlate these results with nuclear and magnetic structure studies using x-ray and neutron powder diffraction techniques, respectively. Rietveld refinements using x-ray powder diffraction data in the temperature range 300 to 673 K reveal pronounced anomalies in the unit cell parameters at TN, indicating strong magnetoelastic coupling. The nuclear and magnetic structures of BF-0.2PFN were determined from neutron powder diffraction data using a representation theory approach. They show the occurrence of a first-order isostructural phase transition (IPT) accompanying the magnetic ordering below TN˜566 K, leading to significant discontinuous change in the ionic polarization (ΔPz˜1.6(3) μC/cm2) and octahedral tilt angle (˜0.3°) at TN. The ionic polarization obtained from refined positional coordinates of the nuclear structure and Born effective charges is shown to scale linearly with sublattice magnetization, confirming the presence of linear magnetoelectric coupling in BF-0.2PFN at the atomic level, despite the very low value of remanent magnetization (Mr).
CRAY-1S integer vector utility library
Rogers, J.N.; Tooman, T.P.
1982-06-01
This report describes thirty-five integer or packed vector utility routines, and documents their testing. These routines perform various vector searches, linear algebra functions, memory resets, and vector boolean operations. They are written in CAL, the assembly language on the CRAY-1S computer. By utilizing the vector processing features of that machine, they are optimized in terms of run time. Each routine has been extensively tested.
Aerospace applications of integer and combinatorial optimization
NASA Technical Reports Server (NTRS)
Padula, S. L.; Kincaid, R. K.
1995-01-01
Research supported by NASA Langley Research Center includes many applications of aerospace design optimization and is conducted by teams of applied mathematicians and aerospace engineers. This paper investigates the benefits from this combined expertise in solving combinatorial optimization problems. Applications range from the design of large space antennas to interior noise control. A typical problem, for example, seeks the optimal locations for vibration-damping devices on a large space structure and is expressed as a mixed/integer linear programming problem with more than 1500 design variables.
Partial integer decorrelation: optimum trade-off between variance reduction and bias amplification
NASA Astrophysics Data System (ADS)
Henkel, Patrick; Günther, Christoph
2010-01-01
Different techniques have been developed for determining carrier phase ambiguities, ranging from float approximations to the efficient solution of the integer least square problem by the LAMBDA method. The focus so far was on double-differenced measurements. Practical implementations of the LAMBDA method lead to a residual probability of wrong fixing of the order one percent. For safety critical applications, this probability had to be reduced by eight orders of magnitude, which could be achieved by linear multi-frequency code-carrier combinations. Scenarios with single or no differences include biases due to orbit errors, satellite clock offsets, as well as residual code and phase biases. For this case, a linear combination of Galileo E1 and E5 code and carrier phase measurements with a wavelength of 3.285 m and a noise level of a few centimeters is derived. This ionosphere-free combination preserves the orbit and clock errors, and suppresses the E1 code multipath by 12.6 dB. Since integer decorrelation transformations, as used in the LAMBDA method, inflate biases, the number of such transformations must be limited, and applied in a judicious order. With a Galileo type constellation, this leads to a vertical standard deviation of ca. 20 cm, while keeping the probability of wrong fixing extremely low for code biases of 10 cm, and phase biases of 0.1 cycle, combined in a worst case.
Investigating data envelopment analysis model with potential improvement for integer output values
NASA Astrophysics Data System (ADS)
Hussain, Mushtaq Taleb; Ramli, Razamin; Khalid, Ruzelan
2015-12-01
The decrement of input proportions in DEA model is associated with its input reduction. This reduction is apparently good for economy since it could reduce unnecessary cost resources. However, in some situations the reduction of relevant inputs such as labour could create social problems. Such inputs should thus be maintained or increased. This paper develops an advanced radial DEA model dealing with mixed integer linear programming to improve integer output values through the combination of inputs. The model can deal with real input values and integer output values. This model is valuable for situations dealing with input combination to improve integer output values as faced by most organizations.
Integer Operations Using a Whiteboard
ERIC Educational Resources Information Center
Andrews, Delise R.
2011-01-01
Interactive whiteboards are somewhat unimpressive at first and look like the whiteboards that already hang on the walls of many classrooms. However, integrating interactive whiteboard technology in a unit on adding and subtracting integers enhances student engagement and understanding. In this article, the author describes how she used an…
Philip, Bobby; Pernice, Michael
2006-09-01
SAMRSolvers is a collection of multilevel solvers for systems of linear equations that result from finite volume discretization of an elliptic partial differential equation on a block-structure (or patch-based) locally refined grid. SAMRSolvers provides implementations of the Fast Adaptive Composite grid (FAC) method, and the AFACx method, which is a less expensive version of AFAC that smooths the error instead of solving for it on all but the coarsest level. These methods can be shown to converge at rates that are independent of the number of refinement levels. SAMRSolvers is intended for use with SAMRAIV2.0 and requires the SAMRUtilities package.
Integers Made Easy: Just Walk It Off
ERIC Educational Resources Information Center
Nurnberger-Haag, Julie
2007-01-01
This article describes a multisensory method for teaching students how to multiply and divide as well as add and subtract integers. The author uses sidewalk chalk and the underlying concept of integers to physically and mentally engage students in understanding the concepts of integers, making connections, and developing computational fluency.…
2006-09-01
SAMRSolvers is a collection of multilevel solvers for systems of linear equations that result from finite volume discretization of an elliptic partial differential equation on a block-structure (or patch-based) locally refined grid. SAMRSolvers provides implementations of the Fast Adaptive Composite grid (FAC) method, and the AFACx method, which is a less expensive version of AFAC that smooths the error instead of solving for it on all but the coarsest level. These methods can be shownmore » to converge at rates that are independent of the number of refinement levels. SAMRSolvers is intended for use with SAMRAIV2.0 and requires the SAMRUtilities package.« less
Order and Value: Transitioning to Integers
ERIC Educational Resources Information Center
Bofferding, Laura
2014-01-01
As students progress from working with whole numbers to working with integers, they must wrestle with the big ideas of number values and order. Using objects to show positive quantities is easy, but no physical negative quantities exist. Therefore, when talking about integers, the author refers to number values instead of number quantities. The…
Prospective Elementary Teachers' Conceptual Understanding of Integers
ERIC Educational Resources Information Center
Reeder, Stacy; Bateiha, Summer
2016-01-01
This investigation examined the degree to which prospective elementary teachers had developed a meaningful and conceptual understanding of what integers are and explored their development of models for multiplication with integers that are related to everyday activities. Additionally, this study explored how these understandings informed…
Molecular solutions to the binary integer programming problem based on DNA computation.
Yeh, Chung-Wei; Chu, Chih-Ping; Wu, Kee-Rong
2006-01-01
Binary optimization is a widely investigated topic in integer linear programming. This study proposes a DNA-based computing algorithm for solving the significantly large binary integer programming (BIP) problem. The proposed approach is based upon Adleman and Lipton's DNA operations to solve the BIP problem. The potential of DNA computation for the BIP problem is promising given the operational time complexity of O(nxk). PMID:16229936
Rational approximations to linear forms of exponentials and binomials
Chudnovsky, G. V.
1983-01-01
Mahler proved the following quantitative result supplementing the Lindemann-Weierstrass theorem: ǀΣi=0nCieriǀ > H-n-ε for any distinct rational numbers r0,r1,..., rn and rational integers C0,C1,...,Cn with H = max0≤i≤n ǀCiǀ. We improve Mahler's estimate by replacing exponentials eri by linearly independent linear forms Li = Σ Lijesij with rational Lij,siji = 0,1,...,n. Similar results are obtained for binomials (a/b)ri or Σ Lij(a/b)sij with integers a,b and logǀbǀ/logǀaǀ > 1 - ε. The simplest examples of new numbers with the irrationality exponent “2 + ε” are sinh 1 or sin 1. PMID:16593320
Code of Federal Regulations, 2012 CFR
2012-01-01
... 16 Commercial Practices 1 2012-01-01 2012-01-01 false The Commission. 0.1 Section 0.1 Commercial Practices FEDERAL TRADE COMMISSION ORGANIZATION, PROCEDURES AND RULES OF PRACTICE ORGANIZATION § 0.1 The Commission. The Federal Trade Commission is an independent administrative agency which was organized in...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Purpose. 3150.0-1 Section 3150.0-1 Public... Interest Lands Conservation Act (See 50 CFR part 37). ... and Gas Geophysical Exploration; General § 3150.0-1 Purpose. The purpose of this part is to...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Purpose. 3150.0-1 Section 3150.0-1 Public... Interest Lands Conservation Act (See 50 CFR part 37). ... and Gas Geophysical Exploration; General § 3150.0-1 Purpose. The purpose of this part is to...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Purpose. 3150.0-1 Section 3150.0-1 Public... Interest Lands Conservation Act (See 50 CFR part 37). ... and Gas Geophysical Exploration; General § 3150.0-1 Purpose. The purpose of this part is to...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 26 Internal Revenue 14 2012-04-01 2012-04-01 false Introduction. 25.0-1 Section 25.0-1 Internal...; GIFTS MADE AFTER DECEMBER 31, 1954 Gift Tax § 25.0-1 Introduction. (a) In general. (1) The regulations... Revenue Code of 1954 by Treasury Decision 6091, signed August 16, 1954 (19 FR 5167, Aug. 17, 1954)....
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Purpose. 3150.0-1 Section 3150.0-1 Public... Interest Lands Conservation Act (See 50 CFR part 37). ... and Gas Geophysical Exploration; General § 3150.0-1 Purpose. The purpose of this part is to...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 26 Internal Revenue 14 2014-04-01 2013-04-01 true Introduction. 20.0-1 Section 20.0-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) ESTATE AND GIFT TAXES ESTATE TAX; ESTATES OF DECEDENTS DYING AFTER AUGUST 16, 1954 Introduction § 20.0-1 Introduction. (a) In general. (1) The regulations in this part (part...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 26 Internal Revenue 14 2013-04-01 2013-04-01 false Introduction. 20.0-1 Section 20.0-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) ESTATE AND GIFT TAXES ESTATE TAX; ESTATES OF DECEDENTS DYING AFTER AUGUST 16, 1954 Introduction § 20.0-1 Introduction. (a) In general. (1) The regulations in this part (part...
28 CFR 0.1 - Organizational units.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Structure of the Department of Justice § 0.1 Organizational units. The Department of Justice shall consist... Register citations affecting § 0.1, see the List of CFR Sections Affected, which appears in the Finding... 28 Judicial Administration 1 2012-07-01 2012-07-01 false Organizational units. 0.1 Section...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 16 Commercial Practices 1 2011-01-01 2011-01-01 false The Commission. 0.1 Section 0.1 Commercial Practices FEDERAL TRADE COMMISSION ORGANIZATION, PROCEDURES AND RULES OF PRACTICE ORGANIZATION § 0.1 The Commission. The Federal Trade Commission is an independent administrative agency which was organized in...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 1 2014-10-01 2014-10-01 false The Commission. 0.1 Section 0.1 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMISSION ORGANIZATION Organization General § 0.1 The Commission. The Federal Communications Commission is composed of five (5) members who are appointed by...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16 Commercial Practices 1 2010-01-01 2010-01-01 false The Commission. 0.1 Section 0.1 Commercial Practices FEDERAL TRADE COMMISSION ORGANIZATION, PROCEDURES AND RULES OF PRACTICE ORGANIZATION § 0.1 The Commission. The Federal Trade Commission is an independent administrative agency which was organized in...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 1 2013-10-01 2013-10-01 false The Commission. 0.1 Section 0.1 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMISSION ORGANIZATION Organization General § 0.1 The Commission. The Federal Communications Commission is composed of five (5) members who are appointed by...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false The Commission. 0.1 Section 0.1 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMISSION ORGANIZATION Organization General § 0.1 The Commission. The Federal Communications Commission is composed of five (5) members who are appointed by...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 1 2011-10-01 2011-10-01 false The Commission. 0.1 Section 0.1 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMISSION ORGANIZATION Organization General § 0.1 The Commission. The Federal Communications Commission is composed of five (5) members who are appointed by...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Purpose. 8224.0-1 Section 8224.0-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RECREATION PROGRAMS PROCEDURES Fossil Forest Research Natural Area § 8224.0-1...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Purpose. 8224.0-1 Section 8224.0-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RECREATION PROGRAMS PROCEDURES Fossil Forest Research Natural Area § 8224.0-1...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Purpose. 8365.0-1 Section 8365.0-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RECREATION PROGRAMS VISITOR SERVICES Rules of Conduct § 8365.0-1 Purpose. The...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Purpose. 8200.0-1 Section 8200.0-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RECREATION PROGRAMS PROCEDURES General § 8200.0-1 Purpose. This part 8200...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Purpose. 8351.0-1 Section 8351.0-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RECREATION PROGRAMS MANAGEMENT AREAS Designated National Area § 8351.0-1 Purpose....
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Purpose. 8340.0-1 Section 8340.0-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RECREATION PROGRAMS OFF-ROAD VEHICLES General § 8340.0-1 Purpose. The purpose of...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Purpose. 1601.0-1 Section 1601.0-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR GENERAL MANAGEMENT (1000) PLANNING, PROGRAMMING, BUDGETING Planning § 1601.0-1 Purpose. The purpose of this subpart is to...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Purpose. 2300.0-1 Section 2300.0-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) LAND WITHDRAWALS Withdrawals, General § 2300.0-1 Purpose. (a) These regulations set...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Purpose. 8351.0-1 Section 8351.0-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RECREATION PROGRAMS MANAGEMENT AREAS Designated National Area § 8351.0-1 Purpose....
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Purpose. 8365.0-1 Section 8365.0-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RECREATION PROGRAMS VISITOR SERVICES Rules of Conduct § 8365.0-1 Purpose. The...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Purpose. 1784.0-1 Section 1784.0-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR GENERAL MANAGEMENT (1000) COOPERATIVE RELATIONS Advisory Committees § 1784.0-1 Purpose. This subpart contains standards...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Purpose. 8223.0-1 Section 8223.0-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RECREATION PROGRAMS PROCEDURES Research Natural Areas § 8223.0-1 Purpose. The...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Purpose. 8223.0-1 Section 8223.0-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RECREATION PROGRAMS PROCEDURES Research Natural Areas § 8223.0-1 Purpose. The...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Purpose. 2911.0-1 Section 2911.0-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) LEASES Airport § 2911.0-1 Purpose. This subpart sets forth procedures for issuance of...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Purpose. 8340.0-1 Section 8340.0-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RECREATION PROGRAMS OFF-ROAD VEHICLES General § 8340.0-1 Purpose. The purpose of...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Purpose. 8200.0-1 Section 8200.0-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RECREATION PROGRAMS PROCEDURES General § 8200.0-1 Purpose. This part 8200...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Purpose. 2911.0-1 Section 2911.0-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) LEASES Airport § 2911.0-1 Purpose. This subpart...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 26 Internal Revenue 15 2010-04-01 2010-04-01 false Introduction. 31.0-1 Section 31.0-1 Internal... OF INCOME TAX AT SOURCE EMPLOYMENT TAXES AND COLLECTION OF INCOME TAX AT SOURCE Introduction § 31.0-1 Introduction. (a) In general. The regulations in this part relate to the employment taxes imposed by subtitle...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Introduction. 44.0-1 Section 44.0-1 Internal... ON WAGERING; EFFECTIVE JANUARY 1, 1955 Introduction § 44.0-1 Introduction. (a) In general. The... provisions of subtitle F of the Code (Procedure and Administration) which have special application to...
Integer cosine transform for image compression
NASA Technical Reports Server (NTRS)
Cheung, K.-M.; Pollara, F.; Shahshahani, M.
1991-01-01
This article describes a recently introduced transform algorithm called the integer cosine transform (ICT), which is used in transform-based data compression schemes. The ICT algorithm requires only integer operations on small integers and at the same time gives a rate-distortion performance comparable to that offered by the floating-point discrete cosine transform (DCT). The article addresses the issue of implementation complexity, which is of prime concern for source coding applications of interest in deep-space communications. Complexity reduction in the transform stage of the compression scheme is particularly relevant, since this stage accounts for most (typically over 80 percent) of the computational load.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 26 Internal Revenue 14 2011-04-01 2010-04-01 true Introduction. 25.0-1 Section 25.0-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) ESTATE AND GIFT TAXES GIFT TAX; GIFTS MADE AFTER DECEMBER 31, 1954 Gift Tax § 25.0-1 Introduction. (a) In general. (1) The regulations in this part are designated “Gift...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 26 Internal Revenue 14 2013-04-01 2013-04-01 false Introduction. 25.0-1 Section 25.0-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) ESTATE AND GIFT TAXES GIFT TAX; GIFTS MADE AFTER DECEMBER 31, 1954 Gift Tax § 25.0-1 Introduction. (a) In general. (1) The regulations in this part are designated “Gift...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 26 Internal Revenue 14 2014-04-01 2013-04-01 true Introduction. 25.0-1 Section 25.0-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) ESTATE AND GIFT TAXES GIFT TAX; GIFTS MADE AFTER DECEMBER 31, 1954 Gift Tax § 25.0-1 Introduction. (a) In general. (1) The regulations in this part are designated “Gift...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 26 Internal Revenue 14 2010-04-01 2010-04-01 false Introduction. 25.0-1 Section 25.0-1 Internal...; GIFTS MADE AFTER DECEMBER 31, 1954 Gift Tax § 25.0-1 Introduction. (a) In general. (1) The regulations... pursuant to Subchapter C are set forth in §§ 25.2521-1 through 25.2524-1. (4) Procedure and...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Purpose. 1601.0-1 Section 1601.0-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR GENERAL MANAGEMENT (1000) PLANNING, PROGRAMMING, BUDGETING Planning §...
Code of Federal Regulations, 2011 CFR
2011-10-01
... transfer of certain public lands under the Recreation and Public Purposes Act as amended (43 U.S.C. 869 et... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Purpose. 2740.0-1 Section 2740.0-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT,...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Purpose. 2300.0-1 Section 2300.0-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) LAND WITHDRAWALS Withdrawals, General §...
Quantum Field Theory in (0 + 1) Dimensions
ERIC Educational Resources Information Center
Boozer, A. D.
2007-01-01
We show that many of the key ideas of quantum field theory can be illustrated simply and straightforwardly by using toy models in (0 + 1) dimensions. Because quantum field theory in (0 + 1) dimensions is equivalent to quantum mechanics, these models allow us to use techniques from quantum mechanics to gain insight into quantum field theory. In…
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Purpose. 2300.0-1 Section 2300.0-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) LAND WITHDRAWALS Withdrawals, General §...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Purpose. 1601.0-1 Section 1601.0-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT... for public lands administered by the Bureau of Land Management....
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Purpose. 1601.0-1 Section 1601.0-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR GENERAL MANAGEMENT (1000) PLANNING, PROGRAMMING, BUDGETING Planning §...
Solution of Mixed-Integer Programming Problems on the XT5
Hartman-Baker, Rebecca J; Busch, Ingrid Karin; Hilliard, Michael R; Middleton, Richard S; Schultze, Michael
2009-01-01
In this paper, we describe our experience with solving difficult mixed-integer linear programming problems (MILPs) on the petaflop Cray XT5 system at the National Center for Computational Sciences at Oak Ridge National Laboratory. We describe the algorithmic, software, and hardware needs for solving MILPs and present the results of using PICO, an open-source, parallel, mixed-integer linear programming solver developed at Sandia National Laboratories, to solve canonical MILPs as well as problems of interest arising from the logistics and supply chain management field.
Code of Federal Regulations, 2012 CFR
2012-10-01
... OF THE INTERIOR TECHNICAL SERVICES (9000) FIRE MANAGEMENT Wildfire Prevention § 9212.0-1 Purpose. The purpose of this subpart is to set forth procedures to prevent wildfires on the public lands....
Code of Federal Regulations, 2011 CFR
2011-10-01
... OF THE INTERIOR TECHNICAL SERVICES (9000) FIRE MANAGEMENT Wildfire Prevention § 9212.0-1 Purpose. The purpose of this subpart is to set forth procedures to prevent wildfires on the public lands....
Code of Federal Regulations, 2014 CFR
2014-10-01
... OF THE INTERIOR TECHNICAL SERVICES (9000) FIRE MANAGEMENT Wildfire Prevention § 9212.0-1 Purpose. The purpose of this subpart is to set forth procedures to prevent wildfires on the public lands....
Code of Federal Regulations, 2013 CFR
2013-10-01
... OF THE INTERIOR TECHNICAL SERVICES (9000) FIRE MANAGEMENT Wildfire Prevention § 9212.0-1 Purpose. The purpose of this subpart is to set forth procedures to prevent wildfires on the public lands....
Code of Federal Regulations, 2011 CFR
2011-10-01
... HORSES AND BURROS General § 4700.0-1 Purpose. The purpose of these regulations is to implement the laws relating to the protection, management, and control of wild horses and burros under the administration...
Code of Federal Regulations, 2013 CFR
2013-10-01
... OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) DESERT-LAND ENTRIES Desert-Land Entries: General § 2520.0-1 Purpose. (a) It is the purpose of the statutes governing desert-land entries to encourage...
Code of Federal Regulations, 2011 CFR
2011-10-01
... OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) DESERT-LAND ENTRIES Desert-Land Entries: General § 2520.0-1 Purpose. (a) It is the purpose of the statutes governing desert-land entries to encourage...
Code of Federal Regulations, 2014 CFR
2014-10-01
... OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) DESERT-LAND ENTRIES Desert-Land Entries: General § 2520.0-1 Purpose. (a) It is the purpose of the statutes governing desert-land entries to encourage...
Code of Federal Regulations, 2012 CFR
2012-10-01
... OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) DESERT-LAND ENTRIES Desert-Land Entries: General § 2520.0-1 Purpose. (a) It is the purpose of the statutes governing desert-land entries to encourage...
Code of Federal Regulations, 2014 CFR
2014-10-01
... HORSES AND BURROS General § 4700.0-1 Purpose. The purpose of these regulations is to implement the laws relating to the protection, management, and control of wild horses and burros under the administration...
Slip and Slide Method of Factoring Trinomials with Integer Coefficients over the Integers
ERIC Educational Resources Information Center
Donnell, William A.
2012-01-01
In intermediate and college algebra courses there are a number of methods for factoring quadratic trinomials with integer coefficients over the integers. Some of these methods have been given names, such as trial and error, reversing FOIL, AC method, middle term splitting method and slip and slide method. The purpose of this article is to discuss…
RSM 1.0 - A RESUPPLY SCHEDULER USING INTEGER OPTIMIZATION
NASA Technical Reports Server (NTRS)
Viterna, L. A.
1994-01-01
RSM, Resupply Scheduling Modeler, is a fully menu-driven program that uses integer programming techniques to determine an optimum schedule for replacing components on or before the end of a fixed replacement period. Although written to analyze the electrical power system on the Space Station Freedom, RSM is quite general and can be used to model the resupply of almost any system subject to user-defined resource constraints. RSM is based on a specific form of the general linear programming problem in which all variables in the objective function and all variables in the constraints are integers. While more computationally intensive, integer programming was required for accuracy when modeling systems with small quantities of components. Input values for component life cane be real numbers, RSM converts them to integers by dividing the lifetime by the period duration, then reducing the result to the next lowest integer. For each component, there is a set of constraints that insure that it is replaced before its lifetime expires. RSM includes user-defined constraints such as transportation mass and volume limits, as well as component life, available repair crew time and assembly sequences. A weighting factor allows the program to minimize factors such as cost. The program then performs an iterative analysis, which is displayed during the processing. A message gives the first period in which resources are being exceeded on each iteration. If the scheduling problem is unfeasible, the final message will also indicate the first period in which resources were exceeded. RSM is written in APL2 for IBM PC series computers and compatibles. A stand-alone executable version of RSM is provided; however, this is a "packed" version of RSM which can only utilize the memory within the 640K DOS limit. This executable requires at least 640K of memory and DOS 3.1 or higher. Source code for an APL2/PC workspace version is also provided. This version of RSM can make full use of any
Integer Solutions of a Special Diophantine Equation
NASA Astrophysics Data System (ADS)
Özkoç, Arzu; Tekcan, Ahmet
2011-09-01
Let t≠1 be an integer. In this work, we determine the integer solutions of Diophantine equation D:x2+(2-t2)y2+(-2t2-2t+2)x+(2t5-6t3+4t)y-t8+4t6-4t4+2t3+t2-2t = 0 over Z and also over finite fields Fp for primes p≥2. Also we derive some recurrence relations on the integer solutions (xn,yn) of D and formulate the the n—th solution (xn,yn) by using the simple continued fraction expansion of xn/yn.
PSLQ: An Algorithm to Discover Integer Relations
Bailey, David H.; Borwein, J. M.
2009-04-03
Let x = (x{sub 1}, x{sub 2} {hor_ellipsis}, x{sub n}) be a vector of real or complex numbers. x is said to possess an integer relation if there exist integers a{sub i}, not all zero, such that a{sub 1}x{sub 1} + a{sub 2}x{sub 2} + {hor_ellipsis} + a{sub n}x{sub n} = 0. By an integer relation algorithm, we mean a practical computational scheme that can recover the vector of integers ai, if it exists, or can produce bounds within which no integer relation exists. As we will see in the examples below, an integer relation algorithm can be used to recognize a computed constant in terms of a formula involving known constants, or to discover an underlying relation between quantities that can be computed to high precision. At the present time, the most effective algorithm for integer relation detection is the 'PSLQ' algorithm of mathematician-sculptor Helaman Ferguson [10, 4]. Some efficient 'multi-level' implementations of PSLQ, as well as a variant of PSLQ that is well-suited for highly parallel computer systems, are given in [4]. PSLQ constructs a sequence of integer-valued matrices B{sub n} that reduces the vector y = xB{sub n}, until either the relation is found (as one of the columns of B{sub n}), or else precision is exhausted. At the same time, PSLQ generates a steadily growing bound on the size of any possible relation. When a relation is found, the size of smallest entry of the vector y abruptly drops to roughly 'epsilon' (i.e. 10{sup -p}, where p is the number of digits of precision). The size of this drop can be viewed as a 'confidence level' that the relation is real and not merely a numerical artifact - a drop of 20 or more orders of magnitude almost always indicates a real relation. Very high precision arithmetic must be used in PSLQ. If one wishes to recover a relation of length n, with coefficients of maximum size d digits, then the input vector x must be specified to at least nd digits, and one must employ nd-digit floating-point arithmetic. Maple and
Reducing Truncation Error In Integer Processing
NASA Technical Reports Server (NTRS)
Thomas, J. Brooks; Berner, Jeffrey B.; Graham, J. Scott
1995-01-01
Improved method of rounding off (truncation of least-significant bits) in integer processing of data devised. Provides for reduction, to extremely low value, of numerical bias otherwise generated by accumulation of truncation errors from many arithmetic operations. Devised for use in integer signal processing, in which rescaling and truncation usually performed to reduce number of bits, which typically builds up in sequence of operations. Essence of method to alternate direction of roundoff (plus, then minus) on alternate occurrences of truncated values contributing to bias.
Theory of the Half-integer Quantum Hall Effect in Graphene
NASA Astrophysics Data System (ADS)
Fujita, Shigeji; Suzuki, Akira
2016-08-01
The unusual quantum Hall effect (QHE) in graphene is described in terms of the composite (c-) bosons, which move with a linear dispersion relation. The "electron" (wave packet) moves easier in the direction [1 1 0 c-axis] ≡ [1 1 0] of the honeycomb lattice than perpendicular to it, while the "hole" moves easier in [0 0 1]. Since "electrons" and "holes" move in different channels, the particle densities can be high especially when the Fermi surface has "necks". The strong QHE arises from the phonon exchange attraction in the neighborhood of the "neck" surfaces. The plateau observed for the Hall conductivity and the accompanied resistivity drop is due to the superconducting energy gap caused by the Bose-Einstein condensation of the c-bosons, each forming from a pair of one-electron-two-fluxons c-fermions by phonon-exchange attraction. The half-integer quantization rule for the Hall conductivity: (1/2)(2P-1)(4e 2/h), P=1,2,..., is derived.
Code of Federal Regulations, 2011 CFR
2011-10-01
... OF THE INTERIOR MINERALS MANAGEMENT (3000) LEASING IN SPECIAL TAR SAND AREAS Leasing in Special Tar Sand Areas § 3141.0-1 Purpose. The purpose of this subpart is to provide for the competitive leasing of lands and issuance of Combined Hydrocarbon Leases, Oil and Gas Leases, or Tar Sand Leases within...
Code of Federal Regulations, 2012 CFR
2012-10-01
... OF THE INTERIOR MINERALS MANAGEMENT (3000) LEASING IN SPECIAL TAR SAND AREAS Leasing in Special Tar Sand Areas § 3141.0-1 Purpose. The purpose of this subpart is to provide for the competitive leasing of lands and issuance of Combined Hydrocarbon Leases, Oil and Gas Leases, or Tar Sand Leases within...
Code of Federal Regulations, 2014 CFR
2014-10-01
... OF THE INTERIOR MINERALS MANAGEMENT (3000) LEASING IN SPECIAL TAR SAND AREAS Leasing in Special Tar Sand Areas § 3141.0-1 Purpose. The purpose of this subpart is to provide for the competitive leasing of lands and issuance of Combined Hydrocarbon Leases, Oil and Gas Leases, or Tar Sand Leases within...
Code of Federal Regulations, 2013 CFR
2013-10-01
... OF THE INTERIOR MINERALS MANAGEMENT (3000) LEASING IN SPECIAL TAR SAND AREAS Leasing in Special Tar Sand Areas § 3141.0-1 Purpose. The purpose of this subpart is to provide for the competitive leasing of lands and issuance of Combined Hydrocarbon Leases, Oil and Gas Leases, or Tar Sand Leases within...
Code of Federal Regulations, 2010 CFR
2010-04-01
...; ESTATES OF DECEDENTS DYING AFTER AUGUST 16, 1954 Introduction § 20.0-1 Introduction. (a) In general. (1... dying after August 16, 1954, and (ii) certain related administrative provisions of subtitle F of the... provided, the Estate Tax Regulations are applicable to the estates of decedents dying after August 16,...
Code of Federal Regulations, 2011 CFR
2011-04-01
...; ESTATES OF DECEDENTS DYING AFTER AUGUST 16, 1954 Introduction § 20.0-1 Introduction. (a) In general. (1... dying after August 16, 1954, and (ii) certain related administrative provisions of subtitle F of the... provided, the Estate Tax Regulations are applicable to the estates of decedents dying after August 16,...
Code of Federal Regulations, 2012 CFR
2012-04-01
...; ESTATES OF DECEDENTS DYING AFTER AUGUST 16, 1954 Introduction § 20.0-1 Introduction. (a) In general. (1... dying after August 16, 1954, and (ii) certain related administrative provisions of subtitle F of the... provided, the Estate Tax Regulations are applicable to the estates of decedents dying after August 16,...
Code of Federal Regulations, 2014 CFR
2014-10-01
... and Mining, Wilderness Review Program § 3802.0-1 Purpose. The purpose of this subpart is to establish procedures to prevent impairment of the suitability of lands under wilderness review for inclusion in the wilderness system and to prevent unnecessary or undue degradation by activities authorized by the U.S....
Code of Federal Regulations, 2012 CFR
2012-10-01
... and Mining, Wilderness Review Program § 3802.0-1 Purpose. The purpose of this subpart is to establish procedures to prevent impairment of the suitability of lands under wilderness review for inclusion in the wilderness system and to prevent unnecessary or undue degradation by activities authorized by the U.S....
Code of Federal Regulations, 2013 CFR
2013-10-01
... and Mining, Wilderness Review Program § 3802.0-1 Purpose. The purpose of this subpart is to establish procedures to prevent impairment of the suitability of lands under wilderness review for inclusion in the wilderness system and to prevent unnecessary or undue degradation by activities authorized by the U.S....
Code of Federal Regulations, 2011 CFR
2011-10-01
... and Mining, Wilderness Review Program § 3802.0-1 Purpose. The purpose of this subpart is to establish procedures to prevent impairment of the suitability of lands under wilderness review for inclusion in the wilderness system and to prevent unnecessary or undue degradation by activities authorized by the U.S....
Semiperfect and Integer-Perfect Numbers.
ERIC Educational Resources Information Center
Costello, Patrick
1991-01-01
The number theory concepts of perfect, deficient, and abundant numbers are subdivided and then utilized to discuss propositions concerning semiperfect, weird, and integer-perfect numbers. Conjectures about relationships among these latter numbers are suggested as avenues for further investigation. (JJK)
Dollars & Sense: Students' Integer Perspectives
ERIC Educational Resources Information Center
Whitacre, Ian; Bishop, Jessica Pierson; Philipp, Randolph A.; Lamb, Lisa L.; Schappelle, Bonnie P.
2014-01-01
A story problem about borrowing money, presented in this article, may be represented with positive or negative numbers and thought about in different ways. The authors describe ideas related to integers (both positive and negative) and how students used them in relation to a story problem, and how they related these ideas to equations.
How to Differentiate an Integer Modulo n
ERIC Educational Resources Information Center
Emmons, Caleb; Krebs, Mike; Shaheen, Anthony
2009-01-01
A number derivative is a numerical mapping that satisfies the product rule. In this paper, we determine all number derivatives on the set of integers modulo n. We also give a list of undergraduate research projects to pursue using these maps as a starting point.
Mixed integer evolution strategies for parameter optimization.
Li, Rui; Emmerich, Michael T M; Eggermont, Jeroen; Bäck, Thomas; Schütz, M; Dijkstra, J; Reiber, J H C
2013-01-01
Evolution strategies (ESs) are powerful probabilistic search and optimization algorithms gleaned from biological evolution theory. They have been successfully applied to a wide range of real world applications. The modern ESs are mainly designed for solving continuous parameter optimization problems. Their ability to adapt the parameters of the multivariate normal distribution used for mutation during the optimization run makes them well suited for this domain. In this article we describe and study mixed integer evolution strategies (MIES), which are natural extensions of ES for mixed integer optimization problems. MIES can deal with parameter vectors consisting not only of continuous variables but also with nominal discrete and integer variables. Following the design principles of the canonical evolution strategies, they use specialized mutation operators tailored for the aforementioned mixed parameter classes. For each type of variable, the choice of mutation operators is governed by a natural metric for this variable type, maximal entropy, and symmetry considerations. All distributions used for mutation can be controlled in their shape by means of scaling parameters, allowing self-adaptation to be implemented. After introducing and motivating the conceptual design of the MIES, we study the optimality of the self-adaptation of step sizes and mutation rates on a generalized (weighted) sphere model. Moreover, we prove global convergence of the MIES on a very general class of problems. The remainder of the article is devoted to performance studies on artificial landscapes (barrier functions and mixed integer NK landscapes), and a case study in the optimization of medical image analysis systems. In addition, we show that with proper constraint handling techniques, MIES can also be applied to classical mixed integer nonlinear programming problems. PMID:22122384
Multi-objective mixed integer strategy for the optimisation of biological networks.
Sendín, J O H; Exler, O; Banga, J R
2010-05-01
In this contribution, the authors consider multi-criteria optimisation problems arising from the field of systems biology when both continuous and integer decision variables are involved. Mathematically, they are formulated as mixed-integer non-linear programming problems. The authors present a novel solution strategy based on a global optimisation approach for dealing with this class of problems. Its usefulness and capabilities are illustrated with two metabolic engineering case studies. For these problems, the authors show how the set of optimal solutions (the so-called Pareto front) is successfully and efficiently obtained, providing further insight into the systems under consideration regarding their optimal manipulation. PMID:20500003
ALPS - A LINEAR PROGRAM SOLVER
NASA Technical Reports Server (NTRS)
Viterna, L. A.
1994-01-01
Linear programming is a widely-used engineering and management tool. Scheduling, resource allocation, and production planning are all well-known applications of linear programs (LP's). Most LP's are too large to be solved by hand, so over the decades many computer codes for solving LP's have been developed. ALPS, A Linear Program Solver, is a full-featured LP analysis program. ALPS can solve plain linear programs as well as more complicated mixed integer and pure integer programs. ALPS also contains an efficient solution technique for pure binary (0-1 integer) programs. One of the many weaknesses of LP solvers is the lack of interaction with the user. ALPS is a menu-driven program with no special commands or keywords to learn. In addition, ALPS contains a full-screen editor to enter and maintain the LP formulation. These formulations can be written to and read from plain ASCII files for portability. For those less experienced in LP formulation, ALPS contains a problem "parser" which checks the formulation for errors. ALPS creates fully formatted, readable reports that can be sent to a printer or output file. ALPS is written entirely in IBM's APL2/PC product, Version 1.01. The APL2 workspace containing all the ALPS code can be run on any APL2/PC system (AT or 386). On a 32-bit system, this configuration can take advantage of all extended memory. The user can also examine and modify the ALPS code. The APL2 workspace has also been "packed" to be run on any DOS system (without APL2) as a stand-alone "EXE" file, but has limited memory capacity on a 640K system. A numeric coprocessor (80X87) is optional but recommended. The standard distribution medium for ALPS is a 5.25 inch 360K MS-DOS format diskette. IBM, IBM PC and IBM APL2 are registered trademarks of International Business Machines Corporation. MS-DOS is a registered trademark of Microsoft Corporation.
Slip and slide method of factoring trinomials with integer coefficients over the integers
NASA Astrophysics Data System (ADS)
Donnell, William A.
2012-06-01
In intermediate and college algebra courses there are a number of methods for factoring quadratic trinomials with integer coefficients over the integers. Some of these methods have been given names, such as trial and error, reversing FOIL, AC method, middle term splitting method and slip and slide method. The purpose of this article is to discuss the Slip and Slide Method and present a theoretical justification of why it works.
On the computation of the best integer equivariant estimator
NASA Astrophysics Data System (ADS)
Teunissen, P. J. G.
Carrier phase integer ambiguity resolution is the key to high precision Global Navigation Satellite System (GNSS) positioning and navigation. In this contribution we study some of the computational aspects of best integer equivariant estimation. The best integer equivariant (BIE) estimator is the optimal estimator of the class of integer equivariant estimators, which is one of the three classes of estimators for carrier phase ambiguity resolution. The two other classes are the class of integer estimators and the class of integer aperture estimators. Since the BIE-estimator can not be computed exactly, it is shown how to approximate this estimator while retaining the property of integer equivariance. It is also shown how the decorrelating Z-transformation and the integer search of the LAMBDA method can be used to speed up the computation of the BIE-estimator.
Currency arbitrage detection using a binary integer programming model
NASA Astrophysics Data System (ADS)
Soon, Wanmei; Ye, Heng-Qing
2011-04-01
In this article, we examine the use of a new binary integer programming (BIP) model to detect arbitrage opportunities in currency exchanges. This model showcases an excellent application of mathematics to the real world. The concepts involved are easily accessible to undergraduate students with basic knowledge in Operations Research. Through this work, students can learn to link several types of basic optimization models, namely linear programming, integer programming and network models, and apply the well-known sensitivity analysis procedure to accommodate realistic changes in the exchange rates. Beginning with a BIP model, we discuss how it can be reduced to an equivalent but considerably simpler model, where an efficient algorithm can be applied to find the arbitrages and incorporate the sensitivity analysis procedure. A simple comparison is then made with a different arbitrage detection model. This exercise helps students learn to apply basic Operations Research concepts to a practical real-life example, and provides insights into the processes involved in Operations Research model formulations.
Unlimited Capacity Parallel Quantity Comparison of Multiple Integers
ERIC Educational Resources Information Center
Blanc-Goldhammer, Daryn R.; Cohen, Dale J.
2014-01-01
Research has shown that integer comparison is quick and efficient. This efficiency may be a function of the structure of the integer comparison system. The present study tests whether integers are compared with an unlimited capacity system or a limited capacity system. We tested these models using a visual search task with time delimitation. The…
Integer sparse distributed memory: analysis and results.
Snaider, Javier; Franklin, Stan; Strain, Steve; George, E Olusegun
2013-10-01
Sparse distributed memory is an auto-associative memory system that stores high dimensional Boolean vectors. Here we present an extension of the original SDM, the Integer SDM that uses modular arithmetic integer vectors rather than binary vectors. This extension preserves many of the desirable properties of the original SDM: auto-associativity, content addressability, distributed storage, and robustness over noisy inputs. In addition, it improves the representation capabilities of the memory and is more robust over normalization. It can also be extended to support forgetting and reliable sequence storage. We performed several simulations that test the noise robustness property and capacity of the memory. Theoretical analyses of the memory's fidelity and capacity are also presented. PMID:23747569
Resupply Scheduler Program Using Integer Optimization
NASA Technical Reports Server (NTRS)
Viterna, L. A.; Reed, D. M.
1994-01-01
Resupply Scheduling Modeler (RSM) fully menu-driven computer program using integer programming techniques to determine optimum schedule for replacing components on or before ends of fixed replacement periods. Written to analyze electrical power system on Space Station Freedom, also used to model resupply of almost any system subject to user-defined constraints on resources. Lifetimes of components, assembly schedules, and other constraints taken into account. Written in APL2(R).
Trimpl, M.; Yarema, R.; Newcomer, M.; Dressnandt, N.; Villani, G.; Weber, M.; Holt, R.; /Rutherford
2011-05-01
This document describes the Serial Powering Interface (SPi) ASIC. SPi is a general purpose ASIC prototype designed for use in serial powering of silicon detector instrumentation. This description is written as a user manual to aid application, not as a design description. SPi is a generic custom ASIC, manufactured in 0.25 {mu}m CMOS by TSMC, to interface between a constant current source and silicon detector read-out chips. There is no SEU (single event upset) protection, but most (not all) components are radiation tolerant design. An operating voltage of 1.2 to 2.5 volts and other design features make the IC suitable for a variety of serial powering architectures and ROICs. It should be noted that the device is likely to be a prototype for demonstration rather than a product for inclusion in a detector. The next design(s), SPin, are likely to be designed for a specific application (eg SLHC). The component includes: (1) Seven bi-directional LVDS-like buffers for high data rate links to/from the read-out chips. These are AC coupled (series capacitor) off-chip for DC level conversion; (2) A programmable internal programmable shunt regulator to provide a defined voltage to readout chips when linked in a serial powering chain; (3) A programmable internal shunt regulator control circuit for external transistor control; (4) Shunt current measurement (for internal shunt regulator); (5) A programmable internal shunt regulator current alarm; and (6) Two programmable linear regulators.
Horizontal visibility graphs from integer sequences
NASA Astrophysics Data System (ADS)
Lacasa, Lucas
2016-09-01
The horizontal visibility graph (HVG) is a graph-theoretical representation of a time series and builds a bridge between dynamical systems and graph theory. In recent years this representation has been used to describe and theoretically compare different types of dynamics and has been applied to characterize empirical signals, by extracting topological features from the associated HVGs which have shown to be informative on the class of dynamics. Among some other measures, it has been shown that the degree distribution of these graphs is a very informative feature that encapsulates nontrivial information of the series's generative dynamics. In particular, the HVG associated to a bi-infinite real-valued series of independent and identically distributed random variables is a universal exponential law P(k)=(1/3){(2/3)}k-2, independent of the series marginal distribution. Most of the current applications have however only addressed real-valued time series, as no exact results are known for the topological properties of HVGs associated to integer-valued series. In this paper we explore this latter situation and address univariate time series where each variable can only take a finite number n of consecutive integer values. We are able to construct an explicit formula for the parametric degree distribution {P}n(k), which we prove to converge to the continuous case for large n and deviates otherwise. A few applications are then considered.
Topologically induced fractional Hall steps in the integer quantum Hall regime of MoS 2.
Islam, S K Firoz; Benjamin, Colin
2016-09-23
The quantum magnetotransport properties of a monolayer of molybdenum disulfide are derived using linear response theory. In particular, the effect of topological terms on longitudinal and Hall conductivity is analyzed. The Hall conductivity exhibits fractional steps in the integer quantum Hall regime. Further complete spin and valley polarization of the longitudinal conductivitity is seen in presence of these topological terms. Finally, the Shubnikov-de Hass oscillations are suppressed or enhanced contingent on the sign of these topological terms. PMID:27533362
Solving Integer Programming Problems by Using Artificial Bee Colony Algorithm
NASA Astrophysics Data System (ADS)
Akay, Bahriye; Karaboga, Dervis
This paper presents a study that applies the Artificial Bee Colony algorithm to integer programming problems and compares its performance with those of Particle Swarm Optimization algorithm variants and Branch and Bound technique presented to the literature. In order to cope with integer programming problems, in neighbour solution production unit, solutions are truncated to the nearest integer values. The experimental results show that Artificial Bee Colony algorithm can handle integer programming problems efficiently and Artificial Bee Colony algorithm can be considered to be very robust by the statistics calculated such as mean, median, standard deviation.
NASA Technical Reports Server (NTRS)
Ferencz, Donald C.; Viterna, Larry A.
1991-01-01
ALPS is a computer program which can be used to solve general linear program (optimization) problems. ALPS was designed for those who have minimal linear programming (LP) knowledge and features a menu-driven scheme to guide the user through the process of creating and solving LP formulations. Once created, the problems can be edited and stored in standard DOS ASCII files to provide portability to various word processors or even other linear programming packages. Unlike many math-oriented LP solvers, ALPS contains an LP parser that reads through the LP formulation and reports several types of errors to the user. ALPS provides a large amount of solution data which is often useful in problem solving. In addition to pure linear programs, ALPS can solve for integer, mixed integer, and binary type problems. Pure linear programs are solved with the revised simplex method. Integer or mixed integer programs are solved initially with the revised simplex, and the completed using the branch-and-bound technique. Binary programs are solved with the method of implicit enumeration. This manual describes how to use ALPS to create, edit, and solve linear programming problems. Instructions for installing ALPS on a PC compatible computer are included in the appendices along with a general introduction to linear programming. A programmers guide is also included for assistance in modifying and maintaining the program.
Menu-Driven Solver Of Linear-Programming Problems
NASA Technical Reports Server (NTRS)
Viterna, L. A.; Ferencz, D.
1992-01-01
Program assists inexperienced user in formulating linear-programming problems. A Linear Program Solver (ALPS) computer program is full-featured LP analysis program. Solves plain linear-programming problems as well as more-complicated mixed-integer and pure-integer programs. Also contains efficient technique for solution of purely binary linear-programming problems. Written entirely in IBM's APL2/PC software, Version 1.01. Packed program contains licensed material, property of IBM (copyright 1988, all rights reserved).
Camera placement in integer lattices (extended abstract)
NASA Astrophysics Data System (ADS)
Pocchiola, Michel; Kranakis, Evangelos
1990-09-01
Techniques for studying an art gallery problem (the camera placement problem) in the infinite lattice (L sup d) of d tuples of integers are considered. A lattice point A is visible from a camera C positioned at a vertex of (L sup d) if A does not equal C and if the line segment joining A and C crosses no other lattice vertex. By using a combination of probabilistic, combinatorial optimization and algorithmic techniques the position they must occupy in the lattice (L sup d) in the order to maximize their visibility can be determined in polynomial time, for any given number s less than or equal to (5 sup d) of cameras. This improves previous results for s less than or equal to (3 sup d).
NASA Astrophysics Data System (ADS)
Pratheep Kumar, Sathasivam; Gopal, Buvaneswari
2015-03-01
In this work, incorporation of hexavalent molybdenum and selected trivalent lanthanides using divalent calcium as charge compensator into the monazite structure were studied. Rare earth substituted phosphomolybdates of the formula REE0.9Ca0.1P0.9Mo0.1O4 (REE = Ce, Nd, Sm, Gd) and the wasteform La0.4Nd0.1Y0.1Gd0.1Sm0.1Ce0.1Ca0.1P0.9Mo0.1O4 were synthesized by simple solution route. The prepared compounds were characterized by powder X-ray diffraction, Fourier transformed infrared spectra, thermogravimetric analysis, energy dispersive X-ray analysis and scanning electron microscopic techniques. Chemical durability of the wasteform was studied by dynamic MCC-5 test for a period of one month. Normalized elemental mass loss and leach rate of molybdenum was found to be in the order of 103 g/m2 and 103-101 g/m2/d respectively. Polymer-monazite composite wasteform was prepared to control the leaching of molybdenum. The composite approach reduced molybdenum leach rate order from 101 to 10-4 g/m2/d.
A Proposed Instructional Theory for Integer Addition and Subtraction
ERIC Educational Resources Information Center
Stephan, Michelle; Akyuz, Didem
2012-01-01
This article presents the results of a 7th-grade classroom teaching experiment that supported students' understanding of integer addition and subtraction. The experiment was conducted to test and revise a hypothetical learning trajectory so as to propose a potential instructional theory for integer addition and subtraction. The instructional…
Certain integers related to Ankeny-Artin-Chowla conjecture
NASA Astrophysics Data System (ADS)
Hashimoto, RyÅ«ta
2008-01-01
Let d be a non-square integer which is congruent to 1 modulo 4. Let t and u be the fundamental solution of the diophantine equation X2-dY2 = -4. A family of integers d satisfying d
Improving integer ambiguity resolution for GLONASS precise orbit determination
NASA Astrophysics Data System (ADS)
Liu, Yang; Ge, Maorong; Shi, Chuang; Lou, Yidong; Wickert, Jens; Schuh, Harald
2016-05-01
The frequency division multiple access adopted in present GLONASS introduces inter-frequency bias (IFB) at the receiver-end both in code and phase observables, which makes GLONASS ambiguity resolution rather difficult or even not available, especially for long baselines up to several thousand kilometers. This is one of the major reasons that GLONASS could hardly reach the orbit precision of GPS, both in terms of consistency among individual International GNSS Service (IGS) analysis centers and discontinuity at the overlapping day boundaries. Based on the fact that the GLONASS phase IFB is similar on L1 and L2 bands in unit of length and is a linear function of the frequency number, several approaches have been developed to estimate and calibrate the IFB for integer ambiguity resolution. However, they are only for short and medium baselines. In this study, a new ambiguity resolution approach is developed for GLONASS global networks. In the approach, the phase ambiguities in the ionosphere-free linear combination are directly transformed with a wavelength of about 5.3 cm, according to the special frequency relationship of GLONASS L1 and L2 signals. After such transformation, the phase IFB rate can be estimated and corrected precisely and then the corresponding double-differenced ambiguities can be directly fixed to integers even for baselines up to several thousand kilometers. To evaluate this approach, experimental validations using one-month data of a global network with 140 IGS stations was carried out for GLONASS precise orbit determination. The results show that the GLONASS double-difference ambiguity resolution for long baselines could be achieved with an average fixing-rate of 91.4 %. Applying the fixed ambiguities as constraints, the GLONASS orbit overlapping RMS at the day boundaries could be reduced by 37.2 % in ideal cases and with an averaged reduction of about 21.4 %, which is comparable with that by the GPS ambiguity resolution. The orbit improvement is
Improving integer ambiguity resolution for GLONASS precise orbit determination
NASA Astrophysics Data System (ADS)
Liu, Yang; Ge, Maorong; Shi, Chuang; Lou, Yidong; Wickert, Jens; Schuh, Harald
2016-08-01
The frequency division multiple access adopted in present GLONASS introduces inter-frequency bias (IFB) at the receiver-end both in code and phase observables, which makes GLONASS ambiguity resolution rather difficult or even not available, especially for long baselines up to several thousand kilometers. This is one of the major reasons that GLONASS could hardly reach the orbit precision of GPS, both in terms of consistency among individual International GNSS Service (IGS) analysis centers and discontinuity at the overlapping day boundaries. Based on the fact that the GLONASS phase IFB is similar on L1 and L2 bands in unit of length and is a linear function of the frequency number, several approaches have been developed to estimate and calibrate the IFB for integer ambiguity resolution. However, they are only for short and medium baselines. In this study, a new ambiguity resolution approach is developed for GLONASS global networks. In the approach, the phase ambiguities in the ionosphere-free linear combination are directly transformed with a wavelength of about 5.3 cm, according to the special frequency relationship of GLONASS L1 and L2 signals. After such transformation, the phase IFB rate can be estimated and corrected precisely and then the corresponding double-differenced ambiguities can be directly fixed to integers even for baselines up to several thousand kilometers. To evaluate this approach, experimental validations using one-month data of a global network with 140 IGS stations was carried out for GLONASS precise orbit determination. The results show that the GLONASS double-difference ambiguity resolution for long baselines could be achieved with an average fixing-rate of 91.4 %. Applying the fixed ambiguities as constraints, the GLONASS orbit overlapping RMS at the day boundaries could be reduced by 37.2 % in ideal cases and with an averaged reduction of about 21.4 %, which is comparable with that by the GPS ambiguity resolution. The orbit improvement is
Polynomial-time algorithms for the integer minimal principle for centrosymmetric structures.
Vaia, Anastasia; Sahinidis, Nikolaos V
2005-07-01
The minimal principle for structure determination from single-crystal X-ray diffraction measurements has recently been formulated as an integer linear optimization model for the case of centrosymmetric structures. Solution of this model via established combinatorial branch-and-bound algorithms provides the true global minimum of the minimal principle while operating exclusively in reciprocal space. However, integer programming techniques may require an exponential number of iterations to exhaust the search space. In this paper, a new approach is developed to solve the integer minimal principle to global optimality without requiring the solution of an optimization problem. Instead, properties of the solution of the optimization problem, as observed in a large number of computational experiments, are exploited in order to reduce the optimization formulation to a system of linear equations in the number field of two elements (F(2)). Two specialized Gaussian elimination algorithms are then developed to solve this system of equations in polynomial time in the number of atoms. Computational results on a collection of 38 structures demonstrate that the proposed approach provides very fast and accurate solutions to the phase problem for centrosymmetric structures. This approach also provided much better crystallographic R values than SHELXS for all 38 structures tested. PMID:15972998
Harmonic oscillator states with integer and non-integer orbital angular momentum
NASA Astrophysics Data System (ADS)
Land, Martin
2011-12-01
We study the quantum mechanical harmonic oscillator in two and three dimensions, with particular attention to the solutions as basis states for representing their respective symmetry groups — O(2), O(1,1), O(3), and O(2,1). The goal of this study is to establish a correspondence between Hilbert space descriptions found by solving the Schrodinger equation in polar coordinates, and Fock space descriptions constructed by expressing the symmetry operators in terms of creation/annihilation operators. We obtain wavefunctions characterized by a principal quantum number, the group Casimir eigenvalue, and one group generator whose eigenvalue is m + s, for integer m and real constant parameter s. For the three groups that contain O(2), the solutions split into two inequivalent representations, one associated with s = 0, from which we recover the familiar description of the oscillator as a product of one-dimensional solutions, and the other with s > 0 (in three dimensions, solutions are found for s = 0 and s = 1/2) whose solutions are non-separable in Cartesian coordinates, and are hence overlooked by the standard Fock space approach. The O(1,1) solutions are singlet states, restricted to zero eigenvalue of the symmetry operator, which represents the boost, not angular momentum. For O(2), a single set of creation and annihilation operators forms a ladder representation for the allowed oscillator states for any s, and the degeneracy of energy states is always finite. However, in three dimensions, the integer and half-integer eigenstates are qualitatively different: the former can be expressed as finite dimensional irreducible tensors under O(3) or O(2,1) while the latter exhibit infinite degeneracy. Creation operators that produce the allowed integer states by acting on the non-degenerate ground state are constructed as irreducible tensor products of the fundamental vector representation. However, the half-integer eigenstates are infinite-dimensional, as expected for the non
Stacking-sequence optimization for buckling of laminated plates by integer programming
NASA Technical Reports Server (NTRS)
Haftka, Raphael T.; Walsh, Joanne L.
1991-01-01
Integer-programming formulations for the design of symmetric and balanced laminated plates under biaxial compression are presented. Both maximization of buckling load for a given total thickness and the minimization of total thickness subject to a buckling constraint are formulated. The design variables that define the stacking sequence of the laminate are zero-one integers. It is shown that the formulation results in a linear optimization problem that can be solved on readily available software. This is in contrast to the continuous case, where the design variables are the thicknesses of layers with specified ply orientations, and the optimization problem is nonlinear. Constraints on the stacking sequence such as a limit on the number of contiguous plies of the same orientation and limits on in-plane stiffnesses are easily accommodated. Examples are presented for graphite-epoxy plates under uniaxial and biaxial compression using a commercial software package based on the branch-and-bound algorithm.
Smart-Grid Backbone Network Real-Time Delay Reduction via Integer Programming.
Pagadrai, Sasikanth; Yilmaz, Muhittin; Valluri, Pratyush
2016-08-01
This research investigates an optimal delay-based virtual topology design using integer linear programming (ILP), which is applied to the current backbone networks such as smart-grid real-time communication systems. A network traffic matrix is applied and the corresponding virtual topology problem is solved using the ILP formulations that include a network delay-dependent objective function and lightpath routing, wavelength assignment, wavelength continuity, flow routing, and traffic loss constraints. The proposed optimization approach provides an efficient deterministic integration of intelligent sensing and decision making, and network learning features for superior smart grid operations by adaptively responding the time-varying network traffic data as well as operational constraints to maintain optimal virtual topologies. A representative optical backbone network has been utilized to demonstrate the proposed optimization framework whose simulation results indicate that superior smart-grid network performance can be achieved using commercial networks and integer programming. PMID:25935050
The integer quantum hall effect revisited
Michalakis, Spyridon; Hastings, Matthew
2009-01-01
For T - L x L a finite subset of Z{sup 2}, let H{sub o} denote a Hamiltonian on T with periodic boundary conditions and finite range, finite strength intetactions and a unique ground state with a nonvanishing spectral gap. For S {element_of} T, let q{sub s} denote the charge at site s and assume that the total charge Q = {Sigma}{sub s {element_of} T} q{sub s} is conserved. Using the local charge operators q{sub s}, we introduce a boundary magnetic flux in the horizontal and vertical direction and allow the ground state to evolve quasiadiabatically around a square of size one magnetic flux, in flux space. At the end of the evolution we obtain a trivial Berry phase, which we compare, via a method reminiscent of Stokes Theorem. to the Berry phase obtained from an evolution around an exponentially small loop near the origin. As a result, we show, without any averaging assumption, that the Hall conductance is quantized in integer multiples of e{sup 2}/h up to exponentially small corrections of order e{sup -L/{zeta}}, where {zeta}, is a correlation length that depends only on the gap and the range and strength of the interactions.
Mixed-Integer Formulations for Constellation Scheduling
NASA Astrophysics Data System (ADS)
Valicka, C.; Hart, W.; Rintoul, M.
Remote sensing systems have expanded the set of capabilities available for and critical to national security. Cooperating, high-fidelity sensing systems and growing mission applications have exponentially increased the set of potential schedules. A definitive lack of advanced tools places an increased burden on operators, as planning and scheduling remain largely manual tasks. This is particularly true in time-critical planning activities where operators aim to accomplish a large number of missions through optimal utilization of single or multiple sensor systems. Automated scheduling through identification and comparison of alternative schedules remains a challenging problem applicable across all remote sensing systems. Previous approaches focused on a subset of sensor missions and do not consider ad-hoc tasking. We have begun development of a robust framework that leverages the Pyomo optimization modeling language for the design of a tool to assist sensor operators planning under the constraints of multiple concurrent missions and uncertainty. Our scheduling models have been formulated to address the stochastic nature of ad-hoc tasks inserted under a variety of scenarios. Operator experience is being leveraged to select appropriate model objectives. Successful development of the framework will include iterative development of high-fidelity mission models that consider and expose various schedule performance metrics. Creating this tool will aid time-critical scheduling by increasing planning efficiency, clarifying the value of alternative modalities uniquely provided by multi-sensor systems, and by presenting both sets of organized information to operators. Such a tool will help operators more quickly and fully utilize sensing systems, a high interest objective within the current remote sensing operations community. Preliminary results for mixed-integer programming formulations of a sensor scheduling problem will be presented. Assumptions regarding sensor geometry
A review of «integer PPP» applications
NASA Astrophysics Data System (ADS)
Perosanz, Felix; Mercier, Flavien; Loyer, Sylvain; Petit, Gérard; Marty, Jean-Charles
2016-04-01
The possibility of fixing GNSS phase observations to integer values in PPP mode has been demonstrated by several authors. Various scientific and commercial services have started offering this option. In this presentation we first summarize the mathematical formalism needed to recover integer ambiguities while processing un-differenced GNSS phase observations. The improvements but also the limitations of "integer PPP" (IPPP) solutions are discussed. Then we make a review of several scientific results based on this method to illustrate its wide field of applications like oceanic buoy tracking, glacier deformation, atomic oscillator frequency transfer, LEO satellite orbit determination. Several ideas for future improvement are also discussed including the recommendation to IGS Analysis Centers to adopt a compatible approach to deliver "integer" clock products for a combined solution that would allow for IPPP solutions.
Computer Corner: Spreadsheets, Power Series, Generating Functions, and Integers.
ERIC Educational Resources Information Center
Snow, Donald R.
1989-01-01
Implements a table algorithm on a spreadsheet program and obtains functions for several number sequences such as the Fibonacci and Catalan numbers. Considers other applications of the table algorithm to integers represented in various number bases. (YP)
Integer aperture ambiguity resolution based on difference test
NASA Astrophysics Data System (ADS)
Zhang, Jingyu; Wu, Meiping; Li, Tao; Zhang, Kaidong
2015-07-01
Carrier-phase integer ambiguity resolution (IAR) is the key to highly precise, fast positioning and attitude determination with Global Navigation Satellite System (GNSS). It can be seen as the process of estimating the unknown cycle ambiguities of the carrier-phase observations as integers. Once the ambiguities are fixed, carrier phase data will act as the very precise range data. Integer aperture (IA) ambiguity resolution is the combination of acceptance testing and integer ambiguity resolution, which can realize better quality control of IAR. Difference test (DT) is one of the most popular acceptance tests. This contribution will give a detailed analysis about the following properties of IA ambiguity resolution based on DT: 1.
Fractal electrodynamics via non-integer dimensional space approach
NASA Astrophysics Data System (ADS)
Tarasov, Vasily E.
2015-09-01
Using the recently suggested vector calculus for non-integer dimensional space, we consider electrodynamics problems in isotropic case. This calculus allows us to describe fractal media in the framework of continuum models with non-integer dimensional space. We consider electric and magnetic fields of fractal media with charges and currents in the framework of continuum models with non-integer dimensional spaces. An application of the fractal Gauss's law, the fractal Ampere's circuital law, the fractal Poisson equation for electric potential, and equation for fractal stream of charges are suggested. Lorentz invariance and speed of light in fractal electrodynamics are discussed. An expression for effective refractive index of non-integer dimensional space is suggested.
Adaptive Source Coding Schemes for Geometrically Distributed Integer Alphabets
NASA Technical Reports Server (NTRS)
Cheung, K-M.; Smyth, P.
1993-01-01
Revisit the Gallager and van Voorhis optimal source coding scheme for geometrically distributed non-negative integer alphabets and show that the various subcodes in the popular Rice algorithm can be derived from the Gallager and van Voorhis code.
Linear systems of equations solved using mathematical algorithms
NASA Technical Reports Server (NTRS)
Bareiss, E. H.
1968-01-01
New mathematical algorithm solves linear systems of equations, AX equals B, and preserves the integer properties of the coefficients. The algorithms presented can also be used for the efficient evaluation of determinates and their leading minors.
A Class of Integer Order and Fractional Order Hyperchaotic Systems via the Chen System
NASA Astrophysics Data System (ADS)
Xu, Fei
2016-06-01
In this article, we investigate the generation of a class of hyperchaotic systems via the Chen chaotic system using both integer order and fractional order differential equation systems. Based on the Chen chaotic system, we designed a system with four nonlinear ordinary differential equations. For different parameter sets, the trajectory of the system may diverge or display a hyperchaotic attractor with double wings. By linearizing the ordinary differential equation system with divergent trajectory and designing proper switching controls, we obtain a chaotic attractor. Similar phenomenon has also been observed in linearizing the hyperchaotic system. The corresponding fractional order systems are also considered. Our investigation indicates that, switching control can be applied to either linearized chaotic or nonchaotic differential equation systems to create chaotic attractor.
Non-integer expansion embedding techniques for reversible image watermarking
NASA Astrophysics Data System (ADS)
Xiang, Shijun; Wang, Yi
2015-12-01
This work aims at reducing the embedding distortion of prediction-error expansion (PE)-based reversible watermarking. In the classical PE embedding method proposed by Thodi and Rodriguez, the predicted value is rounded to integer number for integer prediction-error expansion (IPE) embedding. The rounding operation makes a constraint on a predictor's performance. In this paper, we propose a non-integer PE (NIPE) embedding approach, which can proceed non-integer prediction errors for embedding data into an audio or image file by only expanding integer element of a prediction error while keeping its fractional element unchanged. The advantage of the NIPE embedding technique is that the NIPE technique can really bring a predictor into full play by estimating a sample/pixel in a noncausal way in a single pass since there is no rounding operation. A new noncausal image prediction method to estimate a pixel with four immediate pixels in a single pass is included in the proposed scheme. The proposed noncausal image predictor can provide better performance than Sachnev et al.'s noncausal double-set prediction method (where data prediction in two passes brings a distortion problem due to the fact that half of the pixels were predicted with the watermarked pixels). In comparison with existing several state-of-the-art works, experimental results have shown that the NIPE technique with the new noncausal prediction strategy can reduce the embedding distortion for the same embedding payload.
A Polynomial Time, Numerically Stable Integer Relation Algorithm
NASA Technical Reports Server (NTRS)
Ferguson, Helaman R. P.; Bailey, Daivd H.; Kutler, Paul (Technical Monitor)
1998-01-01
Let x = (x1, x2...,xn be a vector of real numbers. X is said to possess an integer relation if there exist integers a(sub i) not all zero such that a1x1 + a2x2 + ... a(sub n)Xn = 0. Beginning in 1977 several algorithms (with proofs) have been discovered to recover the a(sub i) given x. The most efficient of these existing integer relation algorithms (in terms of run time and the precision required of the input) has the drawback of being very unstable numerically. It often requires a numeric precision level in the thousands of digits to reliably recover relations in modest-sized test problems. We present here a new algorithm for finding integer relations, which we have named the "PSLQ" algorithm. It is proved in this paper that the PSLQ algorithm terminates with a relation in a number of iterations that is bounded by a polynomial in it. Because this algorithm employs a numerically stable matrix reduction procedure, it is free from the numerical difficulties, that plague other integer relation algorithms. Furthermore, its stability admits an efficient implementation with lower run times oil average than other algorithms currently in Use. Finally, this stability can be used to prove that relation bounds obtained from computer runs using this algorithm are numerically accurate.
Estimating Tree-Structured Covariance Matrices via Mixed-Integer Programming
Bravo, Héctor Corrada; Wright, Stephen; Eng, Kevin H.; Keles, Sündüz; Wahba, Grace
2011-01-01
We present a novel method for estimating tree-structured covariance matrices directly from observed continuous data. Specifically, we estimate a covariance matrix from observations of p continuous random variables encoding a stochastic process over a tree with p leaves. A representation of these classes of matrices as linear combinations of rank-one matrices indicating object partitions is used to formulate estimation as instances of well-studied numerical optimization problems. In particular, our estimates are based on projection, where the covariance estimate is the nearest tree-structured covariance matrix to an observed sample covariance matrix. The problem is posed as a linear or quadratic mixed-integer program (MIP) where a setting of the integer variables in the MIP specifies a set of tree topologies of the structured covariance matrix. We solve these problems to optimality using efficient and robust existing MIP solvers. We present a case study in phylogenetic analysis of gene expression and a simulation study comparing our method to distance-based tree estimating procedures. PMID:22081761
Bosonic Integer Quantum Hall Effect in Optical Flux Lattices
NASA Astrophysics Data System (ADS)
Sterdyniak, A.; Cooper, Nigel R.; Regnault, N.
2015-09-01
In two dimensions strongly interacting bosons in a magnetic field can realize a bosonic integer quantum Hall state, the simplest two-dimensional example of a symmetry-protected topological phase. We propose a realistic implementation of this phase using an optical flux lattice. Through exact diagonalization calculations, we show that the system exhibits a clear bulk gap and the topological signature of the bosonic integer quantum Hall state. In particular, the calculation of the many-body Chern number leads to a quantized Hall conductance in agreement with the analytical predictions. We also study the stability of the phase with respect to some of the experimentally relevant parameters.
FPGA Implementation of Optimal 3D-Integer DCT Structure for Video Compression
Jacob, J. Augustin; Kumar, N. Senthil
2015-01-01
A novel optimal structure for implementing 3D-integer discrete cosine transform (DCT) is presented by analyzing various integer approximation methods. The integer set with reduced mean squared error (MSE) and high coding efficiency are considered for implementation in FPGA. The proposed method proves that the least resources are utilized for the integer set that has shorter bit values. Optimal 3D-integer DCT structure is determined by analyzing the MSE, power dissipation, coding efficiency, and hardware complexity of different integer sets. The experimental results reveal that direct method of computing the 3D-integer DCT using the integer set [10, 9, 6, 2, 3, 1, 1] performs better when compared to other integer sets in terms of resource utilization and power dissipation. PMID:26601120
FPGA Implementation of Optimal 3D-Integer DCT Structure for Video Compression.
Jacob, J Augustin; Kumar, N Senthil
2015-01-01
A novel optimal structure for implementing 3D-integer discrete cosine transform (DCT) is presented by analyzing various integer approximation methods. The integer set with reduced mean squared error (MSE) and high coding efficiency are considered for implementation in FPGA. The proposed method proves that the least resources are utilized for the integer set that has shorter bit values. Optimal 3D-integer DCT structure is determined by analyzing the MSE, power dissipation, coding efficiency, and hardware complexity of different integer sets. The experimental results reveal that direct method of computing the 3D-integer DCT using the integer set [10, 9, 6, 2, 3, 1, 1] performs better when compared to other integer sets in terms of resource utilization and power dissipation. PMID:26601120
A fast DFT algorithm using complex integer transforms
NASA Technical Reports Server (NTRS)
Reed, I. S.; Truong, T. K.
1978-01-01
Winograd's algorithm for computing the discrete Fourier transform is extended considerably for certain large transform lengths. This is accomplished by performing the cyclic convolution, required by Winograd's method, by a fast transform over certain complex integer fields. This algorithm requires fewer multiplications than either the standard fast Fourier transform or Winograd's more conventional algorithms.
INTEGER ELEVATION MODEL GRIDS FOR US EPA REGION 9
Integer Digital Elevation Models in GRID format for the mainland US administrative boundary of the US EPA Region 9 developed from the United States Geological Survey (USGS) National Elevation Dataset (NED). The administrative boundary is represented by the state boundaries of Ca...
Using Set Model for Learning Addition of Integers
ERIC Educational Resources Information Center
Lestari, Umi Puji; Putri, Ratu Ilma Indra; Hartono, Yusuf
2015-01-01
This study aims to investigate how set model can help students' understanding of addition of integers in fourth grade. The study has been carried out to 23 students and a teacher of IVC SD Iba Palembang in January 2015. This study is a design research that also promotes PMRI as the underlying design context and activity. Results showed that the…
Negative Integer Understanding: Characterizing First Graders' Mental Models
ERIC Educational Resources Information Center
Bofferding, Laura
2014-01-01
This article presents results of a research study. Sixty-one first graders' responses to interview questions about negative integer values and order and directed magnitudes were examined to characterize the students' mental models. The models reveal that initially, students overrelied on various combinations of whole-number principles as…
Optimizing a Library's Loan Policy: An Integer Programming Approach.
ERIC Educational Resources Information Center
Al-Fares, Hesham K.
1998-01-01
Discusses the length of library loan periods and the number of books allowed to be borrowed. An integer programming model is formulated whose solution yields the optimum user satisfaction, and a case study conducted at King Fahd University of Petroleum and Minerals (Saudi Arabia) is presented. (Author/LRW)
Unique Factorization in Cyclotomic Integers of Degree Seven
ERIC Educational Resources Information Center
Duckworth, W. Ethan
2008-01-01
This article provides a survey of some basic results in algebraic number theory and applies this material to prove that the cyclotomic integers generated by a seventh root of unity are a unique factorization domain. Part of the proof uses the computer algebra system Maple to find and verify factorizations. The proofs use a combination of historic…
Informing Practice: Making Sense of Integers through Storytelling
ERIC Educational Resources Information Center
Wessman-Enzinger, Nicole M.; Mooney, Edward S.
2014-01-01
The authors asked fifth-grade and eighth-grade students to pose stories for number sentences involving the addition and subtraction of integers. In this article, the authors look at eight stories from students. Which of these stories works for the given number sentence? What do they reveal about student thinking? When the authors examined these…
Using the Finite Difference Calculus to Sum Powers of Integers.
ERIC Educational Resources Information Center
Zia, Lee
1991-01-01
Summing powers of integers is presented as an example of finite differences and antidifferences in discrete mathematics. The interrelation between these concepts and their analogues in differential calculus, the derivative and integral, is illustrated and can form the groundwork for students' understanding of differential and integral calculus.…
Happy and Sad Thoughts: An Exploration of Children's Integer Reasoning
ERIC Educational Resources Information Center
Whitacre, Ian; Bishop, Jessica Pierson; Lamb, Lisa L. C.; Philipp, Randolph A.; Schappelle, Bonnie P.; Lewis, Melinda L.
2012-01-01
The purpose of this study was to investigate elementary children's conceptions that might serve as foundations for integer reasoning. Working from an abstract algebraic perspective and using an opposite-magnitudes context that is relevant to children, we analyzed the reasoning of 33 children in grades K-5. We focus our report on three prominent…
Orbital rendezvous mission planning using mixed integer nonlinear programming
NASA Astrophysics Data System (ADS)
Zhang, Jin; Tang, Guo-jin; Luo, Ya-Zhong; Li, Hai-yang
2011-04-01
The rendezvous and docking mission is usually divided into several phases, and the mission planning is performed phase by phase. A new planning method using mixed integer nonlinear programming, which investigates single phase parameters and phase connecting parameters simultaneously, is proposed to improve the rendezvous mission's overall performance. The design variables are composed of integers and continuous-valued numbers. The integer part consists of the parameters for station-keeping and sensor-switching, the number of maneuvers in each rendezvous phase and the number of repeating periods to start the rendezvous mission. The continuous part consists of the orbital transfer time and the station-keeping duration. The objective function is a combination of the propellant consumed, the sun angle which represents the power available, and the terminal precision of each rendezvous phase. The operational requirements for the spacecraft-ground communication, sun illumination and the sensor transition are considered. The simple genetic algorithm, which is a combination of the integer-coded and real-coded genetic algorithm, is chosen to obtain the optimal solution. A practical rendezvous mission planning problem is solved by the proposed method. The results show that the method proposed can solve the integral rendezvous mission planning problem effectively, and the solution obtained can satisfy the operational constraints and has a good overall performance.
Triangular Numbers, Gaussian Integers, and KenKen
ERIC Educational Resources Information Center
Watkins, John J.
2012-01-01
Latin squares form the basis for the recreational puzzles sudoku and KenKen. In this article we show how useful several ideas from number theory are in solving a KenKen puzzle. For example, the simple notion of triangular number is surprisingly effective. We also introduce a variation of KenKen that uses the Gaussian integers in order to…
Leveraging Structure: Logical Necessity in the Context of Integer Arithmetic
ERIC Educational Resources Information Center
Bishop, Jessica Pierson; Lamb, Lisa L.; Philipp, Randolph A.; Whitacre, Ian; Schappelle, Bonnie P.
2016-01-01
Looking for, recognizing, and using underlying mathematical structure is an important aspect of mathematical reasoning. We explore the use of mathematical structure in children's integer strategies by developing and exemplifying the construct of logical necessity. Students in our study used logical necessity to approach and use numbers in a…
Currency Arbitrage Detection Using a Binary Integer Programming Model
ERIC Educational Resources Information Center
Soon, Wanmei; Ye, Heng-Qing
2011-01-01
In this article, we examine the use of a new binary integer programming (BIP) model to detect arbitrage opportunities in currency exchanges. This model showcases an excellent application of mathematics to the real world. The concepts involved are easily accessible to undergraduate students with basic knowledge in Operations Research. Through this…
Exploring the Sums of Powers of Consecutive q-Integers
ERIC Educational Resources Information Center
Kim, T.; Ryoo, C. S.; Jang, L. C.; Rim, S. H.
2005-01-01
The Bernoulli numbers are among the most interesting and important number sequences in mathematics. They first appeared in the posthumous work "Ars Conjectandi" (1713) by Jacob Bernoulli (1654-1705) in connection with sums of powers of consecutive integers (Bernoulli, 1713; or Smith, 1959). Bernoulli numbers are particularly important in number…
Automorphisms of semigroups of invertible matrices with nonnegative integer elements
Semenov, Pavel P
2012-09-30
Let G{sub n}(Z) be the subsemigroup of GL{sub n}(Z) consisting of the matrices with nonnegative integer coefficients. In the paper, the automorphisms of this semigroup are described for n{>=}2. Bibliography: 5 titles.
Solving the Water Jugs Problem by an Integer Sequence Approach
ERIC Educational Resources Information Center
Man, Yiu-Kwong
2012-01-01
In this article, we present an integer sequence approach to solve the classic water jugs problem. The solution steps can be obtained easily by additions and subtractions only, which is suitable for manual calculation or programming by computer. This approach can be introduced to secondary and undergraduate students, and also to teachers and…
NASA Astrophysics Data System (ADS)
Yang, Shuyu; Zamora, Gilberto; Wilson, Mark; Mitra, Sunanda
2000-06-01
Existing lossless coding models yield only up to 3:1 compression. However, a much higher lossless compression can be achieved for certain medical images when the images are segmented prior to applying integer to integer wavelet transform and lossless coding. The methodology used in this research work is to apply a contour detection scheme to segment the image first. The segmented image is then wavelet transformed with integer to integer mapping to obtain a lower weighted entropy than the original. An adaptive arithmetic model is then applied to code the transformed image losslessly. For the male visible human color image set, the overall average lossless compression using the above scheme is around 10:1 whereas the compression ratio of an individual slice can be as high as 16:1. The achievable compression ratio depends on the actual bit rate of the segmented images attained by lossless coding as well as the compression obtainable from segmentation alone. The computational time required by the entire process is fast enough for application on large medical images.
Kaur, Imanpreet Verma, N. K.
2015-05-15
Multiferroic nanocomposite of (Bi{sub 0.1}Fe{sub 0.1}O{sub 3}) - (Ni{sub 0.1}Fe{sub 2(0.1)}O{sub 4}) was prepared by sol gel technique and characterized by X-ray diffraction, transmission electron microscopy, superconducting quantum interference device. X-ray diffraction confirmed the formation of desired crystallographic phase of the composite. The average particle size found to be 13.97nm. The transmission electron microscopy depicts the presence of the polycrystalline nanoparticles. In order to investigate the magnetic behavior superconducting quantum interference device was used. The sample was analyzed by increasing the magnetic field up to 25kOe and magnetization was found to be 16.8emu/g, which is optimum for the technological applications. The magnetic properties in such composite result as determined both by the ferrite concentration and properties and by the degree of connectivity of the two phases. The appropriate combination of two phases gives rise to higher magnetization.
Spin analysis of 0+1-->0+1 and its application to π+d-->π+d data
NASA Astrophysics Data System (ADS)
Arash, Firooz; Moravcsik, Michael J.; Goldstein, Gary R.
1985-11-01
The polarization structure of the reaction 0+1-->0+1 is discussed in the optimal transversity frame. First, the relationship between the observables and the bilinear products of amplitudes (``bicoms'') is given when only Lorentz invariance is imposed. Then parity conservation and time-reversal invariance are also imposed, resulting in modified relationships. The measurements of spin correlations between initial- and final-state spins needed to determine the amplitudes completely are enumerated. The results are applied to the existing π-d data, and the consequences of any possible dibaryon resonances are examined.
ERIC Educational Resources Information Center
Bolyard, Johnna; Moyer-Packenham, Patricia
2012-01-01
This study investigated how the use of virtual manipulatives in integer instruction impacts student achievement for integer addition and subtraction. Of particular interest was the influence of using virtual manipulatives on students' ability to create and translate among representations for integer computation. The research employed a…
A Note on the Visibility in the [1, N ] x [1, N ] Integer Domain
ERIC Educational Resources Information Center
Kim, G. D.; Engelhardt, J.
2007-01-01
A k-dimensional integer point is called visible if the line segment joining the point and the origin contains no proper integer points. This note proposes an explicit formula that represents the number of visible points on the two-dimensional [1,N]x[1,N] integer domain. Simulations and theoretical work are presented. (Contains 5 figures and 2…
A first digit theorem for powerful integer powers.
Hürlimann, Werner
2015-01-01
For any fixed power exponent, it is shown that the first digits of powerful integer powers follow a generalized Benford law (GBL) with size-dependent exponent that converges asymptotically to a GBL with the inverse double power exponent. In particular, asymptotically as the power goes to infinity these sequences obey Benford's law. Moreover, the existence of a one-parametric size-dependent exponent function that converges to these GBL's is established, and an optimal value that minimizes its deviation to two minimum estimators of the size-dependent exponent is determined. The latter is undertaken over the finite range of powerful integer powers less than [Formula: see text], where [Formula: see text] is a fixed power exponent. PMID:26543711
Two dimensional convolute integers for machine vision and image recognition
NASA Technical Reports Server (NTRS)
Edwards, Thomas R.
1988-01-01
Machine vision and image recognition require sophisticated image processing prior to the application of Artificial Intelligence. Two Dimensional Convolute Integer Technology is an innovative mathematical approach for addressing machine vision and image recognition. This new technology generates a family of digital operators for addressing optical images and related two dimensional data sets. The operators are regression generated, integer valued, zero phase shifting, convoluting, frequency sensitive, two dimensional low pass, high pass and band pass filters that are mathematically equivalent to surface fitted partial derivatives. These operators are applied non-recursively either as classical convolutions (replacement point values), interstitial point generators (bandwidth broadening or resolution enhancement), or as missing value calculators (compensation for dead array element values). These operators show frequency sensitive feature selection scale invariant properties. Such tasks as boundary/edge enhancement and noise or small size pixel disturbance removal can readily be accomplished. For feature selection tight band pass operators are essential. Results from test cases are given.
Integer-ambiguity resolution in astronomy and geodesy
NASA Astrophysics Data System (ADS)
Lannes, A.; Prieur, J.-L.
2014-02-01
Recent theoretical developments in astronomical aperture synthesis have revealed the existence of integer-ambiguity problems. Those problems, which appear in the self-calibration procedures of radio imaging, have been shown to be similar to the nearest-lattice point (NLP) problems encountered in high-precision geodetic positioning and in global navigation satellite systems. In this paper we analyse the theoretical aspects of the matter and propose new methods for solving those NLP~problems. The related optimization aspects concern both the preconditioning stage, and the discrete-search stage in which the integer ambiguities are finally fixed. Our algorithms, which are described in an explicit manner, can easily be implemented. They lead to substantial gains in the processing time of both stages. Their efficiency was shown via intensive numerical tests.
Factorization of large integers on a massively parallel computer
Davis, J.A.; Holdridge, D.B.
1988-01-01
Our interest in integer factorization at Sandia National Laboratories is motivated by cryptographic applications and in particular the security of the RSA encryption-decryption algorithm. We have implemented our version of the quadratic sieve procedure on the NCUBE computer with 1024 processors (nodes). The new code is significantly different in all important aspects from the program used to factor number of order 10/sup 70/ on a single processor CRAY computer. Capabilities of parallel processing and limitation of small local memory necessitated this entirely new implementation. This effort involved several restarts as realizations of program structures that seemed appealing bogged down due to inter-processor communications. We are presently working with integers of magnitude about 10/sup 70/ in tuning this code to the novel hardware. 6 refs., 3 figs.
Two-dimensional convolute integers for analytical instrumentation
NASA Technical Reports Server (NTRS)
Edwards, T. R.
1982-01-01
As new analytical instruments and techniques emerge with increased dimensionality, a corresponding need is seen for data processing logic which can appropriately address the data. Two-dimensional measurements reveal enhanced unknown mixture analysis capability as a result of the greater spectral information content over two one-dimensional methods taken separately. It is noted that two-dimensional convolute integers are merely an extension of the work by Savitzky and Golay (1964). It is shown that these low-pass, high-pass and band-pass digital filters are truly two-dimensional and that they can be applied in a manner identical with their one-dimensional counterpart, that is, a weighted nearest-neighbor, moving average with zero phase shifting, convoluted integer (universal number) weighting coefficients.
SCIAMACHY: The new Level 0-1 Processor
NASA Astrophysics Data System (ADS)
Lichtenberg, Günter; Slijkhuis, Sander; Aberle, Bernd; Sherbakov, Denis; Meringer, Markus; Noel, Stefan; Bramstedt, Klaus; Liebing, Patricia; Bovensmann, Heinrich; Snel, Ralph; Krijger, Mathijs; van Hees, Richard; van der Meer, Pieter; Lerot, Christophe; Dehn, Angelika; Fehr, Thorsten
2016-04-01
SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) is a scanning nadir and limb spectrometer covering the wavelength range from 212 nm to 2386 nm in 8 channels. It is a joint project of Germany, the Netherlands and Belgium and was launched in February 2002 on the ENVISAT platform. After the platform failure in April 2012, SCIAMACHY is now in the postprocessing phase F. SCIAMACHYs originally specified in-orbit lifetime was double the planned lifetime. SCIAMACHY was designed to measure column densities and vertical profiles of trace gas species in the mesosphere, in the stratosphere and in the troposphere (Bovensmann et al., 1999). It can detect O3 , H2CO, SO2 , BrO, OClO, NO2 , H2 O, CO, CO2 , CH4 , N2 O , O2 , (O2)2 and can provide information about aerosols and clouds. The operational processing of SCIAMACHY is split into Level 0-1 processing (essentially providing calibrated radiances) and Level 1-2 processing providing geophysical products. The operational Level 0-1 processor has been completely re-coded and embedded in a newly developed framework that speeds up processing considerably. Currently Version 9 of the Level 0-1 processor is implemented. It will include - An updated degradation correction - Several improvements in the SWIR spectral range like a better dark correction, an improved dead & bad pixel characterisation and an improved spectral calibration - Improvements to the polarisation correction algorithm - Improvements to the geolocation by a better pointing characterisation Additionally a new format for the Level 1b and Level 1c will be implemented. The version 9 products will be available in netCDF version 4 that is aligned with the formats of the GOME-1 and Sentinel missions. We will present the first results of the new Level 0-1 processing in this paper.
Solving the water jugs problem by an integer sequence approach
NASA Astrophysics Data System (ADS)
Man, Yiu-Kwong
2012-01-01
In this article, we present an integer sequence approach to solve the classic water jugs problem. The solution steps can be obtained easily by additions and subtractions only, which is suitable for manual calculation or programming by computer. This approach can be introduced to secondary and undergraduate students, and also to teachers and lecturers involved in teaching mathematical problem solving, recreational mathematics, or elementary number theory.
Contrasting energy scales of reentrant integer quantum Hall states
NASA Astrophysics Data System (ADS)
Deng, Nianpei; Watson, J. D.; Rokhinson, L. P.; Manfra, M. J.; Csáthy, G. A.
2012-11-01
We report drastically different onset temperatures of the reentrant integer quantum Hall states in the second and third Landau level. This finding is in quantitative disagreement with the Hartree-Fock theory of the bubble phases which is thought to describe these reentrant states. Our results indicate that the number of electrons per bubble in either the second or the third Landau level is likely different than predicted.
Electron interferometry in integer quantum Hall edge channels
NASA Astrophysics Data System (ADS)
Rech, J.; Wahl, C.; Jonckheere, T.; Martin, T.
2016-05-01
We consider the electronic analog of the Hong-Ou-Mandel interferometer from quantum optics. In this realistic condensed matter device, single electrons are injected and travel along opposite chiral edge states of the integer quantum Hall effect, colliding at a quantum point contact (QPC). We monitor the fate of the colliding excitations by calculating zero-frequency current correlations at the output of the QPC. In the simpler case of filling factor $\
Optimal source codes for geometrically distributed integer alphabets
NASA Technical Reports Server (NTRS)
Gallager, R. G.; Van Voorhis, D. C.
1975-01-01
An approach is shown for using the Huffman algorithm indirectly to prove the optimality of a code for an infinite alphabet if an estimate concerning the nature of the code can be made. Attention is given to nonnegative integers with a geometric probability assignment. The particular distribution considered arises in run-length coding and in encoding protocol information in data networks. Questions of redundancy of the optimal code are also investigated.
Population transfer HMQC for half-integer quadrupolar nuclei
Wang, Qiang; Xu, Jun; Feng, Ningdong; Deng, Feng E-mail: jean-paul.amoureux@univ-lille1.fr; Li, Yixuan; Trébosc, Julien; Lafon, Olivier; Hu, Bingwen; Chen, Qun; Amoureux, Jean-Paul E-mail: jean-paul.amoureux@univ-lille1.fr
2015-03-07
This work presents a detailed analysis of a recently proposed nuclear magnetic resonance method [Wang et al., Chem. Commun. 49(59), 6653-6655 (2013)] for accelerating heteronuclear coherence transfers involving half-integer spin quadrupolar nuclei by manipulating their satellite transitions. This method, called Population Transfer Heteronuclear Multiple Quantum Correlation (PT-HMQC), is investigated in details by combining theoretical analyses, numerical simulations, and experimental investigations. We find that compared to instant inversion or instant saturation, continuous saturation is the most practical strategy to accelerate coherence transfers on half-integer quadrupolar nuclei. We further demonstrate that this strategy is efficient to enhance the sensitivity of J-mediated heteronuclear correlation experiments between two half-integer quadrupolar isotopes (e.g., {sup 27}Al-{sup 17}O). In this case, the build-up is strongly affected by relaxation for small T{sub 2}′ and J coupling values, and shortening the mixing time makes a huge signal enhancement. Moreover, this concept of population transfer can also be applied to dipolar-mediated HMQC experiments. Indeed, on the AlPO{sub 4}-14 sample, one still observes experimentally a 2-fold shortening of the optimum mixing time albeit with no significant signal gain in the {sup 31}P-({sup 27}Al) experiments.
Population transfer HMQC for half-integer quadrupolar nuclei.
Wang, Qiang; Li, Yixuan; Trébosc, Julien; Lafon, Olivier; Xu, Jun; Hu, Bingwen; Feng, Ningdong; Chen, Qun; Amoureux, Jean-Paul; Deng, Feng
2015-03-01
This work presents a detailed analysis of a recently proposed nuclear magnetic resonance method [Wang et al., Chem. Commun. 49(59), 6653-6655 (2013)] for accelerating heteronuclear coherence transfers involving half-integer spin quadrupolar nuclei by manipulating their satellite transitions. This method, called Population Transfer Heteronuclear Multiple Quantum Correlation (PT-HMQC), is investigated in details by combining theoretical analyses, numerical simulations, and experimental investigations. We find that compared to instant inversion or instant saturation, continuous saturation is the most practical strategy to accelerate coherence transfers on half-integer quadrupolar nuclei. We further demonstrate that this strategy is efficient to enhance the sensitivity of J-mediated heteronuclear correlation experiments between two half-integer quadrupolar isotopes (e.g., (27)Al-(17)O). In this case, the build-up is strongly affected by relaxation for small T2' and J coupling values, and shortening the mixing time makes a huge signal enhancement. Moreover, this concept of population transfer can also be applied to dipolar-mediated HMQC experiments. Indeed, on the AlPO4-14 sample, one still observes experimentally a 2-fold shortening of the optimum mixing time albeit with no significant signal gain in the (31)P-{(27)Al} experiments. PMID:25747074
An integer programming model for gate assignment problem at airline terminals
NASA Astrophysics Data System (ADS)
Chun, Chong Kok; Nordin, Syarifah Zyurina
2015-05-01
In this paper, we concentrate on a gate assignment problem (GAP) at the airlines terminal. Our problem is to assign an arrival plane to a suitable gate. There are two considerations needed to take. One of its is passenger walking distance from arrival gate to departure gate while another consideration is the transport baggage distance from one gate to another. Our objective is to minimize the total distance between the gates that related to assign the arrival plane to the suitable gates. An integer linear programming (ILP) model is proposed to solve this gate assignment problem. We also conduct a computational experiment using CPLEX 12.1 solver in AIMMS 3.10 software to analyze the performance of the model. Results of the computational experiments are presented. The efficiency of flights assignment is depends on the ratio of the weight for both total passenger traveling distances and total baggage transport distances.
Fast integer least squares estimation methods: applications-oriented review and improvement
NASA Astrophysics Data System (ADS)
Xu, Peiliang
2013-04-01
The integer least squares (ILS) problem, also known as the weighted closest point problem, is highly interdisciplinary, but no algorithms can find its global optimal integer solution in polynomial time. In this talk, we will review fast algorithms for estimation of integer parameters. First, we will outline two suboptimal integer solutions, which can be important either in real time communication systems or to solve high dimensional GPS integer ambiguity unknowns. We then focus on the most efficient algorithms to search for the exact integer solution, which is shown to be much faster than LAMBDA in the sense that the ratio of integer candidates to be checked by efficient algorithms to those by LAMBDA can be theoretically expressed by rm, where r < 1 and m is the number of integer unknowns. Finally, we further improve the searching efficiency of the most powerful combined algorithms by implementing two sorting strategies, which can either be used for finding the exact integer solution or for constructing a suboptimal integer solution. A test example clearly demonstrates that the improved methods can perform significantly better than the most powerful combined algorithm to simultaneously find the optimal and second optimal integer solutions. More mathematical and algorithmic details of this talk can be found in Xu (2001, J Geod, 75, 408-423); Xu (2006, IEEE Trans Information Theory, 52, 3122-3138); Xu (2012, J Geod, 86, 35-52) and Xu et al. (2012, Survey Review, 44, 59-71).
On linear structure and phase rotation invariant properties of block M-PSK modulation codes
NASA Technical Reports Server (NTRS)
Kasami, Tadao; Takata, Toyoo; Fujiwara, Toru; Lin, Shu
1991-01-01
Two important structural properties of block M(=2')-ary PSK modulation codes, linear structure and phase symmetry, are investigated. An M-ary modulation code is first represented as a code with symbols from the integer group S(MPSK) = (0,1,2,...M-1) under modulo-M addition. Then the linear structure of block MPSK modulation codes over S(M-PSK) with respect to modulo-M vector addition is defined, and conditions are derived under which a block MPSK modulation code is linear. Once the linear structure is developed, the phase symmetry of block M-PSK modulation codes is studied. In particular, a necessary and sufficient condition for a block MPSK modulation code that is linear as a binary code to be invariant under 2 h 180 deg/M phase rotation (for h = 1 to l) is derived. Finally, a list of short 8PSK and 16PSK modulation codes is given, together with their linear structure and the smallest phase rotation for which a code is invariant.
He, Li; Huang, Guo-He; Zeng, Guang-Ming; Lu, Hong-Wei
2009-01-01
The previous inexact mixed-integer linear programming (IMILP) method can only tackle problems with coefficients of the objective function and constraints being crisp intervals, while the existing inexact mixed-integer semi-infinite programming (IMISIP) method can only deal with single-objective programming problems as it merely allows the number of constraints to be infinite. This study proposes, an inexact mixed-integer bi-infinite programming (IMIBIP) method by incorporating the concept of functional intervals into the programming framework. Different from the existing methods, the IMIBIP can tackle the inexact programming problems that contain both infinite objectives and constraints. The developed method is applied to capacity planning of waste management systems under a variety of uncertainties. Four scenarios are considered for comparing the solutions of IMIBIP with those of IMILP. The results indicate that reasonable solutions can be generated by the IMIBIP method. Compared with IMILP, the system cost from IMIBIP would be relatively high since the fluctuating market factors are considered; however, the IMILP solutions are associated with a raised system reliability level and a reduced constraint violation risk level. PMID:18406594
Mass spectra of 0+-, 1-+, and 2+- exotic glueballs
NASA Astrophysics Data System (ADS)
Tang, Liang; Qiao, Cong-Feng
2016-03-01
With appropriate interpolating currents the mass spectra of 0+-, 1-+, and 2+- oddballs are studied in the framework of QCD sum rules (QCDSR). We find there exits one stable 0+- oddball with mass of 4.57 ± 0.13GeV, and one stable 2+- oddball with mass of 6.06 ± 0.13GeV, whereas, no stable 1-+ oddball shows up. The possible production and decay modes of these glueballs with unconventional quantum numbers are analyzed, which are hopefully measurable in either BELLEII, PANDA, Super-B or LHCb experiments.
A Radio Transient 0.1 Parsecs from Sagittarius A*
NASA Astrophysics Data System (ADS)
Bower, Geoffrey C.; Roberts, Doug A.; Yusef-Zadeh, Farhad; Backer, Donald C.; Cotton, W. D.; Goss, W. M.; Lang, Cornelia C.; Lithwick, Yoram
2005-11-01
We report the discovery of a transient radio source 2.7" (0.1 pc projected distance) south of the Galactic center massive black hole, Sgr A*. The source flared with a peak of at least 80 mJy in 2004 March. The source was resolved by the Very Large Array into two components with a separation of ~0.7" and characteristic sizes of ~0.2". The two components of the source faded with a power-law index of 1.1+/-0.1. We detect an upper limit to the proper motion of the eastern component of ~3×103 km s-1 relative to Sgr A*. We detect a proper motion of ~104 km s-1 for the western component relative to Sgr A*. The transient was also detected at X-ray wavelengths with the Chandra X-Ray Observatory and XMM-Newton and given the designation CXOGC J174540.0-290031. The X-ray source falls in between the two radio components. The maximum luminosity of the X-ray source is ~1036 ergs s-1, significantly sub-Eddington. The radio jet flux density predicted by the X-ray/radio correlation for X-ray binaries is orders of magnitude less than the measured flux density. We conclude that the radio transient is the result of a bipolar jet originating in a single impulsive event from the X-ray source and interacting with the dense interstellar medium of the Galactic center.
Step fluctuations and step interactions on Mo(0 1 1)
NASA Astrophysics Data System (ADS)
Ondrejcek, M.; Swiech, W.; Durfee, C. S.; Flynn, C. P.
2003-09-01
Step fluctuations have been studied on Mo(0 1 1) thin single crystal films with various orientations of miscut, in order to determine the step stiffnesses. Effects of unseen defect structures were clearly visible in some data. Measurements of fluctuation amplitudes and relaxation times were made in the temperature range 1100-1680 K. The results show an anisotropic stiffness of about 0.36 eV/nm along [0 1¯ 1] and about 0.15 eV/nm along [1 0 0]. No temperature dependence of the stiffness was detected. The step free energies derived from the stiffnesses average about 0.27 eV/nm and are less anisotropic by about a factor 3. From the temperature dependence of the relaxation rates, an activation energy of 0.8 ± 0.2 eV was determined for the mass diffusion of the mobile defects responsible for the fluctuations. An appendix details an investigation of correlations induced in the motions of neighboring steps by diffusion and by energetic interactions.
Crystal growth mechanisms of the (0 1 0) face of α-lactose monohydrate crystals
NASA Astrophysics Data System (ADS)
Dincer, T. D.; Ogden, M. I.; Parkinson, G. M.
2009-04-01
The growth rates of the (0 1 0) face of α-lactose monohydrate crystals were measured at 30, 40 and 50 °C in the relative supersaturation range 0.55-2.33 in aqueous solutions. The mechanisms of growth were investigated. Spiral growth was found to be the mechanism of growth up to a critical relative supersaturation ( s-1) crit=1.9 at 30 °C. Above the critical relative supersaturation, the crystal growth mechanisms were predicted to change. All growth models fit equally well to the growth rates. No two-dimensional nucleation was observed above critical supersaturation by AFM. On the other hand increased step height and roughness on the edges of steps were observed. It was concluded that the growth mechanism of the (0 1 0) face of α-lactose monohydrate crystal is spiral growth. A parabolic relationship was obtained below critical supersaturation followed by a linear relationship with relative supersaturation.
Thermal analysis of Al + 0.1% CNT ribbon
NASA Astrophysics Data System (ADS)
Revo, Sergiy; Hamamda, Smail; Ivanenko, Kateryna; Boshko, Oleh; Djarri, Ahmed; Boubertakh, Abdelhamid
2015-04-01
The objective of this work is a dilatometric study of Al + 0.1% of multiwall carbon nanotubes nanocomposite material (NCM) in three directions: X - parallel to the rolling direction; Y - perpendicular to the rolling direction and (Z) perpendicular to the ribbon plane. NCM specimens were made in the form of a 0.1-mm-thick ribbon. The temperature range used for measurements was 20°C to 600°C. The obtained results show that presence of nanotubes affects the thermal expansion coefficient (TEC) measured in different directions. αx(T) and αy(T) - TEC plots as a function of temperature along X and Y directions, respectively - have substantially the same shape and overlap in the area of 400°C. The expansion along X-axis becomes greater than along Y-axis below this temperature value. It is clear that the coefficient αz(T) is lower than αx(T) and αy(T) over the entire temperature range. The expansion along Z-axis is smaller compared to that along X- and Y-axes. This behaviour suggests that there is a strong interatomic interaction along this direction (Z). αz(T) becomes monotonous and constant and is equal to 8 × 10-6°C-1 at temperatures above 300°C. Such order of magnitude had not been obtained in earlier studies of aluminium alloys. The obtained TEC shows high anisotropy, which grows with the increase of temperature. The heat flow (differential scanning calorimetry, (DSC)) of Al + 0.1% carbon nanotubes (CNT) NCM is more intense compared to that of pure aluminium produced in similar conditions. The two representative curves have similar shape and are almost entirely overlapped. The thermogravimetry results confirm those of DSC. The Raman spectrum of this nanomaterial shows that intensity of G and D bonds is significantly increased compared to that of the pure material. The infrared diagram also confirms that in this case the mentioned bonds are more intensive NCM. The tensile strength measurements (σB) of the studied NCM also demonstrate that its value
Bosonic Integer Quantum Hall Effect in an Interacting Lattice Model
NASA Astrophysics Data System (ADS)
He, Yin-Chen; Bhattacharjee, Subhro; Moessner, R.; Pollmann, Frank
2015-09-01
We study a bosonic model with correlated hopping on a honeycomb lattice, and show that its ground state is a bosonic integer quantum Hall (BIQH) phase, a prominent example of a symmetry-protected topological (SPT) phase. By using the infinite density matrix renormalization group method, we establish the existence of the BIQH phase by providing clear numerical evidence: (i) a quantized Hall conductance with |σx y|=2 , (ii) two counterpropagating gapless edge modes. Our simple model is an example of a novel class of systems that can stabilize SPT phases protected by a continuous symmetry on lattices and opens up new possibilities for the experimental realization of these exotic phases.
An analytical study on the carrier-phase linear combinations for triple-frequency GNSS
NASA Astrophysics Data System (ADS)
Li, Jinlong; Yang, Yuanxi; He, Haibo; Guo, Hairong
2016-08-01
The linear combinations of multi-frequency carrier-phase measurements for Global Navigation Satellite System (GNSS) are greatly beneficial to improving the performance of ambiguity resolution (AR), cycle slip correction as well as precise positioning. In this contribution, the existing definitions of the carrier-phase linear combination are reviewed and the integer property of the resulting ambiguity of the phase linear combinations is examined. The general analytical method for solving the optimal integer linear combinations for all triple-frequency GNSS is presented. Three refined triple-frequency integer combinations solely determined by the frequency values are introduced, which are the ionosphere-free (IF) combination that the Sum of its integer coefficients equal to 0 (IFS0), the geometry-free (GF) combination that the Sum of its integer coefficients equal to 0 (GFS0) and the geometry-free and ionosphere-free (GFIF) combination. Besides, the optimal GF, IF, extra-wide lane and ionosphere-reduced integer combinations for GPS and BDS are solved exhaustively by the presented method. Their potential applications in cycle slip detection, AR as well as precise positioning are discussed. At last, a more straightforward GF and IF AR scheme than the existing method is presented based on the GFIF integer combination.
Operational method of solution of linear non-integer ordinary and partial differential equations.
Zhukovsky, K V
2016-01-01
We propose operational method with recourse to generalized forms of orthogonal polynomials for solution of a variety of differential equations of mathematical physics. Operational definitions of generalized families of orthogonal polynomials are used in this context. Integral transforms and the operational exponent together with some special functions are also employed in the solutions. The examples of solution of physical problems, related to such problems as the heat propagation in various models, evolutional processes, Black-Scholes-like equations etc. are demonstrated by the operational technique. PMID:26900541
Generalized integer aperture estimation for partial GNSS ambiguity fixing
NASA Astrophysics Data System (ADS)
Brack, Andreas; Günther, Christoph
2014-05-01
In satellite navigation, the key to high precision is to make use of the carrier-phase measurements. The periodicity of the carrier-phase, however, leads to integer ambiguities. Often, resolving the full set of ambiguities cannot be accomplished for a given reliability constraint. In that case, it can be useful to resolve a subset of ambiguities. The selection of the subset should be based not only on the stochastic system model but also on the actual measurements from the tracking loops. This paper presents a solution to the problem of joint subset selection and ambiguity resolution. The proposed method can be interpreted as a generalized version of the class of integer aperture estimators. Two specific realizations of this new class of estimators are presented, based on different acceptance tests. Their computation requires only a single tree search, and can be efficiently implemented, e.g., in the framework of the well-known LAMBDA method. Numerical simulations with double difference measurements based on Galileo E1 signals are used to evaluate the performance of the introduced estimation schemes under a given reliability constraint. The results show a clear gain of partial fixing in terms of the probability of correct ambiguity resolution, leading to improved baseline estimates.
Mixed Integer Programming and Heuristic Scheduling for Space Communication Networks
NASA Technical Reports Server (NTRS)
Cheung, Kar-Ming; Lee, Charles H.
2012-01-01
We developed framework and the mathematical formulation for optimizing communication network using mixed integer programming. The design yields a system that is much smaller, in search space size, when compared to the earlier approach. Our constrained network optimization takes into account the dynamics of link performance within the network along with mission and operation requirements. A unique penalty function is introduced to transform the mixed integer programming into the more manageable problem of searching in a continuous space. The constrained optimization problem was proposed to solve in two stages: first using the heuristic Particle Swarming Optimization algorithm to get a good initial starting point, and then feeding the result into the Sequential Quadratic Programming algorithm to achieve the final optimal schedule. We demonstrate the above planning and scheduling methodology with a scenario of 20 spacecraft and 3 ground stations of a Deep Space Network site. Our approach and framework have been simple and flexible so that problems with larger number of constraints and network can be easily adapted and solved.
A Secret Image Sharing Method Using Integer Wavelet Transform
NASA Astrophysics Data System (ADS)
Huang, Chin-Pan; Li, Ching-Chung
2007-12-01
A new image sharing method, based on the reversible integer-to-integer (ITI) wavelet transform and Shamir's [InlineEquation not available: see fulltext.] threshold scheme is presented, that provides highly compact shadows for real-time progressive transmission. This method, working in the wavelet domain, processes the transform coefficients in each subband, divides each of the resulting combination coefficients into [InlineEquation not available: see fulltext.] shadows, and allows recovery of the complete secret image by using any [InlineEquation not available: see fulltext.] or more shadows [InlineEquation not available: see fulltext.]. We take advantages of properties of the wavelet transform multiresolution representation, such as coefficient magnitude decay and excellent energy compaction, to design combination procedures for the transform coefficients and processing sequences in wavelet subbands such that small shadows for real-time progressive transmission are obtained. Experimental results demonstrate that the proposed method yields small shadow images and has the capabilities of real-time progressive transmission and perfect reconstruction of secret images.
Graphs on uniform points in [0,1]d
NASA Astrophysics Data System (ADS)
Appel, Martin J. B.; Russo, Ralph P.; Yang, King J.
1995-06-01
Statistical problems in pattern or structure recognition for a random multidimensional point set may be addressed by variations on the random graph model of Erdos and Renyui. The imposition of graph structure with a variable edge criterion on a large random point set allows a search for signature quantities or behavior under the given distributional hypothesis. The work is motivated by the question of how to make statistical inferences from sensed mine field data. This article describes recent results obtained in the following special cases. On independent random points U1,...,Un distributed uniformly on [0,1]d, a random graph Gn(x) is constructed in which two distinct such points are joined by an edge if the l(infinity )-distance between them is at most some prescribed value 0
Ellrott, Kyle; Guo, Jun-tao; Olman, Victor; Xu, Ying
2006-01-01
Integer programming is a combinatorial optimization method that has been successfully applied to the protein threading problem. We seek to expand the model optimized by this technique to allow for a more accurate description of protein threading. We have developed and implemented an expanded model of integer programming that has the capability to model secondary structure element deletion, which was not possible in previous version of integer programming based optimization. PMID:17503397
NASA Astrophysics Data System (ADS)
Skulovich, Olya; Bent, Russell; Judi, David; Perelman, Lina Sela; Ostfeld, Avi
2015-06-01
Despite their potential catastrophic impact, transients are often ignored or presented ad hoc when designing water distribution systems. To address this problem, we introduce a new piece-wise function fitting model that is integrated with mixed integer programming to optimally place and size surge tanks for transient control. The key features of the algorithm are a model-driven discretization of the search space, a linear approximation nonsmooth system response surface to transients, and a mixed integer linear programming optimization. Results indicate that high quality solutions can be obtained within a reasonable number of function evaluations and demonstrate the computational effectiveness of the approach through two case studies. The work investigates one type of surge control devices (closed surge tank) for a specified set of transient events. The performance of the algorithm relies on the assumption that there exists a smooth relationship between the objective function and tank size. Results indicate the potential of the approach for the optimal surge control design in water systems.
High Performance Humidity Sensor Based on Electrospun Zr0.9Mg0.1O2-δ Nanofibers
NASA Astrophysics Data System (ADS)
Su, Mei-Ying; Wang, Jing; Yao, Peng-Jun; Du, Hai-Ying
2012-11-01
Zr0.9Mg0.1O2-δ nanofibers and ZrO2 nanofibers are synthesized using electrospinning and the calcination technique. The nanofibers are characterized using x-ray diffraction (XRD), a field emission scanning electron microscope (FE-SEM), and a Brunauer—Emmett—Teller (BET) surface analyzer. The humidity sensing properties of Zr0.9Mg0.1O2-δ nanofiber sensors are analyzed and compared with those of ZrO2 nanofiber sensors. The Zr0.9Mg0.1O2-δ nanofiber humidity sensors exhibit a broader humidity range of 11-97% relative humidity (RH), good linearity, small humidity hysteresis, and rapid response and recovery times. The complex impedance plots of the Zr0.9Mg0.1O2-δ sensor at different RHs are drawn, and the humidity sensing mechanism is discussed via an equivalent circuit.
BOLD fractional contribution to resting-state functional connectivity above 0.1 Hz.
Chen, Jingyuan E; Glover, Gary H
2015-02-15
Blood oxygen level dependent (BOLD) spontaneous signals from resting-state (RS) brains have typically been characterized by low-pass filtered timeseries at frequencies ≤ 0.1 Hz, and studies of these low-frequency fluctuations have contributed exceptional understanding of the baseline functions of our brain. Very recently, emerging evidence has demonstrated that spontaneous activities may persist in higher frequency bands (even up to 0.8 Hz), while presenting less variable network patterns across the scan duration. However, as an indirect measure of neuronal activity, BOLD signal results from an inherently slow hemodynamic process, which in fact might be too slow to accommodate the observed high-frequency functional connectivity (FC). To examine whether the observed high-frequency spontaneous FC originates from BOLD contrast, we collected RS data as a function of echo time (TE). Here we focus on two specific resting state networks - the default-mode network (DMN) and executive control network (ECN), and the major findings are fourfold: (1) we observed BOLD-like linear TE-dependence in the spontaneous activity at frequency bands up to 0.5 Hz (the maximum frequency that can be resolved with TR=1s), supporting neural relevance of the RSFC at a higher frequency range; (2) conventional models of hemodynamic response functions must be modified to support resting state BOLD contrast, especially at higher frequencies; (3) there are increased fractions of non-BOLD-like contributions to the RSFC above the conventional 0.1 Hz (non-BOLD/BOLD contrast at 0.4-0.5 Hz is ~4 times that at <0.1 Hz); and (4) the spatial patterns of RSFC are frequency-dependent. Possible mechanisms underlying the present findings and technical concerns regarding RSFC above 0.1 Hz are discussed. PMID:25497686
Integer aperture bootstrapping: a new GNSS ambiguity estimator with controllable fail-rate
NASA Astrophysics Data System (ADS)
Teunissen, P. J. G.
2005-08-01
In this contribution, we introduce a new bootstrap-based method for Global Navigation Satellite System (GNSS) carrier-phase ambiguity resolution. Integer bootstrapping is known to be one of the simplest methods for integer ambiguity estimation with close-to-optimal performance. Its outcome is easy to compute due to the absence of an integer search, and its performance is close to optimal if the decorrelating Z-transformation of the LAMBDA method is used. Moreover, the bootstrapped estimator is presently the only integer estimator for which an exact and easy-to-compute expression of its fail-rate can be given. A possible disadvantage is, however, that the user has only a limited control over the fail-rate. Once the underlying mathematical model is given, the user has no freedom left in changing the value of the fail-rate. Here, we present an ambiguity estimator for which the user is given additional freedom. For this purpose, use is made of the class of integer aperture estimators as introduced in Teunissen (2003). This class is larger than the class of integer estimators. Integer aperture estimators are of a hybrid nature and can have integer outcomes as well as non-integer outcomes. The new estimator is referred to as integer aperture bootstrapping. This new estimator has all the advantages known from integer bootstrapping with the additional advantage that its fail-rate can be controlled by the user. This is made possible by giving the user the freedom over the aperture of the pull-in region. We also give an exact and easy-to-compute expression for its controllable fail-rate.
Pure scaling operators at the integer quantum Hall plateau transition.
Bondesan, R; Wieczorek, D; Zirnbauer, M R
2014-05-01
Stationary wave functions at the transition between plateaus of the integer quantum Hall effect are known to exhibit multifractal statistics. Here we explore this critical behavior for the case of scattering states of the Chalker-Coddington network model with point contacts. We argue that moments formed from the wave amplitudes of critical scattering states decay as pure powers of the distance between the points of contact and observation. These moments in the continuum limit are proposed to be correlation functions of primary fields of an underlying conformal field theory. We check this proposal numerically by finite-size scaling. We also verify the conformal field theory prediction for a three-point function involving two primary fields. PMID:24856714
Validation and assessment of integer programming sensor placement models.
Uber, James G.; Hart, William Eugene; Watson, Jean-Paul; Phillips, Cynthia Ann; Berry, Jonathan W.
2005-02-01
We consider the accuracy of predictions made by integer programming (IP) models of sensor placement for water security applications. We have recently shown that IP models can be used to find optimal sensor placements for a variety of different performance criteria (e.g. minimize health impacts and minimize time to detection). However, these models make a variety of simplifying assumptions that might bias the final solution. We show that our IP modeling assumptions are similar to models developed for other sensor placement methodologies, and thus IP models should give similar predictions. However, this discussion highlights that there are significant differences in how temporal effects are modeled for sensor placement. We describe how these modeling assumptions can impact sensor placements.
Reconstructing cerebrovascular networks under local physiological constraints by integer programming
Rempfler, Markus; Schneider, Matthias; Ielacqua, Giovanna D.; Xiao, Xianghui; Stock, Stuart R.; Klohs, Jan; Szekely, Gabor; Andres, Bjoern; Menze, Bjoern H.
2015-04-23
We introduce a probabilistic approach to vessel network extraction that enforces physiological constraints on the vessel structure. The method accounts for both image evidence and geometric relationships between vessels by solving an integer program, which is shown to yield the maximum a posteriori (MAP) estimate to the probabilistic model. Starting from an over-connected network, it is pruning vessel stumps and spurious connections by evaluating the local geometry and the global connectivity of the graph. We utilize a high-resolution micro computed tomography (µCT) dataset of a cerebrovascular corrosion cast to obtain a reference network and learn the prior distributions of our probabilistic model. As a result, we perform experiments on micro magnetic resonance angiography (µMRA) images of mouse brains and discuss properties of the networks obtained under different tracking and pruning approaches.
Reconstructing cerebrovascular networks under local physiological constraints by integer programming
Rempfler, Markus; Schneider, Matthias; Ielacqua, Giovanna D.; Xiao, Xianghui; Stock, Stuart R.; Klohs, Jan; Szekely, Gabor; Andres, Bjoern; Menze, Bjoern H.
2015-04-23
We introduce a probabilistic approach to vessel network extraction that enforces physiological constraints on the vessel structure. The method accounts for both image evidence and geometric relationships between vessels by solving an integer program, which is shown to yield the maximum a posteriori (MAP) estimate to the probabilistic model. Starting from an over-connected network, it is pruning vessel stumps and spurious connections by evaluating the local geometry and the global connectivity of the graph. We utilize a high-resolution micro computed tomography (µCT) dataset of a cerebrovascular corrosion cast to obtain a reference network and learn the prior distributions of ourmore » probabilistic model. As a result, we perform experiments on micro magnetic resonance angiography (µMRA) images of mouse brains and discuss properties of the networks obtained under different tracking and pruning approaches.« less
Parallel integer sorting with medium and fine-scale parallelism
NASA Technical Reports Server (NTRS)
Dagum, Leonardo
1993-01-01
Two new parallel integer sorting algorithms, queue-sort and barrel-sort, are presented and analyzed in detail. These algorithms do not have optimal parallel complexity, yet they show very good performance in practice. Queue-sort designed for fine-scale parallel architectures which allow the queueing of multiple messages to the same destination. Barrel-sort is designed for medium-scale parallel architectures with a high message passing overhead. The performance results from the implementation of queue-sort on a Connection Machine CM-2 and barrel-sort on a 128 processor iPSC/860 are given. The two implementations are found to be comparable in performance but not as good as a fully vectorized bucket sort on the Cray YMP.
Analytical estimation of the correlation dimension of integer lattices
Lacasa, Lucas; Gómez-Gardeñes, Jesús
2014-12-01
Recently [L. Lacasa and J. Gómez-Gardeñes, Phys. Rev. Lett. 110, 168703 (2013)], a fractal dimension has been proposed to characterize the geometric structure of networks. This measure is an extension to graphs of the so called correlation dimension, originally proposed by Grassberger and Procaccia to describe the geometry of strange attractors in dissipative chaotic systems. The calculation of the correlation dimension of a graph is based on the local information retrieved from a random walker navigating the network. In this contribution, we study such quantity for some limiting synthetic spatial networks and obtain analytical results on agreement with the previously reported numerics. In particular, we show that up to first order, the correlation dimension β of integer lattices ℤ{sup d} coincides with the Haussdorf dimension of their coarsely equivalent Euclidean spaces, β = d.
Integer-Valued Characters for Some Sporadic Groups
NASA Astrophysics Data System (ADS)
Gilani, Alireza; Moghani, Ali
2010-11-01
Using the concept of markaracter tables proposed by a Chemist S. Fujita who applied his results in this area of research to enumerate isomers of molecules, we are able to discuss characters and marks concerning a group of a finite order on a common basis. He also introduced tables of integer-valued characters that are obtained for finite groups. According to the main result of W. Feit and G. M. Seitz (see, Illinois J. Math. 33 (1), 103-131, 1988), the sporadic Mathieu groups M11, M12 and Higman-Sims (HS) group are unmatured. In this paper, at first all the dominant classes and Q- conjugacy characters for the above groups are derived.
Integer Representation of Decimal Numbers for Exact Computations.
Bernal, Javier; Witzgall, Christoph
2006-01-01
A scheme is presented and software is documented for representing as integers input decimal numbers that have been stored in a computer as double precision floating point numbers and for carrying out multiplications, additions and subtractions based on these numbers in an exact manner. The input decimal numbers must not have more than nine digits to the left of the decimal point. The decimal fractions of their floating point representations are all first rounded off at a prespecified location, a location no more than nine digits away from the decimal point. The number of digits to the left of the decimal point for each input number besides not being allowed to exceed nine must then be such that the total number of digits from the leftmost digit of the number to the location where round-off is to occur does not exceed fourteen. PMID:27274918
Insulating States in the Integer Quantum Hall Regime
NASA Astrophysics Data System (ADS)
Knighton, Talbot; Serafin, Alessandro; Wu, Zhe; Tarquini, Vinicio; Xia, J. F.; Sullivan, Neil; Pfeiffer, Loren; West, Ken; Huang, Jian
Quantum Hall measurements are performed at temperatures 20-300 mK in high quality p-type GaAs quantum well systems having mobility μ = 4 ×106 cm2/V .s for density 5 ×1010 cm-2. We report a series of insulating phases appearing at or near integer filling factors ν >= 1 . The DC resistance demonstrates a maximum of 25M Ω, much larger than the quantum resistance h /e2 , with threshold transport behavior at low currents around 10 pA at low temperatures. The threshold diminishes upon heating up to 200 mK, consistent with a finite temperature melting of bubble phases or Wigner crystal. Additionally, these peaks have a complex electrical impedance for AC signals, with large phase shifts down to 1Hz. In this regime, the ac impedance of the two chiral edges show distinct correlated characteristics. NSF DMR-1410302.
Mixed Integer Programming and Heuristic Scheduling for Space Communication
NASA Technical Reports Server (NTRS)
Lee, Charles H.; Cheung, Kar-Ming
2013-01-01
Optimal planning and scheduling for a communication network was created where the nodes within the network are communicating at the highest possible rates while meeting the mission requirements and operational constraints. The planning and scheduling problem was formulated in the framework of Mixed Integer Programming (MIP) to introduce a special penalty function to convert the MIP problem into a continuous optimization problem, and to solve the constrained optimization problem using heuristic optimization. The communication network consists of space and ground assets with the link dynamics between any two assets varying with respect to time, distance, and telecom configurations. One asset could be communicating with another at very high data rates at one time, and at other times, communication is impossible, as the asset could be inaccessible from the network due to planetary occultation. Based on the network's geometric dynamics and link capabilities, the start time, end time, and link configuration of each view period are selected to maximize the communication efficiency within the network. Mathematical formulations for the constrained mixed integer optimization problem were derived, and efficient analytical and numerical techniques were developed to find the optimal solution. By setting up the problem using MIP, the search space for the optimization problem is reduced significantly, thereby speeding up the solution process. The ratio of the dimension of the traditional method over the proposed formulation is approximately an order N (single) to 2*N (arraying), where N is the number of receiving antennas of a node. By introducing a special penalty function, the MIP problem with non-differentiable cost function and nonlinear constraints can be converted into a continuous variable problem, whose solution is possible.
Integer-spin electron paramagnetic resonance of iron proteins.
Hendrich, M P; Debrunner, P G
1989-01-01
A quantitative interpretation is presented for EPR spectra from integer-spin metal centers having large zero-field splittings. Integer-spin, or non-Kramers, centers are common in metalloproteins and many give EPR signals, but a quantitative understanding has been lacking until now. Heterogeneity of the metal's local environment will result in a significant spread in zero-field splittings and in broadened EPR signals. Using the spin Hamiltonian Hs = S.D.S + beta S.g.B and some simple assumptions about the nature of the zero-field parameter distributions, a lineshape model was devised which allows accurate simulation of single crystal and frozen solution spectra. The model was tested on single crystals of magnetically dilute ferrous fluosilicate. Data and analyses from proteins and active-site models are presented with the microwave field B1 either parallel or perpendicular to B. Quantitative agreement of observed and predicted signal intensities is found for the two B1 orientations. Methods of spin quantitation are given and are shown to predict an unknown concentration relative to a standard with known concentration. The fact that the standard may be either a non-Kramers or a Kramers center is further proof of the model's validity. The magnitude of the splitting in zero magnetic field is of critical importance; it affects not only the chance of signal observation, but also the quantitation accuracy. Experiments taken at microwave frequencies of 9 and 35 GHz demonstrate the need for high-frequency data as only a fraction of the molecules give signals at 9 GHz. PMID:2551404
Hyper-Sums of Powers of Integers and the Akiyama-Tanigawa Matrix
NASA Astrophysics Data System (ADS)
Inaba, Yoshinari
2005-05-01
In this short essay, we consider hyper-sums of powers of integers, namely sums of power sums. We can obtain easily their formulae as polynomials by using formulae for ordinary sums of powers of integers. The coefficient of the first-degree term in each polynomial coincides with the matrix element of the Akiyama-Tanigawa matrix.
Integral-valued polynomials over sets of algebraic integers of bounded degree☆
Peruginelli, Giulio
2014-01-01
Let K be a number field of degree n with ring of integers OK. By means of a criterion of Gilmer for polynomially dense subsets of the ring of integers of a number field, we show that, if h∈K[X] maps every element of OK of degree n to an algebraic integer, then h(X) is integral-valued over OK, that is, h(OK)⊂OK. A similar property holds if we consider the set of all algebraic integers of degree n and a polynomial f∈Q[X]: if f(α) is integral over Z for every algebraic integer α of degree n, then f(β) is integral over Z for every algebraic integer β of degree smaller than n. This second result is established by proving that the integral closure of the ring of polynomials in Q[X] which are integer-valued over the set of matrices Mn(Z) is equal to the ring of integral-valued polynomials over the set of algebraic integers of degree equal to n. PMID:26949270
ERIC Educational Resources Information Center
Han, Kyung T.; Rudner, Lawrence M.
2014-01-01
This study uses mixed integer quadratic programming (MIQP) to construct multiple highly equivalent item pools simultaneously, and compares the results from mixed integer programming (MIP). Three different MIP/MIQP models were implemented and evaluated using real CAT item pool data with 23 different content areas and a goal of equal information…
NASA Astrophysics Data System (ADS)
Tian, Yumiao; Ge, Maorong; Neitzel, Frank
2015-11-01
GLONASS could hardly reach the positioning performance of GPS, especially for fast and real-time precise positioning. One of the reasons is the phase inter-frequency bias (IFB) at the receiver end prevents its integer ambiguity resolution. A number of studies were carried out to achieve the integer ambiguity resolution for GLONASS. Based on some of the revealed IFB characteristics, for instance IFB is a linear function of the received carrier frequency and L1 and L2 have the same IFB in unit of length, most of recent methods recommend estimating the IFB rate together with ambiguities. However, since the two sets of parameters are highly correlated, as demonstrated in previous studies, observations over several hours up to 1 day are needed even with simultaneous GPS observations to obtain a reasonable solution. Obviously, these approaches cannot be applied for real-time positioning. Actually, it can be demonstrated that GLONASS ambiguity resolution should also be available even for a single epoch if the IFB rate is precisely known. In addition, the closer the IFB rate value is to its true value, the larger the fixing RATIO will be. Based on this fact, in this paper, a new approach is developed to estimate the IFB rate by means of particle filtering with the likelihood function derived from RATIO. This approach is evaluated with several sets of experimental data. For both static and kinematic cases, the results show that IFB rates could be estimated precisely just with GLONASS data of a few epochs depending on the baseline length. The time cost with a normal PC can be controlled around 1 s and can be further reduced. With the estimated IFB rate, integer ambiguity resolution is available immediately and as a consequence, the positioning accuracy is improved significantly to the level of GPS fixed solution. Thus the new approach enables real-time precise applications of GLONASS.
Thermodynamic functions of hydration of hydrocarbons at 298.15 K and 0.1 MPa
NASA Astrophysics Data System (ADS)
Plyasunov, Andrey V.; Shock, Everett L.
2000-02-01
An extensive compilation of experimental data yielding the infinite dilution partial molar Gibbs energy of hydration Δ hGO, enthalpy of hydration Δ hHO, heat capacity of hydration Δ hCpO, and volume V2O, at the reference temperature and pressure, 298.15 K and 0.1 MPa, is presented for hydrocarbons (excluding polyaromatic compounds) and monohydric alcohols. These results are used in a least-squares procedure to determine the numerical values of the corresponding properties of the selected functional groups. The simple first order group contribution method, which in general ignores nearest-neighbors and steric hindrance effects, was chosen to represent the compiled data. Following the precedent established by Cabani et al. (1981), the following groups are considered: CH 3, CH 2, CH, C for saturated hydrocarbons; c-CH 2, c-CH, c-C for cyclic saturated hydrocarbons; CH ar, C ar for aromatic hydrocarbons (containing the benzene ring); C=C, C≡C for double and triple bonds in linear hydrocarbons, respectively; c-C=C for the double bond in cyclic hydrocarbons; H for a hydrogen atom attached to the double bond (both in linear and cyclic hydrocarbons) or triple bond; and OH for the hydroxyl functional group. In addition it was found necessary to include the "pseudo"-group I(C-C) to account for the specific interactions of the neighboring hydrocarbon groups attached to the benzene or cyclic ring (in the latter case only for cis-isomers). Results of this study, the numerical values of the group contributions, will allow in most cases reasonably accurate estimations of Δ hGO, Δ hHO, Δ hCpO, and V2O at 298.15 K, 0.1 MPa for many hydrocarbons involved in geochemical and environmental processes.
Caprara, Alberto; Carr, Robert; Istrail, Sorin; Lancia, Giuseppe; Walenz, Brian
2004-01-01
Protein structure comparison is a fundamental problem for structural genomics, with applications to drug design, fold prediction, protein clustering, and evolutionary studies. Despite its importance, there are very few rigorous methods and widely accepted similarity measures known for this problem. In this paper we describe the last few years of developments on the study of an emerging measure, the contact map overlap (CMO), for protein structure comparison. A contact map is a list of pairs of residues which lie in three-dimensional proximity in the protein's native fold. Although this measure is in principle computationally hard to optimize, we show how it can in fact be computed with great accuracy for related proteins by integer linear programming techniques. These methods have the advantage of providing certificates of near-optimality by means of upper bounds to the optimal alignment value. We also illustrate effective heuristics, such as local search and genetic algorithms. We were able to obtain for the first time optimal alignments for large similar proteins (about 1,000 residues and 2,000 contacts) and used the CMO measure to cluster proteins in families. The clusters obtained were compared to SCOP classification in order to validate the measure. Extensive computational experiments showed that alignments which are off by at most 10% from the optimal value can be computed in a short time. Further experiments showed how this measure reacts to the choice of the threshold defining a contact and how to choose this threshold in a sensible way. PMID:15072687
Tracking Simulation of Third-Integer Resonant Extraction for Fermilab's Mu2e Experiment
Park, Chong Shik; Amundson, James; Michelotti, Leo
2015-02-13
The Mu2e experiment at Fermilab requires acceleration and transport of intense proton beams in order to deliver stable, uniform particle spills to the production target. To meet the experimental requirement, particles will be extracted slowly from the Delivery Ring to the external beamline. Using Synergia2, we have performed multi-particle tracking simulations of third-integer resonant extraction in the Delivery Ring, including space charge effects, physical beamline elements, and apertures. A piecewise linear ramp profile of tune quadrupoles was used to maintain a constant averaged spill rate throughout extraction. To study and minimize beam losses, we implemented and introduced a number of features, beamline element apertures, and septum plane alignments. Additionally, the RF Knockout (RFKO) technique, which excites particles transversely, is employed for spill regulation. Combined with a feedback system, it assists in fine-tuning spill uniformity. Simulation studies were carried out to optimize the RFKO feedback scheme, which will be helpful in designing the final spill regulation system.
Uncluttered Single-Image Visualization of Vascular Structures using GPU and Integer Programming
Won, Joong-Ho; Jeon, Yongkweon; Rosenberg, Jarrett; Yoon, Sungroh; Rubin, Geoffrey D.; Napel, Sandy
2013-01-01
Direct projection of three-dimensional branching structures, such as networks of cables, blood vessels, or neurons onto a 2D image creates the illusion of intersecting structural parts and creates challenges for understanding and communication. We present a method for visualizing such structures, and demonstrate its utility in visualizing the abdominal aorta and its branches, whose tomographic images might be obtained by computed tomography or magnetic resonance angiography, in a single two-dimensional stylistic image, without overlaps among branches. The visualization method, termed uncluttered single-image visualization (USIV), involves optimization of geometry. This paper proposes a novel optimization technique that utilizes an interesting connection of the optimization problem regarding USIV to the protein structure prediction problem. Adopting the integer linear programming-based formulation for the protein structure prediction problem, we tested the proposed technique using 30 visualizations produced from five patient scans with representative anatomical variants in the abdominal aortic vessel tree. The novel technique can exploit commodity-level parallelism, enabling use of general-purpose graphics processing unit (GPGPU) technology that yields a significant speedup. Comparison of the results with the other optimization technique previously reported elsewhere suggests that, in most aspects, the quality of the visualization is comparable to that of the previous one, with a significant gain in the computation time of the algorithm. PMID:22291148
Anisotropic fractal media by vector calculus in non-integer dimensional space
Tarasov, Vasily E.
2014-08-15
A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensional space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media.
Anisotropic fractal media by vector calculus in non-integer dimensional space
NASA Astrophysics Data System (ADS)
Tarasov, Vasily E.
2014-08-01
A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensional space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media.
Preconditioning 2D Integer Data for Fast Convex Hull Computations.
Cadenas, José Oswaldo; Megson, Graham M; Luengo Hendriks, Cris L
2016-01-01
In order to accelerate computing the convex hull on a set of n points, a heuristic procedure is often applied to reduce the number of points to a set of s points, s ≤ n, which also contains the same hull. We present an algorithm to precondition 2D data with integer coordinates bounded by a box of size p × q before building a 2D convex hull, with three distinct advantages. First, we prove that under the condition min(p, q) ≤ n the algorithm executes in time within O(n); second, no explicit sorting of data is required; and third, the reduced set of s points forms a simple polygonal chain and thus can be directly pipelined into an O(n) time convex hull algorithm. This paper empirically evaluates and quantifies the speed up gained by preconditioning a set of points by a method based on the proposed algorithm before using common convex hull algorithms to build the final hull. A speedup factor of at least four is consistently found from experiments on various datasets when the condition min(p, q) ≤ n holds; the smaller the ratio min(p, q)/n is in the dataset, the greater the speedup factor achieved. PMID:26938221
Robust electron pairing in the integer quantum hall effect regime.
Choi, H K; Sivan, I; Rosenblatt, A; Heiblum, M; Umansky, V; Mahalu, D
2015-01-01
Electron pairing is a rare phenomenon appearing only in a few unique physical systems; for example, superconductors and Kondo-correlated quantum dots. Here, we report on an unexpected electron pairing in the integer quantum Hall effect regime. The pairing takes place within an interfering edge channel in an electronic Fabry-Perot interferometer at a wide range of bulk filling factors, between 2 and 5. We report on three main observations: high-visibility Aharonov-Bohm conductance oscillations with magnetic flux periodicity equal to half the magnetic flux quantum; an interfering quasiparticle charge equal to twice the elementary electron charge as revealed by quantum shot noise measurements, and full dephasing of the pairs' interference by induced dephasing of the adjacent inner edge channel-a manifestation of inter-channel entanglement. Although this pairing phenomenon clearly results from inter-channel interaction, the exact mechanism that leads to electron-electron attraction within a single edge channel is not clear. We believe that substantial efforts are needed in order to clarify these intriguing and unexpected findings. PMID:26096516
Forward scattering approximation and bosonization in integer quantum Hall systems
Rosenau da Costa, M. Westfahl, H.; Caldeira, A.O.
2008-03-15
In this work, we present a model and a method to study integer quantum Hall (IQH) systems. Making use of the Landau levels structure we divide these two-dimensional systems into a set of interacting one-dimensional gases, one for each guiding center. We show that the so-called strong field approximation, used by Kallin and Halperin and by MacDonald, is equivalent, in first order, to a forward scattering approximation and analyze the IQH systems within this approximation. Using an appropriate variation of the Landau level bosonization method we obtain the dispersion relations for the collective excitations and the single-particle spectral functions. For the bulk states, these results evidence a behavior typical of non-normal strongly correlated systems, including the spin-charge splitting of the single-particle spectral function. We discuss the origin of this behavior in the light of the Tomonaga-Luttinger model and the bosonization of two-dimensional electron gases.
Fish Processed Production Planning Using Integer Stochastic Programming Model
NASA Astrophysics Data System (ADS)
Firmansyah, Mawengkang, Herman
2011-06-01
Fish and its processed products are the most affordable source of animal protein in the diet of most people in Indonesia. The goal in production planning is to meet customer demand over a fixed time horizon divided into planning periods by optimizing the trade-off between economic objectives such as production cost and customer satisfaction level. The major decisions are production and inventory levels for each product and the number of workforce in each planning period. In this paper we consider the management of small scale traditional business at North Sumatera Province which performs processing fish into several local seafood products. The inherent uncertainty of data (e.g. demand, fish availability), together with the sequential evolution of data over time leads the production planning problem to a nonlinear mixed-integer stochastic programming model. We use scenario generation based approach and feasible neighborhood search for solving the model. The results which show the amount of each fish processed product and the number of workforce needed in each horizon planning are presented.
An integer programming approach to DNA sequence assembly.
Chang, Youngjung; Sahinidis, Nikolaos V
2011-08-10
De novo sequence assembly is a ubiquitous combinatorial problem in all DNA sequencing technologies. In the presence of errors in the experimental data, the assembly problem is computationally challenging, and its solution may not lead to a unique reconstruct. The enumeration of all alternative solutions is important in drawing a reliable conclusion on the target sequence, and is often overlooked in the heuristic approaches that are currently available. In this paper, we develop an integer programming formulation and global optimization solution strategy to solve the sequence assembly problem with errors in the data. We also propose an efficient technique to identify all alternative reconstructs. When applied to examples of sequencing-by-hybridization, our approach dramatically increases the length of DNA sequences that can be handled with global optimality certificate to over 10,000, which is more than 10 times longer than previously reported. For some problem instances, alternative solutions exhibited a wide range of different ability in reproducing the target DNA sequence. Therefore, it is important to utilize the methodology proposed in this paper in order to obtain all alternative solutions to reliably infer the true reconstruct. These alternative solutions can be used to refine the obtained results and guide the design of further experiments to correctly reconstruct the target DNA sequence. PMID:21864794
Constrained spacecraft reorientation using mixed integer convex programming
NASA Astrophysics Data System (ADS)
Tam, Margaret; Glenn Lightsey, E.
2016-10-01
A constrained attitude guidance (CAG) system is developed using convex optimization to autonomously achieve spacecraft pointing objectives while meeting the constraints imposed by on-board hardware. These constraints include bounds on the control input and slew rate, as well as pointing constraints imposed by the sensors. The pointing constraints consist of inclusion and exclusion cones that dictate permissible orientations of the spacecraft in order to keep objects in or out of the field of view of the sensors. The optimization scheme drives a body vector towards a target inertial vector along a trajectory that consists solely of permissible orientations in order to achieve the desired attitude for a given mission mode. The non-convex rotational kinematics are handled by discretization, which also ensures that the quaternion stays unity norm. In order to guarantee an admissible path, the pointing constraints are relaxed. Depending on how strict the pointing constraints are, the degree of relaxation is tuneable. The use of binary variables permits the inclusion of logical expressions in the pointing constraints in the case that a set of sensors has redundancies. The resulting mixed integer convex programming (MICP) formulation generates a steering law that can be easily integrated into an attitude determination and control (ADC) system. A sample simulation of the system is performed for the Bevo-2 satellite, including disturbance torques and actuator dynamics which are not modeled by the controller. Simulation results demonstrate the robustness of the system to disturbances while meeting the mission requirements with desirable performance characteristics.
Preconditioning 2D Integer Data for Fast Convex Hull Computations
2016-01-01
In order to accelerate computing the convex hull on a set of n points, a heuristic procedure is often applied to reduce the number of points to a set of s points, s ≤ n, which also contains the same hull. We present an algorithm to precondition 2D data with integer coordinates bounded by a box of size p × q before building a 2D convex hull, with three distinct advantages. First, we prove that under the condition min(p, q) ≤ n the algorithm executes in time within O(n); second, no explicit sorting of data is required; and third, the reduced set of s points forms a simple polygonal chain and thus can be directly pipelined into an O(n) time convex hull algorithm. This paper empirically evaluates and quantifies the speed up gained by preconditioning a set of points by a method based on the proposed algorithm before using common convex hull algorithms to build the final hull. A speedup factor of at least four is consistently found from experiments on various datasets when the condition min(p, q) ≤ n holds; the smaller the ratio min(p, q)/n is in the dataset, the greater the speedup factor achieved. PMID:26938221
ERIC Educational Resources Information Center
Bishop, Jessica Pierson; Lamb, Lisa L.; Philipp, Randolph A.; Whitacre, Ian; Schappelle, Bonnie P.; Lewis, Melinda L.
2014-01-01
We identify and document 3 cognitive obstacles, 3 cognitive affordances, and 1 type of integer understanding that can function as either an obstacle or affordance for learners while they extend their numeric domains from whole numbers to include negative integers. In particular, we highlight 2 key subsets of integer reasoning: understanding or…
Generating Nice Linear Systems for Matrix Gaussian Elimination
ERIC Educational Resources Information Center
Homewood, L. James
2004-01-01
In this article an augmented matrix that represents a system of linear equations is called nice if a sequence of elementary row operations that reduces the matrix to row-echelon form, through matrix Gaussian elimination, does so by restricting all entries to integers in every step. Many instructors wish to use the example of matrix Gaussian…
Lectures on algebraic system theory: Linear systems over rings
NASA Technical Reports Server (NTRS)
Kamen, E. W.
1978-01-01
The presentation centers on four classes of systems that can be treated as linear systems over a ring. These are: (1) discrete-time systems over a ring of scalars such as the integers; (2) continuous-time systems containing time delays; (3) large-scale discrete-time systems; and (4) time-varying discrete-time systems.
Finite-Dimensional Half-Integer Weight Modules over Queer Lie Superalgebras
NASA Astrophysics Data System (ADS)
Cheng, Shun-Jen; Kwon, Jae-Hoon
2016-01-01
We give a new interpretation of representation theory of the finite-dimensional half-integer weight modules over the queer Lie superalgebra {{q}(n)} . It is given in terms of the Brundan's work on finite-dimensional integer weight {{q}(n)} -modules by means of Lusztig's canonical basis. Using this viewpoint we compute the characters of the finite-dimensional half-integer weight irreducible modules. For a large class of irreducible modules whose highest weights are of special types (i.e., totally connected or totally disconnected) we derive closed-form character formulas that are reminiscent of the Kac-Wakimoto character formula for basic Lie superalgebras.
Elasticity of fractal materials using the continuum model with non-integer dimensional space
NASA Astrophysics Data System (ADS)
Tarasov, Vasily E.
2015-01-01
Using a generalization of vector calculus for space with non-integer dimension, we consider elastic properties of fractal materials. Fractal materials are described by continuum models with non-integer dimensional space. A generalization of elasticity equations for non-integer dimensional space, and its solutions for the equilibrium case of fractal materials are suggested. Elasticity problems for fractal hollow ball and cylindrical fractal elastic pipe with inside and outside pressures, for rotating cylindrical fractal pipe, for gradient elasticity and thermoelasticity of fractal materials are solved.
Algebraic rings of integers and some 2D lattice problems in physics
NASA Astrophysics Data System (ADS)
Nanxian, Chen; Zhaodou, Chen; Shaojun, Liu; Yanan, Shen; Xijin, Ge
1996-09-01
This paper develops the Möbius inversion formula for the Gaussian integers and Eisenstein's integers, and gives two applications. The first application is to the two-dimensional arithmetic Fourier transform (AFT), which is suitable for parallel processing. The second application is to two-dimensional inverse lattice problems, and is illustrated with the recovery of interatomic potentials from the cohesive energy for monolayer graphite. The paper demonstrates the potential application in the physical science of integral domains other than the standard integers.
Gorissen, Bram L; den Hertog, Dick; Hoffmann, Aswin L
2013-02-21
Current inverse treatment planning methods that optimize both catheter positions and dwell times in prostate HDR brachytherapy use surrogate linear or quadratic objective functions that have no direct interpretation in terms of dose-volume histogram (DVH) criteria, do not result in an optimum or have long solution times. We decrease the solution time of the existing linear and quadratic dose-based programming models (LP and QP, respectively) to allow optimizing over potential catheter positions using mixed integer programming. An additional average speed-up of 75% can be obtained by stopping the solver at an early stage, without deterioration of the plan quality. For a fixed catheter configuration, the dwell time optimization model LP solves to optimality in less than 15 s, which confirms earlier results. We propose an iterative procedure for QP that allows us to prescribe the target dose as an interval, while retaining independence between the solution time and the number of dose calculation points. This iterative procedure is comparable in speed to the LP model and produces better plans than the non-iterative QP. We formulate a new dose-volume-based model that maximizes V(100%) while satisfying pre-set DVH criteria. This model optimizes both catheter positions and dwell times within a few minutes depending on prostate volume and number of catheters, optimizes dwell times within 35 s and gives better DVH statistics than dose-based models. The solutions suggest that the correlation between the objective value and the clinical plan quality is weak in the existing dose-based models. PMID:23363622
Forced oscillation, integer and fractional-order modeling in asthma.
Faria, Alvaro C D; Veiga, Juliana; Lopes, Agnaldo J; Melo, Pedro L
2016-05-01
The purpose of this study was to evaluate the use of fractional-order (FrOr) modeling in asthma. To this end, three FrOr models were compared with traditional parameters and an integer-order model (InOr). We investigated which model would best fit the data, the correlation with traditional lung function tests and the contribution to the diagnostic of airway obstruction. The data consisted of forced oscillation (FO) measurements obtained from healthy (n=22) and asthmatic volunteers with mild (n=22), moderate (n=19) and severe (n=19) obstructions. The first part of this study showed that a FrOr was the model that best fit the data (relative distance: FrOr=4.3±2.4; InOr=5.1±2.6%). The correlation analysis resulted in reasonable (R=0.36) to very good (R=0.77) associations between FrOr parameters and spirometry. The closest associations were observed between parameters related to peripheral airway obstruction, showing a clear relationship between the FrOr models and lung mechanics. Receiver-operator analysis showed that FrOr parameters presented a high potential to contribute to the detection of the mild obstruction in a clinical setting. The accuracy [area under the Receiver Operating Characteristic curve (AUC)] observed in these parameters (AUC=0.954) was higher than that observed in traditional FO parameters (AUC=0.732) and that obtained from the InOr model (AUC=0.861). Patients with moderate and severe obstruction were identified with high accuracy (AUC=0.972 and 0.977, respectively). In conclusion, the results obtained are in close agreement with asthma pathology, and provide evidence that FO measurement associated with FrOr models is a non-invasive, simple and radiation-free method for the detection of biomechanical abnormalities in asthma. PMID:27040828
Emergence of integer quantum Hall effect from chaos
NASA Astrophysics Data System (ADS)
Tian, Chushun; Chen, Yu; Wang, Jiao
2016-02-01
We present an analytic microscopic theory showing that in a large class of spin-1/2 quasiperiodic quantum kicked rotors, a dynamical analog of the integer quantum Hall effect (IQHE) emerges from an intrinsic chaotic structure. Specifically, the inverse of the Planck's quantum (he) and the rotor's energy growth rate mimic the "filling fraction" and the "longitudinal conductivity" in conventional IQHE, respectively, and a hidden quantum number is found to mimic the "quantized Hall conductivity." We show that for an infinite discrete set of critical values of he, the long-time energy growth rate is universal and of order of unity ("metallic" phase), but otherwise vanishes ("insulating" phase). Moreover, the rotor insulating phases are topological, each of which is characterized by a hidden quantum number. This number exhibits universal behavior for small he, i.e., it jumps by unity whenever he decreases, passing through each critical value. This intriguing phenomenon is not triggered by the likes of Landau band filling, well known to be the mechanism for conventional IQHE, and far beyond the canonical Thouless-Kohmoto-Nightingale-Nijs paradigm for quantum Hall transitions. Instead, this dynamical phenomenon is of strong chaos origin; it does not occur when the dynamics is (partially) regular. More precisely, we find that a topological object, similar to the topological theta angle in quantum chromodynamics, emerges from strongly chaotic motion at microscopic scales, and its renormalization gives the hidden quantum number. Our analytic results are confirmed by numerical simulations. Our findings indicate that rich topological quantum phenomena can emerge from chaos and might point to a new direction of study in the interdisciplinary area straddling chaotic dynamics and condensed matter physics. This work is a substantial extension of a short paper published earlier by two of us [Y. Chen and C. Tian, Phys. Rev. Lett. 113, 216802 (2014), 10.1103/PhysRevLett.113.216802].
NASA Astrophysics Data System (ADS)
Tancredi, Lorenzo
2015-12-01
Integration by parts identities (IBPs) can be used to express large numbers of apparently different d-dimensional Feynman Integrals in terms of a small subset of so-called master integrals (MIs). Using the IBPs one can moreover show that the MIs fulfil linear systems of coupled differential equations in the external invariants. With the increase in number of loops and external legs, one is left in general with an increasing number of MIs and consequently also with an increasing number of coupled differential equations, which can turn out to be very difficult to solve. In this paper we show how studying the IBPs in fixed integer numbers of dimension d = n with n ∈ N one can extract the information useful to determine a new basis of MIs, whose differential equations decouple as d → n and can therefore be more easily solved as Laurent expansion in (d - n).
Scammell, H D; Sushkov, O P
2015-02-01
We consider the Bose condensation of bosonic particles with spin 1/2. The condensation is driven by an external magnetic field. Our work is motivated by ideas of quantum critical deconfinement and bosonic spinons in spin liquid states. We show that both the nature of the novel Bose condensate and the excitation spectrum are fundamentally different from that in the usual integer spin case. We predict two massive ("Higgs") excitations and two massless Goldstone excitations. One of the Goldstone excitations has a linear excitation spectrum and another has a quadratic spectrum. This implies that the Bose condensate does not support superfluidity, the Landau criterion is essentially violated. We formulate a "smoking gun" criterion for searches of the novel Bose condensation. PMID:25699457
On the smallest value of the maximal modulus of an algebraic integer
NASA Astrophysics Data System (ADS)
Rhin, Georges; Wu, Qiang
2007-06-01
The house of an algebraic integer of degree d is the largest modulus of its conjugates. For dleq 28 , we compute the smallest house >1 of degree d , say m (d) . As a consequence we improve Matveev's theorem on the lower bound of m (d). We show that, in this range, the conjecture of Schinzel-Zassenhaus is satisfied. The minimal polynomial of any algebraic integer boldsymbol alpha whose house is equal to m (d) is a factor of a bi-, tri- or quadrinomial. The computations use a family of explicit auxiliary functions. These functions depend on generalizations of the integer transfinite diameter of some compact sets in mathbb{C}. They give better bounds than the classical ones for the coefficients of the minimal polynomial of an algebraic integer boldsymbol alpha whose house is small.
Time domain simulation of Li-ion batteries using non-integer order equivalent electrical circuit
NASA Astrophysics Data System (ADS)
Riu, D.; Montaru, M.; Bultel, Y.
2013-06-01
For electric vehicle (EV) or hybrid EV (HEV) development and integration of renewables in electrical networks, battery monitoring systems have to be more and more precise to take into account the state-of-charge and the dynamic behavior of the battery. Some non-integer order models of electrochemical batteries have been proposed in literacy with a good accuracy and a low number of parameters in the frequential domain. Nevertheless, time simulation of such models required to approximate this non-integer order system by an equivalent high integer order model. An adapted algorithm is then proposed in this article to simulate the non-integer order model without any approximation, thanks to the construction of a 3-order generalized state-space system. This algorithm is applied and validated on a 2.3 A.h Li-ion battery.
Vector calculus in non-integer dimensional space and its applications to fractal media
NASA Astrophysics Data System (ADS)
Tarasov, Vasily E.
2015-02-01
We suggest a generalization of vector calculus for the case of non-integer dimensional space. The first and second orders operations such as gradient, divergence, the scalar and vector Laplace operators for non-integer dimensional space are defined. For simplification we consider scalar and vector fields that are independent of angles. We formulate a generalization of vector calculus for rotationally covariant scalar and vector functions. This generalization allows us to describe fractal media and materials in the framework of continuum models with non-integer dimensional space. As examples of application of the suggested calculus, we consider elasticity of fractal materials (fractal hollow ball and fractal cylindrical pipe with pressure inside and outside), steady distribution of heat in fractal media, electric field of fractal charged cylinder. We solve the correspondent equations for non-integer dimensional space models.
Edge states and integer quantum Hall effect in topological insulator thin films.
Zhang, Song-Bo; Lu, Hai-Zhou; Shen, Shun-Qing
2015-01-01
The integer quantum Hall effect is a topological state of quantum matter in two dimensions, and has recently been observed in three-dimensional topological insulator thin films. Here we study the Landau levels and edge states of surface Dirac fermions in topological insulators under strong magnetic field. We examine the formation of the quantum plateaux of the Hall conductance and find two different patterns, in one pattern the filling number covers all integers while only odd integers in the other. We focus on the quantum plateau closest to zero energy and demonstrate the breakdown of the quantum spin Hall effect resulting from structure inversion asymmetry. The phase diagrams of the quantum Hall states are presented as functions of magnetic field, gate voltage and chemical potential. This work establishes an intuitive picture of the edge states to understand the integer quantum Hall effect for Dirac electrons in topological insulator thin films. PMID:26304795
Sylow p-groups of polynomial permutations on the integers mod pn☆
Frisch, Sophie; Krenn, Daniel
2013-01-01
We enumerate and describe the Sylow p-groups of the groups of polynomial permutations of the integers mod pn for n⩾1 and of the pro-finite group which is the projective limit of these groups. PMID:26869732
A set of exactly solvable Ising models with half-odd-integer spin
NASA Astrophysics Data System (ADS)
Rojas, Onofre; de Souza, S. M.
2009-03-01
We present a set of exactly solvable Ising models, with half-odd-integer spin- S on a square-type lattice including a quartic interaction term in the Hamiltonian. The particular properties of the mixed lattice, associated with mixed half-odd-integer spin- (S,1/2) and only nearest-neighbor interaction, allow us to map this system either onto a purely spin-1/2 lattice or onto a purely spin- S lattice. By imposing the condition that the mixed half-odd-integer spin- (S,1/2) lattice must have an exact solution, we found a set of exact solutions that satisfy the free fermion condition of the eight vertex model. The number of solutions for a general half-odd-integer spin- S is given by S+1/2. Therefore we conclude that this transformation is equivalent to a simple spin transformation which is independent of the coordination number.
NASA Astrophysics Data System (ADS)
Jiang, Guodong; Wei, Meng; Yuan, Songdong; Chang, Qing
2016-01-01
4-chlorophenol could be efficiently photoreductively dechlorinated over anatase TiO2 nanocrystals with co-exposed {0 0 1} and {1 0 1} facets, which were synthesized and further characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Although fluorine could adsorb on {0 0 1} facets to decrease their surface energy, enabling TiO2 to expose high energy {0 0 1} facets, the surface bonded fluorine might depress the photoreductive dechlorination efficiency of 4-chlorophenol, attributed to the electron trapping role of surface ≡Tisbnd F groups. Due to the formation of a surface heterojunction between {1 0 1} and {0 0 1} facets in a single TiO2 nanocrystal, electrons and holes were spontaneously self-separated and selectively migrate to {1 0 1} and {0 0 1} facets, respectively. Electron trapping experiments demonstrated that photogenerated electrons are the responsible for the reductive dechlorinaton of 4-chlorophenol to phenol. To avoid the oxidative degradation of 4-chlorophenol by holes and ensure sufficient electrons to reductively dechlorinate the substrate, moderate scavengers were required in the reaction system and dissolved oxygen, which might deplete electron on TiO2, also should be removed. With the optimal scavengers, the conversion efficiency of 4-chlorophenol (4-CP) achieved 97.5% and the selectivity for phenol was 92.5%, which were much higher than that of commercial TiO2 P25.
Particle in a Moebius wire and half-integer orbital angular momentum
Miliordos, Evangelos
2011-06-15
Restricting one particle on the rim of a Moebius strip (Moebius wire), its wave functions are explicitly calculated through the nonrelativistic quantum theory. Demanding the wave function to be single valued, it is proven that in the case of a narrow strip the orbital angular momentum of the particle takes both integer and half-integer values of ({h_bar}/2{pi}). In addition, the energy values of two chiral Moebius wires are proven to be equal.
NASA Astrophysics Data System (ADS)
Rao, Wen-Jia; Zhang, Guang-Ming; Yang, Kun
2016-03-01
Applying a symmetric bulk bipartition to the one-dimensional Affleck-Kennedy-Lieb-Tasaki valence-bond solid (VBS) states for the integer spin-S Haldane gapped phase, we can create an array of fractionalized spin-S /2 edge states with the super unit cell l in the reduced bulk system, and the topological properties encoded in the VBS wave functions can be revealed. The entanglement Hamiltonian (EH) with even l corresponds to the quantum antiferromagnetic Heisenberg spin-S /2 model. For the even integer spins, the EH still describes the Haldane gapped phase. For the odd integer spins, however, the EH just corresponds to the quantum antiferromagnetic Heisenberg half-odd integer-spin model with spinon excitations, characterizing the critical point separating the topological Haldane phase from the trivial gapped phase. Our results thus demonstrate that the topological bulk property not only determines its fractionalized edge states but also the quantum criticality associated with the topological phase, where the elementary excitations are precisely those fractionalized edge degrees of freedom confined in the bulk of the topological phase.
Rays of Small Integer Solutions of Homogeneous Ternary Quadratic Equations
NASA Astrophysics Data System (ADS)
Mishra, Sudhakara
1991-02-01
We have dealt with the general ternary quadratic equation: ax2 + by^ {2} + cz2 + dxy + exz + fyz = 0 with integer coefficients. After giving a matrix-reduction formula for a quadratic equation in any number of variables, of which the reduction of the above ternary equation is an easy consequence, we have devoted our attention to the reduced equation: ax^ {2} + by2 + cz^{2 } = 0. We have devised an algorithm for reducing Dirichlet's possibly larger solutions to this prescribed range of Holzer's. Then we have generalized Holzer's theorem to the case of the ternary equation: ax^{2 } + by2 + cz2 + dxy + exz + fyz = 0, giving in this context a new range called the CM-range, of which the Holzer's range is a particular case when d = e = f = 0. We have described an algorithm for getting a solution of the general ternary within this CM-range. After that we have devised an algorithm for getting all the solutions of the Legendre's equation ax 2 + by2 + cz^ {2} = 0 within the Holzer's range--and have shown that if we regard this Legendre's equation as a double cone, these solutions within the Holzer's range lie along some definite rays, here called the CM-rays, which are completely determined by the prime factors of the coefficients a, b and c. After giving an algorithm for detecting these CM-rays of the reduced equation: ax^2 + by^2 + cz^2 = 0, we have shown how one can produce some similar rays of solutions of the above general ternary quadratic equation: ax2 + by2 + cz2 + dxy + exz + fyz = 0. Note that apart from the method of exhausting all the possibilities, so far there has been no precisely stated algorithm to find the minimum solutions of the above ternary equations. Towards the end, observing in the context of our main result an inequality involving two functions, namely C and PCM from doubz_sp{*} {3} to doubz_+, and simultaneously presenting some tables of these positive CM-rays or PCM-rays lying in the positive octant, we have concluded this work with a number of
Determination of the coverage dependent work function for Li adsorbed on Ru( 0 0 1 )
NASA Astrophysics Data System (ADS)
Bromberger, C.; Jänsch, H. J.; Fick, D.
2002-05-01
The coverage dependent work function change ΔΦ was measured for Lithium adsorbed on Ru(0 0 1) at T=100 K. A highly flux stable source of atomic Lithium was employed to ensure linear dependence of coverage with time. An absolute coverage calibration with an uncertainty of about 3% was achieved through observation of the ( 3× 3)R30° overlayer structure by LEED. The temperature programmed desorption monolayer was thus found to be n/ nRu=0.76±0.02. Continuous work function measurements were performed using the diode method, while ultraviolet photoelectron spectroscopy has been used to check the work function change at selected points. Our new data are intended as a benchmark for theoretical calculations of work function changes in these systems. Considerable deviations between experiment and theory were the reason to remeasure ΔΦ versus coverage in a precise way. The discrepancy towards theory remained. This instigated a new effort in the calculation of work function changes with coverage. The agreement between the ab initio theory and experiment is now close to perfect.
Placement of cells: Theory and solution of a quadratic 0/1 optimization problem
NASA Astrophysics Data System (ADS)
Weismantel, Robert
1992-01-01
The placement problem by design of electronic chips is studied in the framework of very large scale integration. Methods for modeling placement are presented, such as min-cut heuristics, simulated annealing, and a continuous quadratic optimization method based on relaxation. The 'sea of cells' concept was chosen and a quadratic 0/1 optimization problem was described with a graph theory formulation. Variations of the problem and existence of polynomial, epsilon approximative algorithms were discussed. The problem was solved with heuristic decomposition method, with 16 locations for each cell and with 9 locations for each cell. A dynamic decomposition process was also described and a linear Lagrange relaxation solution was proposed. The clustering problem was introduced to reduce magnitude order of placement problem. The r-clustering polytope was presented from a polyhedral point of view. Several classes of facets were described by inequalities, which combine nodes and branches in the following cases: roof dual and disjuncted stars, roof dual and a tree, roof dual and a star, and roof dual and a branch.
Nqrs Data for K0.1NNa0.9O2 [K0.1Na0.9(NO2)] (Subst. No. 2333)
NASA Astrophysics Data System (ADS)
Chihara, H.; Nakamura, N.
This document is part of Subvolume B 'Substances Containing C10H16 … Zn' of Volume 48 'Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains an extract of Section '3.2 Data tables' of the Chapter '3 Nuclear quadrupole resonance data' providing the NQRS data for K0.1NNa0.9O2 [K0.1Na0.9(NO2)] (Subst. No. 2333)
Research on Cs activation mechanism for Ga0.5Al0.5As(0 0 1) and GaN(0 0 0 1) surface
NASA Astrophysics Data System (ADS)
Shen, Yang; Chen, Liang; Qian, Yunsheng; Dong, Yanyan; Zhang, Shuqin; Wang, Meishan
2015-01-01
Based on first-principle density functional theory (DFT), plane wave with ultrasoft pseudopotential method was used to calculate and compare the Cs activation mechanism for Ga0.5Al0.5As(0 0 1) surface and GaN(0 0 0 1) surface. In this work, eight possible Cs adsorption sites are chosen for the Ga0.5Al0.5As(0 0 1) surface while five high-symmetry sites are considered in the calculation model of GaN(0 0 0 1) surface. Results show that Cs adsorption lowers the surface work function and benefits to get the most stable adsorption sites. Then dipole moment with different Cs coverage on two surfaces is investigated. The dipole moment decreases with the increase of Cs coverage and GaN(0 0 0 1) surface changes more obviously than Ga0.5Al0.5As(0 0 1) surface. The repulsion between Cs atomic dipole-dipole is enhanced and it causes depolarization and work function rising again. Finally, an activation experiment is performed to verify the result of our calculations, GaN photocathodes gets the minimum work function earlier than Ga0.5Al0.5As photocathodes.
NASA Astrophysics Data System (ADS)
Jazaeri, S.; Amiri-Simkooei, A. R.; Sharifi, M. A.
2012-02-01
GNSS ambiguity resolution is the key issue in the high-precision relative geodetic positioning and navigation applications. It is a problem of integer programming plus integer quality evaluation. Different integer search estimation methods have been proposed for the integer solution of ambiguity resolution. Slow rate of convergence is the main obstacle to the existing methods where tens of ambiguities are involved. Herein, integer search estimation for the GNSS ambiguity resolution based on the lattice theory is proposed. It is mathematically shown that the closest lattice point problem is the same as the integer least-squares (ILS) estimation problem and that the lattice reduction speeds up searching process. We have implemented three integer search strategies: Agrell, Eriksson, Vardy, Zeger (AEVZ), modification of Schnorr-Euchner enumeration (M-SE) and modification of Viterbo-Boutros enumeration (M-VB). The methods have been numerically implemented in several simulated examples under different scenarios and over 100 independent runs. The decorrelation process (or unimodular transformations) has been first used to transform the original ILS problem to a new one in all simulations. We have then applied different search algorithms to the transformed ILS problem. The numerical simulations have shown that AEVZ, M-SE, and M-VB are about 320, 120 and 50 times faster than LAMBDA, respectively, for a search space of dimension 40. This number could change to about 350, 160 and 60 for dimension 45. The AEVZ is shown to be faster than MLAMBDA by a factor of 5. Similar conclusions could be made using the application of the proposed algorithms to the real GPS data.
NASA Astrophysics Data System (ADS)
Sidorin, Anatoly
2010-01-01
In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.
Sidorin, Anatoly
2010-01-05
In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.
On linear structure and phase rotation invariant properties of block 2(sup l)-PSK modulation codes
NASA Technical Reports Server (NTRS)
Lin, Shu
1990-01-01
Two important structural properties of block 2(l)-ary PSK (phase shift keying) modulation codes, linear structure and phase symmetry, are investigated. For an additive white Gaussian noise (AWGN) channel, the error performance of a modulation code depends on its squared Euclidean distance distribution. Linear structure of a code makes the error performance analysis much easier. Phase symmetry of a code is important in resolving carrier phase ambiguity and ensuring rapid carrier phase resynchronization after temporary loss of synchronization. It is desirable for a code to have as many phase symmetries as possible. A 2(l)-ary modulation code is represented here as a code with symbols from the integer group. S sub 2(l) PSK = (0,1,2,...,2(l)-1), under the modulo-2(l) addition. The linear structure of block 2(l)-ary PSK modulation codes over S sub 2(l)-ary PSK with respect to the modulo-2(l) vector addition is defined, and conditions under which a block 2(l)-ary PSK modulation code is linear are derived. Once the linear structure is developed, phase symmetry of a block 2(l)-ary PSK modulation code is studied. It is a necessary and sufficient condition for a block 2(l)-PSK modulation code, which is linear as a binary code, to be invariant under 180 deg/2(l-h) phase rotation, for 1 is less than or equal to h is less than or equal to l. A list of short 8-PSK and 16-PSK modulation codes is given, together with their linear structure and the smallest phase rotation for which a code is invariant.
Using Integer Clocks to Verify the Timing-Sync Sensor Network Protocol
NASA Technical Reports Server (NTRS)
Huang, Xiaowan; Singh, Anu; Smolka, Scott A.
2010-01-01
We use the UPPAAL model checker for Timed Automata to verify the Timing-Sync time-synchronization protocol for sensor networks (TPSN). The TPSN protocol seeks to provide network-wide synchronization of the distributed clocks in a sensor network. Clock-synchronization algorithms for sensor networks such as TPSN must be able to perform arithmetic on clock values to calculate clock drift and network propagation delays. They must be able to read the value of a local clock and assign it to another local clock. Such operations are not directly supported by the theory of Timed Automata. To overcome this formal-modeling obstacle, we augment the UPPAAL specification language with the integer clock derived type. Integer clocks, which are essentially integer variables that are periodically incremented by a global pulse generator, greatly facilitate the encoding of the operations required to synchronize clocks as in the TPSN protocol. With this integer-clock-based model of TPSN in hand, we use UPPAAL to verify that the protocol achieves network-wide time synchronization and is devoid of deadlock. We also use the UPPAAL Tracer tool to illustrate how integer clocks can be used to capture clock drift and resynchronization during protocol execution
Optimal control of polymer flooding based on mixed-integer iterative dynamic programming
NASA Astrophysics Data System (ADS)
Lei, Yang; Li, Shurong; Zhang, Xiaodong; Zhang, Qiang; Guo, Lanlei
2011-11-01
Polymer flooding is one of the most important technologies for enhanced oil recovery. In this article, a mixed-integer optimal control model of distributed parameter systems (DPS) for the injection strategies is established, which involves the performance index as maximum of the profit, the governing equations as the fluid flow equations of polymer flooding and some inequalities constraints, such as polymer concentration and injection amount limitation. The control variables are the volume size, the injection concentration of each slug and the terminal flooding time. For the constant injection rate, the slug size is determined by the integer time stage length, and thus the integer variables are introduced in the DPS. To cope with the optimal control problem (OCP) of this DPS, a mixed-integer iterative dynamic programming incorporating a special truncation procedure to handle integer restrictions on stage lengths is proposed. First, the OCP with variable time stage lengths is transformed into a fixed time stage problem by introducing a normalised time variable. Then, the optimisation procedure is carried out at each stage and preceded backwards in a systematic way. Finally, the numerical results of an example illustrate the effectiveness of the proposed method.
NASA Technical Reports Server (NTRS)
Shyu, H. C.; Reed, I. S.; Truong, T. K.; Hsu, I. S.; Chang, J. J.
1987-01-01
A quadratic-polynomial Fermat residue number system (QFNS) has been used to compute complex integer multiplications. The advantage of such a QFNS is that a complex integer multiplication requires only two integer multiplications. In this article, a new type Fermat number multiplier is developed which eliminates the initialization condition of the previous method. It is shown that the new complex multiplier can be implemented on a single VLSI chip. Such a chip is designed and fabricated in CMOS-Pw technology.
Strong mechanoluminescence of Zn2(Ge0.9Si0.1)O4:Mn with weak persistent luminescence
NASA Astrophysics Data System (ADS)
Zhao, Haifeng; Wang, Xusheng; Li, Jun; Li, Yanxia; Yao, Xi
2016-01-01
A novel elastic mechanoluminescence (EML) material Zn2(Ge0.9Si0.1)O4:Mn is reported to exhibit weak persistent luminescence (PL), a dynamic compressive load in the 300-2800 N range, and a nearly perfect linear response. The PL and EML spectra indicate that the EML and PL emissions originate from the 4T1 → 6A1 transition of Mn2+. The thermoluminescence properties reveal the existence of three types of traps. The shallowest trap responsible for a fast decay afterglow may contribute little to the EML. On the other hand, the other two, deeper, trap types, underlie EML.
A cyanocobalamin dosimeter for monitoring gamma-radiation doses of 0.1-2 kGy
NASA Astrophysics Data System (ADS)
Maged, A. F.; Hamza, M. S. A.; Saad, E. A.
1997-08-01
A simple dosimeter is described for measuring gamma-ray doses useful for insect sterilization, seed-sprouting inhibition and food shelf-life extensions. The red aqueous solution of cyanocobalamin (B 12) before irradiation, assumes a stable yellow color when irradiated. It shows a linear response of absorbance decrease with the dose over the range of 0.1-2.0 kGy when the concentration of cyanocobalamin is equal 0.09 mM. The radiation-induced color is analyzed spectrophotometrically at the maximum absorption band (361 nm). The absorption spectra, dose response and post-irradiation stability of the dosimeter are discussed.
Unprecedented CO2-promoted hydrogen permeation in Ni-BaZr0.1Ce0.7Y0.1Yb0.1O(3-δ) membrane.
Fang, Shumin; Brinkman, Kyle; Chen, Fanglin
2014-01-01
Conventional Ni-BaCeO3-based membranes possess high hydrogen permeation flux but suffer serious flux degradation in CO2-containing atmosphere because of the formation of BaCO3 insulating layer. In this work, we report a novel Ni-BaZr0.1Ce0.7Y0.1Yb0.1O(3-δ) (Ni-BZCYYb) membrane, capable of both high hydrogen permeation flux and stable performance in CO2-containing atmosphere at 900 °C. Most importantly, the flux is found to be promoted rather than being diminished by CO2 normally observed for other high temperature proton conductors. The flux enhancement in Ni-BZCYYb membrane is attributed to the increase of moisture content in feed gas. When CO2 is introduced, the reverse water-gas shift reaction takes place generating H2O and CO. This work demonstrates that CO2 can be beneficial rather than detrimental for hydrogen permeation membranes that possess high chemical stability. PMID:24328190
Guo, P; Huang, G H
2009-01-01
In this study, an inexact fuzzy chance-constrained two-stage mixed-integer linear programming (IFCTIP) approach is proposed for supporting long-term planning of waste-management systems under multiple uncertainties in the City of Regina, Canada. The method improves upon the existing inexact two-stage programming and mixed-integer linear programming techniques by incorporating uncertainties expressed as multiple uncertainties of intervals and dual probability distributions within a general optimization framework. The developed method can provide an effective linkage between the predefined environmental policies and the associated economic implications. Four special characteristics of the proposed method make it unique compared with other optimization techniques that deal with uncertainties. Firstly, it provides a linkage to predefined policies that have to be respected when a modeling effort is undertaken; secondly, it is useful for tackling uncertainties presented as intervals, probabilities, fuzzy sets and their incorporation; thirdly, it facilitates dynamic analysis for decisions of facility-expansion planning and waste-flow allocation within a multi-facility, multi-period, multi-level, and multi-option context; fourthly, the penalties are exercised with recourse against any infeasibility, which permits in-depth analyses of various policy scenarios that are associated with different levels of economic consequences when the promised solid waste-generation rates are violated. In a companion paper, the developed method is applied to a real case for the long-term planning of waste management in the City of Regina, Canada. PMID:19800164
1 × 10-16 frequency transfer by GPS PPP with integer ambiguity resolution
NASA Astrophysics Data System (ADS)
Petit, Gérard; Kanj, Amale; Loyer, Sylvain; Delporte, Jérôme; Mercier, Flavien; Perosanz, Félix
2015-04-01
For many years, the time community has been using the precise point positioning (PPP) technique which uses GPS phase and code observations to compute time and frequency links. However, progress in atomic clocks implies that the performance of PPP frequency comparisons is a limiting factor in comparing the best frequency standards. We show that a PPP technique where the integer nature of phase ambiguities is preserved consitutes significant improvement of the classical use of floating ambiguities. We demonstrate that this integer-PPP technique allows frequency comparisons with 1 × 10-16 accuracy in a few days and can be readily operated with existing products.
MLAMBDA: a modified LAMBDA method for integer least-squares estimation
NASA Astrophysics Data System (ADS)
Chang, X.-W.; Yang, X.; Zhou, T.
2005-12-01
The least-squares ambiguity Decorrelation (LAMBDA) method has been widely used in GNSS for fixing integer ambiguities. It can also solve any integer least squares (ILS) problem arising from other applications. For real time applications with high dimensions, the computational speed is crucial. A modified LAMBDA (MLAMBDA) method is presented. Several strategies are proposed to reduce the computational complexity of the LAMBDA method. Numerical simulations show that MLAMBDA is (much) faster than LAMBDA. The relations between the LAMBDA method and some relevant methods in the information theory literature are pointed out when we introduce its main procedures.
The growth and structure of titanium dioxide films on a Re(1 0 -1 0) surface: Rutile(0 1 1)-(2 × 1)
NASA Astrophysics Data System (ADS)
Rosenthal, D.; Zizak, I.; Darowski, N.; Magkoev, T. T.; Christmann, K.
2006-07-01
Titanium dioxide films were grown on Re(1 0 -1 0) by Ti vapor deposition in oxygen at T = 830 K and studied by means of low-energy electron diffraction (LEED), X-ray photoelectron spectroscopy (XPS), low-energy ion scattering (LEIS) and X-ray diffraction (XRD). The Ti oxide stoichiometry was determined by XPS as Ti:O = 1:2, with the Ti oxidation state (4+). The TiO 2 growth was monitored by means of LEED as a function of film thickness. Extending the coverage from the submonolayer into the multilayer regime gives rise to a p(2 × 2) pattern, a (poorly ordered) (1 × 1), and, finally, a stable (2 × 2) structure, the latter being associated with a homogeneous TiO 2 phase. For normal electron incidence, the (2 × 2) LEED pattern exhibits systematically extinguished beams at ( n ± 1/2, 0) positions, indicating a glide mirror plane. The pg(2 × 2) structure could be explained by both a rutile(0 1 1)-(2 × 1) reconstructed surface and a bulk truncated brookite(0 0 1) surface. Faceting phenomena, i.e. running LEED spots, observed with thin TiO 2 films point to the formation of a rutile(0 1 1)-(2 × 1) surface with two domains and {0 1 1}-(2 × 1) facets and rule out the brookite alternative. Confirmation of this assignment was obtained by an XRD analysis performed at the Berlin synchrotron facility BESSY.
Proteomic Detection of Non-Annotated Protein-Coding Genes in Pseudomonas fluorescens Pf0-1
Kim, Wook; Silby, Mark W.; Purvine, Samuel O.; Nicoll, Julie S.; Hixson, Kim K.; Monroe, Matthew E.; Nicora, Carrie D.; Lipton, Mary S.; Levy, Stuart B.
2009-12-24
Genome sequences are annotated by computational prediction of coding sequences, followed by similarity searches such as BLAST, which provide a layer of (possible) functional information. While the existence of processes such as alternative splicing complicates matters for eukaryote genomes, the view of bacterial genomes as a linear series of closely spaced genes leads to the assumption that computational annotations which predict such arrangements completely describe the coding capacity of bacterial genomes. We undertook a proteomic study to identify proteins expressed by Pseudomonas fluorescens Pf0-1 from genes which were not predicted during the genome annotation. Mapping peptides to the Pf0-1 genome sequence identified sixteen non-annotated protein-coding regions, of which nine were antisense to predicted genes, six were intergenic, and one read in the same direction as an annotated gene but in a different frame. The expression of all but one of the newly discovered genes was verified by RT-PCR. Few clues as to the function of the new genes were gleaned from informatic analyses, but potential orthologues in other Pseudomonas genomes were identified for eight of the new genes. The 16 newly identified genes improve the quality of the Pf0-1 genome annotation, and the detection of antisense protein-coding genes indicates the under-appreciated complexity of bacterial genome organization.
ERIC Educational Resources Information Center
Walkiewicz, T. A.; Newby, N. D., Jr.
1972-01-01
A discussion of linear collisions between two or three objects is related to a junior-level course in analytical mechanics. The theoretical discussion uses a geometrical approach that treats elastic and inelastic collisions from a unified point of view. Experiments with a linear air track are described. (Author/TS)
26 CFR 1.0-1 - Internal Revenue Code of 1954 and regulations.
Code of Federal Regulations, 2010 CFR
2010-04-01
... identified in each instance. The regulations in 26 CFR (1939) part 39 (Regulations 118) are continued in... 26 Internal Revenue 1 2010-04-01 2010-04-01 true Internal Revenue Code of 1954 and regulations. 1.0-1 Section 1.0-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY INCOME...
Motz, Benjamin A.; Erickson, Molly A.; Hetrick, William P.
2013-01-01
Humans perceive a wide range of temporal patterns, including those rhythms that occur in music, speech, and movement; however, there are constraints on the rhythmic patterns that we can represent. Past research has shown that sequences in which sounds occur regularly at non-metrical locations in a repeating beat period (non-integer ratio subdivisions of the beat, e.g. sounds at 430 ms in a 1000 ms beat) are represented less accurately than sequences with metrical relationships, where events occur at even subdivisions of the beat (integer ratios, e.g. sounds at 500 ms in a 1000 ms beat). Why do non-integer ratio rhythms present cognitive challenges? An emerging theory is that non-integer ratio sequences are represented incorrectly, “regularized” in the direction of the nearest metrical pattern, and the present study sought evidence of such perceptual regularization toward integer ratio relationships. Participants listened to metrical and non-metrical rhythmic auditory sequences during electroencephalogram recording, and sounds were pseudorandomly omitted from the stimulus sequence. Cortical responses to these omissions (omission elicited potentials; OEPs) were used to estimate the timing of expectations for omitted sounds in integer ratio and non-integer ratio locations. OEP amplitude and onset latency measures indicated that expectations for non-integer ratio sequences are distorted toward the nearest metrical location in the rhythmic period. These top-down effects demonstrate metrical regularization in a purely perceptual context, and provide support for dynamical accounts of rhythm perception. PMID:23434916
Optimization Research of Generation Investment Based on Linear Programming Model
NASA Astrophysics Data System (ADS)
Wu, Juan; Ge, Xueqian
Linear programming is an important branch of operational research and it is a mathematical method to assist the people to carry out scientific management. GAMS is an advanced simulation and optimization modeling language and it will combine a large number of complex mathematical programming, such as linear programming LP, nonlinear programming NLP, MIP and other mixed-integer programming with the system simulation. In this paper, based on the linear programming model, the optimized investment decision-making of generation is simulated and analyzed. At last, the optimal installed capacity of power plants and the final total cost are got, which provides the rational decision-making basis for optimized investments.
Analogy between optical interferometry and integer factorization inspires novel mathematical results
NASA Astrophysics Data System (ADS)
Seiden, Gabriel
2013-03-01
Prime factorization of integers is an outstanding problem in arithmetic with important consequences in a variety of fields, most notably cryptography. We explore the intriguing relationship between prime factorization and optical interferometry with the aim of obtaining novel analytic expressions for number-theoretic functions directly related to prime factorization.
Secondary School Mathematics, Chapter 5, Number Theory, Chapter 6, The Integers. Student's Text.
ERIC Educational Resources Information Center
Stanford Univ., CA. School Mathematics Study Group.
The third student text in this SMSG series of 14 covers the following topics from number theory: the division algorithm, divisibility, prime numbers, prime factorization, common divisors and common multiples, and properties of the whole number system. A second chapter discusses properties and operations with integers. For a special edition of this…
Physical Applications of a Simple Approximation of Bessel Functions of Integer Order
ERIC Educational Resources Information Center
Barsan, V.; Cojocaru, S.
2007-01-01
Applications of a simple approximation of Bessel functions of integer order, in terms of trigonometric functions, are discussed for several examples from electromagnetism and optics. The method may be applied in the intermediate regime, bridging the "small values regime" and the "asymptotic" one, and covering, in this way, an area of great…
ECG/PPG integer signal processing for a ubiquitous health monitoring system.
Shin, Woosik; Cha, Yong Dae; Yoon, Gilwon
2010-10-01
A compact ubiquitous-health monitor operated by single 8-bit microcontroller was made. An integer signal processing algorithm for this microcontroller was developed and digital filtering of ECG (electrocardiogram) and PPG (photoplethysmogram) was performed. Rounding-off errors due to integer operation was solved by increasing the number of effective integer digits during CPU operation; digital filter coefficients and data expressed in decimal points were multiplied by a certain number and converted into integers. After filter operation, the actual values were retrieved by dividing with the same number and selecting available highest bits. Our results showed comparable accuracies to those computed by a commercial software. Compared with a floating-point calculation by the same microcontroller, the computation speed became faster by 1.45 ∼ 2.0 times depending on various digital filtering cases. Our algorithm was successfully tested for remote health monitoring with multiple users. If our algorithm were not used, our health monitor should have used additional microcontrollers or DSP chip. The proposed algorithm reduced the size and cost of our health monitor substantially. PMID:20703619
McConnel, M B; Galligan, D T
2004-10-01
Optimization programs are currently used to aid in the selection of bulls to be used in herd breeding programs. While these programs offer a systematic approach to the problem of semen selection, they ignore the impact of volume discounts. Volume discounts are discounts that vary depending on the number of straws purchased. The dynamic nature of volume discounts means that, in order to be adequately accounted for, they must be considered in the optimization routine. Failing to do this creates a missed economic opportunity because the potential benefits of optimally selecting and combining breeding company discount opportunities are not captured. To address these issues, an integer program was created which used binary decision variables to incorporate the effects of quantity discounts into the optimization program. A consistent set of trait criteria was used to select a group of bulls from 3 sample breeding companies. Three different selection programs were used to select the bulls, 2 traditional methods and the integer method. After the discounts were applied using each method, the integer program resulted in the lowest cost portfolio of bulls. A sensitivity analysis showed that the integer program also resulted in a low cost portfolio when the genetic trait goals were changed to be more or less stringent. In the sample application, a net benefit of the new approach over the traditional approaches was a 12.3 to 20.0% savings in semen cost. PMID:15377634
ERIC Educational Resources Information Center
Richardson, William H., Jr.
2006-01-01
Computational precision is sometimes given short shrift in a first programming course. Treating this topic requires discussing integer and floating-point number representations and inaccuracies that may result from their use. An example of a moderately simple programming problem from elementary statistics was examined. It forced students to…
REVERSIBLE N-BIT TO N-BIT INTEGER HAAR-LIKE TRANSFORMS
Duchaineau, M; Joy, K I; Senecal, J
2004-02-14
We introduce TLHaar, an n-bit to n-bit reversible transform similar to the Haar IntegerWavelet Transform (IWT). TLHaar uses lookup tables that approximate the Haar IWT, but reorder the coefficients so they fit into n bits. TLHaar is suited for lossless compression in fixed-width channels, such as digital video channels and graphics hardware frame buffers.
NASA Astrophysics Data System (ADS)
Khan, Sahubar Ali Bin Mohamed Nadhar; Ahmarofi, Ahmad Afif Bin
2014-12-01
In manufacturing sector, production planning or scheduling is the most important managerial task in order to achieve profit maximization and cost minimization. With limited resources, the management has to satisfy customer demand and at the same time fulfill company's objective, which is to maximize profit or minimize cost. Hence, planning becomes a significant task for production site in order to determine optimal number of units for each product to be produced. In this study, integer programming technique is used to develop an appropriate product-mix planning to obtain the optimal number of audio speaker products that should be produced in order to maximize profit. Branch-and-bound method is applied to obtain exact integer solutions when non-integer solutions occurred. Three major resource constraints are considered in this problem: raw materials constraint, demand constraint and standard production time constraint. It is found that, the developed integer programming model gives significant increase in profit compared to the existing method used by the company. At the end of the study, sensitivity analysis was performed to evaluate the effects of changes in objective function coefficient and available resources on the developed model. This will enable the management to foresee the effects on the results when some changes happen to the profit of its products or available resources.
2. QUANTUM HALL EFFECT: Hidden SU(4) symmetry in bilayer quantum well at integer filling factors
NASA Astrophysics Data System (ADS)
Fal'ko, V. I.; Iordanskii, S. V.; Kashuba, A. B.
2001-10-01
Phase diagram of a bilayer quantum well at integer filling factors is established using the hidden symmetry method. Three phases: ferromagnetic, canted antiferromagnetic (CAP) and spin-singlet, have been found. We confirm early results of Das Sarma et al. Each phase violates the SU(4) hidden symmetry and is stabilized by the anisotropy interactions.
Solving mixed integer nonlinear programming problems using spiral dynamics optimization algorithm
NASA Astrophysics Data System (ADS)
Kania, Adhe; Sidarto, Kuntjoro Adji
2016-02-01
Many engineering and practical problem can be modeled by mixed integer nonlinear programming. This paper proposes to solve the problem with modified spiral dynamics inspired optimization method of Tamura and Yasuda. Four test cases have been examined, including problem in engineering and sport. This method succeeds in obtaining the optimal result in all test cases.
NASA Astrophysics Data System (ADS)
Li, J. C.; Gong, B.; Wang, H. G.
2016-08-01
Optimal development of shale gas fields involves designing a most productive fracturing network for hydraulic stimulation processes and operating wells appropriately throughout the production time. A hydraulic fracturing network design-determining well placement, number of fracturing stages, and fracture lengths-is defined by specifying a set of integer ordered blocks to drill wells and create fractures in a discrete shale gas reservoir model. The well control variables such as bottom hole pressures or production rates for well operations are real valued. Shale gas development problems, therefore, can be mathematically formulated with mixed-integer optimization models. A shale gas reservoir simulator is used to evaluate the production performance for a hydraulic fracturing and well control plan. To find the optimal fracturing design and well operation is challenging because the problem is a mixed integer optimization problem and entails computationally expensive reservoir simulation. A dynamic simplex interpolation-based alternate subspace (DSIAS) search method is applied for mixed integer optimization problems associated with shale gas development projects. The optimization performance is demonstrated with the example case of the development of the Barnett Shale field. The optimization results of DSIAS are compared with those of a pattern search algorithm.
Bawdane, Kishori Dhaku; Magar, Jyoti S; Tendolkar, Bharati A
2016-01-01
Background and Aims: Ropivacaine is considered as a safe alternative to bupivacaine for labor analgesia. The aim was to compare epidural ropivacaine and bupivacaine in intermittent doses for obstetric analgesia. Material and Methods: In this prospective, randomized, double-blind study, 60 women in labor were randomly allocated to receive either bupivacaine 0.1% with fentanyl 2 μg/mL (BF), or ropivacaine 0.1% with fentanyl 2 μg/mL (RF). Bromage scale, loss of cold sensation to ether swab in midclavicular line, visual analog scale were used to test for motor block, sensory block and pain, respectively. Hemodynamic parameters, onset of analgesia, dose requirement of drug to produce analgesia, duration of labor, and incidence of side effects were also recorded. Data were expressed as mean ± standard deviation and analyzed using students unpaired t-test, Chi-square and Mann-Whitney U-tests at P < 0.05. Results: Both drugs were similar with respect to hemodynamic stability, onset of analgesia, quality of analgesia, sensory blockade, neonatal outcome, requirement of drugs, duration of labor, and incidence of side effects. Three parturient in bupivacaine (B-F) group had a motor block of Bromage 1 and were delivered using forceps. None of the parturient in ropivacaine (R-F) group had any motor block, and all had spontaneous vaginal delivery, but this difference was not statistically significant (P = 0.081). Conclusions: Bupivacaine and ropivacaine provide equivalent analgesia in low (0.1%) concentration. PMID:27006539
HypExp 2, expanding hypergeometric functions about half-integer parameters
NASA Astrophysics Data System (ADS)
Huber, Tobias; Maître, Daniel
2012-04-01
HypExp is a Mathematica package for expanding hypergeometric functions about integer and half-integer parameters. New version program summaryProgram title: HypExp 2 Catalogue identifier: ADXF_v2_1 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXF_v2_1.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 107 274 No. of bytes in distributed program, including test data, etc.: 2 690 337 Distribution format: tar.gz Programming language: Mathematica 7 and 8 Computer: Computers running Mathematica Operating system: Linux, Windows, Mac RAM: Depending on the complexity of the problem Supplementary material: Library files which contain the expansion of certain hypergeometric functions around their parameters are available Classification: 4.7, 5 Catalogue identifier of previous version: ADXF_v2_0 Journal reference of previous version: Comput. Phys. Comm. 178 (2008) 755 Does the new version supersede the previous version?: Yes Nature of problem: Expansion of hypergeometric functions about parameters that are integer and/or half-integer valued. Solution method: New algorithm implemented in Mathematica. Reasons for new version: Compatibility with new versions of Mathematica. Summary of revisions: Support for versions 7 and 8 of Mathematica added. No changes in the features of the package. Restrictions: The classes of hypergeometric functions with half-integer parameters that can be expanded are listed in the long write-up. Additional comments: The package uses the package HPL included in the distribution. Running time: Depending on the expansion.
Airborne nanoparticles (PM0.1 ) induce autophagic cell death of human neuronal cells.
Jeon, Yu-Mi; Lee, Mi-Young
2016-10-01
Airborne nanoparticles PM0.1 (<100 nm in diameter) were collected and their chemical composition was determined. Al was by far the most abundant metal in the PM0.1 followed by Zn, Cr, Mn, Cu, Pb and Ni. Exposure to PM0.1 resulted in a cell viability decrease in human neuronal cells SH-SY5Y in a concentration-dependent manner. Upon treatment with N-acetylcysteine, however, cell viability was significantly recovered, suggesting the involvement of reactive oxygen species (ROS). Cellular DNA damage by PM0.1 was also detected by the Comet assay. PM0.1 -induced autophagic cell death was explained by an increase in the expression of microtubule-associated protein light chain 3A-ІІ (LC3A-ІІ) and autophagy-related protein Atg 3 and Atg 7. Analysis of 2-DE gels revealed that six proteins were upregulated, whereas eight proteins were downregulated by PM0.1 exposure. Neuroinflammation-related lithostathine and cyclophilin A complexed with dipeptide Gly-Pro, autophagy-related heat shock protein gp96 and neurodegeneration-related triosephosphate isomerase were significantly changed upon exposure to PM0.1 . These results, taken together, suggest that PM0.1 -induced oxidative stress via ROS generation plays a key role in autophagic cell death and differential protein expressions in SH-SY5Y cells. This might provide a plausible explanation for the underlying mechanisms of PM0.1 toxicity in neuronal cells and even the pathogenesis of diseases associated with its exposure. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27080386
Christofilos, N.C.; Polk, I.J.
1959-02-17
Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.
Why the Square Root Function Is Not Linear
ERIC Educational Resources Information Center
Dobbs, David E.
2002-01-01
Six proofs are given for the fact that for each integer n [greater than or equal to] 2, the nth root function, viewed as a function from the set of non-negative real numbers to itself, is not linear. If p is a prime number, then [Zeta]/p[Zeta] is characterized, up to isomorphism, as the only integral domain D of characteristic p such that D admits…
A global inverse model for estimating surface CO2 fluxes at a 0.1x0.1 degree resolution
NASA Astrophysics Data System (ADS)
Maksyutov, Shamil; Oda, Tomohiro; Janardanan, Rajesh; Yaremchuk, Alexey; Kaiser, Johannes W.; Ito, Akihiko; Belikov, Dmitry; Zhuravlev, Ruslan; Ganshin, Alexander; Valsala, Vinu
2015-04-01
We propose an iterative inversion method for estimating surface CO2 fluxes at a high spatial resolution (0.1 degree) using atmospheric CO2 data collected by the global in-situ network and GOSAT. The Lagrangian particle dispersion model FLEXPART was coupled to the Eulerian atmospheric tracer transport model (NIES-TM) and an adjoint of the coupled model was derived. The inverse model calculates weekly corrections to given prior fluxes at a spatial resolution of the surface flux footprints simulated by FLEXPART model (0.1 degrees). Prior fluxes are given at different spatial resolutions in low and high resolution mode implementations. The hourly terrestrial biosphere fluxes are simulated with VISIT model using CFSR reanalysis. Ocean fluxes are calculated using a 4D-Var assimilation system of the surface pCO2 observations. Fossil fuel (ODIAC) and biomass burning (GFASv1.1) emissions are given at original model resolutions (0.1 degree), while terrestrial biosphere and ocean fluxes are interpolated from a coarser resolution. Flux response functions (footprints) for observations are first simulated with FLEXPART. The precalculated flux response functions are then used in forward and adjoint runs of the coupled transport model. We apply Lanczos process to obtain the truncated singular value decomposition (SVD) of the scaled tracer transport operator A = R-1/2HB1/2, where H - tracer transport operator, R and B - error covariance matrices for observations and fluxes, respectively. The square root of covariance matrix B is constructed by directional splitting in latitude, longitude and time, with exponential decay scales of 500 km on land, 1000 km over oceans and 2 weeks in time. Once singular vectors of AAT are obtained, the prior and posterior flux uncertainties are evaluated. Numerical experiments of inverting surface CO2 fluxes showed that the high-resolution (Lagrangian) part of the flux responses dominates the solution so that spatial patterns from the coarser
Garbeva, Paolina; Silby, Mark W; Raaijmakers, Jos M; Levy, Stuart B; Boer, Wietse de
2011-06-01
The ability of soil bacteria to successfully compete with a range of other microbial species is crucial for their growth and survival in the nutrient-limited soil environment. In the present work, we studied the behavior and transcriptional responses of soil-inhabiting Pseudomonas fluorescens strain Pf0-1 on nutrient-poor agar to confrontation with strains of three phylogenetically different bacterial genera, that is, Bacillus, Brevundimonas and Pedobacter. Competition for nutrients was apparent as all three bacterial genera had a negative effect on the density of P. fluorescens Pf0-1; this effect was most strong during the interaction with Bacillus. Microarray-based analyses indicated strong differences in the transcriptional responses of Pf0-1 to the different competitors. There was higher similarity in the gene expression response of P. fluorescens Pf0-1 to the Gram-negative bacteria as compared with the Gram-positive strain. The Gram-negative strains did also trigger the production of an unknown broad-spectrum antibiotic in Pf0-1. More detailed analysis indicated that expression of specific Pf0-1 genes involved in signal transduction and secondary metabolite production was strongly affected by the competitors' identity, suggesting that Pf0-1 can distinguish among different competitors and fine-tune its competitive strategies. The results presented here demonstrate that P. fluorescens Pf0-1 shows a species-specific transcriptional and metabolic response to bacterial competitors and provide new leads in the identification of specific cues in bacteria-bacteria interactions and of novel competitive strategies, antimicrobial traits and genes. PMID:21228890
Geometry-free linear combinations for Galileo
NASA Astrophysics Data System (ADS)
Henkel, Patrick
2009-11-01
Global navigation satellites of the European Galileo system transmit code signals on four carriers in the L1, E5a, E5b and E6 band. New geometry-free linear combinations are presented that eliminate the geometry terms (user to satellite ranges and orbital errors), the clock errors of the user and satellites and the tropospheric delay. The remaining parameters of these carrier phase combinations include integer ambiguities, ionospheric delays, carrier phase multipath and phase noise. The weighting coefficients are designed such that the integer nature of ambiguities is maintained. The use of four frequency combinations is highly recommended due to a noise reduction of up to 14.4 dB and an ionospheric reduction of up to 25.6 dB compared to two frequency geometry-free combinations. Moreover, a modified Least-squares Ambiguity Decorrelation Adjustment (LAMBDA) algorithm is suggested, which differs in two points from the traditional approach: the baseline is replaced by the ionospheric delay and the correlation is caused by linear combinations instead of double differences. For correct ambiguity resolution, the ionospheric delay can be determined with millimeter accuracy. This is quite beneficial as the ionosphere represents the largest source of error for absolute positioning.
Bosonic integer quantum Hall states in topological bands with Chern number two
NASA Astrophysics Data System (ADS)
Zeng, Tian-Sheng; Zhu, W.; Sheng, D. N.
2016-05-01
We study the interacting bosons in topological Hofstadter bands with Chern number two. Using exact diagonalization, we demonstrate that the bosonic integer quantum Hall (BIQH) state emerges at integer boson filling factor ν =1 of the lowest Chern band with evidence including a robust spectrum gap and quantized topological Hall conductance two. Moreover, the robustness of BIQH state against different interactions and next-nearest-neighbor hopping is investigated. The strong nearest-neighbor interaction would favor a charge density wave. When the on-site interaction decreases, the BIQH state undergoes a continuous transition into a superfluid state. Without next-nearest-neighbor hopping, the ground state is possibly in a metallic Fermi-liquid-like phase.
On exact statistics and classification of ergodic systems of integer dimension
Guralnik, Zachary Guralnik, Gerald; Pehlevan, Cengiz
2014-06-01
We describe classes of ergodic dynamical systems for which some statistical properties are known exactly. These systems have integer dimension, are not globally dissipative, and are defined by a probability density and a two-form. This definition generalizes the construction of Hamiltonian systems by a Hamiltonian and a symplectic form. Some low dimensional examples are given, as well as a discretized field theory with a large number of degrees of freedom and a local nearest neighbor interaction. We also evaluate unequal-time correlations of these systems without direct numerical simulation, by Padé approximants of a short-time expansion. We briefly speculate on the possibility of constructing chaotic dynamical systems with non-integer dimension and exactly known statistics. In this case there is no probability density, suggesting an alternative construction in terms of a Hopf characteristic function and a two-form.
Topological Phase and Half-Integer Orbital Angular Momenta in Circular Quantum Dots
NASA Astrophysics Data System (ADS)
Kuleshov, V. M.; Mur, V. D.; Narozhny, N. B.; Lozovik, Yu. E.
2016-06-01
We show that there exists a non-trivial topological phase in circular two-dimensional quantum dots with an odd number of electrons. The possible non-zero value of this phase is explained by axial symmetry of two-dimensional quantum systems. The particular value of this phase (π ) is fixed by T-invariance and the Pauli exclusion principle and leads to half-integer values of the angular orbital momentum for ground states of such systems. This conclusion agrees with the experimental data for ground-state energies of few-electron circular quantum dots in perpendicular magnetic field (Schmidt et al. in Phys Rev B 51:5570, 1995). Hence, these data may be considered as the first experimental evidence for the existence of topological phase leading to half-integer quantization of the orbital angular momentum in circular quantum dots with an odd number of electrons.
Enhanced index tracking modeling in portfolio optimization with mixed-integer programming z approach
NASA Astrophysics Data System (ADS)
Siew, Lam Weng; Jaaman, Saiful Hafizah Hj.; Ismail, Hamizun bin
2014-09-01
Enhanced index tracking is a popular form of portfolio management in stock market investment. Enhanced index tracking aims to construct an optimal portfolio to generate excess return over the return achieved by the stock market index without purchasing all of the stocks that make up the index. The objective of this paper is to construct an optimal portfolio using mixed-integer programming model which adopts regression approach in order to generate higher portfolio mean return than stock market index return. In this study, the data consists of 24 component stocks in Malaysia market index which is FTSE Bursa Malaysia Kuala Lumpur Composite Index from January 2010 until December 2012. The results of this study show that the optimal portfolio of mixed-integer programming model is able to generate higher mean return than FTSE Bursa Malaysia Kuala Lumpur Composite Index return with only selecting 30% out of the total stock market index components.
Time-Series INSAR: An Integer Least-Squares Approach For Distributed Scatterers
NASA Astrophysics Data System (ADS)
Samiei-Esfahany, Sami; Hanssen, Ramon F.
2012-01-01
The objective of this research is to extend the geode- tic mathematical model which was developed for persistent scatterers to a model which can exploit distributed scatterers (DS). The main focus is on the integer least- squares framework, and the main challenge is to include the decorrelation effect in the mathematical model. In order to adapt the integer least-squares mathematical model for DS we altered the model from a single master to a multi-master configuration and introduced the decorrelation effect stochastically. This effect is described in our model by a full covariance matrix. We propose to de- rive this covariance matrix by numerical integration of the (joint) probability distribution function (PDF) of interferometric phases. This PDF is a function of coherence values and can be directly computed from radar data. We show that the use of this model can improve the performance of temporal phase unwrapping of distributed scatterers.
Joint demosaicking and integer-ratio downsampling algorithm for color filter array image
NASA Astrophysics Data System (ADS)
Lee, Sangyoon; Kang, Moon Gi
2015-03-01
This paper presents a joint demosacking and integer-ratio downsampling algorithm for color filter array (CFA) images. Color demosaicking is a necessary part of image signal processing to obtain full color image for digital image recording system using single sensor. Also, such as mobile devices, the obtained image from sensor has to be downsampled to be display because the resolution of display is smaller than that of image. The conventional method is "Demosaicking first and downsampling later". However, this procedure requires a significant hardware resources and computational cost. In this paper, we proposed a method in which demosaicking and downsampling are working simultaneously. We analyze the Bayer CFA image in frequency domain, and then joint demosaicking and downsampling with integer-ratio scheme based on signal decomposition of luma and chrominance components. Experimental results show that the proposed method produces the high quality performance with much lower com putational cost and less hardware resources.
NASA Astrophysics Data System (ADS)
Langel, Steven E.; Khanafseh, Samer M.; Pervan, Boris
2016-06-01
Differential carrier phase applications that utilize cycle resolution need the probability density function of the baseline estimate to quantify its region of concentration. For the integer bootstrap estimator, the density function has an analytical definition that enables probability calculations given perfect statistical knowledge of measurement and process noise. This paper derives a method to upper bound the tail probability of the integer bootstrapped GNSS baseline when the measurement and process noise correlation functions are unknown, but can be upper and lower bounded. The tail probability is shown to be a non-convex function of a vector of conditional variances, whose feasible region is a convex polytope. We show how to solve the non-convex optimization problem globally by discretizing the polytope into small hyper-rectangular elements, and demonstrate the method for a static baseline estimation problem.
An Integer-Coded Chaotic Particle Swarm Optimization for Traveling Salesman Problem
NASA Astrophysics Data System (ADS)
Yue, Chen; Yan-Duo, Zhang; Jing, Lu; Hui, Tian
Traveling Salesman Problem (TSP) is one of NP-hard combinatorial optimization problems, which will experience “combination explosion” when the problem goes beyond a certain size. Therefore, it has been a hot topic to search an effective solving method. The general mathematical model of TSP is discussed, and its permutation and combination based model is presented. Based on these, Integer-coded Chaotic Particle Swarm Optimization for solving TSP is proposed. Where, particle is encoded with integer; chaotic sequence is used to guide global search; and particle varies its positions via “flying”. With a typical 20-citys TSP as instance, the simulation experiment of comparing ICPSO with GA is carried out. Experimental results demonstrate that ICPSO is simple but effective, and better than GA at performance.
Li, Yongping; Huang, Guohe
2009-03-01
In this study, a dynamic analysis approach based on an inexact multistage integer programming (IMIP) model is developed for supporting municipal solid waste (MSW) management under uncertainty. Techniques of interval-parameter programming and multistage stochastic programming are incorporated within an integer-programming framework. The developed IMIP can deal with uncertainties expressed as probability distributions and interval numbers, and can reflect the dynamics in terms of decisions for waste-flow allocation and facility-capacity expansion over a multistage context. Moreover, the IMIP can be used for analyzing various policy scenarios that are associated with different levels of economic consequences. The developed method is applied to a case study of long-term waste-management planning. The results indicate that reasonable solutions have been generated for binary and continuous variables. They can help generate desired decisions of system-capacity expansion and waste-flow allocation with a minimized system cost and maximized system reliability. PMID:19320267
IMC-PID-fractional-order-filter controllers design for integer order systems.
Maâmar, Bettayeb; Rachid, Mansouri
2014-09-01
One of the reasons of the great success of standard PID controllers is the presence of simple tuning rules, of the automatic tuning feature and of tables that simplify significantly their design. For the fractional order case, some tuning rules have been proposed in the literature. However, they are not general because they are valid only for some model cases. In this paper, a new approach is investigated. The fractional property is not especially imposed by the controller structure but by the closed loop reference model. The resulting controller is fractional but it has a very interesting structure for its implementation. Indeed, the controller can be decomposed into two transfer functions: an integer transfer function which is generally an integer PID controller and a simple fractional filter. PMID:24957276
Collective nature of the reentrant integer quantum Hall states in the second Landau level.
Deng, N; Kumar, A; Manfra, M J; Pfeiffer, L N; West, K W; Csáthy, G A
2012-02-24
We report an unexpected sharp peak in the temperature dependence of the magnetoresistance of the reentrant integer quantum Hall states in the second Landau level. This peak defines the onset temperature of these states. We find that in different spin branches the onset temperatures of the reentrant states scale with the Coulomb energy. This scaling provides direct evidence that Coulomb interactions play an important role in the formation of these reentrant states evincing their collective nature. PMID:22463555
Collective Nature of the Reentrant Integer Quantum Hall States in the Second Landau Level
NASA Astrophysics Data System (ADS)
Deng, N.; Kumar, A.; Manfra, M. J.; Pfeiffer, L. N.; West, K. W.; Csáthy, G. A.
2012-02-01
We report an unexpected sharp peak in the temperature dependence of the magnetoresistance of the reentrant integer quantum Hall states in the second Landau level. This peak defines the onset temperature of these states. We find that in different spin branches the onset temperatures of the reentrant states scale with the Coulomb energy. This scaling provides direct evidence that Coulomb interactions play an important role in the formation of these reentrant states evincing their collective nature.
Pattern-based integer sample motion search strategies in the context of HEVC
NASA Astrophysics Data System (ADS)
Maier, Georg; Bross, Benjamin; Grois, Dan; Marpe, Detlev; Schwarz, Heiko; Veltkamp, Remco C.; Wiegand, Thomas
2015-09-01
The H.265/MPEG-H High Efficiency Video Coding (HEVC) standard provides a significant increase in coding efficiency compared to its predecessor, the H.264/MPEG-4 Advanced Video Coding (AVC) standard, which however comes at the cost of a high computational burden for a compliant encoder. Motion estimation (ME), which is a part of the inter-picture prediction process, typically consumes a high amount of computational resources, while significantly increasing the coding efficiency. In spite of the fact that both H.265/MPEG-H HEVC and H.264/MPEG-4 AVC standards allow processing motion information on a fractional sample level, the motion search algorithms based on the integer sample level remain to be an integral part of ME. In this paper, a flexible integer sample ME framework is proposed, thereby allowing to trade off significant reduction of ME computation time versus coding efficiency penalty in terms of bit rate overhead. As a result, through extensive experimentation, an integer sample ME algorithm that provides a good trade-off is derived, incorporating a combination and optimization of known predictive, pattern-based and early termination techniques. The proposed ME framework is implemented on a basis of the HEVC Test Model (HM) reference software, further being compared to the state-of-the-art fast search algorithm, which is a native part of HM. It is observed that for high resolution sequences, the integer sample ME process can be speed-up by factors varying from 3.2 to 7.6, resulting in the bit-rate overhead of 1.5% and 0.6% for Random Access (RA) and Low Delay P (LDP) configurations, respectively. In addition, the similar speed-up is observed for sequences with mainly Computer-Generated Imagery (CGI) content while trading off the bit rate overhead of up to 5.2%.
Hydrogen adsorption and diffusion around Si(0 0 1)/Si(1 1 0) corners in nanostructures.
Smith, Richard; Brázdová, Veronika; Bowler, David R
2014-07-23
While the diffusion of hydrogen on silicon surfaces has been relatively well characterized, both experimentally and theoretically, diffusion around corners between surfaces, as will be found on nanowires and nanostructures, has not been studied. Motivated by nanostructure fabrication by Patterned Atomic Layer Epitaxy, we present a density functional theory study of the diffusion of hydrogen around the edge formed by the orthogonal (0 0 1) and (1 1 0) surfaces in silicon. We find that the barrier from (0 0 1) to (1 1 0) is approximately 0.3 eV lower than from (1 1 0) to (0 0 1), and that it is comparable to diffusion between rows on a clean surface, with no significant effect on the hydrogen patterns at the growth temperatures used. PMID:24957137
Ultrathin films of Cu on Ru(1 0 1bar 0): Flat bilayers and mesa islands
NASA Astrophysics Data System (ADS)
Brona, J.; Wasielewski, R.; Ciszewski, A.
2012-10-01
The Cu/Ru(1 0 1bar 0) adsorption system was investigated by STM, LEED and AES. Cu was deposited at room temperature (RT) and 800 K, with the coverage ranging from a fraction up to 4 bilayers (BL). The first two Cu BL grow in the bilayer-by-bilayer mode. Their structure is pseudomorphic and does not depend on the temperature. For coverage higher than 2 BL, Cu deposited at elevated temperature forms three-dimensional islands in mesa shape with Cu(1 1 1) facets on their tops. The facets and the substrate are epitaxially oriented with Cu(1 1 1)||Ru(1 0 1bar 0) and Cu[0 1 1bar]||Ru[1 2bar 1 0]. Obtained results can be helpful in search for an optimal method of Cu deposition onto Ru in the damascene process in microelectronics, and could be also of interest to catalysis.
Growth of thin Fe(0 0 1) films for terahertz emission experiments
NASA Astrophysics Data System (ADS)
Meserole, C. A.; Fisher, G. L.; Hilton, D. J.; Averitt, R. D.; Funk, D. J.; Taylor, A. J.
2007-06-01
The electrical and magnetic properties of thin iron (Fe) films have sparked significant scientific interest. Our interest, however, is in the fundamental interactions between light and matter. We have discovered a novel application for thin Fe films. These films are sources of terahertz (THz) radiation when stimulated by an incident laser pulse. After intense femtosecond pulse excitation by a Ti:sapphire laser, these films emit picosecond, broadband THz frequencies. The terahertz emission provides a direct measure of the induced ultrafast change in magnetization within the Fe film. The THz generation experiments and the growth of appropriate thin Fe films for these experiments are discussed. Several criteria are used to select the substrate and film growth conditions, including that the substrate must permit the epitaxial growth of a continuous, monocrystalline or single crystal film, yet must also be transparent to the emitted THz radiation. An Fe(0 0 1) film grown on the (0 0 1) surface of a magnesium oxide (MgO) substrate makes an ideal sample. The Fe films are grown by physical vapor deposition (PVD) in an ultrahigh vacuum (UHV) system. Low energy electron diffraction (LEED) and Auger electron spectroscopy (AES) are used to characterize the Fe(0 0 1) films. Two substrate surface preparation methods are investigated. Fe(0 0 1) films grown on MgO(0 0 1) substrates that are used as-received and films grown on MgO(0 0 1) substrates that have been UV/ozone-cleaned ex vacuo and annealed in vacuo produce the same results in the THz generation experiments. Either substrate preparation method permits the growth of samples suitable for the THz emission experiments.
NASA Astrophysics Data System (ADS)
Wang, Bin; Chiang, Hsiao-Dong
Many applications of smart grid can be formulated as constrained optimization problems. Because of the discrete controls involved in power systems, these problems are essentially mixed-integer nonlinear programs. In this paper, we review the Trust-Tech-based methodology for solving mixed-integer nonlinear optimization. Specifically, we have developed a two-stage Trust-Tech-based methodology to systematically compute all the local optimal solutions for constrained mixed-integer nonlinear programming (MINLP) problems. In the first stage, for a given MINLP problem this methodology starts with the construction of a new, continuous, unconstrained problem through relaxation and the penalty function method. A corresponding dynamical system is then constructed to search for a set of local optimal solutions for the unconstrained problem. In the second stage, a reduced constrained NLP is defined for each local optimal solution by determining and fixing the values of integral variables of the MINLP problem. The Trust-Tech-based method is used to compute a set of local optimal solutions for these reduced NLP problems, from which the optimal solution of the original MINLP problem is determined. A numerical simulation of several testing problems is provided to illustrate the effectiveness of our proposed method.
Sharp Adams type inequalities in Sobolev spaces W(Rn) for arbitrary integer m
NASA Astrophysics Data System (ADS)
Lam, Nguyen; Lu, Guozhen
The main purpose of our paper is to prove sharp Adams type inequalities in unbounded domains of Rn for the Sobolev space W(Rn) for any positive integer m less than n. Our results complement those of Ruf and Sani (in press) [35] where such inequalities have been established for even integer m. We extend the main techniques of Ruf and Sani (in press) [35], which are the combinations of the comparison principle of Talenti (1976) [36] and Trombetti and Vázquez (1985) [38] for polyharmonic operators and a symmetrization argument together with constructions of radial auxiliary functions, to the case when m is odd. Moreover, we offer a completely different but much simpler approach to prove the comparison principle using the power of Bessel potentials and the Riesz rearrangement (see Remarks 3.2 and 3.3). This approach is of independent interest and works for any differential operators with appropriate radial kernels. As corollaries of our main theorems, we will derive the Adams type inequalities in the case when n=2m for all positive integer m by using different Sobolev norms.
Compact AC susceptometer for fast sample characterization down to 0.1 K.
Yonezawa, Shingo; Higuchi, Takumi; Sugimoto, Yusuke; Sow, Chanchal; Maeno, Yoshiteru
2015-09-01
We report a new design of an AC magnetic susceptometer compatible with the Physical Properties Measurement System (PPMS) by Quantum Design, as well as with its adiabatic demagnetization refrigerator option. With the elaborate compact design, the susceptometer allows simple and quick sample mounting process. The high performance of the susceptometer down to 0.1 K is demonstrated using several superconducting and magnetic materials. This susceptometer provides a method to quickly investigate qualities of a large number of samples in the wide temperature range between 0.1 and 300 K. PMID:26429453
Compact AC susceptometer for fast sample characterization down to 0.1 K
Yonezawa, Shingo Higuchi, Takumi; Sugimoto, Yusuke; Sow, Chanchal; Maeno, Yoshiteru
2015-09-15
We report a new design of an AC magnetic susceptometer compatible with the Physical Properties Measurement System (PPMS) by Quantum Design, as well as with its adiabatic demagnetization refrigerator option. With the elaborate compact design, the susceptometer allows simple and quick sample mounting process. The high performance of the susceptometer down to 0.1 K is demonstrated using several superconducting and magnetic materials. This susceptometer provides a method to quickly investigate qualities of a large number of samples in the wide temperature range between 0.1 and 300 K.
Scenario Decomposition for 0-1 Stochastic Programs: Improvements and Asynchronous Implementation
Ryan, Kevin; Rajan, Deepak; Ahmed, Shabbir
2016-05-01
We recently proposed scenario decomposition algorithm for stochastic 0-1 programs finds an optimal solution by evaluating and removing individual solutions that are discovered by solving scenario subproblems. In our work, we develop an asynchronous, distributed implementation of the algorithm which has computational advantages over existing synchronous implementations of the algorithm. Improvements to both the synchronous and asynchronous algorithm are proposed. We also test the results on well known stochastic 0-1 programs from the SIPLIB test library and is able to solve one previously unsolved instance from the test set.
On linear area embedding of planar graphs
NASA Astrophysics Data System (ADS)
Dolev, D.; Trickey, H.
1981-09-01
Planar embedding with minimal area of graphs on an integer grid is one of the major issues in VLSI. Valiant (V) gave an algorithm to construct a planar embedding for trees in linear area; he also proved that there are planar graphs that require quadratic area. An algorithm to embed outerplanar graphs in linear area is given. This algorithm is extended to work for every planar graph that has the following property: for every vertex there exists a path of length less than K to the exterior face, where K is a constant. Finally, finding a minimal embedding area is shown to be NP-complete for forests, and hence more general types of graphs.
NASA Astrophysics Data System (ADS)
Irmeilyana, Puspita, Fitri Maya; Indrawati
2016-02-01
The pricing for wireless networks is developed by considering linearity factors, elasticity price and price factors. Mixed Integer Nonlinear Programming of wireless pricing model is proposed as the nonlinear programming problem that can be solved optimally using LINGO 13.0. The solutions are expected to give some information about the connections between the acceptance factor and the price. Previous model worked on the model that focuses on bandwidth as the QoS attribute. The models attempt to maximize the total price for a connection based on QoS parameter. The QoS attributes used will be the bandwidth and the end to end delay that affect the traffic. The maximum goal to maximum price is achieved when the provider determine the requirement for the increment or decrement of price change due to QoS change and amount of QoS value.
Winebrake, James J; Corbett, James J; Wang, Chengfeng; Farrell, Alexander E; Woods, Pippa
2005-04-01
Emissions from passenger ferries operating in urban harbors may contribute significantly to emissions inventories and commuter exposure to air pollution. In particular, ferries are problematic because of high emissions of oxides of nitrogen (NOx) and particulate matter (PM) from primarily unregulated diesel engines. This paper explores technical solutions to reduce pollution from passenger ferries operating in the New York-New Jersey Harbor. The paper discusses and demonstrates a mixed-integer, non-linear programming model used to identify optimal control strategies for meeting NOx and PM reduction targets for 45 privately owned commuter ferries in the harbor. Results from the model can be used by policy-makers to craft programs aimed at achieving least-cost reduction targets. PMID:15887889
Parameter estimation in PS-InSAR deformation studies using integer least-squares techniques
NASA Astrophysics Data System (ADS)
Hanssen, R. F.; Ferretti, A.
2002-12-01
Interferometric synthetic aperture radar (InSAR) methods are increasingly used for measuring deformations of the earth's surface. Unfortunately, in many cases the problem of temporal decorrelation hampers successful measurements over longer time intervals. The permanent scatterers approach (PS-InSAR) for processing time series of SAR interferograms proves to be a good alternative by recognizing and analyzing single scatterers with a reliable phase behavior in time. Ambiguity resolution or phase unwrapping is the process of resolving the unknown cycle ambiguities in the radar data, and is one of the main problems in InSAR data analysis. In a single interferogram, the problem of phase unwrapping and parameter estimation is usually solved for in separate consecutive computations. It is often assumed that the final result of the phase unwrapping is a deterministic signal, used as input for the parameter estimation, e.g. elevation and deformation. As a result, errors in the ambiguity resolution are usually not propagated into the final results, which can lead to a serious underestimation of errors in the parameters and consequently in the geophysical models which use these parameters. In fact, however, the resolved phase ambiguities are stochastic as well, even though they are described with a probability mass function in stead of a probability density function. In this paper, the integer least-squares technique for integrated ambiguity resolution and parameter estimation is applied to PS-InSAR data analysis, using a three-step procedure. First, a standard least-squares adjustment is performed, assuming the ambiguities are float parameters, leading to the real-valued 'float'-solution. Second, the ambiguities are resolved using the float ambiguity estimates. Third, if the second step was successful, the integer estimates are used to correct the float solution estimate. It has been proved that the integer least-squares estimator is an optimal method in the sense that it
EFFECTS OF 0.1 PPM NITROGEN DIOXIDE ON AIRWAYS OF NORMAL AND ASTHMATIC SUBJECTS
It has been reported that inhalation of nitrogen dioxide (NO2) will enhance the bronchial reactivity of asthmatics. This study was designed to evaluate the respiratory effect of a 1-h exposure of normal subjects and of atopic asthmatics to 0.1 parts per million (ppm) NO2. Fifteen...
NASA Astrophysics Data System (ADS)
Chatain, Dominique; Curiotto, Stefano; Wynblatt, Paul; Meltzman, Hila; Kaplan, Wayne D.; Rohrer, Gregory S.
2015-05-01
Copper films deposited on m- and r-plane sapphire substrates have been dewetted in either the solid or the liquid state, and equilibrated at 1253 K. The orientation relationships (ORs) between the dewetted copper crystals and the sapphire substrates have been investigated by electron backscatter diffraction. In addition, the shape of the copper/sapphire interface has been studied by scanning electron microscopy. Although the as-deposited films develop {1 1 1} surfaces parallel to both substrates, after solid state dewetting the copper crystals on the m-plane substrate are found to change their interface plane from Cu{1 1 1}||Al2O3(m-plane) to Cu{1 1 1}|| Al2O3 (a-plane), and after liquid state dewetting the preferred OR of copper on both m- and r-plane substrates may be expressed as: Cu{1 1 1}<1 1 0> || Al2O3 {1 1 2bar 0}<0 0 0 1>. This OR is identical to that previously observed for copper on the sapphire a-plane.
Therapeutic effect of 0.1% Tacrolimus Eye Ointment in Allergic Ocular Diseases
Shitole, Satish C; Bhagat, Nupur; Patil, Deepak; Sawant, Pawan; Patil, Kalpita
2016-01-01
Introduction Allergic Ocular Diseases (AODs) like Atopic Keratoconjunctivitis (AKC) and Vernal Keratoconjunctivitis (VKC) are chronic forms of ocular allergy that can cause severe visual complications. Pathogenesis of AODs is uncertain and treatment has been a challenge for ophthalmologists. Tacrolimus, a 23-member cyclic macrolide lactone derived from [streptomyces tsukubaensis] now in ointment form has been successfully used in AODs. Aim To study the therapeutic effect of 0.1% Tacrolimus eye ointment in patients with Allergic Ocular Diseases (AODs). Materials and Methods This prospective observational study was conducted on 36 patients with severe AOD and moderate cases not responding to conventional treatment. They were treated with 0.1% tacrolimus eye ointment twice daily for minimum three months in addition to conventional treatment and observed for a period of 6 months. Symptoms and signs after treatment were evaluated. Grades of clinical signs were assessed based on slit lamp clinical photographs; development of possible complications was assessed and analysed by Wilcoxon signed rank test. Results Mean age of patients was 9.3±4.3 years and mean duration of AODs was 3.1±1.8 years. The scores on both the four point scales for signs and symptoms decreased significantly (p<0.0001) after 1 month of 0.1% Tacrolimus eye ointment treatment. Itching was the first symptom to show dramatic relief and conjunctival hyperaemia was the first sign to show improvement. 88.88% of patients were successfully weaned off topical steroids in 6 months into Tacrolimus treatment. Even in patients unresponsive to 0.1% topical Cyclosporine, symptoms and signs scores decreased significantly (p<0.0001). The most common adverse reaction was a transient burning sensation (36.11%). Conclusion Topical 0.1% Tacrolimus eye ointment was found to be a safe and effective treatment in cases of AODs and also worked as steroid sparing and replacing agent. It was also found effective in patient
Non-linear Total Energy Optimisation of a Fleet of Power Plants
NASA Astrophysics Data System (ADS)
Nolle, Lars; Biegler-König, Friedrich; Deeskow, Peter
In order to optimise the energy production in a fleet of power plants, it is necessary to solve a mixed integer optimisation problem. Traditionally, the continuous parts of the problem are linearized and a Simplex scheme is applied. Alternatively, heuristic "bionic" optimisation methods can be used without having to linearize the problem. Weare going to demonstrate this approach by modelling power plant blocks with fast Neural Networks and optimising the operation of multi-block power plants over one day with Simulated Annealing.
Separated-orbit bisected energy-recovered linear accelerator
Douglas, David R.
2015-09-01
A separated-orbit bisected energy-recovered linear accelerator apparatus and method. The accelerator includes a first linac, a second linac, and a plurality of arcs of differing path lengths, including a plurality of up arcs, a plurality of downgoing arcs, and a full energy arc providing a path independent of the up arcs and downgoing arcs. The up arcs have a path length that is substantially a multiple of the RF wavelength and the full energy arc includes a path length that is substantially an odd half-integer multiple of the RF wavelength. Operation of the accelerator includes accelerating the beam utilizing the linacs and up arcs until the beam is at full energy, at full energy executing a full recirculation to the second linac using a path length that is substantially an odd half-integer of the RF wavelength, and then decelerating the beam using the linacs and downgoing arcs.
Colgate, S.A.
1958-05-27
An improvement is presented in linear accelerators for charged particles with respect to the stable focusing of the particle beam. The improvement consists of providing a radial electric field transverse to the accelerating electric fields and angularly introducing the beam of particles in the field. The results of the foregoing is to achieve a beam which spirals about the axis of the acceleration path. The combination of the electric fields and angular motion of the particles cooperate to provide a stable and focused particle beam.
NASA Technical Reports Server (NTRS)
2006-01-01
[figure removed for brevity, see original site] Context image for PIA03667 Linear Clouds
These clouds are located near the edge of the south polar region. The cloud tops are the puffy white features in the bottom half of the image.
Image information: VIS instrument. Latitude -80.1N, Longitude 52.1E. 17 meter/pixel resolution.
Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.
NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.
A complete radio study of SNR G15.4+0.1 from new GMRT observations
NASA Astrophysics Data System (ADS)
Supan, L.; Castelletti, G.; Joshi, B. C.; Surnis, M. P.; Supanitsky, D.
2015-04-01
Aims: The supernova remnant (SNR) G15.4+0.1 is considered to be the possible counterpart of the γ-ray source HESS J1818-154. With the goal of getting a complete view of this remnant and understanding the nature of the γ-ray flux, we conducted a detailed radio study that includes the search for pulsations and a model of the broadband emission for the SNR G15.4+0.1/HESS J1818-154 system. Methods: Low-frequency imaging at 624 MHz and pulsar observations at 624 and 1404 MHz towards G15.4+0.1 were carried out with the Giant Metrewave Radio Telescope (GMRT). We correlated the new radio data with observations of the source at X-ray and infrared wavelengths from XMM-Newton and Herschel observatories, respectively. To characterize the neutral hydrogen (HI) medium towards G15.4+0.1, we used data from the Southern Galactic Plane Survey. We modelled the spectral energy distribution (SED) using both hadronic and leptonic scenarios. Results: From the combination of the new GMRT observations with existing data, we derived a continuum spectral index α = -0.62 ± 0.03 for the whole remnant. The local synchrotron spectra of G15.4+0.1, calculated from the combination of the GMRT data with 330 MHz observations from the Very Large Array, tends to be flatter in the central part of the remnant, accompanying the region where the blast wave is impinging molecular gas. No spectral index trace was found indicating the radio counterpart to the pulsar wind nebula proposed from X-ray observations. In addition, the search for radio pulsations yielded negative results. Emission at far-infrared wavelengths is observed in the region where the SNR shock is interacting with dense molecular clumps. We also identified HI features forming a shell that wraps most of the outer border of G15.4+0.1. Characteristic parameters were estimated for the shocked HI gas. We found that either a purely hadronic or leptonic model is compatible with the broadband emission known so far.
Fermi Large Area Telescope Observations of the Supernova Remnant G8.7-0.1
Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R.D.; Bloom, E.D.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G.A.; Cameron, R.A.; Caraveo, P.A.; /more authors..
2012-09-14
We present a detailed analysis of the GeV gamma-ray emission toward the supernova remnant (SNR) G8.7-0.1 with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. An investigation of the relationship between G8.7-0.1 and the TeV unidentified source HESS J1804-216 provides us with an important clue on diffusion process of cosmic rays if particle acceleration operates in the SNR. The GeV gamma-ray emission is extended with most of the emission in positional coincidence with the SNR G8.7-0.1 and a lesser part located outside the western boundary of G8.7-0.1. The region of the gamma-ray emission overlaps spatially connected molecular clouds, implying a physical connection for the gamma-ray structure. The total gamma-ray spectrum measured with LAT from 200 MeV-100 GeV can be described by a broken power-law function with a break of 2.4 {+-} 0.6 (stat) {+-} 1.2 (sys) GeV, and photon indices of 2.10 {+-} 0.06 (stat) {+-} 0.10 (sys) below the break and 2.70 {+-} 0.12 (stat) {+-} 0.14 (sys) above the break. Given the spatial association among the gamma rays, the radio emission of G8.7-0.1, and the molecular clouds, the decay of p0s produced by particles accelerated in the SNR and hitting the molecular clouds naturally explains the GeV gamma-ray spectrum. We also find that the GeV morphology is not well represented by the TeV emission from HESS J1804-216 and that the spectrum in the GeV band is not consistent with the extrapolation of the TeV gamma-ray spectrum. The spectral index of the TeV emission is consistent with the particle spectral index predicted by a theory that assumes energy-dependent diffusion of particles accelerated in an SNR. We discuss the possibility that the TeV spectrum originates from the interaction of particles accelerated in G8.7-0.1 with molecular clouds, and we constrain the diffusion coefficient of the particles.
FERMI LARGE AREA TELESCOPE OBSERVATIONS OF THE SUPERNOVA REMNANT G8.7-0.1
Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Buehler, R.; Cameron, R. A.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Ballet, J.; Bastieri, D.; Buson, S.; Bonamente, E.; Brigida, M.; Bruel, P.; and others
2012-01-01
We present a detailed analysis of the GeV gamma-ray emission toward the supernova remnant (SNR) G8.7-0.1 with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. An investigation of the relationship between G8.7-0.1 and the TeV unidentified source HESS J1804-216 provides us with an important clue on diffusion process of cosmic rays if particle acceleration operates in the SNR. The GeV gamma-ray emission is extended with most of the emission in positional coincidence with the SNR G8.7-0.1 and a lesser part located outside the western boundary of G8.7-0.1. The region of the gamma-ray emission overlaps spatially connected molecular clouds, implying a physical connection for the gamma-ray structure. The total gamma-ray spectrum measured with LAT from 200 MeV-100 GeV can be described by a broken power-law function with a break of 2.4 {+-} 0.6 (stat) {+-} 1.2 (sys) GeV, and photon indices of 2.10 {+-} 0.06 (stat) {+-} 0.10 (sys) below the break and 2.70 {+-} 0.12 (stat) {+-} 0.14 (sys) above the break. Given the spatial association among the gamma rays, the radio emission of G8.7-0.1, and the molecular clouds, the decay of {pi}{sup 0}s produced by particles accelerated in the SNR and hitting the molecular clouds naturally explains the GeV gamma-ray spectrum. We also find that the GeV morphology is not well represented by the TeV emission from HESS J1804-216 and that the spectrum in the GeV band is not consistent with the extrapolation of the TeV gamma-ray spectrum. The spectral index of the TeV emission is consistent with the particle spectral index predicted by a theory that assumes energy-dependent diffusion of particles accelerated in an SNR. We discuss the possibility that the TeV spectrum originates from the interaction of particles accelerated in G8.7-0.1 with molecular clouds, and we constrain the diffusion coefficient of the particles.
Fermi Large Area Telescope Observations of the Supernova Remnant G8.7-0.1
NASA Astrophysics Data System (ADS)
Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Charles, E.; Chekhtman, A.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Cutini, S.; de Angelis, A.; de Palma, F.; Dermer, C. D.; Silva, E. do Couto e.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Frailis, M.; Fukazawa, Y.; Fukui, Y.; Fusco, P.; Gargano, F.; Gasparrini, D.; Germani, S.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grove, J. E.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashi, K.; Hays, E.; Itoh, R.; Jóhannesson, G.; Johnson, A. S.; Kamae, T.; Katagiri, H.; Kataoka, J.; Knödlseder, J.; Kubo, H.; Kuss, M.; Lande, J.; Latronico, L.; Lee, S.-H.; Lionetto, A. M.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Mazziotta, M. N.; Mehault, J.; Michelson, P. F.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Naumann-Godo, M.; Nishino, S.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohno, M.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ormes, J. F.; Paneque, D.; Parent, D.; Pelassa, V.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Porter, T. A.; Rainò, S.; Rando, R.; Reimer, A.; Reimer, O.; Reposeur, T.; Roth, M.; Sadrozinski, H. F.-W.; Sgrò, C.; Siskind, E. J.; Smith, P. D.; Spandre, G.; Spinelli, P.; Suson, D. J.; Tajima, H.; Takahashi, H.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Tibaldo, L.; Tibolla, O.; Torres, D. F.; Tosti, G.; Tramacere, A.; Troja, E.; Uchiyama, Y.; Uehara, T.; Usher, T. L.; Vandenbroucke, J.; Van Etten, A.; Vasileiou, V.; Vianello, G.; Vilchez, N.; Vitale, V.; Waite, A. P.; Wang, P.; Winer, B. L.; Wood, K. S.; Yamamoto, H.; Yamazaki, R.; Yang, Z.; Yasuda, H.; Ziegler, M.; Zimmer, S.
2012-01-01
We present a detailed analysis of the GeV gamma-ray emission toward the supernova remnant (SNR) G8.7-0.1 with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. An investigation of the relationship between G8.7-0.1 and the TeV unidentified source HESS J1804-216 provides us with an important clue on diffusion process of cosmic rays if particle acceleration operates in the SNR. The GeV gamma-ray emission is extended with most of the emission in positional coincidence with the SNR G8.7-0.1 and a lesser part located outside the western boundary of G8.7-0.1. The region of the gamma-ray emission overlaps spatially connected molecular clouds, implying a physical connection for the gamma-ray structure. The total gamma-ray spectrum measured with LAT from 200 MeV-100 GeV can be described by a broken power-law function with a break of 2.4 ± 0.6 (stat) ± 1.2 (sys) GeV, and photon indices of 2.10 ± 0.06 (stat) ± 0.10 (sys) below the break and 2.70 ± 0.12 (stat) ± 0.14 (sys) above the break. Given the spatial association among the gamma rays, the radio emission of G8.7-0.1, and the molecular clouds, the decay of π0s produced by particles accelerated in the SNR and hitting the molecular clouds naturally explains the GeV gamma-ray spectrum. We also find that the GeV morphology is not well represented by the TeV emission from HESS J1804-216 and that the spectrum in the GeV band is not consistent with the extrapolation of the TeV gamma-ray spectrum. The spectral index of the TeV emission is consistent with the particle spectral index predicted by a theory that assumes energy-dependent diffusion of particles accelerated in an SNR. We discuss the possibility that the TeV spectrum originates from the interaction of particles accelerated in G8.7-0.1 with molecular clouds, and we constrain the diffusion coefficient of the particles.
NASA Astrophysics Data System (ADS)
Deng, Nianpei
The two dimensional electron gas subjected to a magnetic field has been a model system in contemporary condensed matter physics which generated many beautiful experiments as well as novel fundamental concepts. These novel concepts are of broad interests and have benefited other fields of research. For example, the observations of conventional odd-denominator fractional quantum Hall states have enriched many-body physics with important concepts such as fractional statistics and composite fermions. The subsequent discovery of the enigmatic even-denominator nu=5/2 fractional quantum Hall state has led to more interesting concepts such as non-Abelian statistics and pairing of composite fermions which can be intimately connected to the electron pairing in superconductivity. Moreover, the observations of stripe phases and reentrant integer quantum Hall states have stimulated research on exotic electron solids which have more intricate structures than the Wigner Crystal. In contrast to fractional quantum Hall states and stripes phases, the reentrant integer quantum Hall states are very little studied and their ground states are the least understood. There is a lack of basic information such as exact filling factors, temperature dependence and energy scales for the reentrant integer quantum Hall states. A critical experimental condition in acquiring this information is a stable ultra-low temperature environment. In the first part of this dissertation, I will discuss our unique setup of 3He immersion cell in a state-of-art dilution refrigerator which achieves the required stability of ultra-low temperature. With this experimental setup, we are able to observe for the first time very sharp magnetotransport features of reentrant integer quantum Hall states across many Landau levels for the first time. I will firstly present our results in the second Landau level. The temperature dependence measurements reveal a surprisingly sharp peak signature that is unique to the reentrant
Linear Response for Intermittent Maps
NASA Astrophysics Data System (ADS)
Baladi, Viviane; Todd, Mike
2016-02-01
We consider the one parameter family {α mapsto T_{α}} ({α in [0,1)} ) of Pomeau-Manneville type interval maps {T_{α}(x) = x(1+2^{α} x^{α})} for {x in [0,1/2)} and {T_{α}(x)=2x-1} for {x in [1/2, 1]} , with the associated absolutely continuous invariant probability measure {μ_{α}} . For {α in (0,1)} , Sarig and Gouëzel proved that the system mixes only polynomially with rate {n^{1-1/{α}}} (in particular, there is no spectral gap). We show that for any {ψ in Lq} , the map {α to int_01 ψ d μ_{α}} is differentiable on {[0,1-1/q)} , and we give a (linear response) formula for the value of the derivative. This is the first time that a linear response formula for the SRB measure is obtained in the setting of slowly mixing dynamics. Our argument shows how cone techniques can be used in this context. For {α ≥ 1/2} we need the {n^{-1/{α}}} decorrelation obtained by Gouëzel under additional conditions.
Coverage-dependent geometries of nanowires on Ge(0 0 1)-Au surfaces: modification of trenches.
Seino, Kaori; Bechstedt, Friedhelm
2016-07-20
Despite intense research the microscopic atomic structure of Au-induced nanowires on Ge(0 0 1) substrates is still under discussion. We analyse a variety of structural models for Au-induced nanowires on the Ge(0 0 1) surface using first-principles calculations. Here we focus on subridge modifications at higher Au coverages and study geometries based on the giant missing row model with Ge-Ge dimers in the grooves between the nanowires due to replacing them by Ge-Au heterodimers or Au-Au homodimers. Stable geometries are predicted for higher Au coverages, which however have only a minor influence on the electronic structure. The findings are interpreted that the Au coverage and the actual geometry may vary in the various experiments according to the preparation conditions. PMID:27227337
Chemically prepared well-ordered InP(0 0 1) surfaces
NASA Astrophysics Data System (ADS)
Tereshchenko, O. E.; Paget, D.; Chiaradia, P.; Placidi, E.; Bonnet, J. E.; Wiame, F.; Taleb-Ibrahimi, A.
2006-08-01
In the present work HCl-isopropanol treated and vacuum annealed InP(0 0 1) surfaces were studied by means of low-energy electron diffraction (LEED), soft X-ray photoemission (SXPS), and reflectance anisotropy (RAS) spectroscopies. The treatment removes the natural oxide and leaves on the surface a physisorbed overlayer containing InCl x and phosphorus. Annealing at 230 °C induces desorption of InCl x overlayer and reveals a P-rich (2 × 1) surface. Subsequent annealing at higher temperature induces In-rich (2 × 4) surface. The structural properties of chemically prepared InP(0 0 1) surfaces were found to be similar to those obtained by decapping of As/P-capped epitaxial layers.
Growth Rate of Cosmological Perturbations at z∼0.1 from a New Observational Test.
Feix, Martin; Nusser, Adi; Branchini, Enzo
2015-07-01
Spatial variations in the distribution of galaxy luminosities, estimated from redshifts as distance proxies, are correlated with the peculiar velocity field. Comparing these variations with the peculiar velocities inferred from galaxy redshift surveys is a powerful test of gravity and dark-energy theories on cosmological scales. Using ∼2×10(5) galaxies from the SDSS Data Release 7, we perform this test in the framework of gravitational instability to estimate the normalized growth rate of density perturbations fσ8=0.37±0.13 at z∼0.1, which is in agreement with the cold dark matter model with a cosmological constant. This unique measurement is complementary to those obtained with more traditional methods, including clustering analysis. The estimated accuracy at z∼0.1 is competitive with other methods when applied to similar data sets. PMID:26182087
Sensors closeness test based on an improved [0, 1] bounded Mahalanobis distance Δ2
NASA Astrophysics Data System (ADS)
Masnan, Maz Jamilah; Mahat, Nor Idayu; Shakaff, Ali Yeon Md; Abdullah, Abu Hassan
2015-12-01
Mahalanobis distance Δ2 values are commonly in the range of 0 to +∞ where higher values represent greater distance between class means or points. The increase in Mahalanobis distance is unbounded as the distance multiply. To certain extend, the unbounded distance values pose difficulties in the evaluation and decision for instance in the sensors closeness test. This paper proposes an approach to [0, 1] bounded Mahalanobis distance Δ2 that enable researcher to easily perform sensors closeness test. The experimental data of four different types of rice based on three different electronic nose sensors namely InSniff, PEN3, and Cyranose320 were analyzed and sensor closeness test seems successfully performed within the [0, 1] bound.
Surface modifications induced by bismuth on (0 0 1) GaAs surfaces
NASA Astrophysics Data System (ADS)
Jiang, W. Y.; Liu, J. Q.; So, M. G.; Myrtle, K.; Kavanagh, K. L.; Watkins, S. P.
2005-04-01
We report the identification of reflectance difference (RD) spectra for GaAs (0 0 1) surfaces in the presence of small quantities of trimethylbismuth (TMBi) vapor under organometallic vapor phase epitaxy (OMVPE) conditions. An RD spectrum similar to that observed from the previously reported ( 3×8) Sb-terminated surface of GaAs is reported, suggesting strong similarities between the Bi and Sb terminated surfaces. Because of the low vapor pressure of Bi, it is stable under extended hydrogen purges at growth temperatures of 450C. Whereas As or Sb coverage typically saturates at 1-2 monolayers on the GaAs (0 0 1) surface under OMVPE conditions, no saturation of the Bi coverage is observed in this work. Extended exposure to TMBi results in the formation of Bi islands whose size increase with exposure time and TMBi concentration.
Coverage-dependent geometries of nanowires on Ge(0 0 1)-Au surfaces: modification of trenches
NASA Astrophysics Data System (ADS)
Seino, Kaori; Bechstedt, Friedhelm
2016-07-01
Despite intense research the microscopic atomic structure of Au-induced nanowires on Ge(0 0 1) substrates is still under discussion. We analyse a variety of structural models for Au-induced nanowires on the Ge(0 0 1) surface using first-principles calculations. Here we focus on subridge modifications at higher Au coverages and study geometries based on the giant missing row model with Ge–Ge dimers in the grooves between the nanowires due to replacing them by Ge–Au heterodimers or Au–Au homodimers. Stable geometries are predicted for higher Au coverages, which however have only a minor influence on the electronic structure. The findings are interpreted that the Au coverage and the actual geometry may vary in the various experiments according to the preparation conditions.
Growth Rate of Cosmological Perturbations at z∼0.1 from a New Observational Test
NASA Astrophysics Data System (ADS)
Feix, Martin; Nusser, Adi; Branchini, Enzo
2015-07-01
Spatial variations in the distribution of galaxy luminosities, estimated from redshifts as distance proxies, are correlated with the peculiar velocity field. Comparing these variations with the peculiar velocities inferred from galaxy redshift surveys is a powerful test of gravity and dark-energy theories on cosmological scales. Using ∼2 ×105 galaxies from the SDSS Data Release 7, we perform this test in the framework of gravitational instability to estimate the normalized growth rate of density perturbations f σ8=0.37 ±0.13 at z ∼0.1 , which is in agreement with the cold dark matter model with a cosmological constant. This unique measurement is complementary to those obtained with more traditional methods, including clustering analysis. The estimated accuracy at z ∼0.1 is competitive with other methods when applied to similar data sets.
Growth of Ag nanowires on Au-pre-facetted 4° vicinal Si(0 0 1)
NASA Astrophysics Data System (ADS)
Meyer zu Heringdorf, Frank-J.; Roos, Kimberly L.; Wiethoff, Christian; Horn-von Hoegen, Michael; Roos, Kelly R.
2008-05-01
We studied the self-assembly of wire-shaped Ag islands at high temperature with low energy electron microscopy and photoemission electron microscopy. A Au-faceted vicinal Si(0 0 1) surface was used as a substrate. The initial Ag deposit at 600-620 °C induces a surface phase change from the (5 × 3.2) reconstruction of the Au-covered (0 0 1) terraces, to a (3 × 2) reconstruction, but leaves the structure of the Au-induced step bunches intact. Subsequent Ag growth produces two distinct types of 3D crystalline islands: compact and wire-like. The total Ag deposit is comprised mostly of compact islands, with only a small minority of wire-like islands. We attribute the wire formation to local step bunches that create the proper quasi-one-dimensional diffusion environment for the Ag islands to grow with a high aspect ratio.
Sensors closeness test based on an improved [0, 1] bounded Mahalanobis distance Δ{sup 2}
Masnan, Maz Jamilah; Mahat, Nor Idayu; Shakaff, Ali Yeon Md Abdullah, Abu Hassan
2015-12-11
Mahalanobis distance Δ{sup 2} values are commonly in the range of 0 to +∞ where higher values represent greater distance between class means or points. The increase in Mahalanobis distance is unbounded as the distance multiply. To certain extend, the unbounded distance values pose difficulties in the evaluation and decision for instance in the sensors closeness test. This paper proposes an approach to [0, 1] bounded Mahalanobis distance Δ{sup 2} that enable researcher to easily perform sensors closeness test. The experimental data of four different types of rice based on three different electronic nose sensors namely InSniff, PEN3, and Cyranose320 were analyzed and sensor closeness test seems successfully performed within the [0, 1] bound.
Engineering changes to the 0.1m cryogenic wind tunnel at Southampton University
NASA Technical Reports Server (NTRS)
Goodyer, M. J.
1984-01-01
The more important changes to the 0.1 m cryogenic wind tunnel since its completion in 1977 are outlined. These include detailed improvements in the fan drive to allow higher speeds, and the provision of a test section leg suitable for use with a magnetic suspension and balance system. The instrumentation, data logging, data reduction and tunnel controls were also improved and modernized. A tunnel performance summary is given.
Methylchloride adsorbed on Si(0 0 1): an ab initio study
NASA Astrophysics Data System (ADS)
Preuss, M.; Schmidt, W. G.; Seino, K.; Bechstedt, F.
2004-07-01
We present ab initio calculations of the adsorption of methylchloride (CH 3Cl) on Si(0 0 1). Among multiple plausible adsorption geometries, we find five thermodynamically favorable configurations. These lead to strong geometrical changes in the Si surface structure as well as to significant charge transfer processes. The stability of the adsorption structures is discussed in terms of electrostatics. The results are compared to recent experimental and theoretical findings.
Kondo effect of trivalent Tm in Y 0.9Tm 0.1S
NASA Astrophysics Data System (ADS)
Haen, P.; Lapierre, F.; Mignot, J. M.; Flouquet, J.; Holtzberg, F.; Penney, T.
1983-02-01
The existence of a Kondo effect in a trivalent alloy Y 0.9Tm 0.1 S is shown by the Curie-Weiss behavior of the susceptibility and by a ln T decrease of Δϱ = ϱ alloy - ϱ YS above ˜ 12 K comparable with that observed in TmS. Comparisons are made with the Kondo dilute alloys of the intermediate valent system (Y,Tm)Se.
Chemisorption of a Molecular Oxygen On the UN(0 0 1) Surface: Ab Initio Calculations
Zhukovskii, Yuri F.; Bocharov, Dmitry; Kotomin, Eugene Alexej
2009-09-15
The results of DFT GGA calculations on oxygen molecules adsorbed upon the (0 0 1) surface of uranium mononitride (UN) are presented and discussed. We demonstrate that O2 molecules oriented parallel to the substrate can dissociate either (i) spontaneously when the molecular center lies above the surface hollow site or atop N ion, (ii) with the activation barrier when a molecule sits atop the surface U ion. This explains fast UN oxidation in air.
Beamline 9.0.1 - a high-resolution undulator beamline for gas-phase spectroscopy
Bozek, J.D.; Heimann, P.A.; Mossessian, D.
1997-04-01
Beamline 9.0.1 at the Advanced Light Source is an undulator beamline with a Spherical Grating Monochromator (SGM) which provides very high resolution and flux over the photon energy range 20-320eV. The beamline has been used primarily by the atomic and molecular science community to conduct spectroscopy experiments using electron, ion and fluorescence photon detection. A description of the beamline and its performance will be provided in this abstract.
Geometric modeling of homoepitaxial CVD diamond growth: I. The {1 0 0}{1 1 1}{1 1 0}{1 1 3} system
NASA Astrophysics Data System (ADS)
Silva, F.; Bonnin, X.; Achard, J.; Brinza, O.; Michau, A.; Gicquel, A.
2008-01-01
Plasma-assisted CVD homoepitaxial diamond growth is a process that must satisfy many stringent requirements to meet industrial applications, particularly in high-power electronics. Purity control and crystalline quality of the obtained samples are of paramount importance and their optimization is a subject of active research. In the process of such studies, we have obtained high purity CVD diamond monocrystals with unusual morphologies, namely with apparent {1 1 3} stable faces. This phenomenon has led us to examine the process of CVD diamond growth and build up a 3D geometrical model, presented here, describing the film growth as a function of time. The model has been able to successfully describe the morphology of our obtained crystals and can be used as a predictive tool to predetermine the shape and size of a diamond crystal grown in a given process configuration. This renders accessible control of desirable properties such as largest usable diamond surface area and/or film thickness, before the cutting and polishing manufacture steps take place. The two latter steps are more sensitive to the geometry of the growth sectors, which will be addressed in a companion paper. Our model, applicable to the growth of any cubic lattice material, establishes a complete mapping of the final morphology state of growing diamond, as a function of the growth rates of the crystalline planes considered, namely {1 0 0}, {1 1 1}, {1 1 0}, and {1 1 3} planes, all of which have been observed experimentally in diamond films. The model makes no claim as to the stability of the obtained faces, such as the occurrence of non-epitaxial crystallites or twinning. It is also possible to deduce transient behavior of the crystal morphology as growth time is increased. The model conclusions are presented in the form of a series of diagrams, which trace the existence (and dominance) boundaries of each face type, in presence of the others, and where each boundary crossing represent a topology
Critical exponents and irreversibility lines of La0.9Sr0.1CoO3 single crystal
NASA Astrophysics Data System (ADS)
Khan, N.; Midya, A.; Mandal, P.; Prabhakaran, D.
2013-05-01
We have studied the dynamic and static critical behavior of spin glass transition in insulating La0.9Sr0.1CoO3 single crystal by ac susceptibility and dc magnetization measurements in the vicinity of its freezing temperature (Tf). The dynamic scaling analysis of the frequency dependence of ac susceptibility data yields the characteristic time constant τ0=1.6(9)×10-12 s, the dynamic critical exponent zν=9.5(2), and a frequency dependence factor K =ΔTf/Tf(Δlogf)=0.017, indicating that the sample enters into a canonical spin-glass phase below Tf = 34.8(2) K. The scaling analysis of non-linear magnetization in the vicinity of Tf through the static scaling hypothesis yields critical exponents β = 0.89(1) and γ = 2.9(1), which match well with that observed for well known three-dimensional (3D) Heisenberg spin glasses. From the longitudinal component of zero-field-cooled and field-cooled magnetization measurement, we have constructed the H-T phase diagram which represents the field evolution of two characteristic temperatures: the upper one, Tw(H), indicates the onset of spin freezing in a uniform external field H, while the lower one, Ts(H), marks the onset of strong irreversibility of the frozen state. The low field Ts(H) follows the critical line suggested by d'Almeida-Thouless model for canonical spin glass, whereas the Tw(H) exhibits a re-entrant behavior with a maximum in the Tw(H) at a nonzero field above which it follows the Gabay-Toulouse (GT) critical line which is a characteristic of Heisenberg spin glass. The reentrant behavior of the GT line resembles that predicted theoretically for n-component vector spin glasses in the presence of a uniaxial anisotropy field.
Tracing the cosmic velocity field at z∼ 0.1 from galaxy luminosities in the SDSS DR7
Feix, Martin; Nusser, Adi; Branchini, Enzo E-mail: adi@physics.technion.ac.il
2014-09-01
Spatial modulations in the distribution of observed luminosities (computed using redshifts) of ∼ 5× 10{sup 5} galaxies from the SDSS Data Release 7, probe the cosmic peculiar velocity field out to z∼ 0.1. Allowing for luminosity evolution, the r-band luminosity function, determined via a spline-based estimator, is well represented by a Schechter form with M{sup *}(z)-5 log{sub 10} h = -20.52 -1.6(z-0.1)± 0.05 and α{sup *} = -1.1± 0.03. Bulk flows and higher velocity moments in two redshift bins, 0.02 < z < 0.07 and 0.07 < z < 0.22, agree with the predictions of the ΛCDM model, as obtained from mock galaxy catalogs designed to match the observations. Assuming a ΛCDM model, we estimate σ{sub 8} ≈ 1.1± 0.4 for the amplitude of the linear matter power spectrum, where the low accuracy is due to the limited number of galaxies. While the low z bin is robust against coherent photometric uncertainties, the bias of results from the second bin is consistent with the ∼1% magnitude tilt reported by the SDSS collaboration. The systematics are expected to have a significantly lower impact in future datasets with larger sky coverage and better photometric calibration.
Zhang Junan; Ma Jinli; Zhou Sumin; Hubbs, Jessica L.; Wong, Terence Z.; Folz, Rodney J.; Evans, Elizabeth S.; Jaszczak, Ronald J.; Clough, Robert; Marks, Lawrence B.
2010-02-01
Purpose: To assess the time and regional dependence of radiation therapy (RT)-induced reductions in regional lung perfusion 0.1-12 years post-RT, as measured by single photon emission computed tomography (SPECT) lung perfusion. Materials/Methods: Between 1991 and 2005, 123 evaluable patients receiving RT for tumors in/around the thorax underwent SPECT lung perfusion scans before and serially post-RT (0.1-12 years). Registration of pre- and post-RT SPECT images with the treatment planning computed tomography, and hence the three-dimensional RT dose distribution, allowed changes in regional SPECT-defined perfusion to be related to regional RT dose. Post-RT follow-up scans were evaluated at multiple time points to determine the time course of RT-induced regional perfusion changes. Population dose response curves (DRC) for all patients at different time points, different regions, and subvolumes (e.g., whole lungs, cranial/caudal, ipsilateral/contralateral) were generated by combining data from multiple patients at similar follow-up times. Each DRC was fit to a linear model, and differences statistically analyzed. Results: In the overall groups, dose-dependent reductions in perfusion were seen at each time post-RT. The slope of the DRC increased over time up to 18 months post-RT, and plateaued thereafter. Regional differences in DRCs were only observed between the ipsilateral and contralateral lungs, and appeared due to tumor-associated changes in regional perfusion. Conclusions: Thoracic RT causes dose-dependent reductions in regional lung perfusion that progress up to {approx}18 months post-RT and persists thereafter. Tumor shrinkage appears to confound the observed dose-response relations. There appears to be similar dose response for healthy parts of the lungs at different locations.
Approximating the 0-1 Multiple Knapsack Problem with Agent Decomposition and Market Negotiation
Smolinski, B.
1999-09-03
The 0-1 multiple knapsack problem appears in many domains from financial portfolio management to cargo ship stowing. Methods for solving it range from approximate algorithms, such as greedy algorithms, to exact algorithms, such as branch and bound. Approximate algorithms have no bounds on how poorly they perform and exact algorithms can suffer from exponential time and space complexities with large data sets. This paper introduces a market model based on agent decomposition and market auctions for approximating the 0-1 multiple knapsack problem, and an algorithm that implements the model (M(x)). M(x) traverses the solution space rather than getting caught in a local maximum, overcoming an inherent problem of many greedy algorithms. The use of agents ensures that infeasible solutions are not considered while traversing the solution space and that traversal of the solution space is not just random, but is also directed. M(x) is compared to a bound and bound algorithm (BB) and a simple greedy algorithm with a random shuffle (G(x)). The results suggest that M(x) is a good algorithm for approximating the 0-1 Multiple Knapsack problem. M(x) almost always found solutions that were close to optimal in a fraction of the time it took BB to run and with much less memory on large test data sets. M(x) usually performed better than G(x) on hard problems with correlated data.
Solar wind ˜0.1-1.5 keV electrons at quiet times
NASA Astrophysics Data System (ADS)
Tao, Jiawei; Wang, Linghua; Zong, Qiugang; Li, Gang; Salem, Chadi S.; Wimmer-Schweingruber, Robert F.; He, Jiansen; Tu, Chuanyi; Bale, Stuart D.
2016-03-01
We present a statistical survey of the energy spectrum of solar wind suprathermal (˜0.1-1.5 keV) electrons measured by the WIND 3-D Plasma & Energetic Particle (3DP) instrument at 1 AU during quiet times at the minimum and maximum of solar cycles 23 and 24. Firstly, we separate strahl (beaming) electrons and halo (isotropic) electrons based on their features in pitch angle distributions. Secondly, we fit the observed energy spectrum of both the strahl and halo electrons at ˜0.1-1.5 keV to a Kappa distribution function with an index κ, effective temperature Teff and density n0. We also integrate the the measurements over ˜0.1-1.5 keV to obtain the average electron energy Eavg of the strahl and halo. We find a strong positive correlation between κ and Teff for both the strahl and halo, possibly reflecting the nature of the generation of these suprathermal electrons. Among the 245 selected samples, ˜68% have the halo κ smaller than the strahl κ, while ˜50% have the halo Eh larger than the strahl Es.
Fermi Large Area Telescope Observations of the Supernova Remnant GS.7-0.1
NASA Technical Reports Server (NTRS)
Ferrara, E. C.; Hays, E.; Troja, E.; Moiseev, A. A.
2012-01-01
We present a detailed analysis of the GeV gamma-ray emission toward the supernova remnant (SNR) G8.7-0.1 with the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope. An investigation of the relationship among G8.7-0.1 and the TeV unidentified source HESS J1804-216 provides us with an important clue on diffusion process of cosmic rays if particle acceleration operates in the SNR. The GeV gamma-ray emission is extended with most of the emission in positional coincidence with the SNR G8.7-0.1 and a lesser part located outside the western boundary of G8.7-0.1. The region of the gamma-ray emission overlaps spatially-connected molecular clouds, implying a physical connection for the gamma-ray structure. The total gamma-ray spectrum measured with LAT from 200 MeV-100 GeV can be described by a broken power-law function with a break of 2.4 +/- 0.6 (stat) +/- 1.2 (sys) GeV, and photon indices of2.10 +/- 0.06 (stat) +/- 0.10 (sys) below the break and 2.70 +/- 0.12 (stat) +/- 0.14 (sys) above the break. Given the spatial association among the gamma rays, the radio emission ofG8.7-0.1, and the molecular clouds, the decay of pions produced by particles accelerated in the SNR and hitting the molecular clouds naturally explains the GeV gamma-ray spectrum. We also find that the GeV morphology is not well represented by the TeV emission from HESS Jl804-2l6 and that the spectrum in the Ge V band is not consistent with the extrapolation of the TeV gamma-ray spectrum. The spectral index of the TeV emission is consistent with the particle spectral index predicted by a theory that assumes energy-dependent diffusion of particles accelerated in an SNR. We discuss the possibility that the TeV-spectrum originates from the interaction of particles accelerated in G8.7-0.l with molecular clouds, and we constrain the diffusion coefficient of the particles.
Melting of Fe and Fe0.9Ni0.1 alloy at high pressures
NASA Astrophysics Data System (ADS)
Zhang, D.; Jackson, J. M.; Zhao, J.; Sturhahn, W.; Alp, E. E.; Hu, M. Y.; Toellner, T.
2014-12-01
Cosmochemical studies suggest that the cores of terrestrial planets are primarily composed of Fe alloyed with about 5 to 10 wt% Ni, plus some light elements (e.g., McDonough and Sun 1995). Thus, the high pressure melting curve of Fe0.9Ni0.1 is considered to be an important reference for characterizing the cores of terrestrial planets. We have determined the melting points of fcc-structured Fe and Fe0.9Ni0.1 up to 86 GPa using an in-situ method that monitors the atomic dynamics of the Fe atoms in the sample, synchrotron Mössbauer spectroscopy (Jackson et al. 2013). A laser heated diamond anvil cell is used to provide the high pressure-high temperature environmental conditions, and in-situ X-ray diffraction is used to constrain the pressure of the sample. To eliminate the influence of temperature fluctuations experienced by the sample on the determination of melting, we develop a Fast Temperature Readout (FasTeR) spectrometer. The FasTeR spectrometer features a fast reading rate (>100 Hz), a high sensitivity, a large dynamic range and a well-constrained focus. By combining the melting curve of fcc-structured Fe0.9Ni0.1 alloy determined in our study and the fcc-hcp phase boundary from Komabayashi et al. (2012), we calculate the fcc-hcp-liquid triple point of Fe0.9Ni0.1. Using this triple point and the thermophysical parameters from a nuclear resonant inelastic X-ray scattering study on hcp-Fe (Murphy et al. 2011), we compute the melting curve of hcp-structured Fe0.9Ni0.1. We will discuss our new experimental results with implications for the cores of Venus, Earth and Mars. Select references: McDonough & Sun (1995): The composition of the Earth. Chem. Geol. 120, 223-253. Jackson et al. (2013): Melting of compressed iron by monitoring atomic dynamics, EPSL, 362, 143-150. Komabayashi et al. (2012): In situ X-ray diffraction measurements of the fcc-hcp phase transition boundary of an Fe-Ni alloy in an internally heated diamond anvil cell, PCM, 39, 329-338. Murphy et al
Improvement of PPP-inferred tropospheric estimates by integer ambiguity resolution
NASA Astrophysics Data System (ADS)
Shi, J.; Gao, Y.
2012-11-01
Integer ambiguity resolution in Precise Point Positioning (PPP) can improve positioning accuracy and reduce convergence time. The decoupled clock model proposed by Collins (2008) has been used to facilitate integer ambiguity resolution in PPP, and research has been conducted to assess the model's potential to improve positioning accuracy and reduce positioning convergence time. In particular, the biggest benefits have been identified for the positioning solutions within short observation periods such as one hour. However, there is little work reported about the model's potential to improve the estimation of the tropospheric parameter within short observation periods. This paper investigates the effect of PPP ambiguity resolution on the accuracy of the tropospheric estimates within one hour. The tropospheric estimates with float and fixed ambiguities within one hour are compared to two external references. The first reference is the International GNSS Service (IGS) final troposphere product based on the PPP technique. The second reference is the Constellation Observing System for Meteorology Ionosphere and Climate (COSMIC) radio occultation (RO) event based on the atmospheric profiles along the signal travel path. A comparison among ten co-located ground-based GPS and space-based RO troposphere zenith path delays shows that the mean bias of the troposphere estimates with float ambiguities can be significantly reduced from 30.1 to 17.0 mm when compared to the IGS troposphere product and from 36.3 to 19.7 mm when compared to the COSMIC RO. The root mean square (RMS) accuracy improvement of the tropospheric parameters by the ambiguity resolution is 33.3% when compared to the IGS products and 44.3% when compared to the COSMIC RO. All these improvements are achieved within one hour, which indicates the promising prospect of adopting PPP integer ambiguity resolution for time-critical applications such as typhoon prediction.
PySP : modeling and solving stochastic mixed-integer programs in Python.
Woodruff, David L.; Watson, Jean-Paul
2010-08-01
Although stochastic programming is a powerful tool for modeling decision-making under uncertainty, various impediments have historically prevented its widespread use. One key factor involves the ability of non-specialists to easily express stochastic programming problems as extensions of deterministic models, which are often formulated first. A second key factor relates to the difficulty of solving stochastic programming models, particularly the general mixed-integer, multi-stage case. Intricate, configurable, and parallel decomposition strategies are frequently required to achieve tractable run-times. We simultaneously address both of these factors in our PySP software package, which is part of the COIN-OR Coopr open-source Python project for optimization. To formulate a stochastic program in PySP, the user specifies both the deterministic base model and the scenario tree with associated uncertain parameters in the Pyomo open-source algebraic modeling language. Given these two models, PySP provides two paths for solution of the corresponding stochastic program. The first alternative involves writing the extensive form and invoking a standard deterministic (mixed-integer) solver. For more complex stochastic programs, we provide an implementation of Rockafellar and Wets Progressive Hedging algorithm. Our particular focus is on the use of Progressive Hedging as an effective heuristic for approximating general multi-stage, mixed-integer stochastic programs. By leveraging the combination of a high-level programming language (Python) and the embedding of the base deterministic model in that language (Pyomo), we are able to provide completely generic and highly configurable solver implementations. PySP has been used by a number of research groups, including our own, to rapidly prototype and solve difficult stochastic programming problems.
Is integer arithmetic fundamental to mental processing?: the mind's secret arithmetic.
Snyder, A W; Mitchell, D J
1999-03-22
Unlike the ability to acquire our native language, we struggle to learn multiplication and division. It may then come as a surprise that the mental machinery for performing lightning-fast integer arithmetic calculations could be within us all even though it cannot be readily accessed, nor do we have any idea of its primary function. We are led to this provocative hypothesis by analysing the extraordinary skills of autistic savants. In our view such individuals have privileged access to lower levels of information not normally available through introspection. PMID:10212449
Integer cosine transform compression for Galileo at Jupiter: A preliminary look
NASA Technical Reports Server (NTRS)
Ekroot, L.; Dolinar, S.; Cheung, K.-M.
1993-01-01
The Galileo low-gain antenna mission has a severely rate-constrained channel over which we wish to send large amounts of information. Because of this link pressure, compression techniques for image and other data are being selected. The compression technique that will be used for images is the integer cosine transform (ICT). This article investigates the compression performance of Galileo's ICT algorithm as applied to Galileo images taken during the early portion of the mission and to images that simulate those expected from the encounter at Jupiter.
Comparison of penalty functions on a penalty approach to mixed-integer optimization
NASA Astrophysics Data System (ADS)
Francisco, Rogério B.; Costa, M. Fernanda P.; Rocha, Ana Maria A. C.; Fernandes, Edite M. G. P.
2016-06-01
In this paper, we present a comparative study involving several penalty functions that can be used in a penalty approach for globally solving bound mixed-integer nonlinear programming (bMIMLP) problems. The penalty approach relies on a continuous reformulation of the bMINLP problem by adding a particular penalty term to the objective function. A penalty function based on the `erf' function is proposed. The continuous nonlinear optimization problems are sequentially solved by the population-based firefly algorithm. Preliminary numerical experiments are carried out in order to analyze the quality of the produced solutions, when compared with other penalty functions available in the literature.
Integration of progressive hedging and dual decomposition in stochastic integer programs
Watson, Jean -Paul; Guo, Ge; Hackebeil, Gabriel; Ryan, Sarah M.; Woodruff, David L.
2015-04-07
We present a method for integrating the Progressive Hedging (PH) algorithm and the Dual Decomposition (DD) algorithm of Carøe and Schultz for stochastic mixed-integer programs. Based on the correspondence between lower bounds obtained with PH and DD, a method to transform weights from PH to Lagrange multipliers in DD is found. Fast progress in early iterations of PH speeds up convergence of DD to an exact solution. As a result, we report computational results on server location and unit commitment instances.
Edit distance for marked point processes revisited: An implementation by binary integer programming
Hirata, Yoshito; Aihara, Kazuyuki
2015-12-15
We implement the edit distance for marked point processes [Suzuki et al., Int. J. Bifurcation Chaos 20, 3699–3708 (2010)] as a binary integer program. Compared with the previous implementation using minimum cost perfect matching, the proposed implementation has two advantages: first, by using the proposed implementation, we can apply a wide variety of software and hardware, even spin glasses and coherent ising machines, to calculate the edit distance for marked point processes; second, the proposed implementation runs faster than the previous implementation when the difference between the numbers of events in two time windows for a marked point process is large.
Is integer arithmetic fundamental to mental processing?: the mind's secret arithmetic.
Snyder, A W; Mitchell, D J
1999-01-01
Unlike the ability to acquire our native language, we struggle to learn multiplication and division. It may then come as a surprise that the mental machinery for performing lightning-fast integer arithmetic calculations could be within us all even though it cannot be readily accessed, nor do we have any idea of its primary function. We are led to this provocative hypothesis by analysing the extraordinary skills of autistic savants. In our view such individuals have privileged access to lower levels of information not normally available through introspection. PMID:10212449
Obtaining lower bounds from the progressive hedging algorithm for stochastic mixed-integer programs
Gade, Dinakar; Hackebeil, Gabriel; Ryan, Sarah M.; Watson, Jean -Paul; Wets, Roger J.-B.; Woodruff, David L.
2016-04-02
We present a method for computing lower bounds in the progressive hedging algorithm (PHA) for two-stage and multi-stage stochastic mixed-integer programs. Computing lower bounds in the PHA allows one to assess the quality of the solutions generated by the algorithm contemporaneously. The lower bounds can be computed in any iteration of the algorithm by using dual prices that are calculated during execution of the standard PHA. In conclusion, we report computational results on stochastic unit commitment and stochastic server location problem instances, and explore the relationship between key PHA parameters and the quality of the resulting lower bounds.
Excluded Volume Causes Integer and Fractional Plateaus in Colloidal Ratchet Currents
NASA Astrophysics Data System (ADS)
Tierno, Pietro; Fischer, Thomas M.
2014-01-01
We study the collective transport of paramagnetic colloids driven above a magnetic bubble lattice by an external rotating magnetic field. We measure a direct ratchet current which rises in integer and fractional steps with the field amplitude. The stepwise increase is caused by excluded volume interactions between the particles, which form composite clusters above the bubbles with mobile and immobile occupation sites. Transient energy minima located at the interstitials between the bubbles cause the colloids to hop from one composite cluster to the next with synchronous and period doubled modes of transport. The colloidal current may be polarized to make selective use of type up or type down interstitials.
Design and multiparticle simulation of the half integer slow extraction system for the Main Injector
Trbojevic, D.; Harrison, M.
1991-05-01
One of the roles of the new Main Injector ring, in the second phase of the Fermilab upgrade, is to deliver all year around the slow extracted 120 GeV test beams. The half-integer slow extraction system design and results from a Monte-Carlo simulation of fast spill are presented. The simulation was performed with a computer tracking program based on the TEVLAT program with a large number of particles (up to 1000). Particle tracking included the systematic errors produced by the magnetic multipoles within the dipoles and quadrupoles as well as random multipole errors.
Edit distance for marked point processes revisited: An implementation by binary integer programming.
Hirata, Yoshito; Aihara, Kazuyuki
2015-12-01
We implement the edit distance for marked point processes [Suzuki et al., Int. J. Bifurcation Chaos 20, 3699-3708 (2010)] as a binary integer program. Compared with the previous implementation using minimum cost perfect matching, the proposed implementation has two advantages: first, by using the proposed implementation, we can apply a wide variety of software and hardware, even spin glasses and coherent ising machines, to calculate the edit distance for marked point processes; second, the proposed implementation runs faster than the previous implementation when the difference between the numbers of events in two time windows for a marked point process is large. PMID:26723156
Nauss, R.
1994-12-31
In this review we describe three integer programming applications involving fixed income securities. A bond trading model is presented that features a number of possible different objectives and collections of constraints including future interest rate scenarios. A mortgage backed security (MBS) financing model that accounts for potential defaults in the MBS is also presented. Finally we describe an approach to allocate collections of bank securities into three categories: hold to maturity, available for sale, or trading. Placement of securities in these categories affects the capital, net income, and liquidity of a bank according to new accounting rules promulgated by the Financial Accounting Standards Board.
TRACKING SIMULATIONS NEAR HALF-INTEGER RESONANCE AT PEP-II
Nosochkov, Yuri
2003-05-13
Beam-beam simulations predict that PEP-II luminosity can be increased by operating the horizontal betatron tune near and above a half-integer resonance. However, effects of the resonance and its synchrotron sidebands significantly enhance betatron and chromatic perturbations which tend to reduce dynamic aperture. In the study, chromatic variation of horizontal tune near the resonance was minimized by optimizing local sextupoles in the Interaction Region. Dynamic aperture was calculated using tracking simulations in LEGO code. Dependence of dynamic aperture on the residual orbit, dispersion and {beta} distortion after correction was investigated.
Effect of 0.1% pilocarpine mouthwash on xerostomia: double-blind, randomised controlled trial.
Kim, J H; Ahn, H-J; Choi, J-H; Jung, D W; Kwon, J-S
2014-03-01
The objective of this study was to evaluate the effect of 0.1% pilocarpine mouthwash in xerostomic patients. Sixty volunteers were randomly allocated to two groups. The experimental group used 0.1% pilocarpine solution, and the control group used 0.9% saline. The short- and long-term effects of pilocarpine were investigated by measuring the severity of oral dryness, minor salivary flow rates and unstimulated whole salivary flow rate at predetermined times. The severity of oral dryness was decreased in both groups at 0, 30 and 60 min after mouthwashing, with no significant difference between the groups. Buccal and labial secretions were increased in both groups, but only the experimental group exhibited increased palatal secretion. Labial and palatal secretions, but not buccal secretion, differed between the groups. The unstimulated whole salivary flow rate was increased in the experimental group and differed from that in the control group. After 4 weeks, the severity of oral dryness was decreased in both groups and did not differ between them. The oral dryness at night or on awakening significantly decreased in both groups, with no significant difference between them, but the oral dryness at other times of the day and the difficulty in swallowing foods were not significantly changed in both groups. Minor salivary and unstimulated whole salivary flow rates did not increase in both groups. Until 1 h after mouthwashing, 0.1% pilocarpine mouthwash increased minor salivary and unstimulated whole salivary secretions, but was not superior compared with 0.9% saline at relieving subjective oral dryness. PMID:24527846
Measurement and evaluation of neutron spectra above 0.1 MeV in the JMTR
NASA Astrophysics Data System (ADS)
Sakurai, Kiyoshi
1983-08-01
The evaluation of fast neutron spectra from the Japan Materials Testing Reactor (JMTR) have been performed by using the critical facility of the JMTR and by a combination of the multi-foil activation method and the adjustment codes (SAND II and NEUPAC). In order to measure and evaluate the neutron spectra above 0.1 MeV, resonance detectors such as manganese, gold and copper have been used to determine the neutron flux level in the {1}/{E} region and threshold detectors such as silver, rhodium, indium, uranium, aluminum, magnesium and titanium have been used to determine the neutron flux level above 0.1 MeV. The foils for the measurement of the neutron reaction rate were separately irradiated. The 115In(n,n') 115mIn reaction is used for the monitoring of the average fast neutron flux in the irradiation period, and the slight difference of each irradiation condition was corrected. The guess spectra for the neutron spectrum adjustment were calculated by using the one-dimensional discrete-ordinates code ANISN with the slab model for the JMTR core. Some important points were concluded through the adjustment procedure of the neutron spectrum: the adjusted spectrum from 0.1 to 1 MeV depends on the accuracy of the neutron cross section data for the threshold detectors such as silver and rhodium, and also on the accuracy of these reaction rates. The ratios of neutron flux above 0.183 MeV to neutron flux above 1 MeV were calculated from the guess spectra and the adjusted spectra, and the ratios were in good agreement with each other.
Moessbauer spectroscopy of Mg(0.9)Fe(0.1)SiO3 perovskite
NASA Technical Reports Server (NTRS)
Jeanloz, Raymond; O'Neill, Bridget; Pasternak, Moshe P.; Taylor, R. D.; Bohlen, Steven R.
1992-01-01
Ambient pressure Moessbauer spectra of Mg(0.9)Fe-57(0.1)SiO3 perovskite synthesized at pressure-temperature conditions of about 50 GPa and 1700 K show that the iron is entirely high-spin Fe(2+) and appears to be primarily located in the octahedral site within the crystal structure. We observe broad Moessbauer lines, suggesting a distribution of electric-field gradients caused by disorder associated with the Fe ions. Also, the perovskite exhibits magnetic ordering at temperatures lower than 5 K, implying that there is a magnetic contribution to the absolute ('third-law') entropy of this phase.
NASA Technical Reports Server (NTRS)
Heimerl, George J; Niles, Donald E
1947-01-01
Column and plate compressive strengths of extruded 0-1HTA magnesium alloy were determined both within and beyond the elastic range from tests of flat end H-section columns and from local instability tests of H-, Z-, and channel section columns. These tests are part of an extensive research investigation to provide data on the structural strength of various aircraft materials. The results are presented in the form of curves and charts that are suitable for use in the design and analysis of aircraft structures.
a Genetic Algorithm Based on Sexual Selection for the Multidimensional 0/1 Knapsack Problems
NASA Astrophysics Data System (ADS)
Varnamkhasti, Mohammad Jalali; Lee, Lai Soon
In this study, a new technique is presented for choosing mate chromosomes during sexual selection in a genetic algorithm. The population is divided into groups of males and females. During the sexual selection, the female chromosome is selected by the tournament selection while the male chromosome is selected based on the hamming distance from the selected female chromosome, fitness value or active genes. Computational experiments are conducted on the proposed technique and the results are compared with some selection mechanisms commonly used for solving multidimensional 0/1 knapsack problems published in the literature.
Broadband stimulated Raman microscopy with 0.1 ms pixel acquisition time.
Czerwinski, Lars; Nixdorf, Jakob; Florio, Giuseppe Di; Gilch, Peter
2016-07-01
Femtosecond stimulated Raman microscopy (FSRM) is a nonlinear technique for rapid broadband Raman imaging. It utilizes a few femtosecond probe pulse and a narrow bandwidth pump pulse. Using a fast (20 kHz) multi-channel detector, stimulated Raman spectra can be recorded with an acquisition time as short as 0.1 ms. In this Letter, spectra of neat benzonitrile at different acquisition speeds are presented to benchmark the FSRM setup. Furthermore, chemical maps of a multi-phase polymer blend are recorded using the fastest acquisition rate possible with the current instrument. PMID:27367091
Characterization of PTCDA nanocrystals on Ge(0 0 1):H-(2 × 1) surfaces
NASA Astrophysics Data System (ADS)
Ahmad Zebari, Amir A.; Kolmer, Marek; Prauzner-Bechcicki, Jakub S.
2015-03-01
We analyze self-assembled nanocrystals of 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) molecules on hydrogen passivated Ge(0 0 1) surfaces with use of scanning tunneling microscopy (STM) and spectroscopy (STS). At 0.7ML coverage, 2.1 nm high, elongated, hexagonal islands inclined at 37° with respect to the substrate row are mostly observed. By measuring the differential tunneling conductance, we observe an effect of electronic decoupling of the nanocrystals due to the introduced passivating layer. Finally, we shortly discuss the stability of the islands and their interaction with the scanning probe in the ultra-high vacuum environment.
A Very Hot, High Redshift Cluster of Galaxies: More Trouble for Omega(0) = 1
NASA Technical Reports Server (NTRS)
Donahue, Megan; Voit, G. Mark; Gioia, Isabella; Luppino, Gerry; Hughes, John P.; Stocke, John T.
1998-01-01
We have observed the most distant (= 0.829) cluster of galaxies in the Einstein Extended Medium Sensitivity Survey (EMSS), with the ASCA and ROSAT satellites. We find an X-ray temperature of 12.3 (sup +3.1) (sub -2.2)keV for this cluster, and the ROSAT map reveals significant substructure. The high temperature of MS1054-0321 is consistent with both its approximate velocity dispersion, based on the redshifts of 12 cluster members we have obtained at the Keck and the Canada-France-Hawaii telescopes, and with its weak lensing signature. The X-ray temperature of this cluster implies a virial mass approx. 7.4 x 10 (sup 14) h (sup -1) M (circle dot), if the mean matter density in the universe equals the critical value (OMEGA (sub 0) = 1), or larger if OMEGA (sub 0) is less than 1. Finding such a hot, massive cluster in the EMSS is extremely improbable if clusters grew from Gaussian perturbations in an OMEGA (sub 0) = 1 universe. Combining the assumptions that OMEGA (sub 0) = 1 and that the initial perturbations were Gaussian with the observed X-ray temperature function at low redshift, we show that this probability of this cluster occurring in the volume sampled by the EMSS is less than a few times 10 (sup -5). Nor is MS1054-0321 the only hot cluster at high redshift; the only two other z greater than 0.5 EMSS clusters already observed with ASCA also have temperatures exceeding 8 keV. Assuming again that the initial perturbations were Gaussian and OMEGA (sub 0) = 1, we find that each one is improbable at the less than 10 (sup -2) level. These observations, along with the fact that these luminosities and temperatures of the high-z clusters all agree with the low-z L (sub X) - T (sub X) relation, argue strongly that OMEGA (sub 0) less than 1. Otherwise, the initial perturbations must be non-Gaussian, if these clusters' temperatures do indeed reflect their gravitational potentials.
Are 0. 1%-accurate gamma-ray assays possible for /sup 235/U solutions
Parker, J.L.
1983-01-01
The factors influencing the accuracy of passive gamma-ray assay of uniform, homogeneous solution samples have been studied in some detail, particularly for the assay of /sup 235/U in uranium solutions. Factors considered are the overall long-term electronic stability, the information losses caused by the rate-related electronic processes of pulse pileup and dead-time, and the self-attenuation of gamma rays within the samples. Both experimental and computational studies indicate that gamma-ray assay procedures for solution samples of moderate size (from approx. 10 to perhaps a few hundred milliliters) are now capable of accuracies approaching 0.1% in many practical cases.
Acitretin systemic and retinoic acid 0.1% cream supression of basal cell carcinoma
Zhang, Xi-Bao; Zhang, San-Quan; Li, Chang-Xing; Huang, Zhen-Ming; Luo, Yu-Wu
2010-01-01
Retinoids have been used for years as monotherapy and/or in combination for treatment and suppression of cutaneous malignancies in patients with basal cell nevus syndrome, xeroderma pigmentosum, or cutaneous T-cell lymphoma (CTCL) basal cell carcinoma (BCC). We report 4 cases with BCC confirmed by histopathology who were treated by short-term systemic acitretin combined with retinoic acid 0.1% cream. The 4 cases with BCC showed good response to the treatment without severe adverse effects during treatment and follow-up. The finding suggests that acitretin may be an appropriate treatment option for elderly patients who require less invasive treatment for BCC. PMID:25386240
A 4 to 0.1 nm FEL Based on the SLAC Linac
Pellegrini, C.; /UCLA
2012-06-05
The author show that using existing electron gun technology and a high energy linac like the one at SLAC, it is possible to build a Free Electron Laser operating around the 4 nm water window. A modest improvement in the gun performance would further allow to extend the FEL to the 0.1 nm region. Such a system would produce radiation with a brightness many order of magnitude above that of any synchrotron radiation source, existing or under construction, with laser power in the multigawatt region and subpicosecond pulse length.
Investigation of nitric oxide adsorption on Zr( 0 0 0 1 )
NASA Astrophysics Data System (ADS)
Kang, Y. C.; Ramsier, R. D.
2002-06-01
Nitric oxide (NO, 15N18O) adsorption on Zr(0 0 0 1) surfaces is studied by Auger electron spectroscopy (AES), low energy electron diffraction (LEED) and temperature programmed desorption (TPD). The results of our TPD experiments imply that subsurface oxygen and hydrogen are involved in surface reactions during heating, resulting in water and ammonia evolution. NO exposure shifts the Zr(MNV) AES feature by 2 eV indicating a change in oxidation state of +1 after adsorption. A superstructure (1×1) LEED pattern is observed after annealing, and is attributed to residual nitrogen at or near the surface.
Magnetism and electrical transport in Fe 0.9TM 0.1Si, TM=Co, Rh, Ru
NASA Astrophysics Data System (ADS)
Paschen, S.; Pushin, D.; Ott, H. R.; Young, D. P.; Fisk, Z.
1999-01-01
Our comparative study of magnetic and transport properties of Fe 0.9Co 0.1Si, Fe 0.9Rh 0.1Si, and Fe 0.9Ru 0.1Si indicates that the ferromagnetism previously observed in Fe 0.9Co 0.1Si is not due to localized magnetic moments residing on the Co atoms. It is rather the metallicity of the system which provides the formation of a ferromagnetic state.
Thermal loading as a causal factor in exceeding the 0.1 PPM laboratory fume hood control level.
Chessin, Saul J; Johnston, James D
2002-07-01
Tracer gas testing per ANSI/ASHRAE 110-1995 Method of Testing Performance of Laboratory Fume Hoods was used to investigate the role of thermal loading in exceeding laboratory fume hood control levels. Three types of typical laboratory burners (blast, Meeker, and economy) were used to provide a thermal challenge. Heat outputs of between 0 and 61,610 Btu/hr were based on fuel heat capacity (for liquid propane gas) and fuel gas flow rates. Breathing zone concentrations were measured with a MIRAN 1B2 infrared gas analyzer. Also, for each test, the difference between the room and duct temperatures (delta temperature) was measured. Results indicated a linear relationship between heat loads and tracer gas breathing zone concentrations for both Btu/hr and delta temperature. Control levels of 0.1 ppm were exceeded at less than 12,000 Btu/hr. Also, control levels were exceeded at a lower heat load when the tracer gas generation rate was increased. These results indicate that thermal loads in laboratory fume hoods increase the risk of exceeding laboratory fume hood control levels. Some compensatory measures relative to hood configuration and flow rates are recommended for laboratory operations involving heat sources. PMID:12083172
Code of Federal Regulations, 2014 CFR
2014-04-01
... 19 Customs Duties 1 2014-04-01 2014-04-01 false Customs revenue function regulations issued under the authority of the Departments of the Treasury and Homeland Security. 0.1 Section 0.1 Customs Duties... TRANSFERRED OR DELEGATED AUTHORITY § 0.1 Customs revenue function regulations issued under the authority...
A FPGA system for QRS complex detection based on Integer Wavelet Transform
NASA Astrophysics Data System (ADS)
Stojanović, R.; Karadaglić, D.; Mirković, M.; Milošević, D.
2011-01-01
Due to complexity of their mathematical computation, many QRS detectors are implemented in software and cannot operate in real time. The paper presents a real-time hardware based solution for this task. To filter ECG signal and to extract QRS complex it employs the Integer Wavelet Transform. The system includes several components and is incorporated in a single FPGA chip what makes it suitable for direct embedding in medical instruments or wearable health care devices. It has sufficient accuracy (about 95%), showing remarkable noise immunity and low cost. Additionally, each system component is composed of several identical blocks/cells what makes the design highly generic. The capacity of today existing FPGAs allows even dozens of detectors to be placed in a single chip. After the theoretical introduction of wavelets and the review of their application in QRS detection, it will be shown how some basic wavelets can be optimized for easy hardware implementation. For this purpose the migration to the integer arithmetic and additional simplifications in calculations has to be done. Further, the system architecture will be presented with the demonstrations in both, software simulation and real testing. At the end, the working performances and preliminary results will be outlined and discussed. The same principle can be applied with other signals where the hardware implementation of wavelet transform can be of benefit.
A simplified Integer Cosine Transform and its application in image compression
NASA Technical Reports Server (NTRS)
Costa, M.; Tong, K.
1994-01-01
A simplified version of the integer cosine transform (ICT) is described. For practical reasons, the transform is considered jointly with the quantization of its coefficients. It differs from conventional ICT algorithms in that the combined factors for normalization and quantization are approximated by powers of two. In conventional algorithms, the normalization/quantization stage typically requires as many integer divisions as the number of transform coefficients. By restricting the factors to powers of two, these divisions can be performed by variable shifts in the binary representation of the coefficients, with speed and cost advantages to the hardware implementation of the algorithm. The error introduced by the factor approximations is compensated for in the inverse ICT operation, executed with floating point precision. The simplified ICT algorithm has potential applications in image-compression systems with disparate cost and speed requirements in the encoder and decoder ends. For example, in deep space image telemetry, the image processors on board the spacecraft could take advantage of the simplified, faster encoding operation, which would be adjusted on the ground, with high-precision arithmetic. A dual application is found in compressed video broadcasting. Here, a fast, high-performance processor at the transmitter would precompensate for the factor approximations in the inverse ICT operation, to be performed in real time, at a large number of low-cost receivers.
Likert pain score modeling: a Markov integer model and an autoregressive continuous model.
Plan, E L; Elshoff, J-P; Stockis, A; Sargentini-Maier, M L; Karlsson, M O
2012-05-01
Pain intensity is principally assessed using rating scales such as the 11-point Likert scale. In general, frequent pain assessments are serially correlated and underdispersed. The aim of this investigation was to develop population models adapted to fit the 11-point pain scale. Daily Likert scores were recorded over 18 weeks by 231 patients with neuropathic pain from a clinical trial placebo group. An integer model consisting of a truncated generalized Poisson (GP) distribution with Markovian transition probability inflation was implemented in NONMEM 7.1.0. It was compared to a logit-transformed autoregressive continuous model with correlated residual errors. In both models, the score baseline was estimated to be 6.2 and the placebo effect to be 19%. Developed models similarly retrieved consistent underlying features of the data and therefore correspond to platform models for drug effect detection. The integer model was complex but flexible, whereas the continuous model can more easily be developed, although requires longer runtimes. PMID:22433987
On P -orderings, rings of integer-valued polynomials, and ultrametric analysis
NASA Astrophysics Data System (ADS)
Bhargava, Manjul
2009-10-01
We introduce two new notions of `` P -ordering'' and use them to define a three-parameter generalization of the usual factorial function. We then apply these notions of P -orderings and factorials to some classical problems in two distinct areas, namely: 1) the study of integer-valued polynomials and 2) P -adic analysis. Specifically, we first use these notions of P -orderings and factorials to construct explicit Polya-style regular bases for two natural families of rings of integer-valued polynomials defined on an arbitrary subset of a Dedekind domain. Second, we classify ``smooth'' functions on an arbitrary compact subset S of a local field, by constructing explicit interpolation series (i.e., orthonormal bases) for the Banach space of functions on S satisfying any desired conditions of continuous differentiability or local analyticity. Our constructions thus extend Mahler's Theorem (classifying the functions that are continuous on {Z}_p ) to a very general setting. In particular, our constructions prove that, for any epsilon>0 , the functions in any of the above Banach spaces can be epsilon -approximated by polynomials (with respect to their respective Banach norms). Thus we obtain the non-Archimedean analogues of the classical polynomial approximation theorems in real and complex analysis proven by Weierstrass, de la Vallee-Poussin, and Bernstein. Our proofs are effective.
Half integer features in the quantum Hall Effect: experiment and theory
NASA Astrophysics Data System (ADS)
Kramer, Tobias; Heller, E. J.; Parrott, R. E.; Liang, C.-T.; Huang, C. F.; Chen, K. Y.; Lin, L.-H.; Wu, J.-Y.; Lin, S.-D.
2009-03-01
We discuss experimental data and a new model of the integer quantum Hall effect (IQHE), which explains an intriguing substructure within Landau levels observed at higher currents. The experiments show inflection points in the Hall resistivity around filling factors 5/2 and 7/2. The experiments require to revisit the foundations of the IQHE and to establish an injection model which incorporates the correct boundary conditions imposed by a real Hall device and the Lorentz force. We have to follow the electrons to their source: one corner of the Hall bar and its steep electric field gradients, rather than focusing on the middle of the Hall device. We find the entire Hall resistivity curve is calculable as a function of magnetic field, temperature, and current. In contrast to previous theories of the IQHE, disorder plays no fundamental role in our theory. Contrary to the standard picture of Landau levels in disorder system, we predict and observe gaps right in the middle of certain Landau levels. The Hall plateaus and half integer inflections are shown to result from the LDOS appropriate to the magnetic field and the strong electric field at the injection corner.
An Integer Precise Point Positioning technique for sea surface observations using a GPS buoy
NASA Astrophysics Data System (ADS)
Fund, F.; Perosanz, F.; Testut, L.; Loyer, S.
2013-04-01
GPS data dedicated to sea surface observation are usually processed using differential techniques. Unfortunately, the precision of resulting kinematic positions is baseline-length dependent. So, high precision sea surface observations using differential GPS techniques are limited to coasts, lakes, and rivers. Recent improvements in GPS satellite products (orbits, clocks, and phase biases) make phase ambiguity fixing at the zero difference level achievable and opens up the observation of the sea surface without geographical constraints. This paper recalls the concept of the Integer Precise Point Positioning technique and discusses the precision of GPS buoy positioning. A sequential version of the GINS software has been implemented to achieve single epoch GPS positioning. We used 1 Hz data from a two week GPS campaign conducted in the Kerguelen Islands. A GPS buoy has been moored close to a radar gauge and 90 m away from a permanent GPS station. This infrastructure offers the opportunity to compare both kinematic Integer Precise Point Positioning and classical differential GPS positioning techniques to in situ radar gauge data. We found that Precise Point Positioning results are not significantly biased with respect to radar gauge data and that horizontal time series are consistent with differential processing at the sub-centimetre precision level. Nevertheless, standard deviations of height time series with respect to radar gauge data are typically [4-5] cm. The dominant driver for noise at this level is attributed to errors in tropospheric estimates which propagate into position solutions.
Inexact multistage stochastic integer programming for water resources management under uncertainty.
Li, Y P; Huang, G H; Nie, S L; Liu, L
2008-07-01
In this study, an inexact multistage stochastic integer programming (IMSIP) method is developed for water resources management under uncertainty. This method incorporates techniques of inexact optimization and multistage stochastic programming within an integer programming framework. It can deal with uncertainties expressed as both probabilities and discrete intervals, and reflect the dynamics in terms of decisions for water allocation through transactions at discrete points of a complete scenario set over a multistage context. Moreover, the IMSIP can facilitate analyses of the multiple policy scenarios that are associated with economic penalties when the promised targets are violated as well as the economies-of-scale in the costs for surplus water diversion. A case study is provided for demonstrating the applicability of the developed methodology. The results indicate that reasonable solutions have been generated for both binary and continuous variables. For all scenarios under consideration, corrective actions can be undertaken dynamically under various pre-regulated policies and can thus help minimize the penalties and costs. The IMSIP can help water resources managers to identify desired system designs against water shortage and for flood control with maximized economic benefit and minimized system-failure risk. PMID:17532113
Design of real-time video watermarking based on Integer DCT for H.264 encoder
NASA Astrophysics Data System (ADS)
Joshi, Amit M.; Mishra, Vivekanand; Patrikar, R. M.
2015-01-01
With the advent of technology, video has become a prominent entity that is shared over networks. With easy availability of various editing tools, data integrity and ownership issues have caused great concern worldwide. Video watermarking is an evolving field that may be used to address such issues. Till date, most of the algorithms have been developed for uncompressed domain watermarking and implemented on software platforms. They provide flexibility and simplicity, but at the same time, they are not suited for real-time applications. They work offline where videos are captured and then watermark is embedded in the video. In the present work, a hardware-based implementation of video watermarking is proposed that overcomes the limitation of software watermarking methods and can be readily adapted to the H.264 standard. This paper focuses on an invisible and robust video watermarking scheme, which can be easily implemented as an integral part of the standard H.264 encoder. The proposed watermarking algorithm involves Integer DCT-based watermark embedding method, wherein Integer DCT is calculated with a fully parallel approach resulting in better speed. The proposed video watermarking is designed with pipelining and parallel architecture for real-time implementation. Here, scene change detection technique is used to improve the performance. Different planes of the watermark are embedded in different frames of a particular scene in order to achieve robustness against various temporal attacks.
Optimal integer resolution for attitude determination using global positioning system signals
NASA Technical Reports Server (NTRS)
Crassidis, John L.; Markley, F. Landis; Lightsey, E. Glenn
1998-01-01
In this paper, a new motion-based algorithm for GPS integer ambiguity resolution is derived. The first step of this algorithm converts the reference sightline vectors into body frame vectors. This is accomplished by an optimal vectorized transformation of the phase difference measurements. The result of this transformation leads to the conversion of the integer ambiguities to vectorized biases. This essentially converts the problem to the familiar magnetometer-bias determination problem, for which an optimal and efficient solution exists. Also, the formulation in this paper is re-derived to provide a sequential estimate, so that a suitable stopping condition can be found during the vehicle motion. The advantages of the new algorithm include: it does not require an a-priori estimate of the vehicle's attitude; it provides an inherent integrity check using a covariance-type expression; and it can sequentially estimate the ambiguities during the vehicle motion. The only disadvantage of the new algorithm is that it requires at least three non-coplanar baselines. The performance of the new algorithm is tested on a dynamic hardware simulator.
The computational complexity of elliptic curve integer sub-decomposition (ISD) method
NASA Astrophysics Data System (ADS)
Ajeena, Ruma Kareem K.; Kamarulhaili, Hailiza
2014-07-01
The idea of the GLV method of Gallant, Lambert and Vanstone (Crypto 2001) is considered a foundation stone to build a new procedure to compute the elliptic curve scalar multiplication. This procedure, that is integer sub-decomposition (ISD), will compute any multiple kP of elliptic curve point P which has a large prime order n with two low-degrees endomorphisms ψ1 and ψ2 of elliptic curve E over prime field Fp. The sub-decomposition of values k1 and k2, not bounded by ±C√n , gives us new integers k11, k12, k21 and k22 which are bounded by ±C√n and can be computed through solving the closest vector problem in lattice. The percentage of a successful computation for the scalar multiplication increases by ISD method, which improved the computational efficiency in comparison with the general method for computing scalar multiplication in elliptic curves over the prime fields. This paper will present the mechanism of ISD method and will shed light mainly on the computation complexity of the ISD approach that will be determined by computing the cost of operations. These operations include elliptic curve operations and finite field operations.
Deniz, Furkan Nur; Alagoz, Baris Baykant; Tan, Nusret; Atherton, Derek P
2016-05-01
This paper introduces an integer order approximation method for numerical implementation of fractional order derivative/integrator operators in control systems. The proposed method is based on fitting the stability boundary locus (SBL) of fractional order derivative/integrator operators and SBL of integer order transfer functions. SBL defines a boundary in the parametric design plane of controller, which separates stable and unstable regions of a feedback control system and SBL analysis is mainly employed to graphically indicate the choice of controller parameters which result in stable operation of the feedback systems. This study reveals that the SBL curves of fractional order operators can be matched with integer order models in a limited frequency range. SBL fitting method provides straightforward solutions to obtain an integer order model approximation of fractional order operators and systems according to matching points from SBL of fractional order systems in desired frequency ranges. Thus, the proposed method can effectively deal with stability preservation problems of approximate models. Illustrative examples are given to show performance of the proposed method and results are compared with the well-known approximation methods developed for fractional order systems. The integer-order approximate modeling of fractional order PID controllers is also illustrated for control applications. PMID:26876378
NASA Astrophysics Data System (ADS)
Vilas, César; Drake, Pilar; Fockedey, Nancy
2008-04-01
Mysid shrimps are an important component of estuarine food webs because they play a key role in energy transfer as intermediate prey. We investigated the seasonal, tidal and depth specific variation in the diet of the estuarine mysids Neomysis integer and Rhopalophthalmus tartessicus and explored its implications for the planktonic community structure of a temperate estuary (Guadalquivir Estuary, SW Spain). Neomysis integer is an opportunistic omnivore feeding mainly on mesozooplankton and on members of the detrital-microbial loop, shifting prey seasonally according to availability. In contrast, R. tartessicus showed a more carnivorous diet and shifted its target prey during seasons of low resource availability. Despite statistically significant differences in diet composition, both species shared prey of similar size, particularly juvenile Mesopodopsis slabberi, the most abundant mysid species in this estuary, and copepods. Although these similarities imply inter-specific resource competition, their co-existence is achieved by niche partitioning and spatial segregation: the higher osmoregulatory capacity and foraging plasticity of N. integer confers a broader niche breadth for this species allowing N. integer to inhabit the more stressful oligohaline region of the estuary where R. tartessicus cannot survive. We propose that this mechanism relaxes the potential for competition between N. integer and R. tartessicus.
Structure and composition of chemically prepared and vacuum annealed InSb(0 0 1) surfaces
NASA Astrophysics Data System (ADS)
Tereshchenko, O. E.
2006-08-01
The InSb(0 0 1) surfaces chemically treated in HCl-isopropanol solution and annealed in vacuum were studied by means of X-ray photoelectron spectroscopy (XPS), low energy electron diffraction (LEED) and electron energy-loss spectroscopy (EELS). The HCl-isopropanol treatment removes indium and antimony oxides and leaves on the surface about 3 ML of physisorbed overlayer, containing indium chlorides and small amounts of antimony, which can be thermally desorbed at 230 °C. The residual carbon contaminations were around 0.2-0.4 ML and consisted of the hydrocarbon molecules. These hydrocarbon contaminations were removed from the surface together with the indium chlorides and antimony overlayer. With increased annealing temperature, a sequence of reconstructions were identified by LEED: (1 × 1), (1 × 3), (4 × 3), and (4 × 1)/c(8 × 2), in the order of decreasing Sb/In ratio. The structural properties of chemically prepared InSb(0 0 1) surface were found to be similar to those obtained by decapping of Sb-capped epitaxial layers.
Strong electron correlation on the Fe3O4(0 0 1) surfaces
NASA Astrophysics Data System (ADS)
Pinto, Henry; Elliott, Simon D.; Foster, Adam; Nieminen, R. M.
2007-03-01
Magnetite Fe3O4 is a fascinating material that still is not well understood and presents challenges for the state-of-the-art computational methods. This transition metal oxide undergoes a first-order metal-insulator transition at TV=120 K. The ferrimagnetic properties of Fe3O4 makes it a promising material for spintronic applications. We use a plane wave density functional theory in the generalized gradient approximation adding a Hubbard-U parameter to describe properly the strongly correlated Fe--3d electrons. Based on previous results, we compute the surface structure, magnetic properties and electronic structure of several Fe3O4(0 0 1) surfaces with (√2x√2)R45^o reconstruction. The simulated scanning tunneling microscopy images of these surfaces are compared and discussed in the light of available experimental data. Finally, we analyze the possible existence of charge ordering on the Fe3O4(0 0 1) surface and the effect on the surface electronic structure with changing the value of the Hubbard-U parameter on the superficial Fe sites. H. Pinto, S. Elliott, J.Phys.: Condens. Matter 18, 10427 (2006)
Stability of tetragonal <0 0 1> oriented PZN-12PT single crystals
NASA Astrophysics Data System (ADS)
Touhtouh, S.; Hajjaji, A.; Boughaleb, Y.; Benkhouja, K.; Arbaoui, A.; Rguiti, M.; Guyomar, D.
2012-08-01
The present paper reports on the synthesis and electromechanical characterization of tetragonal (1 - x)Pb(Zn1/3-Nb2/3)O3-xPbTiO3 (x = 12) single crystals as a function of various external disturbances. Tetragonal PZN-12PT single crystals were grown using the flux method. The set of piezoelectric coefficients in the lateral mode was measured. Samples with size of 10 × 2 × 1 mm3 were polled in the <0 0 1> and <1 1 0> crystallographic directions and were found to possess a high Curie temperature (>170 °C). Moreover, no ferroelectric-ferroelectric phase transition was observed for the positive temperatures, which expanded the usage range significantly. Tetragonal crystals were also found to have high coercive field, mechanical quality factors, and good optical properties, attracting much effort on the characterization of tetragonal PZN-12PT crystals. However, the most interesting properties in the lateral mode were obtained for <0 0 1>. Finally, the thermal stability and stress dependence were studied in order to determine the working conditions.
NASA Astrophysics Data System (ADS)
Parvin, Roksana; Momin, A. A.; Hossain, A. K. M. Akther
2016-03-01
Structural, magnetic and dielectric properties of Li substituted LixCu0.1Co0.1Zn0.8-2xFe2+xO4 (where x=0.00-0.40) prepared by auto combustion method have been investigated. The X-ray diffraction patterns of these compositions confirmed the formation of the single phase spinel structure. Disc- and toroid-shaped samples are prepared from each composition and sintered at various temperatures (1100-1300 °C) in air for 1 h. The lattice parameter decreases with the increase in Li1+ content obeying Vegard's law. The particle size of the starting powder compositions varied from 24 to 46 nm. The bulk density and permeability increases up to a certain level of Li1+ substitution, beyond that all these properties decrease with increase in Li1+ content. The bulk density increases with increase in sintering temperatures up to 1150 °C both for the parent and substituted compositions. Due to substitution of Li1+, the real part of the initial permeability increases from 18 to 61 for x=0.10 for the samples sintered at 1150 °C. The ferrites with higher initial permeability have relatively lower resonance frequency which obey Snoek's law. The initial permeability strongly depends on average grain size and intragranular porosity but at higher sintering temperatures some voids are present in the samples which reduce the density and hence permeability of the samples. The ferri to paramagnetic transition temperature, TC, for the parent sample is below room temperature. The TC increases almost linearly with increasing Li content.The saturation magnetization, Ms, and the number of Bohr magneton, n (μB), increases up to x=0.30 due to the enhancement of the A-B interaction in the AB2O4 spinel type ferrites. Beyond that value of x, the Ms and the n (μB) values are decreased. The substitution of Li1+ influences the magnetic parameters due to modification of the cation distribution. Dielectric constant (ε ‧) decreases with increase in frequency which is rapid at lower frequencies and
Fermi Large Area Telescope Observations of the Supernova Remnant GS.7-0.1
NASA Technical Reports Server (NTRS)
Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Ferrara, E. C.; Harding, A. K.; Hays, E.; Moiseev, A. A.; Troja, E.
2011-01-01
We present a detailed analysis of the GeV gamma-ray emission toward the supernova remnant (SNR) G8.7-0.1 with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. An investigation of the relationship among G8.7-0.l and the TeV unidentified source HESS J1804-216 provides us with an important clue on diffusion process of cosmic rays if particle acceleration operates in the SNR. The GeV gamma-ray emission is extended with most of the emission in positional coincidence with the SNR G8.7-0.l and a lesser part located outside the western boundary of G8.7-0.l. The region of the gamma-ray emission overlaps spatially-connected molecular clouds, implying a physical connection for the gamma-ray structure. The total gamma-ray spectrum measured with LAT from 200 MeV-100 GeV can be described by a broken power-law function with a break of 2.4 +/- 0.6 (stat) +/- 1.2 (sys) GeV, and photon indices of 2.10 +/- 0.06 (stat) +/- 0.10 (sys) below the break and 2.70 +/- 0.12 (stat) +/- 0.l4 (sys) above the break. Given the spatial association among the gamma rays, the radio emission of G8.7-0.1, and the molecular clouds, the decay of 1IoS produced by particles accelerated in the SNR and hitting the molecular clouds naturally explains the GeV gamma-ray spectrum. We also find that the GeV morphology is not well represented by the TeV emission from HESS J1804-216 and that the spectrum in the GeV band is not consistent with the extrapolation of the TeV gamma-ray spectrum. The spectral index of the TeV emission is consistent with the particle spectral index predicted by a theory that assumes energy-dependent diffusion of particles accelerated in an SNR. We discuss the possibility that the TeV spectrum originates from the interaction of particles accelerated in G8.7-0.1 with molecular clouds, and we constrain the diffusion coefficient of the particles.
Thermal analysis of Al + 0.1% CNT ribbon.
Revo, Sergiy; Hamamda, Smail; Ivanenko, Kateryna; Boshko, Oleh; Djarri, Ahmed; Boubertakh, Abdelhamid
2015-01-01
The objective of this work is a dilatometric study of Al + 0.1% of multiwall carbon nanotubes nanocomposite material (NCM) in three directions: X - parallel to the rolling direction; Y - perpendicular to the rolling direction and (Z) perpendicular to the ribbon plane. NCM specimens were made in the form of a 0.1-mm-thick ribbon. The temperature range used for measurements was 20°C to 600°C. The obtained results show that presence of nanotubes affects the thermal expansion coefficient (TEC) measured in different directions. αx(T) and αy(T) - TEC plots as a function of temperature along X and Y directions, respectively - have substantially the same shape and overlap in the area of 400°C. The expansion along X-axis becomes greater than along Y-axis below this temperature value. It is clear that the coefficient αz(T) is lower than αx(T) and αy(T) over the entire temperature range. The expansion along Z-axis is smaller compared to that along X- and Y-axes. This behaviour suggests that there is a strong interatomic interaction along this direction (Z). αz(T) becomes monotonous and constant and is equal to 8 × 10(-6)°C(-1) at temperatures above 300°C. Such order of magnitude had not been obtained in earlier studies of aluminium alloys. The obtained TEC shows high anisotropy, which grows with the increase of temperature. The heat flow (differential scanning calorimetry, (DSC)) of Al + 0.1% carbon nanotubes (CNT) NCM is more intense compared to that of pure aluminium produced in similar conditions. The two representative curves have similar shape and are almost entirely overlapped. The thermogravimetry results confirm those of DSC. The Raman spectrum of this nanomaterial shows that intensity of G and D bonds is significantly increased compared to that of the pure material. The infrared diagram also confirms that in this case the mentioned bonds are more intensive NCM. The tensile strength measurements (σB) of the studied NCM also demonstrate that
NASA Astrophysics Data System (ADS)
Wu, Gang
2016-08-01
The nuclear quadrupole transverse relaxation process of half-integer spins in liquid samples is known to exhibit multi-exponential behaviors. Within the framework of Redfield's relaxation theory, exact analytical expressions for describing such a process exist only for spin-3/2 nuclei. As a result, analyses of nuclear quadrupole transverse relaxation data for half-integer quadrupolar nuclei with spin >3/2 must rely on numerical diagonalization of the Redfield relaxation matrix over the entire motional range. In this work we propose an approximate analytical expression that can be used to analyze nuclear quadrupole transverse relaxation data of any half-integer spin in liquids over the entire motional range. The proposed equation yields results that are in excellent agreement with the exact numerical calculations.
Wu, Gang
2016-08-01
The nuclear quadrupole transverse relaxation process of half-integer spins in liquid samples is known to exhibit multi-exponential behaviors. Within the framework of Redfield's relaxation theory, exact analytical expressions for describing such a process exist only for spin-3/2 nuclei. As a result, analyses of nuclear quadrupole transverse relaxation data for half-integer quadrupolar nuclei with spin >3/2 must rely on numerical diagonalization of the Redfield relaxation matrix over the entire motional range. In this work we propose an approximate analytical expression that can be used to analyze nuclear quadrupole transverse relaxation data of any half-integer spin in liquids over the entire motional range. The proposed equation yields results that are in excellent agreement with the exact numerical calculations. PMID:27343483
Superconductivity in a New Pseudo-Binary Li2B(Pd1-xPtx)3 (x=0--1) Boride System
NASA Astrophysics Data System (ADS)
Badica, Petre; Kondo, Takaaki; Togano, Kazumasa
2005-03-01
Recently we have found superconductivity in a cubic antiperovskite-like compound Li2BPd3. A new pseudo-binary complete solid solution Li2B(Pd1-xPtx)3, x=0--1 with similar structure has been synthesized and observation of superconductivity in the entire x-range is reported. Our results strongly suggest that superconductivity is of bulk type. Critical temperature Tc is decreasing approximately linearly with amount (x) of Pt from 7.2-8 K for Li2BPd3 to 2.2-2.8 K for Li2BPt3. From isothermal magnetization (M-H) measurements, lower critical fields Hc1 (138 Oe/x=0, 38 Oe/x=1), upper critical fields Hc2WHH (3.4 T/x=0, 1 T/x=1), coherence length ξ(0) (9.8 nm/x=0, 17.9 nm/x=1) and penetration depth λ(0) (190 nm/x=0, 364 nmx=1) were estimated and shown to follow approximately linear dependencies with x, either. Structure and superconducting similarities with MgCNi3, viewed as a bridge between low and high Tc superconductors are increasing the expectations that Li2B(Pd1-xPtx)3, x=0--1 superconductor can be included in the same class of ‘intermediate’ superconductors. For x=0--1 a weak fish-tail effect was observed at low and intermediate fields. Apart from this effect, some samples for x=1 have shown magnetization jumps at fields close to Hc2.
The ρ (ω ) B^* (B) interaction and states of J=0,1,2
NASA Astrophysics Data System (ADS)
Fernandez-Soler, P.; Sun, Zhi-Feng; Nieves, J.; Oset, E.
2016-02-01
In this work, we study systems composed of a ρ /ω and B^* meson pair. We find three bound states in isospin, spin-parity channels (1/2, 0^+), (1/2, 1^+), and (1/2, 2^+). The state with J=2 can be a good candidate for the B_2^*(5747). We also study the ρ B system, and a bound state with mass 5728 MeV and width around 20 MeV is obtained, which can be identified with the B_1(5721) resonance. In the case of I=3/2, one obtains repulsion and, thus, no exotic (molecular) mesons in this sector are generated in the approach.
A Deposited Magnetic Thermometer for Temperatures Below 0.1 Kelvin
NASA Technical Reports Server (NTRS)
Tuttle, J. G.; Stevenson, T. R.; Canavan, E. R.; DiPirro, M. J.; Franz, D. E.; Shirron, P. J.
2003-01-01
Magnetic thermometers are less sensitive to self-heating due to rf noise than are traditional resistive thermometers. This makes them appealing at temperatures well below 0.1 Kelvin in the operating range of many space-flight detectors. We have built and tested a magnetic thermometer which is deposited directly onto a substrate. This device, which uses the temperature dependence of iron-doped palladium s magnetic susceptibility, includes self-shielding deposited coils surrounding a sputtered palladium layer. It is read out using a SQUID to achieve high resolution. Its small size and very good heat-sinking should eventually make it useful for the temperature control of space flight detector arrays, in particular those already using SQUID readouts. The design and test results for this device are discussed.
NASA Astrophysics Data System (ADS)
Senthil Pandian, M.; Balamurugan, N.; Bhagavannarayana, G.; Ramasamy, P.
2008-08-01
Single crystals of potassium acid phthalate (KAP), a semi-organic compound, have been grown at an average growth rate of 4 mm/day from aqueous solution by using the uniaxial crystal growth method of Sankaranarayanan-Ramasamy (SR). Transparent, cylindrical KAP crystal of size 70 mm length and 15 mm diameter was grown. The grown crystals were characterized by etching and UV-vis NIR analysis. HRXRD analysis indicates that the crystalline perfection of SR method-grown KAP is good. The KAP crystals grown by SR method have 9% higher transmittance than conventional method-grown crystal. The microhardness test was carried out on the (0 1 0) face and a load-dependent hardness was observed. TG-DTA evaluated the thermal properties of the grown crystal. KAP was found to be thermally stable up to 290 °C. The dielectric constant and dielectric loss of the crystal were studied as function of frequency and temperature.
The gravitational resolving power of global seismic networks in the 0.1-10 Hz band
NASA Astrophysics Data System (ADS)
Mulargia, Francesco; Kamenshchik, Alexander
2016-04-01
Among the first attempts to detect gravitational waves, the seismic approach pre-dates the digital era. Major advances in computational power, seismic instrumentation and in the knowledge of seismic noise suggest to reappraise its potential. Using the whole earth as a detector, with the thousands of digital seismometers of seismic global networks as a single phased array, more than two decades of continuous seismic noise data are available and can be readily sifted at the only cost of (a pretty gigantic) computation. Using a subset of data, we show that absolute strains h ≲10-17 on burst gravitational pulses and h ≲10-21 on periodic signals may be feasibly resolved in the frequency range 0.1-10 Hz, only marginally covered by current advanced LIGO and future eLISA. However, theoretical predictions for the largest cosmic gravitational emissions at these frequencies are a few orders of magnitude lower.
A Deposited Magnetic Thermometer for Temperatures below 0.1 Kelvin
NASA Technical Reports Server (NTRS)
Tuttle, J. G.; Stevenson, T. R.; Canavan, E. R.; Dipirro, M. J.; Franz, D. E.; Shirron, P. J.
2003-01-01
Magnetic thermometers are much less sensitive to self-heating due to rf noise than are traditional resistive thermometers. This makes them appealing at temperatures well below 0.1 Kelvin in the operating range of many space-flight detectors. We have developed and tested a magnetic thermometer which is deposited directly onto a substrate. This device, which uses the temperature dependence of iron-doped palladium's magnetic susceptibility, includes self-shielding deposited coils surrounding a sputtered palladium layer. It is read out using a SQUID to achieve high resolution. Its small size and perfect heat sinking should make it useful for the temperature control of space flight detector arrays, in particular those already using SQUID readouts. The design and test results for this device are discussed.
Design optimization of a 0.1-ton/day active magnetic regenerative hydrogen liquefier
NASA Astrophysics Data System (ADS)
Zhang, L.; Sherif, S. A.; DeGregoria, A. J.; Zimm, C. B.; Veziroglu, T. N.
2000-04-01
A design optimization procedure of a 0.1-ton/day active magnetic regenerative (AMR) hydrogen liquefier model is described. The liquefier is proposed for the industrial liquid hydrogen market with overall efficiency being the primary measure of performance. This performance is described here in terms of particle size, bed length, and inter-stage temperature. Efficiency comparable to larger gas cycle plants is predicted. The magnetic liquefier may be modified to operate as a two-stage magnetic refrigerator between 77 and 20 K with high efficiency. The paper describes an optimization method as applied to the design of a two-stage AMR hydrogen liquefier and presents the associated results. A five-parameter optimization process is performed since there are five changeable parameters; the low- and high-stage particle sizes, the low- and high-stage bed lengths, and the inter-stage temperature. Model results are presented and compared with experimental results of an actual liquefier.
Excess astrophysical photons from a 0.1-1 keV cosmic axion background.
Conlon, Joseph P; Marsh, M C David
2013-10-11
Primordial decays of string theory moduli at z~10(12) naturally generate a dark radiation cosmic axion background with 0.1-1 keV energies. This cosmic axion background can be detected through axion-photon conversion in astrophysical magnetic fields to give quasithermal excesses in the extreme ultraviolet and soft x-ray bands. Substantial and observable luminosities may be generated even for axion-photon couplings <10(-11) GeV(-1). We propose that axion-photon conversion may explain the observed excess emission of soft x rays from galaxy clusters, and may also contribute to the diffuse unresolved cosmic x-ray background. We list a number of correlated predictions of the scenario. PMID:24160588
The 0.1m subsonic cryogenic tunnel at the University of Southampton
NASA Technical Reports Server (NTRS)
Goodyer, M. J.
1978-01-01
The design and performance of a low speed one atmosphere cryogenic wind tunnel is described. The tunnel is fan driven and operates over the temperature range 305K to 77K at Mach numbers up to 0.28. It is cooled by the injection and evaporation of liquid nitrogen in the circuit, and the usual test gas is nitrogen. The tunnel has a square test section 0.1m across and was built to allow, at low costs, the development of testing techniques and the development of instrumentation for use in cryogenic tunnels, and to exploit in general instrumentation work the unusuallly wide range of unit Reynolds number available in such tunnels. The tunnel was first used in the development of surface flow visualization techniques for use at cryogenic temperatures.
Phthalocyanine adsorption on Au(1 1 0): 1D ordering and adaptive reconstruction.
Pertram, Tobias; Moors, Marco; Wandelt, Klaus
2016-11-01
The adsorption of metal-free phthalocyanine molecules on an anisotropic Au(1 1 0)(1 × 2) surface has been studied with ultraviolet (UV) photoemission, low-energy electron diffraction and low-temperature scanning tunneling microscopy. In all cases, the molecules form rows in the [1 [Formula: see text] 0] direction, i.e. along the troughs of the reconstructed substrates. However, depending on the exposure and adsorption temperature, the substrate maintains (1 × 2)- or transforms into a (1 × 3)-reconstruction, and the molecular separation along the rows shrink from six to five times the Au-Au interatomic distance. The results are in agreement with previous density functional theory (DFT) calculations. PMID:27602696
Surface structure transitions on (0 0 1) GaAs during MBE
NASA Astrophysics Data System (ADS)
Preobrazhenskii, V. V.; Putyato, M. A.; Pchelyakov, O. P.; Semyagin, B. R.
1999-05-01
Experimental phase diagrams of GaAs (0 0 1) surface were obtained by direct measuring of the As 4 flux and the substrate temperature. The infringement of the epitaxial growth was found to occur at the ratio of As 4 to Ga fluxes less than or equal to 0.25. Hence, the As 4 incorporation coefficient is close to unity during MBE. A diffusion model was suggested to describe positions of boundaries between surface structures (SS) in the phase diagrams. Dependencies of temperatures of SS transitions on the rate of surface heating in the absence of incident fluxes were obtained. The transition temperatures were discovered to tend to constant values as the heating rate increased. A model underlying this dependence was developed.
More on two-dimensional O (N ) models with N =(0 ,1 ) supersymmetry
NASA Astrophysics Data System (ADS)
Peterson, Adam J.; Kurianovych, Evgeniy; Shifman, Mikhail
2016-03-01
We study the behavior of two-dimensional supersymmetric connections of n copies of O (N ) models with an N =(0 ,1 ) heterotic deformation generated by a right-moving fermion. We develop the model in analogy with the connected N =(0 ,2 ) C P (N -1 ) models for the case of a single connecting fermionic superfield. We calculate the effective potential in the large-N limit and determine the vacuum field configurations. Similarly to other supersymmetry (SUSY) connected models we find that SUSY is unbroken under certain conditions despite the vanishing of the Witten index. Specifically, this preservation of SUSY occurs when we have an even number n of O (N ) families. As in previous cases we show that this result follows from a Zn symmetry under a particular exchange of the O (N ) families. This leads to a definition of a modified Witten index, which guarantees the preservation of SUSY in this case.
LEED structure analysis of Sb adsorbed Si(0 0 1) surface
NASA Astrophysics Data System (ADS)
Mitsui, T.; Hongo, S.; Urano, T.
2001-06-01
Sb adsorbed Si(0 0 1) surfaces have been investigated by LEED and AES. After a few monolayer (ML) deposition at room temperature, the LEED patterns of 1×1, 2×1 and c(4×4) have been observed successively as elevating the annealing temperature. Two structures (1×1 and 2×1) were examined by LEED I- V curve analysis. The genetic algorithm (GA) was operated to search a global optimum structure. For the 1×1 structure, a good R-factor value of 0.22 was obtained for the model in which topmost 1 ML Sb atoms sit on the Si atoms of fourth substrate layer. For the 2×1 structure, two cases of 1 ML and a half ML Sb coverage was examined, and an Sb dimer model with 1 ML coverage gave a better R-factor value.
[Direct upconversion sensitization luminescence of Tm(0.1)Yb(10.9): oxyfluoride glass].
Chen, X B; Sawanobori, N; Song, Z F
2001-12-01
This paper studied the direct upconversion sensitization luminescence of Tm(0.1)Yb(10.9): oxyfluoride glass pumped by 966 nm diode laser. We found that there are strong 474 nm three-photon upconversion fluorescence of 1G4-->3H6 transition. As well as there are weak 362, 452 and 650 nm three-photon upconversion fluorescence of 1D2-->3H6, 1D2-->3F4, 1G4-->3F4 and 681 nm two-photon upconversion fluorescence of 3F3-->3H6 transitions respectively. Their upconversion mechanism has been analyzed and discussed simply. PMID:12958885
Positron diffraction study of SiC(0 0 0 1) surface
NASA Astrophysics Data System (ADS)
Kawasuso, A.; Maekawa, M.; Yoshikawa, M.; Ichimiya, A.
2005-05-01
Surface structures of 6H SiC(0 0 0 1) after heat treatment in a UHV has been studied using reflection high-energy positron diffraction (RHEPD). After heat treatment at 900 °C, a typical interference effect of positron waves due to Si adatoms appears in the total reflection region of the rocking curve. The further heat treatment at 1100 °C results in surface graphitization. The rocking curve is well reproduced by theoretical calculation assuming the graphite monolayer on SiC substrate. The interlayer distance is fairly large (2.5-3.2 Å), which is comparable to that in the graphite monocrystal suggesting that the weak binding of the graphite monolayer to the SiC surface by the van der Waals force.
Epitaxial growth, alloying and magnetic structure of interfaces in Fe/Cr (0 0 1) superlattices
NASA Astrophysics Data System (ADS)
Uzdin, V.; Keune, W.; Walterfang, M.
2002-02-01
Fe/Cr(0 0 1) superlattices containing two-monolayers thick 57Fe probe layers at the Fe/Cr (Fe-on-Cr) or Cr/Fe (Cr-on-Fe) interfaces were studied using conversion electron Mössbauer spectroscopy (CEMS). For the interpretation of the CEMS data of superlattices annealed at different temperatures, we performed theoretical modeling of their chemical and magnetic structure. Roughness and interface alloying were introduced to the model by algorithms of epitaxial growth, which included ballistic deposition with subsequent floating of some atoms on the surface. Self-consistent calculations of magnetic moments within the periodic Anderson model confirmed the proportionality between hyperfine fields and magnetic moments. For the explanation of the evolution of CEM spectra versus annealing temperature, the difference in the melting points of bulk Fe and Cr has to be taken into account.
COSPAR-16-B0.1/ICEUM12A: Lunar Exploration and Science
NASA Astrophysics Data System (ADS)
Foing, Bernard H.
2016-07-01
Lunar science and exploration are having a renaissance with as many as twelve missions (and 18 vehicles) sent to Moon during the last "International Lunar decade". This session is aimed at discussing new progress in lunar science from recent missions, latest science results, newer insight into our understanding of Moon, modelling and synthesis of different scientific data, future missions, and science questions. It will include invited, contributed, and poster papers. Papers on new lunar mission concepts, instrumentation for the future missions, the upcoming lunar decade of landers and lunar robotic village, and preparations for human lunar exploration towards a "Moon Village" are also welcome in this session. COSPAR-16-B0.1 will also be ICEUM12A, part of the 12th International Conference on Exploration and Utilisation of the Moon from the ILEWG ICEUM series started in 1994.
Automatic circuit redesign for delay fault testability using constrained quadratic 0-1 programming
Bushnell, M.; Shaik, I.
1994-12-31
We discuss three methods of automatically redesigning Very Large Scale Integrated circuits so that they can test themselves for excessive delay. A delay fault occurs when a circuit signal arrives too late as it propagates through the circuit. A hazard is the occurrence of multiple circuit signal transitions in a very short time interval. For delay fault testing to be accurate, we must eliminate hazards in the circuit by adding hardware. Our three methods for determining where to place this additional hardware are: (1) Good machine simulation using a higher-order Boolean algebra, (2) A graph algorithm to bound the enumeration of paths and find points where hazards appear, and (3) Quadratic 0-1 Programming to balance all cycles in the circuit graph. We discuss the mathematics of these three methods, present results, and discuss the inadequacies of each method. We conclude by proposing a greedy algorithm that combines two of these methods to make added hardware.
Simulation of electronic registration of multispectral remote sensing images to 0.1 pixel accuracy
NASA Technical Reports Server (NTRS)
Reitsema, H. J.; Mord, A. J.; Fraser, D.; Richard, H. L.; Speaker, E. E.
1984-01-01
Band-to-band coregistration of multispectral remote sensing images can be achieved by electronic signal processing techniques rather than by costly and difficult mechanical alignment. This paper describes the results of a study of the end-to-end performance of electronic registration. The software simulation includes steps which model the performance of the geometric calibration process, the instrument image quality, detector performance and the effects of achieving coregistration through image resampling. The image resampling step emulates the Pipelined Resampling Processor, a real-time image resampler. The study demonstrates that the electronic alignment technique produces multispectral images which are superior to those produced by an imager whose pixel geometry is accurate to 0.1 pixel rms. The implications of this approach for future earth observation programs are discussed.
First detection of optical light from SNR G279.0+1.1
NASA Astrophysics Data System (ADS)
Stupar, M.; Parker, Q. A.
2009-04-01
This is the initial paper in a series presenting the first optical detections and subsequent follow-up spectroscopy of known southern Galactic supernova remnants (SNRs) previously discovered in the radio. These new detections come from the Anglo-Australian Observatory (AAO)/United Kingdom Schmidt Telescope Hα survey of the southern Galactic plane which has opened up fresh opportunities to study Galactic remnants. Here, we present the first optical imaging and follow-up spectra of Galactic SNR G279.0+1.1 where a series of 14 small-scale fragmented groups of Hα filaments have been discovered in a area centred on G279.0+1.1. Individually they are somewhat inconspicuous but collectively they are completely enclosed within the overall radio contours of this known SNR. Three of these filamentary groupings are particularly prominent and optical spectra have been obtained across two of them. Their morphological structure and spectral characteristics are typical of optically detected SNR filaments. A very strong [SII] emission relative to Hα has been detected with [SII]/Hα > 0.7 and 1.1, confirming strong, shock-heated emission. This is sufficient to classify these filaments in the likely SNR domain and therefore indicating a direct connection with the radio remnant. Other typical SNR emission lines such as [OII] at 3727Å, Hβ, [OIII] at 4959 and 5007Å, Hα and [NII] at 6548 and 6584Å were also detected, lending strong support to an SNR origin of these optical filaments. The value and insights that these optical data can provide for known remnants are discussed along with their relevance to the Galactic nitrogen abundance. A serendipitous discovery of an adjacent HII region is also briefly described.
Optimized non-integer order phase mask to extend the depth of field of an imaging system
NASA Astrophysics Data System (ADS)
Liu, Jiang; Miao, Erlong; Sui, Yongxin; Yang, Huaijiang
2016-09-01
Wavefront coding is an effective optical technique used to extend the depth of field for an incoherent imaging system. Through introducing an optimized phase mask to the pupil plane, the modulated optical transfer function is defocus-invariant. In this paper, we proposed a new form phase mask using non-integer order and signum function to extend the depth of field. The performance of the phase mask is evaluated by comparing defocused modulation transfer function invariant and Fisher information with other phase masks. Defocused imaging simulation is also carried out. The results demonstrate the advantages of non-integer order phase mask and its effectiveness on the depth of field extension.
Lu, Zhou; Chang, Yih Chung; Gao, Hong; Benitez, Yanice; Song, Yu; Ng, C. Y. E-mail: wmjackson@ucdavis.edu; Jackson, W. M. E-mail: wmjackson@ucdavis.edu
2014-06-21
We present a generally applicable experimental method for the direct measurement of nascent spin-orbit state distributions of atomic photofragments based on the detection of vacuum ultraviolet (VUV)-excited autoionizing-Rydberg (VUV-EAR) states. The incorporation of this VUV-EAR method in the application of the newly established VUV-VUV laser velocity-map-imaging-photoion (VMI-PI) apparatus has made possible the branching ratio measurement for correlated spin-orbit state resolved product channels, CO(ã{sup 3}Π; v) + O({sup 3}P{sub 0,1,2}) and CO(Χ{sup ~1}Σ{sup +}; v) + O({sup 3}P{sub 0,1,2}), formed by VUV photoexcitation of CO{sub 2} to the 4s(1{sub 0}{sup 1}) Rydberg state at 97,955.7 cm{sup −1}. The total kinetic energy release (TKER) spectra obtained from the O{sup +} VMI-PI images of O({sup 3}P{sub 0,1,2}) reveal the formation of correlated CO(ã{sup 3}Π; v = 0–2) with well-resolved v = 0–2 vibrational bands. This observation shows that the dissociation of CO{sub 2} to form the spin-allowed CO(ã{sup 3}Π; v = 0–2) + O({sup 3}P{sub 0,1,2}) channel has no potential energy barrier. The TKER spectra for the spin-forbidden CO(Χ{sup ~1}Σ{sup +}; v) + O({sup 3}P{sub 0,1,2}) channel were found to exhibit broad profiles, indicative of the formation of a broad range of rovibrational states of CO(Χ{sup ~1}Σ{sup +}) with significant vibrational populations for v = 18–26. While the VMI-PI images for the CO(ã{sup 3}Π; v = 0–2) + O({sup 3}P{sub 0,1,2}) channel are anisotropic, indicating that the predissociation of CO{sub 2} 4s(1{sub 0}{sup 1}) occurs via a near linear configuration in a time scale shorter than the rotational period, the angular distributions for the CO(Χ{sup ~1}Σ{sup +}; v) + O({sup 3}P{sub 0,1,2}) channel are close to isotropic, revealing a slower predissociation process, which possibly occurs on a triplet surface via an intersystem crossing mechanism.
Recent Developments In Theory Of Balanced Linear Systems
NASA Technical Reports Server (NTRS)
Gawronski, Wodek
1994-01-01
Report presents theoretical study of some issues of controllability and observability of system represented by linear, time-invariant mathematical model of the form. x = Ax + Bu, y = Cx + Du, x(0) = xo where x is n-dimensional vector representing state of system; u is p-dimensional vector representing control input to system; y is q-dimensional vector representing output of system; n,p, and q are integers; x(0) is intial (zero-time) state vector; and set of matrices (A,B,C,D) said to constitute state-space representation of system.
Exact solution of some linear matrix equations using algebraic methods
NASA Technical Reports Server (NTRS)
Djaferis, T. E.; Mitter, S. K.
1979-01-01
Algebraic methods are used to construct the exact solution P of the linear matrix equation PA + BP = - C, where A, B, and C are matrices with real entries. The emphasis of this equation is on the use of finite algebraic procedures which are easily implemented on a digital computer and which lead to an explicit solution to the problem. The paper is divided into six sections which include the proof of the basic lemma, the Liapunov equation, and the computer implementation for the rational, integer and modular algorithms. Two numerical examples are given and the entire calculation process is depicted.
Sandia Unstructured Triangle Tabular Interpolation Package v 0.1 beta
2013-09-24
The software interpolates tabular data, such as for equations of state, provided on an unstructured triangular grid. In particular, interpolation occurs in a two dimensional space by looking up the triangle in which the desired evaluation point resides and then performing a linear interpolation over the n-tuples associated with the nodes of the chosen triangle. The interface to the interpolation routines allows for automated conversion of units from those tabulated to the desired output units. when multiple tables are included in a data file, new tables may be generated by on-the-fly mixing of the provided tables
Sandia Unstructured Triangle Tabular Interpolation Package v 0.1 beta
2013-09-24
The software interpolates tabular data, such as for equations of state, provided on an unstructured triangular grid. In particular, interpolation occurs in a two dimensional space by looking up the triangle in which the desired evaluation point resides and then performing a linear interpolation over the n-tuples associated with the nodes of the chosen triangle. The interface to the interpolation routines allows for automated conversion of units from those tabulated to the desired output units.more » when multiple tables are included in a data file, new tables may be generated by on-the-fly mixing of the provided tables« less
NASA Astrophysics Data System (ADS)
Chakeres, D. W.; Vento, R.; Panchenko, D. I.; Tobar, J. A.; Moses, S. S.; Andrianarijaona, V. M.
Power laws and harmonic oscillator systems represent a ubiquitous relationship among many physical phenomena. This study demonstrates a close power law relationship of the annihilation frequency of the neutron, approximately 2.27 ×1023 Hz, when used as a dimensionless base, to fundamental quantum properties of hydrogen and present-day cosmic observables. The following set of the three smallest integers: {-1, 0, 1}, and the set of partial harmonic fractions: {3/2, +/-1/2, +/-2/3, -3/4, +/-4/5}, are associated with each physical entity investigated as a frequency equivalent. They are listed as follows: twice the maximum energy of a cosmic ray, 3/2; the base identity of the neutron, 1; the Bohr radius, 4/5; Rydberg's constant, 2/3; twice the peak spectral radiance of cosmic microwave background radiation, 1/2; Planck's constant, 0; the Sun's galactic radius, -1/2; the Sun's galactic period, -2/3; Hubble's constant, -3/4; the dimension of the observable universe, -4/5; and twice the gravitational binding energy of the electron in hydrogen, -1. When viewed in the physically equivalent frequency domain, the neutron partitions an abundance of physical constants from the very small to the very large.
Upper Bounds on the Number of Solutions of Binary Integer Programs
NASA Astrophysics Data System (ADS)
Jain, Siddhartha; Kadioglu, Serdar; Sellmann, Meinolf
We present a new method to compute upper bounds of the number of solutions of binary integer programming (BIP) problems. Given a BIP, we create a dynamic programming (DP) table for a redundant knapsack constraint which is obtained by surrogate relaxation. We then consider a Lagrangian relaxation of the original problem to obtain an initial weight bound on the knapsack. This bound is then refined through subgradient optimization. The latter provides a variety of Lagrange multipliers which allow us to filter infeasible edges in the DP table. The number of paths in the final table then provides an upper bound on the number of solutions. Numerical results show the effectiveness of our counting framework on automatic recording and market split problems.
Subjective evaluations of integer cosine transform compressed Galileo solid state imagery
NASA Technical Reports Server (NTRS)
Haines, Richard F.; Gold, Yaron; Grant, Terry; Chuang, Sherry
1994-01-01
This paper describes a study conducted for the Jet Propulsion Laboratory, Pasadena, California, using 15 evaluators from 12 institutions involved in the Galileo Solid State Imaging (SSI) experiment. The objective of the study was to determine the impact of integer cosine transform (ICT) compression using specially formulated quantization (q) tables and compression ratios on acceptability of the 800 x 800 x 8 monochromatic astronomical images as evaluated visually by Galileo SSI mission scientists. Fourteen different images in seven image groups were evaluated. Each evaluator viewed two versions of the same image side by side on a high-resolution monitor; each was compressed using a different q level. First the evaluators selected the image with the highest overall quality to support them in their visual evaluations of image content. Next they rated each image using a scale from one to five indicating its judged degree of usefulness. Up to four preselected types of images with and without noise were presented to each evaluator.
Linderoth, Jeff T.; Luedtke, James R.
2013-05-30
The mathematical modeling of systems often requires the use of both nonlinear and discrete components. Problems involving both discrete and nonlinear components are known as mixed-integer nonlinear programs (MINLPs) and are among the most challenging computational optimization problems. This research project added to the understanding of this area by making a number of fundamental advances. First, the work demonstrated many novel, strong, tractable relaxations designed to deal with non-convexities arising in mathematical formulation. Second, the research implemented the ideas in software that is available to the public. Finally, the work demonstrated the importance of these ideas on practical applications and disseminated the work through scholarly journals, survey publications, and conference presentations.
NASA Technical Reports Server (NTRS)
Haftka, R. T.; Adelman, H. M.
1984-01-01
Orbiting spacecraft such as large space antennas have to maintain a highly accurate space to operate satisfactorily. Such structures require active and passive controls to mantain an accurate shape under a variety of disturbances. Methods for the optimum placement of control actuators for correcting static deformations are described. In particular, attention is focused on the case were control locations have to be selected from a large set of available sites, so that integer programing methods are called for. The effectiveness of three heuristic techniques for obtaining a near-optimal site selection is compared. In addition, efficient reanalysis techniques for the rapid assessment of control effectiveness are presented. Two examples are used to demonstrate the methods: a simple beam structure and a 55m space-truss-parabolic antenna.
NASA Technical Reports Server (NTRS)
Haftka, R. T.; Adelman, H. M.
1985-01-01
Orbiting spacecraft such as large space antennas have to maintain a highly accurate shape to operate satisfactorily. Such structures require active and passive controls to maintain an accurate shape under a variety of disturbances. Methods for the optimum placement of control actuators for correcting static deformations are described. In particular, attention is focused on the case were control locations have to be selected from a large set of available sites, so that integer programing methods are called for. The effectiveness of three heuristic techniques for obtaining a near-optimal site selection is compared. In addition, efficient reanalysis techniques for the rapid assessment of control effectiveness are presented. Two examples are used to demonstrate the methods: a simple beam structure and a 55m space-truss-parabolic antenna.
NASA Astrophysics Data System (ADS)
Sawyer, Charles S.; Ahlfeld, David P.; King, Alan J.
1995-05-01
A three-dimensional groundwater flow management model for making decisions on the design of hydrodynamic control of a groundwater flow system using a combination of extraction and/or injection wells is developed. The model takes into account constraints imposed on the system to stop the horizontal spread of contaminants and to ensure a net upward flow in areas where downward vertical gradients exist. The mathematical formulation of the groundwater remediation problem as a mixed-integer model and the strategy for solving the model are presented. Numerical results are presented for the Toms River Plant site, which is modeled as a five-layer aquifer system with interconnecting aquitards. A sensitivity analysis on the relative magnitude of the continuous operating costs and the fixed-charge costs is also presented.
Shi, Yanmeng; Lee, Yongjin; Che, Shi; Pi, Ziqi; Espiritu, Timothy; Stepanov, Petr; Smirnov, Dmitry; Lau, Chun Ning; Zhang, Fan
2016-02-01
Owing to the spin, valley, and orbital symmetries, the lowest Landau level in bilayer graphene exhibits multicomponent quantum Hall ferromagnetism. Using transport spectroscopy, we investigate the energy gaps of integer and fractional quantum Hall (QH) states in bilayer graphene with controlled layer polarization. The state at filling factor ν=1 has two distinct phases: a layer polarized state that has a larger energy gap and is stabilized by high electric field, and a hitherto unobserved interlayer coherent state with a smaller gap that is stabilized by large magnetic field. In contrast, the ν=2/3 quantum Hall state and a feature at ν=1/2 are only resolved at finite electric field and large magnetic field. These results underscore the importance of controlling layer polarization in understanding the competing symmetries in the unusual QH system of BLG. PMID:26894724
RSM 1.0 user's guide: A resupply scheduler using integer optimization
NASA Technical Reports Server (NTRS)
Viterna, Larry A.; Green, Robert D.; Reed, David M.
1991-01-01
The Resupply Scheduling Model (RSM) is a PC based, fully menu-driven computer program. It uses integer programming techniques to determine an optimum schedule to replace components on or before a fixed replacement period, subject to user defined constraints such as transportation mass and volume limits or available repair crew time. Principal input for RSJ includes properties such as mass and volume and an assembly sequence. Resource constraints are entered for each period corresponding to the component properties. Though written to analyze the electrical power system on the Space Station Freedom, RSM is quite general and can be used to model the resupply of almost any system subject to user defined resource constraints. Presented here is a step by step procedure for preparing the input, performing the analysis, and interpreting the results. Instructions for installing the program and information on the algorithms are given.
Improved confidence intervals when the sample is counted an integer times longer than the blank.
Potter, William Edward; Strzelczyk, Jadwiga Jodi
2011-05-01
Past computer solutions for confidence intervals in paired counting are extended to the case where the ratio of the sample count time to the blank count time is taken to be an integer, IRR. Previously, confidence intervals have been named Neyman-Pearson confidence intervals; more correctly they should have been named Neyman confidence intervals or simply confidence intervals. The technique utilized mimics a technique used by Pearson and Hartley to tabulate confidence intervals for the expected value of the discrete Poisson and Binomial distributions. The blank count and the contribution of the sample to the gross count are assumed to be Poisson distributed. The expected value of the blank count, in the sample count time, is assumed known. The net count, OC, is taken to be the gross count minus the product of IRR with the blank count. The probability density function (PDF) for the net count can be determined in a straightforward manner. PMID:21451310
High-resolution multiple quantum MAS NMR spectroscopy of half-integer quadrupolar nuclei
NASA Astrophysics Data System (ADS)
Wu, Gang; Rovnyank, David; Sun, Boqin; Griffin, Robert G.
1996-02-01
We demonstrate the utility of a two-pulse sequence in obtaining high-resolution solid state NMR spectra of half-integer quadrupolar nuclei with magic-angle-spinning (MAS). The experiment, which utilizes multiple/single-quantum correlation, was first described in a different form by Frydman and Harwood [J. Am. Chem. Soc. 117 (1995) 5367] and yields high-resolution isotropic NMR spectra where shifts are determined by the sum of resonance offset (chemical shift) and second-order quadrupolar effects. The two-pulse sequence described here is shown to provide a higher and more uniform excitation of multiple-quantum coherence than the three-pulse sequence used previously.
A Mixed-Integer Optimization Framework for De Novo Peptide Identification
DiMaggio, Peter A.
2009-01-01
A novel methodology for the de novo identification of peptides by mixed-integer optimization and tandem mass spectrometry is presented in this article. The various features of the mathematical model are presented and examples are used to illustrate the key concepts of the proposed approach. Several problems are examined to illustrate the proposed method's ability to address (1) residue-dependent fragmentation properties and (2) the variability of resolution in different mass analyzers. A preprocessing algorithm is used to identify important m/z values in the tandem mass spectrum. Missing peaks, resulting from residue-dependent fragmentation characteristics, are dealt with using a two-stage algorithmic framework. A cross-correlation approach is used to resolve missing amino acid assignments and to identify the most probable peptide by comparing the theoretical spectra of the candidate sequences that were generated from the MILP sequencing stages with the experimental tandem mass spectrum. PMID:19412358
Optimization and implementation of the integer wavelet transform for image coding.
Grangetto, Marco; Magli, Enrico; Martina, Maurizio; Olmo, Gabriella
2002-01-01
This paper deals with the design and implementation of an image transform coding algorithm based on the integer wavelet transform (IWT). First of all, criteria are proposed for the selection of optimal factorizations of the wavelet filter polyphase matrix to be employed within the lifting scheme. The obtained results lead to the IWT implementations with very satisfactory lossless and lossy compression performance. Then, the effects of finite precision representation of the lifting coefficients on the compression performance are analyzed, showing that, in most cases, a very small number of bits can be employed for the mantissa keeping the performance degradation very limited. Stemming from these results, a VLSI architecture is proposed for the IWT implementation, capable of achieving very high frame rates with moderate gate complexity. PMID:18244658
Optimization of a wood dryer kiln using the mixed integer programming technique: A case study
Gustafsson, S.I.
1999-07-01
When wood is to be utilized as a raw material for furniture, buildings, etc., it must be dried from approximately 100% to 6% moisture content. This is achieved at least partly in a drying kiln. Heat for this purpose is provided by electrical means, or by steam from boilers fired with wood chips or oil. By making a close examination of monitored values from an actual drying kiln it has been possible to optimize the use of steam and electricity using the so called mixed integer programming technique. Owing to the operating schedule for the drying kiln it has been necessary to divide the drying process in very short time intervals, i.e., a number of minutes. Since a drying cycle takes about two or three weeks, a considerable mathematical problem is presented and this has to be solved.
NASA Astrophysics Data System (ADS)
Huang, Kai; Huang, Gordon; Dai, Liming; Fan, Yurui
2016-08-01
This article introduces an inexact fuzzy integer chance constraint programming (IFICCP) approach for identifying noise reduction strategy under uncertainty. The IFICCP method integrates the interval programming and fuzzy chance constraint programming approaches into a framework, which is able to deal with uncertainties expressed as intervals and fuzziness. The proposed IFICCP model can be converted into two deterministic submodels corresponding to the optimistic and pessimistic conditions. The modelling approach is applied to a hypothetical control measure selection problem for noise reduction. Results of the case study indicate that useful solutions for noise control practices can be acquired. Three acceptable noise levels for two communities are considered. For each acceptable noise level, several decision alternatives have been obtained and analysed under different fuzzy confidence levels, which reflect the trade-offs between environmental and economic considerations.
An efficient FPGA architecture for integer ƞth root computation
NASA Astrophysics Data System (ADS)
Rangel-Valdez, Nelson; Barron-Zambrano, Jose Hugo; Torres-Huitzil, Cesar; Torres-Jimenez, Jose
2015-10-01
In embedded computing, it is common to find applications such as signal processing, image processing, computer graphics or data compression that might benefit from hardware implementation for the computation of integer roots of order ?. However, the scientific literature lacks architectural designs that implement such operations for different values of N, using a low amount of resources. This article presents a parameterisable field programmable gate array (FPGA) architecture for an efficient Nth root calculator that uses only adders/subtractors and ? location memory elements. The architecture was tested for different values of ?, using 64-bit number representation. The results show a consumption up to 10% of the logical resources of a Xilinx XC6SLX45-CSG324C device, depending on the value of N. The hardware implementation improved the performance of its corresponding software implementations in one order of magnitude. The architecture performance varies from several thousands to seven millions of root operations per second.
Energy Scales of the Reentrant Integer Quantum Hall States in High Landau Levels
NASA Astrophysics Data System (ADS)
Deng, Nianpei; Watson, John; Manfra, Michael; Csathy, Gabor
2013-03-01
The reentrant integer quantum Hall states (RIQHS) have been identified with the electronic bubble phases. These bubble phases are exotic electronic solids similar to the Wigner crystal, but have more than one electron per lattice site. Recently we reported the presence of a peak in the temperature dependent magnetoresistence of the RIQHSs and we have associated this peak with the onset of the RIQHSs. We found that, contrary to the predictions of the bubble theory, the onset temperatures of the RIQHSs in the third Landau level are much higher than those in the second Landau level. We have extended such measurements of the onset temperatures to several high Landau levels. In this talk we will discuss the orbital dependence of the onset temperatures of RIQHSs and we will compare these quantitative results to the predictions of the bubble theory. This work was supported by the DOE BES contract no. DE-SC0006671.
An integer programming framework for inferring disease complexes from network data
Mazza, Arnon; Klockmeier, Konrad; Wanker, Erich; Sharan, Roded
2016-01-01
Motivation: Unraveling the molecular mechanisms that underlie disease calls for methods that go beyond the identification of single causal genes to inferring larger protein assemblies that take part in the disease process. Results: Here, we develop an exact, integer-programming-based method for associating protein complexes with disease. Our approach scores proteins based on their proximity in a protein–protein interaction network to a prior set that is known to be relevant for the studied disease. These scores are combined with interaction information to infer densely interacting protein complexes that are potentially disease-associated. We show that our method outperforms previous ones and leads to predictions that are well supported by current experimental data and literature knowledge. Availability and Implementation: The datasets we used, the executables and the results are available at www.cs.tau.ac.il/roded/disease_complexes.zip Contact: roded@post.tau.ac.il PMID:27307626
THE NEAR-INTEGER WORKING POINT FOR POLARIZED PROTONS IN THE RELATIVISTIC HEAVY ION COLLIDER
MONTAG,C.; BAI, M.; BEEBE-WANG, J.; CALAGA, R.; BLASKIEWICZ, M.; ET AL.
2007-06-25
To achieve the RHIC polarized proton enhanced luminosity goal of 150.10{sup 30} cm{sup -2}sec{sup -} on average in stores at 250 GeV, the luminosity needs to be increased by a factor of 3 compared to what was achieved in 2006. Since the number of bunches is already at its maximum of 1 1 1, limited by the injection kickers and the experiments' time resolution, the luminosity can only be increased by either increasing the bunch intensity and/or reducing the beam emittance. This leads to a larger beam-beam tuneshift parameter. Operations during 2006 has shown that the beam-beam interaction is already dominating the luminosity lifetime. To overcome this limitation, a near-integer working point is under study. We will present recent results of these studies.
XMM-Newton detection of the supernova remnant G304.6+0.1 (Kes 17)
NASA Astrophysics Data System (ADS)
Combi, J. A.; Albacete Colombo, J. F.; Sánchez-Ayaso, E.; Romero, G. E.; Martí, J.; Luque-Escamilla, P. L.; Muñoz-Arjonilla, A. J.; Sánchez-Sutil, J. R.; López-Santiago, J.
2010-11-01
Aims: We report the first detailed X-ray study of the supernova remnant (SNR) G304.6+0.1, achieved with the XMM-Newton mission. Methods: The powerful imaging capability of XMM-Newton was used to study the X-ray characteristics of the remnant at different energy ranges. The X-ray morphology and spectral properties were analyzed. In addittion, radio and mid-infrared data obtained with the Molonglo Observatory Synthesis Telescope and the Spitzer Space Telescope were used to study the association with the detected X-ray emission and to understand the structure of the SNR at differents wavelengths. Results: The SNR shows an extended and arc-like internal structure in the X-ray band without a compact point-like source inside the remnant. We find a high column density of NH in the range 2.5-3.5 × 1022 cm-2, which supports a relatively distant location (d ≥ 9.7 kpc). The X-ray spectrum exhibits at least three emission lines, indicating that the X-ray emission has a thin thermal plasma origin, although a non-thermal contribution cannot be discarded. The spectra of three different regions (north, center and south) are well represented by a combination of a non-equilibrium ionization (PSHOCK) and a power-law (PL) model. The mid-infrared observations show a bright filamentary structure along the north-south direction coincident with the NW radio shell. This suggests that Kes 17 is propagating in a non-uniform environment with high density and that the shock front is interacting with several adjacent massive molecular clouds. The good correspondence of radio and mid-infrared emissions suggests that the filamentary features are caused by shock compression. The X-ray characteristics and well-known radio parameters indicate that G304.6+0.1 is a middle-aged SNR (2.8-6.4) × 104 yr old and a new member of the recently proposed group of mixed-morphology SNRs.
NASA Astrophysics Data System (ADS)
Harris, P.; Bowen, C. R.; Kim, H. A.; Litak, G.
2016-04-01
The use of bistable laminates is a potential approach to realize broadband piezoelectric-based energy harvesting by introducing elastic non-linearities to the system. In this paper the dynamic response of a piezoelectric material attached to a bistable laminate beam is examined based on the experimental measurement of the generated voltage-time series. The system was subjected to harmonic excitations and exhibited single-well and snap-through vibrations of both periodic and chaotic character. The ability to identify the vibration modes of the energy harvester is important since different levels of power are expected in each dynamic mode. We identify the dynamics of the selected system response using return maps, multiscale entropy, and "0-1" test. The potential of the approaches to identify periodic and chaotic modes and snap-through events in the non-linear bistable harvester is described.
A comparative study of the MATRICS and IntegNeuro cognitive assessment batteries.
Silverstein, Steven M; Jaeger, Judith; Donovan-Lepore, Anne-Marie; Wilkniss, Sandra M; Savitz, Adam; Malinovsky, Igor; Hawthorne, Danielle; Raines, Shane; Carson, Sarah; Marcello, Stephanie; Zukin, Stephen R; Furlong, Stephen; Dent, Gersham
2010-11-01
Cognitive impairment is prevalent in schizophrenia and is related to poorer functional and treatment outcomes. Cognitive assessment is therefore now a routine component of clinical trials of new treatments for schizophrenia. The current gold-standard for cognitive assessment in clinical trials for schizophrenia is the MATRICS (Measurement and Treatment Research to Improve Cognition in Schizophrenia) Consensus Cognitive Battery (MCCB), which was developed based on expert consensus and incorporates paper-and-pencil tests (and one computerized measure) with an established history in the field of neuropsychology. Recently, however, interest has increased in using computerized batteries for clinical trials. In this study, we tested 155 people with schizophrenia and 75 healthy control participants on both the MCCB and IntegNeuro, a touch-screen-based computerized battery with previously demonstrated high levels of reliability and validity, to determine comparability between test scores. In addition, we assessed test-retest reliability and practice effects over a one-month interval for both batteries and determined correlations between cognitive test scores and scores on functional outcome measures. High levels of agreement were observed between total battery composite scores (r > .80) and, in a canonical correlation analysis, between all critical single test scores from each battery (r(c) > .90). The batteries demonstrated essentially equivalent sensitivity in discriminating between patients and controls and equivalent levels of test-retest reliability and practice effects. Correlations between cognitive test scores and functional outcome measures were equivalent between the two batteries and low in nearly all cases. The number of missing data points was greater with IntegNeuro, highlighting the requirements for test administrator involvement even with computerized batteries. PMID:20455131
Synchronic interval Gaussian mixed-integer programming for air quality management.
Cheng, Guanhui; Huang, Guohe Gordon; Dong, Cong
2015-12-15
To reveal the synchronism of interval uncertainties, the tradeoff between system optimality and security, the discreteness of facility-expansion options, the uncertainty of pollutant dispersion processes, and the seasonality of wind features in air quality management (AQM) systems, a synchronic interval Gaussian mixed-integer programming (SIGMIP) approach is proposed in this study. A robust interval Gaussian dispersion model is developed for approaching the pollutant dispersion process under interval uncertainties and seasonal variations. The reflection of synchronic effects of interval uncertainties in the programming objective is enabled through introducing interval functions. The proposition of constraint violation degrees helps quantify the tradeoff between system optimality and constraint violation under interval uncertainties. The overall optimality of system profits of an SIGMIP model is achieved based on the definition of an integrally optimal solution. Integer variables in the SIGMIP model are resolved by the existing cutting-plane method. Combining these efforts leads to an effective algorithm for the SIGMIP model. An application to an AQM problem in a region in Shandong Province, China, reveals that the proposed SIGMIP model can facilitate identifying the desired scheme for AQM. The enhancement of the robustness of optimization exercises may be helpful for increasing the reliability of suggested schemes for AQM under these complexities. The interrelated tradeoffs among control measures, emission sources, flow processes, receptors, influencing factors, and economic and environmental goals are effectively balanced. Interests of many stakeholders are reasonably coordinated. The harmony between economic development and air quality control is enabled. Results also indicate that the constraint violation degree is effective at reflecting the compromise relationship between constraint-violation risks and system optimality under interval uncertainties. This can
On the use of lossless integer wavelet transforms in medical image segmentation
NASA Astrophysics Data System (ADS)
Nagaraj, Nithin; Mallya, Yogish
2005-04-01
Recent trends in medical image processing involve computationally intensive processing techniques on large data sets, especially for 3D applications such as segmentation, registration, volume rendering etc. Multi-resolution image processing techniques have been used in order to speed-up these methods. However, all well-known techniques currently used in multi-resolution medical image processing rely on using Gaussain-based or other equivalent floating point representations that are lossy and irreversible. In this paper, we study the use of Integer Wavelet Transforms (IWT) to address the issue of lossless representation and reversible reconstruction for such medical image processing applications while still retaining all the benefits which floating-point transforms offer such as high speed and efficient memory usage. In particular, we consider three low-complexity reversible wavelet transforms namely the - Lazy-wavelet, the Haar wavelet or (1,1) and the S+P transform as against the Gaussian filter for multi-resolution speed-up of an automatic bone removal algorithm for abdomen CT Angiography. Perfect-reconstruction integer wavelet filters have the ability to perfectly recover the original data set at any step in the application. An additional advantage with the reversible wavelet representation is that it is suitable for lossless compression for purposes of storage, archiving and fast retrieval. Given the fact that even a slight loss of information in medical image processing can be detrimental to diagnostic accuracy, IWTs seem to be the ideal choice for multi-resolution based medical image segmentation algorithms. These could also be useful for other medical image processing methods.
Solving the 0/1 Knapsack Problem by a Biomolecular DNA Computer
Taghipour, Hassan; Rezaei, Mahdi; Esmaili, Heydar Ali
2013-01-01
Solving some mathematical problems such as NP-complete problems by conventional silicon-based computers is problematic and takes so long time. DNA computing is an alternative method of computing which uses DNA molecules for computing purposes. DNA computers have massive degrees of parallel processing capability. The massive parallel processing characteristic of DNA computers is of particular interest in solving NP-complete and hard combinatorial problems. NP-complete problems such as knapsack problem and other hard combinatorial problems can be easily solved by DNA computers in a very short period of time comparing to conventional silicon-based computers. Sticker-based DNA computing is one of the methods of DNA computing. In this paper, the sticker based DNA computing was used for solving the 0/1 knapsack problem. At first, a biomolecular solution space was constructed by using appropriate DNA memory complexes. Then, by the application of a sticker-based parallel algorithm using biological operations, knapsack problem was resolved in polynomial time. PMID:23509451
Lattice-resolution imaging of the sapphire (0 0 0 1) surface in air by AFM
NASA Astrophysics Data System (ADS)
Gan, Yang; Wanless, Erica J.; Franks, George V.
2007-02-01
Lattice-resolution images of single-crystal α-alumina (sapphire) (0 0 0 1) surfaces have been obtained using contact-mode AFM under ambient conditions. It was found that the hexagonal surface lattice has a periodicity of 0.47 ± 0.11 nm, which is identical to that reported previously when the same surface was imaged in water. Large lattice corrugations (as high as 1 nm) were observed, but were concluded to be imaging artifacts because of the strong friction which causes additional deflection of the cantilever. The additional deflection of the cantilever is registered by the detector of the optical beam-deflection AFM resulting in an overestimation of the height at each lattice point. Abrupt changes were also resolved in the topography including honeycomb patterns and a transition from 2D lattices to 1D parallel stripes, with scanning direction. These phenomena can be explained by the commensurate sliding between the tip and sapphire surface due to the strong contact force.
Electron momentum density in Cu0.9Al0.1
NASA Astrophysics Data System (ADS)
Samsel-Czekała, M.; Kontrym-Sznajd, G.; Döring, G.; Schülke, W.; Kwiatkowska, J.; Maniawski, F.; Kaprzyk, S.; Bansil, A.
A reconstruction technique based on the solution of the Radon transform in terms of Jacobi polynomials is used to obtain the 3D electron momentum density, ϱ(p), from nine high-resolution Compton profiles (CPs) for a Cu0.9Al0.1 disordered alloy single crystal. The method was also applied to theoretical CPs computed within the Korringa-Kohn-Rostoker coherent potential approximation (KKR-CPA) first-principles scheme for the same nine orientations of the crystal. The experimental ϱ(p) is in satisfactory agreement with the theoretical ϱ(p), shows most details of the Fermi surface (FS) and exhibits electron correlation effects. We comment on the map of the FS obtained by folding the reconstructed ϱ(p) into the first Brillouin zone, which yields the occupation number density, ϱ(k). A test of the validity of data via a consistency condition (within our reconstruction algorithm) as well as the propagation of experimental noise in the reconstruction of both ϱ(p) and ϱ(k) are investigated.
Migration behaviour of carbon atoms on clean diamond (0 0 1) surface: A first principle study
NASA Astrophysics Data System (ADS)
Liu, Xuejie; Xia, Qing; Li, Wenjuan; Luo, Hao; Ren, Yuan; Tan, Xin; Sun, Shiyang
2016-01-01
The adsorption and migration energies of a single carbon atom and the configuration evolution energies of two carbon atoms on a clean diamond (0 0 1) surface were calculated using the first principle method based on density functional theory to investigate the formation of ultra-nanocrystalline diamond (UNCD) film. The activation energy of a single atom diffusing along a dimer row is 1.96 eV, which is almost the same as that of a CH2 migrating along a dimer row under hydrogen-rich conditions. However, the activation energy of a single atom diffusing along a dimer chain is 2.66 eV, which is approximately 1.55 times greater than that of a CH2 migrating along a dimer chain in a hydrogen-rich environment. The configuration evolution of the two carbon atoms is almost impossible at common diamond film deposition temperatures (700-900 °C) because the activation energies reach 4.46 or 5.90 eV. Therefore, the high-energy barrier could result in insufficient migration of adatoms, leading to the formation of amorphous in UNCD films in hydrogen-poor CVD environment.
Observation of the 63 micron (0 1) emission line in the Orion and Omega Nebulae
NASA Technical Reports Server (NTRS)
Melnick, G.; Gull, G. E.; Harwit, M.
1978-01-01
The 63 micron fine structure transition P4 : 3Pl yields 3P2 for neutral atomic oxygen was obtained during a series of flights at an altitude of approximately 13.7 km. In the Orion Nebula (M42), the observed line strength was 8 x 10 to the minus 15 power watt cm/2 which is estimated to be approximately 0.3 o/o of the energy radiated at all wavelengths. For the Omega Nebulae (M17), the line strength was 2.4 x 10 to the minus 15 power watt cm/2, and the fraction of the total radiated power was slightly higher. These figures refer to a 4' x 6' field of view centered on the peak for infrared emission from each source. The uncertainty in the line strength is approximately 50% and is caused by variable water vapor absorption along the flight path of the airplane. The line position estimate is 63.2 micron (+0.1, -0.2) micron. The prime uncertainty is due to the uncertain position of the (0 I) emitting regions in the field of view.
Master plan nurse duty roster using the 0-1 goal programming technique
NASA Astrophysics Data System (ADS)
Ismail, Wan Rosmanira; Jenal, Ruzzakiah
2013-04-01
The scheduling of nurses is particularly challenging because of the nature of the work which is around the clock. In addition, inefficient duty roster can have an effect on the nurses well being as well as their job satisfaction. In nurse scheduling problem (NSP), nurses are generally allocated to periods of work over a specified time horizon. A typical length of the schedule varies from a few weeks to a month. The schedule will be consistently rebuilt after the specified time period and will result in a time-consuming task for the administrative staff involved. Moreover, the task becomes overwhelming when the staff needs to consider the previous duty rosters in order to maintain the quality of schedules. Therefore, this study suggests the development of a master plan for a nurse duty roster for approximately one year. The master plan starts with the development of a blue print for the nurse duty roster using a 0-1 goal programming technique. The appropriate working period for this blue print is formulated based on the number of night shifts and the number of required nurses for night shift per schedule. Subsequently, the blue print is repeated to complete the annual nurse duty roster. These newly developed procedures were then tested on several data sets. The test results found that the master plan has successfully distributed the annual workload evenly among nurses. In addition, the master plan allows nurses to arrange their career and social activities in advance.
Processing and microstructure of Nb-1 percent Zr-0.1 percent C alloy sheet
NASA Technical Reports Server (NTRS)
Uz, Mehmet; Titran, Robert H.
1992-01-01
A systematic study was carried out to evaluate the effects of processing on the microstructure of Nb-1 wt. pct. Zr-0.1 wt. pct. C alloy sheet. The samples were fabricated by cold rolling different sheet bars that were single-, double- or triple-extruded at 1900 K. Heat treatment consisted on one- or two-step annealing of different samples at temperatures ranging from 1350 to 1850 K. The assessment of the effects of processing on microstructure involved characterization of the precipitates including the type, crystal structure, chemistry and distribution within the material as well as an examination of the grain structure. A combination of various analytical and metallographic techniques were used on both the sheet samples and the residue extracted from them. The results show that the relatively coarse orthorhombic Nb2C carbides in the as-rolled samples transformed to rather fine cubic monocarbides of Nb and Zr with varying Zr/Nb ratios upon subsequent heat treatment. The relative amount of the cubic carbides and the Zr/Nb ratio increased with increasing number of extrusions prior to cold rolling. Furthermore, the size and the aspect ratio of the grains appear to be strong functions of the processing history of the material. These and other results obtained will be presented with the emphasis on a possible relationship between processing and microstructure.
An improved hybrid encoding cuckoo search algorithm for 0-1 knapsack problems.
Feng, Yanhong; Jia, Ke; He, Yichao
2014-01-01
Cuckoo search (CS) is a new robust swarm intelligence method that is based on the brood parasitism of some cuckoo species. In this paper, an improved hybrid encoding cuckoo search algorithm (ICS) with greedy strategy is put forward for solving 0-1 knapsack problems. First of all, for solving binary optimization problem with ICS, based on the idea of individual hybrid encoding, the cuckoo search over a continuous space is transformed into the synchronous evolution search over discrete space. Subsequently, the concept of confidence interval (CI) is introduced; hence, the new position updating is designed and genetic mutation with a small probability is introduced. The former enables the population to move towards the global best solution rapidly in every generation, and the latter can effectively prevent the ICS from trapping into the local optimum. Furthermore, the greedy transform method is used to repair the infeasible solution and optimize the feasible solution. Experiments with a large number of KP instances show the effectiveness of the proposed algorithm and its ability to achieve good quality solutions. PMID:24527026
Magnetic Ordering in BaFe_{11.9} In_{0.1} O_{19} Hexaferrite
NASA Astrophysics Data System (ADS)
Trukhanov, S. V.; Trukhanov, A. V.; Turchenko, V. O.; Kostishin, V. G.; Panina, L. V.; Kazakevich, I. S.; Balagurov, A. M.
2016-07-01
The crystal and magnetic structure by powder neutron diffractometry as well as the magnetic properties by vibration sample magnetometry for the BaFe_{11.9} In_{0.1} O_{19} polycrystalline sample have been performed in a wide temperature range from 10 up to 730 K and in magnetic field up to 14 T. The atomic coordinates and lattice parameters have been Rietveld refined. The Invar effect has been observed in the low-temperature range below 150 K. It was explained by the thermal oscillation anharmonicity of atoms. The increase of the microstress value with decreasing temperature has been defined from Rietveld refinement. It is established that the ferrimagnet-paramagnet phase transition is a standard second-order one. From the macroscopic magnetization measurement, the Curie temperature and ordered magnetic moment per nominal iron ion are obtained. From the microscopic diffraction measurement, the magnetic moments at different atomic position and total magnetic moment per iron ion have been defined at different temperatures. The most likely reasons and the mechanism of magnetic ordering are discussed.
Regional stochastic generation of streamflows using an ARIMA (1,0,1) process and disaggregation
Armbruster, Jeffrey T.
1979-01-01
An ARIMA (1,0,1) model was calibrated and used to generate long annual flow sequences at three sites in the Juniata River basin, Pennsylvania. The model preserves the mean, variance, and cross correlations of the observed station data. In addition, it has a desirable blend of both high and low frequency characteristics and therefore is capable of preserving the Hurst coefficient, h. The generated annual flows are disaggregated into monthly sequences using a modification of the Valencia-Schaake model. The low-flow frequency and flow duration characteristics of the generated monthly flows, with length equal to the historical data, compare favorably with the historical data. Once the models were verified, 100-year sequences were generated and analyzed for their low flow characteristics. One-, three- and six- month low-flow frequencies at recurrence intervals greater than 10 years are generally found to be lower than flow computed from the historical flows. A method is proposed for synthesizing flows at ungaged sites. (Kosco-USGS)
Ciprofloxacin 0.3%/dexamethasone 0.1% topical drops for the management of otic infections.
Roland, Peter S; Wall, Michael
2008-12-01
The American Academy of Otolaryngology-Head and Neck Surgery has recommended that, where possible, infections of the external auditory canal and middle ear be treated with topical preparations. The advantages of topical therapy include i) excellent efficacy; ii) decreased risk of systemic side effects; iii) less likelihood of selecting for resistant strains of microorganisms; and iv) lack of potential for ototoxicity. One advantage of topical therapy arises as a consequence of a very high concentration of antibiotic in topical preparations reaching the site of infection. Ciprofloxacin 0.3%/dexamethasone 0.1% (Ciprodex) is the only ototopical drop approved for use in both the middle ear and external auditory canal that combines a fluoroquinolone with a steroid. At 0.3% (3000 mcg/ml), the ciprofloxacin concentration of Ciprodex exceeds the MIC of virtually all relevant organisms by a very considerable margin. The clinical efficacy of ciprofloxacin/dexamethasone suspension has been demonstrated in several large prospective clinical trials. It has been consistently equal to or superior to comparator drugs. The authors believe that the use of topical ciprofloxacin/dexamethasone will increase as the advantages of fluoroquinolone/steroid combination therapy become more widely recognized. PMID:19013865
The Star Formation History of read and dead galaxies at z=[1.0--1.5
NASA Astrophysics Data System (ADS)
Domínguez Sánchez, H.; Pérez González, P.; Esquej, P.; Eliche Moral, C.; Alcalde Pampliega, B.; SHARDS Team
2015-05-01
We analyse the star formation histories (SFH) of M > 10^{10} M_⊙ read and dead galaxies at intermediate redshift (z=1.0-1.5). Current hierarchical models of galaxy formation predict many less massive high-z systems than observed. By combining SHARDS deep spectro-photometric optical data (25 contiguous OSIRIS/GTC medium band filters with R ˜ 50 at 4500-900 nm) with HST-WFC3 grism in the NIR (G141, 1.1-1.6 μm) and broad-band photometry (from FUV to FIR) we construct well-sampled optical SEDs with up to 150 photometric points and sufficient spectral resolution to obtain reliable stellar population parameters such as ages, star formation timescales, dust extinctions and metallicities. We define a complete and uncontaminated sample of red & dead galaxies by combining the color-color UVJ selection with a cut in sSFR (SFR/Mass). We check the robustness of the results depending on different stellar population models (Bruzual & Charlot 2003, Maraston 2005), SED fitting-codes (synthesizer, FAST) or star formation histories (exp{-t/τ}, t exp{-t/τ}). Finally, the dependence of the SFH with the galaxy stellar mass will be studied, to actually measure if more massive galaxies are formed earlier and more rapidly as downsizing suggests.
ROSAT PSPC and HRI Observations of Supernova Remnant G292.0+1.8
NASA Technical Reports Server (NTRS)
Hughes, John P.
1999-01-01
The supernova remnant G292.0+1.8 was observed by the ROSAT PSPC for 18 ksec as part of this grant. Considerable effort was put into the analysis of the PSPC spectra. The major work went into nonequilibrium ionization joint spectral fits with the Einstein SSS and EXOSAT ME data which indicated that the two spatial regions of this remnant (a central bar and a plateau region covering a larger extent) had similar abundances, but different excitation conditions (temperature and ionization state), an important conclusion, if true. Unfortunately as this work was being finished, new ASCA data revealed the presence of a previously unknown, spectrally hard X-ray source near the center of the remnant which contaminated the SSS and ME data and as a consequence made our detailed spectral analysis done up until then un-publishable. We searched for evidence of this hard source in the PSPC data both spectrally and using timing searches (for a pulsar), but found nothing significant. ROSAT HRI data were also obtained on this remnant. These data were compared to the Einstein HRI data to search for evidence of spectral variations with position and possible expansion of the X-ray remnant. One feature in the remnant appears to have changed in brightness although it is not clear what is the cause of the change. No evidence for the hard ASCA source was apparent in the HRI data.
Acquisition and evaluation of thermodynamic data for bieberite-moorhouseite equilibria at 0.1 MPa
Chou, I.-Ming; Seal, R.R., II
2005-01-01
Published estimates for the equilibrium relative humidity (RH) at 25 deg;C for the reaction: bieberite (CoSO4??7H2O) = moorhouseite (CoSO4??6H2O) + H2O, range from 69.8 to 74.5%. To evaluate these data, the humidity-buffer technique was used to determine equilibrium constants for this reaction between 14 and 43 ??C at 0.1 MPa. Reversals along five humidity-buffer curves yield In K = 18.03-6509.43/T, where K is the equilibrium constant, and T is temperature in K. The derived standard Gibbs free energy of reaction is 9.43 kJ/mol, which agrees well with several previously reported values based on vapor-pressure measurements. It also agrees well with values calculated from the data derived mostly from calorimetric measurements. Previous studies indicated that the temperature of the invariant point for the assemblage bieberite-moorhouseite-aqueous solution-vapor is near 44.7 ??C, and our extrapolated data predict 91.1% RH at this temperature; the predicted position for the invariant point is in excellent agreement with those reported previously.
Acquisition and evaluation of thermodynamic data for morenosite-retgersite equilibria at 0.1 MPa
Chou, I.-Ming; Seal, R.R., II
2003-01-01
Metal-sulfate salts in mine drainage environments commonly occur as solid solutions containing Fe, Cu, Mg, Zn, Al, Mn, Ni, Co, Cd, and other elements. Thermodynamic data for some of the end-member salts containing Fe, Cu, Zn, and Mg have been collected and evaluated previously, and the present study extends to the system containing Ni. Morenosite (NiSO4-7H2O)-retgersite (NiSO4-6H2O) equilibria were determined along five humidity buffer curves at 0.1 MPa and between 5 and 22??C. Reversals along these humidity-buffer curves yield In K = 17.58-6303.35/T, where K is the equilibrium constant, and T is temperature in K. The derived standard Gibbs free energy of reaction is 8.84 kJ/mol, which agrees very well with the values of 8.90, 8.83, and 8.85 kJ/mol based on the vapor pressure measurements of Schumb (1923), Bonnell and Burridge (1935), and Stout et al. (1966). respectively. This value also agrees reasonably well with the values of 8.65 and 9.56 kJ/mol calculated from the data compiled by Wagman et al. (1982) and DeKock (1982), respectively. The temperature-humidity relationships defined by this study for dehydration equilibria between morenosite and retgersite explain the more common occurrence of retgersite relative to morenosite in nature.
Performance characterization tests of three 0.44-N (0.1 lbf) hydrazine catalytic thrusters
NASA Technical Reports Server (NTRS)
Moynihan, P. I.; Bjorklund, R. A.
1973-01-01
The 0.44-N (0.1-lbf) class of hydrazine catalytic thruster has been evaluated to assess its capability for spacecraft limit-cycle attitude control with thruster pulse durations on the order of 10 milliseconds. Dynamic-environment and limit-cycle simulation tests were performed on three commercially available thruster/valve assemblies, purchased from three different manufacturers. The results indicate that this class of thruster can sustain a launch environment and, when properly temperature-conditioned, can perform limit-cycle operations over the anticipated life span of a multi-year mission. The minimum operating temperature for very short pulse durations was determined for each thruster. Pulsing life tests were then conducted on each thruster under a thermally controlled condition which maintained the catalyst bed at both a nominal 93 C (200 F) and 205 C (400 F). These were the temperatures believed to be slightly below and very near the minimum recommended operating temperature, respectively. The ensuing life tests ranged from 100,000 to 250,000 pulses at these temperatures, as would be required for spacecraft limit-cycle attitude control applications.
G33.6 + 0.1 - A shell type supernova remnant with unusual structure
NASA Technical Reports Server (NTRS)
Velusamy, T.; Becker, R. H.; Seward, F. D.
1991-01-01
The morphology of Supernova Remnant G33.6 + 0.1 (Kes 79) has been studied in the X-rays with Einstein and in the radio wavelengths using the VLA. Multifrequency high resolution observations of the VLA at 327, 1500, and 5000 MHz are used to study the radio spectrum and polarization. The radio emission shows well formed outer shell structure and very bright central emission. Although the overall distribution of spectral index (about -0.6 to -0.75) is consistent with that of shell type remnants, the bright filamentary emission along the 'inner ring' has relatively flatter spectrum (alpha about -0.4). Both radio and X-rays show strong central emission; existence of a plerion near the center cannot be ruled out. The X-ray image does not show the characteristic limb brightening for shell type SNRs. The X-ray and radio morphology may be understood in terms of very thick shell and the bright central emission as due to reverse shock.
Characterization of an adhesive molecule from Bacillus megaterium ADE-0-1.
Kumar, Santosh; Shah, Avinash K
2015-03-01
An adhesive exopolysaccharide (EPS), from a biofilm forming marine strain ADE-0-1, identified as Bacillus megaterium using conventional microbiological test and 16S rDNA analysis, contained 75% carbohydrate, 17% uronic acid and 0.00125% pyruvate on dry weight basis as per colorimetric determinations and found anionic in nature by ion exchange chromatography. Paper chromatographic and HPLC analysis of EPS hydrolysate indicated presence of arabinose, glucose, mannose, galacturonic acid and glucuronic acid. Its molecular weight was 0.5×10(6) Da, by gel permeation chromatography. FT-IR spectroscopic analysis of EPS revealed presence of hydroxyl and carboxyl groups particularly. EPS exhibited an adhesive nature and could glue wood, metals and acrylic plastic. Using this EPS adhesive (10% w/v), maximum lap shear strength observed was 6.12 MPa at pH 7 and 50 °C (curing temperature) for wood to wood specimen as compared to 6.54 MPa obtained with fevicol (48 to 50% w/v). PMID:25498669
Moment enhancement in dilute magnetic semiconductors: MnxSi1-x with x = 0.1%
Shaughnessy, M; Fong, C Y; Snow, R; Liu, K; Pask, J E; Yang, L H
2009-03-12
The experimentally determined magnetic moments/Mn, M, in Mn{sub x}Si{sub 1-x} are considered, with particular attention to the case with 5.0 {micro}{sub B}/Mn, obtained for x = 0.1%. The existing theoretical M values for neutral Mn range from 2.83 to 3.78 {micro}B/Mn. To understand the observed M = 5.0 {micro}{sub B}/Mn, we investigated Mn{sub x}Si{sub 1-x} for a series of Mn concentrations and defect configurations using a first-principles density functional method. We find a structure in which the moment is enhanced. It has 5.0 {micro}B/Mn, the Mn at a substitutional site, and a Si at a second-neighbor interstitial site in a large unit cell. Subsequent analysis shows that the observed large moment can be understood as a consequence of the weakened d-p hybridization resulting from the introduction of the second-neighbor interstitial Si and substantial isolation of the Mn-second-neighbor Si complex at such concentrations.
The libRadtran software package for radiative transfer calculations (version 2.0.1)
NASA Astrophysics Data System (ADS)
Emde, Claudia; Buras-Schnell, Robert; Kylling, Arve; Mayer, Bernhard; Gasteiger, Josef; Hamann, Ulrich; Kylling, Jonas; Richter, Bettina; Pause, Christian; Dowling, Timothy; Bugliaro, Luca
2016-05-01
libRadtran is a widely used software package for radiative transfer calculations. It allows one to compute (polarized) radiances, irradiance, and actinic fluxes in the solar and thermal spectral regions. libRadtran has been used for various applications, including remote sensing of clouds, aerosols and trace gases in the Earth's atmosphere, climate studies, e.g., for the calculation of radiative forcing due to different atmospheric components, for UV forecasting, the calculation of photolysis frequencies, and for remote sensing of other planets in our solar system. The package has been described in Mayer and Kylling (2005). Since then several new features have been included, for example polarization, Raman scattering, a new molecular gas absorption parameterization, and several new parameterizations of cloud and aerosol optical properties. Furthermore, a graphical user interface is now available, which greatly simplifies the usage of the model, especially for new users. This paper gives an overview of libRadtran version 2.0.1 with a focus on new features. Applications including these new features are provided as examples of use. A complete description of libRadtran and all its input options is given in the user manual included in the libRadtran software package, which is freely available at http://www.libradtran.org.
Martynov, V.V.; Young, A.T.; Padmore, H.A.
1996-08-01
A beamline for high resolution spectroscopy with elliptically polarized X-rays is described.The working energy range is large, from 20 eV to above 1800 eV. The resolving power is on the order of 10,000 at low energies (20-200 eV) and 6000 at high energies (200-1800 eV). This is achieved using a variable deviation angle plane grating monochromator. A single grating, with one line density and a varying groove depth, is used to cover the entire energy range. The beamline has been designed to operate with either one or two x-ray beams propagating simultaneously through the monochromator and to the experimental station. Switching between polarizations at rates of 0.1 Hz and slower is accomplished in the single beam mode by alternating the output of the elliptically polarized undulator source between left and right polarization. Fast polarization switching, at rates of 100-1000 Hz, is provided in the two beam mode by mechanical chopping between two photon beams, one of which is right circularly polarized, and the other left circularly polarized.
Nanodosimetry of Low Energy (0.1 - 100 eV) Cation Damage to DNA
NASA Astrophysics Data System (ADS)
Sellami, L.; Martin, F.; Hunting, D.; Lacombe, S.; Huels, M. A.
2004-03-01
The importance of heavy ions in radiobiology is twofold: (1) they represent the most efficient and volume selective mode of radiotherapy of deep-seated and non-operable tumors, (2) in space environments, or at supersonic altitudes, the most lethal radiation consists of cosmic rays which have a high efficiency to induce clustered DNA lesions, mutations, and cancer. Thus, the study of their effects on DNA is essential for radiation risk assessment, dosimetry, and efficient use of hadrontherapy. Here, we investigate damage to DNA and its components, induced by heavy ion impact, via a novel ion-plasma method, which allows us to probe ion energy depositions in the 0.1-100 eV/nm range in nanoscopic biomolecular films. Cations are generated by electron impact in ultra pure gases (Ar, N2, CO, etc.), and are uniformly accelerated by grids towards the inside surface of a cylinder where an organic film was deposited. After ion irradiation at a specific energy and ion dose, the film is recovered and analyzed. For DNA, gel electrophoresis is used to quantify yields of single, double, and multiple strand breaks. For DNA components (mononucleotides), fragmentation and new products are measured by HPLC and MS.