Detection of code spread OFDM based on 0-1 integer quadratic programming
NASA Astrophysics Data System (ADS)
Elghariani, Ali; Zoltowski, Michael D.
2012-05-01
In this paper we introduce Integer Quadratic Programming (MIQP) approach to optimally detect QPSK Code Spread OFDM (CS-OFDM) by formulating the problem as a combinatorial optimization problem. The Branch and Bound (BB) algorithm is utilized to solve this integer quadratic programming problem. Furthermore, we propose combined preprocessing steps that can be applied prior to BB so that the computational complexity of the optimum receiver is reduced. The first step in this combination is to detect as much as possible symbols using procedures presented in [9], which is basically based on the gradient of quadratic function. The second step detects the undetected symbols from the first step using MMSE estimator. The result of the latter step will be used to predict the initial upper bound of the BB algorithm. Simulation results show that the proposed preprocessing combination when applied prior to BB provides optimal performance with a significantly reduced computational complexity.
A Structural Connection between Linear and 0-1 Integer Linear Formulations
ERIC Educational Resources Information Center
Adlakha, V.; Kowalski, K.
2007-01-01
The connection between linear and 0-1 integer linear formulations has attracted the attention of many researchers. The main reason triggering this interest has been an availability of efficient computer programs for solving pure linear problems including the transportation problem. Also the optimality of linear problems is easily verifiable…
Logic integer programming models for signaling networks.
Haus, Utz-Uwe; Niermann, Kathrin; Truemper, Klaus; Weismantel, Robert
2009-05-01
We propose a static and a dynamic approach to model biological signaling networks, and show how each can be used to answer relevant biological questions. For this, we use the two different mathematical tools of Propositional Logic and Integer Programming. The power of discrete mathematics for handling qualitative as well as quantitative data has so far not been exploited in molecular biology, which is mostly driven by experimental research, relying on first-order or statistical models. The arising logic statements and integer programs are analyzed and can be solved with standard software. For a restricted class of problems the logic models reduce to a polynomial-time solvable satisfiability algorithm. Additionally, a more dynamic model enables enumeration of possible time resolutions in poly-logarithmic time. Computational experiments are included.
Hybrid Biogeography-Based Optimization for Integer Programming
Wang, Zhi-Cheng
2014-01-01
Biogeography-based optimization (BBO) is a relatively new bioinspired heuristic for global optimization based on the mathematical models of biogeography. By investigating the applicability and performance of BBO for integer programming, we find that the original BBO algorithm does not perform well on a set of benchmark integer programming problems. Thus we modify the mutation operator and/or the neighborhood structure of the algorithm, resulting in three new BBO-based methods, named BlendBBO, BBO_DE, and LBBO_LDE, respectively. Computational experiments show that these methods are competitive approaches to solve integer programming problems, and the LBBO_LDE shows the best performance on the benchmark problems. PMID:25003142
Currency Arbitrage Detection Using a Binary Integer Programming Model
ERIC Educational Resources Information Center
Soon, Wanmei; Ye, Heng-Qing
2011-01-01
In this article, we examine the use of a new binary integer programming (BIP) model to detect arbitrage opportunities in currency exchanges. This model showcases an excellent application of mathematics to the real world. The concepts involved are easily accessible to undergraduate students with basic knowledge in Operations Research. Through this…
Optimizing a Library's Loan Policy: An Integer Programming Approach.
ERIC Educational Resources Information Center
Al-Fares, Hesham K.
1998-01-01
Discusses the length of library loan periods and the number of books allowed to be borrowed. An integer programming model is formulated whose solution yields the optimum user satisfaction, and a case study conducted at King Fahd University of Petroleum and Minerals (Saudi Arabia) is presented. (Author/LRW)
Investigating Integer Restrictions in Linear Programming
ERIC Educational Resources Information Center
Edwards, Thomas G.; Chelst, Kenneth R.; Principato, Angela M.; Wilhelm, Thad L.
2015-01-01
Linear programming (LP) is an application of graphing linear systems that appears in many Algebra 2 textbooks. Although not explicitly mentioned in the Common Core State Standards for Mathematics, linear programming blends seamlessly into modeling with mathematics, the fourth Standard for Mathematical Practice (CCSSI 2010, p. 7). In solving a…
Currency arbitrage detection using a binary integer programming model
NASA Astrophysics Data System (ADS)
Soon, Wanmei; Ye, Heng-Qing
2011-04-01
In this article, we examine the use of a new binary integer programming (BIP) model to detect arbitrage opportunities in currency exchanges. This model showcases an excellent application of mathematics to the real world. The concepts involved are easily accessible to undergraduate students with basic knowledge in Operations Research. Through this work, students can learn to link several types of basic optimization models, namely linear programming, integer programming and network models, and apply the well-known sensitivity analysis procedure to accommodate realistic changes in the exchange rates. Beginning with a BIP model, we discuss how it can be reduced to an equivalent but considerably simpler model, where an efficient algorithm can be applied to find the arbitrages and incorporate the sensitivity analysis procedure. A simple comparison is then made with a different arbitrage detection model. This exercise helps students learn to apply basic Operations Research concepts to a practical real-life example, and provides insights into the processes involved in Operations Research model formulations.
Mixed Integer Programming and Heuristic Scheduling for Space Communication Networks
NASA Technical Reports Server (NTRS)
Cheung, Kar-Ming; Lee, Charles H.
2012-01-01
We developed framework and the mathematical formulation for optimizing communication network using mixed integer programming. The design yields a system that is much smaller, in search space size, when compared to the earlier approach. Our constrained network optimization takes into account the dynamics of link performance within the network along with mission and operation requirements. A unique penalty function is introduced to transform the mixed integer programming into the more manageable problem of searching in a continuous space. The constrained optimization problem was proposed to solve in two stages: first using the heuristic Particle Swarming Optimization algorithm to get a good initial starting point, and then feeding the result into the Sequential Quadratic Programming algorithm to achieve the final optimal schedule. We demonstrate the above planning and scheduling methodology with a scenario of 20 spacecraft and 3 ground stations of a Deep Space Network site. Our approach and framework have been simple and flexible so that problems with larger number of constraints and network can be easily adapted and solved.
Split diversity in constrained conservation prioritization using integer linear programming
Chernomor, Olga; Minh, Bui Quang; Forest, Félix; Klaere, Steffen; Ingram, Travis; Henzinger, Monika; von Haeseler, Arndt
2015-01-01
Phylogenetic diversity (PD) is a measure of biodiversity based on the evolutionary history of species. Here, we discuss several optimization problems related to the use of PD, and the more general measure split diversity (SD), in conservation prioritization. Depending on the conservation goal and the information available about species, one can construct optimization routines that incorporate various conservation constraints. We demonstrate how this information can be used to select sets of species for conservation action. Specifically, we discuss the use of species' geographic distributions, the choice of candidates under economic pressure, and the use of predator–prey interactions between the species in a community to define viability constraints. Despite such optimization problems falling into the area of NP hard problems, it is possible to solve them in a reasonable amount of time using integer programming. We apply integer linear programming to a variety of models for conservation prioritization that incorporate the SD measure. We exemplarily show the results for two data sets: the Cape region of South Africa and a Caribbean coral reef community. Finally, we provide user-friendly software at http://www.cibiv.at/software/pda. PMID:25893087
Diet planning for humans using mixed-integer linear programming.
Sklan, D; Dariel, I
1993-07-01
Human diet planning is generally carried out by selecting the food items or groups of food items to be used in the diet and then calculating the composition. If nutrient quantities do not reach the desired nutritional requirements, foods are exchanged or quantities altered and the composition recalculated. Iterations are repeated until a suitable diet is obtained. This procedure is cumbersome and slow and often leads to compromises in composition of the final diets. A computerized model, planning diets for humans at minimum cost while supplying all nutritional requirements, maintaining nutrient relationships and preserving eating practices is presented. This is based on a mixed-integer linear-programming algorithm. Linear equations were prepared for each nutritional requirement. To produce linear equations for relationships between nutrients, linear transformations were performed. Logical definitions for interactions such as the frequency of use of foods, relationships between exchange groups and the energy content of different meals were defined, and linear equations for these associations were written. Food items generally eaten in whole units were defined as integers. The use of this program is demonstrated for planning diets using a large selection of basic foods and for clinical situations where nutritional intervention is desirable. The system presented begins from a definition of the nutritional requirements and then plans the foods accordingly, and at minimum cost. This provides an accurate, efficient and versatile method of diet formulation.
Ellrott, Kyle; Guo, Jun-tao; Olman, Victor; Xu, Ying
2006-01-01
Integer programming is a combinatorial optimization method that has been successfully applied to the protein threading problem. We seek to expand the model optimized by this technique to allow for a more accurate description of protein threading. We have developed and implemented an expanded model of integer programming that has the capability to model secondary structure element deletion, which was not possible in previous version of integer programming based optimization. PMID:17503397
A Polynomial-Time Algorithm for Optimizing over N-Fold 4-Block Decomposable Integer Programs
NASA Astrophysics Data System (ADS)
Hemmecke, Raymond; Köppe, Matthias; Weismantel, Robert
In this paper we generalize N-fold integer programs and two-stage integer programs with N scenarios to N-fold 4-block decomposable integer programs. We show that for fixed blocks but variable N, these integer programs are polynomial-time solvable for any linear objective. Moreover, we present a polynomial-time computable optimality certificate for the case of fixed blocks, variable N and any convex separable objective function. We conclude with two sample applications, stochastic integer programs with second-order dominance constraints and stochastic integer multi-commodity flows, which (for fixed blocks) can be solved in polynomial time in the number of scenarios and commodities and in the binary encoding length of the input data. In the proof of our main theorem we combine several non-trivial constructions from the theory of Graver bases. We are confident that our approach paves the way for further extensions.
Reconstructing cerebrovascular networks under local physiological constraints by integer programming
Rempfler, Markus; Schneider, Matthias; Ielacqua, Giovanna D.; Xiao, Xianghui; Stock, Stuart R.; Klohs, Jan; Szekely, Gabor; Andres, Bjoern; Menze, Bjoern H.
2015-04-23
We introduce a probabilistic approach to vessel network extraction that enforces physiological constraints on the vessel structure. The method accounts for both image evidence and geometric relationships between vessels by solving an integer program, which is shown to yield the maximum a posteriori (MAP) estimate to the probabilistic model. Starting from an over-connected network, it is pruning vessel stumps and spurious connections by evaluating the local geometry and the global connectivity of the graph. We utilize a high-resolution micro computed tomography (µCT) dataset of a cerebrovascular corrosion cast to obtain a reference network and learn the prior distributions of ourmore » probabilistic model. As a result, we perform experiments on micro magnetic resonance angiography (µMRA) images of mouse brains and discuss properties of the networks obtained under different tracking and pruning approaches.« less
Reconstructing cerebrovascular networks under local physiological constraints by integer programming
Rempfler, Markus; Schneider, Matthias; Ielacqua, Giovanna D.; Xiao, Xianghui; Stock, Stuart R.; Klohs, Jan; Szekely, Gabor; Andres, Bjoern; Menze, Bjoern H.
2015-04-23
We introduce a probabilistic approach to vessel network extraction that enforces physiological constraints on the vessel structure. The method accounts for both image evidence and geometric relationships between vessels by solving an integer program, which is shown to yield the maximum a posteriori (MAP) estimate to the probabilistic model. Starting from an over-connected network, it is pruning vessel stumps and spurious connections by evaluating the local geometry and the global connectivity of the graph. We utilize a high-resolution micro computed tomography (µCT) dataset of a cerebrovascular corrosion cast to obtain a reference network and learn the prior distributions of our probabilistic model. As a result, we perform experiments on micro magnetic resonance angiography (µMRA) images of mouse brains and discuss properties of the networks obtained under different tracking and pruning approaches.
Validation and assessment of integer programming sensor placement models.
Uber, James G.; Hart, William Eugene; Watson, Jean-Paul; Phillips, Cynthia Ann; Berry, Jonathan W.
2005-02-01
We consider the accuracy of predictions made by integer programming (IP) models of sensor placement for water security applications. We have recently shown that IP models can be used to find optimal sensor placements for a variety of different performance criteria (e.g. minimize health impacts and minimize time to detection). However, these models make a variety of simplifying assumptions that might bias the final solution. We show that our IP modeling assumptions are similar to models developed for other sensor placement methodologies, and thus IP models should give similar predictions. However, this discussion highlights that there are significant differences in how temporal effects are modeled for sensor placement. We describe how these modeling assumptions can impact sensor placements.
Rempfler, Markus; Schneider, Matthias; Ielacqua, Giovanna D; Xiao, Xianghui; Stock, Stuart R; Klohs, Jan; Székely, Gábor; Andres, Bjoern; Menze, Bjoern H
2015-10-01
We introduce a probabilistic approach to vessel network extraction that enforces physiological constraints on the vessel structure. The method accounts for both image evidence and geometric relationships between vessels by solving an integer program, which is shown to yield the maximum a posteriori (MAP) estimate to a probabilistic model. Starting from an overconnected network, it is pruning vessel stumps and spurious connections by evaluating the local geometry and the global connectivity of the graph. We utilize a high-resolution micro computed tomography (μCT) dataset of a cerebrovascular corrosion cast to obtain a reference network and learn the prior distributions of our probabilistic model and we perform experiments on in-vivo magnetic resonance microangiography (μMRA) images of mouse brains. We finally discuss properties of the networks obtained under different tracking and pruning approaches.
Mixed Integer Programming and Heuristic Scheduling for Space Communication
NASA Technical Reports Server (NTRS)
Lee, Charles H.; Cheung, Kar-Ming
2013-01-01
Optimal planning and scheduling for a communication network was created where the nodes within the network are communicating at the highest possible rates while meeting the mission requirements and operational constraints. The planning and scheduling problem was formulated in the framework of Mixed Integer Programming (MIP) to introduce a special penalty function to convert the MIP problem into a continuous optimization problem, and to solve the constrained optimization problem using heuristic optimization. The communication network consists of space and ground assets with the link dynamics between any two assets varying with respect to time, distance, and telecom configurations. One asset could be communicating with another at very high data rates at one time, and at other times, communication is impossible, as the asset could be inaccessible from the network due to planetary occultation. Based on the network's geometric dynamics and link capabilities, the start time, end time, and link configuration of each view period are selected to maximize the communication efficiency within the network. Mathematical formulations for the constrained mixed integer optimization problem were derived, and efficient analytical and numerical techniques were developed to find the optimal solution. By setting up the problem using MIP, the search space for the optimization problem is reduced significantly, thereby speeding up the solution process. The ratio of the dimension of the traditional method over the proposed formulation is approximately an order N (single) to 2*N (arraying), where N is the number of receiving antennas of a node. By introducing a special penalty function, the MIP problem with non-differentiable cost function and nonlinear constraints can be converted into a continuous variable problem, whose solution is possible.
A cost-aggregating integer linear program for motif finding.
Kingsford, Carl; Zaslavsky, Elena; Singh, Mona
2011-12-01
In the motif finding problem one seeks a set of mutually similar substrings within a collection of biological sequences. This is an important and widely-studied problem, as such shared motifs in DNA often correspond to regulatory elements. We study a combinatorial framework where the goal is to find substrings of a given length such that the sum of their pairwise distances is minimized. We describe a novel integer linear program for the problem, which uses the fact that distances between substrings come from a limited set of possibilities allowing for aggregate consideration of sequence position pairs with the same distances. We show how to tighten its linear programming relaxation by adding an exponential set of constraints and give an efficient separation algorithm that can find violated constraints, thereby showing that the tightened linear program can still be solved in polynomial time. We apply our approach to find optimal solutions for the motif finding problem and show that it is effective in practice in uncovering known transcription factor binding sites.
ERIC Educational Resources Information Center
Han, Kyung T.; Rudner, Lawrence M.
2014-01-01
This study uses mixed integer quadratic programming (MIQP) to construct multiple highly equivalent item pools simultaneously, and compares the results from mixed integer programming (MIP). Three different MIP/MIQP models were implemented and evaluated using real CAT item pool data with 23 different content areas and a goal of equal information…
2004-05-21
The software allows for easy setup and testing of a variety of RF Electronic Sensor Platforms (ESPs). The software interprets RF messages from the ESP and displays the information in a graphical user interface. This program is used primarily for testing of the T-1 Electronic Sensor Platform. The software imports Electronic Tag Data files which are created from the Electronic Sensor Platform Programmer (ESPP). The software will automatically add sensors to its database when amore » RF message s received that the program recognizes. Any data that is generated can be stored to a file for later analysis.« less
The portals 4.0.1 network programming interface.
Barrett, Brian W.; Brightwell, Ronald Brian; Pedretti, Kevin; Wheeler, Kyle Bruce; Hemmert, Karl Scott; Riesen, Rolf E.; Underwood, Keith Douglas; Maccabe, Arthur Bernard; Hudson, Trammell B.
2013-04-01
This report presents a specification for the Portals 4.0 network programming interface. Portals 4.0 is intended to allow scalable, high-performance network communication between nodes of a parallel computing system. Portals 4.0 is well suited to massively parallel processing and embedded systems. Portals 4.0 represents an adaption of the data movement layer developed for massively parallel processing platforms, such as the 4500-node Intel TeraFLOPS machine. Sandias Cplant cluster project motivated the development of Version 3.0, which was later extended to Version 3.3 as part of the Cray Red Storm machine and XT line. Version 4.0 is targeted to the next generation of machines employing advanced network interface architectures that support enhanced offload capabilities. 3
Constrained spacecraft reorientation using mixed integer convex programming
NASA Astrophysics Data System (ADS)
Tam, Margaret; Glenn Lightsey, E.
2016-10-01
A constrained attitude guidance (CAG) system is developed using convex optimization to autonomously achieve spacecraft pointing objectives while meeting the constraints imposed by on-board hardware. These constraints include bounds on the control input and slew rate, as well as pointing constraints imposed by the sensors. The pointing constraints consist of inclusion and exclusion cones that dictate permissible orientations of the spacecraft in order to keep objects in or out of the field of view of the sensors. The optimization scheme drives a body vector towards a target inertial vector along a trajectory that consists solely of permissible orientations in order to achieve the desired attitude for a given mission mode. The non-convex rotational kinematics are handled by discretization, which also ensures that the quaternion stays unity norm. In order to guarantee an admissible path, the pointing constraints are relaxed. Depending on how strict the pointing constraints are, the degree of relaxation is tuneable. The use of binary variables permits the inclusion of logical expressions in the pointing constraints in the case that a set of sensors has redundancies. The resulting mixed integer convex programming (MICP) formulation generates a steering law that can be easily integrated into an attitude determination and control (ADC) system. A sample simulation of the system is performed for the Bevo-2 satellite, including disturbance torques and actuator dynamics which are not modeled by the controller. Simulation results demonstrate the robustness of the system to disturbances while meeting the mission requirements with desirable performance characteristics.
Accurate construction of consensus genetic maps via integer linear programming.
Wu, Yonghui; Close, Timothy J; Lonardi, Stefano
2011-01-01
We study the problem of merging genetic maps, when the individual genetic maps are given as directed acyclic graphs. The computational problem is to build a consensus map, which is a directed graph that includes and is consistent with all (or, the vast majority of) the markers in the input maps. However, when markers in the individual maps have ordering conflicts, the resulting consensus map will contain cycles. Here, we formulate the problem of resolving cycles in the context of a parsimonious paradigm that takes into account two types of errors that may be present in the input maps, namely, local reshuffles and global displacements. The resulting combinatorial optimization problem is, in turn, expressed as an integer linear program. A fast approximation algorithm is proposed, and an additional speedup heuristic is developed. Our algorithms were implemented in a software tool named MERGEMAP which is freely available for academic use. An extensive set of experiments shows that MERGEMAP consistently outperforms JOINMAP, which is the most popular tool currently available for this task, both in terms of accuracy and running time. MERGEMAP is available for download at http://www.cs.ucr.edu/~yonghui/mgmap.html. PMID:20479505
An integer programming approach to DNA sequence assembly.
Chang, Youngjung; Sahinidis, Nikolaos V
2011-08-10
De novo sequence assembly is a ubiquitous combinatorial problem in all DNA sequencing technologies. In the presence of errors in the experimental data, the assembly problem is computationally challenging, and its solution may not lead to a unique reconstruct. The enumeration of all alternative solutions is important in drawing a reliable conclusion on the target sequence, and is often overlooked in the heuristic approaches that are currently available. In this paper, we develop an integer programming formulation and global optimization solution strategy to solve the sequence assembly problem with errors in the data. We also propose an efficient technique to identify all alternative reconstructs. When applied to examples of sequencing-by-hybridization, our approach dramatically increases the length of DNA sequences that can be handled with global optimality certificate to over 10,000, which is more than 10 times longer than previously reported. For some problem instances, alternative solutions exhibited a wide range of different ability in reproducing the target DNA sequence. Therefore, it is important to utilize the methodology proposed in this paper in order to obtain all alternative solutions to reliably infer the true reconstruct. These alternative solutions can be used to refine the obtained results and guide the design of further experiments to correctly reconstruct the target DNA sequence. PMID:21864794
Accurate construction of consensus genetic maps via integer linear programming.
Wu, Yonghui; Close, Timothy J; Lonardi, Stefano
2011-01-01
We study the problem of merging genetic maps, when the individual genetic maps are given as directed acyclic graphs. The computational problem is to build a consensus map, which is a directed graph that includes and is consistent with all (or, the vast majority of) the markers in the input maps. However, when markers in the individual maps have ordering conflicts, the resulting consensus map will contain cycles. Here, we formulate the problem of resolving cycles in the context of a parsimonious paradigm that takes into account two types of errors that may be present in the input maps, namely, local reshuffles and global displacements. The resulting combinatorial optimization problem is, in turn, expressed as an integer linear program. A fast approximation algorithm is proposed, and an additional speedup heuristic is developed. Our algorithms were implemented in a software tool named MERGEMAP which is freely available for academic use. An extensive set of experiments shows that MERGEMAP consistently outperforms JOINMAP, which is the most popular tool currently available for this task, both in terms of accuracy and running time. MERGEMAP is available for download at http://www.cs.ucr.edu/~yonghui/mgmap.html.
Learning oncogenetic networks by reducing to mixed integer linear programming.
Shahrabi Farahani, Hossein; Lagergren, Jens
2013-01-01
Cancer can be a result of accumulation of different types of genetic mutations such as copy number aberrations. The data from tumors are cross-sectional and do not contain the temporal order of the genetic events. Finding the order in which the genetic events have occurred and progression pathways are of vital importance in understanding the disease. In order to model cancer progression, we propose Progression Networks, a special case of Bayesian networks, that are tailored to model disease progression. Progression networks have similarities with Conjunctive Bayesian Networks (CBNs) [1],a variation of Bayesian networks also proposed for modeling disease progression. We also describe a learning algorithm for learning Bayesian networks in general and progression networks in particular. We reduce the hard problem of learning the Bayesian and progression networks to Mixed Integer Linear Programming (MILP). MILP is a Non-deterministic Polynomial-time complete (NP-complete) problem for which very good heuristics exists. We tested our algorithm on synthetic and real cytogenetic data from renal cell carcinoma. We also compared our learned progression networks with the networks proposed in earlier publications. The software is available on the website https://bitbucket.org/farahani/diprog.
Fish Processed Production Planning Using Integer Stochastic Programming Model
NASA Astrophysics Data System (ADS)
Firmansyah, Mawengkang, Herman
2011-06-01
Fish and its processed products are the most affordable source of animal protein in the diet of most people in Indonesia. The goal in production planning is to meet customer demand over a fixed time horizon divided into planning periods by optimizing the trade-off between economic objectives such as production cost and customer satisfaction level. The major decisions are production and inventory levels for each product and the number of workforce in each planning period. In this paper we consider the management of small scale traditional business at North Sumatera Province which performs processing fish into several local seafood products. The inherent uncertainty of data (e.g. demand, fish availability), together with the sequential evolution of data over time leads the production planning problem to a nonlinear mixed-integer stochastic programming model. We use scenario generation based approach and feasible neighborhood search for solving the model. The results which show the amount of each fish processed product and the number of workforce needed in each horizon planning are presented.
Mixed integer linear programming for maximum-parsimony phylogeny inference.
Sridhar, Srinath; Lam, Fumei; Blelloch, Guy E; Ravi, R; Schwartz, Russell
2008-01-01
Reconstruction of phylogenetic trees is a fundamental problem in computational biology. While excellent heuristic methods are available for many variants of this problem, new advances in phylogeny inference will be required if we are to be able to continue to make effective use of the rapidly growing stores of variation data now being gathered. In this paper, we present two integer linear programming (ILP) formulations to find the most parsimonious phylogenetic tree from a set of binary variation data. One method uses a flow-based formulation that can produce exponential numbers of variables and constraints in the worst case. The method has, however, proven extremely efficient in practice on datasets that are well beyond the reach of the available provably efficient methods, solving several large mtDNA and Y-chromosome instances within a few seconds and giving provably optimal results in times competitive with fast heuristics than cannot guarantee optimality. An alternative formulation establishes that the problem can be solved with a polynomial-sized ILP. We further present a web server developed based on the exponential-sized ILP that performs fast maximum parsimony inferences and serves as a front end to a database of precomputed phylogenies spanning the human genome.
IESIP - AN IMPROVED EXPLORATORY SEARCH TECHNIQUE FOR PURE INTEGER LINEAR PROGRAMMING PROBLEMS
NASA Technical Reports Server (NTRS)
Fogle, F. R.
1994-01-01
IESIP, an Improved Exploratory Search Technique for Pure Integer Linear Programming Problems, addresses the problem of optimizing an objective function of one or more variables subject to a set of confining functions or constraints by a method called discrete optimization or integer programming. Integer programming is based on a specific form of the general linear programming problem in which all variables in the objective function and all variables in the constraints are integers. While more difficult, integer programming is required for accuracy when modeling systems with small numbers of components such as the distribution of goods, machine scheduling, and production scheduling. IESIP establishes a new methodology for solving pure integer programming problems by utilizing a modified version of the univariate exploratory move developed by Robert Hooke and T.A. Jeeves. IESIP also takes some of its technique from the greedy procedure and the idea of unit neighborhoods. A rounding scheme uses the continuous solution found by traditional methods (simplex or other suitable technique) and creates a feasible integer starting point. The Hook and Jeeves exploratory search is modified to accommodate integers and constraints and is then employed to determine an optimal integer solution from the feasible starting solution. The user-friendly IESIP allows for rapid solution of problems up to 10 variables in size (limited by DOS allocation). Sample problems compare IESIP solutions with the traditional branch-and-bound approach. IESIP is written in Borland's TURBO Pascal for IBM PC series computers and compatibles running DOS. Source code and an executable are provided. The main memory requirement for execution is 25K. This program is available on a 5.25 inch 360K MS DOS format diskette. IESIP was developed in 1990. IBM is a trademark of International Business Machines. TURBO Pascal is registered by Borland International.
A Mixed Integer Linear Program for Airport Departure Scheduling
NASA Technical Reports Server (NTRS)
Gupta, Gautam; Jung, Yoon Chul
2009-01-01
Aircraft departing from an airport are subject to numerous constraints while scheduling departure times. These constraints include wake-separation constraints for successive departures, miles-in-trail separation for aircraft bound for the same departure fixes, and time-window or prioritization constraints for individual flights. Besides these, emissions as well as increased fuel consumption due to inefficient scheduling need to be included. Addressing all the above constraints in a single framework while allowing for resequencing of the aircraft using runway queues is critical to the implementation of the Next Generation Air Transport System (NextGen) concepts. Prior work on airport departure scheduling has addressed some of the above. However, existing methods use pre-determined runway queues, and schedule aircraft from these departure queues. The source of such pre-determined queues is not explicit, and could potentially be a subjective controller input. Determining runway queues and scheduling within the same framework would potentially result in better scheduling. This paper presents a mixed integer linear program (MILP) for the departure-scheduling problem. The program takes as input the incoming sequence of aircraft for departure from a runway, along with their earliest departure times and an optional prioritization scheme based on time-window of departure for each aircraft. The program then assigns these aircraft to the available departure queues and schedules departure times, explicitly considering wake separation and departure fix restrictions to minimize total delay for all aircraft. The approach is generalized and can be used in a variety of situations, and allows for aircraft prioritization based on operational as well as environmental considerations. We present the MILP in the paper, along with benefits over the first-come-first-serve (FCFS) scheme for numerous randomized problems based on real-world settings. The MILP results in substantially reduced
McConnel, M B; Galligan, D T
2004-10-01
Optimization programs are currently used to aid in the selection of bulls to be used in herd breeding programs. While these programs offer a systematic approach to the problem of semen selection, they ignore the impact of volume discounts. Volume discounts are discounts that vary depending on the number of straws purchased. The dynamic nature of volume discounts means that, in order to be adequately accounted for, they must be considered in the optimization routine. Failing to do this creates a missed economic opportunity because the potential benefits of optimally selecting and combining breeding company discount opportunities are not captured. To address these issues, an integer program was created which used binary decision variables to incorporate the effects of quantity discounts into the optimization program. A consistent set of trait criteria was used to select a group of bulls from 3 sample breeding companies. Three different selection programs were used to select the bulls, 2 traditional methods and the integer method. After the discounts were applied using each method, the integer program resulted in the lowest cost portfolio of bulls. A sensitivity analysis showed that the integer program also resulted in a low cost portfolio when the genetic trait goals were changed to be more or less stringent. In the sample application, a net benefit of the new approach over the traditional approaches was a 12.3 to 20.0% savings in semen cost. PMID:15377634
Solution of Mixed-Integer Programming Problems on the XT5
Hartman-Baker, Rebecca J; Busch, Ingrid Karin; Hilliard, Michael R; Middleton, Richard S; Schultze, Michael
2009-01-01
In this paper, we describe our experience with solving difficult mixed-integer linear programming problems (MILPs) on the petaflop Cray XT5 system at the National Center for Computational Sciences at Oak Ridge National Laboratory. We describe the algorithmic, software, and hardware needs for solving MILPs and present the results of using PICO, an open-source, parallel, mixed-integer linear programming solver developed at Sandia National Laboratories, to solve canonical MILPs as well as problems of interest arising from the logistics and supply chain management field.
Solving mixed integer nonlinear programming problems using spiral dynamics optimization algorithm
NASA Astrophysics Data System (ADS)
Kania, Adhe; Sidarto, Kuntjoro Adji
2016-02-01
Many engineering and practical problem can be modeled by mixed integer nonlinear programming. This paper proposes to solve the problem with modified spiral dynamics inspired optimization method of Tamura and Yasuda. Four test cases have been examined, including problem in engineering and sport. This method succeeds in obtaining the optimal result in all test cases.
Li, Yongping; Huang, Guohe
2009-03-01
In this study, a dynamic analysis approach based on an inexact multistage integer programming (IMIP) model is developed for supporting municipal solid waste (MSW) management under uncertainty. Techniques of interval-parameter programming and multistage stochastic programming are incorporated within an integer-programming framework. The developed IMIP can deal with uncertainties expressed as probability distributions and interval numbers, and can reflect the dynamics in terms of decisions for waste-flow allocation and facility-capacity expansion over a multistage context. Moreover, the IMIP can be used for analyzing various policy scenarios that are associated with different levels of economic consequences. The developed method is applied to a case study of long-term waste-management planning. The results indicate that reasonable solutions have been generated for binary and continuous variables. They can help generate desired decisions of system-capacity expansion and waste-flow allocation with a minimized system cost and maximized system reliability. PMID:19320267
NASA Astrophysics Data System (ADS)
Khan, Sahubar Ali Bin Mohamed Nadhar; Ahmarofi, Ahmad Afif Bin
2014-12-01
In manufacturing sector, production planning or scheduling is the most important managerial task in order to achieve profit maximization and cost minimization. With limited resources, the management has to satisfy customer demand and at the same time fulfill company's objective, which is to maximize profit or minimize cost. Hence, planning becomes a significant task for production site in order to determine optimal number of units for each product to be produced. In this study, integer programming technique is used to develop an appropriate product-mix planning to obtain the optimal number of audio speaker products that should be produced in order to maximize profit. Branch-and-bound method is applied to obtain exact integer solutions when non-integer solutions occurred. Three major resource constraints are considered in this problem: raw materials constraint, demand constraint and standard production time constraint. It is found that, the developed integer programming model gives significant increase in profit compared to the existing method used by the company. At the end of the study, sensitivity analysis was performed to evaluate the effects of changes in objective function coefficient and available resources on the developed model. This will enable the management to foresee the effects on the results when some changes happen to the profit of its products or available resources.
Scenario Decomposition for 0-1 Stochastic Programs: Improvements and Asynchronous Implementation
Ryan, Kevin; Rajan, Deepak; Ahmed, Shabbir
2016-05-01
We recently proposed scenario decomposition algorithm for stochastic 0-1 programs finds an optimal solution by evaluating and removing individual solutions that are discovered by solving scenario subproblems. In our work, we develop an asynchronous, distributed implementation of the algorithm which has computational advantages over existing synchronous implementations of the algorithm. Improvements to both the synchronous and asynchronous algorithm are proposed. We also test the results on well known stochastic 0-1 programs from the SIPLIB test library and is able to solve one previously unsolved instance from the test set.
Smart-Grid Backbone Network Real-Time Delay Reduction via Integer Programming.
Pagadrai, Sasikanth; Yilmaz, Muhittin; Valluri, Pratyush
2016-08-01
This research investigates an optimal delay-based virtual topology design using integer linear programming (ILP), which is applied to the current backbone networks such as smart-grid real-time communication systems. A network traffic matrix is applied and the corresponding virtual topology problem is solved using the ILP formulations that include a network delay-dependent objective function and lightpath routing, wavelength assignment, wavelength continuity, flow routing, and traffic loss constraints. The proposed optimization approach provides an efficient deterministic integration of intelligent sensing and decision making, and network learning features for superior smart grid operations by adaptively responding the time-varying network traffic data as well as operational constraints to maintain optimal virtual topologies. A representative optical backbone network has been utilized to demonstrate the proposed optimization framework whose simulation results indicate that superior smart-grid network performance can be achieved using commercial networks and integer programming.
Smart-Grid Backbone Network Real-Time Delay Reduction via Integer Programming.
Pagadrai, Sasikanth; Yilmaz, Muhittin; Valluri, Pratyush
2016-08-01
This research investigates an optimal delay-based virtual topology design using integer linear programming (ILP), which is applied to the current backbone networks such as smart-grid real-time communication systems. A network traffic matrix is applied and the corresponding virtual topology problem is solved using the ILP formulations that include a network delay-dependent objective function and lightpath routing, wavelength assignment, wavelength continuity, flow routing, and traffic loss constraints. The proposed optimization approach provides an efficient deterministic integration of intelligent sensing and decision making, and network learning features for superior smart grid operations by adaptively responding the time-varying network traffic data as well as operational constraints to maintain optimal virtual topologies. A representative optical backbone network has been utilized to demonstrate the proposed optimization framework whose simulation results indicate that superior smart-grid network performance can be achieved using commercial networks and integer programming. PMID:25935050
Enhanced index tracking modeling in portfolio optimization with mixed-integer programming z approach
NASA Astrophysics Data System (ADS)
Siew, Lam Weng; Jaaman, Saiful Hafizah Hj.; Ismail, Hamizun bin
2014-09-01
Enhanced index tracking is a popular form of portfolio management in stock market investment. Enhanced index tracking aims to construct an optimal portfolio to generate excess return over the return achieved by the stock market index without purchasing all of the stocks that make up the index. The objective of this paper is to construct an optimal portfolio using mixed-integer programming model which adopts regression approach in order to generate higher portfolio mean return than stock market index return. In this study, the data consists of 24 component stocks in Malaysia market index which is FTSE Bursa Malaysia Kuala Lumpur Composite Index from January 2010 until December 2012. The results of this study show that the optimal portfolio of mixed-integer programming model is able to generate higher mean return than FTSE Bursa Malaysia Kuala Lumpur Composite Index return with only selecting 30% out of the total stock market index components.
Zörnig, Peter
2015-08-01
We present integer programming models for some variants of the farthest string problem. The number of variables and constraints is substantially less than that of the integer linear programming models known in the literature. Moreover, the solution of the linear programming-relaxation contains only a small proportion of noninteger values, which considerably simplifies the rounding process. Numerical tests have shown excellent results, especially when a small set of long sequences is given.
PySP : modeling and solving stochastic mixed-integer programs in Python.
Woodruff, David L.; Watson, Jean-Paul
2010-08-01
Although stochastic programming is a powerful tool for modeling decision-making under uncertainty, various impediments have historically prevented its widespread use. One key factor involves the ability of non-specialists to easily express stochastic programming problems as extensions of deterministic models, which are often formulated first. A second key factor relates to the difficulty of solving stochastic programming models, particularly the general mixed-integer, multi-stage case. Intricate, configurable, and parallel decomposition strategies are frequently required to achieve tractable run-times. We simultaneously address both of these factors in our PySP software package, which is part of the COIN-OR Coopr open-source Python project for optimization. To formulate a stochastic program in PySP, the user specifies both the deterministic base model and the scenario tree with associated uncertain parameters in the Pyomo open-source algebraic modeling language. Given these two models, PySP provides two paths for solution of the corresponding stochastic program. The first alternative involves writing the extensive form and invoking a standard deterministic (mixed-integer) solver. For more complex stochastic programs, we provide an implementation of Rockafellar and Wets Progressive Hedging algorithm. Our particular focus is on the use of Progressive Hedging as an effective heuristic for approximating general multi-stage, mixed-integer stochastic programs. By leveraging the combination of a high-level programming language (Python) and the embedding of the base deterministic model in that language (Pyomo), we are able to provide completely generic and highly configurable solver implementations. PySP has been used by a number of research groups, including our own, to rapidly prototype and solve difficult stochastic programming problems.
The general form of 0-1 programming problem based on DNA computing.
ZhiXiang, Yin; Fengyue, Zhang; Jin, Xu
2003-06-01
DNA computing is a novel method of solving a class of intractable computational problems, in which the computing speeds up exponentially with the problem size. Up to now, many accomplishments have been made to improve its performance and increase its reliability. In this paper, we solved the general form of 0-1 programming problem with fluorescence labeling techniques based on surface chemistry by attempting to apply DNA computing to a programming problem. Our method has some significant advantages such as simple encoding, low cost, and short operating time.
Obtaining lower bounds from the progressive hedging algorithm for stochastic mixed-integer programs
Gade, Dinakar; Hackebeil, Gabriel; Ryan, Sarah M.; Watson, Jean -Paul; Wets, Roger J.-B.; Woodruff, David L.
2016-04-02
We present a method for computing lower bounds in the progressive hedging algorithm (PHA) for two-stage and multi-stage stochastic mixed-integer programs. Computing lower bounds in the PHA allows one to assess the quality of the solutions generated by the algorithm contemporaneously. The lower bounds can be computed in any iteration of the algorithm by using dual prices that are calculated during execution of the standard PHA. In conclusion, we report computational results on stochastic unit commitment and stochastic server location problem instances, and explore the relationship between key PHA parameters and the quality of the resulting lower bounds.
Integration of progressive hedging and dual decomposition in stochastic integer programs
Watson, Jean -Paul; Guo, Ge; Hackebeil, Gabriel; Ryan, Sarah M.; Woodruff, David L.
2015-04-07
We present a method for integrating the Progressive Hedging (PH) algorithm and the Dual Decomposition (DD) algorithm of Carøe and Schultz for stochastic mixed-integer programs. Based on the correspondence between lower bounds obtained with PH and DD, a method to transform weights from PH to Lagrange multipliers in DD is found. Fast progress in early iterations of PH speeds up convergence of DD to an exact solution. As a result, we report computational results on server location and unit commitment instances.
An Integer Programming Formulation of the Minimum Common String Partition Problem.
Ferdous, S M; Rahman, M Sohel
2015-01-01
We consider the problem of finding a minimum common string partition (MCSP) of two strings, which is an NP-hard problem. The MCSP problem is closely related to genome comparison and rearrangement, an important field in Computational Biology. In this paper, we map the MCSP problem into a graph applying a prior technique and using this graph, we develop an Integer Linear Programming (ILP) formulation for the problem. We implement the ILP formulation and compare the results with the state-of-the-art algorithms from the literature. The experimental results are found to be promising.
Edit distance for marked point processes revisited: An implementation by binary integer programming
Hirata, Yoshito; Aihara, Kazuyuki
2015-12-15
We implement the edit distance for marked point processes [Suzuki et al., Int. J. Bifurcation Chaos 20, 3699–3708 (2010)] as a binary integer program. Compared with the previous implementation using minimum cost perfect matching, the proposed implementation has two advantages: first, by using the proposed implementation, we can apply a wide variety of software and hardware, even spin glasses and coherent ising machines, to calculate the edit distance for marked point processes; second, the proposed implementation runs faster than the previous implementation when the difference between the numbers of events in two time windows for a marked point process is large.
An Integer Programming Model for the Management of a Forest in the North of Portugal
NASA Astrophysics Data System (ADS)
Cerveira, Adelaide; Fonseca, Teresa; Mota, Artur; Martins, Isabel
2011-09-01
This study aims to develop an approach for the management of a forest of maritime pine located in the north region of Portugal. The forest is classified into five public lands, the so-called baldios, extending over 4432 ha. These baldios are co-managed by the Official Forest Services and the local communities mainly for timber production purposes. The forest planning involves non-spatial and spatial constraints. Spatial constraints dictate a maximum clearcut area and an exclusion time. An integer programming model is presented and the computational results are discussed.
Inexact multistage stochastic integer programming for water resources management under uncertainty.
Li, Y P; Huang, G H; Nie, S L; Liu, L
2008-07-01
In this study, an inexact multistage stochastic integer programming (IMSIP) method is developed for water resources management under uncertainty. This method incorporates techniques of inexact optimization and multistage stochastic programming within an integer programming framework. It can deal with uncertainties expressed as both probabilities and discrete intervals, and reflect the dynamics in terms of decisions for water allocation through transactions at discrete points of a complete scenario set over a multistage context. Moreover, the IMSIP can facilitate analyses of the multiple policy scenarios that are associated with economic penalties when the promised targets are violated as well as the economies-of-scale in the costs for surplus water diversion. A case study is provided for demonstrating the applicability of the developed methodology. The results indicate that reasonable solutions have been generated for both binary and continuous variables. For all scenarios under consideration, corrective actions can be undertaken dynamically under various pre-regulated policies and can thus help minimize the penalties and costs. The IMSIP can help water resources managers to identify desired system designs against water shortage and for flood control with maximized economic benefit and minimized system-failure risk. PMID:17532113
NASA Astrophysics Data System (ADS)
Huang, Kai; Huang, Gordon; Dai, Liming; Fan, Yurui
2016-08-01
This article introduces an inexact fuzzy integer chance constraint programming (IFICCP) approach for identifying noise reduction strategy under uncertainty. The IFICCP method integrates the interval programming and fuzzy chance constraint programming approaches into a framework, which is able to deal with uncertainties expressed as intervals and fuzziness. The proposed IFICCP model can be converted into two deterministic submodels corresponding to the optimistic and pessimistic conditions. The modelling approach is applied to a hypothetical control measure selection problem for noise reduction. Results of the case study indicate that useful solutions for noise control practices can be acquired. Three acceptable noise levels for two communities are considered. For each acceptable noise level, several decision alternatives have been obtained and analysed under different fuzzy confidence levels, which reflect the trade-offs between environmental and economic considerations.
Upper Bounds on the Number of Solutions of Binary Integer Programs
NASA Astrophysics Data System (ADS)
Jain, Siddhartha; Kadioglu, Serdar; Sellmann, Meinolf
We present a new method to compute upper bounds of the number of solutions of binary integer programming (BIP) problems. Given a BIP, we create a dynamic programming (DP) table for a redundant knapsack constraint which is obtained by surrogate relaxation. We then consider a Lagrangian relaxation of the original problem to obtain an initial weight bound on the knapsack. This bound is then refined through subgradient optimization. The latter provides a variety of Lagrange multipliers which allow us to filter infeasible edges in the DP table. The number of paths in the final table then provides an upper bound on the number of solutions. Numerical results show the effectiveness of our counting framework on automatic recording and market split problems.
An improved exploratory search technique for pure integer linear programming problems
NASA Technical Reports Server (NTRS)
Fogle, F. R.
1990-01-01
The development is documented of a heuristic method for the solution of pure integer linear programming problems. The procedure draws its methodology from the ideas of Hooke and Jeeves type 1 and 2 exploratory searches, greedy procedures, and neighborhood searches. It uses an efficient rounding method to obtain its first feasible integer point from the optimal continuous solution obtained via the simplex method. Since this method is based entirely on simple addition or subtraction of one to each variable of a point in n-space and the subsequent comparison of candidate solutions to a given set of constraints, it facilitates significant complexity improvements over existing techniques. It also obtains the same optimal solution found by the branch-and-bound technique in 44 of 45 small to moderate size test problems. Two example problems are worked in detail to show the inner workings of the method. Furthermore, using an established weighted scheme for comparing computational effort involved in an algorithm, a comparison of this algorithm is made to the more established and rigorous branch-and-bound method. A computer implementation of the procedure, in PC compatible Pascal, is also presented and discussed.
ERIC Educational Resources Information Center
Donoghue, John R.
2015-01-01
At the heart of van der Linden's approach to automated test assembly (ATA) is a linear programming/integer programming (LP/IP) problem. A variety of IP solvers are available, ranging in cost from free to hundreds of thousands of dollars. In this paper, I compare several approaches to solving the underlying IP problem. These approaches range from…
NASA Astrophysics Data System (ADS)
Niwa, Keiichi; Hayashida, Tomohiro; Sakawa, Masatoshi; Yang, Yishen
2010-10-01
We consider two-level programming problems in which there are one decision maker (the leader) at the upper level and two or more decision makers (the followers) at the lower level and decision variables of the leader and the followers are 0-1 variables. We assume that there is coordination among the followers while between the leader and the group of all the followers, there is no motivation to cooperate each other, and fuzzy goals for objective functions of the leader and the followers are introduced so as to take fuzziness of their judgments into consideration. The leader maximizes the degree of satisfaction (the value of the membership function) and the followers choose in concert in order to maximize a minimum among their degrees of satisfaction. We propose a modified computational method that solves problems related to the computational method based on the genetic algorithm (the existing method) for obtaining the Stackelberg solution. Specifically, the distributed genetic algorithm is introduced with respect to the upper level genetic algorithm, which handles decision variables for the leader in order to shorten the computational time of the existing method. Parallelization of the lower level genetic algorithm is also performed along with parallelization of the upper level genetic algorithm. In order to demonstrate the effectiveness of the proposed computational method, numerical experiments are carried out.
Master plan nurse duty roster using the 0-1 goal programming technique
NASA Astrophysics Data System (ADS)
Ismail, Wan Rosmanira; Jenal, Ruzzakiah
2013-04-01
The scheduling of nurses is particularly challenging because of the nature of the work which is around the clock. In addition, inefficient duty roster can have an effect on the nurses well being as well as their job satisfaction. In nurse scheduling problem (NSP), nurses are generally allocated to periods of work over a specified time horizon. A typical length of the schedule varies from a few weeks to a month. The schedule will be consistently rebuilt after the specified time period and will result in a time-consuming task for the administrative staff involved. Moreover, the task becomes overwhelming when the staff needs to consider the previous duty rosters in order to maintain the quality of schedules. Therefore, this study suggests the development of a master plan for a nurse duty roster for approximately one year. The master plan starts with the development of a blue print for the nurse duty roster using a 0-1 goal programming technique. The appropriate working period for this blue print is formulated based on the number of night shifts and the number of required nurses for night shift per schedule. Subsequently, the blue print is repeated to complete the annual nurse duty roster. These newly developed procedures were then tested on several data sets. The test results found that the master plan has successfully distributed the annual workload evenly among nurses. In addition, the master plan allows nurses to arrange their career and social activities in advance.
Linderoth, Jeff T.; Luedtke, James R.
2013-05-30
The mathematical modeling of systems often requires the use of both nonlinear and discrete components. Problems involving both discrete and nonlinear components are known as mixed-integer nonlinear programs (MINLPs) and are among the most challenging computational optimization problems. This research project added to the understanding of this area by making a number of fundamental advances. First, the work demonstrated many novel, strong, tractable relaxations designed to deal with non-convexities arising in mathematical formulation. Second, the research implemented the ideas in software that is available to the public. Finally, the work demonstrated the importance of these ideas on practical applications and disseminated the work through scholarly journals, survey publications, and conference presentations.
NASA Technical Reports Server (NTRS)
Haftka, R. T.; Adelman, H. M.
1985-01-01
Orbiting spacecraft such as large space antennas have to maintain a highly accurate shape to operate satisfactorily. Such structures require active and passive controls to maintain an accurate shape under a variety of disturbances. Methods for the optimum placement of control actuators for correcting static deformations are described. In particular, attention is focused on the case were control locations have to be selected from a large set of available sites, so that integer programing methods are called for. The effectiveness of three heuristic techniques for obtaining a near-optimal site selection is compared. In addition, efficient reanalysis techniques for the rapid assessment of control effectiveness are presented. Two examples are used to demonstrate the methods: a simple beam structure and a 55m space-truss-parabolic antenna.
NASA Technical Reports Server (NTRS)
Haftka, R. T.; Adelman, H. M.
1984-01-01
Orbiting spacecraft such as large space antennas have to maintain a highly accurate space to operate satisfactorily. Such structures require active and passive controls to mantain an accurate shape under a variety of disturbances. Methods for the optimum placement of control actuators for correcting static deformations are described. In particular, attention is focused on the case were control locations have to be selected from a large set of available sites, so that integer programing methods are called for. The effectiveness of three heuristic techniques for obtaining a near-optimal site selection is compared. In addition, efficient reanalysis techniques for the rapid assessment of control effectiveness are presented. Two examples are used to demonstrate the methods: a simple beam structure and a 55m space-truss-parabolic antenna.
Optimization of a wood dryer kiln using the mixed integer programming technique: A case study
Gustafsson, S.I.
1999-07-01
When wood is to be utilized as a raw material for furniture, buildings, etc., it must be dried from approximately 100% to 6% moisture content. This is achieved at least partly in a drying kiln. Heat for this purpose is provided by electrical means, or by steam from boilers fired with wood chips or oil. By making a close examination of monitored values from an actual drying kiln it has been possible to optimize the use of steam and electricity using the so called mixed integer programming technique. Owing to the operating schedule for the drying kiln it has been necessary to divide the drying process in very short time intervals, i.e., a number of minutes. Since a drying cycle takes about two or three weeks, a considerable mathematical problem is presented and this has to be solved.
An integer programming model for gate assignment problem at airline terminals
NASA Astrophysics Data System (ADS)
Chun, Chong Kok; Nordin, Syarifah Zyurina
2015-05-01
In this paper, we concentrate on a gate assignment problem (GAP) at the airlines terminal. Our problem is to assign an arrival plane to a suitable gate. There are two considerations needed to take. One of its is passenger walking distance from arrival gate to departure gate while another consideration is the transport baggage distance from one gate to another. Our objective is to minimize the total distance between the gates that related to assign the arrival plane to the suitable gates. An integer linear programming (ILP) model is proposed to solve this gate assignment problem. We also conduct a computational experiment using CPLEX 12.1 solver in AIMMS 3.10 software to analyze the performance of the model. Results of the computational experiments are presented. The efficiency of flights assignment is depends on the ratio of the weight for both total passenger traveling distances and total baggage transport distances.
An integer programming framework for inferring disease complexes from network data
Mazza, Arnon; Klockmeier, Konrad; Wanker, Erich; Sharan, Roded
2016-01-01
Motivation: Unraveling the molecular mechanisms that underlie disease calls for methods that go beyond the identification of single causal genes to inferring larger protein assemblies that take part in the disease process. Results: Here, we develop an exact, integer-programming-based method for associating protein complexes with disease. Our approach scores proteins based on their proximity in a protein–protein interaction network to a prior set that is known to be relevant for the studied disease. These scores are combined with interaction information to infer densely interacting protein complexes that are potentially disease-associated. We show that our method outperforms previous ones and leads to predictions that are well supported by current experimental data and literature knowledge. Availability and Implementation: The datasets we used, the executables and the results are available at www.cs.tau.ac.il/roded/disease_complexes.zip Contact: roded@post.tau.ac.il PMID:27307626
Synchronic interval Gaussian mixed-integer programming for air quality management.
Cheng, Guanhui; Huang, Guohe Gordon; Dong, Cong
2015-12-15
To reveal the synchronism of interval uncertainties, the tradeoff between system optimality and security, the discreteness of facility-expansion options, the uncertainty of pollutant dispersion processes, and the seasonality of wind features in air quality management (AQM) systems, a synchronic interval Gaussian mixed-integer programming (SIGMIP) approach is proposed in this study. A robust interval Gaussian dispersion model is developed for approaching the pollutant dispersion process under interval uncertainties and seasonal variations. The reflection of synchronic effects of interval uncertainties in the programming objective is enabled through introducing interval functions. The proposition of constraint violation degrees helps quantify the tradeoff between system optimality and constraint violation under interval uncertainties. The overall optimality of system profits of an SIGMIP model is achieved based on the definition of an integrally optimal solution. Integer variables in the SIGMIP model are resolved by the existing cutting-plane method. Combining these efforts leads to an effective algorithm for the SIGMIP model. An application to an AQM problem in a region in Shandong Province, China, reveals that the proposed SIGMIP model can facilitate identifying the desired scheme for AQM. The enhancement of the robustness of optimization exercises may be helpful for increasing the reliability of suggested schemes for AQM under these complexities. The interrelated tradeoffs among control measures, emission sources, flow processes, receptors, influencing factors, and economic and environmental goals are effectively balanced. Interests of many stakeholders are reasonably coordinated. The harmony between economic development and air quality control is enabled. Results also indicate that the constraint violation degree is effective at reflecting the compromise relationship between constraint-violation risks and system optimality under interval uncertainties. This can
Synchronic interval Gaussian mixed-integer programming for air quality management.
Cheng, Guanhui; Huang, Guohe Gordon; Dong, Cong
2015-12-15
To reveal the synchronism of interval uncertainties, the tradeoff between system optimality and security, the discreteness of facility-expansion options, the uncertainty of pollutant dispersion processes, and the seasonality of wind features in air quality management (AQM) systems, a synchronic interval Gaussian mixed-integer programming (SIGMIP) approach is proposed in this study. A robust interval Gaussian dispersion model is developed for approaching the pollutant dispersion process under interval uncertainties and seasonal variations. The reflection of synchronic effects of interval uncertainties in the programming objective is enabled through introducing interval functions. The proposition of constraint violation degrees helps quantify the tradeoff between system optimality and constraint violation under interval uncertainties. The overall optimality of system profits of an SIGMIP model is achieved based on the definition of an integrally optimal solution. Integer variables in the SIGMIP model are resolved by the existing cutting-plane method. Combining these efforts leads to an effective algorithm for the SIGMIP model. An application to an AQM problem in a region in Shandong Province, China, reveals that the proposed SIGMIP model can facilitate identifying the desired scheme for AQM. The enhancement of the robustness of optimization exercises may be helpful for increasing the reliability of suggested schemes for AQM under these complexities. The interrelated tradeoffs among control measures, emission sources, flow processes, receptors, influencing factors, and economic and environmental goals are effectively balanced. Interests of many stakeholders are reasonably coordinated. The harmony between economic development and air quality control is enabled. Results also indicate that the constraint violation degree is effective at reflecting the compromise relationship between constraint-violation risks and system optimality under interval uncertainties. This can
A Two-Stage Stochastic Mixed-Integer Programming Approach to the Smart House Scheduling Problem
NASA Astrophysics Data System (ADS)
Ozoe, Shunsuke; Tanaka, Yoichi; Fukushima, Masao
A “Smart House” is a highly energy-optimized house equipped with photovoltaic systems (PV systems), electric battery systems, fuel cell cogeneration systems (FC systems), electric vehicles (EVs) and so on. Smart houses are attracting much attention recently thanks to their enhanced ability to save energy by making full use of renewable energy and by achieving power grid stability despite an increased power draw for installed PV systems. Yet running a smart house's power system, with its multiple power sources and power storages, is no simple task. In this paper, we consider the problem of power scheduling for a smart house with a PV system, an FC system and an EV. We formulate the problem as a mixed integer programming problem, and then extend it to a stochastic programming problem involving recourse costs to cope with uncertain electricity demand, heat demand and PV power generation. Using our method, we seek to achieve the optimal power schedule running at the minimum expected operation cost. We present some results of numerical experiments with data on real-life demands and PV power generation to show the effectiveness of our method.
He, Li; Huang, Guo-He; Zeng, Guang-Ming; Lu, Hong-Wei
2009-01-01
The previous inexact mixed-integer linear programming (IMILP) method can only tackle problems with coefficients of the objective function and constraints being crisp intervals, while the existing inexact mixed-integer semi-infinite programming (IMISIP) method can only deal with single-objective programming problems as it merely allows the number of constraints to be infinite. This study proposes, an inexact mixed-integer bi-infinite programming (IMIBIP) method by incorporating the concept of functional intervals into the programming framework. Different from the existing methods, the IMIBIP can tackle the inexact programming problems that contain both infinite objectives and constraints. The developed method is applied to capacity planning of waste management systems under a variety of uncertainties. Four scenarios are considered for comparing the solutions of IMIBIP with those of IMILP. The results indicate that reasonable solutions can be generated by the IMIBIP method. Compared with IMILP, the system cost from IMIBIP would be relatively high since the fluctuating market factors are considered; however, the IMILP solutions are associated with a raised system reliability level and a reduced constraint violation risk level. PMID:18406594
Multiple nuclei tracking using integer programming for quantitative cancer cell cycle analysis.
Li, Fuhai; Zhou, Xiaobo; Ma, Jinwen; Wong, Stephen T C
2010-01-01
Automated cell segmentation and tracking are critical for quantitative analysis of cell cycle behavior using time-lapse fluorescence microscopy. However, the complex, dynamic cell cycle behavior poses new challenges to the existing image segmentation and tracking methods. This paper presents a fully automated tracking method for quantitative cell cycle analysis. In the proposed tracking method, we introduce a neighboring graph to characterize the spatial distribution of neighboring nuclei, and a novel dissimilarity measure is designed based on the spatial distribution, nuclei morphological appearance, migration, and intensity information. Then, we employ the integer programming and division matching strategy, together with the novel dissimilarity measure, to track cell nuclei. We applied this new tracking method for the tracking of HeLa cancer cells over several cell cycles, and the validation results showed that the high accuracy for segmentation and tracking at 99.5% and 90.0%, respectively. The tracking method has been implemented in the cell-cycle analysis software package, DCELLIQ, which is freely available. PMID:19643704
Li, Zhenping; Zhang, Xiang-Sun; Wang, Rui-Sheng; Liu, Hongwei; Zhang, Shihua
2013-01-01
Identification of communities in complex networks is an important topic and issue in many fields such as sociology, biology, and computer science. Communities are often defined as groups of related nodes or links that correspond to functional subunits in the corresponding complex systems. While most conventional approaches have focused on discovering communities of nodes, some recent studies start partitioning links to find overlapping communities straightforwardly. In this paper, we propose a new quantity function for link community identification in complex networks. Based on this quantity function we formulate the link community partition problem into an integer programming model which allows us to partition a complex network into overlapping communities. We further propose a genetic algorithm for link community detection which can partition a network into overlapping communities without knowing the number of communities. We test our model and algorithm on both artificial networks and real-world networks. The results demonstrate that the model and algorithm are efficient in detecting overlapping community structure in complex networks.
An integer programming approach to the phase problem for centrosymmetric structures.
Vaia, Anastasia; Sahinidis, Nikolaos V
2003-09-01
The problem addressed in this paper is the determination of three-dimensional structures of centrosymmetric crystals from X-ray diffraction measurements. The 'minimal principle' that a certain quantity is minimized only by the crystal structure is employed to solve the phase problem. The mathematical formulation of the minimal principle is a nonconvex nonlinear optimization problem. To date, local optimization techniques and advanced computer architectures have been used to solve this problem, which may have a very large number of local optima. In this paper, the minimal principle model is reformulated for the case of centrosymmetric structures into an integer programming problem in terms of the missing phases. This formulation is solvable by well established combinatorial optimization techniques that are guaranteed to provide the global optimum in a finite number of steps without explicit enumeration of all possible combinations of phases. Computational experience with the proposed method on a number of structures of moderate complexity is provided and demonstrates that the approach yields a fast and reliable method that resolves the crystallographic phase problem for the case of centrosymmetric structures. PMID:12944609
Automatic design of synthetic gene circuits through mixed integer non-linear programming.
Huynh, Linh; Kececioglu, John; Köppe, Matthias; Tagkopoulos, Ilias
2012-01-01
Automatic design of synthetic gene circuits poses a significant challenge to synthetic biology, primarily due to the complexity of biological systems, and the lack of rigorous optimization methods that can cope with the combinatorial explosion as the number of biological parts increases. Current optimization methods for synthetic gene design rely on heuristic algorithms that are usually not deterministic, deliver sub-optimal solutions, and provide no guaranties on convergence or error bounds. Here, we introduce an optimization framework for the problem of part selection in synthetic gene circuits that is based on mixed integer non-linear programming (MINLP), which is a deterministic method that finds the globally optimal solution and guarantees convergence in finite time. Given a synthetic gene circuit, a library of characterized parts, and user-defined constraints, our method can find the optimal selection of parts that satisfy the constraints and best approximates the objective function given by the user. We evaluated the proposed method in the design of three synthetic circuits (a toggle switch, a transcriptional cascade, and a band detector), with both experimentally constructed and synthetic promoter libraries. Scalability and robustness analysis shows that the proposed framework scales well with the library size and the solution space. The work described here is a step towards a unifying, realistic framework for the automated design of biological circuits. PMID:22536398
Poos, Alexandra M; Maicher, André; Dieckmann, Anna K; Oswald, Marcus; Eils, Roland; Kupiec, Martin; Luke, Brian; König, Rainer
2016-06-01
Understanding telomere length maintenance mechanisms is central in cancer biology as their dysregulation is one of the hallmarks for immortalization of cancer cells. Important for this well-balanced control is the transcriptional regulation of the telomerase genes. We integrated Mixed Integer Linear Programming models into a comparative machine learning based approach to identify regulatory interactions that best explain the discrepancy of telomerase transcript levels in yeast mutants with deleted regulators showing aberrant telomere length, when compared to mutants with normal telomere length. We uncover novel regulators of telomerase expression, several of which affect histone levels or modifications. In particular, our results point to the transcription factors Sum1, Hst1 and Srb2 as being important for the regulation of EST1 transcription, and we validated the effect of Sum1 experimentally. We compiled our machine learning method leading to a user friendly package for R which can straightforwardly be applied to similar problems integrating gene regulator binding information and expression profiles of samples of e.g. different phenotypes, diseases or treatments. PMID:26908654
Automatic design of synthetic gene circuits through mixed integer non-linear programming.
Huynh, Linh; Kececioglu, John; Köppe, Matthias; Tagkopoulos, Ilias
2012-01-01
Automatic design of synthetic gene circuits poses a significant challenge to synthetic biology, primarily due to the complexity of biological systems, and the lack of rigorous optimization methods that can cope with the combinatorial explosion as the number of biological parts increases. Current optimization methods for synthetic gene design rely on heuristic algorithms that are usually not deterministic, deliver sub-optimal solutions, and provide no guaranties on convergence or error bounds. Here, we introduce an optimization framework for the problem of part selection in synthetic gene circuits that is based on mixed integer non-linear programming (MINLP), which is a deterministic method that finds the globally optimal solution and guarantees convergence in finite time. Given a synthetic gene circuit, a library of characterized parts, and user-defined constraints, our method can find the optimal selection of parts that satisfy the constraints and best approximates the objective function given by the user. We evaluated the proposed method in the design of three synthetic circuits (a toggle switch, a transcriptional cascade, and a band detector), with both experimentally constructed and synthetic promoter libraries. Scalability and robustness analysis shows that the proposed framework scales well with the library size and the solution space. The work described here is a step towards a unifying, realistic framework for the automated design of biological circuits.
Uncluttered Single-Image Visualization of Vascular Structures Using GPU and Integer Programming.
Won, Joong-Ho; Jeon, Yongkweon; Rosenberg, Jarrett K; Yoon, Sungroh; Rubin, Geoffrey D; Napel, Sandy
2013-01-01
Direct projection of 3D branching structures, such as networks of cables, blood vessels, or neurons onto a 2D image creates the illusion of intersecting structural parts and creates challenges for understanding and communication. We present a method for visualizing such structures, and demonstrate its utility in visualizing the abdominal aorta and its branches, whose tomographic images might be obtained by computed tomography or magnetic resonance angiography, in a single 2D stylistic image, without overlaps among branches. The visualization method, termed uncluttered single-image visualization (USIV), involves optimization of geometry. This paper proposes a novel optimization technique that utilizes an interesting connection of the optimization problem regarding USIV to the protein structure prediction problem. Adopting the integer linear programming-based formulation for the protein structure prediction problem, we tested the proposed technique using 30 visualizations produced from five patient scans with representative anatomical variants in the abdominal aortic vessel tree. The novel technique can exploit commodity-level parallelism, enabling use of general-purpose graphics processing unit (GPGPU) technology that yields a significant speedup. Comparison of the results with the other optimization technique previously reported elsewhere suggests that, in most aspects, the quality of the visualization is comparable to that of the previous one, with a significant gain in the computation time of the algorithm.
Integer Linear Programming for Constrained Multi-Aspect Committee Review Assignment.
Karimzadehgan, Maryam; Zhai, Chengxiang
2012-07-01
Automatic review assignment can significantly improve the productivity of many people such as conference organizers, journal editors and grant administrators. A general setup of the review assignment problem involves assigning a set of reviewers on a committee to a set of documents to be reviewed under the constraint of review quota so that the reviewers assigned to a document can collectively cover multiple topic aspects of the document. No previous work has addressed such a setup of committee review assignments while also considering matching multiple aspects of topics and expertise. In this paper, we tackle the problem of committee review assignment with multi-aspect expertise matching by casting it as an integer linear programming problem. The proposed algorithm can naturally accommodate any probabilistic or deterministic method for modeling multiple aspects to automate committee review assignments. Evaluation using a multi-aspect review assignment test set constructed using ACM SIGIR publications shows that the proposed algorithm is effective and efficient for committee review assignments based on multi-aspect expertise matching.
iPoint: an integer programming based algorithm for inferring protein subnetworks.
Atias, Nir; Sharan, Roded
2013-07-01
Large scale screening experiments have become the workhorse of molecular biology, producing data at an ever increasing scale. The interpretation of such data, particularly in the context of a protein interaction network, has the potential to shed light on the molecular pathways underlying the phenotype or the process in question. A host of approaches have been developed in recent years to tackle this reconstruction challenge. These approaches aim to infer a compact subnetwork that connects the genes revealed by the screen while optimizing local (individual path lengths) or global (likelihood) aspects of the subnetwork. Yosef et al. [Mol. Syst. Biol., 2009, 5, 248] were the first to provide a joint optimization of both criteria, albeit approximate in nature. Here we devise an integer linear programming formulation for the joint optimization problem, allowing us to solve it to optimality in minutes on current networks. We apply our algorithm, iPoint, to various data sets in yeast and human and evaluate its performance against state-of-the-art algorithms. We show that iPoint attains very compact and accurate solutions that outperform previous network inference algorithms with respect to their local and global attributes, their consistency across multiple experiments targeting the same pathway, and their agreement with current biological knowledge.
An integer programming formulation of the parsimonious loss of heterozygosity problem.
Catanzaro, Daniele; Labbé, Martine; Halldórsson, Bjarni V
2013-01-01
A loss of heterozygosity (LOH) event occurs when, by the laws of Mendelian inheritance, an individual should be heterozygote at a given site but, due to a deletion polymorphism, is not. Deletions play an important role in human disease and their detection could provide fundamental insights for the development of new diagnostics and treatments. In this paper, we investigate the parsimonious loss of heterozygosity problem (PLOHP), i.e., the problem of partitioning suspected polymorphisms from a set of individuals into a minimum number of deletion areas. Specifically, we generalize Halldórsson et al.'s work by providing a more general formulation of the PLOHP and by showing how one can incorporate different recombination rates and prior knowledge about the locations of deletions. Moreover, we show that the PLOHP can be formulated as a specific version of the clique partition problem in a particular class of graphs called undirected catch-point interval graphs and we prove its general $({\\cal NP})$-hardness. Finally, we provide a state-of-the-art integer programming (IP) formulation and strengthening valid inequalities to exactly solve real instances of the PLOHP containing up to 9,000 individuals and 3,000 SNPs. Our results give perspectives on the mathematics of the PLOHP and suggest new directions on the development of future efficient exact solution approaches.
Poos, Alexandra M.; Maicher, André; Dieckmann, Anna K.; Oswald, Marcus; Eils, Roland; Kupiec, Martin; Luke, Brian; König, Rainer
2016-01-01
Understanding telomere length maintenance mechanisms is central in cancer biology as their dysregulation is one of the hallmarks for immortalization of cancer cells. Important for this well-balanced control is the transcriptional regulation of the telomerase genes. We integrated Mixed Integer Linear Programming models into a comparative machine learning based approach to identify regulatory interactions that best explain the discrepancy of telomerase transcript levels in yeast mutants with deleted regulators showing aberrant telomere length, when compared to mutants with normal telomere length. We uncover novel regulators of telomerase expression, several of which affect histone levels or modifications. In particular, our results point to the transcription factors Sum1, Hst1 and Srb2 as being important for the regulation of EST1 transcription, and we validated the effect of Sum1 experimentally. We compiled our machine learning method leading to a user friendly package for R which can straightforwardly be applied to similar problems integrating gene regulator binding information and expression profiles of samples of e.g. different phenotypes, diseases or treatments. PMID:26908654
A Mixed Integer Linear Program for Solving a Multiple Route Taxi Scheduling Problem
NASA Technical Reports Server (NTRS)
Montoya, Justin Vincent; Wood, Zachary Paul; Rathinam, Sivakumar; Malik, Waqar Ahmad
2010-01-01
Aircraft movements on taxiways at busy airports often create bottlenecks. This paper introduces a mixed integer linear program to solve a Multiple Route Aircraft Taxi Scheduling Problem. The outputs of the model are in the form of optimal taxi schedules, which include routing decisions for taxiing aircraft. The model extends an existing single route formulation to include routing decisions. An efficient comparison framework compares the multi-route formulation and the single route formulation. The multi-route model is exercised for east side airport surface traffic at Dallas/Fort Worth International Airport to determine if any arrival taxi time savings can be achieved by allowing arrivals to have two taxi routes: a route that crosses an active departure runway and a perimeter route that avoids the crossing. Results indicate that the multi-route formulation yields reduced arrival taxi times over the single route formulation only when a perimeter taxiway is used. In conditions where the departure aircraft are given an optimal and fixed takeoff sequence, accumulative arrival taxi time savings in the multi-route formulation can be as high as 3.6 hours more than the single route formulation. If the departure sequence is not optimal, the multi-route formulation results in less taxi time savings made over the single route formulation, but the average arrival taxi time is significantly decreased.
Hasuike, Takashi; Ishii, Hiroaki; Katagiri, Hideki
2009-10-08
This paper considers a bi-criteria general 0-1 random fuzzy programming problem based on the degree of necessity which include some previous 0-1 stochastic and fuzzy programming problems. The proposal problem is not well-defined due to including randomness and fuzziness. Therefore, by introducing chance constraint and fuzzy goals for objectives, and considering the maximization of the aspiration level for total profit and the degree of necessity that the objective function's value satisfies the fuzzy goal, the main problem is transformed into a deterministic equivalent problem. Furthermore, by using the assumption that each random variable is distributed according to a normal distribution, the problem is equivalently transformed into a basic 0-1 programming problem, and the efficient strict solution method to find an optimal solution is constructed.
NASA Astrophysics Data System (ADS)
Hasuike, Takashi; Katagiri, Hideki; Ishii, Hiroaki
2009-10-01
This paper considers a bi-criteria general 0-1 random fuzzy programming problem based on the degree of necessity which include some previous 0-1 stochastic and fuzzy programming problems. The proposal problem is not well-defined due to including randomness and fuzziness. Therefore, by introducing chance constraint and fuzzy goals for objectives, and considering the maximization of the aspiration level for total profit and the degree of necessity that the objective function's value satisfies the fuzzy goal, the main problem is transformed into a deterministic equivalent problem. Furthermore, by using the assumption that each random variable is distributed according to a normal distribution, the problem is equivalently transformed into a basic 0-1 programming problem, and the efficient strict solution method to find an optimal solution is constructed.
Gorissen, Bram L; den Hertog, Dick; Hoffmann, Aswin L
2013-02-21
Current inverse treatment planning methods that optimize both catheter positions and dwell times in prostate HDR brachytherapy use surrogate linear or quadratic objective functions that have no direct interpretation in terms of dose-volume histogram (DVH) criteria, do not result in an optimum or have long solution times. We decrease the solution time of the existing linear and quadratic dose-based programming models (LP and QP, respectively) to allow optimizing over potential catheter positions using mixed integer programming. An additional average speed-up of 75% can be obtained by stopping the solver at an early stage, without deterioration of the plan quality. For a fixed catheter configuration, the dwell time optimization model LP solves to optimality in less than 15 s, which confirms earlier results. We propose an iterative procedure for QP that allows us to prescribe the target dose as an interval, while retaining independence between the solution time and the number of dose calculation points. This iterative procedure is comparable in speed to the LP model and produces better plans than the non-iterative QP. We formulate a new dose-volume-based model that maximizes V(100%) while satisfying pre-set DVH criteria. This model optimizes both catheter positions and dwell times within a few minutes depending on prostate volume and number of catheters, optimizes dwell times within 35 s and gives better DVH statistics than dose-based models. The solutions suggest that the correlation between the objective value and the clinical plan quality is weak in the existing dose-based models. PMID:23363622
Munguia, Lluis-Miquel; Oxberry, Geoffrey; Rajan, Deepak
2016-05-01
Stochastic mixed-integer programs (SMIPs) deal with optimization under uncertainty at many levels of the decision-making process. When solved as extensive formulation mixed- integer programs, problem instances can exceed available memory on a single workstation. In order to overcome this limitation, we present PIPS-SBB: a distributed-memory parallel stochastic MIP solver that takes advantage of parallelism at multiple levels of the optimization process. We also show promising results on the SIPLIB benchmark by combining methods known for accelerating Branch and Bound (B&B) methods with new ideas that leverage the structure of SMIPs. Finally, we expect the performance of PIPS-SBB to improve furthermore » as more functionality is added in the future.« less
Doolittle, R.
1994-11-15
The title integer anatomy is intended to convey the idea of a systematic method for displaying the prime decomposition of the integers. Just as the biological study of anatomy does not teach us all things about behavior of species neither would we expect to learn everything about the number theory from a study of its anatomy. But, some number-theoretic theorems are illustrated by inspection of integer anatomy, which tend to validate the underlying structure and the form as developed and displayed in this treatise. The first statement to be made in this development is: the way structure of the natural numbers is displayed depends upon the allowed operations.
Aspect-Object Alignment with Integer Linear Programming in Opinion Mining
Zhao, Yanyan; Qin, Bing; Liu, Ting; Yang, Wei
2015-01-01
Target extraction is an important task in opinion mining. In this task, a complete target consists of an aspect and its corresponding object. However, previous work has always simply regarded the aspect as the target itself and has ignored the important "object" element. Thus, these studies have addressed incomplete targets, which are of limited use for practical applications. This paper proposes a novel and important sentiment analysis task, termed aspect-object alignment, to solve the "object neglect" problem. The objective of this task is to obtain the correct corresponding object for each aspect. We design a two-step framework for this task. We first provide an aspect-object alignment classifier that incorporates three sets of features, namely, the basic, relational, and special target features. However, the objects that are assigned to aspects in a sentence often contradict each other and possess many complicated features that are difficult to incorporate into a classifier. To resolve these conflicts, we impose two types of constraints in the second step: intra-sentence constraints and inter-sentence constraints. These constraints are encoded as linear formulations, and Integer Linear Programming (ILP) is used as an inference procedure to obtain a final global decision that is consistent with the constraints. Experiments on a corpus in the camera domain demonstrate that the three feature sets used in the aspect-object alignment classifier are effective in improving its performance. Moreover, the classifier with ILP inference performs better than the classifier without it, thereby illustrating that the two types of constraints that we impose are beneficial. PMID:26000635
Aspect-object alignment with Integer Linear Programming in opinion mining.
Zhao, Yanyan; Qin, Bing; Liu, Ting; Yang, Wei
2015-01-01
Target extraction is an important task in opinion mining. In this task, a complete target consists of an aspect and its corresponding object. However, previous work has always simply regarded the aspect as the target itself and has ignored the important "object" element. Thus, these studies have addressed incomplete targets, which are of limited use for practical applications. This paper proposes a novel and important sentiment analysis task, termed aspect-object alignment, to solve the "object neglect" problem. The objective of this task is to obtain the correct corresponding object for each aspect. We design a two-step framework for this task. We first provide an aspect-object alignment classifier that incorporates three sets of features, namely, the basic, relational, and special target features. However, the objects that are assigned to aspects in a sentence often contradict each other and possess many complicated features that are difficult to incorporate into a classifier. To resolve these conflicts, we impose two types of constraints in the second step: intra-sentence constraints and inter-sentence constraints. These constraints are encoded as linear formulations, and Integer Linear Programming (ILP) is used as an inference procedure to obtain a final global decision that is consistent with the constraints. Experiments on a corpus in the camera domain demonstrate that the three feature sets used in the aspect-object alignment classifier are effective in improving its performance. Moreover, the classifier with ILP inference performs better than the classifier without it, thereby illustrating that the two types of constraints that we impose are beneficial. PMID:26000635
Mixed-integer programming methods for transportation and power generation problems
NASA Astrophysics Data System (ADS)
Damci Kurt, Pelin
This dissertation conducts theoretical and computational research to solve challenging problems in application areas such as supply chain and power systems. The first part of the dissertation studies a transportation problem with market choice (TPMC) which is a variant of the classical transportation problem in which suppliers with limited capacities have a choice of which demands (markets) to satisfy. We show that TPMC is strongly NP-complete. We consider a version of the problem with a service level constraint on the maximum number of markets that can be rejected and show that if the original problem is polynomial, its cardinality-constrained version is also polynomial. We propose valid inequalities for mixed-integer cover and knapsack sets with variable upper bound constraints, which appear as substructures of TPMC and use them in a branch-and-cut algorithm to solve this problem. The second part of this dissertation studies a unit commitment (UC) problem in which the goal is to minimize the operational cost of power generators over a time period subject to physical constraints while satisfying demand. We provide several exponential classes of multi-period ramping and multi-period variable upper bound inequalities. We prove the strength of these inequalities and describe polynomial-time separation algorithms. Computational results show the effectiveness of the proposed inequalities when used as cuts in a branch-and-cut algorithm to solve the UC problem. The last part of this dissertation investigates the effects of uncertain wind power on the UC problem. A two-stage robust model and a three-stage stochastic program are compared.
Mitsos, Alexander; Melas, Ioannis N; Siminelakis, Paraskeuas; Chairakaki, Aikaterini D; Saez-Rodriguez, Julio; Alexopoulos, Leonidas G
2009-12-01
Understanding the mechanisms of cell function and drug action is a major endeavor in the pharmaceutical industry. Drug effects are governed by the intrinsic properties of the drug (i.e., selectivity and potency) and the specific signaling transduction network of the host (i.e., normal vs. diseased cells). Here, we describe an unbiased, phosphoproteomic-based approach to identify drug effects by monitoring drug-induced topology alterations. With our proposed method, drug effects are investigated under diverse stimulations of the signaling network. Starting with a generic pathway made of logical gates, we build a cell-type specific map by constraining it to fit 13 key phopshoprotein signals under 55 experimental conditions. Fitting is performed via an Integer Linear Program (ILP) formulation and solution by standard ILP solvers; a procedure that drastically outperforms previous fitting schemes. Then, knowing the cell's topology, we monitor the same key phosphoprotein signals under the presence of drug and we re-optimize the specific map to reveal drug-induced topology alterations. To prove our case, we make a topology for the hepatocytic cell-line HepG2 and we evaluate the effects of 4 drugs: 3 selective inhibitors for the Epidermal Growth Factor Receptor (EGFR) and a non-selective drug. We confirm effects easily predictable from the drugs' main target (i.e., EGFR inhibitors blocks the EGFR pathway) but we also uncover unanticipated effects due to either drug promiscuity or the cell's specific topology. An interesting finding is that the selective EGFR inhibitor Gefitinib inhibits signaling downstream the Interleukin-1alpha (IL1alpha) pathway; an effect that cannot be extracted from binding affinity-based approaches. Our method represents an unbiased approach to identify drug effects on small to medium size pathways which is scalable to larger topologies with any type of signaling interventions (small molecules, RNAi, etc). The method can reveal drug effects on
NASA Astrophysics Data System (ADS)
Tang, Jiafu; Liu, Yang; Fung, Richard; Luo, Xinggang
2008-12-01
Manufacturers have a legal accountability to deal with industrial waste generated from their production processes in order to avoid pollution. Along with advances in waste recovery techniques, manufacturers may adopt various recycling strategies in dealing with industrial waste. With reuse strategies and technologies, byproducts or wastes will be returned to production processes in the iron and steel industry, and some waste can be recycled back to base material for reuse in other industries. This article focuses on a recovery strategies optimization problem for a typical class of industrial waste recycling process in order to maximize profit. There are multiple strategies for waste recycling available to generate multiple byproducts; these byproducts are then further transformed into several types of chemical products via different production patterns. A mixed integer programming model is developed to determine which recycling strategy and which production pattern should be selected with what quantity of chemical products corresponding to this strategy and pattern in order to yield maximum marginal profits. The sales profits of chemical products and the set-up costs of these strategies, patterns and operation costs of production are considered. A simulated annealing (SA) based heuristic algorithm is developed to solve the problem. Finally, an experiment is designed to verify the effectiveness and feasibility of the proposed method. By comparing a single strategy to multiple strategies in an example, it is shown that the total sales profit of chemical products can be increased by around 25% through the simultaneous use of multiple strategies. This illustrates the superiority of combinatorial multiple strategies. Furthermore, the effects of the model parameters on profit are discussed to help manufacturers organize their waste recycling network.
Aspect-object alignment with Integer Linear Programming in opinion mining.
Zhao, Yanyan; Qin, Bing; Liu, Ting; Yang, Wei
2015-01-01
Target extraction is an important task in opinion mining. In this task, a complete target consists of an aspect and its corresponding object. However, previous work has always simply regarded the aspect as the target itself and has ignored the important "object" element. Thus, these studies have addressed incomplete targets, which are of limited use for practical applications. This paper proposes a novel and important sentiment analysis task, termed aspect-object alignment, to solve the "object neglect" problem. The objective of this task is to obtain the correct corresponding object for each aspect. We design a two-step framework for this task. We first provide an aspect-object alignment classifier that incorporates three sets of features, namely, the basic, relational, and special target features. However, the objects that are assigned to aspects in a sentence often contradict each other and possess many complicated features that are difficult to incorporate into a classifier. To resolve these conflicts, we impose two types of constraints in the second step: intra-sentence constraints and inter-sentence constraints. These constraints are encoded as linear formulations, and Integer Linear Programming (ILP) is used as an inference procedure to obtain a final global decision that is consistent with the constraints. Experiments on a corpus in the camera domain demonstrate that the three feature sets used in the aspect-object alignment classifier are effective in improving its performance. Moreover, the classifier with ILP inference performs better than the classifier without it, thereby illustrating that the two types of constraints that we impose are beneficial.
Yang, Ruijie; Dai, Jianrong; Yang, Yong; Hu, Yimin
2006-08-01
The purpose of this study is to extend an algorithm proposed for beam orientation optimization in classical conformal radiotherapy to intensity-modulated radiation therapy (IMRT) and to evaluate the algorithm's performance in IMRT scenarios. In addition, the effect of the candidate pool of beam orientations, in terms of beam orientation resolution and starting orientation, on the optimized beam configuration, plan quality and optimization time is also explored. The algorithm is based on the technique of mixed integer linear programming in which binary and positive float variables are employed to represent candidates for beam orientation and beamlet weights in beam intensity maps. Both beam orientations and beam intensity maps are simultaneously optimized in the algorithm with a deterministic method. Several different clinical cases were used to test the algorithm and the results show that both target coverage and critical structures sparing were significantly improved for the plans with optimized beam orientations compared to those with equi-spaced beam orientations. The calculation time was less than an hour for the cases with 36 binary variables on a PC with a Pentium IV 2.66 GHz processor. It is also found that decreasing beam orientation resolution to 10 degrees greatly reduced the size of the candidate pool of beam orientations without significant influence on the optimized beam configuration and plan quality, while selecting different starting orientations had large influence. Our study demonstrates that the algorithm can be applied to IMRT scenarios, and better beam orientation configurations can be obtained using this algorithm. Furthermore, the optimization efficiency can be greatly increased through proper selection of beam orientation resolution and starting beam orientation while guaranteeing the optimized beam configurations and plan quality.
Mixed integer programming model for optimizing the layout of an ICU vehicle
2009-01-01
Background This paper presents a Mixed Integer Programming (MIP) model for designing the layout of the Intensive Care Units' (ICUs) patient care space. In particular, this MIP model was developed for optimizing the layout for materials to be used in interventions. This work was developed within the framework of a joint project between the Madrid Technical Unverstity and the Medical Emergency Services of the Madrid Regional Government (SUMMA 112). Methods The first task was to identify the relevant information to define the characteristics of the new vehicles and, in particular, to obtain a satisfactory interior layout to locate all the necessary materials. This information was gathered from health workers related to ICUs. With that information an optimization model was developed in order to obtain a solution. From the MIP model, a first solution was obtained, consisting of a grid to locate the different materials needed for the ICUs. The outcome from the MIP model was discussed with health workers to tune the solution, and after slightly altering that solution to meet some requirements that had not been included in the mathematical model, the eventual solution was approved by the persons responsible for specifying the characteristics of the new vehicles. According to the opinion stated by the SUMMA 112's medical group responsible for improving the ambulances (the so-called "coaching group"), the outcome was highly satisfactory. Indeed, the final design served as a basis to draw up the requirements of a public tender. Results As a result from solving the Optimization model, a grid was obtained to locate the different necessary materials for the ICUs. This grid had to be slightly altered to meet some requirements that had not been included in the mathematical model. The results were discussed with the persons responsible for specifying the characteristics of the new vehicles. Conclusion The outcome was highly satisfactory. Indeed, the final design served as a basis
NASA Astrophysics Data System (ADS)
Li, Hong; Zhang, Li; Jiao, Yong-Chang
2016-07-01
This paper presents an interactive approach based on a discrete differential evolution algorithm to solve a class of integer bilevel programming problems, in which integer decision variables are controlled by an upper-level decision maker and real-value or continuous decision variables are controlled by a lower-level decision maker. Using the Karush--Kuhn-Tucker optimality conditions in the lower-level programming, the original discrete bilevel formulation can be converted into a discrete single-level nonlinear programming problem with the complementarity constraints, and then the smoothing technique is applied to deal with the complementarity constraints. Finally, a discrete single-level nonlinear programming problem is obtained, and solved by an interactive approach. In each iteration, for each given upper-level discrete variable, a system of nonlinear equations including the lower-level variables and Lagrange multipliers is solved first, and then a discrete nonlinear programming problem only with inequality constraints is handled by using a discrete differential evolution algorithm. Simulation results show the effectiveness of the proposed approach.
Li, Y P; Huang, G H
2006-11-01
In this study, an interval-parameter two-stage mixed integer linear programming (ITMILP) model is developed for supporting long-term planning of waste management activities in the City of Regina. In the ITMILP, both two-stage stochastic programming and interval linear programming are introduced into a general mixed integer linear programming framework. Uncertainties expressed as not only probability density functions but also discrete intervals can be reflected. The model can help tackle the dynamic, interactive and uncertain characteristics of the solid waste management system in the City, and can address issues concerning plans for cost-effective waste diversion and landfill prolongation. Three scenarios are considered based on different waste management policies. The results indicate that reasonable solutions have been generated. They are valuable for supporting the adjustment or justification of the existing waste flow allocation patterns, the long-term capacity planning of the City's waste management system, and the formulation of local policies and regulations regarding waste generation and management. PMID:16678336
NASA Astrophysics Data System (ADS)
Skulovich, Olya; Bent, Russell; Judi, David; Perelman, Lina Sela; Ostfeld, Avi
2015-06-01
Despite their potential catastrophic impact, transients are often ignored or presented ad hoc when designing water distribution systems. To address this problem, we introduce a new piece-wise function fitting model that is integrated with mixed integer programming to optimally place and size surge tanks for transient control. The key features of the algorithm are a model-driven discretization of the search space, a linear approximation nonsmooth system response surface to transients, and a mixed integer linear programming optimization. Results indicate that high quality solutions can be obtained within a reasonable number of function evaluations and demonstrate the computational effectiveness of the approach through two case studies. The work investigates one type of surge control devices (closed surge tank) for a specified set of transient events. The performance of the algorithm relies on the assumption that there exists a smooth relationship between the objective function and tank size. Results indicate the potential of the approach for the optimal surge control design in water systems.
Song, Jiangning; Akutsu, Tatsuya
2014-01-01
In this paper, we consider the Minimum Reaction Insertion (MRI) problem for finding the minimum number of additional reactions from a reference metabolic network to a host metabolic network so that a target compound becomes producible in the revised host metabolic network in a Boolean model. Although a similar problem for larger networks is solvable in a flux balance analysis (FBA)-based model, the solution of the FBA-based model tends to include more reactions than that of the Boolean model. However, solving MRI using the Boolean model is computationally more expensive than using the FBA-based model since the Boolean model needs more integer variables. Therefore, in this study, to solve MRI for larger networks in the Boolean model, we have developed an efficient Integer Programming formalization method in which the number of integer variables is reduced by the notion of feedback vertex set and minimal valid assignment. As a result of computer experiments conducted using the data of metabolic networks of E. coli and reference networks downloaded from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, we have found that the developed method can appropriately solve MRI in the Boolean model and is applicable to large scale-networks for which an exhaustive search does not work. We have also compared the developed method with the existing connectivity-based methods and FBA-based methods, and show the difference between the solutions of our method and the existing methods. A theoretical analysis of MRI is also conducted, and the NP-completeness of MRI is proved in the Boolean model. Our developed software is available at “http://sunflower.kuicr.kyoto-u.ac.jp/~rogi/minRect/minRect.html.” PMID:24651476
Lu, Wei; Tamura, Takeyuki; Song, Jiangning; Akutsu, Tatsuya
2014-01-01
In this paper, we consider the Minimum Reaction Insertion (MRI) problem for finding the minimum number of additional reactions from a reference metabolic network to a host metabolic network so that a target compound becomes producible in the revised host metabolic network in a Boolean model. Although a similar problem for larger networks is solvable in a flux balance analysis (FBA)-based model, the solution of the FBA-based model tends to include more reactions than that of the Boolean model. However, solving MRI using the Boolean model is computationally more expensive than using the FBA-based model since the Boolean model needs more integer variables. Therefore, in this study, to solve MRI for larger networks in the Boolean model, we have developed an efficient Integer Programming formalization method in which the number of integer variables is reduced by the notion of feedback vertex set and minimal valid assignment. As a result of computer experiments conducted using the data of metabolic networks of E. coli and reference networks downloaded from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, we have found that the developed method can appropriately solve MRI in the Boolean model and is applicable to large scale-networks for which an exhaustive search does not work. We have also compared the developed method with the existing connectivity-based methods and FBA-based methods, and show the difference between the solutions of our method and the existing methods. A theoretical analysis of MRI is also conducted, and the NP-completeness of MRI is proved in the Boolean model. Our developed software is available at "http://sunflower.kuicr.kyoto-u.ac.jp/~rogi/minRect/minRect.html."
NASA Astrophysics Data System (ADS)
Yin, Sisi; Nishi, Tatsushi
2014-11-01
Quantity discount policy is decision-making for trade-off prices between suppliers and manufacturers while production is changeable due to demand fluctuations in a real market. In this paper, quantity discount models which consider selection of contract suppliers, production quantity and inventory simultaneously are addressed. The supply chain planning problem with quantity discounts under demand uncertainty is formulated as a mixed-integer nonlinear programming problem (MINLP) with integral terms. We apply an outer-approximation method to solve MINLP problems. In order to improve the efficiency of the proposed method, the problem is reformulated as a stochastic model replacing the integral terms by using a normalisation technique. We present numerical examples to demonstrate the efficiency of the proposed method.
Catanzaro, Daniele; Shackney, Stanley E; Schaffer, Alejandro A; Schwartz, Russell
2016-01-01
Ductal Carcinoma In Situ (DCIS) is a precursor lesion of Invasive Ductal Carcinoma (IDC) of the breast. Investigating its temporal progression could provide fundamental new insights for the development of better diagnostic tools to predict which cases of DCIS will progress to IDC. We investigate the problem of reconstructing a plausible progression from single-cell sampled data of an individual with synchronous DCIS and IDC. Specifically, by using a number of assumptions derived from the observation of cellular atypia occurring in IDC, we design a possible predictive model using integer linear programming (ILP). Computational experiments carried out on a preexisting data set of 13 patients with simultaneous DCIS and IDC show that the corresponding predicted progression models are classifiable into categories having specific evolutionary characteristics. The approach provides new insights into mechanisms of clonal progression in breast cancers and helps illustrate the power of the ILP approach for similar problems in reconstructing tumor evolution scenarios under complex sets of constraints.
NASA Astrophysics Data System (ADS)
Noor-E-Alam, Md.; Doucette, John
2015-08-01
Grid-based location problems (GBLPs) can be used to solve location problems in business, engineering, resource exploitation, and even in the field of medical sciences. To solve these decision problems, an integer linear programming (ILP) model is designed and developed to provide the optimal solution for GBLPs considering fixed cost criteria. Preliminary results show that the ILP model is efficient in solving small to moderate-sized problems. However, this ILP model becomes intractable in solving large-scale instances. Therefore, a decomposition heuristic is proposed to solve these large-scale GBLPs, which demonstrates significant reduction of solution runtimes. To benchmark the proposed heuristic, results are compared with the exact solution via ILP. The experimental results show that the proposed method significantly outperforms the exact method in runtime with minimal (and in most cases, no) loss of optimality.
DRIESSEN,BRIAN; SADEGH,NADER
2000-04-25
This work presents a method of finding near global optima to minimum-time trajectory generation problem for systems that would be linear if it were not for the presence of Coloumb friction. The required final state of the system is assumed to be maintainable by the system, and the input bounds are assumed to be large enough so that they can overcome the maximum static Coloumb friction force. Other than the previous work for generating minimum-time trajectories for non redundant robotic manipulators for which the path in joint space is already specified, this work represents, to the best of the authors' knowledge, the first approach for generating near global optima for minimum-time problems involving a nonlinear class of dynamic systems. The reason the optima generated are near global optima instead of exactly global optima is due to a discrete-time approximation of the system (which is usually used anyway to simulate such a system numerically). The method closely resembles previous methods for generating minimum-time trajectories for linear systems, where the core operation is the solution of a Phase I linear programming problem. For the nonlinear systems considered herein, the core operation is instead the solution of a mixed integer linear programming problem.
Lee, Dongyul; Lee, Chaewoo
2014-01-01
The advancement in wideband wireless network supports real time services such as IPTV and live video streaming. However, because of the sharing nature of the wireless medium, efficient resource allocation has been studied to achieve a high level of acceptability and proliferation of wireless multimedia. Scalable video coding (SVC) with adaptive modulation and coding (AMC) provides an excellent solution for wireless video streaming. By assigning different modulation and coding schemes (MCSs) to video layers, SVC can provide good video quality to users in good channel conditions and also basic video quality to users in bad channel conditions. For optimal resource allocation, a key issue in applying SVC in the wireless multicast service is how to assign MCSs and the time resources to each SVC layer in the heterogeneous channel condition. We formulate this problem with integer linear programming (ILP) and provide numerical results to show the performance under 802.16 m environment. The result shows that our methodology enhances the overall system throughput compared to an existing algorithm.
Lee, Chaewoo
2014-01-01
The advancement in wideband wireless network supports real time services such as IPTV and live video streaming. However, because of the sharing nature of the wireless medium, efficient resource allocation has been studied to achieve a high level of acceptability and proliferation of wireless multimedia. Scalable video coding (SVC) with adaptive modulation and coding (AMC) provides an excellent solution for wireless video streaming. By assigning different modulation and coding schemes (MCSs) to video layers, SVC can provide good video quality to users in good channel conditions and also basic video quality to users in bad channel conditions. For optimal resource allocation, a key issue in applying SVC in the wireless multicast service is how to assign MCSs and the time resources to each SVC layer in the heterogeneous channel condition. We formulate this problem with integer linear programming (ILP) and provide numerical results to show the performance under 802.16 m environment. The result shows that our methodology enhances the overall system throughput compared to an existing algorithm. PMID:25276862
Ryan, Jason C; Banerjee, Ashis Gopal; Cummings, Mary L; Roy, Nicholas
2014-06-01
Planning operations across a number of domains can be considered as resource allocation problems with timing constraints. An unexplored instance of such a problem domain is the aircraft carrier flight deck, where, in current operations, replanning is done without the aid of any computerized decision support. Rather, veteran operators employ a set of experience-based heuristics to quickly generate new operating schedules. These expert user heuristics are neither codified nor evaluated by the United States Navy; they have grown solely from the convergent experiences of supervisory staff. As unmanned aerial vehicles (UAVs) are introduced in the aircraft carrier domain, these heuristics may require alterations due to differing capabilities. The inclusion of UAVs also allows for new opportunities for on-line planning and control, providing an alternative to the current heuristic-based replanning methodology. To investigate these issues formally, we have developed a decision support system for flight deck operations that utilizes a conventional integer linear program-based planning algorithm. In this system, a human operator sets both the goals and constraints for the algorithm, which then returns a proposed schedule for operator approval. As a part of validating this system, the performance of this collaborative human-automation planner was compared with that of the expert user heuristics over a set of test scenarios. The resulting analysis shows that human heuristics often outperform the plans produced by an optimization algorithm, but are also often more conservative.
Zhang, Huiling; Huang, Qingsheng; Bei, Zhendong; Wei, Yanjie; Floudas, Christodoulos A
2016-03-01
In this article, we present COMSAT, a hybrid framework for residue contact prediction of transmembrane (TM) proteins, integrating a support vector machine (SVM) method and a mixed integer linear programming (MILP) method. COMSAT consists of two modules: COMSAT_SVM which is trained mainly on position-specific scoring matrix features, and COMSAT_MILP which is an ab initio method based on optimization models. Contacts predicted by the SVM model are ranked by SVM confidence scores, and a threshold is trained to improve the reliability of the predicted contacts. For TM proteins with no contacts above the threshold, COMSAT_MILP is used. The proposed hybrid contact prediction scheme was tested on two independent TM protein sets based on the contact definition of 14 Å between Cα-Cα atoms. First, using a rigorous leave-one-protein-out cross validation on the training set of 90 TM proteins, an accuracy of 66.8%, a coverage of 12.3%, a specificity of 99.3% and a Matthews' correlation coefficient (MCC) of 0.184 were obtained for residue pairs that are at least six amino acids apart. Second, when tested on a test set of 87 TM proteins, the proposed method showed a prediction accuracy of 64.5%, a coverage of 5.3%, a specificity of 99.4% and a MCC of 0.106. COMSAT shows satisfactory results when compared with 12 other state-of-the-art predictors, and is more robust in terms of prediction accuracy as the length and complexity of TM protein increase. COMSAT is freely accessible at http://hpcc.siat.ac.cn/COMSAT/. PMID:26756402
Zhang, Huiling; Huang, Qingsheng; Bei, Zhendong; Wei, Yanjie; Floudas, Christodoulos A
2016-03-01
In this article, we present COMSAT, a hybrid framework for residue contact prediction of transmembrane (TM) proteins, integrating a support vector machine (SVM) method and a mixed integer linear programming (MILP) method. COMSAT consists of two modules: COMSAT_SVM which is trained mainly on position-specific scoring matrix features, and COMSAT_MILP which is an ab initio method based on optimization models. Contacts predicted by the SVM model are ranked by SVM confidence scores, and a threshold is trained to improve the reliability of the predicted contacts. For TM proteins with no contacts above the threshold, COMSAT_MILP is used. The proposed hybrid contact prediction scheme was tested on two independent TM protein sets based on the contact definition of 14 Å between Cα-Cα atoms. First, using a rigorous leave-one-protein-out cross validation on the training set of 90 TM proteins, an accuracy of 66.8%, a coverage of 12.3%, a specificity of 99.3% and a Matthews' correlation coefficient (MCC) of 0.184 were obtained for residue pairs that are at least six amino acids apart. Second, when tested on a test set of 87 TM proteins, the proposed method showed a prediction accuracy of 64.5%, a coverage of 5.3%, a specificity of 99.4% and a MCC of 0.106. COMSAT shows satisfactory results when compared with 12 other state-of-the-art predictors, and is more robust in terms of prediction accuracy as the length and complexity of TM protein increase. COMSAT is freely accessible at http://hpcc.siat.ac.cn/COMSAT/.
Guo, P; Huang, G H
2010-03-01
In this study, an interval-parameter semi-infinite fuzzy-chance-constrained mixed-integer linear programming (ISIFCIP) approach is developed for supporting long-term planning of waste-management systems under multiple uncertainties in the City of Regina, Canada. The method improves upon the existing interval-parameter semi-infinite programming (ISIP) and fuzzy-chance-constrained programming (FCCP) by incorporating uncertainties expressed as dual uncertainties of functional intervals and multiple uncertainties of distributions with fuzzy-interval admissible probability of violating constraint within a general optimization framework. The binary-variable solutions represent the decisions of waste-management-facility expansion, and the continuous ones are related to decisions of waste-flow allocation. The interval solutions can help decision-makers to obtain multiple decision alternatives, as well as provide bases for further analyses of tradeoffs between waste-management cost and system-failure risk. In the application to the City of Regina, Canada, two scenarios are considered. In Scenario 1, the City's waste-management practices would be based on the existing policy over the next 25 years. The total diversion rate for the residential waste would be approximately 14%. Scenario 2 is associated with a policy for waste minimization and diversion, where 35% diversion of residential waste should be achieved within 15 years, and 50% diversion over 25 years. In this scenario, not only landfill would be expanded, but also CF and MRF would be expanded. Through the scenario analyses, useful decision support for the City's solid-waste managers and decision-makers has been generated. Three special characteristics of the proposed method make it unique compared with other optimization techniques that deal with uncertainties. Firstly, it is useful for tackling multiple uncertainties expressed as intervals, functional intervals, probability distributions, fuzzy sets, and their
Guo, P.; Huang, G.H.
2010-03-15
In this study, an interval-parameter semi-infinite fuzzy-chance-constrained mixed-integer linear programming (ISIFCIP) approach is developed for supporting long-term planning of waste-management systems under multiple uncertainties in the City of Regina, Canada. The method improves upon the existing interval-parameter semi-infinite programming (ISIP) and fuzzy-chance-constrained programming (FCCP) by incorporating uncertainties expressed as dual uncertainties of functional intervals and multiple uncertainties of distributions with fuzzy-interval admissible probability of violating constraint within a general optimization framework. The binary-variable solutions represent the decisions of waste-management-facility expansion, and the continuous ones are related to decisions of waste-flow allocation. The interval solutions can help decision-makers to obtain multiple decision alternatives, as well as provide bases for further analyses of tradeoffs between waste-management cost and system-failure risk. In the application to the City of Regina, Canada, two scenarios are considered. In Scenario 1, the City's waste-management practices would be based on the existing policy over the next 25 years. The total diversion rate for the residential waste would be approximately 14%. Scenario 2 is associated with a policy for waste minimization and diversion, where 35% diversion of residential waste should be achieved within 15 years, and 50% diversion over 25 years. In this scenario, not only landfill would be expanded, but also CF and MRF would be expanded. Through the scenario analyses, useful decision support for the City's solid-waste managers and decision-makers has been generated. Three special characteristics of the proposed method make it unique compared with other optimization techniques that deal with uncertainties. Firstly, it is useful for tackling multiple uncertainties expressed as intervals, functional intervals, probability distributions, fuzzy sets, and their
NASA Astrophysics Data System (ADS)
Uilhoorn, F. E.
2016-10-01
In this article, the stochastic modelling approach proposed by Box and Jenkins is treated as a mixed-integer nonlinear programming (MINLP) problem solved with a mesh adaptive direct search and a real-coded genetic class of algorithms. The aim is to estimate the real-valued parameters and non-negative integer, correlated structure of stationary autoregressive moving average (ARMA) processes. The maximum likelihood function of the stationary ARMA process is embedded in Akaike's information criterion and the Bayesian information criterion, whereas the estimation procedure is based on Kalman filter recursions. The constraints imposed on the objective function enforce stability and invertibility. The best ARMA model is regarded as the global minimum of the non-convex MINLP problem. The robustness and computational performance of the MINLP solvers are compared with brute-force enumeration. Numerical experiments are done for existing time series and one new data set.
ERIC Educational Resources Information Center
Dirks, Michael K.
1984-01-01
The abacus method for instruction on addition, subtraction, and multiplication with integers is explained. How to represent the integers for each operation is detailed with words and illustrations. (MNS)
ERIC Educational Resources Information Center
Pong, Wai Yan
2007-01-01
We begin by answering the question, "Which natural numbers are sums of consecutive integers?" We then go on to explore the set of lengths (numbers of summands) in the decompositions of an integer as such sums.
ERIC Educational Resources Information Center
Siegel, Jonathan W.; Siegel, P. B.
2011-01-01
Integers are sometimes used in physics problems to simplify the mathematics so the arithmetic does not distract students from the physics concepts. This is particularly important in exams where students should not have to spend a lot of time using their calculators. Common uses of integers in physics problems include integer solutions to…
NASA Astrophysics Data System (ADS)
Guo, P.; Huang, G. H.; Li, Y. P.
2010-01-01
In this study, an inexact fuzzy-chance-constrained two-stage mixed-integer linear programming (IFCTIP) approach is developed for flood diversion planning under multiple uncertainties. A concept of the distribution with fuzzy boundary interval probability is defined to address multiple uncertainties expressed as integration of intervals, fuzzy sets and probability distributions. IFCTIP integrates the inexact programming, two-stage stochastic programming, integer programming and fuzzy-stochastic programming within a general optimization framework. IFCTIP incorporates the pre-regulated water-diversion policies directly into its optimization process to analyze various policy scenarios; each scenario has different economic penalty when the promised targets are violated. More importantly, it can facilitate dynamic programming for decisions of capacity-expansion planning under fuzzy-stochastic conditions. IFCTIP is applied to a flood management system. Solutions from IFCTIP provide desired flood diversion plans with a minimized system cost and a maximized safety level. The results indicate that reasonable solutions are generated for objective function values and decision variables, thus a number of decision alternatives can be generated under different levels of flood flows.
Wang, S; Huang, G H
2013-03-15
Flood disasters have been extremely severe in recent decades, and they account for about one third of all natural catastrophes throughout the world. In this study, a two-stage mixed-integer fuzzy programming with interval-valued membership functions (TMFP-IMF) approach is developed for flood-diversion planning under uncertainty. TMFP-IMF integrates the fuzzy flexible programming, two-stage stochastic programming, and integer programming within a general framework. A concept of interval-valued fuzzy membership function is introduced to address complexities of system uncertainties. TMFP-IMF can not only deal with uncertainties expressed as fuzzy sets and probability distributions, but also incorporate pre-regulated water-diversion policies directly into its optimization process. TMFP-IMF is applied to a hypothetical case study of flood-diversion planning for demonstrating its applicability. Results indicate that reasonable solutions can be generated for binary and continuous variables. A variety of flood-diversion and capacity-expansion schemes can be obtained under four scenarios, which enable decision makers (DMs) to identify the most desired one based on their perceptions and attitudes towards the objective-function value and constraints.
Goodman, G.V.R.
1987-01-01
The lack of available techniques prompted the development of a mixed integer model to optimize the scheduling of equipment and the distribution of overburden in a typical mountaintop removal operation. Using this format, a (0-1) integer model and transportation model were constructed to determine the optimal equipment schedule and optimal overburden distribution, respectively. To solve this mixed integer program, the model was partitioned into its binary and real-valued components. Each problem was successively solved and their values added to form estimates of the value of the mixed integer program. Optimal convergence was indicated when the difference between two successive estimates satisfied some pre-specific accuracy value. The performance of the mixed integer model was tested against actual field data to determine its practical applications. To provide the necessary input information, production data was obtained from a single seam, mountaintop removal operation located in the Appalachian coal field. As a means of analyzing the resultant equipment schedule, the total idle time was calculated for each machine type and each lift location. Also, the final overburden assignments were analyzed by determining the distribution of spoil material for various overburden removal productivities. Subsequent validation of the mixed integer model was conducted in two distinct areas. The first dealt with changes in algorithmic data and their effects on the optimality of the model. The second area concerned variations in problem structure, specifically those dealing with changes in problem size and other user-inputed values such as equipment productivities or required reclamation.
Guo, P; Huang, G H
2009-01-01
In this study, an inexact fuzzy chance-constrained two-stage mixed-integer linear programming (IFCTIP) approach is proposed for supporting long-term planning of waste-management systems under multiple uncertainties in the City of Regina, Canada. The method improves upon the existing inexact two-stage programming and mixed-integer linear programming techniques by incorporating uncertainties expressed as multiple uncertainties of intervals and dual probability distributions within a general optimization framework. The developed method can provide an effective linkage between the predefined environmental policies and the associated economic implications. Four special characteristics of the proposed method make it unique compared with other optimization techniques that deal with uncertainties. Firstly, it provides a linkage to predefined policies that have to be respected when a modeling effort is undertaken; secondly, it is useful for tackling uncertainties presented as intervals, probabilities, fuzzy sets and their incorporation; thirdly, it facilitates dynamic analysis for decisions of facility-expansion planning and waste-flow allocation within a multi-facility, multi-period, multi-level, and multi-option context; fourthly, the penalties are exercised with recourse against any infeasibility, which permits in-depth analyses of various policy scenarios that are associated with different levels of economic consequences when the promised solid waste-generation rates are violated. In a companion paper, the developed method is applied to a real case for the long-term planning of waste management in the City of Regina, Canada. PMID:19800164
Guo, P; Huang, G H
2009-01-01
In this study, an inexact fuzzy chance-constrained two-stage mixed-integer linear programming (IFCTIP) approach is proposed for supporting long-term planning of waste-management systems under multiple uncertainties in the City of Regina, Canada. The method improves upon the existing inexact two-stage programming and mixed-integer linear programming techniques by incorporating uncertainties expressed as multiple uncertainties of intervals and dual probability distributions within a general optimization framework. The developed method can provide an effective linkage between the predefined environmental policies and the associated economic implications. Four special characteristics of the proposed method make it unique compared with other optimization techniques that deal with uncertainties. Firstly, it provides a linkage to predefined policies that have to be respected when a modeling effort is undertaken; secondly, it is useful for tackling uncertainties presented as intervals, probabilities, fuzzy sets and their incorporation; thirdly, it facilitates dynamic analysis for decisions of facility-expansion planning and waste-flow allocation within a multi-facility, multi-period, multi-level, and multi-option context; fourthly, the penalties are exercised with recourse against any infeasibility, which permits in-depth analyses of various policy scenarios that are associated with different levels of economic consequences when the promised solid waste-generation rates are violated. In a companion paper, the developed method is applied to a real case for the long-term planning of waste management in the City of Regina, Canada.
Albuquerque, Fabio; Beier, Paul
2015-01-01
Here we report that prioritizing sites in order of rarity-weighted richness (RWR) is a simple, reliable way to identify sites that represent all species in the fewest number of sites (minimum set problem) or to identify sites that represent the largest number of species within a given number of sites (maximum coverage problem). We compared the number of species represented in sites prioritized by RWR to numbers of species represented in sites prioritized by the Zonation software package for 11 datasets in which the size of individual planning units (sites) ranged from <1 ha to 2,500 km2. On average, RWR solutions were more efficient than Zonation solutions. Integer programming remains the only guaranteed way find an optimal solution, and heuristic algorithms remain superior for conservation prioritizations that consider compactness and multiple near-optimal solutions in addition to species representation. But because RWR can be implemented easily and quickly in R or a spreadsheet, it is an attractive alternative to integer programming or heuristic algorithms in some conservation prioritization contexts. PMID:25780930
Winebrake, James J; Corbett, James J; Wang, Chengfeng; Farrell, Alexander E; Woods, Pippa
2005-04-01
Emissions from passenger ferries operating in urban harbors may contribute significantly to emissions inventories and commuter exposure to air pollution. In particular, ferries are problematic because of high emissions of oxides of nitrogen (NOx) and particulate matter (PM) from primarily unregulated diesel engines. This paper explores technical solutions to reduce pollution from passenger ferries operating in the New York-New Jersey Harbor. The paper discusses and demonstrates a mixed-integer, non-linear programming model used to identify optimal control strategies for meeting NOx and PM reduction targets for 45 privately owned commuter ferries in the harbor. Results from the model can be used by policy-makers to craft programs aimed at achieving least-cost reduction targets.
NASA Astrophysics Data System (ADS)
Irmeilyana, Puspita, Fitri Maya; Indrawati
2016-02-01
The pricing for wireless networks is developed by considering linearity factors, elasticity price and price factors. Mixed Integer Nonlinear Programming of wireless pricing model is proposed as the nonlinear programming problem that can be solved optimally using LINGO 13.0. The solutions are expected to give some information about the connections between the acceptance factor and the price. Previous model worked on the model that focuses on bandwidth as the QoS attribute. The models attempt to maximize the total price for a connection based on QoS parameter. The QoS attributes used will be the bandwidth and the end to end delay that affect the traffic. The maximum goal to maximum price is achieved when the provider determine the requirement for the increment or decrement of price change due to QoS change and amount of QoS value.
El-Qulity, Said Ali; Mohamed, Ali Wagdy
2016-01-01
This paper proposes a nonlinear integer goal programming model (NIGPM) for solving the general problem of admission capacity planning in a country as a whole. The work aims to satisfy most of the required key objectives of a country related to the enrollment problem for higher education. The system general outlines are developed along with the solution methodology for application to the time horizon in a given plan. The up-to-date data for Saudi Arabia is used as a case study and a novel evolutionary algorithm based on modified differential evolution (DE) algorithm is used to solve the complexity of the NIGPM generated for different goal priorities. The experimental results presented in this paper show their effectiveness in solving the admission capacity for higher education in terms of final solution quality and robustness. PMID:26819583
Gusfield, Dan
2010-03-01
The Multi-State Perfect Phylogeny Problem is an extension of the Binary Perfect Phylogeny Problem, allowing characters to take on more than two states. In this article, we consider three problems that extend the utility of the multi-state perfect phylogeny model: (1) the Missing Data (MD) Problem, where some entries in the input are missing and the question is whether (bounded) values for the missing data can be imputed so that the resulting data has a multi-state perfect phylogeny; (2) the Character-Removal (CR) Problem, where we want to minimize the number of characters to remove from the data so that the resulting data has a multi-state perfect phylogeny; and (3) the Missing-Data Character-Removal (MDCR) Problem, where the input has missing data and we want to impute values for the missing data to minimize the solution to the resulting Character-Removal Problem. We discuss Integer Linear Programming (ILP) solutions to these problems for the special case of three, four, and five permitted states per character, and we report on extensive empirical testing of these solutions. Then we develop a general theory to solve the MD problem for an arbitrary number of permitted states, using chordal graph theory and results on minimal triangulation of non-chordal graphs. This establishes new necessary and sufficient conditions for the existence of a perfect phylogeny with (or without) missing data. We implement the general theory using integer linear programming, although other optimization methods are possible. We extensively explore the empirical behavior of the general solution, showing that the methods are very practical for data of size and complexity that is characteristic of many current applications in phylogenetics. Some of the empirical results for the MD problem with an arbitrary number of permitted states are very surprising, suggesting the existence of additional combinatorial structure in multi-state perfect phylogenies. Finally, we note some relationships
ERIC Educational Resources Information Center
Griffiths, Martin
2011-01-01
One of the author's undergraduate students recently asked him whether it was possible to generate a random positive integer. After some thought, the author realised that there were plenty of interesting mathematical ideas inherent in her question. So much so in fact, that the author decided to organise a workshop, open both to undergraduates and…
Meyers, C A; Schulz, A S
2009-01-07
The integer equal flow problem is an NP-hard network flow problem, in which all arcs in given sets R{sub 1}, ..., R{sub {ell}} must carry equal flow. We show this problem is effectively inapproximable, even if the cardinality of each set R{sub k} is two. When {ell} is fixed, it is solvable in polynomial time.
NASA Astrophysics Data System (ADS)
Purnomo, Muhammad Ridwan Andi; Satrio Wiwoho, Yoga
2016-01-01
Facility layout becomes one of production system factor that should be managed well, as it is designated for the location of production. In managing the layout, designing the layout by considering the optimal layout condition that supports the work condition is essential. One of the method for facility layout optimization is Mixed Integer Programming (MIP). In this study, the MIP is solved using Lingo 9.0 software and considering quantitative and qualitative objectives to be achieved simultaneously: minimizing material handling cost, maximizing closeness rating, and minimizing re-layout cost. The research took place in Rekayasa Wangdi as a make to order company, focusing on the making of concrete brick dough stirring machine with 10 departments involved. The result shows an improvement in the new layout for 333,72 points of objective value compared with the initial layout. As the conclusion, the proposed MIP is proven to be used to model facility layout problem under multi objective consideration for a more realistic look.
Ko, Andi Setiady; Chang, Ni-Bin
2008-07-01
Energy supply and use is of fundamental importance to society. Although the interactions between energy and environment were originally local in character, they have now widened to cover regional and global issues, such as acid rain and the greenhouse effect. It is for this reason that there is a need for covering the direct and indirect economic and environmental impacts of energy acquisition, transport, production and use. In this paper, particular attention is directed to ways of resolving conflict between economic and environmental goals by encouraging a power plant to consider co-firing biomass and refuse-derived fuel (RDF) with coal simultaneously. It aims at reducing the emission level of sulfur dioxide (SO(2)) in an uncertain environment, using the power plant in Michigan City, Indiana as an example. To assess the uncertainty by a comparative way both deterministic and grey nonlinear mixed integer programming (MIP) models were developed to minimize the net operating cost with respect to possible fuel combinations. It aims at generating the optimal portfolio of alternative fuels while maintaining the same electricity generation simultaneously. To ease the solution procedure stepwise relaxation algorithm was developed for solving the grey nonlinear MIP model. Breakeven alternative fuel value can be identified in the post-optimization stage for decision-making. Research findings show that the inclusion of RDF does not exhibit comparative advantage in terms of the net cost, albeit relatively lower air pollution impact. Yet it can be sustained by a charge system, subsidy program, or emission credit as the price of coal increases over time.
Aerospace Applications of Integer and Combinatorial Optimization
NASA Technical Reports Server (NTRS)
Padula, S. L.; Kincaid, R. K.
1995-01-01
Research supported by NASA Langley Research Center includes many applications of aerospace design optimization and is conducted by teams of applied mathematicians and aerospace engineers. This paper investigates the benefits from this combined expertise in formulating and solving integer and combinatorial optimization problems. Applications range from the design of large space antennas to interior noise control. A typical problem, for example, seeks the optimal locations for vibration-damping devices on an orbiting platform and is expressed as a mixed/integer linear programming problem with more than 1500 design variables.
Aerospace applications on integer and combinatorial optimization
NASA Technical Reports Server (NTRS)
Padula, S. L.; Kincaid, R. K.
1995-01-01
Research supported by NASA Langley Research Center includes many applications of aerospace design optimization and is conducted by teams of applied mathematicians and aerospace engineers. This paper investigates the benefits from this combined expertise in formulating and solving integer and combinatorial optimization problems. Applications range from the design of large space antennas to interior noise control. A typical problem. for example, seeks the optimal locations for vibration-damping devices on an orbiting platform and is expressed as a mixed/integer linear programming problem with more than 1500 design variables.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Purpose. 1601.0-1 Section 1601.0-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR GENERAL MANAGEMENT (1000) PLANNING, PROGRAMMING, BUDGETING Planning §...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Purpose. 1601.0-1 Section 1601.0-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR GENERAL MANAGEMENT (1000) PLANNING, PROGRAMMING, BUDGETING Planning §...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Purpose. 1601.0-1 Section 1601.0-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR GENERAL MANAGEMENT (1000) PLANNING, PROGRAMMING, BUDGETING Planning §...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Purpose. 1601.0-1 Section 1601.0-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR GENERAL MANAGEMENT (1000) PLANNING, PROGRAMMING, BUDGETING Planning §...
Computer Corner: Spreadsheets, Power Series, Generating Functions, and Integers.
ERIC Educational Resources Information Center
Snow, Donald R.
1989-01-01
Implements a table algorithm on a spreadsheet program and obtains functions for several number sequences such as the Fibonacci and Catalan numbers. Considers other applications of the table algorithm to integers represented in various number bases. (YP)
Unconventional integer quantum Hall effect in graphene.
Gusynin, V P; Sharapov, S G
2005-09-30
Monolayer graphite films, or graphene, have quasiparticle excitations that can be described by (2+1)-dimensional Dirac theory. We demonstrate that this produces an unconventional form of the quantized Hall conductivity sigma(xy) = -(2e2/h)(2n+1) with n = 0, 1, ..., which notably distinguishes graphene from other materials where the integer quantum Hall effect was observed. This unconventional quantization is caused by the quantum anomaly of the n=0 Landau level and was discovered in recent experiments on ultrathin graphite films.
Mixed integer evolution strategies for parameter optimization.
Li, Rui; Emmerich, Michael T M; Eggermont, Jeroen; Bäck, Thomas; Schütz, M; Dijkstra, J; Reiber, J H C
2013-01-01
Evolution strategies (ESs) are powerful probabilistic search and optimization algorithms gleaned from biological evolution theory. They have been successfully applied to a wide range of real world applications. The modern ESs are mainly designed for solving continuous parameter optimization problems. Their ability to adapt the parameters of the multivariate normal distribution used for mutation during the optimization run makes them well suited for this domain. In this article we describe and study mixed integer evolution strategies (MIES), which are natural extensions of ES for mixed integer optimization problems. MIES can deal with parameter vectors consisting not only of continuous variables but also with nominal discrete and integer variables. Following the design principles of the canonical evolution strategies, they use specialized mutation operators tailored for the aforementioned mixed parameter classes. For each type of variable, the choice of mutation operators is governed by a natural metric for this variable type, maximal entropy, and symmetry considerations. All distributions used for mutation can be controlled in their shape by means of scaling parameters, allowing self-adaptation to be implemented. After introducing and motivating the conceptual design of the MIES, we study the optimality of the self-adaptation of step sizes and mutation rates on a generalized (weighted) sphere model. Moreover, we prove global convergence of the MIES on a very general class of problems. The remainder of the article is devoted to performance studies on artificial landscapes (barrier functions and mixed integer NK landscapes), and a case study in the optimization of medical image analysis systems. In addition, we show that with proper constraint handling techniques, MIES can also be applied to classical mixed integer nonlinear programming problems. PMID:22122384
Code of Federal Regulations, 2014 CFR
2014-10-01
... Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RECREATION PROGRAMS PROCEDURES Research Natural Areas § 8223.0-1 Purpose. The purpose... natural characteristics that are unusual or that are of scientific or other special interest....
Dickens, J.K.
1988-04-01
This document provides a discussion of the development of the FORTRAN Monte Carlo program SCINFUL (for scintillator full response), a program designed to provide a calculated full response anticipated for either an NE-213 (liquid) scintillator or an NE-110 (solid) scintillator. The program may also be used to compute angle-integrated spectra of charged particles (p, d, t, /sup 3/He, and ..cap alpha..) following neutron interactions with /sup 12/C. Extensive comparisons with a variety of experimental data are given. There is generally overall good agreement (<10% differences) of results from SCINFUL calculations with measured detector responses, i.e., N(E/sub r/) vs E/sub r/ where E/sub r/ is the response pulse height, reproduce measured detector responses with an accuracy which, at least partly, depends upon how well the experimental configuration is known. For E/sub n/ < 16 MeV and for E/sub r/ > 15% of the maximum pulse height response, calculated spectra are within +-5% of experiment on the average. For E/sub n/ up to 50 MeV similar good agreement is obtained with experiment for E/sub r/ > 30% of maximum response. For E/sub n/ up to 75 MeV the calculated shape of the response agrees with measurements, but the calculations underpredicts the measured response by up to 30%. 65 refs., 64 figs., 3 tabs.
Aerospace applications of integer and combinatorial optimization
NASA Technical Reports Server (NTRS)
Padula, S. L.; Kincaid, R. K.
1995-01-01
Research supported by NASA Langley Research Center includes many applications of aerospace design optimization and is conducted by teams of applied mathematicians and aerospace engineers. This paper investigates the benefits from this combined expertise in solving combinatorial optimization problems. Applications range from the design of large space antennas to interior noise control. A typical problem, for example, seeks the optimal locations for vibration-damping devices on a large space structure and is expressed as a mixed/integer linear programming problem with more than 1500 design variables.
Integer Operations Using a Whiteboard
ERIC Educational Resources Information Center
Andrews, Delise R.
2011-01-01
Interactive whiteboards are somewhat unimpressive at first and look like the whiteboards that already hang on the walls of many classrooms. However, integrating interactive whiteboard technology in a unit on adding and subtracting integers enhances student engagement and understanding. In this article, the author describes how she used an…
Integers Made Easy: Just Walk It Off
ERIC Educational Resources Information Center
Nurnberger-Haag, Julie
2007-01-01
This article describes a multisensory method for teaching students how to multiply and divide as well as add and subtract integers. The author uses sidewalk chalk and the underlying concept of integers to physically and mentally engage students in understanding the concepts of integers, making connections, and developing computational fluency.…
Investigating data envelopment analysis model with potential improvement for integer output values
NASA Astrophysics Data System (ADS)
Hussain, Mushtaq Taleb; Ramli, Razamin; Khalid, Ruzelan
2015-12-01
The decrement of input proportions in DEA model is associated with its input reduction. This reduction is apparently good for economy since it could reduce unnecessary cost resources. However, in some situations the reduction of relevant inputs such as labour could create social problems. Such inputs should thus be maintained or increased. This paper develops an advanced radial DEA model dealing with mixed integer linear programming to improve integer output values through the combination of inputs. The model can deal with real input values and integer output values. This model is valuable for situations dealing with input combination to improve integer output values as faced by most organizations.
Solving the Water Jugs Problem by an Integer Sequence Approach
ERIC Educational Resources Information Center
Man, Yiu-Kwong
2012-01-01
In this article, we present an integer sequence approach to solve the classic water jugs problem. The solution steps can be obtained easily by additions and subtractions only, which is suitable for manual calculation or programming by computer. This approach can be introduced to secondary and undergraduate students, and also to teachers and…
28 CFR 0.1 - Organizational units.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 28 Judicial Administration 1 2011-07-01 2011-07-01 false Organizational units. 0.1 Section 0.1 Judicial Administration DEPARTMENT OF JUSTICE ORGANIZATION OF THE DEPARTMENT OF JUSTICE Organizational Structure of the Department of Justice § 0.1 Organizational units. The Department of Justice shall...
28 CFR 0.1 - Organizational units.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 28 Judicial Administration 1 2013-07-01 2013-07-01 false Organizational units. 0.1 Section 0.1 Judicial Administration DEPARTMENT OF JUSTICE ORGANIZATION OF THE DEPARTMENT OF JUSTICE Organizational Structure of the Department of Justice § 0.1 Organizational units. The Department of Justice shall...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false The Commission. 0.1 Section 0.1 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMISSION ORGANIZATION Organization General § 0.1 The Commission. The Federal Communications Commission is composed of five (5) members who are appointed by...
Code of Federal Regulations, 2011 CFR
2011-10-01
... OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) BUREAU INITIATED CLASSIFICATION SYSTEM Multiple-Use Classification Procedures § 2461.0-1 Purpose. Formal action to classify land for retention for multiple use... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Purpose. 2461.0-1 Section 2461.0-1...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 1 2013-10-01 2013-10-01 false The Commission. 0.1 Section 0.1 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMISSION ORGANIZATION Organization General § 0.1 The Commission. The Federal Communications Commission is composed of five (5) members who are appointed by...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 1 2014-10-01 2014-10-01 false The Commission. 0.1 Section 0.1 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMISSION ORGANIZATION Organization General § 0.1 The Commission. The Federal Communications Commission is composed of five (5) members who are appointed by...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 1 2011-10-01 2011-10-01 false The Commission. 0.1 Section 0.1 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMISSION ORGANIZATION Organization General § 0.1 The Commission. The Federal Communications Commission is composed of five (5) members who are appointed by...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Introduction. 44.0-1 Section 44.0-1 Internal... ON WAGERING; EFFECTIVE JANUARY 1, 1955 Introduction § 44.0-1 Introduction. (a) In general. The.... References to a section or other provision of law are references to a section or other provision of...
Order and Value: Transitioning to Integers
ERIC Educational Resources Information Center
Bofferding, Laura
2014-01-01
As students progress from working with whole numbers to working with integers, they must wrestle with the big ideas of number values and order. Using objects to show positive quantities is easy, but no physical negative quantities exist. Therefore, when talking about integers, the author refers to number values instead of number quantities. The…
Factorization of large integers on a massively parallel computer
Davis, J.A.; Holdridge, D.B.
1988-01-01
Our interest in integer factorization at Sandia National Laboratories is motivated by cryptographic applications and in particular the security of the RSA encryption-decryption algorithm. We have implemented our version of the quadratic sieve procedure on the NCUBE computer with 1024 processors (nodes). The new code is significantly different in all important aspects from the program used to factor number of order 10/sup 70/ on a single processor CRAY computer. Capabilities of parallel processing and limitation of small local memory necessitated this entirely new implementation. This effort involved several restarts as realizations of program structures that seemed appealing bogged down due to inter-processor communications. We are presently working with integers of magnitude about 10/sup 70/ in tuning this code to the novel hardware. 6 refs., 3 figs.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 26 Internal Revenue 14 2014-04-01 2013-04-01 true Introduction. 25.0-1 Section 25.0-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) ESTATE AND GIFT TAXES GIFT TAX; GIFTS MADE AFTER DECEMBER 31, 1954 Gift Tax § 25.0-1 Introduction. (a) In general. (1) The regulations in this part are designated “Gift...
NASA Astrophysics Data System (ADS)
Xue, Wentong; Song, Jianshe; Yuan, Lihai; Shen, Tao
2005-11-01
An efficient and novel imagery compression system for Synthetic Aperture Radar (SAR) which uses integer to integer wavelet transform and Modified Set Partitioning Embedded Block Coder (M-SPECK) has been presented in this paper. The presence of speckle noise, detailed texture, high dynamic range in SAR images, and even its vast data volume show the great differences of SAR imagery. Integer to integer wavelet transform is invertible in finite precision arithmetic, it maps integers to integers, and approximates linear wavelet transforms from which they are derived. Considering in terms of computational load, compression ratio and subjective visual quality metrics, several filter banks are compared together and some factors affecting the compression performance of the integer to integer wavelet transform are discussed in details. Then the optimal filter banks which are more appropriate for the SAR images compression are given. Information of high frequency has relatively larger proportion in SAR images compared with those of nature images. Measures to modify the quantizing thresholds in traditional SPECK are taken, which could be suitable to the contents of SAR imagery for the purpose of compression. Both the integer to integer wavelet transform and modified SPECK have the desirable feature of low computational complexity. Experimental results show its superiority over the traditional approaches in the condition of tradeoffs between compression efficiency and computational complexity.
Integer cosine transform for image compression
NASA Technical Reports Server (NTRS)
Cheung, K.-M.; Pollara, F.; Shahshahani, M.
1991-01-01
This article describes a recently introduced transform algorithm called the integer cosine transform (ICT), which is used in transform-based data compression schemes. The ICT algorithm requires only integer operations on small integers and at the same time gives a rate-distortion performance comparable to that offered by the floating-point discrete cosine transform (DCT). The article addresses the issue of implementation complexity, which is of prime concern for source coding applications of interest in deep-space communications. Complexity reduction in the transform stage of the compression scheme is particularly relevant, since this stage accounts for most (typically over 80 percent) of the computational load.
Code of Federal Regulations, 2014 CFR
2014-10-01
... west of the 100th Meridian, west longitude, or materially damage the quantity or quality of water in... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Purpose. 3436.0-1 Section 3436.0-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT,...
Code of Federal Regulations, 2013 CFR
2013-10-01
... west of the 100th Meridian, west longitude, or materially damage the quantity or quality of water in... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Purpose. 3436.0-1 Section 3436.0-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT,...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Purpose. 2710.0-1 Section 2710.0-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT... section 203 of the Federal Land Policy and Management Act of 1976 (43 U.S.C. 1701, 1713)....
Code of Federal Regulations, 2010 CFR
2010-04-01
... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Introduction. 40.0-1 Section 40.0-1 Internal... such taxes before the effective date of this part are contained in 26 CFR parts 43, 46, 48, 49 and 52... form designated for the same use by the Commissioner after October 22, 1992. (c) Definition...
Quantum Field Theory in (0 + 1) Dimensions
ERIC Educational Resources Information Center
Boozer, A. D.
2007-01-01
We show that many of the key ideas of quantum field theory can be illustrated simply and straightforwardly by using toy models in (0 + 1) dimensions. Because quantum field theory in (0 + 1) dimensions is equivalent to quantum mechanics, these models allow us to use techniques from quantum mechanics to gain insight into quantum field theory. In…
Integer quantum Hall effect for bosons.
Senthil, T; Levin, Michael
2013-01-25
A simple physical realization of an integer quantum Hall state of interacting two dimensional bosons is provided. This is an example of a symmetry-protected topological (SPT) phase which is a generalization of the concept of topological insulators to systems of interacting bosons or fermions. Universal physical properties of the boson integer quantum Hall state are described and shown to correspond with those expected from general classifications of SPT phases.
Code of Federal Regulations, 2013 CFR
2013-10-01
... OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) DESERT-LAND ENTRIES Desert-Land Entries: General § 2520.0-1 Purpose. (a) It is the purpose of the statutes governing desert-land entries to encourage...
Code of Federal Regulations, 2011 CFR
2011-10-01
... OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) DESERT-LAND ENTRIES Desert-Land Entries: General § 2520.0-1 Purpose. (a) It is the purpose of the statutes governing desert-land entries to encourage...
Code of Federal Regulations, 2014 CFR
2014-10-01
... OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) DESERT-LAND ENTRIES Desert-Land Entries: General § 2520.0-1 Purpose. (a) It is the purpose of the statutes governing desert-land entries to encourage...
Code of Federal Regulations, 2012 CFR
2012-10-01
... OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) DESERT-LAND ENTRIES Desert-Land Entries: General § 2520.0-1 Purpose. (a) It is the purpose of the statutes governing desert-land entries to encourage...
Code of Federal Regulations, 2013 CFR
2013-10-01
... OF THE INTERIOR TECHNICAL SERVICES (9000) FIRE MANAGEMENT Wildfire Prevention § 9212.0-1 Purpose. The purpose of this subpart is to set forth procedures to prevent wildfires on the public lands....
Code of Federal Regulations, 2011 CFR
2011-10-01
... OF THE INTERIOR TECHNICAL SERVICES (9000) FIRE MANAGEMENT Wildfire Prevention § 9212.0-1 Purpose. The purpose of this subpart is to set forth procedures to prevent wildfires on the public lands....
Code of Federal Regulations, 2014 CFR
2014-10-01
... OF THE INTERIOR TECHNICAL SERVICES (9000) FIRE MANAGEMENT Wildfire Prevention § 9212.0-1 Purpose. The purpose of this subpart is to set forth procedures to prevent wildfires on the public lands....
Code of Federal Regulations, 2012 CFR
2012-10-01
... OF THE INTERIOR TECHNICAL SERVICES (9000) FIRE MANAGEMENT Wildfire Prevention § 9212.0-1 Purpose. The purpose of this subpart is to set forth procedures to prevent wildfires on the public lands....
28 CFR 0.1 - Organizational units.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Oriented Policing Services. Office on Violence Against Women. Office of the Federal Detention Trustee... § 0.1, see the List of CFR Sections Affected, which appears in the Finding Aids section of the...
Mixed-Integer Formulations for Constellation Scheduling
NASA Astrophysics Data System (ADS)
Valicka, C.; Hart, W.; Rintoul, M.
Remote sensing systems have expanded the set of capabilities available for and critical to national security. Cooperating, high-fidelity sensing systems and growing mission applications have exponentially increased the set of potential schedules. A definitive lack of advanced tools places an increased burden on operators, as planning and scheduling remain largely manual tasks. This is particularly true in time-critical planning activities where operators aim to accomplish a large number of missions through optimal utilization of single or multiple sensor systems. Automated scheduling through identification and comparison of alternative schedules remains a challenging problem applicable across all remote sensing systems. Previous approaches focused on a subset of sensor missions and do not consider ad-hoc tasking. We have begun development of a robust framework that leverages the Pyomo optimization modeling language for the design of a tool to assist sensor operators planning under the constraints of multiple concurrent missions and uncertainty. Our scheduling models have been formulated to address the stochastic nature of ad-hoc tasks inserted under a variety of scenarios. Operator experience is being leveraged to select appropriate model objectives. Successful development of the framework will include iterative development of high-fidelity mission models that consider and expose various schedule performance metrics. Creating this tool will aid time-critical scheduling by increasing planning efficiency, clarifying the value of alternative modalities uniquely provided by multi-sensor systems, and by presenting both sets of organized information to operators. Such a tool will help operators more quickly and fully utilize sensing systems, a high interest objective within the current remote sensing operations community. Preliminary results for mixed-integer programming formulations of a sensor scheduling problem will be presented. Assumptions regarding sensor geometry
Slip and Slide Method of Factoring Trinomials with Integer Coefficients over the Integers
ERIC Educational Resources Information Center
Donnell, William A.
2012-01-01
In intermediate and college algebra courses there are a number of methods for factoring quadratic trinomials with integer coefficients over the integers. Some of these methods have been given names, such as trial and error, reversing FOIL, AC method, middle term splitting method and slip and slide method. The purpose of this article is to discuss…
Topological Integer Additive Set-Graceful Graphs
NASA Astrophysics Data System (ADS)
Sudev, N. K.; P., K.; Germina, K. A.
2015-08-01
Let $\\mathbb{N}_0$ denote the set of all non-negative integers and $X$ be any subset of $X$. Also denote the power set of $X$ by $\\mathcal{P}(X)$. An integer additive set-labeling (IASL) of a graph $G$ is an injective function $f:V(G)\\to \\mathcal{P}(X)$ such that the induced function $f^+:E(G) \\to \\mathcal{P}(X)$ is defined by $f^+ (uv) = f(u)+ f(v)$, where $f(u)+f(v)$ is the sumset of $f(u)$ and $f(v)$. An IASL $f$ is said to be a topological IASL (Top-IASL) if $f(V(G))\\cup \\{\\emptyset\\}$ is a topology of the ground set $X$. An IASL is said to be an integer additive set-graceful labeling (IASGL) if for the induced edge-function $f^+$, $f^+(E(G))= \\mathcal{P}(X)-\\{\\emptyset, \\{0\\}\\}$. In this paper, we study certain types of IASL of a given graph $G$, which is a topological integer additive set-labeling as well as an integer additive set-graceful labeling of $G$.
Code of Federal Regulations, 2012 CFR
2012-04-01
... tax on certain luxury items, special fuels, fuel used in commercial transportation on inland waterways... Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) MISCELLANEOUS EXCISE TAXES MANUFACTURERS AND RETAILERS EXCISE TAXES Introduction § 48.0-1 Introduction. The regulations in this part 48...
Code of Federal Regulations, 2011 CFR
2011-04-01
... tax on certain luxury items, special fuels, fuel used in commercial transportation on inland waterways... Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) MISCELLANEOUS EXCISE TAXES MANUFACTURERS AND RETAILERS EXCISE TAXES Introduction § 48.0-1 Introduction. The regulations in this part 48...
Code of Federal Regulations, 2013 CFR
2013-04-01
... tax on certain luxury items, special fuels, fuel used in commercial transportation on inland waterways... Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) MISCELLANEOUS EXCISE TAXES MANUFACTURERS AND RETAILERS EXCISE TAXES Introduction § 48.0-1 Introduction. The regulations in this part 48...
Code of Federal Regulations, 2010 CFR
2010-04-01
... tax on certain luxury items, special fuels, fuel used in commercial transportation on inland waterways... Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) MISCELLANEOUS EXCISE TAXES MANUFACTURERS AND RETAILERS EXCISE TAXES Introduction § 48.0-1 Introduction. The regulations in this part 48...
Code of Federal Regulations, 2014 CFR
2014-10-01
... Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) ENVIRONMENT Surface Management and Protection § 3465.0-1 Purpose. This subpart establishes rules for the management and protection of the surface of leased...
Code of Federal Regulations, 2011 CFR
2011-10-01
... Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) ENVIRONMENT Surface Management and Protection § 3465.0-1 Purpose. This subpart establishes rules for the management and protection of the surface of leased...
Code of Federal Regulations, 2012 CFR
2012-10-01
... OF THE INTERIOR MINERALS MANAGEMENT (3000) LEASING IN SPECIAL TAR SAND AREAS Leasing in Special Tar Sand Areas § 3141.0-1 Purpose. The purpose of this subpart is to provide for the competitive leasing of lands and issuance of Combined Hydrocarbon Leases, Oil and Gas Leases, or Tar Sand Leases within...
Code of Federal Regulations, 2013 CFR
2013-10-01
... OF THE INTERIOR MINERALS MANAGEMENT (3000) LEASING IN SPECIAL TAR SAND AREAS Leasing in Special Tar Sand Areas § 3141.0-1 Purpose. The purpose of this subpart is to provide for the competitive leasing of lands and issuance of Combined Hydrocarbon Leases, Oil and Gas Leases, or Tar Sand Leases within...
Code of Federal Regulations, 2014 CFR
2014-10-01
... OF THE INTERIOR MINERALS MANAGEMENT (3000) LEASING IN SPECIAL TAR SAND AREAS Leasing in Special Tar Sand Areas § 3141.0-1 Purpose. The purpose of this subpart is to provide for the competitive leasing of lands and issuance of Combined Hydrocarbon Leases, Oil and Gas Leases, or Tar Sand Leases within...
Code of Federal Regulations, 2011 CFR
2011-10-01
... OF THE INTERIOR MINERALS MANAGEMENT (3000) LEASING IN SPECIAL TAR SAND AREAS Leasing in Special Tar Sand Areas § 3141.0-1 Purpose. The purpose of this subpart is to provide for the competitive leasing of lands and issuance of Combined Hydrocarbon Leases, Oil and Gas Leases, or Tar Sand Leases within...
Code of Federal Regulations, 2011 CFR
2011-10-01
... OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING HORSES AND BURROS General § 4700.0-1 Purpose. The purpose of these regulations is to implement the laws relating to the protection, management, and control of wild horses and burros under the administration...
Code of Federal Regulations, 2013 CFR
2013-10-01
... OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING HORSES AND BURROS General § 4700.0-1 Purpose. The purpose of these regulations is to implement the laws relating to the protection, management, and control of wild horses and burros under the administration...
Code of Federal Regulations, 2012 CFR
2012-10-01
... OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING HORSES AND BURROS General § 4700.0-1 Purpose. The purpose of these regulations is to implement the laws relating to the protection, management, and control of wild horses and burros under the administration...
Code of Federal Regulations, 2014 CFR
2014-10-01
... OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING HORSES AND BURROS General § 4700.0-1 Purpose. The purpose of these regulations is to implement the laws relating to the protection, management, and control of wild horses and burros under the administration...
Code of Federal Regulations, 2010 CFR
2010-04-01
... Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) EMPLOYMENT TAXES AND COLLECTION OF INCOME TAX AT SOURCE EMPLOYMENT TAXES AND COLLECTION OF INCOME TAX AT SOURCE Introduction § 31.0-1 Introduction. (a) In general. The regulations in this part relate to the employment taxes imposed by subtitle...
Code of Federal Regulations, 2013 CFR
2013-01-01
... Practices FEDERAL TRADE COMMISSION ORGANIZATION, PROCEDURES AND RULES OF PRACTICE ORGANIZATION § 0.1 The Commission. The Federal Trade Commission is an independent administrative agency which was organized in 1915 pursuant to the Federal Trade Commission Act of 1914 (38 Stat. 717, as amended; 15 U.S.C. 41-58). It...
Code of Federal Regulations, 2010 CFR
2010-01-01
... Practices FEDERAL TRADE COMMISSION ORGANIZATION, PROCEDURES AND RULES OF PRACTICE ORGANIZATION § 0.1 The Commission. The Federal Trade Commission is an independent administrative agency which was organized in 1915 pursuant to the Federal Trade Commission Act of 1914 (38 Stat. 717, as amended; 15 U.S.C. 41-58). It...
Code of Federal Regulations, 2014 CFR
2014-01-01
... Practices FEDERAL TRADE COMMISSION ORGANIZATION, PROCEDURES AND RULES OF PRACTICE ORGANIZATION § 0.1 The Commission. The Federal Trade Commission is an independent administrative agency which was organized in 1915 pursuant to the Federal Trade Commission Act of 1914 (38 Stat. 717, as amended; 15 U.S.C. 41-58). It...
Code of Federal Regulations, 2011 CFR
2011-01-01
... Practices FEDERAL TRADE COMMISSION ORGANIZATION, PROCEDURES AND RULES OF PRACTICE ORGANIZATION § 0.1 The Commission. The Federal Trade Commission is an independent administrative agency which was organized in 1915 pursuant to the Federal Trade Commission Act of 1914 (38 Stat. 717, as amended; 15 U.S.C. 41-58). It...
Code of Federal Regulations, 2012 CFR
2012-01-01
... Practices FEDERAL TRADE COMMISSION ORGANIZATION, PROCEDURES AND RULES OF PRACTICE ORGANIZATION § 0.1 The Commission. The Federal Trade Commission is an independent administrative agency which was organized in 1915 pursuant to the Federal Trade Commission Act of 1914 (38 Stat. 717, as amended; 15 U.S.C. 41-58). It...
Code of Federal Regulations, 2011 CFR
2011-04-01
...; ESTATES OF DECEDENTS DYING AFTER AUGUST 16, 1954 Introduction § 20.0-1 Introduction. (a) In general. (1... dying after August 16, 1954, and (ii) certain related administrative provisions of subtitle F of the... provided, the Estate Tax Regulations are applicable to the estates of decedents dying after August 16,...
Code of Federal Regulations, 2013 CFR
2013-04-01
...; ESTATES OF DECEDENTS DYING AFTER AUGUST 16, 1954 Introduction § 20.0-1 Introduction. (a) In general. (1... dying after August 16, 1954, and (ii) certain related administrative provisions of subtitle F of the... provided, the Estate Tax Regulations are applicable to the estates of decedents dying after August 16,...
Code of Federal Regulations, 2014 CFR
2014-04-01
...; ESTATES OF DECEDENTS DYING AFTER AUGUST 16, 1954 Introduction § 20.0-1 Introduction. (a) In general. (1... dying after August 16, 1954, and (ii) certain related administrative provisions of subtitle F of the... provided, the Estate Tax Regulations are applicable to the estates of decedents dying after August 16,...
Code of Federal Regulations, 2012 CFR
2012-04-01
...; ESTATES OF DECEDENTS DYING AFTER AUGUST 16, 1954 Introduction § 20.0-1 Introduction. (a) In general. (1... dying after August 16, 1954, and (ii) certain related administrative provisions of subtitle F of the... provided, the Estate Tax Regulations are applicable to the estates of decedents dying after August 16,...
Code of Federal Regulations, 2011 CFR
2011-10-01
... OF THE INTERIOR MINERALS MANAGEMENT (3000) ONSHORE OIL AND GAS OPERATIONS Onshore Oil and Gas Operations: General § 3160.0-1 Purpose. The regulations in this part govern operations associated with the exploration, development and production of oil and gas deposits from— (a) Leases issued or approved by...
Code of Federal Regulations, 2011 CFR
2011-10-01
...: Alluvial Valley Floors § 3436.0-1 Purpose. The purpose of this subpart is to establish criteria and... lease or that are fee held would interrupt, discontinue or preclude farming on alluvial valley floors... surface or underground systems that supply those alluvial valley floors....
Reducing Truncation Error In Integer Processing
NASA Technical Reports Server (NTRS)
Thomas, J. Brooks; Berner, Jeffrey B.; Graham, J. Scott
1995-01-01
Improved method of rounding off (truncation of least-significant bits) in integer processing of data devised. Provides for reduction, to extremely low value, of numerical bias otherwise generated by accumulation of truncation errors from many arithmetic operations. Devised for use in integer signal processing, in which rescaling and truncation usually performed to reduce number of bits, which typically builds up in sequence of operations. Essence of method to alternate direction of roundoff (plus, then minus) on alternate occurrences of truncated values contributing to bias.
PSLQ: An Algorithm to Discover Integer Relations
Bailey, David H.; Borwein, J. M.
2009-04-03
Let x = (x{sub 1}, x{sub 2} {hor_ellipsis}, x{sub n}) be a vector of real or complex numbers. x is said to possess an integer relation if there exist integers a{sub i}, not all zero, such that a{sub 1}x{sub 1} + a{sub 2}x{sub 2} + {hor_ellipsis} + a{sub n}x{sub n} = 0. By an integer relation algorithm, we mean a practical computational scheme that can recover the vector of integers ai, if it exists, or can produce bounds within which no integer relation exists. As we will see in the examples below, an integer relation algorithm can be used to recognize a computed constant in terms of a formula involving known constants, or to discover an underlying relation between quantities that can be computed to high precision. At the present time, the most effective algorithm for integer relation detection is the 'PSLQ' algorithm of mathematician-sculptor Helaman Ferguson [10, 4]. Some efficient 'multi-level' implementations of PSLQ, as well as a variant of PSLQ that is well-suited for highly parallel computer systems, are given in [4]. PSLQ constructs a sequence of integer-valued matrices B{sub n} that reduces the vector y = xB{sub n}, until either the relation is found (as one of the columns of B{sub n}), or else precision is exhausted. At the same time, PSLQ generates a steadily growing bound on the size of any possible relation. When a relation is found, the size of smallest entry of the vector y abruptly drops to roughly 'epsilon' (i.e. 10{sup -p}, where p is the number of digits of precision). The size of this drop can be viewed as a 'confidence level' that the relation is real and not merely a numerical artifact - a drop of 20 or more orders of magnitude almost always indicates a real relation. Very high precision arithmetic must be used in PSLQ. If one wishes to recover a relation of length n, with coefficients of maximum size d digits, then the input vector x must be specified to at least nd digits, and one must employ nd-digit floating-point arithmetic. Maple and
ERIC Educational Resources Information Center
Richardson, William H., Jr.
2006-01-01
Computational precision is sometimes given short shrift in a first programming course. Treating this topic requires discussing integer and floating-point number representations and inaccuracies that may result from their use. An example of a moderately simple programming problem from elementary statistics was examined. It forced students to…
Sums of Integer Squares: A New Look.
ERIC Educational Resources Information Center
Sastry, K. R. S.; Pranesachar, C. R.; Venkatachala, B. J.
1998-01-01
Focuses on the study of the sum of two integer squares, neither of which is zero square. Develops some new interesting and nonstandard ideas that can be put to use in number theory class, mathematics club meetings, or popular lectures. (ASK)
How to Differentiate an Integer Modulo n
ERIC Educational Resources Information Center
Emmons, Caleb; Krebs, Mike; Shaheen, Anthony
2009-01-01
A number derivative is a numerical mapping that satisfies the product rule. In this paper, we determine all number derivatives on the set of integers modulo n. We also give a list of undergraduate research projects to pursue using these maps as a starting point.
Dollars & Sense: Students' Integer Perspectives
ERIC Educational Resources Information Center
Whitacre, Ian; Bishop, Jessica Pierson; Philipp, Randolph A.; Lamb, Lisa L.; Schappelle, Bonnie P.
2014-01-01
A story problem about borrowing money, presented in this article, may be represented with positive or negative numbers and thought about in different ways. The authors describe ideas related to integers (both positive and negative) and how students used them in relation to a story problem, and how they related these ideas to equations.
A portable integer FFT in FORTRAN.
Monro, D M
1977-12-01
A radix 2 integer fast Fourier transform is organised for compatibility among small computer systems by simulating binary fraction multiplications and bit reversal as functions in basic FORTRAN. After installation the efficiency can be improved by machine code replacement of some parts.
Slip and slide method of factoring trinomials with integer coefficients over the integers
NASA Astrophysics Data System (ADS)
Donnell, William A.
2012-06-01
In intermediate and college algebra courses there are a number of methods for factoring quadratic trinomials with integer coefficients over the integers. Some of these methods have been given names, such as trial and error, reversing FOIL, AC method, middle term splitting method and slip and slide method. The purpose of this article is to discuss the Slip and Slide Method and present a theoretical justification of why it works.
Elementary theory of factoring trinomials with integer coefficients over the integers
NASA Astrophysics Data System (ADS)
Donnell, William A.
2010-12-01
An important component of intermediate and college algebra courses involves teaching students methods to factor a trinomial with integer coefficients over the integers. The aim of this article is to present a theoretical justification of that which is often taught, but really never explained as to why it works. The theory is presented, and a suggestion for an inquiry-based learning project is given.
28 CFR 0.1 - Organizational units.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Security Division. Tax Division. Justice Management Division. Bureaus Federal Bureau of Investigation.... INTERPOL—United States National Central Bureau. Office of International Programs. Office of Community Oriented Policing Services. Office on Violence Against Women. Office of the Federal Detention...
28 CFR 0.1 - Organizational units.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Security Division. Tax Division. Justice Management Division. Bureaus Federal Bureau of Investigation.... INTERPOL—United States National Central Bureau. Office of International Programs. Office of Community Oriented Policing Services. Office on Violence Against Women. Office of the Federal Detention...
Rational Tree Morphisms and Transducer Integer Sequences: Definition and Examples
NASA Astrophysics Data System (ADS)
ŠUnić, Zoran
2007-04-01
The notion of transducer integer sequences is considered through a series of examples (the chosen examples are related to the Tower of Hanoi problem on 3 pegs). By definition, transducer integer sequences are integer sequences produced, under a suitable interpretation, by finite transducers encoding rational tree morphisms (length and prefix preserving transformations of words that have only finitely many distinct sections).
Unlimited Capacity Parallel Quantity Comparison of Multiple Integers
ERIC Educational Resources Information Center
Blanc-Goldhammer, Daryn R.; Cohen, Dale J.
2014-01-01
Research has shown that integer comparison is quick and efficient. This efficiency may be a function of the structure of the integer comparison system. The present study tests whether integers are compared with an unlimited capacity system or a limited capacity system. We tested these models using a visual search task with time delimitation. The…
NASA Astrophysics Data System (ADS)
Chung, Won Sang
2014-07-01
In this paper a new q-deformed oscillator algebra with an integer number eigenvalue and a half odd integer number eigenvalue is proposed. For this algebra, the associated energy spectrum and thermodynamic behavior is discussed.
Integer sparse distributed memory: analysis and results.
Snaider, Javier; Franklin, Stan; Strain, Steve; George, E Olusegun
2013-10-01
Sparse distributed memory is an auto-associative memory system that stores high dimensional Boolean vectors. Here we present an extension of the original SDM, the Integer SDM that uses modular arithmetic integer vectors rather than binary vectors. This extension preserves many of the desirable properties of the original SDM: auto-associativity, content addressability, distributed storage, and robustness over noisy inputs. In addition, it improves the representation capabilities of the memory and is more robust over normalization. It can also be extended to support forgetting and reliable sequence storage. We performed several simulations that test the noise robustness property and capacity of the memory. Theoretical analyses of the memory's fidelity and capacity are also presented. PMID:23747569
An antimalarial stilbene from Artocarpus integer.
Boonlaksiri, C; Oonanant, W; Kongsaeree, P; Kittakoop, P; Tanticharoen, M; Thebtaranonth, Y
2000-06-01
Antimalarial activity-guided study of the aerial parts of Artocarpus integer led to the isolation of the prenylated stilbene, trans-4-(3-methyl-E-but-1-enyl)-3,5,2',4'-tetrahydroxystilbene with an EC50 of 1.7 micrograms/ml against Plasmodium falciparum in culture. The known stilbenes, trans-4-isopentenyl-3,5,2',4'-tetrahydroxystilbene and 4-methoxy-2,2-dimethyl-6-(2-(2,4-dihydroxy)phenyl-trans-ethenyl)chromene , were also isolated. Structures of these compounds were deduced on the basis of their spectral data.
How Powerful Are Integer-Valued Martingales?
NASA Astrophysics Data System (ADS)
Bienvenu, Laurent; Stephan, Frank; Teutsch, Jason
In the theory of algorithmic randomness, one of the central notions is that of computable randomness. An infinite binary sequence X is computably random if no recursive martingale (strategy) can win an infinite amount of money by betting on the values of the bits of X. In the classical model, the martingales considered are real-valued, that is, the bets made by the martingale can be arbitrary real numbers. In this paper, we investigate a more restricted model, where only integer-valued martingales are considered, and we study the class of random sequences induced by this model.
Horizontal visibility graphs from integer sequences
NASA Astrophysics Data System (ADS)
Lacasa, Lucas
2016-09-01
The horizontal visibility graph (HVG) is a graph-theoretical representation of a time series and builds a bridge between dynamical systems and graph theory. In recent years this representation has been used to describe and theoretically compare different types of dynamics and has been applied to characterize empirical signals, by extracting topological features from the associated HVGs which have shown to be informative on the class of dynamics. Among some other measures, it has been shown that the degree distribution of these graphs is a very informative feature that encapsulates nontrivial information of the series's generative dynamics. In particular, the HVG associated to a bi-infinite real-valued series of independent and identically distributed random variables is a universal exponential law P(k)=(1/3){(2/3)}k-2, independent of the series marginal distribution. Most of the current applications have however only addressed real-valued time series, as no exact results are known for the topological properties of HVGs associated to integer-valued series. In this paper we explore this latter situation and address univariate time series where each variable can only take a finite number n of consecutive integer values. We are able to construct an explicit formula for the parametric degree distribution {P}n(k), which we prove to converge to the continuous case for large n and deviates otherwise. A few applications are then considered.
Camera placement in integer lattices (extended abstract)
NASA Astrophysics Data System (ADS)
Pocchiola, Michel; Kranakis, Evangelos
1990-09-01
Techniques for studying an art gallery problem (the camera placement problem) in the infinite lattice (L sup d) of d tuples of integers are considered. A lattice point A is visible from a camera C positioned at a vertex of (L sup d) if A does not equal C and if the line segment joining A and C crosses no other lattice vertex. By using a combination of probabilistic, combinatorial optimization and algorithmic techniques the position they must occupy in the lattice (L sup d) in the order to maximize their visibility can be determined in polynomial time, for any given number s less than or equal to (5 sup d) of cameras. This improves previous results for s less than or equal to (3 sup d).
Resonance and Revivals in Quantum Rotors: Comparing Half-Integer Spin and Integer Spin
NASA Astrophysics Data System (ADS)
Li, Alvason Zhenhua; Harter, William G.
2013-06-01
Quantum rotor wavefunctions based upon Wigner-D matrix are applied to investigate the quantum resonance and revivals that occur in experimentally accessible spin systems. Interesting physical effects in quantum rotors between half-integer spin and integer spin systems will be discussed to show effects of symmetry. This study will pave the way for more rich dynamic behaviors in asymmetric top that include dynamic tunneling between various equivalent energy surface topography for asymmetric quantum rotors. A key point is that the quantum revivals in the rotor systems exhibit number-information aspects of surprisingly simple Farey-sum and Ford-circle geometry. Such quantum dynamic might have applications for quantum information processing and quantum computing.
A Paper-and-Pencil gcd Algorithm for Gaussian Integers
ERIC Educational Resources Information Center
Szabo, Sandor
2005-01-01
As with natural numbers, a greatest common divisor of two Gaussian (complex) integers "a" and "b" is a Gaussian integer "d" that is a common divisor of both "a" and "b". This article explores an algorithm for such gcds that is easy to do by hand.
A Proposed Instructional Theory for Integer Addition and Subtraction
ERIC Educational Resources Information Center
Stephan, Michelle; Akyuz, Didem
2012-01-01
This article presents the results of a 7th-grade classroom teaching experiment that supported students' understanding of integer addition and subtraction. The experiment was conducted to test and revise a hypothetical learning trajectory so as to propose a potential instructional theory for integer addition and subtraction. The instructional…
Phase Diagram of a 2-D Plane Rotator Model with Integer and Half-Integer Vortices
NASA Astrophysics Data System (ADS)
de Souza, Adauto J. F.; Landau, D. P.
1996-03-01
A two-dimensional plane rotator spin model is simulated by employing the single cluster embeding Monte Carlo technique and the re-weighting histogram analysis. The system is described by the Hamiltonian^1 \\cal H = -J1 sum_< i,j > Si \\cdot Sj - J2 sum_< i,j > ( Si \\cdot Sj )^2. In adition to the familiar integer vortices, this model possesses half-integer vortex excitations as well. The system exhibits three low-temperature phases which may be identified by the behavior of suitably defined two-point correlation functions. The half- and integer-vortex densities as a function of temperature are calculated for several values of the parameter α = J_2/J_1. The phase boundaries are determined and the nature of the phase transitions is investigated. Research supported in part by the CNPq and the NSF. Permanent address: Departmento de Física e Matemática, Universidade Federal Rural de Pernambuco, 52171-900, Recife, Pernambuco, Brazil ^1 D.H. Lee and G. Grinstein Phys. Rev. Lett. \\underline55, 541, (1985)
Integer quantum Hall effect and correlated disorder
Greshnov, A. A. Zegrya, G. G.
2007-11-15
The effect of the form of the random potential of impurities and defects on the longitudinal {sigma}{sub xx} and Hall {sigma}{sub xy} components of conductivity in the mode of the integer quantum Hall effect is theoretically investigated. It is shown that the width of the Hall conductivity plateau as well as the peak values of the longitudinal conductivity heavily depend on the ratio {lambda}/a{sub H} between the random potential correlation length and the magnetic length. For the first time, it is established that in the case of the short-wavelength potential {lambda} << a{sub H}, the peak values of {sigma}{sub xx}{sup (N)} are directly proportional to the Landau level number N {>=} 1, {sigma}{sub xx} = 0.5Ne{sup 2}/h, whereas the peak values of {sigma}{sub xx}{sup (N)} are independent of the Landau level number in the case of the long-wavelength potential {lambda} >> a{sub H}, and their magnitude is much lower than 0.5e{sup 2}/h. The obtained results are in good agreement with the available experimental data.
The integer quantum hall effect revisited
Michalakis, Spyridon; Hastings, Matthew
2009-01-01
For T - L x L a finite subset of Z{sup 2}, let H{sub o} denote a Hamiltonian on T with periodic boundary conditions and finite range, finite strength intetactions and a unique ground state with a nonvanishing spectral gap. For S {element_of} T, let q{sub s} denote the charge at site s and assume that the total charge Q = {Sigma}{sub s {element_of} T} q{sub s} is conserved. Using the local charge operators q{sub s}, we introduce a boundary magnetic flux in the horizontal and vertical direction and allow the ground state to evolve quasiadiabatically around a square of size one magnetic flux, in flux space. At the end of the evolution we obtain a trivial Berry phase, which we compare, via a method reminiscent of Stokes Theorem. to the Berry phase obtained from an evolution around an exponentially small loop near the origin. As a result, we show, without any averaging assumption, that the Hall conductance is quantized in integer multiples of e{sup 2}/h up to exponentially small corrections of order e{sup -L/{zeta}}, where {zeta}, is a correlation length that depends only on the gap and the range and strength of the interactions.
The Integer and Fractional Quantum Hall Effects.
NASA Astrophysics Data System (ADS)
Usher, Alan
Available from UMI in association with The British Library. Requires signed TDF. This thesis reports investigations of the electrical conductivity of two-dimensional electron systems in high magnetic fields. Studies of the activated longitudinal conductivity associated with the integer quantum Hall effect reveal a large enhancement of the electronic g-factor, caused by the electron-electron interaction. A similar enhancement is observed in the Landau level separation. The magnetic field dependences of both effects are influenced by sample disorder. The activation data are analysed using three models for the shape of the extended state regions of disorder -broadened Landau levels. Only a small fraction of the electrons are found to occupy extended states. Values of the minimum metallic conductivity of electrons in broadened Landau levels are sample- and electron concentration-dependent. The fractional quantum Hall effect is a property of electrons in an incompressible quantum fluid state. The highest quality samples with low electron concentrations exhibit the effect in the manner predicted by simple theories involving spinless electrons. However, the influence of spin becomes apparent at higher electron concentrations, and in tilted field experiments. The effects of disorder are evident in measurements of the quasiparticle energy gap associated with the fractional quantum Hall effect. The experimental gap energies reported in this thesis are considerably smaller than those of theoretical studies, and they tend to zero at a non-zero magnetic field threshold. Simple theories predict that the fractional quantum Hall effect occurs only at odd denominator fractional occupancies. This thesis reports the first observations of the even denominator fractional quantum Hall effect. Persistent photoconductivity is a useful tool for increasing the concentration of two-dimensional electrons in GaAs-AlGaAs heterojunctions. A new photodeexcitation effect is reported, and possible
Adaptive Source Coding Schemes for Geometrically Distributed Integer Alphabets
NASA Technical Reports Server (NTRS)
Cheung, K-M.; Smyth, P.
1993-01-01
Revisit the Gallager and van Voorhis optimal source coding scheme for geometrically distributed non-negative integer alphabets and show that the various subcodes in the popular Rice algorithm can be derived from the Gallager and van Voorhis code.
Fractal electrodynamics via non-integer dimensional space approach
NASA Astrophysics Data System (ADS)
Tarasov, Vasily E.
2015-09-01
Using the recently suggested vector calculus for non-integer dimensional space, we consider electrodynamics problems in isotropic case. This calculus allows us to describe fractal media in the framework of continuum models with non-integer dimensional space. We consider electric and magnetic fields of fractal media with charges and currents in the framework of continuum models with non-integer dimensional spaces. An application of the fractal Gauss's law, the fractal Ampere's circuital law, the fractal Poisson equation for electric potential, and equation for fractal stream of charges are suggested. Lorentz invariance and speed of light in fractal electrodynamics are discussed. An expression for effective refractive index of non-integer dimensional space is suggested.
Integer aperture ambiguity resolution based on difference test
NASA Astrophysics Data System (ADS)
Zhang, Jingyu; Wu, Meiping; Li, Tao; Zhang, Kaidong
2015-07-01
Carrier-phase integer ambiguity resolution (IAR) is the key to highly precise, fast positioning and attitude determination with Global Navigation Satellite System (GNSS). It can be seen as the process of estimating the unknown cycle ambiguities of the carrier-phase observations as integers. Once the ambiguities are fixed, carrier phase data will act as the very precise range data. Integer aperture (IA) ambiguity resolution is the combination of acceptance testing and integer ambiguity resolution, which can realize better quality control of IAR. Difference test (DT) is one of the most popular acceptance tests. This contribution will give a detailed analysis about the following properties of IA ambiguity resolution based on DT: 1.
NASA Astrophysics Data System (ADS)
Wang, Bin; Chiang, Hsiao-Dong
Many applications of smart grid can be formulated as constrained optimization problems. Because of the discrete controls involved in power systems, these problems are essentially mixed-integer nonlinear programs. In this paper, we review the Trust-Tech-based methodology for solving mixed-integer nonlinear optimization. Specifically, we have developed a two-stage Trust-Tech-based methodology to systematically compute all the local optimal solutions for constrained mixed-integer nonlinear programming (MINLP) problems. In the first stage, for a given MINLP problem this methodology starts with the construction of a new, continuous, unconstrained problem through relaxation and the penalty function method. A corresponding dynamical system is then constructed to search for a set of local optimal solutions for the unconstrained problem. In the second stage, a reduced constrained NLP is defined for each local optimal solution by determining and fixing the values of integral variables of the MINLP problem. The Trust-Tech-based method is used to compute a set of local optimal solutions for these reduced NLP problems, from which the optimal solution of the original MINLP problem is determined. A numerical simulation of several testing problems is provided to illustrate the effectiveness of our proposed method.
Polynomial-time algorithms for the integer minimal principle for centrosymmetric structures.
Vaia, Anastasia; Sahinidis, Nikolaos V
2005-07-01
The minimal principle for structure determination from single-crystal X-ray diffraction measurements has recently been formulated as an integer linear optimization model for the case of centrosymmetric structures. Solution of this model via established combinatorial branch-and-bound algorithms provides the true global minimum of the minimal principle while operating exclusively in reciprocal space. However, integer programming techniques may require an exponential number of iterations to exhaust the search space. In this paper, a new approach is developed to solve the integer minimal principle to global optimality without requiring the solution of an optimization problem. Instead, properties of the solution of the optimization problem, as observed in a large number of computational experiments, are exploited in order to reduce the optimization formulation to a system of linear equations in the number field of two elements (F(2)). Two specialized Gaussian elimination algorithms are then developed to solve this system of equations in polynomial time in the number of atoms. Computational results on a collection of 38 structures demonstrate that the proposed approach provides very fast and accurate solutions to the phase problem for centrosymmetric structures. This approach also provided much better crystallographic R values than SHELXS for all 38 structures tested. PMID:15972998
Finite pure integer programming algorithms employing only hyperspherically deduced cuts
NASA Technical Reports Server (NTRS)
Young, R. D.
1971-01-01
Three algorithms are developed that may be based exclusively on hyperspherically deduced cuts. The algorithms only apply, therefore, to problems structured so that these cuts are valid. The algorithms are shown to be finite.
Mixed Integer Programming and Heuristic Scheduling for Space Communication Networks
NASA Technical Reports Server (NTRS)
Lee, Charles H.; Cheung, Kar-Ming
2012-01-01
In this paper, we propose to solve the constrained optimization problem in two phases. The first phase uses heuristic methods such as the ant colony method, particle swarming optimization, and genetic algorithm to seek a near optimal solution among a list of feasible initial populations. The final optimal solution can be found by using the solution of the first phase as the initial condition to the SQP algorithm. We demonstrate the above problem formulation and optimization schemes with a large-scale network that includes the DSN ground stations and a number of spacecraft of deep space missions.
Combinatorial therapy discovery using mixed integer linear programming
Pang, Kaifang; Wan, Ying-Wooi; Choi, William T.; Donehower, Lawrence A.; Sun, Jingchun; Pant, Dhruv; Liu, Zhandong
2014-01-01
Motivation: Combinatorial therapies play increasingly important roles in combating complex diseases. Owing to the huge cost associated with experimental methods in identifying optimal drug combinations, computational approaches can provide a guide to limit the search space and reduce cost. However, few computational approaches have been developed for this purpose, and thus there is a great need of new algorithms for drug combination prediction. Results: Here we proposed to formulate the optimal combinatorial therapy problem into two complementary mathematical algorithms, Balanced Target Set Cover (BTSC) and Minimum Off-Target Set Cover (MOTSC). Given a disease gene set, BTSC seeks a balanced solution that maximizes the coverage on the disease genes and minimizes the off-target hits at the same time. MOTSC seeks a full coverage on the disease gene set while minimizing the off-target set. Through simulation, both BTSC and MOTSC demonstrated a much faster running time over exhaustive search with the same accuracy. When applied to real disease gene sets, our algorithms not only identified known drug combinations, but also predicted novel drug combinations that are worth further testing. In addition, we developed a web-based tool to allow users to iteratively search for optimal drug combinations given a user-defined gene set. Availability: Our tool is freely available for noncommercial use at http://www.drug.liuzlab.org/. Contact: zhandong.liu@bcm.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24463180
Non-integer expansion embedding techniques for reversible image watermarking
NASA Astrophysics Data System (ADS)
Xiang, Shijun; Wang, Yi
2015-12-01
This work aims at reducing the embedding distortion of prediction-error expansion (PE)-based reversible watermarking. In the classical PE embedding method proposed by Thodi and Rodriguez, the predicted value is rounded to integer number for integer prediction-error expansion (IPE) embedding. The rounding operation makes a constraint on a predictor's performance. In this paper, we propose a non-integer PE (NIPE) embedding approach, which can proceed non-integer prediction errors for embedding data into an audio or image file by only expanding integer element of a prediction error while keeping its fractional element unchanged. The advantage of the NIPE embedding technique is that the NIPE technique can really bring a predictor into full play by estimating a sample/pixel in a noncausal way in a single pass since there is no rounding operation. A new noncausal image prediction method to estimate a pixel with four immediate pixels in a single pass is included in the proposed scheme. The proposed noncausal image predictor can provide better performance than Sachnev et al.'s noncausal double-set prediction method (where data prediction in two passes brings a distortion problem due to the fact that half of the pixels were predicted with the watermarked pixels). In comparison with existing several state-of-the-art works, experimental results have shown that the NIPE technique with the new noncausal prediction strategy can reduce the embedding distortion for the same embedding payload.
A Polynomial Time, Numerically Stable Integer Relation Algorithm
NASA Technical Reports Server (NTRS)
Ferguson, Helaman R. P.; Bailey, Daivd H.; Kutler, Paul (Technical Monitor)
1998-01-01
Let x = (x1, x2...,xn be a vector of real numbers. X is said to possess an integer relation if there exist integers a(sub i) not all zero such that a1x1 + a2x2 + ... a(sub n)Xn = 0. Beginning in 1977 several algorithms (with proofs) have been discovered to recover the a(sub i) given x. The most efficient of these existing integer relation algorithms (in terms of run time and the precision required of the input) has the drawback of being very unstable numerically. It often requires a numeric precision level in the thousands of digits to reliably recover relations in modest-sized test problems. We present here a new algorithm for finding integer relations, which we have named the "PSLQ" algorithm. It is proved in this paper that the PSLQ algorithm terminates with a relation in a number of iterations that is bounded by a polynomial in it. Because this algorithm employs a numerically stable matrix reduction procedure, it is free from the numerical difficulties, that plague other integer relation algorithms. Furthermore, its stability admits an efficient implementation with lower run times oil average than other algorithms currently in Use. Finally, this stability can be used to prove that relation bounds obtained from computer runs using this algorithm are numerically accurate.
Transistorized circuit clamps voltage with 0.1 percent error
NASA Technical Reports Server (NTRS)
1965-01-01
Transistorized clamping circuit clamps either of two voltage levels to input of digital-to-analog resistive matrix with 0.1 percent error. Clamping circuit technique has analog, digital, and hybrid circuit applications.
FPGA Implementation of Optimal 3D-Integer DCT Structure for Video Compression.
Jacob, J Augustin; Kumar, N Senthil
2015-01-01
A novel optimal structure for implementing 3D-integer discrete cosine transform (DCT) is presented by analyzing various integer approximation methods. The integer set with reduced mean squared error (MSE) and high coding efficiency are considered for implementation in FPGA. The proposed method proves that the least resources are utilized for the integer set that has shorter bit values. Optimal 3D-integer DCT structure is determined by analyzing the MSE, power dissipation, coding efficiency, and hardware complexity of different integer sets. The experimental results reveal that direct method of computing the 3D-integer DCT using the integer set [10, 9, 6, 2, 3, 1, 1] performs better when compared to other integer sets in terms of resource utilization and power dissipation.
FPGA Implementation of Optimal 3D-Integer DCT Structure for Video Compression
Jacob, J. Augustin; Kumar, N. Senthil
2015-01-01
A novel optimal structure for implementing 3D-integer discrete cosine transform (DCT) is presented by analyzing various integer approximation methods. The integer set with reduced mean squared error (MSE) and high coding efficiency are considered for implementation in FPGA. The proposed method proves that the least resources are utilized for the integer set that has shorter bit values. Optimal 3D-integer DCT structure is determined by analyzing the MSE, power dissipation, coding efficiency, and hardware complexity of different integer sets. The experimental results reveal that direct method of computing the 3D-integer DCT using the integer set [10, 9, 6, 2, 3, 1, 1] performs better when compared to other integer sets in terms of resource utilization and power dissipation. PMID:26601120
FPGA Implementation of Optimal 3D-Integer DCT Structure for Video Compression.
Jacob, J Augustin; Kumar, N Senthil
2015-01-01
A novel optimal structure for implementing 3D-integer discrete cosine transform (DCT) is presented by analyzing various integer approximation methods. The integer set with reduced mean squared error (MSE) and high coding efficiency are considered for implementation in FPGA. The proposed method proves that the least resources are utilized for the integer set that has shorter bit values. Optimal 3D-integer DCT structure is determined by analyzing the MSE, power dissipation, coding efficiency, and hardware complexity of different integer sets. The experimental results reveal that direct method of computing the 3D-integer DCT using the integer set [10, 9, 6, 2, 3, 1, 1] performs better when compared to other integer sets in terms of resource utilization and power dissipation. PMID:26601120
Applicability of 0-1 test for strange nonchaotic attractors.
Gopal, R; Venkatesan, A; Lakshmanan, M
2013-06-01
We show that the recently introduced 0-1 test can successfully distinguish between strange nonchaotic attractors (SNAs) and periodic/quasiperiodic/chaotic attractors, by suitably choosing the arbitrary parameter associated with the translation variables in terms of the golden mean number which avoids resonance with the quasiperiodic force. We further characterize the transition from quasiperiodic to chaotic motion via SNAs in terms of the 0-1 test. We demonstrate that the test helps to detect different dynamical transitions to SNAs from quasiperiodic attractor or the transitions from SNAs to chaos. We illustrate the performance of the 0-1 test in detecting transitions to SNAs in quasiperiodically forced logistic map, cubic map, and Duffing oscillator. PMID:23822488
Comparison of penalty functions on a penalty approach to mixed-integer optimization
NASA Astrophysics Data System (ADS)
Francisco, Rogério B.; Costa, M. Fernanda P.; Rocha, Ana Maria A. C.; Fernandes, Edite M. G. P.
2016-06-01
In this paper, we present a comparative study involving several penalty functions that can be used in a penalty approach for globally solving bound mixed-integer nonlinear programming (bMIMLP) problems. The penalty approach relies on a continuous reformulation of the bMINLP problem by adding a particular penalty term to the objective function. A penalty function based on the `erf' function is proposed. The continuous nonlinear optimization problems are sequentially solved by the population-based firefly algorithm. Preliminary numerical experiments are carried out in order to analyze the quality of the produced solutions, when compared with other penalty functions available in the literature.
Herndon, James H; Stephens, Thomas J; Trookman, Nathan S; Rizer, Ronald L; Preston, Norman; Caveney, Scott; Gottschalk, Ronald W
2012-01-01
Two separate single-center, randomized, evaluator-blinded, bilateral (split-face) comparison studies compared the tolerability of adapalene 0.1% cream with adapalene 0.1% lotion in individuals with healthy skin treated once per day for 3 weeks. At each visit, the participants were graded on erythema, scaling, dryness, and stinging/burning (scale: 0 = none to 3 = severe). On the final study visit, the participants completed a Cosmetic Acceptability Questionnaire. Adverse events were recorded at each study visit. A total of 144 participants were enrolled and 130 completed the studies (study 1, n = 66; study 2, n = 64). The lotion formulation was non-inferior to the cream for the success rates and tolerability assessments in both studies. The frequency distributions of worst scores of either 0 (none) or 1 (mild) (study 1; study 2) for adapalene lotion were erythema (98.5%; 40.7%), scaling (100%; 73.5%), dryness (100%; 68.8%), and stinging/burning (98.5%; 100%). The most common treatment-related adverse event was dryness (study 1, cream 2.7% [2 of 75] and lotion 4.0% [3/75]); study 2, cream 2.9% [2 of 69] and lotion 4.3% [3 of 69]. Both the adapalene 0.1% cream and 0.1% lotion formulations were well tolerated and acceptable to the study participants. The adapalene 0.1% lotion provides clinicians with a retinoid for the treatment of acne in a lotion formulation.
Exploring the Sums of Powers of Consecutive q-Integers
ERIC Educational Resources Information Center
Kim, T.; Ryoo, C. S.; Jang, L. C.; Rim, S. H.
2005-01-01
The Bernoulli numbers are among the most interesting and important number sequences in mathematics. They first appeared in the posthumous work "Ars Conjectandi" (1713) by Jacob Bernoulli (1654-1705) in connection with sums of powers of consecutive integers (Bernoulli, 1713; or Smith, 1959). Bernoulli numbers are particularly important in number…
Informing Practice: Making Sense of Integers through Storytelling
ERIC Educational Resources Information Center
Wessman-Enzinger, Nicole M.; Mooney, Edward S.
2014-01-01
The authors asked fifth-grade and eighth-grade students to pose stories for number sentences involving the addition and subtraction of integers. In this article, the authors look at eight stories from students. Which of these stories works for the given number sentence? What do they reveal about student thinking? When the authors examined these…
Automorphisms of semigroups of invertible matrices with nonnegative integer elements
Semenov, Pavel P
2012-09-30
Let G{sub n}(Z) be the subsemigroup of GL{sub n}(Z) consisting of the matrices with nonnegative integer coefficients. In the paper, the automorphisms of this semigroup are described for n{>=}2. Bibliography: 5 titles.
Using Set Model for Learning Addition of Integers
ERIC Educational Resources Information Center
Lestari, Umi Puji; Putri, Ratu Ilma Indra; Hartono, Yusuf
2015-01-01
This study aims to investigate how set model can help students' understanding of addition of integers in fourth grade. The study has been carried out to 23 students and a teacher of IVC SD Iba Palembang in January 2015. This study is a design research that also promotes PMRI as the underlying design context and activity. Results showed that the…
Triangular Numbers, Gaussian Integers, and KenKen
ERIC Educational Resources Information Center
Watkins, John J.
2012-01-01
Latin squares form the basis for the recreational puzzles sudoku and KenKen. In this article we show how useful several ideas from number theory are in solving a KenKen puzzle. For example, the simple notion of triangular number is surprisingly effective. We also introduce a variation of KenKen that uses the Gaussian integers in order to…
Happy and Sad Thoughts: An Exploration of Children's Integer Reasoning
ERIC Educational Resources Information Center
Whitacre, Ian; Bishop, Jessica Pierson; Lamb, Lisa L. C.; Philipp, Randolph A.; Schappelle, Bonnie P.; Lewis, Melinda L.
2012-01-01
The purpose of this study was to investigate elementary children's conceptions that might serve as foundations for integer reasoning. Working from an abstract algebraic perspective and using an opposite-magnitudes context that is relevant to children, we analyzed the reasoning of 33 children in grades K-5. We focus our report on three prominent…
Negative Integer Understanding: Characterizing First Graders' Mental Models
ERIC Educational Resources Information Center
Bofferding, Laura
2014-01-01
This article presents results of a research study. Sixty-one first graders' responses to interview questions about negative integer values and order and directed magnitudes were examined to characterize the students' mental models. The models reveal that initially, students overrelied on various combinations of whole-number principles as…
Leveraging Structure: Logical Necessity in the Context of Integer Arithmetic
ERIC Educational Resources Information Center
Bishop, Jessica Pierson; Lamb, Lisa L.; Philipp, Randolph A.; Whitacre, Ian; Schappelle, Bonnie P.
2016-01-01
Looking for, recognizing, and using underlying mathematical structure is an important aspect of mathematical reasoning. We explore the use of mathematical structure in children's integer strategies by developing and exemplifying the construct of logical necessity. Students in our study used logical necessity to approach and use numbers in a…
Unique Factorization in Cyclotomic Integers of Degree Seven
ERIC Educational Resources Information Center
Duckworth, W. Ethan
2008-01-01
This article provides a survey of some basic results in algebraic number theory and applies this material to prove that the cyclotomic integers generated by a seventh root of unity are a unique factorization domain. Part of the proof uses the computer algebra system Maple to find and verify factorizations. The proofs use a combination of historic…
Kaur, Imanpreet Verma, N. K.
2015-05-15
Multiferroic nanocomposite of (Bi{sub 0.1}Fe{sub 0.1}O{sub 3}) - (Ni{sub 0.1}Fe{sub 2(0.1)}O{sub 4}) was prepared by sol gel technique and characterized by X-ray diffraction, transmission electron microscopy, superconducting quantum interference device. X-ray diffraction confirmed the formation of desired crystallographic phase of the composite. The average particle size found to be 13.97nm. The transmission electron microscopy depicts the presence of the polycrystalline nanoparticles. In order to investigate the magnetic behavior superconducting quantum interference device was used. The sample was analyzed by increasing the magnetic field up to 25kOe and magnetization was found to be 16.8emu/g, which is optimum for the technological applications. The magnetic properties in such composite result as determined both by the ferrite concentration and properties and by the degree of connectivity of the two phases. The appropriate combination of two phases gives rise to higher magnetization.
SCIAMACHY: The new Level 0-1 Processor
NASA Astrophysics Data System (ADS)
Lichtenberg, Günter; Slijkhuis, Sander; Aberle, Bernd; Sherbakov, Denis; Meringer, Markus; Noel, Stefan; Bramstedt, Klaus; Liebing, Patricia; Bovensmann, Heinrich; Snel, Ralph; Krijger, Mathijs; van Hees, Richard; van der Meer, Pieter; Lerot, Christophe; Dehn, Angelika; Fehr, Thorsten
2016-04-01
SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) is a scanning nadir and limb spectrometer covering the wavelength range from 212 nm to 2386 nm in 8 channels. It is a joint project of Germany, the Netherlands and Belgium and was launched in February 2002 on the ENVISAT platform. After the platform failure in April 2012, SCIAMACHY is now in the postprocessing phase F. SCIAMACHYs originally specified in-orbit lifetime was double the planned lifetime. SCIAMACHY was designed to measure column densities and vertical profiles of trace gas species in the mesosphere, in the stratosphere and in the troposphere (Bovensmann et al., 1999). It can detect O3 , H2CO, SO2 , BrO, OClO, NO2 , H2 O, CO, CO2 , CH4 , N2 O , O2 , (O2)2 and can provide information about aerosols and clouds. The operational processing of SCIAMACHY is split into Level 0-1 processing (essentially providing calibrated radiances) and Level 1-2 processing providing geophysical products. The operational Level 0-1 processor has been completely re-coded and embedded in a newly developed framework that speeds up processing considerably. Currently Version 9 of the Level 0-1 processor is implemented. It will include - An updated degradation correction - Several improvements in the SWIR spectral range like a better dark correction, an improved dead & bad pixel characterisation and an improved spectral calibration - Improvements to the polarisation correction algorithm - Improvements to the geolocation by a better pointing characterisation Additionally a new format for the Level 1b and Level 1c will be implemented. The version 9 products will be available in netCDF version 4 that is aligned with the formats of the GOME-1 and Sentinel missions. We will present the first results of the new Level 0-1 processing in this paper.
RSM 1.0 user's guide: A resupply scheduler using integer optimization
NASA Technical Reports Server (NTRS)
Viterna, Larry A.; Green, Robert D.; Reed, David M.
1991-01-01
The Resupply Scheduling Model (RSM) is a PC based, fully menu-driven computer program. It uses integer programming techniques to determine an optimum schedule to replace components on or before a fixed replacement period, subject to user defined constraints such as transportation mass and volume limits or available repair crew time. Principal input for RSJ includes properties such as mass and volume and an assembly sequence. Resource constraints are entered for each period corresponding to the component properties. Though written to analyze the electrical power system on the Space Station Freedom, RSM is quite general and can be used to model the resupply of almost any system subject to user defined resource constraints. Presented here is a step by step procedure for preparing the input, performing the analysis, and interpreting the results. Instructions for installing the program and information on the algorithms are given.
A Note on the Visibility in the [1, N ] x [1, N ] Integer Domain
ERIC Educational Resources Information Center
Kim, G. D.; Engelhardt, J.
2007-01-01
A k-dimensional integer point is called visible if the line segment joining the point and the origin contains no proper integer points. This note proposes an explicit formula that represents the number of visible points on the two-dimensional [1,N]x[1,N] integer domain. Simulations and theoretical work are presented. (Contains 5 figures and 2…
Mass spectra of 0+-, 1-+, and 2+- exotic glueballs
NASA Astrophysics Data System (ADS)
Tang, Liang; Qiao, Cong-Feng
2016-03-01
With appropriate interpolating currents the mass spectra of 0+-, 1-+, and 2+- oddballs are studied in the framework of QCD sum rules (QCDSR). We find there exits one stable 0+- oddball with mass of 4.57 ± 0.13GeV, and one stable 2+- oddball with mass of 6.06 ± 0.13GeV, whereas, no stable 1-+ oddball shows up. The possible production and decay modes of these glueballs with unconventional quantum numbers are analyzed, which are hopefully measurable in either BELLEII, PANDA, Super-B or LHCb experiments.
Integer-ambiguity resolution in astronomy and geodesy
NASA Astrophysics Data System (ADS)
Lannes, A.; Prieur, J.-L.
2014-02-01
Recent theoretical developments in astronomical aperture synthesis have revealed the existence of integer-ambiguity problems. Those problems, which appear in the self-calibration procedures of radio imaging, have been shown to be similar to the nearest-lattice point (NLP) problems encountered in high-precision geodetic positioning and in global navigation satellite systems. In this paper we analyse the theoretical aspects of the matter and propose new methods for solving those NLP~problems. The related optimization aspects concern both the preconditioning stage, and the discrete-search stage in which the integer ambiguities are finally fixed. Our algorithms, which are described in an explicit manner, can easily be implemented. They lead to substantial gains in the processing time of both stages. Their efficiency was shown via intensive numerical tests.
Anomalous resistance overshoot in the integer quantum Hall effect
Kendirlik, E. M.; Sirt, S.; Kalkan, S. B.; Dietsche, W.; Wegscheider, W.; Ludwig, S.; Siddiki, A.
2013-01-01
In this work we report on experiments performed on smooth edge-narrow Hall bars. The magneto-transport properties of intermediate mobility two-dimensional electron systems are investigated and analyzed within the screening theory of the integer quantized Hall effect. We observe a non-monotonic increase of Hall resistance at the low magnetic field ends of the quantized plateaus, known as the overshoot effect. Unexpectedly, for Hall bars that are defined by shallow chemical etching the overshoot effect becomes more pronounced at elevated temperatures. We observe the overshoot effect at odd and even integer plateaus, which favor a spin independent explanation, in contrast to discussion in the literature. In a second set of the experiments, we investigate the overshoot effect in gate defined Hall bar and explicitly show that the amplitude of the overshoot effect can be directly controlled by gate voltages. We offer a comprehensive explanation based on scattering between evanescent incompressible channels. PMID:24190162
Anomalous resistance overshoot in the integer quantum Hall effect.
Kendirlik, E M; Sirt, S; Kalkan, S B; Dietsche, W; Wegscheider, W; Ludwig, S; Siddiki, A
2013-01-01
In this work we report on experiments performed on smooth edge-narrow Hall bars. The magneto-transport properties of intermediate mobility two-dimensional electron systems are investigated and analyzed within the screening theory of the integer quantized Hall effect. We observe a non-monotonic increase of Hall resistance at the low magnetic field ends of the quantized plateaus, known as the overshoot effect. Unexpectedly, for Hall bars that are defined by shallow chemical etching the overshoot effect becomes more pronounced at elevated temperatures. We observe the overshoot effect at odd and even integer plateaus, which favor a spin independent explanation, in contrast to discussion in the literature. In a second set of the experiments, we investigate the overshoot effect in gate defined Hall bar and explicitly show that the amplitude of the overshoot effect can be directly controlled by gate voltages. We offer a comprehensive explanation based on scattering between evanescent incompressible channels.
Charge fractionalization in the integer quantum Hall effect.
Inoue, Hiroyuki; Grivnin, Anna; Ofek, Nissim; Neder, Izhar; Heiblum, Moty; Umansky, Vladimir; Mahalu, Diana
2014-04-25
We report an observation, via sensitive shot noise measurements, of charge fractionalization of chiral edge electrons in the integer quantum Hall effect regime. Such fractionalization results solely from interchannel Coulomb interaction, leading electrons to decompose to excitations carrying fractional charges. The experiment was performed by guiding a partitioned current carrying edge channel in proximity to another unbiased edge channel, leading to shot noise in the unbiased edge channel without net current, which exhibited an unconventional dependence on the partitioning. The determination of the fractional excitations, as well as the relative velocities of the two original (prior to the interaction) channels, relied on a recent theory pertaining to this measurement. Our result exemplifies the correlated nature of multiple chiral edge channels in the integer quantum Hall effect regime.
Two dimensional convolute integers for machine vision and image recognition
NASA Technical Reports Server (NTRS)
Edwards, Thomas R.
1988-01-01
Machine vision and image recognition require sophisticated image processing prior to the application of Artificial Intelligence. Two Dimensional Convolute Integer Technology is an innovative mathematical approach for addressing machine vision and image recognition. This new technology generates a family of digital operators for addressing optical images and related two dimensional data sets. The operators are regression generated, integer valued, zero phase shifting, convoluting, frequency sensitive, two dimensional low pass, high pass and band pass filters that are mathematically equivalent to surface fitted partial derivatives. These operators are applied non-recursively either as classical convolutions (replacement point values), interstitial point generators (bandwidth broadening or resolution enhancement), or as missing value calculators (compensation for dead array element values). These operators show frequency sensitive feature selection scale invariant properties. Such tasks as boundary/edge enhancement and noise or small size pixel disturbance removal can readily be accomplished. For feature selection tight band pass operators are essential. Results from test cases are given.
Optimal source codes for geometrically distributed integer alphabets
NASA Technical Reports Server (NTRS)
Gallager, R. G.; Van Voorhis, D. C.
1975-01-01
An approach is shown for using the Huffman algorithm indirectly to prove the optimality of a code for an infinite alphabet if an estimate concerning the nature of the code can be made. Attention is given to nonnegative integers with a geometric probability assignment. The particular distribution considered arises in run-length coding and in encoding protocol information in data networks. Questions of redundancy of the optimal code are also investigated.
Population transfer HMQC for half-integer quadrupolar nuclei
Wang, Qiang; Xu, Jun; Feng, Ningdong; Deng, Feng E-mail: jean-paul.amoureux@univ-lille1.fr; Li, Yixuan; Trébosc, Julien; Lafon, Olivier; Hu, Bingwen; Chen, Qun; Amoureux, Jean-Paul E-mail: jean-paul.amoureux@univ-lille1.fr
2015-03-07
This work presents a detailed analysis of a recently proposed nuclear magnetic resonance method [Wang et al., Chem. Commun. 49(59), 6653-6655 (2013)] for accelerating heteronuclear coherence transfers involving half-integer spin quadrupolar nuclei by manipulating their satellite transitions. This method, called Population Transfer Heteronuclear Multiple Quantum Correlation (PT-HMQC), is investigated in details by combining theoretical analyses, numerical simulations, and experimental investigations. We find that compared to instant inversion or instant saturation, continuous saturation is the most practical strategy to accelerate coherence transfers on half-integer quadrupolar nuclei. We further demonstrate that this strategy is efficient to enhance the sensitivity of J-mediated heteronuclear correlation experiments between two half-integer quadrupolar isotopes (e.g., {sup 27}Al-{sup 17}O). In this case, the build-up is strongly affected by relaxation for small T{sub 2}′ and J coupling values, and shortening the mixing time makes a huge signal enhancement. Moreover, this concept of population transfer can also be applied to dipolar-mediated HMQC experiments. Indeed, on the AlPO{sub 4}-14 sample, one still observes experimentally a 2-fold shortening of the optimum mixing time albeit with no significant signal gain in the {sup 31}P-({sup 27}Al) experiments.
Nanoscale anglesite growth on the celestite (0 0 1) face
NASA Astrophysics Data System (ADS)
Pina, Carlos M.; Rico-García, Aida
2009-09-01
In situ atomic force microscopy (AFM) was used to study the growth behaviour of anglesite (PbSO 4) monolayers on the celestite (0 0 1) face. Growth was promoted by exposing the celestite cleavage surfaces to aqueous solutions that were supersaturated with respect to anglesite. The solution supersaturation, β ang, was varied from 1.05 to 3.09 (where β ang = a(Pb 2+) · a(SO 42-)/ K sp,ang). In this range of supersaturation, two single anglesite monolayers (˜3.5 Å in height each) from pre-existent celestite steps were grown. However, for solution supersaturation β ang < 1.89 ± 0.06, subsequent multilayer growth is strongly inhibited. AFM observations indicate that the inhibition of a continuous layer-by-layer growth of anglesite on the celestite (0 0 1) face is due to the in-plane strain generated by the slight difference between the anglesite and celestite lattice parameters (i.e. the linear misfits are lower than 1.1%). The minimum supersaturation required to overcome the energy barrier for multilayer growth gave an estimate of the in-plane strain energy: 11.4 ± 0.6 mJ/m 2. Once this energy barrier is overcome, a multilayer Frank-Van Der Merwe epitaxial growth was observed.
Step fluctuations and step interactions on Mo(0 1 1)
NASA Astrophysics Data System (ADS)
Ondrejcek, M.; Swiech, W.; Durfee, C. S.; Flynn, C. P.
2003-09-01
Step fluctuations have been studied on Mo(0 1 1) thin single crystal films with various orientations of miscut, in order to determine the step stiffnesses. Effects of unseen defect structures were clearly visible in some data. Measurements of fluctuation amplitudes and relaxation times were made in the temperature range 1100-1680 K. The results show an anisotropic stiffness of about 0.36 eV/nm along [0 1¯ 1] and about 0.15 eV/nm along [1 0 0]. No temperature dependence of the stiffness was detected. The step free energies derived from the stiffnesses average about 0.27 eV/nm and are less anisotropic by about a factor 3. From the temperature dependence of the relaxation rates, an activation energy of 0.8 ± 0.2 eV was determined for the mass diffusion of the mobile defects responsible for the fluctuations. An appendix details an investigation of correlations induced in the motions of neighboring steps by diffusion and by energetic interactions.
Oral lichen planus treated with tacrolimus 0.1%
Resende, João Paulo Marinho; Chaves, Maria das Graças Afonso Miranda; Aarestrup, Fernando Monteiro; Aarestrup, Beatriz Vieira; Olate, Sergio; Netto, Henrique Duque
2013-01-01
Oral lichen planus (OLP) is considered a chronic autoimmune inflammatory disease and its presence may be related to increased emotional stress. The clinical relevance of OLP is the possibility of developing a squamous cell carcinoma, the etiology of which is still unknown. The aim of this study is to treat OLP lesions resistant to conventional treatment with corticosteroids, using topical tacrolimus 0.1% (Protopic®) twice a day for a period of eight weeks. Fifteen patients were selected who had filled out a history form and a visual analog scale for pain before and after treatment. All patients underwent an initial biopsy to diagnose the disease and another at the end of the treatment period to evaluate the effect of the medication on the infiltrate. A weekly check was carried out, observing the clinical appearance, pain symptoms and occurrence of side effects which, where present, were mild and transient. The results showed twelve patients (80%) with total or nearly total remission of pain symptoms and lesions, two patients (13.33%) showed clearer lesions and only one patient (6.67%) had no change in clinical symptoms or pain. Histopathological analysis showed OLP had a moderate or strong regression in twelve patients (80%) and an absent or mild regression in three patients (20%). Based on these results, it was concluded that tacrolimus 0.1% (Protopic®) is a safe and effective medication that improves the clinical appearance of the lesion, reduces pain as well as the histopathological features of OLP. PMID:24260597
A Radio Transient 0.1 Parsecs from Sagittarius A*
NASA Astrophysics Data System (ADS)
Bower, Geoffrey C.; Roberts, Doug A.; Yusef-Zadeh, Farhad; Backer, Donald C.; Cotton, W. D.; Goss, W. M.; Lang, Cornelia C.; Lithwick, Yoram
2005-11-01
We report the discovery of a transient radio source 2.7" (0.1 pc projected distance) south of the Galactic center massive black hole, Sgr A*. The source flared with a peak of at least 80 mJy in 2004 March. The source was resolved by the Very Large Array into two components with a separation of ~0.7" and characteristic sizes of ~0.2". The two components of the source faded with a power-law index of 1.1+/-0.1. We detect an upper limit to the proper motion of the eastern component of ~3×103 km s-1 relative to Sgr A*. We detect a proper motion of ~104 km s-1 for the western component relative to Sgr A*. The transient was also detected at X-ray wavelengths with the Chandra X-Ray Observatory and XMM-Newton and given the designation CXOGC J174540.0-290031. The X-ray source falls in between the two radio components. The maximum luminosity of the X-ray source is ~1036 ergs s-1, significantly sub-Eddington. The radio jet flux density predicted by the X-ray/radio correlation for X-ray binaries is orders of magnitude less than the measured flux density. We conclude that the radio transient is the result of a bipolar jet originating in a single impulsive event from the X-ray source and interacting with the dense interstellar medium of the Galactic center.
Termination and hydration of forsteritic olivine (0 1 0) surface
NASA Astrophysics Data System (ADS)
Yan, Hongping; Park, Changyong; Ahn, Gun; Hong, Seungbum; Keane, Denis T.; Kenney-Benson, Curtis; Chow, Paul; Xiao, Yuming; Shen, Guoyin
2014-11-01
Termination and hydration of the forsteritic (Fo90Fa10) olivine (0 1 0) surface have been investigated with high-resolution specular X-ray reflectivity and Atomic Force Microscopy. The surface was prepared by polishing a naturally grown {0 1 0} face, from which we found the polished surface in acidic (pH 3.5) alumina suspension exhibits regular steps while the basic (pH 9.5) silica polished surface is irregularly roughened, indicating there are two distinguishable mechanochemical processes for the surface dissolution. The quantitative interpretation of the regular steps from the alumina-polished surface suggests that the observed step heights correspond to multiples of crystallographic unit cell. Only this atomically terraced surface is investigated with the high-resolution X-ray reflectivity (HRXR) to determine the surface termination and hydration. The basic silica paste polished surface turned out too rough to measure with X-ray reflectivity. HRXR reveals that the alumina polished olivine (0 1 0) surface in pure water is terminated at a plane including half-occupied metal ion sites (M1), an oxygen vacancy site, and a silicate tetrahedral unit with one of its apices pointing outward with respect to the surface. An ideal termination with the oxygen vacancy would fulfill the stoichiometry of the formula unit; however, in the observation, the vacancy site is filled by an adsorbed water species and about a quarter of the remaining metal ions are further depleted. The terminating plane generates two distinct atomic layers in the laterally averaged electron density profile, on which two highly ordered adsorbed water layers are formed. The first layer formation is likely through the direct interaction with the M1 plane and the second layer is likely through the hydrogen bonding interaction with the first water layer. With this multilayered adsorbed water structure, the surface metal ion is partially hydrated by the vacancy-filling water species and adsorbed water
Inverse Analysis of Isentropic Compression Experiments, V0.1
2005-04-01
The purpose of the program INVICE is to extract information about the mechanical compression isentrope of a material by analysis of experimental velocity profile data. The software is used to analyze raw data from high-pressure isentropic compression experiments performed at various drive facilities (primarily the Z Machine at Sandia National Laboratories) as part of DOEs Stockpile Stewardship Program or other programs studying condensed matter at high pressures. The program uses a two-step Lax-Wendroff finitedifferencing schememore » to integrate the one-dimensional (planar) equations of motion backward in the Lagrangian spatial coordinate, and a downhill simplex method with optional simulated annealing to perform minimization for extracting an isentrope.« less
Goodman, Eric; Berry, Jonathan; Mackey, Greg; & Mancke, Brad
2010-02-24
The MapReduceXMT library ports the MapReduce framework onto the Cray XMT. MapReduce is a programming paradigm and an approach to data management for unstructured problems. It has gained relevance due to its ability to map serial operations onto parallel distributed architectures, significantly improving developer/analyst productivity. The MapReduceXMT implements the key aspects of MapReduce for the Cray XMT, a massively threaded system that is inherently difficult to program. MapReduceXMT allows users to utilize the machine effectively and efficiently without extensive training in multi-threaded programming. The MapReduceXMT library ports the MapReduce framework onto the Cray XMT. MapReduce is a programming paradigm and an approach to data management for unstructured problems. It has gained relevance due to its ability to map serial operations onto parallel distributed architectures, significantly improving developer/analyst productivity. The MapReduceXMT implements the key aspects of MapReduce for the Cray XMT, a massively threaded system that is inherently difficult to program. MapReduceXMT allows users to utilize the machine effectively and efficiently without extensive training in multi-threaded programming.
2010-02-24
The MapReduceXMT library ports the MapReduce framework onto the Cray XMT. MapReduce is a programming paradigm and an approach to data management for unstructured problems. It has gained relevance due to its ability to map serial operations onto parallel distributed architectures, significantly improving developer/analyst productivity. The MapReduceXMT implements the key aspects of MapReduce for the Cray XMT, a massively threaded system that is inherently difficult to program. MapReduceXMT allows users to utilize the machine effectivelymore » and efficiently without extensive training in multi-threaded programming. The MapReduceXMT library ports the MapReduce framework onto the Cray XMT. MapReduce is a programming paradigm and an approach to data management for unstructured problems. It has gained relevance due to its ability to map serial operations onto parallel distributed architectures, significantly improving developer/analyst productivity. The MapReduceXMT implements the key aspects of MapReduce for the Cray XMT, a massively threaded system that is inherently difficult to program. MapReduceXMT allows users to utilize the machine effectively and efficiently without extensive training in multi-threaded programming.« less
Dimer vacancy interactions on the Si(0 0 1) surface
NASA Astrophysics Data System (ADS)
Chang, Jianlin; Stott, M. J.
1998-07-01
Dimer vacancy (DV) interactions on the Si(0 0 1) surface are studied using ab initio total energy calculations. Two kinds of DVs are considered: single DV (1-DV) and a DV cluster composed of two single DVs in the nearest-neighbor positions on the same dimer row (2-DV). Calculation of the total energy as a function of DV separation gives the DV interaction energy. Attractive interactions between 1-DVs on the same dimer row and 2-DVs on neighboring dimer rows are found which provide an explanation of the experimentally observed formation of 2-DVs, the aligning of 2-DVs in the direction perpendicular to the dimer row to form long extended DV lines, and subsequently, the formation of 2× n periodic structures on the surface.
PRECISION SPECTROPHOTOMETRY AT THE LEVEL OF 0.1%
Yan Renbin
2011-11-15
Accurate relative spectrophotometry is critical for many science applications. Small wavelength-scale residuals in the flux calibration can significantly impact the measurements of weak emission and absorption features in the spectra. Using Sloan Digital Sky Survey data, we demonstrate that the average spectra of carefully selected red-sequence galaxies can be used as a spectroscopic standard to improve the relative spectrophotometry precision to 0.1% on small wavelength scales (from a few to hundreds of Angstroms). We achieve this precision by comparing stacked spectra across tiny redshift intervals. The redshift intervals must be small enough that any systematic stellar population evolution is minimized and is less than the spectrophotometric uncertainty. This purely empirical technique does not require any theoretical knowledge of true galaxy spectra. It can be applied to all large spectroscopic galaxy redshift surveys that sample a large number of galaxies in a uniform population.
Atom probe tomographic studies of precipitation in Al-0.1Zr-0.1Ti (at.%) alloys.
Knipling, Keith E; Dunand, David C; Seidman, David N
2007-12-01
Atom probe tomography was utilized to measure directly the chemical compositions of Al(3)(Zr(1)-(x)Ti(x)) precipitates with a metastable L1(2) structure formed in Al-0.1Zr-0.1Ti (at.%) alloys upon aging at 375 degrees C or 425 degrees C. The alloys exhibit an inhomogeneous distribution of Al(3)(Zr(1)-(x)Ti(x)) precipitates, as a result of a nonuniform dendritic distribution of solute atoms after casting. At these aging temperatures, the Zr:Ti atomic ratio in the precipitates is about 10 and 5, respectively, indicating that Ti remains mainly in solid solution rather than partitioning to the Al(3)(Zr(1)-(x)Ti(x)) precipitates. This is interpreted as being due to the very small diffusivity of Ti in alpha-Al, consistent with prior studies on Al-Sc-Ti and Al-Sc-Zr alloys, where the slower diffusing Zr and Ti atoms make up a small fraction of the Al(3)(Zr(1)-(x)Ti(x)) precipitates. Unlike those alloys, however, the present Al-Zr-Ti alloys exhibit no interfacial segregation of Ti at the matrix/precipitate heterophase interface, a result that may be affected by a significant disparity in the evaporation fields of the alpha-Al matrix and Al(3)(Zr(1)-(x)Ti(x)) precipitates and/or a lack of local thermodynamic equilibrium at the interface.
A mixed integer bi-level DEA model for bank branch performance evaluation by Stackelberg approach
NASA Astrophysics Data System (ADS)
Shafiee, Morteza; Lotfi, Farhad Hosseinzadeh; Saleh, Hilda; Ghaderi, Mehdi
2016-11-01
One of the most complicated decision making problems for managers is the evaluation of bank performance, which involves various criteria. There are many studies about bank efficiency evaluation by network DEA in the literature review. These studies do not focus on multi-level network. Wu (Eur J Oper Res 207:856-864, 2010) proposed a bi-level structure for cost efficiency at the first time. In this model, multi-level programming and cost efficiency were used. He used a nonlinear programming to solve the model. In this paper, we have focused on multi-level structure and proposed a bi-level DEA model. We then used a liner programming to solve our model. In other hand, we significantly improved the way to achieve the optimum solution in comparison with the work by Wu (2010) by converting the NP-hard nonlinear programing into a mixed integer linear programming. This study uses a bi-level programming data envelopment analysis model that embodies internal structure with Stackelberg-game relationships to evaluate the performance of banking chain. The perspective of decentralized decisions is taken in this paper to cope with complex interactions in banking chain. The results derived from bi-level programming DEA can provide valuable insights and detailed information for managers to help them evaluate the performance of the banking chain as a whole using Stackelberg-game relationships. Finally, this model was applied in the Iranian bank to evaluate cost efficiency.
Integer least-squares theory for the GNSS compass
NASA Astrophysics Data System (ADS)
Teunissen, P. J. G.
2010-07-01
Global navigation satellite system (GNSS) carrier phase integer ambiguity resolution is the key to high-precision positioning and attitude determination. In this contribution, we develop new integer least-squares (ILS) theory for the GNSS compass model, together with efficient integer search strategies. It extends current unconstrained ILS theory to the nonlinearly constrained case, an extension that is particularly suited for precise attitude determination. As opposed to current practice, our method does proper justice to the a priori given information. The nonlinear baseline constraint is fully integrated into the ambiguity objective function, thereby receiving a proper weighting in its minimization and providing guidance for the integer search. Different search strategies are developed to compute exact and approximate solutions of the nonlinear constrained ILS problem. Their applicability depends on the strength of the GNSS model and on the length of the baseline. Two of the presented search strategies, a global and a local one, are based on the use of an ellipsoidal search space. This has the advantage that standard methods can be applied. The global ellipsoidal search strategy is applicable to GNSS models of sufficient strength, while the local ellipsoidal search strategy is applicable to models for which the baseline lengths are not too small. We also develop search strategies for the most challenging case, namely when the curvature of the non-ellipsoidal ambiguity search space needs to be taken into account. Two such strategies are presented, an approximate one and a rigorous, somewhat more complex, one. The approximate one is applicable when the fixed baseline variance matrix is close to diagonal. Both methods make use of a search and shrink strategy. The rigorous solution is efficiently obtained by means of a search and shrink strategy that uses non-quadratic, but easy-to-evaluate, bounding functions of the ambiguity objective function. The theory
NASA Astrophysics Data System (ADS)
Shoemaker, Christine; Wan, Ying
2016-04-01
Optimization of nonlinear water resources management issues which have a mixture of fixed (e.g. construction cost for a well) and variable (e.g. cost per gallon of water pumped) costs has been not well addressed because prior algorithms for the resulting nonlinear mixed integer problems have required many groundwater simulations (with different configurations of decision variable), especially when the solution space is multimodal. In particular heuristic methods like genetic algorithms have often been used in the water resources area, but they require so many groundwater simulations that only small systems have been solved. Hence there is a need to have a method that reduces the number of expensive groundwater simulations. A recently published algorithm for nonlinear mixed integer programming using surrogates was shown in this study to greatly reduce the computational effort for obtaining accurate answers to problems involving fixed costs for well construction as well as variable costs for pumping because of a substantial reduction in the number of groundwater simulations required to obtain an accurate answer. Results are presented for a US EPA hazardous waste site. The nonlinear mixed integer surrogate algorithm is general and can be used on other problems arising in hydrology with open source codes in Matlab and python ("pySOT" in Bitbucket).
Aromaticity and electron affinity of Carbo(k)-[3]radialenes, k=0, 1, 2.
Lepetit, Christine; Brøndsted Nielsen, Mogens; Diederich, François; Chauvin, Remi
2003-10-17
Aromaticity enhancement is a possible driving force for the low reduction potentials of buta-1,3-diynediyl-expanded [N]radialenes: this hypothesis is theoretically analyzed for the expanded [3]radialene prototype. This study is undertaken within a more general prospect, namely the evaluation of the variation of aromaticity with endocyclic and peripheral carbomeric expansion of [3]radialene and its mono- and dianions. The structures, denoted as [C-H](6) (h)[C-C](3) (k)carbo-[3]radialene(q) (h=0, 1; k=0, 1, 2; q=0, -1, -2), were optimized in relevant singlet, doublet, or triplet spin states at the B3PW91/6-31G** level. They were found to be all planar. The structural aromaticity was measured through the average bond length d(av) over the [C-C](3) (k)carbo-[3]radialene core, and by the corresponding bond-length equalization parameter sigma(d), related to Krygowski's GEO. The magnetic aromaticity was measured by Schleyer's NICS values at the center of the rings. Regarding the relative variation of NICS and sigma(d), two classes of species can be distinguished according to their endocyclic expansion level. The species with a nonexpanded (k=0) or doubly expanded (k=2) ring constitute the first class: they exhibit D(3h) symmetry and a strong correlation of NICS with sigma(d). The species with a singly expanded ring (k=1) fall far from the correlation line, and constitute the second class. This class distinction is related to the degeneracy scheme of the frontier orbitals of the neutral representative. A finer appraisal of the electron (de)localization is brought by the ELF (Electron Localization Function) analysis of the electron density. It allows for a weighting of relevant resonance forms. Unsubstituted species are well described by the superimposition of two or three resonance forms. For (doublet spin state) monoanionic species, their respective weights are validated by comparison with AIM spin density. The weighted mean, n, of the formal numbers of paired pi
GNSS integer ambiguity validation based on posterior probability
NASA Astrophysics Data System (ADS)
Wu, Zemin; Bian, Shaofeng
2015-10-01
GNSS integer ambiguity validation is considered to be a challenge task for decades. Several kinds of validation tests are developed and widely used in these years, but theoretical basis is their weakness. Ambiguity validation theoretically is an issue of hypothesis test. In the frame of Bayesian hypothesis testing, posterior probability is the canonical standard that statistical decision should be based on. In this contribution, (i) we derive the posterior probability of the fixed ambiguity based on the Bayesian principle and modify it for practice ambiguity validation. (ii) The optimal property of the posterior probability test is proved based on an extended Neyman-Pearson lemma. Since validation failure rate is the issue users most concerned about, (iii) we derive the failure rate upper bound of the posterior probability test, so the user can use the posterior probability test either in the fixed posterior probability or in the fixed failure rate way. Simulated as well as real observed data are used for experimental validations. The results show that (i) the posterior probability test is the most effective within the R-ratio test, difference test, ellipsoidal integer aperture test and posterior probability test, (ii) the posterior probability test is computational efficient and (iii) the failure rate estimation for posterior probability test is useful.
A Secret Image Sharing Method Using Integer Wavelet Transform
NASA Astrophysics Data System (ADS)
Huang, Chin-Pan; Li, Ching-Chung
2007-12-01
A new image sharing method, based on the reversible integer-to-integer (ITI) wavelet transform and Shamir's [InlineEquation not available: see fulltext.] threshold scheme is presented, that provides highly compact shadows for real-time progressive transmission. This method, working in the wavelet domain, processes the transform coefficients in each subband, divides each of the resulting combination coefficients into [InlineEquation not available: see fulltext.] shadows, and allows recovery of the complete secret image by using any [InlineEquation not available: see fulltext.] or more shadows [InlineEquation not available: see fulltext.]. We take advantages of properties of the wavelet transform multiresolution representation, such as coefficient magnitude decay and excellent energy compaction, to design combination procedures for the transform coefficients and processing sequences in wavelet subbands such that small shadows for real-time progressive transmission are obtained. Experimental results demonstrate that the proposed method yields small shadow images and has the capabilities of real-time progressive transmission and perfect reconstruction of secret images.
ON THE DISTRIBUTION OF THE GREATEST COMMON DIVISOR OF GAUSSIAN INTEGERS
BRADLEY, TAI-DANAE; CHENG, YIN CHOI; LUO, YAN FEI
2016-01-01
For a pair of random Gaussian integers chosen uniformly and independently from the set of Gaussian integers of norm x or less as x goes to infinity, we find asymptotics for the average norm of their greatest common divisor, with explicit error terms. We also present results for higher moments along with computational data which support the results for the second, third, fourth, and fifth moments. The analogous question for integers is studied by Diaconis and Erdös. PMID:27761199
ALPS - A LINEAR PROGRAM SOLVER
NASA Technical Reports Server (NTRS)
Viterna, L. A.
1994-01-01
Linear programming is a widely-used engineering and management tool. Scheduling, resource allocation, and production planning are all well-known applications of linear programs (LP's). Most LP's are too large to be solved by hand, so over the decades many computer codes for solving LP's have been developed. ALPS, A Linear Program Solver, is a full-featured LP analysis program. ALPS can solve plain linear programs as well as more complicated mixed integer and pure integer programs. ALPS also contains an efficient solution technique for pure binary (0-1 integer) programs. One of the many weaknesses of LP solvers is the lack of interaction with the user. ALPS is a menu-driven program with no special commands or keywords to learn. In addition, ALPS contains a full-screen editor to enter and maintain the LP formulation. These formulations can be written to and read from plain ASCII files for portability. For those less experienced in LP formulation, ALPS contains a problem "parser" which checks the formulation for errors. ALPS creates fully formatted, readable reports that can be sent to a printer or output file. ALPS is written entirely in IBM's APL2/PC product, Version 1.01. The APL2 workspace containing all the ALPS code can be run on any APL2/PC system (AT or 386). On a 32-bit system, this configuration can take advantage of all extended memory. The user can also examine and modify the ALPS code. The APL2 workspace has also been "packed" to be run on any DOS system (without APL2) as a stand-alone "EXE" file, but has limited memory capacity on a 640K system. A numeric coprocessor (80X87) is optional but recommended. The standard distribution medium for ALPS is a 5.25 inch 360K MS-DOS format diskette. IBM, IBM PC and IBM APL2 are registered trademarks of International Business Machines Corporation. MS-DOS is a registered trademark of Microsoft Corporation.
Theory of the Half-integer Quantum Hall Effect in Graphene
NASA Astrophysics Data System (ADS)
Fujita, Shigeji; Suzuki, Akira
2016-08-01
The unusual quantum Hall effect (QHE) in graphene is described in terms of the composite (c-) bosons, which move with a linear dispersion relation. The "electron" (wave packet) moves easier in the direction [1 1 0 c-axis] ≡ [1 1 0] of the honeycomb lattice than perpendicular to it, while the "hole" moves easier in [0 0 1]. Since "electrons" and "holes" move in different channels, the particle densities can be high especially when the Fermi surface has "necks". The strong QHE arises from the phonon exchange attraction in the neighborhood of the "neck" surfaces. The plateau observed for the Hall conductivity and the accompanied resistivity drop is due to the superconducting energy gap caused by the Bose-Einstein condensation of the c-bosons, each forming from a pair of one-electron-two-fluxons c-fermions by phonon-exchange attraction. The half-integer quantization rule for the Hall conductivity: (1/2)(2P-1)(4e 2/h), P=1,2,..., is derived.
Analytical estimation of the correlation dimension of integer lattices
Lacasa, Lucas; Gómez-Gardeñes, Jesús
2014-12-01
Recently [L. Lacasa and J. Gómez-Gardeñes, Phys. Rev. Lett. 110, 168703 (2013)], a fractal dimension has been proposed to characterize the geometric structure of networks. This measure is an extension to graphs of the so called correlation dimension, originally proposed by Grassberger and Procaccia to describe the geometry of strange attractors in dissipative chaotic systems. The calculation of the correlation dimension of a graph is based on the local information retrieved from a random walker navigating the network. In this contribution, we study such quantity for some limiting synthetic spatial networks and obtain analytical results on agreement with the previously reported numerics. In particular, we show that up to first order, the correlation dimension β of integer lattices ℤ{sup d} coincides with the Haussdorf dimension of their coarsely equivalent Euclidean spaces, β = d.
Fast on-chip mean filter requiring only integer operations
NASA Astrophysics Data System (ADS)
Bhattacharya, Bhargab B.; Biswas, Arindam; Bhowmick, Partha; Acharya, Tinku
2008-01-01
This paper presents a novel formulation of the classical mean filtering, which has been shown to stem from the theory of continued fractions as well as from the rules of binomial expansion. Such an alternative formulation of mean filtering is marked by its sufficiency of only a few primitive operations, namely binary shifts and addition (subtraction), in the integer domain. Subsequently, the resultant process of smoothing a digital image using the mean filter is devoid of any floating-point computation, and can be implemented by a simple hardware, thereof. In addition, the formulation has the ability of yielding an approximate solution using fewer operations, which can bring the hardware cost further down. We have tested our method for various images, and have reported some relevant results to demonstrate its elegance, versatility, and effectiveness, specially when an approximate solution is called for.
Pure scaling operators at the integer quantum Hall plateau transition.
Bondesan, R; Wieczorek, D; Zirnbauer, M R
2014-05-01
Stationary wave functions at the transition between plateaus of the integer quantum Hall effect are known to exhibit multifractal statistics. Here we explore this critical behavior for the case of scattering states of the Chalker-Coddington network model with point contacts. We argue that moments formed from the wave amplitudes of critical scattering states decay as pure powers of the distance between the points of contact and observation. These moments in the continuum limit are proposed to be correlation functions of primary fields of an underlying conformal field theory. We check this proposal numerically by finite-size scaling. We also verify the conformal field theory prediction for a three-point function involving two primary fields.
Non-chiral 2d CFT with integer energy levels
NASA Astrophysics Data System (ADS)
Ashrafi, M.; Loran, F.
2016-09-01
The partition function of 2d conformal field theory is a modular invariant function. It is known that the partition function of a holomorphic CFT whose central charge is a multiple of 24 is a polynomial in the Klein function. In this paper, by using the medium temperature expansion we show that every modular invariant partition function can be mapped to a holomorphic partition function whose structure can be determined similarly. We use this map to study partition function of CFTs with half-integer left and right conformal weights. We show that the corresponding left and right central charges are necessarily multiples of 4. Furthermore, the degree of degeneracy of high-energy levels can be uniquely determined in terms of the degeneracy in the low energy states.
Integer cosine transform chip design for image compression
NASA Astrophysics Data System (ADS)
Ruiz, Gustavo A.; Michell, Juan A.; Buron, Angel M.; Solana, Jose M.; Manzano, Miguel A.; Diaz, J.
2003-04-01
The Discrete Cosine Transform (DCT) is the most widely used transform for image compression. The Integer Cosine Transform denoted ICT (10, 9, 6, 2, 3, 1) has been shown to be a promising alternative to the DCT due to its implementation simplicity, similar performance and compatibility with the DCT. This paper describes the design and implementation of a 8×8 2-D ICT processor for image compression, that meets the numerical characteristic of the IEEE std. 1180-1990. This processor uses a low latency data flow that minimizes the internal memory and a parallel pipelined architecture, based on a numerical strength reduction Integer Cosine Transform (10, 9, 6, 2, 3, 1) algorithm, in order to attain high throughput and continuous data flow. A prototype of the 8×8 ICT processor has been implemented using a standard cell design methodology and a 0.35-μm CMOS CSD 3M/2P 3.3V process on a 10 mm2 die. Pipeline circuit techniques have been used to attain the maximum frequency of operation allowed by the technology, attaining a critical path of 1.8ns, which should be increased by a 20% to allow for line delays, placing the estimated operational frequency at 500Mhz. The circuit includes 12446 cells, being flip-flops 6757 of them. Two clock signals have been distributed, an external one (fs) and an internal one (fs/2). The high number of flip-flops has forced the use of a strategy to minimize clock-skew, combining big sized buffers on the periphery and using wide metal lines (clock-trunks) to distribute the signals.
Integer-spin electron paramagnetic resonance of iron proteins.
Hendrich, M P; Debrunner, P G
1989-01-01
A quantitative interpretation is presented for EPR spectra from integer-spin metal centers having large zero-field splittings. Integer-spin, or non-Kramers, centers are common in metalloproteins and many give EPR signals, but a quantitative understanding has been lacking until now. Heterogeneity of the metal's local environment will result in a significant spread in zero-field splittings and in broadened EPR signals. Using the spin Hamiltonian Hs = S.D.S + beta S.g.B and some simple assumptions about the nature of the zero-field parameter distributions, a lineshape model was devised which allows accurate simulation of single crystal and frozen solution spectra. The model was tested on single crystals of magnetically dilute ferrous fluosilicate. Data and analyses from proteins and active-site models are presented with the microwave field B1 either parallel or perpendicular to B. Quantitative agreement of observed and predicted signal intensities is found for the two B1 orientations. Methods of spin quantitation are given and are shown to predict an unknown concentration relative to a standard with known concentration. The fact that the standard may be either a non-Kramers or a Kramers center is further proof of the model's validity. The magnitude of the splitting in zero magnetic field is of critical importance; it affects not only the chance of signal observation, but also the quantitation accuracy. Experiments taken at microwave frequencies of 9 and 35 GHz demonstrate the need for high-frequency data as only a fraction of the molecules give signals at 9 GHz. PMID:2551404
Extreme ultraviolet lithography for 0.1{micro}m devices
Vaidya, S; Sweeney, D W; Stullen, R; Attwood, D
1999-04-27
Extreme Ultraviolet Lithography (EUVL) has emerged as one of the leading successors to optics for 0.1{micro}m IC fabrication. Its strongest attribute is the potential to scale to much finer resolution at high throughput. As such, this technique could meet the lithography needs for Si ULSI down to fundamental device limits. In the US, Lawrence Livermore, Sandia and Lawrence Berkeley Laboratories are participating in an industry funded research effort to evolve EUV technology and build a prototype camera for lithographic exposure. More recently, both Europe and Japan have initiated government/industry sponsored programs in EUVL development. This talk focuses on the program successes to date, and highlights some of the challenges that still lie ahead.
Extreme Ultraviolet Lithography for 0.1 {micro}m Devices
Vaidya, S.; Sweeney, D.W.; Stulen, R.; Attwood, D.
1999-07-07
Extreme Ultraviolet Lithography (EUVL) has emerged as one of the leading successors to optics for 0.1 {micro}m IC fabrication. Its strongest attribute is the potential to scale to much finer resolution at high throughput. As such, this technique could meet the lithography needs for Si ULSI down to fundamental device limits. In the US, Lawrence Livermore, Sandia, and Lawrence Berkeley National Laboratories are participating in an industry funded research effort to evolve EUV technology and build a prototype camera for lithographic exposure. More recently, both Europe and Japan have initiated government/industry sponsored programs in EUVL development. This talk will focus on our program successes to date, and highlight some of the challenges that still lie ahead.
Improving integer ambiguity resolution for GLONASS precise orbit determination
NASA Astrophysics Data System (ADS)
Liu, Yang; Ge, Maorong; Shi, Chuang; Lou, Yidong; Wickert, Jens; Schuh, Harald
2016-08-01
The frequency division multiple access adopted in present GLONASS introduces inter-frequency bias (IFB) at the receiver-end both in code and phase observables, which makes GLONASS ambiguity resolution rather difficult or even not available, especially for long baselines up to several thousand kilometers. This is one of the major reasons that GLONASS could hardly reach the orbit precision of GPS, both in terms of consistency among individual International GNSS Service (IGS) analysis centers and discontinuity at the overlapping day boundaries. Based on the fact that the GLONASS phase IFB is similar on L1 and L2 bands in unit of length and is a linear function of the frequency number, several approaches have been developed to estimate and calibrate the IFB for integer ambiguity resolution. However, they are only for short and medium baselines. In this study, a new ambiguity resolution approach is developed for GLONASS global networks. In the approach, the phase ambiguities in the ionosphere-free linear combination are directly transformed with a wavelength of about 5.3 cm, according to the special frequency relationship of GLONASS L1 and L2 signals. After such transformation, the phase IFB rate can be estimated and corrected precisely and then the corresponding double-differenced ambiguities can be directly fixed to integers even for baselines up to several thousand kilometers. To evaluate this approach, experimental validations using one-month data of a global network with 140 IGS stations was carried out for GLONASS precise orbit determination. The results show that the GLONASS double-difference ambiguity resolution for long baselines could be achieved with an average fixing-rate of 91.4 %. Applying the fixed ambiguities as constraints, the GLONASS orbit overlapping RMS at the day boundaries could be reduced by 37.2 % in ideal cases and with an averaged reduction of about 21.4 %, which is comparable with that by the GPS ambiguity resolution. The orbit improvement is
ERIC Educational Resources Information Center
Bishop, Jessica Pierson; Lamb, Lisa L.; Philipp, Randolph A.; Whitacre, Ian; Schappelle, Bonnie P.; Lewis, Melinda L.
2014-01-01
We identify and document 3 cognitive obstacles, 3 cognitive affordances, and 1 type of integer understanding that can function as either an obstacle or affordance for learners while they extend their numeric domains from whole numbers to include negative integers. In particular, we highlight 2 key subsets of integer reasoning: understanding or…
Anisotropic fractal media by vector calculus in non-integer dimensional space
Tarasov, Vasily E.
2014-08-15
A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensional space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media.
Cho Decomposition of One-Half Integer Monopoles Solutions
NASA Astrophysics Data System (ADS)
Teh, Rosy; Ng, Ban-Loong; Wong, Khai-Ming
2013-11-01
We performed the Cho decomposition of the SU(2) Yang-Mills-Higgs gauge potentials of the finite energy (1) one-half monopole solution and (2) the one and a half monopoles solution into Abelian and non-Abelian components. We found that the semi-infinite string singularity in the gauge potentials is a contribution from the Higgs field of the one-half monopole in both of the solutions. The non-Abelian components of the gauge potentials are able to remove the point singularity of the Abelian components of the 't Hooft-Polyakov monopole but not the string singularity of the one-half monopole which is topological in nature. Hence the total energy of a one monopole is infinite in the Maxwell electromagnetic theory but the total energy of a one-half monopole is finite. By analyzing the magnetic fields and the gauge covariant derivatives of the Higgs field, we are able to conclude that both the one-half integer monopoles solutions are indeed non-BPS even in the limit of vanishing Higgs self-coupling constant.
Critical integer quantum Hall topology in the integrable Maryland model
NASA Astrophysics Data System (ADS)
Ganeshan, Sriram; Kechedzhi, Kostyantyn
2014-03-01
One-dimensional tight binding models such as Aubry-Andre-Harper (AAH) model (with onsite cosine potential) and the integrable Maryland model (with onsite tangent potential) have been the subjects of extensive theoretical research in localization studies. AAH can be directly mapped onto the two-dimensional Hofstadter model that manifests the integer quantum Hall topology on a lattice. However, no such connection has been made for the Maryland model (MM). In this talk, we present a generalized model that contains AAH and MM as the limiting cases with the MM lying precisely at a topological quantum phase transition (TQPT) point. A remarkable feature of this critical point is that the 1D MM retains well-defined energy gaps whereas the equivalent 2D model becomes gapless, signifying the 2D nature of the TQPT. The criticality allows us to associate topological invariants with the Maryland model in a restricted mathematical sense at the special filling factors that are adiabatically connected to the spectral gaps in the 1D Aubry-Andre-Harper model. Our theory presented in this work establishes deep and unexpected mathematical connections between 2D topological models and a family of 1D incommensurate localization models. This work is supported by JQI-NSF-PFC, Microsoft Q and JQI-ARO-MU.
Preconditioning 2D Integer Data for Fast Convex Hull Computations.
Cadenas, José Oswaldo; Megson, Graham M; Luengo Hendriks, Cris L
2016-01-01
In order to accelerate computing the convex hull on a set of n points, a heuristic procedure is often applied to reduce the number of points to a set of s points, s ≤ n, which also contains the same hull. We present an algorithm to precondition 2D data with integer coordinates bounded by a box of size p × q before building a 2D convex hull, with three distinct advantages. First, we prove that under the condition min(p, q) ≤ n the algorithm executes in time within O(n); second, no explicit sorting of data is required; and third, the reduced set of s points forms a simple polygonal chain and thus can be directly pipelined into an O(n) time convex hull algorithm. This paper empirically evaluates and quantifies the speed up gained by preconditioning a set of points by a method based on the proposed algorithm before using common convex hull algorithms to build the final hull. A speedup factor of at least four is consistently found from experiments on various datasets when the condition min(p, q) ≤ n holds; the smaller the ratio min(p, q)/n is in the dataset, the greater the speedup factor achieved. PMID:26938221
Near integer tune for polarization preservation in the AGS
Tsoupas N.; Ahrens, L.; Bai, M.; Brown, K.; Glenn, J.W.; Huang, H.; MacKay, W.W.; Roser, T.; Schoefer, V.; Zeno, K.
2012-05-20
The high energy (T = 250 GeV) polarized proton beam experiments performed in RHIC, require high polarization of the beam. In order to preserve the polarization of the proton beam, during the acceleration in the AGS, which is the pre-injector to RHIC, we have installed in AGS two partial helical magnets which minimize the loss of the beam polarization caused by the various intrinsic spin resonances occurring during the proton acceleration. The minimization of the polarization loss during the acceleration cycle, requires that the vertical tune of the AGS is between the values of 8.97 and 8.985 during the acceleration. With the AGS constrained to run at near integer tune {approx}8.980, the perturbations to the beam caused by the partial helical magnets are large and also result in large beta and dispersion waves. To mitigate the adverse effect of the partial helices on the optics of the AGS, we have installed in specified straight sections of the AGS compensation quads and we have also generated a beam bump at the location of the cold partial helix. In this paper we present the beam optics of the AGS which ameliorates the adverse effect of the two partial helices on the beam optics.
Preconditioning 2D Integer Data for Fast Convex Hull Computations
2016-01-01
In order to accelerate computing the convex hull on a set of n points, a heuristic procedure is often applied to reduce the number of points to a set of s points, s ≤ n, which also contains the same hull. We present an algorithm to precondition 2D data with integer coordinates bounded by a box of size p × q before building a 2D convex hull, with three distinct advantages. First, we prove that under the condition min(p, q) ≤ n the algorithm executes in time within O(n); second, no explicit sorting of data is required; and third, the reduced set of s points forms a simple polygonal chain and thus can be directly pipelined into an O(n) time convex hull algorithm. This paper empirically evaluates and quantifies the speed up gained by preconditioning a set of points by a method based on the proposed algorithm before using common convex hull algorithms to build the final hull. A speedup factor of at least four is consistently found from experiments on various datasets when the condition min(p, q) ≤ n holds; the smaller the ratio min(p, q)/n is in the dataset, the greater the speedup factor achieved. PMID:26938221
Finite-Dimensional Half-Integer Weight Modules over Queer Lie Superalgebras
NASA Astrophysics Data System (ADS)
Cheng, Shun-Jen; Kwon, Jae-Hoon
2016-09-01
We give a new interpretation of representation theory of the finite-dimensional half-integer weight modules over the queer Lie superalgebra {{q}(n)}. It is given in terms of the Brundan's work on finite-dimensional integer weight {{q}(n)}-modules by means of Lusztig's canonical basis. Using this viewpoint we compute the characters of the finite-dimensional half-integer weight irreducible modules. For a large class of irreducible modules whose highest weights are of special types (i.e., totally connected or totally disconnected) we derive closed-form character formulas that are reminiscent of the Kac-Wakimoto character formula for basic Lie superalgebras.
Emergence of integer quantum Hall effect from chaos
NASA Astrophysics Data System (ADS)
Tian, Chushun; Chen, Yu; Wang, Jiao
2016-02-01
We present an analytic microscopic theory showing that in a large class of spin-1/2 quasiperiodic quantum kicked rotors, a dynamical analog of the integer quantum Hall effect (IQHE) emerges from an intrinsic chaotic structure. Specifically, the inverse of the Planck's quantum (he) and the rotor's energy growth rate mimic the "filling fraction" and the "longitudinal conductivity" in conventional IQHE, respectively, and a hidden quantum number is found to mimic the "quantized Hall conductivity." We show that for an infinite discrete set of critical values of he, the long-time energy growth rate is universal and of order of unity ("metallic" phase), but otherwise vanishes ("insulating" phase). Moreover, the rotor insulating phases are topological, each of which is characterized by a hidden quantum number. This number exhibits universal behavior for small he, i.e., it jumps by unity whenever he decreases, passing through each critical value. This intriguing phenomenon is not triggered by the likes of Landau band filling, well known to be the mechanism for conventional IQHE, and far beyond the canonical Thouless-Kohmoto-Nightingale-Nijs paradigm for quantum Hall transitions. Instead, this dynamical phenomenon is of strong chaos origin; it does not occur when the dynamics is (partially) regular. More precisely, we find that a topological object, similar to the topological theta angle in quantum chromodynamics, emerges from strongly chaotic motion at microscopic scales, and its renormalization gives the hidden quantum number. Our analytic results are confirmed by numerical simulations. Our findings indicate that rich topological quantum phenomena can emerge from chaos and might point to a new direction of study in the interdisciplinary area straddling chaotic dynamics and condensed matter physics. This work is a substantial extension of a short paper published earlier by two of us [Y. Chen and C. Tian, Phys. Rev. Lett. 113, 216802 (2014), 10.1103/PhysRevLett.113.216802].
On the smallest value of the maximal modulus of an algebraic integer
NASA Astrophysics Data System (ADS)
Rhin, Georges; Wu, Qiang
2007-06-01
The house of an algebraic integer of degree d is the largest modulus of its conjugates. For dleq 28 , we compute the smallest house >1 of degree d , say m (d) . As a consequence we improve Matveev's theorem on the lower bound of m (d). We show that, in this range, the conjecture of Schinzel-Zassenhaus is satisfied. The minimal polynomial of any algebraic integer boldsymbol alpha whose house is equal to m (d) is a factor of a bi-, tri- or quadrinomial. The computations use a family of explicit auxiliary functions. These functions depend on generalizations of the integer transfinite diameter of some compact sets in mathbb{C}. They give better bounds than the classical ones for the coefficients of the minimal polynomial of an algebraic integer boldsymbol alpha whose house is small.
NASA Astrophysics Data System (ADS)
Jiang, Zhuo; Xie, Chengjun
2013-12-01
This paper improved the algorithm of reversible integer linear transform on finite interval [0,255], which can realize reversible integer linear transform in whole number axis shielding data LSB (least significant bit). Firstly, this method use integer wavelet transformation based on lifting scheme to transform the original image, and select the transformed high frequency areas as information hiding area, meanwhile transform the high frequency coefficients blocks in integer linear way and embed the secret information in LSB of each coefficient, then information hiding by embedding the opposite steps. To extract data bits and recover the host image, a similar reverse procedure can be conducted, and the original host image can be lossless recovered. The simulation experimental results show that this method has good secrecy and concealment, after conducted the CDF (m, n) and DD (m, n) series of wavelet transformed. This method can be applied to information security domain, such as medicine, law and military.
Time domain simulation of Li-ion batteries using non-integer order equivalent electrical circuit
NASA Astrophysics Data System (ADS)
Riu, D.; Montaru, M.; Bultel, Y.
2013-06-01
For electric vehicle (EV) or hybrid EV (HEV) development and integration of renewables in electrical networks, battery monitoring systems have to be more and more precise to take into account the state-of-charge and the dynamic behavior of the battery. Some non-integer order models of electrochemical batteries have been proposed in literacy with a good accuracy and a low number of parameters in the frequential domain. Nevertheless, time simulation of such models required to approximate this non-integer order system by an equivalent high integer order model. An adapted algorithm is then proposed in this article to simulate the non-integer order model without any approximation, thanks to the construction of a 3-order generalized state-space system. This algorithm is applied and validated on a 2.3 A.h Li-ion battery.
Particle in a Moebius wire and half-integer orbital angular momentum
Miliordos, Evangelos
2011-06-15
Restricting one particle on the rim of a Moebius strip (Moebius wire), its wave functions are explicitly calculated through the nonrelativistic quantum theory. Demanding the wave function to be single valued, it is proven that in the case of a narrow strip the orbital angular momentum of the particle takes both integer and half-integer values of ({h_bar}/2{pi}). In addition, the energy values of two chiral Moebius wires are proven to be equal.
A 250 mV Cu/SiO2/W Memristor with Half-Integer Quantum Conductance States.
Nandakumar, S R; Minvielle, Marie; Nagar, Saurabh; Dubourdieu, Catherine; Rajendran, Bipin
2016-03-01
Memristive devices, whose conductance depends on previous programming history, are of significant interest for building nonvolatile memory and brain-inspired computing systems. Here, we report half-integer quantized conductance transitions G = (n/2) (2e(2)/h) for n = 1, 2, 3, etc., in Cu/SiO2/W memristive devices observed below 300 mV at room temperature. This is attributed to the nanoscale filamentary nature of Cu conductance pathways formed inside SiO2. Retention measurements also show spontaneous filament decay with quantized conductance levels. Numerical simulations shed light into the dynamics underlying the data retention loss mechanisms and provide new insights into the nanoscale physics of memristive devices and trade-offs involved in engineering them for computational applications.
Using Integer Clocks to Verify the Timing-Sync Sensor Network Protocol
NASA Technical Reports Server (NTRS)
Huang, Xiaowan; Singh, Anu; Smolka, Scott A.
2010-01-01
We use the UPPAAL model checker for Timed Automata to verify the Timing-Sync time-synchronization protocol for sensor networks (TPSN). The TPSN protocol seeks to provide network-wide synchronization of the distributed clocks in a sensor network. Clock-synchronization algorithms for sensor networks such as TPSN must be able to perform arithmetic on clock values to calculate clock drift and network propagation delays. They must be able to read the value of a local clock and assign it to another local clock. Such operations are not directly supported by the theory of Timed Automata. To overcome this formal-modeling obstacle, we augment the UPPAAL specification language with the integer clock derived type. Integer clocks, which are essentially integer variables that are periodically incremented by a global pulse generator, greatly facilitate the encoding of the operations required to synchronize clocks as in the TPSN protocol. With this integer-clock-based model of TPSN in hand, we use UPPAAL to verify that the protocol achieves network-wide time synchronization and is devoid of deadlock. We also use the UPPAAL Tracer tool to illustrate how integer clocks can be used to capture clock drift and resynchronization during protocol execution
NASA Astrophysics Data System (ADS)
Düzenli, Derya; Atmaca, Deniz Onay; Gezer, Miray Gülbiter; Onal, Isik
2015-11-01
This work theoretically investigates propylene epoxidation reaction on Cu2O(0 0 1) and CuO(0 0 1) surfaces using periodical DFT method to determine the active copper species within the reaction mechanism. The transition states and energy profiles are calculated for the formation of surface intermediates such as oxametallopropylene (OMP) over Cu2O(0 0 1) and oxygen bridging (OB) over CuO(0 0 1) and allylic H-stripping reaction (AHS) over both surfaces as well as for formation of products. Propylene oxide (PO) and acetone are obtained through OMP and OB surface intermediates and acrolein generation is observed through allylic H-stripping reaction (AHS). The calculations revealed that the corresponding surface intermediates for epoxidation reaction need to overcome an activation barrier of 13 kcal/mol over CuO surface whereas they occur without an energy barrier over Cu2O surface indicating the higher activity of Cu+ species. Acrolein is also found to be a thermodynamically more favorable product for both surfaces especially over CuO surface due to the presence of more surface oxygen atoms on which the basicity has been evaluated by the adsorption of sulfur dioxide. This indicates that the lattice oxygen inherent in both surface types does not participate in PO production.
NASA Technical Reports Server (NTRS)
Shyu, H. C.; Reed, I. S.; Truong, T. K.; Hsu, I. S.; Chang, J. J.
1987-01-01
A quadratic-polynomial Fermat residue number system (QFNS) has been used to compute complex integer multiplications. The advantage of such a QFNS is that a complex integer multiplication requires only two integer multiplications. In this article, a new type Fermat number multiplier is developed which eliminates the initialization condition of the previous method. It is shown that the new complex multiplier can be implemented on a single VLSI chip. Such a chip is designed and fabricated in CMOS-Pw technology.
The growth and structure of titanium dioxide films on a Re(1 0 -1 0) surface: Rutile(0 1 1)-(2 × 1)
NASA Astrophysics Data System (ADS)
Rosenthal, D.; Zizak, I.; Darowski, N.; Magkoev, T. T.; Christmann, K.
2006-07-01
Titanium dioxide films were grown on Re(1 0 -1 0) by Ti vapor deposition in oxygen at T = 830 K and studied by means of low-energy electron diffraction (LEED), X-ray photoelectron spectroscopy (XPS), low-energy ion scattering (LEIS) and X-ray diffraction (XRD). The Ti oxide stoichiometry was determined by XPS as Ti:O = 1:2, with the Ti oxidation state (4+). The TiO 2 growth was monitored by means of LEED as a function of film thickness. Extending the coverage from the submonolayer into the multilayer regime gives rise to a p(2 × 2) pattern, a (poorly ordered) (1 × 1), and, finally, a stable (2 × 2) structure, the latter being associated with a homogeneous TiO 2 phase. For normal electron incidence, the (2 × 2) LEED pattern exhibits systematically extinguished beams at ( n ± 1/2, 0) positions, indicating a glide mirror plane. The pg(2 × 2) structure could be explained by both a rutile(0 1 1)-(2 × 1) reconstructed surface and a bulk truncated brookite(0 0 1) surface. Faceting phenomena, i.e. running LEED spots, observed with thin TiO 2 films point to the formation of a rutile(0 1 1)-(2 × 1) surface with two domains and {0 1 1}-(2 × 1) facets and rule out the brookite alternative. Confirmation of this assignment was obtained by an XRD analysis performed at the Berlin synchrotron facility BESSY.
NASA Technical Reports Server (NTRS)
Ferencz, Donald C.; Viterna, Larry A.
1991-01-01
ALPS is a computer program which can be used to solve general linear program (optimization) problems. ALPS was designed for those who have minimal linear programming (LP) knowledge and features a menu-driven scheme to guide the user through the process of creating and solving LP formulations. Once created, the problems can be edited and stored in standard DOS ASCII files to provide portability to various word processors or even other linear programming packages. Unlike many math-oriented LP solvers, ALPS contains an LP parser that reads through the LP formulation and reports several types of errors to the user. ALPS provides a large amount of solution data which is often useful in problem solving. In addition to pure linear programs, ALPS can solve for integer, mixed integer, and binary type problems. Pure linear programs are solved with the revised simplex method. Integer or mixed integer programs are solved initially with the revised simplex, and the completed using the branch-and-bound technique. Binary programs are solved with the method of implicit enumeration. This manual describes how to use ALPS to create, edit, and solve linear programming problems. Instructions for installing ALPS on a PC compatible computer are included in the appendices along with a general introduction to linear programming. A programmers guide is also included for assistance in modifying and maintaining the program.
26 CFR 1.0-1 - Internal Revenue Code of 1954 and regulations.
Code of Federal Regulations, 2010 CFR
2010-04-01
... identified in each instance. The regulations in 26 CFR (1939) part 39 (Regulations 118) are continued in... 26 Internal Revenue 1 2010-04-01 2010-04-01 true Internal Revenue Code of 1954 and regulations. 1.0-1 Section 1.0-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY INCOME...
NASA Astrophysics Data System (ADS)
Min, Y.; Yao, K. L.; Liu, Z. L.; Cheng, H. G.; Zhu, S. C.; Gao, G. Y.
2009-02-01
We report on first-principles calculations of spin-dependent quantum transport in a CrAs(0 0 1)/AlAs(0 0 1) heterogeneous junction and predict a strong diode effect of charge and spin current. The minority spin current is absolutely inhibited when the bias voltage is applied to the terminals of both CrAs and AlAs. The majority spin current is inhibited when the bias voltage is applied to the terminal of CrAs and "relaxed" when the bias voltage is applied to the terminal of AlAs. The charge and spin current diode are promising for reprogrammable logic applications in the field of spintronics.
NASA Astrophysics Data System (ADS)
Ling, Yihan; Zhang, Xiaozhen; Wang, Songlin; Zhao, Ling; Lin, Bin; Liu, Xingqin
A cobalt-free cubic perovskite oxide SrFe 0.9Sb 0.1O 3- δ (SFSb) is investigated as a novel cathode for proton-conducting solid oxide fuel cells (H-SOFCs). XRD results show that SFSb cathode is chemically compatible with the electrolyte BaZr 0.1Ce 0.7Y 0.1Yb 0.1O 3- δ (BZCYYb) for temperatures up to 1000 °C. Thin proton-conducting BZCYYb electrolyte and NiO-BaZr 0.1Ce 0.7Y 0.1Yb 0.1O 3- δ (NiO-BZCYYb) anode functional layer are prepared over porous anode substrates composed of NiO-BZCYYb by a one-step dry-pressing/co-firing process. Laboratory-sized quad-layer cells of NiO-BZCYYb/NiO-BZCYYb/BZCYYb/SFSb are operated from 550 to 700 °C with humidified hydrogen (∼3% H 2O) as fuel and the static air as oxidant. An open-circuit potential of 0.996 V, maximum power density of 428 mW cm -2, and a low electrode polarization resistance of 0.154 Ω cm 2 are achieved at 700 °C. The experimental results indicate that the cobalt-free SFSb is a promising candidate for cathode material for H-SOFCs.
Motz, Benjamin A.; Erickson, Molly A.; Hetrick, William P.
2013-01-01
Humans perceive a wide range of temporal patterns, including those rhythms that occur in music, speech, and movement; however, there are constraints on the rhythmic patterns that we can represent. Past research has shown that sequences in which sounds occur regularly at non-metrical locations in a repeating beat period (non-integer ratio subdivisions of the beat, e.g. sounds at 430 ms in a 1000 ms beat) are represented less accurately than sequences with metrical relationships, where events occur at even subdivisions of the beat (integer ratios, e.g. sounds at 500 ms in a 1000 ms beat). Why do non-integer ratio rhythms present cognitive challenges? An emerging theory is that non-integer ratio sequences are represented incorrectly, “regularized” in the direction of the nearest metrical pattern, and the present study sought evidence of such perceptual regularization toward integer ratio relationships. Participants listened to metrical and non-metrical rhythmic auditory sequences during electroencephalogram recording, and sounds were pseudorandomly omitted from the stimulus sequence. Cortical responses to these omissions (omission elicited potentials; OEPs) were used to estimate the timing of expectations for omitted sounds in integer ratio and non-integer ratio locations. OEP amplitude and onset latency measures indicated that expectations for non-integer ratio sequences are distorted toward the nearest metrical location in the rhythmic period. These top-down effects demonstrate metrical regularization in a purely perceptual context, and provide support for dynamical accounts of rhythm perception. PMID:23434916
Physical Applications of a Simple Approximation of Bessel Functions of Integer Order
ERIC Educational Resources Information Center
Barsan, V.; Cojocaru, S.
2007-01-01
Applications of a simple approximation of Bessel functions of integer order, in terms of trigonometric functions, are discussed for several examples from electromagnetism and optics. The method may be applied in the intermediate regime, bridging the "small values regime" and the "asymptotic" one, and covering, in this way, an area of great…
REVERSIBLE N-BIT TO N-BIT INTEGER HAAR-LIKE TRANSFORMS
Duchaineau, M; Joy, K I; Senecal, J
2004-02-14
We introduce TLHaar, an n-bit to n-bit reversible transform similar to the Haar IntegerWavelet Transform (IWT). TLHaar uses lookup tables that approximate the Haar IWT, but reorder the coefficients so they fit into n bits. TLHaar is suited for lossless compression in fixed-width channels, such as digital video channels and graphics hardware frame buffers.
NASA Astrophysics Data System (ADS)
Pospelov, A. I.
2016-08-01
Adaptive methods for the polyhedral approximation of the convex Edgeworth-Pareto hull in multiobjective monotone integer optimization problems are proposed and studied. For these methods, theoretical convergence rate estimates with respect to the number of vertices are obtained. The estimates coincide in order with those for filling and augmentation H-methods intended for the approximation of nonsmooth convex compact bodies.
NASA Astrophysics Data System (ADS)
Li, J. C.; Gong, B.; Wang, H. G.
2016-08-01
Optimal development of shale gas fields involves designing a most productive fracturing network for hydraulic stimulation processes and operating wells appropriately throughout the production time. A hydraulic fracturing network design-determining well placement, number of fracturing stages, and fracture lengths-is defined by specifying a set of integer ordered blocks to drill wells and create fractures in a discrete shale gas reservoir model. The well control variables such as bottom hole pressures or production rates for well operations are real valued. Shale gas development problems, therefore, can be mathematically formulated with mixed-integer optimization models. A shale gas reservoir simulator is used to evaluate the production performance for a hydraulic fracturing and well control plan. To find the optimal fracturing design and well operation is challenging because the problem is a mixed integer optimization problem and entails computationally expensive reservoir simulation. A dynamic simplex interpolation-based alternate subspace (DSIAS) search method is applied for mixed integer optimization problems associated with shale gas development projects. The optimization performance is demonstrated with the example case of the development of the Barnett Shale field. The optimization results of DSIAS are compared with those of a pattern search algorithm.
A global inverse model for estimating surface CO2 fluxes at a 0.1x0.1 degree resolution
NASA Astrophysics Data System (ADS)
Maksyutov, Shamil; Oda, Tomohiro; Janardanan, Rajesh; Yaremchuk, Alexey; Kaiser, Johannes W.; Ito, Akihiko; Belikov, Dmitry; Zhuravlev, Ruslan; Ganshin, Alexander; Valsala, Vinu
2015-04-01
We propose an iterative inversion method for estimating surface CO2 fluxes at a high spatial resolution (0.1 degree) using atmospheric CO2 data collected by the global in-situ network and GOSAT. The Lagrangian particle dispersion model FLEXPART was coupled to the Eulerian atmospheric tracer transport model (NIES-TM) and an adjoint of the coupled model was derived. The inverse model calculates weekly corrections to given prior fluxes at a spatial resolution of the surface flux footprints simulated by FLEXPART model (0.1 degrees). Prior fluxes are given at different spatial resolutions in low and high resolution mode implementations. The hourly terrestrial biosphere fluxes are simulated with VISIT model using CFSR reanalysis. Ocean fluxes are calculated using a 4D-Var assimilation system of the surface pCO2 observations. Fossil fuel (ODIAC) and biomass burning (GFASv1.1) emissions are given at original model resolutions (0.1 degree), while terrestrial biosphere and ocean fluxes are interpolated from a coarser resolution. Flux response functions (footprints) for observations are first simulated with FLEXPART. The precalculated flux response functions are then used in forward and adjoint runs of the coupled transport model. We apply Lanczos process to obtain the truncated singular value decomposition (SVD) of the scaled tracer transport operator A = R-1/2HB1/2, where H - tracer transport operator, R and B - error covariance matrices for observations and fluxes, respectively. The square root of covariance matrix B is constructed by directional splitting in latitude, longitude and time, with exponential decay scales of 500 km on land, 1000 km over oceans and 2 weeks in time. Once singular vectors of AAT are obtained, the prior and posterior flux uncertainties are evaluated. Numerical experiments of inverting surface CO2 fluxes showed that the high-resolution (Lagrangian) part of the flux responses dominates the solution so that spatial patterns from the coarser
aCLIMAX 4.0.1, The new version of the software for analyzing and interpreting INS spectra
NASA Astrophysics Data System (ADS)
Ramirez-Cuesta, A. J.
2004-03-01
In Inelastic Neutron Scattering Spectroscopy, the neutron scattering intensity is plotted versus neutron energy loss giving a spectrum that looks like an infrared or a Raman spectrum. Unlike IR or Raman, INS does not have selection rules, i.e. all transitions are in principle observable. This particular characteristic makes INS a test bed for Density Functional Theory calculations of vibrational modes. aCLIMAX is the first user friendly program, within the Windows environment, that uses the output of normal modes to generate the calculated INS of the model molecule, making a lot easier to establish a connection between theory and experiment. Program summaryTitle of program: aCLIMAX 4.0.1 Catalogue identifier: ADSW Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADSW Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Operating systems: Windows 95 onwards, except Windows ME where it does not work Programming language used: Visual Basic Memory requirements: 64 MB No. of processors: 1 Has the code been parallelized: No No. of bytes in distributed program, including test data, etc.: 2 432 775 No. of lines in distributed program, including test data, etc.: 17 998 Distribution format: tar gzip file Nature of physical problem: Calculation of the Inelastic Neutron Scattering Spectra from DFT calculations of the vibrational density of states for molecules. Method of solution: INS spectral intensity calculated from normal modes analysis. Isolated molecule approximation. Typical time of running: From few seconds to few minutes depending on the size of the molecule. Unusual features of the program: Special care has to be taken in the case of computers that have different regional options than the English speaking countries, the decimal separator has to be set as "." (dot) instead of the usual "," (comma) that most countries use.
Garbeva, Paolina; Silby, Mark W; Raaijmakers, Jos M; Levy, Stuart B; Boer, Wietse de
2011-06-01
The ability of soil bacteria to successfully compete with a range of other microbial species is crucial for their growth and survival in the nutrient-limited soil environment. In the present work, we studied the behavior and transcriptional responses of soil-inhabiting Pseudomonas fluorescens strain Pf0-1 on nutrient-poor agar to confrontation with strains of three phylogenetically different bacterial genera, that is, Bacillus, Brevundimonas and Pedobacter. Competition for nutrients was apparent as all three bacterial genera had a negative effect on the density of P. fluorescens Pf0-1; this effect was most strong during the interaction with Bacillus. Microarray-based analyses indicated strong differences in the transcriptional responses of Pf0-1 to the different competitors. There was higher similarity in the gene expression response of P. fluorescens Pf0-1 to the Gram-negative bacteria as compared with the Gram-positive strain. The Gram-negative strains did also trigger the production of an unknown broad-spectrum antibiotic in Pf0-1. More detailed analysis indicated that expression of specific Pf0-1 genes involved in signal transduction and secondary metabolite production was strongly affected by the competitors' identity, suggesting that Pf0-1 can distinguish among different competitors and fine-tune its competitive strategies. The results presented here demonstrate that P. fluorescens Pf0-1 shows a species-specific transcriptional and metabolic response to bacterial competitors and provide new leads in the identification of specific cues in bacteria-bacteria interactions and of novel competitive strategies, antimicrobial traits and genes.
Structural analysis, optical and dielectric function of [Ba0.9Ca0.1](Ti0.9Zr0.1)O3 nanocrystals
NASA Astrophysics Data System (ADS)
Herrera-Pérez, G.; Morales, D.; Paraguay-Delgado, F.; Borja-Urby, R.; Reyes-Rojas, A.; Fuentes-Cobas, L. E.
2016-09-01
This work presents the identification of inter-band transitions in the imaginary part of the dielectric function (ɛ2) derived from the Kramers-Kronig analysis for [Ba0.9Ca0.1](Ti0.9Zr0.1)O3 (BCZT) nanocrystals synthesized by the modified Pechini method. The analysis started with the chemical identification of the atoms that conform BCZT in the valence loss energy region of a high energy-resolution of electron energy loss spectroscopy. The indirect band energy (Eg) was determined in the dielectric response function. This result is in agreement with the UV-Vis technique, and it obtained an optical band gap of 3.16 eV. The surface and volume plasmon peaks were observed at 13.1 eV and 26.2 eV, respectively. The X-ray diffraction pattern and the Rietveld refinement data of powders heat treated at 700 °C for 1 h suggest a tetragonal structure with a space group (P4 mm) with the average crystal size of 35 nm. The average particle size was determined by transmission electron microscopy.
Magnetic properties of Mn1.9Cu0.1Sb under high pressure
NASA Astrophysics Data System (ADS)
Matsumoto, Yoshihiro; Matsubayashi, Kazuyuki; Uwatoko, Yoshiya; Hiroi, Masahiko; Mitsui, Yoshifuru; Koyama, Keiichi
2016-08-01
Magnetization measurements were carried out for polycrystalline Mn1.9Cu0.1Sb in magnetic fields up to 5 T in the 10-300 K temperature range under high pressures up to 1 GPa in order to investigate the magnetic properties and the thermal transformation arrest (TTA) phenomenon under high pressures. The spin-reorientation temperature increased from 202 K for 0.1 MPa to 244 K for 1 GPa, whereas the transition temperature from the ferrimagnetic (FRI) to antiferromagnetic (AFM) state did not drastically change at ˜116 K. The magnetic relaxation behavior from the FRI to AFM state was observed in 10 < T ≤ 70 K, which was analyzed using the Kohlrausch-Williams-Watts model. Obtained results indicated that the TTA phenomenon of Mn1.9Cu0.1Sb was suppressed by the application of high pressures.
Topical kinetin 0.1% lotion for improving the signs and symptoms of rosacea.
Wu, J J; Weinstein, G D; Kricorian, G J; Kormeili, T; McCullough, J L
2007-11-01
Many patients with rosacea are unable to tolerate extended treatment periods with topical agents because of the unusually high skin sensitivity that often accompanies rosacea. Kinetin (N(6)-furfuryladenine) is a plant cytokinin that reportedly helps restore skin barrier function and may be useful to ameliorate the signs and symptoms of rosacea. The purpose of this open-label study was to determine the tolerance and efficacy of twice-daily application of kinetin 0.1% lotion for improving the signs and symptoms of mild to moderate facial rosacea. Subjects applied kinetin 0.1% lotion twice daily to the face, with daily use of a sunscreen of sun protection factor 30. Subjects were evaluated at baseline and at 4-week intervals for 12 weeks to assess efficacy and tolerance. Results of this study suggest that kinetin 0.1% lotion is a well-tolerated moisturizing lotion option for subjects with mild to moderate inflammatory rosacea.
Ultrathin films of Cu on Ru(1 0 1bar 0): Flat bilayers and mesa islands
NASA Astrophysics Data System (ADS)
Brona, J.; Wasielewski, R.; Ciszewski, A.
2012-10-01
The Cu/Ru(1 0 1bar 0) adsorption system was investigated by STM, LEED and AES. Cu was deposited at room temperature (RT) and 800 K, with the coverage ranging from a fraction up to 4 bilayers (BL). The first two Cu BL grow in the bilayer-by-bilayer mode. Their structure is pseudomorphic and does not depend on the temperature. For coverage higher than 2 BL, Cu deposited at elevated temperature forms three-dimensional islands in mesa shape with Cu(1 1 1) facets on their tops. The facets and the substrate are epitaxially oriented with Cu(1 1 1)||Ru(1 0 1bar 0) and Cu[0 1 1bar]||Ru[1 2bar 1 0]. Obtained results can be helpful in search for an optimal method of Cu deposition onto Ru in the damascene process in microelectronics, and could be also of interest to catalysis.
Growth of thin Fe(0 0 1) films for terahertz emission experiments
NASA Astrophysics Data System (ADS)
Meserole, C. A.; Fisher, G. L.; Hilton, D. J.; Averitt, R. D.; Funk, D. J.; Taylor, A. J.
2007-06-01
The electrical and magnetic properties of thin iron (Fe) films have sparked significant scientific interest. Our interest, however, is in the fundamental interactions between light and matter. We have discovered a novel application for thin Fe films. These films are sources of terahertz (THz) radiation when stimulated by an incident laser pulse. After intense femtosecond pulse excitation by a Ti:sapphire laser, these films emit picosecond, broadband THz frequencies. The terahertz emission provides a direct measure of the induced ultrafast change in magnetization within the Fe film. The THz generation experiments and the growth of appropriate thin Fe films for these experiments are discussed. Several criteria are used to select the substrate and film growth conditions, including that the substrate must permit the epitaxial growth of a continuous, monocrystalline or single crystal film, yet must also be transparent to the emitted THz radiation. An Fe(0 0 1) film grown on the (0 0 1) surface of a magnesium oxide (MgO) substrate makes an ideal sample. The Fe films are grown by physical vapor deposition (PVD) in an ultrahigh vacuum (UHV) system. Low energy electron diffraction (LEED) and Auger electron spectroscopy (AES) are used to characterize the Fe(0 0 1) films. Two substrate surface preparation methods are investigated. Fe(0 0 1) films grown on MgO(0 0 1) substrates that are used as-received and films grown on MgO(0 0 1) substrates that have been UV/ozone-cleaned ex vacuo and annealed in vacuo produce the same results in the THz generation experiments. Either substrate preparation method permits the growth of samples suitable for the THz emission experiments.
First principles calculations of oxygen adsorption on the UN(0 0 1) surface
NASA Astrophysics Data System (ADS)
Zhukovskii, Yu. F.; Bocharov, D.; Kotomin, E. A.; Evarestov, R. A.; Bandura, A. V.
2009-01-01
Fabrication, handling and disposal of nuclear fuel materials require comprehensive knowledge of their surface morphology and reactivity. Due to unavoidable contact with air components (even at low partial pressures), UN samples contain considerable amount of oxygen impurities affecting fuel properties. In this study we focus on reactivity of the energetically most stable (0 0 1) substrate of uranium nitride towards the atomic oxygen as one of initial stages for further UN oxidation. The basic properties of O atoms adsorbed on the UN(0 0 1) surface are simulated here combining the two first principles calculation methods based on the plane wave basis set and that of the localized orbitals.
Compact AC susceptometer for fast sample characterization down to 0.1 K
Yonezawa, Shingo Higuchi, Takumi; Sugimoto, Yusuke; Sow, Chanchal; Maeno, Yoshiteru
2015-09-15
We report a new design of an AC magnetic susceptometer compatible with the Physical Properties Measurement System (PPMS) by Quantum Design, as well as with its adiabatic demagnetization refrigerator option. With the elaborate compact design, the susceptometer allows simple and quick sample mounting process. The high performance of the susceptometer down to 0.1 K is demonstrated using several superconducting and magnetic materials. This susceptometer provides a method to quickly investigate qualities of a large number of samples in the wide temperature range between 0.1 and 300 K.
Large-Scale Multiobjective Static Test Generation for Web-Based Testing with Integer Programming
ERIC Educational Resources Information Center
Nguyen, M. L.; Hui, Siu Cheung; Fong, A. C. M.
2013-01-01
Web-based testing has become a ubiquitous self-assessment method for online learning. One useful feature that is missing from today's web-based testing systems is the reliable capability to fulfill different assessment requirements of students based on a large-scale question data set. A promising approach for supporting large-scale web-based…
A Constraint Integer Programming Approach for Resource-Constrained Project Scheduling
NASA Astrophysics Data System (ADS)
Berthold, Timo; Heinz, Stefan; Lübbecke, Marco E.; Möhring, Rolf H.; Schulz, Jens
We propose a hybrid approach for solving the resource-constrained project scheduling problem which is an extremely hard to solve combinatorial optimization problem of practical relevance. Jobs have to be scheduled on (renewable) resources subject to precedence constraints such that the resource capacities are never exceeded and the latest completion time of all jobs is minimized.
ERIC Educational Resources Information Center
Lam, Tit-Loong; Foong, Yoke-Yeen
This simulation study involved the design of two two-stage tests in which the routing tests and the second-stage measurement testlets took the form of a multidimensional knapsack problem with prespecified target informations and constraints to be enumerated using the algorithm of E. Balas. Two conventional tests of similar length to the two-stage…
ERIC Educational Resources Information Center
Seth, Anupam
2009-01-01
Production planning and scheduling for printed circuit, board assembly has so far defied standard operations research approaches due to the size and complexity of the underlying problems, resulting in unexploited automation flexibility. In this thesis, the increasingly popular collect-and-place machine configuration is studied and the assembly…
NASA Astrophysics Data System (ADS)
Wu, C. Z.; Huang, G. H.; Yan, X. P.; Cai, Y. P.; Li, Y. P.
2010-05-01
Large crowds are increasingly common at political, social, economic, cultural and sports events in urban areas. This has led to attention on the management of evacuations under such situations. In this study, we optimise an approximation method for vehicle allocation and route planning in case of an evacuation. This method, based on an interval-parameter multi-objective optimisation model, has potential for use in a flexible decision support system for evacuation management. The modeling solutions are obtained by sequentially solving two sub-models corresponding to lower- and upper-bounds for the desired objective function value. The interval solutions are feasible and stable in the given decision space, and this may reduce the negative effects of uncertainty, thereby improving decision makers' estimates under different conditions. The resulting model can be used for a systematic analysis of the complex relationships among evacuation time, cost and environmental considerations. The results of a case study used to validate the proposed model show that the model does generate useful solutions for planning evacuation management and practices. Furthermore, these results are useful for evacuation planners, not only in making vehicle allocation decisions but also for providing insight into the tradeoffs among evacuation time, environmental considerations and economic objectives.
Selection of a minimum-boundary reserve network using integer programming.
Onal, Hayri; Briers, Robert A
2003-01-01
In the conservation literature, heuristic procedures have been employed to incorporate spatial considerations in reserve network selection with the presumption that computationally convenient optimization models would be too difficult or impossible to formulate. This paper extends the standard set-covering formulation to incorporate a particular spatial selection criterion, namely reducing the reserve boundary to the extent possible, when selecting a reserve network that represents a set of target species at least once. Applying the model to a dataset on the occurrence of breeding birds in Berkshire, UK, demonstrated that the technique resulted in significant reductions in reserve boundary length relative to solutions produced by the standard set-covering formulation. Computational results showed that moderately large reserve network selection problems could be solved without issue. Alternative solutions may be produced to explore trade-offs between boundary length, number of sites required or alternative criteria. PMID:12965014
Active strut placement using integer programming for the CSI Revolutionary Model
NASA Astrophysics Data System (ADS)
Padula, Sharon L.; Sandridge, Chris A.
1992-09-01
A method for determining the most effective locations for active struts on large space structures is developed and tested on the NASA CSI Evolutionary Model. Depending on the choice of weighting factors, the method can be used to maximize the maximum modal damping ratio or decay rate, or to maximize a mission-oriented measure of performance. Placement of 8, 16, and 32 active struts out of 1507 candidate truss elements is demonstrated. Preliminary estimates of damping enhancement are reported pending refined structural models and dynamic test results. The method can handle complicated FEM models wih a large number of truss elements and many target modes. It can treat each mode equally or it can emphasize the importance of selected modes. The method can eliminate some combinations of actuator locations based on topological constraints.
Effect of the spiral phase element on the radial-polarization (0, 1) ∗ LG beam
NASA Astrophysics Data System (ADS)
Machavariani, G.; Lumer, Y.; Moshe, I.; Jackel, S.
2007-03-01
Radially-polarized beams can be strongly amplified without significant birefringent-induced aberrations. However, radially-polarized beam is a high-order beam, and therefore has to be transformed into a fundamental Gaussian beam for reduction the beam-propagation factor M2. In effort to transform the radially-polarized beam to a nearly-Gaussian beam, we consider effect of a spiral phase element (SPE) on the Laguerre-Gaussian (LG) (0, 1)∗ beam with radial polarization, and compare this with the case when the input beam is a LG (0, 1)∗ beam with spiral phase and uniform or random polarization. The LG (0, 1)∗ beam with radial polarization, despite its identity in intensity profile to the beam with spiral phase, has distinctly different properties when interacting with the SPE. With the SPE and spatial filter, we transformed the radially-polarized (0, 1)∗ mode with M2 = 2.8 to a nearly-Gaussian beam with M2 = 1.7. Measured transformation efficiency was 50%, and the beam brightness P/(M2)2 was practically unchanged. The SPE affects polarization state of the radially-polarized beam, leading to appearance of spin angular momentum in the beam center at the far-field.
Topological Phase and Half-Integer Orbital Angular Momenta in Circular Quantum Dots
NASA Astrophysics Data System (ADS)
Kuleshov, V. M.; Mur, V. D.; Narozhny, N. B.; Lozovik, Yu. E.
2016-06-01
We show that there exists a non-trivial topological phase in circular two-dimensional quantum dots with an odd number of electrons. The possible non-zero value of this phase is explained by axial symmetry of two-dimensional quantum systems. The particular value of this phase (π ) is fixed by T-invariance and the Pauli exclusion principle and leads to half-integer values of the angular orbital momentum for ground states of such systems. This conclusion agrees with the experimental data for ground-state energies of few-electron circular quantum dots in perpendicular magnetic field (Schmidt et al. in Phys Rev B 51:5570, 1995). Hence, these data may be considered as the first experimental evidence for the existence of topological phase leading to half-integer quantization of the orbital angular momentum in circular quantum dots with an odd number of electrons.
NASA Astrophysics Data System (ADS)
Langel, Steven E.; Khanafseh, Samer M.; Pervan, Boris
2016-06-01
Differential carrier phase applications that utilize cycle resolution need the probability density function of the baseline estimate to quantify its region of concentration. For the integer bootstrap estimator, the density function has an analytical definition that enables probability calculations given perfect statistical knowledge of measurement and process noise. This paper derives a method to upper bound the tail probability of the integer bootstrapped GNSS baseline when the measurement and process noise correlation functions are unknown, but can be upper and lower bounded. The tail probability is shown to be a non-convex function of a vector of conditional variances, whose feasible region is a convex polytope. We show how to solve the non-convex optimization problem globally by discretizing the polytope into small hyper-rectangular elements, and demonstrate the method for a static baseline estimation problem.
An Integer-Coded Chaotic Particle Swarm Optimization for Traveling Salesman Problem
NASA Astrophysics Data System (ADS)
Yue, Chen; Yan-Duo, Zhang; Jing, Lu; Hui, Tian
Traveling Salesman Problem (TSP) is one of NP-hard combinatorial optimization problems, which will experience “combination explosion” when the problem goes beyond a certain size. Therefore, it has been a hot topic to search an effective solving method. The general mathematical model of TSP is discussed, and its permutation and combination based model is presented. Based on these, Integer-coded Chaotic Particle Swarm Optimization for solving TSP is proposed. Where, particle is encoded with integer; chaotic sequence is used to guide global search; and particle varies its positions via “flying”. With a typical 20-citys TSP as instance, the simulation experiment of comparing ICPSO with GA is carried out. Experimental results demonstrate that ICPSO is simple but effective, and better than GA at performance.
On exact statistics and classification of ergodic systems of integer dimension
Guralnik, Zachary Guralnik, Gerald; Pehlevan, Cengiz
2014-06-01
We describe classes of ergodic dynamical systems for which some statistical properties are known exactly. These systems have integer dimension, are not globally dissipative, and are defined by a probability density and a two-form. This definition generalizes the construction of Hamiltonian systems by a Hamiltonian and a symplectic form. Some low dimensional examples are given, as well as a discretized field theory with a large number of degrees of freedom and a local nearest neighbor interaction. We also evaluate unequal-time correlations of these systems without direct numerical simulation, by Padé approximants of a short-time expansion. We briefly speculate on the possibility of constructing chaotic dynamical systems with non-integer dimension and exactly known statistics. In this case there is no probability density, suggesting an alternative construction in terms of a Hopf characteristic function and a two-form.
IMC-PID-fractional-order-filter controllers design for integer order systems.
Maâmar, Bettayeb; Rachid, Mansouri
2014-09-01
One of the reasons of the great success of standard PID controllers is the presence of simple tuning rules, of the automatic tuning feature and of tables that simplify significantly their design. For the fractional order case, some tuning rules have been proposed in the literature. However, they are not general because they are valid only for some model cases. In this paper, a new approach is investigated. The fractional property is not especially imposed by the controller structure but by the closed loop reference model. The resulting controller is fractional but it has a very interesting structure for its implementation. Indeed, the controller can be decomposed into two transfer functions: an integer transfer function which is generally an integer PID controller and a simple fractional filter.
NASA Astrophysics Data System (ADS)
Langel, Steven E.; Khanafseh, Samer M.; Pervan, Boris
2016-11-01
Differential carrier phase applications that utilize cycle resolution need the probability density function of the baseline estimate to quantify its region of concentration. For the integer bootstrap estimator, the density function has an analytical definition that enables probability calculations given perfect statistical knowledge of measurement and process noise. This paper derives a method to upper bound the tail probability of the integer bootstrapped GNSS baseline when the measurement and process noise correlation functions are unknown, but can be upper and lower bounded. The tail probability is shown to be a non-convex function of a vector of conditional variances, whose feasible region is a convex polytope. We show how to solve the non-convex optimization problem globally by discretizing the polytope into small hyper-rectangular elements, and demonstrate the method for a static baseline estimation problem.
Effect of Artocarpus integer lectin on functional activity of guinea-pig complement.
Hashim, O H; Gendeh, G S; Cheong, C N; Jaafar, M I
1994-03-01
The effect of Artocarpus integer lectin (lectin C) on the functional activity of guinea-pig complement was investigated. Purified and crude extract of lectin C from six cultivars of Artocarpus integer seeds were found to consume complement and thus decreased the complement-induced haemolytic activity of sensitized sheep erythrocytes. The change in the complement-mediated haemolytic activity was significantly decreased when incubation of the lectins was performed in the presence of melibiose. The reversal effect of the carbohydrate, which is a potent inhibitor of the lectin's binding to O-linked oligosaccharides of glycoprotein, demonstrate involvement of the lectins interaction with O-glycans of glycoproteins in the consumption of guinea-pig complement.
Topologically induced fractional Hall steps in the integer quantum Hall regime of MoS 2
NASA Astrophysics Data System (ADS)
Firoz Islam, SK; Benjamin, Colin
2016-09-01
The quantum magnetotransport properties of a monolayer of molybdenum disulfide are derived using linear response theory. In particular, the effect of topological terms on longitudinal and Hall conductivity is analyzed. The Hall conductivity exhibits fractional steps in the integer quantum Hall regime. Further complete spin and valley polarization of the longitudinal conductivitity is seen in presence of these topological terms. Finally, the Shubnikov-de Hass oscillations are suppressed or enhanced contingent on the sign of these topological terms.
Topologically induced fractional Hall steps in the integer quantum Hall regime of MoS 2.
Islam, S K Firoz; Benjamin, Colin
2016-09-23
The quantum magnetotransport properties of a monolayer of molybdenum disulfide are derived using linear response theory. In particular, the effect of topological terms on longitudinal and Hall conductivity is analyzed. The Hall conductivity exhibits fractional steps in the integer quantum Hall regime. Further complete spin and valley polarization of the longitudinal conductivitity is seen in presence of these topological terms. Finally, the Shubnikov-de Hass oscillations are suppressed or enhanced contingent on the sign of these topological terms.
Core barrier formation near integer q surfaces in DIII-D
Austin, M. E.; Gentle, K. W.; Burrell, K. H.; Waltz, R. E.; Gohil, P.; Greenfield, C. M.; Groebner, R. J.; Petty, C. C.; Prater, R.; Heidbrink, W. W.; Luo, Y.; Kinsey, J. E.; Makowski, M. A.; McKee, G. R.; Shafer, M. W.; Nazikian, R.; Rhodes, T. L.; Van Zeeland, M. A.
2006-08-15
Recent DIII-D experiments have significantly improved the understanding of internal transport barriers (ITBs) that are triggered close to the time when an integer value of the minimum in q is crossed. While this phenomenon has been observed on many tokamaks, the extensive transport and fluctuation diagnostics on DIII-D have permitted a detailed study of the generation mechanisms of q-triggered ITBs as pertaining to turbulence suppression dynamics, shear flows, and energetic particle modes. In these discharges, the evolution of the q profile is measured using motional Stark effect polarimetry and the integer q{sub min} crossings are further pinpointed in time by the observation of Alfven cascades. High time resolution measurements of the ion and electron temperatures and the toroidal rotation show that the start of improved confinement is simultaneous in all three channels, and that this event precedes the traversal of integer q{sub min} by 5-20 ms. There is no significant low-frequency magnetohydrodynamic activity prior to or just after the crossing of the integer q{sub min} and hence magnetic reconnection is determined not to be the precipitant of the confinement change. Instead, results from the GYRO code point to the effects of zonal flows near low order rational q values as playing a role in ITB triggering. A reduction in local turbulent fluctuations is observed at the start of the temperature rise and, concurrently, an increase in turbulence poloidal flow velocity and flow shear is measured with the beam emission spectroscopy diagnostic. For the case of a transition to an enduring internal barrier the fluctuation level remains at a reduced amplitude. The timing and nature of the temperature, rotation, and fluctuation changes leading to internal barriers suggests transport improvement due to increased shear flow arising from the zonal flow structures.
Topologically induced fractional Hall steps in the integer quantum Hall regime of MoS 2.
Islam, S K Firoz; Benjamin, Colin
2016-09-23
The quantum magnetotransport properties of a monolayer of molybdenum disulfide are derived using linear response theory. In particular, the effect of topological terms on longitudinal and Hall conductivity is analyzed. The Hall conductivity exhibits fractional steps in the integer quantum Hall regime. Further complete spin and valley polarization of the longitudinal conductivitity is seen in presence of these topological terms. Finally, the Shubnikov-de Hass oscillations are suppressed or enhanced contingent on the sign of these topological terms. PMID:27533362
Therapeutic effect of 0.1% Tacrolimus Eye Ointment in Allergic Ocular Diseases
Shitole, Satish C; Bhagat, Nupur; Patil, Deepak; Sawant, Pawan; Patil, Kalpita
2016-01-01
Introduction Allergic Ocular Diseases (AODs) like Atopic Keratoconjunctivitis (AKC) and Vernal Keratoconjunctivitis (VKC) are chronic forms of ocular allergy that can cause severe visual complications. Pathogenesis of AODs is uncertain and treatment has been a challenge for ophthalmologists. Tacrolimus, a 23-member cyclic macrolide lactone derived from [streptomyces tsukubaensis] now in ointment form has been successfully used in AODs. Aim To study the therapeutic effect of 0.1% Tacrolimus eye ointment in patients with Allergic Ocular Diseases (AODs). Materials and Methods This prospective observational study was conducted on 36 patients with severe AOD and moderate cases not responding to conventional treatment. They were treated with 0.1% tacrolimus eye ointment twice daily for minimum three months in addition to conventional treatment and observed for a period of 6 months. Symptoms and signs after treatment were evaluated. Grades of clinical signs were assessed based on slit lamp clinical photographs; development of possible complications was assessed and analysed by Wilcoxon signed rank test. Results Mean age of patients was 9.3±4.3 years and mean duration of AODs was 3.1±1.8 years. The scores on both the four point scales for signs and symptoms decreased significantly (p<0.0001) after 1 month of 0.1% Tacrolimus eye ointment treatment. Itching was the first symptom to show dramatic relief and conjunctival hyperaemia was the first sign to show improvement. 88.88% of patients were successfully weaned off topical steroids in 6 months into Tacrolimus treatment. Even in patients unresponsive to 0.1% topical Cyclosporine, symptoms and signs scores decreased significantly (p<0.0001). The most common adverse reaction was a transient burning sensation (36.11%). Conclusion Topical 0.1% Tacrolimus eye ointment was found to be a safe and effective treatment in cases of AODs and also worked as steroid sparing and replacing agent. It was also found effective in patient
Verslycke, Tim; Poelmans, Sofie; De Wasch, Katia; Vercauteren, Jordy; Devos, Christophe; Moens, Luc; Sandra, Patrick; De Brabander, Hubert F; Janssen, Colin R
2003-09-01
Current evidence suggests that the biocide tributyltin (TBT) causes the development of imposex, a state of pseudohermaphrodism in which females exhibit functional secondary male characteristics, by altering the biotransformation or elimination of testosterone. Imposex in gastropods following TBT exposure is the most complete example of the effects of an endocrine disrupter on marine invertebrates. Previous studies have demonstrated that the estuarine mysid Neomysis integer converts testosterone into multiple polar and nonpolar metabolites resulting from both phase I and phase II biotransformations. In this study, the effects of TBT chloride (TBTCl) on the phase I and II testosterone metabolism of N. integer were evaluated. The TBTCl was highly toxic to N. integer (96-h median lethal concentration [LC50] of 164 ng/L). To assess the effects on testosterone metabolism, mysids were exposed for 96 h to different concentrations of TBTCl (control, 10, 100, and 1,000 ng/L), and testosterone elimination as polar hydroxylated, nonpolar oxido-reduced, and glucose- and sulfate-conjugated metabolites was examined. The TBTCl differentially affected testosterone metabolism. The effect of TBTCl on phase I metabolism was unclear and has been shown to vary among species, likely depending on the inducibility or presence of certain P450 isozyme families. Reductase activity and metabolic androgenization were induced in the 10-ng/L treatment, whereas higher concentrations resulted in a reduction of sulfate conjugation. The exact mechanisms underlying TBT-induced imposex and alterations in the steroid metabolism need to be further elucidated. PMID:12959527
Two-dimensional integer wavelet transform with reduced influence of rounding operations
NASA Astrophysics Data System (ADS)
Strutz, Tilo; Rennert, Ines
2012-12-01
If a system for lossless compression of images applies a decorrelation step, this step must map integer input values to integer output values. This can be achieved, for example, using the integer wavelet transform (IWT). The non-linearity, introduced by the obligatory rounding steps, is the main drawback of the IWT, since it deteriorates the desired filter characteristic. This paper discusses different methods for reducing the influence of rounding in 5/3 and 9/7 filter banks. A novel combination of two-dimensional implementations of the JPEG2000 9/7 filter bank with new filter coefficients is proposed and the effects of the methods on lossless image compression are investigated. In addition, these filter banks are compared to the 9/7 Deslauriers-Dubuc filter bank (97DD). The analysed two-dimensional implementations generally perform better than their one-dimensional counterparts in terms of compression ratio for natural images. On average, the 2D 97DD filter bank performs best. In addition, it has been found that the compression results cannot be improved by simply reducing the number of lifting steps via 2D implementations of the JPEG2000 9/7 filter bank. Only the 2D implementation with a minimum number of lifting steps, in combination with modified lifting coefficients, leads to fewer bits per pixel than the separable implementation on average for a selected set of images.
Evolution of Galaxies and Their Environments at z = 0.1-3 in COSMOS
NASA Astrophysics Data System (ADS)
Scoville, N.; Arnouts, S.; Aussel, H.; Benson, A.; Bongiorno, A.; Bundy, K.; Calvo, M. A. A.; Capak, P.; Carollo, M.; Civano, F.; Dunlop, J.; Elvis, M.; Faisst, A.; Finoguenov, A.; Fu, Hai; Giavalisco, M.; Guo, Q.; Ilbert, O.; Iovino, A.; Kajisawa, M.; Kartaltepe, J.; Leauthaud, A.; Le Fèvre, O.; LeFloch, E.; Lilly, S. J.; Liu, C. T.-C.; Manohar, S.; Massey, R.; Masters, D.; McCracken, H. J.; Mobasher, B.; Peng, Y.-J.; Renzini, A.; Rhodes, J.; Salvato, M.; Sanders, D. B.; Sarvestani, B. D.; Scarlata, C.; Schinnerer, E.; Sheth, K.; Shopbell, P. L.; Smolčić, V.; Taniguchi, Y.; Taylor, J. E.; White, S. D. M.; Yan, L.
2013-05-01
Large-scale structures (LSSs) out to z < 3.0 are measured in the Cosmic Evolution Survey (COSMOS) using extremely accurate photometric redshifts (photoz). The Ks -band-selected sample (from Ultra-Vista) is comprised of 155,954 galaxies. Two techniques—adaptive smoothing and Voronoi tessellation—are used to estimate the environmental densities within 127 redshift slices. Approximately 250 statistically significant overdense structures are identified out to z = 3.0 with shapes varying from elongated filamentary structures to more circularly symmetric concentrations. We also compare the densities derived for COSMOS with those based on semi-analytic predictions for a ΛCDM simulation and find excellent overall agreement between the mean densities as a function of redshift and the range of densities. The galaxy properties (stellar mass, spectral energy distributions (SEDs), and star formation rates (SFRs)) are strongly correlated with environmental density and redshift, particularly at z < 1.0-1.2. Classifying the spectral type of each galaxy using the rest-frame b - i color (from the photoz SED fitting), we find a strong correlation of early-type galaxies (E-Sa) with high-density environments, while the degree of environmental segregation varies systematically with redshift out to z ~ 1.3. In the highest density regions, 80% of the galaxies are early types at z = 0.2 compared to only 20% at z = 1.5. The SFRs and the star formation timescales exhibit clear environmental correlations. At z > 0.8, the SFR density is uniformly distributed over all environmental density percentiles, while at lower redshifts the dominant contribution is shifted to galaxies in lower density environments. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA Inc., under NASA contract NAS 5-26555, and the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of
Epitaxial growth of celestite on barite (0 0 1) face at a molecular scale
NASA Astrophysics Data System (ADS)
Sánchez-Pastor, Nuria; Pina, Carlos M.; Astilleros, José Manuel; Fernández-Díaz, Lurdes; Putnis, Andrew
2005-05-01
In situ AFM experiments have been conducted in order to obtain information about kinetics of celestite epitaxial growth on barite. Growth has been promoted by passing aqueous solutions supersaturated with respect to celestite over freshly cleaved barite (0 0 1) surfaces. Solution supersaturation, βcelestite, was varied from 1 to 45.7 (βcelestite=a(Sr)·a(SO42-)/K). At supersaturations below 10 neither two-dimensional nucleation neither step advancement are observed on barite (0 0 1) surfaces. However, once the two-dimensional nucleation barrier is overcome ( βcelestite > 10), nuclei preferentially form on cleavage steps parallel to [1 0 0], [1 1 0] and [1 2 0] directions and more scarcely on terraces. The subsequent growth of two-dimensional nuclei leads to the development of celestite "islands". Their morphology is defined by (0 0 1) face and {2 1 0} and {1 0 0} forms and can be explained on the basis of PBC theory. The coalescence of such islands results in the formation of a homogeneous SrSO 4 layer. Growth rates along [0 0 1] direction have been measured for the whole supersaturation range. The growth rate equation for "Birth and Spread" crystal growth mechanism has been successfully fitted to our experimental data. The fitting process has provided basic growth parameters in a good agreement with theoretical ones. Both the high transitional supersaturation required for two-dimensional nucleation and the high interfacial energy value obtained from the fitting of the "Birth and Spread" equation (σ001cel-bar=0.137 J/m2) indicate low affinity of SrSO 4 growth units for barite (0 0 1) faces. This is consistent with the relative high mismatch between celestite and barite structure. The behaviour of the epitaxial growth described in this work can help to interpret the oscillatory zoning frequently occurring in both natural and synthetic crystals of the Ba xSr 1- xSO 4 solid solution.
Fermi Large Area Telescope Observations of the Supernova Remnant G8.7-0.1
Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R.D.; Bloom, E.D.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G.A.; Cameron, R.A.; Caraveo, P.A.; /more authors..
2012-09-14
We present a detailed analysis of the GeV gamma-ray emission toward the supernova remnant (SNR) G8.7-0.1 with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. An investigation of the relationship between G8.7-0.1 and the TeV unidentified source HESS J1804-216 provides us with an important clue on diffusion process of cosmic rays if particle acceleration operates in the SNR. The GeV gamma-ray emission is extended with most of the emission in positional coincidence with the SNR G8.7-0.1 and a lesser part located outside the western boundary of G8.7-0.1. The region of the gamma-ray emission overlaps spatially connected molecular clouds, implying a physical connection for the gamma-ray structure. The total gamma-ray spectrum measured with LAT from 200 MeV-100 GeV can be described by a broken power-law function with a break of 2.4 {+-} 0.6 (stat) {+-} 1.2 (sys) GeV, and photon indices of 2.10 {+-} 0.06 (stat) {+-} 0.10 (sys) below the break and 2.70 {+-} 0.12 (stat) {+-} 0.14 (sys) above the break. Given the spatial association among the gamma rays, the radio emission of G8.7-0.1, and the molecular clouds, the decay of p0s produced by particles accelerated in the SNR and hitting the molecular clouds naturally explains the GeV gamma-ray spectrum. We also find that the GeV morphology is not well represented by the TeV emission from HESS J1804-216 and that the spectrum in the GeV band is not consistent with the extrapolation of the TeV gamma-ray spectrum. The spectral index of the TeV emission is consistent with the particle spectral index predicted by a theory that assumes energy-dependent diffusion of particles accelerated in an SNR. We discuss the possibility that the TeV spectrum originates from the interaction of particles accelerated in G8.7-0.1 with molecular clouds, and we constrain the diffusion coefficient of the particles.
FERMI LARGE AREA TELESCOPE OBSERVATIONS OF THE SUPERNOVA REMNANT G8.7-0.1
Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Buehler, R.; Cameron, R. A.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Ballet, J.; Bastieri, D.; Buson, S.; Bonamente, E.; Brigida, M.; Bruel, P.; and others
2012-01-01
We present a detailed analysis of the GeV gamma-ray emission toward the supernova remnant (SNR) G8.7-0.1 with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. An investigation of the relationship between G8.7-0.1 and the TeV unidentified source HESS J1804-216 provides us with an important clue on diffusion process of cosmic rays if particle acceleration operates in the SNR. The GeV gamma-ray emission is extended with most of the emission in positional coincidence with the SNR G8.7-0.1 and a lesser part located outside the western boundary of G8.7-0.1. The region of the gamma-ray emission overlaps spatially connected molecular clouds, implying a physical connection for the gamma-ray structure. The total gamma-ray spectrum measured with LAT from 200 MeV-100 GeV can be described by a broken power-law function with a break of 2.4 {+-} 0.6 (stat) {+-} 1.2 (sys) GeV, and photon indices of 2.10 {+-} 0.06 (stat) {+-} 0.10 (sys) below the break and 2.70 {+-} 0.12 (stat) {+-} 0.14 (sys) above the break. Given the spatial association among the gamma rays, the radio emission of G8.7-0.1, and the molecular clouds, the decay of {pi}{sup 0}s produced by particles accelerated in the SNR and hitting the molecular clouds naturally explains the GeV gamma-ray spectrum. We also find that the GeV morphology is not well represented by the TeV emission from HESS J1804-216 and that the spectrum in the GeV band is not consistent with the extrapolation of the TeV gamma-ray spectrum. The spectral index of the TeV emission is consistent with the particle spectral index predicted by a theory that assumes energy-dependent diffusion of particles accelerated in an SNR. We discuss the possibility that the TeV spectrum originates from the interaction of particles accelerated in G8.7-0.1 with molecular clouds, and we constrain the diffusion coefficient of the particles.
A complete radio study of SNR G15.4+0.1 from new GMRT observations
NASA Astrophysics Data System (ADS)
Supan, L.; Castelletti, G.; Joshi, B. C.; Surnis, M. P.; Supanitsky, D.
2015-04-01
Aims: The supernova remnant (SNR) G15.4+0.1 is considered to be the possible counterpart of the γ-ray source HESS J1818-154. With the goal of getting a complete view of this remnant and understanding the nature of the γ-ray flux, we conducted a detailed radio study that includes the search for pulsations and a model of the broadband emission for the SNR G15.4+0.1/HESS J1818-154 system. Methods: Low-frequency imaging at 624 MHz and pulsar observations at 624 and 1404 MHz towards G15.4+0.1 were carried out with the Giant Metrewave Radio Telescope (GMRT). We correlated the new radio data with observations of the source at X-ray and infrared wavelengths from XMM-Newton and Herschel observatories, respectively. To characterize the neutral hydrogen (HI) medium towards G15.4+0.1, we used data from the Southern Galactic Plane Survey. We modelled the spectral energy distribution (SED) using both hadronic and leptonic scenarios. Results: From the combination of the new GMRT observations with existing data, we derived a continuum spectral index α = -0.62 ± 0.03 for the whole remnant. The local synchrotron spectra of G15.4+0.1, calculated from the combination of the GMRT data with 330 MHz observations from the Very Large Array, tends to be flatter in the central part of the remnant, accompanying the region where the blast wave is impinging molecular gas. No spectral index trace was found indicating the radio counterpart to the pulsar wind nebula proposed from X-ray observations. In addition, the search for radio pulsations yielded negative results. Emission at far-infrared wavelengths is observed in the region where the SNR shock is interacting with dense molecular clumps. We also identified HI features forming a shell that wraps most of the outer border of G15.4+0.1. Characteristic parameters were estimated for the shocked HI gas. We found that either a purely hadronic or leptonic model is compatible with the broadband emission known so far.
Fermi Large Area Telescope Observations of the Supernova Remnant G8.7-0.1
NASA Astrophysics Data System (ADS)
Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Charles, E.; Chekhtman, A.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Cutini, S.; de Angelis, A.; de Palma, F.; Dermer, C. D.; Silva, E. do Couto e.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Frailis, M.; Fukazawa, Y.; Fukui, Y.; Fusco, P.; Gargano, F.; Gasparrini, D.; Germani, S.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grove, J. E.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashi, K.; Hays, E.; Itoh, R.; Jóhannesson, G.; Johnson, A. S.; Kamae, T.; Katagiri, H.; Kataoka, J.; Knödlseder, J.; Kubo, H.; Kuss, M.; Lande, J.; Latronico, L.; Lee, S.-H.; Lionetto, A. M.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Mazziotta, M. N.; Mehault, J.; Michelson, P. F.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Naumann-Godo, M.; Nishino, S.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohno, M.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ormes, J. F.; Paneque, D.; Parent, D.; Pelassa, V.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Porter, T. A.; Rainò, S.; Rando, R.; Reimer, A.; Reimer, O.; Reposeur, T.; Roth, M.; Sadrozinski, H. F.-W.; Sgrò, C.; Siskind, E. J.; Smith, P. D.; Spandre, G.; Spinelli, P.; Suson, D. J.; Tajima, H.; Takahashi, H.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Tibaldo, L.; Tibolla, O.; Torres, D. F.; Tosti, G.; Tramacere, A.; Troja, E.; Uchiyama, Y.; Uehara, T.; Usher, T. L.; Vandenbroucke, J.; Van Etten, A.; Vasileiou, V.; Vianello, G.; Vilchez, N.; Vitale, V.; Waite, A. P.; Wang, P.; Winer, B. L.; Wood, K. S.; Yamamoto, H.; Yamazaki, R.; Yang, Z.; Yasuda, H.; Ziegler, M.; Zimmer, S.
2012-01-01
We present a detailed analysis of the GeV gamma-ray emission toward the supernova remnant (SNR) G8.7-0.1 with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. An investigation of the relationship between G8.7-0.1 and the TeV unidentified source HESS J1804-216 provides us with an important clue on diffusion process of cosmic rays if particle acceleration operates in the SNR. The GeV gamma-ray emission is extended with most of the emission in positional coincidence with the SNR G8.7-0.1 and a lesser part located outside the western boundary of G8.7-0.1. The region of the gamma-ray emission overlaps spatially connected molecular clouds, implying a physical connection for the gamma-ray structure. The total gamma-ray spectrum measured with LAT from 200 MeV-100 GeV can be described by a broken power-law function with a break of 2.4 ± 0.6 (stat) ± 1.2 (sys) GeV, and photon indices of 2.10 ± 0.06 (stat) ± 0.10 (sys) below the break and 2.70 ± 0.12 (stat) ± 0.14 (sys) above the break. Given the spatial association among the gamma rays, the radio emission of G8.7-0.1, and the molecular clouds, the decay of π0s produced by particles accelerated in the SNR and hitting the molecular clouds naturally explains the GeV gamma-ray spectrum. We also find that the GeV morphology is not well represented by the TeV emission from HESS J1804-216 and that the spectrum in the GeV band is not consistent with the extrapolation of the TeV gamma-ray spectrum. The spectral index of the TeV emission is consistent with the particle spectral index predicted by a theory that assumes energy-dependent diffusion of particles accelerated in an SNR. We discuss the possibility that the TeV spectrum originates from the interaction of particles accelerated in G8.7-0.1 with molecular clouds, and we constrain the diffusion coefficient of the particles.
Chen, Diyi; Zhang, Runfan; Sprott, J C; Chen, Haitao; Ma, Xiaoyi
2012-06-01
In this paper, we focus on the synchronization between integer-order chaotic systems and a class of fractional-order chaotic system using the stability theory of fractional-order systems. A new sliding mode method is proposed to accomplish this end for different initial conditions and number of dimensions. More importantly, the vector controller is one-dimensional less than the system. Furthermore, three examples are presented to illustrate the effectiveness of the proposed scheme, which are the synchronization between a fractional-order Chen chaotic system and an integer-order T chaotic system, the synchronization between a fractional-order hyperchaotic system based on Chen's system and an integer-order hyperchaotic system, and the synchronization between a fractional-order hyperchaotic system based on Chen's system and an integer-order Lorenz chaotic system. Finally, numerical results are presented and are in agreement with theoretical analysis.
Sensors closeness test based on an improved [0, 1] bounded Mahalanobis distance Δ2
NASA Astrophysics Data System (ADS)
Masnan, Maz Jamilah; Mahat, Nor Idayu; Shakaff, Ali Yeon Md; Abdullah, Abu Hassan
2015-12-01
Mahalanobis distance Δ2 values are commonly in the range of 0 to +∞ where higher values represent greater distance between class means or points. The increase in Mahalanobis distance is unbounded as the distance multiply. To certain extend, the unbounded distance values pose difficulties in the evaluation and decision for instance in the sensors closeness test. This paper proposes an approach to [0, 1] bounded Mahalanobis distance Δ2 that enable researcher to easily perform sensors closeness test. The experimental data of four different types of rice based on three different electronic nose sensors namely InSniff, PEN3, and Cyranose320 were analyzed and sensor closeness test seems successfully performed within the [0, 1] bound.
Sensors closeness test based on an improved [0, 1] bounded Mahalanobis distance Δ{sup 2}
Masnan, Maz Jamilah; Mahat, Nor Idayu; Shakaff, Ali Yeon Md Abdullah, Abu Hassan
2015-12-11
Mahalanobis distance Δ{sup 2} values are commonly in the range of 0 to +∞ where higher values represent greater distance between class means or points. The increase in Mahalanobis distance is unbounded as the distance multiply. To certain extend, the unbounded distance values pose difficulties in the evaluation and decision for instance in the sensors closeness test. This paper proposes an approach to [0, 1] bounded Mahalanobis distance Δ{sup 2} that enable researcher to easily perform sensors closeness test. The experimental data of four different types of rice based on three different electronic nose sensors namely InSniff, PEN3, and Cyranose320 were analyzed and sensor closeness test seems successfully performed within the [0, 1] bound.
Preparation of {0 1 0}-faceted anatase TiO2 nanocuboids from peroxotitanium complex solution
NASA Astrophysics Data System (ADS)
Miao, Yigao; Gao, Jiacheng
2012-12-01
{0 1 0}-faceted anatase TiO2 nanocuboids have been fabricated by hydrothermal route using peroxotitanium complex solution as precursor. The effects of reaction time, the amount of urea and temperature on the formation of {0 1 0}-faceted anatase TiO2 were characterized by XRD, FESEM and TEM. The growth mechanism of nanocuboids was proposed that the nanocuboids were formed by the transition from H2Ti2O5·H2O phase to anatase TiO2 in the basic condition. The photocatalytic performance of the prepared samples was tested in the degradation of Rhodamine B and the anatase nanocuboids exhibited enhanced photocatalytic activity compared with the standard P25 powders.
Growth Rate of Cosmological Perturbations at z∼0.1 from a New Observational Test.
Feix, Martin; Nusser, Adi; Branchini, Enzo
2015-07-01
Spatial variations in the distribution of galaxy luminosities, estimated from redshifts as distance proxies, are correlated with the peculiar velocity field. Comparing these variations with the peculiar velocities inferred from galaxy redshift surveys is a powerful test of gravity and dark-energy theories on cosmological scales. Using ∼2×10(5) galaxies from the SDSS Data Release 7, we perform this test in the framework of gravitational instability to estimate the normalized growth rate of density perturbations fσ8=0.37±0.13 at z∼0.1, which is in agreement with the cold dark matter model with a cosmological constant. This unique measurement is complementary to those obtained with more traditional methods, including clustering analysis. The estimated accuracy at z∼0.1 is competitive with other methods when applied to similar data sets. PMID:26182087
Finite temperature studies of Te adsorption on Si(0 0 1)
NASA Astrophysics Data System (ADS)
Sen, Prasenjit; Ciraci, S.; Batra, Inder P.; Grein, C. H.; Sivananthan, S.
2002-11-01
We perform first principles density functional calculations to investigate the adsorption of Te on the Si(0 0 1) surface from low coverage up to a monolayer coverage. At low coverage, a Te atom is adsorbed on top of the Si surface dimer bond. At higher coverages, Te atoms adsorption causes the Si-Si dimer bond to break, lifting the (2×1) reconstruction. We find no evidence of the Te-Te dimer bond formation as a possible source of the (2×1) reconstruction at a monolayer coverage. Finite temperature ab initio molecular dynamics calculations show that Te covered Si(0 0 1) surfaces do not have any definitive reconstruction. Vibrations of the bridged Te atoms in the strongly anharmonic potentials prevent the reconstruction structure from attaining any permanent, two-dimensional periodic geometry. This explains why experiments attempting to find a definite model for the reconstruction reached conflicting conclusions.
Phonon dispersion of silicene on ZrB2(0 0 0 1).
Aizawa, T; Suehara, S; Otani, S
2015-08-01
We measured the phonon dispersion of silicene (monolayer Si with a honeycomb lattice) on ZrB2(0 0 0 1) using high-resolution electron energy loss spectroscopy. The measured phonon dispersion was compared with ab initio density functional theory calculations for a silicene model with [Formula: see text] periodicity of the substrate. The most stable [Formula: see text] silicene structure, which is similar to the so-called 'planar-like' model (Lee C C et al 2013 Phys. Rev. B 88 165404) reproduced the observed phonon modes very well. The recently reported soft phonon around the [Formula: see text] point (Lee C C et al 2014 Phys. Rev. B 90 241402(R)) was not reproduced, either experimentally or theoretically. The calculated electronic structure revealed that the silicene was metallic on ZrB2(0 0 0 1) and semiconducting on ZrC(1 1 1).
Geometric modeling of homoepitaxial CVD diamond growth: I. The {1 0 0}{1 1 1}{1 1 0}{1 1 3} system
NASA Astrophysics Data System (ADS)
Silva, F.; Bonnin, X.; Achard, J.; Brinza, O.; Michau, A.; Gicquel, A.
2008-01-01
Plasma-assisted CVD homoepitaxial diamond growth is a process that must satisfy many stringent requirements to meet industrial applications, particularly in high-power electronics. Purity control and crystalline quality of the obtained samples are of paramount importance and their optimization is a subject of active research. In the process of such studies, we have obtained high purity CVD diamond monocrystals with unusual morphologies, namely with apparent {1 1 3} stable faces. This phenomenon has led us to examine the process of CVD diamond growth and build up a 3D geometrical model, presented here, describing the film growth as a function of time. The model has been able to successfully describe the morphology of our obtained crystals and can be used as a predictive tool to predetermine the shape and size of a diamond crystal grown in a given process configuration. This renders accessible control of desirable properties such as largest usable diamond surface area and/or film thickness, before the cutting and polishing manufacture steps take place. The two latter steps are more sensitive to the geometry of the growth sectors, which will be addressed in a companion paper. Our model, applicable to the growth of any cubic lattice material, establishes a complete mapping of the final morphology state of growing diamond, as a function of the growth rates of the crystalline planes considered, namely {1 0 0}, {1 1 1}, {1 1 0}, and {1 1 3} planes, all of which have been observed experimentally in diamond films. The model makes no claim as to the stability of the obtained faces, such as the occurrence of non-epitaxial crystallites or twinning. It is also possible to deduce transient behavior of the crystal morphology as growth time is increased. The model conclusions are presented in the form of a series of diagrams, which trace the existence (and dominance) boundaries of each face type, in presence of the others, and where each boundary crossing represent a topology
Analgesic effect of topical sodium diclofenac 0.1% drops during retinal laser photocoagulation
Weinberger, D.; Ron, Y.; Lichter, H.; Rosenblat, I.; Axer-Siegel, R.; Yassur, Y.
2000-01-01
AIMS—To evaluate the analgesic effect of topical sodium diclofenac 0.1% during retinal laser photocoagulation. METHODS—87 patients, 45 with proliferative diabetic retinopathy treated with two sessions of panretinal photocoagulation (group A), and 42 patients with non-proliferative diabetic retinopathy who underwent grid treatment of the posterior pole (19 bilaterally) (group B). Sodium diclofenac 0.1% or sodium chloride 0.9% drops were topically applied 30-135 minutes before laser treatment in a masked fashion. Patients who had two sessions were given the alternate drug in the second one. Pain level was evaluated immediately after laser treatment with the visual analogue scale (VAS). The results were statistically analysed. RESULTS—Patients in group A reported pain in 85/90 sessions (94%). The average pain level was 44.2% with sodium diclofenac 0.1% drops and 53.1% with sodium chloride 0.9% drops (p = 0.011 by paired t test). Patients in group B reported pain in only 16/60 sessions (26.7%), and the pain level ranged from 10% to 60% regardless of the kind of drops used. There was no correlation in either group between level of pain and time interval from application of the drops to laser treatment (30-135 minutes) or average energy level used (100-500 mW). CONCLUSION—Sodium diclofenac 0.1% is useful for pain reduction and should be applied before panretinal photocoagulation. PMID:10655186
Methylchloride adsorbed on Si(0 0 1): an ab initio study
NASA Astrophysics Data System (ADS)
Preuss, M.; Schmidt, W. G.; Seino, K.; Bechstedt, F.
2004-07-01
We present ab initio calculations of the adsorption of methylchloride (CH 3Cl) on Si(0 0 1). Among multiple plausible adsorption geometries, we find five thermodynamically favorable configurations. These lead to strong geometrical changes in the Si surface structure as well as to significant charge transfer processes. The stability of the adsorption structures is discussed in terms of electrostatics. The results are compared to recent experimental and theoretical findings.
Chemisorption of a molecular oxygen on the UN(0 0 1) surface: Ab initio calculations
NASA Astrophysics Data System (ADS)
Zhukovskii, Yu. F.; Bocharov, D.; Kotomin, E. A.
2009-09-01
The results of DFT GGA calculations on oxygen molecules adsorbed upon the (0 0 1) surface of uranium mononitride (UN) are presented and discussed. We demonstrate that O 2 molecules oriented parallel to the substrate can dissociate either (i) spontaneously when the molecular center lies above the surface hollow site or atop N ion, (ii) with the activation barrier when a molecule sits atop the surface U ion. This explains fast UN oxidation in air.
Solar Wind ~0.1-1.5 keV Electrons at Quiet Times
NASA Astrophysics Data System (ADS)
Tao, J.; Wang, L.; Zong, Q. G.; Li, G.; He, J.; Tu, C.; Wimmer-Schweingruber, R. F.; Salem, C. S.; Yang, L.
2015-12-01
Solar wind halo/strahl electrons carry important information on the formation of suprathermal electrons in the solar wind. Here we present a statistical survey on the energy spectrum of 0.1-1.5 keV electrons observed by WIND/3DP in the solar wind during quiet times at solar minimum and maximum of solar cycle 23 and 24. First, we separate strahl electrons from halo electrons according to their different behaviors in the angular distribution. Secondly, we fit the observed energy spectrum of halo/strahl electrons at 0.1-1.5 keV to a kappa distribution function with an index κ and effective temperature Teff. We also integrate the electron measurements to obtain the number density n of halo/strahl electrons at 0.1-1.5 keV. We find a strong positive correlation between κ and Teff for both halo and strahl electrons. For strahl electrons, the index κ (number density n) appears to decrease (increase) with increasing solar activity. For halo electrons, the index κ also decreases with increasing solar activity, while the number density n shows no clear solar-cycle variation. Based on a simple model, we find that the escape of thermal electrons from the coronal region with a higher temperature T could lead to a larger κ for the 0.1-1.5 keV electrons measured in the solar wind, if T > ~0.73×106 K. These results suggest that strahl electrons are likely related to the escaping thermal electrons from different regions in the hot corona, while halo electrons are probably formed due to the scatter/acceleration of strahl electrons in the interplanetary medium.
BOLD fractional contribution to resting-state functional connectivity above 0.1 Hz.
Chen, Jingyuan E; Glover, Gary H
2015-02-15
Blood oxygen level dependent (BOLD) spontaneous signals from resting-state (RS) brains have typically been characterized by low-pass filtered timeseries at frequencies ≤ 0.1 Hz, and studies of these low-frequency fluctuations have contributed exceptional understanding of the baseline functions of our brain. Very recently, emerging evidence has demonstrated that spontaneous activities may persist in higher frequency bands (even up to 0.8 Hz), while presenting less variable network patterns across the scan duration. However, as an indirect measure of neuronal activity, BOLD signal results from an inherently slow hemodynamic process, which in fact might be too slow to accommodate the observed high-frequency functional connectivity (FC). To examine whether the observed high-frequency spontaneous FC originates from BOLD contrast, we collected RS data as a function of echo time (TE). Here we focus on two specific resting state networks - the default-mode network (DMN) and executive control network (ECN), and the major findings are fourfold: (1) we observed BOLD-like linear TE-dependence in the spontaneous activity at frequency bands up to 0.5 Hz (the maximum frequency that can be resolved with TR=1s), supporting neural relevance of the RSFC at a higher frequency range; (2) conventional models of hemodynamic response functions must be modified to support resting state BOLD contrast, especially at higher frequencies; (3) there are increased fractions of non-BOLD-like contributions to the RSFC above the conventional 0.1 Hz (non-BOLD/BOLD contrast at 0.4-0.5 Hz is ~4 times that at <0.1 Hz); and (4) the spatial patterns of RSFC are frequency-dependent. Possible mechanisms underlying the present findings and technical concerns regarding RSFC above 0.1 Hz are discussed.
Beamline 9.0.1 - a high-resolution undulator beamline for gas-phase spectroscopy
Bozek, J.D.; Heimann, P.A.; Mossessian, D.
1997-04-01
Beamline 9.0.1 at the Advanced Light Source is an undulator beamline with a Spherical Grating Monochromator (SGM) which provides very high resolution and flux over the photon energy range 20-320eV. The beamline has been used primarily by the atomic and molecular science community to conduct spectroscopy experiments using electron, ion and fluorescence photon detection. A description of the beamline and its performance will be provided in this abstract.
Some numerical reslts on best uniform polynomial approximation of. chi. sup. alpha. on (0,1)
Carpenter, A.J.; Varga, R.S.
1992-01-01
Let {alpha} be a positive number, and let E{sub n}(chi{sup {alpha}}; (0,1)) denote the error of best uniform approximation to {chi}{sup {alpha}}, by polynomials of degree at most n, on the interval (0,1). The Russian mathematician S.N. Bernstein established the existence of a nonnegative constant {Beta}({alpha}) such that {Beta}({alpha}):= {sub n{yields}{infinity}lim(2n){sup 2{alpha}}E{sub n}({chi}{sup {alpha}};(0.1)). In addition, Bernstein showed that {Beta}{alpha} < {Gamma}(2{alpha}){vert bar}sin(pi}{alpha}){vert bar}/{pi} ({alpha} > 0) and that {Gamma}(2{alpha}){vert bar}sin({pi}{alpha}){vert bar}/{pi} (1{minus}1/2{alpha}{minus}1) < {Beta}({alpha}) ({alpha} > {1/2}), so that the asymptotic behavior of {Beta}({alpha}) is known when {alpha}{yields}{infinity}. Still, the problem of trying to determine {Beta}({alpha}) more precisely, for all {alpha} > 0, is intriguing. To this end, we have rigorously determined the numbers for thirteen values of {alpha}, where these numbers were calculated with a precision of at least 200 significant digits. For each of these thirteen values of {alpha}, Richardson's extrapolation was applied to the products to obtain estimates of {Beta}({alpha}) to approximately 40 decimal places. Included are graphs of the points ({alpha},{Beta}({alpha})) for the thirteen values of {alpha} that we considered.
Solar wind ˜0.1-1.5 keV electrons at quiet times
NASA Astrophysics Data System (ADS)
Tao, Jiawei; Wang, Linghua; Zong, Qiugang; Li, Gang; Salem, Chadi S.; Wimmer-Schweingruber, Robert F.; He, Jiansen; Tu, Chuanyi; Bale, Stuart D.
2016-03-01
We present a statistical survey of the energy spectrum of solar wind suprathermal (˜0.1-1.5 keV) electrons measured by the WIND 3-D Plasma & Energetic Particle (3DP) instrument at 1 AU during quiet times at the minimum and maximum of solar cycles 23 and 24. Firstly, we separate strahl (beaming) electrons and halo (isotropic) electrons based on their features in pitch angle distributions. Secondly, we fit the observed energy spectrum of both the strahl and halo electrons at ˜0.1-1.5 keV to a Kappa distribution function with an index κ, effective temperature Teff and density n0. We also integrate the the measurements over ˜0.1-1.5 keV to obtain the average electron energy Eavg of the strahl and halo. We find a strong positive correlation between κ and Teff for both the strahl and halo, possibly reflecting the nature of the generation of these suprathermal electrons. Among the 245 selected samples, ˜68% have the halo κ smaller than the strahl κ, while ˜50% have the halo Eh larger than the strahl Es.
Approximating the 0-1 Multiple Knapsack Problem with Agent Decomposition and Market Negotiation
Smolinski, B.
1999-09-03
The 0-1 multiple knapsack problem appears in many domains from financial portfolio management to cargo ship stowing. Methods for solving it range from approximate algorithms, such as greedy algorithms, to exact algorithms, such as branch and bound. Approximate algorithms have no bounds on how poorly they perform and exact algorithms can suffer from exponential time and space complexities with large data sets. This paper introduces a market model based on agent decomposition and market auctions for approximating the 0-1 multiple knapsack problem, and an algorithm that implements the model (M(x)). M(x) traverses the solution space rather than getting caught in a local maximum, overcoming an inherent problem of many greedy algorithms. The use of agents ensures that infeasible solutions are not considered while traversing the solution space and that traversal of the solution space is not just random, but is also directed. M(x) is compared to a bound and bound algorithm (BB) and a simple greedy algorithm with a random shuffle (G(x)). The results suggest that M(x) is a good algorithm for approximating the 0-1 Multiple Knapsack problem. M(x) almost always found solutions that were close to optimal in a fraction of the time it took BB to run and with much less memory on large test data sets. M(x) usually performed better than G(x) on hard problems with correlated data.
Colours and luminosities of z = 0.1 galaxies in the EAGLE simulation
NASA Astrophysics Data System (ADS)
Trayford, James W.; Theuns, Tom; Bower, Richard G.; Schaye, Joop; Furlong, Michelle; Schaller, Matthieu; Frenk, Carlos S.; Crain, Robert A.; Dalla Vecchia, Claudio; McCarthy, Ian G.
2015-09-01
We calculate the colours and luminosities of redshift z = 0.1 galaxies from the EAGLE simulation suite using the GALAXEV population synthesis models. We take into account obscuration by dust in birth clouds and diffuse interstellar medium using a two-component screen model, following the prescription of Charlot and Fall. We compare models in which the dust optical depth is constant to models where it depends on gas metallicity, gas fraction and orientation. The colours of EAGLE galaxies for the more sophisticated models are in broad agreement with those of observed galaxies. In particular, EAGLE produces a red sequence of passive galaxies and a blue cloud of star-forming galaxies, with approximately the correct fraction of galaxies in each population and with g - r colours within 0.1 mag of those observed. Luminosity functions from ultraviolet to near-infrared wavelengths differ from observations at a level comparable to systematic shifts resulting from a choice between Petrosian and Kron photometric apertures. Despite the generally good agreement there are clear discrepancies with observations. The blue cloud of EAGLE galaxies extends to somewhat higher luminosities than in the data, consistent with the modest underestimate of the passive fraction in massive EAGLE galaxies. There is also a moderate excess of bright blue galaxies compared to observations. The overall level of agreement with the observed colour distribution suggests that EAGLE galaxies at z = 0.1 have ages, metallicities and levels of obscuration that are comparable to those of observed galaxies.
Effect of 0.1 at. pct Zirconium on the cyclic oxidation resistance of beta-NiAl
NASA Technical Reports Server (NTRS)
Barrett, Charles A.
1988-01-01
The effect of 0.1 at. pct Zr on the cyclic oxidation of hipped beta-NiAl was studied. Oxidation testing was performed in static air at 1100-1200 C, using 1-hr exposure cycles for test times up to 3000 hr. The weight change versus time data were modeled with the COSP computer program to analyze and predict cyclic-oxidation behavior. Zr additions significantly change the nature of the scale-spalling process during cooling, so that the oxide spalls near the oxide-air interface at a relatively low depth within the scale. Without Zr, the predominantly alpha-Al2O3 scale tends to spall randomly to bare metal at relatively high effective-scale-loss rates, particularly at 1150 C and 1200 C. This leads to higher rates of Al consumption for the Zr-free aluminide and much earlier depletion of Al, leading to eventual breakaway (i.e., failure).
Fermi Large Area Telescope Observations of the Supernova Remnant GS.7-0.1
NASA Technical Reports Server (NTRS)
Ferrara, E. C.; Hays, E.; Troja, E.; Moiseev, A. A.
2012-01-01
We present a detailed analysis of the GeV gamma-ray emission toward the supernova remnant (SNR) G8.7-0.1 with the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope. An investigation of the relationship among G8.7-0.1 and the TeV unidentified source HESS J1804-216 provides us with an important clue on diffusion process of cosmic rays if particle acceleration operates in the SNR. The GeV gamma-ray emission is extended with most of the emission in positional coincidence with the SNR G8.7-0.1 and a lesser part located outside the western boundary of G8.7-0.1. The region of the gamma-ray emission overlaps spatially-connected molecular clouds, implying a physical connection for the gamma-ray structure. The total gamma-ray spectrum measured with LAT from 200 MeV-100 GeV can be described by a broken power-law function with a break of 2.4 +/- 0.6 (stat) +/- 1.2 (sys) GeV, and photon indices of2.10 +/- 0.06 (stat) +/- 0.10 (sys) below the break and 2.70 +/- 0.12 (stat) +/- 0.14 (sys) above the break. Given the spatial association among the gamma rays, the radio emission ofG8.7-0.1, and the molecular clouds, the decay of pions produced by particles accelerated in the SNR and hitting the molecular clouds naturally explains the GeV gamma-ray spectrum. We also find that the GeV morphology is not well represented by the TeV emission from HESS Jl804-2l6 and that the spectrum in the Ge V band is not consistent with the extrapolation of the TeV gamma-ray spectrum. The spectral index of the TeV emission is consistent with the particle spectral index predicted by a theory that assumes energy-dependent diffusion of particles accelerated in an SNR. We discuss the possibility that the TeV-spectrum originates from the interaction of particles accelerated in G8.7-0.l with molecular clouds, and we constrain the diffusion coefficient of the particles.
ERIC Educational Resources Information Center
Community College Journal, 1996
1996-01-01
Includes a collection of eight short articles describing model community college programs. Discusses a literacy program, a mobile computer classroom, a support program for at-risk students, a timber-harvesting program, a multimedia presentation on successful women graduates, a career center, a collaboration with NASA, and an Israeli engineering…
NASA Astrophysics Data System (ADS)
Deng, Nianpei
The two dimensional electron gas subjected to a magnetic field has been a model system in contemporary condensed matter physics which generated many beautiful experiments as well as novel fundamental concepts. These novel concepts are of broad interests and have benefited other fields of research. For example, the observations of conventional odd-denominator fractional quantum Hall states have enriched many-body physics with important concepts such as fractional statistics and composite fermions. The subsequent discovery of the enigmatic even-denominator nu=5/2 fractional quantum Hall state has led to more interesting concepts such as non-Abelian statistics and pairing of composite fermions which can be intimately connected to the electron pairing in superconductivity. Moreover, the observations of stripe phases and reentrant integer quantum Hall states have stimulated research on exotic electron solids which have more intricate structures than the Wigner Crystal. In contrast to fractional quantum Hall states and stripes phases, the reentrant integer quantum Hall states are very little studied and their ground states are the least understood. There is a lack of basic information such as exact filling factors, temperature dependence and energy scales for the reentrant integer quantum Hall states. A critical experimental condition in acquiring this information is a stable ultra-low temperature environment. In the first part of this dissertation, I will discuss our unique setup of 3He immersion cell in a state-of-art dilution refrigerator which achieves the required stability of ultra-low temperature. With this experimental setup, we are able to observe for the first time very sharp magnetotransport features of reentrant integer quantum Hall states across many Landau levels for the first time. I will firstly present our results in the second Landau level. The temperature dependence measurements reveal a surprisingly sharp peak signature that is unique to the reentrant
Newell, Peter D; Yoshioka, Shiro; Hvorecny, Kelli L; Monds, Russell D; O'Toole, George A
2011-09-01
Cyclic di-GMP (c-di-GMP) is a broadly conserved, intracellular second-messenger molecule that regulates biofilm formation by many bacteria. The synthesis of c-di-GMP is catalyzed by diguanylate cyclases (DGCs) containing the GGDEF domain, while its degradation is achieved through the phosphodiesterase activities of EAL and HD-GYP domains. c-di-GMP controls biofilm formation by Pseudomonas fluorescens Pf0-1 by promoting the cell surface localization of a large adhesive protein, LapA. LapA localization is regulated posttranslationally by a c-di-GMP effector system consisting of LapD and LapG, which senses cytoplasmic c-di-GMP and modifies the LapA protein in the outer membrane. Despite the apparent requirement for c-di-GMP for biofilm formation by P. fluorescens Pf0-1, no DGCs from this strain have been characterized to date. In this study, we undertook a systematic mutagenesis of 30 predicted DGCs and found that mutations in just 4 cause reductions in biofilm formation by P. fluorescens Pf0-1 under the conditions tested. These DGCs were characterized genetically and biochemically to corroborate the hypothesis that they function to produce c-di-GMP in vivo. The effects of DGC gene mutations on phenotypes associated with biofilm formation were analyzed. One DGC preferentially affects LapA localization, another DGC mainly controls swimming motility, while a third DGC affects both LapA and motility. Our data support the conclusion that different c-di-GMP-regulated outputs can be specifically controlled by distinct DGCs.
Acitretin systemic and retinoic acid 0.1% cream supression of basal cell carcinoma
Zhang, Xi-Bao; Zhang, San-Quan; Li, Chang-Xing; Huang, Zhen-Ming; Luo, Yu-Wu
2010-01-01
Retinoids have been used for years as monotherapy and/or in combination for treatment and suppression of cutaneous malignancies in patients with basal cell nevus syndrome, xeroderma pigmentosum, or cutaneous T-cell lymphoma (CTCL) basal cell carcinoma (BCC). We report 4 cases with BCC confirmed by histopathology who were treated by short-term systemic acitretin combined with retinoic acid 0.1% cream. The 4 cases with BCC showed good response to the treatment without severe adverse effects during treatment and follow-up. The finding suggests that acitretin may be an appropriate treatment option for elderly patients who require less invasive treatment for BCC. PMID:25386240
a Genetic Algorithm Based on Sexual Selection for the Multidimensional 0/1 Knapsack Problems
NASA Astrophysics Data System (ADS)
Varnamkhasti, Mohammad Jalali; Lee, Lai Soon
In this study, a new technique is presented for choosing mate chromosomes during sexual selection in a genetic algorithm. The population is divided into groups of males and females. During the sexual selection, the female chromosome is selected by the tournament selection while the male chromosome is selected based on the hamming distance from the selected female chromosome, fitness value or active genes. Computational experiments are conducted on the proposed technique and the results are compared with some selection mechanisms commonly used for solving multidimensional 0/1 knapsack problems published in the literature.
Vacancy diffusion in the Cu( 0 0 1 ) surface II: Random walk theory
NASA Astrophysics Data System (ADS)
Somfai, E.; van Gastel, R.; van Albada, S. B.; van Saarloos, W.; Frenken, J. W. M.
2002-12-01
We develop a version of the vacancy mediated tracer diffusion model, which follows the properties of the physical system of In atoms diffusing within the top layer of Cu(0 0 1) terraces. This model differs from the classical tracer diffusion problem in that (i) the lattice is finite, (ii) the boundary is a trap for the vacancy, and (iii) the diffusion rate of the vacancy is different, in our case strongly enhanced, in the neighborhood of the tracer atom. A simple continuum solution is formulated for this problem, which together with the numerical solution of the discrete model compares well with our experimental results.
DFT study of methanol adsorption and dissociation on β-Mo 2C(0 0 1)
NASA Astrophysics Data System (ADS)
Pistonesi, C.; Juan, A.; Farkas, A. P.; Solymosi, F.
2008-07-01
We have studied the adsorption and dissociation of methanol on β-Mo 2C(0 0 1) model surface using density functional theory calculations. We modeled the bulk and the Mo-terminated carbide surface using a four layer slab. Methanol is adsorbed with the OH group pointing towards the surface and the formation of the methoxy specie is energetically favorable after H abstraction. The surface outward dipole moment and adsorption heat computed are in agreement with previous experimental data in chemically analogous systems. The bonding analysis using the crystal orbital overlap population (COOP) curves shows a Mo-Mo weakening upon adsorption and a strong H-Mo interaction after dissociation.
A 4 to 0.1 nm FEL Based on the SLAC Linac
Pellegrini, C.; /UCLA
2012-06-05
The author show that using existing electron gun technology and a high energy linac like the one at SLAC, it is possible to build a Free Electron Laser operating around the 4 nm water window. A modest improvement in the gun performance would further allow to extend the FEL to the 0.1 nm region. Such a system would produce radiation with a brightness many order of magnitude above that of any synchrotron radiation source, existing or under construction, with laser power in the multigawatt region and subpicosecond pulse length.
A Very Hot, High Redshift Cluster of Galaxies: More Trouble for Omega(0) = 1
NASA Technical Reports Server (NTRS)
Donahue, Megan; Voit, G. Mark; Gioia, Isabella; Luppino, Gerry; Hughes, John P.; Stocke, John T.
1998-01-01
We have observed the most distant (= 0.829) cluster of galaxies in the Einstein Extended Medium Sensitivity Survey (EMSS), with the ASCA and ROSAT satellites. We find an X-ray temperature of 12.3 (sup +3.1) (sub -2.2)keV for this cluster, and the ROSAT map reveals significant substructure. The high temperature of MS1054-0321 is consistent with both its approximate velocity dispersion, based on the redshifts of 12 cluster members we have obtained at the Keck and the Canada-France-Hawaii telescopes, and with its weak lensing signature. The X-ray temperature of this cluster implies a virial mass approx. 7.4 x 10 (sup 14) h (sup -1) M (circle dot), if the mean matter density in the universe equals the critical value (OMEGA (sub 0) = 1), or larger if OMEGA (sub 0) is less than 1. Finding such a hot, massive cluster in the EMSS is extremely improbable if clusters grew from Gaussian perturbations in an OMEGA (sub 0) = 1 universe. Combining the assumptions that OMEGA (sub 0) = 1 and that the initial perturbations were Gaussian with the observed X-ray temperature function at low redshift, we show that this probability of this cluster occurring in the volume sampled by the EMSS is less than a few times 10 (sup -5). Nor is MS1054-0321 the only hot cluster at high redshift; the only two other z greater than 0.5 EMSS clusters already observed with ASCA also have temperatures exceeding 8 keV. Assuming again that the initial perturbations were Gaussian and OMEGA (sub 0) = 1, we find that each one is improbable at the less than 10 (sup -2) level. These observations, along with the fact that these luminosities and temperatures of the high-z clusters all agree with the low-z L (sub X) - T (sub X) relation, argue strongly that OMEGA (sub 0) less than 1. Otherwise, the initial perturbations must be non-Gaussian, if these clusters' temperatures do indeed reflect their gravitational potentials.
NASA Technical Reports Server (NTRS)
Heimerl, George J; Niles, Donald E
1947-01-01
Column and plate compressive strengths of extruded 0-1HTA magnesium alloy were determined both within and beyond the elastic range from tests of flat end H-section columns and from local instability tests of H-, Z-, and channel section columns. These tests are part of an extensive research investigation to provide data on the structural strength of various aircraft materials. The results are presented in the form of curves and charts that are suitable for use in the design and analysis of aircraft structures.
Broadband stimulated Raman microscopy with 0.1 ms pixel acquisition time.
Czerwinski, Lars; Nixdorf, Jakob; Florio, Giuseppe Di; Gilch, Peter
2016-07-01
Femtosecond stimulated Raman microscopy (FSRM) is a nonlinear technique for rapid broadband Raman imaging. It utilizes a few femtosecond probe pulse and a narrow bandwidth pump pulse. Using a fast (20 kHz) multi-channel detector, stimulated Raman spectra can be recorded with an acquisition time as short as 0.1 ms. In this Letter, spectra of neat benzonitrile at different acquisition speeds are presented to benchmark the FSRM setup. Furthermore, chemical maps of a multi-phase polymer blend are recorded using the fastest acquisition rate possible with the current instrument. PMID:27367091
Moessbauer spectroscopy of Mg(0.9)Fe(0.1)SiO3 perovskite
NASA Technical Reports Server (NTRS)
Jeanloz, Raymond; O'Neill, Bridget; Pasternak, Moshe P.; Taylor, R. D.; Bohlen, Steven R.
1992-01-01
Ambient pressure Moessbauer spectra of Mg(0.9)Fe-57(0.1)SiO3 perovskite synthesized at pressure-temperature conditions of about 50 GPa and 1700 K show that the iron is entirely high-spin Fe(2+) and appears to be primarily located in the octahedral site within the crystal structure. We observe broad Moessbauer lines, suggesting a distribution of electric-field gradients caused by disorder associated with the Fe ions. Also, the perovskite exhibits magnetic ordering at temperatures lower than 5 K, implying that there is a magnetic contribution to the absolute ('third-law') entropy of this phase.
Intermixing at Ni n/Cu( 0 0 1 ) interface and its effects on the magnetic properties of Ni
NASA Astrophysics Data System (ADS)
Yang, Zongxian; Wu, Ruqian
2002-01-01
Effects of interfacial interdiffusion on electronic and magnetic properties of Ni n/Cu(0 0 1) system are studied by using the full-potential linearized-augmented-plane-wave method with the generalized-gradient approximation for the exchange correlation interactions. Three systems, namely NiCu/Cu(0 0 1), Ni 3/NiCu/Cu(0 0 1), and NiCu/Ni 3/Cu(0 0 1) are used to simulate the intermixing in Ni n/Cu(0 0 1). Ni atoms in NiCu/Cu(0 0 1) are magnetically dead, while magnetic moment of Ni atom is significantly reduced in the alloy layer to 0.19 μB/atom in Ni 3/NiCu/Cu(0 0 1) and to 0.57 μB/atom in NiCu/Ni 3/Cu(0 0 1).
Improvement of PPP-inferred tropospheric estimates by integer ambiguity resolution
NASA Astrophysics Data System (ADS)
Shi, J.; Gao, Y.
2012-11-01
Integer ambiguity resolution in Precise Point Positioning (PPP) can improve positioning accuracy and reduce convergence time. The decoupled clock model proposed by Collins (2008) has been used to facilitate integer ambiguity resolution in PPP, and research has been conducted to assess the model's potential to improve positioning accuracy and reduce positioning convergence time. In particular, the biggest benefits have been identified for the positioning solutions within short observation periods such as one hour. However, there is little work reported about the model's potential to improve the estimation of the tropospheric parameter within short observation periods. This paper investigates the effect of PPP ambiguity resolution on the accuracy of the tropospheric estimates within one hour. The tropospheric estimates with float and fixed ambiguities within one hour are compared to two external references. The first reference is the International GNSS Service (IGS) final troposphere product based on the PPP technique. The second reference is the Constellation Observing System for Meteorology Ionosphere and Climate (COSMIC) radio occultation (RO) event based on the atmospheric profiles along the signal travel path. A comparison among ten co-located ground-based GPS and space-based RO troposphere zenith path delays shows that the mean bias of the troposphere estimates with float ambiguities can be significantly reduced from 30.1 to 17.0 mm when compared to the IGS troposphere product and from 36.3 to 19.7 mm when compared to the COSMIC RO. The root mean square (RMS) accuracy improvement of the tropospheric parameters by the ambiguity resolution is 33.3% when compared to the IGS products and 44.3% when compared to the COSMIC RO. All these improvements are achieved within one hour, which indicates the promising prospect of adopting PPP integer ambiguity resolution for time-critical applications such as typhoon prediction.
On isometry anomalies in minimal 𝒩 = (0,1) and 𝒩 = (0,2) sigma models
NASA Astrophysics Data System (ADS)
Chen, Jin; Cui, Xiaoyi; Shifman, Mikhail; Vainshtein, Arkady
2016-09-01
The two-dimensional minimal supersymmetric sigma models with homogeneous target spaces G/H and chiral fermions of the same chirality are revisited. In particular, we look into the isometry anomalies in O(N) and CP(N - 1) models. These anomalies are generated by fermion loop diagrams which we explicitly calculate. In the case of O(N) sigma models the first Pontryagin class vanishes, so there is no global obstruction for the minimal 𝒩 = (0, 1) supersymmetrization of these models. We show that at the local level isometries in these models can be made anomaly free by specifying the counterterms explicitly. Thus, there are no obstructions to quantizing the minimal 𝒩 = (0, 1) models with the SN-1 = SO(N)/SO(N - 1) target space while preserving the isometries. This also includes CP(1) (equivalent to S2) which is an exceptional case from the CP(N - 1) series. For other CP(N - 1) models, the isometry anomalies cannot be rescued even locally, this leads us to a discussion on the relation between the geometric and gauged formulations of the CP(N - 1) models to compare the original of different anomalies. A dual formalism of O(N) model is also given, in order to show the consistency of our isometry anomaly analysis in different formalisms. The concrete counterterms to be added, however, will be formalism dependent.
Strong electron correlation on the Fe3O4(0 0 1) surfaces
NASA Astrophysics Data System (ADS)
Pinto, Henry; Elliott, Simon D.; Foster, Adam; Nieminen, R. M.
2007-03-01
Magnetite Fe3O4 is a fascinating material that still is not well understood and presents challenges for the state-of-the-art computational methods. This transition metal oxide undergoes a first-order metal-insulator transition at TV=120 K. The ferrimagnetic properties of Fe3O4 makes it a promising material for spintronic applications. We use a plane wave density functional theory in the generalized gradient approximation adding a Hubbard-U parameter to describe properly the strongly correlated Fe--3d electrons. Based on previous results, we compute the surface structure, magnetic properties and electronic structure of several Fe3O4(0 0 1) surfaces with (√2x√2)R45^o reconstruction. The simulated scanning tunneling microscopy images of these surfaces are compared and discussed in the light of available experimental data. Finally, we analyze the possible existence of charge ordering on the Fe3O4(0 0 1) surface and the effect on the surface electronic structure with changing the value of the Hubbard-U parameter on the superficial Fe sites. H. Pinto, S. Elliott, J.Phys.: Condens. Matter 18, 10427 (2006)
Structure and growth of ultrathin titanium oxide films on Ru(0 0 0 1)
NASA Astrophysics Data System (ADS)
Männig, A.; Zhao, Z.; Rosenthal, D.; Christmann, K.; Hoster, H.; Rauscher, H.; Behm, R. J.
2005-02-01
Structure, chemical composition and thermal stability of TiO x films with a thickness of up to 3 ML grown on a Ru(0 0 0 1) substrate were investigated by scanning tunneling microscopy, X-ray photoelectron spectroscopy and Auger electron spectroscopy. The films were prepared by evaporation of Ti in 10 -7 mbar O 2 onto Ru(0 0 0 1) at 640 K, followed by annealing in 10 -7 mbar O 2 or in UHV at temperatures between 700 K and 1000 K. Depending on the deposition and post-annealing conditions, we find several different structures of the Ti oxide, with the layers post-annealed in an O 2 environment being generally better defined than those post-annealed in vacuum. The layers consist of triangular units which coalesce upon annealing. O 2 annealing of monolayer films leads to an oxygen deficient TiO 2 layer. Annealing to 900-1000 K changes the structure and composition of the film, a coincidence structure with a Moiré pattern is observed upon O 2 annealing.
Magnetism and electrical transport in Fe 0.9TM 0.1Si, TM=Co, Rh, Ru
NASA Astrophysics Data System (ADS)
Paschen, S.; Pushin, D.; Ott, H. R.; Young, D. P.; Fisk, Z.
1999-01-01
Our comparative study of magnetic and transport properties of Fe 0.9Co 0.1Si, Fe 0.9Rh 0.1Si, and Fe 0.9Ru 0.1Si indicates that the ferromagnetism previously observed in Fe 0.9Co 0.1Si is not due to localized magnetic moments residing on the Co atoms. It is rather the metallicity of the system which provides the formation of a ferromagnetic state.
Integer cosine transform compression for Galileo at Jupiter: A preliminary look
NASA Technical Reports Server (NTRS)
Ekroot, L.; Dolinar, S.; Cheung, K.-M.
1993-01-01
The Galileo low-gain antenna mission has a severely rate-constrained channel over which we wish to send large amounts of information. Because of this link pressure, compression techniques for image and other data are being selected. The compression technique that will be used for images is the integer cosine transform (ICT). This article investigates the compression performance of Galileo's ICT algorithm as applied to Galileo images taken during the early portion of the mission and to images that simulate those expected from the encounter at Jupiter.
Asymptotic stabilisation for a class of feedforward input-delay systems with ratios of odd integers
NASA Astrophysics Data System (ADS)
Wu, Jian; Chen, Weisheng; Miao, Qiguang
2013-11-01
This article addresses the stabilisation problem by state-feedback for a class of feedforward input-delay nonlinear systems with ratios of odd integer powers. The designed controller achieves the global asymptotic stability. Based on the appropriate state transformation of time-delay systems and the Lyapunov method, the problem of controller design can be converted into the problem of finding a parameter which can be obtained by appraising the nonlinear terms of the systems. Finally, three simulation examples are given to illustrate the effectiveness of the control algorithm proposed in this article.
Is integer arithmetic fundamental to mental processing?: the mind's secret arithmetic.
Snyder, A W; Mitchell, D J
1999-01-01
Unlike the ability to acquire our native language, we struggle to learn multiplication and division. It may then come as a surprise that the mental machinery for performing lightning-fast integer arithmetic calculations could be within us all even though it cannot be readily accessed, nor do we have any idea of its primary function. We are led to this provocative hypothesis by analysing the extraordinary skills of autistic savants. In our view such individuals have privileged access to lower levels of information not normally available through introspection. PMID:10212449
Integer quantum Hall effect on a six-valley hydrogen-passivated silicon (111) surface.
Eng, K; McFarland, R N; Kane, B E
2007-07-01
We report magnetotransport studies of a two-dimensional electron system formed in an inversion layer at the interface between a hydrogen-passivated Si(111) surface and vacuum. Measurements in the integer quantum Hall regime demonstrate that the expected sixfold valley degeneracy for these surfaces is broken, resulting in an unequal occupation of the six valleys and anisotropy in the resistance. We hypothesize the misorientation of Si surface breaks the valley states into three unequally spaced pairs, but the observation of odd filling factors is difficult to reconcile with noninteracting electron theory.
Fermi Large Area Telescope Observations of the Supernova Remnant GS.7-0.1
NASA Technical Reports Server (NTRS)
Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Ferrara, E. C.; Harding, A. K.; Hays, E.; Moiseev, A. A.; Troja, E.
2011-01-01
We present a detailed analysis of the GeV gamma-ray emission toward the supernova remnant (SNR) G8.7-0.1 with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. An investigation of the relationship among G8.7-0.l and the TeV unidentified source HESS J1804-216 provides us with an important clue on diffusion process of cosmic rays if particle acceleration operates in the SNR. The GeV gamma-ray emission is extended with most of the emission in positional coincidence with the SNR G8.7-0.l and a lesser part located outside the western boundary of G8.7-0.l. The region of the gamma-ray emission overlaps spatially-connected molecular clouds, implying a physical connection for the gamma-ray structure. The total gamma-ray spectrum measured with LAT from 200 MeV-100 GeV can be described by a broken power-law function with a break of 2.4 +/- 0.6 (stat) +/- 1.2 (sys) GeV, and photon indices of 2.10 +/- 0.06 (stat) +/- 0.10 (sys) below the break and 2.70 +/- 0.12 (stat) +/- 0.l4 (sys) above the break. Given the spatial association among the gamma rays, the radio emission of G8.7-0.1, and the molecular clouds, the decay of 1IoS produced by particles accelerated in the SNR and hitting the molecular clouds naturally explains the GeV gamma-ray spectrum. We also find that the GeV morphology is not well represented by the TeV emission from HESS J1804-216 and that the spectrum in the GeV band is not consistent with the extrapolation of the TeV gamma-ray spectrum. The spectral index of the TeV emission is consistent with the particle spectral index predicted by a theory that assumes energy-dependent diffusion of particles accelerated in an SNR. We discuss the possibility that the TeV spectrum originates from the interaction of particles accelerated in G8.7-0.1 with molecular clouds, and we constrain the diffusion coefficient of the particles.
Phthalocyanine adsorption on Au(1 1 0): 1D ordering and adaptive reconstruction.
Pertram, Tobias; Moors, Marco; Wandelt, Klaus
2016-11-01
The adsorption of metal-free phthalocyanine molecules on an anisotropic Au(1 1 0)(1 × 2) surface has been studied with ultraviolet (UV) photoemission, low-energy electron diffraction and low-temperature scanning tunneling microscopy. In all cases, the molecules form rows in the [1 [Formula: see text] 0] direction, i.e. along the troughs of the reconstructed substrates. However, depending on the exposure and adsorption temperature, the substrate maintains (1 × 2)- or transforms into a (1 × 3)-reconstruction, and the molecular separation along the rows shrink from six to five times the Au-Au interatomic distance. The results are in agreement with previous density functional theory (DFT) calculations. PMID:27602696
Large-scale peculiar velocities through the galaxy luminosity function at z ~ 0.1
NASA Astrophysics Data System (ADS)
Feix, Martin; Nusser, Adi; Branchini, Enzo
2016-10-01
Peculiar motion introduces systematic variations in the observed luminosity distribution of galaxies. This allows one to constrain the cosmic peculiar velocity field from large galaxy redshift surveys. Using around half a million galaxies from the SDSS Data Release 7 at z ~ 0.1, we demonstrate the applicability of this approach to large datasets and obtain bounds on peculiar velocity moments and σ8, the amplitude of the linear matter power spectrum. Our results are in good agreement with the ΛCDM model and consistent with the previously reported ~ 1% zero-point tilt in the SDSS photometry. Finally, we discuss the prospects of constraining the growth rate of density perturbations by reconstructing the full linear velocity field from the observed galaxy clustering in redshift space.
Excess astrophysical photons from a 0.1-1 keV cosmic axion background.
Conlon, Joseph P; Marsh, M C David
2013-10-11
Primordial decays of string theory moduli at z~10(12) naturally generate a dark radiation cosmic axion background with 0.1-1 keV energies. This cosmic axion background can be detected through axion-photon conversion in astrophysical magnetic fields to give quasithermal excesses in the extreme ultraviolet and soft x-ray bands. Substantial and observable luminosities may be generated even for axion-photon couplings <10(-11) GeV(-1). We propose that axion-photon conversion may explain the observed excess emission of soft x rays from galaxy clusters, and may also contribute to the diffuse unresolved cosmic x-ray background. We list a number of correlated predictions of the scenario. PMID:24160588
More on two-dimensional O (N ) models with N =(0 ,1 ) supersymmetry
NASA Astrophysics Data System (ADS)
Peterson, Adam J.; Kurianovych, Evgeniy; Shifman, Mikhail
2016-03-01
We study the behavior of two-dimensional supersymmetric connections of n copies of O (N ) models with an N =(0 ,1 ) heterotic deformation generated by a right-moving fermion. We develop the model in analogy with the connected N =(0 ,2 ) C P (N -1 ) models for the case of a single connecting fermionic superfield. We calculate the effective potential in the large-N limit and determine the vacuum field configurations. Similarly to other supersymmetry (SUSY) connected models we find that SUSY is unbroken under certain conditions despite the vanishing of the Witten index. Specifically, this preservation of SUSY occurs when we have an even number n of O (N ) families. As in previous cases we show that this result follows from a Zn symmetry under a particular exchange of the O (N ) families. This leads to a definition of a modified Witten index, which guarantees the preservation of SUSY in this case.
COSPAR-16-B0.1/ICEUM12A: Lunar Exploration and Science
NASA Astrophysics Data System (ADS)
Foing, Bernard H.
2016-07-01
Lunar science and exploration are having a renaissance with as many as twelve missions (and 18 vehicles) sent to Moon during the last "International Lunar decade". This session is aimed at discussing new progress in lunar science from recent missions, latest science results, newer insight into our understanding of Moon, modelling and synthesis of different scientific data, future missions, and science questions. It will include invited, contributed, and poster papers. Papers on new lunar mission concepts, instrumentation for the future missions, the upcoming lunar decade of landers and lunar robotic village, and preparations for human lunar exploration towards a "Moon Village" are also welcome in this session. COSPAR-16-B0.1 will also be ICEUM12A, part of the 12th International Conference on Exploration and Utilisation of the Moon from the ILEWG ICEUM series started in 1994.
Phthalocyanine adsorption on Au(1 1 0): 1D ordering and adaptive reconstruction
NASA Astrophysics Data System (ADS)
Pertram, Tobias; Moors, Marco; Wandelt, Klaus
2016-11-01
The adsorption of metal-free phthalocyanine molecules on an anisotropic Au(1 1 0)(1 × 2) surface has been studied with ultraviolet (UV) photoemission, low-energy electron diffraction and low-temperature scanning tunneling microscopy. In all cases, the molecules form rows in the [1 \\bar{1} 0] direction, i.e. along the troughs of the reconstructed substrates. However, depending on the exposure and adsorption temperature, the substrate maintains (1 × 2)- or transforms into a (1 × 3)-reconstruction, and the molecular separation along the rows shrink from six to five times the Au-Au interatomic distance. The results are in agreement with previous density functional theory (DFT) calculations.
NASA Astrophysics Data System (ADS)
Hamouda, Ajmi Bh.; Sathiyanarayanan, Rajesh; Pimpinelli, Alberto; Einstein, T. L.
2011-01-01
A unified explanation of the physics underlying all the distinctive features of the growth instabilities observed on Cu vicinals has long eluded theorists. Recently, kinetic Monte Carlo studies showed that codeposition of impurities during growth could account for the key distinctive experimental observations [Hamouda , Phys. Rev. BPLRBAQ0556-280510.1103/PhysRevB.77.245430 77, 245430 (2008)]. To identify the responsible impurity atom, we compute the nearest-neighbor binding energies (ENN) and terrace diffusion barriers (Ed) for several candidate impurity atoms on Cu(0 0 1) using DFT-based VASP. Our calculations show that codeposition (with Cu) of midtransition elements, such as Fe, Mn, and W, could—in conjunction with substantial Ehrlich-Schwoebel barriers—cause the observed instabilities; when the experimental setup is considered, W emerges to be the most likely candidate. We discuss the role of impurities in nanostructuring of surfaces.
The 0.1m subsonic cryogenic tunnel at the University of Southampton
NASA Technical Reports Server (NTRS)
Goodyer, M. J.
1978-01-01
The design and performance of a low speed one atmosphere cryogenic wind tunnel is described. The tunnel is fan driven and operates over the temperature range 305K to 77K at Mach numbers up to 0.28. It is cooled by the injection and evaporation of liquid nitrogen in the circuit, and the usual test gas is nitrogen. The tunnel has a square test section 0.1m across and was built to allow, at low costs, the development of testing techniques and the development of instrumentation for use in cryogenic tunnels, and to exploit in general instrumentation work the unusuallly wide range of unit Reynolds number available in such tunnels. The tunnel was first used in the development of surface flow visualization techniques for use at cryogenic temperatures.
A Deposited Magnetic Thermometer for Temperatures Below 0.1 Kelvin
NASA Technical Reports Server (NTRS)
Tuttle, J. G.; Stevenson, T. R.; Canavan, E. R.; DiPirro, M. J.; Franz, D. E.; Shirron, P. J.
2003-01-01
Magnetic thermometers are less sensitive to self-heating due to rf noise than are traditional resistive thermometers. This makes them appealing at temperatures well below 0.1 Kelvin in the operating range of many space-flight detectors. We have built and tested a magnetic thermometer which is deposited directly onto a substrate. This device, which uses the temperature dependence of iron-doped palladium s magnetic susceptibility, includes self-shielding deposited coils surrounding a sputtered palladium layer. It is read out using a SQUID to achieve high resolution. Its small size and very good heat-sinking should eventually make it useful for the temperature control of space flight detector arrays, in particular those already using SQUID readouts. The design and test results for this device are discussed.
Surface electronic structure of α-Mo 2C(0 0 0 1)
NASA Astrophysics Data System (ADS)
Kato, M.; Sato, T.; Ozawa, K.; Edamoto, K.; Otani, S.
2006-01-01
The electronic structure of α-Mo 2C(0 0 0 1) has been investigated by angle-resolved photoemission spectroscopy utilizing synchrotron radiation. A sharp peak is observed at 3.3 eV in normal-emission spectra. Since the peak shows no dispersion as a function of photon energy and is sensitively attenuated by oxygen adsorption, the initial state of the peak is attributed to a surface state. Resonant photoemission study shows that the state includes substantial contribution of 4d orbitals of the Mo atoms in the second layer. The emissions with constant kinetic energies of 22 and 31 eV above the Fermi level ( EF) are found in normal-emission spectra, and these emissions are interpreted as originating from the Mo N 1N 23V and N 23VV Auger transitions, respectively.
Initial adsorption of Cr atoms on GaAs(0 0 1)
NASA Astrophysics Data System (ADS)
Yagyu, Kazuma; Komamiya, Daisuke; Yoshino, Junji
2011-01-01
Cr-adsorbed GaAs(0 0 1)-c(4×4)α surfaces were investigated in view of a preparatory stage before studying the growth of zincblende CrAs. Cr was adsorbed on a GaAs(001)-c(4×4)α surface at 200 °C followed by annealing for 2 min. Cr adsorbed surface was investigated with scanning tunneling microscopy at 80 K. Single Cr atom was identified after the classification of Cr dots grown on the surface. The results have suggested that a Cr atom adsorbs on a site between three Ga-As dimers. After further adsorption of Cr, the surface is covered by dots which are higher than a step height of the substrate.
LEED structure analysis of Sb adsorbed Si(0 0 1) surface
NASA Astrophysics Data System (ADS)
Mitsui, T.; Hongo, S.; Urano, T.
2001-06-01
Sb adsorbed Si(0 0 1) surfaces have been investigated by LEED and AES. After a few monolayer (ML) deposition at room temperature, the LEED patterns of 1×1, 2×1 and c(4×4) have been observed successively as elevating the annealing temperature. Two structures (1×1 and 2×1) were examined by LEED I- V curve analysis. The genetic algorithm (GA) was operated to search a global optimum structure. For the 1×1 structure, a good R-factor value of 0.22 was obtained for the model in which topmost 1 ML Sb atoms sit on the Si atoms of fourth substrate layer. For the 2×1 structure, two cases of 1 ML and a half ML Sb coverage was examined, and an Sb dimer model with 1 ML coverage gave a better R-factor value.
A Deposited Magnetic Thermometer for Temperatures below 0.1 Kelvin
NASA Technical Reports Server (NTRS)
Tuttle, J. G.; Stevenson, T. R.; Canavan, E. R.; Dipirro, M. J.; Franz, D. E.; Shirron, P. J.
2003-01-01
Magnetic thermometers are much less sensitive to self-heating due to rf noise than are traditional resistive thermometers. This makes them appealing at temperatures well below 0.1 Kelvin in the operating range of many space-flight detectors. We have developed and tested a magnetic thermometer which is deposited directly onto a substrate. This device, which uses the temperature dependence of iron-doped palladium's magnetic susceptibility, includes self-shielding deposited coils surrounding a sputtered palladium layer. It is read out using a SQUID to achieve high resolution. Its small size and perfect heat sinking should make it useful for the temperature control of space flight detector arrays, in particular those already using SQUID readouts. The design and test results for this device are discussed.
The gravitational resolving power of global seismic networks in the 0.1-10 Hz band
NASA Astrophysics Data System (ADS)
Mulargia, Francesco; Kamenshchik, Alexander
2016-04-01
Among the first attempts to detect gravitational waves, the seismic approach pre-dates the digital era. Major advances in computational power, seismic instrumentation and in the knowledge of seismic noise suggest to reappraise its potential. Using the whole earth as a detector, with the thousands of digital seismometers of seismic global networks as a single phased array, more than two decades of continuous seismic noise data are available and can be readily sifted at the only cost of (a pretty gigantic) computation. Using a subset of data, we show that absolute strains h ≲10-17 on burst gravitational pulses and h ≲10-21 on periodic signals may be feasibly resolved in the frequency range 0.1-10 Hz, only marginally covered by current advanced LIGO and future eLISA. However, theoretical predictions for the largest cosmic gravitational emissions at these frequencies are a few orders of magnitude lower.
Mechanism of growth and structure of titanium oxide ultrathin films deposited on Cu(0 0 1)
NASA Astrophysics Data System (ADS)
Finetti, P.; Caffio, M.; Cortigiani, B.; Atrei, A.; Rovida, G.
2008-03-01
The growth mechanism, composition and structure of ultrathin films of titanium oxide deposited on the Cu(0 0 1) surface were investigated by means of XPS, LEIS, LEED and STM. Titanium oxide films were deposited on the Cu(0 0 1) surface previously saturated with a (√2 × 2√2) R45° structure of chemisorbed oxygen. The oxide films were prepared by evaporation of titanium in O 2 atmosphere ( p in the 10 -6 mbar range) while the substrate temperature was kept at 573 K. The Cu LEIS signal versus the amount of deposited titanium (as determined by means of XPS) indicates the growth of 2D islands in the early stages of deposition. Upon increasing the amount of deposited titanium multilayer islands begin to grow. The XPS results indicate that the oxide phases formed for Ti coverages above 1 ML have a TiO 2 stoichiometry. At very low coverages, a LEED pattern with a centred rectangular unit cell is observed. STM measurements show that at this stage of the growth the oxide islands are incorporated in the outermost layer of the substrate and the removed copper atoms form islands around the oxide regions. The very early stages of titanium oxide growth corresponding to the formation of this rectangular phase were also investigated by Ti deposition on the oxygen chemisorbed phase under UHV conditions at 573 K. In this way it is possible to study the reaction of Ti with chemisorbed oxygen. Upon increasing the Ti coverage above 0.5 ML, an oxide film with a slightly distorted hexagonal unit cell begins to grow. The quasi-hexagonal phase of titanium oxide can also be formed by annealing at 773 K the rectangular phase. At higher coverages, when the substrate surface is completely covered by the oxide, the film exhibits a LEED pattern with a regular hexagonal unit cell.
Thermodynamic functions of hydration of hydrocarbons at 298.15 K and 0.1 MPa
NASA Astrophysics Data System (ADS)
Plyasunov, Andrey V.; Shock, Everett L.
2000-02-01
An extensive compilation of experimental data yielding the infinite dilution partial molar Gibbs energy of hydration Δ hGO, enthalpy of hydration Δ hHO, heat capacity of hydration Δ hCpO, and volume V2O, at the reference temperature and pressure, 298.15 K and 0.1 MPa, is presented for hydrocarbons (excluding polyaromatic compounds) and monohydric alcohols. These results are used in a least-squares procedure to determine the numerical values of the corresponding properties of the selected functional groups. The simple first order group contribution method, which in general ignores nearest-neighbors and steric hindrance effects, was chosen to represent the compiled data. Following the precedent established by Cabani et al. (1981), the following groups are considered: CH 3, CH 2, CH, C for saturated hydrocarbons; c-CH 2, c-CH, c-C for cyclic saturated hydrocarbons; CH ar, C ar for aromatic hydrocarbons (containing the benzene ring); C=C, C≡C for double and triple bonds in linear hydrocarbons, respectively; c-C=C for the double bond in cyclic hydrocarbons; H for a hydrogen atom attached to the double bond (both in linear and cyclic hydrocarbons) or triple bond; and OH for the hydroxyl functional group. In addition it was found necessary to include the "pseudo"-group I(C-C) to account for the specific interactions of the neighboring hydrocarbon groups attached to the benzene or cyclic ring (in the latter case only for cis-isomers). Results of this study, the numerical values of the group contributions, will allow in most cases reasonably accurate estimations of Δ hGO, Δ hHO, Δ hCpO, and V2O at 298.15 K, 0.1 MPa for many hydrocarbons involved in geochemical and environmental processes.
Deniz, Furkan Nur; Alagoz, Baris Baykant; Tan, Nusret; Atherton, Derek P
2016-05-01
This paper introduces an integer order approximation method for numerical implementation of fractional order derivative/integrator operators in control systems. The proposed method is based on fitting the stability boundary locus (SBL) of fractional order derivative/integrator operators and SBL of integer order transfer functions. SBL defines a boundary in the parametric design plane of controller, which separates stable and unstable regions of a feedback control system and SBL analysis is mainly employed to graphically indicate the choice of controller parameters which result in stable operation of the feedback systems. This study reveals that the SBL curves of fractional order operators can be matched with integer order models in a limited frequency range. SBL fitting method provides straightforward solutions to obtain an integer order model approximation of fractional order operators and systems according to matching points from SBL of fractional order systems in desired frequency ranges. Thus, the proposed method can effectively deal with stability preservation problems of approximate models. Illustrative examples are given to show performance of the proposed method and results are compared with the well-known approximation methods developed for fractional order systems. The integer-order approximate modeling of fractional order PID controllers is also illustrated for control applications. PMID:26876378
A FPGA system for QRS complex detection based on Integer Wavelet Transform
NASA Astrophysics Data System (ADS)
Stojanović, R.; Karadaglić, D.; Mirković, M.; Milošević, D.
2011-01-01
Due to complexity of their mathematical computation, many QRS detectors are implemented in software and cannot operate in real time. The paper presents a real-time hardware based solution for this task. To filter ECG signal and to extract QRS complex it employs the Integer Wavelet Transform. The system includes several components and is incorporated in a single FPGA chip what makes it suitable for direct embedding in medical instruments or wearable health care devices. It has sufficient accuracy (about 95%), showing remarkable noise immunity and low cost. Additionally, each system component is composed of several identical blocks/cells what makes the design highly generic. The capacity of today existing FPGAs allows even dozens of detectors to be placed in a single chip. After the theoretical introduction of wavelets and the review of their application in QRS detection, it will be shown how some basic wavelets can be optimized for easy hardware implementation. For this purpose the migration to the integer arithmetic and additional simplifications in calculations has to be done. Further, the system architecture will be presented with the demonstrations in both, software simulation and real testing. At the end, the working performances and preliminary results will be outlined and discussed. The same principle can be applied with other signals where the hardware implementation of wavelet transform can be of benefit.
Design of real-time video watermarking based on Integer DCT for H.264 encoder
NASA Astrophysics Data System (ADS)
Joshi, Amit M.; Mishra, Vivekanand; Patrikar, R. M.
2015-01-01
With the advent of technology, video has become a prominent entity that is shared over networks. With easy availability of various editing tools, data integrity and ownership issues have caused great concern worldwide. Video watermarking is an evolving field that may be used to address such issues. Till date, most of the algorithms have been developed for uncompressed domain watermarking and implemented on software platforms. They provide flexibility and simplicity, but at the same time, they are not suited for real-time applications. They work offline where videos are captured and then watermark is embedded in the video. In the present work, a hardware-based implementation of video watermarking is proposed that overcomes the limitation of software watermarking methods and can be readily adapted to the H.264 standard. This paper focuses on an invisible and robust video watermarking scheme, which can be easily implemented as an integral part of the standard H.264 encoder. The proposed watermarking algorithm involves Integer DCT-based watermark embedding method, wherein Integer DCT is calculated with a fully parallel approach resulting in better speed. The proposed video watermarking is designed with pipelining and parallel architecture for real-time implementation. Here, scene change detection technique is used to improve the performance. Different planes of the watermark are embedded in different frames of a particular scene in order to achieve robustness against various temporal attacks.
Half integer features in the quantum Hall Effect: experiment and theory
NASA Astrophysics Data System (ADS)
Kramer, Tobias; Heller, E. J.; Parrott, R. E.; Liang, C.-T.; Huang, C. F.; Chen, K. Y.; Lin, L.-H.; Wu, J.-Y.; Lin, S.-D.
2009-03-01
We discuss experimental data and a new model of the integer quantum Hall effect (IQHE), which explains an intriguing substructure within Landau levels observed at higher currents. The experiments show inflection points in the Hall resistivity around filling factors 5/2 and 7/2. The experiments require to revisit the foundations of the IQHE and to establish an injection model which incorporates the correct boundary conditions imposed by a real Hall device and the Lorentz force. We have to follow the electrons to their source: one corner of the Hall bar and its steep electric field gradients, rather than focusing on the middle of the Hall device. We find the entire Hall resistivity curve is calculable as a function of magnetic field, temperature, and current. In contrast to previous theories of the IQHE, disorder plays no fundamental role in our theory. Contrary to the standard picture of Landau levels in disorder system, we predict and observe gaps right in the middle of certain Landau levels. The Hall plateaus and half integer inflections are shown to result from the LDOS appropriate to the magnetic field and the strong electric field at the injection corner.
A simplified Integer Cosine Transform and its application in image compression
NASA Technical Reports Server (NTRS)
Costa, M.; Tong, K.
1994-01-01
A simplified version of the integer cosine transform (ICT) is described. For practical reasons, the transform is considered jointly with the quantization of its coefficients. It differs from conventional ICT algorithms in that the combined factors for normalization and quantization are approximated by powers of two. In conventional algorithms, the normalization/quantization stage typically requires as many integer divisions as the number of transform coefficients. By restricting the factors to powers of two, these divisions can be performed by variable shifts in the binary representation of the coefficients, with speed and cost advantages to the hardware implementation of the algorithm. The error introduced by the factor approximations is compensated for in the inverse ICT operation, executed with floating point precision. The simplified ICT algorithm has potential applications in image-compression systems with disparate cost and speed requirements in the encoder and decoder ends. For example, in deep space image telemetry, the image processors on board the spacecraft could take advantage of the simplified, faster encoding operation, which would be adjusted on the ground, with high-precision arithmetic. A dual application is found in compressed video broadcasting. Here, a fast, high-performance processor at the transmitter would precompensate for the factor approximations in the inverse ICT operation, to be performed in real time, at a large number of low-cost receivers.
Optimal integer resolution for attitude determination using global positioning system signals
NASA Technical Reports Server (NTRS)
Crassidis, John L.; Markley, F. Landis; Lightsey, E. Glenn
1998-01-01
In this paper, a new motion-based algorithm for GPS integer ambiguity resolution is derived. The first step of this algorithm converts the reference sightline vectors into body frame vectors. This is accomplished by an optimal vectorized transformation of the phase difference measurements. The result of this transformation leads to the conversion of the integer ambiguities to vectorized biases. This essentially converts the problem to the familiar magnetometer-bias determination problem, for which an optimal and efficient solution exists. Also, the formulation in this paper is re-derived to provide a sequential estimate, so that a suitable stopping condition can be found during the vehicle motion. The advantages of the new algorithm include: it does not require an a-priori estimate of the vehicle's attitude; it provides an inherent integrity check using a covariance-type expression; and it can sequentially estimate the ambiguities during the vehicle motion. The only disadvantage of the new algorithm is that it requires at least three non-coplanar baselines. The performance of the new algorithm is tested on a dynamic hardware simulator.
On P -orderings, rings of integer-valued polynomials, and ultrametric analysis
NASA Astrophysics Data System (ADS)
Bhargava, Manjul
2009-10-01
We introduce two new notions of `` P -ordering'' and use them to define a three-parameter generalization of the usual factorial function. We then apply these notions of P -orderings and factorials to some classical problems in two distinct areas, namely: 1) the study of integer-valued polynomials and 2) P -adic analysis. Specifically, we first use these notions of P -orderings and factorials to construct explicit Polya-style regular bases for two natural families of rings of integer-valued polynomials defined on an arbitrary subset of a Dedekind domain. Second, we classify ``smooth'' functions on an arbitrary compact subset S of a local field, by constructing explicit interpolation series (i.e., orthonormal bases) for the Banach space of functions on S satisfying any desired conditions of continuous differentiability or local analyticity. Our constructions thus extend Mahler's Theorem (classifying the functions that are continuous on {Z}_p ) to a very general setting. In particular, our constructions prove that, for any epsilon>0 , the functions in any of the above Banach spaces can be epsilon -approximated by polynomials (with respect to their respective Banach norms). Thus we obtain the non-Archimedean analogues of the classical polynomial approximation theorems in real and complex analysis proven by Weierstrass, de la Vallee-Poussin, and Bernstein. Our proofs are effective.
High quality relaxed Ge layers grown directly on a Si(0 0 1) substrate
NASA Astrophysics Data System (ADS)
Shah, V. A.; Dobbie, A.; Myronov, M.; Leadley, D. R.
2011-08-01
After a long period of developing integrated circuit technology through simple scaling of silicon devices, the semiconductor industry is now embracing technology boosters such as strain for higher mobility channel material. Germanium is the logical supplement to enhance existing technologies, as its material behaviour is very close to silicon, and to create new functional devices that cannot be fabricated from silicon alone (Hartmann et al. (2004) [1]). Germanium wafers are, however, both expensive and less durable than their silicon counterparts. Hence it is highly desirable to create a relaxed high quality Ge layer on a Si substrate, with the provision that this does not unduly compromise the planarity of the system. The two temperature method, proposed by Colace et al. (1997) [2], can give smooth (RMS surface roughness below 1 nm) and low threading dislocation density (TDD <10 8 cm -2) Ge layers directly on a Si(0 0 1) wafer (Halbwax et al. (2005) [3]), but these are currently of the order of 1-2 μm thick (Hartmann et al. (2009) [4]). We present an in depth study of two temperature Ge layers, grown by reduced pressure chemical vapour deposition (RP-CVD), in an effort to reduce the thickness. We report the effect of changing the thickness, of both the low temperature (LT) and the high temperature (HT) layers, emphasising the variation of TDD, surface morphology and relaxation. Within this study, the LT Ge layer is deposited directly on a Si(0 0 1) substrate at a low temperature of 400 °C. This low temperature is known to generate monolayer islands (Park et al. (2006) [5]), but is sufficiently high to maintain crystallinity whilst keeping the epitaxial surface as smooth as possible by suppressing further island growth and proceeding in a Frank-van der Merwe growth mode. This LT growth also generates a vast number of dislocations, of the order of 10 8-10 9 cm -2, that enable the next HT step to relax the maximum amount of strain possible. The effect of varying
Wu, Gang
2016-08-01
The nuclear quadrupole transverse relaxation process of half-integer spins in liquid samples is known to exhibit multi-exponential behaviors. Within the framework of Redfield's relaxation theory, exact analytical expressions for describing such a process exist only for spin-3/2 nuclei. As a result, analyses of nuclear quadrupole transverse relaxation data for half-integer quadrupolar nuclei with spin >3/2 must rely on numerical diagonalization of the Redfield relaxation matrix over the entire motional range. In this work we propose an approximate analytical expression that can be used to analyze nuclear quadrupole transverse relaxation data of any half-integer spin in liquids over the entire motional range. The proposed equation yields results that are in excellent agreement with the exact numerical calculations. PMID:27343483
Processing and microstructure of Nb-1 percent Zr-0.1 percent C alloy sheet
NASA Technical Reports Server (NTRS)
Uz, Mehmet; Titran, Robert H.
1992-01-01
A systematic study was carried out to evaluate the effects of processing on the microstructure of Nb-1 wt. pct. Zr-0.1 wt. pct. C alloy sheet. The samples were fabricated by cold rolling different sheet bars that were single-, double- or triple-extruded at 1900 K. Heat treatment consisted on one- or two-step annealing of different samples at temperatures ranging from 1350 to 1850 K. The assessment of the effects of processing on microstructure involved characterization of the precipitates including the type, crystal structure, chemistry and distribution within the material as well as an examination of the grain structure. A combination of various analytical and metallographic techniques were used on both the sheet samples and the residue extracted from them. The results show that the relatively coarse orthorhombic Nb2C carbides in the as-rolled samples transformed to rather fine cubic monocarbides of Nb and Zr with varying Zr/Nb ratios upon subsequent heat treatment. The relative amount of the cubic carbides and the Zr/Nb ratio increased with increasing number of extrusions prior to cold rolling. Furthermore, the size and the aspect ratio of the grains appear to be strong functions of the processing history of the material. These and other results obtained will be presented with the emphasis on a possible relationship between processing and microstructure.
The Star Formation History of read and dead galaxies at z=[1.0--1.5
NASA Astrophysics Data System (ADS)
Domínguez Sánchez, H.; Pérez González, P.; Esquej, P.; Eliche Moral, C.; Alcalde Pampliega, B.; SHARDS Team
2015-05-01
We analyse the star formation histories (SFH) of M > 10^{10} M_⊙ read and dead galaxies at intermediate redshift (z=1.0-1.5). Current hierarchical models of galaxy formation predict many less massive high-z systems than observed. By combining SHARDS deep spectro-photometric optical data (25 contiguous OSIRIS/GTC medium band filters with R ˜ 50 at 4500-900 nm) with HST-WFC3 grism in the NIR (G141, 1.1-1.6 μm) and broad-band photometry (from FUV to FIR) we construct well-sampled optical SEDs with up to 150 photometric points and sufficient spectral resolution to obtain reliable stellar population parameters such as ages, star formation timescales, dust extinctions and metallicities. We define a complete and uncontaminated sample of red & dead galaxies by combining the color-color UVJ selection with a cut in sSFR (SFR/Mass). We check the robustness of the results depending on different stellar population models (Bruzual & Charlot 2003, Maraston 2005), SED fitting-codes (synthesizer, FAST) or star formation histories (exp{-t/τ}, t exp{-t/τ}). Finally, the dependence of the SFH with the galaxy stellar mass will be studied, to actually measure if more massive galaxies are formed earlier and more rapidly as downsizing suggests.
Regional stochastic generation of streamflows using an ARIMA (1,0,1) process and disaggregation
Armbruster, Jeffrey T.
1979-01-01
An ARIMA (1,0,1) model was calibrated and used to generate long annual flow sequences at three sites in the Juniata River basin, Pennsylvania. The model preserves the mean, variance, and cross correlations of the observed station data. In addition, it has a desirable blend of both high and low frequency characteristics and therefore is capable of preserving the Hurst coefficient, h. The generated annual flows are disaggregated into monthly sequences using a modification of the Valencia-Schaake model. The low-flow frequency and flow duration characteristics of the generated monthly flows, with length equal to the historical data, compare favorably with the historical data. Once the models were verified, 100-year sequences were generated and analyzed for their low flow characteristics. One-, three- and six- month low-flow frequencies at recurrence intervals greater than 10 years are generally found to be lower than flow computed from the historical flows. A method is proposed for synthesizing flows at ungaged sites. (Kosco-USGS)
The Origin of OB Clusters: From 10 pc to 0.1 pc
NASA Astrophysics Data System (ADS)
Liu, Hauyu Baobab; Quintana-Lacaci, Guillermo; Wang, Ke; Ho, Paul T. P.; Li, Zhi-Yun; Zhang, Qizhou; Zhang, Zhi-Yu
2012-01-01
We observe the 1.2 mm continuum emission around the OB cluster-forming region G10.6-0.4, using the MAMBO-2 bolometer array of the IRAM 30 m telescope and the Submillimeter Array (SMA). Comparison of the Spitzer 24 μm and 8 μm images with our 1.2 mm continuum maps reveal an ionization front of an H II region, the photon-dominated layer, and several 5 pc scale filaments that follow the outer edge of the photon-dominated layer. The filaments, which are resolved in the MAMBO-2 observations, show regularly spaced parsec-scale molecular clumps, embedded with a cluster of dense molecular cores as shown in the SMA 0.87 mm observations. Toward the center of the G10.6-0.4 region, the combined SMA+IRAM 30 m continuum image reveals several parsec-scale protrusions. They may continue down to within 0.1 pc of the geometric center of a dense 3 pc scale structure, where a 200 M ⊙ OB cluster resides. The observed filaments may facilitate mass accretion onto the central cluster-forming region in the presence of strong radiative and mechanical stellar feedback. Their filamentary geometry may also facilitate fragmentation. We did not detect any significant polarized emission at 0.87 mm in the inner 1 pc region with SMA.
An improved hybrid encoding cuckoo search algorithm for 0-1 knapsack problems.
Feng, Yanhong; Jia, Ke; He, Yichao
2014-01-01
Cuckoo search (CS) is a new robust swarm intelligence method that is based on the brood parasitism of some cuckoo species. In this paper, an improved hybrid encoding cuckoo search algorithm (ICS) with greedy strategy is put forward for solving 0-1 knapsack problems. First of all, for solving binary optimization problem with ICS, based on the idea of individual hybrid encoding, the cuckoo search over a continuous space is transformed into the synchronous evolution search over discrete space. Subsequently, the concept of confidence interval (CI) is introduced; hence, the new position updating is designed and genetic mutation with a small probability is introduced. The former enables the population to move towards the global best solution rapidly in every generation, and the latter can effectively prevent the ICS from trapping into the local optimum. Furthermore, the greedy transform method is used to repair the infeasible solution and optimize the feasible solution. Experiments with a large number of KP instances show the effectiveness of the proposed algorithm and its ability to achieve good quality solutions. PMID:24527026
Moment enhancement in dilute magnetic semiconductors: MnxSi1-x with x = 0.1%
Shaughnessy, M; Fong, C Y; Snow, R; Liu, K; Pask, J E; Yang, L H
2009-03-12
The experimentally determined magnetic moments/Mn, M, in Mn{sub x}Si{sub 1-x} are considered, with particular attention to the case with 5.0 {micro}{sub B}/Mn, obtained for x = 0.1%. The existing theoretical M values for neutral Mn range from 2.83 to 3.78 {micro}B/Mn. To understand the observed M = 5.0 {micro}{sub B}/Mn, we investigated Mn{sub x}Si{sub 1-x} for a series of Mn concentrations and defect configurations using a first-principles density functional method. We find a structure in which the moment is enhanced. It has 5.0 {micro}B/Mn, the Mn at a substitutional site, and a Si at a second-neighbor interstitial site in a large unit cell. Subsequent analysis shows that the observed large moment can be understood as a consequence of the weakened d-p hybridization resulting from the introduction of the second-neighbor interstitial Si and substantial isolation of the Mn-second-neighbor Si complex at such concentrations.
An improved hybrid encoding cuckoo search algorithm for 0-1 knapsack problems.
Feng, Yanhong; Jia, Ke; He, Yichao
2014-01-01
Cuckoo search (CS) is a new robust swarm intelligence method that is based on the brood parasitism of some cuckoo species. In this paper, an improved hybrid encoding cuckoo search algorithm (ICS) with greedy strategy is put forward for solving 0-1 knapsack problems. First of all, for solving binary optimization problem with ICS, based on the idea of individual hybrid encoding, the cuckoo search over a continuous space is transformed into the synchronous evolution search over discrete space. Subsequently, the concept of confidence interval (CI) is introduced; hence, the new position updating is designed and genetic mutation with a small probability is introduced. The former enables the population to move towards the global best solution rapidly in every generation, and the latter can effectively prevent the ICS from trapping into the local optimum. Furthermore, the greedy transform method is used to repair the infeasible solution and optimize the feasible solution. Experiments with a large number of KP instances show the effectiveness of the proposed algorithm and its ability to achieve good quality solutions.
Observation of the 63 micron (0 1) emission line in the Orion and Omega Nebulae
NASA Technical Reports Server (NTRS)
Melnick, G.; Gull, G. E.; Harwit, M.
1978-01-01
The 63 micron fine structure transition P4 : 3Pl yields 3P2 for neutral atomic oxygen was obtained during a series of flights at an altitude of approximately 13.7 km. In the Orion Nebula (M42), the observed line strength was 8 x 10 to the minus 15 power watt cm/2 which is estimated to be approximately 0.3 o/o of the energy radiated at all wavelengths. For the Omega Nebulae (M17), the line strength was 2.4 x 10 to the minus 15 power watt cm/2, and the fraction of the total radiated power was slightly higher. These figures refer to a 4' x 6' field of view centered on the peak for infrared emission from each source. The uncertainty in the line strength is approximately 50% and is caused by variable water vapor absorption along the flight path of the airplane. The line position estimate is 63.2 micron (+0.1, -0.2) micron. The prime uncertainty is due to the uncertain position of the (0 I) emitting regions in the field of view.
Acoustic resonator providing fixed points of temperature between 0.1 and 2 K
NASA Astrophysics Data System (ADS)
Salmela, Anssi; Tuoriniemi, Juha; Pentti, Elias; Sebedash, Alexander; Rysti, Juho
2009-02-01
Below 2 K the speed of second sound in mixtures of liquid 3He and 4He first increases to a maximum of 30-40 m/s at about 1 K and then decreases again at lower temperatures to values below 15 m/s. The exact values depend on the concentration and pressure of the mixture. This can be exploited to provide fixed points in temperature by utilizing a resonator with appropriate dimensions and frequency to excite standing waves in the resonator cavity filled with helium mixture. We demonstrate that commercially mass produced quartz tuning forks can be used for this purpose. They are meant for frequency standards operating at 32 kHz. Their dimensions are typically of order 1 mm matching the wavelength of the second sound in helium mixtures at certain values of temperature. Due to the complicated geometry, we observe some 20 sharp acoustic resonances in the range 0.1ell 2 K having temperature resolution of order 1 μK. The quartz resonators are cheap, compact, simple to implement, easy to measure with great accuracy, and, above all, they are not sensitive to magnetic field, which is a great advantage compared to fixed point devices based on superconductivity transitions. The reproducibility of the resonance pattern upon thermal cycling remains to be verified.
Size distribution of radon decay products in the range 0.1-10 nm.
Zhukovsky, Michael; Rogozina, Marina; Suponkina, Anna
2014-07-01
Information about the size distribution of radioactive aerosols in nanometre range is essential for the purposes of air contamination monitoring, dose assessment to respiratory tract and planning of protective measures. The diffusion battery, which allows capturing particles in the size range of 0.1-10 nm, has developed. Interpreting data obtained from diffusion battery is very complex. The method of expectation maximisation by Maher and Laird was chosen for indirect inversion data. The experiments were performed in the box with equivalent equilibrium concentration of radon in the range of 7000-10,000 Bq m(-3). The three modes of size distribution of radon decay products aerosols were obtained: activity median thermodynamic diameter (AMTD) 0.3, 1.5 and 5 nm. These modes can be identified as: AMTD 0.3 nm--atoms of radon progeny (218Po in general); AMTD 1.5 nm--clusters of radon progeny atoms and non-radioactive atoms in the atmosphere; AMTD 5 nm--particles formed by coagulation of previous mode clusters with existing aerosol particles or nucleation of condensation nuclei containing atoms of radon progeny.
Olefin metathesis reaction on GaN (0 0 0 1) surfaces
NASA Astrophysics Data System (ADS)
Makowski, Matthew S.; Zemlyanov, Dmitry Y.; Ivanisevic, Albena
2011-03-01
Proof-of-concept reactions were performed on GaN (0 0 0 1) surfaces to demonstrate surface termination with desired chemical groups using an olefin cross-metathesis reaction. To prepare the GaN surfaces for olefin metathesis, the surfaces were hydrogen terminated with hydrogen plasma, chlorine terminated with phosphorous pentachloride, and then terminated with an alkene group via a Grignard reaction. The olefin metathesis reaction then bound 7-bromo-1-heptene. The modified surfaces were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy, and water contact angle measurements following each step in the reaction scheme. The XPS data was used to qualitatively identify surface chemical species and to quantitatively determine molecular surface coverage. The bromine atom in 7-bromo-1-heptene served as a heteroatom for identification with XPS. The reaction scheme resulted in GaN substrates with a surface coverage of 0.10 monolayers and excellent stability towards oxidation when exposed to oxygen plasma.
The libRadtran software package for radiative transfer calculations (version 2.0.1)
NASA Astrophysics Data System (ADS)
Emde, Claudia; Buras-Schnell, Robert; Kylling, Arve; Mayer, Bernhard; Gasteiger, Josef; Hamann, Ulrich; Kylling, Jonas; Richter, Bettina; Pause, Christian; Dowling, Timothy; Bugliaro, Luca
2016-05-01
libRadtran is a widely used software package for radiative transfer calculations. It allows one to compute (polarized) radiances, irradiance, and actinic fluxes in the solar and thermal spectral regions. libRadtran has been used for various applications, including remote sensing of clouds, aerosols and trace gases in the Earth's atmosphere, climate studies, e.g., for the calculation of radiative forcing due to different atmospheric components, for UV forecasting, the calculation of photolysis frequencies, and for remote sensing of other planets in our solar system. The package has been described in Mayer and Kylling (2005). Since then several new features have been included, for example polarization, Raman scattering, a new molecular gas absorption parameterization, and several new parameterizations of cloud and aerosol optical properties. Furthermore, a graphical user interface is now available, which greatly simplifies the usage of the model, especially for new users. This paper gives an overview of libRadtran version 2.0.1 with a focus on new features. Applications including these new features are provided as examples of use. A complete description of libRadtran and all its input options is given in the user manual included in the libRadtran software package, which is freely available at http://www.libradtran.org.
Isotropic thin PTCDA films on GaN(0 0 0 1)
NASA Astrophysics Data System (ADS)
Ahrens, Ch; Flege, J. I.; Jaye, C.; Fischer, D. A.; Schmidt, Th; Falta, J.
2016-11-01
The growth of 3, 4, 9, 10-perylene tetracarboxylic dianhydride (PTCDA) on the Ga-polar GaN(0 0 0 1) surface has been studied by x-ray photoelectron spectroscopy (XPS), spot profile analysis low-energy electron diffraction (SPA-LEED), near edge x-ray absorption fine structure (NEXAFS), and scanning tunneling microscopy (STM). The stoichiometric ratios derived from XPS indicate that the molecules remain intact upon adsorption on the surface. Furthermore, no chemical shifts can be observed in the C 1s and O 1s core levels with progressing deposition of PTCDA, suggesting none or only weak interactions between the molecules and the substrate. NEXAFS data indicate the PTCDA molecules being oriented with their molecular plane parallel to the surface. High-resolution STM shows PTCDA islands of irregular shape on the sub-micron scale, and together with corresponding SPA-LEED data reveals a lateral ordering of the molecules that is compatible with the presence of (1 0 2) oriented PTCDA nano-crystals. SPA-LEED moreover clearly shows the presence of homogeneously distributed rotational domains of two-dimensionally isotropic PTCDA.
Martynov, V.V.; Young, A.T.; Padmore, H.A.
1996-08-01
A beamline for high resolution spectroscopy with elliptically polarized X-rays is described.The working energy range is large, from 20 eV to above 1800 eV. The resolving power is on the order of 10,000 at low energies (20-200 eV) and 6000 at high energies (200-1800 eV). This is achieved using a variable deviation angle plane grating monochromator. A single grating, with one line density and a varying groove depth, is used to cover the entire energy range. The beamline has been designed to operate with either one or two x-ray beams propagating simultaneously through the monochromator and to the experimental station. Switching between polarizations at rates of 0.1 Hz and slower is accomplished in the single beam mode by alternating the output of the elliptically polarized undulator source between left and right polarization. Fast polarization switching, at rates of 100-1000 Hz, is provided in the two beam mode by mechanical chopping between two photon beams, one of which is right circularly polarized, and the other left circularly polarized.
Magnetic Ordering in BaFe_{11.9} In_{0.1} O_{19} Hexaferrite
NASA Astrophysics Data System (ADS)
Trukhanov, S. V.; Trukhanov, A. V.; Turchenko, V. O.; Kostishin, V. G.; Panina, L. V.; Kazakevich, I. S.; Balagurov, A. M.
2016-07-01
The crystal and magnetic structure by powder neutron diffractometry as well as the magnetic properties by vibration sample magnetometry for the BaFe_{11.9} In_{0.1} O_{19} polycrystalline sample have been performed in a wide temperature range from 10 up to 730 K and in magnetic field up to 14 T. The atomic coordinates and lattice parameters have been Rietveld refined. The Invar effect has been observed in the low-temperature range below 150 K. It was explained by the thermal oscillation anharmonicity of atoms. The increase of the microstress value with decreasing temperature has been defined from Rietveld refinement. It is established that the ferrimagnet-paramagnet phase transition is a standard second-order one. From the macroscopic magnetization measurement, the Curie temperature and ordered magnetic moment per nominal iron ion are obtained. From the microscopic diffraction measurement, the magnetic moments at different atomic position and total magnetic moment per iron ion have been defined at different temperatures. The most likely reasons and the mechanism of magnetic ordering are discussed.
Vibrationally enhanced associative photodesorption of molecular hydrogen from Ru(0 0 0 1)
NASA Astrophysics Data System (ADS)
Vazhappilly, Tijo; Beyvers, Stephanie; Klamroth, Tillmann; Luppi, Marcello; Saalfrank, Peter
2007-09-01
The effect of vibrational excitation, for example by infrared (IR) laser pulses, on the photodesorption of H 2 and D 2 from a Ru(0 0 0 1) surface has been investigated theoretically. Based on information from first principle electronic structure theory, a minimal two-mode and two-state model is developed for Desorption Induced by Electronic Transitions (DIET) in the single-excitation limit. In the model, the finite excited state lifetime of a few femtoseconds (fs) is accounted for by a lifetime averaging scheme. Using the vibrational ground state as initial state for averaging, the energy partitioning into different degrees of freedom and isotope effects are investigated. We then consider vibrationally excited states and vibrational wavepackets as initial states, which are found to have a large influence on the outcome of the reaction. To show that IR excitation of the adsorbates is feasible, we use optimal control theory to design pulses in the sub-picosecond range. For these, vibrational relaxation in the ground state due to coupling of adsorbate vibrations to electron-hole pairs of the metal is accounted for. Our major result is that isotope- and bond-selective control of photoreactions should be possible to some extent, even in strongly dissipative media.
Acquisition and evaluation of thermodynamic data for morenosite-retgersite equilibria at 0.1 MPa
Chou, I.-Ming; Seal, R.R.
2003-01-01
Metal-sulfate salts in mine drainage environments commonly occur as solid solutions containing Fe, Cu, Mg, Zn, Al, Mn, Ni, Co, Cd, and other elements. Thermodynamic data for some of the end-member salts containing Fe, Cu, Zn, and Mg have been collected and evaluated previously, and the present study extends to the system containing Ni. Morenosite (NiSO4-7H2O)-retgersite (NiSO4-6H2O) equilibria were determined along five humidity buffer curves at 0.1 MPa and between 5 and 22??C. Reversals along these humidity-buffer curves yield In K = 17.58-6303.35/T, where K is the equilibrium constant, and T is temperature in K. The derived standard Gibbs free energy of reaction is 8.84 kJ/mol, which agrees very well with the values of 8.90, 8.83, and 8.85 kJ/mol based on the vapor pressure measurements of Schumb (1923), Bonnell and Burridge (1935), and Stout et al. (1966). respectively. This value also agrees reasonably well with the values of 8.65 and 9.56 kJ/mol calculated from the data compiled by Wagman et al. (1982) and DeKock (1982), respectively. The temperature-humidity relationships defined by this study for dehydration equilibria between morenosite and retgersite explain the more common occurrence of retgersite relative to morenosite in nature.
Acquisition and evaluation of thermodynamic data for bieberite-moorhouseite equilibria at 0.1 MPa
Chou, I.-Ming; Seal, R.R.
2005-01-01
Published estimates for the equilibrium relative humidity (RH) at 25 deg;C for the reaction: bieberite (CoSO4??7H2O) = moorhouseite (CoSO4??6H2O) + H2O, range from 69.8 to 74.5%. To evaluate these data, the humidity-buffer technique was used to determine equilibrium constants for this reaction between 14 and 43 ??C at 0.1 MPa. Reversals along five humidity-buffer curves yield In K = 18.03-6509.43/T, where K is the equilibrium constant, and T is temperature in K. The derived standard Gibbs free energy of reaction is 9.43 kJ/mol, which agrees well with several previously reported values based on vapor-pressure measurements. It also agrees well with values calculated from the data derived mostly from calorimetric measurements. Previous studies indicated that the temperature of the invariant point for the assemblage bieberite-moorhouseite-aqueous solution-vapor is near 44.7 ??C, and our extrapolated data predict 91.1% RH at this temperature; the predicted position for the invariant point is in excellent agreement with those reported previously.
NEWTONP - CUMULATIVE BINOMIAL PROGRAMS
NASA Technical Reports Server (NTRS)
Bowerman, P. N.
1994-01-01
The cumulative binomial program, NEWTONP, is one of a set of three programs which calculate cumulative binomial probability distributions for arbitrary inputs. The three programs, NEWTONP, CUMBIN (NPO-17555), and CROSSER (NPO-17557), can be used independently of one another. NEWTONP can be used by statisticians and users of statistical procedures, test planners, designers, and numerical analysts. The program has been used for reliability/availability calculations. NEWTONP calculates the probably p required to yield a given system reliability V for a k-out-of-n system. It can also be used to determine the Clopper-Pearson confidence limits (either one-sided or two-sided) for the parameter p of a Bernoulli distribution. NEWTONP can determine Bayesian probability limits for a proportion (if the beta prior has positive integer parameters). It can determine the percentiles of incomplete beta distributions with positive integer parameters. It can also determine the percentiles of F distributions and the midian plotting positions in probability plotting. NEWTONP is designed to work well with all integer values 0 < k <= n. To run the program, the user simply runs the executable version and inputs the information requested by the program. NEWTONP is not designed to weed out incorrect inputs, so the user must take care to make sure the inputs are correct. Once all input has been entered, the program calculates and lists the result. It also lists the number of iterations of Newton's method required to calculate the answer within the given error. The NEWTONP program is written in C. It was developed on an IBM AT with a numeric co-processor using Microsoft C 5.0. Because the source code is written using standard C structures and functions, it should compile correctly with most C compilers. The program format is interactive. It has been implemented under DOS 3.2 and has a memory requirement of 26K. NEWTONP was developed in 1988.
Optimized non-integer order phase mask to extend the depth of field of an imaging system
NASA Astrophysics Data System (ADS)
Liu, Jiang; Miao, Erlong; Sui, Yongxin; Yang, Huaijiang
2016-09-01
Wavefront coding is an effective optical technique used to extend the depth of field for an incoherent imaging system. Through introducing an optimized phase mask to the pupil plane, the modulated optical transfer function is defocus-invariant. In this paper, we proposed a new form phase mask using non-integer order and signum function to extend the depth of field. The performance of the phase mask is evaluated by comparing defocused modulation transfer function invariant and Fisher information with other phase masks. Defocused imaging simulation is also carried out. The results demonstrate the advantages of non-integer order phase mask and its effectiveness on the depth of field extension.
A 0.1-1.5 GHz, low jitter, area efficient PLL in 55-nm CMOS process
NASA Astrophysics Data System (ADS)
Bo, Zhong; Zhangming, Zhu
2016-05-01
A 0.1-1.5 GHz, 3.07 pS root mean squares (RMS) jitter, area efficient phase locked loop (PLL) with multiphase clock outputs is presented in this paper. The size of capacitor in the low pass filter (LPF) is significantly decreased by implementing a dual path charge pump (CP) technique in this PLL. Subject to specified power consumption, a novel optimization method is introduced to optimize the transistor size in the voltage control oscillator (VCO), CP and phase/frequency detector (PFD) in order to minimize clock jitter. This method could improve 3-6 dBc/Hz phase noise. The proposed PLL has been fabricated in 55 nm CMOS process with an integrated 16 pF metal-oxide-metal (MOM) capacitor, occupies 0.05 mm2 silicon area, the measured total power consumption is 2.8 mW @ 1.5 GHz and the phase noise is -102 dBc/Hz @ 1 MHz offset frequency. Project supported by the National Natural Science Foundation of China (Nos. 61234002, 61322405, 61306044, 61376033) and the National High-Tech Program of China (No. 2013AA014103).
Skyrmions and Single Spin Flips in the Odd Integer Quantized Hall Effect
NASA Astrophysics Data System (ADS)
Schmeller, Andreas
1996-03-01
For an (ideal) two-dimensional electron system in an odd integer quantized Hall state, the energy Δ needed to excite a quasiparticle pair is the sum of the Zeeman energy Sgμ_BB_tot (S is the number of flipped spins) and the many body contribution Δ_ex, where Δ_ex depends only on the perpendicular magnetic field component B_⊥. If the sample is tilted with respect to the field B_tot and B_⊥ is kept constant, the rate of change of Δ with B_tot gives S. We measure the energy gap Δ by thermally-activated magneto-transport experiments in tilted magnetic fields. We find: 1. At ν=1, where the ground state is fully spin polarized with only one spin level occupied, the lowest lying charged excitations have S >> 1. This reflects the excitation of quasiparticle pairs, with spins of up to 7/2 per particle, a value that is in good agreement with recent results of Knight shift experiments [1]. 2. In contrast we observe only single spin flips (S=1) at the higher odd integer filling factors ν=3 and 5. These results lend support to recent suggestions[2] that Skyrmions, which are topological distortions of the spin field that involve large spin values, form the lowest-lying charged excitations in the fully-polarized ν =1 quantum Hall fluid, but are energetically unfavorable with respect to single spin flips at the higher odd-integer filling factors. This work was done in collaboration with J.P. Eisenstein, L.N. Pfeiffer and K.W. West. 1: S.E. Barrett, G. Dabbagh, L.N. Pfeiffer, K.W. West, and Z. Tycko, Phys. Rev. Lett. 74, 5112 (1995). 2: S.L. Sondhi et al. Phys. Rev. B47, 16419 (1993). J. K. Jain and X. G. Wu, Phys. Rev. B49, 5085 (1994). X.-G. Wu and S.L. Sondhi, preprint (1995).
EVOLUTION OF GALAXIES AND THEIR ENVIRONMENTS AT z = 0.1-3 IN COSMOS
Scoville, N.; Benson, A.; Fu, Hai; Arnouts, S.; Aussel, H.; Bongiorno, A.; Bundy, K.; Calvo, M. A. A.; Capak, P.; Carollo, M.; Faisst, A.; Civano, F.; Elvis, M.; Dunlop, J.; Finoguenov, A.; Guo, Q.; Giavalisco, M.; Ilbert, O.; Iovino, A.; Kajisawa, M.; and others
2013-05-01
Large-scale structures (LSSs) out to z < 3.0 are measured in the Cosmic Evolution Survey (COSMOS) using extremely accurate photometric redshifts (photoz). The K{sub s} -band-selected sample (from Ultra-Vista) is comprised of 155,954 galaxies. Two techniques-adaptive smoothing and Voronoi tessellation-are used to estimate the environmental densities within 127 redshift slices. Approximately 250 statistically significant overdense structures are identified out to z = 3.0 with shapes varying from elongated filamentary structures to more circularly symmetric concentrations. We also compare the densities derived for COSMOS with those based on semi-analytic predictions for a {Lambda}CDM simulation and find excellent overall agreement between the mean densities as a function of redshift and the range of densities. The galaxy properties (stellar mass, spectral energy distributions (SEDs), and star formation rates (SFRs)) are strongly correlated with environmental density and redshift, particularly at z < 1.0-1.2. Classifying the spectral type of each galaxy using the rest-frame b - i color (from the photoz SED fitting), we find a strong correlation of early-type galaxies (E-Sa) with high-density environments, while the degree of environmental segregation varies systematically with redshift out to z {approx} 1.3. In the highest density regions, 80% of the galaxies are early types at z = 0.2 compared to only 20% at z = 1.5. The SFRs and the star formation timescales exhibit clear environmental correlations. At z > 0.8, the SFR density is uniformly distributed over all environmental density percentiles, while at lower redshifts the dominant contribution is shifted to galaxies in lower density environments.
EXTREME GAS FRACTIONS IN CLUMPY, TURBULENT DISK GALAXIES AT z ∼ 0.1
Fisher, David B.; Glazebrook, Karl; Bassett, Robert; Bolatto, Alberto; Obreschkow, Danail; Cooper, Erin Mentuch; Wisnioski, Emily; Abraham, Roberto G.; Damjanov, Ivana; Green, Andy; McGregor, Peter
2014-08-01
In this Letter, we report the discovery of CO fluxes, suggesting very high gas fractions in three disk galaxies seen in the nearby universe (z ∼ 0.1). These galaxies were investigated as part of the DYnamics of Newly Assembled Massive Objects (DYNAMO) survey. High-resolution Hubble Space Telescope imaging of these objects reveals the presence of large star forming clumps in the bodies of the galaxies, while spatially resolved spectroscopy of redshifted Hα reveals the presence of high dispersion rotating disks. The internal dynamical state of these galaxies resembles that of disk systems seen at much higher redshifts (1 < z < 3). Using CO(1-0) observations made with the Plateau de Bure Interferometer, we find gas fractions of 20%-30% and depletion times of t {sub dep} ∼ 0.5 Gyr (assuming a Milky-Way-like α{sub CO}). These properties are unlike those expected for low-redshift galaxies of comparable specific star formation rate, but they are normal for their high-z counterparts. DYNAMO galaxies break the degeneracy between gas fraction and redshift, and we show that the depletion time per specific star formation rate for galaxies is closely tied to gas fraction, independent of redshift. We also show that the gas dynamics of two of our local targets corresponds to those expected from unstable disks, again resembling the dynamics of high-z disks. These results provide evidence that DYNAMO galaxies are local analogs to the clumpy, turbulent disks, which are often found at high redshift.
Conservation of the Pho regulon in Pseudomonas fluorescens Pf0-1
Monds, Russell D.; Newell, Peter D.; Schwartzman, Julia A.; O'Toole, George A.
2006-01-01
The Pho regulon integrates the sensing of environmental inorganic phosphate (Pi) availability with coregulation of gene expression, mediating an adaptive response to Pi limitation. Many aspects of the Pho regulon have been addressed in studies of Escherichia coli; however, it is unclear how transferable this knowledge is to other bacterial systems. Here, we report work to discern the conservation of the Pho regulon in Pseudomonas fluorescens Pf0-1. We demonstrate by mutational studies that PhoB/PhoR and the Pst system have conserved functions in the regulation of Pi-induced phosphatase activities, as well as expression of other Pi-regulated genes. A genetic screen was carried out to isolate factors that affect Pho-regulated phosphatase activity. We identified the Pho-regulated phosphatases PhoX and PhoD and present evidence that these enzymes are exported via the Tat system. The phoX and phoD genes were shown to be members of the Pho regulon by reverse transcription-PCR, as well as by functional assessment of putative PhoB binding sites (Pho boxes). Our data also suggested that at least one other non-Tat-secreted Pho-regulated phosphatase exists. From the genetic screen, numerous siderophore mutants that displayed severe defects in Pho-activated phosphatase activity were isolated. Subsequently, iron was shown to be important for modulating the activity of Pho-regulated phosphatases, but it does not regulate this activity at the level of transcription. We also identify and demonstrate a novel role in siderophore production and Pho-regulated phosphatase activity for ApaH, the hydrolase for the nucleotide-signaling molecule AppppA. Finally, numerous mutations in multiple cellular pathways were recovered that may be required for maximal induction of the Pho regulon under Pi-limiting conditions. PMID:16517638
Ni 3+ adsorbate dynamics on a NiO(0 0 1) surface
NASA Astrophysics Data System (ADS)
Karakasidis, Theodoros E.; Vamvakopoulos, E.
2006-05-01
We present results concerning the dynamical behavior of a Ni 3+ adsorbate on a NiO(0 0 1) surface obtained by molecular dynamics simulations. In a first place, we examined at low temperature the position of the Ni 3+ ion as an adatom on the surface and the corresponding modification of its local environment as reflected on the pair-wise radial distribution function. The calculation of the vibrational properties of the adatom by means of the phonon local density of states (LDOS) shows that there is an anisotropic behavior both in the two principal in-plane directions as well as in the direction normal to the surface in accordance with the structural results. We compare the phonon LDOS of the Ni 3+ adatom with the corresponding results for the Ni 2+ adatom and the Ni 2+ surface cations. Static energetic calculations are indicative that the exchange of the Ni 3+ ion with a surface Ni 2+ ion could be favorable. Such a behavior is confirmed by results observed at temperatures higher than 700 K where the Ni 3+ adsorbate is located on a substitutional position on the surface and not on adatom position. The exchange takes place through simple or double exchange mechanisms. The structural and dynamical behavior of the Ni 3+ ion at the substitution position was investigated in the temperature range 700-2000 K through the calculation of the pair distribution function, the relaxed interlayer relative position (RIRP), mean-square displacements (MSDs) and phonon LDOS. Results show that in comparison with the Ni 2+ surface ions the Ni 3+ ion at substitution position is more tightly bound especially in the direction normal to the surface as is indicated by the local structure and the contraction it presents as well as its phonon LDOS. As temperature increases the binding of the Ni 3+ ion becomes less important as reflected on the physical properties mentioned above.
Conservation of the Pho regulon in Pseudomonas fluorescens Pf0-1.
Monds, Russell D; Newell, Peter D; Schwartzman, Julia A; O'Toole, George A
2006-03-01
The Pho regulon integrates the sensing of environmental inorganic phosphate (Pi) availability with coregulation of gene expression, mediating an adaptive response to Pi limitation. Many aspects of the Pho regulon have been addressed in studies of Escherichia coli; however, it is unclear how transferable this knowledge is to other bacterial systems. Here, we report work to discern the conservation of the Pho regulon in Pseudomonas fluorescens Pf0-1. We demonstrate by mutational studies that PhoB/PhoR and the Pst system have conserved functions in the regulation of Pi-induced phosphatase activities, as well as expression of other Pi-regulated genes. A genetic screen was carried out to isolate factors that affect Pho-regulated phosphatase activity. We identified the Pho-regulated phosphatases PhoX and PhoD and present evidence that these enzymes are exported via the Tat system. The phoX and phoD genes were shown to be members of the Pho regulon by reverse transcription-PCR, as well as by functional assessment of putative PhoB binding sites (Pho boxes). Our data also suggested that at least one other non-Tat-secreted Pho-regulated phosphatase exists. From the genetic screen, numerous siderophore mutants that displayed severe defects in Pho-activated phosphatase activity were isolated. Subsequently, iron was shown to be important for modulating the activity of Pho-regulated phosphatases, but it does not regulate this activity at the level of transcription. We also identify and demonstrate a novel role in siderophore production and Pho-regulated phosphatase activity for ApaH, the hydrolase for the nucleotide-signaling molecule AppppA. Finally, numerous mutations in multiple cellular pathways were recovered that may be required for maximal induction of the Pho regulon under Pi-limiting conditions.
Overlapping protein-encoding genes in Pseudomonas fluorescens Pf0-1.
Silby, Mark W; Levy, Stuart B
2008-06-13
The annotated genome sequences of prokaryotes seldom include overlapping genes encoded opposite each other by the same stretch of DNA. However, antisense transcription is becoming recognized as a widespread phenomenon in eukaryotes, and examples have been linked to important biological processes. Pseudomonas fluorescens inhabits aquatic and terrestrial environments, and can be regarded as an environmental generalist. The genetic basis for this ecological success is not well understood. In a previous search for soil-induced genes in P. fluorescens Pf0-1, ten antisense genes were discovered. These were termed 'cryptic' genes, as they had escaped detection by gene-hunting algorithms, and lacked easily recognizable promoters. In this communication, we designate such genes as 'non-predicted' or 'hidden'. Using reverse transcription PCR, we show that at each of six non-predicted gene loci chosen for study, transcription occurs from both 'sense' and 'antisense' DNA strands. Further, at least one of these hidden antisense genes, iiv14, encodes a protein, as does the sense transcript, both identified by poly-histidine tags on the C-terminus of the proteins. Mutational and complementation studies showed that this novel antisense gene was important for efficient colonization of soil, and multiple copies in the wildtype host improved the speed of soil colonization. Introduction of a stop codon early in the gene eliminated complementation, further implicating the protein in colonization of soil. We therefore designate iiv14 "cosA". These data suggest that, as is the case with eukaryotes, some bacterial genomes are more densely coded than currently recognized.
Mechanism of Zn stabilization in hydroxyapatite and hydrated (0 0 1) surfaces of hydroxyapatite.
Matos, M; Terra, J; Ellis, D E
2010-04-14
A basic understanding of Zn incorporation on bulk and hydrated (0 0 1) surfaces of hydroxyapatite (HA) is attained through electronic structure calculations which use a combined first principles density functional (DFT) and extended Hückel tight binding (EHTB) methodology. A Zn substituted hydroxyapatite relaxed structure is obtained through a periodic cell DFT geometry optimization method. Electronic structure properties are calculated by using both cluster DFT and periodic cell EHTB methods. Bond order calculations show that Zn preference for the Ca2 vacancy, near the OH channel and with greater structural flexibility, is associated with the formation of a four-fold (bulk) and nearly four-fold (surface) coordination, as in ZnO. When occupying the octahedral Ca1 vacancy, Zn remains six-fold in the bulk, but coordination decreases to five-fold in the surface. In the bulk and surface, Zn2 is found to be more covalent than Zn1, due to a decrease in bond lengths at the four-fold site, which approach the 1.99 Å ZnO value. Zn is however considerably less bound in the biomaterial than in the oxide, where calculated bond orders are twice as large as in HA. Surface phosphate groups (PO(4)) and hydroxide ions behave as compact individual units as in the bulk; no evidence is found for the presence of HPO(4). Ca-O bond orders decrease at the surface, with a consequent increase in ionicity. Comparison between DFT and EHTB results show that the latter method gives a good qualitative account of charge and bonding in these systems. PMID:21389531
Stellar mass functions of galaxies, discs and spheroids at z ˜ 0.1
NASA Astrophysics Data System (ADS)
Thanjavur, Karun; Simard, Luc; Bluck, Asa F. L.; Mendel, Trevor
2016-06-01
We present the stellar mass functions (SMFs) and mass densities of galaxies, and their spheroid and disc components in the local (z ˜ 0.1) Universe over the range 8.9 ≤ log(M/M⊙) ≤ 12 from spheroid+disc decompositions and corresponding stellar masses of a sample of over 600 000 galaxies in the Sloan Digital Sky Survey Data Release Seven spectroscopic sample. The galaxy SMF is well represented by a single Schechter function (M* = 11.116 ± 0.011, α = -1.145 ± 0.008), though with a hint of a steeper faint end slope. The corresponding stellar mass densities are (2.670 ± 0.110), (1.687 ± 0.063) and (0.910 ± 0.029)× 108 M⊙ Mpc-3 for galaxies, spheroids and discs, respectively. We identify a crossover stellar mass of log(M/M⊙) = 10.3 ± 0.030 at which the spheroid and disc SMFs are equal. Relative contributions of four distinct spheroid/disc dominated sub-populations to the overall galaxy SMF are also presented. The mean disc-to-spheroid stellar mass ratio shows a five-fold disc dominance at the low-mass end, decreasing monotonically with a corresponding increase in the spheroidal fraction till the two are equal at a galaxy stellar mass, log(M/M⊙) = 10.479 ± 0.013; the dominance of spheroids then grows with increasing stellar mass. The relative numbers of composite disc and spheroid-dominated galaxies show peaks in their distributions, perhaps indicative of a preferred galaxy mass. Our characterization of the low-redshift galaxy population provides stringent constraints for numerical simulations to reproduce.
Half-integer flux quantization in a superconducting loop with a ferromagnetic π-junction
NASA Astrophysics Data System (ADS)
Bauer, A.; Bentner, J.; Aprili, M.; Della Rocca, M.; Reinwald, M.; Wegscheider, W.; Strunk, C.
2006-09-01
Superconducting loops containing a π-junction are predicted to show a spontaneous magnetic moment in zero external magnetic field. In order to confirm this longstanding prediction experimentally we performed magnetization measurements on individual mesoscopic superconducting niobium loops with a ferromagnetic (PdNi) π-junction. The loops are prepared on top of the active area of a micro Hall-sensor based on high mobility GaAs/AlGaAs heterostructures. We observe switching of the loop between different magnetization states at very low magnetic fields, which is asymmetric for positive and negative sweep direction. This is evidence for a spontaneous current induced by the intrinsic phase shift of the π-junction. In addition, the presence of the spontaneous current at zero applied field is directly revealed by an increase of the magnetic moment with decreasing temperature, which results in half integer flux quantization in the loop at low temperatures.
NASA Astrophysics Data System (ADS)
Ganeshan, Sriram; Kechedzhi, K.; Das Sarma, S.
2014-07-01
One-dimensional tight binding models such as the Aubry-André-Harper (AAH) model (with an on-site cosine potential) and the integrable Maryland model (with an on-site tangent potential) have been the subject of extensive theoretical research in localization studies. AAH can be directly mapped onto the two-dimensional (2D) Hofstadter model which manifests the integer quantum Hall topology on a lattice. However, such a connection needs to be made for the Maryland model (MM). Here we describe a generalized model that contains AAH and MM as the limiting cases with the MM lying precisely at a topological quantum phase transition (TQPT) point. A remarkable feature of this critical point is that the one-dimensional MM retains well defined energy gaps whereas the equivalent 2D model becomes gapless, signifying the 2D nature of the TQPT.
Subjective evaluations of integer cosine transform compressed Galileo solid state imagery
NASA Astrophysics Data System (ADS)
Haines, Richard F.; Gold, Yaron; Grant, Terry; Chuang, Sherry
1994-07-01
This paper describes a study conducted for the Jet Propulsion Laboratory, Pasadena, California, using 15 evaluators from 12 institutions involved in the Galileo Solid State Imaging (SSI) experiment. The objective of the study was to determine the impact of integer cosine transform (ICT) compression using specially formulated quantization (q) tables and compression ratios on acceptability of the 800 x 800 x 8 monochromatic astronomical images as evaluated visually by Galileo SSI mission scientists. Fourteen different images in seven image groups were evaluated. Each evaluator viewed two versions of the same image side by side on a high-resolution monitor; each was compressed using a different q level. First the evaluators selected the image with the highest overall quality to support them in their visual evaluations of image content. Next they rated each image using a scale from one to five indicating its judged degree of usefulness. Up to four preselected types of images with and without noise were presented to each evaluator.
High-resolution multiple quantum MAS NMR spectroscopy of half-integer quadrupolar nuclei
NASA Astrophysics Data System (ADS)
Wu, Gang; Rovnyank, David; Sun, Boqin; Griffin, Robert G.
1996-02-01
We demonstrate the utility of a two-pulse sequence in obtaining high-resolution solid state NMR spectra of half-integer quadrupolar nuclei with magic-angle-spinning (MAS). The experiment, which utilizes multiple/single-quantum correlation, was first described in a different form by Frydman and Harwood [J. Am. Chem. Soc. 117 (1995) 5367] and yields high-resolution isotropic NMR spectra where shifts are determined by the sum of resonance offset (chemical shift) and second-order quadrupolar effects. The two-pulse sequence described here is shown to provide a higher and more uniform excitation of multiple-quantum coherence than the three-pulse sequence used previously.
A Mixed-Integer Optimization Framework for De Novo Peptide Identification
DiMaggio, Peter A.
2009-01-01
A novel methodology for the de novo identification of peptides by mixed-integer optimization and tandem mass spectrometry is presented in this article. The various features of the mathematical model are presented and examples are used to illustrate the key concepts of the proposed approach. Several problems are examined to illustrate the proposed method's ability to address (1) residue-dependent fragmentation properties and (2) the variability of resolution in different mass analyzers. A preprocessing algorithm is used to identify important m/z values in the tandem mass spectrum. Missing peaks, resulting from residue-dependent fragmentation characteristics, are dealt with using a two-stage algorithmic framework. A cross-correlation approach is used to resolve missing amino acid assignments and to identify the most probable peptide by comparing the theoretical spectra of the candidate sequences that were generated from the MILP sequencing stages with the experimental tandem mass spectrum. PMID:19412358
An efficient FPGA architecture for integer ƞth root computation
NASA Astrophysics Data System (ADS)
Rangel-Valdez, Nelson; Barron-Zambrano, Jose Hugo; Torres-Huitzil, Cesar; Torres-Jimenez, Jose
2015-10-01
In embedded computing, it is common to find applications such as signal processing, image processing, computer graphics or data compression that might benefit from hardware implementation for the computation of integer roots of order ?. However, the scientific literature lacks architectural designs that implement such operations for different values of N, using a low amount of resources. This article presents a parameterisable field programmable gate array (FPGA) architecture for an efficient Nth root calculator that uses only adders/subtractors and ? location memory elements. The architecture was tested for different values of ?, using 64-bit number representation. The results show a consumption up to 10% of the logical resources of a Xilinx XC6SLX45-CSG324C device, depending on the value of N. The hardware implementation improved the performance of its corresponding software implementations in one order of magnitude. The architecture performance varies from several thousands to seven millions of root operations per second.
Lim, S B; Kanthimathi, M S; Hashim, O H
1998-12-01
The effect of the mannose-binding champedak (Artocarpus integer) lectin-M on the cellular proliferation of murine lymphocytes was investigated in this study. Our data demonstrated that the lectin was the main mitogenic component in the crude extract of the champedak seeds. It stimulated the proliferation of murine T cells at an optimal concentration of 2.5 microg/ml in a 3 day culture. Lectin-M appeared to be a T-cell mitogen as it does not induce significant DNA synthesis when cultured with spleen cells from the nude mouse. In the absence of T cells, the lectin was incapable of inducing resting B cells to differentiate into immunoglobulin secreting plasma cells.
Subjective evaluations of integer cosine transform compressed Galileo solid state imagery
NASA Technical Reports Server (NTRS)
Haines, Richard F.; Gold, Yaron; Grant, Terry; Chuang, Sherry
1994-01-01
This paper describes a study conducted for the Jet Propulsion Laboratory, Pasadena, California, using 15 evaluators from 12 institutions involved in the Galileo Solid State Imaging (SSI) experiment. The objective of the study was to determine the impact of integer cosine transform (ICT) compression using specially formulated quantization (q) tables and compression ratios on acceptability of the 800 x 800 x 8 monochromatic astronomical images as evaluated visually by Galileo SSI mission scientists. Fourteen different images in seven image groups were evaluated. Each evaluator viewed two versions of the same image side by side on a high-resolution monitor; each was compressed using a different q level. First the evaluators selected the image with the highest overall quality to support them in their visual evaluations of image content. Next they rated each image using a scale from one to five indicating its judged degree of usefulness. Up to four preselected types of images with and without noise were presented to each evaluator.
On the use of lossless integer wavelet transforms in medical image segmentation
NASA Astrophysics Data System (ADS)
Nagaraj, Nithin; Mallya, Yogish
2005-04-01
Recent trends in medical image processing involve computationally intensive processing techniques on large data sets, especially for 3D applications such as segmentation, registration, volume rendering etc. Multi-resolution image processing techniques have been used in order to speed-up these methods. However, all well-known techniques currently used in multi-resolution medical image processing rely on using Gaussain-based or other equivalent floating point representations that are lossy and irreversible. In this paper, we study the use of Integer Wavelet Transforms (IWT) to address the issue of lossless representation and reversible reconstruction for such medical image processing applications while still retaining all the benefits which floating-point transforms offer such as high speed and efficient memory usage. In particular, we consider three low-complexity reversible wavelet transforms namely the - Lazy-wavelet, the Haar wavelet or (1,1) and the S+P transform as against the Gaussian filter for multi-resolution speed-up of an automatic bone removal algorithm for abdomen CT Angiography. Perfect-reconstruction integer wavelet filters have the ability to perfectly recover the original data set at any step in the application. An additional advantage with the reversible wavelet representation is that it is suitable for lossless compression for purposes of storage, archiving and fast retrieval. Given the fact that even a slight loss of information in medical image processing can be detrimental to diagnostic accuracy, IWTs seem to be the ideal choice for multi-resolution based medical image segmentation algorithms. These could also be useful for other medical image processing methods.
Physical characterization of laminar spray flames in the pressure range 0.1-0.9 MPa
Russo, Stefano; Gomez, Alessandro
2006-04-15
An experimental study is reported on the physical characterization of the structure of ethanol/argon/oxygen coflow laminar spray diffusion flames in the pressure range 0.1-0.9 MPa. Diagnostic techniques include phase Doppler anemometry to measure the droplet size distribution and the axial and radial velocity components of the droplets. The gas-phase velocity is determined using measurements from the smallest (low Stokes number) droplets and is corrected for thermophoretic effects. Temperature information is obtained using thin-film pyrometry combined with an infrared camera. All flames present a cold inner core, in which little or no vaporization takes place, surrounded by an envelope flame buried in a thermal boundary layer, where most of the droplet evaporation occurs. The thickness of this thermal boundary layer scales with the inverse of the Peclet number. Especially near the base of the flame, photographic evidence of streaks, which in some case even reveal the presence of soot, suggests that some droplets survive the common envelope flame and burn isolated on the oxidizer side in a mixed regime of internal/external group combustion. The reconstruction of the entire droplet vaporization history confirms this evidence quantitatively. A criterion for droplet survival beyond the envelope flame based on the critical value of a suitably defined vaporization Damkohler number is proposed. The scaling and self-similar behavior of the investigated flames suggest that a mixed regime is established, with a momentum-controlled cold core and a buoyancy-controlled high-temperature boundary layer, the thickness of which varies significantly with pressure, as expected from Peclet number scaling. The growth of this layer and the thickness of the vaporization region are reduced at pressures above atmospheric because of density effects on thermal diffusivity. Some aspects of the design of the combustion chamber and of the atomizer system are discussed in detail since they are
Code of Federal Regulations, 2014 CFR
2014-04-01
...-wide standards of ethical conduct at 5 CFR part 2635, the Department's regulation at 5 CFR part 7501... disclosure regulation at 5 CFR part 2634. 5 U.S.C. 301, 7301; 42 U.S.C. 3535(d) ... ethical conduct standards and financial disclosure regulations. 0.1 Section 0.1 Housing and...
Code of Federal Regulations, 2011 CFR
2011-04-01
...-wide standards of ethical conduct at 5 CFR part 2635, the Department's regulation at 5 CFR part 7501... disclosure regulation at 5 CFR part 2634. 5 U.S.C. 301, 7301; 42 U.S.C. 3535(d) ... ethical conduct standards and financial disclosure regulations. 0.1 Section 0.1 Housing and...
Code of Federal Regulations, 2013 CFR
2013-04-01
...-wide standards of ethical conduct at 5 CFR part 2635, the Department's regulation at 5 CFR part 7501... disclosure regulation at 5 CFR part 2634. 5 U.S.C. 301, 7301; 42 U.S.C. 3535(d) ... ethical conduct standards and financial disclosure regulations. 0.1 Section 0.1 Housing and...
Code of Federal Regulations, 2012 CFR
2012-04-01
...-wide standards of ethical conduct at 5 CFR part 2635, the Department's regulation at 5 CFR part 7501... disclosure regulation at 5 CFR part 2634. 5 U.S.C. 301, 7301; 42 U.S.C. 3535(d) ... ethical conduct standards and financial disclosure regulations. 0.1 Section 0.1 Housing and...
40 CFR Appendix Vi to Part 265 - Compounds With Henry's Law Constant Less Than 0.1 Y/X
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Compounds With Henry's Law Constant Less Than 0.1 Y/X VI Appendix VI to Part 265 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Law Constant Less Than 0.1 Y/X Compound name CAS No. Acetaldol 107-89-1 Acetamide 60-35-5...
Code of Federal Regulations, 2010 CFR
2010-04-01
... the authority of the Departments of the Treasury and Homeland Security. 0.1 Section 0.1 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY... the Departments of the Treasury and Homeland Security. (a) Regulations requiring signatures...
Code of Federal Regulations, 2011 CFR
2011-04-01
... the authority of the Departments of the Treasury and Homeland Security. 0.1 Section 0.1 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY... the Departments of the Treasury and Homeland Security. (a) Regulations requiring signatures...
Code of Federal Regulations, 2014 CFR
2014-04-01
... the authority of the Departments of the Treasury and Homeland Security. 0.1 Section 0.1 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY... the Departments of the Treasury and Homeland Security. (a) Regulations requiring signatures...
Code of Federal Regulations, 2012 CFR
2012-04-01
... the authority of the Departments of the Treasury and Homeland Security. 0.1 Section 0.1 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY... the Departments of the Treasury and Homeland Security. (a) Regulations requiring signatures...
Code of Federal Regulations, 2013 CFR
2013-04-01
... the authority of the Departments of the Treasury and Homeland Security. 0.1 Section 0.1 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY... the Departments of the Treasury and Homeland Security. (a) Regulations requiring signatures...
ERIC Educational Resources Information Center
Gauthier, N.
2008-01-01
A general method is presented for evaluating the sums of "m"th powers of the integers that can, and that cannot, be represented in the two-element Frobenius problem. Generating functions are introduced and used for that purpose. Explicit formulas for the desired sums are obtained and specific examples are discussed.
ERIC Educational Resources Information Center
Stoessiger, Rex
2013-01-01
A critical numeracy examination of Benford's Law suggests that our understanding of the integers is faulty. We think of them as equally likely to turn up as the first digit of a random real world number. For many real world data sets this is not true. In many cases, ranging from eBay auction prices to six digit numbers in Google to the…
On Vieta's Formulas and the Determination of a Set of Positive Integers by Their Sum and Product
ERIC Educational Resources Information Center
Valahas, Theodoros; Boukas, Andreas
2011-01-01
In Years 9 and 10 of secondary schooling students are typically introduced to quadratic expressions and functions and related modelling, algebra, and graphing. This includes work on the expansion and factorisation of quadratic expressions (typically with integer values of coefficients), graphing quadratic functions, finding the roots of quadratic…
ERIC Educational Resources Information Center
Motz, Benjamin A.; Erickson, Molly A.; Hetrick, William P.
2013-01-01
Humans perceive a wide range of temporal patterns, including those rhythms that occur in music, speech, and movement; however, there are constraints on the rhythmic patterns that we can represent. Past research has shown that sequences in which sounds occur regularly at non-metrical locations in a repeating beat period (non-integer ratio…
ERIC Educational Resources Information Center
Varma, Sashank; Schwartz, Daniel L.
2011-01-01
Mathematics has a level of structure that transcends untutored intuition. What is the cognitive representation of abstract mathematical concepts that makes them meaningful? We consider this question in the context of the integers, which extend the natural numbers with zero and negative numbers. Participants made greater and lesser judgments of…
ERIC Educational Resources Information Center
Kumar, Ruchi S.; Subramaniam, Kalyansundaram
2015-01-01
In this paper we describe four Indian in-service middle school mathematics teachers' shifts in their roles with respect to the textbook. The shifts occurred through participation in collaborative investigation on the topic of integers in professional development meetings. Analysis of teachers' talk in these meetings indicated a shift in teachers'…
ERIC Educational Resources Information Center
Gallardo, Aurora
2002-01-01
Analyzes from an historical perspective the extension of the natural-number domain to integers in students' transition from arithmetic to algebra in the context of word problems. Extracts four levels of acceptance of these numbers--subtrahend, relative number, isolated number and formal negative number--from historical texts. The first three…
Acquisition and Evaluation of Thermodynamic Data for Morenosite-Retgersite Equilibria at 0.1 MPa
NASA Astrophysics Data System (ADS)
Chou, I.; Seal, R. R.
2002-12-01
Metal-sulfate salts are common minerals found in mine drainage environments, and thermodynamic data for these salts are needed for constructing paragenetic models as well as formulating remediation strategies. Thermodynamic data for these salts are either not available or in poor agreement. However, recent development of the humidity-buffer technique (Chou et al., 2002, Amer. Mineral., 87, 108-114) provides an efficient and reliable method for obtaining and evaluating these data. These salts commonly occur in nature as solid solutions and can contain Fe, Cu, Mg, Zn, Al, Mn, Ni, Co, Cd, and other elements. To establish a useful thermodynamic database for the interpretation of natural assemblages, it is necessary to first study thermodynamic properties of end member salts (Chou et al., ibid. for Fe and Cu; Chou and Seal, 2001, Goldschmidt Conf., p. 3114.pdf for Zn, and Chou and Seal, 2001, GSA Abstr. With Progr., 33, p. A-403 for Mg). This study extends the database to the Ni end-member system; dissolved Ni has known toxicity to aquatic ecosystems in mine drainage settings. Published estimates for the equilibrium relative humidity (RH) for the reaction: Morenosite (NiSO4.7H2O) = Retgersite (NiSO4.6H2O) + H2O, at 25°C range from 67 to 96%. To evaluate these data, the humidity-buffer technique (Chou et al., 2002, ibid.) was used to determine equilibrium constants for this reaction between 5 and 22°C at 0.1 MPa. Reversals along five humidity-buffer curves yield ln K = 17.58 + 6303.35/T, where K is the equilibrium constant, and T is temperature in K. The derived standard Gibbs free energy of reaction is 8.84 kJ/mol, which agrees very well with the values of 8.90, 8.83, and 8.85 kJ/mol based on the vapor pressure measurements of Schumb (1923, J. Am. Chem. Soc., 45, 342-345), Bornell and Burridge (1935, Trans. Faraday Soc., 31, 473-478) and Stout et al. (1966, J. Chem. Phys., 44, 405-409), respectively. However, this value is considerably different from the values of 8
Circadian Behavioral Study: LED vs Cool White Fluorescent - 0.1, 1, 10, 40, 80 lux. Part 2
NASA Technical Reports Server (NTRS)
Holley, Daniel C.; Syrkin, N.; Mele, G.
2000-01-01
Currently, the light source most commonly used in animal habitat lighting is cool white fluorescent (CWF) light. It was the objective of this study to evaluate a novel LED light source for use in animal habitat lighting by comparing its effectiveness to CWF light in producing and maintaining a normal circadian entrainment. The LED and CWF lights had similar spectral power distributions. Sprague-Dawley rats (175-350 g) were kept individually in metabolic cages, under a strict lighting control: 4 days of acclimation at 12:12 LD, 14 days of 12:12 LD, 14 days of 24:0 LD (free-run), and finally 12:12 LD. Food and water were provided ad libitum. Three behavioral parameters were monitored continuously: gross locomotor activity, drinking, and feeding. Combined mean free run periods (tau) were (mean +/- SEM): 24.6 +/- 0.1 and 24.7 +/- 0.2 at 0.1 lux, 25.5 +/- 0.1 and 25.7 +/- 0.1 at 1.0 lux, 25.3 +/- 0.2 and 25.4 +/- 0.2 at 10 lux, 25.8 +/- 0.1 and 25.9 +/- 0.1 at 40 lux, and 25.9 +/- 0.1 and 25.9 +/- 0.1 at 80 lux, CWF and LED respectively. ANOVA found a significant effect (p < 0.05) due to light level, but no difference in tau between rats exposed to constant CWF light and rats exposed to constant LED light. This study has shown that LED light can produce the same entrainment pattern as a conventional CWT light at similar intensities (0.1, 1, 10, 40, and 80 lux). LED light sources may be a suitable replacement for conventional light sources used in animal habitat lighting while providing many mechanical and economical advantages.
Exploring 0.1–10 eV axions with a new helioscope concept
Galán, J.; Dafni, T.; Iguaz, F.J. E-mail: Theopisti.Dafni@cern.ch; and others
2015-12-01
We explore the possibility to develop a new axion helioscope type, sensitive to the higher axion mass region favored by axion models. We propose to use a low background large volume TPC immersed in an intense magnetic field. Contrary to traditional tracking helioscopes, this detection technique takes advantage of the capability to directly detect the photons converted on the buffer gas which defines the axion mass sensitivity region, and does not require pointing the magnet to the Sun. The operation flexibility of a TPC to be used with different gas mixtures (He, Ne, Xe, etc.) and pressures (from 10 mbar to 10 bar) will allow to enhance sensitivity for axion masses from few meV to several eV. We present different helioscope data taking scenarios, considering detection efficiency and axion absorption probability, and show the sensitivities reachable with this technique to be few × 10{sup −11} GeV{sup −1} for a 5 T, m{sup 3} scale TPC. We show that a few years program taking data with such setup would allow to probe the KSVZ axion model for axion masses above 0∼> 10 meV.
Interaction of SO2 with Cu/TiC(0 0 1) and Au/TiC(0 0 1): Toward a New Family of DeSOx Catalysts
L Feria; J Rodriguez; T Jirsak; F Illas
2011-12-31
Experiments carried out under well-controlled conditions and density functional theory (DFT)-based calculations evidence that Cu and Au nanoparticles supported on a TiC(0 0 1) surface are quite active for the dissociation of the SO{sub 2} molecule. The Cu/TiC(0 0 1) and Au/TiC(0 0 1) systems cleave both S-O bonds of SO{sub 2} at a temperature of 150 K, displaying a reactivity much larger than that of TiC(0 0 1) or extended surfaces of bulk copper and gold. The origin of the high activity of the Cu/TiC(0 0 1) and Au/TiC(0 0 1) systems lies on the interaction between the C atoms of the substrate and the metal atoms of the supported particle, which results in a large polarization of its electron density. Experiments and theory consistently indicate that the Cu/TiC system is more active toward SO{sub 2} dissociation than the Au/TiC system. This type of systems may provide alternative and efficient DeSO{sub x} catalysts.
γ-LiAlO 2 layer on (0 0 0 1) sapphire fabricated by vapor transport equilibration
NASA Astrophysics Data System (ADS)
Zhou, Shengming; Xu, Jun; Li, Shuzhi; Yang, Weiqiao; Peng, Guanliang; Zou, Jun; Wang, Yinzhen; Liu, Shiliang; Zhao, Guangjun; Li, Hongjun; Zhou, Guoqing; Hang, Yin
2004-07-01
Single-phase γ-LiAlO 2 layer with a preferred (1 0 0) orientation on (0 0 0 1) sapphire substrate is successfully fabricated by vapor transport equilibration (VTE) technique. The VTE-treated surface of (0 0 0 1) sapphire is polycrystalline shown to be a single-phase of γ-LiAlO 2 at low VTE temperature (750-900°C), and becomes highly oriented in [1 0 0] direction at proper VTE temperature of ˜1100°C. The transparence of the obtained γ-LiAlO 2//sapphire(0 0 0 1) is greatly enhanced as the γ-LiAlO 2 layer becomes oriented. These results reveal the possibility of fabricating γ-LiAlO 2(1 0 0)//sapphire(0 0 0 1) composite substrate by VTE for M-plane GaN-based epitaxial film.
Instantaneous and controllable integer ambiguity resolution: review and an alternative approach
NASA Astrophysics Data System (ADS)
Zhang, Jingyu; Wu, Meiping; Li, Tao; Zhang, Kaidong
2015-11-01
In the high-precision application of Global Navigation Satellite System (GNSS), integer ambiguity resolution is the key step to realize precise positioning and attitude determination. As the necessary part of quality control, integer aperture (IA) ambiguity resolution provides the theoretical and practical foundation for ambiguity validation. It is mainly realized by acceptance testing. Due to the constraint of correlation between ambiguities, it is impossible to realize the controlling of failure rate according to analytical formula. Hence, the fixed failure rate approach is implemented by Monte Carlo sampling. However, due to the characteristics of Monte Carlo sampling and look-up table, we have to face the problem of a large amount of time consumption if sufficient GNSS scenarios are included in the creation of look-up table. This restricts the fixed failure rate approach to be a post process approach if a look-up table is not available. Furthermore, if not enough GNSS scenarios are considered, the table may only be valid for a specific scenario or application. Besides this, the method of creating look-up table or look-up function still needs to be designed for each specific acceptance test. To overcome these problems in determination of critical values, this contribution will propose an instantaneous and CONtrollable (iCON) IA ambiguity resolution approach for the first time. The iCON approach has the following advantages: (a) critical value of acceptance test is independently determined based on the required failure rate and GNSS model without resorting to external information such as look-up table; (b) it can be realized instantaneously for most of IA estimators which have analytical probability formulas. The stronger GNSS model, the less time consumption; (c) it provides a new viewpoint to improve the research about IA estimation. To verify these conclusions, multi-frequency and multi-GNSS simulation experiments are implemented. Those results show that IA
Iuga, D; Schäfer, H; Verhagen, R; Kentgens, A P
2000-12-01
We have recently shown that the sensitivity of single- and multiple-quantum NMR experiments of half-integer (N/2) quadrupolar nuclei can be increased significantly by introducing so-called double frequency sweeps (DFS) in various pulse schemes. These sweeps consist of two sidebands generated by an amplitude modulation of the RF carrier. Using a time-dependent amplitude modulation the sidebands can be swept through a certain frequency range. Inspired by the work of Vega and Naor (J. Chem. Phys. 75, 75 (1981)), this is used to manipulate +/-(m - 1) <--> +/-m (3/2 < or = m < or = N/2) satellite transitions in half-integer spin systems simultaneously. For (23)Na (I = 3/2) and (27)Al (I = 5/2) spins in single crystals it proved possible to transfer the populations of the outer +/-m spin levels to the inner +/-1/2 spin levels. A detailed analysis shows that the efficiency of this process is a function of the adiabaticity with which the various spin transitions are passed during the sweep. In powders these sweep parameters have to be optimized to satisfy the appropriate conditions for a maximum of spins in the powder distribution. The effects of sweep rate, sweep range, and RF field strength are investigated both numerically and experimentally. Using a DFS as a preparation period leads to significantly enhanced central transition powder spectra under both static and MAS conditions, compared to single pulse excitation. DFSs prove to be very efficient tools not only for population transfer, but also for coherence transfer. This can be exploited for the multiple- to single-quantum transfer in MQMAS experiments. It is demonstrated, theoretically and experimentally, that DFSs are capable of transferring both quintuple-quantum and triple-quantum coherence into single-quantum coherence in I = 5/2 spin systems. This leads to a significant enhancement in signal-to-noise ratio and strongly reduces the RF power requirement compared to pulsed MQMAS experiments, thus extending their
Observations of the radio source G6.6-0.1 positionally coincident with the W28 SNR
NASA Technical Reports Server (NTRS)
Andrews, M. D.; Basart, J. P.; Lamb, R. C.
1985-01-01
This paper reports scaled-array continuum and H76-alpha line observations of the radio source G6.6-0.1 which is positioned at the center of the W28 SNR. The source exhibits a bright core surrounded by extended emission which appears organized into arcs and wisps. G6.6-0.1 is interpreted as a compact H II region with a unique morphology.
High-pressure and high-temperature phase diagram for Fe0.9Ni0.1-H alloy
NASA Astrophysics Data System (ADS)
Shibazaki, Yuki; Terasaki, Hidenori; Ohtani, Eiji; Tateyama, Ryuji; Nishida, Keisuke; Funakoshi, Ken-ichi; Higo, Yuji
2014-03-01
Planetary cores are considered to consist of an iron-nickel (Fe-Ni) alloy and light elements and hydrogen is one of plausible light elements in the core. Here we have performed in situ X-ray diffraction experiments on an Fe0.9Ni0.1-H system up to 15.1 GPa and 1673 K, and investigated the effect of Ni on phase relations of FeHx under high pressure and high temperature. The experimental system in the present work was oversaturated with hydrogen. We found a face-center-cubic (fcc) phase (with hydrogen concentration up to x∼1) and a body-center-cubic (bcc) phase (x < 0.1) as stable phases. The partial melting was observed below 6 GPa. We could not observe a double-hexagonal-close-packed (dhcp) phase because of limitations in pressure and temperature conditions. The stability field of each phase of Fe0.9Ni0.1Hx was almost same as that of FeHx. The solidus of Fe0.9Ni0.1Hx was 500-700 K lower than the melting curve of Fe and its liquidus was 400-600 K lower than that of Fe in the pressure range of this study. Both the solidus and liquidus of Fe0.9Ni0.1Hx were depressed at around 3.5 GPa, as was the solidus of FeHx. The hydrogen contents in fcc-Fe0.9Ni0.1Hx just below solidus were slightly lower than those of fcc-FeHx, which suggests that nickel is likely to prevent dissolution of hydrogen into iron. Due to the lower hydrogen solubilities in Fe0.9Ni0.1 compared to Fe, the solidus of Fe0.9Ni0.1Hx is about 100-150 K higher than that of FeHx.
Zhang, Jun; Xie, Kui; Wei, Haoshan; Qin, Qingqing; Qi, Wentao; Yang, Liming; Ruan, Cong; Wu, Yucheng
2014-11-18
In this work, redox-active Mn or Cr is introduced to the B site of redox stable perovskite Sr(0.95)Ti(0.9)Nb(0.1)O3.00 to create oxygen vacancies in situ after reduction for high-temperature CO2 electrolysis. Combined analysis using X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and thermogravimetric analysis confirms the change of the chemical formula from oxidized Sr(0.95)Ti(0.9)Nb(0.1)O3.00 to reduced Sr(0.95)Ti(0.9)Nb(0.1)O2.90 for the bare sample. By contrast, a significant concentration of oxygen vacancy is additionally formed in situ for Mn- or Cr-doped samples by reducing the oxidized Sr(0.95)Ti(0.8)Nb(0.1)M(0.1)O3.00 (M = Mn, Cr) to Sr(0.95)Ti(0.8)Nb(0.1)M0.1O2.85. The ionic conductivities of the Mn- and Cr-doped titanate improve by approximately 2 times higher than bare titanate in an oxidizing atmosphere and 3-6 times higher in a reducing atmosphere at intermediate temperatures. A remarkable chemical accommodation of CO2 molecules is achieved on the surface of the reduced and doped titanate, and the chemical desorption temperature reaches a common carbonate decomposition temperature. The electrical properties of the cathode materials are investigated and correlated with the electrochemical performance of the composite electrodes. Direct CO2 electrolysis at composite cathodes is investigated in solid-oxide electrolyzers. The electrode polarizations and current efficiencies are observed to be significantly improved with the Mn- or Cr-doped titanate cathodes.
A Linear Programming Solution to the Faculty Assignment Problem
ERIC Educational Resources Information Center
Breslaw, Jon A.
1976-01-01
Investigates the problem of assigning faculty to courses at a university. A program is developed that is both efficient, in that integer programming is not required, and effective, in that it facilitates interaction by administration in determining the optimal solution. The results of some empirical tests are also reported. (Author)
A FASTQ compressor based on integer-mapped k-mer indexing for biologist.
Zhang, Yeting; Patel, Khyati; Endrawis, Tony; Bowers, Autumn; Sun, Yazhou
2016-03-15
Next generation sequencing (NGS) technologies have gained considerable popularity among biologists. For example, RNA-seq, which provides both genomic and functional information, has been widely used by recent functional and evolutionary studies, especially in non-model organisms. However, storing and transmitting these large data sets (primarily in FASTQ format) have become genuine challenges, especially for biologists with little informatics experience. Data compression is thus a necessity. KIC, a FASTQ compressor based on a new integer-mapped k-mer indexing method, was developed (available at http://www.ysunlab.org/kic.jsp). It offers high compression ratio on sequence data, outstanding user-friendliness with graphic user interfaces, and proven reliability. Evaluated on multiple large RNA-seq data sets from both human and plants, it was found that the compression ratio of KIC had exceeded all major generic compressors, and was comparable to those of the latest dedicated compressors. KIC enables researchers with minimal informatics training to take advantage of the latest sequence compression technologies, easily manage large FASTQ data sets, and reduce storage and transmission cost. PMID:26743127
NASA Astrophysics Data System (ADS)
Lyanda-Geller, Yuli; Simion, George
2015-03-01
We investigate a ground state of the two-dimensional (2D) electron liquid in the presence of disorder for Landau level filling factors, for which the re-entrant integer quantum Hall effect is observed. Our particular interest is the range of filling factors, which in a clean 2D system is favorable to formation of the two-electron (2e) bubble crystal. For the smooth random potential due to charged impurities placed far away from the 2D gas, the ground state is a lightly distorted 2e bubble crystal. However, for positively or negatively charged residual impurities located approximately within about three magnetic lengths from the 2D electrons, the ground state contains charged 2e complexes formed either by positively charged impurity and 3e defect bubble, or negatively charged impurity and 2e defect bubble. In the vicinity of 1e and 3e defect bubbles, the 2e bubbles of the crystal change their shape from round to elongated forming hedgehog (for 1e defect) or vortex (for 3e defect) textures. The topological textures due to these complexes interact with vortex and hedgehog excitations, generated as temperature increases that are not bound by residual impurities. The temperature of insulator to metal transition calculated with both bound and unbound defects agrees with experiment. Research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0010544.
Tracking Simulation of Third-Integer Resonant Extraction for Fermilab's Mu2e Experiment
Park, Chong Shik; Amundson, James; Michelotti, Leo
2015-02-13
The Mu2e experiment at Fermilab requires acceleration and transport of intense proton beams in order to deliver stable, uniform particle spills to the production target. To meet the experimental requirement, particles will be extracted slowly from the Delivery Ring to the external beamline. Using Synergia2, we have performed multi-particle tracking simulations of third-integer resonant extraction in the Delivery Ring, including space charge effects, physical beamline elements, and apertures. A piecewise linear ramp profile of tune quadrupoles was used to maintain a constant averaged spill rate throughout extraction. To study and minimize beam losses, we implemented and introduced a number of features, beamline element apertures, and septum plane alignments. Additionally, the RF Knockout (RFKO) technique, which excites particles transversely, is employed for spill regulation. Combined with a feedback system, it assists in fine-tuning spill uniformity. Simulation studies were carried out to optimize the RFKO feedback scheme, which will be helpful in designing the final spill regulation system.
Wang, Jing; Zhou, Quan; Lian, Biao; Zhang, Shou -Cheng
2015-08-31
Here, we propose to realize a two-dimensional chiral topological superconducting (TSC) state from the quantum anomalous Hall plateau transition in a magnetic topological insulator thin film through the proximity effect to a conventional s -wave superconductor. This state has a full pairing gap in the bulk and a single chiral Majorana mode at the edge. The optimal condition for realizing such chiral TSC is to have inequivalent superconducting pairing amplitudes on top and bottom surfaces of the doped magnetic topological insulator. We further propose several transport experiments to detect the chiral TSC. One unique signature is that the conductance will be quantized into a half-integer plateau at the coercive field in this hybrid system. In particular, with the point contact formed by a superconducting junction, the conductance oscillates between e^{2} /2h and e2 /h with the frequency determined by the voltage across the junction. We close by discussing the feasibility of these experimental proposals.
Short-range interactions and scaling near integer quantum Hall transitions
Wang, Ziqiang; Fisher, Matthew P. A.; Girvin, S. M.; Chalker, J. T.
2000-03-15
We study the influence of short-range electron-electron interactions on scaling behavior near the integer quantum Hall plateau transitions. Short-range interactions are known to be irrelevant at the renormalization group fixed point which represents the transition in the noninteracting system. We find, nevertheless, that transport properties change discontinuously when interactions are introduced. Most importantly, in the thermodynamic limit the conductivity at finite temperature is zero without interactions, but nonzero in the presence of arbitrarily weak interactions. In addition, scaling as a function of frequency {omega} and temperature T is determined by the scaling variable {omega}/T{sup p} (where p is the exponent for the temperature dependence of the inelastic scattering rate) and not by {omega}/T, as it would be at a conventional quantum phase transition described by an interacting fixed point. We express the inelastic exponent p and the thermal exponent z{sub T} in terms of the scaling dimension -{alpha}<0 of the interaction strength and the dynamical exponent z (which has the value z=2), obtaining p=1+2{alpha}/z and z{sub T}=2/p. (c) 2000 The American Physical Society.
Wang, Jing; Zhou, Quan; Lian, Biao; Zhang, Shou -Cheng
2015-08-31
Here, we propose to realize a two-dimensional chiral topological superconducting (TSC) state from the quantum anomalous Hall plateau transition in a magnetic topological insulator thin film through the proximity effect to a conventional s -wave superconductor. This state has a full pairing gap in the bulk and a single chiral Majorana mode at the edge. The optimal condition for realizing such chiral TSC is to have inequivalent superconducting pairing amplitudes on top and bottom surfaces of the doped magnetic topological insulator. We further propose several transport experiments to detect the chiral TSC. One unique signature is that the conductance willmore » be quantized into a half-integer plateau at the coercive field in this hybrid system. In particular, with the point contact formed by a superconducting junction, the conductance oscillates between e2 /2h and e2 /h with the frequency determined by the voltage across the junction. We close by discussing the feasibility of these experimental proposals.« less
Initiation of a passivated interface between hafnium oxide and In(Ga)As(0 0 1)-(4x2).
Clemens, Jonathon B; Bishop, Sarah R; Lee, Joon Sung; Kummel, Andrew C; Droopad, Ravi
2010-06-28
Hafnium oxide interfaces were studied on two related group III rich semiconductor surfaces, InAs(0 0 1)-(4x2) and In(0.53)Ga(0.47)As(0 0 1)-(4x2), via two different methods: reactive oxidation of deposited Hf metal and electron beam deposition of HfO(2). The interfaces were investigated with scanning tunneling microscopy and spectroscopy (STS). Single Hf atom chemisorption sites were identified that are resistant to oxidation by O(2), but Hf islands are reactive to O(2). After e(-) beam deposition of <1 ML of HfO(2), single chemisorption sites were identified. At low coverage (<1 ML), the n-type and p-type HfO(2)/InGaAs(0 0 1)-(4x2) interfaces show p-type character in STS, which is typical of clean InGaAs(0 0 1)-(4x2). After annealing below 200 degrees C, full coverage HfO(2)/InGaAs(0 0 1)-(4x2) (1-3 ML) has the surface Fermi level shifted toward the conduction band minimum for n-type InGaAs, but near the valence band maximum for p-type InGaAs. This is consistent with the HfO(2)/InGaAs(0 0 1)-(4x2) interface being at least partially unpinned, i.e., a low density of states in the band gap. The partially unpinned interface results from the modest strength of the bonding between HfO(2) and InGaAs(0 0 1)-(4x2) that prevents substrate atom disruption. The fortuitous structure of HfO(2) on InAs(0 0 1)-(4x2) and InGaAs(0 0 1)-(4x2) allows for the elimination of the partially filled dangling bonds on the surface, which are usually responsible for Fermi level pinning.
Initiation of a passivated interface between hafnium oxide and In(Ga)As(0 0 1)-(4x2)
Clemens, Jonathon B.; Bishop, Sarah R.; Kummel, Andrew C.; Lee, Joon Sung
2010-06-28
Hafnium oxide interfaces were studied on two related group III rich semiconductor surfaces, InAs(0 0 1)-(4x2) and In{sub 0.53}Ga{sub 0.47}As(0 0 1)-(4x2), via two different methods: reactive oxidation of deposited Hf metal and electron beam deposition of HfO{sub 2}. The interfaces were investigated with scanning tunneling microscopy and spectroscopy (STS). Single Hf atom chemisorption sites were identified that are resistant to oxidation by O{sub 2}, but Hf islands are reactive to O{sub 2}. After e{sup -} beam deposition of <<1 ML of HfO{sub 2}, single chemisorption sites were identified. At low coverage (<1 ML), the n-type and p-type HfO{sub 2}/InGaAs(0 0 1)-(4x2) interfaces show p-type character in STS, which is typical of clean InGaAs(0 0 1)-(4x2). After annealing below 200 deg. C, full coverage HfO{sub 2}/InGaAs(0 0 1)-(4x2) (1-3 ML) has the surface Fermi level shifted toward the conduction band minimum for n-type InGaAs, but near the valence band maximum for p-type InGaAs. This is consistent with the HfO{sub 2}/InGaAs(0 0 1)-(4x2) interface being at least partially unpinned, i.e., a low density of states in the band gap. The partially unpinned interface results from the modest strength of the bonding between HfO{sub 2} and InGaAs(0 0 1)-(4x2) that prevents substrate atom disruption. The fortuitous structure of HfO{sub 2} on InAs(0 0 1)-(4x2) and InGaAs(0 0 1)-(4x2) allows for the elimination of the partially filled dangling bonds on the surface, which are usually responsible for Fermi level pinning.
Nucleation and growth of epitaxial ZrB 2(0 0 0 1) on Si(1 1 1)
NASA Astrophysics Data System (ADS)
Hu, C.-W.; Chizmeshya, A. V. G.; Tolle, J.; Kouvetakis, J.; Tsong, I. S. T.
2004-07-01
The growth behavior of epitaxial ZrB 2(0 0 0 1) films on Si(1 1 1) via the thermal decomposition of the unimolecular precursor Zr(BH 4) 4 was studied in situ using low-energy electron diffraction and low-energy electron microscopy, and ex situ using cross-sectional transmission electron microscopy and atomic force microscopy. Under appropriate kinetic conditions, epitaxy was achieved in spite of the very large lattice mismatch between ZrB 2(0 0 0 1) and Si(1 1 1). Our study followed the growth from the initial nucleation stage to the final epitaxial film at various growth temperatures. At 900°C, the growth of ZrB 2(0 0 0 1) proceeded by the nucleation of two-dimensional islands. These islands eventually coalesced to form a smooth film with an RMS roughness of 0.9 nm. The interface between ZrB 2(0 0 0 1) and Si(1 1 1) was modeled theoretically and the most favorable interface consisted of the ZrB 2(0 0 0 1) growing on a Si(1 1 1)-(√3×√3)B surface with the Zr-layer nearest to the interface and the B-layer on the top surface.